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PREFACE 

Application of uncertainty and reliability analysis is an essential part of many 

problems related to modeling and decision making in the area of environmental 

engineering and water resources. Computation efficiency, understandability, and easier 

application have made the first order approximation (FOA) method a favored tool for 

uncertainty analysis. In many instances doubtful situations may arise where the accuracy 

of FOA estimates becomes questionable. Presently, no clear-cut guidelines specifying 

where FOA should be used are available. 

The objective of this dissertation was to investigate the important factors affecting 

the exactness of FOA estimates and develop a simple correction procedure useful for 

practicing engineers to correct the FOA estimates for the mean and the variance of a 

model output. To carryout reliability and risk analysis, knowledge of distribution for a 

model output is very important. Therefore the other objective of this thesis was to 

develop a simple approach for calculating the higher-order moments of a model output 

from which an appropriate distribution can be chosen. 

Methods to correct FOA estimates for the mean and variance of a model output 

were developed. Further, a genedc expectation function approach was developed to 

determine higher-order moments of a model output correctly. 

I sincerely thank my doctoral advisory committee - Drs. Charles T. Haan (Chair), 

Billy J. Barfield, Glenn 0. Brown, and John N. Veenstra - for their excellent guidance 

and support in the completion of this research. 
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CHAPTER I 

BACKGROUND, LITERATURE REVIEW, AND OBJECTIVES 

Background 

The design and analysis of hydrologic, hydraulic, and environmental projects are 

subject to uncertainty because of the inherent uncertainty in natural systems, a lack of 

understanding of the causes and effects in various physical, chemical, and biological 

processes occurring in natural systems, and insufficient data. As a result of these 

uncertainties, the performance reliability of a project is uncertain. A reliable assessment 

of the performance of any water resources project requires an assessment of the validity 

of predicted loads (such as discharges and pollutant loads) and capacities (ability to 

perform under a given load without any harm). Typically the loads are assessed using 

models having a number of parameters which can be determined with varying degrees of 

certainty. These parameters are best represented as random variables. Consequently, the 

model response, being a function of random variables, is best represented as a random 

variable. For reliable design and analysis of a project, it becomes necessary to address the 

uncertain nature of model outputs. Reliability, risk, and uncertainty analysis are therefore 

becoming increasingly important in modeling and designing water resources 

infrastructure and decision support systems. In some cases, uncertainty analysis 1s 

mandatory, particularly when critical decisions involve potentially high levels of risk. 
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Many problems are best approached using probabilistic and reliability methods. 

Examples include determining the probability of a structural failure or the life expectancy 

of a hydraulic structure under uncertainty. The prediction and evaluation of pollution of 

surface and/or subsurface environments and decisions regarding remedial actions often 

rely on probabilistic approaches. Quantification of the underlying uncertainty is central to 

each of these problems. 

Probabilistic and reliability analyses are based on knowledge of the underlying 

parameter uncertainties. Two methods, Monte Carlo Simulation (MCS) and First-Order 

Approximation (FOA) are generally used to assess the uncertainty associated with model 

outputs. A MCS requires several thousand repetitive runs of a model and is therefore 

computationally demanding. With the advent of high-speed computers, the computational 

challenges to probabilistic analysis have been largely removed but philosophical and 

conceptual aspects remain. MCS has other limitations. Rules for determining the number 

of simulations required for convergence are not available (Melching, 1995). Often, the 

information about distribution function(s) of input variable(s) required to conduct·a MCS 

is not available and can not be obtained. Therefore, it requires judgement on the part of 

the modeler to create theoretical input sample distributions that are representative of the 

parameter populations. 

FOA is an approximate method that gives estimates of means and variances only. 

It has several advantages over MCS. FOA is more computationally efficient and provides 

a measure of a model's sensitivity to each input random variable, thus providing a better 

understanding of the processes being modeled. The assumptions typically cited for FOA 

to yield good results (Melching, 1995) are: (1) linearity in functional relationships, (2) 
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small coefficients of variation of the most sensitive uncertain variables, and (3) normal 

distributions for the uncertain variables. Moore and Clarke (1981) expressed that FOA 

assumptions are "rarely likely to be justifiable with models containing nine or twelve 

parameters." Despite its several conceptual shortcomings, FOA has been used quite 

successfully in a wide variety of fields. The exactness of the estimates is influenced in 

part by the degree of nonlinearity in the functional relationship and parameter 

uncertainty. Due to unavailability of clear-cut guidelines as to when FOA should be 

applied, FOA has been misused in many instances. Conclusions based on such 

applications may be highly misleading, and in any design and/or decision-making process 

may have serious consequences. 

Various researchers have suggested a number of criteria for FOA. Garen and 

Burges (1981) found satisfactory results with FOA when the CV of the input parameters 

was less than or equal to 0.25. Cornell (1972) and Burges (1979) suggested that FOA is 

applicable to moderately nonlinear systems when the CV is less than or equal to 0.2. 

Gardner et al. (1981) found that the validity of the linear approximation deteriorates 

rapidly when the CV was more than 0.3. The best agreement between MCS and FOA 

estimates occurs when MCS output distributions are symmetric (Scavia et al., 1981a). 

Several researchers detected significant nonlinearity effects while comparing 

variance estimates from FOA and MCS. To overcome the problem of nonlinearity, 

several predictors were proposed (Beale, 1960; Bates and Watts, 1980; Bates, 1988; 

Stevens, 1993). Bates (1988) and Stevens (1993) indicated that the predictors for 

nonlinearity developed so far work well only in specific applications and that no well­

accepted, generalized nonlinearity measure is available. 
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To date, the only widely used criterion for the validity of FOA variance is to 

restrict the parameter CV to less than 0.2. This is a very restrictive assumption in water 

resource systems modeling, where there is often a great uncertainty in the parameters 

(Johnson, 1996). It can be shown that FOA has performed well in some situations when 

the parameter uncertainty is higher than 0.2. Smith and Charbeneau (1990) suggested 

that FOA can be used if the difference between function gradients at the mean and one 

standard deviation away from the mean are less than some acceptable range (5-10%), 

however, this method also has limitations 

Literature Review 

Water resources and environmental engineering systems deal with the extremely 

complex nature of the physical, chemical, biological, and socio-economical processes. 

While designing and/or analyzing a given system, most often a mathematical model 

describing the interrelationships and interactions among its component processes is used. 

Despite a tremendous research effort to evolve a better understanding of various 

processes, a number of uncertainties still exist due to lack of perfect knowledge 

concerning the phenomena and processes involved. Therefore, most models used in 

designing and analyzing engineering systems involve a number of uncertainties. 

In water resources and environmental engineering, the decisions on the layout, 

capacity, and operation of a system largely depend on the system response under some 

anticipated design conditions. If the response of any of the components in a system is 

considered uncertain, the response of the system under the design conditions must also be 

considered uncertain. The presence of uncertainties makes the conventional deterministic 

design practice inappropriate due to its inability to account for possible variations of 
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system responses. The issues involved in the design and analysis of water resources and 

environmental engineering systems under uncertainty are multi-dimensional. Therefore, 

quantification of system uncertainties is imperative in order to design and/or operate a 

project successfully. A systematic quantitative uncertainty analysis provides insight into 

the level of confidence warranted in model estimates and in understanding judgements 

associated with the modeling process. It may also play.an illuminating role in identifying 

how robust the conclusions about model results are and help target data gathering efforts. 

Uncertainty refers to lack of knowledge about specific factors, parameters, or 

models. There are a number of distinct sources of uncertainty iri the analysis and design 

of engineering systems. In general, in the field· of water resources and environmental 

engineering, uncertainties can be classified under the general headings (Yen et al., 1986; 

Beck, 1987; Melching and Anmangandla, 1992; Melching, 1995) of natural uncertainties, 

model uncertainties, parameter uncertainties, and data uncertainties. 

Natural uncertainty is associated with the inherent randomness of natural 

processes such as the occurrence of precipitation, flood events, and change in 

climatological conditions. According to Beck (1987) uncertainty resulting from natural 

variability includes environmental variability due to system disturbances, aggregation 

uncertainty due to spatial heterogeneity, and genetic variability which could be 

indistinguishable from the errors of parameter estimation. 

The structure of mathematical models employed to represent a phenomenon of 

interest is often a key source of uncertainty. Models are only an abstraction of a real­

world system. The problem boundary encompassed by a model may be incorrect or 

incomplete. Significant approximations and idealizations are often an inherent part of the 
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assumptions upon which a model is built. Competing models may be available based on 

different scientific or technical assumptions. Model uncertainty reflects the inability of 

the model to precisely represent the true physical behavior of a system. Model 

uncertainty includes uncertainty due to necessary simplification of real-world processes, 

misspecification of the model structure, model misuse, or use of inappropriate surrogate 

variables. 

Parameter uncertainty is a result of the inability to quantify the input parameters 

of a model accurately due to measurement errors, sampling errors, systematic errors, etc. 

Most of the models used in hydro logic, hydraulic, and environmental engineering involve 

several physical or empirical parameters that cannot be quantified accurately. Parameter 

uncertainty could also be caused by changes in the operational conditions of a system, 

inherent variability of inputs and parameters in time and in space, and insufficiency in the 

quantity or quality of data. 

Data uncertainties include measurement errors, measurement limitations, 

inconsistency and non-homogeneity of data, and lack of data due to time and money 

constraints 

In this thesis, the impact of input parameter uncertainties on the probabilistic and 

reliability analyses of hydrologic, hydraulic, and environmental engineering systems is 

studied. Parameter uncertainties are the variation in a parameter due to an inability to 

precisely quantify that parameter. Parameter uncertainty may be partially quantified by 

the coefficient of variation (CV). The CV of a parameter is the ratio of the standard 

deviation to the mean and offers a normalized measure useful and convenient for 

comparison. 
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Uncertainty Analysis 

The main objective of uncertainty analysis is to assess the statistical properties of 

model outputs as a function of stochastic input parameters. In water resources 

engineering projects, design quantity and model outputs are functions of several 

parameters, not all of which can be quantified with absolute accuracy. The task of 

uncertainty analysis is to determine the uncertainty features of the model outputs as a 

function of uncertainties in the model itself and in the stochastic parameters involved. It 

provides a formal and systematic framework to quantify the uncertainty associated with 

the model outputs. Furthermore, it offets the designer useful insights regarding the 

contribution of each stochastic parameter to the overall uncertainty of the model outputs. 

Such knowledge is essential to identify the important parameters to which more attention 

should be given to have a better assessment of their values and, accordingly, to reduce the 

overall uncertainty in model output. Quantitative characterization of uncertainty provides 

an estimate of the degree of confidence that can be placed on the analysis and findings. 

As an example, water quality models are formulated to describe both observed 

· conditions and predict planning scenarios that may be substantially different from 

observed conditions. Planning and management activities such as checking basin wide 

water quality for regulatory compliance, waste load allocation, etc., require the 

assessment of hydrologic, hydraulic, and water quality conditions beyond the range of 

observed data. These inadequacies regarding model parameters or inputs force water 

quality modelers to characterize the impacts of parameter uncertainties quantitatively so 

that appropriate decisions regarding water pollution abatement programs can be made. 

The most complete and ideal description of uncertainty is the probability density function 
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(PDF) of the quantity subject to uncertainty. However, in most practical problems a 

probability function is very difficult, if not impossible, to derive precisely. In most 

situations, the main objective of uncertainty analysis is to evaluate the first and second 

moments of a model output in terms of input random variables. 

Reliability and Risk Analysis 

Reliability and risk analysis is a technique for identifying, characterizing, 

quantifying, and evaluating the probability of a pre-identified hazard. It is widely used by 

private and government agencies to support regulatory and resource allocation decisions. 

In most hydrologic, hydraulic, and environmental engineering problems, empirically 

developed or theoretically derived mathematical models are used to evaluate a system's 

performance. These models involve several uncertain parameters that are difficult to 

accurately quantify. An accurate reliability assessment of such models would help the 

designer build more reliable systems and aid the operator in making better maintenance 

and scheduling decisions. 

The reliability of a system can be most realistically measured in terms of 

probability. The failure of a system can be considered as an event in which the demand or 

loading, L, on the system exceeds the capacity or resistance, R, of the system so that the 

system fails to perform satisfactorily for its intended use. The objective of reliability 

analysis is to ensure that the probability of the event (R < L) throughout the specified 

useful life is acceptably small. The risk, P1, defined as the probability of failure, can be 

expressed as (Ang and Tang, 1984; Yen et al., 1986) 

(1-1) 
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where P denotes the probability function. Equation (1-1) can be rewritten in terms of the 

performance function Z as 

where Z is defined alternatively as 

Z=R-L 

R 
Z=--1 

L 

z = 1n(~) 
The reliability, fJl, of the system can be written as 

91 = P(Z > 0) = 1-Pf 

In general, from (1-1), the risk can be expressed as 

b I 

pf = ff PR,L (r,l}lrdl 
Q C 

(1-2) 

(1-3) 

(1-4) 

(1-5) 

(1-6) 

(1-7) 

where PR,L (r,l) is the joint probability density function of Rand L; c is the lower bound 

of R; and a and b are the lower and upper bounds of L respectively. The resistance, R, 

and load, L, are random variables given as 

R = gJQ_) 

L = g 2 ([_) 

(1-8) 

(1-9) 

where, U is the vector representing input parameters of the model representing R; and V 

is the vector representing input parameters of the model representing L. In some problems 

L may be a deterministic quantity representing a hydrologic/hydraulic/environmental 

target level such as peak discharge, volume, contaminant concentration in soil, water, and 
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air, minimum dissolved oxygen in a stream, critical cancer risk, etc. Alternatively, by 

using the performance variable Z defined in (1-3), (1-4), and (1-5), the risk can be written 

as 

0 

P1 =P(Z <0)= fp 2 (z)dZ (1-10) 
_.,, 

where pz(z) is the probability density function of Z. The probability distribution of Z is 

unknown, or difficult to obtain. In most cases the exact distribution of Z may not be 

required as any of several distributions can be used to make a decision if correct 

information about the moments of Pz (z) is available. 

Uncertainty, Risk, and Reliability Analysis Methods 

Ideally, a probability distribution function should be obtained to do a complete 

assessment of the uncertainty, risk, and reliability analysis of a given system. This 

requires determination of the joint probability distribution function for all the significant 

sources of uncertainty affecting the output of the system. However, the determination of 

probability distributions for the basic variables is quite difficult and involves several 

assumptions. Further, the multivariate combination and integration of the input variable 

distributions is a daunting task. In real life problems, the aggregation of uncertainties in 

the basic variables of a model into measures of overall model-output 

uncertainty/reliability are done in an approximate manner. Several methods that have 

been used in water resources and environmental engineering have been discussed. 

First Order Approximation Method 

The first order approximation (FOA) method can be used to estimate the amount 

of uncertainty, or scatter, of a dependent variable due to uncertainty about the 
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independent variables included in a functional relationship. Benjamin and Cornell (1970) 

have described first order approximation (FOA) technique in detail. 

To present the general methodology of first order approximation, consider a 

output random variable, Y, which is a function of n random variables. Mathematically, Y 

can be expressed as 

Y=g(X) (1-11) 

where X = (Xi, X 2, .......... , Xn), a vector containing n random variables. In FOA, a Taylor 

series expansion of the model output is truncated after the first-order term 

y = g(X J+ t (Xi - Xie { ag J 
,=, \ axi x 

e 

(1-12) 

where Xe= (Xie, X2e, ........ , Xne), a vector representing the expansion points. In FOA 

applications to water resources and environmental engineering, the expansion point is 

commonly the mean value of the basic variables. Thus, the expected value and variance 

of Yare 

E[Y]~ g(X) (1-13) 

Var(Y) = O': ~ t t (~J (~J E[(xi - Xi Xxi - X j )] ,=, ,=, ax. - ax. _ 
1 X1 J Xj 

(1-14) 

where O'yis the standard deviation of Y; X = (:X,,X2, ....... Xn), a vector of mean values of 

the input basic variables. If the basic variables are statistically independent, the 

expression for Var(Y) becomes 

(1-15) 
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To estimate the reliability of the system, fJl, it is typically assumed that Z is normally 

distributed. Using pz(z) to be a normal distribution with its parameters E[Z] and crz 

determined by FOA, (1-2) and (1-6) are used to determine the risk and reliability of a 

given system. 

An alternative method to define a system reliability is the reliability index, p, 

which is defined as the reciprocal of the coefficient of variation of Z, given as 

P=E[Z] (1-16) 
CTz 

The great advantage of FOA is its simplicity, requiring knowledge of only the 

first two statistical moments of the basic variables and simple sensitivity calculations 

about selected central values. FOA is an approximate method that may suffice for many 

applications (Ku, 1966), but the method does have several theoretical and/or conceptual 

shortcomings (Melching, 1992a; Cheng, 1982). The main weakness of the FOA method 

is that it is assumed that a single linearization of the system performance function at the 

central values of the basic variables is representative of the statistical properties of system 

performance over the complete range of basic input variables. The accuracy of the 

estimates is influenced in part by the degree of nonlinearity in the functional relationship, 

and the importance of higher-order terms which are truncated in the Taylor series 

expansion (Bum and McBean, 1985). In applying FOA in risk and reliability analyses, it 

is generally assumed that the performance function is normally distributed, which is 

seldom true. Any attempt to characterize the tails of the actual distribution based on an 

assumption of normality is likely to result in an inexact answer (Bum and McBean, 

1985). 
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Despite its shortcomings FOA has been used very widely in hydrologic, 

hydraulic, and environmental engineering. Examples of FOA application in hydrologic 

and hydraulic engineering design include Tang and Yen (1972), Yen and Tang (1976), 

Burges (1979), Yen et al. (1980), Tung and Mays (1980, 1981), Lee and Mays (1986), 

and Cesare (1991). Application examples related to hydrologic modeling include Garen 

and Burges (1981), Townley (1984), Townley and Wilson (1985), Melching (1992a, 

1992b), Kuczera (1988), Bates and Townely (1988), Jones (1989), Lei and Schilling 

(1993). Examples in groundwater contamination modeling include Loague and Green 

(1988), Loague et al. (1989,1990), Smith and Charbeneau (1990), and Loague (1991). 

Examples of applying FOA in water quality and ecological modeling include Burges and 

Lettenmaier (1975), Argentesi and Olivi (1976), Lettennmaier and Richey (1979), 

Reckhow (1979a, 1979b), Scavia (1980), Dettinger and Wilson (1981), Beck (1981a, 

1981b), Scavia et al. (1981a, 1981b), Devary and Doctor (1982), Chadderton et al. 

(1982), Walker (1982), Van Straten (1983), Bum and McBean (1985), Tung and 

Hathhom (1989), Melching and Anmangandla (1992), Melching and Yoon (1996), and 

Zhang and Haan (1996). 

Response Surface Methods 

The response surface (SR) method is very similar to the FOA method. While the 

FOA method deals directly with the performance function, the RS approach involves 

approximating the original, complicated system performance function with a simpler, 

more computationally tractable system model. This approximation typically takes the 

form of a first or second order polynomial 
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Y = g(X)~ G(x)~ a0 +a1X 1 + ....... +anXn +an+iX1
2 + ........ ++a2nX; ++a2n+1X 1X 2 + .. . 

(1-17) 

where G(X) is the approximate function representing the original function g(K). 

Determination of the constants is accomplished through a linear regression about some 

nominal value, typically the mean. Given the new performance function, the analysis 

proceeds in exactly the same manner as the FOA method. This method has not been used 

much in the area of water resources and environmental engineering. 

Monte Carlo Simulation 

In Monte Carlo Simulation (MCS), probability distributions are assumed for the 

uncertain input variables for the system' being studied. Random values of each of the 

uncertain variables are generated according to their respective probability distributions 

and the model describing the system is executed. By repeating the random generation of 

variable values and model execution steps many times, the statistics and an empirical 

probability distribution of the model output can be determined. The accuracy of the 

statistics and probability distribution obtained from MCS is a function of the number of 

simulations performed and the adequacy of the assumed parameter distributions. 

MCS is an art (Burges and Lettenmair, 1975). It requires judgement on the part of 

the modeler to create theoretical input sample distributions that are representative of the 

populations and to estimate the number of trials needed to generate the input and output 

density functions. There is no strictly defined answer to either of these questions. 

A key problem in applying the MCS method is estimating the necessary sample 

size. One empirical test to determine the adequacy of the sample size consists of iterating 

the sample program with increasingly greater sample sizes and estimating the 
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convergence rate of the sample mean value towards the population mean (Burges and 

Lettenmair, 1975). The error in the estimation of the population mean is inversely 

proportional to the square root of the number of trials. To improve the estimate by a 

factor of two, the sample size must increase by a factor of four. If the sample size is n, the 

standard deviation of the mean is 1/ .[;; times the standard deviation of the population. 

This indicates that the sample size must be large (Siddall, 1983). As the sample size 

increases, the precision of the empirical percentile estimates of a model output improves 

(Modarres, 1993). However, Martz (1983) noted that the rate of convergence to the true 

distribution decreases as the size of sample increases. 

The requirement of generating very large samples is a serious problem with MCS 

(Siddall, 1983). The method often entails sample sizes that are in the range of 5,000 to 

20,000 members. Generally, the number of required samples increases with the variances 

and the coefficient of skewness of the input distributions (Burges and Lettenmair, 1975). 

MCS has been used to analyze uncertainty, risk, and reliability of many water 

resources and environmental engineering systems. Many of these applications of MCS 

were to provide a check of less computationally intensive methods. Examples in 

hydrology includes Freeze (1975), Smith and Freeze (1979), Smith and Hebbert (1979), 

Gardner et al (1980), Smith and Schwartz (1980), Clifton and Neuman (1982), Takasao 

-and Takara (1989), Warwick and Wilson (1990), Goldman et al (1990), Binley et al 

(1991), Krajewski et al. (1991), Beven and Bin1ey (1992), Harlin and Kung (1992), etc. 

In the area of environmental engineering MCS has been used very extensively in water 

quality modeling studies. Some examples are O'Neill (1971), Burges and Lettenmaier 

(1975), Tiwari and Hobbie (1976), Gardner et al. (1980, 1981) O'Neill et al. (1980), 
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Hornberger (1980), Montgomery et al. (1980), Smith and Schwartz (1981), Fedra et al. 

(1981), Scavia et al. (1981b), Walker (1982), Gardner and O'Neill (1983), Malone et al. 

(1984), Van De Kramer (1983), Black and Freyburg (1987), and Batchelor et al.(1998). 

Another simulation technique similar to MCS is the Latin hypercube sampling 

(LHS) in which stratified sampling approach is used. In LHS the probability distribution 

of each basic variable are subdivided into non-overlapping intervals (say m) each with 

equal probability (1/m). Random values of the basic variables are simulated such that 

each range is sampled only once. The order of the selection of the ranges is randomized 

and the model is executed m times with the random combination of basic variables from 

each range for each basic variable. The output statistics and distributions may then be 

approximated from the sample of m output values. McKay et al. (1979) has shown that 

the stratified sampling procedure of LHS converges more quickly than an 

equidistribution sampling employed in MCS. Examples of LHS application in water 

resources engineering are Yeh and Tang (1993) and Chang et al. (1992). The main 

shortcoming with this stratification scheme is that it is one-dimensional and does not 

provide good uniformity properties on a k-dimensional unit hypercube (Diwekar and 

Kalagnanam, 1997). Except reducing computation effort to some extent, LHS has the 

same problems that are associated with MCS. 

Second Order Approximation Method 

In the second order approximation (SOA) method, a Taylor series expansion of a 

model is truncated after the second-order term. Consider a model represented by (1-11), 

the second order Taylor series expansion of Y is given as 
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(1-18) 

In SOA, the expansion point is commonly the mean value of the basic variables. 

Considering that all input variables are statistically independent and taking expectation of 

(1-18), the expected value Yis given as 

E[Y]~ g(X)+-L ~ ar(X;) 1 n ( a2 
} 

2 i=I axi 
(1-19) 

The variance of Y is given as 

(1-20) 

Bates and Townley (1988) and Tung and Hathhom (1989) used SOA only for 

evaluating the mean of the model output. They preferred FOA to estimate variance of the 

model output due to involvement of complicated calculations in approximating the model 

output variance based on SOA. 

First Order Reliability Method 

The first order reliability (FORM) method is characterized by the iterative, linear 

approximation to the performance function. Fundamentally, this method can be 

considered as an extension to the FOA method and is also known as advanced first order 

approximation (AFOA) method, which was developed to address technical difficulties of 

FOA. One of the major problems with the FOA technique was the lack of invariance of 

the solution relative to the formulation of the performance function. Simple algebraic 
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changes in the problem formulation can lead to significant changes in assessing the 

propagation of uncertainty. Hasofer and Lind (1974) presented a methodology, which 

specifically addressed this issue by requiring expansion about a unique point in the 

feasible solution space. It should be mentioned that Fruedenthal (1956) also proposed a 

method suggesting similar restrictions on the expansion point. 

Hasofer and Lind (1974) proposed taking the Taylor series expansion at a likely 

point on the failure surface of the performance function. Rackwitz (1976) implemented 

the ideas of Hasofer and Lind. The failure surface is defined by the equation Z = 0. The 

perpendicular drawn on the failure surface from the origin cuts the failure surface at a 

point called the failure point. The distance of the failure point from the origin is a 

measure of reliability. The expected value and variance of Z can be obtained by first 

solving Z = 0 to find the failure point x· and then expanding Z about x· using a Taylor 

series expansion as 

(1-21) 

(1-22) 

where az is the standard deviation of Z. For the case of statistically independent basic 

variables Var(Z) is rewritten as 

( J
2 

n az 
Var(Z) = a; ~ ~ - a~, 

,=t 8X; x· 
I 

(1-23) 
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Now, (1-2), (1-6), and (1-16) can be used to determine P1, fll, and f3 respectively. For 

models having a linear failure surface and all the basic variables normally distributed, the 

estimates of Pi, fJl are exact. 

For most modeling problems, it is very unlikely that all basic input variables will 

be normally distributed. Rackwitz (1976) proposed a transformation technique in which 

the values of the CDF and PDF of the non-normal distributions are the same as those of 

the equivalent normal distributions at the failure point x· . Consider an input random 

variable X; for which PDF and CDF are given as Px/x;) and Px/x;) respectively. 

Equating the cumulative probabilities at the failure point 

(1-24) 

where µt and at are the mean value and standard deviation of the equivalent normal 

distribution for X;; Px (x; )is the original CDF of X;; and cf{.) is the CDF of the standard 

normal distribution. Using (1-24), the mean of the equivalent normal distribution can be 

written as 

N • N -1 [ ( • )~ µ x; = X; - ax, <I> Px; x; ~ (1-25) 

Now equating the corresponding PDF ordinates at x; 

(1-26) 

where¢(.) is the PDF of the standard normal distribution. Based on (1-26), the standard 

deviation of the equivalent normal distribution can be written as 
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(1-27) 

The key to FORM is the determination of the failure point for the Taylor series 

expansion. Shinozuka (1983) has shown that for FORM the reliability index, /J, is the 

shortest distance in the standardized space between the system mean state and the failure 

surface. Thus, if the failure point is determined correctly, it represents the most likely 

combination of input variable values which produce the critical target level. The 

determination of fJ requires application of a constrained nonlinear optimization such as 

the generalized reduced-gradient algorithm used by Cheng (1982), a Lagrange multiplier 

approach used by Shinozuka (1983), and an iterative optimization method suggested by 

Rackwitz (1976). 

FORM has been used quite successfully in a wide variety of fields for reliability 

and risk analyses. For example, Melching et al. (1990), Melching et al. (1991), Cesare 

(1991), and Melching and Anmangandla (1992) used it in hydrologic and hydraulic 

design; Sitar et al., (1987), Cawlfield and Wu, (1993), Hamed et al. (1995, 1996a, 1996b) 

applied it to ground water contamination modeling; Hamed and Bedient (1997), Hamed 

(1997, 1999), Mishra (1998) used it in probabilistic human health risk assessments. 

FORM can also be used to carry out uncertainty analysis by repeating the procedure of 

calculating the linearization point to match the pre-specified output value whose 

exceedance probability is sought. Some examples of using FORM in water quality 

uncertainty analyses are Melching and Anmangandla (1992). 

FORM is quite accurate because it is able to overcome model non-linearity 

problems, and no additional assumption about the distribution type of the performance 
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function is required. It is still an approximation method because the performance function 

is approximated by a linear function at the design point, and accuracy problems may arise 

when the performance function is strongly nonlinear (Cawlfield and Wu, 1993; Zhao and 

Ono, 1999). Another disadvantage of the FORM is that determination of the lineraziation 

point is generally not easy, depending upon the nature and complexity of the system for 

which the reliability, risk, or uncertainty analysis is being studied (Melching and 

Anmangandla 1992). Further, the magnitude of acceptable convergence may affect the 

accuracy of the reliability estimates. In some cases, the magnitude of the convergence 

error may not be reduced after a certain level. 

Second Order Reliability Methods 

The second order reliability method (SORM) has been used extensively in 

structural reliability analyses. It has been established as an attempt to improve the 

accuracy of FORM. SORM is obtained by approximating the limit state surface function 

at the design point by a second order surface, and the failure probability is given as the 

probability content outside the second order surface. There are two kinds of second order 

reliability approximations: curvature-fitting SORM (Breitung 1984; Tvedt 1983, 1988, 

1990) and point-fitting SORM (Kiureghian et al. 1987, 1991; Zhao and Ono 1999). Both 

methods involve complex numerical algorithms and extensive computational efforts. 

Hamed et al. (1995) and Hamed (1997) compared risk assessments due to 

groundwater contamination based on FORM and SORM and reported that their results 

were in good agreement when the limit-state surface at the design point in the standard 

normal space is nearly flat. On the other hand, when the limit state function contains 

highly nonlinear terms, or when the input random variables have an accentuated non-
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normal character, SORM tends to produce more accurate results than FORM. But 

computational requirements of SORM are much higher than FORM. 

Point Estimation Methods 

The point estimation (PE) method was originally proposed by Rosenblueth (1975) 

to deal with symmetric, correlated, stochastic input parameters. The method was later 

extended to the case involving asymmetric random variables (Rosenblueth, 1981). The 

idea is to approximate the given PDF of an input random variable by discrete probability 

masses concentrated at two points in such a way that its first three moments are 

preserved. 

Consider the model represented by (1-11) having n stochastic input parameters. 

Rosenblueth (1975, 1981) demonstrated. that the rth_order moment of output random 

variable Y about the origin could be approximated via a point-probability estimate of the 

first-order Taylor series expansion. This method requires 2n model evaluations to 

estimate a single statistical moment of the model output. For a large model with a large 

number of parameters, Rosenblueth's PE method is computationally impractical. Further, 

a reliability analysis requires knowledge of higher order moments in order to approximate 

the distribution of the output random variable. This makes the method even more 

computationally extensive. Thus, while Rosenblueth's method is quite efficient for 

problems with a small number of uncertain basic variables, its computational 

requirements are similar to those of MCS , for a model having a large number of 

parameters. For example, a model having between 10 and 15 parameters will require 

1024 to 32768 model evaluations (Melching, 1995). Examples of applying the 
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Rosenblueth's method to watershed hydrology include Rogers et al. (1985), Binely et al. 

(1991), and Melching (1992b). 

Harr (1989) modified the Rosenblueth's method to reduce its computational 

requirements from 2n to 2n for an n-parameter model by using the first two moments of 

the random variables. This method does not provide the flexibility to incorporate known 

higher order moments of input random variables. Chang et al. (1995) showed that the 

estimated uncertainty feature of model output could be inaccurate if the skewness of a 

random variable is not accounted for. Yeh and Tung (1993) and Chang et al. (1992) are 

some of the examples of applying Harr's method in hydraulic engineering. 

Transform Methods 

Tung (1990) used the Mellin transform to calculate the higher-order moments of a 

model output. The application of the Mellin transform is not only cumbersome, but also it 

can not be universally applied. As pointed out by Tung, the Mellin transform may not be 

analytic under certain combinations of distribution and functional forms. In particular, 

problems may arise when a functional relationship consists of input variable(s) with 

negative exponent(s). When component functions of a given model have other forms than 

power functions, it can not be applied. Further, no formulation was suggested to obtain 

the moments of a model output having non-standard normally distributed input 

variable(s). 

Review Summary 

Based on literature survey it can be said that FOA and MCS are the two most 

commonly used methods employed for uncertainty analyses of water resources and 
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environmental engineering systems. Both methods have some limitations. The MCS is 

computationally intensive with the number of simulations required for convergence not 

well defined (Melching, 1995). In most engineering problems, the true probability 

distributions of the input variables are seldom known. Theoretical distributions for the 

input variables are assumed to conduct the MCS. FOA is very computationally efficient 

but provides approximate model output estimates for the mean and variance only. The 

quality of these estimates is influenced by the coefficient of variation of input variables 

and non-linearity in the model (Burn and McBean, 1985; Tung, 1990). Many researchers 

(Burges, 1979; Dettinger and Wilson, 1981) concluded that FOA should be applied in 

cases where nonlinearity effects are not significant and uncertainties in input variables are 

not too large. 

In many studies MCS estimates have been used to check the accuracy of FOA 

estimates. However, in reality, the MCS method is also an approximate method (Bates 

and Townley, 1988), the quality of which is affected by appropriateness of the chosen 

distribution function(s) for the input variable(s) and the number of simulations employed 

in the analysis. The inference drawn from the comparative analyses of Burges (1979), 

Garen and Burges (1981), Walker (1982), and Malone et al. (1984) indicates that for all 

practical purposes both methods produced identical results. Scavia et al. (1981b), Gardner 

et al. (1981), Gardner and O'Neill (1983), Smith and Charbeneau (1990) however, 

revealed contrary results. These studies suggest both significant and subtle differences in 

variance estimates from the two approaches. Thus, it appears that despite the fact that 

FOA is one of the few relatively tractable techniques available to evaluate the effect of 

parameter uncertainty, doubts about its validity have limited its wide application. There is 
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a state of ambiguity whether FOA should be used for a given problem because no clear 

guidance about suitability ofFOA is available (Zhang and Haan, 1996). 

On the other hand, in reliability and risk analyses of water resources and 

environmental engineering system, three methods namely FOA, MCS, and FORM are 

used most frequently. Often, failures of engineering systems occur at extreme values 

rather than near the mean values of the input variables. Extremes are most likely 

associated with probability distributions having large variances and skewnesses (Yen et 

al., 1986). Since FOA uses expansion about the mean values of the input variables, 

attempts to characterize the tails of the output distribution are likely to result in inexact 

estimates (Bum and McBean, 1985). In addition to the problems due to nonlinearity in 

the functional form, FOA has some additional problems when employed for risk and/or 

reliability analysis of engineering systems. FOA does not provide the form of the 

distribution for the performance function required to carry out the risk/reliability analysis. 

A normal distribution is generally assumed when confidence limits on the output, risk, 

and reliability of the system are determined. Furthermore, using FOA, it is not possible to 

incorporate information about the forms of input variable distributions, even if they are 

known (Yen et al., 1986). 

Using FORM the flaws of FOA due to model non-linearity can be removed by 

linearizing the functional relationship at the point on the limit-state surface nearest to the 

origin, rather than at the mean point. Calculation of the linearization point requires 

determination of the nearest point on the limit-state surface. FORM is quite accurate 

when the performance function is not strongly non-linear. The disadvantage of the 

FORM method is that it is quite complicated. This is because it requires transformation of 
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non-normal distributions and determination of the failure point using a non-linear 

constrained optimization, which is generally not easy depending upon the nature and 

complexity of the system. Further, the magnitude of convergence error may affect the 

accuracy of the reliability estimates and in some case it may not be possible to reduce the 

convergence error below a certain level. 

SORM and PE methods have not been used much in the area of water resources 

and environmental engineering. Hamed et al. (1995), Hamed (1997) observed that 

reliability estimates based on FORM and SORM were in good agreement when the limit­

state surface at the design point in the standard normal space is nearly flat. In cases 

where a performance function is strongly non-linear, SORM reliability estimates are 

better than that of the FORM. But computational requirements and a complicated 

calculation process make it typically unsuitable for practicing engineers. As far as PE 

methods are concerned, both the methods give approximate statistical moments of a 

model output. While, Rosenblueth's method preserves the first three moments of the 

original PDF, Harr's method is able to preserve only the first two moments. In many 

problems where input variables do not have zero skewness and coefficient of kurtosis 

equal to 3, it is obvious that both methods will give inaccurate moments of the 

performance function and therefore inaccurate uncertainty and reliability estimates. The 

other drawback of PE methods is that they do not provide the distribution type for the 

performance function. 

Objectives 

The first objective of this thesis was to determine the impacts of model 

nonlineraity, magnitude of input parameter uncertainty, and distribution form of the input 
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parameters on the uncertainty, risk, and reliability analysis of hydrologic, hydraulic, and 

environmental engineering systems. To be useful for practicing engineers, research 

emphasis was focussed towards development of simple, accurate, and generic methods. 

Computation efficiency, understandability, and easier application have made the 

first order approximation (FOA) method a favored tool for uncertainty analysis. Due to 

several theoretical and/or conceptual drawbacks, in many instances specific situations 

may arise where the accuracy of FOA estimates becomes questionable. The second 

objective of this thesis was to develop a correction procedure to correct the FOA 

estimates for model nonlinearity, parameter uncertainty, and parameter distribution types. 

The developed method could be used to judge the suitability of FOA in ambiguous 

situations as well as to determine the exact values of mean and variance of a model 

output. 

Literature review indicates that in many cases the true form of the output 

distribution is not required. A very good estimate of system reliability can be obtained if 

higher-order moments of model output are known correctly. Therefore, the third 

objective of this work was to develop a simple and generalized technique to determine 

higher-order moments of a model output as a function of the means, the CV s, and the 

distribution types for input random variables. 
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CHAPTER II 

UNCERTAINTY ANALYSIS USING CORRECTED FIRST ORDER 

APPROXIMATION METHOD 

Abstract 

Application of uncertainty and reliability analysis is an essential part of many 

problems related to modeling and decision making in the area of environmental 

engineering and water resources. Computation efficiency, understandability, and easier 

application have made the first order approximation (FOA) method a favored tool for 

uncertainty analysis. In many instances doubtful situations may arise where the accuracy 

ofFOA estimates becomes questionable. Often FOA application is considered acceptable 

if the coefficient of variation (CV) of the uncertain parameter(s) is less than 0.2. This 

criterion is not correct in all the situations. Analytical as well as graphical relationships 

for relative error are developed and presented for a generic power function which can be 

used as a guide for judging the suitability of FOA for a specified acceptable error of 

estimation. Further, these analytical and graphical relationships enable one to correct 

FOA estimates for means and variances of model components to their true values. Using 

these corrected values of means and variances for model components one can determine 

the exact values of mean and variance of a model output. This technique is applicable 

when an output random variable is a function of several independent random variables in 
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multiplicative, additive, or in combined (combination of multiplicative and additive) 

forms. Three examples are given to demonstrate the application of the technique. 

Introduction 

Reliability modeling and other probabilistic techniques are becoming increasingly 

important tools in modeling water resources systems and decision making. Many 

problems in environmental engineering are best approached using probabilistic and 

reliability methods. Examples are determining the probability of failure of a structure or 

the life expectancy of a hydraulic structure under uncertainty. The prediction and 

evaluation of pollution of surface and/or subsurface environments and decisions 

regarding remedial actions often rely on probabilistic approaches. Quantification of the 

underlying uncertainty is central to each of these problems. 

Uncertainty is present in the design of hydrologic, hydraulic, and environmental 

projects because of inherent variation, a lack of understanding of all the causes and 

effects in various processes (physical, chemical, and biological) occurring in the system, 

and insufficient data. As a result of these uncertainties, the performance reliability of a 

project may be severely affected. A reliable assessment of the performance of any water 

resources project requires an assessment of the validity of predicted loads (such as 

discharges and pollutant loads) and capacities (ability to perform under a given load 

without any harm). Typically the loads are assessed using various models, generally 

having a number of parameters which can be determined with varying degrees of 

accuracy. These parameters are best represented as random variables. Consequently, the 

model response, being a function ofrandom variables, is also a random variable. 
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Probabilistic and reliability analyses are based on knowledge of the underlying 

parameter uncertainties. Parameter uncertainties are the variation in a parameter due to an 

inability to precisely quantify that parameter. Two methods, Monte Carlo simulation 

(MCS) and first-order approximation (FOA) are generally used to model the uncertainty 

associated with input parameters. A MCS requires several thousand repetitive runs of a 

model and is therefore computationally demanding. With the advent of high-speed 

computers, the computational challenges to probabilistic analysis have been removed but 

philosophical and conceptual aspects remain unsolved. MCS has other limitations too. 

Rules for determining the number of simulations required for convergence are not 

available (Melching, 1995). The method often entails sample sizes that are in the range of 

5,000-20,000 members (Siddall, 1983). Often, the information about distribution 

function(s) of input variable(s) required to conduct MCS simulations is not available and 

can not be obtained due to the constraints of time and money. Therefore, it requires 

judgement on the part of the modeler to create theoretical input sample distributions that 

are representative of the parameter populations. 

FOA is an approximate method that gives only estimates of means and variances. 

The exactness of the estimates is influenced in part by the degree of nonlinearity in the 

functional relationship and parameter uncertainty. It has several advantages over MCS. 

FOA is more computationally efficient and provides a measure of model's sensitivity to 

each input random variable thus providing a better understanding of the processes being 

modeled. The assumptions typically cited for FOA to yield good results (Melching, 1995) 

are: linearity in functional relationships, small coefficients of variation of the most 

sensitive uncertain variables, and normal distributions for the uncertain variables. Moore 
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and Clarke (1981) expressed that FOA assumptions are "rarely likely to be justifiable 

with models containing nine or twelve parameters". Despite its several conceptual 

shortcomings, FOA has been used quite successfully in a wide variety of fields such as 

hydrologic design (Tang and Yen, 1972; Yen et al., 1980; Tung and Mays, 1980 and 

1981), water quality modeling (Burges and Lettenmaier, 1975; Scavia et al., 1981; 

Chadderton et al.1982; Melching and Anmangandla, 1992), watershed modeling (Garen 

and Burges, 1981; Melching, 1992a, 1992b; Kuczera, 1988; Bates and Townley, 1988), 

subsurface flow and contaminant transport modeling (Sagar, 1978; Dettinger and Wilson, 

1981; Devary and Doctor, 1982; Townley and Wilson, 1985), and probabilistic human 

health risk assessment (Batchelor et al., 1998). 

In many studies MCS estimates have been used to check the accuracy of FOA 

estimates. However, in reality, the MCS method is also an approximate method (Bates 

and Townley, 1988), the quality of which is affected by appropriateness of the chosen 

distribution function(s) for the input variable(s) and the number of simulations employed 

in the analysis. The inference drawn from the comparative analyses of Burges (1979), 

Garen and Burges, (1981), Walker (1982), and Malone et al. (1984)indicates that for all 

practical purposes both methods produced identical results. Scavia et al. (1981), Gardner 

et al. (1981), Gardner and O'Neill (1983), Smith and Charbeneau (1990) however, 

revealed contrary results. These studies suggest both significant and subtle differences in 

variance estimates from the two approaches. Thus, it appears that despite the fact that 

FOA is one of the few relatively tractable techniques available to evaluate the effect of 

parameter uncertainty, doubts about its validity have limited its wide application. There is 
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a state of ambiguity whether FOA should be used for a given problem because no clear 

guidance about suitability ofFOA is available (Zhang and Haan, 1996). 

Garen and Burges (1981) found satisfactory results with FOA when the CV of the 

input parameters was ~ 0.25. Cornell (1972) and Burges (1979) suggested that FOA is 

applicable to moderately nonlinear systems when the CV ~ 0.2. Gardner et al. (1981) 

found that the validity of the linear approximation deteriorates rapidly when the CV > 

0.3. Best agreement between MCS and FOA estimates occurs when MCS output 

distributions are symmetric (Scavia et al., 1981). 

Several researchers detected significant nonlinearity effects while companng 

variance estimates from FOA and MCS. To overcome the problem of nonlinearity, 

several predictors were proposed (Beale, 1960; Bates and Watts, 1980; Bates, 1988; 

Stevens, 1993). Bates (1988) and Stevens (1993) indicated that the predictors for 

nonlinearity developed so far work well only in specific applications and that no well­

accepted, generalized nonlinearity measure is available. 

To date, the only widely used criterion for the validity of FOA variance is to 

restrict the parameter CV to less than 0.2. This is a very restrictive assumption in water 

resource systems modeling where there is often a great uncertainty in the parameters 

(Johnson, 1996). It can be shown that FOA has performed well in some situations when 

the parameter uncertainty is higher than 0.2. Smith and Charbeneau (1990) suggested 

that FOA can be used if the difference between function gradients at the mean and one 

standard deviation away from the mean are less than some acceptable range (5-10%), 

however, this method also has limitations. 
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The main objective of uncertainty analysis, in general, is to evaluate the first and 

second moments of a model output in terms of input random variables. This paper 

describes a procedure to correct FOA estimates of model components for nonlinearity, 

CV, and distribution type. Using these corrected estimates of means and variances for 

model components, one can determine exact values of first and second moments of model 

output. This procedure provides a deep insight and understanding of the conceptual 

aspect of uncertainty analysis and hence can be a very useful tool for judging the 

suitability of FOA in ambiguous situations. The developed procedure demonstrates its 

application in the uncertainty analysis of problems related to hydrology, hydraulics, and 

probabilistic human health risk assessment. 

Allowable Ranges of Input Parameter's CVs 

A consistent measure often used in describing the amount of variation in a 

population is its CV. In hydrology, hydraulics, and environmental engineering 

applications most of the quantities . of interest are non-negative. Parameter uncertainty 

represented by the CV can assume a value falling in a specific allowable range depending 

upon the underlying distribution. Table 2 -1 gives the allowable ranges for some of the 

commonly used distributions considered in this study. 

Functional Forms . 

In most hydrologic and hydraulic engineering problems, empirically developed or 

theoretically derived mathematical equations are used which involve several uncertain 

parameters that have a significant amount of uncertainty and varied distribution 

characteristics. Further, a mathematical equation may have different degrees of 
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nonlinearity with respect to these uncertain parameters. A multitude of functional forms 

for g(X) are possible. In this paper, multiplicative forms, additive forms, and their 

combined forms are considered. 

A multiplicative type model is frequently encountered in hydrological studies 

(e.g., daily stream flow, peak runoff, annual floods, and annual, monthly, and daily 

rainfall, soil loss and sediment transport). In hydraulics many equations are of 

multiplicative type. · Examples are flow over control structures such as weirs, spillways, 

overfalls, and sluices, channel control equations such as Manning's equation (Haan et al., 

1994), and pipe flow resistance equations such as Hazen-Williams and Darcy-Weisbach 

equations (Mays, 1999). In environmental engineering, many equations predicting water 

quality and pollution (Krenke!, 1979; Novotny and Olem, 1994), and equations used in 

risk assessment are of multiplicative type (USEPA, 1989). Tung and Mays (1980), Lee 

and Mays (1986), and Tung (1990) are some examples of the multiplicative forms 

encountered in hydraulic/hydrologic systems. In this form, the output random variable Y 

is expressed as the multiplication of n power functions as shown in (2-1 ). 

n 
Y -c xr•xr2 xr,, -c rrxr, -01 2···········n-o i (2-1) 

i=I 

where Co and r; are constants and Xts are independent stochastic input random variables. 

Another form of interest is the additive form obtained when two or more power 

functions are added. It is often encountered in reliability analysis of engineering systems 

(Hasofer and Lind, 1974; Ang and Tang, 1984; Melching, 1995). In reliability evaluation 

a performance function ( also known as state function) is defined as a combination of 

demand (loading) and capacity (resistance) of the system where both loading and 

capacity are random variables. Examples of hydrologic systems include storm sewer 
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design (Yen and Tang, 1976; Tung, 1990), and reliability of a compound channel under 

extreme events (Cesare, 1991). The general additive form is written as: 

n 
y = C1X;1 + C2X? + ......... + cnx;n = L C;Xi (2-2) 

i=I 

The other functional form is the combination of multiplicative and additive forms. This 

form is obtained when two or more multiplicative forms having common power 

function(s) are added. Examples are application of Manning's equation in a compound 

channel with same slope for each section (Cesare, 1991; Burges, 1979) and assessment of 

overall human health risk due to multiple pollutants through different pathways 

(Batchelor et al., 1998). The general form can be represented as: 

(2-3) 

Approximate Moments Using FOA 

Benjamin and Cornell (1970) and Cornell (1972) have provided a detailed 

description of FOA. Consider a random variable Y, which can be expressed as a function 

ofn random independent variables 

Y=g(X) (2-4) 

where X.. = (X1, X 2 .......... , X,J, is a vector containing n random independent variables .X;. 

Through the use of Taylor's expansion and its first order approximation, the mean of the 

model output can be approximated by 

(2-5) 

The variance of the model output can be approximated as 
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A2 _ ,f,[8g(K)J 2 
2 ay-LJ ax. 

i=I ax; x , 
(2-6) 

where ax; = standard deviation of X;. Using (2-5) and (2-6) and a given mathematical 

form for Y, the approximate moments of Y can be determined. For the multiplicative 

form (2-1), the approximate mean of the model output, µy, can be written as 

n 

µy = Corlµ~, (2-7) 
i=I 

where µx; = mean of X;. Using (2-6), the approximate variance of the multiplicative form 

(2-1 ), a-: , can be approximated as 

n n 
A 2 c2n 2r.," 2cv2 ay = o µxi L.Jr; x, 

i=I i=I 

(2-8) 

where ri is the exponent of ith power function; CV x. = a X; = coefficient of variation of 
' µX; 

X;. Dividing (2-8) by the square of (2-7), the approximate coefficient of variation of Y, 

CVy, can be evaluated as 

0.5 n n 

c2nµ2r, "r.2cvz 
o X 1 LJ , X 1 

i=I i=I 
n cznµ2r; 

o X; 

( J0.5 

= tr/CV{ 
1=! 

(2-9) 

i=I 

When Y is represented by the additive form, the approximate mean of Y is given 

as 

(2-10) 

Similarly, the variance of the additive model can be approximated by 
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(2-11) 

When Y is represented by the combined form, the mean and variance of Y are 

determined using (2-5) and (2-6). 

Exact Moments 

In this section, the properties of statistical expectation of a random variable are 

used to derive moments of various considered forms. When Y is represented by a 

multiplicative form, the first moment or mean of Y, µy, can be written as 

(2-12) 
i=l i=l 

where E[] is an expectation operator, andµ; is the mean of the ith power function given as 

(2-13) 

Similarly, the second moment of model output about the origin can be written as 

E[Y2 ]= c; Ii: E[(x? )2 ]= C; Ii:(µ: +af ). (2-14) 
i=l i=l 

where af is the variance of the i'h power function given as 

al = Var(X[) = E[x;1'i ]-µ; (2-15) 

The variance of Y, a;, can be expressed in terms of first and second moment (Haan, 

1977) as 

a; =E[Y2 ]-{E[Y]}2 (2-16) 

Substituting, (2-12) and (2-14) in to (2-16) 

a;= c;TI(µf +af )-c;TIµf (2-17) 
i=l i=l 
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The coefficient of variation of Y, CVycan be written as 

2 c; TI {µ;2 +a))- c; TIµ/ 
CT.T2 _ (j' Y _ i=I i=I 

Yy - -µ: n 

c;IJµ/ 
(2-18a) 

i=I 

Simplifying (2-18a), CVycan be written as 

n n 
2 ""°'c 2 ""°'c 2c 2 2 2 2 CVy = LJ ~ + LJ ~ Vj + ................. +CVi CV2 ......... .CVn (2-18b) 

i=I i,j=l,i,tc- j 

where CV; = a i = coefficient of variation of i1h power function. Equation (2-1 Sb) shows 
µi 

that the output uncertainty of a multiplicative model is governed by the most uncertain 

component functions. For the convenience of computation, (2-18b) can be shown to be 

equal to 

[ ]

0.5 

CVy - Q(cv,2 + 1)-1 (2-18c) 

Equation (2-18c) can be used to determine the uncertainty in model output if CVs of 

component power functions are known correctly. Using CVy and a correct value of µy, 

the exact variance of model output can be evaluated. 

Using the additive form (2-2), the mean of Y, µy, is given as 

µy = C1E[x;i ]+ C2E[x;2 ]+ ......... + CnE[x;n ]=IC;µ; (2-19) 
i=I 

Similarly, the variance of Y, ai, can be written as 

af; = c;var[x;i ]+ c;var[x;2 ]+ ......... + c;var[x;n ] = I c; al (2-20) 
i=I 
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Equation (2-20) shows that magnitude of C; is also equally important as uncertainty of a 

component function (X[). 

For evaluating the mean and variance of combined forms of Y such as (2-3), the 

mean and variance of the additive part must be determined first using (2-19) and (2-20). 

Next (2-12), (2-17), and (2-l8c) are used to determine the mean, variance, and CV of Y 

by treating the combined form as a multiplicative form for which the additive part is 

assumed to be a multiplicative component with known mean and variance. 

It is noted that the mean and variance of Y for both the multiplicative and additive 

forms are a function of the exact mean and variance of individual power functions, 

whereas, FOA estimates for the mean and variance of Y are a function of mean and 

variance of input parameters. In order to determine exact mean and variance of Y, it is 

necessary to know the correct mean and variance of the individual power functions. FOA 

can be used to approximate the mean and variance of individual power functions. Since 

FOA estimates are not exact, they need to be corrected before using them to determine 

moments of the overall model output. In the following section a technique is suggested to 

correct FOA estimates for the mean and variance of a power function. 

Correcting FOA Mean and Variance Estimates 

Consider a power function 

Y= f(X)=cXr (2-21) 

where rand c are constants. Using (2-5), the FOA estimate for the mean, far, is given as 

A r 
µy =cµx (2-22) 

Using (2-6), the FOA estimate for the variance of Y, a-:, is given as 
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(2-23) 

The estimates provided by (2-22) and (2-23) for µy and 0y contain errors. The relative 

error, E, in the FOA estimate for a moment of any order can be computed as 

Exact value - FOA estimate FOA estimate 
E= =1------

Exact value Exact value 
(2-24) 

The relative error in FOA estimates for the mean and variance of a power function 

depends upon the CV of the input parameter, magnitude of exponent r, and type of 

distribution for the input parameter. Rewriting (2-24) 

FOA estimate 
Exact value=-----,-----.,...---

(1-E) 
(2-25) 

FOA estimates for the mean and variance of a power function can be corrected if their 

corresponding relative errors are known. 

Development of Relative Error Functions 

The exact estimates of the mean and vanance of a power function can be 

evaluated analytically. The mean of Y can be calculated from 

00 00 

µy =E[Y]=cE[Xr ]= ff(X)px(x)dX=c fxrpx(x)dX (2-26) 
-00 -00 

where p x (x) is the probability density function of X. Similarly, the variance, a}, can be 

determined from 

(2-27) 
-a, 

Using (2-26) and (2-27) analytical estimates of µy and a} can be determined for a given 

functionf(.x) and distribution p x (x). Equations (2-26) and (2-27) involves determination 
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of E[X'] and E[X21. If these two moments of Y about the origin can be determined for a 

distribution, its central moments µy and af can be fully characterized. 

Using (2-26) and (2-27), exact values of the mean and variance are determined for 

a given power function fx(x) and probability density function p x (x). Substituting the 

FOA estimates and the exact values of the mean and variance in (2-24), the 

corresponding expressions for E are derived for commonly used distributions (Appendix 

I). The derived expressions of E for different distributions are presented here. 

Uniform Distribution 

The probability density function p x (x) for the continuous uniform distribution is 

, asXsfJ (2-28) 

where a and fJ are the distribution parameters. Using the methods of moments, the 

estimates for a and fJ are given (Haan, 1977) as 

a= µx --.J3ax = µx(l--.J3CVx) 

/J = µx +-.J3ax = µx(l+-.J3CVx) 

(2-29) 

(2-30) 

The expression for the relative error in the FOA predicted mean, E(µy) is given as 

" 2-.J3(r+l)CVx 
E(µy) = 1-[( r;:;)(r+l) ( r;:;)(r+l) J 

l+CVx-v3 - l-CVx-v3 
(2-31) 

Figure 2-1 shows a plot E(µy)vs. exponent r for CVx ranging from 0.01 to 0.57. The 

relative error in FOA predicted variance, E( a-;), is expressed as 
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~2 12 (2r + 1) r2(r + 1)2 c{ 
~uy)=l-~~~~~~~~~~--'-~~~~----'-''--~~~~~~~~~ 

{ 2'13CYx(r + 1)2[(1 + CYx{J r-' -(I -CYx{J r-']-(1r + ,{ (1 + Cfx{J r' -(1-Cfx{J r' n 
Figure 2-2 depicts a plot of E(a;)vs. r for CVxvalues ranging from 0.01 to 0.57. 

Symmetrical Triangular Distribution 

The probability density function p x (x) for the triangular distribution is 

() 2 (x-a) 
Px x = (p-a) {r-a) 

2 (p-x) 
Px(x)= (p-a) {p-y) 

, when asXsy 

, whenysXs fJ 

(2-32) 

(2-33a) 

(2-33b) 

where a, /3, r are the minimum, maximum, and mode values of X For a symmetric 

triangle, y= µx. The method of moments estimates for a and fJ are 

a=µx -..J6ax =µx(I-..J6CVx) 

jJ = µ X + ..J6a X = µ X {1 + ..J6CV X) 

The expression for E(far) is 

E .. _ 1- 6(r + 1 Xr + 2 )cv; 
(µy) - [( rr)(r+2) ( 1r)(r+2) J 

l+CVx-v6 + 1-CVx-v6 -2 

(2-34) 

(2-35) 

(2-36) 

Equation (2-36) has been represented graphically in Figure 2-3 for different values of r 

and CVxranging from 0.01 to 0.4. The E(a;)can be expressed as 
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(2-37) 

Figure 2-4 plots equation (2-37) for various rand CVxvalues ranging from 0.01 to 0.4. 

Lo~ormal Distribution 

If X is lognormally distributed with mean µx and variance oJ, its probability 

density function is given (Haan, 1977) as 

(2-38) 

where V = ln(X) is normally distributed with parameters µv and a}. The parameters µv 

and d v are defined (Haan, 1977) as 

11 Px 
[ 

2 ] 
Pv =2 n CV; +1 

(2-39) 

u: =In(cv; + 1) (2-40) 

The expression for E(µ Y) is 

1 

E(µy) = 1-(1 + CV; )ir(l-r) (2-41) 

E(a;) can be rewritten as 

2 2( 2 )r 
E( A 2 )=l- r CVx CVx +1 

(J'y 2[ 2 J _ (cv; +1Y (cv; +1Y -1 
(2-42) 

E(µy)and E(a;) vs. r plots are shown in Figures 2-5 and 2-6 for CVxvalues ranging 

· from 0.01 to 1.0. 
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Gamma Distribution 

The gamma distribution density function is given by 

(2-43) 

where a and A are the distribution parameters. The method of moments estimates for a 

and A are given (Haan, 1977) as 

(2-44) 

2 
A µx 1 
a=-=--

a2 CV 2 
X X 

(2-45) 

The expression for E(µy) is 

cv-2rr(cv-2 ) 
E(µ ) =1- X X 

y r[cv.? (1 +rev;)] 
(2-46) 

Figure 2-7 shows a plot E(µy)vs. r for CVxvalues ranging from 0.01 to 1.0. E(a;)is 

expressed as 

r2cv2(1-2r)[r(cv-2 )~2 
E(a2)=l- x x ~ 

y · r[cv;2 (1 + 2rcv; )]r(cv;2 )- ~[cv;2 (1 +rev;)] }2 
(2-47) 

Figure 2-8 shows a plot E(u;)vs. r for CVxvalues ranging from 0.01 to 1.0. 

Exponential Distribution 

The exponential distribution is a special case of the gamma distribution with a = 

1. Substituting a = 1 into (2-45), CVx = 1. The expression for E(µy) is obtained by 

substituting CVx = 1 into (2-46) as 
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E(µy) = 1- ( l ) 
r r+l 

(2-48) 

On substituting CVx= 1 into (2-47), E(a;)can be expressed as 

2 

E(a-2) = 1--=------r---~ 
y [r(2r+l}-r 2 (r+1}] 

(2-49) 

In Figure 2-9, E(µ Y) and E( a; ) have been plotted with respect to exponent r. 

Normal Distribution 

The probability density function of normal distribution is 

(2-50) 

where µx and a-} are the parameters of the normal distribution. When CVx < 1.0, the 

general expression for E[X] is 

· [ r] r [ · r(r-1) 2 2 r(r-tXr-2) .... .{r-n+l) n n J 
EX =µx l+rCVxE[Z]+--CVxE[Z ]+ ...... + CVxE[Z ]+ .. . 

~ ~ 

(2-51) 

where r is any exponent (positive, negative, integer or fraction); n is the term number in 

the expansion; and Z is the standard normal variate. The term E[Z"] is defined (Benjamin 

and Cornell, 1970) as 

[ n] 2"1r[(n+1}12] n! ( X ) ( X} . 
E Z = J; = ~ = n -1 n - 3 ........ 3 1 , when n 1s even 

tr 2 2(n/2) 
(2-52a) 

and 

E[zn ]= 0, whenn is odd. (2-52b) 

Substituting (2-52a) and (2-52b) into (2-51) 
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( r)- r [ r(r-1) 2 r(r-tXr-2Xr-3) 4 r(r-tXr-2). .... (r-n+t) n ] 
EX -µx 1+ 2 CVx + 4/ CVx······+ ~ CVx + ... 

212(4/2)! 2 2 (n/2)! 

(2-53) 

When r is a positive integer, the RHS of (2-53) is finite and terminates at n = r + 1. 

Consequently, (2-53) can be written as 

( ) rl2(r) 2nl 
E xr = µ ~ L ~ CV ,:n' when r is even and; 

n=O 2n 2 n. 
(2-54a) 

(r-1)12 ( r) 2nl E(xr) = µ~ L ~ cv_:n' when r is odd. 
n=O 2i 2 n. 

(2-54b) 

For values of r other than a positive integer (2-53) does not converge. In order to 

determine E[X'], (2-53) needs to be truncated. When r is a positive fraction, E[X'] can be 

obtained using (2-54a) and (2-54b) with rounded value of r to its nearest whole number. 

In cases when r is negative, the truncating error depends upon the magnitudes of r and 

CVx. Further, there exists a minimum truncating error for a given combination of r and 

CVx, beyond which no improvement in E[X'] is possible. To evaluate the approximate 

value of E[X'], a trial and error procedure was used to determine the number of terms to 

be summed up to obtain E[X'] corresponding to the minimum truncating error for a given 

combination of r and CVx. 

After estimating E[X'] and E[x21, (2-26) and (2-27) are used to determine µy and 

o}. Substituting µy, a} and the FOA estimates µY and a-: into (2-24), the relative 

error in FOA predicted estimates of the mean and variance, E(µy) and E( a:), can be 

determined. Figures 2-10 and 2-11 show plots of E(µ Y) and E( a:) vs. r for various 

values of CVxranging from 0.02 to 0.33. 
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Salient Features of Relative Error Curves 

When applying FOA, it is assumed that the functional relationship between the 

dependent and independent parameters can be approximated by a linear relationship. This 

assumption is often valid, but specific situations may arise when the function is very 

nonlinear (represented either by a very large or very small exponent of a power function). 

For this reason, applying FOA to models containing a power function with a large 

exponent is not common. These situations can be identified and dealt with by visualizing 

the relative error plots. The relative error plots also show where FOA estimates are nearly 

acceptable and where they are unacceptable and need to be corrected. Observing these 

error plots, the following salient points are noted: 

I.The relative error is zero for a power function of different distributions at certain 

values of the exponent. These exponents are O and 1 as shown by E(µy )plots 

(Figures 2-1, 2-3, 2-5, 2-7, 2-10) for all the considered distributions. The exponent 

value of O represents a constant function and the exponent value of 1 corresponds to a 

linear function. In the same way, there are two exponent values for E(a;)where 

FOA estimates for the variance have no error. One of these exponents is 1 and the 

other changes with the distribution type and CV of the input parameter as shown in 

Table 2-2. 

Table 2-2 shows that when the exponent of a power function lies within the 

tabulated range for each distribution, the FOA variance estimate will have almost no 

error and the power function will behave like a linear function as far as the variance 
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prediction is concerned. These situations are depicted by E( a;) vs. r plots in Figures 

2-2, 2-4, 2-6, 2-8, 2-11. 

2. The variation of relative error in FOA predicted variance also changes with respect 

to CV, exponent, and type of distribution. When the exponent falls between 1 and 1.7 

( an approximate value) for normal, uniform, and triangular distributed parameters, the 

FOA overestimates the actual variance. However, the overestimation is small as 

shown by the negative values of E( a;) in Figures 2-2, 2-4, and 2-11. When the 

exponent falls outside this range, the FOA underestimates the actual variance. When 

the parameter is lognormally distributed and the exponent falls between O and 1, the 

FOA may highly overestimate the actual variance depending upon the parameter CV 

value as shown negative values of E(a;) in Figure 2-6. When the exponent falls 

outside this range, FOA underestimates the actual variance. In the case of the gamma 

distribution, when the exponent falls between 0.3 and 1, the FOA overestimates the 

actual variance. For exponents outside this range the FOA underestimates the actual 

variance. 

3. It is clear from the error plots that the type of distribution may affect the accuracy 

of the FOA predicted variance. For example, with a power function exponent between 

0 and 1 the FOA overestimates the actual variance when a parameter is lognormally 

distributed and underestimates when a parameter has normal, uniform, or triangular 

distribution. Whereas, in case of gamma distributed parameter, the FOA 

overestimates the actual variance when exponent lies between 1.0 and 0.2 and 

underestimates elsewhere. 
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4. Even a very small exponent (very close to zero) may give a very high relative error 

in FOA predicted variance for some of the distributions (normal, uniform, and 

triangular). 

5. Error plots of the normal distribution (Figures 2-10 and 2-11) show that significant 

errors occur in both the mean and variance of a power function predicted using FOA. 

This contradicts previous findings that FOA works well when input variables are 

normally distributed (e.g. Scavia et al., 1981; Johnson, 1996). 

6. When a power function has its exponent in the vicinity of those tabulated in Table 

2-2, the relative error is very smaU regardless of the CV values of the input variable. 

This contradicts previous findings that FOA works well only when CV::;; 0.2. 

Examples 

Three examples demonstrating the use of the corrected first order uncertainty 

method involving multiplicative, additive, and combined form models are presented. 

Example No. 1 (Uncertainty in water distribution) 

Hydraulic modeling of a water distribution network is a critical component in the 

planning, design, maintenance, and operational control of water supply systems, Analysis 

of water distribution networks involves the determination of nodal heads and pipe flow 

rates. A basic relationship describing the dependence of discharge on head loss caused by 

friction between the flow of fluid and the pipe wall is used in the hydraulic design of a 

pipeline system (Mays, 1999). One of the most widely used head loss relationships is the 

Hazen-Williams equation, which is given as (Mays, 1999) 

h = 10.654LQ1.ss2 = 10.654LQ1.ss2c-1.ss2 n-4.87 
1 c1.ss2 D4.s1 (2-55) 
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where h1 is head loss (m), L is length of pipe (m), D is pipe diameter (m), Q is flow 

(m3 /sec), and C is the Hazen-Williams roughness coefficient which varies with pipe 

materials and age (Mays and Tung, 1992). h1 is uncertain due to uncertainty in Q, C, and 

D. L is assumed to be exact (1500 m). Table 2-3 gives the mean, CV, and assumed 

distribution (Mays and Tung, 1992) for the uncertain variables in Q, C, and D. 

The FOA estimate for the mean, µh , is calculated using (2-7) as 
I · .. 

µh = 10.654(1500)(0.915)1-852 (130)-1.852(0.305)-4·87 = 535.29 m. 
I 

Using (2-9) the FOA estimate for the CV of h1 is 

cf\! = [(1.852) 2 (0.1) 2 +(-1.852) 2 (0.15) 2 +(-4.87) 2 (0.05) 2 ]°"5 = 0.413 

Multiplying the mean and coefficient of variation calculated above, the FOA estimate of 

the standard deviation, ah is 221.2 m. The FOA estimates for the mean and variance for 
I 

the component power functions are calculated using (2-22) and (2-23) and listed in 

columns 2 and 5 of Table 2-4. To correct the FOA estimates for the means and variances 

of the component power functions, the relative error equations (2-41) and (2-42) 

developed for the lognormally distributed variables are used. The calculated relative 

errors have been listed in columns 3 and 6 of Table 2-4. The exact estimates of means 

and variances for the component power functions are determined using (2-25) and are 

shown in columns 4 and 7 of Table 2-4. Values of CV/ in column 8 shows that all 

component functions are important for determining uncertainty in hf, however, the 

contribution of C 1·852 is the maximum. 

Using (2-12) and corrected means of component power functions from column 4 

of Table 2-4, the value of µhf= 592.96 m. To calculate CVi1, (2-18c) and column 8 of 
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Table 2-4 are used to give CVh = [(1 + 0.035)(1 + 0.079 X1 + 0.061))-1 ]°"5 = 0.43. Using 
f 

these values for µhf and CVi1, the standard deviation, (J'hf, is 254.98 m. 

The MCS technique is also used to estimate the mean and variance of hf Figures 

2-12a and 2-12b show plots of µhf and (J'hf vs. number of simulations. It can be seen from 

the plots that there is quite a bit of fluctuation in standard deviation even after 20,000 

simulations. The µhfand (J'hfvalues based on 20,000 simulations are 594.12 m and 256.16 

m respectively. 

Example No. 2 (Hydraulic uncertainty for flood levee capacity) 

Manning's equation is the most commonly used resistance equation to find the 

flow in a section (Chow, 1959). It is expressed as 

(2-56) 

where Q is flow (m3 /sec), A is the cross sectional area of the channel (m2), R is the 

hydraulic radius of the channel (m), Sis the channel slope (m/m), and n is Manning's 

coefficient (SI units). Natural channels often have a main channel section and an 

overbank section. Most flow occurs in the main channel, however, during flood events 

overbank flows may occur. Considering a symmetric river-flood plain section, the overall 

flow capacity, Q, for the compound section can be expressed as 

(2-57) 

where Yi = AR213 is called the section factor. Ye and Yb represent section factors for main 

channel and overbank sections respectively. Considering section factors to be 
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deterministic (Ye = 296.9 m813 and Yb= 0.6 m813), there are three random variables in (2-

57) ne, nb, and S. Substituting values of Ye and Yb, (2-57) is rewritten as 

Q = (296.9n;1 + 1.2n;1 }s0·5 = ¢8°5 (2-58) 

where ¢ is a dummy variable representing the additive form defined as 

¢ = 269.9n;1 + 1.2n;1 • In the literature (Tung, 1990; Cesare, 1991; Mays and Tung, 1992; 

Yeh and Tung, 1993), when applying FOA to Manning's equation a small CV is assumed 

for n. In this example greater CV values for both banks and the main channel have been 

assumed as reported by Johnson (1996). Table 2-5 gives the mean, CV, and distribution 

type (Johnson, 1996) for the uncertain variables nc, nb, and Sin (2--58). 

Using the data of Table 2-5, the FOA estimates for mean and standard deviation 

of Qare found to be 618.72 m3/sec and 130.39 m3/sec respectively. To determine exact 

values of mean and standard deviation of Q, first FOA estimates of component power 

functions are corrected as given in Table 2-6. 

Using (2-19) and corrected means for the power functions :from column 4 of 

Table 2-6, the exact mean of the additive form,µ¢, is 9019.89 m3/s. Similarly using (2-

20) and corrected variances of the component power functions :from column 7 of Table 2-

6, CJ"¢ = 1586.19 m3/s. The corresponding CV¢ is 0.176. Now, treating Q as a 

multiplicative form with ¢ and S/5 as its components with known means and CV values 

µQ = 632.99 using (2-12), CVQ = 0.216 using (2-18c) are obtained. Multiplying values of 

µQand CVQ, crQ= 136.74 is obtained. In this example it can be noted that nb is the most 

uncertain parameter but its contribution to the uncertainty of Q is negligible as the 

additive form ¢ is governed mainly by ne because of its very large coefficient in 

comparison to that of nb, 
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Figures 2-13a and 2-13b are plots of µQ and O"Q obtained using different number 

of MCS simulations. There is still a sizable uncertainty in Q, as convergence is not 

reached after 20,000 simulations. The values of µQ and O"Q corresponding to 20,000 MCS 

simulations are 634.61 m3/sec and 137.08 m3/sec respectively. 

Example No. 3 (Probabilistic human health risk assessment) 

Quantitative risk assessment has received increased attention because of the 

recognition of both the potential threat to human health from hazardous substances and 

the potential for releases into the environment. Recognizing the extent of the hazardous 

waste problem and role of risk assessment, the EPA has developed assessment 

procedures that are used for a variety of purposes. Some examples are designating 

substances as hazardous, establishing minimum quantities for reporting releases when 

they would present substantial danger, evaluating the relative dangers of various sites in 

order to establish priorities for response actions, developing, and selecting appropriate 

response actions at the contaminated sites. Risk assessment is also used to evaluate 

threats to public health posed by superfund sites (USEPA, 1989). 

The risk assessment process used by the EPA is carried out in four steps (USEP A, 

1989). 

The first step is hazard identification during which contaminants of concern are selected 

based on their toxicity, mobility, spatial distribution and concentration. The second step 

is exposure assessment in which all possible pathways ( e.g., inhalation, ingestion, dermal, 

etc.) are identified through which contaminants are exposed to the human body. In the 

third step, intake doses of the pre-identified contaminants absorbed through various 

exposure routes are estimated. The final step is the risk characterization in which the 
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magnitude of the risk is calculated. Quantitative uncertainty analysis is necessary when 

screening level calculations indicate a potential problem, remediation may result in high 

costs, or it is necessary to establish the relative importance of contaminants and exposure 

pathways. 

To demonstrate an application of the developed method in risk characterization, 

risk assessment due to ingestion of contaminated soils is considered. Ingestion of soils 

contaminated by high molecular weight contaminants such as polychlorinated biphenyl 

(PCBs) is a potential source of human exposure to toxicants. The following equation 

(USEPA, 1990) is used to estimate the probability of life-time cancer (Re) due to 

ingestion of soil 

(2-59) 

where Cs is the chemical concentration in the soil (mg/kg), Ci is a conversion factor (10-6 

kg/mg), Ir is the ingestion rate (mg soil/day), F; is the fraction ingested from 

contaminated sources (non-dimensional), E1 is the exposure frequency ( days/year), Ed is 

the exposure duration (years), Bw is the body weight (kg), A, is the averaging time (period 

over which exposure is averaged in days), and S1 is the slope factor or cancer potency 

factor (mg/kg-dayr1• 

There is always some uncertainty about each of these elements in risk estimation. 

A large number of references are available to describe the extent of uncertainty in each of 

these elements. Talcott (1992) has summarized the available information in detail. In this 

analysis the mean, CV, and distributions of the variables are taken from Batchelor et al. 

(1998) corresponding to the age group of 1-6 years. The distribution of F; was assumed to 
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be the lognormal instead of the beta distribution as reported by Batchelor et al. (1998). 

This data are given in Table 2-7. 

In (2-59) there are two constants. One constant is Ci and the other is (1/365) to 

convert A, in days. Combining these two a new constant Co =10-6/365 = 2.74E-09 is 

obtained. Using (2-7), the FOA estimate of µ Re is l.80E-05. Similarly, using (2-9), the 

FOA estimate for CVReis 2.57. Multiplying these two, the estimate for a Re is 4.62E-05. 

To determine the exact mean and variance of Re, FOA estimates for means and variances 

of component functions are corrected as shown in Table 2-8. 

Substituting values of Co and corrected estimates for mean of component power 

functions from column 4 of Table 2-8 in (2-12), the exact mean of Re (µRe) is l.97E-05. 

Similarly, substituting values of CV/ from column 8 of Table 2-8 in (2-18c ), the correct 

CVRc is 6.95. Multiplying µRe and CVRc, the standard deviation of Re, O"Re, is l.37E-04. 

Using MCS, µRe and aRe are determined for different number of simulations. 

These plots are shown in Figures 2-14a and 2-14b. It is clear from Figure 2-14b that there 

is a significant amount of uncertainty in risk prediction even after 20,000 simulations. 

The estimates of µRe and aRe corresponding to 20,000 simulations are l .87E-05 and 

1.06E-04 respectively. 

Obtained results, using FOA, MCS and corrected FOA methods for examples 1, 2 

and 3 are compared in Table 2-9. 

Conclusions 

In this paper analytical relationships are developed to determine the relative errors 

in FOA estimates for the means and variances of power functions. Usin~ these relative 
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error functions, one can correct the FOA estimates for the means and variances of 

component power functions for nonlinearity, and distribution type to evaluate the exact 

mean and variance of model output. For ease in application relative error curves for 

commonly used distributions are presented graphically. These plots can be used to 

determine an approximate relative error for a given exponent of a power function and CV 

of its random variable. Three examples are presented which shows that this technique is 

not only easy to use but also provides more insight into the process by analyzing each 

component function of the model separately. Special cases are identified when applying 

FOA to a nonlinear power function for estimating its variance will give a negligible or no 

error. This method provides a procedure for incorporating the known information of the 

types of input variable distributions. This technique is applicable when an output random 

variable is a function of several mutually independent random variables in multiplicative, 

additive, or in combined forms. 
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Table 2-1: Allowable ranges of coefficient of variation 

Distribution CV range 

Uniform 0 $CV$ 1/'V3 

Triangular 0$CV $ 1/"V6 

Normal 0$CV$l/3* 

Exponential CV =l 

Lognormal No restriction 

Gamma No restriction 

Any value of CV is theoretically possible with the normal distribution; however, for 
CV> 1/3, the probability of a negative number from the distribution increases rapidly. 

Table 2-2: Exponent corresponding to zero error in FOA estimated variance 

Distribution Variation in the CV of Variation in the exponent Exponent 
input parameter corresponding to point value 

E(a-;) ~ 0 

Uniform 0.01 to 0.57 l.7to 1.8 1.751 

Triangular 0.01 to 0.40 1.6 to 1.8 1.700 

Normal 0.01 to 0.33 l.6to 1.7 1.650 

Exponential 1.00 0.279 0.279 

Lognormal 0.01 to 1.00 -0.333 to -0.347 -0.340 

Gamma 0.01 to 1.00 0.20 to 0.40 0.300 
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Table 2-3: Uncertain parameters of Hazen-Williams equation 

Variable Distribution Mean CV 

Q (m Is) Lognormal 0.915 0.10 

D(m) Lognormal 0.305 0.05 

C (SI units) Lognormal 130.0 0.15 

Table 2-4: Computation of the exact mean and variance of head-loss using corrected 
FOAmethod 

Power Mean Variance cv.2 
Function FOA Relative Corrected FOA Relative Corrected I 

Estimate Error* estimate Estimate Error* estimate 
(1) (2) (3) (4) (5) (6) (7) 

(8) 
Ql.852 0.848 7.82E-3 0.855 0.0247 0.027 0.025 0.035 

CJ.852 l.22E-4 0.057 l.29E-4 1.14E-9 0.135 1.32E-9 0.079 

n-4.87 324.68 0.035 336.48 6250.54 0.095 6907.12 0.061 

*Relative errors for mean and variance can also be determined using relative error plots, the 
values read from plots may be less accurate because of individual error. Figures 2-5 and 2-6 
contain the plots for the relative errors for the mean and variance for lognormally distributed 
random variables. 

Table 2-5: Uncertain parameters of Manning's equation 

Variable Distribution Mean CV 

nc Uniform 0.034 0.17 

nb Uniform 0.068 0.38 

s Lognormal 0.005 0.25 
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Table 2-6: Computation of the exact mean and variance of flood levee capacity using 
corrected FOA method 

Power Mean Variance CV' 
Function FOA Relative Corrected FOA Relative Corrected 

Estimate Error estimate Estimate Error estimate 
(1) (2) (3) (4) (5) (6) (7) (8) 
nc -1 29.41 0.029 30.31 24.99 0.124 28.54 0.031 

nb -1 14.71 0.166 17.64 31.22 0.556 70.31 0.226 

sJ,5 0.071 -0.008 0.07 7.8lx10·5 -0.039 7.52x10·5 0.015 

Column 2 is calculated using Equation (2-22), column 3 from Equation (2-31) for uniform 
distribution and Equation (2-41) for lognormal distribution, column 4 from Equation (2-25). 
Similarly, column 5 is calculated from Equation (2-23), column 6 from Equations (2-32) and 
(2-42), and column 7 from Equation (2-25). Column 8 = column 7/(column 4)2. 
Note: Columns 3 and 6 can also be determined using relative error plots. 

Table 2-7: Statistical data for human health risk assessment 

Parameter Symbol Distribution Parameter values 
Mean CV 

Contaminant concentration (mg/kg) Cs Lognormal 155 0.39 

Ingestion rate (mg/day) Ir Lognormal 100 1.26 

Fraction ingested F; Lognormal 0.909 0.03 

Exposure frequency (days/yr.) E1 Exponential 17.4 1.0 

Exposure duration (yr.) Ed Exponential 13.0 1.0 

Body weight (kg) Bw Lognormal 15.6 0.23 

Averaging time (yr.) A, Normal 70.0 0.19 

Slope factor (kg-day/mg) S1 Lognormal 2.25 1.66 
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Table 2-8: Computation of the exact moments of human health risk using 
corrected FOA method 

Component Mean Variance cv.2 
power FOA Relative Corrected FOA Relative Corrected I 

function estimate error estimate estimate error estimate 
(1) (2) (3) (4) (5) (6) (7) 

(8) 
Cs 155.000 0.000 155.000 3600.00 0.000 3600.00 0.0150 

Ir 100.000 0.000 100.000 15876.00 0.000 15876.00 1.5880 

F1 0.909 0.000 0.909 7.29E-4 0.000 7.29E-4 0.0010 

E1 17.400 0.000 17.400 302.76 0.000 302.76 1.0000 

Ed 13.000 0.000 13.000 169.00 0.000 169.00 1.0000 

B -1 
w 0.064 0.050 0.067 2.13E-4 0.098 2.36E-4 0.0052 

A,-1 0.014 0.039 0.015 7.04E-6 0.306 1.0lE-5 0.0460 

S1 2.250 0.000 2.250 13.99 0.000 13.99 2.7630 

Table 2-9: Comparison between output results using FOA and corrected FOA methods 

Example Output Mean Standard deviation 

FOA Exact MCS FOA Exact MCS 

1 h1 (m) 535.3 592.96 594.12 221.2 254.98 256.16 

2 Q (m3/s) 618.7 632.99 634.61 130.39 136.74 137.08 

3 Re l.8E-5 1.97E-5 1.87E-5 4.62E-5 l.37E-4 1.06E-4 

Values based on 20,000 number ofMCS simulations. 
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CHAPTER III 

RELIABILITY, RISK, AND UNCERTAINTY ANALYSIS USING GENERIC 

EXPECTATION FUNCTIONS 

Abstract 

In engineering design and analysis mathematical models are frequently employed for 

decision making which generally involve a number of uncertain parameters. Over the 

years, a number of techniques have been developed to quantify model output uncertainty 

contributed by uncertain input parameters. Typically the methods which are easy to apply 

may give inaccurate estimates of model output uncertainty. Other methods which reliably 

produce very accurate results are either difficult to apply or require intensive 

computational effort. This paper describes the development of generic expectation 

functions as a function of means and CVs of input random variables. The generic 

expectation functions are easy to develop and simple to apply to problems related to 

reliability, risk, and uncertainty analysis. Several expectation functions based on 

commonly used probability distributions have been developed. The developed 

expectation functions are general. Using them any order of moment can be estimated 

exactly. It is found that if exact moments of model output are available, one can find a 

good estimate of reliability, risk and uncertainty of a system without knowing its model 
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output distribution. Two practical examples are presented to demonstrate the application 

of generic expectation functions. 

Introduction 

In engmeenng design and analysis, very often models are employed. These 

models generally involve a number of uncertain parameters, which are determined with 

varying degrees of accuracy. These parameters are best represented as random variables. 

Consequently, model outputs on which engineering design and analysis are based are also 

uncertain and should be represented as random variables. As a result of uncertainty in 

model response, the performance of a project designed based on the model will be 

uncertain as well. To incorporate uncertainty in the decision-making and design process 

quantification of uncertainty is required. Many problems related to hydrology, hydraulics, 

and environmental engineering are best approached using uncertainty and reliability 

methods. Reliability and uncertainty analyses are becoming mandatory, particularly 

where critical decisions involving potentially high adverse consequences are made. 

Two major types of uncertainties in the field of water resources (Tung and Mays, 

1980) are model uncertainty and parameter uncertainty. Model uncertainties arise through 

simplifying assumptions used to derive simple mathematical relationships between the 

inputs and outputs in describing a complex process. Whereas, parameter uncertainty, 

represented by the coefficient of variation (CV), arises because of inherent natural 

variability, measurement limitations, and lack of sufficient data. 

Two most commonly used methods for reliability, risk, and uncertainty analyses 

are the Monte Carlo simulation (MCS) and the first-order approximation (Benjamin and 

Cornell, 1970) known as FOA. Both methods have some limitations. The MCS is 
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computationally intensive with the number of simulations required for convergence not 

well defined (Melching, 1995). In most engineering problems, the true probability 

distributions of the input variables are seldom known. Theoretical distributions for the 

input variables are assumed to conduct the MCS. The quality of MCS estimates is 

affected by appropriateness of the chosen distribution functions for the input variables 

and the number of simulations used in the analyses (Bates and Townley, 1988). FOA is 

very computationally efficient but provides approximate model output estimates for the 

mean and variance only. The quality of these estimates is influenced by the CV s of input 

variables and non-linearity in the model (Bum and McBean, 1985; Tung, 1990). Further, 

FOA does not provide the form of the output distribution. Based on the central limit 

theorem output is assumed to be normally distributed when confidence limits on the 

output, risk, and reliability of the system are determined. 

In reliability and risk analyses, one is concerned with system failure. Often, 

failures of engineering projects occur at extreme values (rather than near the mean 

values) of the input variables. Extremes are most likely associated with probability 

distributions having large variance and skewness (Yen et al., 1986). FOA uses expansion 

about the mean values of the input variables indicating that any attempt to characterize 

the tails of the output distribution is likely to result in an inexact estimate (Bum and 

McBean, 1985). Furthermore, using FOA, it is not possible to incorporate the information 

about the forms of input variable distributions, if they were known (Yen et al., 1986). 

· Hasofer and Lind (1974) showed that flaws in FOA due to model non-linearity 

can be removed by linearizing the functional relationship at the point on the limit-state 

surface nearest to the origin, rather than at the mean point. Calculation of the linearization 
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point requires determination of the nearest point on the limit-state surface. This method 

involves an assumption that all the input variables are normally distributed, giving a 

normally distributed output. However, in most real modeling problems, all the basic 

variables are not normally distributed. Rackwitz (1976) proposed a transformation 

procedure in which the values of non-normal distribution are the same as those of the 

equivalent normal distributions at the failure point. This method is known as advanced 

first-order second-moment method (AFOSM). The AFOSM is widely used in reliability 

and risk analyses (e.g., Melching et al., 1991; Sitar et al., 1987; Cawlfield and Wu, 1993; 

Mishra, 1998; Cesare, 1991). The AFOSM can also be used to carry out uncertainty 

analysis by repeating the procedure of calculating the linearization point to match the pre­

specified output value whose exceedance probability is sought. Examples of using 

AFOSM in uncertainty analyses are Melching and Anmangandla (1992) in water quality 

modeling and Mishra (1998) in environmental probabilistic risk assessment. The AFOSM 

is very accurate because using it one is able to overcome model non-linearity problems 

and can utilize the available information about the input variable distributions, without 

having to make any additional assumptions. The disadvantage of the AFOSM is that 

determination of the lineraziation point is generally not easy depending upon the nature 

and complexity of the system for which the reliability, risk, or uncertainty analysis is 

being studied (Melching and Anmangandla 1992). 

Rosenblueth (1975, 1981) proposed the point estimation (PE) method to evaluate 

uncertainty at specified points in the parameter space. To estimate the statistical moments 

of a model output, 2n model evaluations are required for a model involving n uncertain 

parameters. As the number of stochastic parameters increases, the computation 
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requirement of Rosenblueth's algorithm becomes similar to that of MCS method 

(Melching, 1995). An alternative computationally efficient PE method was proposed by 

Harr (1989) by utilizing the first two moments of the random variables. Chang et al. 

(1995) showed that the estimated uncertainty feature of model output could be inaccurate 

if the skewness of a random variable is not accounted for. 

In many cases, the true form of the output distribution is not required. A very 

good estimate of system reliability can be obtained if moments of model output are 

known correctly. As far as the distribution of model output is concerned, several forms of 

distributions can be assumed. The knowledge of the higher-order moments of a model 

output helps in identifying the candidate distributions for the model output and provides 

more flexibility to include those distribution forms, which require higher order moments. 

Tung (1990) used the Mellin transform to calculate the higher-order moments of a model 

output. The application of the Mellin transform is not only cumbersome but also it can 

not be universally applied. As pointed out by Tung, the Mellin transform may not be 

analytic under certain combinations of distribution and functional forms. In particular, 

problems may arise when a functional relationship consists of input variable(s) with 

negative exponent(s). Further, no formulation was suggested to obtain the moments of a 

model output having non-standard normally distributed input variable(s). 

This paper describes the development of generic expectation functions as a 

function of means and CV s of input random variables. These functions are easy to apply 

in any general application. Further, a procedure has been suggested to apply the 

developed expectation functions to reliability, risk, and uncertainty analyses. Two 

examples are presented to demonstrate the application of generic expectation functions. 
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Uncertainty and Reliability Analyses 

In most hydrologic and hydraulic engineering problems, empirically developed or 

theoretically derived mathematical equations are used which involve several uncertain 

parameters that are difficult to quantify accurately. Further, a mathematical equation, 

g(X), may have different degrees of nonlinearity with respect to its uncertain parameters 

represented as an array X. The term nonlinearity is difficult to define and no well 

accepted definition is available. A multitude of functional forms for g(X) is possible. In 

this paper a multiplicative form is considered. 

A multiplicative type model is frequently encountered in hydrological studies 

(e.g., daily stream flow, peak runoff, annual floods, and annual, monthly, and daily 

rainfall, soil loss and sediment transport). In hydraulics many equations are of 

multiplicative type. Examples are flow over control structures such as weirs, spillways, 

overfalls, and sluices (Haan et al., 1994), channel control equations such as Manning's 

equation (Haan et al., 1994), pipe flow resistance equations such as Hazen-Williams and 

Darcy-Weisbach equations. In environmental engineering, many equations predicting 

water quality and pollution (Krenkel, 1979; Novotny and Olem, 1994), and risk (USEPA, 

1989) are of multiplicative type. Tung and Mays (1980), Lee and Mays (1986), and Tung 

(1990) are some of the examples of uncertainty analysis of multiplicative forms 

encountered in hydraulic/hydrologic systems. In this form, the output random variable Y 

is expressed as the multiplication of n power functions. 

i=n 

Y=C0 l1X? (3-1) 
i=I 
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where Co and ri are constants, and X;s are n independent stochastic input random 

variables. The kth moment of Y about the origin, µ'k, is defined as (Haan, 1977) 

µ; = E[Yk] = ct tr E[xti] (3-2) 
i=I 

where E[ ] is an expectation operator. The kth _central moment of Y, µk, can be obtained 

using the following equation (Haan, 1977) 

(3-3) 

where, µy= µ'1= mean of Y. Substituting k=l in (3-2), µyis given as 

µy = E[Y]= c0 t':r E[X?] (3-4) 
i=I 

Substituting µ'k-i from (3-2) and µy from (3-4) in (3-3), µk can be expressed as 

(3-5) 

Eqs. (3-2) and (3-5) show that moments of Y of any order k about the mean and the origin 

can be obtained if expectation of individual power functions is known. 

In most situations distributional properties of a random variable are characterized 

in terms of its mean, variance, coefficient of skewness, and coefficient of kurtosis. The 

variance of Y, d y, is defined as the second moment about the mean. Substituting k = 2 in 

(3-3), ifyis given as 

(3-6) 

where µ2 is the second moment of Y about the mean. The coefficient of skewness of Y, yy, 

is defined as (Haan, 1977) 
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(3-7) 

where µ3 is the third moment of Y about the mean which can be obtained by substituting k 

= 3 in (3-3) as 

(3-8) 

The kurtosis of Y, Ky, is defined as (Haan, 1977) 

(3-9) 

where µ, is the fourth moment of Y about the mean which can be obtained by substituting 

k= 4 in (3-3) as 

(3-10) 

The reliability of a system can be more realistically measured in terms of 

probability. The failure of a system can be considered as an event that the demand or 

loading, L, on the system exceeds the capacity or resistance, R, of the system so that the 

system fails to perform satisfactorily for its intended use. The objective of reliability 

·analysis is to ensure the probability of event (R > L) throughout the specified useful life 

is acceptably small. To study this event, a performance function, Z, is defined as (Ang 

and Tang, 1984; Mays and Tung, 1992; Tung, 1990) 

Z=R-L (3-11) 

The risk is defined as the probability of failure of the system, which can be written as 

0 

P1 = P(Z < 0)= f Pz(z)dZ (3-12) 
-co 

where P1 is the probability of failure, P is the probability operator, and pz(z) is the 

probability density function of Z. The reliability of the system can be written as 
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Reliability= P(Z > 0) = 1- P1 (3-13) 

The probability distribution of Z is unknown, or difficult to obtain. In most cases the 

exact distribution may not be required, as several distributions can be used to make a 

decision if correct information about its moments is available. Further, higher order 

moments are helpful in both identifying the candidate distributions for pz(z) and using the 

distributions requiring higher order moments. 

In most cases both R and L can be represented as a multiplicative form as (3-1). 

To characterize the failure event (R<O), it is necessary to define the random variable Z 

statistically, i.e., its various moments and distribution. The statistical moments of Z about 

the origin can be expressed in terms of moments of Rand Las 

E[Z]= E[R]-E[L] 

E[z2 ] = E[R 2 ]-2E[R ]E[L ]+ E[L2 ] 

E[Z 3 ] = E[R 3 ]-3E[R 2 )E[L ]+ 3E[R ]E[L2 ]-E[L3 ] 

E[Z 4 ] = E[R 4 ]-4E[R 3 ]E[L ]+ 6E[R 2 ]E[L2 ]-4E[R ]E[L3 ]+ E[L4 ] 

(3-14) 

(3-15) 

(3-16) 

(3-17) 

As clear from (3-14) to (3-17), the moment of Z about the origin can be evaluated once 

moments of Rand Lare determined. Using these moments about the origin one can easily 

determine the central moment of Z. As mentioned earlier determining the true probability 

distribution of Z is difficult if not impossible. For calculating risk, several distributions 

can be selected based on the higher order moments. Using (3-12) and the selected 

distribution of Z, the risk can be estimated. Yen et al. (1986) have derived risk formulas 

for some selected probability distributions. 
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Development of Generic Expectation Functions 

Consider a power function 
Y=Xr 

The kth order moment of Y about the origin can be obtained as 

00 

µ~ = E[Yk ]= E[Xkr ]= f Xkr p x (x)dX 
-00 

where p x (x) = probability density function of X. 

Uniform Distribution 

The probability density function for the continuous uniform distribution is 

1 
Px(x)=--, asXs b 

b-a 

(3-18) 

(3-19) 

(3-20) 

where a and b are the distribution parameters. The methods of moments estimates for a 

and b are given as (Haan, 1977) 

a= µx -F3ax = µx(1-.Ji,cvx) 

/J = µX + J3a X = µx(l + .Ji,cvX) 

where CVx= coefficient of variation of X, defined as 

Using Eqs. (3-19), (3-20), (3-21), (3-22) and (3-23) the E[X] is given as 
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(3-22) 
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Triangular Distribution 

The probability density function p x (x) for the triangular distribution is 

( ) 2 (x-a) 
p x x = ( ) , when a ~ X ~ c 

b-a c-a 
(3-25a) 

2 (b-X) 
Px(x)=- ( ) , whenc~X~ b 

b-a b-c 
(3-25b) 

where a, b, c are the minimum, maximum, and mode values of X These parameters can 

be obtained by the following equation (Appendix I) 

(3-26) 

where a= a vector containing b, a, and c which can be obtained by substituting n = 0, 1, 

and 2, respectively, in (3-26); and rx is the coefficient of skew of X Using (3-19), (3-

25a) and (3-25b) the E[X] is given as 

E[Xr] = 2[(b - c )ar+2 + (c- a )br+2 + (a -b )cr+2] 
(r+lXr+ 2Xb-cXc-aXb-a) 

(3-27) 

For symmetrical triangle rx = 0 and the parameters a, b, and c can be obtained 

corresponding to n = 1, 0, and 2. The obtained c is the µx and the parameters a and b are 

the same as obtained using the methods of moments. The estimates of a and b are given 

as 

a= µx(1-.J6cvx) 

i, = µ x (1 + .J6cv x) 

Using (3-19), (3-25a), (3-25b), (3-28) and (3-29) the E[X] is given as 
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(3-30) 

Lognonnal Distribution 

If X is lognonnally distributed with mean µx and variance d x, its probability 

density function is given (Haan, 1977) as 

(3-31) 

where V = ln(X) is normally distributed with parameters µv and d v. The parameters µv 

and d v are defined (Haan, 1977) as 

(3-32) 

ui =In(cv; +1) (3-33) 

Substituting (3-31) in (3-19), the E[X'] is given as 

(3-34) 

Assuming, ln(X)- µv = z, the random variable X can be written as, X = e(µv+uvz), (3-
G' v 

34) is rewritten as 

1 co I 2 l co I ( 2 2) I ( )2 [ ] I ( + ) --z I -2µvr+uvr -- :z-ruv E xr =-- erµ,, uvz e 2 dz=-- e 2 e 2 dz 
J'i,i_co J'i,i_co 

(3-35) 

co I 2 
1 f --(:z-ru,,) 

But, ~ e 2 dz = 1.0 . Therefore, (3-35) can be written as 
v2tr -co 

(3-36) 
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Gamma Distribution 

The gamma density function is given by 

Aa e-AX x<a-1) 
Px(x) = , X, a, and A> 0 

r(a) 
(3-37) 

where a and A are the distribution parameters. Using the method of moments, a and A are 

expressed (Haan, 1977) as 

,. Ai- 1 
a=-=--

(1'2 cv2 
X X 

Substituting (3-3 7) in (3-19), the E[X] is written as 

E[xr] = ~ CX) e-,ix x<a+r-1) dX = r(a + r) 
r(a) f. r(a) Xr(a) 

(3-38) 

(3-39) 

(3-40) 

Replacing a and A in (3-40) by their estimates given in (3-38) and (3-39), (3-40) is 

rewritten as 

E[xr]= CVt µ~r(cv/ +r) 
r(CV;2) 

Exponential Distribution 

(3-41) 

The exponential distribution is a special case of the gamma distribution with a = 

1 and A= llµx. Substituting these parameter values in (3-40), the E[X] is given as 

E[xr ]= µ~r{r+l) (3-42) 

Normal Distribution 

The probability density function of normal distribution is 
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l(X-µx )2 1 -2 ---;;;-
P x ( x) = r;::-e 

a xv2tr 
(3-43) 

where µx and ifx are the parameters of normal distribution. Assuming, X - µx = z, the 
ax 

random variable X can be written as, X = (µ x + a xz), the E[XJ can be written as 

(3-44) 

For CVx< 1.0, (3-44) can be expanded using Binomial Theorem as 

E·[xr]= r~I CV. r(r-I)cv.2 2 r(r-IXr-2) .... (r-n+I)cTrn n ] 
µx +r xZ+ xZ + ...... + YxZ + ... 

2! n! 
(3-45) 

Taking expectation of all the terms, (3-45) is written as 

.J vr]= ,/"[1 . err Tif] r{r-I)CTilTif 2] r{r-IXr-2) .... (r-n+l)CT;rlTlfz"] J nt,-1 f"x +r Yx.1..:.'LZ + Yx-"'Lz + ..... ;-!- Yx-"'L + ... 
2! n! 

(3-46) 

where n is the term number plus 1 in the expansion. The E[zn] is given as 

(3-47) 

The integral of (3-4 7) is 

[ n] 2fir[(n+1)12] n! . 
Ez = Ji = ii =(n-1Xn-3) ........ (3X1),whenn1seven 

tr 2 2 (n/2)! 
(3-48a) 

E[zn] = 0, when n is odd. (3-48b) 

Substituting (48b) in (3-46), the resulting equation is written as 

E{x]=J4[l+ ,{r-1)C~E(z2]+ ...... + r(r-lXr-2) .... (r-n+l)CJ;E[z"]+ .. ]. (3_49) 
~ ~ 

When r is a positive integer, the RHS of (3-49) is finite and terminates when n = r + 1. 

Consequently, (3-49) can be written as 
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E[Xr ]= µ~ ~ (:Jcv ;n E[z 2n], when r is even, (3-50a) 

] (r-1)/2(r)r [ ] 
E[xr = µ~ ~ 

2
n)y_;nE z2n , when r is odd. (3-50b) 

When r is anything but a positive integer, the RHS of (3-49) does not converge. Equation 

(3-49) can be further simplified by substituting E[zn] from (48a) as 

E[xr]- r [1 r(r-1)cv2 r(r-1Xr-2) ..... (r-n+1)cvn ] 
-µx + 2 x+ ...... + 21i(n/2)! x+ .... (3-51) 

When r is a positive fraction, a very good estimate of E[X'] can be obtained using (3-50a) 

and (3-50b) with rounded value of r to its nearest whole number. In cases when r is 

negative, it is observed that the truncation error depends upon the magnitudes of r and 

CVx. Further, there exists a minimum error of truncation for a given combination of rand 

CVx, beyond which no improvement in E[X'] is possible. To evaluate approximate value 

of E[X'], a trial and error procedure was used to determine the number of terms to be 

summed up to give the minimum error in E[X'] for a given combination of r and CVx, It 

is worth to note that when CVx < 0.1, the truncation error is very small ( < 0.1 % ) but as 

CVx increases, the magnitude of this error increases rapidly. 

Examples 

To demonstrate the use of developed generic expectation function for a power 

function, two examples are presented. 

Example No. 1 (Probabilistic human health risk assessmenO 

Quantitative risk assessment has received increased attention because of the 

recognition of both the potential threat to human health from hazardous substances and 
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the potential for releases into the environment. Recognizing the extent of the hazardous 

waste problem and role of risk assessment, the EPA has developed assessment 

procedures that are used for a variety of purposes. Risk assessment is used for · 

designating substances as hazardous and establishing minimum quantities for reporting 

releases when they would present substantial danger. In addition, risk assessment is used 

to evaluate the relative dangers of various sites in order to establish priorities for response 

actions and for developing, evaluating, and selecting appropriate response actions at the 

contaminated site. For example, risk assessment is used to evaluate threats to public 

health posed by a superfund site. 

The risk assessment is carried out in four steps (USEP A, 1989). The first step is 

hazard identification in which chemicals of concern are selected based on their toxicity, 

mobility, spatial distribution and concentration. The second step is exposure assessment 

in which all possible exposure pathways (e.g., inhalation, ingestion, dermal, etc.) are 

identified. In the third step, intake doses of the pre-identified contaminants absorbed 

through the various exposure routes are estimated. The final step is the risk 

characterization, in which the magnitude of the risk is calculated. Quantitative 

uncertainty analysis is necessary when screening level calculations indicate a potential 

problem, remediation may result in high costs, or it is necessary to establish the relative 

importance of contaminants and exposure pathways. 

To demonstrate an application of the developed method to risk characterization, 

risk assessment due to ingestion of contaminated soils is considered. Ingestion of soils 

contaminated by high molecular weight contaminants such as polychlorinated biphenyl 

(PCBs) is a potential source of human exposure to toxicants. The following equation 
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(USEP A, 1990) is used to estimate the probability of excess lifetime cancer, Re, due to 

ingestion of contaminated soil 

(3-52) 

where Cs= chemical concentration in the soil (mg/kg), Ci= a conversion factor (10-6 

kg/mg), Ir = ingestion rate (mg soil/day), F; = fraction ingested from contaminated 

sources (non-dimensional), E1 = exposure frequency ( days/year), Ed = exposure duration 

(years), Bw = body weight (kg), A, = averaging time (period over which exposure is 

averaged in days), and S1 = slope factor or cancer potency factor (mg/kg-day)"1• 

There is always some uncertainty about each of these elements in risk estimation. 

A large number of references are available to describe the extent of uncertainty in each of 

the elements of (3-52). Talcott (1992) has summarized the available information in detail. 

Statistical properties of the variables in (3-52) are taken from Batchelor et al. (1998), and 

are applicable to individuals 1-6 years of age. The distribution of F; was assumed to be 

the lognormal instead of the beta distribution as reported (Batchelor et al. 1998). This 

data is listed in Table 3-1. 

In (3-52), there are two constants. One constant is Ci and the other is (1/365) to 

convert A, to time in years. Combining these two, a new constant Co =10-6/365 = 2.74E-

09 is obtained. Using generic expectation functions corresponding to distribution types of 

input variables and their means and CVs listed in Table 3-1, different orders of 

expectations of all the component power functions of (3-52) were obtained. These 

expectations have been listed in Table 3-2. Substituting these computed expectations into 

(3-2), moments of Re about the origin were obtained. Using (3-3) or (3-5), different 
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orders of central moments are computed. The computed moments of Re about the origin 

and the mean have also been listed in Table 3-2. 

The exact moments of Re calculated in Table 3-2 can be used to characterize 

distribution of Re. Based on first and second moments of Re (1.972 E-05 and 1.885 E-08) 

the CVRc is calculated to be 6.96. Substituting values of second and third moments of Re 

in (3-7), YRe is obtained as 2.034 E+02. Using (3-9) and calculated values of second and 

fourth moments of Re, the value of KRe is determined as 9.192 E05. These characteristics 

of Re provide a clear picture of its distribution. These characteristics and non-negative 

property of Re indicate that Re has lognonnal distribution. 

Example No. 2 (Risk analysis of storm sewer design) 

For storm sewers, failure and potential property damage occurs when the peak 

runoff, QL, exceeds the storm sewer capacity, Qc. Using rational method QL is expressed 

as: 

( 2-53) 

where AL = correction factor for model uncertainty, C = runoff coefficient; I = rainfall 

intensity; and A = drainage area. Using Manning's equation, Qc is estimated using (Mays 

and Tung, 1992; Tung, 1990; Melching and Yen, 1986): 

(3-54) 

where n = Manning's roughness; Am= model correction factor; d = pipe diameter; So= 

pipe slope. In this example R is the designed capacity of sewer, Qc, and L is the peak 

runoff QL. Using (3-11), the performance function can be defined as 

(3-55) 
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The statistical data of the variables included in (3-53) and (3-54) is taken from 

Mays and Tung (1992) and Tung (1990) and is presented in Table 3-3. Using (3-30) for 

variables having the symmetrical triangular distribution and (3-41) for variables having 

the gamma distribution and Table 3-3, the 1st, 2nd, 3rd, and 4th order expectations of all the 

component power functions of (3-53) and (3-54) were obtained as listed in Tabl~ 3-4. 

Using (3-2) and computed expectations of various component power functions, different 

orders of moments of QL and Qc about the origin were calculated. Similarly, central 

moments of different orders were obtained for both QL and Qc using (3-3). Using (3-14), 

(3-15), (3-16), and (3-17) and various orders of moments of QL and Qc about the origin 

different orders of moments of Z about the origin were calculated. Substituting these 

moments about the origin in (3-3), various orders of central moments were obtained. 

Using (3-7) and (3-9), skewness and coefficient of kurtosis were calculated for QL, Qc, 

and Z. All of these calculations are carried out in a tabular form as listed in Table 3-4. 

Now exact moments and other distribution characteristics of Z are available; 

Using this information, several suitable probability distributions can be selected for Z, 

and risk corresponding to each of these assumed distributions can be calculated. For 

estimating the range, risk corresponding to the normal and uniform distributions can be 

estimated. The risk obtained assuming these two distributions may be regarded as 

extremes, since in reality the Z distribution of most cases probably falls between the 

normal and uniform distributions (Yen et al., 1986). Using the extremes and risk 

calculated assuming other distributions, an appropriate decision can be taken about the 

-system risk. 
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Seeing the distribution characteristics of Z, the normal distribution may be a good 

choice as it has a negligible skew and kurtosis close to 3. The CV of Z is quite high 

indicating negative values of Z, which will be true when QL is more than Qc. Using (3-

12) the risk corresponding to normal distribution is 

0-12.10 
Pf= P(Z < 0) = P(z < ) = P(z <-1.15) = <1>(-1.15)= 0.124 

10.48 
(3-56) 

where z is the standard normal variate defined as z = Z - µz , and <l>(z) is the standard 
O'z 

normal cumulative distribution function. Assuming the triangular distribution for Z as 

defined in (3-25a) and (3-25b), the risk can be calculated from (Yen et al., 1986) 

a 
pf = P(Z < 0) = ( . X ) b-a c-a 

pf = P(Z < O) = c - a _ c + 2ab 
b-c (b-aXb-c) 

for C > 0 

for C < 0 

(3-57a) 

(3-57b) 

Using (3-26) and computed values of Jlz. CVz, and Yz from Table 3-4, the values of 38.31, -

13.23, and 11.22 were obtained corresponding ton= 0, 1, and 2 respectively. Arranging 

these values in order of minimum, maximum, and mode, values of a, b, and c can be 

determined. Therefore, a= -13.23, b = 38.31, and c = 11.22. As c > 0, (3-57a) can be 

used to calculate Pi. Substituting the values of a, b, and c in (3-57a), Pi = 0.139 was 

obtained. 

Assuming 3-parameter lognormal distribution for Z, pz(z) is given as (Haan, 

1977) 

(3-58) 
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where y = ln(Z), and e is a location parameter. The relationships between e, y, and Z are 

given as 

(3-59) 

a; = exp(2µ Y +a; lexp(a; )-1] (3-60) 

3 1 

r z = [exp(a; )-1 ]2 + 3[exp(a; )-1 ]2 (3-61) 

1 

To solve, substitute rz= 0.055, in (3-61) and find [exp(a;}-1]2. This cubic equation has 

one real and two imaginary roots. The real root gives aY = 0.0183. Substituting values of 

a Y and a z in (3-60), µY = 6.35 was obtained. Substituting, a Y, µY, and µz in (3-59), E 

= -560. 7 was determined. Using a Y, µY, and e, the standard normal variate 

corresponding to Z = 0 was found as z = -1.14. The corresponding risk is obtained as 

P1 = P(Z < 0) = P(z < -1.14) = ct>(-1.14)= 0.127 (3-62) 

Using the Edgeworth asymptotic expansion (Abramowitz and Stegun, 1972; Kendall et 

al., 1987; Tung, 1996), Pt can be obtained as 

(3-63) 

where ¢( ~) is the standard normal probability density function; and Hr(§ is r'h -order 

Hermite polynomial (Abramowitz and Stegun, 1972). Calculating various order of Hr(§ 

and substituting values of ct>(~), ¢(~), rz, and Kz in (3-63) Pt = 0.124 was obtained. To 

use the Fisher-Comish expansion, a correction has to be applied to the standard normal 
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variate using the following formula (Fisher and Comish, 1960; Kendall et al., 1987; 

Tung, 1996) 

(3-64) 

Substituting various values in (3-64), t; = -1.124 was obtained. The corresponding risk, 

Pf= <I>(-1.124) = 0.125 was obtained. Now, to see the upper bound of risk, Z was 

assumed to have a uniform distribution as given in (3-20). Using (3-21) and (3-22), a and 

b were calculated as-6.13, and 30.33 respectively. The P1is determined from (Yen et al., 

1986) 

1 1 
pf = - - r.;; = 0.168 

2 -v12CVz 
(3-65) 

In Table 3-5, the different risk estimates obtained assuming different distributions, 

have been listed along with their parameters. Comparing different risk estimates 

presented in Table 3-6, it can be seen that computed risk varies from 12% to 17%. The 

normal, 3-parameter lognormal, and the Edgeworth asymptotic expansion give more or 

less similar results, which are almost equal to the lower bound of the risk. The Fisher-

Comish asymptotic expansion and triangular distributions both give risk estimates falling 

in between the extreme bounds obtained using the normal and uniform distributions. 

Practically speaking, with the possible exception of the uniform distribution, all 

distributional assumptions yield the same risk 

Conclusions 

In this paper, a simple approach of developing generic expectation functions is 

described. Using several commonly used distributions, analytical expressions for 
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expectation functions are derived. These expectation functions can be used to determine 

exact estimates of any order of model output moments. Further, a simple and practical 

approach of evaluating the probability of failure of a system is suggested using the 

triangular distribution for the model output. An analytical equation is derived that will 

give the parameters of the triangular distribution, given the mean, CV, and coefficient of 

skewness of the output random variable. After delineating the triangular distribution, risk, 

reliability of the system can be estimated by calculating the appropriate area of the 

triangular distribution. 
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Table 3-1: Statistical data for example No. 1 

Parameter Symbol Distribution Parameter values 

Mean CV 

(1) (2) (3) (4) (5) 

Contaminant concentration (mg/kg) Cs Lognormal 155 0.39 

Ingestion rate (mg/day) Ir Lognormal 100 1.26 

Fraction ingested Fi Lognormal 0.909 0.03 

Exposure frequency (days/yr.) E1 Exponential 17.4 1.0 

Exposure duration (yr) Ed Exponential 13.0 1.0 

Body weight (kg) Bw Lognormal 15.6 0.23 

Averaging time (yr.) A, Normal 70.0 0.19 

Slope factor (kg-day/mg) S1 Lognormal 2.25 1.66 

Table 3-2: Computation of moments of Re in Example No. 1 

Expectation Order of Expectation, k 

1 2 3 4 

E[C/] 1.550E+02 2.768E+04 5.695E+06 1.350E+09 

E[I/] l.OOOE+02 2.588E+04 l.733E+07 3.002E+l0 

E[F/] 9.090E-01 8.270E-01 7.531E-01 6.864E-01 

E[E/] 1.740E+l 6.055E+02 3.161E+04 2.200E+06 

E[E/] 1.300E+Ol 3.380E+02 1.318E+04 6.855E+05 

E[Bw-k] 6.749E-02 4.796E-03 3.589E-04 2.827E-05 

E[A/] 1.487E-02 2.318E-04 3.825E-06 6.794E-08 

E[S/] 2.250 1.901E+Ol 6.034E02 7.191E+04 

E[R/] 1.972E-05 1.924E-08 5.274E-10 3.266E-10 

E[(Rc-µc) k] 0 l.885E-08 5.263E-10 2.034E+02 

Statistics of Re: µRe =l.972E-05; O'Re = 1.373E-04; CVRe= 6.96; 

YRe = 2.034 E+02; and KRc = 9.192E+05 
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Table 3-3: Statistical data for Example No. 2 

Variable Mean Standard deviation Distribution 

(1) (2) (3) (4) 

Am 1.100 0.0891 Triangular 

N 0.015 0.0553 Gamma 

D (ft) 3.000 0.0410 Triangular 

So (ft I ft) 0.005 0.1640 Triangular 

AL 1.000 0.1230 Triangular 

C 0.825 0.0618 Triangular 

I (in/hr) 4.000 0.1535 Triangular 

A (acre) 10.00 0.0408 Triangular 

1 ft= 0.305m; 1 in= 2.54 cm; 1 acre= 4047 m2 
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Table 3-4: Calculation of expectations for storm sewer design 

Expectation Order of Expectation, k 

1 2 3 4 

E[Amk] 1.100 1.220 1.363 1.534 

E[~k/3] 1.879E+l 3.573E+2 6.873E+3 l.337E+5 

E[S/5k] 7.047E-2 5.000E-3 3.571E-4 2.567E-5 

E[n-k] 6.687E+l 4.486E+3 3.018E+5 2.037E+7 

E[Al] 1.000 1.015 1.045 1.091 

E[C'] 8.250E-1 6.832E-1 5.680E-1 4.739E-1 

E[rk] 4.000 l.637E+l 6.849E+l 2.923E+2 

E[Ak] l.OOOE+l l.OOOE+2 l.005E+3 l.010E+4 

E[Q/] 4.510E+l 2.095E+3 l.002E+5 4.929E+6 

E[(Qc-µct] 0 6.127E+l l.884E+2 4.929E+6 

E[QLk] 3.300E+l l.138E+3 4.087E+4 l.527E+6 

E[(QL-µLt] 0 4.857E+l l.252E+2 6.957E+3 

E[Z'] l.210E+l 2.562E+2 5.819E+3 l.572E+5 

E[(Z-µzt] 0 l.098E+2 6.315E+l 3.627E+4 

Coefficient of variation of Qe, QL, and Z are 0.17, 0.21, and 0.87 respectively. 
Coefficient of skew for Qc, QL, and Z are 0.39, 0.37, and 0.055 respectively. 
Coefficient of kurtosis for Qc, QL, and Z are 3.05, 2.95 and 3.01 respectively. 
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Table 3-5: Comparison of different risk estimates for storm sewer design 

Normal 

Uniform 

Triangular 

Distribution assumed 
(1) 

Three parameter lognormal 

Edgeworth asymptotic expansion of CDF 

Parameters 
(2) 

µz = 12.1, <fz = 109.8 

a = -6.13, b = 30.33 

a= -13.2, b = 38.3, 

C =11.2 

&= -560.69, µy= 6.35, 

0y= 0.018 

µz = 12.1, dz= 109.8, 

rz= 0.055, Kz = 3.01 

Risk 
(3) 

0.124 

0.168 

0.139 

0.123 

0.124 

Fisher-Comish asymptotic expansion of /Jz = 12.1, dz= 109.8, 0.125 

quantile Yz= 0.055, Kz = 3.01 
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CHAPTER IV 

UNCERTAINTY ANALYSIS OF EXPONENTIAL MODELS 

Abstract 

Exponential models are of general interest as they have variety of applications in 

science and engineering. In particular, first-order reaction kinetics, which produce 

exponential models, are the most commonly used· kinetics in modeling, designing, and 

performance evaluation of environmental engineering systems. Application of 

uncertainty and reliability analysis is essential for many problems related to 

environmental engineering systems since they involve a number of uncertain input 

parameters. As the exponent of an exponential model increases, its non-linearity also 

increases, and thus, application of FOA becomes doubtful. This paper describes a 

procedure for correcting the FOA estimates for parameter uncertainty, distribution type, 

and model non-linearity, in order to determine true values for the first and second 

moments of a model output. When confidence limits on the output or system reliability 

are of concern, the output distribution is required. This paper also describes the 

development of generic expectations as a function of the mean and the CV s of input 

random variables. Generic expectation functions can be used to determine higher order 

moments of model output. This knowledge helps in identifying the candidate 

distributions for the model output and provides more flexibility to include those 

121 



distributions, which require higher order moments. Both techniques, the correction 

procedure and generic expectation function method, are easy to use in any general 

application. Three examples are presented to demonstrate the use of developed 

techniques. 

Key words: Exponential functions, first-order kinetics, uncertainty and reliability 

analysis, first-order approximation method, exact estimates of parameter uncertainty. 

Introduction 

First-order kinetics models are of general interest as they describe many events in 

science and engineering. These include problems involving change in population, 

pollution, temperature, bank savings, drugs in the bloodstream, and radioactive materials. 

In environmental engineering, a number of kinetic models are used to model various 

physical, chemical, and biological processes occurring in both natural environments (such 

as streams, aquifers, and air) and artificially controlled environments (such as water or 

wastewater treatment units). Among the most widely used models are the first-order 

reaction kinetics models. In water quality modeling, the first-order models are used 

(Schnoor, 1997; Thomann and Mueller, 1987; Baughman and Lassiter, 1978) to represent 

constituent reactions, microorganism decay/growth, volatilization, sorption, and 

biodegradation rates. While modeling mobility, fate, and transport of hazardous waste, 

first-order degradation kinetics are assumed for simplicity and because of the 

unavailability of other practical mathematical expressions (LaGrega et al. 1994). In air 

pollution modeling, first-order reaction kinetics are used for microbial viability decay of 

air borne microorganisms (Lighthart and Frisch, 1976) and for overall chemical decay of 

air pollutants (APIDSS) as they travel from the source to the receptor. 
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There are many examples where exponential models are used as basic 

performance models in water and wastewater treatment systems. Some of the examples 

include aeration and disinfection kinetics in water treatment, chlorine decay in drinking 

water systems, trickling filters, CSTR, and plug flow activated sludge systems in 

wastewater treatment systems. Similarly, facultative pond and constructed wetland 

systems employed in natural treatment systems also rely on 1st-order removal kinetics. In 

non-point source pollution modeling, nutrient components of commonly used watershed 

models (EPIC, AGNPS, OPUS) assume first::order reaction kinetics for nutrient 

transformations, pesticide leaching, and decomposition of crop residues. 

First-order models are also known as the exponential models in which the input 

random variables occur as an exponent. The exponent consists of two variables: the rate 

coefficient and time. In natural environments, both of them are characteristically random 

variables. In surface water quality modeling, not only stream flow and waste flow are 

inherently random (Loucks and Lynn, 1966), but there are a number of uncertainties 

associated with the various physical and biological processes occurring within the stream 

environment (Tung and Hathhorn, 1988). In the subsurface environment, the fate and 

transport modeling of an organic contaminant is dependent on uncertain flow dynamics 

through porous media having varied physical properties as well as interactions of a 

variety of physical, chemical, and biological processes which are yet to be clearly defined 

(Smith and Charbeneau, 1990). The chemical characteristics of the contaminants also 

impact the transport formulation. Furthermore, the transport of constituents in the 

unsaturated zone is also dependent upon variations in the rate ofrainfall and infiltration. 
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In air pollution modeling, model parameters are uncertain due to variations in 

wind speed, turbulence, temperature, humidity, atmospheric stability, and the presence of 

any barrier which might entrap the particle. However, in highly controlled systems where 

the time parameters and other processes are regulated, the rate coefficient will always be 

associated with some uncertainty related to measurement errors. 

Due to the presence of uncertainty in the exponent parameters, the output of an 

exponential model is considered to be a random variable. Two commonly used methods 

for analyzing parameter uncertainty are the Monte Carlo simulation (MCS) and the first­

order approximation (FOA) (Benjamin and Cornell, 1970). Both methods have 

limitations. The MCS is computationally intensive because of the number of simulations 

required for convergence, which is not well defined (Melching, 1995). In most 

engineering problems, the true probability distributions of the input variables are seldom 

known and commonly used distributions are typically assumed. The quality of the MCS 

estimates is affected by the appropriateness of the chosen distribution functions for the 

input variables and the number of simulations used in the analyses (Bates and Townley, 

1988). FOA is computationally efficient but provides approximate model output 

estimates for the mean and variance only. The quality of these estimates is influenced by 

the coefficient of variation (CV) of input variables and non-linearity in the model (Bum 

and McBean, 1985; Tung, 1990). 

To date, the only widely used criterion to ensure the validity of FOA 

approximation is to restrict the parameter's coefficient of variation (CV) to less than 0.2 

(Benjamin and Cornell, 1970; Burges, 1979; Dettinger and Wilson, 1981). Smith and 

Charbeneau (1990) suggest FOA can be used if the difference between function gradients 
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at the mean and one standard deviation away from the mean are less than some 

acceptable percentage (5-10%). Both of these criteria have limitations. It has been 

observed that error in FOA estimates depends upon parameter CV, parameter 

distribution, and model non-linearity. The nonlinearity of exponential models depends 

upon the magnitude of the exponent. As the mean value of the exponent increases, the 

non-linearity of exponential models increases. For the same CV and model non-linearity, 

the error in FOA estimates varies with the type of parameter distribution. Therefore, any 

criteria judging the suitability ofFOA must include these three elements. 

The main objective of uncertainty analysis is to evaluate the first and second 

moments of a model output in terms of input random variables. Exponential models 

become significantly nonlinear when the magnitude of the exponent > 1, and thus, the 

validity of FOA application becomes questionable. This paper describes a procedure to 

correct FOA estimates for parameter uncertainty, distribution type, and model non­

linearity in order to determine true values for first and second moments of model output. 

When confidence limits on the output or system reliability are of concern, the output 

distribution is required. This paper also describes the development of generic 

expectations as a function of the mean and CV s of input random variables. Generic 

expectation functions can be used to determine higher order moments of the output. This 

knowledge helps in identifying the candidate distributions for the model output and 

provides more flexibility to include those distributions that require higher order moments. 

Both techniques, the correction procedure and generic expectation function approach, are 

easy to use in any general application. Three practical examples related to volatilization 

of organic compounds from streams, pesticide leaching assessment, and decay of chlorine 
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in water distribution systems are presented to demonstrate the use of the developed 

techniques. 

First Order Approximation Method 

Benjamin and Cornell (1970) and Cornell (1972) have provided detailed 

description of FOA. Mathematically a random variable Y which is a function of n random 

independent variables can be expressed as 

Y=g(X) (4-1) 

whereX = (Xi, X 2 .......... , Xn), a vector containing n random independent variables X;. 

Through the use of Taylor's expansion and its first order approximation, the mean of the 

model output can be approximated by 

(4-2) 

where Xis the vector containing the mean values of all the random variables, fir is the 

FOA predicted mean for a model output. The variance of the model output can be 

approximate~ as 

A2 ~[ og ]2 
2 . 

G'y = LJ - G'x, 
i=t oX; x, 

(4-3) 

where a1 is the variance of input parameter X; and a; is the FOA predicted variance for 
I . 

the model output. Since, the FOA is an approximate method giving only estimates for the 

means and variances of a model output, there is always some error associated with 

estimates obtained using it. 

Relative Error in FOA Estimates 

Consider an exponential function 
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Y = f (x) = becx (4-4) 

where band care constants. Using (4-2), the FOA estimate for the mean of Y, far is given 

as 

(4-5) 

µxis the mean of the input variable x. Using (4-3), the FOA estimate for the variance of 

Y, a; is given as 

A2 =b2 2 2cµ,,.,..2 =b2 2e2Cµ_,µ2cv2 O'y ce vx c x x (4-6) 

where a~ is the variance of x; and CVx is the coefficient of variation of x which is defined 

as 

(4-7) 

The estimates obtained from (4-5) and (4-6) for µy and a; contain errors. The relative 

error, E, in FOA estimates is defined as 

Exact value - FOA estimate FOA estimate 
E= =1------

Exact value Exact value 
(4-8) 

The exact value of the mean and variance of an exponential function and therefore the 

corresponding relative error in FOA estimates for the mean and variance depend upon 

CV, mean, and type of distribution of input parameter(s). Rewriting (4-8) 

FOA estimate 
Exact value = -~-~-

(1- E) 
(4-9) 

Using ( 4-9), FOA estimates of the mean and variance of an exponential function can be 

corrected if E is known. 
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Generic Expectation Function 

The generic expectation function is defined as the r 1h moment of Y about the origin 

( µ; ). Mathematically, it is defined as 

(4-10) 
-00 -oo 

where E[ ] is an expectation operator, and p x (x) is the probability density function of X 

The r 1h -central moment of Y, µr, can be obtained using the following equation (Haan, 

1977) 

(4-11) 

where, µy is the mean of Y, which can be evaluated from (4-10) by substituting r = 1, as 

(4-12) 

In most situations, distributional properties of a random variable are characterized 

in terms of their mean, variance, coefficient of skewness, and coefficient of kurtosis. The 

variance of Y, d y, is defined as the second moment about the mean. Substituting r = 2 in 

(4-11), ifyis given as 

2 r 2] 2 µ 2 =ay =ELY -µy (4-13) 

where µ2 is the second moment of Y about the mean. The coefficient of skewness of Y, yy, 

is defined as (Haan, 1977) 

(4-14) 
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where µ3 is the third moment of Y about the mean which can be obtained by substituting r 

= 3 in (4-11) as 

µ 3 = E[Y3 ]-3µyE[Y 2 ]+ 2µ; 

The kurtosis of Y, Ky, is defined as (Haan, 1977) 

K - µ4 
y- µ; 

(4-15) 

(4-16) 

where µ4 is the fourth moment of Y about the mean which can be obtained by substituting 

r = 4 in (4-11) as 

(4-17) 

Development of Relative Error and Generic Expectation Functions 

Uniform Distribution 

The probability density function p x (x) for the continuous uniform distribution is 

1 
Px(x)= (p-a) ,a~x~/J (4-18) 

where a and fJ are the distribution parameters. Using the methods of moments, the 

estimates for a and fJ are given (Haan, 1977) as 

a= µx --J30"x = µx(1--J3CVx) 

/J = µx +-J3ax = µx (1 +-J3CVx) 

Substituting p x (x) into ( 4-10), the E[Yr ]is given as 
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(4-20) 

(4-21) 



Substituting r = 1 and 2 into (4-21), E[Y] and E[Y2] are given as 

(4-22) 

(4-23) 

Substituting (4-22) and (4-23) into (4-13), a/ is given as 

a2 = b2 [e2cµ,{1+cv, "3)(1 + Ji:µ CV.)+ 2e2cµ, J 
y 12c2 2cv_2 X X 

µX X . 

(4-24) 

Substituting FOA predicted mean of Y from ( 4-5) and true mean of Y from ( 4-22) into ( 4-

8), the expression for relative error in FOA predicted mean, E(µy) is given as 

2 '3cµ CV e .JJcµ,CV, 
E(µ ) = 1 - 'V ~' X X 

y (e2.J3cµ,CV, -1) (4-25) 

Figure 4-1 shows a plot of E(µy)versus exponent mean for various CV values ranging 

form 0.01 to 0.57. Now substituting the FOA estimated variance (4-6) and correct 

variance (4-24) into (4-8), the relative error in FOA predicted variance, E(u;) is given 

as 

(4-26) 

Figure 4-2 depicts a plot of E(a;) versus exponent mean for various CV values ranging 

form 0.01 to 0.57. 
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Symmetrical Triangular Distribution 

The probability density function px(x) for the symmetrical triangular distribution 

IS 

( ) 2 (x-a) 
p x x = (jJ ) ( ) , when a ~ x ~ OJ -a OJ-a 

( ) 2 (p-x) 
p x x = (jJ _ a) (jJ _ OJ) , when OJ ~ x ~ p (4-27) 

where a, /3, and OJ are the minimum, maximum, and mode values of X. These parameters 

can be obtained by the following equation (Appendix II) 

(4-28) 

where ~ = a vector containing /3, a, and OJ, which can be obtained by substituting n = 0, 

1, and 2, respectively, into (4-28); and rx is the coefficient of skew of X. Substituting (4-

27) into (4-10) and integrating, the E[Y] is given as 

E[Yr ]= 2hr [(a- p)exp(rcOJ )+ (P-OJ )exp(rca )+ (OJ-a )exp(rcp)] 
r2c2 (/J-aXOJ-aXP-OJ) 

(4-29) 

For symmetrical distribution rx = 0 and the parameters a, /3, and OJ can be 

obtained corresponding ton= 1, 0, and 2. The estimates of a, p, and OJ are given as 

a= µx(1-J6cvx) 

fJ = µx(l+J6°CVx) 

(4-30) 

(4-31) 

(4-32) 

Substituting estimates of a, p, and OJ into ( 4-29), the E[X] for the symmetrical triangular 

distribution is given as 
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[ ] b [ _!_rcµ,(1+cv,.J6) _!_rcµ,{1-cvx./6)] 
EYr = e 2 -e 2 

6r 2c 2µ 2CV 2 
X X 

(4-33) 

Substituting r =I and 2 into (4-33), E[Y] and E[Y2] are expressed as 

[ ] b [ .!_cµ_,(1+cv,/6} !cµx(1-cv,/6}] 
E Y = e 2 -e 2 

6c 2 µ 2 CV 2 
X X 

(4-34) 

(4-35) 

Substituting E[YJ and E[Y2] into (4-13), a/ is written as 

(4-36) 

where ax = µxCVx. Substituting (4-5) and (4-34) into (4-8), the expression for relative 

error into FOA predicted mean, E(µy) is given as 

(4-37) 

Equation (4-37) has been represented graphically in Figure 4-3 for different values of 

exponent mean and exponent CV ranging form 0.01 to 0.4. Substituting (4-6) and (4-36) 

into (4-8), the relative error in FOA predicted variance E(a;) is expressed as 

(4-38) 

Figure 4-4 plots (4-38) for various exponents mean values and CV values ranging from 

0.01 to 0.40. 
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. Nonnal Distribution 

If Xis normally distributed, its probability density function is given (Haan, 1977) 

as 

Px(x) = ~ exp[-_!_(x- µx )
2

] 

ax 21l 2 O'x 
(4-39) 

where µ x and a_i- are the distribution parameters. Substituting ( 4-39) into ( 4-10), E[Y'] is 

given as 

E[Y' ]= b' exp(rcµx + "ir 2c2 µ_i-CV1) (4-40) 

Substituting r = 1 and 2 into (4-40), E[Y] and E[Y2] are given as 

(4-41) 

(4-42) 

Substituting E[Y] and E[Y2] into (4-13), a/ is written as 

(4-43) 

Substituting (4-5) and (4-41) into (4-8), the relative error in FOA predicted mean 

E(µ,) is expressed as 

E(µ,) =I-exp[-~ c2 µ;CV}] (4-44) 

Figure 4-5 presents a plot of E(µ,) versus exponent mean for various CV values ranging 

from 0.01 to 0.33. Substituting (4-6) and (4-43) into (4-8), the relative error in FOA 

predicted varianceE(a;) can be expressed as 
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(4-45) 

In Figure 4-6, E(a-;) is plotted against the exponent mean for various CV values ranging 

from 0.01 to 0.33. 

Gamma Distribution 

The gamma density function is given by 

x, a, and l > 0 (4-46) 

where a and A are the distribution parameters. Using method of moments a and A are 

expressed (Haan, 1977) as 

(4-47) 

A µ; 1 
a=-=--

0-2 cv2 
X X 

(4-48) 

Substituting (4-46) into (4-10) and integrating, E[Y'] is obtained as 

I 

E[Yr] = br (1- crµxCV} t cv} (4-49) 

Substituting r = 1 and 2 into (4-40), E[Y] and E[Y2] are given as 

I 

E[Y]= b(l-cµxCVx2 t cv} (4-50) 

I 

E~2 ] = b2 (1- 2cµxCV}) cv; (4-51) 

Substituting E[Y] and E[Y2] into (4-13), a; is written as 
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(4-52) 

Substituting ( 4-5) and ( 4-50) into ( 4-8), the relative error in FOA predicted mean 

E(µ Y) is expressed as 

1 

E(µy) = 1-(1-cµxCV; )cv; exp(cµJ (4-53) 

Figure 4-7 shows a plot of E(µy)versus exponent mean for various CV values ranging 

from 0.01 to 1.0. Substituting (4-6) and (4-52) into (4-8), the relative error in FOA 

predicted variance E(rr~) can be written as 

(4-54) 

Figure 4-8 shows a plot ofE(rr~) versus exponent mean for various CV values ranging 

from 0.01 to 1.0. 

Exponential Distribution 

The exponential distribution is a special case of the gamma distribution with a = 

1. Substituting a = 1 in ( 4-48), CVx = 1 is obtained. Substituting CVx = 1 into ( 4-49), 

E[Y] is given as 

E[Yr ]- br 
- (1-crµJ 

(4-55) 

Substituting CVx = 1 in (4-53), the relative error in FOA predicted mean,E(µy) is given 

as 

E(µy) = 1-(1-cµx)exp(cµx) (4-56) 
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On substituting CVx = 1 in (4-54), the relative error in FOA predicted variance E(a;) is 

expressed as 

E(o- 2 ) = I- c2 µ; exp(2cµx) 
r (1- 2cµJ- 1 -(1- cµJ-1 

(4-57) 

In Figure 4-9, E(µr) and E(a:) have been plotted with exponent mean values. 

Examples 

Three examples are used to.illustrate the application of the developed procedures. 

In problems where only the mean and variance are required, the correction technique can 

be used to correct the FOA estimates for the mean and variance of a model output. In 

reliability and risk problems where the distribution of a model output or performance 

function is required, the generic expectation function can be used to determine higher 

order moments. Based on these moments, one may be able to determine an output 

variable distribution whose higher order moments are in exact match or choose a 

distribution among the commonly used distributions based on finding the closest fit by 

comparing the computed moments. All three examples are simple so that results can be 

easily interpreted. 

Example No. 1 (Volatilization of organic compounds from streams) 

Various physical, chemical, and biological processes occurring in the stream 

environment determine the fate of organic compounds discharged into streams and rivers. 

Among these processes, one of the most important for many compounds is volatilization, 

which is the physical transport of the compound through the air-water interface into the 
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air (Rathbun and Tai, 1982). The loss of chemical due to air-water exchange is governed 

by first-order reaction kinetics (Rathbun and Tai, 1982; Schwarzenbach et al., 1995). 

The concentration, C, at distant x from the input point is given as 

( KL/it) C=C0 exp --d- (4-58) 

where Co is the concentration of chemical after mixing of the release with the stream 

water; lit is the travel time of flow; d is the average depth of water; and KL is the mass-

transfer coefficient for the volatilization of concerned chemical from the stream. 

There is always some uncertainty involved in each of the variables of ( 4-58). Co is 

uncertain because of the complete mixing assumption and measurement errors. lit is 

uncertain because of spatial and temporal variations in velocity of flow. Average depth 

also varies from cross-section to cross-section. KL is uncertain because it is a 

mathematical approximation of several complex processes and also because of the 

number of uncertainties that are associated with those various processes occurring within 

the stream environment. Rathbun and Tai (1982) developed regression equations for KL 

for the volatilization of ethylene and propane in terms of hydraulic and geometric 

characteristics of streams. To obtain mass transfer coefficients for other organics, 

corrections for molecular diffusivity, molecular diameter, or molecular weight were 

suggested. 

In this example (Rathbun and Tai, 1982), an accidental release of a wastewater 

containing carbon tetrachloride into a stream is considered. The problem is to determine 

the mean and variance of chemical concentration after a given travel time. The mean 

values of Co, KL, d, and Mare taken from Rathbun and Tai (1982) as 100 mg/L, 1.43 

m/day, 0.40 m, and 2.6 days respectively. Assuming, Co, d, and Mas constants, the 
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impact of uncertainty in KL on the mean and variance of C is studied using different 

CVKL values and distributions as shown in Table 4-1. 

Based on the mean values of input parameters, the FOA estimates for the means 

are determined using (4-5) as given in column 2 of Table 4-1. Using relative error 

functions (4-25), (4-37), (4-44) and (4-53) for the uniform, triangular, normal and gamma 

distributions respectively, E(fac) is determined corresponding to each distribution and 

different values of CVKL as listed in columns 3, 5, 7, and 9 in Table 4-1. E(µc)can also 

be determined using relative error plots such as Figures 4-1, 4-3, 4-5, and 4-7 for the 

uniform, triangular, normal, and gamma distributions, respectively. Substituting .Uc and 

E(fac) in ( 4-9), co:rrect mean values, µc, are obtained as listed in Table 4-1 for various 

assumed distributions. From Table 4-1, itcan be noticed that while .Uc remains constant 

regardless ofCVK , the µc values increase with increasing in CVK , indicating impact 
L L 

of KL uncertainty on mean of C. Furthermore, Table 4-1 also depicts the impact of 

distribution type used for KL, It can be observed from Table 4-1 that at smaller CV K , the 
L 

µc values are almost similar. Their differences increase with an increase in CV K • The 
L 

differences of µc values based on the normal distributions are found to be the most 

pronounced. 

In Table 4-2, FOA estimates for the variance of C using different distributions and 

CVs of KL are calculated as given in column 2. Relative errors in these estimates are 

determined using (4-26) for the uniform distribution, (4-38) for the triangular 

distribution, (4-45) for the normal distribution, and (4-54) for the gamma distribution. 
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The calculated EC at) are given in columns 3, 5, 7, and 9 of Table 4-2 respectively. 

Substituting a-t and E(at) into (4-9), correct values of at are determined as listed in 

columns 4,6, 8, and 10 of Table 4-2. 

In Table 4-2, estimates of E( a-t) for various distributions indicate that there is 

significant error in FOA estimates even at small values of CV K . The impact of 
L 

distribution type is also clearly depicted by comparing E( a-t) values for different 

distributions. Their differences become more pronounced at higher CV K values. It can 
L 

be noticed that at CV K = 0.2, variation in relative errors for different distributions is 90% 
L 

to 100% indicating CV ~ 0.2 criteria is not valid. 

Example No. 2 (Uncertainty in a pesticide leaching assessment) 

For the past decade, there have been concerns over the problem of nonpoint 

source pollution of groundwater with organic chemicals. Several screening indices to 

determine a pesticide's leaching potential were suggested by various researchers. These 

chemical fate indices are based on the relative travel time needed for the pesticides to 

migrate through the vadose zone and on the relative mass emission from the vadose zone 

(Rao et al., 1985). These indices, which are less data demanding than deterministic-

conceptual models, have not been widely accepted due to concerns regarding their 

reliability (Loague and Green, 1988). 

Consider the attenuation factor (AF) index proposed by Rao et al. (1985) to rank 

pesticides with respect to their potential to leach to groundwater. The primary processes 

controlling the rate of pesticide leaching considered in the AF index are advection, 
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sorption, and transformation. Sorption is incorporated into AF by a retardation factor, RF, 

defined (Rao et al., 1985; Loague and Green, 1988) as 

(4-59) 

where Pb is the bulk density of soil (kg/m3); foe is the organic carbon content in the soil 

(mass fraction); Koc is the pesticide sorption coefficient (m3 /kg); B FC is the water content 

of soil at field capacity (volume fraction); n0 is the air-filled porosity of soil (fraction); 

and KH is Henry's constant (dimensionless). Assuming first-order reaction kinetics for the 

pesticide degradation, AF is defined as the fraction of surface-applied pesticide that 

reaches the groundwater. Mathematically, AF is given (Rao et al.,1985; Loague and 

Green, 1988) as 

AF = exp(-kt) (4-60) 

where k is the first-order degradation rate coefficient (days-1); and tis the total travel time 

required for a pesticide to travel from soil surface to the water table. The total travel time 

can be approximated (Rao et al.,1985; Loague and Green, 1988) as 

d RF Bpc 
t=----

q 
(4-61) 

where dis the depth of the water table (m); and q is the net annual ground water recharge 

rate (m/day).Substituting (4-59) into (4-61), tis rewritten as 

-The pesticide half-life, T112, is related to k as 

k = 0.693 

Ti12 
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(4-64) 

The assumptions and limitations of the AF index are described by Rao et al. 

(1985) and Loague et al. (1989, 1990). The parameters of (4-64) include soil properties, 

hydrogeologic and climatic characteristics, and chemical coefficients. An extensive data 

set of the Pearl Harbor Basin, Hawaii, has been given by Loague (1991), Loague and 

Green (1988), and Loague et al. (1989, 1990). It is noticed that the coefficient of 

variation of the parameters in (4-64) ranges from 0.2 to 0.96, indicating a very large 

uncertainty. Therefore, it becomes imperative to characterize the impact of parameter 

uncertainties on the estimates of AF. The impact of data uncertainty in pesticide leaching 

assessments has been addressed by Loague et al. (1989, 1990), Loague and Green (1988, 

1990), and Loague(1991) using FOA. Very large parameter CV values and model 

nonlinearity make the reliability of the FOA estimates for the mean and variance of AF 

questionable. Table 4-3 presents the statistical properties of the parameters of (4-64) 

corresponding to the inceptisols soil order in the Pearl Harbor Basin (Loague and Green, 

1988; Loague et al., 1990). The distributions of Bpc and.foe are assumed to be lognormal 

(Labieniec et al., 1994). Recognizing the high CV values and non-negative constraint for 

the rest of the parameters, a lognormal distribution is assumed. 

Considering application of AF for a single near-surface layer, dis assumed to be a 

constant value of 0.5 m. The pesticide selected for the leaching potential assessment was 

diuron, for which KH was assumed to be zero (Loague and Green, 1988; Loague et al., 

1990). Substituting KH = 0, ( 4-64) is rewritten as 
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(4-65) 

Applying FOA on (4-65) with the statistical data given in Table 4-3, the FOA estimates 

for the mean (µAF) and standard deviation ( a AF) of AF are determined as 3.18E-21 and 

2.26E-19 respectively. These values are similar to what were calculated by Loague and 

Green (1988), Loague et al. (1990), and Loague (1991). 

To calculate the correct estimates of mean and variance of AF, the developed 

technique is used. For simplification, (4-65) is rewritten as 

AF= exp(cr) (4-66a) 

where c = -1; and r is a random variable defined as 

(4-66b) 

To use the developed relative error equations or plots, the distribution of r must be 

known. If higher order moments of r are known, an appropriate distribution can be 

determined either by incorporating higher-order moments exactly using the method of 

entropy (Tung, 1996) or by choosing an approximate distribution form already available 

distributions based on the information about moments. The exact moments of r can be 

evaluated using the generic expectation function approach (GEF A) for a power function 

as presented in Chapter III. 

The generic expectation function for X, where Xis lognormally distributed is 

given as 

(4-67) 
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where Y = ln(X) is normally distributed with parameters µy and a-;. The parameters 

µy and a-; are defined (Haan, 1977) as 

(4-68) 

a-;= ln(l + CVj) (4-69) 

Using (4-67) and data given in Table 4-3, different orders of moments of component 

power functions of ( 4-66b) about the origin are obtained. Multiplying moments of 

individual power functions E(p;] , E[r;;,] , andE[K;c] for a required order, 

E[(PbfocKoc Y] is determined for various values of r as listed in Table 4-4. Using 

E[e;c] and E[(pbfocKoc Y] and applying the linearity property of expectation, 

E[(eFc + PbfocKocY] is determined for different values of r. Multiplying 0.693 with d = 

0.5, 0.3465 is obtained. For a required value of r, (0.3465/,E[q-r] , E~ii2] and 

these moments and (4-11), central moments of Tare obtained. Using obtained central 

moments with (4-12), (4-13), (4-14) and (4-16), mean, variance, coefficient of skewness, 

coefficient of kurtosis of-rare evaluated. The calculation is presented in Table 4-4. 

Seeing the relative error plots corresponding to µr =128.96 and CVr = 2.23, it is 

noticed that estimates of mean and variance have almost 100% relative error regardless of 

the distribution of -r. 
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Statistics indicate that r can be assumed to be approximately lognormally 

distributed and can be verified by comparing coefficients of skewness and kurtosis. 

Assuming lognormal distribution for r with parameters µ, =128.96 and CV,= 2.23, the 

coefficients of skewness and kurtosis are calculated to be 17.8 and 1800 respectively. 

This indicates that a lognormal distribution is reasonable. Using lognormal distribution 

for r, the µAF= 3.29E-03 and a AF= 2.74E-02 are calculated using the Gauss-Laguerre 

quadrature method (Zwillinger, 1996). 

To verify the above results, MCS was used to determine the mean and standard 

deviation of AF. To ensure the convergence, 100,000 simulations were used in the MCS. 

The values of µAF and a AF obtained using MCS are presented in Table 4-5 along with 

those obtained from FOA and GEF A. Table 4-5 indicates the effect of choice of 

uncertainty analysis method. The results of FOA are totally erroneous and may have 

serious consequences on the decision making. The results of MCS are comparable with 

that of GEF A. But, it can be noticed that using such a large number of simulations, the 

MCS has not converged to the exact estimates. Further, it is observed that the discrepancy 

in the coefficients of skewness and kurtosis is large. This may affect risk or reliability 

analysis of a project involving AF. 

Example No. 3 (Uncertainty in residual chlorine in water distribution systems) 

In drinking water distribution systems, it is current practice to maintain a desired 

level of residual chlorine concentration to provide protection against leaks, regrowth of 

microbial contamination, and other breakdowns. Most network modeling packages 
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assume that chlorine decay follows first-order kinetics (Powell et al., 2000). The chlorine 

concentration, C, at any time t (mg/L) is given by the following equation: 

C = C0 exp(-kt) (4-70) 

where Co is the initial chlorine concentration (mg/L); and k = overall decay constant 

(L/h). In literature considerable variability was observed in the value of the first-order 

decay constant (Powell et al., 2000). There are a number of factors affecting chlorine 

decay in the water distribution system such as reactions both within the bulk fluid and 

with pipe material, organic matter, or presence of other chlorine demanding impurities. 

Whereas, the reactions within the bulk fluid are affected by water temperature and 

organic content of water, the reactions with pipe wall are related to the corrosiveness of 

the ferrous pipe materials and the perimeter. Some of this variability is likely due to 

changes in the concentration and chemical nature of the compounds that chlorine is 

reacting with. Other uncertain factors are changes in temperature, chlorine dose, and 

organic content of the water. Furthermore, the network's ratio of chlorine to organic 

reactants in the water varies significantly with time or space. Since the reactions do not 

exactly follow first order decay, the value of k changes with respect to time as well. 

In order to provide safe drinking water, the impact of uncertainty in the first-order 

decay constant must be investigated. To obtain statistical characteristics of k, frequency 

distribution data of k was read from Powell et al. (2000). The mean and coefficient of 

variation of k were found to be 0.14 L/h and 0.63 respectively. Three distributions, 

namely exponential, lognormal, and gamma were fitted. Using 6 classes, the chi-square 

statistics,z; (Haan, 1977), were calculated as 6.52, 57.71, and 5.0, respectively. 

Comparing z; with z~.90,3 = 6.25, it is concluded that the gamma distribution adequately 
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describes the data at the 10% significance level. In Table 4-6, statistical characteristics of 

C at different times t ranging from 1 hr to 24 hr were computed, which give a thorough 

understanding of the uncertainty in C at different times. In Table 4-6, µc, is calculated 

from (4-5), E(µc)is calculated from (4-53), and µc is determined by substituting µc 

and EC.uc)in (4-9). Similarly, using (4-6), (4-54), and (4-9), a};, E(a~), anda~, are 

calculated as listed in Table 4-6. 

It can be noticed from Table 4-6 that there is substantial amount of error in FOA 

estimates of means and variances of residual chlorine concentration in water distribution 

systems. The FOA underestimates the mean throughout the 24 hours, whereas, it 

overestimates the variance during first 10 hours and underestimates afterwards. To have 

an idea about distribution type, distributional characteristics of C can be determined using 

GEFA as given in Table 4-7. Using (4-49), 15\ 2nd, 3rd, and 4th orders of moments of C 

about the origin are estimated as listed in columns 2, 3, 4, and 5 of Table 4-7. Using these 

moments and ( 4-11 ), various orders of central moments are estimated and used to 

determine distributional characteristics (mean, variance, CV, coefficient of skew, and 

coefficient of kurtosis) of C as listed in columns 6, 7, 8, 9, and 10 respectively. 

From Table 4-7, it can be concluded that C can not be represented by a normal 

distribution. Therefore, any analysis based on FOA and normal distribution for C will be 

misleading. A typical requirement for minimum free chlorine residual is 0.2 mg/L 

(Anonymus, 2000). In order to estimate the probability of failing to meet this 

requirement, i.e., P(C s; 0.2 mg/L), the distribution of C is required. Using the variable 

transformation technique (Haan, 1977), the exact distribution of C is obtained as 
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(4-71) 

where a and J are the parameters of gamma distribution fitted for k. Using this 

distribution, one can compute the desired probabilities. It is general practice to use the 

normal distribution with FOA estimated mean and variance. In Table 4-8, different 

probability estimates, namely normal distribution with FOA estimated mean and 

variance, normal distribution with corrected mean and variance, and the exact derived 

distribution of C, are compared. 

Table 4-8 indicates that the probability ofresidual chlorine concentration S 0.2 

mg/L, is overestimated by FOA. Based on FOA results, decision may be made to increase 

the residual chlorine concentration. This increased chlorination may prompt formation of 

undesirable by-products such as trihalomethanes (THM's) and other halogenated 

hydrocarbons, which are toxic to human health. Further, using normal distribution with 

correct means and variances, the probabilities of residual chlorine concentration S 0.2 

mg/L, are underestimated. This may result of reducing the residual chlorine concentration 

in the water, which may · be inadequate against microbial protection. Due to the 

conflicting objectives~ chlorine disinfection needs an exact analysis of residual chlorine 

concentration to safeguard water consumers. 

Conclusions 

In this paper two approaches, the correction procedure for correcting the FOA 

estimates for parameter uncertainty, parameter distribution type, and model non-linearity 

and the generic expectation function approach for evaluating exact moments of model 
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output, are described. Analytical and graphical relationships for relative error, using 

several commonly used distributions, are developed to correct the FOA estimates to 

obtain exact values of the mean and variance of model output. This technique is 

particularly useful for determining exact values of the mean and variance of model 

output. When the distribution of a model output is required, the generic expectation 

method can be used. Analytical expressions for generic expectation functions using 

several commonly used distributions are derived. These functions can be used to 

determine exact model output moments of any order. Knowledge of higher-order 

moments helps in identifying the appropriate distribution for the model output. Three 

practical examples are solved which show that the developed techniques are not only 

easy to use but also provide more understanding of the process being considered. 
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Table 4-1: Correcting FOA estimates for the mean chemical concentration 

CVK FOA Exact estimates for mean values of C( µg IL ) 
L Estimate Uniform Triangular Normal Gamma 

ftc E(ftc) µc E(ftc) µc E(ftc) µc ECftc) µc 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

0.05 9.19 0.10 10.21 0.10 10.21 0.10 10.21 0.10 10.21 

0.10 9.19 0.33 13.71 0.34 13.92 0.35 14.14 0.33 13.72 

0.15 9.19 0.56 20.89 0.59 22.41 0.62 24.18 0.57 21.37 

0.20 9.19 0.74 35.35 0.78 41.77 0.82 51.06 0.75 36.76 

0.25 9.19 0.86 65.64 0.89 83.54 0.93 131.28 0.86 65.64 

0.30 9.19 0.92 114.87 0.95 183.80 0.98 459.5 0.92 114.88 

Table 4-2: Correcting FOA estimates for the variance of chemical concentration 

CVK FOA Exact estimates for variance of C ( µg IL)'-
L Estimate Uniform Triangular Normal Gamma 

A2 
E(ot) 0"2 E(ot) (]"2 E(ut) 0"2 E(ut) 0"2 <rcx 

Cx Cx Cx Cx 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
0.05 l.82El 0.16 2.16El 0.22 2.33El 0.28 2.53El 0.24 2.39El 

0.10 7.29El 0.48 1.40E2 0.61 l.85E2 0.73 2.75E2 0.64 2.03E2 

0.15 l.62E2 0.75 6.48E2 0.86 l.17E3 0.95 3.53E3 0.88 1.33E3 

0.20 2.92E2 0.90 2.83E3 0.96 7.48E3 1.00 8.21E4 0.96 7.83E3 

0.25 4.56E2 0.96 1.23E4 0.99 5.03E4 1.00 4.12E6 0.99 3.96E4 

0.30 6.56E2 0.99 5.43E4 1.00 3.54E5 1.00 4.79E8 1.00 1.66E5 
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Table 4-3: Statistical properties of the parameters used in pesticide leaching assessment 

Parameter Symbol Parameter values Distribution 
Mean CV 

(1) (2) (3) (4) (5) 
Soil water content (fraction) Bpc 0.41 0.22 Lognormal 

Soil bulk density (kglm3) Pb 688 0.35 Lognormal 

Soil organic content (fraction) foe 0.09 0.56 Lognormal 

Pesticide sorption coefficient (m3 /kg) Koc 0.383 0.72 Lognormal 

Net annual groundwater recharge (m/day) Q 5.4E-4 0.96 Lognormal 

Pesticide half-life (days) T112 328 0.65 Lognormal 
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Table 4-4: Computation of the exact moments of T 

Expectation Order of expectation, r 
1 2 3 4 

E[e;c] 4.lOE-1 1.76E-1 7.94E-2 3.75E-2 

E[p;] 6.88E+2 5.31E+5 4.58E+8 4.44E+ll 

E[J:C] 9.00E-2 l.06E-2 l.63E-3 3.29E-4 

E[K;c] 3.83E-1 2.23E-1 1.98E-1 2.69E-1 

E[q-r] 3.57E+3 2.45E+7 3.25E+ll 8.32E+15 

E~vz] 4.32E-3 2.65E-5 2.30E-7 2.83E-9 

E[(PbfocKocY] 2.37E+l 1.26E+3 1.49E+5 3.93E+7 

E[(eFc + PbfocKocY] 2.41E+l 1.27E+3 1.SOE+S 3.95E+7 

w693d n 1.29E+2 9.96E+4 4.68E+8 1.34E+13 

E (BFc + PbfocKoc) 
qt112 

Central moments of r 0 8.29E+4 4.34E+8 1.32E+13 
Statistics of T: mean= 128.96, standard deviation= 288.07, CV= 2.23, 
Coefficient of skew= 18.15, and coefficient of kurtosis= 1916.93 

Table 4-5: Comparison of the means and the standard deviations of AF 

Method 

FOA 
GEFA 
MCS 

(1) 

3.18E-21 
3.29E-03 
2.75E-03 

Statistics of attenuation factor, AF 
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O'AF 

(3) 
2.26E-19 
2.74E-02 
2.42E-02 

CVAF 

(4) 
7.11 
8.33 
8.80 



Table 4-6: Correcting FOA estimates using relative error functions 

Mean (mg/L) Variance (mg/L) 
t (hr) FOA Relative Corrected FOA Relative Corrected 

estimate error Estimate estimate error estimate 

ftc E(µc) µc .. z E(o-~) a} ac 
(1) (2) (3) (4) (5) (6) (7) 
1 0.7824 0.0037 0.7854 0.0048 -0.1005 0.0043 

2 0.6802 0.0144 0.6901 0.0144 -0.1783 0.0122 

3 0.5913 0.0311 0.6103 0.0245 -0.2323 0.0199 

4 0.5141 0.0529 0.5428 0.0329 -0.2628 0.0260 

5 0.4469 0.0790 0.4853 0.0388 -0.2712 0.0306 

6 0.3885 0.1087 0.4359 0.0423 -0.2596 0.0336 

7 0.3378 0.1412 0.3933 0.0435 -0.2306 0.0353 

8 0.2937 0.1758 0.3563 0.0429 -0.1872 0.0362 

9 0.2553 . 0.2120 0.3240 0.0411 -0.1321 0.0363 

10 0.2219 0.2492 0.2956 0.0383 -0.0685 0.0359 

11 0.1929 0.2869 0.2706 0.0350 0.0012 0.0351 

12 0.1677 0.3248 0.2484 0.0315 0.0745 0.0341 

13 0.1458 0.3625 0.2287 0.0280 0.1493 0.0329 

14 0.1268 0.3996 0.2111 0.0245 0.2238 0.0316 

. 15 0.1102 0.4359 0.1954 0.0213 0.2968 0.0302 

16 0.0958 0.4713 0.1812 0.0183 0.3669 .0.0289 

17 0.0833 0.5056 0.1685 0.0156 0.4335 0.0275 

18 0.0724 0.5385 0.1569 0.0132 0.4959 0.0262 

19 0.0630 0.5702 0.1465 0.0111 0.5538 0.0249 

20 0.0547 0.6003 0.1369 0.0093 0.6070 0.0237 

21 0.0476 0.6290 0.1283 0.0078 0.6554 0.0225 

22 0.0414 0.6563 0.1203 0.0064 0.6992 0.0214 

23 0.0360 0.6820 0.1131 0.0053 0.7385 0.0204 

24 0.0313 0.7062 0.1064 0.0044 0.7736 0.0193 
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Table 4-7: Uncertainty in chlorine concentration after a given time t 

t (hr) Moments of about the origin Distributional characteristics of C 
E[C] E[C] E[C] E[C] µc a} CVc Ye Kc 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
1 0.785 0.621 0.494 0.396 0.785 0.004 0.084 -0.934 3.986 

2 0.690 0.489 0.353 0.260 0.690 0.012 0.160 -0.672 3.192 

3 0.610 0.392 0.262 0.181 0.610 0.020 0.231 -0.452 2.724 

4 0.543 0.321 0.201 0.132 0.543 0.026 0.297 -0.262 2.451 

5 0.485 0.266 0.158 0.100 0.485 0.031 0.360 -0.092 2.307 

6 0.436 0.224 0.127 0.078 0.436 0.034 0.420 0.062 2.252 

7 0.393 0.190 0.104 0.062 0.393 0.035 0.478 0.204 2.264 

8 0.356 0.163 0.086 0.050 0.356 0.036 0.534 0.336 2.327 

9 0.324 0.141 0.072 0.041 0.324 0.036 0.588 0.461 2.431 

10 0.296 0.123 0.062 0.034 0.296 0.036 0.641 0.580 2.570 

11 0.271 0.108 0.053 0.029 0.271 0.035 0.692 0.693 2.740 

12 0.248 0.096 0.046 0.025 0.248 0.034 0.743 0.803 2.936 

13 0.229 0.085 0.040 0.021 0.229 0.033 0.793 0.909 3.157 

14 0.211 0.076 0.035 0.019 0.211 0.032 0.842 1.012 3.401 

15 0.195 0.068 0.031 0.016 0.195 0.030 0.890 1.113 3.666 

16 0.181 0.062 0.028 0.014 0.181 0.029 0.938 1.211 3.952 

17 0.168 0.056 0.025 0.013 0.168 0.028 0.985 1.308 4.257 

18 0.157 0.051 0.022 0.011 0.157 0.026 1.032 1.404 4.582 

19 0.146 0.046 0.020 0.010 0.146 0.025 1.078 1.497 4.925 

20 0.137 0.042 0.018 0.009 0.137 0.024 1.125 1.590 5.287 

21 0.128 0.039 0.016 0.008 0.128 0.023 1.170 1.682 5.668 

22 0.120 0.036 0.015 0.008 0.120 0.021 1.216 1.773 6.067 

23 0.113 0.033 0.014 0.007 0.113 0.020 1.262 1.863 6.485 

24 0.106 0.031 0.013 0.006 0.106 0.019 1.307 1.953 6.920 
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Table 4-8: Comparison between different probability estimates 

T(hr) P(C~ 0.2) 
Normal distribution with Normal distribution with True distribution 

FOA estimated parameters corrected parameters 
(1) (2) (3) (4) 

1 0 0 1.43E-10 

2 3.14E-05 4.63E-06 4.95E-05 

3 6.19E-03 1.80E-03 2.74E-03 

4 0.04 0.02 0.02 

5 0.11 0.05 0.05 

6 0.18 0.10 0.11 

7 0.25 0.15 0.17 

8 0.33 0.21 0.24 

9 0.39 0.26 0.31 

10 0.46 0.31 0.37 

11 0.52 0.35 0.43 

12 0.57 0.40 0.48 

13 0.63 0.44 0.53 

14 0.68 0.47 0.57 

15 0.73 0.51 0.61 

16 0.78 0.54 0.64 

17 0.82 0.58 0.67 

18 0.87 0.60 0.69 

19 0.90 0.63 0.71 

20 0.93 0.66 0.73 

21 0.96 0.68 0.74 

22 0.98 0.71 0.76 

23 0.99 0.73 0.76 

24 0.99 0.75 0.77 
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Fig. 4-1: Relative error in FOA predicted mean of an exponential function for CV x ranging from 0.0lto 

0.57, where, exponent X is uniformly distributed 
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Fig. 4-2: Relative error in FOA predicted variance of an exponential function for CV x ranging from 0.01 to 

0.57, where exponentX is unformly distributed 
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Fig. 4-3: Relative error in FOA predicted mean of an exponential function for CV x ranging 

from 0.0lto 0.40, where exponentX is triangularly distributed 
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Fig. 4-4:Relative error in FOA predicted variance of an exponential function for CV x ranging from 0.01 to 

0.40, where X exponent is triangularly distributed 
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O.Olto 0.90, where exponentX is from the gamma distribution 
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CHAPTERV 

RELIABILITY ANALYSIS OF OPEN CHANNEL FLOW USING GENERIC 

EXPECTATION FUNCTIONS 

Abstract 

Traditionally, the location of a f1oodway boundary involves a solution of 

Manning's equation for the depth of flow for a given storm discharge corresponding to a 

design return period. In this approach, no uncertainty is considered in the parameters of 

Manning's equation or in the probability distribution of the observed maximum yearly 

flow. To incorporate uncertainties into the parameters of Manning's equation, researchers 

have used the first-order reliability method. This approach does not consider uncertainty 

.in the probability distribution for maximum yearly flow even though the true distribution 

is not known. Using the generic expectation function approach, GEF A, the exact 

observed sample statistics can be incorporated in the determination of uncertainty in the 

depth of inundation. This method is easy in application because transformation of non­

normal distributions and determination of the failure point using non-linear constrained 

optimization are not required. Furthermore, by applying GEF A, one can estimate the 

~xact higher order moments of a performance function. Based on these moments, one can 

choose an appropriate distribution to improve understanding of the performance function 

in comparison to a lump parameter such as the reliability index. In this paper, a 
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comprehensive study is carried out using GEF A employing Manning's equation for a 

compound channel. The impact of parameter uncertainties on the depth of inundation is 

investigated. The reliability estimates obtained using GEF A are compared with those 

from the first-order reliability method, FORM, assuming different distributions for the 

design discharge. 

Introduction 

Flood plains are subject to periodic inundation that may result in loss of life and 

property, health and safety hazards, disruption of commerce and governmental services, 

extraordinary public expenditures for flood protection and relief. The boundary of a flood 

plain may vary according to the frequency of the flooding event, such as a IO-year, a 50-

year, or a 100-year flood. Flood plain mapping is an inherently complicated process, full 

of uncertainties due to complexities in the hydrological/hydraulic models used, the 

availability and quality of data, and the subjectivity of human judgement in the process 

(Burges, 1979; Jones, 1980). 

Traditionally, location of the floodway boundary involves a solution of Manning's 

equation for the depth of flow for a given storm discharge corresponding to a design 

return period. This approach accounts for uncertainty only in the peak flow and does not 

allow consideration of any uncertainty in the parameters of Manning's equation or in the 

probability distribution of the observed maximum yearly flow. To incorporate 

-
uncertainties in the parameters of Manning's equation, Cesare (1991) used the first-order 

reliability method (FORM). The use of FORM for reliability analysis of open channel 

flow has some drawbacks. First, it is implicitly assumed that the maximum yearly flow 

has been exactly described by a theoretical probability distribution function. In most 
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situations, however, the underlying probability distribution for the peak annual flow is 

seldom known with certainty. It involves subjectivity on the part of analyst, particularly 

in situations where it is difficult to choose among several equally suited distributions. 

Any error in fitting the distribution may affect the reliability/risk estimates severely. 

Second, FORM involves the transformation of non-normal, random input variables to 

their equivalent normally distributed random variables and the determination of the 

lineraziation point using a nonlinear optimization technique. This is generally not an easy 

task depending upon the nature and complexity of the system. Third, the magnitude of 

acceptable convergence may affect the accuracy of the reliability estimates. In some 

cases, the magnitude of convergence error may not be reduced below a certain level. 

Using the generic expectation function approach, GEFA, (Chapter III), the exact 

observed sample statistics can be incorporated in determining the uncertainty in the depth 

of inundation. This method is easy in application because transformation of non-normal 

distributions and determination of the failure point using non-linear constrained 

optimization are not required. By applying GEF A, one can estimate the exact higher 

order moments of a performance function. Based on these moments one can choose an 

appropriate distribution and improve understanding of the performance function in 

comparison to a lumped parameter approach such as the reliability index (Hasofer and 

Lind, 1974). 

In this paper, GEFA is employed to determine the impacts of the magnitude of the 

CV and distribution types for the Manning's coefficients, and distribution types used to 

describe maximum yearly flow data on the risk for a given level of flooding along a 
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channel. The reliability estimates obtained using the GEF A are compared with those from 

FORM, assuming different distributions for the design discharge. 

Reliability Analysis of Open Channel Flow 

Manning's equation is the most commonly used resistance equation to determine 

the flow capacity of a channel section corresponding to a given depth (Chow, 1959). In 

SI units, it is expressed as 

2 1 

QC =!AR3s"2 (5-1) 
n 

where Qc is the flow in m3 /sec; A is the cross sectional area of the channel in m2; R is the · 

hydraulic radius of the channel in m;. Sis the channel slope and n is the Manning's 

coefficient. Natural channels often have a main channel section and an overbank section. 

Most flow occurs in the main channel. However, during flood events overbank flows may 

occur. Considering a symmetric river-flood plain section as shown in Figure 5-1, the 

overall flow capacity, Qc, for the compound section can be expressed as 

(5-2) 

where Y = AR213 is called the section factor. Ye and Yb represent section factors for main 

channel and overbank sections, respectively. Assuming the geometry of the channel to be 

deterministic, Qc is a random variable due to uncertainties in the Manning's coefficients 

nc and nb and slope of the channel. It is assumed that nc , nb and S are independent to each 

other. 

The annual peak flow, QL, is also a random variable, which is usually represented 

by a theoretical probability distribution by fitting observed annual peak flood flow data. 
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The exceedance probability ( or return period) of a certain depth of flow (flood level) can 

be estimated by determining the probability of the event (Qc < QL), The objective of 

reliability analysis is to determine the probability of exceedance of a certain flood level in 

a flood zone. To study this event, a performance function, Z, is defined as (Ang and 

Tang, 1984) 

(5-3) 

Substituting expression for Qc from (5-2) into (5-3) and incorporating uncertain factors to 

account for the empirical nature of Manning's equation and observational errors, Z can be 

written as 

(5-4) 

where C1 and C2 are the modeling factors included to account for modeling uncertainty in 

Manning's equation and observational uncertainty in the observed maximum flow data 

respectively. The probability, P1, that a certain depth of flow is exceeded, can be 

estimated as 

0 

P1 =P(Z <0)= f Pz(z)dZ (5-5) 
-oo 

where P is the probability operator; and pz(z) is the probability density function of Z. The 

probability distribution of Z is unknown and generally difficult to obtain. In most cases 

the exact distribution may not be required, as several distributions can be used to make 

reliability analysis if correct information about its moments is available. Furthermore, 

higher order moments are helpful in both identifying the candidate distributions for pz(z) 

and using the distributions requiring higher order moments. 
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Various orders of moments of Z can be obtained by applying the theory of 

statistical expectation if general expressions for evaluating the moments, including 

negative and fractional moments, of its input variables are known. The generic 

expectation functions can be used to evaluate any order of moment of an input random 

variable. 

Generic Expectation Functions 

Consider a power function 

(5-6) 

The kth order moment of g about the origin can be obtained as 

00 

µ~ =E[gk]=E[xkr]= fxkrpx(x)dX (5-7) 

where p x (x) is the probability density function of X Assuming different distribution 

types for p x (x), generic expressions for E[X] have been derived analytically in chapter 

Ill as listed in Table 5-1. 

Data Used 

For this study, 31 years of maximum yearly flow data (Table 5-2) observed at the 

Beargrass Creek, Cannons Lane, Louisville, Kentucky, is considered. Table 5-3 presents 

the frequency analysis for this data, which has been discussed in detail by Haan et al. 

(1994). Figure 5-2 presents a comparison of the lognormal and the extreme value type-I 

_distributions for this data. From Figure 5-2, it can be noticed that it is difficult to select 

which distribution best describe the observed data. Furthermore, no distribution is able to 

represent the observed data exactly. To study the influence of distribution types for QL on 
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the risk analysis of open channel flow, the lognormal distribution, extreme value type-I 

distribution, and the actual observed data are considered to represent QL in the 

performance function given in (5-4). 

Johnson (1996) has summarized the coefficient of variations and the distribution 

types of different uncertain hydraulic variables. To study the impact of variation in CV 

and distribution types generally used for the Manning's coefficients, their CV s are varied 

from 0.05 to 0.3 with different types of distributions. The channel slope, S, is assumed to 

be fixed with its CV and distribution type. Table 5-4 presents the statistics of uncertain 

variables in (5-4). 

Using traditional frequency methods the discharges corresponding to the 5, 10, 

25, 50, 100, and 200-year return periods are calculated using the extreme value type-I 

distribution. Corresponding to these discharges, depths of flow are determined to be 2.23 

m, 2.56 m, 2.92 m, 3.19 m, 3.45 m, and 3.69 m respectively. 

Distributional Characteristics of the Performance Function 

Consider two independent random variables, X1 and X2. Performing expectation 

operation on (X1 + X 2 Y and (X1 - X 2 Y, the following equations are obtained. 

El(Xi +x2Y' ]=Eixt ]+C}ixt-11Efx2]+(:}ixt-2 ]Eix;]+ ........ ;1-.E{~] (5-8) 

E[(x, -x2Y ]= E[xt l:(:)E[x;-1]E[x2]+(:)E[x;-2 ]E[x;]+ ......... +(-1Y E[x;] (5-9) 

For the sake of convenience, rewrite (5-4) as 

Z=R-L 
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where R = C1 (~n;1 + 2Ybn;1 )S'0·5 ; and L = C2QL. The statistical moments of Z about the 

origin can be obtained using (5-9) if moments of Rand L about the origin are known. The 

lch -order moment of R can be obtained as 

(5-11) 

In (5-11) E[C1k] and E[so.sk] can be directly evaluated using a generic expectation 

functions for given distributions tabulated in Table 5-1. To evaluate E[(~n;1 + 2~n;1 Y , 
(5-8) can be used. As C2 is taken to be deterministic and equal to unity, the moments of L 

are equal to the moments of QL. 

Having determined moments of Z about the origin, the /(h -central moment of Z, 

µk, can be obtained using the following equation (Haan, 1977) 

(5-12) 

where,µ is the mean of Z; µ;_; is the (k-i}'h order moment of Z about the origin. Using 

the second and third order moments of Z, the coefficient of skewness, rz, is defined as 

(Haan, 1977) 

(5-13) 

where µ2, µ3 are the second and third order moments of Z about the mean. The kurtosis of 

Z, Kz, is defined as 

K _ µ4 
z- µ; 

where µ,, is the fourth moment of Z about the mean. 
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To demonstrate the calculation procedure, a flow depth of 3.19 mis considered. 

The corresponding section factors, Ye and Yb, are determined to be 947.37 m813 and 0.094 

m813 respectively. The distributions of nc and nb are assumed to be lognormal with 

coefficient of variation of 0.25. Table 5-5 presents the calculation procedure of the 

moments of Z about the origin as well as about the mean. Using these calculated central 

moments, distributional characteristics (mean, variance, skewness, and kurtosis) of Z are 

determined. This procedure is repeated for each depth for an assumed set of parameters 

i.e., distribution types and coefficient of variations of nc and nb, and distribution of QL. 

The obtained distributional characteristics of Z are summarized in Tables 5-6 to 5-10. 

It can be observed from Tables 5-6 through 5-10 that the type of distribution, e.g., 

the extreme value type-I, the lognormal, and the actual observed data, assumed to 

represent peak annual flow in the performance function did not affect the mean and 

standard deviation of Z. However, the coefficient of skewness and the coefficient of 

kurtosis of Z are affected by the type of distribution of QL, An interesting relationship has 

been observed among the coefficient of skewness and coefficient of kurtosis of Z when 

QL is represented by the extreme value type-I, the lognormal, and the actual data. The 

coefficient of skewness of Z, when QL is represented by the actual data, matches very 

closely to the coefficient of skewness of Z, when QL is assumed to be lognormally 

distributed. Similarly, the coefficient of kurtosis of Z, when QL is represented by the 

actual data, matches very closely to the coefficient of kurtosis of Z, when QL is assumed 

to have the extreme value type-I distribution. 
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Determining Exceedance Probabilities 

In order to evaluate Pi using (5-5), pz(z) is required. As mentioned earlier, most 

cases do not require knowledge of the exact distribution of Z, as several distributions can 

be used based on available distributional characteristics of Z. The other most commonly 

used non-Gaussian distribution is the Edgeworth asymptotic expansion (Cieslikiewicz, 

1990). For most practical applications, the truncated four term Edgeworth expansion 

(Abramowitz and Stegun, 1972; Kendall et al., 1987; Tung, 1996) has been used, which 

is given as 

(5-15) 

where <I>(;)is the standard normal cumulative density function; ¢(;)is the standard 

normal probability density function; and ; is the standard normal variate. The use of the 

Edgeworth expansion has some drawbacks, particularly when used in tail portions of the 

distribution as it may give negative values for the probability density function and 

cumulative density function. Obviously, this violates the definition of a probability 

density function. To ensure that Pi does not become negative, the Edgeworth expansion is 

used for the first three smaller flow depths. 

Observing the distributional characteristics of Z listed in Tables 5-6 through 5-10, 

it is noticed that most of the time the distribution of Z is negatively skewed and 

leptokurtic (Kz > 3). Given these constraints, the Pearson type-III distribution is the best 

choice among the most commonly used distribution functions. The Pearson type-ill 

density function may be expressed as ( Matalas and Wallis, 1973) 
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(5-16) 

where a, p, and ;{, are the parameters. If the distribution is positively skewed, a is . 

positive, and Z ~ ;{.; otherwise a is negative, and Z ~ A. The parameters a, p, and ;{, are 

related to the distributional characteristics of random variable Z as follows 

I 

Yz = 2p 2 

The Pearson type-III distribution is always leptokurtic as indicated by 

Kz =3y~ +3 

Substituting (5-16) in (5-5), P1is given as 

1 Z-A, Z-A. R )p-1 [ ( )} 
Pf= jajr(p) ,i -;;- exp - -;;- z 

Substituting w = ( z: ;{,), (5-21) is rewritten as 

Z-A 

1 a 
Pf = -- f wP-t exp(- w )dw 

rep) O 

From (Abramowitz and Stegun, 1972), P1can be calculated as 

(5-17) 

(5-18) 

(5-19) 

(5-20) 

(5-21) 

(5-22) 

(5-23) 

whereFx2 (z2 I u )is the chi-square distribution with parameter i and u degree of 

freedom which is given as 

u=2P (5-24) 
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The parameter i is given as 

2 (z-,1,) X = 2w = 2 ----;;- (5-25) 

The Pi corresponding to higher flow depths which may fall in the tails of Pz (z) 

are determined using the Pearson type-III distribution. The calculated values of P1 using 

the Edgeworth expansion and the Pearson type-III distribution have been tabulated in 

Tables 5-11 through 5-13 for different settings of input variables. In Tables 5-10 and 5-

11, the Pi values obtained using the FORM are also tabulated along with those obtained 

using GEF A in order to facilitate a comparison between the two methods. It is necessary 

to point out that the Pi values corresponding to GEF A are only an approximation of the 

exact values because approximate distributions are used while calculating them. It can be 

observed from Tables 5-10 and 5-11 that P1values using GEFA match very closely with 

those of the FORM in a number of cases. For the CV value of 0.05 and the gamma 

distribution for nc and nb, the Pi values could not be calculated. The P1 values presented in 

Table 5-13 correspond to the case where Qr is represented by the actual observed data in 

(5-4). As FORM can not be used in this case, only GEFA Pi values are tabulated in Table 

5-13. 

Impact of Parameter Distributions and Variation in CV Values 

Figure 5-3 presents a typical plot between CV of Manning's coefficients (nc and 

nb) and Pi values for different flow depths using GEF A and FORM. The distribution 

types for the Manning's coefficients and Qr correspond to the lognormal and the extreme 

value type-I, distributions, respectively. Figure 5-3 indicates that both GEF A and FORM 

are in close match with each other. Figure 5-3 also shows that as the magnitude of CV of 
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Manning's coefficients increases, the magnitude of the probability of exceedance 

corresponding to a given depth increases. 

To visualize the influence of distribution type of Manning's coefficients on risk, 

Figures 5-4 and 5-5 present plots between depth and exceedance probability using 

different distributions for Manning's coefficients and CV values of 0.1 and 0.20, 

respectively. Figure 5-4 shows that when the CV of Manning's coefficients is small, the 

distribution type does not make much difference on the risk estimates. However, as the 

CV values increase, the influence of the distribution types of Manning's coefficients 

becomes more discemable. Figure 5-4 shows that assuming a uniform distribution for 

Manning's coefficients give the highest estimates, and the assumption of lognormal 

distribution gives the lowest estimates of risk for a given flow depth. The risk estimates 

corresponding to the normal and the triangular distributions match exactly. The risk 

estimates obtained using the gamma distribution are found to be slightly higher than 

those of the lognormal distribution. 

Figures 5-6 and 5-7 show depth versus exceedance probability plots 

corresponding to the extreme value type-I distribution, the lognormal distribution, and the 

actual observed data for the peak annual flow using two different CV values of 0.1 and 

0.2 for the Manning's coefficients. The curves corresponding to the extreme value type-I 

and the lognormal distributions have been derived using FORM, whereas, the curves 

corresponding to the observed data have been generated using the GEF A. Both plots 

Figures 5-6 and 5-7 indicate that there is significant influence of the type of distribution 

of the peak annual flow. On comparing the impacts of CV magnitude of Manning's 

coefficients, distribution types of the Manning's coefficients, and the distribution types of 
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QL on the risk estimates, the impact of distribution type for the peak annual flow is found 

to be much higher than that of the rest. 

Figures 5-6 and 5-7 also compare the depth vs. exceedance probability plots 

obtained by traditional method corresponding to both the lognormal and the extreme 

value type.,.J distributions. It is clear from these plots that this method underestimates the 

exceedance probabilities. Consideration of uncertainty in Manning's roughness 

coefficients improves the risk estimates but it still underestimates the exceedance 

probabilities due to the fact that neither of the distributions is able to fit the given data 

exactly. 

Conclusions 

In this paper, reliability analysis of open channel flow is carried out using the 

generic expectation function approach. This method is simple and general in application. 

Using GEFA exact distributional characteristics and moments of any order of a 

performance function can be obtained. The exactness of risk estimates using GEF A 

depends upon satisfying the distributional characteristics of the performance function by 

its assumed or derived distribution. By comparison, the FORM estimates show that in 

most cases a commonly used distribution can be employed to evaluate an approximate 

risk. Using GEF A and FORM impacts due to the variation in magnitudes of CV and 

distribution types for the Manning's coefficients and distribution types for the peak 

annual flow are studied. It is observed that an increase in the CV values of the Manning's 

coefficients increases the risk estimate. Whereas, distribution types of Manning's 

coefficients at smaller CV have a negligible impact on risk, this becomes more 

pronounced at higher CV s for the Manning' coefficients. The impact of distribution types 
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for the peak annual flow has been found to be the most prominent at both smaller and 

higher CV s of the Manning's coefficients. The problems due to distribution fitting can be 

removed by incorporating the actual observed data in the performance function. FORM 

does not provide any flexibility to incorporate actual observed data into the performance 

function. GEF A can be used irrespective whether the peak annual flow is represented by 

a distribution or by the actual observed data. 
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Table 5-1: Generic Expectation Functions for Some Commonly Used Probability Density 
Functions 

Name 

Uniform 

Symmetrical 
triangular 

Unsymmetrical 
triangular* 

Lognormal 

Gamma 

Exponential 

Normal 

Generic expectation function, E[xr] 

2[(b-c )ar+2 + (c-a )br+2 + (a -b )cr+2] 
(r + IXr+ 2Xb-cXc-aXb-a) 

r(r-1) 
µ~ (1 + cvJ )-2-

cvJr µ~r(cv;2 + r) 
rccv;2 ) 

µ~r(r+I) 
r/2 ( r) (2n) µ ~ L -n -, CV ;n , when r is an even positive integer; 
n=O 2n 2 n. 

(r-1)12( r) (2n)1 µ~ I ~ cvJn, when r is an odd positive integer; and 
n=O 2n 2 n. 

when r is anything but a positive integer, 

, r [1 r(r -1) cv2 r(r -1 Xr - 2 ) ..... (r - n + 1) cvn ] 
µx + 2 x + ...... + 2'.Vi(n/2)! x + .... 

b, a, and care the maximum, minimum, and mode values ofX, which can be obtained 
by substituting n = 0, 1, and 2 respectively in the relationship (Appendix II) 

a,b,c = µx{i +2"2cvx co,[2;m +ico•-·C1r, )]}· 
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Table 5-2: Annual peak flows in Middle Fork, Beargrass Creek, Cannons Lane, 
Louisville, Kentucky 

Year Q (m3/sec) Year Q (m3/sec) Year Q (m3/sec) 

1945 51.26 1956 30.02 1967 20.16 

1946 22.40 1957 42.20 1968 41.06 

1947 23.76 1958 25.04 1969 20.02 

1948 49.56 1959 37.38 1970 147.27 

1949 25.43 1960 93.46 1971 60.89 

1950 60.04 1961 67.97 1972 33.14 

1951 34.55 1962 27.64 1973 58.91 

1952 36.53 1963 26.00 1974 35.40 

1953 21.75 1964 111.02 1975 64.29 

1954 44.46 1965 32.57 

1955 35.12 1966 24.75 

Table 5-3: Flood frequency analysis for Middle Fork, Beargrass Creek, Cannons Lane, 
Louisville, Kentucky 

Return Period (years) Flood flow (m Iese) 
Lognormal distribution Extreme value type-I 

5 62.33 65.79 

10 80.36 82.47 

25 105.36 103.54 

50 125.52 119.17 

100 146.92 134.68 

200 169.69 150.14 

184 



Table 5-4: Statistical data used for channel analysis 

Variable Distribution Mean CV 
(1) (2) (3) (5) 
nc Uniform, Triangular, Nonnal, 0.08 0.05, 0.10, 0.15, 0.20, 

Lognormal, Gamma 0.25, 0.30 

nb Uniform, Triangular, Nonnal, 0.11 0.05, 0.10, 0.15, 0.20, 
Lognormal, Gamma 0.25, 0.30 

Cl Normal 1 0.10 

C2 Normal 1 0 

s Lognonnal l.012E-4 0.25 

Q Extreme value type - I, 45.279 0.629 
Lognormal, Observed data 

Table 5-5: Computation of moments using generic expectation functions 

Expectation Order of expectation, k 
1 2 3 4 

~kE[n;k] l.26E+04 l.68E+08 2.39E+12 3.61E+16 

Y/E[n;;k] 0.90 0.87 0.88 0.96 

E[(~n;1 + 2Y,,n;;1 t] l.26E+04 l.68E+08 2.39E+12 3.61E+16 

E[cf] 1.00 1.01 1.03 1.06 

E[so.sk] 9.98E-03 l.OlE-04 l.04E-06 l.09E-08 

E[{c1 (~n;i + 2Y,,n;;i )so.s Y] 125.63 l.72E+04 2.56E+06 4.16E+08 

E[Q1] 45.29 2.86E+03 2.30E+05 2.25E+07 

E[{cl (Yen;' + 2Ybn;1 )s0·5 - QL Y] 80.34 8.68E+03 l.08E+06 l.54E+08 

Central moments of Z 0 2.22E+03 2.20E+04 l.94E+07 

Statistics of Z: mean= 80.34, standard deviation= 47.16, CV= 0.59, 
Coefficient of skew= 0.21, and coefficient of kurtosis= 3.93 
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Table 5-6: Distributional characteristics of Z where Manning's coefficients are assumed 
to be for lognonnally distributed with CV range of 0.05-0.30 

Depth Extreme value type - I Lognormal Observed data 
(m) µz CTz rz Kz µz CTz rz Kz µz CTz rz Kz 

CV= 0.05 
2.23 20.17 30.53 -0.91 4.83 20.16 30.52 -1.72 9.89 20.17 30.53 -1.69 4.54 
2.56 36.75 31.63 -0.80 4.59 36.75 31.62 -1.53 8.99 36.75 31.63 -1.50 4.35 
2.92 57.70 33.30 -0.65 4.31 57.70 33.29 -1.28 7.89 57.70 33.30 -1.26 4.11 
3.19 73.25 34.71 -0.55 4.13 73.24 34.71 -1.10 7.15 73.25 34.71 -1.08 3.96 
3.45 88.68 36.25 -0.45 3.97 88.67 36.25 -0.93 6.51 88.68 36.25 -0.92 3.82 
3.69 104.05 37.89 -0.36 3.83 104.05 37.89 -0.78 5.97 104.05 37.89 -0.77 3.71 

CV=0.10 
2.23 20.66 31.10 -0.84 4.70 20.65 31.09 -1.61 9.41 20.66 31.10 -1.59 4.44 
2.56 37.36 32.49 -0.71 4.45 37.36 32.48 -1.38 8.39 37.36 32.49 -1.36 4.22 
2.92 58.47 34.58 -0.54 4.16 58.47 34.58 -1.10 7.23 58.47 34.58 -1.08 3.98 
3.19 74.13 36.34 -0.42 3.98 74.13 36.34 -0.90 6.50 74.13 36.34 -0.89 3.84 
3.45 89.68 38.23 -0.32 3.84 89.68 38.23 -0.73 5.90 89.68 38.23 -0.72 3.72 
3.69 105.17 40.23 -0.22 3.73 105.16 40.23 -0.57 5.40 105.17 40.23 -0.56 3.63 

CV= 0.15 
2.23 21.47' 32.06 -0.74 4.53 21.47 32.06 -1.44 8.69 21.47 32.06 -1.42 4.29 
2.56 38.39 33.93 -0.57 4.26 38.38 33.93 -1.16 7.57 38.39 33.93 -1.14 4.07 
2.92 59.76 36.70 -0.37 3.99 59.75 36.70 -0.84 6.41 59.76 36.70 -0.83 3.85 
3.19 75.61 39.00 -0.24 3.84 75.61 38.99 -0.63 5.75 75.61 39.00 -0.62 3.74 
3.45 91.35 41.43 -0.13 3.74 91.35 41.43 -0.45 5.23 91.35 41.43 -0.44 3.66 
3.69 107.03 43.99 -0.03 3.67 107.03 43.99 -0.30 4.84 107.03 43.99 -0.29 3.60 

CV= 0.20 
2.23 22.61 33.44 -0.59 4,35 I 22,61 33.43 -1.21 7.86 22.61 33.44 -1.19 4.15 
2.56 39.82 35.96 -0.39 4.09 39.81 35.95 -0.89 6.72 39.82 35.96 -0.87 3.95 
2.92 61.56 39.63 -0.17 3.89 61.55 39.62 -0.54 5.67 61.56 39.63 -0.52 3.79 
3.19 77.68 42.62 -0.02 3.81 77.68 42.62 -0.32 5.14 77.68 42.62 -0.31 3.73 
3.45 93.69 45.76 0.09 3.76 93.68 45.76 -0.15 4.76 93.69 45.76 -0.14 3.70 
3.69 109.64 49.02 0.19 3.74 109.63 49.02 0.00 4.50 109.64 49.02 0.00 3.70 

CV=0.25 
2.23 24.08 35.25 -0.42 4.21 24.08 35.25 -0.94 7.05 24.08 35.25 -0.93 4.04 
2.56 41.66 38.58 -0.18 4.03 41.66 38.58 -0.58 6.01 41.66 38.58 -0.57 3.91 
2.92 63.87 43.34 0.07 3.93 63.86 43.34 -0.22 5.18 63.87 43.34 -0.21 3.86 
3.19 80.34 47.16 0.21 3.93 80.34 47.16 -0.01 4.82 80.34 47.16 0.00 3.88 
3.45 96.70 51.13 0.32 3.95 96.69 51.13 0.15 4.59 96.70 51.13 0.16 3.91 
3.69 112.99 55.22 0.42 3.98 112.99 55.21 0.28 4.45 112.99 55.22 0.28 3.95 

CV= 0.30 
2.23 25.88 37.52 -0.21 4.17 25.87 37.52 -0.64 6.38 25.88 37.52 -0.63 4.04 
2.56 43.91 41.81 0.05 4.11 43.91 41.81 -0.26 5.55 43.91 41.81 -0.25 4.03 

- 2.92 66.69 47.83 0.31 4.16 66.69 47.83 0.10 5.00 66.69 47.83 0.10 4.11 
3.19 83.59 52.60 0.45 4.23 83.59 52.60 0.29 4.81 83.59 52.60 0.29 4.20 
3.45 100.37 57.51 0.56 4.32 100.37 57.50 0.43 4.72 100.37 57.51 0.44 4.29 
3.69 117.09 62.51 0.64 4.39 117.08 62.50 0.54 4.68 117.09 62.51 0.55 4.38 
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Table 5-7: Distributional characteristics ofZ where Manning's coefficients are assumed 
to be for normally distributed with CV range of 0.05-0.30 

Depth Extreme value type - I Lognormal Observed data 
(m) µz Uz rz Kz µz Uz rz Kz µz Uz rz Kz 

CV=0.05 
2.23 20.17 30.53 -0.91 4.83 20.16 30.52 -1.72 9.89 20.17 30.53 -1.69 4.54 
2.56 36.75 31.63 -0.80 4.59 36.75 31.63 -1.52 8.99 36.75 31.63 -1.50 4.35 
2.92 57.71 33.30 -0.65 4.31 57.70 33.30 -1.28 7.89 57.71 33.30 -1.26 4.11 
3.19 73.25 34.72 -0.55 4.13 73.25 34.72 -1.10 7.15 73.25 34.72 -1.08 3.96 
3.45 88.68 36.26 -0.45 3.97 88.68 36.26 -0.93 6.51 88.68 36.26 -0.92 3.82 
3.69 104.05 37.90 -0.36 3.83 104.05 37.90 -0.78 5.96 104.05 37.90 -0.77 3.71 

CV=0.10 
2.23 20.68 31.15 -0.83 4.70 20.67 31.14 -1.60 9.37 20.68 31.15 -1.57 4.44 
2.56 37.39 32.56 -0.70 4.44 37.39 32.56 -1.36 8.36 37.39 32.56 -1.34 4.22 
2.92 58.51 34.69 -0.52 4.16 58.50 34.69 -1.07 7.20 58.51 34.69 -1.06 3.99 
3.19 74.17 36.48 -0.40 4.00 74.17 36.47 -0.87 6.48 74.17 36.48 -0.86 3.86 
3.45 89.72 38.40 -0.29 3.86 89.72 38.39 -0.69 5.89 89.72 38.40 -0.68 3.75 
3.69 105.22 40.43 -0.19 3.76 105.21 40.42 -0.54 5.41 105.22 40.43 -0.53 3.67 

CV= 0.15 
2.23 21.58 32.34 -0.68 4.54 21.58. 32.34 -1.36 8.56 21.58 32.34 -1.34 4.31 
2.56 38.53 34.35 -0.49 4.32 38.52 34.34 -1.06 7.48 38.53 34.35 -1.04 4.14 
2.92 59.94 37.31 -0.26 4.14 59.93 37.30 -0.71 6.41 59.94 37.31 -0.69 4.01 
3.19 75.82 39.75 -0.11 4.07 75.81 39.75 -0.48 5.83 75.82 39.75 -0.47 3.97 
3.45 91.58 42.34 0.02 4.05 91.58 42.34 -0.28 5.42 91.58 42.34 -0.27 3.97 
3.69 107.29 45.05 0.13 4.05 107.28 45.04 -0.12 5.12 107.29 45.05 -0.11 3.99 

CV= 0.20 

2.23 23.02 34.60 -0.33 4.70 23.02 34.60 -0.89 7.77 23.02 34.60 -0.87 4.53 
2.56 40.33 37.65 -0.03 4.84 40.32 37.64 -0.46 7.03 40.33 37.65 -0.45 4.72 
2.92 62.20 42.03 0.31 5.20 62.19 42.02 0.00 6.61 62.20 42.03 0.00 5.12 
3.19 78.42 45.56 0.51 5.51 78.41 45.56 0.27 6.54 78.42 45.56 0.27 5.46 
3.45 94.52 49.25 0.68 5.83 94.52 49.24 0.49 6.58 94.52 49.25 0.49 5.79 
3.69 110.56 53.04 0.82 6.13 110.56 53.04 0.67 6.68 110.56 53.04 0.67 6.10 

CV= 0.25 
2.23 25.32 39.07 0.10 5.24 25.32 39.06 -0.29 7.13 25.32 39.07 -0.28 5.13 
2.56 43.22 43.98 0.43 5.82 43.21 43.98 0.16 7.00 43.22 43.98 0.17 5.75 
2.92 65.82 50.80 0.75 6.58 65.82 50.80 0.58 7.24 65.82 50.80 0.58 6.54 
3.19 82.59 56.17 0.93 7.09 82.59 56.17 0.80 7.53 82.59 56.17 0.80 7.06 
3.45 99.24 61.66 1.06 7.51 99.23 61.66 0.96 7.82 99.24 61.66 0.96 7.49 
3.69 115.82 67.24 1.16 7.86 115.82 67.23 1.08 8.08 115.82 67.24 1.09 7.85 

CV=0.30 
2.23 28.99 44.52 -0.38 5.02 28.99 44.52 -0.64 6.13 28.99 44.52 -0.64 4.95 
2.56 47.81 51.48 -0.30 5.45 47.81 51.48 -0.47 6.08 47.81 51.48 -0.46 5.42 
2.92 71.59 60.91 -0.25 5.94 71.59 60.90 -0.35 6.26 71.59 60.91 -0.34 5.92 
3.19 89.23 68.19 -0.22 6.23 89.23 68.19 -0.30 6.43 89.23 68.19 ·-0.29 6.21 
3.45 106.75 75.56 -0.21 6.45 106.74 75.56 -0.26 6.59 106.75 75.56 -0.26 6.44 
3.69 124.19 82.98 -0.20 6.63 124.19 82.98 -0.24 6.72 124.19 82.98 -0.24 6.63 

187 



Table 5-8: Distributional characteristics of Z where Manning's coefficients are assumed 
to be for uniformly distributed with CV range of0.05-0.30 

Depth Extreme value type - I Lognormal Observed data 
(m) µz O"z rz Kz µz O"z rz Kz µz O"z rz Kz 

CV= 0.05 

2.23 20.16 30.52 -1.72 9.89 20.17 30.53 -0.91 4.83 20.17 30.53 -1.69 4.54 
2.56 36.75 31.62 -1.53 8.99 36.75 31.63 -0.80 4.59 36.75 31.63 -1.50 4.34 
2.92 57.70 33.30 -1.28 7.89 57.70 33.30 -0.65 4.31 57.70 33.30 -1.26 4.11 
3.19 73.25 34.71 -1.10 7.15 73.25 34.72 -0.55 4.12 73.25 34.72 -1.08 3.95 
3.45 88.68 36.25 -0.93 6.51 88.68 36.25 -0.45 3.96 88.68 36.25 -0.92 3.82 
3.69 104.05 37.89 -0.78 5.96 104.05 37.90 -0.36 3.83 104.05 37.90 -0.77 3.71 

CV =0.10 

2.23 20.66 31.11 -1.61 9.39 20.67 31.12 -0.84 4.70 20.67 31.12 -1.58 4.43 
2.56 37.37 32.51 -1.38 8.37 37.38 32.52 -0.71 4.43 37.38 32.52 -1.36 4.21 
2.92 58.49 34.62 -1.10 7.20 58.49 34.62 -0.54 4.14 58.49 34.62 -1.08 3.97 
3.19 74.15 36.39 -0.90 6.46 74.16 36.39 -0.42 3.96 74.16 36.39 -0.89 3.81 
3.45 89.70 38.29 -0.73 5.85 89.70 38.29 -0.32 3.81 89.70 38.29 -0.71 3.69 
3.69 105.19 40.30 -0.57 5.36 105.20 40.31 -0.22 3.69 105.20 40.31 -0.56 3.60 

CV =0.15 

2.23 21.53 32.16 -1.42 8.61 21.53 32.16 -0.73 4.49 21.53 32.16 -1.40 4.26 

2.56 38.46 34.07 -1.15 7.46 38.47 34.08 -0.56 4.20 38.47 34.08 -1.13 4.02 
2.92 59.85 36.91 -0.82 6.28 59.86 36.91 -0.37 3.91 59.86 36.91 -0.81 3.77 
3.19 75.72 39.26 -0.62 5.59 75.73 39.26 -0.23 3.74 75.73 39.26 -0.60 3.64 

3.45 91.47 41.75 -0.44 5.06 91.48 41.75 -0.12 3.62 91.48 41.75 -0.43 3.54 

3.69 107.17 44.36 -0.29 4.66 107.17 44.36 -0.02 3.52 107.17 44.36 -0.28 3.46 

CV =0.20 

2.23 22.82 33.77 -1.17 7.63 22.82 33.77 -0.57 4.24 22.82 33.77 -1.15 4.05 
2.56 40.07 36.44 -0.84 6.44 40.08 36.44 -0.37 3.95 40.08 36.44 -0.83 3.81 

2.92 61.88 40.31 -0.50 5.35 61.88 40.32 -0.14 3.68 61.88 40.32 -0.49 3.59 
3.19 78.05 43.46 -0.29 4.78 78.06 43.47 -0.01 3.55 78.06 43.47 -0.28 3.48 
3.45 94.11 46.77 -0.12 4.38 94.11 46.77 0.10 3.46 94.11 46.77 -0.11 3.41 

3.69 110.10 50.18 0.01 4.10 110.11 50.19 0.20 3.40 110.11 50.19 0.02 3.36 

CV=0.25 

2.23 24.61 36.13 -0.85 6.57 24.62 36.13 -0.36 3.99 24.62 36.13 -0.83 3.84 
2.56 42.32 39.84 -0.49 5.47 42.33 39.84 -0.13 3.73 42.33 39.84 -0.48 3.63 

2.92 64.70 45.10 -0.14 4.60 64.70 45.10 0.11 3.53 64.70 45.10 -0.13 3.47 
3.19 81.30 49.30 0.05 4.20 81.31 49.30 0.24 3.45 81.31 49.30 0.06 3.41 

3.45 97.78 53.64 0.20 3.94 97.78 53.65 0.35 3.41 97.78 53.65 0.20 3.38 
3.69 114.20 58.09 0.31 3.77 114.20 58.09 0.43 3.38 114.20 58.09 0.32 3.36 

CV=0.30 

2.23 27.06 39.56 -0.46 5.59 27.07 39.56 -0.09 3.79 27.07 39.56 -0.45 3.69 
2.56 45.39 44.66 -0.10 4.73 45.40 44.67 0.16 3.62 45.40 44.67 -0.09 3.56 
2.92 68.56 51.73 0.23 4.14 68.56 51.74 0.39 3.53 68.56 51.74 0.23 3.50 
3.19 85.74 57.28 0.39 3.92 85.74 57.29 0.51 3.51 85.74 57.29 0.40 3.48 
3.45 102.79 62.96 0.51 3.78 102.80 62.96 0.61 3.50 102.80 62.96 0.52 3.49 
3.69 119.79 68.71 0.60 3.71 119.79 68.71 0.67 3.51 119.79 68.71 0.61 3.50 
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Table 5-9: Distributional characteristics of Z where Manning's coefficients are assumed 
to be for triangularly distributed with CV range of 0.05-0.30 

Depth Extreme value type - I Lognormal Observed data 
(m) µz O"z rz TCz µz O"z rz TCz µz O"z rz TCz 

CV=0.05 

2.23 20.17 30.53 -0.91 4.83 20.16 30.52 -1.72 9.89 20.17 30.53 -1.69 4.54 
2.56 36.75 31.63 -0.80 4.59 36.75 31.62 -1.53 8.99 36.75 31.63 -1.50 4.34 
2.92 57.71 33.30 -0.65 4.31 57.70 33.30 -1.28 7.89 57.71 33.30 -1.26 4.11 
3.19 73.25 34.72 -0.55 4.13 73.25 34.72 -1.10 7.15 73.25 34.72 -1.08 3.95 
3.45 88.61 36.25 -0.45 3.97 88.68 36.25 -0.93 6.51 88.68 36.26 -0.92 3.82 
3.69 104.05 37.90 -0.36 3.83 104.05 37.90 -0.78 5.96 104.05 37.90 -0.77 3.71 

CV =0.10 

2.23 20.67 31.13 -0.84 4.70 20.67 31.12 -1.60 9.38 20.67 31.13 -1.58 4.43 
2.56 37.38 32.54 -0.70 4.44 37.38 32.53 -1.37 8.36 37.38 32.54 -1.35 4.22 
2.92 58.50 34.66 -0.53 4.15 58.50 34.65 -1.09 7.20 58.50 34.66 -1.07 3.98 
3.19 74.16 36.43 -0.41 3.97 74.16 36.43 -0.89 6.47 74.16 36.43 -0.87 3.83 
3.45 89.64 38.34 -0.30 3.83 89.71 38.34 -0.71 5.86 89.71 38.34 -0.70 3.72 
3.69 105.21 40.36 -0.21 3.72 105.20 40.36 -0.56 5.38 105.21 40.36 -0.55 3.63 

CV =0.15 
2.23 21.56 32.24 -0.71 4.50 21.55 32.24 -1.40 8.57 21.56 32.24 -1.38 4.27 
2.56 38.49 34.20. -0.54 4.23 38.49 34.19 -1.11 7.45 38.49 34.20 -1.09 4.05 
2.92 59.89 37.09 -0.33 3.97 59.89 37.08 -0.78 6.29 59.89 37.09 -0.76 3.84 
3.19 75.77 39.47 -0.19 3.83 75.76 39.47 -0.56 5.64 75.77 39.47 -0.55 3.73 
3.45 91.45 42.00 -0.07 3.73 91.52 42.00 -0.38 5.15 91.53 42.01 -0.37 3.65 
3.69 107.23 44.66 0.04 3.67 107.22 44.66 -0.22 4.78 107.23 44.66 -0.21 3.61 

CV=0.20 
2.23 22.90 34.06 -0.51 4.30 22.90 34.06 -1.09 7.56 22.90 34.06 -1.07 4.11 
2.56 40.18 36.87 -0.28 4.07 40.18 36.86 -0.74 6.45 40.18 36.87 -0.72 3.94 
2.92 62.01 40.92 -0.02 3.92 62.01 40.92 -0.36 5.49 62.01 40.92 -0.35 3.83 
3.19 78.20 44.21 0.13 3.87 78.20 44.21. -0.13 5.02 78.20 44.21 -0.13 3.81 
3.45 94.20 47.64 0.26 3.86 94.28 47.64 0.05 4.71 94.28 47.65 0.05 3.81 
3.69 110.30 51.20 0.37 3.87 110.29 51.20 0.19 4.51 110.30 51.20 0.20 3.83 

CV=0.25 
2.23 24.86 37.02 -0.18 4.25 24.85 37.01 -0.63 6.59 24.86 37.02 -0.62 4.12 
2.56 42.63 41.10 0.11 4.21 42.63 41.09 -0.22 5.76 42.63 41.10 -0.21 4.13 
2.92 65.09 46.84 0.40 4.30 65.08 46.84 0.18 5.21 65.09 46.84 0.18 4.25 
3.19 81.74 51.41 0.57 4.40 81.74 51.40 0.40 5.03 81.74 51.41 0.40 4.36 
3.45 98.20 56.11 0.69 4.51 98.28 56.11 0.56 4.95 98.28 56.11 0.57 4.48 
3.69 114.76 60.91 0.79 4.61 114.75 60.91 0.69 4.93 114.76 60.91 0.69 4.59 

CV=0.30 
2.23 27.71 42.05 0.37 4.91 27.71 42.05 0.06 6.31 27.71 42.05 0.07 4.83 
2.56 46.21 48.11 0.71 5.31 46.21 48.11 0.51 6.13 46.21 48.11 0.51 5.26 
2.92 69.58 56.39 1.02 5.81 69.58 56.39 0.89 6.24 69.58 56.39 0.89 5.78 
3.19 86.92 62.84 1.18 6.12 86.91 62.83 1.09 6.40 86.92 62.84 1.09 6.10 
3.45 104.05 69.38 1.30 6.37 104.12 69.38 1.23 6.56 104.13 69.39 1.23 6.36 
3.69 121.27 76.00 1.38 6.58 121.27 76.00 1.33 6.71 121.27 76.00 1.33 6.57 
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Table 5-10: Distributional characteristics of Z where Manning's coefficients are assumed 
to be gamma distributed with CV range of0.05-0.30 

Depth Extreme value type - I Lognormal Observed data 
(m) µz <Tz rz Kz µz O"z rz Kz µz O"z rz Kz 

CV=0.05 

2.23 20.17 30.53 -0.91 4.83 20.16 30.52 -1.72 9.89 20.17 30.53 -1.69 4.54 
2.56 36.75 31.63 -0.80 4.59 36.75 31.62 -1.53 8.99 36.75 31.63 -1.50 4.35 
2.92 57.70 33.30 -0.65 4.31 57.70 33.29 -1.28 7.89 57.70 33.30 -1.26 4.11 
3.19 73.2q 34.72 -0.55 4.13 73.24 34.71 -1.10 7.15 73.25 34.72 -1.08 3.96 
3.45 88.68 36.25 -0.45 3.97 88.67 36.25 -0.93 6.51 88.68 36.25 -0.92 3.82 
3.69 104.05 37.90 -0.36 3.83 104.05 37.89 -0.78 5.97 104.05 37.90 -0.77 3.71 

CV =0.10 

2.23 20.66 31.11 -0.84 4.70 20.66 31.11 -1.61 9.40 20.66 31.11 -1.58 4.44 
2.56 37.37 32.51 -0.71 4.44 37.37 32.51 -1.38 8.38 37.37 32.51 -1.36 4.22 
2.92 58.48 34.62 -0.54 4.16 58.48 34.61 -1.09 7.22 58.48 34.62 -1.07 3.99 
3.19 74.15 36.38 -0.42 3.98 74.14 36.38 -0.89 6.49 74.15 36.38 -0.88 3.84 
3.45 89.69 38.28 -0.31 3.84 89.69 38.28 -0.72 5.89 89.69 38.28 -0.71 3.73 
3.69 105.18 40.29 -0.21 3.74 105.18 40.29 -0.56 5.40 105.18 40.29 -0.55 3.64 

CV =0.15 
2.23 21.51 32.14 -0.72 4.53 21.50 32.14 -1.42 8.65 21.51 32.14 -1.40 4.29 
2.56 38.43 34.05 -0.55 4.26 38.42 34.04 -1.14 7.53 38.43 34.05 -1.12 4.08 
2.92 59.81 36.87 -0.35 4.01 59.81 36.87 -0.80 6.39 59.81 36.87 -0.79 3.87 
3.19 75.67 39.21 -0.21 3.88 75.67 39.20 -0.59 5.74 75.67 39.21 -0.58 3.77 
3.45 91.42 41.69 -0.09 3.79 91.42 41.68 -0.41 5.24 91.42 41.69 -0.40 3.71 
3.69 107.11 44.29 0.01 3.73 107.10 44.28 -0.25 4.87 107.11 44.29 -0.24 3.67 

CV=0.20 
2.23 22.72 33.70 -0.55 4.36 22.72 33.69 -1.15 7.77 22.72 33.70 -1.13 4.17 
2.56 39.95 36.34 -0.33 4.15 39.95 36.33 -0.81 6.67 39.95 36.34 -0.80 4.01 
2.92 61.73 40.17 -0.09 4.01 61.72 40.17 -0.44 5.70 61.73 40.17 -0.43 3.91 
3.19 77.88 43.29 0.07 3.97 77.88 43.28 -0.22 5.22 77.88 43.29 -0.21 3.90 
3.45 93.91 46.55 0.19 3.97 93.91 46.55 -0.04 4.91 93.91 46.55. -0.03 3.92 
3.69 109.89 49.94 0.30 3.99 109.88 49.93 0.11 4.70 109.89 49.94 0.12 3.95 

CV=0.25 
2.23 24.36 35.92 -0.30 4.33 24.35 35.92 -0.80 6.97 24.36 35.92 -0.78 4.18 
2.56 42.00 39.54 -0.03 4.29 42.00 39.54 -0.41 6.09 42.00 39.54 -0.39 4.19 
2.92 64.30 44.68 0.24 4.37 · 64.29 44.68 -0.01 5.48 64.30 44.68 -0.01 4.31 
3.19 80.84 48.80 0.40 4.48 80.83 48.79 0.21 5.26 80.84 48.80 0.21 4.44 
3.45 97.25 53.05 0.53 4.60 97.25 53.05 0.38 5.16 97.25 53.05 0.38 4.57 
3.69 113.61 57.42 0.63 4.72 113.61 57.41 0.51 5.12 113.61 57.42 0.51 4.69 

CV=0.30 
2.23 26.46 39.01 0.04 4.71 26.46 39.01 -0.35 6.61 26.46 39.01 -0.34 4.61 

- 2.56 44.64 43.90 0.35 5.01 44.63 43.90 0.08 6.20 44.64 43.90 0.09 4.95 
2.92 67.61 50.70 0.65 5.46 67.60 50.69 0.47 6.12 67.61 50.70 0.48 5.42 
3.19 84.65 56.04 0.81 5.76 84.64 56.04 0.68 6.21 84.65 56.04 0.69 5.74 
3.45 101.56 61.51 0.94 6.03 101.56 61.51 0.84 6.34 101.56 61.51 0.84 6.01 
3.69 118.41 67.07 1.03 6.26 118.41 67.07 0.95 6.47 118.41 67.07 0.96 6.24 
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Table 5-11: Comparison of exceedance probability obtained using GEF A and FORM 

Depth Normal Triangular Uniform Gamma Lg normal 
(m) GEFA FORM GEFA FORM GEFA FORM GEFA FORM GEFA FORM 

CV =0.05 
2.23 0.2119 0.2188 0.2119 0.2188 0.2119 0.2196 0.2119 0.2119 0.2182 
2.56 0.1131 0.1175 0.1132 0.1175 0.1132 0.1184 0.1131 0.1131 0.1170 
2.92 0.0555 0.0524 0.0555 0.0524 0.0555 0.0531 0.0555 0.0555 0.0521 

.3.19 0.0235 0.0214 0.0240 0.0214 0.0245 0.0219 0.0242 0.0246 0.0213 
3.45 0.0117 0.0108 0.0125 0.0108 0.0127 0.0111 0.0124 0.0128 0.0107 
3.69 0.0059 0.0055 0.0064 0.0055 0.0069 0.0057 0.0066 0.0069 0.0054 

CV= 0.10 
2.23 0.2121 0.2215 0.2122 0.2215 0.2123 0.2244 0.2121 0.2198 0.2121 0.2189 
2.56 0.1148 0.1204 0.1150 0.1205 0.1151 0.1236 0.1148 0.1193 0.1148 0.1186 
2.92 0.0568 0.0547 0.0569 0.0549 0.0569 0.0572 0.0568 0.0541 0.0568 0.0538 
3.19 0.0296 0.0232 0.0295 0.0234 0.0251 0.0249 0.0297 0.0228 0.0269 0.0227 
3.45 0.0142 0.0120 0.0152 0.0121 0.0139 0.0131 0.0142 0.0118 0.0154 0.0117 
3.69 0.0069 0.0062 0.0066 0.0063 0.0073 0.0069 0.0071 0.0061 0.0072 0.0061 

CV= 0.15 
2.23 0.2120 0.2255 0.2130 0.2257 0.2132 0.2314 0.2125 0.2219 0.2125 0.2200 
2.56 0.1159 0.1250 0.1178 0.1254 0.1184 0.1312 0.1172 0.1225 0.1173 0.1212 
2.92 0.0575 0.0584 0.0587 0.0590 0.0592 0.0631 0.0585 0.0571 0.0586 0.0564 
3.19 0.0306 0.0259 0.0309 0.0265 0.0330 0.0291 0.0310 0.0253 0.0293 0.0249 
3.45 0.0153 0.0139 0.0156 0.0143 0.0170 0.0159 0.0156 0.0135 0.0161 0.0133 
3.69 0.0063 0.0074 0.0082 0.0077 0.0082 0.0087 0.0078 0.0073 0.0078 0.0072 

CV= 0.20 
2.23 0.2080 0.2308 0.2147 0.2312 0.2152 0.2398 0.2129 0.2246 0.2130 0.2213 
2.56 0.1079 0.1308 0.1215 0.1318 0.1236 0.1402 0.1193 0.1267 0.1201 0.1244 
2.92 0.0462 0.0632 0.0603 0.0643 0.0628 0.0702 0.0594 0.0611 0.0605 0.0598 
3.19 0.0293 0.0295 0.0366 0.0306 0.0364 0.0342 0.0353 0.0286 0.0347 0.0280 
3.45 0.0067 0.0163 0.0178 0.0171 0.'0204 0.0194 0.0207 0.0159 0.0178 0.0156 
3.69 0.0008 0.0091 0.0087 0.0096 0.0110 0.0110 0.0121 0.0089 0.0095 0.0086 

CV=0.25 
2.23 0.2113 0.2369 0.2184 0.2376 0.2193 0.2490 0.2129 0.2276 0.2136 0.2226 
2.56 0.1096 0.1375 0.1262 0.1391 0.1312 0.1500 0.1201 0.1315 0.1229 0.1280 
2.92 0.0407 0.0687 0.0604 0.0705 0.0686 0.0780 0.0579 0.0657 0.0621 0.0638 
3.19 0.0353 0.0338 0.0477 0.0353 0.0428 0.0401 0.0424 0.0326 0.0399 0.0316 
3.45 0.0063 0.0193 0.0190 0.0205 0.0271 0.0234 0.0168 0.0188 0.0201 0.0183 
3.69 0.0000 0.0111 0.0062 0.0119 0.0123 0.0137 0.0088 0.0110 0.0101 0.0108 

CV= 0.30 
2.23 0.2048 0.2435 0.2272 0.2446 0.2266 0.2584 0.2109 0.2307 0.2142 0.2239 
2.56 0.1243 0.1449 0.1336 0.1471 0.1427 0.1602 0.1167 0.1367 0.1255 0.1318 
2.92 0.0771 0.0748 0.0593 0.0772 0.0786 0.0864 0.0505 0.0709 0.0634 0.0681 

- 3.19 0.0953 0.0386 0.0433 0.0407 0.0510 0.0465 0.0320 0.0371 0.0492 0.0356 
3.45 0.0789 0.0228 0.0022 0.0244 0.0375 0.0280 0.0098 0.0223 0.0280 0.0215 
3.69 0.0673 0.0135 0.0553 0.0147 0.0198 0.0169 0.0015 0.0135 0.0121 0.0133 
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Table 5-12: Comparison of exceedance probability obtained using GEF A and FORM 

Depth Normal Triangular Uniform Gamma Log normal 
(m) GEFA FORM GEFA FORM GEFA FORM GEFA FORM GEFA FORM 

CV= 0.05 
2.23 0.1406 0.1912 0.1406 0.1912 0.1406 0.1920 0.1406 0.1406 0.1907 
2.56 0.0689 0.1058 0.0689 0.1058 0.0689 0.1065 0.0689 0.0689 0.1055 
2.92 0.0586 0.0518 0.0586 0.0518 0.0586 0.0524 0.0586 0.0586 0.0516 
3.19 0.0261 0.0260 0.0262 0.0260 0.0264 0.0264 0.0263 0.0264 0.0259 
3.45 0.0196 0.0156 0.0198 0.0156 0.0200 0.0159 0.0199 0.0201 0.0155 
3.69 0.0115 0.0096 0.0117 0.0096 0.0119 0.0097 0.0118 0.0120 0.0095 

CV= 0.10 
2.23 0.1425 0.1936 0.1426 0.1937 0.1428 0.1964 0.1425 0.1922 0.1425 0.1914 
2.56 0.0732 0.1081 0.0734 0.1082 0.0735 0.1107 0.0732 0.1072 0.0732 0.1067 
2.92 0.0593 0.0536 0.0593 0.0537 0.0593 0.0554 0.0593 0.0530 0.0593 0.0527 
3.19 0.0314 0.0273 0.0365 0.0274 0.0258 0.0286 0.0243 0.0270 0.0267 0.0268 
3.45 0.0179 0.0165 0.0162 0.0166 0.0208 0.0174 0.0183 0.0163 0.0218 0.1620 
3.69 0.0096 0.0102 0.0090 0.0103 0.0104 0.0109 0.0113 0.0101 0.0112 0.0100 

CV= 0.15 
2.23 0.1451 0.1974 0.1465 0.1976 0.1470 0.2029 0.1458 0.1942 0.1459 0.1926 
2.56 0.0781 0.1117 0.0802 0.1121 0.0810 0.1168 0.0794 0.1097 0.0795 0.1086 
2.92 0.0589 0.0563 0.0600 0.0567 0.0605 0.0599 0.0599 0.0551 0.0601 0.0545 
3.19 0.0383 0.0293 0.0356 0.0297 0.0394 0.0319 0.0301 0.0287 0.0380 0.0283 
3.45 0.0189 0.0180 0.0206 0.0182 0.0197 0.0198 0.0212 0.0176 0.0200 0.0173 
3.69 0.0101 0.0113 0.0107 0.0115 0.0123 0.0125 0.0116 0.0110 0.0115 0.0108 

CV=0.20 
2.23 0.1435 0.2023 0.1530 0.2028 0.1542 0.2109 0.1505 0.1969 0.1506 0.1940 
2.56 0.0731 0.1165 0.0885 0.1172 0.09to 0.1242 0.0858 0.1130 0.0865 0.1110 
2.92 0.0455 0.0599 0.0597 0.0607 0.0624 0.0655 0.0594 0.0580 0.0606 0.0569 
3.19 0.0365 0.0320 0.0393 0.0327 0.0410 0.0360 0.0386 0.0310 0.0393 0.0303 
3.45 0.0145 0.0199 0.0239 0.0205 0.0249 0.0227 0.0224 0.0193 0.0230 0.0189 
3.69 0.0022 0.0127 0.0112 0.0131 0.0141 0.0146 0.0117 0.0123 0.0127 0.0120 

CV= 0.25 
2.23 0.1591 0.2081 0.1637 0.2090 0.1654 0.2198 0.1559 0.2000 0.1565 0.1956 
2.56 0.0817 0.1220 0.0979 0.1233 0.1039 0.1326 0.0908 0.1169 0.0937 0.1139 
2.92 0.0352 0.0642 0.0573 0.0655 0.0663 0.0718 0.0559 0.0614 0.0608 0.0597 
3.19 0.0510 0.0353 0.0509 0.0364 0.0496 0.0406 0.0450 0.0338 0.0443 0.0328 
3.45 0.0184 0.0223 0.0211 0.0232 0.0309 0.0260 0.0213 0.0215 0.0251 0.0208 
3.69 0.0016 0.0144 0.0103 0.0151 0.0172 0.0170 0.0111 0.0139 0.0131 0.0135 

CV= 0.30 
2.23 0.1801 0.2145 0.1819 0.2158 0.1818 0.2291 0.1605 0.2033 0.1634 0.1972 
2.56 0.1130 0.1282 0.1102 0.1301 0.1208 0.1414 0.0913 0.1212 0.1004 0.1170 

. 2.92 0.0739 0.0690 0.0536 0.0708 0.0749 0.0786 0.0466 0.6530 0.0608 0.0629 
3.19 0.0937 0.0390 0.0546 0.0405 0.0652 0.0457 0.0410 0.0371 0.0469 0.0357 
3.45 0.0835 0.0251 0.0053 0.0263 0.0354 0.0298 0.0181 0.0240 0.0275 0.0231 
3.69 0.0697 0.0164 0.0553 0.0174 0.0267 0.0198 0.0055 0.0159 0.0180 0.0153 
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Table 5-13: Exceedance probability obtained using GEFA 

Depth (m) Normal Triangular Uniform Gamma Lognormal 
CV=0.05 

2.23 0.2598 0.2598 0.2598 0.2598 0.2598 
2.56 0.1432 0.1433 0.1433 0.1433 0.1433 
2.92 0.0586 0.0586 0.0586 0.0586 0.0585 
3.19 0.0231 0.0233 . 0.0234 0.0234 0.0235 
3.45 0.0168 0.0170 0.0172 0.0171 0.0172 
3.69 0.0094 0.0095 0.0097 0.0096 0.0098 

CV= 0.10 
2.23 0.2528 0.2531 0.2535 0.2533 0.2535 
2.56 0.1410 0.1413 0.1416 0.1413 0.1414 
2.92 0.0626 0.0625 0.0624 0.0624 0.0623 
3.19 0.0268 0.0314 0.0356 0.0336 0.0368 
3.45 0.0210 0.0195 0.0168 0.0220 0.0176 
3.69 0.0093 0.0091 0.0107 0.0114 0.0115 

CV= 0.15 
2.23 0.2403 0.2429 0.2443 0.2434 0.2444 
2.56 0.1353 0.1381 0.1393 0.1379 0.1386 
2.92 0.0661 0.0669 0.0670 0.0665 0.0664 
3.19 0.0329 0.0354 0.0307 0.0313 0.0298 
3.45 0.0203 0.0215 0.0206 0.0199 0.0215 
3.69 0.0105 0.0113 0.0116 0.0116 0.0116 

CV=0.20 
2.23 0.2165 0.2307 0.2346 0.2316 0.2342 
2.56 0.1158 0.1337 0.1376 0.1331 0.1352 
2.92 0.0552 0.0688 0.0711 0.0681 0.0690 
3.1.9 0.0336 0.0413 0.0432 0.0410 0.0374 
3.45 0.0158 0.0239 0.0239 0.0224 0.0220 
3.69 0.0035 0.0108 0.0141 0.0117 0.0127 

CV=0.25 
2.23 0.2041 0.2197 0.2271 0.2191 0.2246 
2.56 0.1073 0.1294 0.1384 0.1263 0.1319 
2.92 0.0437 0.0662 0.0752 0.0649 0.0696 
3.19 0.0480 0.0486 0.0496 0.0462 0.0444 
3.45 0.0175 0.0271 0.0301 0.0254 0.0269 
3.69 0.0015 0.0095 0.0183 0.0094 0.0135 

CV =0.30 
2.23 0.2066 0.2158 0.2250 0.2062 0.2166 
2.56 0.1271 0.1285 0.1439 0.1161 0.1293 
2.92 0.0792 0.0601 0.0822 0.0543 0.0688 
3.19 0.0900 0.0531 0.0540 0.0379 0.0479 
3.45 0.0799 0.0667 0.0321 0.0494 0.0301 
3.69 0.0670 0.0553 0.0251 0.0052 0.0162 
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CHAPTER VI 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

Summary 

The great advantage of FOA is its simplicity, requiring knowledge of only the 

first two statistical moments of the basic variables, and ease of application, requiring 

simple sensitivity calculations about the selected central values. FOA is an approximate 

method that may suffice for many applications, but the method does have several 

conceptual shortcomings. Despite these, FOA has been used quite successfully in a wide 

variety of fields. It is believed that the exactness of FOA estimates is influenced in part 

by the degree of nonlinearity in the functional relationship and by parameter uncertainty. 

To overcome nonlinearity problems, several nonlinearity predictors were proposed by 

various researchers, which work well only in specific situations. No generalized 

nonlinearity predictor has been developed so far. To ensure the validity of FOA 

application for output variance calculations, researchers suggested a number of criteria 

based on restricting input parameter CVs, but all these criteria have limitations. Presently, 

no clear-cut guidelines specifying where FOA should be used are available. 

The objective of this dissertation was to investigate the important factors affecting 

the exactness of FOA estimates and develop a simple correction procedure useful for 

practicing engineers to correct the FOA estimates for the mean and the variance of a 
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model output. The safe design of a hydraulic structure (spillway, channel, culvert, sewer, 

etc) must be in compliance with regulatory standards specified for the safety and public 

health (surface and ground water pollution, air pollution, and soil contaminants, etc) 

require reliability and risk analysis relative to system failure. FOA has been used 

frequently to carry out reliability and risk analysis of many water resources and 

environmental engineering systems. This approach has a drawback in that a normal 

distribution is typically assumed for the model output which is seldom true. 

Consequently, estimates of the risk/reliability of a model are severely affected, 

particularly when a probability calculation is sought in the tail portions of the 

distribution. Better identification of a suitable distribution for the model output is 

possible if knowledge of higher moments is available. Therefore the final objective of 

this thesis was to develop a simple approach for calculating the higher-order moments of 

a model output. 

As multitudes of mathematical forms of models are available, it is very difficult to 

address all possible forms individually. However, most of the mathematical functions can 

be thought of as an integrated form of individual component functions such as a power 

function, an exponential function, etc. Their exponents can be used as a surrogate 

parameter to represent their nonlinearity. Therefore, nonlinearity of component functions 

can be accounted for .. 

To study the impacts of parameter CV and functional nonlinearity, a simple 

power function with positive integral exponents is considered. Table 6-1 presents the 

relative error expressions for FOA predicted variance, E(a; ), for the uniform, the 

symmetrical triangular, and the normal distributions. These error expressions indicate that 
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exactness of FOA estimates depends not only on parameter uncertainty and functional 

nonlinearity but also on the distribution of the input parameter. 

Table 6-1: Variance error expressions for a simple power function 

Function Relative error in FOA predicted variance, E(a:} 
Uniform Symmetrical Triangular Normal 

Y=cX 2 cv 2 1cv 2 cv 2 

CV 2 +5 1cv 2 +20 cv 2 +2 

Y=cX3 cv 2 (3cv 2 +14) 3cv 2 (2cv 2 +1) cv 2 (5cv 2 +12) 

3CV 4 +14CV 2 +7 6CV 4 +21CV 2 +7 5CV 4 +12cv 2 +3 

Y=cX4 9CV2(CV 4 + 15CV2 + 15) 3cv2(4sCV 4 + 39ocv2 + 265} 3CV2 (4CV4 + 16CV2 + 7) 

9CV6 + 135CV4 + 135CV2 + 25 144CV6 + l l 70CV4 + 795CV2 + 100 12CV6 + 4CV4 + 16CV2 + 7 

It is observed that the relative error in FOA estimates of means and variances of a 

model output for a given exponent and CV changes with the type of distribution. This 

shows that the type of distribution is also important when judging the exactness of FOA. 

The relative error in FOA estimates for the mean and variance of a power function 

depends upon the CV of the input parameter, magnitude of exponent r, and type of 

distribution for the input parameter. Knowledge of relative error corresponding to FOA 

estimates (µv andui) can be used to correct them to obtain their exact values. The exact 

value of an FOA estimate can be obtained as 

FOA estimate 
Exact value = -----

1-E(.) 
(6-1) 

where E(.) is the relative error corresponding to the FOA estimate. The exponent of a 

component power function in an integrated mathematical form may assume any value 

including a negative or positive and integer or fractional number. Therefore, generalized 
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mathematical expressions are required for the component functions to apply this 

technique. 

Analytical relationships for the relative error in FOA estimates of the means and 

the variances of component functions were developed for a generic power function and a 

generic exponential function using five common distributions. These analytical 

expressions can be used as a guide for judging the suitability of FOA by determining the 

relative errors in the most sensitive parameters. Further, when relative error is more than 

the acceptable error, these analytical relationships enable one to correct FOA estimates 

for means and variances of model components to their true values. Using these corrected 

values of means and variances for model components, one can determine the exact values 

of mean and variance of an overall model output. Tables 6-2 and 6-3 present the 

developed expressions for E(µv )andE(a; )for a power function (y = cXr ). 

Table 6-2: Generalized relative error in FOA predicted mean of a power function 

Distribution Relative error in FOA predicted variance, E(ftr) 

Uniform l- 2.J3(r + 1)cv X 

[ (1 + CV x .J3f+I) -(1- CV x .J3f+l)J 
Symmetrical 1 _ . 6 (r + 1 Xr + 2 )cv; 
triangular [ (1 + CV X ..f6f+2) + (1 - CV X ..f6f+2) - 2 J 
Lognormal I 

1 - (1 + CV; )2r(l-r) 

Gamma CV ; 2rr (CV ; 2) 1-
r[cv ; 2 (1 + rCV; )] 

Exponential 
1- 1 

r(r + 1) 
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Table 6-3: Generalized relative error in FOA predicted variance of a power function 

Distribution 

Uniform 

Symmetrical 
triangular 

Lognonnal 

Gamma 

Exponential 

Relative error in FOA predicted variance, E(a:) 
1- 12 {2r+1) r2(r+1fci:t 

{2"3cvx(r+ 1f[(1 +CVx"3f+1 -(l-CVx"3f+1]-(2r+ 1{(1 +CVx"3t1 -(l-CVx"3t1T} 
1 36(2r+l) r2(r+1)2(r+2)2CT{ 

{3(r+1Xr+2)2cT{[(1+c17xF6t+2 +{1-c17xF6t+2 -2]-(2r+i{{1+c17xF6t2 +{1-c 

r2CV2 (cv2 + 1)r 1- X X 

(cv; +1([(cv; +1( -1] 

1- . r2cv;<1-2r)[r(cv;2 )]2 

r(cv;2 (1 + 2rCV; ))r(cv;2 )-f[cv;2 (1 + rCV; )] }2 
r2 

1-~~~~~~~~ 

[r(2r + 1)-r2 (r + 1)] 

To further simplify the correction procedure, these analytical relationships have 

been presented graphically. The relative error plots show where FOA estimates are 

acceptable and where they are unacceptable and need to be corrected. In specific 

situations, a given function may be very nonlinear (represented either by a very large or 

very small exponent of a power function). These situations can be identified and dealt 

with by using the relative error plots. There are several other features of error plots, 

which are discussed in the following section. 

The relative error is zero for a power function at certain values of the exponents, 

which changes with the type of distribution used for the input random variable. These 

exponents are O and 1 as shown by E(µy) plots (Figures 2-1, 2-3, 2-5, 2-7, 2-10) for all 

the considered distributions. In the same way, there are two exponent values for E(a:) 

where FOA estimates for the variance have no error. One of these exponents is 1 and the 
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other changes with the distribution type and CV of the input parameter as shown in Table 

2-2. The average values of these second exponents are 1. 75, 1. 70, 1.65, 0.28, -0.34 and 

0.30 for the uniform, the triangular, the normal, the exponential, the lognormal, and the 

gamma distributions respectively. 

Table 2-2 shows that when the exponent of a power function lies within the 

tabulated range for each distribution, the FOA variance estimate will have almost no error 

and the power function will behave like a linear function as far as the variance prediction 

is concerned. These situations are depicted by E(a; )vs. r plots in Figures 2-2, 2-4, 2-6, 

2-8, and 2-11. In general, it can be concluded that application of FOA will provide good 

results when the exponent of a power function lies in the vicinity of these exponent 

values, and the error will be small regardless of the CV values of the input variable. This 

contradicts previous findings that FOA works well only when CV::;; 0.2. 

When the exponent of a power function falls between 1 and 1. 7 for normal, 

uniform, and triangular distributed parameters, the FOA overestimates the actual 

variance. However, the overestimation is small as shown by the negative values of E(a;) 

in Figures 2-2, 2-4, and 2-11. When the exponent falls outside this range, the FOA 

underestimates the actual variance. When the parameter is lognormally distributed and 

the exponent falls between -0.34 and 1, the FOA may highly overestimate the actual 

variance depending upon the parameter CV values as shown by negative values of E(a;) 

in Figure 1.6. When the exponent falls outside this range, FOA underestimates the actual 

variance. In the case of the gamma distribution, when the exponent falls between 0.3 and 

1, the FOA overestimates the actual variance. For exponents outside this range the FOA 

underestimates the actual variance. Relative error plots further endorse the conclusion 
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that the parameter distribution type affects the accuracy of FOA predicted means and 

variances. 

Even a very small exponent (very close to zero) may give a very high relative 

error in FOA predicted variance for some of the distributions (normal, uniform, and 

triangular). Error plots of the normal distribution (Figures 2-10 and 2-11) show that 

significant errors occur in. both the mean and variance of a power function predicted 

usingFOA. 

Similarly Tables 6-4 and 6-5 present the developed expressions 

for E(µv )andE(a; )for an exponential function(Y = becX ). 

Table 6-4: Generalized relative error in FOA predicted mean of a power function 

Distribution 

Uniform 

Symmetrical 

triangular 

Normal 

Gamma 

Exponential 

Relative error in FOA predicted variance, E(fir) 

2.fic II CV e ,/jcµ,cv, 
1 rx x 

- (e2"3cµ,CV, -1) 
6c2112CV2ecµ,CV,..J6 

1 rx x 
- (ecµ,CV,../6 -1 r 

l-exp[-ic2µ;cv/ J 
1 

1-(1-cµxcvt)cv] exp(cµJ 

1- (1- cµx )exp(cµx) 
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Table 6-5: Generalized relative error in FOA predicted variance of a power function 

Distribution 

Uniform 

Symmetrical 

triangular 

Normal 

Gamma 

Exponential 

Relative error in FOA predicted variance, E(a;) 
l2c4µ4Cv4e2,13cµ,cv_, 

1- X X 

{e2~cµ_,cv. -1l{.J3cAC~-1~2~cµ.cv_, +.J3cAC~ +1] 

nc6 µ6CV6 e2./6cµ,cv, 
1- .t .• 

(e--'6cµ,CV, -1 J[(3c2 µ;CV.,,2 - 2 Xe2./6cµ,CV., + 1 )+ 2e./6cµ,CV, (3c2 µ;ci;-:2 + 2 )] 

C20"2 
1- X 

exp(c2 a; lexp(c 2 a; )-1] 

l- c 2 µ;CVx2 exp(2cµx) 
1 2 

(1-2cµxCV} t cv; -(1-cµxCVx2 t cv; 

l - c 2 µ; exp(2cµx) 

(1-2cµxt1 -(1-cµxt1 

These mathematical relationships have been presented graphically in Figures 3.1 

to 3.9. These relative error plots indicate that relative error in both the means and the 

variances of an exponential function is small when exponent mean value is small. 

However, an exception of this generalization has been observed in relative error plots of 

variance when input parameter has the gamma or the exponential distribution. In these 

cases, the relative error is small at two points of exponent mean values. For example, in 

case of the gamma distribution, one of such point is zero and the other varies from -1.33 

to -1.71 with the CV of input parameter. 

In order to determine the higher-order moments of a model output correctly, a 

simple approach of using generic expectation functions ( GEF A) as a function of means 

and CV s of input random variables is proposed. GEF A are easy to develop and simple to 

apply to problems related to reliability, risk, and uncertainty analysis. Several expectation 
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functions based on commonly used probability distributions have been developed (Tables 

6-6 and 6-7) for a power and an exponential function. 

Table 6-6: Generic expectation functions for some commonly used probability density 
functions 

Name 

Uniform 

Symmetrical 
triangular 

Unsymmetrical 
triangular 

Lognormal 

Gamma 

Exponential 

Normal 

Generic expectation function, E[xr] 

2[(p-m )ar+2 + (m-a)pr+2 + (a- p)mr+2] 
(r + 1 Xr + 2 )(p - m Xco - a )(p - a) 

r(r-1) 
µ~(I+ CV; )-2-

cv;r µ~r(cv;2 +r) 
rccv;2 ) 

µ~r(r+I) 
r/2( r) {2n) 

µ ~ L -n -1 CV in , when r is an even positive integer; 
n=O 2n 2 n. 
(r~2( r) (2n}. . µ~ LJ 7, cv;n' when r is an odd positive integer; and 

n=O 2n 2 n. 
when r is anything but a positive integer, 

r [1 r(r-I)cv2 r(r-IXr-2} .... (r-n +I)cvn ] 
µX + 2 X + ...... + 2Yl(n/2)! X + ... • 
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Table 6-7: Generic expectation functions for some commonly used probability density 
functions 

Name 

Uniform 

Symmetrical 
triangular 

Unsymmetrical 
triangular 

Normal 

Gamma 

Exponential 

Generic expectation function, E[xr] 

br (ercµ,{1+cv,JJ) _ ercµ_,(1-cv,JJ) 

2.fircµxCVx 

b [ !reµ, (1+cv, ./6) !reµ, (1-cv, -16)] e2 -e2 
6r 2 c 2 µ~CV} 

2hr [(a- ,B)exp(rcw )+ (,B-w )exp(rca )+ (m -a )exp(rc,B)] 

r 2c2(,B-aXm-aXP-m) 

brexp(rcµx +1r2c2µ~CV;) 

I 

br(1- crµXCV} f cv_; 

br 

(l-crµJ 

The parameters ,B, a, and m of a unsymmetrical triangular distributi.on are the maximum, 

minimum, and mode values of X, which can be obtained by substituting n = 0, 1, and 2 

respectively in the following relationship. 

(6-2) 

The developed expectation functions are general. Using them, any order of 

moment can be estimated exactly. The knowledge of higher-order moments can be used 

to identify the most suitable distributions from the commonly used distributions as well 

as to determine an appropriate distribution by satisfying higher-order moments. Using 

such a distribution with its correct parameters, one can find a good estimate of reliability, 

risk and uncertainty of a system. 
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A comprehensive study on reliability analysis of open channel flow has been 

carried out using GEF A. It has been concluded that an increase in uncertainty of the 

Manning's roughness coefficient increases the estimated risk that a given depth of flow 

will be exceeded. The variation in types of distribution for the Manning's roughness 

coefficient has negligible effect at smaller CVs, however, the effect is more pronounced 

at higher CV s. The most significant impact was observed due to the type of distribution 

used to represent the peak annual flow in the performance function at both smaller and 

higher CV s of the Manning's coefficients. The problems due to distribution fitting can be 

removed by incorporating the actual observed data in the performance function. No other 

method provides any flexibility to incorporate actual observed data into the performance 

function. GEFA can be used regardless of whether the peak annual flow is represented by 

a distribution or by the actual observed data. 

Several other practical examples related to uncertainty, risk, and reliability 

analysis of hydrologic, hydraulic, and environmental systems are presented which show 

that the developed techniques are easy to apply, simple to understand, efficient to 

compute, and give accurate results. The limitation of the proposed technique is that it can 

only be applied to functions that involve un-correlated input random variables. 

Conclusions 

It is investigated and mathematically proven that exactness of FOA estimates 

depends up on three factors parameter CV, parameter distribution type, and degree of 

nonlinearity in the functional relationship, as opposed to earlier belief that only two 

factors the degree of nonlinearity in the functional relationship and parameter uncertainty 

were relevant. However, in some specific situations all distribution types may give 
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comparable results. Further it has been shown that FOA estimates are erroneous even 

when input parameters are normally distributed, This clears the misconception that FOA 

works well when input variables are normally distributed. Two approaches for reliability, 

risk, and uncertainty analysis are presented. The first is a correction procedure for 

correcting the FOA estimates for parameter uncertainty, parameter distribution type, and 

model non-linearity. The second is the use of generic expectation functions for evaluating 

exact moments of model output. 

The FOA estimate correction technique is particularly useful for determining 

exact values of the first two moments of model output generally required for uncertainty 

analysis. Analytical relationships are developed to determine the relative errors in FOA 

estimates for the means and variances of power and exponential functions using several 

commonly used distributions. Using these relative error functions, one can correct the 

FOA estimates for the means and variances of component power functions for 

nonlinearity, and, distribution type to evaluate the exact mean and variance of model 

output. For ease in application, analytical relative error expressions are presented 

graphically. These plots can be used to determine an approximate relative error for a 

given exponent of a power function and CV of its random variable. Another advantage of 

relative error plots is they present an overall idea about the suitability of FOA in a given 

situation without making any calculations. Special cases are identified when applying 

FOA to a nonlinear power function for estimating its variance will give a negligible or no 

error. This method provides a procedure for incorporating known information on the 

types of input variable distributions. 
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In reliability and risk analysis, information on the model output distribution is 

very important. Knowledge of higher-order moments helps to identify the appropriate 

distribution for the model output. A simple approach of developing generic expectation 

functions is described. Analytical expressions of generic expectation functions for 

generalized power and exponential functions were derived using several commonly used 

input parameter distributions. These expectation functions can be used to determine exact 

estimates of any order of model output moments. 

Many hydrologic applications involve representing a random variable by a certain 

distribution, but it is seldom possible to fit given data exactly. Incorporating the actual 

observed data in the performance function could solve problems due to distribution 

fitting. No other method provides such flexibility to incorporate actual observed data into 

the performance function. GEF A can be used irrespective whether the peak annual flow 

is represented by a distribution or by the actual observed data. 

Recommendations 

As summarized and concluded in the preceding sections and presented in the 

previous chapters, the objectives of this study have been fully accomplished. Proposed 

and developed uncertainty analysis using corrected first order approximation method, and 

reliability and risk analysis using GEF A can be used as very efficient, easy, accurate tools 

to carryout reliability, risk, and uncertainty analysis of an engineering system. For further 

enhancement, future research should be focussed on the following areas. 

J. While developing the two approaches, the correction procedure for correcting the 

FOA estimates for parameter uncertainty, parameter distribution type, and model non­

linearity and the generic expectation function approach for evaluating the exact 
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moments of a model output, input parameters are assumed to be independent. This is 

a practical limitation of the developed method as there are many situations where 

input parameters are highly correlated. Thus, there is need to develop parallel 

expressions considering correlation among input variables. 

2. For a power function of normally distributed input random variable with a negative 

exponent, the relative errors in FOA predicted estimates were obtained using a trial 

and error procedure. This procedure works well when CV and magnitude of exponent 

of input random variable are small but gives a significant error at higher CV and 

exponent magnitude. This need further research work of developing an analytical 

expression for determining the exact relative error in FOA estimated estimates. 

3. For an exponential function of a lognormally distributed input random variable, the 

relative error expressions could not be derived either analytically or numerically. This 

also needs to be further investigated in order to develop relative error functions. 

4. While applying GEFA to reliability analysis of open channel flow, it has been 

observed that in most cases a commonly used distribution can be employed to 

evaluate risk or reliability corresponding to a given depth of flow. But specific 

situations may arise where no available distribution can be used with confidence. The 

exactness of reliability estimates improves by incorporating the higher-order 

moments into determining the distribution of performance function. Thus, future 

research should be focussed to develop a simple procedure of deriving an output 

distribution involving higher-order moments exactly. It is recommended that output 

distribution should incorporate at least first four moments exactly. 
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5. Many engmeenng problems can be solved usmg relative error expressions and 

generic expectation functions for power and exponential functions. However, some 

specific fields use other component functional forms quite frequently. For example a 

complementary error function, erfc(.), has appeared very frequently in analytical 

groundwater contaminant transport models. Thus, it is recommended that similar 

relative error functions should be developed for other frequently used functional 

forms. 
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. APPENDIX! 

DEVELOPMENT OF RELATIVE ERROR FUNCTIONS FOR A POWER 

FUNCTION 

Uniform Distribution 

The probability density function p x (x) for the continuous uniform distribution is 

(I-1) 

where a and p are the distribution parameters. Using the methods of moments, the 

estimates for a and p are given (Haan, 1977) as 

a=µx -..f3ax =µx(I-..f3Cvx) 

/J=µx +..f3ax =µx(I+..f3Cvx) 

where CVx is the coefficient of variation of X, defined as 

Using equations (2-26), (I-1), (I-2a) and (I-2b) E[X'] is given as 

Similarly E[x21 can also be written as 
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(1-2a) 

(l-2b) 

(I-3) 



E[x2r]=Pf(ft l )X2rdx= fi( µ'f )c [(1+CVxfi)2r+t -(l-CVxfi)2r+t] (I-5) 
-a 2 3 2r+l Vx 

a 

Substituting E[X'J in (2-26), µy is given as 

(I-6) 

Similarly substituting E[X'] from (I-4) and E[x21 from (I-5) in (2-27), the expression for 

u; becomes 

(I-7) 

Substituting (2-22) and (I-6) in (2-24), the expression for relative error in FOA predicted 

mean, E(µy) is given as 

E(" =l- 2-J3(r+l)cVx . 
µy) [{. r,;){r+l) {. r,;){r+l)J 

\1 +CVx v3 -\1-CVx v3 
(I-8) 

Now substituting (2-23) and (I-7) in (2-24), the relative error in FOA predicted variance 

E( a!) can be represented as 

{2[3CYx(.+ 1)2[(1 +CYx.Jii' -(l-CJ'.,-.Jij']-(2r+ {(1 +CJ'.,-.Jir' -(1-CJx.Jir'r} 

(I-9) 

Symmetrical Trian~lar Distribution 

The probability density function p x (x) for the symmetrical triangular distribution 

IS 
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( ) 2 (x-a) 
Px x = (p-a) {r-a) , when as X Sy 

2 (p-x) 
Px(x)= (p-a) (p-y) , when ys X s p (I-10) 

where a, p, r are the minimum, maximum, and mode values of X When it is 

symmetrical, r = µx. The methods of moments estimates for a and pare 

lX = µ X - 16a X = µ X (1- /6CV X) 

jJ = µ X + 16a X = µ X (1 + .J6CV X) 

Using (2-26), (I-10), (1-1 la) and (I-1 lb) E[X'] is given as 

Similarly E[x21 can also be written as 

(I-lla) 

(I-1 lb) 

(I-12) 

E[X 2']= ( X;/ )c 2 [~+CVx../61'+2 +~-CVx../6)2 '+ 2 -2] (I-13) 12 r + 1 2r + 1 V x 

Substituting E[X'] froin (I-12) into (2-26), µy is given as 

(I-14) 

Similarly substituting E[X'] from (I-12) and E[x21 from (I-13) in (2-27), the expression 

for cl y is written as 

c2{3(r+lX,.+2fc~[(1+CVxf6j+2 +(I-CVxf6j+2 -2]-(2r+i{{1+CVxxf6t2 +(I-CVxf6t2 -2J}.J? 
crr=__,_~~~~~~~~~~~~~~~~~~~~~~~~-"--

3«:2r+ IXr+ 1f(r+2)2c~ 

(I-15) 

Substituting (2-22) and (1-14) in (2-24), the expression for relative error in FOA predicted 

mean, E(µy) is given as 
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A 6(r+1Xr+2)cv; 
E(µy) = 1-[( rr)(r+z) ( rr)(r+2) J 

l+CVx-v6 + 1-CVx-v6 -2 
(I-16) 

Now substituting (2-23) and (I-15) in (2-24), the relative error in FOA predicted variance 

E( a; ) can be expressed as 

{ 3(,. ,x,. 2f c{(1 + c".Jo )"'2 + {i-c".J.)2,+2 -z} (2r+ {(1 + c1x,'<f 2 +{1-c1x.r.r2 -2 J} 
(I-17) 

Lognormal Distribution 

If X is lognormally distributed with mean, µx, and variance, d x, its probability 

density function is given (Haan, 1977) as 

(I-18) 

where V = ln(X) is normally distributed with parameters µv and d v. The parameters µv 

and d v are defined (Haan, 1977) as 

(I-19) 

ui = ln(cv; + 1) (I-20) 

Substituting (I-18) in (2-26), E[X] is written as 

(I-21) 
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Assuming, ln(X)- µv = Z, the random variable X can be written as, X = e(µv+avz), (1-21) 
(]' V 

is rewritten as 

"' I 2 "' I( ) I 2 
( ) 1 f ( z) --Z l f -2µvr+air 2 --(Z-rav) E xr =-- er µv+av exp 2 dz=-- e 2 e 2 dZ 

& & 
(I-22) 

-a:, -«> 

But 

"' I 2 1 f --(Z-rav) 
-- e 2 dZ=l 
& 

-oo 

Equation (I-22) can be written as 

( 1 2 2) 
( ) 

Pvr+-uvr 
E xr = e 2 (I-23) 

Substituting 2r in place of r, E[X2r] can be written as 

(I-24) 

Substituting r = 1 in (I-23), µxcan be written as 

(I-25) 

Substituting (I-25) in (22), the FOA estimate for mean µy can be written as 

(I-26) 

The exact value of µy can be obtained by substituting value of E[X'] from (I-23) in (2-

26) as: 

(I-27) 
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Substituting (I-26) and (I-27) in (2-24), the relative error in FOA predicted mean 

E(µy) can be expressed as 

Substituting (I-20) in (I-28), E(µy) can be rewritten as 

E(µy) = 1-(1 + CV; )~r(l-r) 

Substituting (I-25) in (23), the FOA estimate for variance dr can be written as 

A 2 2 2 (2 2 \,,v2 a y = c r exp rµv + ra v f, x 

(I-28) 

(I-29) 

(I-30) 

Substituting E[X] from (I-23) and E[x21 from (I-24) in (2-27), the exact variance can 

be written as 

(I-31) 

Substituting (I-30) and (I-31) in (2-24), the relative error in FOA predicted variance 

E( a-; ) can be expressed as 

(I-32) 

Substituting (I-20) in (I-32), E(a;)can be rewritten as 

2 if 2 )r 
E(o- 2 )=l- r CVx\CVx+l 

y (cv; +if [(cv; +1( -1] 
(I-33) 

Gamma Distribution 

The gamma density function is given by 
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Aa e-AX x<a-1) 
p x (x) = , X, a, and A> 0 

r(a) 
(I-34) 

where a and A are the distribution parameters. Using method of moments a and A are 

expressed (Haan, 1977) as 

2 
A µx 1 
a=-=--0'2 cv2 

X X 

Substituting (I-34) in (2-26), E[X] is written as 

( r) A,a CIOfe-AX x<a+r-1). r(a + r) 
EX=- dX=~~ 

f(a) 0 f(a) Xf(a) 

Replacing r by 2r in (I-37), E[X21 is written as 

E(x 2r )= f(a + 2r) 
,1,2T(a) 

Substituting r = 1 in (I-37), µx can be given as 

Substituting (I-39) in (2-22), the FOA estimate for mean µycan be given as 

The exact value of µy can be obtained by substituting (I-37) in (2-26) as 

r{a +r) 
µy =c Xf(a) 

(I-35) 

(I-36) 

(I-37) 

(I-38) 

(I-39) 

(I-40) 

(I-41) 

Substituting (I-40) and (I-41) in (2-24), the relative error in FOA predicted mean 

E(µy )can written as 
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E{.uy) = 1- aT(a) 
r(a+r) 

Substituting a in terms of CVx from (1-36), (1-42) is rewritten as 

cv-2rr(-1-) x cv2 
E(µy)=I- ( X) r I+rCV; 

cv2 
X 

Substituting (1-39) in (2-23), the FOA estimate for variance dy can be written as 

(I-42) 

(1-43) 

(1-44) 

Substituting E[X'] from (1-37) and E[x21 from (1-38) in (2-27), the exact variance can be 

written as 

0-2 = ~[r(a)r(a + 2r )- r 2 (a+ r )] 
Y ;i,2r r2(a) (1-45) 

Substituting (I-44) and (1-45) in (2-24), the relative error in FOA predicted variance 

E( a-;) can be expressed as 

2 2r 2 2 
E(u 2)=l- r a CVx r (a) 

y r(a)r(a+2r)-r2 (a+r) 

Substituting (1-36) in (1-46), E(a;) can be rewritten as 
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Exponential Distribution 

Exponential distribution is a special case of the gamma distribution with a = 1. 

Substituting a= 1 in (I-42), the relative error in FOA predicted mean is given as 

E(µr) = 1- ( l ) r r+l 
(I-48) 

Substituting a= 1 in (I-36), CVx= 1. On substituting CVx= 1 in (I-47), the relative error 

in FOA predicted variance E( a;) can be expressed as 

2 

E(a 2 )=1-~~~-r~~~~ 
Y [r(2r + 1)-r2 (r + 1)] 

(I-49) 

Normal Distribution 

The probability density function of normal distribution is 

l[X-µx )2 1 -2 ----;;;-
P x ( x) = r;;- e 

a x-v21t 
(I-50) 

where µx and d x are the parameters of normal distribution. 

Substituting (I-50) in (2-26), the E[X'] is written as 

(I-51) 

Assuming, X -µx =Z, the random variable X can be written as, X =(µx +axZ), (I­
<Tx 

51) is rewritten as 

(I-52) 

Equation (I-52) is difficult to integrate. Its integral exists when x is represented by the 

standard normal distribution for which µx = 0, ax= 1. The resulting equation is 
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(I-53) 

The integral of (I-53) is 

( r) 2Yir[{r+l)/2] . 
EZ = J;; ={r-1Xr-3} ........ {3Xl),whennseven 

E(zr )= 0, when r is odd (I-54) 

Equation (I-54) can be used to compute E[X]. 

(I-55) 

When CVx < 1.0, (I-55) can be expanded using Binomial Theorem as 

E(xr)- r ~1 CTF z r(r-1) cu2z2 r(r-l){r-2) .... .{r-n + 1) CTFnzn J -µx +r "x + "x + ...... + "x + .. . 
2! n! 

(I-56) 

Taking expectation of all terms, (I-56) is written as 

E(xr)=Jtx[l+rCVxE[Z]+ r{r-1) C~E[Z2]+ ...... + r{r-1Xr-2) .... (r-n+1) C~E[Zn]+ .. J (I-57) 
2! n! 

From (I-54), E[Z'] =O when r is odd. Therefore all the terms containing odd powers of Z 

will vanish from (I-57) and the resulting equation is written as 

E(xr )= µ7x[1+ r(r-1) CVjE[Z2]+ ...... + r(r-IXr-2} .... (r-n+l) CVxE[Zn]+ ... ] 
2! n! 

(I-58) 

When r is a positive integer, RHS of (I-58) is finite and terminates when n = r + 1. 

Consequently, (I-57) can be written as 

E (x r ) = µ X f (2 i rv ii E [z 2 i ' when r is even (I-59a) 
i=O 
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( ) (r:!)12 ( \., . r . ] 
E X r = µ x ~ 2; J-, V .i' E LZ 2 ' , when r is odd (I-59b) 

i=O 

For values of r other than a positive integer (2-53) does not converge. In order to 

determine E[X'"], (2-58) needs to be truncated. When r is a positive fraction, E[X'] can be 

obtained using (2-59a) and (2-59b) with rounded value of r to its nearest whole number. 

In cases when r is negative, the truncating error depends upon the magnitudes of r and 

CVx. Further, there exists a minimum truncating error for a given combination of r and 

CVx, beyond which no improvement in E[X'] is possible. To evaluate the approximate 

value of E[X'"], a trial and error procedure was used to determine the number of terms to 

be summed up to obtain E[X'] corresponding to the minimum truncating error for a given 

combination of r and CVx. 

After estimating E[X'] and E[X21, (2'-26) and (2-27) are used to determine µy and 

a/. Substituting µy, at and the FOA estimates µY and a-; into (2-24), the relative 

error in FOA predicted estimates of the mean and variance, E(µy) and E(a;), can be 

determined. Figures 2-10 and 2-11 show plots of E(µy)and E(a;)vs. r for various 

values of CVxranging from 0.02 to 0.33. 
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APPENDIX II 

CHARACTERIZATION OF A TRIANGULAR DISTRIBUTION 

Consider a random variable X - Triangular (a, b, c), where a, b, and c are the 

minimum, maximum , and mode values of a random variable X The values of µx, CVx, 

and rx can be represented in terms of a, b, and c as 

1 
µx =-(a+b+c) 

3 

1 Ja 2 +b 2 +c 2 -(ab+bc+ca) 
CVx = -.Ji-2 ____ a_+_b_+_c ___ _ 

_ .Ji 2(a 3 + b3 + c3 )-3[ab(a +b )+bc(b + c )+ ca(c+ a)]+ 12abc rx -
5 [a 2 +b 2 +c 2 -(ab+bc+ca)]Yi 

(Il-1) 

(Il-2) 

(II-3) 

If the values of µx, CVx, and rx are known then a unique triangle can be delineated by 

determining its parameters a, b, and c. Simplifying (Il-1), (II-2), and (II-3) and writing 

known quantities on the RHS as 

a+b+c=3µx (Il-4) 

ab+ be+ ca= 3µ; (I-2CV;) (Il-5) 

(II-6) 

Eliminating a and b, (Il-4), (Il-5), and (II-6) can be expressed in terms of c as 

(II-7) 
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Equation (II-7) is a cubic equation which can be solved usmg Cardan's method 

(Borofsky, 1950). In order to solve (II-7), the quadratic term needs to be eliminated. 

Substituting c = y + µ x, (II-7) can be rewritten as 

(Il-8) 

For a real triangle, (II-8) does not involve any imaginary quantities. This can be enforced 

with the help of the triple angle formula 

4cos3 B-3cosB = cos3B (II-9) 

Substituting w = cosB, (Il-9) is rewritten as 

w3 _iw- cos3B = 0 
4 4 

(II-10) 

It is clear that w = cosB is a root of (II-10). Using this, (II-8) can be solved by analogy. 

Substituting y = Jw in (II-8) 

(II-11) 

Comparing the coefficients of w in (II-10) and (II-11) 

6µ 2 cv2 3 , -=-x_x=-= 
A,2 4 

(II-12) 

Comparing the constant terms of (II-10) and (II-11) 

lOy xµ~CV} _ cos3B 
A,3 - 4 (II-13) 

Simplifying (II-12) and retaining only positive value, A is given as 

(II-14) 

On simplifying (II-13) 
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(II-15) 

Equation (II-15) is a trigonometric equation, which can be solved for Bas 

(II-16) 

Equation (II-16) gives a general value of B, substituting n = 0, 1, and 2 particular values 

of Bean be obtained. Using (II-16), the general solution of (II-8) is 

(II-17) 

Using (II-17), the solution of (II-7) is 

(II-18) 

Equation (II-18) shows that maximum magnitude of coefficient of skewness for a 

. 1 d' 'b . . 2-Fi. tnangu ar 1stn utlon 1s -- . 
5 

229 



,}. 
VITA 

Aditya Tyagi 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: A SIMPLE APPROACH TO RELIABILITY, RISK, AND UNCERTAINTY 
ANALYSIS OF HYDROLOGIC, HYDRAULIC, AND ENVIRONMENT AL 
ENGINEERING SYSTEMS 

Major Field: Biosystems Engineering 

Biographical: 

Education: Graduated from Sanatan Dharm Inter College, Muzaffamagar, UP, India 
in 1981; received Bachelor of Engineering degree in Civil Engineering from 
University of Roorkee, Roorkee, India in May 1987; received Master of Civil 
Engineering degree with major in Environmental Engineering from University 
of Roorkee, Roorkee, India in May 1989; completed the requirements for the 
Doctor of Philosophy degree with major in Biosystems Engineering at 
Oklahoma State University in December 2000. 

Experience: Employed by Punjab University, Chandigarh, India, as an assistant 
professor in civil engineering department, April 1989- January 1990; employed 
by National Institute of Hydrology, Roorkee, India as a scientist, February 
1990-December 1997; Employed by Oklahoma State University, Department 
of Biosystems and Agricultural Engineering as a graduate research assistant, 
January 1998-December 2000. 

Professional Memberships: American Geophysical Union, The Honor Society of 
Agricultural Engineers. 




