HARVEST METHODS IN *Sorghum halepense*

INFESTED Gossypium hirsutum AND

PROFITABLE WEED-CONTROL

SYSTEMS IN Sorghum bicolor

By

MARK LOUIS WOOD

Bachelor of Science in Agriculture Cameron University Lawton, Oklahoma 1994

Master of Science in Agronomy Oklahoma State University Stillwater, Oklahoma 1997

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 2000 HARVEST METHODS IN Sorghum halepense

INFESTED Gossypium hirsutum AND

PROFITABLE WEED-CONTROL

SYSTEMS IN Sorghum bicolor

Thesis Approved:

Thesis Adviser N

Dean of the Graduate College

ACKNOWLEDGMENTS

Appreciation is extended to my major adviser, Dr. Don S. Murray, for the opportunity he gave me to pursue the Ph.D. degree as well as for the advice, effort, and encouragement he extended. I also appreciate the other members of my graduate committee, Dr. Kim B. Anderson, Dr. J. C. Banks, and Dr. Laval M. Verhalen, who provided knowledge, guidance, and additional encouragement.

Recognition is given to Dr. R. Brent Westerman who helped me throughout my career as a graduate student and for his continual guidance since. Thanks are also extended to M. Renee' Albers-Nelson, Stacey R. Frazier, Cody J. Gray, Jerry W. Moore, Shea W. Murdock, Eric W. Palmer, Brad D. Pryor, Matthew W. Rowland, T. Brian Scroggins, Deana S. Titus, Robert W. Thacker, and others for their time and efforts to help me complete my research and dissertation.

I am deeply indebted to my wife, Beth B. Wood, and son, Dalton L. Wood, whose love and care have upheld me during my graduate studies. I am thankful for the love and support of my parents (Dr. Robert L. and Cindy J. Wood) and of my "in-laws" (Herbert A. and Claudette C. Billiot, Tim W. and Selena M. Mullennax, and Joshua S. Billiot).

iii

TABLE OF CONTENTS

Cha	Pa Pa	ge
INT	TRODUCTION	1
I.	HARVEST METHODS IN Sorghum halepense INFESTED	
	Gossypium hirsutum.	2
	Abstract	3
	Introduction	5
	Materials and Methods	7
	Field Parameters	7
	Experimental Design	7
	Johnsongrass Densities	7
	Experimental Area	8
	Data Collection	8
	Harvest Efficiency Investigations	9
	Fiber Property Analyses	9
	Loan Rate Comparisons	9
	Yield Loss Examinations	10
	Results and Discussion	10
	Harvest Efficiency Investigations	10
	Fiber Property Analyses	11
	Loan Rate Comparisons	12
	Yield Loss Examinations	13
	Literature Cited	15
	Tables (1-2)	17
	Figures (1-3)	20
II.	PROFITABLE WEED-CONTROL SYSTEMS IN Sorghum bicolor	23
	Abstract	24
	Introduction	26
	Materials and Methods	28
	Experimental Parameters	28
	Three-year Conventional Tillage Experiment, (1997-1999)	29
	Two-year Conventional Tillage Experiment, (1998-1999)	30
	Two-year Drilled No-Tillage Experiment, (1998-1999)	30
	Data Collection	31

· • • • • • •	
Data Analyses	31
Results and Discussion	32
Three-year Conventional Tillage Experiment, (1997-1999)	32
Two-year Conventional Tillage Experiment, (1998-1999)	32
Two-year Drilled No-Tillage Experiment, (1998-1999)	33
Literature Cited	35
Tables (1-6)	36
Appendix	44
Appendix Tables (1-20)	45

v

LIST OF TABLES

Tał	Page
Cha	apter I
1.	Harvest efficiency for picker- vs. stripper-harvest methods relative to johnsongrass density and comparisons across years, harvest methods, and densities
2.	Loan rate for picker- vs. stripper-harvest methods relative to johnsongrass density and comparisons across years, harvest methods, and densities
Cha	apter II
1.	Three-year conventional tillage experiment herbicide list and grain sorghum weed control return ratio
2.	Three-year conventional tillage experiment herbicide list and net grain sorghum return 38
3.	Two-year conventional tillage experiment herbicide list and grain sorghumweed control ratio40
4.	Two-year conventional tillage experiment herbicide list and net grain sorghum return. 41
5.	Two-year drilled no-tillage experiment herbicide list and grain sorghum weedcontrol return ratio42
6.	Two-year drilled no-tillage experiment herbicide list and net grain sorghum return 43

LIST OF APPENDIX TABLES

Ta	able Page
C	hapter II
1.	Three-year conventional tillage experiment treatment cost listing ranked by net grain sorghum return in 1997
2.	Three-year conventional tillage experiment treatment cost listing ranked by net grain sorghum return in 1998
3.	Three-year conventional tillage experiment treatment cost listing ranked by net grain sorghum return in 1999 49
4.	Three-year conventional tillage experiment grain sorghum ratings for crop injury and weed control in 1997 51
5.	Three-year conventional tillage experiment grain sorghum ratings for crop injury and weed control in 1998
6.	Three-year conventional tillage experiment grain sorghum ratings for crop injury and weed control in 1999
7.	Three-year conventional tillage experiment counts and heights ranked by net grain sorghum return in 1998
8.	Three-year conventional tillage experiment counts and heights ranked by net grain sorghum return in 1999 59
9.	Two-year conventional tillage experiment treatment cost listing ranked by net grain sorghum return in 1998
10.	Two-year conventional tillage experiment treatment cost listing ranked by net grain sorghum return in 1999
11.	Two-year conventional tillage experiment grain sorghum ratings for crop injury and weed control in 1998
12.	Two-year conventional tillage experiment grain sorghum ratings for crop injury and weed control in 1999

13.	Two-year conventional tillage experiment grain sorghum counts and heights ranke by net return in 1998	d 65
14.	Two-year conventional tillage experiment grain sorghum counts and heights ranke by net return in 1999	d 66
15.	Two-year drilled no-tillage experiment treatment cost listing ranked by net grain sorghum return in 1998	67
16.	Two-year drilled no-tillage experiment treatment cost listing ranked by net grain sorghum return in 1999	68
17.	Two-year drilled no-tillage experiment grain sorghum ratings for crop injury and weed control ranked by net return in 1998	69
18.	Two-year drilled no-tillage experiment grain sorghum ratings for crop injury and weed control ranked by net return in 1999	70
19.	Two-year drilled no-tillage experiment counts and heights ranked by net grain sorghum return in 1998	71
20.	Two-year drilled no-tillage experiment counts and heights ranked by net grain sorghum return in 1999	72

LIST OF FIGURES

gure Page
napter I
Micronaire (HVI) response to johnsongrass densities in 1996 and 1997 20
Fiber property (HVI) responses to johnsongrass densities in 1996 and 1997 for length (a), strength (b), and uniformity (c). An "*" denotes differences compared to the zero density (the weed-free check). No comparisons were made between years
Lint yield (a), and lint yield (b) (expressed as a percentage of the check) response to johnsongrass densities for picker- and stripper-harvested cotton in 1996 and 1997

INTRODUCTION

Chapters I and II of this dissertation are manuscripts to be submitted for publication in <u>Weed Technology</u>, a journal of the Weed Science Society of America.

Chapter I

Harvest Methods in Sorghum halepense

Infested Gossypium hirsutum

Harvest Methods in Sorghum halepense

Infested Gossypium hirsutum

Abstract: Field experiments were conducted in 1996 and 1997 to evaluate the effects of six johnsongrass densities on picker- and stripper-harvest efficiency, fiber properties, loan rate (value), and lint yield of cotton. The six densities used were 0 (the weed-free check), 3, 4, 5, 8, and 15 weeds/15 m of row. In 1996, stripper-harvest efficiency was higher at a density of 3 weeds /15m of row (98.9%) versus picker-harvest efficiency at the same density (94.0%). In 1997, stripper-harvest efficiencies were also higher (96.6%) versus picker-harvest efficiencies (89.0%) at the density of 3 weeds/15m of row. Machine harvest efficiencies were lower for the picker- versus the stripper-harvest efficiencies in both years. Fiber property analyses showed no significant interaction and were pooled across harvest methods. Micronaire differences were detected at a density of 15 weeds/15 m of row in 1996 (4.0 units) and 8 and 15 weeds/15 m of row in 1997 (3.9 and 3.4 units), when compared to the weed-free check (4.2 units), respectively. In both years these differences would not have resulted in a discount except for a density of 15 weeds/15m of row in 1997. Length differences were detected at a density of 3 weeds/15 m of row in 1996 (2.79 cm), and this difference for length was higher than the weed-free check (2.72 cm). In 1997, no length differences were detected. No differences occurred for strength in 1996, and a difference was detected in 1997 for densities of 3, 8, and 15 weeds/15 m of row (284 mN/tex for all three) when compared to the weed-free check (304 mN/tex). Uniformity showed no differences in either year. In 1997, stripper-harvested cotton loan rate was lower than the stripper-harvested values in 1996, and picker-harvested values in both years. Lint yield was reduced in 1996 by 29.2 kg/ha or 3.5% for stripper-harvested

cotton and 32.0 kg/ha or 3.9% for picker-harvested cotton for each increase by one johnsongrass plant/15 m of row. In 1997, stripper- and picker-harvested cotton was reduced by 43 kg/ha or 5.2 and 5.5 % for each increase by one johnsongrass plant/15m of row, respectively.

Nomenclature: Johnsongrass, Sorghum halepense (L.) Pers. #1 SORHA; cotton,

Gossypium hirsutum L. 'Paymaster HS-26'.

Additional index words: Harvest efficiency, economics, fiber properties, loan rate, harvest method, picker harvest, stripper harvest, lint yield, SORHA.

Abbreviations: HVI, High Volume Instrument.

¹Letters following this symbol are a WSSA-approved computer code from *Composite List of Weeds*, Revised 1989. Available only on computer disk from WSSA, 810 East 10th Street, Lawrence, KS 66044-8897.

INTRODUCTION

Johnsongrass is the sixth most common and ninth most troublesome weed in Oklahoma cotton (Dowler 1998). Bridges and Chandler (1987) reported that densities of 1, 2, 4, 8, 16, and 32 johnsongrass plants/9.8 m of row reduced cotton yields in Texas by 1, 4, 14, 40, 65, and 70%, respectively. Keeley and Thullen (1989) conducted a time-of-removal experiment in California with johnsongrass in cotton using a weed-free period followed by removal times of 3, 6, 9, 12, and 25 wk. They reported the weed-free and 3 wk-removal yields were not different, but delaying removal time to 6, 9, 12, and 25 wk caused yield reductions of 20, 60, 80, and 90%, respectively. They also transplanted johnsongrass into cotton using the same removal times and reported that a weed-free period of 9 wk was required to prevent yield loss.

Buchanan and Burns (1971) reported that eight tall morningglory [*Ipomoea purpurea* (L.) Roth] weeds/7.3 m of row reduced picker-harvested cotton lint yields 10 to 75% in Alabama. Crowley and Buchanan (1978) reported on the competitiveness of four *Ipomoea* spp. and their effects on picker-harvested cotton in the same state. Species tested included tall morningglory, entireleaf morningglory (*I. hederacea* var. *integriuscula* Gray), ivyleaf morningglory [*I. hederacea* (L.) Jacq.], and pitted morningglory (*I. lacunosa* L.) at densities of 4, 8, 16, and 32 weeds/15 m of row. At the eight-plant density, cotton lint yield was reduced by those species 19, 9, 6, and 3%, respectively. Harvest efficiency was reduced by tall morningglory with each increase in density, but no other morningglory species caused significant reductions in that trait. Harvest efficiency is reduced by an increase in weed competition due to the inability of the harvest machine to go through the field, as well as the harvest machines inability to remove bolls or lint that

are present. Buchanan and Burns (1970) reported that early-season weeds in Alabama caused more damage than weeds that germinated later in the season. High weed densities often reduced cotton lint quality and reduced profits in the same state (Buchanan et al. 1977). In an Oklahoma experiment, Wood et al. (1999) reported that a density of 12 weeds/10m of row at Chickasha in 1994, and densities of 10 and 12 weeds/10m of row at Perkins in 1996, could not be stripper-harvested without causing damage to the machine. In another Oklahoma experiment by Rogers et al. (1996), stripper-harvest of cotton with ivyleaf morningglory densities greater than 8 weeds/10 m of row at Chickasha and 16 weeds/10 m of row at Perkins could not be performed without causing damage to the machine.

Vories and Bonner (1995) evaluated picker- versus stripper-harvest methods in a weedfree system over a 3-yr period in Arkansas. Their experiment demonstrated no differences between harvest methods for fiber micronaire, length, strength, and length uniformity. Also, in 2 of the 3 yr, stripper-harvested yields were higher than picker-harvested yields.

Smith et al. (2000) conducted a dryland cotton experiment evaluating palmer amaranth (*Amaranthus palmeri* S. Wats.) densities of 0 (weed-free check) 650, 1300, and 3260 weeds/ha. Only at a denisty of 3260 weeds/ha was stripper-harvested cotton lint and seed yields reduced. No densities affected fiber properties and only at the highest density was harvest efficiency percentage different when compared to the other densities.

Most experiments focus on yield reduction caused by weed interference. It would also be valuable to cotton producers to evaluate what effect the weed has on fiber quality and then associate an economic value to those losses due to interference and harvest method. With this information producers could determine if they need to control the weed and

what price reductions might incur if they do not. The objectives of this experiment were to evaluate picker- and stripper-harvest efficiency, fiber properties, loan rate (value), and lint yield associated with johnsongrass density in cotton. Loan rate was used because it provided more stability than day-to-day market value. It was also based on a 5-yr average, 1994-1998.

MATERIALS AND METHODS

Field Parameters. Field experiments were conducted in 1996 and 1997 at the Irrigation Research Station in Southwest Oklahoma, near Altus, on a Tillman-Hollister clay loam (a fine, mixed, thermic Pachic Paleustoll) with a pH of 7.5 and an organic matter of 0.9%. The experiment received furrow irrigation each year as judged necessary. In 1996, an application of 30-15-0 was applied at 96 kg/ha; and in 1997, 46-0-0 was applied at 178 kg/ha.

Experimental Design. Plots were arranged in a randomized complete-block design and replicated four times. 'Paymaster HS-26', a commonly grown picker- and stripper-harvested cultivar, was planted each year using a 1 m row spacing. Planting dates were May 29, 1996 and 1997. Plots were four-rows wide by 17 m long, with 1 m removed from each end immediately before harvest to reduce the end-row effect; thus, there was a harvested row length of 15 m.

Johnsongrass Densities. Six weed densities of 0 (the weed-free check), 3, 4, 5, 8, and 15 weeds/15 m of row were tested. Immediately after cotton planting, johnsongrass seed were hand planted in hills with 10 to 15 seed/hill, approximately 1.25 cm deep and 5 cm to the left side of the center two rows. Approximately 2 wk after planting, johnsongrass hills were thinned to one plant/hill. In some cases in 1996, establishing the weed stand with

seed failed (less than 17% of the hills). In those cases, johnsongrass seedlings grown from peat pellets in a greenhouse were transplanted into those hills. Those transplants had been started on the same day as cotton planting and allowed to germinate and grow in anticipation of such cases. This was also done in 1997, but transplanting was not necessary in that year. Research by Albers-Nelson et al. (2000) reported no differences in direct seeded vs. peat pellets for common cocklebur (*Xanthium strumarium* L.) propagation methods in the field.

Experimental Area. In both years, a PRE treatment of prometryn [N, N'-bis(1methylethyl)-6-(methylthio)-1.3,5-triazine-2,4-diamine] plus metolachlor [2-chloro-N-(2ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] were applied at rates of 1.7 and 1.4 kg ai/ha, respectively. Before treatment, circular paper disks (28 cm in diameter) were placed over the johnsongrass hills to protect the weeds from herbicide injury. The paper disks were removed immediately after herbicide application. Previous research has reported the prevention of herbicide damage to desired weeds by this procedure (Pawlak et al. 1990; Smith et al. 1990; Jacobson et al. 1994; Rogers et al. 1996; Rowland et al. 1999; Wood et al. 1999). Herbicides were applied at rates slightly below recommended rates to ensure against potential crop and johnsongrass injury. Weeds not controlled chemically were removed by hand hoeing periodically throughout the season. Data Collection. Cotton from the center two rows was harvested on December 16, 1996 and November 17, 1997. Stripper-harvested plots were harvested using a commercial two-row brush-roller stripper, which did not have a lint cleaner. Picker-harvested plots were harvested twice in each year with a commercial two-row self-propelled cotton picker. All plot samples were weighed immediately after harvest.

Harvest Efficiency Investigations. Picker- and stripper-harvest was conducted by harvesting the weed-free check first and then harvesting progressively higher weed densities. Any seed cotton or lint that remained on the plants, or that fell to the ground in the plots after machine harvest, was harvested by hand and processed separately. Picker- and stripper-harvested cotton and hand harvested cotton were then used to determine harvest efficiency as a percentage based on lint. Harvest efficiency was calculated by dividing the amount of machine harvested cotton by the total cotton harvested (machine plus hand harvested) plus the machine harvested cotton.

Fiber Property Analyses. After weighing, plot samples were packaged and shipped to Texas A&M University Research and Extension Center, Lubbock, TX for ginning on a 10 saw laboratory gin with a one stage lint cleaner. Upon completion of ginning, plot weights were converted to a kilogram per hectare basis and the fiber samples were shipped to the International Textile Center, Texas Tech University, Lubbock, TX in 1996 and to the USDA, Agricultural Marketing Service, Cotton Division Classing Office, Lubbock, TX in 1997. All fiber properties were evaluated using High Volume Instrument (HVI) machines.

Loan Rate Comparisons. Loan rate is calculated using staple length, leaf grade, strength, and micronaire. Loan rate is based on a point system where 100 points is equivalent to 1 cent. A base price of 11396 points or \$1.14/kg of lint (5180 points or \$.5180/lb. of lint) is used to calculate loan rate. Premiums or (bonus points) for staple length, leaf grade, strength, and micronaire are added to the base price of 11396 for cotton above the base price in quality. Discounts are also deducted from the base price for the same variables if quality is deficient. Leaf grade premiums are paid in a range from one to

four. Above a leaf grade of four, a discount is exacted. Another fiber property that affects loan rate is staple length, for which a penalty can be from 372 points to 2257 points.

All dependent variables (harvest efficiency, fiber properties, and loan rate) were analyzed using ANOVA.

Yield Loss Examinations. Lint yield and lint yield as a percentage of the check were tested for goodness-of-fit to linear and curvilinear regression models. These regression models were analyzed using PROC GLM (SAS 1988).

RESULTS AND DISCUSSION

Harvest Efficiency Investigations. Harvest method by density by year interaction was not significant; therefore, johnsongrass density was compared across years and harvest methods, but not between densities (Table 1). For the weed-free check picker-harvest efficiency (92.9 and 90.0%) was different when compared to stripper-harvest efficiency (98.8 and 97.6%) in 1996 and 1997, respectively. In 1996, stripper-harvest efficiency was higher at a density of three weeds/15m of row (98.9%) versus picker-harvest efficiency at the same density (94.0%). In 1997, differences for picker-harvest efficiency were detected when compared to stripper-harvest efficiencies for densities of 0, 3, and 4 weeds/15m of row. In 1997, stripper-harvest efficiencies were higher (96.6%) versus picker-harvest efficiencies (89.0%) at the density of three weeds/15m of row.

When comparisons were made across years for the density of three weeds/15m of row, stripper-harvest efficiencies were also higher. Most densities resulted in stripper-harvest efficiencies that were higher than picker-harvest efficiencies except for a density of eight

weeds/15m of row in 1997. However, no significant differences were detected at a 0.05 probability level (using the protected LSD) for 8 and 15 weeds/15m of row. Overall harvest efficiencies were lower in 1997, versus 1996 harvest efficiencies with the stripper tending to have higher harvest efficiencies. In 1997, johnsongrass weeds appeared more robust versus visual appearance in 1996, which could result in the decreased harvest efficiencies we observed.

Because of the way in which a stripper harvests, removing everything from the cotton plant and its surroundings including johnsongrass culms, more material traveled through the stripper than the picker. However, the increased amount of material made it more difficult for the picker to gather the lint from the boll resulting in lower efficiencies.

Regression analysis was performed on harvest methods versus densities and only the stripper-harvest efficiency was significant in 1996, with a 0.3% reduction occurring for each increase by one weed/15m of row.

Fiber Property Analyses. Interactions for harvest methods by density by year for all fiber properties were tested; there was a significant density by year interaction, therefore data are pooled over harvest methods, but not years. Comparisons are made for fiber property to the weed-free check only. At a density of 15 weeds/15 m of row in 1996, micronaire was lower (3.9 units) versus the weed-free check (4.2 units) resulting in a difference being detected (Figure 1). Acceptable levels for micronaire are between 3.7 to 4.9 units with a premium being paid at levels between 3.7 to 4.2 units. Although, there was a difference detected, no discounts would be assessed to a bale of cotton with micronaire levels at the reported range in this year. In 1997, densities of 8 and 15 weeds/15 m of row (3.9 and 3.4 units) were lower when compared to the weed-free check

(4.2 units); however, a discount would be assessed only to a density of 15 weeds/15m of row. Staple length differences were detected in 1996, at a density of 3 weeds/15 m of row (2.79 cm) when compared to the weed-free check (2.72 cm), but no other differences were detected in 1996 and 1997 (Figure 2a). No differences for strength were detected in 1996 at any density (Figure 2b). In 1997 densities of 3, 8, and 15 weeds/15 m of row (284 mN/tex for all three) were lower when compared to the weed-free check (304 mN/tex). Premiums for strength are payed when values are above 231 mN/tex and discounts occur below 230 mN/tex. Uniformity demonstrated no differences in either year when compared to the weed-free check and levels in both years remained relatively constant at range of 82-84% (Figure 2c).

Loan Rate Comparisons. Loan rate levels for picker-harvested cotton in both years were relatively constant in a range of 11816 to 10910 points (\$1.19 to \$1.09/kg of lint) with differences being detected at densities of 3 and 15 weeds/15m of row (Table 2). Loan rate for picker-harvested cotton in 1996 and 1997, versus stripper-harvested cotton in both years was higher at a density of eight weeds/15m of row. However, stripperharvested cotton in 1997, was lower for all densities when compared to picker-harvested cotton in both years and stripper-harvested cotton in 1996. Loan rate was lowered by as much as 1008 points for a density of three weeds/15m of row to 2064 points for a density of 15 weeds/15m of row.

For an example of these point reductions, at a loss of 1008 points and a yield of 1120 kg/ha, (target yield for irrigated cotton production in Southwest Oklahoma), a loss of \$112.90/ha would occur for a density of three weeds/15m of row. All prices are based on loan value and not on market value.

Regression analyses demonstrated linear trends for both picker- and stripper-harvested methods in 1997. Reductions for picker-harvested cotton were 48 points for each increase by one weed/15m of row. Stripper-harvested reductions were higher at 84 points for each increase by one weed/15m of row.

Yield Loss Examinations. In 1996, stripper- and picker-harvested lint yields were reduced by 29 and 32 kg/ha for each increase by one weed/15 m of row, respectively (Figure 3a). Lint yield reductions in 1997 were 43 kg/ha for each increase by one weed/15 m of row for stripper- and picker-harvested cotton. These yield losses in 1996, when converted to dollars per hectare, are \$33.06/ha (29 kg/ha reduction times \$1.14/kg of lint) for stripper-harvested cotton and \$36.48/ha (32 kg/ha reduction times \$1.14/kg of lint) for picker-harvested cotton. Equating these losses to a total gross cost helps identify how significant these losses are on a dollar per hectare basis. For stripper-harvested cotton total loss would be \$958.74/ha based on (29 kg/ha times 15 weeds/15m of row times \$1.14/kg of lint) and picker-harvested cotton total loss is \$112.88/ha based on (32 kg/ha times 15 weeds/15m of row times \$1.14/kg of lint).

Because environmental conditions can vary widely each year, it is desirable to evaluate cotton lint yield loss as a percentage of the weed-free check. Similar results have previously been reported, expressing yield loss as a percentage of the weed-free check (Rogers et al. 1999; Rowland et al. 1999; Wood et al. 1999). In 1996, stripper- and picker-harvested yield losses were 3.5 and 3.9 % for each increase by one johnsongrass plant/15 m of row, respectively. In 1997, stripper and picker yield losses were 5.2 and 5.5 % for each increase by one johnsongrass plant/15 m of row (Figure 3b).

Based on the variables evaluated, when weeds are present at the reported densities,

machine harvest-efficiencies were higher for stripper-harvested cotton versus pickerharvested cotton. Fiber properties for years, were the only effects showing differences. No differences were detected for harvest methods and only at the highest densities were discounts occurring. Loan rate was lower in 1997, for stripper-harvested cotton versus stripper-harvested cotton in 1996. Picker-harvested cotton in both years was higher than stripper-harvested cotton in 1997. The greatest amount of gross value loss occurred for yield reductions by the johnsongrass densities. Johnsongrass densities caused almost half of the gross return (reduced yield) for harvested cotton to be lost. Based on the overall yield losses it would be very beneficial to control johnsongrass during the growing season or yield will be severely affected which affects gross returns for the harvested cotton.

LITERATURE CITED

- Albers-Nelson, M. R., D. S. Murray, L. M. Verhalen and C. L. Goad. 2000. Establishment techniques for common cocklebur (*Xanthium strumarium*). Weed Technol. 14:(In Press).
- Bridges, D. C. and J. M. Chandler. 1987. Influence of johnsongrass (Sorghum halepense) density and period of competition on cotton yield. Weed Sci. 35:63-67.
- Buchanan, G. A. and E. R. Burns. 1970. Influence of weed competition on cotton. Weed Sci. 18:149-154.
- Buchanan, G. A. and E. R. Burns. 1971. Weed competition in cotton. I. Sicklepod and tall morningglory. Weed Sci. 19:576-579.
- Buchanan, G. A., R. H. Crowley, and R. D. McLaughlin. 1977. Competition of prickly sida with cotton. Weed Sci. 25:106-110.
- Crowley, R. H. and G. A. Buchanan. 1978. Competition of four morningglory (*Ipomoea* spp.) species with cotton (*Gossypium hirsutum*). Weed Sci. 26:484-488.
- Dowler, C. C. 1998. Weed survey-Southern states: Broadleaf crops subsection. Proc. South. Weed Sci. Soc. 51:299-313.
- Jacobson, B. D., D. S. Murray, and J. F. Stone. 1994. Soil-water extraction profiles of cotton (*Gossypium hirsutum*) and weed species. Weed Technol. 8:190-198.
- Keeley, P. E. and R. J. Thullen. 1989. Growth and interaction of johnsongrass (Sorghum halepense) with cotton (Gossypium hirsutum). Weed Sci. 37:339-344.

- Pawlak, J. A., D. S. Murray, and B. S. Smith. 1990. Influence of capsule age on germination of nondormant jimsonweed (*Datura stramonium*) seed. Weed Technol. 4:31-34.
- Rogers, J. B., D. S. Murray, L. M. Verhalen, and P. L. Claypool. 1996. Ivyleaf morningglory (*Ipomoea hederacea*) interference with cotton (*Gossypium hirsutum*). Weed Technol. 10:107-114.
- Rowland, M. W., D. S. Murray, and L. M. Verhalen. Full-season Palmer amaranth (Amaranthus palmeri) interference with cotton (Gossypium hirsutum). Weed Sci. 47:305-309.
- [SAS] Statistical Analysis Systems. 1988. SAS/STAT User's Guide. Release 6.03 ed. Cary, NC: Statistical Analysis Systems Institute. 1028p.
- Smith, B. S., D. S. Murray, J. D. Green, W. M. Wanyahaya, and D. L. Weeks. 1990.
 Interference of three annual grasses with grain sorghum (Sorghum bicolor). Weed
 Technol. 4:245-249.
- Smith, D. T., R. V. Baker, and G. L. Steele. 2000. Palmer amaranth (Amaranthus palmerii) impacts on yield, harvesting, and ginning in dryland cotton (Gossypium hirsutum). Weed Technol. 14:122-126.
- Vories, E. D. and C. M. Bonner. 1995. Comparison of Harvest Methods for Dryland Cotton. Arkansas Agricultural Experiment Station Bull. 945. 16p.
- Wood, M. L., D. S. Murray, R. B. Westerman, L. M. Verhalen, and P. L. Claypool.
 1999. Full-season interference of *Ipomoea hederacea* with *Gossypium hirsutum*.
 Weed Sci. 47:693-696.

	Harvest method				
	Picker		Stripper		
Johnsongrass density	1996	1997	1996	1997	
no/15 m of row		%			
0	92.9 b	90.0 b	98.8 a	97.6 a	
3	94.0 b	89.0 c	98.9 a	96.6 ab	
4	95.4 a	88.7 b	98.7 a	95.1 a	
5	94.0 ab	87.3 c	99.0 a	92.0 bc	
8	91.1 a	88.7 a	98.7 a	81.3 a	
15	96.2 a	88.1 a	94.6 a	89.4 a	
Regression equations:	(Picker 1996)	Y= 93.2	2+0.1X NS ^b		
	(Picker 1997)	Y= 89.2	2-0.1X NS		
	(Stripper 1990	6) Y= 99.8	$R^{2} = 0.3X$ ($R^{2} =$	= 0.76)	
	(Stripper 1997	7) Y= 96.3	3-0.7X NS		

Table 1. Harvest efficiency for picker- vs. stripper-harvest methods relative to

johnsongrass density and comparisons across years, harvest methods, and densities^a.

^aMeans within a row followed by the same letter are not significantly different at the 0.05 probability level (using the protected LSD).

^bNS, not significant at the 0.05 probability level.

	Harvest method			
	Picker		Strippe	r
Johnsongrass density	1996	1997	1996	1997
no/15 m of row	points			
0	11816 a	11675 a	11746 a	10934 b
3	11854 a	115 37 b	11823 a	10736 c
4	11856 a	11631 a	11796 a	10573 b
5	11849 a	11649 a	11601 a	10424 b
8	11816 a	11656 a	11246 b	10582 c
15	11 7 77 a	10910 b	11645 a	9581 c
Regression equations:	(Picker 1996)	Y= 11852	2.39 - 4.2X	NS ^b
	(Picker 1997)	Y= 11793	3.1 - 48.6X	$(R^2 = 0.72)$
	(Stripper 1996	5) Y= 11738	3.3 - 16.3X	NS
	(Stripper 1997	7) Y= 10969	9.2 - 85.4X	$(R^2 = 0.89)$

Table 2. Loan rate for picker- and stripper-harvest methods relative to johnsongrass

density and comparisons across years,	harvest methods.	, and densities ^a .
---------------------------------------	------------------	--------------------------------

^aMeans within a row followed by the same letter are not significantly different at the 0.05 probability level (using the protected LSD).

^bNS, not significant at the 0.05 probability level.

LIST OF FIGURES

Figure 1. Micronaire (HVI) response to johnsongrass densities in 1996 and 1997.

Figure 2. Fiber property (HVI) responses to johnsongrass densities in 1996 and 1997 for length (a), strength (b) and uniformity (c). An "*" denotes differences compared to the zero density (the weed-free check). No comparisons were made between years.

Figure 3. Lint yield (a) and lint yield (b) (expressed as a percentage of the check) response to johnsongrass densities for picker- and stripper-harvested cotton in 1996 and 1997.

Chapter II

Profitable Weed-Control Systems in Sorghum bicolor

Profitable Weed-Control Systems in Sorghum bicolor

Abstract: Field experiments were conducted in 1997, 1998, and 1999 to evaluate net returns from weed-control systems in grain sorghum with an upper limit cost for weed control of \$37.05/ha. These experiments utilized two planting methods, two application timings either PRE and POST or PRE followed by POST, two application methods broadcast and banded, and cultivation or cultivation alone. Net returns were based on variable costs which included: costs of the herbicides, cost of cultivation, and application costs. Planting methods consisted of conventional tillage and drill planted. A further distinction for conventional tillage are 3-vr conventional tillage and Two-vear conventional tillage experiments. The 3- and 2-year conventional tillage experiments utilized row spacings of 0.76 m wide by 13.5 m long and the drill planted experiment had a row spacing of 0.41m wide by 13.5 m long. When the weed control cost in our experiments exceeded the upper limit weed control cost, all but one treatment or treatment combination in the seven experiments were profitable. Metolaclhor PRE followed by 2,4-D POST provided excellent weed control (>95%) for Palmer amaranth and large crabgrass in all experiments. In most experiments this treatment provided the highest mean net returns when compared to the other treatments. When cultivation was included in a herbicide treatment combination or by itself, cultivation or cultivation alone ranked higher than most herbicide treatments.

Nomenclature: Atrazine, 6-chloro-<u>N</u>-ethyl-<u>N'</u>-(1-methylethyl)-1,3,5-triazine-2,4-diamine; bromoxynil, 3,5-dibromo-4-hydroxybenzonitrile; 2,4-D, (2,4-dichlorophenoxy)acetic acid; dicamba, 3,6-dichloro-2-methoxybenzoic acid; dimethenamid, 2-chloro-N-[(1-methyl-2methoxy)ethyl]-N-(2,4-dimethyl-thien-3-yl)-acetamide; fluxofenim, ethanone, 1-4(4-

chlorophenyl)-2,2,2-trifluoro-O-(1,3-dioxolan-2-ylmethyl)oxime; halosulfuron, 3-chloro-5-[[[[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]-1-methyl-1<u>H</u>pyrazole-4-carboxylic acid; metolachlor, 2-chloro-<u>N</u>-(2-ethyl-6-methylphenyl)-<u>N</u>-(2methoxy-1-methylethyl)acetamide; pendimethalin, <u>N</u>-(1-ethylpropyl)-3,4-dimethyl-2,6dinitrobenzenamine; propazine, 6-chloro-<u>N,N'</u>-bis(1-methylethyl)-1,3,5-triazine-2,4diamine; prosulfuron, 1-(4-methoxy-6-methyl-triazin-2-yl)-3-[2-(3,3,3-trifluoropropyl)phenylsulfonyl]-urea; quinclorac, 3,7-dichloro-8-quinolinecarboxylic acid; ivyleaf morningglory, *Ipomoea hederacea* (L.) Jacq. #¹ IPOHE; large crabgrass, *Digitaria sanguinalis* (L.) Scop. # DIGSA; Palmer amaranth, *Amaranthus palmeri* S. Wats. # AMAPA; tall morningglory, *Ipomoea purpurea* (L.) Roth # PHBPU; grain sorghum, *Sorghum bicolor* (L.) Moench 'Cherokee' and ' Pioneer 8446'.

Additional index words: Pre-mix of atrazine plus dicamba¹, pre-mix of atrazine plus metolachlor², net return, total return, variable cost, weed control, herbicide injury, cultivation.

¹Letters following this symbol are a WSSA-approved computer code from *Composite List of Weeds*, Revised 1989. Available only on computer disk from WSSA, 810 East 10th Street, Lawrence, KS 66044-8897.

¹Marksman herbicide label. BASF Corporation, P. O. Box 13528, Research Triangle Park, NC 27709-3528.

²Bicep II herbicide label. Novartis Crop Protection, Inc., P.O. Box 18300, Greensboro, NC 27409-8300.

INTRODUCTION

Oklahoma grain sorghum acreage has increased from 140,000 planted hectares in 1995 to 208,000 in 1997 (Oklahoma Agricultural Statistics Service. 1997, 1998). Increased acreage may be the result of the Freedom to Farm Act and the boll weevil (*Anthonomus grandis grandis Boheman*) eradication program. Prior to the Freedom to Farm Act, the number of hectares that producers, who participated in government programs were allowed to plant was fixed. In addition to the Freedom to Farm Act, dryland cotton producers have shown interest in planting alternative crops to avoid the costs associated with the boll weevil eradication program.

Grain sorghum may be planted and cultivated with the same equipment currently as cotton. Similar to their cotton crop management, producers must manage weeds with chemical and/or mechanical control. Producers indicate that they cannot afford a chemical weed-control program which costs more than \$37.05/ha⁴. If the cost of \$37.05/ha is exceeded producers indicate that dryland grain sorghum is not profitable and another crop must be grown. The \$37.05/ha cost is associated only with their weed-control program, and does not include other production costs. Producers do not have an actual cost estimate based on research of what can be spent for weed-control.

Previous research has been conducted evaluating the effects of weeds on grain sorghum production (Burnside and Wicks 1967; Feltner et al. 1969; Moore and Murray 2000; Smith et al. 1990; Vencill and Banks 1994). Burnside and Wicks (1967) evaluated time of

⁴Gary L. Strickland. 1997. Personal communication. (former State Extension Specialist for Agronomic Crops.)

removal of smooth pigweed (*Amaranthus hybridus* L.), foxtail species (*Setaria* spp.), crabgrass species (*Digitaria* spp.), and redroot pigweed (*Amaranthus retroflexus* L.) in grain sorghum. Removal times were 1, 2, 3, 4, 5, 6, and 8 wk after planting. Removal times of 1, 2, and 3 wk resulted in no yield reductions; however, for each week following the 3-wk removal time, yield was reduced. Similar experiments conducted by Feltner et al. (1969) evaluated tall waterhemp [*Amaranthus tuberculatus* (Moq.) J. D. Sauer] time of removal using treatments of 0, 6, and 10 wk and a full-season duration. A decrease in grain sorghum yield was noted with each increasing weed duration.

Several grain sorghum experiments conducted by Smith et al. (1990) in Oklahoma, reported on the interference of three annual grasses in grain sorghum using two row spacings. Grasses evaluated in their experiments were barnyardgrass [Echinochloa crusgalli (L.) Beauv.], large crabgrass, and Texas panicum (Panicum texanum Buckl.). Their results indicate a 3.6% yield loss for each week that the grasses were allowed to compete with the crop. In another Oklahoma experiment, Moore and Murray (2000) evaluated seven Palmer amaranth densities and a weed-free check on a competitive and noncompetitive system. Densities used in their experiment were a weed-free check, 1, 2, 4, 6, 9, 12, and 18 weeds/15m of row. Their competitive experiment results indicate that for each increase by one weed/15m of row, a yield reduction of 97 kg/ha occured. Their noncompetitive experiment used the same densities except that the weeds were not allowed to compete full-season, but rather were placed in a holder immediately before harvest to evaluate the effects on moisture and foreign material content due to the presence of Palmer amaranth. Before cleaning and after cleaning moisture content was taken on each plot sample, and results indicate for each increase by one weed/15m of row a 0.7 and
0.3% moisture increase occurred, respectively. Foreign material increased 67 kg/ha for each increase by one weed/15m of row. The moisture and foreign material results indicate a need for weed-control, or a potential grain quality reduction could occur.

Vencill and Banks (1994) evaluated four weed management strategies on weed population and dynamics. Strategies included zero, low, medium, and high input systems for conventional- and no-tillage grain sorghum production. Weed seed bank populations increased for zero and low input systems when compared to high input systems, based on degree of weed control.

In this research project, seven field experiments which were initiated to evaluate net returns for weed-control programs with an upper limit cost of \$37.05/ha. Two planting methods, two application timings and methods, and cultivation were utilized. Application timings consisted of PRE applied broadcast or banded, POST broadcast or banded and a combination of PRE followed by POST either broadcast or banded. All herbicide treatments that contained a banded application were cultivated. Two weed species targeted for weed control in this experiment are pigweed species which rank first and large crabgrass which ranks second as the most common weeds in Oklahoma grain sorghum production, they also rank fifth and eighth as the most troublesome weeds to control, respectively (Dowler 1997). In some years, and at some sites morningglory species were also evaluated.

MATERIALS AND METHODS

Experimental Parameters. Experiments were conducted in 1997, 1998, and 1999 on a Teller loam (fine-loamy, mixed, thermic Udic Argiustoll) in north-central Oklahoma near Perkins. Soil pH was 5.7, and organic matter was 1.0%. Before planting, N as NH_4NO_3

was applied in 1997 and as $CO(NH_2)_2$ in 1998 and 1999, at 111 kg N/ha. Plots were arranged as a randomized complete block design replicated four times and all experiments were moved to new sites each year. Two planting methods used in the experiment will be designated as the conventional tillage experiment, with a further designation as the 3-yr conventional tillage and Two-year conventional tillage. The second planting method will be designated as the drill planted experiment. All herbicide applications were made using a tractor mounted compressed air sprayer calibrated to deliver 140 L/ha.

Three-year Conventional Tillage Experiment, 1997-1999. 'Cherokee' a medium maturity, drought tolerant, hybrid seed, that was treated with fluxofenim was planted in 1997, 1998, and 1999. Planting dates were on May 9, 12, and 14, in 1997, 1998, and 1999, respectively. Plot size was four rows, that were 0.76 m wide by 15 m long, with 1.5 m removed from each end immediately before harvest to eliminate an end-row effect. A harvested row length of 13.5 m resulted. The center two rows of the four row plots were harvested to obtain grain sorghum yields on September 11, 1997, August 27, 1998, and September 2, 1999.

Preemergence broadcast and PRE banded applications were made at planting for all three years. In 1997, POST broadcast and banded applications were applied 3 wk after planting (WAP) when grain sorghum was 15 cm tall with 4 to 6 leaves. Weed species present at application were Palmer amaranth, 10 cm tall with 3 leaves, and large crabgrass, 8 cm tall with 6 leaves. In 1998, 4 WAP grain sorghum was 30 cm tall with 6 to 8 leaves at the POST broadcast and banded applications. Weed species present were Palmer amaranth 15 cm tall with 8 to 12 leaves, large crabgrass 5 cm tall with 3 to 5 leaves; and morningglory species that consisted of tall and ivyleaf morningglory 5 cm tall with 4

leaves. In 1999, POST broadcast and POST banded treatments were applied at 6 WAP when grain sorghum was 91 cm tall with 8 leaves, Palmer amaranth was 76 cm tall with 50 leaves, large crabgrass was 41 cm tall, tillering, and morningglory species were 30 cm in diameter, and had 25 leaves.

Two-year Conventional Tillage Experiment, 1998-1999. 'Cherokee' hybrid seed was planted on May 18 and 19, in 1998 and 1999, respectively. Plot size was four rows, that were 0.76 m wide by 15 m long, with 1.5 m removed from each end immediately before harvest to eliminate an end-row effect. A harvested row length of 13.5 m resulted. The Two-year planted experiment was harvested on September 1 and 8 in 1998 and 1999, respectively.

Preemergence broadcast and PRE banded applications were made at planting in 1998 and 1999. In 1998, POST broadcast and POST banded treatments were applied 4 WAP when grain sorghum was 46 cm tall with 6 leaves, Palmer amaranth was 10 cm tall with 6 leaves, and large crabgrass was 10 cm tall with 10 leaves. In 1999, POST broadcast and POST banded treatments were also applied 4 WAP to 30 cm tall grain sorghum with 4 leaves, Palmer amaranth was 8 cm tall with 8 leaves, large crabgrass was 13 cm tall with 12 leaves, and morningglory species were 5 cm tall with 4 leaves.

Two-Year Drilled No-Tillage, 1998-1999. 'Pioneer 8446' hybrid seed treated with fluxofenim was planted on May 18 and 19, in 1998 and 1999, respectively. Plot size was 6 rows, that were 0.41 m wide by 15 m long. Similar to the other experiments, harvested row lengths were 13.5 m long. The drill planted experiment was harvested on September 1 and 23, 1998 and 1999, respectively.

Preemergence applications were applied at planting. In 1998, POST treatments were

applied 4 WAP when grain sorghum was 41 cm tall with 7 leaves, Palmer amaranth was 3 cm tall with cotyledon to 5 leaves, and large crabgrass was 8 cm tall with two to eight leaves. In 1999, POST applications were made 4 WAP, when grain sorghum was 46 cm tall with 7 to 8 leaves, Palmer amaranth was 2 to 64 cm tall with 10 to numerous leaves, large crabgrass was 30 cm tall and tillering, and morningglory species were 8 cm tall with 30 cm vines.

Data Collection. After harvest, plot samples were weighed and moisture was measured. Plot samples were then cleaned to remove any broken kernels, grain sorghum stalks, grain sorghum stems, and green material from weeds. After cleaning, samples were re-weighed and sampled again for moisture. All samples were adjusted to 12% moisture and yield was converted to a kg/ha basis.

Data Analyses. Dependent variables were analyzed using the ANOVA statistical model. Variables evaluated were variable cost, total return, net return, return ratio, mean return ratio, yield, crop injury, weed control, crop counts, and crop heights. Total return is the total value obtained from yield times grain sorghum price. Grain sorghum price used was a 3-yr market average for the grain which was \$3.85/45 kg (Oklahoma Agricultural Statistics Service 1998). Net return is the total return minus variable cost. Costs included in the variable cost were: cost of the herbicides, cultivation, and herbicide application. The return ratio equals the net return divided by the variable cost. The return ratio equals the increased return for each dollar spent on weed control. Preemergent applications applied in a band were not assessed an application cost, due to the availability of producers to apply a band at planting. Cultivation and application costs assessed were published by the Oklahoma Cooperative Extension Service, cultivation cost was \$12.52/ha

and application cost was \$8.10/ha (Kletke 1996). Planting costs, tillage operations prior to planting, fertilization costs, labor, land rental, and harvesting costs were not evaluated. Data were separated using Fisher's protected LSD at the 5% level of probability.

RESULTS AND DISCUSSION

Three-year Conventional Tillage Experiment, 1997-1999. In all years all treatments for weed control were profitable when the variable costs exceeded the targeted weed control cost of \$37.05/ha (Appendix Tables 1,2, and 3). No treatments resulted in a negative return ratio (Table 1). The mean return ratio for all 3-yr ranged from 0.89 to 8.24/ha for each dollar spent on weed control. Two treatments that had mean return ratios higher than most treatments were 2,4-D POST broadcast and the cultivated check, with a mean return ratio for each \$8.24. Mean net returns for all 3-yr ranged from \$39.49 to \$158.87/ha (Table 2). The treatment that had the highest mean net return was neither the cultivated check or 2,4-D POST, but it did include 2,4-D POST. The highest mean net return for all 3-yr was metolachlor PRE band followed by 2,4-D POST broadcast with a mean net return of \$158.87/ha. This treatment combination provided excellent weed control (>95%) of Palmer amaranth and large crabgrass 8 WAP in 2- of the 3-yr evaluated (Appendix Table 4, 5, and 6).

Two-year Conventional Tillage Experiment, 1998-1999. Cultivation was a component of the weed-control program with either no cultivation, one cultivation or two cultivations included in the treatment. However, inadequate rainfall later in the season did not require two cultivations; therefore, all treatments that included two cultivations were cultivated once. All treatments resulted in no negative mean ratios and when the upper limit weed control cost was exceeded, treatments were still profitable (Appendix Tables 9 and 10).

Mean return ratios ranged from 0.87 to 5.43 (Table 3). The cultivated check had the highest mean return ratio returning 5.43 for each dollar spent on weed control. The next highest was atrazine plus COC applied POST broadcast with a mean return ratio of 4.97 for each dollar spent on weed control. Mean net returns were highest for metolachlor applied PRE broadcast with no cultivation followed by 2,4-D POST broadcast with a mean net return of \$121.64/ha (Table 4). This treatment combination provided excellent weed control for Palmer amaranth and large crabgrass in both years 8 WAP (Appendix Tables 11 and 12). The cultivated check had a mean net return of \$67.95/ha and this mean net return was higher than four of the herbicide treatments selected.

Two-Year Drilled No-Tillage Experiment, 1998-1999. In the 2-yr drilled no tillage experiment one treatment demonstrated a negative mean return ratio and a negative mean net return (Tables 5 and 6). Mean return ratios ranged from -0.06 to 1.39 and mean net returns ranged from \$-3.67 to \$72.49/ha. The highest mean return ratio was for metolachlor applied PRE followed by 2,4-D POST and this treatment combination also had the highest mean net return at \$72.49/ha. Weed control for this treatment was excellent for Palmer amaranth and large crabgrass 8 WAP in 1998, and 7 WAP in 1999, respectively (Appendix Tables 17 and 18). Variable costs for metolachlor applied PRE followed by 2,4-D POST exceeded the upper limit weed control cost of \$37.05/ha each year (Appendix Tables 15 and 16). However this treatment combination as were most treatments with the exception of one were profitable in both years.

When the upper limit weed control cost in our experiments were exceeded, all but one treatment or treatment combination in the seven experiments was not profitable. The myth associated with this weed control cost, is just that a myth. Metolachlor applied PRE

followed by 2,4-D POST provided excellent weed control for the weed species we targeted in our experiments. Depending upon what species are present in a producers field these data could change and herbicide selection and previous weed species present could impact the returns we observed. When cultivation was included in the treatment combinations most treatments responded with higher net returns. When cultivation was evaluated alone it had a higher net return and mean return ratio than most of our herbicide treatments. Cultivation when used as a method of weed control should not be overlooked. Cultivation is effective for controlling weeds in between the rows; however, weeds within the row will not be controlled; therefore it would be better to include a herbicide in the weed-control system. If control is not achieved within the rows potential grain quality reductions could occur by increased moisture, and foreign material, affecting overall price for the grain (Moore and Murray 2000). It may be more economical based on cost and returns to apply a broadcast herbicide treatment rather than spend money to pay for fuel, labor, and equipment costs associated with cultivation. Costs we did not evaluate, but costs that would be beneficial to a producer planting grain sorghum.

LITERATURE CITED

- Burnside, O. C. and G. A. Wicks. 1967. The effect of weed removal treatments on sorghum growth. Weeds 15:204-207.
- Dowler, C. C. 1997. Weed survey-Southern states: Grass crops subsection. Proc. South. Weed Sci. Soc. 50:227-246.
- Feltner, K. C., H. R. Hurst, and L. E. Anderson. 1969. Tall waterhemp competition in grain sorghum. Weed Sci. 17:214-216.
- Kletke, D. 1996. Oklahoma Farm and Ranch Custom Rates, 1995-1996. Oklahoma Cooperative Extension Service. CR-205. Current Rep. 4 p.
- Moore, J. W. and D. S. Murray. 2000. Influence of Palmer amaranth on grain sorghum yields. Proc. South. Weed Sci. Soc. 53: (In Press).
- Oklahoma Agricultural Statistics Service. 1997. Oklahoma Agricultural Statistics, 1996. Oklahoma City, OK: USDA-Natl. Agric. Stat. Serv. and Okla. Dep. Agric. 104p.
- Oklahoma Agricultural Statistics Service. 1998. Oklahoma Agricultural Statistics, 1997. Oklahoma City, OK: USDA-Natl. Agric. Stat. Serv. and Okla. Dep. Agric. 104p.
- Smith, B. S., D. S. Murray, J. D. Green, W. M. Wanyahaya, and D. L. Weeks. 1990.
 Interference of three annual grasses with grain sorghum (Sorghum bicolor). Weed
 Technol. 4:245-249.
- Vencill, W. K. and P. A. Banks. 1994. Effects of tillage systems and weed management on weed populations in grain sorghum (*Sorghum bicolor*). Weed Sci. 42:541-547.

Table 1. Three-year conventional tillage experiment herbicide list and grain sorghum weed control return ratio.

				Return ratio ^a				
Trea	tment ^b	Rate	Timing ^c	1997	1998	1999	Mean	
-		kg ai/ha						
1.	metolachlor	1.68	PRE BC	2.09	2.41	4.19	2.90	
2.	metolachlor	1.68	PRE BAND	3.05	3.88	6.33	4.42	
3.	dimethenamid	0.84	PRE BC	1.31	3.34	4.27	2.97	
4.	dimethenamid	0.84	PRE BAND	3.76	3.43	8.23	5.14	
5.	propazine	1.12	PRE BC	0.01	1.85	3.17	1.67	
6.	propazine	1.12	PRE BAND	3.43	2.87	7.64	4.65	
7.	prosulfuron	0.071	PRE BC	1.71	0.69	1.40	1.27	
8.	prosulfuron	0.071	PRE BAND	1.41	1.99	5.32	2.91	
9.	metolachlor +	1.68	PRE BAND	5.39	1.90	4.34	3.87	
	propazine	1.12						
10.	metolachlor +	1.68	PRE BAND	2.40	2.02	2.58	2.33	
	prosulfuron	0.071						
11.	dimethenamid +	0.84	PRE BAND	1.92	2.17	4.48	2.86	
	propazine	1.12						
12.	dimethenamid +	0.84	PRE BAND	1.66	1.60	2.47	1.91	
	prosulfuron	0.071						
13.	metolachlor fb	1.68	PRE BAND	3.70	3.81	4.71	4.07	
	2,4-D	0.56	POST BC					
14.	metolachlor fb	1.68	PRE BAND	1.16	2.82	4.59	2.86	
	2,4-D	0.56	POST BAND					
15.	metolachlor fb	1.68	PRE BAND	0.82	2.58	3.81	2.40	
	dicamba	0.28	POST BC					
16.	metolachlor fb	1.68	PRE BAND	3.09	3.14	3.12	3.12	
	dicamba	0.28	POST BAND					
17.	metolachlor fb	0.84	PRE BAND	4.21	1.41	3.88	3.17	
	atrazine + COC	1.12	POST BC					
18.	metolachlor fb	1.68	PRE BAND	4.92	2.55	4.44	3.97	
	atrazine + COC	1.12	POST BAND					
19.	metolachlor fb	1.68	PRE BAND	3.19	1.10	3.15	2.48	
	prosulfuron + COC	0.071	POST BAND					
	LSD (0.05)			1.12	1.19	1.67	1.36	

^aReturn ratio equals increased return from weed control divided by the cost of weed control. Ratio equals increased return per dollar of weed control cost.

^bfb, followed by; COC, crop oil concentrate applied at a rate of 2.33 L/ha.

°BC, broadcast application; BAND, banded application. All banded treatments were cultivated (twice in 1997, once in 1998 and 1999)

			Return ratio ^a				
Treatment ^b	Rate	Timing ^c	1997	1998	1999	Mean	
	kg ai/ha						
20. metolachlor fb	1.68	PRE BAND	0.80	1.93	4.10	2.28	
atrazine + dicamba	0.672	POST BC					
21. metolachlor fb	1.68	PRE BAND	2.56	2.30	4.9 1	3.26	
atrazine + dicamba	0.672	POST BAND					
22. metolachlor fb	1.68	PRE BAND	1.63	1.10	1.99	1.57	
halosulfuron + COC	0.047	POST BAND					
23. metolachlor fb	1.68	PRE BAND	3.19	0.69	1.50	0.89	
bromoxynil	0.56	POST BC					
24. metolachlor fb	1.68	PRE BAND	1.27	1.81	2.94	1.86	
bromoxynil	0.56	POST BAND					
25. atrazine + COC	1.12	POST BC	4.30	0.80	8.33	5.77	
26. atrazine + COC	1.12	POST BAND	6.04	3.27	5.82	5.04	
27. prosulfuron + COC	0.071	POST BAND	3.12	1.56	3.65	2.78	
28. pendimethalin	0.694	POST BC	4.58	1.81	3.37	3.25	
29. bromoxynil	0.56	POST BC	0.29	0.80	1.60	0.90	
30. bromoxynil	0.56	POST BAND	3.00	2.07	4.18	3.08	
31. 2,4-D	0.56	POST BC	4.84	7.64	12.26	8.24	
32. 2,4-D	0.56	POST BAND	4.39	4.68	6.28	5.11	
33. dicamba	0.28	POST BC	2.05	3.79	5.72	3.85	
34. dicamba	0.28	POST BAND	3.99	4.00	5.25	4.42	
35. halosulfuron + COC	0.047	POST BAND	3.36	1.81	3.54	8.24	
36. atrazine + dicamba	0.672	POST BC	2.02	3.02	7.24	4.09	
37. atrazine + dicamba	0.672	POST BAND	3.88	2.67	6.83	4.46	
38. metolachlor +	1. 68	PRE BAND	2.76	1.51	2.56	2.28	
propazine fb	1.12						
atrazine + COC	1.12	POST BAND					
39. check			0.00	0.00	0.00	0.00	
40. cultivated check			4.77	7.10	12.92	8.26	
LSD (0.05)			1.12	1.19	1.67	1.36	

Table 1. (cont.) Three-year conventional tillage experiment herbicide list and grain sorghum weed control return ratio.

*Return ratio equals increased return from weed control divided by cost of weed control. Ratio equals increased return per dollar of weed

control cost.

^bfb, followed by; COC, crop oil concentrate applied at a rate of 2.33 L/ha.

°BC, broadcast application; BAND, banded application. All banded treatments were cultivated (twice in 1997, once in 1998 and 1999).

Table 2.	Three-year	conventional	til	lage expe	riment	herbicide	list	and no	et grain	SOL	zhum return	
1 4010 2.									B			

			Net return ^a			
Treatment ^b	Rate	Timing ^c	1997	1998	1999	Mean
	kg ai/ha		\$/ha	\$/ha	\$/ha	\$/ha
1. metolachlor	1.68	PRE BC	83.9 2	96.66	168.16	116.25
2. metolachlor	1.68	PRE BAND	108.54	89.56	146.07	114. 72
3. dimethenamid	0.84	PRE BC	45.36	115.82	147.89	103.02
4. dimethenamid	0.84	PRE BAND	127.20	73.08	175.33	125.20
5. propazine	1.12	PRE BC	0.46	80.50	138.14	73.03
6. propazine	1.12	PRE BAND	126.06	69.65	185.35	127.02
7. prosulfuron	0.071	PRE BC	99.38	40.01	81.58	73.66
8. prosulfuron	0.071	PRE BAND	58.76	57.85	154.47	90.36
9. metolachlor +	1.68	PRE BAND	255.12	66.00	150.89	157.34
propazine	1.12					
10. metolachlor +	1.68	PRE BAND	125.16	80.02	102.18	102.45
prosulfuron	0.071					• .
11. dimethenamid +	0.84	PRE BAND	87.55	71.79	147.85	102.40
propazine	1.12					
12. dimethenamid +	0.84	PRE BAND	83.62	60.53	93.55	79.23
prosulfuron	0.071					
13. metolachlor fb	1.68	PRE BAND	176.68	134.09	165.85	158.87
2,4-D	0.56	POST BC				
14. metolachlor fb	1.68	PRE BAND	52.19	91.71	149.19	97.70
2,4- D	0.56	POST BAND				
15. metolachlor fb	1.68	PRE BAND	47.67	117.08	172.95	112.57
dicamba	0.28	POST BC				
16. metolachlor fb	1.68	PRE BAND	149.67	112.51	111.80	124.66
dicamba	0.28	POST BAND				
17. metolachlor fb	0.84	PRE BAND	220.24	56.24	154.42	143.63
atrazine + COC	1.12	POST BC				
18. metolachlor fb	1.68	PRE BAND	230.72	87.71	152.58	157.00
atrazine + COC	1.12	POST BAND				
19. metolachlor fb	1.68	PRE BAND	193.4 7	53.04	151.60	112.57
prosulfuron + COC	0.071	POST BAND				
LSD (0.05)			43.65	27.52	46.13	39.96

^aNet return is the difference of total return (price times yield) minus variable cost.

^bfb, followed by; COC, crop oil concentrate applied at a rate of 2.33 L/ha.

ł

^cBC, broadcast application; BAND, banded application. All banded treatments were cultivated (twice in 1997, once in 1998 and 1999)

Table 2. (cont.)'	Three-year conventional	tillage experiment herbici	ide list and	l net grain sorghum return.
-------------------	-------------------------	----------------------------	--------------	-----------------------------

			Net return ^a					
Treatment ^b	Rate	Timing°	1997	1998	1999	Mean		
	kg ai/ha		\$/ha	\$/ha	\$/ha	\$/ha		
20. metolachlor fb	1.68	PRE BAND	45.08	84.28	179.46	102.94		
atrazine + dicamba	0.672	POST BC						
21. metolachlor fb	1.68	PRE BAND	122.47	81.49	173.83	125.93		
atrazine + dicamba	0.672	POST BAND						
22. metolachlor fb	1.68	PRE BAND	94. 29	50.16	90.74	78.40		
halosulfuron + COC	0.047	POST BAND						
23. metolachlor fb	1.68	PRE BAND	38.06	46.08	100.56	61. 57		
bromoxynil	0.56	POST BC						
24. metolachlor fb	1.68	PRE BAND	70.54	58.31	126.66	85.17		
bromoxynil	0.56	POST BAND						
25. atrazine + COC	1.12	POST BC	71.83	78.09	139.09	96.34		
26. atrazine + COC	1.12	POST BAND	219.32	77.68	138.50	145.16		
27. prosulfuron + COC	0.071	POST BAND	38.06	58.57	137.46	117.52		
28. pendimethalin	0.694	POST BC	94.56	59.86	111.68	88.70		
29. bromoxynil	0.56	POST BC	12.71	35.35	70.41	39.49		
30. bromoxynil	0.56	POST BAND	135.15	67.38	135.62	112.72		
31. 2,4-D	0.56	POST BC	58.81	92.79	148.94	100.18		
32. 2,4-D	0.56	POST BAND	151.26	102.68	137.79	130.58		
33. dicamba	0.28	POST BC	45.71	84.63	127.66	86.00		
34. dicamba	0.28	POST BAND	151.15	101.33	132.95	128.48		
35. halosulfuron + COC	0.047	POST BAND	159.52	63.29	123.57	115.46		
36. atrazine + dicamba	0.672	POST BC	41.79	62.42	149.69	84.63		
37. atrazine + dicamba	0.672	POST BAND	145.06	66.25	169.58	126.96		
38. metolachlor +	1.68	PRE BAND	161.65	69.49	117.80	116.31		
propazine fb	1.12							
atrazine + COC	1.12	POST BAND						
39. check			30.20	81.77	131.98	81.31		
40. cultivated check			119.44	88.94	161. 75	123.38		
LSD (0.05)		•	43.65	27.52	46.13	39.96		

^aNet return is the difference between total return (price times yield) minus variable cost.

^bfb, followed by; COC, crop oil concentrate applied at a rate of 2.33 L/ha.

^eBC, broadcast application; BAND, banded application. All banded treatments were cultivated (twice in 1997, once in 1998 and 1999).

				Return ratio ^a			
Treat	tment ^b	Rate	Timing ^c	1998	1999	Mean	
		kg ai/ha				<u> </u>	
1.	metolachlor	1.68	PRE BC NC	2.48	1.66	2.07	
2.	metolachlor	1.68	PRE BC 1C	1.33	1.67	1.50	
3.	metolachlor	1.68	PRE BAND 2C	3.31	4.83	4.07	
4.	metolachlor +	1.68	PRE BAND 2C	1.95	1.04	1.49	
	prosulfuron	0.071					
5.	metolachlor +	1.68	PRE BC NC	1.81	2.47	2.14	
	atrazine	1.12					
6.	metolachlor +	1.68	PRE BC 1C	1.21	1.27	1.24	
	atrazine	1.12					
7.	metolachlor +	1.68	PRE BAND 2C	3.51	2.94	3.22	
	atrazine	1.12					
8.	metolachlor fb	1.68	PRE BC NC	1.54	2.28	1.91	
	atrazine + COC	1.12	POST BC				
9.	metolachlor fb	1.68	PRE BC 1C	0.62	1.15	0.88	
	atrazine + COC	1.12	POST BC				
10.	metolachlor fb	1.68	PRE BAND 1C	0.80	0.90	0.85	
	atrazine + COC	1.12	POST BC				
11.	metolachlor fb	1.68	PRE BC NC	2.19	2.47	2.33	
	2,4-D	0.56	POST BC				
12.	metolachlor fb	1.68	PRE BC 1C	1.38	0.35	0.87	
	2,4-D	0.56	POST BC				
13.	atrazine + COC	1.12	POST BC NC	2.32	7.62	4.97	
14.	atrazine + COC	1.12	POST BC 1C	2.75	3.29	3.02	
15.	check			0.00	0.00	0.00	
16.	cultivated check			4.27	6.58	5.43	
	LSD (0.05)			0.95	2.42	1.48	

Table 3. Two-year conventional tillage experiment herbicide list and grain sorghum weed control ratio.

^aReturn ratio equals increased return from weed control divided by cost of weed control. Ratio equals increased return per dollar of weed control cost.

^bfb, followed by; COC, crop oil concentrate applied at a rate of 2.33 L/ha.

^cBC, broadcast application; BAND, banded application; NC, no cultivation; 1C, one cultivation; 2C, two cultivations; two cultivations were not required due to low weed infestations.

				Net return ^a			
Trea	tment ^b	Rate	Timing ^c	1998	1999	Mean	
<u> </u>		kg ai/ha	4 t	\$/ha	\$/ha	\$/ha	
• 1.	metolachlor	1.68	PRE BC NC	99.61	66.42	83.01	
2.	metolachlor	1.68	PRE BC 1C	69.72	87.99	78.85	
3.	metolachlor	1.68	PRE BAND 2C	76.31	111.45	93.88	
4.	metolachlor +	1.68	PRE BAND 2C	77.07	41.04	59.05	
	prosulfuron	0.071					
5.	metolachlor +	1.68	PRE BC NC	87.35	119.12	103.24	
	atrazine	1.12					
6.	metolachlor +	1.68	PRE BC 1C	73.50	77.13	75.32	
	atrazine	1.12					
7.	metolachlor +	1.68	PRE BAND 2C	90.33	75.62	82.98	
	atrazine	1.12					
8.	metolachlor fb	1.68	PRE BC NC	87.63	129.43	108.53	
	atrazine + COC	1.12	POST BC				
9.	metolachlor fb	1.68	PRE BC 1C	42.70	79.87	61.28	
	atrazine + COC	1.12	POST BC				
10.	metolachlor fb	1.68	PRE BAND 1C	48.94	55.17	52.06	
	atrazine + COC	1.12	POST BC				
11.	metolachlor fb	1.68	PRE BC NC	114.26	129.01	121.64	
	2,4-D	0.56	POST BC				
12.	metolachlor fb	1.68	PRE BC 1C	89.56	22.84	56.20	
	2,4-D	0.56	POST BC				
13.	atrazine + COC	1.12	POST BC NC	38.75	127.21	82.98	
14.	atrazine + COC	1.12	POST BC 1C	80.45	96.22	88.34	
15.	check			53.85	113.10	83.47	
16.	cultivated check			53.44	82.45	67.95	
	LSD (0.05)			32.35	62.63	38.54	

Table 4. Two-year conventional tillage experiment herbicide list and net grain sorghum return.

^aNet return is the difference of total return (price times yield) minus variable cost.

^bfb, followed by; COC, crop oil concentrate applied at a rate of 2.33 L/ha.

^eBC, broadcast application; BAND, banded application; NC, no cultivation; 1C, one cultivation; 2C, two cultivations; two cultivations were not required due to low weed infestations.

					Return ra	tio ^a	
Treat	tment ^b	Rate	Timing	1998	1999	Mean	
		kg ai/ha	· <u>· · · · · · · · · · · · · · · · · · </u>		· · · · · ·		
1.	metolachlor	1.68	PRE	0.54	2.00	1.27	
2.	metolachlor +	1.68	PRE	0.34	0.41	0.38	
	propazine	1.12					
3.	metolachlor +	1.68	PRE	-0.05	0.23	0.09	
	prosulfuron	0.071					
4.	atrazine + metolachlor	2.98	PRE	0.59	1.58	1.09	
5.	atrazine + metolachlor +	2.98	PRE	-0.28	0.63	0.17	
	prosulfuron	0.071			,		
6.	metolachlor fb	1.68	PRE	0.50	2.28	1.39	
	2,4-D	0.56	POST				
7.	metolachlor fb	1.68	PRE	0.25	1.72	0.99	
	atrazine + COC	1.12	POST				
8.	prosulfuron + COC	0.071	POST	-0.56	0.44	-0.06	
9.	halosulfuron $+$ COC	0.047	POST	-0.19	1.02	0.41	
10.	quinclorac +	0.14	POST	0.51	1.06	0.78	
	atrazine + COC	1.12					
11.	check			0.00	0.00	0.00	
	LSD (0.05)			0.54	0.57	0.71	

m 11 c	PT 1 11 1	. • • • •			
Table	I WO-Vear drilled t	no-tillage eynemmer	nt herbicide list a	nd grain corohiim we	of control return ratio
1 4016 2.	I no your amicar	no-unage experiment	it ner bierde not a	ala grant sol giant we	a condorrecarn racio.

^aReturn ratio equals increased return from weed control divided by cost of weed control. Ratio equals increased return per dollar of weed

control cost.

^bfb, followed by; COC, crop oil concentrate applied at a rate of 2.33 L ha.

					Net return ^a	
Treat	ment ^b	Rate	Timing	1998	19 99	Mean
		kg ai/ha		\$/ha	\$/ha	\$/ha
1.	metolachlor	1.68	PRE	21.53	80.17	50.85
2.	metolachlor +	1.68	PRE	25.55	31.34	28.45
	propazine	1.12				
3.	metolachlor +	1.68	PRE	-4.81	21.01	8.10
	prosulfuron	0.071				
4.	atrazine + metolachlor	2.98	PRE	28.06	74.51	51.29
5.	atrazine + metolachlor +	2.98	PRE	-27.55	61.21	16.83
	prosulfuron	0.071				
6.	metolachlor fb	1.68	PRE	25.92	119.05	72.49
	2,4-D	0.56	POST			
7.	metolachlor fb	1.68	PRE	14.46	97.89	56.17
	atrazine + COC	1.12	POST			
8.	prosulfuron + COC	0.071	POST	-33.06	25.72	-3.67
9.	halosulfuron + COC	0.047	POST	-9.86	51.47	20.80
10.	quinclorac +	0.14	POST	21.98	46.00	33.99
	atrazine + COC	1.12				
11.	check			29.36	68.60	48.98
	LSD (0.05)			30.41	29.88	38.36

Table 6. Two-year drilled r	o-tillage experiment	herbicide list and net	grain sorghum return.
-----------------------------	----------------------	------------------------	-----------------------

^aNet return is the difference of total return (price times yield) minus variable cost.

^bfb, followed by; COC, crop oil concentrate applied at a rate of 2.33 L ha.

APPENDIX

				Variable	Total		Net
Treat	ment ^a	Rate	Timing ^b	cost	return	Yield	return
		kg ai/ha		\$/ha	\$/ha	kg/ha	\$/ha
1.	metolachlor +	1.68	PRE BAND	47.33	302.45	3563	255.12
	propazine	1.12					
2.	metolachlor fb	1.68	PRE BAND	46.86	277.57	3269	230.71
	atrazine + COC	1.12	POST BAND				
3.	metolachlor fb	1.68	PRE BAND	52.29	272.53	3210	220.24
	atrazine + COC	1.0	POST BC				
4.	atrazine + COC	1.12	POST BAND	36.31	255.63	3011	219.32
5.	metolachlor fb	1.68	PRE BAND	60.71	254.18	2994	193.47
	prosulfuron + COC	0.071	POST BAND				
6.	metolachlor fb	1.68	PRE BAND	47.75	224.42	2643	176.68
	2,4-D	0.56	POST BC				
7.	metolachlor +	1.68	PRE BAND	58.59	220.24	2594	161.65
	propazine fb	1.12					
	atrazine + COC	1.12	POST BAND				
8.	halosulfuron + COC	0.047	POST BAND	47.47	207.00	2439	159.53
9.	prosulfuron + COC	0.071	POST BAND	50.17	206.68	2435	156.51
10.	2,4-D	0.56	POST BAND	34.48	185.74	2187	151.26
11.	dicamba	0.28	POST BAND	37.84	188.99	2226	151.15
12.	metolachlor fb	1.68	PRE BAND	48.39	198.06	2333	149.67
	dicamba	0.28	POST BAND				
13.	atrazine + dicamba	0.672	POST BAND	37.35	182.40	2148	145.05
14.	bromoxynil	0.56	POST BAND	45.00	180.16	2122	135.16
15.	dimethenamid	0.84	PRE BAND	33.81	161.01	1896	127.20
16.	propazine	1.12	PRE BAND	36.78	162.83	1918	126.05
17.	metolachlor +	1.68	PRE BAND	52.12	177.28	2088	125.16
	prosulfuron	0.071					
18.	metolachlor fb	1.68	PRE BAND	47.89	170.36	2007	122.47
	atrazine + dicamba	0.672	POST BAND				
19.	cultivated check			25.05	144.49	1701	119.44
20.	metolachlor	1.68	PRE BAND	35.59	144.13	1698	108.54
21.	prosulfuron	0.071	PRE BC	58.17	157.55	1856	99.38
	LSD (0.05)			NS°	43.65	511	43.65

Appendix Table 1. Three-year conventional tillage experiment treatment cost listing ranked by net grain sorghum return in 1997.

^aTreatments are listed in descending net return; fb, followed by; COC, crop oil concentrate applied at a rate of 2.33 L ha.

^bBC, broadcast application; BAND, banded application. All banded treatments were cultivated twice.

				Variable	Total		Net
Trea	tment ^a	Rate	Timing ^b	cost	return	Yield	return
		kg ai/ha		\$/ha	\$/ha	kg/ha	\$/ha
22.	pendimethalin	0.694	POST BC	20.62	115.18	1357	94.56
23.	metolachlor fb	1.68	PRE BAND	58.02	152.31	1794	94.29
	halosulfuron + COC	0.047	POST BAND				
24.	dimethenamid +	0.84	PRE BAND	45.55	133.10	1568	87.55
	propazine	1.12					
25.	metolachlor	1.68	PRE BC	40.09	124.01	1461	83.9 2
2 6.	dimethenamid +	0.84	PRE BAND	50.34	133.96	1578	83.62
	prosulfuron	0.071					
27.	atrazine + COC	1.12	POST BC	16.70	88.53	1043	71.83
28.	metolachlor fb	1.68	PRE BAND	55.55	126.09	1485	70.54
	bromoxynil	0.56	POST BAND				
29.	2,4-D	0.56	POST BC	12.15	70.96	836	58.81
30.	prosulfuron	0.071	PRE BAND	41.57	100.33	1182	58.76
31.	metolachlor fb	1.68	PRE BAND	45.03	97.22	1145	52.19
	2,4-D	0.56	POST BC				
32.	metolachlor fb	1.68	PRE BAND	57.92	105.59	1244	47.67
	dicamba	0.28	POST BC				
33.	dicamba	0.28	POST BC	22.33	68.04	801	45.71
34.	dimethenamid	0.84	PRE BC	34.65	80.02	942	45.37
35.	metolachlor fb	1.68	PRE BAND	56.27	101.35	1194	45.08
	atrazine + dicamba	0.672	POST BC				
36.	atrazine + dicamba	0.672	POST BC	20.67	62.46	736	41.79
37.	metolachlor fb	1.68	PRE BAND	79.61	117.67	1386	38.06
	bromoxynil	0.56	POST BC				
38.	check			0.00	30.20	356	30.20
39.	bromoxynil	0.56	POST BC	44.02	56.73	668	12.71
40.	propazine	1.12	PRE BC	43.6 2	44.08	519	0.46
	LSD (0.05)			NS	43.65	511	43.65

Appendix Table 1. (cont.) Three-year conventional tillage experiment treatment cost listing ranked by net grain sorghum return in 1997.

^bBC, broadcast application; BAND, banded application. All banded treatments were cultivated twice.

				Variable	Total		Net
Trea	tment ^a	Rate	$\mathbf{Timing}^{\mathrm{b}}$	cost	return	Yield	return
		kg ai/ha		\$/ha	\$/ha	kg/ha	\$/ha
1.	metolachlor fb	1.68	PRE BAND	35.22	169.31	1994	134.09
	2,4-D	0.56	POST BC				
2.	metolachlor fb	1.68	PRE BAND	45.40	162.48	1914	117.08
	dicamba	0.28	POST BC				
3.	dimethenamid	0.84	PRE BC	34.65	150.47	1772	115.82
4.	metolachlor fb	1.68	PRE BAND	35.86	148.37	1747	112.51
	dicamba	0.28	POST BAND				
5.	2,4-D	0.56	POST BAND	21.96	124.64	1468	102.68
6.	dicamba	0.28	POST BAND	25.32	126.65	1492	101.33
7.	metolachlor	1.68	PRE BC	40.09	136.75	1611	96.66
8.	2,4-D	0.56	POST BC	12.15	104.94	1236	92.79
9.	metolachlor fb	1.68	PRE BAND	32.51	124.22	1463	91.71
	2,4-D	0.56	POST BC				
10.	metolachlor	1.68	PRE BAND	23.07	112.63	1326	89.56
11.	cultivated check			12.52	101.47	1195	88.94
12.	metolachior fb	1.68	PRE BAND	34.33	122.04	1437	87.71
	atrazine + COC	1.12	POST BAND				
13.	dicamba	0.28	POST BC	22.33	106.96	1260	84.63
14.	metolachlor fb	1.68	PRE BAND	43.74	128.03	1508	84.29
	atrazine + dicamba	0.672	POST BC				
15.	check			0.00	81.77	963	81.77
16.	metolachlor fb	1.68	PRE BAND	35.37	116.86	1376	81.49
	atrazine + dicamba	0.672	POST BAND				
17.	propazine	1.12	PRE BC	43.62	124.12	1462	80.50
18.	metolachlor +	1.68	PRE BAND	39.59	119.61	1409	80.02
	prosulfuron	0.071					
19.	atrazine + COC	1.12	POST BC	16.70	94.79	1116	78.09
20.	atrazine + COC	1.12	POST BAND	23.79	101.46	1195	77.67
21.	dimethenamid	0.84	PRE BAND	21.29	94.37	1111	73.08
	LSD (0.05)			NS ^c	27.52	325	27.52

A	nnendix Table 2.	Three-	vear conve	entional [•]	tillage ex	neriment	treatment	cost listing	ranked h	ov net	erain sore	hum ret	um in	1998
444			, ••••• ••••••••			Det minerie	er etternerne	COSt Hothing	, it will to t	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	FI HIII OUI F		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1//0.

^bBC, broadcast application; BAND, banded application. All banded treatments were cultivated once.

				Variable	Total		Net
Trea	tment ^a	Rate	Timing ^b	cost	return	Yield	return
<u></u>		kg ai/ha		\$/ha	\$/ha	kg/ha	\$/ha
22.	dimethenamid +	0.84	PRE BAND	33.02	104.81	1235	71.79
	propazine	1.12					
23.	propazine	1.12	PRE BAND	24.26	93.91	1106	69.65
24.	metolachlor +	1.68	PRE BAND	46.07	115.56	1361	69.49
	propazine fb	1.12					
	atrazine + COC	1.12	POST BAND				
25.	bromoxynil	0.56	POST BAND	32.48	99.86	1176	67.38
2 6.	atrazine + dicamba	0.672	POST BAND	24.82	91.07	1073	66.25
27.	metolachlor +	1.68	PRE BAND	34.80	100.80	1187	66.00
	propazine	1.12	PRE BAND				
28.	prosulfuron + COC	0.071	POST BAND	34.95	9 8.2 4	11 57	63.29
29.	atrazine +	0.672	POST BC	20.67	83.10	979	62.42
30.	dimethenamid +	0.84	PRE BAND	37.82	98.34	1158	60.53
	prosulfuron	0.071					
31.	pendimethalin	0.694	POST BC	33.15	93.01	1095	59.86
32.	prosulfuron + COC	0.071	POST BAND	37.64	96.21	1133	58.57
33.	metolachlor fb	1.68	PRE BAND	43.03	101.34	1194	58.31
	bromoxynil	0.56	POST BAND				
34.	prosulfuron	0.071	PRE BAND	29.05	86.89	1023	57.85
35.	metolachlor fb	0.84	PRE BAND	39.77	96.01	1131	56.24
	atrazine + COC	1.12	POST BC				
36.	metolachlor fb	1.68	PRE BAND	48.19	101.23	1192	53.04
	prosulfuron + COC	0.071	POST BAND				
37.	metolachlor fb	1.68	PRE BAND	45.50	95.66	1127	50.16
	halosulfuron + COC	0.047	POST BAND				
38.	metolachlor fb	1.68	PRE BAND	67.09	113.17	1333	46.08
	bromoxynil	0.56	POST BC				
39.	prosulfuron	0.071	PRE BC	58.17	98.18	1156	40.01
40.	bromoxynil	0.56	POST BC	44.02	79.36	935	35.35
	LSD (0.05)			NS°	27.52	325	27.52

A	mendix Table 2.	(cont.) Three-	vear conventiona	l tillage e	xperiment tr	eatment cost	listing	ranked by	net gra	un sorg	hum return i	n 1998
			,				**********						

^bBC, broadcast application; BAND, banded application. All banded treatments were cultivated once.

				Variable	Total		Net
Trea	tment ^a	Rate	Timing ^b	cost	return	Yield	return
		kg ai/ha		\$/ha	\$/ha	kg/ha	\$/ha
1.	propazine	1.12	PRE BAND	24.26	209.60	2468	185.34
2.	metolachlor fb	1.68	PRE BAND	43.74	223.21	2629	179.47
	atrazine + dicamba	0.672	POST BC				
3.	dimethenamid	0.84	PRE BAND	21.29	196.62	2316	175.33
4.	metolachior fb	1.68	PRE BAND	35.37	209.20	2469	173.83
	atrazine + dicamba	0.672	POST BAND				
5.	metolachlor	1.68	POST BAND	45.40	218.35	2572	172.95
	dicamba	0.28	POST BC				
6.	atrazine + dicamba	0.672	POST BAND	24.82	194.40	2290	169.58
7.	metolachlor	1.68	PRE BC	40.09	208.25	2453	168.16
8.	metolachlor fb	1.68	PRE BAND	35.22	201.08	2368	165.86
	2,4-D	0.56	POST BC				
9.	cultivated check			12.52	174.28	2053	161.76
10.	prosulfuron	0.071	PRE BAND	29.05	183.52	2161	154.47
11.	metolachlor fb	0.84	PRE BAND	39.77	194.19	2287	154.42
	atrazine + COC	1.12	POST BC				
12.	metolachlor fb	1.68	PRE BAND	34.33	186.91	2201	152.58
	atrazine + COC	1.12	POST BAND				
13.	metolachlor fb	1.68	PRE BAND	48.19	199.79	2353	151.60
	prosulfuron + COC	0.071	POST BAND				
14.	metolachlor +	1.68	PRE BAND	34.80	185.69	2187	150.89
	propazine	1.12					
15.	atrazine + dicamba	0.672	POST BC	20.67	170.36	2007	149.69
16.	metolachlor fb	1.68	PRE BAND	32.51	181.69	2140	149.18
	2,4-D	0.56	POST BC				
17.	2,4-D	0.56	POST BC	12.15	161.09	1897	148.94
18.	dimethenamid	0.84	PRE BC	34.65	182.55	2150	147.89
19.	dimethenamid +	0.84	PRE BAND	33.02	180.87	2130	147.85
	propazine	1.12					
20.	metolachlor	1.68	PRE BAND	23.07	169.14	1 992	146.07
21.	atrazine + COC	1.12	POST BC	16.70	155.79	1835	139.09
	LSD (0.05)			NS°	46.13	551	46.13

Appendix Table 3. Three-year conventional tillage experiment treatment cost listing ranked by net grain sorg	hum return in 199	9
--	-------------------	---

^bBC, broadcast application; BAND, banded application. All banded treatments were cultivated once.

				Variable	Total		Net
Treat	tment ^a	Rate	Timing ^b	cost	return	Yield	return
		kg ai/ha		\$/ha	\$/ha	kg/ha	\$/ha
22.	atrazine + COC	1.12	POST BAND	23.79	162.29	1911	138.50
23.	propazine	1.12	PRE BC	43.62	181.76	2141	138.14
24.	2,4-D	0.56	POST BAND	21.96	159.75	1881	137.79
25.	prosulfuron + COC	0.071	POST BAND	37.64	175.10	2062	137.46
26.	bromoxynil	0.56	POST BAND	32.48	168.10	1980	135.62
27.	dicamba	0.28	POST BAND	25.32	158.27	1864	132.95
28.	check			0.00	131.98	1554	131.98
29.	dicamba	0.28	POST BC	22.33	149.99	1767	127.66
30.	metolachlor fb	1.68	PRE BAND	43.03	169.69	1999	126.66
	bromoxynil	0.56	POST BAND				
31.	prosulfuron + COC	0.071	POST BAND	34.95	158.52	1867	123.57
32.	metolachlor +	1.68	PRE BAND	46.07	163.87	1930	117.80
	propazine fb	1.12					
	atrazine + COC	1.12	POST BAND				
33.	metolachlor fb	1.68	PRE BAND	35.86	147.67	1739	111.81
	dicamba	0.28	POST BAND				
34.	pendimethalin	0.694	POST BC	33.15	144.83	1706	111.68
35.	metolachlor +	1.68	PRE BAND	39.59	141.77	1670	102.18
	prosulfuron	0.071					
36.	metolachlor fb	1.68	PRE BAND	67.09	167.65	1974	100.56
	bromoxynil	0.56	POST BC				
37.	dimethenamid +	0.84	PRE BAND	37.82	131.36	1547	93.54
	prosulfuron	0.071					
38.	metolachlor fb	1.68	PRE BAND	45.50	136.24	1604	90.74
	halosulfuron +COC	0.047	POST BAND				
39.	prosulfuron	0.071	PRE BC	58.17	139.75	1646	81.58
40.	bromoxynil	0.56	POST BC	44.02	114.42	1348	70.40
	LSD (0.05)			NS ^e	46.13	551	46.13

Appendix Table 3. (cont.) Three-year conventional tillage experiment treatment cost listing ranked by net grain sorghum return in 1999.

^aTreatments are listed in descending net return; fb, followed by; COC, crop oil concentrate applied at a rate of 2.33 L ha.

^bBC, broadcast application; BAND, banded application. All banded treatments were cultivated once.

				Crop Injury ^a	Palm	ier amai	ranth	Lar	ge crabg	rass
Treat	tment ^b	Rate	Timing ^c	4 WAP	3 WAP	4 WAP	8 WAP	3 WAP	4 WAP	8 WAP
		kg ai/ha		%			% C	ontrol —		
1.	metolachlor +	1.68	PRE BAND	0	63	89	84	78	99	99
	propazine	1.12								
2.	metolachlor fb	1.68	PRE BAND	18	73	98	99	84	99	99
	atrazine + COC	1.12	POST BAND							
3.	metolachlor fb	1.68	PRE BAND	20	65	98	91	80	95	95
	atrazine + COC	1.12	POST BC							
4.	atrazine + COC	1.12	POST BAND	20	18	98	90	13	85	75
5.	metolachlor fb	1.68	PRE BAND	28	70	55	85	69	50	96
	prosulfuron + COC	0.071	POST BAND							
6.	metolachlor fb	1.68	PRE BAND	18	70	89	95	78	65	45
	2,4-D	0.56	POST BC							
7.	metolachlor +	1.68	PRE BAND	18	70	89	89	74	94	96
	propazine fb	1.12								
	atrazine + COC	1.12	POST BAND							
8.	halosulfuron + COC	0.047	POST BAND	23	ND^d	93	88	ND	83	94
9.	prosulfuron + COC	0.071	POST BAND	10	ND	95	99	ND	85	88
10.	2,4-D	0.56	POST BAND	25	ND	76	95	ND	70	66
11.	dicamba	0.28	POST BAND	8	ND	93	96	ND	93	89
12.	metolachlor fb	1.68	PRE BAND	28	70	93	98	75	99	98
	dicamba	0.28	POST BAND							
13.	atrazine + dicamba	0.672	POST BAND	15	ND	78	83	ND	85	98
14.	bromoxynil	0.56	POST BAND	23	ND	84	91	ND	79	95
15.	dimethenamid	0.84	PRE BAND	8	83	78	79	88	83	95
16.	propazine	1.12	PRE BAND	15	78	93	91	78	85	81
17.	metolachlor +	1.68	PRE BAND	0	68	80	91	73	88	98
	prosulfuron	0.071								
18.	metolachlor fb	1.68	PRE BAND	30	50	89	90	63	90	74
	atrazine + dicamba	0.672	POST BAND							
19.	cultivated check			0	0	0	0	0	0	0
20.	metolachlor	1.68	PRE BAND	13	76	73	36	73	99	99
	LSD (0.05)			13	19	23	18	12	29	23

Appendix Table 4. Three-year conventional tillage experiment grain sorghum ratings for crop injury and weed control in 1997.

⁸No crop injury was observed at the 3 WAP and 8 WAP rating dates.

 $^{b}\mathrm{fb},$ followed by; COC, crop oil concentrate applied at a rate of 2.33 L ha.

°BC, broadcast application; BAND, banded application. All banded treatments were cultivated twice.

^dND, no data, at time of rating treatment had not been applied.

				Crop Injury ^a	Palme	er amara	anth	Lar	ge crabg	rass
Trea	tment ^b	Rate	Timing ^c	4 WAP	3 WAP 4	WAP	8 WAP	3 WAP	4 WAP	8 WAP
		kg ai/ha		%			<u> </u>	ontrol —		
21.	prosulfuron	0.071	PRE BC	10	71	80	75	91	45	45
22.	pendimethalin	0.694	POST BC	3	ND^d	58	81	ND	73	95
23.	metolachlor fb	1.68	PRE BAND	30	73	83	90	80	20	89
	halosulfuron + COC	0.047	POST BAND							
24.	dimethenamid +	0.84	PRE BAND	18	68	58	86	85	35	95
	propazine	1.12								
25.	metolachlor	1.68	PRE BC	5	83	50	20	91	89	83
2 6.	dimethenamid +	0.84	PRE BAND	10	55	86	95	85	88	91
	prosulfuron	0.071								
27.	atrazine + COC	1.12	POST BC	33	ND	100	100	ND	39	13
28.	metolachlor fb	1.68	PRE BAND	40	75	63	96	80	30	79
	bromoxynil	0.56	POST BAND							
29.	2,4-D	0.56	POST BC	40	ND	98	98	ND	28	13
30.	prosulfuron	0.071	PRE BAND	10	78	73	84	88	35	66
31.	metolachlor fb	1.68	PRE BAND	18	73	60	59	78	35	96
	2,4- D	0.56	POST BC							
32.	metolachlor fb	1.68	PRE BAND	18	55	75	95	75	20	33
	dicamba	0.28	POST BC							
33.	dicamba	0.28	POST BC	28	ND	95	100	ND	13	3
34.	dimethenamid	0.84	PRE BC	18	90	79	65	90	78	86
35.	metolachlor fb	1.68	PRE BAND	25	7 6	99	100	84	29	21
	atrazine + dicamba	0.672	POST BC							
36.	atrazine + dicamba	0.6 72	POST BC	25	ND	98	100	ND	28	10
37.	metolachlor fb	1.68	PRE BAND	28	60	9 0	99	7 6	60	84
	bromoxynil	0.56	POST BC							
38.	check			0	0	0	0	0	0	0
39.	bromoxynil	0.56	POST BC	33	ND	95	100	ND	38	15
40.	propazine	1.12	PRE BC	20	64	90	88	90	45	33
	LSD (0.05)			13	19	23	18	12	29	23

Appendix Table 4. (cont.) Three-year conventional tillage experiment grain sorghum ratings for crop injury and weed control in 1997.

^aNo crop injury was observed at the 3 WAP and 8 WAP rating dates.

 $^{b}\mathrm{fb},$ followed by; COC, crop oil concentrate applied at a rate of 2.33 L ha.

°BC, broadcast application; BAND, banded application. All banded treatments were cultivated twice.

^dND, no data, at time of rating treatment had not been applied.

			Palmer amaranth			Large crabgrass			Morningglory spp. ^a			
Trea	atment ^b	Rate	Timing ^c	4 WAP 8	WAP	14 WAP	4 WAP 8	WAP 1	4 WAP	4 WAP	8 WAP	14 WAP
		kg ai/ha				-	%	Contro	1			
1.	metolachlor fb	1.68	PRE BAND	99	98	99	55	94	80	100	95	100
	2,4-D	0.56	POST BC									
2.	metolachlor fb	1.68	PRE BAND	100	98	98	75	90	88	100	94	78
	dicamba	0.28	POST BC									
3.	dimethenamid	0.84	PRE BC	96	99	98	99	100	100	98	70	100
4.	metolachlor fb	1.68	PRE BAND	99	90	95	99	89	95	100	96	100
	dicamba	0.28	POST BAND									
5.	2,4-D	0.56	POST BAND	ND^d	99	84	ND	33	59	ND	98	75
6.	dicamba	0.28	POST BAND	ND	89	75	ND	18	35	ND	73	100
7.	metolachlor	1.68	PRE BC	90	89	88	100	98	100	93	7 1	98
8.	2,4-D	0.56	POST BC	ND	91	95	ND	0	0	ND	100	100
9.	metolachlor fb	1.68	PRE BAND	98	91	81	100	85	75	99	85	100
	2,4-D	0.56	POST BC									
10.	metolachlor	1.68	PRE BAND	98	69	88	100	78	100	98	73	74
11.	cultivated check			0	0	0	0	0	0	0	0	0
12.	metolachior fb	1.68	PRE BAND	. 99	98	89	100	98	98	99	70	98
	atrazine + COC	1.12	POST BAND									
13.	dicamba	0.28	POST BC	ND	73	98	ND	0	5	ND	100	100
14.	metolachlor fb	1.68	PRE BAND	99	90	91	100	76	98	100	98	100
	atrazine + dicamba	0.672	POST BC									
15.	check			0	0	0	0	0	0	0	0	0
16.	metolachlor fb	1.68	PRE BAND	95	84	78	100	84	95	95	95	98
	atrazine + dicamba	0.672	POST BAND									
17.	propazine	1.12	PRE BC	99	96	98	81	33	45	100	95	100
18.	metolachlor +	1.68	PRE BAND	100	94	96	100	95	96	100	70	100
	prosulfuron	0.071										
19.	atrazine + COC	1 .1 2	POST BC	ND	75	95	ND	0	18	ND	98	100
20.	atrazine + COC	1.1 2	POST BAND	ND^d	44	64	ND	58	75	ND	96	100
21.	dimethenamid	0.84	PRE BAND	99	61	86	88	89	71	95	46	80
	LSD (0.05)			NSD ^e	34	32	29	40	31	NSD	NSD	NSD

Appendix Table 5. Three-year conventional tillage experiment grain sorghum ratings for crop injury and weed control in 1998.

^bfb, followed by; COC, crop oil concentrate was applied at a rate of 2.33 L ha.

°BC, broadcast application; BAND, banded application. All banded treatments were cultivated once.

^dND, no data at time of rating treatment had not been applied.

				Paln	ier ama	ranth	Larg	e crabgr	ass	Morr	uingglory	spp.ª
Trea	tment ^b	Rate	Timing°	4 WAP	8 WAP	14 WAP	4 WAP 8	WAP 1	4 WAP	4 WAP	8 WAP	14 WAP
		kg ai/ha		s	_		%	o Contro	l —			
22.	dimethenamid +	0.84	PRE BAND	100	96	96	100	93	95	100	94	100
	propazine	1.12										
23.	propazine	1.1 2	PRE BAND	99	74	78	84	50	70	100	96	100
24.	metolachlor +	1.68	PRE BAND	100	99	99	88	100	100	100	100	100
	propazine fb	1.12										
	atrazine + COC	1.12	POST BAND									
25.	bromoxynil	0.56	POST BAND	ND	61	71	ND	18	30	ND	98	98
26.	atrazine + dicamba	0.672	POST BAND	ND	65	51	ND	24	73	ND	93	100
27.	metolachlor +	1.68	PRE BAND	99	91	93	100	89	100	100	93	100
	propazine	1.12										
28.	prosulfuron + COC	0.071	POST BAND	ND	53	49	ND	49	58	ND	98	100
29.	atrazine + dicamba	0.672	POST BC	ND	61	69	ND	21	10	ND	95	100
30.	dimethenamid +	0.84	PRE BAND	100	98	98	75	94	94	98	88	99
	prosulfuron	0.071										
31.	pendimethalin	0.694	POST BC	ND	43	49	ND	84	80	ND	100	73
32.	prosulfuron + COO	0.071	POST BAND	ND	73	58	ND	53	60	ND	95	100
33.	metolachlor fb	1.68	PRE BAND	94	90	78	100	95	85	75	76	95
	bromoxynil	0.56	POST BAND									
34.	prosulfuron	0.071	PRE BAND	90	86	80	43	71	78	99	100	100
35.	metolachlor fb	0.84	PRE BAND	95	100	100	100	98	100	100	94	100
	atrazine + COC	1.12	POST BC									
36.	metolachlor fb	1.68	PRE BAND	99	93	88	100	76	100	7 6	100	100
	prosulfuron + COO	0.071	POST BAND									
37.	metolachlor fb	1.68	PRE BAND	91	98	91	100	99	100	100	98	95
	halosulfuron + CO	C 0.047	POST BAND									
38.	metolachlor fb	1.68	PRE BAND	96	91	91	100	98	98	100	100	100
	bromoxynil	0.56	POST BC									
39.	prosulfuron	0.071	PRE BC	100	100	99	8	8	0	100	100	100
40.	bromoxynil	0.56	POST BC	ND^d	0	23	ND	24	18	ND	95	100
	LSD (0.05)			NSD	° 34	32	29	40	31	NSD	NSD	NSD

Appendix Table 5. (cont.) Three-year conventional tillage experiment grain sorghum ratings for crop injury and weed control in 1998.

^bfb, followed by; COC, crop oil concentrate was applied at a rate of 2.33 L ha.

^eBC, broadcast application; BAND, banded application. All banded treatments were cultivated once.

^dND, no data at time of rating treatment had not been applied.

				Palmer a	maranth	Large c	rabgrass	Morning	glo ry spp.^a
Trea	itment ^b	Rate	Timing ^c	4 WAP	8 WAP	4 WAP	8 WAP	4 WAP	8 WAP
		kg ai/ha				% C	ontrol —		
1.	propazine	1.12	PRE BAND	100	96	100	95	100	99
2.	metolachlor fb	1.68	PRE BAND	100	93	100	95	90	95
	atrazine + dicamba	0.672	POST BC						
3.	dimethenamid	0.84	PRE BAND	83	93	100	95	100	98
4.	metolachlor fb	1.68	PRE BAND	100	99	100	100	98	100
	atrazine + dicamba	0.672	POST BAND						
5.	metolachlor fb	1.68	PRE BAND	91	95	100	88	98	98
	dicamba	0.28	POST BC						
6.	atrazine + dicamba	0.672	POST BAND	ND^d	46	ND	93	ND	95
7.	metolachlor	1.68	PRE BC	98	91	100	100	83	88
8.	metolachlor fb	1.68	PRE BAND	100	96	100	98	100	98
	2,4-D	0.56	POST BC						
9.	cultivated check			ND	0	ND	0	ND	0
10.	prosulfuron	0.071	PRE BAND	100	98	ND	93	98	100
11.	metolachlor fb	0.84	PRE BAND	96	93	100	100	96	100
	atrazine + COC	1.12	POST BC						
12.	metolachlor fb	1.68	PRE BAND	100	94	100	95	94	100
	atrazine + COC	1.12	POST BAND						
13.	metolachlor fb	1.68	PRE BAND	99	100	100	100	68	100
	prosulfuron + COC	0.071	POST BAND						
14.	metolachlor +	1.68	PRE BAND	100	100	100	100	100	100
	propazine	1.12							
15.	atrazine + dicamba	0.672	POST BC	ND	48	ND	73	ND	73
16.	metolachlor fb	1.68	PRE BAND	98	96	100	100	98	100
	2,4-D	0.56	POST BC						
17.	2,4-D	0.56	POST BC	ND^{d}	74	ND	89	ND	98
18.	dimethenamid	0.84	PRE BC	96	98	100	83	96	91
19.	dimethenamid +	0.84	PRE BAND	100	100	100	96	100	100
	propazine	1.12							
	LSD (0.05)			NSD [₽]	21	NSD	22	10	22

Appendix Table 6. Three-year conventional tillage experiment grain sorghum ratings for crop injury and weed control in 1999.

^bfb, followed by; COC, crop oil concentrate was applied at a rate of 2.33 L ha.

°BC, broadcast application; BAND, banded application. All banded treatments were cultivated once.

^dND, no data at time of rating treatment had not been applied.

			Palmer a	ımaranth	Large c	rabgrass	Morning	glory spp. ^a
Treatment ^b	Rate	Timing ^c	4 WAP	8 WAP	4 WAP	8 WAP	4 WAP	8 WAP
	kg ai/ha				% C	ontrol —		
20. metolachlor	1.68	PRE BAND	100	98	100	100	98	98
21. atrazine + COC	1.12	POST BC	ND	0	ND	25	ND	23
22. atrazine + COC	1.12	POST BAND	ND	51	ND	80	ND	95
23. propazine	1.12	PRE BC	100	99	- 98	66	96	98
24. 2,4-D	0.56	POST BAND	ND	54	ND	78	ND	99
25. prosulfuron + COC	0.071	POST BAND	ND	84	ND	83	ND	75
26. bromoxynil	0.56	POST BAND	ND	73	23	91	ND	95
27. dicamba	0.28	POST BAND	ND	75	23	88	ND	100
28. check			0	0	0	0	0	0
29. dicamba	0.28	POST BC	ND	65	27	13	ND	73
30. metolachlor fb	1.68	PRE BAND	95	98	24	100	98	99
bromoxynil	0.56	POST BAND						
31. prosulfuron + COC	0.071	POST BAND	ND	33	ND	78	ND	99
32. metolachlor +	1.68	PRE BAND	100	100	22	95	100	99
propazine fb	1.12							
atrazine + COC	1.12	POST BAND						
33. metolachlor fb	1.68	PRE BAND	100	99	22	100	98	99
dicamba	0.28	POST BAND						
34. pendimethalin	0.694	POST BC	ND	74	ND	68	ND	88
35. metolachlor +	1.68	PRE BAND	100	100	100	99	100	100
prosulfuron	0.071							
36. metolachlor fb	1.68	PRE BAND	100	94	87	95	90	99
bromoxynil	0.56	POST BC						
37. dimethenamid +	0.84	PRE BAND	100	100	85	96	98	100
prosulfuron	0.071							
38. metolachlor fb	1.68	PRE BAND	98	96	76	100	95	100
halosulfuron + CO	C 0.047	POST BAND						
39. prosulfuron	0.071	PRE BC	100	100	90	9	100	100
40. bromoxynil	0.56	POST BC	ND^d	0	84	0	ND	0
LSD (0.05)			NSD ^e	21	NSD	22	10	22

Appendix Table 6. (cont.) Three-year conventional tillage experiment grain sorghum ratings for crop injury and weed control in 1999.

^bfb, followed by; COC, crop oil concentrate was applied at a rate of 2.33 L ha.

°BC, broadcast application; BAND, banded application. All banded treatments were cultivated once.

^dND, no data at time of rating treatment had not been applied.

		Counts	Hei	Heights		
Treatment ^a	Rate	Timing ^b	5 WAP	5 WAP	9 WAP	
	kg ai/ha	<u> </u>	# 1.5m	c	m	
1. metolachlor fb	1.68	PRE BAND	8	53	110	
2,4-D	0.56	POST BC				
2. metolachlor fb	1.68	PRE BAND	10	53	113	
dicamba	0.28	POST BC				
3. dimethenamid	0.84	PRE BC	10	58	109	
4. metolachlor fb	1.68	PRE BAND	9	59	115	
dicamba	0.28	POST BAND				
5. 2,4-D	0.56	POST BAND	9	62	114	
6. dicamba	0.28	POST BAND	9	59	113	
7. metolachlor	1.68	PRE BC	10	62	108	
8. 2,4-D	0.56	POST BC	9	55	106	
9. metolachlor fb	1.68	PRE BAND	9	62	114	
2,4-D	0.56	POST BC				
10. metolachlor	1.68	PRE BAND	8	58	118	
11. cultivated check			10	59	114	
12. metolachlor fb	1.68	PRE BAND	10	59	113	
atrazine + COC	1.12	POST BAND				
13. dicamba	0.28	POST BC	7	54	108	
14. metolachlor fb	1.68	PRE BAND	6	53	111	
atrazine + dicamba	0.672	POST BC				
15. check	*		9	59	114	
16. metolachlor fb	1.68	PRE BAND	9	53	110	
atrazine + dicamba	0.672	POST BAND				
17. propazine	1.12	PRE BC	9	64	108	
18. metolachlor +	1.68	PRE BAND	11	59	113	
prosulfuron	0.071					
19. atrazine + COC	1.12	POST BC	9	58	107	
20. atrazine + COC	1.12	POST BAND	8	60	112	
LSD (0.05)			NSD ^c	6	7	

Appendix Table 7. Three-year conventional tillage experiment counts and heights ranked by net grain sorghum return in 1998.

^afb, followed by; COC, crop oil concentrate applied at a rate of 2.33 L ha.

^bBC, broadcast application; BAND, banded application. All banded treatments were cultivated once.

			Counts	Hei	ghts
Treatment ^a	Rate	Timing ^b	5 WAP	5 WAP	9 WAP
	kg ai/ha		# 1.5m	c	:m
21. dimethenamid	0.84	PRE BAND	9	59	117
22. dimethenamid +	0.84	PRE BAND	8	55	117
propazine	1.12				
23. propazine	1.12	PRE BAND	9	65	113
24. metolachlor +	1.68	PRE BAND	8	58	116
propazine fb	1.12				
atrazine + COC	1.12	POST BAND			
25. bromoxynil	0.56	POST BAND	9	56	116
26. atrazine + dicamba	0.672	POST BAND	7	59	113
27. metolachlor +	1.68	PRE BAND	10	59	114
propazine	1.12	PRE BAND			
28. prosulfuron + COC	0.071	POST BAND	10	53	110
29. atrazine + dicamba	0.672	POST BC	9	59	108
30. dimethenamid +	0.84	PRE BAND	10	57	113
prosulfuron	0.071				
31. pendimethalin	0.694	POST BC	10	57	112
32. prosulfuron + COC	0.071	POST BAND	10	53	115
33. metolachlor fb	1.68	PRE BAND	9	53	117
bromoxynil	0.56	POST BAND			
34. prosulfuron	0.071	PRE BAND	9	61	115
35. metolachlor fb	0.84	PRE BAND	9	58	116
atrazine + COC	1.12	POST BC			
36. metolachlor fb	1.68	PRE BAND	9	53	113
prosulfuron + COC	0.071	POST BAND			
37. metolachlor fb	1.68	PRE BAND	10	52	113
halosulfuron + COC	0.047	POST BAND			
38. metolachlor fb	1.68	PRE BAND	10	57	112
bromoxynil	0.56	POST BC			
39. prosulfuron	0.071	PRE BC	9	58	104
40. bromoxynil	0.56	POST BC	9	59	108
LSD (0.05)			NSD°	6	7

Appendix Table 7. (cont.) Three-year conventional tillage experiment counts and heights ranked by net grain sorghum return in 1998.

^afb, followed by; COC, crop oil concentrate applied at a rate of 2.33 L ha.

^bBC, broadcast application; BAND, banded application. All banded treatments were cultivated once.

			Counts	Heights		
Treatment ^a	Rate	Timing ^b	3 WAP	3 WAP	8 WAP	
	kg ai/ha		# 1.5m	cr	n	
1. propazine	1.12	PRE BAND	10	24	92	
2. metolachlor fb	1.68	PRE BAND	10	24	94	
atrazine + dicamba	0.672	POST BC				
3. dimethenamid	0.84	PRE BAND	10	25	89	
4. metolachlor fb	1.68	PRE BAND	9	22	90	
atrazine + dicamba	0.672	POST BAND				
5. metolachlor fb	1.68	PRE BAND	9	22	93	
dicamba	0.28	POST BC				
6. atrazine + dicamba	0.672	POST BAND	10	30	92	
7. metolachlor	1.68	PRE BC	9	24	104	
8. metolachlor fb	1.68	PRE BAND	11	22	93	
2,4-D	0.56	POST BC				
9. cultivated check			11	23	89	
10. prosulfuron	0.071	PRE BAND	12	23	87	
11. metolachlor fb	0.84	PRE BAND	10	24	90	
atrazine + COC	1.12	POST BC				
12. metolachlor fb	1.68	PRE BAND	13	25	85	
atrazine + COC	1.12	POST BAND				
13. metolachlor fb	1.68	PRE BAND	9	27	89	
prosulfuron + COC	0.071	POST BAND				
14. metolachlor +	1.68	PRE BAND	9	24	88	
propazine	1.12					
15. atrazine + dicamba	0.672	POST BC	11	28	86	
16. metolachlor fb	1.68	PRE BAND	11	26	90	
2,4-D	0.56	POST BC				
17. 2,4-D	0.56	POST BC	10	25	87	
18. dimethenamid	0.84	PRE BC	9	21	92	
19. dimethenamid +	0.84	PRE BAND	10	23	88	
propazine	1.12					
20. metolachlor	1.68	PRE BAND	11	23	86	
21. atrazine + COC	1.12	POST BC	12	25	85	
LSD (0.05)			2	NSD ^c	9	

Appendix Table 8. Three-year conventional tillage experiment counts and heights ranked by net grain sorghum return in 1999.

^afb, followed by; COC, crop oil concentrate applied at a rate of 2.33 L ha.

^bBC, broadcast application; BAND, banded application. All banded treatments were cultivated once.

·			Counts	Hei	ghts
Treatment ^a	Rate	Timing ^b	3 WAP	3 WAP	8 WAP
	kg ai/ha		# 1.5m	0	m
22. atrazine + COC	1.12	POST BAND	11	26	92
23. propazine	1.12	PRE BC	11	23	91
24. 2,4-D	0.56	POST BAND	12	23	89
25. prosulfuron + COC	0.071	POST BAND	9	25	82
26. bromoxynil	0.56	POST BAND	10	23	87
27. dicamba	0.28	POST BAND	10	23	88
28. check			10	26	93
29. dicamba	0.28	POST BC	12	27	92
30. metolachlor fb	1.68	PRE BAND	10	24	86
bromoxynil	0.56	POST BAND			
31. prosulfuron + COC	0.071	POST BAND	.11	27	85
32. metolachlor +	1.68	PRE BAND	11	22	90
propazine fb	1.12				
atrazine + COC	1.12	POST BAND			
33. metolachlor fb	1.68	PRE BAND	13	22	87
dicamba	0.28	POST BAND			
34. pendimethalin	0.694	POST BC	10	24	84
35. metolachlor +	1.68	PRE BAND	10	21	88
prosulfuron	0.071				
36. metolachlor fb	1.68	PRE BAND	10	21	87
bromoxynil	0.56	POST BC			
37. dimethenamid +	0.84	PRE BAND	12	21	85
prosulfuron	0.071				
38. metolachlor fb	1.68	PRE BAND	11	24	76
halosulfuron + COC	0.047	POST BAND			
39. prosulfuron	0.071	PRE BC	10	19	90
40. bromoxynil	0.56	POST BC	9	26	84
LSD (0.05)			2	NSD°	9

Appendix Table 8. (cont.) Three-year conventional tillage experiment counts and heights ranked by net grain sorghum return in 1999.

^afb, followed by; COC, crop oil concentrate applied at a rate of 2.33 L ha.

^bBC, broadcast application; BAND, banded application. All banded treatments were cultivated once.

			Variable	Total		Net
tment ^a	Rate	Timing ^b	cost	return	Yield	return
	kg ai/ha		\$/ha	\$/ha	kg/ha	\$/ha
metolachlor fb	1.68	PRE BC NC	52.24	166.50	1961	114.26
2,4-D	0.56	POST BC				
metolachlor	1.68	PRE BC NC 2C	40.09	139.70	1645	99.61
metolachlor +	1.68	PRE BAND 2C	25.74	116.07	1367	90.33
atrazine	1.12					
metolachlor fb	1.68	PRE BC 1C	64.76	154.32	1818	89.56
2,4-D	0.56	POST BC				
metolachlor fb	1.68	PRE BC NC	56.79	144.41	1701	87.62
atrazine + COC	1.12	POST BC				
metolachlor +	1.68	PRE BC NC	48.19	135.54	1596	87.35
atrazine	1.12					
atrazine + COC	1.12	POST BC 1C	29.22	109.67	1292	80.45
metolachlor +	1.68	PRE BAND 2C	39.59	116.66	1374	77.07
prosulfuron	0.071					
metolachlor	1.68	PRE BAND 2C	23.07	99.38	1170	76.31
metolachlor +	1.68	PRE BC 1C	60.71	134.21	1581	73.50
atrazine	1.12					
metolachlor	1.68	PRE BC 1C	52.61	122.33	1441	69.72
check			0.00	53.85	634	53.85
cultivated check			12.52	65.96	777	53.44
metolachlor fb	1.68	PRE BAND 1C	61. 21	110.14	1297	48.93
atrazine + COC	1.12	POST BC				
metolachlor fb	1.68	PRE BC 1C	69.31	112.01	1319	42.70
atrazine + COC	1.12	POST BC				
atrazine + COC	1.12	POST BC NC	16.70	55.45	653	38.75
LSD (0.05)			NS ^c	32.35	392	32.35
	metolachlor fb 2,4-D metolachlor metolachlor metolachlor + atrazine metolachlor fb 2,4-D metolachlor fb atrazine + COC metolachlor + atrazine atrazine + COC metolachlor metolachlor metolachlor metolachlor metolachlor metolachlor fb atrazine metolachlor fb atrazine + COC metolachlor fb atrazine + COC metolachlor fb atrazine + COC metolachlor fb atrazine + COC	tment ^a Rate kg ai/ha metolachlor fb 1.68 2,4-D 0.56 metolachlor 1.68 metolachlor + 1.68 atrazine 1.12 metolachlor fb 1.68 2,4-D 0.56 metolachlor fb 1.68 atrazine 1.12 metolachlor fb 1.68 atrazine + COC 1.12 metolachlor + 1.68 atrazine + COC 1.12 metolachlor + 1.68 prosulfuron 0.071 metolachlor + 1.68 atrazine 1.12 metolachlor + 1.68 atrazine 1.68 atrazine 1.68 atrazine 1.68 atrazine 1.68 atrazine 1.12 metolachlor fb 1.68 atrazine + COC 1.12 metolachlor fb 1.68 atrazine + COC 1.12 <tr tr=""> atra</tr>	Imment ^a Rate Timing ^b kg ai/ha kg ai/ha metolachlor fb 1.68 PRE BC NC 2,4-D 0.56 POST BC metolachlor 1.68 PRE BC NC 2C metolachlor 1.68 PRE BC NC 2C metolachlor + 1.68 PRE BAND 2C atrazine 1.12 restolachlor fb 1.68 2,4-D 0.56 POST BC metolachlor fb 1.68 PRE BC NC atrazine 1.12 POST BC metolachlor fb 1.68 PRE BC NC atrazine + COC 1.12 POST BC metolachlor + 1.68 PRE BC NC atrazine 1.12 POST BC 1C metolachlor + 1.68 PRE BAND 2C prosulfuron 0.071 restolachlor metolachlor + 1.68 PRE BAND 2C metolachlor + 1.68 PRE BC 1C check cultivated check	tranent ^a Rate Timing ^b cost ig al/ha S/ha metolachlor fb 1.68 PRE BC NC 52.24 2,4-D 0.56 POST BC 40.09 metolachlor 1.68 PRE BC NC 2C 40.09 metolachlor 1.68 PRE BC NC 2C 40.09 metolachlor + 1.68 PRE BC NC 2C 40.09 metolachlor b 1.68 PRE BC NC 2C 40.09 metolachlor b 1.68 PRE BC NC 2C 40.09 atrazine 1.12 5.74 atrazine 56.79 atrazine 1.68 PRE BC NC 56.79 atrazine + COC 1.12 POST BC - metolachlor + 1.68 PRE BC NC 39.59 prosulfuron 0.071 - - metolachlor + 1.68 PRE BAND 2C 23.07 metolachlor + 1.68 PRE BAND 2C 23.07 metolachlor + 1.68 PRE BAND 2C 25.61 check </td <td>tment^a Rate Tindng^b cost return kg al/ha S/ha S/ha S/ha metolachlor fb 1.68 PRE BC NC 52.24 166.50 2,4-D 0.56 POST BC metolachlor 1.68 PRE BC NC 2C 40.09 139.70 metolachlor 1.68 PRE BC NC 2C 40.09 139.70 metolachlor + 1.68 PRE BC NC 2C 40.09 139.70 metolachlor + 1.68 PRE BC NC 2C 40.09 139.70 metolachlor + 1.68 PRE BC NC 2 50.74 116.07 atrazine 1.12 metolachlor fb 1.68 PRE BC NC 56.79 144.41 atrazine + COC 1.12 POST BC metolachlor + 1.68 PRE BC NC 48.19 135.54 atrazine 1.12 POST BC 199.67 metolachlor + 1.68 PRE BAND 2C 39.59 116.66 prosulfuron 0.071 metolachlor + 1.68 PRE BAND 2C 23.07</td> <td>Tament* Rate Timing⁵ cost return Yield kg ai/ha S/ha S/ha kg/ha metolachlor fb 1.68 PRE BC NC 52.24 166.50 1961 2,4-D 0.56 POST BC </td>	tment ^a Rate Tindng ^b cost return kg al/ha S/ha S/ha S/ha metolachlor fb 1.68 PRE BC NC 52.24 166.50 2,4-D 0.56 POST BC metolachlor 1.68 PRE BC NC 2C 40.09 139.70 metolachlor 1.68 PRE BC NC 2C 40.09 139.70 metolachlor + 1.68 PRE BC NC 2C 40.09 139.70 metolachlor + 1.68 PRE BC NC 2C 40.09 139.70 metolachlor + 1.68 PRE BC NC 2 50.74 116.07 atrazine 1.12 metolachlor fb 1.68 PRE BC NC 56.79 144.41 atrazine + COC 1.12 POST BC metolachlor + 1.68 PRE BC NC 48.19 135.54 atrazine 1.12 POST BC 199.67 metolachlor + 1.68 PRE BAND 2C 39.59 116.66 prosulfuron 0.071 metolachlor + 1.68 PRE BAND 2C 23.07	Tament* Rate Timing ⁵ cost return Yield kg ai/ha S/ha S/ha kg/ha metolachlor fb 1.68 PRE BC NC 52.24 166.50 1961 2,4-D 0.56 POST BC

Appendix Table 9. Two-year conventional tillage experiment treatment cost listing ranked by net grain sorghum return in 1998.

^aTreatments are listed in descending net return; fb, followed by; COC, crop oil concentrate applied at a rate of 2.33 L ha.

^bBC, broadcast application; BAND, banded application; NC, no cultivation; 1C, one cultivation; 2C, two cultivations; two cultivations were not required due to low weed infestations.

				Variable	Total		Net
Trea	tment ^a	Rate	Timing ^b	cost	return	Yield	return
		kg ai/ha		\$/ha	\$/ha	kg/ha	\$/ha
1.	metolachlor fb	1.68	PRE BC NC	56.79	186.22	2193	129.43
	atrazine + COC	1.12	POST BC				
2.	metolachlor fb	1.68	PRE BC NC	52.24	181.25	2135	129.01
	2,4-D	0.56	POST BC				
3.	atrazine + COC	1.12	PRE BC NC	16.70	143.91	1695	127.21
4.	metolachlor +	1.68	PRE BC NC	48.19	167.31	1971	119.12
	atrazine	1.12					
5.	check			0.00	113.10	1332	113.10
6.	metolachlor	1.68	PRE BAND 2C	23.07	134.52	1584	111.45
7.	atrazine + COC	1.12	POST BC 1C	29.2 2	125.44	1 477	96.22
8.	metolachlor	1.68	PRE BC 1C	52. 61	140.60	1656	87.99
9.	cultivated check			12.52	94.98	1172	82.46
10.	metolachlor fb	1.68	PRE BC 1C	69.31	149.18	1757	79.87
	atrazine + COC	1.12	POST BC				
11.	metolachlor +	1.68	PRE BC 1C	60.71	137.84	1623	77.13
	atrazine	1.12					
12.	metolachlor +	1.68	PRE BAND 2C	25.74	101.36	1194	75.62
	atrazine	1.12					
13.	metolachlor	1.68	PRE BC NC	40.09	106.51	1254	66.42
14.	metolachlor fb	1.68	PRE BAND 1C	61.21	116.38	1371	55.17
	atrazine + COC	1.12	POST BC				
15.	metolachlor +	1.68	PRE BAND 2C	39.59	80.63	95 0	41.04
	prosulfuron	0.071					
16.	metolachlor	1.68	PRE BC 1C	64.76	87.60	1032	22.84
	2,4-D	0.56	POST BC				
	LSD (0.05)			NS ^c	62.63	718	62.63

Appendix Table 10.	Two-year conventiona	l tillage experiment treatmer	it cost listing ranked by ne	t grain sorghum return in 1999.
--------------------	----------------------	-------------------------------	------------------------------	---------------------------------

^bBC, broadcast application; BAND, banded application; NC, no cultivation; 1C, one cultivation; 2C, two cultivations; two cultivations were not required due to low weed infestations.

		Crop	o Injury	Palme	r amaranth	<u> </u>	large crab	grass		
Treatment ^a	Rate	Timing ^b 3	3 WAP 8	S WAP	3 WAP 8	WAP	14 WAP	3 WAP	8 WAP	14 WAP
	kg ai/ha	%					— % Co	ntrol ——		
1. metolachlor fb	1.68	PRE BC NC	0	1	100	99	100	100	100	100
2, 4-D	0.56	POST BC								
2. metolachlor	1.68	PRE BC NC	3	0	100	74	83	100	100	100
3. metolachlor +	1.68	PRE BAND 2C	1	0	75	80	68	100	96	100
atrazine	1.12									
4. metolachlor fb	1.68	PRE BC 1C	3	1	100	100	100	100	100	100
2,4-D	0.56	POST BC								
5. metolachlor fb	1.68	PRE BC NC	0	0	99	99	98	100	100	100
atrazine + COC	1.12	POST BC								
6. metolachlor +	1.68	PRE BC NC	3	0	100	100	100	100	100	100
atrazine	1.12									
7. atrazine + COC	1.12	POST BC 1C	ND ^c	0	ND	64	88	ND	25	43
8. metolachlor +	1.68	PRE BAND 2C	0	0	100	53	65	100	95	100
prosulfuron	0.071									
9. metolachlor	1.68	PRE BAND 2C	3	0	93	20	33	100	75	75
10. metolachlor +	1.68	PRE BC 1C	0	0	100	99	100	100	100	100
atrazine	1.12									
11. metolachlor	1.68	PRE BC 1C	0	0	100	98	95	100	100	100
12. check			0	0	0	0	0	0	0	0
13. cultivated check			0	0	0	0	0	0	0	0
14. metolachlor fb	1.68	PRE BAND 1C	1	3	98	69	75	100	88	95
atrazine + COC	1.12	POST BC								
15. metolachlor fb	1.68	PRE BC 1C	0	0	96	99	99	100	100	100
atrazine + COC	1.12	POST BC								
16. atrazine + COC	1.12	POST BC NC	ND	0	ND	43	44	ND	25	0
LSD (0.05)			NSD ^d	NSD	NSD	40	35	NSD	34	24

Appendix Table 11. Two-year conventional tillage experiment grain sorghum ratings for crop injury and weed control in 1998.

^afb, followed by; COC, crop oil concentrate applied at a rate of 2.33 L ha.

^bBC, broadcast application; BAND, banded application; NC, no cultivation; 1C, one cultivation; 2C, two cultivation's; two cultivations were not required due to low weed infestations.

°ND, no data at time of rating treatment had not been applied.
			Crop	Injury	Palmer a	maranth	Large c	rabgrass	Morning	glory spp.ª
Treatment ^b	Rate	Timing ^c	5 WAI	P 8 WAP	5 WAP	8 WAP	5 WAP	8 WAP	5 WAP	8 WAP
	kg ai/ha		%				-% Con	trol —		······································
1. metolachlor fb	1.68	PRE BC NC	4	1	100	99	100	99	93	100
atrazine + COC ^c	1.12	POST BC								
2. metolachlor fb	1.68	PRE BC NC	30	1	100	100	100	100	100	100
2,4-D	0.56	POST BC								
3. atrazine + COC	1.12	POST BC NC	3	0	69	25	87	49	96	33
4. metolachlor +	1.68	PRE BC NC	3	1	100	100	100	98	100	100
atrazine	1.12									
5. check			0	0	0	0	0	0	0	0
6. metolachlor	1.68	PRE BAND 2C	0	б	38	54	94	58	70	71
7. atrazine + COC	1. 12	POST BC 1C	5	3	88	81	90	98	95	66
8. metolachlor	1.68	PRE BC 1C	0	5	100	94	100	73	100	100
9. cultivated check			0	0	0	0	0	0	0	0
10. metolachlor fb	1.68	PRE BC 1C	6	1	100	99	100	100	88	100
atrazine + COC	1.12	POST BC								
11. metolachlor +	1.68	PRE BC 1C	0	4	100	99	100	100	96	100
atrazine	1.12									
12. metolachlor +	1.68	PRE BAND 2C	0	4	86	88	90	91	41	88
atrazine	1.12									
13. metolachlor	1.68	PRE BC NC	0	0	55	49	100	36	70	50
14. metolachlor fb	1.68	PRE BAND 1C	8	8	96	94	70	100	100	95
atrazine + COC	1.12	POST BC								
15. metolachlor +	1.68	PRE BAND 2C	1	4	83	83	93	98	50	90
prosulfuron	0.071									
16. metolachlor fb	1.68	PRE BC 1C	29	11	100	99	100	100	100	98
2,4-D	0.56	POST BC								
LSD (0.05)			NSD ^d	NSD	27	35	NSD	36	34	37

Appendix Table 12. Two-year conventional tillage experiment grain sorghum ratings for crop injury and weed control in 1999.

^aMorningglory species were ivyleaf and tall.

^bfb, followed by; COC, crop oil concentrate applied at a rate of 2.33 L ha.

^eBC, broadcast application; BAND, banded application; NC, no cultivation; 1C, one cultivation; 2C, two cultivation's; two cultivations were not required due to low weed infestations.

^dNSD, no significant difference among means at the 0.05 probability level (using the protected LSD).

			Counts		Heights
Treatment ^a	Rate	Timing ^b	4 WAP	4 WAP	9 WAP
	kg ai/ha		# 1.5m		cm
1. metolachlor fb	1.68	PRE BC NC	8	37	95
2,4- D	0.56	POST BC			
2. metolachlor	1.68	PRE BC NC	8	38	95
3. metolachlor +	1.68	PRE BAND 2C	10	39	101
atrazine	1.12				
4. metolachlor fb	1.68	PRE BC 1C	8	37	93
2,4- D	0.56	POST BC			
5. metolachlor fb	1.68	PRE BC NC	10	38	97
atrazine + COC	1.12	POST BC			
6. metolachlor +	1.68	PRE BC NC	8	38	96
atrazine	1.12				
7. atrazine + COC	1.12	POST BC 1C	7	38	102
8. metolachlor +	1.68	PRE BAND 2C	9	37	101
prosulfuron	0.071				
9. metolachlor	1.68	PRE BAND 2C	8	39	100
10. metolachlor +	1.68	PRE BC 1C	9	36	102
atrazine	1.12				
11. metolachlor	1.68	PRE BC 1C	9	40	105
12. check			9	38	88
13. cultivated check			9	41	95
14. metolachlor fb	1.68	PRE BAND 1C	8	37	104
atrazine + COC	1.12	POST BC			
15. metolachlor fb	1.68	PRE BC	11	37	104
atrazine + COC	1.12	POST BC 1C			
16. atrazine + COC	1.1 2	POST BC NC	7	37	92
LSD (0.05)			NSD ^c	NSD	8

Appendix Table 13. Two-year conventional tillage experiment grain sorghum counts and heights ranked by net return in 1998.

^bBC, broadcast application; BAND, banded application; NC, no cultivation; 1C, one cultivation; 2C, two cultivation's; two cultivations were not required due to low weed infestations.

°NSD, no significant difference among means at the 0.05 probability level (using the protected LSD).

			Counts	Heights	
Treatment ^a	Rate	Timing ^b	8 WAP	8 WAP	
	kg ai/ha		# 1.5m	cm	
1. metolachlor fb	1.68	PRE BC NC	11	90	
atrazine + COC	1.12	POST BC			
2. metolachlor fb	1.68	PRE BC NC	9	91	
2,4-D	0.56	POST BC			
3. atrazine + COC	1.12	POST BC NC	9	90	
4. metolachlor +	1.68	PRE BC NC	12	90	
atrazine	1.12	t			
5. check			11	94	
6. metolachlor fb	1.68	PRE BAND 2C	12	90	
7. atrazine + COC	1.12	POST BC 1C	11	85	
8. metolachlor	1.68	PRE BC 1C	10	87	
9. cultivated check	_		10	85	
10. metolachlor fb	1.68	PRE BC 1C	11	84	
atrazine + COC	1.12	POST BC			
11. metolachlor +	1.68	PRE BC 1C	11	88	
atrazine	1.12				
12. metolachlor +	1.68	PRE BAND 2C	11	81	
atrazine	1.12				
13. metolachlor	1.68	PRE BC NC	10	89	
14. metolachlor fb	1.68	PRE BAND	9	80	
atrazine + COC	1.12	POST BC 1C			
15. metolachlor +	1.68	PRE BAND 2C	13	87	
prosulfuron	0.071				
16. metolachlor fb	1.68	PRE BC 1C	15	92	
2,4-D	0.56	POST BC			
LSD (0.05)			2	8	

Appendix Table 14. Two-year conventional tillage experiment grain sorghum counts and heights ranked by net return in 19	99
---	----

^bBC, broadcast application; BAND, banded application; NC, no cultivation; 1C, one cultivation; 2C, two cultivation's; two cultivations were not required due to low weed infestations.

				Variable	Total		Net
Treat	tment ^a	Rate	Timing	cost	return	Yield	return
		kg ai/ha		\$/ha	\$/ha	kg/ha	\$/ha
1.	check			0.00	29.36	346	29.36
2.	atrazine +	2.98	PRE	47.23	75.29	887	28.06
	metolachlor						
3.	metolachlor fb	1.68	PRE	52.24	78.16	921	25.92
	2,4-D	0.56	POST				
4.	metolachlor +	1.68	PRE	75.61	101.16	1191	25.55
	propazine	1.12					
5.	quinclorac +	0.14	POST	43.45	65.43	771	21.98
	atrazine + COC	1.12					
6.	metolachlor	1.68	PRE	40.09	61.62	726	21.53
7.	metolachlor fb	1.68	PRE	56.79	71.25	839	14.46
	atrazine + COC	1.12	POST				
8.	metolachlor +	1.68	PRE	90.16	85.34	1005	-4.82
	prosulfuron	0.071					
9.	halosulfuron + COC	0.047	POST	50.51	40.65	479	-9.86
10.	atrazine +	2.98	PRE	97.29	69.75	822	-27.54
	metolachlor +						
	prosulfuron	0.071					
11.	prosulfuron + COC	0.071	POST	58.66	25.60	302	-33.06
	LSD (0.05)			NS ^b	30.41	365	30.41

Table 15. Two-year drilled no-tillage experiment treatment cost listing ranked by net grain sorghum return in 1998.

^aTreatments are listed in descending net return; fb, followed by; COC, crop oil concentrate applied at a rate of 2.33 L ha.

^bNS, not statistically estimateable.

		Variable Total			Net		
Treatment ^a		Rate	Timing	cost	return	Yield	return
		kg ai/ha		\$/ha	\$/ha	kg/ha	\$/ha
1.	metolachlor fb	1.68	PRE	52.24	171.29	2018	119.05
	2,4-D	0.56	POST				
2.	metolachlor fb	1.68	PRE	56.79	154.67	1822	97.88
	atrazine + COC	1.12	POST				
3.	metolachlor	1.68	PRE	40.09	120.26	1416	80.17
4.	atrazine +	2.98	PRE	47.23	121.74	1434	74.51
	metolachlor						
5.	check			0.00	68.60	808	68.60
6.	atrazine +	2.98	PRE	97.29	158.50	1867	61.21
	metolachlor +						
	prosulfuron	0.071					
7.	halosulfuron + COC	0.047	POST	50.51	101.98	1201	51.47
8.	quinclorac +	0.14	POST	43.45	89.44	1054	45.99
	atrazine + COC	1.12					
9.	metolachlor +	1.68	PRE	75.61	106.95	1260	31.34
	propazine	1.12					
10.	prosulfuron + COC	0.071	POST	58.66	84.38	993	25.72
11.	metolachlor +	1.68	PRE	90.16	111.17	1309	21.01
	prosulfuron	0.071					
	LSD (0.05)			NS ^b	29.88	352	29.88

Table 16. Two-year drilled no-tillage experiment treatment cost listing ranked by net grain sorghum return in 1999.

^aTreatments are listed in descending net return; fb, followed by; COC, crop oil concentrate applied at a rate of 2.33 L ha.

^bNS, not statistically estimateable.

Appendix Table 17. Two-year drilled no-tillage experiment grain sorghum ratings for crop injury and weed control ranked by net return in 1998.

			Crop I	njury	Palm	er amar	anth	Larg	e crabgr	ass
Treatment ^a	Rate	Timing ^b	3 WAP	8 WAP	3 WAP	8 WAP 1	14 WAP	3 WAP	8 WAP	14 WAP
	kg ai/ha			%			- % Con	trol ——		
1. check			0	0	0	0	0	0	0	0
2. atrazine +	2.98	PRE	0	1	100	100	100	100	100	100
metolachlor										
3. metolachlor fb	1.68	PRE	3	10	100	100	78	100	99	100
2,4-D	0.56	POST								
4. metolachlor +	1.68	PRE	0	0	100	100	100	100	100	100
propazine	1.12									
5. quinclorac +	0.14	POST	ND^{c}	0	ND	66	90	ND	43	50
atrazine + COC	1.12									
6. metolachlor	1.68	PRE	. 0	0	100	98	98	100	100	100
7. metolachlor fb	1.68	PRE	0	5	100	100	100	100	100	100
atrazine + COC	1.12	POST								
8. metolachlor +	1.68	PRE	0	3	100	100	100	100	100	100
prosulfuron	0.071									
9. halosulfuron + COC	0.047	POST	ND	8	ND	46	35	ND	50	50
10. atrazine +	2.98	PRE	0	0	100	100	100	100	100	100
metolachlor +										
prosulfuron	0.071									
11. prosulfuron + COC	0.071	POST	ND	0	ND	10	44	ND	10	50
LSD (0.05)			NSD^d	NSD	NSD	31	30	NSD	33	44

^afb, followed by; COC, crop oil concentrate applied at a rate of 2.33 L ha.

^bBC, broadcast application; BAND, banded application; NC, no cultivation; 1C, one cultivation; 2C, two cultivation's; two cultivations were not required due to low weed infestations.

°ND, no data at time of rating treatment had not been applied.

^dNSD, no significant difference among means at the 0.05 probability level (using the protected LSD).

		···· .	Crop Injury	Palmer amaranth	Morningglory spp.ª	
Treatment ^b	Rate	Timing ^c	7 WAP	7 WAP	7 WAP	
	kg ai/ha		%	% Con	trol ——	
1. metolachlor fb	1.68	PRE	0	100	95	
2,4-D	0.56	POST				
2. metolachlor fb	1.68	PRE	0	100	94	
atrazine + COC	1.12	POST				
3. metolachlor	1.68	PRE	3	95	0	
4. atrazine +	2.98	PRE	0	100	85	
metolachlor						
5. check			0	0	0	
6. atrazine +	2.98	PRE	0	100	96	
metolachlor +						
prosulfuron	0.071					
7. halosulfuron + COC	0.047	POST	4	100	58	
8. quinclorac +	0.14	POST	1	73	93	
atrazine + COC	1.12					
9. metolachlor +	1.68	PRE	0	100	98	
propazine	1.12					
10. prosulfuron + COC	0.071	POST	6	93	60	
11. metolachlor +	1.68	PRE	0	100	61	
prosulfuron	0.071					
LSD (0.05)			NSD ^d	NSD	35	

Appendix Table 18. Two-year drilled no-tillage experiment grain sorghum ratings for crop injury and weed control ranked by net return in 1999.

^aMorningglory species were ivyleaf and tall.

^bfb, followed by; COC, crop oil concentrate applied at a rate of 2.33 L ha.

^cBC, broadcast application; BAND, banded application; NC, no cultivation; 1C, one cultivation; 2C, two cultivation's; two cultivations were not required due to low weed infestations.

^dNSD, no significant difference among means at the 0.05 probability level (using the protected LSD).

· ·			Counts		Heights
Treatment ^a	Rate	Timing ^b	4 WAP	4 WAP	9 WAP
	kg ai/ha		# 1.5m		cm
1. check			9	38	83
2. atrazine +	2.98	PRE	10	36	87
metolachlor					
3. metolachlor fb	1.68	PRE	9	41	96
2,4-D	0.56	POST			
4. metolachlor +	1.68	PRE	9	36	90
propazine	1.12				
5. quinclorac +	0.14	POST	11	42	99
atrazine + COC	1.12				
6. metolachlor	1.68	PRE	12	35	89
7. metolachlor fb	1.68	PRE	11	39	93
atrazine + COC	1.12	POST			
8. metolachlor +	1.68	PRE	10	39	90
prosulfuron	0.071				
9. halosulfuron + COC	0.047	POST	11	38	88
10. atrazine +	2.98	PRE	9	35	90
metolachlor +					
prosulfuron	0.071				
11. prosulfuron + COC	0.071	POST	9	36	87
LSD (0.05)			NSD ^c	NSD	8

Appendix Table 19. T	Two-year drilled no-tillage experime	ent counts and heights ranked by ne	et grain sorghum return in 1998.
----------------------	--------------------------------------	-------------------------------------	----------------------------------

^bBC, broadcast application; BAND, banded application; NC, no cultivation; 1C, one cultivation; 2C, two cultivation's; two cultivations

were not required due to low weed infestations.

°NSD, no significant difference among means at the 0.05 probability level (using the protected LSD).

			Counts	Heights	
Treatment ^a	Rate	Timing ^b	7 WAP	7 WAP	
	ai ha		# 1.5m	cm	
1. metolachlor fb	1.68	PRE	10	82	
2,4-D	0.56	POST			
2. metolachlor fb	1.68	PRE	11	81	
atrazine + COC	1.12	POST			
3. metolachlor	1.68	PRE	9	80	
4. atrazine +	2.98	PRE	11	81	
metolachlor					
5. check	—		10	81	
6. atrazine +	2.98	PRE	9	80	
metolachlor +					
prosulfuron	0.071				
7. halosulfuron + COC	0.047	POST	. 11	62	
8. quinclorac +	0.14	POST	9	84	
atrazine + COC	1.12				
9. metolachlor +	1.68	PRE	9	81	
propazine	1.12				
10. prosulfuron + COC	0.071	POST	11	69	
11. metolachlor +	1.68	PRE	11	82	
prosulfuron	0.071				
LSD (0.05)			NSD ^c	9	

Appendix Table 20. Two-year drilled no-tillage experiment counts and heights ranked by net grain sorghum return in 1999.

^bBC, broadcast application; BAND, banded application; NC, no cultivation; 1C, one cultivation; 2C, two cultivation's; two cultivations

were not required due to low weed infestations.

°NSD, no significant difference among means at the 0.05 probability level (using the protected LSD).

VITA

Mark Louis Wood

Candidate for the Degree of

Doctor of Philosophy

Thesis: HARVEST METHODS IN Sorghum halepense INFESTED Gossypium hirsutum AND PROFITABLE WEED-CONTROL SYSTEMS IN Sorghum bicolor

Major Field: Crop Science

Biographical:

- Personal Data: Born in Elk City, Oklahoma, on September 19, 1971, the son of Dr. Robert L. and Cindy J. Wood. Married Beth B. Wood on June 13, 1992, a son Dalton L. Wood was born August 1, 1996.
- Education: Graduated from Elk City High School, Elk City, Oklahoma, in May, 1989; received the Bachelor of Science degree in Agriculture from Cameron University, Lawton, Oklahoma, in May, 1994; received the Master of Science degree in Agronomy from Oklahoma State University, Stillwater, Oklahoma, in May, 1997; and completed the requirements for the Doctor of Philosophy degree in Crop Science from Oklahoma State University, Stillwater, Oklahoma, in May, 2000.
- Experience: Worked for several farmers and ranchers in Southwest Oklahoma during high school and throughout the pursuit of the Bachelor of Science degree. Worked as a Graduate Research Assistant and Graduate Research Associate in the Plant and Soil Sciences Department, Oklahoma State University, Stillwater, Oklahoma, May, 1994 to the present.

Professional Memberships: Southern Weed Science Society.