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PREFACE

Application of uncertainty and reliability analysis is an essential part of many
problems related to modeling and decision making in the area of environmental
engineering and water resources. Computation efficiency, understandability, and easier
application have made the first o;der approximation (FOA) method a favored tool for
uncertainty analysis. In many instances doubtful situations may arise where the accuracy
of FOA estimates becomes questionable. Presently, no clear-cut guidelines specifying
where FOA should be used are available.

The objective of this dissertation was to investigate the important factors affecting
the exactness of FOA estimates and develop a simple correction procedure useful for
practicing engineers to correct the FOA estimates for the mean and the variance of a
~model output. To carryout reliability and risk analysis, knowledge of distribution for é
model output is very important. Therefore the other objective of this thesis was to
develop a simple approach for calculating the higher-order moments of a model output
from which an appropriate distribution can be chosen.

Methods to correct FOA estimates for the mean and variance of a model output
were developed. Further, a generic expectation function approach was developed to
determine higher-order moments of a model output correctly.

I sincerely thank my doctoral advisory committee - Drs. Charles T. Haan (Chair),
Billy J. Barfield, Glenn O. Brown, and John N. Veenstra - for their excellent guidance

and support in the completion of this research.
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CHAPTER1
BACKGROUND, LITERATURE REVIEW, AND OBJECTIVES
Background

The design and analysis of hydrologic, hydraulic, and environmental projects are
subject to uncertainty because of the inherent uncertainty in natural systems, a lack of
understanding of the causes and effects in various physical, chemical, and biological
processes occurring in natural systerﬁs, and insufficient data. As a result of these
uncertainties, the performance reliaBility of a project is uncertain. A reliable assessment
of the performance of any water resources project requires an assessment of the validity
of predicted loads (such as discharges and pollutant loads) and capacities (ability to
perform under a given load without any harm). Typically the loads are assessed using
models having a number of parameters which can be determined with varying degrees of
certainty. These parameters are best represented as random variables. Cohsequently, the
model response, being a function of random variables, is best represented as a random
variable. For reliable design and analysis of a project, it becomes necessary to address the
uncertain nature of model outputs. Reliability, risk, and uncertainty analysis are therefore
becoming increasingly important in modeling aﬁd designing water resources
infrastructure and decision support systems. In some cases, uncertainty analysis is

mandatory, particularly when critical decisions involve potentially high levels of risk.



Many problems are best approached using probabilistic and reliability methods.
Examples include determining the probability of a structural failure or the life expectancy
of a hydraulic structure under uncertainty. The prediction and evaluation of pollution of
surface and/or subsurface environments and decisions regarding remedial actions often
rely on probabilistic approaches. Quantification of the underlying uncertainty is central to
each of these problems.

Probabilistic and reliability analyses are based on knowledge of the underlying
parameter uncertainties. Two methods, Monte Carlo Simulation (MCS) and First-Order
Approximation (F OAj are generally used to assess the uncertainty associated with model
outputs. A MCS requires several thousand repetitive runs of é model and is therefore
computationally demanding. With the advent of high-speed computers, the computational
challenges to probabilistic analysis have been largely removed but philosophical and
conceptual aspects remain. MCS has othér limitations. Rules for determining the number
of simulations required for convergence are not available (Melching, 1995). Often, the
information about distribution function(s) of input variable(s) required to conduct a MCS
is not available and can not be obtained. Therefore, it requires judgement on the part of
the modeler to create theoretical input sample distributions that are representative of the
parameter populations.

FOA is an approximate method that gives estimates of means and variances only.
It has several advantages over MCS. FOA is more computationally efficient and provides
a measure of a model’s sensitivity to each input random variable, thus providing a better
understanding of the processes being modeled. The assumptions typically cited for FOA

to yield good results (Melching, 1995) are: (1) linearity in functional relationéhips, 2



small coefficients of variation of the most sensitive uncertain variables, and (3) normal
distributions for the uncertain variables. Moore and Clarke (1981) expressed that FOA
assumptions are “rarely likely to be jusﬁﬁable with models containing nine or twelve
parameters.” Despite its several conceptual shortcomings, FOA has been used quite
successfully in a wide variety of fields. The exactness of the estimates is influenced in
part by the degree of nonlinearity in the functional relationship and parameter
uncertainty. Due to unavailability of clear-cut guidelines as to when FOA should be
applied, FOA has been misused in many instances. Conclusions based on such
applications may be highly misleading, and in any design and/or decision-making process
may have serious consequences.

Various researchers have suggested a number of criteria for FOA. Garen and
Burges (1981) found satisfactory results with FOA when the CV of the input parameters
was less than or equal to 0.25. Cornell (1972) and Burges (1979) suggested that FOA is
applicable to moderately nonlinear systems when the CV is less than or equal to 0.2.
Gardner et al. (1981) found that the validity of the linear approximation deteriorates
rapidly when the CV was more than 0.3. The best agreement between MCS and FOA
estimates occurs when MCS boutput distributions are symmetric (Scavia et al., 1981a).

Several reseafchers detected significant nonlinearity effects while comparing
variance estimates from FOA and MCS. To overcorﬁe the problem of nonlinearity,
several predictors were proposed (Beale, 1960; Bates and Watts, 1980; Bates, 1988;
Stevens, 1993). Bates (1988) and Stevens (1993) indicated that the predictors for
nonlinearity developed so far work well only in specific applications and that no well-

accepted, generalized nonlinearity measure is available.



To date, the only widely used criterion for the validity of FOA variance is to
restrict the parameter CV to less than 0.2. This is a very restrictive assumption in water
resource systems modeling, where there is often a great uncertainty in the parameters
(Johnson, 1996). It can be shown that FOA has performed well in some situations when
the parameter uncertainty is higher than 0.2. Smith and Charbeneau (1990) suggested
that FOA can be used if the difference between function gradients at the mean and one
standard deviation away from the mean are less than some acceptable range (5-10%),
however, this method also has limitations

Literature Review

Water resources and environmental engineering systems deal with the extremely
complex nature of the physical, chvemical, biological, and socio-economical processes.
While designing and/or analyzing a given system, most often a mathematical model
describing the interrelationships and interactions among its component processes is used.
Despite a tremendous research effort to evolve a better understanding of various
processes, a number of uncertainties still exist due to lack of perfect knowledge
concerning the phenomena and processes involved. Therefore, most models used in
designing and analyzing engineering systems involve a number of uncertainties.

In water resources and environmental engineering, the decisions on the layout,
capacity, and operation of a system largely depend on the system reéponse under some
anticipated design conditions. If the response of any of the components in a system is
_considered uncertain, the response of the system under the design conditions must also be
considered uncertain. The presence of uncertainties makes the conventional deterministic

design practice inappropriate due to its inability to account for possible variations of



system responses. The issues involved in the design and analysis of water resources and
environmental engineering systems under uncertainty are multi-dimensional. Therefore,
quantification of system uncertainties is imperative in order to design and/or operate a
project successfully. A systematic quantitative uncertainty analysis provides insight into
the level of confidence warranted in model estimates and in understanding judgements
associated with the modeling process. It may also play‘av_n illuminating role in identifying
how robust the conclusions about model results are and help target data gathering efforts.

Uncertainty refers to lack of knowledge about specific factors, parameters, or
models. There are a number of distinct sources of uncertainty in the analysis and design
of engineering systems. In general, in the field of water resources and environmental
engineering, uncertainties can be classified under the general headings (Yen et al., 1986;
Beck, 1987; Melching and Anmangandla, 1992; Melching, 1995) of natural uncertainties,
model uncertainties, parameter uncertainties, and data uncertainties.

Natural uncertainty is associated with the inherent randomness of natural
processes such as the occurrence of precipitation, flood events, and change in
climatological conditions. According to Beck (1987) uncertainty resulting from natural
variability includes environmental variability due to system disturbances, aggregation
uncertainty due to spatial heterogeneity, and genetic variability which could be
indistinguishable from the errors of parameter estimation.

The structure of mathematical models employed to represent a phenomenon of
interest is often a key source of uncertainty. Models are only an abstraction of a real-
world system. The problem boundary encompassed by a model may be incorrect or

incomplete. Significant approximations and idealizations are often an inherent part of the



assumptions upon which a model is built. Competing models may be available based on
different scientific or technical assumptions. Model uncertainty reflects the inability of
the model to precisely represent the true physical behavior of a system. Model
uncertainty includes uhcertainty due to necessary simplification of real-world processes,
misspecification of the model structure, model misuse, or use of inappropriate surrogate
variables.

Parameter uncertainty is a result of the inability to quantify the input parameters
of a model accurately due to measurement errors, sampling errors, systematic errors, etc.
Most of the models used in hydrologic, hydraulic, and environmental engineering involve
several physical or empirical parameters that cannot be quantified accurately. Parameter
uncertainty could also be caused by changes in the operational conditions of a system,
inherent variability of inputs and parameters in time and in space, and insufficiency in the
quantity or quality of data.

Data uncertainties include measurement errors, measurement limitations,
inconsistency and non-homogeneity of data, and lack of data due to time and money
constraints

In this thesis, the impact of input parameter uncertainties on the probabilistic and
reliability analyses of hydrologic, hydraulic, and environmental engineering systems is
studied. Parameter uncertainties are the variaﬁon in ab parameter due to an inability to
precisely quantify that parameter. Parameter uncertainty may be partially quantified by
the coefficient of variation (CV). The CV of a parameter is the ratio of the standard
deviation to the mean and offers a normalized measure useful and convenient for

comparison.



Uncertainty Analysis

The main objective of uncertainty analysis is to assess the statistical properties of
model outputs as a function of stochastic input parameters. In water resources
engineering projects, design quantity and model outputs are functions of several
parameters, not all of which can be quantified with absolute accuracy. The task of
uncertainty analySis is to determine the uncertainty features of the model outputs as a
function of uncertainties in the model itself and in the stochastic parameters involved. It
provides a formal and systematic framework to quantify the uncertainty associated with
the model outputs. Furthermore, it offers the designer useful insights regarding the
contribution of each stochastic parameter to the overall uncertainty of the model outputs.
Such knowledge is essential to identify the important parameters to which mére attention
should be given to have a better assessment of their values and, accordingly, to reduce the
overall uncertainty in model output. Quantitative characterization of uncertainty provides
an estimate of the degree of confidence that can be placed on the analysis and findings.

As an example, water quality models are formulated to describe both observed
conditions and predict planning scenarios that may be substantially different from
observed conditions. Planning and management activities such as checking basin wide
water quality for regulatory compliance, waste load allocation, etc., require the
assessment of hydrologic, hydraulic, and water quality conditions beyond the range of
observed data. These inadequacies regarding model parameters or inputs force water
quality modelers to characterize the impacts of parameter uncertainties quantitatively so
that appropriate decisions regarding water pollution abatement programs can be made.

The most complete and ideal description of uncertainty is the probability density function



(PDF) of the quantity subject to uncertainty. However, in most practical problems a
probability function is very difficult, if not impossible, to derive precisely. In most
situations, the main objective of uncertainty analysis is to evaluate the first and second
moments of a model output in terms of input random variables.

Reliability and Risk Analysis

Reliability and risk analysis is a technique for identifying, characterizing,
quantifying, and evaluating the probability of a pre-identified hazard. It is widely used by
private and government agencies to support regulatory and resource allocation decisions.
In most hydrologic, hydraulic, and environmental engineering problems, empirically
developed or theoretically derived mathematical models are used to evaluate a system's
performance. These models involve several uncertain parameters that are difficult to
accurately quantify. An accurate reliability assessment of such models would help the
designer build more reliable systems and aid the operator in making better maintenance
and scheduling decisions.

The reliability of a system can be most realistically measured in terms of
probability. The failure of a system can be considered as an event in which the demand or
loading, L, on the system exceeds the capacity or resistance, R, of the system so that the
system fails to perform satisfactorily for its intended use. The objective of reliability
analysis is to ensure that the probability of the event (R < L) throughout the specified
useful life is acceptably small. The risk, Py defined as the probability of failure, can be

expressed as (Ang and Tang, 1984; Yen et al., 1986)

P, =P(L>R) (1-1)



where P denotes the probability function. Equation (1-1) can be rewritten in terms of the

performance function Z as
P, =P(z<0) (1-2)

where Z is defined alternatively as

Z=R-L (1-3)
R
Z=—-1 (1-4)
R |
z _m(z) (1-5)

The reliability, %, of the system can be written as
R=P(Z>0)=1-P, | (1-6)

In general, from (1-1), the risk can be expressed as
b1
Py = [[pa (e )rdl (1-7)

where p,, (r,1) is the joint probability density function of R and L; c is the lower bound

of R; and a and b are the lower and upper bounds of L respectively. The resistance, R,

and load, L, are random variables given as

R=g(U) (1-8)
L=g, () (1-9)
where, U is the vector representing input parameters of the model representing R; and V
is the vector representing input parameters of the model representing L. In some problems

L may be a deterministic quantity representing a hydrologic/hydraulic/environmental

target level such as peak discharge, volume, contaminant concentration in soil, water, and



air, minimum dissolved oxygen in a stream, critical cancer risk, etc. Alternatively, by
using the performance variable Z defined in (1-3), (1-4), and (1-5), the risk can be written

as
P, =P(Z<0)= [p,(2)dZ (1-10)

where pz(z) is the probability density function of Z. The probability distribution of Z is
unknown, or difficult to obtain. In most cases the exact distribution of Z may not be

required as any of several distributions can be used to make a decision if correct

information about the moments of p, (z)is available.

Uncertainty, Risk, and Reliability Analysis Methods

Ideally, a probability distribution function should be obtained to do a complete
assessment of the uncertainty, risk, and reliability analysis of a given system. This
requires determination of the joint probability distribution function for all the significant
sources of uncertainty affecting the output of the system. However, the determination of
probability distributions for the basic variables is quite difficult and involves several
assumptions. Further, the multivariate combination and integration of the input variable
distributions is a daunting task. In real life problems, the aggregation of uncertainties in
the basic variables of a model into measures of overall model-output
uncertainty/reliability are done in an approximate manner. Several methods that have

been used in water resources and environmental engineering have been discussed.

First Order Approximation Method

The first order approximation (FOA) method can be used to estimate the amount

of uncertainty, or scatter, of a dependent variable due to uncertainty about the
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independent variables included in a functional relationship. Benjamin and Cornell (1970)
have described first order approximation (FOA) technique in detail.

To present the general methodology of first order approximation, consider a
output random variable, Y, which is a function of » random variables. Mathematically, ¥

can be expressed as
Y =g(X) (1-11)
where X = (X1, X2, ccoeenene- , X), a vector containing » random variables. In FOA, a Taylor

series expansion of the model output is truncated after the first-order term

v=g(X)+3 (X, - X)[(ng) (1-12)

e

where X .= (Xre, Xoey woveeee , Xne), @ vector representing the expansion points. In FOA
applications to water resources and environmental engineering, the expansion point is

commonly the mean value of the basic variables. Thus, the expected value and variance

of Y are
E[r]~g(X) (1-13)
Var(Y)=o? ~Zl;( ag) [;gJ Ex, - % x, - X, ) (1-14)

where oy is the standard deviation of ¥; X = (}1 . CT X ), a vector of mean values of

the input basic variables. If the basic variables are statistically independent, the

expression for Var(Y) becomes

Var(Y)-O',, Z::Ka)(j axl (1-15)
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To estimate the reliability of the system, %, it is typically assumed that Z is normally
distributed. Using pz(z) to be a normal distribution with its parameters E[Z] and oy
determined by FOA, (1-2) and (1-6) are used to determine the risk and reliability of a
given system.

An alternative method to define a system reliability is the reliability index, f,

which is defined as the reciprocal of the coefficient of variation of Z, given as

= (1-16)

The great advantage of FOA is its simplicity, requiring knowledge of only the
first two statistical moments of the basic variables and simple sensitivity calculations
about selected central values. FOA is an approximate method that may suffice for many
applications (Ku, 1966), but the method does have several theoretical and/or conceptual
shortcomings (Melching, 1992a; Cheng, 1982). The main weakness of the FOA method
is that it is assumed that a single linearization of the system performance function at the
central values of the basic variables is representative of the statistical properties of system
performance over the complete range of basic input variables. The accuracy of the
estimates is influenced in part by the degree of nonline'cirity in the functional relationship,
and the importance of higher-order terms which are truncated in the Taylor series
expansion (Burn and McBean, 1985). In applying FOA in risk and reliability analyses, it
is generally assumed that the performance function is normally distributed, which is
seldom true. Any attempt to characterize the tails of the actual distribution based on an
assumptipn of normality is likely to result in an inexact answer (Burn and McBean,

1985).
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Despite its shortcomings FOA has been used very widely in hydrologic,
hydraulic, and environmental engineering. Examples of FOA application in hydrologic
and hydraulic engineering design include Tang and Yen (1972), Yen and Tang (1976),
Burges (1979), Yen et al. (1980), Tung and Mays (1980, 1981), Lee and Mays (1986),
and Cesare (1991). Application examples related to hydrologic modeling include Garen
and Burges (1981), Townley (1984), Townley and Wilson (1985), Melching (1992a,
1992b), Kuczera (1988), Bates and Townely (1988), Jones (1989), Lei and Schilling
(1993). Examples in groundwater contamination modeling include Loague and Green
(1988), Loague et al. (1989,1990), Smith and Charbeneau (1990), and Loague (1991).
Examples of applying FOA in water quality and ecological modeling include Burges and
Lettenmaier (1975), Argentesi and Olivi (1976), Lettennmaier and Richey (1979),
Reckhow (1979a, 1979b), Scavia (1980), Dettinger and Wilson (1981), Beck (1981a,
1981b), Scavia et al. (1981a, 1981b), Devary and Doctor (1982), Chadderton et al.
(1982), Walker (1982), Van Straten (1983), Burn and McBean (1985), Tung and
Hathhorn (1989), Melching and Anmangandla (1992), Melching and Yoon (1996), and

Zhang and Haan (1996).

Response Surface Methods

The response surface (SR) method is very similar to the FOA method. While the
FOA method deals directly with the performance function, the RS approach involves
approximating the original, complicated system performance function with a simpler,
more computationally tractable system model. This approximation typically takes the

form of a first or second order polynomial

13



Y=g(X)~G(X)~ay+a, X, +.ta,X, +a, X +.. ++a,, X! ++a,, X, X, +...
(1-17)

where G({ ) is the approximate function representing the original function g({ )
Determination of the constants is accomplished through a linear regression about some
nominal value, typically the mean. Given the new performance function, the analysis
proceeds in exactly the same manner as the FOA method. This method has not been used

much in the area of water resources and environmental engineering.

Monte Carlo Simulation

In Monte Carlo Simulation (MCS), probability distributions are assumed for the
uncertain input variables for the system being studied. Random values of each of the
uncertain variables are generated according to their respective probability distributions
and the model describing thc system is executed. By repeating the random generation of
variable values and model execution steps many times, the statistics and an empirical
probability distribution of the model output can be determined. The accuracy of the
statistics and probability distribution obtained from MCS is a function of the number of
simulations performed and the adequacy of the assumed parameter distributions.

MCS is an art (Burges and Lettenmair, 1975). It requires judgement on the part of
the modeler to create theoretical input sample distributions that are representative of the
populations and to estimate the number of trials needed to generate the input and output
density functions. There is no strictly defined answer to either of these questions.

A key problem in applying the MCS method is estimating the necessary sample
;:ize. One empirical test to determine the adequacy of the sample size consists of iterating

the sample progré.m with increasingly greater sample sizes and estimating the

14



convergence rate of the sample mean value towards the population mean (Burges and
Lettenmair, 1975). The error in the estimation of the population mean is inversely
proportional to the square root of the number of trials. To improve the estimate by a

factor of two, the sample size must increase by a factor of four. If the sample size is n, the

standard deviation of the mean is 1/ Jn times the standard deviation of the population.
This indicates that the sample size must be large (Siddall, 1983). As the sample size
increases, the precision of the empirical percentile estimates of a model output improves
(Modarres, 1993). However, Martz (1983) noted that the rate of convergence to the true
distribution decreases as the size of sample increases.

The requirement of generating very large samples is a serious problem with MCS
(Siddall, 1983). The method often entails sample sizes that are in the range of 5,000 to
20,000 members. Generally, the number of required samples increases with the variances
and the coefficient of skewness of the input distributions (Burges and Lettenmair, 1975).

MCS has been used to analyze uncertainty, risk, and reliability of many water
resources and environmental engineeﬁﬁg systems. Many of these applications of MCS
were to provide a check of less computationally intensive methods. Examples in
hydrology includes Freeze (1975), Smith and Freeze (1979), Smith and Hebbert (1979),
Gardner et al (1980), Smith and Schwartz (1980), Clifton and Neuman (1982), Takasao

-and Takara (1989), Warwick and Wilson (1990), Goldman et al (1990), Binley et al
(1991), Krajewski et al. (1991), Beven and Binley (1992), Harlin and Kung (1992), etc.
In the area of environmental engineering MCS has been used very extensively in water
quality modeling studies. Some examples are O'Neill (1971), Burges and Lettenmaier

(1975), Tiwari and Hobbie (1976), Gardner et al. (1980, 1981) O'Neill et al. (1980),
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Homberger (1980), Montgomery et al. (1980), Smith and Schwartz (1981), Fedra et al.
(1981), Scavia et al. (1981b), Walker (1982), Gardner and O'Neill (1983), Malone et al.
(1984), Van De Kramer (1983), Black and Freyburg (1987), and Batchelor et al.(1998).
Another simulation technique similar to MCS is the Latin hypercube sampling
(LHS) in which stratified sampling approach is used. In LHS the probability distribution
of each basic variable are subdivided into non-overlapping intervals (say m) each with
equal probability (1/m). Random values of the basic variables are simulated such that
each range is sampled only once. The order of the selection of the ranges is randomized
and the model is executed m times with the random combination of basic variables from
each range for each basic variable. The output statistics and distributions may then be
approximated from the sample of m output values. McKay et al. (1979) has shown that
the stratified sampling procedure of LHS converges more quickly than an
equidistribution sampling employed in MCS. Examples of LHS application in water
resources engineering are Yeh and Tang (1993) and Chang et al. (1992). The main
shortcoming with this stratification scheme is that it is one-dimensional and does not
provide good uniformity properties on a k-dimensional unit hypercube (Diwekar and
Kalagnanam, 1997). Except reducihg computation effort to some extent, LHS has the

same problems that are associated with MCS.

Second Order Approximation Method

In the second order approximation (SOA) method, a Taylor series expansion of a
model is truncated after the second-order term. Consider a model represented by (1-11),

the second order Taylor series expansion of Y is given as
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In SOA, the expansion point is commonly the mean value of the basic variables.
Considering that all input variables are statistically independent and taking expectation of

(1-18), the expected value Y is given as

~g(®)+ L3 28 :
E[Y]~g(&)+2i§(aXz)Var(X,-) | (1-19)

i

The variance of Y is given as

2
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(1-20)
Bates and Townley (1988) and Tung and Hathhom (1989) used SOA only for
evaluating the mean of the model output. They preferred FOA to estimate variance of the
model output due to involvement of complicated calculations in approximating the model

output variance based on SOA.

First Order Reliability Method

The first order reliability (F ORM) method is characterized by the iterative, linear
approximation to the performance function. Fundamentally, this method can be
considered as an extension to the FOA method ahd is also known as advanced first order
approximation (AFOA) method, which was developed to address technical difficulties of
FOA. One of the major problems with the FOA technique was the lack of invariance of

the solution relative to the formulation of the performance function. Simple algebraic
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changes in the problem formulation can lead to significant changes in assessing the
propagation of uncertainty. Hasofer and Lind (1974) presented a methodology, which
specifically addressed this issue by requiring expansion about a unique point in the
feasible solution space. It should be mentioned that Fruedenthal (1956) also proposed a
method suggesting similar restrictions on the expansion point.

Hasofer and Lind (1974) proposed taking the Taylor series expansion at a likely
point on the failure surface of the performance function. Rackwitz (1976) implemented
the ideas of Hasofer and Lind. The failure surface is defined by the equation Z = 0. The
perpendicular drawn on the failure surface from the origin cuts the failure surface at a
point called the failure point. The distance of the failure point from the origin is a

measure of reliability. The expected value and variance of Z can be obtained by first

solving Z = 0 to find the failure point X~ and then expanding Z about X using a Taylor

series expansion as

E[z]~ 21(565(2—) (x.-x;) | (1-21)

x;

var(z)=03 ~ 33 (g—] [;%J Ellx, - x; \x, - X; ) (1-22)

J

where oy is the standard deviation of Z. For the case of statistically independent basic

variables Var(Z) is rewritten as

Var(Z)=oc2 ~ 2(6872

i=1

J ox, (1-23)

X
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Now, (1-2), (1-6), and (1-16) can be used to determine P;, %, and f respectively. For
models having a linear failure surface and all the basic variables normally distributed, the
estimates of Py, 97 are exact.

For most modeling problems, it is very unlikely that all basic input variables will
be normally distributed. Rackwitz (1976) proposed a transformation technique in which

the values of the CDF and PDF of the non-normal distributions are the same as those of
the equivalent normal distributions at the failure point X~ . Consider an input random
variable X; for which PDF and CDF are given as p Xi(x,.) and PX,.(x,.) respectively.

Equating the cumulative probabilities at the failure point

* _ N
cp["" ,j‘X'}pXi (x7) (1-24)
Oy,

where ,uf{,’i and 0'}'1 are the mean value and standard deviation of the equivalent normal

distribution for X;; P, (x, )is the original CDF of X; ; and &X.) is the CDF of the standard

normal distribution. Using (1-24), the mean of the equivalent normal distribution can be

written as
uh =% oy 0[P (5] (1-25)

Now equating the corresponding PDF ordinates at x,

1 ¢(x,' _/ux,]=pXi(x;) (1-26)

ox \ O,
where ¢(.) is the PDF of the standard normal distribution. Based on (1-26), the standard

deviation of the equivalent normal distribution can be written as
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(1-27)

The key to F ORM is the determination of the failure point for the Taylor series
expansion. Shinozuka (1983) has shown that for FORM the reliability index, /£, is the
shortest distance in the standardized space between the system mean state and the failure
surface. Thus, if the failure point is determined correctly, it represents the most likely
combination of input variable values which produce the critical target level. The
determination of 3 requires application of a constrained nonlinear optimization such as
the generalized reduced-gradient algorithm used by Cheng (1982), a Lagrange multiplier
approach used by Shinozuka (1983), and an iterative optimization method suggested by
Rackwitz (1976).

FORM has been used quite successfully in a wide variety of fields for reliability
and risk analyses. Fo_r example, Melching et al. (1990), Melching et al. (1991), Cesare
(1991), and Melching and Anmangandla (1992) used it in hydrologic and hydraulic
design; Sitar et al., (1987), Cawlfield and Wu, (1993), Hamed et al. (1995, 1996a, 1996b)
applied it to ground water contamination modeling; Hamed and Bedient (1997), Hamed
(1997, 1999), Mishra (1998) used it in probaBiIistic human health risk assessments.
FORM can also be used to carry out uncertainty analysis by repeating the procedure of
calculating the linearization point to match the pre-specified output value whose
exceedance probability is sought. Some examples of using FORM in water quality
uncertainty analyses are Melching and Anmangandla (1992).

FORM is quite accurate because it is able to overcome model non-linearity

problems, and no additional assumption about the distribution type of the performance
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function is required. It is still an approximation method because the performance function
is approximated by a linear function at the design point, and accuracy problems may arise
when the performance function is strongly nonlinear (Cawlfield and Wu, 1993; Zhao and
Ono, 1999). Another disadvantage of the FORM is that determination of the lineraziation
point is generally not easy, depending upon the nature and cémplexity of the system for
which the reliability, risk, or uncertainty analysis is being studied (Melching and
Anmangandla 1992). Further, the magnitude of acceptéble convergence may affect the
accuracy of the reliability estimates. In some cases, the magnitude of the convergence

error may not be reduced after a certain level.

Second Order Reliability Methods

The second order reliabilify method (SORM) has been used extensively in
structural reiiability analyses. It has been established as an attempt to improve the
accuracy of FORM. SORM is obtained by approximating the limit state surface function
at the design point by a second order surface, and the failure probability is given as the
probability content outside the second order surface. There are two kinds of second order
reliability approximations: curvature-fitting SORM (Breitung 1984; Tvedt 1983, 1988,
1990) and point-fitting SORM (Kiureghian et al. 1987, 1991; Zhao and Ono 1999). Both
methods involve complex numerical algorithms and extensive computational efforts.

Hamed et al. (1995) and Hamed (1997) compared risk assessments due to
groundwater contamination based on FORM and SORM and reported that their results
were in good agreement when the limit-state surface at the design point in the standard
normal space is nearly flat. On the other hand, when the limit state function contains

highly nonlinear terms, or when the input random variables have an accentuated non-
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normal character, SORM tends to produce more accurate results than FORM. But
computational requirements of SORM are much higher than FORM.

Point Estimation Methods

The point estimation (PE) method was originally proposed by Rosenblueth (1975)
to deal with symmetric, correlated, stochastic input parameters. The method was later
extended to the case involving asymmetric random variables (Rosenblueth, 1981). The
idea is to approximate the given PDF of an input random variable by discrete probability
masses concentrated at two points in such a way that its first three moments are
preserved.

Consider the model represented by (1-11) having » stochastic input parameters.
Rosenblueth (1975, 1981) demonstrated that the r™-order moment of output random
variable Y about the origin could be approximated via a point-probability estimate of the
first-order Taylor series expansion. This method requires 2" model evaluations to
estimate a single statistical moment of the model output. For a large model with a large
number of parameters, Rosenblueth's PE method is computationally impractical. Further,
a reliability analysis requires knowledge of higher order moments in order to approximate
the distribution of the output random variable. This makes the method even more
computationally extensive. Thus, while Rosenblueth's method is quite efficient for
problems with a small number of uncertain basic variables, its computational
requirements are similar to those of MCS' for a model having a large number of
parameters. For example, a model having between 10 and 15 parameters will require

1024 to 32768 model evaluations (Melching, 1995). Examples of applying the
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Rosenblueth's method to watershed hydrology include Rogers et al. (1985), Binely et al.
(1991), and Melching (1992b).

Harr (1989) modified the Rosenblueth's method to reduce its computational
requirements from 2" to 2n for an n-parameter model by using the first two moments of
the random variables. This method does not provide the flexibility to incorporate knowﬁ
higher order moments of input random variables. Chang et al. (1995) showed that the
estimated uncertainty feature of model output could be inaccurate if the skewness of a
random variable is not accounted for. Yeh and Tung (1993) and Chang et al. (1992) are
some of the examples of applying Harr's method in hydraulic engineering.

Transform Methods

Tung (1990) used the Mellin fransform to calculate the higher-order moments of a
model output. The application of the Mellin transform is not only cumbersome, but also it
can not be universally applied. As pointed out by Tung, the Mellin transform may not be
analytic under certain combinations of distribution and functional forms. In particular,
problems may arise when a functional relationship consists of input variable(s) with
negative exponent(s). When component functions of a given model have other forms than
power functions, it can not be applied. Further, no formulation was suggested to obtain
the moments of a model output having non-standard normally distributed input
variable(s).

Review Summary

Based on literature survey it can be said that FOA and MCS are the two most

commonly used methods employed for uncertainty analyses of water resources and
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environmental engineering systems. Both methods have some limitations. The MCS is
computationally intensive with the number of simulations required for convergeﬁce not
well defined (Melching, 1995). In most engineering problems, the true probability
distributions of the input variables are seldom known. Theoretical distributions for the
input variables are assumed to conduct the MCS. FOA is very computationally efficient
but provides approximate model output estimates for the mean and variance only. The
quality of these estimates is influenced by the coefficient of variation of input variables
and non-linearity in the model (Burn and McBean, 1985; Tung, 1990). Many researchers
(Burges, 1979; Dettinger and Wilson, 1981) concluded that FOA should be applied in
cases where nonlinearity effects are not significant and uncertainties in input variables are
not too large.

In many studies MCS estimates have been used to check the accuracy of FOA
estimates. However, in reality, the MCS method is also an approximate method (Bates
and Townley, 1988), the quality of which is affected by appropriateness of the chosen
distribution function(s) for the input variable(s) and the number of simulations employed
in the analysis. The inference drawn from the comparative analyses of Burges (1979),
Garen and Burges (1981)., Walker (1982), and Malone et al. (1984) indicates that for all
practical purposes both méthods produced identical results. Scavia et al. (1981b), Gardner
et al. (1981), Gardner and O’Neiil (1983), Smith and Charbeneau (1990) however,
revealed contrary results. These studies suggest both significant and subtle differences in
variance estimates from the two approaches. Thus, it appears that despite the fact that
FOA is one of the few relatively tractable techniques available to evaluate the effect of

parameter uncertainty, doubts about its validity have limited its wide application. There is
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a state of ambiguity whether FOA should be used for a given problem because no clear
guidance about suitability of FOA is available (Zhang aﬁd Haan, 1996).

On the other hand, in reliability and risk analyses of water resources and
environmental engineering system, three methods namely FOA, MCS, and FORM are
used most frequently. Often, failures of engineering systems occur at extreme values
rather than near the mean values of the input variables. Extremes are most likely
associated with probability distributions having large variances and skewnesses (Yen et
al.,, 1986). Since FOA uses expansion about the mean values of the input variables,
attempts to characterize the tails of the output distribution are likely to result in inexact
estimates (Burn and McBean, 1985). In addition to the problems due to nonlinearity in
the functional form, FOA has some additional problems when employed for risk and/or
reliability analysis of engineering systems. FOA does not provide the form of the
distribution for the performance function required to carry out the risk/reliability analysis.
A normal distribution is generally assumed when confidence limits on the output, risk,
and reliability of the system are determined. Furthermore, using FOA, it is not possible to
incorporate information about the forms of input variable distributions, even if they are
known (Yen et al., 1986).

Using FORM the flaws of FOA due to model non-linearity can be removed by
linearizing the functional relationship at the point on the limit-state surface nearest to the
origin, rather than at the mean point. Calculation of the linearization point requires
determination of the nearest point on the limit-state surface. FORM is quite accurate
when the performance function is not strongly non-linear. The disadvantage of the

FORM method is that it is quite complicated. This is because it requires transformation of
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non-normal distributions and determination of the failure point using a non-linear
constrained optimization, which is generally not easy depending upon the nature and
complexity of the system. Further, the magnitude of convergence error may affect the
accuracy of the reliability estimates and in some case it may not be possible to reduce the
convergence error below a certain level.

SORM and PE methods have not been used much in the area of water resources
and environmental engineering. Hamed et al. (1995), Hamed (1997) observed that
reliability estimates based on FORM and SORM were in good agreement when the limit-
state surface at the design point in the standard normal space is nearly flat. In cases
where a performance functioh is strongly non-linear, SORM reliability estimates are
better than that of the FORM. But computational requirements and a complicated
calculation process make it typically unsuitable for practicing engineers. As far as PE
methods are concerned, both the methods give approximate statistical moments of a
model output. While, Rosenblueth's method preserves the first three moments of the
original PDF, Harr's method is able to preserve only the ﬁrst two moments. In many
problems where input variables do not have zero skewness and coefficient of kurtosis
equal to 3, it is obvious that both methods will give inaccurate moments of the
performance function and therefore inaccurate uncertainty and reliability estimates. The
other drawback of PE methods is that they do not provide the distribution type for the
performance function.

Objectives

The first objective of this thesis was to determine the impacts of model

nonlineraity, magnitude of input parameter uncertainty, and distribution form of the input
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parameters on the uncertainty, risk, and reliability analysis of hydrologic, hydraulic, and
environmental engineering systems. To be useful for practicing engineers, research
emphasis was focussed towards development of simple, accurate, and generic methods.

Computation efficiency, understandability, and easier application have made the
first order approximation (FOA) method a favored tool for uncertainty analysis. Due to
several theoretical and/or conceptual drawbacks, in many instances specific situations
may arise where the accuracy of FOA estimates becomes questionable. The second
objective of this thesis was to develop a correction procedure to correct the FOA
estimates for model nonlinearity, parameter uncertainty, and parameter distribution types.
The developed method could be used to judge the suitability of FOA in ambiguous
situations as well as .to determine the exact values of mean and variance of a model
output.

Literature review indicates that in many cases the true form of the output
distribution is not required. A very good estimate of system reliability can be obtained if
higher-order moments of model output are known correctly. Therefore, the third
objective of this work was to develop a simple and generalized technique to determine
higher-order moments of a model output as a function of the means, the CVs, and the

distribution types for input random variables.
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CHAPTERII

UNCERTAINTY ANALYSIS USING CORRECTED FIRST ORDER

APPROXIMATION METHOD
Abstract

Application of uncertainty and reliability analysis is an essential part of many
problems related to modeling and decision making in the area of environmental
engineering and water resources. Computation efﬁci»ency, understandability, and easier
application have made the first order approximation (FOA) method a favored tool for
uncertainty analysis. In many instances doubtful situations may arise where the accuracy
of FOA estimates becomes questionable. Often FOA application is considered acceptable
if the coefficient of variation (CV) of the uncertain parameter(s) is less than 0.2. This
criterion is not correct in all the situations. Analytical as well as graphical relationships
for relative error are developed and presented for a generic power function which can be
used as a guide for judging the suitability of FOA for a specified acceptable error of
estimation. Further, these analytical and graphical relationships enable one to correct
FOA estimates for means and variances of model components to their true values. Using
these corrected values of means and variances for model components one can determine
the exact values of mean and variance of a model output. This technique is applicable

when an output random variable is a function of several independent random variables in
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multiplicative, additive, or in combined (combination of multiplicative and additive)
forms. Three examples are given to demonstrate the application of the technique.

Introduction

Reliability modeling and other probabilistic techniques are becoming increasingly
important tools in modeling water resources systems and decision making. Many
problems in environmental engineering are best approached using probabilistic and
reliability methods. Examples are determining the probability of failure of a structure or
the life expectancy of a hydraulic structure under uncertainty. The prediction and
evaluation of polluﬁon of surface and/or subsurface environments and decisions
regarding remedial actions often rely on probabilistic approaches. Quantification of the
underlying uncertainty is central to each of these problems.

Uncertainty is present in the design of hydrologic, hydraulic, and environmental
projects because of inherent variation, a lack of understanding of all the causes and
effects in various processes (physical, chemical, and biological) occurring in the system,
and insufficient data. As a result of these uncertainties, the performance reliability of a
project may be severely affected. A reliable assessfnent of the performance of any water
resources project requires an assessment of the validity of predicted loads (such as
discharges and pollutant loads) and capacities (ability to perform under a given load
without any harm). Typically the loads are assessed using various models, generally
having a number of parameters which can be determined with varying degrees of
accuracy. These parameters are best represented as random variables. Consequently, the

model response, being a function of random variables, is also a random variable.
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Probabilistic and reliability analyses are based on knowledge of the underlying
parameter uncertainties. Parameter uncertainties are the variation in a paranieter due to an
inability to precisely quantify that parameter. Two methods, Monte Carlo simulation
(MCS) and first-order approximation (FOA) are generally used to model the uncertainty
associated with inputbparameters. A MCS requires several thousand repetitive runs of a
model and is therefore computationally demanding. With the advent of high-speed
computers, the computational challenges to probabilistic analysis have been removed but
philosophical and conceptual aspects remain unsolved. MCS has other limitations too.
Rules for determining the number of simulations required for convergence are not
available (Melching, 1995). The method often entails sample sizes that are in the range of
5,000-20,000 members (Siddall, 1983). Often, the information about distribution
function(s) of input variable(s) required to conduct MCS simulations is not available and
can not be obtained due to the constraints of time and money. Therefore, it requires
judgement on the part of the modeler to create theoretical input sample distributions that
are representative of the parameter populations.

FOA is an approximate method that gives only estimates of means and variances.
The exactness of the estimates is influenced in part by the degree of nonlinearity in the
functional relationship and parameter unceftainty. It has several advantages over MCS.
FOA is more computationally efficient and provides a measure of model’s sensitivity to
each input random variable thus providing a better understanding of the processes being
modeled. The assumptions typically cited for FOA to yield good results (Melching, 1995)
are: linearity in functional relationships, small coefficients of variation of the most

sensitive uncertain variables, and normal distributions for the uncertain variables. Moore
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and Clarke (1981) expressed that FOA assumptions are “rarely likely to be justifiable
with models containing nine or twelve parameters”. Despite its several conceptual
shortcomings, FOA has been used quite successfully in a wide variety of fields such as
hydrologic design (Tang and Yen, 1972; Yen et al., 1980; Tung and Mays, 1980 and
1981), water quality modeling (Burges and Lettenmaier, 1975; Scavia et al.,, 1981;
Chadderton et al.1982; Melching and Anmangandla, 1992), watershed modeling (Garen
and Burges, 1981; Melching, 1992a, 1992b; Kuczera, 1988; Bates and Townley, 1988),
subsurface flow and contaminant transport modeling (Sagar, 1978; Dettinger and Wilson,
1981; Devary and Doctor, 1982; Townley and Wilson, 1985), and probabilistic human
health risk assessment (Batchelor et al., 1998).

In many studies MCS estimates have been used to check the accuracy of FOA
estimates. However, in reality, the MCS method is also an approximate method (Bates
and Townley, 1988), the quality of which is affected by appropriateness of the chosen
distribution function(s) for the input variable(s) and the number of simulations employed
in the analysis. The inference drawn from the comparative analyses of Burges (1979),
Garen and Burges, (1981), Walker (1982), and Malone et al. (1984) indicates that for all
practical purposes both methods produced identical results. Scavia et al. (1981), Gardner
et al. (1981), Gardner and O’Neill (1983), Srﬁith and Charbeneau (1990) however,
revealed contrary results. These studies suggest both significant and subtle differences in
variance estimates froﬁ the two approaches. Thus, it appears that despite the fact that
FOA is one of the few relatively tractable techniques available to evaluate the effect of

parameter uncertainty, doubts about its validity have limited its wide application. There is
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a state of ambiguity whether FOA should be used for a given problem because no clear
guidance about suitability of FOA is available (Zhang and Haan, 1996).
Garen and Burges (1981) found satisfactory results with FOA when the CV of the

input parameters was < 0.25. Cornell (1972) and Burges (1979) suggested that FOA is

applicable to moderately nonlinear systems when the CV < 0.2. Gardner et al. (1981)
found that the {'alidity of the linear approximation deteriorates rapidly when the CV >
0.3. Best agreement between MCS and FOA estimates occurs when MCS output
distributions are symmetric (Scavia et al., 1981).

Several researchers detected significant nonlinearity effects while comparing
variance estimates from FOA and MCS. To overcome the problem of nonlinearity,
several predictors were proposed (Beale,x 1960; Bates and Watts7 1980; Bates, 1988;
Stevens, 1993). Bates (1988) and Stevens (1993) indicated that the predictors for
nonlinearity developed so far work well only in épeciﬁc applications and that no well-
accepted, generalized nonlinearity measure is available.

To date, the only widely used criterion for the validity of FOA variance is to
restrict the parameter CV to less than 0.2. This is a very restrictive assumption in water
resource systems modeling where there is often a great uncertainty in the parametérs
(Johnson, 1996). It can be shown that FOA has performed well in some situations when
the parameter uncertainty is higher than 0.2. Smith and Charbeneau (1990) suggested
that FOA can be used if the difference between function gradients at the mean and one
standard deviation away from the mean are less than some acceptable range (5-10%),

however, this method also has limitations.
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The main objéctive of uncertainty analysis, in general, is to evaluate the first and
second moments of a model output in terms of input random variables. This paper
describes a procedure to correct FOA estimates of model components for nonlinearity,
CV, and distribution type. Using these corrected estimates of means and variances for
model components, one can determine exact values of first and second moments of model
output. This procedure provides a deep insight and understanding of the conceptual
aspect of uncertainty analysis and hence can be a very useful tool for judging the
suitability of FOA in ambiguous situations. The developed procedure demonstrates its
application in the uncertainty analysis of problems related to hydrology, hydraulics, and
probabilistic human health risk assessment.

Allowable Ranges of Input Parameter’s CVs

| A consistent measure often used in describing the amount of variation in a
population is its CV. In hydrology, hydraulics, and environmental engineering
applications most of the quantities of interest are non-negative. Parameter uncertainty
represented by the CV can assume a value falling in a specific allowable range depending
upon the underlying distribution. Table 2 -1 gives the allowable ranges for some of the
commonly used distributions considered in this study.

Functional Forms

In most hydrologic and hydraulic engineering problems, empirically developed or
theoretically derived mathematical equations are used which involve several uncertain
parameters that have a significant amount of uncertainty and varied distribution

characteristics.  Further, a mathematical equation may have different degrees of
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nonlinearity with respect to these uncertain parameters. A multitude of functional forms
for g(X) are possible. In this paper, multiplicative forms, additive forms, and their
combined forms are considered.

A multiplicative type model is frequently encountered in hydrological studies
(e.g., daily stream flow, peak runoff, annual floods, and annual, monthly, and daily
rainfall, soil loss and sediment transport). In hydraulics many equations are of
multiplicative type. Examples are flow over control structures such as weirs, spillways,
overfalls, and sluices, channel control equations such as Manning’s equation (Haan et al.,
1994), and pipe flow resistance eqﬁations such as Hazen-Williams and Darcy-Weisbach
equations (Mays, 1999). In environmental engineering, many equations predicting water
quality and pollution (Krenkel, 1979; Novotny and Olem, 1994), and equations used in
risk assessment are of multiplicative type (USEPA, 1989). Tung and Mays (1980), Lee
and Mays (1986), and Tung (1990) are some examples of the multiplicative forms
encountered in hydraulic/hydrologic systems. In this form, the output random variable Y

is expressed as the multiplication of #n power functions as shown in (2-1).

n

Y=Co X X X =C,J[ X7 (2-1)

i
i=1

where Cp and r; are constants and X;s are independent sfochastic input random variables.
Another form of interest is the additive form obtained when two or more power
functions are added. It is often encountered in reliability analysis of engineering systems
(Hasofer and Lind, 1974; Ang and Tang, 1984; Melching, 1995). In reliability evaluation
a performance function (also known as state function) is defined as a combination of
demand (loading) and capacity (resistance) of the system where both loading and

capacity are random variables. Examples of hydrologic systems include storm sewer
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design (Yen and Tang, 1976; Tung, 1990), and reliability of a compound channel under

extreme events (Cesare, 1991). The general additive form is written as:

Y=CX+C, X2+ +C, X7 =Y CX] (2-2)

i=1
The other functional form is the combination of multiplicative and additive forms. This
form is obtained when two or more multiplicative forms having common power
function(s) are added. Examples are application of Manning’s equation in a compound
channel with same slope for each section (Cesare, 1991; Burges, 1979) and assessment of
overall human health risk due to multiple pollutants through different pathways

(Batchelor et al., 1998). The general form can be represented as:

Y = CoX] X X (C X+ C X ot C X )= cof[X,.'f Z C,X? (2-3)

m+l m+2 n“  min
i=1 j=1

Approximate Moments Using FOA

Benjamin and Cornell (1970) and Cornell (1972) have provided a detailed
description of FOA. Consider a random variable Y, which can be expressed as a function
of n random independent variables
Y =g(X) (2-4)
where X = (X}, X7.ceevenne , X»), 1s a vector containing n random independent variables X;.
Through the use of Taylor’s expansion and its first order approximation, the mean of the

model output can be approximated by

By = g(X) @-5)

The variance of the model output can be approximated as
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2
. o[ oe(x
62 = ;{%(XT—)LG;; (2-6)

where oy; = standard deviation of X;. Using (2-5) and (2-6) and a given mathematical
form for Y, the approximate moments of Y can be determined. For the multiplicative

form (2-1), the approximate mean of the model output, 1, , can be written as

Ay =Cy H M, (2-7)
i=1
where uy; = mean of X;. Using (2-6), the approximate variance of the multiplicative form

(2-1), &2, can be approximated as

61 =Cl 1 drcvs (2-8)
i=1

i=1

. . Ox, . o
where 7; is the exponent of ith power function; CVy, = ——= coefficient of variation of
" My,

X;. Dividing (2-8) by the square of (2-7), the approximate coefficient of variation of ¥,

éV, , can be evaluated as

05
Co ] Twx 2ricvs, :
éVy - i=1 i i1 - (Z r2CV ;i ) (2-9)
il |
i1

When Y is represented by the additive form, the approximate mean of Y is given

as

—ﬁy = Z Cnu:\l', (2-10)
i=]

Similarly, the variance of the additive model can be approximated by

45



62 =Y ClipliCV? 2-11)

i=1
When Y is represented by the combined form, the mean and variance of Y are
determined using (2-5) and (2-6).

Exact Moments

In this section, the properties of statistical expectation of a random variable are
used to derive moments of various considered forms. When Y is represented by a

multiplicative form, the first moment or mean of ¥, uy, can be written as

Hy =E[Y]=C0HE[XI."']=COH,L1,. (2-12)
i=1 i=1
where E[] is an expectation operator, and g; is the mean of the it power function given as

U =E[X.’f] . (2-13)

I

Similarly, the second moment of model output about the origin can be written as

Elyr?]= CjﬁE[(X{" )2]= 21 (e +o?). (2-14)

i=1
where o} is the variance of the i power function given as
o =Var(X])= E[X}’f ]- h ' (2-15)

The variance of Y,ai, can be expressed in terms of first and second moment (Haan,

1977) as
ot = Elr* |-{elr}* (2-16)

Substituting, (2-12) and (2-14) in to (2-16)

o} =Ci[ (i +o?)-C] 14 2-17)
i=1

i=1
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The coefficient of variation of ¥, CVycan be written as

I § (A R S
CVy =—=——H - = (2-18a)
Hr o3 § V%
i=1

Simplifying (2-18a), CVy can be written as

n n
Cr =) crt+ ZCV,?-CV?- Fooreeeeeemrenees +CVECVE. ... CV2 (2-18b)

where CV; = 9i_ coefficient of variation of i power function. Equation (2-18b) shows
Hi

that the output uncertainty of a multiplicative model is governed by the most uncertain
component functions. For the convenience of computation, (2-18b) can be shown to be
equal to
" 0.5
Cly = [H(CV,-Z +1)—1} (2-18¢)
i=l
Equation (2-18c) can be used to determine the uncertainty in model output if CVs of
component power functions are known correctly. Using CVy and a correct value of uy,
 the exact variance of model output can be evaluated.
Using the additive form (2-2), the mean of Y, uy, is given as
n
Hy = CIE[XI" ]+ C?_E[Xg2 ]+ ......... - C,,E[X;n ]: Dy (2-19)
i=1
Similarly, the variance of ¥, o2, can be written as

n
o} = cf-Var[X{l ]+ cg—Var[X;z ]+ ......... + cj-Var[X,:n ]= > Co? (2-20)

i=]
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Equation (2-20) shows that magnitude of C; is also equally important as uncertainty of a

component function (X/).

For evaluating the mean and variance of combined forms of Y such as (2-3), the
mean and variance of the additive part must be determined first using (2-19) and (2-20).
Next (2-12), (2-17), and (2-18c) are used to determine the mean, variance, and CV of ¥
by treating the combined form as a multiplicative form for which the additive part is
assumed to be a multiplicative component with known mean and variance.

It is noted that the mean and variance of Y for both the multiplicative and additive
forms are a function of the exact mean and variance of individual power functions,
whereas, FOA estimates for the mean and variance of Y are a function of mean and
variance of input paraméters. In order to determine exact mean and variance of Y, it is
necessary to know the correct mean and variance of the individual power functions. FOA
can be used to approximate the mean and variance of individual power functions. Since
FOA estimates are not exact, they need to be corrected before using them to determine
moments of the overall model output. In the following section a technique is suggested to
correct FOA estimates for the mean and variance of a power function.

Correcting FOA Mean and Variance Estimates

Consider a power function
Y=f(X)=cX"’ (2-21)
where r and ¢ are constants. Using (2-5), the FOA estimate for the mean, #, , is given as

iy =cuy (2-22)

Using (2-6), the FOA estimate for the variance of ¥, & is given as

48



&y =c’r’ oy =c*rt iy Cvy 223)

The estimates provided by (2-22) and (2-23) for g, and o; contain errors. The relative
error, E, in the FOA estimate for a moment of any order can be computed as

Exact value— FOA estimate FOA estimate
E= =1~ (2-24)

Exact value Exact value

The relative error in FOA estimates for the mean and variance of a power function
depends upon the CV of the input parameter, magnitude of exponent r, and type of
distribution for the input parameter. Rewriting (2-24)

FOA estimate
Exact value = W (2-25)

FOA estimates for the mean and variance of a power function can be corrected if their
corresponding relative errors are known.

Development of Relative Error Functions

The exact estimates of the mean and variance of a power function can be

evaluated analytically. The mean of Y can be calculated from
sy =EY]=cE[X" |= [£00p, ()dX = [X" p, (9)dX (2-26)

where p, (x) is the probability density function of X. Similarly, the variance, 0')2/ , can be

determined from

o2 = B(Y - 1, P |= E[r?]- sz =2 E[x¥ |- fB[x | = wszf pAX — 2 (227)

Using (2-26) and (2-27) analytical estimates of yy and 0')2/ can be determined for a given

function f{X) and distribution p, (x). Equations (2-26) and (2-27) involves determination
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of E[X'] and E[X*]. If these two moments of ¥ about the origin can be determined for a

distribution, its central moments uy and 0')% can be fully characterized.

Using (2-26) ahd (2-27), exact values of the mean and variance are determined for
a given power function fx(x) and probability density function p,(x). Substituting the
FOA estimates and the exact values of the mean and variance in (2-24), the

corresponding expressions for E are derived for commonly used distributions (Appendix

I). The derived expressions of E for different distributions are presented here.

Uniform Distribution

The probability density function p, (x) for the continuous uniform distribution is
,asX<p (2-28)

where « and [ are the distribution parameters. Using the methods of moments, the

estimates for @ and 3 are given (Haan, 1977) as

b=y —Boy =, (1-3CV,) (229)
=1y ++30, =, (143, ) (2-30)

The expression for the relative error in the FOA predicted mean, E(, )is given as

B =1_[( 2\3(r+1)CV, 231

1+cv, 3" -ll-cv, 3 )(’“’]

Figure 2-1 shows a plot E(f, ) vs. exponent r for CVy ranging from 0.01 to 0.57. The

relative error in FOA predicted variance, E(&i ), is expressed as
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12 (2r+1) A1)’ crd

ot T o o o T

B@E2)=1-

(2-32)
Figure 2-2 depicts a plot of E(é’i )vs. r for CVx values ranging from 0.01 to 0.57.

Symmetrical Triangular Distribution

The probability density function p, (x) for the triangular distribution is

2 (X-a)

Px (x)= (,B _a) (}’ _»a)

, when a <X <y ‘ (2-33a)

px(x)= (ﬁz L-X) pen ySX< B (2-33b)

~a) (B-7)
where @, f y are the minimum, maximum, and mode values of X. For a symmetric

triangle, = yx. The method of moments estimates for o and £ are
G =1y ~60y = p1-6CV, ) (2-34)
B=tiy + 60y = py L+ ECT) (2-35)

The expression for E(4, ) is

B(i,)=1- [( 6(r +1Yr+2)CV 2 (2:36)

14V, V6) ™ +i-cv, Vo) - 2}

Equation (2-36) has been represented graphically in Figure 2-3 for different values of »

and CVyranging from 0.01 to 0.4. The E(&;) can be expressed as
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E(“z) . 36 (2r+1) rz(r+1)2(r+2)2CK€;
Gy)=1- "
{3(”1)(”2)%4[(“%&)”” e enlef ™ o] ) crle) - i) 2]2}
(2-37)
Figure 2-4 plots equation (2-37) for various » and CVy values ranging from 0.01 to 0.4.

Lognormal Distribution

If X is lognormally distributed with mean uyx and variance o /2‘», its probability
density function is given (Haan, 1977) as

_l(lnX-—,uy 2

1 2 4 ]
(x)=———c¢ O LX>0 (2-38)
Px o, X2

where V = In(X) is normally distributed with parameters x and a,%. The parameters uy

and oy are defined (Haan, 1977) as ‘

1 75
=1 X 2-39
a ZH[CV}H] (2-39)
o =l(cr? +1) (2-40)

The expression for E(4,)is

1
E(fy)=1-(+cp2)"™ (2-41)
E(&)can be rewritten as
2 2 2 -
BGT) =1 cri{cr? +1) 2-42)

(crz+1)’ [(CV; +1) -1]

E(f2,)and E(8}) vs. r plots are shown in Figures 2-5 and 2-6 for C¥x values ranging

" from 0.01 to 1.0.
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amma Distribution

The gamma distribution density function is given by

( /l{/ae—}{xX(a—l)

Pxlx @ X, a,and 1>0 (2-43)

where o and A are the distribution parameters. The method of moments estimates for

and A are given (Haan, 1977) as

i=£L (2-44)
Ox
2
P A (2-45)
oy CVy
The expression for E(4, )is
n cviricr?
E(fy)=1-—" (cvi’) (2-46)
rlev2(i+rcr?)

Figure 2-7 shows a plot E(/, ) vs. r for CVy values ranging from 0.01 to 1.0. E(&yz)is

expressed as

E(&yz _ r ZCV;(I—Zr) [I_‘(CV);Z )]2 (247)

rlev; (i+2-cr2 revy?)- {1‘[CV,;2 (1+rcv2) }2

Figure 2-8 shows a plot E(é'y2 )vs. r for CVx values ranging from 0.01 to 1.0.

Exponential Distribution

The exponential distribution is a special case of the gamma distribution with =

1. Substituting & = 1 into (2-45), CVx = 1. The expression for E(Z, )is obtained by

substituting CVxy =1 into (2-46) as
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1

TG+ 1) (2-48)

E(y)=1-

On substituting CVx=1 into (2-47), E(&j )can be expressed as

2
r

Ir@r+1)-12(+1)]

E(62) =1~ (2-49)

In Figure 2-9, E(j,)and E(&j )have been plotted with respect to exponent 7.

Normal Distribution

The probability density function of normal distribution is

1 i)

= 2-50
Px(®) O‘X\/Ee ( )

where g, and afY are the parameters of the normal distribution. When CVy < 1.0, the

general expression for E[X'] is

r(r - 1)
2!

2
CVyEIZ

2., rr=fr=2)r=ns)) non ]

ExT]- p:Y{I+rCVXE[Z]+

(2-51)
where r is any exponent (positive, negative, integer or fraction); # is the term number in
the expansion; and Z is the standard normal variate. The term E[Z"] is defined (Benjamin

and Cornell, 1970) as

7 !
E[Z " ]= 2 zr[f;'j /2] = 7 z - (n—1)n - 3)........(3Y1), when n is even (2-52a)
d 272 (n/2)
and
E[z"]=0, when n is odd. (2-52b)

Substituting (2-52a) and (2-52b) into (2-51)
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r)=,uf\; 1+r( —) (r 1)(r 2)(r ) +r(r—1)(r—-2) ..... (r—n+1) n
2

E(x v+

2/2(4/2)!
(2-53)

When r is a positive integer, the RHS of (2-53) is finite and terminates at n = » +1.

Consequently, (2-53) can be written as

L3 2n! .
E(X’ )= Uy Z( ) o CV 2", whenris even and; (2-54a)
n=0 \2n n.
(r—l)/2 r 2n!
E(x)=u S ( ) e CV2", whenris odd. (2-54b)
n=0 \2i n

For values of r other than a positive integer (2-53) does not converge. In order to
determine E[X'], (2-53) needs to be truncated. When r is a positive fraction, E[X"] can be
obtained using (2-54a) and (2-54b) with rounded value of # to its nearest whole number.
In cases when r is negative, the truncafing error depends upon the magnitudes of » and
CVy. Further, there exists a minimum truncating error for a given combination of » and
CVy, beyond which no improvement in E[X'] is possible. To evaluate the approximate
value of E[X'], a trial and error procedure was used to determine the number of terms to
be summed up to obtain E[X'] corresponding to the minimum truncating error for a given
combination of » and CVy.

After estimating E[X"] and E[X"], (2-26) and (2-27) are used to determine uy and
of. Substituting uy, o and the FOA estimates /1, and &7 into (2-24), the relative
error in FOA predicted estimates of the mean and variance, E(f,)and E(o"'ﬁ), can be

determined. Figures 2-10 and 2-11 show plots of E(%,)and E(o‘-i)vs. r for various

values of CVyranging from 0.02 to 0.33.
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Salient Features of Relative Error Curves

When applying FOA, it is assumed that the functional relationship between the
dependent and independent parameters can be approximated by a linear relationship. This
assumption is often valid, but specific situations may arise when the function is very
nonlinear (represented either by a very large or very small exponent of a power function).
For this reason, applying FOA to models containing a power function with a large
exponent is not common. These situations can be idenfiﬁed and dealt with by visualizing
the relative error plots. The relative error plots also show where FOA estimates are nearly
acceptable and where they are unacceptable and need to be corrected. Observing these
error plots, the following salient points are noted:

1.The relative error is zero for a power function of different distributions at certain
values of the exponent. These exponents are 0 and 1 as shown by E(z, )plots
(Figures 2-1, 2-3, 2-5, 2-7, 2-10) for all the considered distributions. The exponent
value of 0 represents a constant function and the exponent value of 1 corresponds to a
linear function. In the same way, there are two exponent values for E(a“;)where

FOA estimates for the variance have no error. One of these exponents is 1 and the
other changes with the‘distribution type and CV of the input parameter as shown in
Table 2-2.

Table 2-2 shows that when the exponent of a power function lies within the
tabulated range for each distribution, the FOA variance estimate will have almost no

error and the power function will behave like a linear function as far as the variance
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prediction is concerned. These situations are depicted by E(o“'y2 ) vs. r plots in Figures
2-2,2-4,2-6,2-8,2-11.

2. The variation of relative error in FOA predicted variance also changes with respect
to CV, exponent, and type of distribution. When the exponent falls between 1 and 1.7
(an approximate value) for normal, unjform, and triangular distributed parameters, the

FOA overestimates the actual variance. However, the overestimation is small as
shown by the negative values of E(o"'yz)in Figures 2-2, 2-4, and 2-11. When the

exponent falls outside this range, the FOA underestimates the actual variance. When
the parameter is lognormally distributed and the exponent falls between 0 and 1, the

FOA may highly overestimate the actual variance depending upon the parameter CV
value as shown negative values of E(o"'yz)in Figure 2-6. When the exponent falls

outside this range, FOA underestimates the actual variance. In the case of the gamma
distribution, when the exponent falls between 0.3 and 1, the FOA overestimates the
actual variance. For exponents outside this range the FOA underestimates the actual
variance.

3. It is clear from the error plots that the type of distribution may affect the accuracy
of the FOA predicted variance. For example, with a power function exponent between
0 and 1 the FOA overestimates the actual variance when a parameter is lognormally
distributed and underestimates when a parameter has normal, uniform, or triangular
distribution. Whereas, in case of gamma distributed parameter, the FOA
overestimates the actual variance when exponent lies between 1.0 and 0.2 and

underestimates elsewhere.
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4. Even a very small exponent (very close to zero) may give a very high relative error
in FOA predicted variance for some of the distributions (normal, uniform, and
triangular).

5. Error plots of the normal distribution (Figures 2-10 and 2-11) show that significant
errors occur in both the mean and variance of a power function predicted using FOA.
This contradicts previous findings that FOA works well when input variables are
normally distributed (e.g. Scavia et al., 1981; Johnson, 1996).

6. When a power function has its exponent in the vicinity of those tabulated in Table
2-2, the relative error is very small regardless of the CV values of the input variable.
This contradicts previous findings that FOA works well only when CV <0.2.

Examples

Three examples demonstrating the use of the corrected first order uncertainty

method involving multiplicative, additive, and combined form models are presented.

Example No. 1 (Uncertainty in water distribgﬁon)

Hydraulic modeling of a water distribution network is a critical component in the
planning, design, maintenance, and operational control of water supply systems. Analysis
of water distribution networks involves the determination of nodal heads and pipe flow
rates. A basic relationship describing the dependence of discharge on head loss caused by
friction between the flow of fluid and the pipe wall is used in the hydraulic design of a
pipeline system (Mays, 1999). One of the most widely used head loss relationships is the

Hazen-Williams equation, which is given as (Mays, 1999)

_10.654L0"*?

hf - Cl-852D4.87 = 10.654LQ1.852 C—I.SSZD—4.87 (2_55)
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where 4 is head loss (m), L is length of pipe (m), D is pipe diameter (m), Q is flow
(m*/sec), and C is the Hazen-Williams roughness coefficient which varies with pipe
materials and age (Mays and Tung, 1992). #is uncertain due to uncertainty in Q, C, and
D. L is assumed to be exact (1500 m). Table 2-3 gives the mean, CV, and assumed

distribution (Mays and Tung, 1992) for the uncertain variables in Q, C, and D.

The FOA estimate for the mean, by > is calculated using (2-7) as

Q, =10.654(1500)(0.915)!332(130)71852(0.305) %7 = 535.29 m.
hf

Using (2-9) the FOA estimate for the CV of 4 is
A 0.5
CV), = [(1.852)2 (0.1)% +(~1.852)%(0.15)2 +(—4.87)2(0.05)2] =0.413
Multiplying the mean and coefficient of variation calculated above, the FOA estimate of

the standard deviation, 6';,, is 221.2 m. The FOA estimates for the mean and variance for

the component power functions are calculated using (2-22) and (2-23) and listed in
columns 2 and 5 of Table 2-4. To correct the FOA estimates for the means and variances
of the component power functions, the relative error equations (2-41) and (2-42)
developed for the lognormally distributed variables are used. The calculated relative
errors have been listed in columns 3 and 6 of Table 2-4. The exact estimates of means

and variances for the component power functions are determined using (2-25) and are

shown in columns 4 and 7 of Table 2-4. Values of CV,-2 in column 8 shows that all

component functions are important for determining uncertainty in /4; however, the
contribution of C*¥ is the maximum.

Using (2-12) and corrected means of component power functions from column 4

of Table 2-4, the value of = 592.96 m. To calculate CV}; (2-18c) and column 8 of
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Table 2-4 are used to give CV, =[(1+0.035)(1+0.079)1+0.061))-1]"* =0.43. Using

these values for s and CVy, the standard deviation, oy is 254.98 m.

The MCS technique is also used to estimate the mean and variance of k. Figures
2-12a and 2-12b show plots of 4, and g vs. number of simulations. It can be seen from
the plots that there is quite a bit of fluctuation in standard deviation even after 20,000
simulations. The yyrand oy values based on 20,000 simulations are 594.12 m and 256.16
m respectively.

3

Example No. 2 (Hydraulic uncertainty for flood levee capacit

Manning’s equation is the most commonly used resistance equation to find the
flow in a section (Chow, 1959). It is expressed as

2 1

L iRr3s? (2-56)

O=—

n
where Q is flow (m’/sec), 4 is the cross sectional area of tﬁe channel (m?), R‘ is the
hydraulic radius of the channel (m), S is the channel slope (m/m), and » is Manning’s
coefficient (SI units). Natural channels often have a main channel section and an
overbank section. Most flow occurs in the main char;nel, however, during flood events

overbank flows may occur. Considering a symmetric river-flood plain section, the overall

flow capacity, Q, for the compound section can be expressed as

1
0= (%Y— + 2:—”}S2 = (V7 +2¥,m; )58 (2-57)
b

where Y; = AR?” is called the section factor. Y, and Y, represent section factors for main

channel and overbank sections respectively. Considering section factors to be
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deterministic (¥, = 296.9 m®? and Y,=0.6 m8/3), there are three random variables in (2-

57) n., np, and S. Substituting values of Y, and ¥, (2-57) is rewritten as
0 =(296.9n]" +1.2n;' Js°F = g5°? (2-58)
where ¢ is a dummy variable representing the additive form defined as

¢ =269.9n." +1.2n," . In the literature (Tung, 1990; Cesare, 1991; Mays and Tung, 1992;
Yeh and Tung, 1993), when applying FOA to Manning’s equation a small CV is assumed
for n. In this example greater CV values for both banks and the main channel have been
assumed as reported by Johnson (1996). Table 2-5 gives the mean, CV, and distribution
type (Johnson, 1996) for the uncertain variables n,, np, and S in (2-58).

Using the data of Table 2-5, the FOA estimates for mean and standard deviation
of Q are found to be 618.72 m’/sec and 130.39 m*/sec respectively. To determine exact
values of mean and standard deviation of Q, first FOA estimates of vcomponent power
functions are corrected as given in Table 2-6.

Using (2-19) and corrected means for the power functions from column 4 of
Table 2-6, the exact mean of the additive form, z, is 9019.89 m’/s. Similarly using (2-
20) and corrected variances of thé component power functions from column 7 of Table 2-
6, oy = 1586.19 m’/s. The corresponding CV, is 0.176. Now, treating Q as a
multiplicative form with ¢ and S,”” as its components with known means and CV values
Ho = 632.99 using (2-12), CVp = 0.216 using (2-18c) are obtained. Multiplying values of
g and CVg, op=136.74 is obtained. In this example it can be noted that n, is the most
uncertain parameter but its contribution to the uncertainty of Q is negligible as the
additive form ¢ is governed mainly by n. because of its very large coefficient in

comparison to that of n.
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Figures 2-13a and 2-13b are plots of 149 and op obtained using different number
of MCS simulations. There is still a sizable uncertainty in (), as convergence is not
reached after 20,000 simulations. The values of 1 and op corresponding to 20,000 MCS

simulations are 634.61 m*/sec and 137.08 m*/sec respectively.

Example No. 3 (Probabilistic human health risk assessment)

Quantitative risk assessment has received increased attention because of the
recognition of both the potential threat to human health from hazardous substances and
the potential for releases into the environment. Recognizing the extent of the hazardous
waste problem and role of risk assessment, the EPA has developed assessment
procedures that are used for a variety of purposes. Some examples are designating
substances as hazardous, establishing minimum quantities for reporting releases when
they would present substantial danger, evaluating the relative dangers of various sites in
order to establish priorities for response actions, developing, and selecting appropriate
response actions at the contaminated sites. Risk assessment is also used to evaluate
threats to public health posed by superfund sites (USEPA, 1989).

The risk assessment process used by the EPA is carried out in four steps (USEPA,
1989).

The first step is hazard identification during which contaminants of concern are selected
based on their toxicity, mobility, spatial distribution and concentration. The second step
is exposure assessment in which all possible pathways (e.g., inhalation, ingestion, dermal,
etc.) are identified through which contaminants are exposed to the human body. In the
third step, intake doses of the pre-identified contaminants absorbed through various

exposure routes are estimated. The final step is the risk characterization in which the
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magnitude of the risk is calculated. Quantitative uncertainty analysis is necessary when
screening level calculations indicate a potential problem, remediation may result in high
costs, or it is necessary to establish the relative importance of contaminants and exposure
pathways.

To demonstrate an application of the developed method in risk characterization,
risk assessment due to ingestion of contaminated soils is considered. Ingestion of soils
contaminated by high molecular weight contaminants such as polychlorinated biphenyl
(PCBs) is a potential source of human exposure to toxicants. The following equation
(USEPA, 1990) is used to estimate the probability of life-time cancer (R, due to

-

ingestion of soil

_CI,C FEE,

. v S;=CJI,C,FE E,BAS, (2-59)
wet

where C; is the chemical concentration in the soil (mg/kg), Cris a conversion factor (10®
kg/mg), I. is the ingestion rate (mg soil/day), F; is the fraction ingested from
contaminated sources (non-dimensional), Eris the exposure frequency (days/year), Ey4 is
the exposure duration (years), B,, is the body weight (kg), 4, is the averaging time (period
over which exposure is averaged in days), and Sy is the slope factor or cancer potency
factor (mg/kg-day)™.

There is always some uncertainty about each of these elements in risk estimation.
A large number of references are available to describe the extent of uncertainty in each of
these elements. Talcott (1992) has summarized the available information in detail. In this
analysis the mean, CV, and distributions of the variables are taken from Batchelor et al.

(1998) corresponding to the age group of 1-6 years. The distribution of F; was assumed to
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be the lognormal instead of the beta distribution as reported by Batchelor et al. (1998).
This data are given in Table 2-7.
In (2-59) there are two constants. One constant is Cr and the other is (1/365) to

convert 4, in days. Combining these two a new constant Cy =10°/365 = 2.74E-09 is

obtained. Using (2-7), the FOA estimate of jip, is 1.80E-05. Similarly, using (2-9), the

FOA estimate for é‘VRC is 2.57. Multiplying fhese two, the estimate for &5, is 4.62E-05.
To determine the exaét mean and variance of R, FOA estimates for means and variances
of component functions are corrected as shown in Table 2-8.

Substituting values of Cp and corrected estimates for mean of component power
functions from column 4 of Table 2-8 in (2-12), the exact mean of R, (ur.) is 1.97E-05.
Similarly, substituting values of CV,> ﬁoﬁ column 8 of Table 2-8 in (2-18c¢), the correct
CVgeis 6.95. Multiplying ug. and CVg,, the standard deviation of R,, o, is 1.37E-04.

Using MCS, g and op. are determined for different number of simulations.
These plots are shown in Figures 2-14a and 2-14b. It is clear from Figure 2-14b that there
is a significant amount of uncertainty in risk prediction even after 20,000 simulations.
The estimates of ugr. and og. corresponding to 20,000 simulatioﬂs are 1.87E-05 and
1.06E-04 respectively.

Obtained results, using FOA, MCS and corrected FOA methods for examples 1, 2

and 3 are compared in Table 2-9.

Conclusions

In this paper analytical relationships are developed to determine the relative errors

in FOA estimates for the means and variances of power functions. Using these relative
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error functions, one can correct the FOA estimates for the means and variances of
component power functions for nonlinearity, and distribution type to evaluate the exact
mean and variance o.f model output. For ease in application relative error curves for
commonly used distributions are presented graphically. These plots can be used to
determine an approximate relative error for a given exponent of a power function and CV
of its random variable. Three examples are presented which shows that this technique is
not only easy to use but also provides more insight into the process by analyzing each
component function of the model separately. Special cases are identified when applying
FOA to a nonlinear power function for estimating its variance will give a negligible or no
error. This method provides a procedure for incorporating the known information of the
types of input variable distributions. This technique is applicable when an output random
variable is a function of several mutually independent random variables in multiplicative,

additive, or in combined forms.
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Table 2-1: Allowable ranges of coefficient of variation

Distribution CV range
Uniform 0<CV<IN3
Triangular 0<CV<1ING
Normal 0<CV=1/3
Exponential Cv =1
Lognormal No restriction
Gamma No restriction

“Any value of CV is theoretically possible with the normal distribution; however, for
CV > 1/3, the probability of a negative number from the distribution increases rapidly.

Table 2-2: Exponent corresponding to zero error in FOA estimated variance

Distribution Variation in the CV of  Variation in the exponent Exponent
input parameter corresponding to point value
E([62)~0
Uniform 0.01 to 0.57 1.7t0 1.8 1.751
Triangular 0.01 to 0.40 1.6t0 1.8 1.700
Normal 0.01 to 0.33 1.6t0 1.7 1.650
Exponential 1.00 0.279 0.279
Lognormal 0.01 to 1.00 -0.333 to —0.347 -0.340
Gamma 0.01 to 1.00 0.20 to 0.40 0.300
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Table 2-3: Uncertain parameters of Hazen-Williams equation

Variable Distribution Mean cv
0 (m’/s) Lognormal 0.915 0.10
D (m) ‘ Lognormal 0.305 0.05

C (SI units) Lognormal 130.0 0.15

Table 2-4: Computation of the exact mean and variance of head-loss using corrected

FOA method
Power Mean Variance cv2
Function FOA Relative  Corrected FOA Relative Corrected !
Estimate Error* estimate  Estimate Error* estimate
1 ) 3) “4) (5) (6) @) ®)
o™ 0.848 7.82E-3 0.855 0.0247 0.027 0.025 0.035

c1832 1.22E-4 0.057 1.29E-4  1.14E-9 0.135 1.32E-9 0.079

D*¥ 324.68 0.035 336.48 6250.54 0.095 6907.12 0.061

*Relative errors for mean and variance can also be determined using relative error plots, the
values read from plots may be less accurate because of individual error. Figures 2-5 and 2-6
contain the plots for the relative errors for the mean and variance for lognormally distributed
random variables.

Table 2-5: Uncertain parameters of Manning's equation

Variable Distribution Mean CvV
ne Uniform '00034 0.17
np Uniform 0.068 0.38
S Lognormal 0.005 0.25
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Table 2-6: Computation of the exact mean and variance of flood levee capacity using

corrected FOA method
Power Mean Variance cv’
Function FOA Relative Corrected FOA Relative  Corrected
Estimate Error estimate Estimate Error estimate
(1) 2 3) 4 %) (6) () (8)
ne' 29.41 0.029 30.31 24.99 0.124 28.54 0.031
nb'l 14.71 0.166 17.64 31.22 0.556 70.31 0.226
s03 0.071 -0.008 0.07 7.81x10°  -0.039  7.52x10°  0.015

Column 2 is calculated using Equation (2-22), column 3 from Equation (2-31) for uniform
distribution and Equation (2-41) for lognormal distribution, column 4 from Equation (2-25).
Similarly, column 5 is calculated from Equation (2-23), column 6 from Equations (2-32) and
(2-42), and column 7 from Equation (2-25). Column 8 = column 7/(column 4)>
Note: Columns 3 and 6 can also be determined using relative error plots.

Table 2-7: Statistical data for human health risk assessment

Parameter Symbol Distribution Parameter values
Mean 161
Contaminant concentration (mg/kg) Cs Lognormal 155 0.39
Ingestion rate (mg/day) L Lognormal 100 1.26
Fraction ingested F; Lognormal 0.909 0.03
Exposure frequency (days/yr.) Er ~ Exponential 174 1.0
Exposure duration (yr.) E; Exponential 13.0 1.0
Body weight (kg) , By | Lognormal 15.6 0.23
Averaging time (yr.) ' A4, Normal 70.0 0.19
Slope factor (kg-day/mg) Sy Lognormal 2.25 1.66
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Table 2-8: Computation of the exact moments of human health risk using

corrected FOA method
Component Mean Variance CV?
power FOA Relative  Corrected FOA Relative Corrected !
function estimate error estimate estimate error estimate
(1 ) 3 C)) &) (6) @) ®
Cs 155.000 0.000 155.000 3600.00 0.000 3600.00 0.0150
I 100.000 0.000 100.000  15876.00 0.000 15876.00 1.5880
F; 0.909 0.000 0.909 7.29E-4 0.000 7.29E-4 0.0010
Ef 17.400 0.000 17.400 302.76 0.000 302.76 1.0000
Ey 13.000 0.000 13.000 169.00 0.000 169.00 1.0000
B’ 0.064  0.050 0.067 2.13E4 0.098 2.36E-4 0.0052
A7 0.014 0.039 0.015 7.04E-6 0.306 1.01E-5 0.0460
S¢ 2.250 0.000 2.250 13.99 0.000 13.99 2.7630

Table 2-9: Comparison between output results using FOA and corrected FOA methods

Example  Output Mean Standard deviation
FOA Exact MCS” FOA Exact MCS™
1 hy(m) 5353 592.96 594.12 2212 254.98 256.16
2 Q@m¥s) 6187 632.99 634.61 130.39 136.74 137.08
3 R, 1.8E-5 197E-5 1.87E-5 4.62E-5 1.37E4 1.06E4

"Values based on 20,000 number of MCS simulations.
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CHAPTER 111

RELIABILITY, RISK, AND UNCERTAINTY ANALYSIS USING GENERIC

EXPECTATION FUNCTIONS
Abstract

In engineering design and analysis mathematical models are frequently employed for
decision making which generally involve a number of uncertain parameters. Over the
years, a number of techniques have been developed to quantify model output uncertainty
contributed by uncertain input parameters. Typically the methods which are easy to apply
may give inaccurate estimates of model output uncertainty. Other methods which reliably
produce very accurate results are either difficult to apply or require intensive
computational effort. This paper describes the development of generic expectation
functions as a function of means and CVs of input random variables. The generic
expectation functions are easy to develop and simple to apply to problems related to
reliability, risk, and uncertainty analysis. Several expectation functions based on
commonly used probability distributions have been developed. The developed
expectation functions are general. Using them any order of moment can be estimated
exactly. It is found that if exact moments of model output are available, one can find a

good estimate of reliability, risk and uncertainty of a system without knowing its model
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output distribution. Two practical examples are presented to demonstrate the application
of generic expectation functions.

Introduction

In engineering design and analysis, very often models are employed. These
models generally involve a number of uncertain parameters, which are determined with
varying degrees of accuracy. These parameters are best represented as random variables.
Consequently, model outputs on which engineering design and analysis are based are also
uncertain and should be represented as random variables. As a result of uncertainty in
model response, the performance of a project designed based on the model will be
uncertain as well. To incorporate uncertainty in the decision-making and design process
quantification of uncertainty is required. Many problems related to hydrology, hydraulics,
and environmental engineering are best approached using uncertainty and reliability
methods. Reliability and uncertainty analyses are becoming mandatory, particularly
where critical decisions involving potentially high adverse consequences are made.

Two major types of uncertainties in the field of water resources (Tung and Mays,
i980) aie model uﬁcertainty and parameter uncertainty. Model uncertainties arise through
simplifying assumptions used to derive simple mathematical relationships between the
inputs and outputs in describing a complex process. Whereas, parameter uncertainty,
represented by the coefficient of variation (CV), érises because of inherent natural
variability, measurement limitations, and lack of sufficient data.

Two most commonly used methods for reliability, risk, and uncertainty analyses
are the Monte Carlo simulation (MCS) and the first-order approximation (Benjamin and

Cornell, 1970) known as FOA. Both methods have some limitations. The MCS is
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computationally intensive with the number of simulations required for convergence not
well defined (Melching, 1995). In most engineering problems, the true probability
distributions of the input variables are seldom known. Theoretical distributions for the
input variables are assumed to conduct the MCS. The quality of MCS estimates is
affected by appropriateness of the chosen distribution functions for the input variables
and the number of simulations used in the analyses (Bates and Townley, 1988). FOA is
very computationally efficient but provides approxiinate model output estimates for the
mean and variance only. The quality of these estimates is influenced by the CVs of input
variables and non-linearity in the model (Burn and McBean, 1985; Tung, 1990). Further,
FOA does not provide the form of the output distribution. Based on the central limit
theorem output is assumed to be normally distributed when confidence limits on the
output, risk, and reliability of the system are determined.

In reliability and risk analyses, one is concerned with system failure. Often,
failures of engineering projects occur at extreme values (rather than near the mean
values) of the input variables. Extremes are most likely associated with probability
- distributions having large variance and skewness (Yen et al., 1986). FOA uses expansion
about the mean values of the input variables indicating that any attempt to characterize
the tails of the output distribution is likely to result in an inexact estimate (Burn and
McBean, 1985). Furthermore, using FOA, it is not possible to incorporate the information
about the forms of input variable distributions, if they were known (Yen et al., 1986).

"Hasofer and Lind (1974) showed that flaws in FOA due to model non-linearity
can be removed by linearizing the functional relationship at the point on the limit-state

surface nearest to the origin, rather than at the mean point. Calculation of the linearization
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point requires determination of the nearest point on the limit-state surface. This method
involves an assumption that all the input variables are normally distributed, giving a
normally distributed output. However, in most real modeling problems, all the basic
variables are not normally distributed. Rackwitz (1976) proposed a transformation
procedure in which the values of non-normal distribution are the same as those of the
equivalent normal distributions at the failure point. This method is known as advanced
first-order second-moment method (AFOSM). The AFOSM is widely used in reliability
and risk analyses (e.g., Melching et al., 1991; Sitar et al., 1987; Cawlfield and Wu, 1993;
Mishra, 1998; Cesare, 1991). The AFOSM can also be used to carry out uncertainty
analysis by repeating the procedure of calculating the linearization point to match the pre-
specified output value whose exceedance probability is sought. Examples of using
AFOSM in uncertainty analyses are Melching and Anmangandla (1992) in water quality
modeling and Mishra (1998) in environmental probabilistic risk assessment. The AFOSM
is very accurate because using it one is able _to overcome model non-linearity problems
and can utilize the available information about the input variable distributions, without
having to make any additional assumptions. The disadvantage of the AFOSM is that
determination of the lineraziation point is generally not easy depending upon the nature
and complexity of the system for which the reliability, risk, or uncertainty analysis is
being studied (Melching and Anmangandla 1992).

Rosenblueth (1975, 1981) proposed the point estimation (PE) method to evaluate
uncertainty at specified points in the parameter space. To estimate the statistical moments
of a model output, 2" model evaluations are required for a model involving n uncertain

parameters. As the number of stochastic parameters increases, the computation
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requirement of Rosenblueth’s algorithm becomes similar to that of MCS method
(Melching, 1995). An alternative computationally efficient PE method was proposed by
Harr (1989) by utilizing the first two moments of the random variables. Chang et al.
(1995) showed that the estimated uncertainty feature of model output could be inaccurate
if the skewness of a random variable is not accounted for.

In many cases, the true form of the output distribution is not required. A very
good estimate of system reliability can be obtained if moments of model output are
known correctly. As far as the distribution of model output is concerned, several forms of
distributions can be assumed. The knowledge of the higher-order moments of a model
output helps in identifying the candidate distributions for the model output and provides
more flexibility to include those distribution forms, which require higher order moments.
Tung (1990) used the Mellin transform to calculate the higher-order moments of a model
output. The application of the Mellin transform is not only cumbersome but also it can
not be universally applied. As pointed out by Tung, the Mellin transform may not be
analytic under certain combinations of distribution and functional forms. In particular,
problems may arise when a functional relationship consists of input variable(s) with
negative exponent(s). Further, no formulation was suggested to obtain the moments of a
model output having non-standard normally distributed input variable(s).

This paper describes the development of generic expectation functions as a
function of means and CVs of input random variables. These functions are easy to apply
in any general application. Further, a procedure has been suggested to apply the
developed expectation functions to reliability, risk, and uncertainty analyses. Two

examples are presented to demonstrate the application of generic expectation functions.
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Uncertainty and Reliability Analyses

In most hydrologic and hydraulic engineering problems, empirically developed or
theoretically derived mathematical equations are used which involve several uncertain
parameters that are difficult to quantify accurately. Further, a mathematical equation,
g(X), may have different degrees of nonlinearity with respect to its uncertain parameters
represented as an array X The term nonlinearity is difficult to define and no well
accepted definition is available. A multitude of functional forms for g(X) is possible. In
this paper a multiplicative form is considered.

A multiplicative type model is frequently encountered in hydrological studies
(e.g., daily stream flow, peak runoff, annual floods, and annual, monthly, and daily
rainfall, soil loss and sediment transport). In hydraulics many equations are of
multiplicative type. Examples are flow over control structures such as weirs, spillways,
overfalls, and sluices (Haan et al., 1994), channel control equations such as Manning’s
equation (Haan et al., 1994), pipe flow resistance equations such as Hazen-Williams and
Darcy-Weisbach equations. In environmental engineering, many equations predicting
water quality and pollution (Krenkel, 1979; Novotny and Olem, 1994), and risk (USEPA,
1989) are of multiplicative type. Tung and Mays (1980), Lee and Mays (1986), and Tung
(1990) are some of the examples of uncertainty analysis of multiplicative forms
encountered in hydraulic/hydrologic systems. In this form, the output random variable Y

is expressed as the multiplication of n power functions.

i=n

Y=C,[ [ X7 (3-1)
i=1
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where Cp and r; are constants, and X;s are n independent stochastic input random

variables. The #™ moment of ¥ about the origin, ’ , is defined as (Haan, 1977)

u, = E[r*]= c T [ Elx ] (3-2)

i=1
where E[ ] is an expectation operator. The K™-central moment of ¥, M, can be obtained

using the following equation (Haan, 1977)

pe = E|(¥ 1, ) )= ZZO(— l)i(f)u;uz-,- (3-3)

where, uy = u’/=mean of Y. Substituting k =1 in (3-2), uy is given as

Hy =E[Y]=C0]f[E[X,."'] v (3-4)

Substituting z’; from (3-2) and yy from (3-4) in (3-3), w4 can be expressed as

He = C:Zk:(“ l)i(’:){ll:[E[Xiri ]}iIi:[E[Xi(k_i)ri] | (3-5)

i=

Eqgs. (3-2) and (3-5) show that moments of ¥ of any order k about the mean and the origin
can be obtained if expectation of individual power funcﬁons is known.

In most situations distributional properties of a random variable are characterized
in terms of its mean, variance, coefficient of skewness, and coefficient of kurtosis. The
variance of ¥, ¢y, is defined as the second moment about the mean. Substituting k = 2 in
(3-3), Fyis given as
p, = =E[r* |- 2 (3-6)
where y; is the second moment of ¥ about the mean. The coefficient of skewness of Y, yr,

is defined as (Haan, 1977)
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T

where 43 is the third moment of Y about the mean which can be obtained by substituting &
=31in (3-3) as
1ty = E[V?| -3, E[Y? |+ 2422 - (3-8)

The kurtosis of ¥, «y, is defined as (Haan, 1977)

oy =24 (3-9)
H,

where zy is the fourth moment of Y about the mean which can be obtained by substituting
k=41n (3-3) as
pe = E[y*]-4pEly? |+ 642E[r? |- 34* (3-10)
The reliability of a system can be more realistically measured in terms of
probability. The failure of a system can be considered as an event that the demand or
loading, L, on the system exceeds the capacity or resistance, R, of the system so that the
system fails to perform satisfactorily for its intended use. The objective of reliability
analysis is to ensure the probability of event (R > L) throughout the specified useful life
is acceptably small. To study this event, a performance function, Z, is defined as (Ang
and Tang, 1984; Mays and Tung, 1992; Tung, 1990)
Z=R-L (3-11)

The risk is defined as the probability of failure of the system, which can be written as
0
P, =P(Z<0)= [p,(z)dz (3-12)

where Py is the probability of failure, P is the probability operator, and pz(z) is the

probability density function of Z. The reliability of the system can be written as
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Reliability= P(Z > 0)=1-P, (3-13)
The probability distribution of Z is unknown, or difficult to obtain. In most cases the
exact distribution may not be required, as several distributions can be used to make a
decision if correct information about its moments is available. Further, higher order
moments are helpful in both identifying the candidate distributions for pz(z) and using the
distributions requiring higher order moments.

In most cases both R and L can be represented as a multiplicative form as (3-1).
To characterize the failure event (R<0), it is necessary to define the random variable Z
statistically, i.e., its various moments and distribution. The statistical moments of Z about

the origin can be expressed in terms of moments of R and L as

E[z]= E[R]- E[L] (3-14)
E[z2|= E[R* |- 2E[R]E[L]+ E|?] (3-15)
E[z*]= E[R*]- 3E[R? JE[L]+ 3E[R]E[? |- B[] (3-16)
E[z*]= E[r*]- 4E[R* [E[L]+ 6 E[R? |E[1? |- 4E[R]E[ |+ E[1*] (3-17)

As clear from (3-14) to (3-17), the moment of Z about the origin can be evaluated once
moments of R and L are determined. Using these moments about the origin one can easily
determine the central moment of Z. As mentioned earlier determining the true probability
) distribution of Z is difficult if not impossible. For calculating risk, several distributions
can be selected based on the higher order moments. Using (3-12) and the selected
distribution of Z, the risk can be estimated. Yen et al. (1986) have derived risk formulas

for some selected probability distributions.
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Development of Generic Expectation Functions

Consider a power function
Y=X" (3-18)

The k™ order moment of ¥ about the origin can be obtained as
#, =E[r*]=E[x*|= [x¥p, )ax (3-19)

where p, (x) = probability density function of X.

Uniform Distribution

The probability density function for the continuous uniform distribution is

py(x)=——, a<Xx<b (3-20)

where a and b are the distribution parameters. The methods of moments estimates for a
and b are given as (Haan, 1977)

b=y —Boy = l1-3CV,) (3-21)
b=py+B0y = iy (1 +J§CVX) | (3-22)

where CVx= coefficient of variation of X, defined as

cv, =% (3-23)
Hx

Using Egs. (3-19), (3-20), (3-21), (3-22) and (3-23) the E[X"] is given as

. _b 1 v Uy . r+1 )
Elx ]_;[(b—a)X X = (SRS A B )l ST
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Triangular Distribution

The probability density function p, (x) for the triangular distribution is

[\
~—

X—a)

pX(x)=b-a =)’ whena <X <c¢ (3-25a)
2 (b-X)
pX(x)=b_a R whenc <X < b (3-25b)

where a, b, ¢ are the minimum, maximum, and mode values of X. These parameters can

be obtained by the following equation (Appendix I)

a=u, {1 +242CV, cos[zTﬂn + %cos~I (5;5/__—2 7. ﬂ} (3-26)

where @ = a vector containing b, a, and ¢ which can be obtained by substituting n =0, 1,
and 2, respectively, in (3-26); and yy is the coefficient of skew of X. Using (3-19), (3-
25a) and (3-25b) the E[X'] is given as

3 2[(b ~c)a™ +(c-a)p™? +(a —b)c’”]

slx}- (r+1)r +2)b - cfe—a)b-a)

For symmetrical triangle yx = 0 and the parameters @, b, and ¢ can be obtained

(3-27)

corresponding to n =1, 0, and 2. The obtained c is the  and the parameters a and b are

the same as obtained using the methods of moments. The estimates of a and b are given

as
a=p,(1-Vocv,) (3-28)
b=y, (1+-6C7,) | (3-29)

Using (3-19), (3-25a), (3-25b), (3-28) and (3-29) the E[X'] is given as
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E[x"] Hx {(1 + V6] + (1= v ) - z} | (3-30)

T 60+ 1) r+2)CV

Lognormal Distribution

If X is lognormally distributed with mean zx and variance o’y, its probability

density function is given (Haan, 1977) as

_l[lnX—py 2

(X)=———e "\ 7 J,X>O 3-31
Px O',,X\/—Z;L'— ( )

where ¥ = In(X) is normally distributed with parameters sy and o?y. The parameters uy

and o’y are defined (Haan, 1977) as

1| Uk
=—1 3-32
=3 n‘:CV} +1} - (3-32)
o2 =In(cV2 +1) (3-33)

Substituting (3-31) in (3-19), the E[X'] is given as

L - _l[lnX—,usz
Elx"|= Xe N Uy (3-34)
[ ] o,N2 5"
Assuming, In(X) =y = z, the random variable X can be written as, X = e *9v?), (3-
Oy

34) is rewritten as

1 L 1% Yeurrairt) L)’
E[X']=———-—— Ier(#ywﬂ)e 2y = .[ 2 e ?

e dz 3-35
\/—2—7‘; 2 \/E 2 ( )

1 % —leray)

2
But, — |e dz =1.0. Therefore, (3-35) can be written as
= j (3-35)
(,uyr+;—a',3r2)
Elxr]=e (3-36)
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Gamma Distribution

The gamma density function is given by

ltl —MX(a—l)
pX(x)=e—r@-—, X o and A>0 (3-37)

where a and A are the distribution parameters. Using the method of moments, « and A are

expressed (Haan, 1977) as

i=tx (3-38)
Ox
2
A My 1
=X 3-39
“ o Cvi ( )
Substituting (3-37) in (3-19), the E[X] is written as
a ®© X yla+r-1)
[ ] A je X F(a+r) (3-40)
T, TI(@) AT(a)

Replacing o and A in (3-40) by their estimates given in (3-38) and (3-39), (3-40) is

rewritten as

E[X’]= CV/,?’,uj(l“(CV/,;2 +r)

T(CV ) (3-41)

Exponential Distribution

The exponential distribution is a special case of the gamma distribution with o =

1 and A = 1/uyx. Substituting these parameter values in (3-40), the E[X"] is given as

E[x"]= wir(r+1) (3-42)

rmal Distribution

The probability density function of normal distribution is
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1 e

py(x)=———e 3-43

¥ oyV2m ( )

where u, and o’ are the parameters of normal distribution. Assuming, e z, the
Ox

random variable X can be written as, X = (;t v tOo Xz), the E/X'] can be written as

E[X']= E[(yx +0'Xz)r] = ,u;,E[(1+ CVXz)r (3-44)

For CVx< 1.0, (3-44) can be expanded using Binomial Theorem as

E[X’]=y}E{1+rCI{‘,z+r(rz'_l)CV}zZ+ ...... +r(r"l)(r"23;"'(r'”+1)cwxz"+...] (3-45)

Taking expectation of all the terms, (3-45) is written as

Hx'|= ;&[1+rCKE[z]+'( )CVE[22]+ ...... P 2) {r- n+1)CV’E[z"]+] (3-46)

where n is the term number plus 1 in the expansion. The E[z"] is given as

© —lZ
j z"e 2 dz (3-47)

4l

The integral of (3-47) is

Hr]- 2%n+1)/2]_ n

= 7 f2) =(n=1)n—-3)........(3(1), when n is even (3-48a)

E[z"]=0, when n is odd. (3-48b)

Substituting (48b) in (3-46), the resulting equation is written as

E{X’] ;4[1#{’ I)CVZE[z2]+......-|-r(r_1Xr 2= n+l)CI{"‘,E[z"]+...]. (3-49)

n!
When r is a positive integer, the RHS of (3-49) is finite and terminates when n = r +1.

Consequently, (3-49) can be written as
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r

E[X’]=ﬂ}”22(

n=0

)CV E [zz" ], when 7 is even, (3-50a)

2n

(r-1)/27
E[X']=,u;, > ( )CV;"E[ZZ"], when 7 is odd. (3-50b)

n=0 \2#
When r is anything but a positive integer, the RHS of (3-49) does not converge. Equation

(3-49) can be further simplified by substituting E[z"] from (48a) as

E[X’]:y;{l+£(1‘—2:1—)CV; et r(r—-l)(r;z) """ (r_nH)CVX" +.. . (3-51)
272 (n/2)!

When r is a positive fraction, a very good estimate of E[X'] can be obtained using (3-50a)
and (3-50b) with rounded value of r to its nearest whole number. In cases when 7 is
negative, it is observed that the truncation error depends upon the magnitudes of » and
CVy. Further, there exists a minimum error of truncation for a given combination of » and
CVyx, beyond which no improvement in E[X'] is possible. To evaluate approximate value
of E[X'], a trial and error procedure was used to determine the number of terms to be
summed up to give the minimum error in E[X'] for a given combination of » and CVy. It
is worth to note that when CVy < 0.1, the truncation error is very small (< 0.1%) but as
CVy increases, the magnitude of this error increases rapidly.

Examples

To demonstrate the use of developed generic expectation function for a power

function, two examples are presented.

Example No. 1 (Probabilistic human health risk assessment)

Quantitative risk assessment has received increased attention because of the

recognition of both the potential threat to human health from hazardous substances and
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the potential for releases into the environment. Recognizing the extent of the hazardous
waste problem and role of risk assessment, the EPA has developed assessment
procedures that are used for a variety of purposes. Risk assessment is used for
designating substances as hazardous and establishing minimum quantities for reporting
releases when they would present substantial danger. In addition, risk assessment is used
to evaluate the relative dangers of various sites in order to establish priorities for response
actions and for developing, evaluating, and selecting appropriate response actions at the
contaminated site. For example, risk assessment is used to evaluate threats to public
health posed by a superfund site.

The risk assessment is carried out in four steps (USEPA, 1989). The first step is
hazard identification in which chemicals of concern are selected based on their toxicity,
mobility, spatial distribution and concentration. The second step is exposure assessment
in which all possible exposure pathways (e.g., inhalation, ingestion, dermal, etc.) are
identified. In the third step, intake doses of ‘the pre-identified contaminants absorbed
through the various exposure routes are estimated. The final step is the risk
characterization, in which the magnitude of the risk is calculated. Quantitative
uncertainty analysis is necessary when screening level calculations indicate a potential
problem, remediation may result in high costs, or it is necessary to establish the relative
importance of contaminants and exposure pathways.

To demonstrafe an application of the developed method to risk characterization,
risk assessment due to ingestion of contaminated soils is considered. Ingestion of soils
contaminated by high molecular weight contaminants such as polychlorinated biphenyl

(PCBs) is a potential source of human exposure to toxicants. The following equation
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(USEPA, 1990) is used to estimate the probability of excess lifetime cancer, R, due to

ingestion of contaminated soil

- CI,C,FEE,
¢ BWA(

S,=CJI.C,FE,E,BAS, (3-52)
where C; = chemical concentration in the soil (mg/kg), Cr = a conversion factor (10°
kg/mg), I, = ingestion rate (mg soil/day), F; = fraction ingested from contaminated
sources (non-dimensional), E; = exposure frequency (days/year), E; = exposure duration
(years), B, = body weight (kg), 4, = averaging time (period over which exposure is
averaged in days), and Sy= slope factor or cancer potency factor (mg/kg-day)™.

There is always some uncertainty about each of these elements in risk estimation.
A large number of references are available to describe the extent of uncertainty in each of
the elements of (3-52). Talcott (1992) has summarized the available information in detail.
Statistical properties of thé variables in (3-52) are taken from Batchelor et al. (1998), and
are applicable to individuals 1-6 years of age. The distribution of F; was assumed to be
the lognormal instead of the beta distribution as reported (Batchelor et al. 1998). This
data is listed in Table 3-1.

In (3-52), there are two constants. One constant is Cr and the other is (1/365) to
convert 4, to time in years. Combining these two, a new constant Cp =10"%/365 = 2.74E-
09 is obtained. Using generic expectation functions corresponding to distribution types of
input variables and their means and CVs listed in Table 3-1, different orders of
expectations of all the component power functions of (3-52) were obtained. These
expectations have been listed in Table 3-2. Substituting these computed expectations into

(3-2), moments of R, about the origin were obtained. Using (3-3) or (3-5), different
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orders of central moments are computed. The computed moments of R about the origin
and the mean have also been listed in Table 3-2.

The exact moments of R, calculated in Table 3-2 can be used to characterize
distribution of R.. Based on first and second moments of R, (1.972 E-05 and 1.885 E-08)
the CVp, is calculated to be 6.96. Substituting values of second and third moments of R,
in (3-7), g is obtained as 2.034 E+02. Using (3-9) and calculated values of second and
fourth moments of R, the value of &g, is determined as 9.192 E05. These characteristics
of R, provide a clear picture of its distribution. These characteristics and non-negative
property of R, indicate that R, has lognormal distribution.

Example No. 2 (Risk analvsis of storm sewer desien

For storm sewers, failure and potential property damage occurs when the peak

runoff, O, exceeds the storm sewer capacity, Qc. Using rational method Qy, is expressed
as:
Q, =4,CI4 (2-53)
where A, = correction factor for model uncertainty, C = runoff coefficient; I = rainfall
intensity; and A = drainage area. Using Manning’s equation, Qc¢ is estimated using (Mays
and Tung, 1992; Tung, 1990; Melching and Yen, 1986):

1

0463 ; iz (3-54)

n

Qc =

where n = Manning’s' roughness; A,, = model correction factor; d = pipe diameter; Sy =
pipe slope. In this example R is the designed capacity of sewer, Qc, and L is the peak

runoff Q;. Using (3-11), the performance function can be defined as

Z=0:-0, (3-55)
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The statistical data of the variables included in (3-53) and (3-54) is taken from
Mays and Tung (1992) and Tung (1990) and is presented in Table 3-3. Using (3-30) for
variables having the symmetrical triangular distribution and (3-41) for variables having
the gamma distribution and Table 3-3, the 1%, 2™, 3™, and 4™ order expectations of all the
component power functions of (3-53) and (3-54) were obtained as listed in Table 3-4.
Using (3-2) and computed expectations of various component power functions, different
orders of moments of Q; and Q¢ about the origin were calculated. Similarly, central
moments of different orders were obtained for both Q) and Q¢ using (3-3). Using (3-14),
(3-15), (3-16), and (3-17) and various orders of moments of O, and Q¢ about the origin
different orders of moments of Z about the §rigin were calculated. Substituting these
moments about the origin in (3-3), various orders of central moments were obtained.
Using (3-7) and (3-9), skewness and coefficient of kurtosis were calculated for Oy, QOc,
and Z. All of these calculations are carried out in a tabular form as listed in Table 3-4.

Now exact moments and other distribution characteristics of Z are available.
Using this information, several suitable probability distributions can be selected for Z,
and risk correspondirig to each of these assumed distributions can be calculated. For
estimating the range, risk corresponding to the normal and uniform distributions can be
estimated. The risk obtained assuming these two distributions may be regarded as
extremes, since in reality the Z distribution of most cases probably falls between the
normal and uniform distributions (Yen et al.,, 1986). Using the extremes and risk
calculated assuming other distributions, an appropriate decision can be taken about the

system risk.
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Seeing the distribution characteristics of Z, the normal distribution may be a good
choice as it has a negligible skew and kurtosis close to 3. The CV of Z is quite high
indicating negative values of Z, which will be true when Q; is more than Q. Using (3-

12) the risk corresponding to normal distribution is

0-12.10

=P(z<-1.15)=d(-1.15)=0.124 3-5
o) = PG ) = ®(-1.15) (3-56)

P, =P(Z<0)=P(z<

. . Z- .
where z is the standard normal variate defined as z = a1 , and ®(z) is the standard
Oz

normal cumulative distribution function. Assuming the triangular distribution for Z as

defined in (3-25a) and (3-25b), the risk can be calculated from (Yen et al., 1986)

a

P =PZ<0)=—+—— forc>0 3-57

4 ( ) (b—‘a)(c——a) ore ( )
c—a c+2ab

P, =P(Z<0)= - forc<0 3-57b

I s v s R (3-375)

Using (3-26) and computed values of z, CV;, and y, from Table 3-4, the values of 38.31, -
13.23, and 11.22 were obtained corresponding to n = 0, 1, and 2 respectively. Arranging
these values in order of minimum, maximum, and mode, values of @, b, and ¢ can be
determined. Therefore, a = -13.23, b = 38.31, and ¢ = 11.22. As ¢ > 0, (3-57a) can be
used to calculate P Substituting the values iof a, b, and ¢ in (3-57a), Py = 0.139 was
obtained.

Assuming 3-parameter lognormal distribution for Z, pz(z) is given as (Haan,

1977)

y

()= (Z_E)fd me,cp{_%[l“(z_j)‘i} } (3-58)
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where y = In(Z), and ¢1is a location parameter. The relationships between ¢, y, and Z are

given as

Uy =€+ exp(yy%ajJ (3-59)
o2 =exp(2u,+o? Jexplo?)-1] (3-60)
v, = lexplo?)-1f +explo?)-1] | (3-61)

1

To solve, substitute y,= 0.055, in (3-61) and find [exp(ai )—1]5. This cubic equation has
one real and two imaginary roots. The real root gives o, = 0.0183. Substituting values of
o,and o,in (3-60), x,= 6.35 was obtained. Substituting, o, ,, and x,in (3-59), €

= -560.7 was determined. Using o,, u,, and & the standard normal variate
corresponding to Z =0 was found as z =-1.14. The corresponding risk is obtained as

P, =P(Z <0)=P(z <-1.14) = ®(-1.14) = 0.127 (3-62)
Using the Edgeworth asymptotic expansion (Abramowitz and Stegun, 1972; Kendall et

al., 1987; Tung, 1996), P can be obtained as

o w0l0)-le) @)+ (S oo ) o6

where @¢(&)is the standard normal probability density function; and H,(&) is r*-order
Hermite polynomial (Abramowitz and Stegun, 1972). Calculating various order of H.(£)
and substituting values of CD(/,‘), ¢(&), yz, and xz in (3-63) Pr = 0.124 was obtained. To

use the Fisher-Cornish expansion, a correction has to be applied to the standard normal
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variate using the following formula (Fisher and Cornish, 1960; Kendall et al., 1987;

Tung, 1996)

¢ =e2 72 @52 Y- 5 o @)+ ) -6

Substituting various values in (3-64), { =—1.124was obtained. The corresponding risk,
P, =®(-1.124) =0.125 was obtained. Now, to see the upper bound of risk, Z was
assumed to have a uniform distribution as given in (3-20). Using (3-21) and (3-22), a and

b were calculated as —6.13, and 30.33 respectively. The Pris determined from (Yen et al.,

1986)

p=l
T2 J2c,

=0.168 (3-65)

In Table 3-5, the different risk estimates obtained assuming different distributions,
have been listed along with their parameters. Comparing different risk estimates
presented in Table 3-6, it can be seen that computed risk varies from 12% to 17%. The
normal, 3-parameter lognormal, and the Edgeworth asymptotic expansion give more or
less similar results, which are almost equal to the lower bound of the risk. The Fisher-
Cornish asymptotic expansion and triangular distributions both give risk estimates falling
in between the extreme bounds obtained using the normal and uniform distributions.
Practically speaking, with the possible exception of the uniform distribution, all
distributional assumptions yield the same risk

Conclusions

In this paper, a simple approach of developing generic expectation functions is

described. Using several commonly used distributions, analytical expressions for
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expectation functions are derived. These expectation functions can be used to determine
exact estimates of any order of model output moments. Further, a simple and practical
approach of evaluating the probability of failure of a system is suggested using the
triangular distribution for the model output. An analytical equation is derived that will
give the parameters of the triangular distribution, given the mean, CV, and coefficient of
skewness of the output random variable. After delineating the triangular distribution, risk,
reliability of the system can be estimated by calculating the appropriate area of the

triangular distribution.
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Table 3-1: Statistical data for example No. 1

Parameter Symbol Distribution Parameter values
Mean Cv
(1) (2) 3) 4 )
Contaminant concentration (mg/kg) Cs Lognormal 155 0.39
Ingestion rate (mg/day) I Lognormal 100 1.26
Fraction ingested Fy Lognormal 0.909 0.03
Exposure frequency (days/yr.) E; Exponential 17.4 1.0
Exposure duration (yr) E,4 Exponential 13.0 1.0
Body weight (kg) B, Lognormal 15.6 0.23
Averaging time (yr.) A, Normal 70.0 0.19
Slope factor (kg-day/mg) Sr Lognormal 2.25 1.66

Table 3-2: Computation of moments of R, in Example No. 1

Expectation Order of Expectation, k
1 2 3 4

E[C{ 1.550E+02 2.768E+04 5.695E+06 1.350E+09
E[LY] 1.000E+02 2.588E+04 1.733E+07 3.002E+10
E[FH 9.090E-01 8.270E-01 7.531E-01 6.864E-01
E[Ef] 1.740E+1 6.055E+02 3.161E+04 2.200E+06
E[ES 1.300E+01 3.380E+02 1.318E+04 6.855E+05
E[B,"] 6.749E-02 4.796E-03 3.589E-04 2.827E-05
E[4 1.487E-02 2.318E-04 3.825E-06 6.794E-08
E[ka] 2.250 1.901E+01 6.034E02 7.191E+04
E[RN 1.972E-05 1.924E-08 5.274E-10 3.266E-10

E[(Re-p0) ¥ 0 1.885E-08 5.263E-10 2.034E+02

Statistics of R.: yr. =1.972E-05; or. = 1.373E-04; CVg~= 6.96;
Ve = 2.034 E+02; and xz. = 9.192E+05
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Table 3-3: Statistical data for Example No. 2

Variable Mean Standard deviation Distribution
(1) ) 3) @

Am 1.100 0.0891 Triangular
N 0.015 0.0553 Gamma
D (ft) 3.000 0.0410 Triangular
So(ft/ ft) 0.005 0.1640 Triangular
AL 1.000 0.1230 Triangular
C 0.825 0.0618 Triangular
I (in/hr) 4.000 0.1535 Triangular
A (acre) 10.00 0.0408 Triangular

1 ft=0.305m; 1 in=2.54 cm; 1 acre =4047 m”
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Table 3-4: Calculation of expectations for storm sewer design

Expectation Order of Expectation, k
1 2 3 7
E[ 2] 1.100 1.220 1.363 1.534
E[d*?) 1.879E+1  3.573E+2  6.873E+3  1.337E+5
E[S"%" - 7.047E-2 5.000E-3 3.571E-4  2.567E-5
E[rn™] 6.687E+1  4.486E+3  3.018E+5  2.037E+7
E[A1] 1.000 1.015 1.045 1.091
E[CY] | 8.250E-1  6.832E-1 5.680E-1  4.739E-1
E[I] 4.000 1.637E+1  6.849F+1  2.923E+2
E[4%) 1.000E+1  1.000E+2  1.005E+3  1.010E+4
E[ON 4510E+1  2.095E+3  1.002E+5  4.929E+6
E[(Qc -1 0 6.127E+1  1.884E+2  4.929E+6
E[QL] 3.300E+1 1.138E+3  4.087E+4  1.527E+6
E[(Qr 1) 0 4.857E+1  1.252E+2  6.957E+3
E[Z"] 1210E+1 256242  S8I9E+3  1.572E+S
El(Z -112)"] 0 1.098E+2  6.315E+1  3.627E+4

Coefficient of variation of Q¢, O, and Z are 0.17, 0.21, and 0.87 respectively.
Coefficient of skew for Qc, Qy, and Z are 0.39, 0.37, and 0.055 respectively.
Coefficient of kurtosis for O¢, Qr, and Z are 3.05, 2.95 and 3.01 respectively.
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Table 3-5: Comparison of different risk estimates for storm sewer design

Distribution assumed Parameters Risk
(1) 2 3)

Normal =121, 0°,=109.8 0.124

Uniform a=-6.13,5=30.33 0.168

Triangular a=-13.2,b=383, 0.139
c=11.2

Three parameter lognormal £=-560.69, u,=6.35, 0.123
o,= 0.018

Edgeworth asymptotic expansion of CDF =121, o’,=109.8, 0.124
7= 0.055, x=3.01

Fisher-Cornish asymptotic expansion of g, =12.1, 0%, =109.8, 0.125

quantile

%= 0.055, x;=3.01
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CHAPTERIV
UNCERTAINTY ANALYSIS OF EXPONENTIAL MODELS
Abstract

Exponential models are of general interest as they have variety of applications in
science and engineering. In particular, first-order reaction kinetics, which produce
exponential models, are the most commonly used kinetics in modeling, designing, and
performance evaluation of environmental engineering systems. Application of
uncertainty and reliability analysis is essential for many problems related to
environmental engineering systems since they involve a number of uncertain input
parameters. As the exponent of an exponential model increases, its non-linearity also
increases, and thus, application of FOA becomes doubtful. This paper describes a
procedure for correcting the FOA estimates for parameter uncertainty, distribution type,
and model non-linearity, in order to determine true values for the first and second
moments of a model output. Wﬁen confidence limits on the butput or system reliability
are of concern, the output distribution is required. This paper also describes the‘
development of generic expectations as a function of the mean and the CVs of input
random variables. Generic expectation functions can be used to determine higher order
moments of model output. This knowledge helps in identifying the candidate

distributions for the model output and provides more flexibility to include those
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distributions, which require higher order moments. Both techniques, the correction
procedure and generic expectation function method, are easy to use in any general
application. Three examples are presented to demonstrate the use of developed
techniques.

Key words: Exponential functions, first-order kinetics, uncertainty and reliability
analysis, first-order approximation method, exact estimates of parameter uncertainty.

Introduction

First-order kinetics models are of general interest as they describe many events in
science and engineering. These include problems involving change in population,
pollution, temperature, bank savings, drugs in the bloodstream, and radioactive materials.
In environmental engineering, a number of kinetic models are used to model various
physical, chemical, and biological processes occurring in both natural environments (such
as streams, aquifers, and air) and artificially controlled environments (such as water or
wastewater treatment units). Among the most widely used models are the first-order
reaction kinetics models. In water quality modeling, the first-order models are used
(Schnoor, 1997; Thomann and Mueller, 1987; Baughman and Lassiter, 1978) to represent
constituent reactions, microorganism decay/growth, volatilization, sorption, and
biodegradation rates. While modeling mobility, fate, and transport of hazardous waste,
first-order degradation kinetics are assumed for simplicity and because of the
unavailability of other practical mathematical expressions (LaGrega et al. 1994). In air
pollution modeling, first-order reaction kinetics are used for microbial viability decay of
air borne microorganisms (Lighthart and Frisch, 1976) and for overall chemical decay of

air pollutants (APIDSS) as they travel from the source to the receptor.
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There are many examples where exponential models are used as basic
performance models in water and wastewater treatment systems. Some of the examples
include aeration and disinfection kinetics in water treatment, chlorine decay in drinking
water systems, trickling filters, CSTR, and plug flow activated sludge systems in
wastewater treatment systems. Similarly, facultative pond and constructed wetland
systems employed in natural treatment systems also rely on 1¥-order removal kinetics. In
non-point source pollution modeling, nutrient components of commonly used watershed
models (EPIC, AGNPS, OPUS) assume first-order reaction kinetics for nutrient
transformations, pesticide leaching, and decomposition of crop residues.

First-order models are also known as the exponential models in which the input
random variables occur as an exponent. The exponent consists of two variables: the rate
coefficient and time. In natural envirénments, both of them are characteristically random
variables. In surface water quality modeling, not only stream flow and waste flow are
inherently random (Loucks and Lynn, 1966), but there are a number of uncertainties
associated with the various physical and biélo gical processes occurring within the stream
environment (Tung and Hathhorn, 1988). In the subsurface environment, the fate and
transport modeling of an organic contaminant is dependent on uncertain flow dynamics
through porous media having varied physical properties as well as interactions of a
variety of physical, chemical, and biological processes which are yet to be clearly defined
(Smith and Charbeneau, 1990). The chemical characteristics of the contaminants also
impact the transport formulation. Furthermore, the transport of constituents in the

unsaturated zone is also dependent upon variations in the rate of rainfall and infiltration.
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In air pollution modeling, model parameters are uncertain due to variations in
wind speed, turbulence, temperature, humidity, atmospheric stability, and the presence of
any barrier which might entrap the particle. However, in highly controlled systems where
the time parameters and other processes are regulated, the rate coefficient will always be
associated with some uncertainty related to measurement eITors.

Due to the présence of uncertainty in tﬁe exponent parameters, the output of an
exponential model is considered to be a random variable. Two commonly used methods
for analyzing parameter uncertainty are the Monte Carlo simulation (MCS) and the first-
order approximation (FOA) (Benjamin and Comnell, 1970). Both methods have
limitations. The MCS is computationally intensive because of the number of simulations
required for convergence, which is not well defined (Melching, 1995). In most
engineering problems, the true probability distributions of the input variables are seldom
known and commonly used distributions are typically assumed. The quality of the MCS
estimates is affected by the appropriateness of the chosen distribution functions for the
input variables and the number of simulations used in the analyses (Bates and Townley,
1988). FOA is computationally efficient but provides approximate model output
estimates for the mean and variance only. The quality of these estimates is influenced by
the coefficient of variation (CV) of input variables and non-linearity in the model (Burn
and McBean, 1985; Tung, 1990).

To date, the only widely used criterion to ensure the validity of FOA
approximation is to restrict the parameter's coefficient of variation (CV) to less than 0.2
(Benjamin and Cornell, 1970; Burges, 1979; Dettinger and Wilson, 1981). Smith and

Charbeneau (1990) suggest FOA can be used if the difference between function gradients
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at the mean and one standard deviation away from the mean are less than some
acceptable percentage (5-10%). Both of these criteria have limitations. ft has been
observed that error in FOA estimates depends upon parameter CV, parameter
distribution, and model non-linearity. The nonlinearity of exponential models depends
upon the magnitude of the exponent. As the mean value of the exponent increases, the
non-linearity of exponential models increases. For the same CV and model non-linearity,
the error in FOA estimates varies with the type of parameter distribution. Therefore, any
criteria judging the suitability of FOA must include these three elements.

The main objective of uncertainty analysis is to evaluate the first and second
moments of a model output in terms of ihput random variables. Exponential models
become significantly nonlinear when the magnitude of the exponent > 1, and thus, the
validity of FOA application becomes questionable. This paper describes a procedure to
correct FOA estimates for parameter uncertainty, distribution type, and model non-
linearity in order to determine true values for first and second moments of model output.
When confidence limits on the output or system reliability are of concern, the output
distribution is required. This paper also describes the development of generic
expectations as a function of the mean and CVs of input random variables. Generic
expectation functions can be used to determine higher order moments of the output. This
knowledge helps in identifying the candidate distributions for the model output and
provides more flexibility to include those distributions that require higher order moments.
Both techniques, the éorrection procedure and generic kexpectation function approach, are
easy to use in any general application. Three practical examples related to volatilization

of organic compounds from streams, pesticide leaching assessment, and decay of chlorine
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in water distribution systems are presented to demonstrate the use of the developed
techniques.

First Order Approximation Method

Benjamin and Cornell (1970) and Cornell (1972) have provided detailed
description of FOA. Mathematically a random variable Y which is a function of # random

independent variables can be expressed as
Y = g(X) (4-1)
where X = (X5, X2 e , X), a vector containing n random independent variables X;.

Through the use of Taylor’s expansion and its first order approximation, the mean of the

model output can be approximated by

2y = gE[X)) 4-2)
where X is the vector containing the mean values of all the random variables, 7, is the

FOA predicted mean for a model output. The variance of the model output can be

approximated as
n a 2 .
62 = {-—g—] ol (4-3)

where ai is the variance of input parameter X; and &7 is the FOA predicted variance for

the model output. Since, the FOA is an approximate method giving only estimates for the
means and variances of a model output, there is always some error associated with
estimates obtained using it.

Relative Error in FOA Estimates
Consider an exponential function
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Y = f(x) =be” (4-4)
where b and ¢ are constants. Using (4-2), the FOA estimate for the mean of ¥, /i, is given

as

iy = be™ | @)
4, is the mean of the input variable x. Using (4-3), the FOA estimate for the variance of
Y, &7 is given as

Gl =b P’ ol =b P’ i v} (4-6)
where O'f is the variance of x; and CV; is thé coefficient of variation of x which is defined

as

CV, =—= | (4-7)

The estimates obtained from (4-5) and (4-6) for uy and o contain errors. The relative
error, E, in FOA estimates is defined as

Exact value — FOA estimate FOA estimate
E = = 1 - (4-8)
Exact value Exact value

The exact value of the mean and variance of an exponential function and therefore the
corresponding relative error in FOA estimates for the mean and variance depend upon
CV, mean, and type of distribution of input parameter(s). Rewriting (4-8)

FQOA estimate

(1—_E)

Using (4-9), FOA estimates of the mean and variance of an exponential function can be

Exact value = (4-9)

corrected if Eis known.
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Generic Expectation Function

The generic expectation function is defined as the 7" moment of ¥ about the origin
g p g

(4, ). Mathematically, it is defined as

E[Y’ ]: U = O]-[f(x)]r Py (x)dx =b" Te’“ Py (x)dx (4-10)

where E[ ] is an expectation operator, and p y (x) is the probability density function of X.
The #"-central moment of Y, s, can be obtained using the following equation (Haan,

1977)
%=Eb-mykzewf}wQ | | (4-11)
i=0 L

where, u, is the mean of ¥, which can be evaluated from (4-10) by substituting » =1, as
p, =E[Y] | (4-12)
In most situations, distributional properties of a random variable are characterized
in terms of their mean, variance, coefficient of skewness, and coefficient of kurtosis. The
variance of ¥, ¢ v, 1s defined as the second moment about the mean. Substituting » = 2 in
(4-11), Sy is given as
1y =0} = B2 i}  @13)
where 1, is the second moment of Y about the mean. The coefficient of skewness of Y, y,

is defined as (Haan, 1977)

7y ="3 (4-14)

32

Hy
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where 44 is the third moment of ¥ about the mean which can be obtained by substituting »
=31in (4-11) as

1, = E|V° -3, E[Y? |+ 2412 (4-15)
The kurtosis of Y, «y, is defined as (Haan, 1977)

=He

Ky
2
H,

(4-16)

where 1 is the fourth moment of Y about the mean which can be obtained by substituting

r=4in (4-11) as

1, = E|v*]- 4ugr® |+ 62E]r? - 3% (4-17)

Development of Relative Error and Generic Expectation Functions

Uniform Distribution

The probability density function py (x) for the continuous uniform distribution is
pX(x)=——1—— ,a<x<p (4-18)
(8-a) |

where o and B are the distribution parameters. Using the methods of moments, the

estimates for a and £ are given (Haan, 1977) as

o= M, —\/gox = ,ux(l—\/gCVx) (4-19)
=, +3o, = p1+3CV,) (4-20)

Substituting p y (x) into (4-10), the E [Y g ]is given as

r b" re, (1+CV \/5) re (I—CV \/5)
ElY' |= —————l: Hs * — e x :| 4-21
[ ] 23rep, CV, © © (-21)
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Substituting =1 and 2 into (4-21), E[¥] and E[Y’] are given as

b cu(i+cv,3) _ e (I—CV\/g)]
ElY =___—[ Hs V) gt * 4-22
] 2\/§c,uxCVx ‘ ¢ ( )
b ) _ v )
£ly?]= [ 2eu (1+CV.3) _ 2eufi-cv, 3} 403
[ ] 4+3cu, CV, ‘ ‘ (4-23)

Substituting (4-22) and (4-23) into (4-13), o’ is given as

2
2 b [ 20 (1+CV,3) ZC,u:‘
P S e S s A W Ve A T (4-24)
Y12 ken? by

Substituting FOA predicted mean of Y from (4-5) and true mean of Y from (4-22) into (4-

8), the expression for relative error in FOA predicted mean, E(i,)is given as

B(i)=1- 2\Bcu CV e s
Hy) = F‘/;C.UXCV.\' )
e -1

(4-25)

Figure 4-1 shows a plot of E(4,) versus exponent mean for various CV values ranging
form 0.01 to 0.57. Now substituting the FOA estimated variance (4-6) and correct
variance (4-24) into (4-8), the relative error in FOA predicted variance, E(o“ﬁ) is given
as

1204/‘!4 CV462\/SC/JXCV,

(em%cyx -11(\E%CVX — 1) +x/§c,ux‘CV; +1]

E(62)=1~ (4-26)

Figure 4-2 depicts a plot of E(é—i) versus exponent mean for various CV values ranging

form 0.01 to 0.57.
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Symmetrical Triangular Distribution

The probability density function px(x) for the symmetrical triangular distribution

is

2 (ﬂ—x
P (e (-0)’

where @, f and o are the minimum, maximum, and mode values of X. These parameters

when o< x < (4-27)

can be obtained by the following equation (Appendix II)

a= ,UX{1+2\/_CVX 005[2—3—+1cos ( \/_}/xﬂ} (4-28)

where a = a vector containing f, a, and w, which can be obtained by substituting n = 0,

1, and 2, respectively, into (4-28); and yx is the coefficient of skew of X. Substituting (4-

27) into (4-10) and integrating, the E[Y'] is given as

dlyr]- 2 le=Blontrea) s (p-alenrea)ro-alontres] (4o,

2c2(ﬂ—a)(a)-—a)(ﬂ—a))
For symmetrical distribution yx = 0 and the parameters o, f and o can be

obtained corresponding to n = 1, 0, and 2. The estimates of &, £, and w are given as

& = ux(l-6Cvy) (4-30)
/?:yx(1+J€CVX) (4-31)
b=y (4-32)

Substituting estimates of @, f, and @ into (4-29), the E[X'] for the symmetrical triangular

distribution is given as
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Ley (v 6 Leu (1-cv 6
E[Yr]= 2 2b2 2 ezr%(Jr x )_ezr%( &) (4-33)
6rccu;CV;

Substituting # =1 and 2 into (4-33), E[Y] and E[Y?] are expressed as

b lc,u"r (I+CVX\/3) lc,u.,(l—CVx\/g)
- | @34)
E[Y2 ] - b2 [ec,ux(1+CV,\/g) _ ecﬂx(l-CVx\/g)] (4_3 5)
24c*u2Cv?

Substituting E/Y] and E[Y?] into (4-13), O'yz is written as

, b2 {(3020_5 _ 21626#"(”0{' J—6) + e2c;l“r (I—CI{,JE)] _ 12( C2 O_i + 2)626#" + 8ec;lx(2—C VJB) + 8 (2+CV~/3) }
o, =

’ 725"
(4-36)

where o, = 4, CV,. Substituting (4-5) and (4-34) into (4-8), the expression for relative

error into FOA predicted mean, E(f,)is given as

22072 cu CV, 6
6c°u.CVye (4-37)

(ecp,CV,\/E _ 1)2

Equation (4-37) has been represerited graphically in Figure 4-3 for different values of

E(f,)=1-

exponent mean and exponent CV ranging form 0.01 to 0.4. Substituting (4-6) and (4-36)

into (4-8), the relative error in FOA predictedk variance E(o"'i) is expressed as

7206#6C,Vsez\/€cy,c;qr
(e““"x”x - 1)2 [(3c2 uCvl - 2Xe2“%”x + 1)+ 2 oem:CT: (3c2 HICV: + 2)]

E(@;)=1-

(4-38)
Figure 4-4 plots (4-38) for various exponents mean values and CV values ranging from

0.01 to 0.40.
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- Normal Distribution

If X is normally distributed, its probability density function is given (Haan, 1977)

as
1 1 i
X—Hx

x)= exp| - —| ——= 4-39
Px o, Iom 2\ o, ( )
where , and o are the distribution parameters. Substituting (4-39) into (4-10), E[Y"] is
given as

] nr 1,29 2
E[Y ]— b" exp rep_t 5 ~r°c uyCVy (4-40)

Substituting 7= 1 and 2 into (4-40), E[¥] and E[Y?] are given as

E[Y]zbexp[c,u + ;c uiCy? ) (4-41)

Ely?]=» exp[z[cy +cuicv? H (4-42)
Substituting E[Y] and E[Y?] into (4-13), 03,2 is written as

o} =b’ exp(2cu, + c*o? Iexp(czof )—l] (4-43)
Substituting (4-5) and (4-41) into (4-8), the relative error in FOA predicted mean

E(4,)1s expressed as

E(4,)=1 -exp[—-;-czﬂf C Vf} (4-44)

Figure 4-5 presents a plot of E( f1,) versus exponent mean for various CV values ranging
from 0.01 to 0.33. Substituting (4-6) and (4-43) into (4-8), the relative error in FOA

predicted variance E(o"j) can be expressed as
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2 .2
c’o;

E(63)=1-
©) exp(czaf exp(czaf)—l]

(4-45)

In Figure 4-6, E(o“'yz) is plotted against the exponent mean for various CV values ranging

from 0.01 to 0.33.

Gamma Distribution

The gamma density function is given by

a _-ix_(az-1) »
Px (x) = % x, a,and A>0 (4-46)

where « and A are the distribution parameters. Using method of moments « and A are

expressed (Haan, 1977) as

A=tr= 4-47
o, uCV; (@47
2
~ M 1
gt 4-48
ol v} (4-48)
Substituting (4-46) into ‘(4-10) and integrating, E[Y] is obtained as
1
Ely']=p"(1-cru,cv?) oz (4-49)
Substituting 7 =1 and 2 into (4-40), E[Y] and E[Y?] are given as
. 1
E[Y]=b(-cu,cv? )z (4-50)
_
Hy?|=6*(1-2cu,c?) e (4-51)

Substituting E[¥] and E[Y?] into (4-13), % is written as
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ol =b’ [(1 200, CV2 )07 (1= e, CV?2 )civ} 4-52)

Substituting (4-5) and (4-50) into (4-8), the relative error in FOA predicted mean

E(4,)is expressed as

1
B(1,) =1~ (1~ cu,CV2 )ov? explens,) (4-53)
Figure 4-7 shows a plot of E(jz,)versus exponent mean for various CV values ranging
from 0.01 to 1.0. Substituting (4-6) and (4-52) into (4-8), the relative error in FOA

predicted variance E(&i) can be written as

2,2 2
c u.CV, exp(Zc,ux)

E(6))=1- (4-54)

1

_ 2
(201,72 Y7 e, 02
Figure 4-8 shows a plot ofE(63) versus exponent mean for various CV values ranging

from 0.01 to 1.0.

Exponential Distribution

The exponential distribution is a special case of the gamma distribution with & =
1. Substituting & = 1 in (4-48), CV, =1 is obtained. Substituting CV; =1 into (4-49),
E[Y'] is given as

br

2

(4-55)

Substituting C¥; = 1 in (4-53), the relative error in FOA predicted mean, E(Z,) is given
as

E(2,) =1-(1-cp, exples,) (4-56)
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On substituting C¥V; = 1 in (4-54), the relative error in FOA predicted variance E(o“f,) is

expressed as

¢’ p; exp(2ep, )

E@G;))=1-
O i 2en ) — (e e )

(4-57)

In Figure 4-9, E(/4,)and E(&j) have been plotted with exponent mean values.

Examples

Three examples are used to illustrate the application of the developed procedures.
In problems where only the mean and variance are required, the correction technique can
be used to correct the FOA estimates for the mean and variance of a model output. In
reliability and risk problems where the distribution of a model output or performance
function is required, the generic expectation function can be used to determine higher
order moments. Based on these moments, one may be able to detefmine an output
variable distribution whose higher order moments are in exact match or choose a
distribution among the commonly used distributions based on finding the closest fit by
comparing the computed morhents. All three examples are simple so that results can be
easily interpreted.

Example No. 1 (Volatilization of organic compounds from streams

Various physical, chemical, and biological processes occurring in the stream
environment determine the fate of organic compounds discharged into streams and rivers.
Among these processes, one of the most important for many compounds is volatilization,

which is the physical transport of the compound through the air-water interface into the
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air (Rathbun and Tai, 1982). The loss of chemical due to air-water exchange is governed
by first-order reaction kinetics (Rathbun and Tai, 1982; Schwarzenbach et al., 1995).

The concentration, C, at distant x from the input point is given as

C=C, exp(— KZ,NJ (4-58)

where Cp is the concentration of chemical after mixing of the release with the stream
water; Atis the travel time of flow; d is the average depth of water; and K} is the mass-
transfer coefficient for the volatilization of concerned chemical from the stream.

There is always some uncertainty involved in each of the variables of (4-58). Cy is
uncertain because of the complete mixing assumption and measurement errors. Af is
uncertain because of spatial and temporal variations in velocity of flow. Average depth
also varies from cross-section to cross-section. K; is uncertain because it is a
mathematical approximation of several complex processes and also because of the
number of uncertainties that are associated with those various processes occurring within
the stream environmeﬁt. Rathbun and Tai (1982) developed regression equations for K
for the volatilization of ethylene and propane in terms of hydraulic and geometric
characteristics of streams. To obtain mass transfer coefficients for other organics,
corrections for molecular diffusivity, molecular diameter, or molecular weight were
suggested.

In this example (Rathbun and Tai, 1982), an accidental release of a wastewater
containing carbon tetrachloride into a stream is considered. The problem is to determine
the mean and variance of chemical concentration after a given travel time. The mean
values of Cy, Ki, d, and At are taken from Rathbun and Tai (1982) as 100 mg/L, 1.43

m/day, 0.40 m, and 2.6 days respectively. Assuming, Cy, d, and Afas constants, the

137



impact of uncertainty in K; on the mean and variance of C is studied using different
CVy, values and distributions as shown in Table 4-1.

Based on the mean values of input parameters, the FOA estimates for the means
are determined using (4-5) as given in column 2 of Table 4-1. Using relative error

functions (4-25), (4-37), (4-44) and (4-53) for the uniform, triangular, normal and gamma
distributions respectively, E(f.) is determined corresponding to each distribution and
different values of CVKL as listed in columns 3, 5, 7, and 9 in Table 4-1. E(.)can also
be determined using relative error plots such as Figures 4-1, 4-3, 4-5, and 4-7 for the
uniform, triangular, normal, and gamma distn'butfons, respectively. Substituting £, and
E(4.)in (4-9), correct mean values, k., are obtained as listed in Table 4-1 for various
assumed distributions. From Table 4-1, it can be noticed that while fi. remains constant
regardless of CVKL , the u. values increase with increasing in C Vk, » indicating impact
of K; uncertainty on mean of C. Furthermore, Table 4-1 also depicts the impact of
distribution type used for K. It can be observed from Table 4-1 that at smaller CVKL , the

4. values are almost similar. Their differences increase with an increase in C Vg, . The

differences of uvalues based on the normal distributions are found to be the most
pronounced.

In Table 4-2, FOA estimates for the variance of C using different distributions and
CVs of K| are calculated as given in column 2. Relative errors in these estimates are
determined using (4-26) for the uniform distribution, (4-38) for the triangular

distribution, (4-45) for the normal distribution, and (4-54) for the gamma distribution.
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The calculated E(8%, ) are given in columns 3, 5, 7, and 9 of Table 4-2 respectively.

Substituting o%x and E(&éx ) into (4-9), correct values of O'(Z;X are determined as listed in
columns 4,6, 8, and 10 of Table 4-2.

In Table 4-2, estimates of E(&éx)for various distributions indicate that there is

significant error in FOA estimates even at small values of CVy . The impact of
distribution type is also clearly depicted by comparing E(&éx)values for different
distributions. Their differences become more pronounced at higher CVy values. It can
be noticed that at CVy = 0.2, variation in relative errors for different distributions is 90%

to 100% indicating CV < 0.2 criteria is not valid.

Example No. 2 (Uncertainty in a pesticide leaching assessment

For the past decade, there have been concerns over the problem of nonpoint
source pollution of groundwater with organic chemicals. Several screening indices to
determine a pesticide's leaching potential were suggested by various researchers. These
chemical fate indices are based on the relative travel time needed for the pesticides to
migrate through the vadose zone and on the relative mass emission from the vadose zone
(Rao et al., 1985). These indices, which are less data demanding than deterministic-
conceptual models, have not been widely accepted due to concerns regarding their
reliability (Loague and Green, 1988).

Consider the attenuation factor (4F) index proposed by Rao et al. (1985) to rank
pesticides with respect to their potential to leach to groundwater. The primary processes

controlling the rate of pesticide leaching considered in the AF index are advection,
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sorption, and transformation. Sorption is incorporated into AF by a retardation factor, RF,

defined (Rao et al., 1985; Loague and Green, 1988) as

RF =1+ pbfocKoc + naKH (4_59)
Orc Orc :

where ppis the bulk density of soil (kg/m?); f,. is the organic carbon content in the soil

(mass fraction); K, is the pesticide sorption coefficient (m’/kg); 0 rc 1s the water content

of soil at field capacity (volume fraction); n, is the air-filled porosity of soil (fraction);
and Ky is Henry's constant (dimensionless). Assuming first-order reaction kinetics for the
pesticide degradation, AF is defined as the fraction of surface-applied pesticide that
reaches the groundwater. Mathematically, AF is given (Rao et al.,1985; Loague and
Green, 1988) as

AF =exp(-kt) - (4-60)
where k is the first-order degradation rate coefficient (days™); and t is’ the total travel time
required for a pesticide to travel from soil surface to the water table. The total travel time

can be approximated (Rao et al.,1985; Loague and Green, 1988) as

d RF Opc
q

t (4-61)

where d is the depth of the water table (m); and ¢ is the net annual ground water recharge

rate (m/day).Substituting (4-59) into (4-61), ¢ is rewritten as

d
t= 7(0FC + pbfocKoc + naKH) ‘ (4'62)

-The pesticide half-life, 7}, is related to & as

0,693
T

k (4-63)
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0.693d

AF =exp| - Orc + Py focKoe + 1K) (4-64)

172

The assumptions and limitations of the AF index are described by Rao et al.
(1985) and Loague et al. (1989, 1990). The parameters of (4-64) include soil properties,
hydrogeologic and climatic characteristics, and chemical coefficients. An extensive data
set of the Pearl Harbor Basin, Hawaii, has been given by Loague (1991), Loague and
Green (1988), and Loague et al. (1989, 1990). It is noticed that the coefficient of
variation of the parameters in (4-64) ranges from 0.2 to 0.96, indicating a very large
uncertainty. Therefore, it becomes imperative to characterize the impact of parameter
uncertainties on the estimates of AF. The impact of data uncertainty in pesticide leaching
assessments has been addressed by Loague et al. (1989, 1990), Loague and Green (1988,
1990), and Loague(1991) using FOA. Very large parameter CV values and model
nonlinearity make the reliability of the FOA estimates for the mean and variance of AF
questionable. Table 4-3 presents the statistical properties of the parameters of (4-64)
corresponding to the inceptisols soil order in the Pearl Harbor Basin (Loague and Green,
1988; Loague et al., 1990). The distributidns of 4 ,,%C >and foc are assumed to be lognormal
(Labieniec et al., 1994). Recognizing the high CV values and non-negative constraint for
the rest of the parameters, a lognormal distribution is assumed.

Considering application of AF for a single near-surface layer, d is assumed to be a
constant value of 0.5 m. The pesticide selected for the leaching potential assessment was
diuron, for which Kz was assumed to be zero (Loague and Green, 1988; Loague et al.,

1 990). Substituting KH‘= 0, (4-64) is rewritten as
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0.693d

AF = €Xp| — (gFC +pbfocKoc) (4'65)

1/2

Applying FOA on (4-65) with the statistical data given in Table 4-3, the FOA estimates

for the mean ( 2 4 ) and standard deviation (&, ) of AF are determined as 3.18E-21 and
2.26E-19 respectively. These values are similar to what were calculated by Loague and
Green (1988), Loague et al. (1990), and Loague (1991).

To calculate the correct estimates of mean and variance of AF, the developed
technique is used. For simplification, (4-65) is rewritten as
AF = exp(cz') (4-66a)
where ¢ =-1; and 7is a random variable defined as
7=0.693d ¢ Ti75(Orc + Lo focKoc) | (4-66b)
To use the developed relative error equations or plots, the distribution of 7 must be
known. If higher order moments of 7 are known, an appropriate distribution can be
determined either by incorporating higher-order moments exactly using the method of
entropy (Tung, 1996) or by choosing an approximate distribution form already available
distributions based on the information about moments. The exact moments of 7 can be
evaluated using the generic expectation function approach (GEFA) for a power function
as presented in Chapter III.

The generic expectation function for X, where X is lognormally distributed is

given as

E[X’]= exp(,uyr+%0',2zr2) (4-67)
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where Y = In(X) is normally distributed with parameters uy and 0',2,. The parameters

My and 0',21 are defined (Haan, 1977) as

1| uy
My =—In 4-68
"2 L+CV§} (469
o? =In(1+CV}) (4-69)

Using (4-67) and data given in Table 4-3, different orders of moments of component

power functions of (4-66b) about the origin are obtained. Multiplying moments of

r

individual power functions E[p,:] , E fo’c] , andE [ oc] for a required order,
E[(pb SocK 00)’] is determined for various values of r as listed in Table 4-4. Using
E H;C] and E[(pb focKoc)r] and applying the linearity property of expectation,
E[(HFC + Py focKoe )’] is determined for different values of . Multiplying 0.693 with d =

0.5, 0.3465 is obtained. For a required value of r, (0.3465)’,E[q"] , E _tl',’z] and

r
(HFc + pbfocKoc )} ) USing

0.693d
q2

E[(HFC + Pp focK oc )’] are multiplied to obtain EH

these moments and (4-11), central moments of 7 are obtained. Using obtained central
moments with (4-12), (4-13), (4-14) and (4-16), mean, variance, coefficient of skewness,
coefficient of kurtosis of 7 are evaluated. The calculation is presented in Table 4-4.

Seeing the relative error plots corresponding to u; =128.96 and CV, = 2.23, it is
noticed that estimates of mean and variance have almost 100% relative error regardless of

the distribution of 7.
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Statistics indicate that 7 can be assumed to be approximately lognormally
distributed and can be verified by comparing coefficients of skewness and kurtosis.
Assuming lognormal distribution for 7 with parameters x; =128.96 and CV, = 2.23, the
coefficients of skewness and kurtosis are calculated to be 17.8 and 1800 respectively.

This indicates that a lognormal distribution is reasonable. Using lognormal distribution
for 7, the pyr = 3.29E-03 and o .= 2.74E-02 are calculated using the Gauss-Laguerre

quadrature method (Zwillinger, 1996).
To verify the above results, MCS was used to determine the mean and standard

deviation of AF. To ensure the convergence, 100,000 simulations were used in the MCS.

The values of y4r and o . obtained using MCS are presented in Table 4-5 along with

those obtained from FOA and GEFA. Table 4-5 indicates the effect of choice of
uncertainty analysis method. The results of FOA are totally erroneous and may have
serious consequences on the decision making. The results of MCS are comparable with
that of GEFA. But, it can be noticed that using such a large number of simulations, the
MCS has not converged to the exact estimates. Further, it is 6bserved that the discrepancy
in the coefficients of skewness and kurtosis is large. This may affect risk or reliability
analysis of a project involving AF.

Example No. 3 (Uncertainty in residual chlorine in water distribution systems

In drinking water distribution systems, it is current practice to maintain a desired
level of residual chlorine concentration to provide protection against leaks, regrowth of

microbial contamination, and other breakdowns. Most network modeling packages
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assume that chlorine decay follows first-order kinetics (Powell et al., 2000). The chlorine
concentration, C, at any time t (mg/L) is given by the following equation:

C = C, exp(- k) (4-70)
where Cjy is the initial chlorine concentration (mg/L); and k = overall decay constant
(L/h). In literature considerable variability was observed in the value of the first-order
decay constant (Powell et al., 2000). There are a number of factors affecting chlorine
decay in the water distribution system such as reactions both within the bulk fluid and
with pipe material, organic matter, or presence of other chlorine demanding impurities.
Whereas, the reactions within the bulk fluid are affected by water temperature and
organic content of water, the reactions with pipe wall are related to the corrosiveness of
the ferrous pipe materials and the perimeter. Some of this variability is likely due to
changes in the concentration and chemical nature of the compounds that chlorine is
reacting with. Other uncertain factors are changes in temperature, chlorine dose, and
organic content of the water. Furthermore, the network's ratio of chlorine to organic
reactants in the water varies significantly with time or space. Since the reactions do not
exactly follow first order decay, the value of £ changes with respect to time as well.

In order to provide safe drinking water, the impact of uncertainty in the first-order
decay constant must be investigated. To obtain statistical characteristics of %, frequency
distribution data of £ was read from Powell et al. (2000). The mean and coefficient of
variation of k were found to be 0.14 L/h and 0.63 respectively. Three distributions,

namely exponential, lognormal, and gamma were fitted. ‘Using 6 classes, the chi-square

statistics, z: (Haan, 1977), were calculated as 6.52, 57.71, and 5.0, respectively.

Comparing 2 with yg,,= 6.25, it is concluded that the gamma distribution adequately
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describes the data at the 10% significance level. In Table 4-6, statistical characteristics of

C at different times ¢ ranging from 1 hr to 24 hr were computed, which give a thorough

understanding of the uncertainty in C at different times. In Table 4-6, f, is calculated

from (4-5), E(ji)is calculated from (4-53), and uc is determined by substituting ji

and E(fc)in (4-9). Similarly, using (4-6), (4-54), and (4-9), &%, E(62), ando2, are
calculated as listed in Table 4-6.

It can be noticed from Table 4-6 that there is substantial amount of error in FOA
estimates of means and variances of residual chlorine concentration in water distribution
systems. The FOA underestimates the mean throughout the 24 hours, whereas, it
overestimates the variance during first 10 hours and underestimates afterwards. To have
an idea about distribution type, distributional characteristics of C can be determined using
GEFA as given in Table 4-7. Using (4-49), 1%, 2", 3, and 4™ orders of moments of C
about the origin are estimated as listed in columns 2, 3, 4, and 5 of Table 4-7. Using these
moments and (4-11), various orders of central moments are estimated and used to
determine distributional characteristics (mean, variance, CV, coefficient of skew, and
coefficient of kurtosis) of C as listed in columns 6, 7, 8, 9, and 10 respectively.

From Table 4-7, it can be concluded that C can not be represented by a normal
distribution. Therefore, any analysis based on FOA and normal distribution for C will be
misleading. A typical requirement for minimum free chlorine residual is 0.2 mg/L
(Anonymus, 2000). In order to estimate the probability of failing to meet this
requirement, i.e., P(C < 0.2 mg/L), the distribution of C is required. Using the variable

transformation technique (Haan, 1977), the exact distribution of C is obtained as
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where o and A are the parameters of gamma distribution fitted for k. Using this
distribution, one can compute the desired probabilities. It is general practice to use the
normal distribution with FOA estimated mean and variance. In Table 4-8, different
probability estimates, namely normal distribution with FOA estimated mean and
variance, normal distribution with corrected mean and variance, and the exact derived
distribution of C, are compared.

Table 4-8 indicates that the probability of residual chlorine concentration < 0.2
mg/L, is overestimated by FOA. Based on FOA results, decision may be made to increase
the residual chlorine concentration. This increased chlorination may prompt formation of
undesirable by-products such as trihalomethanes (THM's) and other halogenated
hydrocarbons, which are toxic to human health. Further, using normal distribution with
correct means and variances, the probabilities of residual chlorine coﬁcentration <02
mg/L, are underestimated. This may result of reducing the residual chlorine concentration
in the water, which may be inadequate against microbial protection. Due to the
conflicting objectives, chlorine disinfection needs aI{ exact analysis of residual chlorine
concentration to safeguard water consumers.

Conclusions

In this paper two approaches, the correction procedure for correcting the FOA
estimates for parameter uncertainty, parameter distribution type, and model non-linearity

and the generic expectation function approach for evaluating exact moments of model

147



output, are described. Analytical and graphical relationships for relative error, using
several commonly used distributions, are developed to correct the FOA estimates to
obtain exact values of the mean and variance of model output. This technique is
particularly useful for determining exact values of the mean and variance of model
output. When the distribution of a model output is required, the generic expectation
method can be used. Analytical expressions for generic expectation functions using
several commonly used (iistributions are derived. These functions can be used to
determine exact model output moments of any order. Knowledge of higher-order
moments helps in identifying the appropriate distribution for the model output. Three
practical examples are solved which show that the developed techniques are not only

easy to use but also provide more understanding of the process being considered.
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Table 4-1: Correcting FOA estimates for the mean chemical concentration

CVg FOA Exact estimates for mean values of C(ug/L)
Estimate Uniform Triangular Normal Gamma
Hc E(4.) He E(i.) Hc E(4c) Hc E(4.) 2%

(1) ) 3) 4) ) (6) (7) (8) ©) (10)
0.05 9.19 0.10 10.21 0.10 10.21 0.10 10.21 0.10 10.21
0.10 9.19 0.33 13.71 0.34 13.92 0.35 14.14 0.33 13.72
0.15 9.19 0.56 20.89 0.59 22.41 0.62 24.18 0.57 21.37
0.20 9.19 0.74 35.35 0.78 41.77 0.82 51.06 0.75 36.76
0.25 9.19 0.86 65.64 0.89 83.54 093 131.28 0.86 65.64
0.30 9.19 0.92 114.87 0.95 183.80 0.98 459.5 0.92 114.88

Table 4-2: Correcting FOA estimates for the variance of chemical concentration

cvy  FOA Exact estimates for variance of C (ug/L)*
* Estimate Uniform Triangular Normal Gamma
Sec  E©L) of EGL) ob EGL) ok  EGL) ok
(1) ) ©) 4 ®) (6) M ®) &) (10)
0.05 1.82E1 0.16 2.16E1 0.22 233E1 0.28 2.53E1 0.24 2.39E1
0.10 7.29E1 0.48 1.40E2 0.61 1.85E2 0.73 275E2 0.64 2.03E2
0.15 1.62E2 0.75 648E2 086 1.17E3 095 3.53E3 0.88 1.33E3
0.20 292E2 090 2.83E3 096 748E3 1.00 8.21E4 096  7.83E3
025 4.56E2 0.96 1.23E4 099 S5.03E4 1.00 4.12E6 0.99 3.96E4
0.30 6.56E2 099 543E4 1.00 3.54E5 1.00 4.79E8 1.00 1.66ES5
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Table 4-3: Statistical properties of the parameters used in pesticide leaching assessment

Parameter Symbol Parameter values Distribution
Mean Ccv
1) @ E) “) ®)
Soil water content (fraction) Orc 0.41 0.22 Lognormal
Soil bulk density (kg/m’) Lb 688 0.35 Lognormal
Soil organic content (fraction) Joc 0.09 0.56 Lognormal
Pesticide sorption coefficient (m’/kg) Koc 0.383 0.72 Lognormal
Net annual groundwater recharge (m/day) Q 54E-4 096 Lognormal
Pesticide half-life (days) T, 328 0.65 Lognormal
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Table 4-4: Computation of the exact moments of ¢

Expectation Order of expectation,
1 2 3 4
, 4.10E-1 1.76E-1 7.94E-2 3.75E-2
E[HFc]
r 6.88E+2 531E+5 4 .58E+8  4.44E+11
E [Pb ]
Eler 9.00E-2 1.06E-2 1.63E-3 3.29E-4
' 3.83E-1 2.23E-1 1.98E-1 2.69E-1
Elxr]
E[q“’] 3.57E+3 2.45E+7 3.25E+11 8.32E+15
[ —r ] 4.32E-3 2.65E-5 2.30E-7 2.83E-9
Eltin
[ - ] 2.37E+1 1.26E+3 1.49E+5 3.93E+7
E (pbfocKoc)
2.41E+1 1.27E+3 1.50E+5 3.95E+7
E[(ch + pbfocKoc )r]
034 - 1.29E+2 9.96E+4 4.68E+8 1.34E+13
0.693
EI:{ (ch +pbfocKoc)} }
qty2
Central moments of 7 0 8.29E+4 4.34E+8 1.32E+13

Statistics of 7: mean = 128.96, standard deviation = 288.07, CV =2.23,

Coefficient of skew = 18.15, and coefficient of kurtosis = 1916.93

Table 4-5: Comparison of the means and the standard deviations of AF

Method Statistics of attenuation factor, AF
Har OuF CVar
(1) (2) (3) (4)
FOA 3.18E-21 2.26E-19 7.11
GEFA 3.29E-03 2.74E-02 8.33
MCS 2.75E-03 2.42E-02 8.80
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Table 4-6: Correcting FOA estimates using relative error functions

Mean (mg/L) Variance (mg/L)*
t (hr) FOA Relative  Corrected FOA Relative  Corrected
estimate error Estimate estimate error estimate
Ac E(4c) Hc && E(é¢ ok
@) ©) 3) @) ) ©) @
1 0.7824 0.0037 0.7854 0.0048 -0.1005 0.0043
2 0.6802 0.0144 0.6901 0.0144 -0.1783 0.0122
3 0.5913 0.0311 0.6103 0.0245 -0.2323 0.0199
4 0.5141 0.0529 0.5428 0.0329 -0.2628 0.0260
5 0.4469 0.0790 0.4853 0.0388 -0.2712 0.0306
6 0.3885 0.1087 0.4359 0.0423 -0.2596 0.0336
7 0.3378 0.1412  0.3933 0.0435 -0.2306 0.0353
8 0.2937 0.1758 0.3563 0.0429 -0.1872 0.0362
9 0.2553 - 0.2120 0.3240 0.0411 -0.1321 0.0363
10 0.2219 0.2492 0.2956 0.0383 -0.0685 0.0359
11 0.1929 0.2869 0.2706 0.0350 0.0012 0.0351
12 0.1677 0.3248 0.2484 0.0315 0.0745 0.0341
13 0.1458 0.3625 0.2287 0.0280 0.1493 0.0329
14 0.1268 0.3996 0.2111 0.0245 0.2238 0.0316
15 0.1102 0.4359 0.1954 0.0213 0.2968 0.0302
16 0.0958 0.4713 0.1812 0.0183 0.3669 0.0289
17 0.0833 0.5056 0.1685 0.0156 0.4335 0.0275
18 0.0724 0.5385 0.1569 0.0132 0.4959 0.0262
19 0.0630 0.5702 0.1465 0.0111 0.5538 0.0249
20 0.0547 0.6003 0.1369 0.0093 0.6070 0.0237
21 0.0476 0.6290 0.1283 0.0078 0.6554 0.0225
22 0.0414 0.6563 0.1203 0.0064 0.6992 0.0214
23 0.0360 0.6820 0.1131 0.0053 0.7385 0.0204

[\&]
SN

0.0313 0.7062 0.1064 0.0044 0.7736 0.0193
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Table 4-7: Uncertainty in chlorine concentration after a given time #

t (hr) Moments of about the origin Distributional characteristics of C
E[C] E[C] EIC] EC] . o2 CVe  yc K
(1) ) 3) 4 ) (6) @) ®) ® (a9
1 0.785 0.621 0.494 0.396 0.785 0.004 0.084 -0.934 3.986
2 0.690 0489 0353 0.260 0.690 0.012 0.160 -0.672 3.192
3 0.610 0392 0.262 0.181 0.610 0.020 0.231 -0.452 2.724
4 0.543 0321 0201 0.132 0.543 0.026 0297 -0.262 2.451
5 0.485 0266 0.158 0.100 0.485 0.031 0.360 -0.092 2.307
6 0.436 0.224 0.127 0.078 0.436 0.034 0.420 0.062 2.252
7 0.393 0.190 0.104 0.062 0.393 0.035 0478 0.204 2.264
8 0.356 0.163 0.086 0.050 0.356 0.036 0.534 0336 2.327
9 0.324 0.141 0.072 0.041 0.324 0.036 0.588 0.461 2.431
10 0296 0.123 0.062 0.034 0.296 0.036 0.641 0.580 2.570
11 0.271 0.108 0.053 0.029 0.271 0.035 0.692 0.693 2.740
12 0.248 0.096 0.046 0.025 0.248 0.034 0.743 0.803 2.936
13 0229 0.085 0.040 0.021 0.229 0.033 0.793 0.909 3.157
14 0211 0.076 0.035 0.019 0.211 0.032 0.842 1.012 3.401
15 0.195 0.068 0.031 0.016 0.195 0.030 0.890 1.113 3.666
16 0.181 0.062 0.028 0.014 0.181 0.029 0.938 1.211 3.952
17 0.168 0.056 0.025 0.013 0.168 0.028 0985 1308 4.257
18  0.157 0.051 0.022 0.011 0.157 0.026 1.032 1.404 4.582
19 0.146 0.046 0.020 0.010 0.146 0.025 1.078 1.497 4.925
20 0.137 0.042 0.018 0.009 0.137 0.024 1.125 1.590 5.287
21 0.128 0.039 0.016 0.008 0.128 0.023 1.170 1.682 5.668
22 0.120 0.036 0.015 0.008 0.120 0.021 1216 1.773 6.067
23 0.113 0.033 0.014 0.007 0.113 0.020 1.262 1.863 6.485
24 0.106 0.031 0.013 0.006 0.106 0.019 1307 1953 6.920
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Table 4-8: Comparison between different probability estimates

T (hr) P(C<0.2)

Normal distribution with Normal distribution with  True distribution
FOA estimated parameters  corrected parameters

(1) @) €) (4)

1 0 0 1.43E-10
2 3.14E-05 4.63E-06 4.95E-05
3 6.19E-03 1.80E-03 2.74E-03
4 0.04 0.02 0.02

5 0.11 0.05 0.05

6 0.18 0.10 0.11

7 0.25 0.15 0.17

8 0.33 0.21 0.24

9 0.39 ‘ 0.26 0.31
10 0.46 0.31 0.37
11 0.52 0.35 0.43
12 0.57 0.40 0.48
13 0.63 0.44 0.53
14 0.68 0.47 0.57
15 0.73 0.51 0.61
16 0.78 0.54 0.64
17 0.82 0.58 0.67
18 0.87 0.60 0.69
19 0.90 0.63 0.71
20 0.93 0.66 0.73
21 0.96 0.68 0.74
22 0.98 0.71 0.76
23 0.99 0.73 0.76
24 0.99 0.75 0.77
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Fig. 4-2: Relative error in FOA predicted variance of an exponential function for CVy ranging from 0.01to
0.57, where exponent X is unformly distributed
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from 0.01to 0.40, where exponent X is triangularly distributed



1\\ W

ZZ\\\\\\\\\\\ ey
NN} s //
1NN 11107

NN\N\—//r////

JMEENAN
NN NN\ / 1/

NN\ 7/

S OO

y \\\\\\\\\\\\\\ /////////// e

lllllllllllllllll

----------------------------------

nnnnnnnnnnnn

Fig. 4-4:Relative error in FOA predicted variance of an exponential function for CV y ranging from 0.01to
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Fig. 4-7: Relative error in FOA predicted mean of an exponential function for CV y ranging from
0.01to 0.90, where exponent X is from the gamma distribution
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CHAPTER V

RELIABILITY ANALYSIS OF OPEN CHANNEL FLOW USING GENERIC

EXPECTATION FUNCTIONS
Abstract

Traditionally, the location of a floodway boundary involves a solution of
Manning's equation for the depth of flow for a given storm discharge corresponding to a
design return period. In this approach, no uncertainty is considered in the parameters of
Manning's equatidn or in the probability distribution of the observed maximum yearly
flow. To incorporate uncertainties into the parameters of Manning's equation, researchers
have used the first-order reliability method. This approach does not consider uncertainty
in the probability distribution for maximum yearly flow even though the true distribution
is not known. Using the generic expectation function approach, GEFA, the exact
observed sample statistics can be incorporated in the determination of uncertainty in the
depth of inundation. This method is easy in application because transformation of non-
normal distributions and determination of the failure point using non-linear constrained
optimization are not required. Furthermore, by applying GEFA, one can estimate the
exact higher order moments of a performance function. Based on these moments, one can
choose an appropriate distribution to improve understanding of the performance function

in comparison to a lump parameter such as the reliability index. In this paper, a
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comprehensive study is carried out using GEFA employing Manning's equation for a
compound channel. The impact of parameter uncertainties on the depth of inundation is
investigated. The reliability estimates obtained using GEFA are compared with those
from the first-order reliability method, FORM, assuming different distributions for the
design discharge.

Introduction

Flood plains are subject to periodic inundation that may result in loss of life and
property, health and safety hazards, disruption of commerce and governmental services,
extraordinary public expenditures for flood protection and relief. The bound.ary of a flood
plain may vary according to the frequency of the flooding event, such as a 10-year, a 50-
year, or a 100-year flood. Flood plain mapping is an inherently complicated process, full
of uncertainties due to complexities in the hydrological/hydraulic models used, the
availability and quality of data, and the subjectivity of human judgement in the process
(Burges, 1979; Jones, 1980).

Traditionally, location of the floodway boundary involves a solution of Manning's
equation for the depth of flow for a giveﬁ storm discharge corresponding to a design
return period. This approach accounts for uncertainty only in the peak flow and does not
allow consideration of any uncertainty in the parameters of Manning's equation or in the
probability distribution of the observed maximum yearly flow. To incorporate
uncertainties in the parameters of Manning's equation, Cesare (1991) used the first-order
reliability method (FORM). The use of FORM for reliability analysis of open channel
flow has some drawbacks. First, it is implicitly assumed that the maximum yearly flow

has been exactly described by a theoretical probability distribution function. In most
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situations, however, the underlying probability distribution for the peak annual flow is
seldom known with certainty. It involves subjectivity on the part of analyst, particularly
in situations where it is difficult to choose among several equally suited distributions.
Any error in fitting the distribution may affect the reliability/risk estimates severely.
Second, FORM involves the transformation of non-normal, random input variables to
their equivalent normally distributed random variables and the determination of the
lineraziation point using a nonlinear optimization technique. This is generally not an easy
task depending upon the nature and complexity of the system. Third, the magnitude of
acceptable convergence may affect the accuracy of the reliability estimates. In some
cases, the magnitude of convergence error may not be reduced below a certain level.

Using the generic expectation function approach, GEFA, (Chapter III), the exact
observed sample statistics can be incorporated in determining the uncertainty in the depth
of inundation. This method is easy in application because transformation of non-normal
distributions and determination of the failure point using non-linear constrained
optimization are not required. By applying GEFA, one can estimate the exact higher
order moments of a performance function. Based on these moments one can choose an
appropriate distribution and improve understanding of the performance function in
comparison to a lumped parameter approach such as the reliability index (Hasofer and
Lind, 1974).

In this paper, GEFA is employed to determine the impacts of the magnitude of the
CV and distribution types for the Manning's coefficients, and distribution types used to

describe maximum yearly flow data on the risk for a given level of flooding along a
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channel. The reliability estimates obtained using the GEFA are compared with those from
FORM, assuming different distributions for the design discharge.

Reliability Analysis of Open Channel Flow

Manning’s equation is the most commonly used resistance equation to determine
the flow capacity of a channel section corresponding to a given depth (Chow, 1959). In

ST units, it is expressed as

1 2!
Q. =—AR>S? (5-1)
¢

where Q¢ is the flow in m>/sec; A is the cross sectional area of the channel in m%; R is the |
hydraulic radius of the channel in m; S is the channel slope and » is the Manning’s
coefficient. Natural channels often have a main channel section and an overbank section.
Most flow occurs in the main channel. However, during flood events overbank flows may
occur. Considering a symmetric river-flood plain section as shown in Figure 5-1, the

overall flow capacity, Oc, for the compound section can be expressed as

Y. !

n n,
where Y = AR*? is called the section factor. Y. and Y, represent section factors for main
channel and overbank sections, respectively. Assuming the geometry of the channel to be
deterministic, Q¢ is a random variable due to uncertainties in the Manning's coefficients
n.and n; and slope of the channel. It is assumed that n., np and S are independent to each
other.

The annual peak flow, Oy, is also a random variable, which is usually represented

by a theoretical probability distribution by fitting observed annual peak flood flow data.
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The exceedance probability (or return period) of a certain depth of flow (flood level) can
be estimated by determining the probability of the event (Qc < Q). The objective of
reliability analysis is to determine the probability of exceedance of a certain flood level in
a flood zone. To study this event, a performance function, Z, is defined as (Ang and
Tang, 1984)

Z=0:-0, (5-3)
Substituting expression for Q¢ from (5-2) irito (5-3) and incorporating uncertain factors to
account for the empirical nature of Manning's equation and observational errors, Z can be
written as

Z=C(vn +2¥,0;' 5% -C,0, (5-4)
where C; and C, are the modeling factors included to account for modeling uncertainty in
Manning's equation and observational uncertainty in the observed maximum flow data
respectively. The probability, Py that a certain depth of flow is exceeded, can be

estimated as
0
P, =P(Z <0)= [p,(2)dz (5-5)

where P is the probability operator; and pz(z) is the probability density function of Z. The
probability distribution of Z is unknown and genérally difficult to obtain. In most cases
the exact distribution may not be required, as several distributions can be used to make
reliability analysis if correct information about its moments is available. Furthermore,
higher orderv fnoments are helpful in both identifying the candidate distributions for pz(z)

and using the distributions requiring higher order moments.
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Various orders of moments of Z can be obtained by applying the theory of
statistical expectation if general expressions for evaluating the moments, including
negative and fractional moments, of its input variables are known. The generic
expectation functions can be used to evaluate any order of moment of an input random
variable.

Generic Expectation Functions

Consider a power function

g=X’ (5-6)
The &™ order moment of g about the origin can be obtained as
4, = Elg*]= E[x*|= [x*p,(n)dx (5-7)

where p,(x) is the probability density function of X. Assuming different distribution

types for p, (x) , generic expressions for E[X"] have been derived analytically in chapter

III as listed in Table 5-1.

Data Used

For this study, 31 years of maximum yearly flow data (Table 5-2) observed at the
Beargrass Creek, Cannons Lane, Louisville, Kentucky, is considered. Table 5-3 presents
the frequency analysis for this data, which has been discussed in detail by Haan et al.
(1994). Figure 5-2 presents a comparison of the lognormal and the extreme value type-I
distributions for this data. From Figure 5-2, it can be noticed that it is difficult to select
which distribution best describe the observed data. Furthermore, no distribution is able to

represent the observed data exactly. To study the influence of distribution types for QO on
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the risk analysis of open channel flow, the lognormal distribution, extreme value type-I
distribution, and the actual observed data are considered to represent Q; in the
performance function given in (5-4).

Johnson (1996) has summarized the coefficient of variations and the distribution
types of different uncertain hydraulic variables. To study the impact of variation in CV
and distribution types generally used for the Manning's coefficients, their CVs are varied
from 0.05 to 0.3 with different types of distributions. The channel slope, S, is assumed to
be fixed with its CV and distribution type. Table 5-4 presents the statistics of uncertain
variables in (5-4).

Using traditional frequency methods the discharges corresponding to the 5, 10,
25, 50, 100, and 200-year return periods are calculated using the extreme value type-I
distribution. Corresponding to these discharges, depths of flow are determined to be 2.23
m, 2.56 m, 2.92 m, 3.19 m, 3.45 m, and 3.69 m respectively.

Distributional Characteristics of the Performance Function

Consider two independent random variables, X; and X,. Performing expectation

operation on (X, + X, ) and (X, — X, ), the following equations are obtained.

afor ) et o e et o Jblebie....r 2l (58)

E[(X,_Xz)k]=E[X,k]_(j)EX,k—l]E[XZ]Jr@EX,k—z]E[X;]Jr ......... CER] S 69)

For the sake of convenience, rewrite (5-4) as

Z=R-L (5-10)
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where R =C, (chc" +2Y,n; )S°'5 ; and L =C,Q, . The statistical moments of Z about the

origin can be obtained using (5-9) if moments of R and L about the origin are known. The

¥*_order moment of R can be obtained as

E[R¥]= E[ct ]E[(ch;’ +2xn ) JEfso% ] (5-11)

In (5-11) E [Cl"] and E [S 05k ] can be directly evaluated using a generic expectation
functions for given distributions tabulated in Table 5-1. To evaluate E [(chc" +2Y,n; )k ,
(5-8) can be used. As C;is taken to be deterministic and equal to unity, the moments of L

are equal to the moments of Q;.

Having determined moments of Z about the origin, the k™-central moment of Z,

Mk, can be obtained using the following equation (Haan, 1977)

w, = E|Z-u)]= g(— 1)()## » (5-12)

where, u is the mean of Z; 4, _, is the (k-i)" order moment of Z about the origin. Using

the second and third order moments of Z, the coefficient of skewness, ¥z, is defined as

(Haan, 1977)

Hs
¥, = (5-13)
Lo

where u, 13 are the second and third order moments of Z about the mean. The kurtosis of

Z, kz, 1s defined as
x, =L (5-14)
- Hy

where yy is the fourth moment of Z about the mean.
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To demonstrate the calculation procedure, a flow depth of 3.19 m is considered.
The corresponding section factors, Y, and Y}, are determined to be 947.37 m®? and 0.094

/
m83

respectively. The distributions of n, and n, are assumed to be lognormal with
coefficient of variation of 0.25. Table 5-5 presents the calculation procedure of the
moments of Z about the origin as well as about the mean. Using these calculated central
moments, distributional characteristics (mean, variance, skewness, and kurtosis) of Z are
determined. This procedure is repeated for each depth for an assumed set of parameters
i.e., distribution types and coefficient of variations of n. and s, and distribution of Q;.
The obtained distributional characteristics of Z are summarized in Tables 5-6 to 5-10.

It can be observed from Tables 5-6 through 5-10 that the type of distribution, e.g.,
the extreme value type-I, the lognormal, and the actual observed data, assumed to
represent peak annual flow in the performance function did not affect the mean and
standard deviation of Z. However, the coefficient of skewness and the coefficient of
kurtosis of Z are affected by the type of distribution of Q;. An interesting relationship has
been observed among the coefficient of skewness and coefficient of kurtosis of Z when
Q. is represented by the extreme value type-I, the lognormal, and the actual data. The
coefficient of skewness of Z, when'QL is represented by the actual data, matches very
closely to the coefficient of skewness of Z, when @y is assumed to be lognormally
distributed. Similarly, the coefficient of kurtosis of Z, when Q) is represented by the
actual data, matches very closely to the coefficient of kurtosis of Z, when @y is assumed

to have the extreme value type-I distribution.
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Determining Exceedance Probabilities

In order to evaluate Py using (5-5), pz(z) is required. As mentioned earlier, most
cases do not require knowledge of the exact distribution of Z, as several distributions can
be used based on available distributional characteristics of Z. The other most commonly
used non-Gaussian distribution is the Edgeworth asymptotic expansion (Cieslikiewicz,
1990). For most practical applications, the truncated four term Edgeworth expansion
(Abramowitz and Stegun, 1972; Kendall et al., 1987; Tung, 1996) has been used, which

is given as

P, ~ q>(.§)_¢(.§){7_2(g2 _1)+("Z_‘3)(g3 4.5){%}(55 ~10&* -155)] (5-15)

24

where CD(.f)is the standard normal cumulative denéity function; ¢(&)is the standard
normal probability density function; and £ is the standard normal variate. The use of the
Edgeworth expansion has some drawbacks, particularly when used in tail portions of the
distribution as it may give negative values for the probability density function and
cumulative density function. Obviously, this violates the definition of a probability
density function. To ensure that P, does not become negative, the Edgeworth expansion is
used for the first three smaller flow depths.

Observing the distributional characteristics of Z listed in Tables 5-6 through 5-10,
it is noticed that most of the time the distribution of Z is negatively skewed and
leptokurtic (xz > 3). Given these constraints, the Pearson type-III distribution is the best
choice among the most commonly used distribution functions. The Pearson type-III

density function may be expressed as ( Matalas and Wallis, 1973)
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1 2=\ z—-A
pz(z)———|a|r( ﬁ)( » ) exp{—( - ﬂ (5-16)

where a, f, and A are the parameters. If the distribution is positively skewed, « is
positive, and Z > A; otherwise « is negative, and Z < A. The parameters «, £, and A are

related to the distributional characteristics of random variable Z as follows

U, =A+ap (5-17)
o, =|a|B? (5-18)
¥, =287 | (5-19)

The Pearson type-III distribution is always leptokurtic as indicated by
K, =3y%+3 (5-20)

Substituting (5-16) in (5-5), Pris given as

1 Y z-2)" z-2
P, =|a|F(,3)J( p” ) exp[—( ” )}dz (5-21)

Substituting w= (ﬂj , (5-21) is rewritten as
a

P, = —F(lﬁ Jw” “ exp(- w)dw | (5-22)

From (Abramowitz and Stegun, 1972), P,can be calculated as

P, =F(y* 1v) (5-23)
where F/rz (xz / u)is the chi-square distribution with parameter 7’ and o degree of
freedom which is given as

v=28 (5-24)
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The parameter 7 is given as

7 =2w=2(z_’1) (529)
lo4

The Py corresponding to higher flow depths which may fall in the tails of p, (z)
are determined using the Pearson type-III distribution. The calculated values of Py using
the Edgeworth expansion and the Pearson type-III distribution have been tabulated in
Tables 5-11 through 5-13 for different settings of input variables. In Tables 5-10 and 5-
11, the Py values obtained using the FORM are also tabulated along with those obtained
using GEFA in order to facilitate a comparison between the two methods. It is necessary
to point out that the Py values corresponding to GEFA are only an approximation of the
exact values because approximate distributions are used while calculating them. It can be
observed from Tables 5-10 and 5-11 that Py values using GEFA match very closely with
those of the FORM in a number of cases. For the CV value of 0.05 and the gamma
distribution for n. and ny, the Prvalues could not be calculated. The Prvalues presented in
Table 5-13 correspond to the case where Q) is represented by the actual observed data in
(5-4). As FORM can not be used in this case, only GEFA Py values are tabulated in Table
5-13.

Impact of Parameter Distributions and Variation in CV Values

Figure 5-3 presents a typical plot between CV of Manning's coefficients (#, and
ny) and Py values for different flow depths using GEFA and FORM. The distribution
types for the Manning's coefficients and Q; correspond to the lognormal and the extreme
value type-l, distributions, respectively. Figure 5-3 indicates that both GEFA and FORM

are in close match with each other. Figure 5-3 also shows that as the magnitude of CV of
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Manning's coefficients increases, the magnitude of the probability of exceedance
corresponding to a given depth increases.

To visualize the influence of distribution type of Manning's coefficients on risk,
Figures 5-4 and 5-5 present plots between depth and exceedance probability using
 different distributions for Manning's coefficients and CV values of 0.1 and 0.20,
respectively. Figure 5-4 shows that when the CV of Manning's coefficients is small, the
distribution type does not make much difference on the risk estimates. However, as the
CV values increase, the influence of the distribution types of Manning's coefficients
becomes more discernable. Figure 5-4 shows that assuming a uniform distribution for
Manning's coefficients give the highest estimates, and the assumption of lognormal
distribution gives the lowest estimates of risk for a given flow depth. The risk estimates
corresponding to the normal and the triangular distributions match exactly. The risk
estimates obtained using the gamma distribution are found to be slightly higher than
those of the lognormal distribution.

Figures 5-6 and 5-7 show depth versus exceedance probability plots
corresponding to the extreme value type-I distribution, the lognormal distribution, and the
actual observed data for the peak annual flow using two different CV values of 0.1 and
0.2 for the Manning's coefficients. The curves cofresponding to the extreme value type-I
and the lognormal distributions have been derived using FORM, whereas, the curves
corresponding to the observed data have been generated using the GEFA. Both plots
Figures 5-6 and 5-7 indicate that there is significant influence of the type of distribution
of the peak annual flow. On comparing the impacts of CV magnitude of Manning's

coefficients, distribution types of the Manning's coefficients, and the distribution types of
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O, on the risk estimates, the impact of distribution type for the peak annual flow is found
to be much higher than that of the rest.

Figures 5-6 and 5-7 also compare the depth vs. exceedance probability plots
obtained by traditional method corresponding to both the lognormal and the extreme
value type-I distributions. It is cléar from these plots that this method underestimates the
exceedance probabilities. Consideration of uncértainty in Manning's roughness
coefficients improves the risk estimates but it still underestimates the exceedance
probabilities due to the fact that neither of the distributions is able to fit the given data
exactly.

Conclusions

In this paper, reliability analysis of open channel flow is carried out using the
generic expectation function approach. This method is Simple and general in application.
Using GEFA exact distributional characteristics and moments of any order of a
performance function can be obtainéd. The exactness of risk estimates using GEFA
depends upon satisfyihg the distributional characteristics of the performance function by
its assumed or derived distribution. By comparison, the FORM estimates show that in
most cases a commonly used distribution can be employed to evaluate an approximate
risk. Using GEFA and FORM impacts due to the variation in magnitudes of CV and
distribution types for the Manning's coefficients and distribution types for the peak
annual flow are studied. It is observed that an increase in the CV values of the Manning's
goefﬁcients increases the risk estimate. Whereas, distribution types of Manning's
coefficients at smaller CV have a negligible impact on risk, this becomes more

pronounced at higher CVs for the Manning' coefficients. The impact of distribution types
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for the peak annual flow has been found to be the most prominent at both smaller and
higher CVs of the Manning's coefficients. The problems due to distribution fitting can be
removed by incorporating the actual observed data in the performance function. FORM
does not provide any flexibility to incorporate actual observed data into the performance
function. GEFA can be used irrespective whether the peak annual flow is represented by

a distribution or by the actual observed data.
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Table 5-1: Generic Expectation Functions for Some Commonly Used Probability Density
Functions

Name Generic expectation function, £ [X ’]
Uniform r ‘
—“X—[HCV B -(l-cv,3 ’“]
2J3(r +1)CV, becr 3] -0-cr )
Symmetrical 4 2 o
i 1+CV, 6 1-CV,N6] -2
triangular 6(r +1)r+2)CV?2 [( +CPels " +0-cr B ]
Unsymmetncal
triangular” 2[(b —c)a™? +(c—ap™? +(a~ b)c’”]
(r + 1)(r + 2)(b - c)(c - a)(b - a)
L 1 r(r-1)
ognorma p (1+CV;) -
Gamma cvy ur(cry +7)
- T(CVS?)
Exponential 1o T(r+1)
1 r
Norma My f (2 ) (2n)! CV 27, when r is an even positive integer;
n=0 n

20N 2n) o : e
My Z —27—'CVX , when r is an odd positive integer; and
n=0 \2n n

when r is anything but a positive integer,

y;[ur(—rZﬁCVj Forvrrrnt rlr ~1r-2)... (r—n+1)CVX" +}

2% (n12)!

" b, a, and ¢ are the maximum, minimum, and mode values of X, which can be obtained
by substituting n = 0, 1, and 2 respectively in the relationship (Appendix II)

2m 1 5
a,b,c= 1+232CV, cos| == + ~cos™!| —= )
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Table 5-2: Annual peak flows in Middle Fork, Beargrass Creek, Cannons Lane,
Louisville, Kentucky

Year Q (m’/sec) Year Q (m’/sec) Year Q (m’/sec)
1945 51.26 1956 30.02 1967 20.16
1946 22.40 1957 42.20 1968 41.06
1947 23.76 1958 25.04 1969 20.02
1948 49.56 - 1959 37.38 1970 147.27
1949 25.43 1960 93.46 1971 60.89
1950 60.04 1961 67.97 1972 33.14
1951 34.55 1962 27.64 1973 58.91
1952 36.53 1963 26.00 1974 35.40
1953 21.75 1964 111.02 1975 64.29
1954 44.46 1965 32.57

1955 35.12 1966 24.75

Table 5-3: Flood frequency analysis for Middle Fork, Beargrass Creek, Cannons Lane,

Louisville, Kentucky
Return Period (years) Flood flow (m>/esc)
Lognormal distribution Extreme value type-I
5 62.33 65.79
10 | 80.36 82.47
25 105.36 103.54
50 125.52 119.17
100 146.92 134.68

200 169.69 150.14
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Table 5-4: Statistical data used for channel analysis

Variable - Distribution Mean Cv

&y @) 3) (5)

R Uniform, Triangular, Normal, 0.08 0.05, 0.10, 0.15, 0.20,
Lognormal, Gamma 0.25,0.30

ny Uniform, Triangular, Normal, 0.11 0.05, 0.10, 0.15, 0.20,
Lognormal, Gamma 0.25, 0.30

Cl Normal 1 0.10

C2 Normal 1 0
Lognormal 1.012E-4 0.25

0 Extreme value type - I, 45.279 0.629

Lognormal, Observed data

Table 5-5: Computation of moments using generic expectation functions

Expectation Order of expectation, &
’ 1 2 3 4
vt Efnt] 1.26E+04  1.68E+08 239E+I2 3.6IE+I6
Y¥Eln;*] 0.90 0.87 0.88 0.96
E[(ch;‘ +2Y,m;) ] 126E+04  1.68E+08  2.39E+12 3.61E+16
Elc] 1.00 1.01 1.03 1.06
Elses] 9.98E-03  1.01E-04  1.04E-06  1.09E-08
B i{Cl (F.n7 + 22,7 )50 ] 12563  1.72E+04  2.56E+06  4.16E+08
Elo!] 45.29 2.86B+03  2.30E+05  2.25E+07
glie, (e.n2 + 20,7 )5% — 0, ] 80.34 8.68E+03  1.08E+06  1.54E+08
Central moments of Z 0 2.22E+03  2.20E+04 1.94E+07

Statistics of Z: mean = 80.34, standard deviation =47.16, CV = 0.59,
Coefficient of skew = 0.21, and coefficient of kurtosis = 3.93
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Table 5-6: Distributional characteristics of Z where Manning's coefficients are assumed
to be for lognormally distributed with CV range of 0.05-0.30

Depth Extreme value type - | Lognormal Observed data
(m) Hz 1274 Yz Kz Hz 274 Yz Kz Hz oz Yz Kz
CV=0.05
223 2017 3053 -091 483 20.16 3052 -1.72 9.89 20.17 30.53 -1.69 4.54
256 36.75 31.63 -0.80 459 3675 3162 -153 899 36.75 3163 -150 435
292 5770 3330 -065 431 5770 3329 -128 7.89 5770 3330 -1.26 4.11
319 7325 3471 -055 413 7324 3471 -110 715 7325 3471 -1.08 3.96
345 88.68 36.25 -045 397 8867 36.25 -093 6.51 88.68 36.25 -0.92 3.82
3.69 104.05 37.89 -0.36 3.83 104.05 37.89 -0.78 597 104.05 37.89 -0.77 3.71
; . Cv=0.10
223 20.66 3110 -0.84 470 20.65 31.09 -161 941 2066 3110 -1.59 4.44
256 37.36 3249 -0.71 445 3736 3248 -1.38 839 3736 3249 -136 4.22
292 5847 3458 -054 416 5847 3458 -1.10 723 58.47 3458 -1.08 3.98
319 7413 3634 -042 398 7413 3634 -090 650 7413 36.34 -0.89 3.84
345 8968 3823 -032 384 8968 3823 -0.73 590 89.68 3823 -0.72 3.72
3.69 105.17 40.23 -0.22 373 105.16 40.23 -057 540 105.17 4023 -0.56 3.63
Cv=0.15
223 2147 3206 -0.74 453 2147 3206 -1.44 8.69 2147 3206 -142 4.29
256 38.39 3393 -057 426 3838 3393 -1.16 7.57 38.39 3383 -1.14 4.07
292 56976 36.70 -037 399 59.75 36.70 -084 641 59.76 36.70 -0.83 3.85
319 7561 39.00 -0.24 384 7561 38.99 -0.63 5675 7561 39.00 -062 3.74
345 9135 4143 -013 374 9135 4143 -045 523 9135 4143 -044 3.66
3.69 107.03 4399 -0.03 367 107.03 4399 -030 4.84 107.03 4399 -0.29 3.60
Cv=0.20
223 2261 3344 -059 435 2261 3343 -1.21 786 2261 3344 -1.19 4.15
256 39.82 3586 -039 4.09 39.81 3595 -0.89 6.72 39.82 3596 -0.87 3.95
292 6156 39.63 -017 3.89 6155 3962 -054 567 6156 39.63 -0.52 3.79
3.19 77.68 42,62 -0.02 3.81 77.68 4262 -0.32 514 7768 4262 -0.31 3.73
345 93.69 4576 0.09 3.76 93.68 45.76 -0.15 4.76 93.69 4576 -0.14 3.70
369 109.64 49.02 0.19 3.74 109.63 49.02 0.00 4.50 109.64 49.02 0.00 3.70
' CV=0.25
223 24.08 3525 -042 421 2408 3525 -094 7.05 24.08 3525 -0.93 4.04
256 4166 3858 -0.18 4.03 4166 3858 -0.58 6.01 41.66 38.58 -0.57 3.91
292 63.87 4334 0.07 393 6386 4334 -022 518 63.87 4334 -021 3.86
3.19 8034 4716 0.21 3.93 80.34 47.16 -0.01 4.82 80.34 47.16 0.00 3.88
345 96.70 5113 032 395 9669 51.13 0.15 459 96.70 5113 0.16 3.91
3.69 11299 5522 042 3.98 11299 5521 028 445 11299 5522 0.28 3.95
CVv=0.30
223 2588 37.52 -021 417 2587 3752 -064 6.38 2588 3752 -0.63 4.04
256 4391 4181 005 4.11 4391 4181 -026 555 4391 4181 -0.25 4.03
" 292 6669 47.83 031 4.16 6669 4783 0.10 500 66.69 47.83 0.10 4.1
3.19 8359 5260 045 423 8359 5260 029 4.81 8359 5260 029 4.20
345 10037 5751 056 4.32 100.37 5750 043 472 100.37 5751 044 4.29
369 117.09 6251 064 439 117.08 6250 054 4.68 117.09 6251 0.55 4.38
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Table 5-7: Distributional characteristics of Z where Manning's coefficients are assumed
to be for normally distributed with CV range of 0.05-0.30

Depth Extreme value type - 1 Lognormal Observed data
(m) Hz oz Yz Kz Hz Oz Yz Kz Hz oz Yz Kz
Cv=0.05
223 20.17 3053 -0.91 483 20.16 3052 -1.72 9.89 20.17 3053 -1.69 4.54
256 36.75 3163 -080 459 3675 3163 -152 899 36.75 3163 -1.50 4.35
292 5771 33.30 -065 431 5770 3330 -1.28 7.89 57.71 3330 -126 4.1
3.19 7325 3472 -055 413 7325 3472 -110 715 7325 3472 -1.08 3.96
345 88.68 36.26 -045 397 8868 3626 -093 651 8868 3626 -0.92 3.82
3.69 104.05 3790 -0.36 3.83 104.05 3790 -0.78 5.96 104.05 37.90 -0.77 3.71
CV=0.10
223 20.68 3115 -0.83 4.70 20.67 3114 -160 9.37 20.68 31.15 -157 444
256 37.39 3256 -0.70 444 3739 3256 -1.36 8.36 37.39 3256 -1.34 4.22
292 5851 3469 -052 416 5850 3469 -1.07 7.20 58.51 3469 -1.06 3.99
3.19 7417 3648 -040 400 7417 3647 -0.87 6.48 7417 3648 -0.86 3.86
345 89.72 3840 -029 386 89.72 3839 -0.69 589 89.72 3840 -0.68 3.75
3.69 105.22 4043 -0.19 3.76 10521 4042 -0.54 541 10522 4043 -0.53 3.67
Cv=0.15
223 2158 3234 -068 454 2158 3234 -1.36 856 2158 3234 -134 4.31
256 38.53 3435 -049 432 3852 3434 -1.06 7.48 3853 3435 -1.04 4.14
292 5994 3731 -026 414 5993 3730 -0.71 6.41 59.94 3731 -0.69 4.01
3.19 7582 39.75 -0.11 4.07 7581 39.75 -048 583 75.82 39.75 -047 3.97
345 9158 4234 0.02 405 9158 4234 -028 542 9158 4234 -027 397
3.69 107.29 45.05 0.13 4.05 107.28 4504 -0.12 512 107.29 4505 -0.11 3.99
CVv=0.20
223 23.02 3460 -0.33 470 23.02 3460 -0.89 7.77 23.02 3460 -0.87 4.53
256 4033 3765 -0.03 484 4032 3764 -046 7.03 4033 3765 -0.45 4.72
292 62.20 42.03 0.31 520 6219 42.02 000 6.61 6220 42.03 0.00 5.12
319 7842 4556 051 551 7841 4556 027 6.54 7842 4556 0.27 546
345 9452 4925 068 583 9452 4924 049 6.58 9452 4925 049 579
3.69 11056 53.04 082 6.13 11056 53.04 0.67 6.68 11056 53.04 0.67 6.10
CV=0.25
223 2532 39.07 010 524 2532 3906 -029 7143 2532 39.07 -0.28 5.13
256 4322 4398 043 582 4321 4398 0.16 7.00 43.22 4398 0.17 5.75
292 65.82 5080 075 658 6582 5080 058 724 6582 5080 0.58 6.54
3.19 8259 66.17 093 7.09 8259 56.17 080 753 8259 56.17 080 7.06
345 9924 6166 1.06 751 9923 6166 096 7.82 99.24 6166 096 7.49
3.69 11582 67.24 116 7.86 11582 6723 1.08 8.08 11582 6724 1.09 7.85
Cv=0.30
223 28.99 4452 -038 502 2899 4452 -064 6.13 28.99 4452 -064 4.95
256 4781 5148 -030 6545 4781 5148 -047 6.08 4781 5148 -046 542
0292 7159 6091 -025 594 7159 6090 -0.35 6.26 7159 60.91 -0.34 5.92
3.19 89.23 68.19 -022 6.23 89.23 68.19 -0.30 6.43 89.23 68.19 -0.29 6.21
345 106.75 7556 -0.21 6.45 106.74 7556 -0.26 6.59 106.75 75.56 -0.26 6.44
3.69 12419 8298 -0.20 6.63 124.19 8298 -0.24 6.72 124.19 8298 -0.24 6.63
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Table 5-8: Distributional characteristics of Z where Manning's coefficients are assumed
to be for uniformly distributed with CV range of 0.05-0.30

Depth Extreme value type - | Lognormal Observed data
(m) Hz oz Yz Kz Hz oz Yz Kz Hz oz Yz Kz
CV=0.05
223 20.16 30.52 -1.72 9.89 20.17 30.53 -0.91 483 20.17 30.53 -1.69 4.54
256 36.75 31.62 -1.53 899 3675 31.63 -0.80 459 36.75 31.63 -1.50 4.34
292 5770 3330 -1.28 7.89 5770 3330 -065 431 57.70 33.30 -1.26 4.11
3.19 73.25 3471 -1.10 7.5 73.25 3472 -0.55 412 7325 3472 -1.08 3.95
3.45 8868 36.25 -093 651 88.68 36.25 -045 3.96 88.68 36.25 -092 3.82
3.69 104.05 37.89 -0.78 596 104.05 3790 -0.36 3.83 104.05 3790 -0.77 3.71
CV =0.10
2.23 2066 31.11 -1.61 9.39 20.67 31.12 -0.84 470 20.67 31.12 -158 443
256 37.37 3251 -1.38 837 3738 3252 -0.71 443 37.38 3252 -1.36 4.21
292 5849 3462 -1.10 7.20 5849 3462 -0.54 414 5849 3462 -1.08 3.97
319 7415 36.39 -090 6.46 7416  36.39 -042 396 7416 36.39 -0.89 3.81
345 89.70 38.29 -0.73 5.85 89.70 3829 -0.32 3.81 89.70 38.29 -0.71 3.69
3.69 105.19 40.30 -0.57 5.36 10520 40.31 -0.22 3.69 105.20 40.31 -0.56 3.60
CV =0.15
2.23 2153 3216 -142 8.61 2153 3216 -0.73 449 2153 32.16 -140 4.26
256 38.46 34.07 -1.15 746 3847 34.08 -0.56 420 38.47 34.08 -1.13 4.02
292 59.85 36.91 -0.82 6.28 59.86 36.91 -0.37 3.91 59.86 36.91 -0.81 3.77
3.19 7572 39.26 -0.62 5.59 75.73 39.26 -0.23 3.74 75.73 39.26 -0.60 3.64
345 9147 4175 -044 5.06 9148 4175 -0.12 362 9148 41.75 -043 3.54
3.69 107.17 4436 -029 4.66 107.17 4436 -0.02 3.52 107.17 4436 -0.28 3.46
CV =0.20
223 2282 3377 117 763 2282 33.77 -0.57 424 2282 33.77 -1.15 4.05
256 40.07 36.44 -0.84 644 4008 36.44 -0.37 3.95 40.08 36.44 -0.83 3.81
292 61.88 40.31 -050 535 61.88 4032 -0.14 3.68 61.88 40.32 -049 3.59
3.19 78.05 4346 -029 4.78 78.06 43.47 -0.01 3.55 78.06 4347 -0.28 3.48
345 9411 46.77 -012 438 9411 46,77 0.10 346 9411 46.77 -0.11 3.41
3.69 110.10 50.18 0.01 4.10 110.11 5019 0.20 3.40 110.11 50.19 0.02 3.36
CV =0.25
223 2461 36.13 -0.85 657 2462 36.13 -0.36 3.99 2462 36.13 -0.83 3.84
256 4232 39.84 -049 547 4233 39.84 -0.13 3.73 4233 3984 -048 3.63
292 6470 4510 -0.14 460 6470 4510 0.11 353 64.70 4510 -0.13 3.47
3.19 81.30 49.30 0.05 4.20 81.31 49.30 0.24 345 8131 49.30 0.06 3.41
345 97.78 5364 020 394 9778 5365 0.35 341 97.78 5365 0.20 3.38
3.69 114.20 58.09 0.31 377 11420 58.09 0.43 3.38 114.20 58.09 0.32 3.36
CV =0.30
223 2706 39.56 -0.46 5.59 27.07 39.56 -0.09 3.79 27.07 3956 -045 3.69
256 4539 4466 -0.10 4.73 4540 44.67 0.16 362 4540 44.67 -0.09 3.56
©292 6856 51.73 023 4.14 68.56 51.74 0.39 353 68.56 51.74 0.23 3.50
3.19 8574 5728 0.39 3.92 85.74 57.29 0.51 3.51 85.74 57.29 040 348
345 10279 62.96 051 3.78 102.80 6296 0.61 3.50 102.80 62.96 0.52 3.49
369 119.79 68.71 0.60 3.71 119.79 68.71 0.67 3.51 119.79 68.71 0.61 3.50
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Table 5-9: Distributional characteristics of Z where Manning's coefficients are assumed
to be for triangularly distributed with CV range of 0.05-0.30

Depth Extreme value type - I Lognormal Observed data
(m) Hz oz 7z Kz ) oz 7z Kz Hz oz ¥z Kz
CV =0.05 '
223 2017 30.53 -0.91 483 2016 3052 -1.72 9.89 20.17 3053 -1.69 4.54
256 36.75 3163 -080 459 36.75 3162 -153 899 36.75 3163 -1.50 4.34
292 5771 3330 -065 431 5770 3330 -128 7.89 5771 3330 -1.26 4.11
319 7325 3472 -055 413 7325 3472 -110 715 7325 3472 -1.08 395
345 8861 3625 -045 397 8868 3625 -093 651 8868 36.26 -092 3382
3.69 104.05 3790 -0.36 3.83 104.05 3790 -0.78 5.96 104.05 3790 -0.77 3.71
CV =0.10
2.23 20.67 3113 -084 470 2067 3112 -160 938 20.67 31.13 -1.58 4.43
256 3738 3254 -070 444 3738 3253 -137 8.36 3738 3254 -1.35 4.22
292 5850 3466 -053 415 5850 3465 -109 7.20 5850 3466 -1.07 3.98
319 7416 36.43 -0.41 397 7416 3643 -089 6.47 7416 3643 -0.87 3.83
345 89.64 3834 -030 3.83 89.71 3834 -0.71 586 89.71 3834 -0.70 3.72
3.69 105.21 4036 -0.21 3.72 10520 40.36 -0.56 5.38 10521 40.36 -0.55 3.63
Cv =0.15
223 2156 3224 -071 450 2155 3224 -140 857 2156 3224 -138 4.27
256 3849 3420 -054 423 3849 3419 -111 745 3849 3420 -1.09 4.05
292 5989 37.09 -033 397 5989 37.08 -0.78 6.29 59.89 37.09 -0.76 3.84
319 7577 3947 -019 3.83 7576 3947 -056 564 7577 3947 -055 3.73
345 9145 4200 -0.07 3.73 9152 4200 -0.38 5.15 9153 42.01 -0.37 3.65
3.69 10723 4466 0.04 367 107.22 4466 -022 478 107.23 44.66 -0.21 3.61
CVv =0.20
223 2290 34.06 -051 430 2290 34.06 -1.09 756 2290 3406 -1.07 4.11
256 40.18 36.87 -028 4.07 40.18 36.86 -0.74 6.45 4018 36.87 -0.72 3.94
292 62.01 4092 -0.02 392 6201 4092 -0.36 549 62.01 4092 -0.35 3.83
3.19 7820 4421 0.13 387 7820 4421 -013 502 7820 4421 -0.13 3.81
345 9420 4764 0.26 3.86 9428 4764 0.05 471 9428 4765 . 0.05 3.81
369 110.30 5120 037 3.87 11029 51.20 0.19 451 11030 51.20 0.20 3.83
, Cv =0.25
223 2486 37.02 -018 425 2485 3701 -0.63 6.59 2486 37.02 -0.62 4.12
256 4263 4110 0.11 421 4263 4109 -0.22 576 4263 4110 -0.21 4.13
292 65.09 46.84 040 430 65.08 46.84 0.18 521 65.09 46.84 0.18 4.25
319 8174 5141 057 440 8174 5140 040 503 81.74 5141 040 4.36
"3.45 98.20 56.11 0.69 451 9828 56.11 056 495 9828 56.11 057 448
3.69 114.76 60.91 0.79 461 11475 60.91 0.69 493 11476 6091 0.69 4.59
CV =0.30
223 2771 4205 0.37 491 27.71 4205 0.06 6.31 27.71 42.05 0.07 4.83
256 46.21 48.11 0.71 531 46.21 48.11 0.51 6.13 46.21 48.11 0.51 5.26
292 69.58 56.39 1.02 581 69.58 56.39 0.89 6.24 6958 56.39 0.89 5.78
3.19 8692 6284 1.18 6.12 8691 6283 1.09 640 86.92 62.84 1.09 6.10
345 104.05 69.38 1.30 6.37 104.12 69.38 1.23 6.56 104.13 69.39 1.23 6.36
3.69 12127 76.00 1.38 6.58 121.27 76.00 1.33 6.71 121.27 76.00 1.33 6.57
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Table 5-10: Distributional characteristics of Z where Manning's coefficients are assumed
to be gamma distributed with CV range of 0.05-0.30

Depth Extreme value type - 1 Lognormal Observed data
(m) Hz Oz Yz Kz Hz oz Yz Kz Hz (74 Yz Kz
CV =0.05
2.23 20.17 3053 -091 483 20.16 3052 -1.72 9.89 20.17 3053 -1.69 454
256 36.75 3163 -0.80 459 36.75 3162 -153 899 36.75 31.63 -1.50 4.35
292 57.70 3330 -065 431 5770 3329 -128 7.89 57.70 3330 -1.26 4.1
3.1¢8 73.2§ 3472 -055 413 7324 3471 -110 715 7325 3472 -1.08 3.96
345 88.68 3625 -045 397 8867 36.25 -093 651 88.68 36.25 -0.92 3.82
3.69 104.05 37.90 -0.36 3.83 104.05 37.89 -0.78 5.97 104.05 37.90 -0.77 3.71
Cv =0.10 :
223 2066 31.11 -0.84 470 2066 31.11 -1.61 940 2066 3111 -158 444
256 3737 3251 -0.71 444 3737 3251 -138 8.38 3737 3251 -136 4.22
292 5848 3462 -054 416 5848 3461 -1.09 722 5848 3462 -1.07 3.99
3.19 7415 3638 -042 398 7414 3638 -0.89 649 7415 36.38 -0.88 3.84
3.45 89.69 38.28 -0.31 384 8969 3828 -0.72 5.89 89.69 38.28 -0.71 3.73
3.69 105.18 40.29 -0.21 3.74 105.18 4029 -0.56 540 105.18 40.29 -055 3.64
CV =0.15
223 2151 3214 -0.72 453 2150 3214 -142 865 2151 3214 -140 429
256 3843 34.05 -055 426 3842 34.04 -1.14 753 3843 34.05 -1.12 4.08
292 59.81 3687 -0.35 401 5981 36.87 -0.80 6.39 5981 36.87 -0.79 3.87
319 75.67 39.21 -0.21 3.88 7567 3920 -059 574 7567 3921 -058 3.77
345 9142 4169 -009 379 9142 4168 -041 524 9142 4169 -040 3.71
3.69 107.11 4429 0.01 3.73 10710 4428 -0.25 4.87 107.11 4429 -0.24 3.67
CV =0.20
223 2272 33.70 -055 436 2272 3369 -1.15 7.77 2272 33.70 -1.13 4.17
256 39.95 3634 -033 4.15 39.95 36.33 -0.81 6.67 39.95 36.34 -0.80 4.01
292 6173 4017 -0.09 4.01 61.72 40.17 -044 570 61.73 40.17 -043 3.91
3.19 77.88 4329 0.07 397 77.88 4328 -0.22 522 77.88 43.29 -0.21 3.90
345 9391 4655 0.19 397 9391 4655 -0.04 491 9391 46.55 -0.03 3.92
3.69 109.89 4994 030 3.99 109.88 49.93 0.11 470 109.89 4994 0.12 3.95
CV =0.25
223 2436 3592 -030 433 2435 3592 -080 697 2436 3592 -0.78 4.18
256 4200 3954 -0.03 429 4200 3954 -0.41 6.09 4200 3954 -0.39 4.19
292 6430 4468 024 437 6429 4468 -0.01 548 6430 44.68 -0.01 4.31
3.19 80.84 4880 040 448 80.83 48.79 0.21 526 80.84 48.80 0.21 4.44
345 9725 53.05 053 460 9725 53.05 038 516 9725 53.05 0.38 4.57
3.69 113.61 5742 0.63 472 113.61 57.41 0.51 512 113.61 57.42 0.51 4.69
CV =0.30
223 2646 39.01 0.04 471 2646 39.01 -0.35 6.61 2646 39.01 -0.34 4.61
-256 4464 4390 035 501 4463 4390 0.08 6.20 4464 4390 0.09 495
292 67.61 50.70 0.65 546 6760 50.69 047 6.12 67.61 50.70 048 542
3.19 8465 56.04 081 576 8464 56.04 068 6.21 8465 56.04 0.69 574
345 10156 6151 094 6.03 10156 61.51 0.84 6.34 101.56 6151 0.84 6.01
3.69 11841 67.07 1.03 6.26 11841 67.07 0.95 647 11841 6707 096 6.24
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Table 5-11: Comparison of exceedance probability obtained using GEFA and FORM

Depth Normal Triangular Uniform Gamma Lgnormal
(m) "GEFA FORM GEFA FORM GEFA FORM GEFA FORM GEFA FORM
CV =0.05
2.23 02119 0.2188 0.2119 0.2188 0.2119 02196 0.2119 0.2119 0.2182
256 0.1131 0.1175 0.1132 0.1175 0.1132 0.1184 0.1131 0.1131 0.1170
2.92 0.0555 0.0524 0.0555 0.0524 0.0555 0.0531 0.0555 0.0555 0.0521
'3.19 0.0235 0.0214 0.0240 0.0214 0.0245 0.0219 0.0242 0.0246 0.0213
3.45 0.0117 0.0108 0.0125 0.0108 0.0127 0.0111 0.0124 0.0128 0.0107
3.69 0.0059 0.0055 0.0064 0.0055 0.0069 0.0057 0.0066 0.0069 0.0054
CV=0.10
223 02121 02215 02122 02215 0.2123 0.2244 0.2121 0.2198 0.2121 0.2189
256 0.1148 0.1204 0.1150 0.1205 0.1151 0.1236 0.1148 0.1193 0.1148 0.1186
2.92 0.0568 0.0547 0.0569 0.0549 0.0569 0.0572 0.0568 0.0541 0.0568 0.0538
3.19 0.0296 0.0232 0.0295 0.0234 0.0251 0.0249 0.0297 0.0228 0.0269 0.0227
3.45 0.0142 0.0120 0.0152 0.0121 0.0139 0.0131 0.0142 0.0118 0.0154 0.0117
3.60 0.0069 0.0062 0.0066 0.0063 0.0073 0.0069 0.0071 0.0061 0.0072 0.0061
CV=0.15
223 0.2120 0.2255 0.2130 0.2257 0.2132 0.2314 0.2125 0.2219 0.2125 0.2200
256 0.1159 0.1250 0.1178 0.1254 0.1184 0.1312 0.1172 0.1225 0.1173 0.1212
2.92 0.0575 0.0584 0.0587 0.0590 0.0592 0.0631 0.0585 0.0571 0.0586 0.0564
319 0.0306 0.0259 0.0309 0.0265 0.0330 0.0291 0.0310 0.0253 0.0293 0.0249
3.45 0.0153 0.0139 0.0156 0.0143 0.0170 0.0159 0.0156 0.0135 0.0161 0.0133
3.69 0.0063 0.0074 0.0082 0.0077 0.0082 0.0087 0.0078 0.0073 0.0078 0.0072
CV=0.20
2.23 0.2080 0.2308 0.2147 0.2312 0.2152 0.2398 0.2129 0.2246 0.2130 0.2213
256 0.1079 0.1308 0.1215 0.1318 0.1236 0.1402 0.1193 0.1267 0.1201 0.1244
292 0.0462 0.0632 0.0603 0.0643 0.0628 0.0702 0.0594 0.0611 0.0605 0.0598
319 0.0293 0.0295 0.0366 0.0306 0.0364 0.0342 0.0353 0.0286 0.0347 0.0280
3.45 0.0067 0.0163 0.0178 0.0171 0.0204 0.0194 0.0207 0.0159 0.0178 0.0156
3.69 0.0008 0.0091 0.0087 0.0096 0.0110 0.0110 0.0121 0.0089 0.0095 0.0086
CV=0.25
223 0.2113 0.2369 0.2184 0.2376 0.2193 0.2490 0.2129 0.2276 0.2136 0.2226
256 0.1096 0.1375 0.1262 0.1391 0.1312 0.1500 0.1201 0.1315 0.1229 0.1280
2.92 0.0407 0.0687 0.0604 0.0705 0.0686 0.0780 0.0579 0.0657 0.0621 0.0638
319 0.0353 0.0338 0.0477 0.0353 0.0428 0.0401 0.0424 0.0326 0.0399 0.0316
3.45 0.0063 0.0193 0.0190 0.0205 0.0271 0.0234 0.0168 0.0188 0.0201 0.0183
3.69 0.0000 0.0111 0.0062 0.0119 0.0123 0.0137 0.0088 0.0110 0.0101 0.0108

CV=0.30 :
223 02048 0.2435 0.2272 0.2446 0.2266 0.2584 0.2109 0.2307 0.2142 0.2239
2.56 0.1243 0.1449 0.1336 0.1471 0.1427 0.1602 0.1167 0.1367 0.1255 0.1318
2.92 0.0771 0.0748 0.0593 0.0772 0.0786 0.0864 0.0505 0.0709 0.0634 0.0681
- 319 0.0953 0.0386 0.0433 0.0407 0.0510 0.0465 0.0320 0.0371 0.0492 0.0356
3.45 0.0789 0.0228 0.0022 0.0244 0.0375 0.0280 0.0098 0.0223 0.0280 0.0215
3.69 0.0673 0.0135 0.0553 0.0147 0.0198 0.0169 0.0015 0.0135 0.0121 0.0133
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Table 5-12: Comparison of exceedance probability obtained using GEFA and FORM

Depth
(m)

Normal

Triangular Uniform

Gamma

Lognormal

GEFA

FORM

GEFA

FORM GEFA FORM

GEFA FORM GEFA

FORM

Cv=0.05

2.23
2.56
2.92
3.19
3.45
3.69

0.1406
0.0689
0.0586
0.0261
0.0196
0.0115

0.1912
0.1058
0.0518
0.0260
0.0156
0.0096

0.1406
0.0689
0.0586
0.0262
0.0198
0.0117

0.1912 0.1406 0.1920
0.1058 0.0689 0.1065
0.0518 0.0586 0.0524
0.0260 0.0264 0.0264
0.0156 0.0200 0.0159
0.0096 0.0119 0.0097

0.1406
0.0689
0.0586
0.0263
0.0199
0.0118

0.1406
0.0689
0.0586
0.0264
0.0201
0.0120

0.1907
0.1055
0.0516
0.0259
0.0155
0.0095

Cv=0.10

2.23
2.56
2.92
3.19
3.45
3.69

0.1425
0.0732
0.0593
0.0314
0.0179
0.0096

0.1936
0.1081
0.0536
0.0273
0.0165
0.0102

0.1426
0.0734
0.0593
0.0365
0.0162
0.0090

0.1937 0.1428 0.1964
0.1082 0.0735 0.1107
0.0537 0.0593 0.0554
0.0274 0.0258 0.0286
0.0166 0.0208 0.0174
0.0103 0.0104 0.0109

0.1425
0.0732
0.0593
0.0243
0.0183
0.0113

0.1922
0.1072
0.0530
0.0270
0.0163
0.0101

0.1425
0.0732
0.0593
0.0267
0.0218
0.0112

0.1914
0.1067
0.0527
0.0268
0.1620
0.0100

Cv=0.15

2.23
2.56
2.92
3.19
3.45
3.69

0.1451
0.0781
0.0589
0.0383
0.0189
0.0101

0.1974
0.1117
0.0563
0.0293
0.0180
0.0113

0.1465
0.0802
0.0600
0.0356
0.0206
0.0107

0.1976 0.1470 0.2029
0.1121 0.0810 0.1168
0.0567 0.0605 0.0599
0.0297 0.0394 0.0319
0.0182 0.0197 0.0198
0.0115 0.0123 0.0125

0.1458
0.0794
0.0599
0.0301
0.0212
0.0116

0.1942
0.1097
0.0551
0.0287
0.0176
0.0110

0.1459
0.0795
0.0601
0.0380
0.0200
0.0115

0.1926
0.1086
0.0545
0.0283
0.0173
0.0108

Cv=0.20

2.23
2.56
2.92
3.19
3.45
3.69

0.1435
0.0731
0.0455
0.0365
0.0145
0.0022

0.2023
0.1165
0.0599
0.0320
0.0199
0.0127

0.1530
0.0885
0.0597
0.0393
0.0239
0.0112

0.2028 0.1542 0.2109
0.1172 0.0910 0.1242
0.0607 0.0624 0.0655
0.0327 0.0410 0.0360
0.0205 0.0249 0.0227
0.0131 0.0141 0.0146

0.1505
0.0858
0.0594
0.0386
0.0224
0.0117

0.1969
0.1130
0.0580
0.0310
0.0193
0.0123

0.1506
0.0865
0.0606
0.0393
0.0230
0.0127

0.1940
0.1110
0.0569
0.0303
0.0189
0.0120

Cv=025

2.23
2.56
2.92
3.19
3.45
3.69

0.1591
0.0817
0.0352
0.0510
0.0184
0.0016

0.2081
0.1220
0.0642
0.0353
0.0223
0.0144

0.1637
0.0979
0.0573
0.0509
0.0211
0.0103

0.2090 0.1654 0.2198
0.1233 0.1039 0.1326
0.0655 0.0663 0.0718
0.0364 0.0496 0.0406
0.0232 0.0309 0.0260
0.0151 0.0172 0.0170

0.1559
0.0908
0.0559
0.0450
0.0213
0.0111

0.2000
0.1169
0.0614
0.0338
0.0215
0.0139

0.1565
0.0937
0.0608
0.0443
0.0251
0.0131

0.1956
0.1139
0.0597
0.0328
0.0208
0.0135

Cv=0.30

2.23
2.56
- 2.92
3.19
3.45
3.69

0.1801
0.1130
0.0739
0.0937
0.0835
0.0697

0.2145
0.1282
0.0690
0.0390
0.0251
0.0164

0.1819
0.1102
0.0536
0.0546
0.0053
0.0553

0.2158 0.1818 0.2291
0.1301 0.1208 0.1414
0.0708 0.0749 0.0786
0.0405 0.0652 0.0457
0.0263 0.0354 0.0298
0.0174 0.0267 0.0198

0.1605
0.0913
0.0466
0.0410
0.0181
0.0055

0.2033
0.1212
0.6530
0.0371
0.0240
0.0159

0.1634
0.1004
0.0608
0.0469
0.0275
0.0180

0.1972
0.1170
0.0629
0.0357
0.0231
0.0153
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Table 5-13: Exceedance probability obtained using GEFA

Depth (m) Normal Triangular Uniform Gamma Lognormal
Cv=0.05
2.23 0.2598 0.2598 0.2598 0.2598 0.2598
2.56 0.1432 0.1433 0.1433 0.1433 0.1433
2.92 0.0586 0.0586 0.0586 0.0586 0.0585
3.19 0.0231 0.0233 - 0.0234 0.0234 0.0235
3.45 0.0168 0.0170 0.0172 0.0171 0.0172
3.69 0.0094 0.0095 0.0097 0.0096 0.0098
CV=0.10
2.23 0.2528 0.2531 0.2535 0.2533 0.2535
2.56 0.1410 0.1413 0.1416 0.1413 0.1414
2.92 0.0626 0.0625 0.0624 0.0624 0.0623
3.19 0.0268 0.0314 0.0356 0.0336 0.0368
3.45 0.0210 0.0195 0.0168 0.0220 0.0176
3.69 0.0093 ~ 0.0091 0.0107 0.0114 0.0115
Cv=0.15
2.23 0.2403 0.2429 0.2443 0.2434 0.2444
2.56 0.1353 0.1381 0.1393 0.1379 0.1386
2.92 0.0661 0.0669 0.0670 0.0665 0.0664
3.19 0.0329 0.0354 0.0307 0.0313 0.0298
3.45 0.0203 0.0215 0.0206 0.0199 0.0215
3.69 0.0105 0.0113 0.0116 0.0116 0.0116
Cv=0.20
2.23 0.2165 0.2307 0.2346 0.2316 0.2342
2.56 0.1158 0.1337 0.1376 0.1331 0.1352
2.92 0.0552 0.0688 0.0711 0.0681 0.0690
3.19 0.0336 0.0413 0.0432 0.0410 0.0374
3.45 0.0158 0.0239 0.0239 0.0224 0.0220
3.69 0.0035 0.0108 0.0141 0.0117 0.0127
CV=0.25
2.23 0.2041 0.2197 0.2271 0.2191 0.2246
2.56 0.1073 0.1294 0.1384 0.1263 0.1319
2.92 0.0437 0.0662 0.0752 0.0649 0.0696
3.19 0.0480 0.0486 0.0496 0.0462 0.0444
3.45 0.0175 0.0271 0.0301 0.0254 0.0269
3.69 0.0015 0.0095 0.0183 0.0094 0.0135
Cv=0.30
2.23 0.2066 0.2158 0.2250 0.2062 0.2166
2.56 0.1271 0.1285 0.1439 0.1161 0.1293
292 0.0792 0.0601 0.0822 0.0543 0.0688
3.19 0.0900 0.0531 0.0540 0.0379 0.0479
3.45 0.0799 0.0667 0.0321 0.0494 0.0301
3.69 0.0670 0.0553 0.0251 0.0052 0.0162
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Fig. 5-1: Geometry of considered compound channel
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Figure 5-2: Comparison of the lognormal and the extreme value type-I distributions for
the Beargrass Creek data
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CHAPTER VI
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS
‘Summary

The great advantage of FOA is its simplicity, requiring knowledge of only the
first two statistical moments of the basic variables, and ease of application, requiring
simple sensitivity calculations about the selected central values. FOA is an approximate
method that may suffice for many applications, but the method does have several
conceptual shortcomings. Despite these, FOA has been used quite successfully in a wide
variety of fields. It is believed that the exactness of FOA estimates is influenced in part
by the degree of nonlinearity in the functional relationship and by parameter uncertainty.
To overcome nonlinearity problems, several nonlinearity predictors were proposed by
various researchers, which work well only in specific situations. No generalized
nonlinearity predictor has been developed so far. To ensure the validity of FOA
application for output variance calculations, researchers suggested a number of criteria
based on restricting input parameter CVs, but all these criteria have limitations. Presently,
no clear-cut guidelines specifying where FOA should be used are available.

The objective of this dissertation was to investigate the important factors affecting
fhe exactness of FOA estimates and develop a simple correction procedure useful for

practicing engineers to correct the FOA estimates for the mean and the variance of a
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model output. The safe design of a hydraulic structure (spillway, channel, culvert, sewer,
etc) must be in compliance with regulatory standards specified for the safety and public
health (surface and ground water pollution, air pollution, and soil contaminants, etc)
require reliability and risk analysis relative to system failure. FOA has been used
frequently to carry out reliability and risk analysis of many water resources and
environmental engineering systems. This approach has a drawback in that a normal
distribution is typically assumed for the model output which is seldom true.
Consequently, estimates of the risk/reliability of a model are severely affected,
particularly when a probability calculation is sought in the tail portions of the
distribution. Better identification of a suitable distribution for the model output is
possible if knowledge of higher moments is available. Therefore the final objective of
this thesis was to develop a simple approach for calculating the higher-order moments of
a model output.

As multitudes of mathematical forms of models are available, it is very difficult to
address all possible forms individually. However, most of the mathematical functions can
be thought of as an integrated form of individual component functions such as a power
function, an exponential function, etc. Their exponents can be used as a surrogate
parameter to represent their nonlinearity. Therefore, nonlinearity of component functions
can be accounted for. .

To study the impacts of parameter CV and functional nonlinearity, a simple

power function with positive integral exponents is considered. Table 6-1 presents the

relative error expressions for FOA predicted variance, E(o"§ ), for the uniform, the

symmetrical triangular, and the normal distributions. These error expressions indicate that
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exactness of FOA estimates depends not only on parameter uncertainty and functional
nonlinearity but also on the distribution of the input parameter.

Table 6-1: Variance error expressions for a simple power function

Function Relative error in FOA predicted variance, £(52)
Uniform Symmetrical Triangular Normal
Y =cX? o _cr o
CV+5 7CV? +20 crvi+2
Y =cX? crifer +14) 3cviecr?+7) cri(scr? +12)
3OV H14CYT +7 6CV*+21CV +7 SCV*+12CV7 +3
Y=cx* _ 9cvicr+15cyi+1s) 3Cyascr* +390cr?+265)  3CV{4CV* +16CV3+7)

9CVE+135CK* +135CV2+25  144CV° +1170CV* +795CV> +100 12CV°+4CV* +16CV* +7

It is observed that the relative error in FOA estimates of means and variances of a
model output for a given exponent and CV changes with the type of distribution. This
shows that the type of distribution is also important when judging the exactness of FOA.
The relative error in FOA estimates for the mean and variance of a power function
depends upon the CV of the input parameter, magnitude of exponent r, and type of
distribution for the input parameter. Knowledge of relative error corresponding to FOA
estimates (2 and 67 ) can be used to correct them to obtain their exact values. The exact
value of an FOA estimate can be obtained as

FOA estimate
Exact value= ————— (6-1)
1-E()

where E(.) is the relative error corresponding to the FOA estimate. The exponent of a

component power function in an integrated mathematical form may assume any value

including a negative or positive and integer or fractional number. Therefore, generalized
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mathematical expressions are required for the component functions to apply this
technique.

Analytical relationships for the relative error in FOA estimates of the means and
the variances of component functions were developed for a generic power function and a
generic exponential function using five common distributions. These analytical
expressions can be used as a guide for judging the suitability of FOA by determining the
relative errors in the most sensitive parameters. Further, when relative error is more than
the acceptable error, these analytical relationships enable one to correct FOA estimates
for means and variances of model components to their true values. Using these corrected
values of means and variances for model components, one can determine the exact values

of mean and variance of an overall model output. Tables 6-2 and 6-3 present the
developed expressions for £ (,[JY )and E (&i)for a power function (Y =cX’ )

Table 6-2: Generalized relative error in FOA predicted mean of a power function

Distribution Relative error in FOA predicted variance, £(z, )
Uniform . 2/3(r +1)CV
[(1 +ev B3 li-cv, 3 )(’“)]
Symmetrical o 6(r + 1)(r + 2)CV
triangular [(1 rCV, \/g)(rﬂ) N (1 _cv, Jg)(r+2) ~ 2]
T ] [P
ognorma - (1 N CV})l -r)
Gamma __cr STl )
rlev 20+ rcv 2)
Exponential 1
1] —
r(r+1)

204




Table 6-3: Generalized relative error in FOA predicted variance of a power function

Distribution Relative error in FOA predicted variance, £(62 )
Uniform _ 12 (2r+1) 2 +1PCHE
2
{2JECVX(r +1)2[(1+CV,{\/§)Z”1 —(1—01/,{\/3)2’“]—(2”1{(1 N -(1—CVXJ§)’+’] }
Symmetrical 36(2r+1) Pr+17(r+ 2P CH
triangular 1

{3(r+1)(r+2)zcvfr[(1+crgﬂ/8)”+2 -y 6] —2}—(2}’+1{(1+CK,\/6T+2 +i-c

Lognormal [ rerierien)

(cvz +1) [(CV; +1) - 1}
Gamma _ P2V ;(I—Zr) [F(CV/;Z )]2

rlev 21+ 2.cv2)r(cr)- {r[cV,;2 (L+rCP? )ﬂ2
Exponential p2

C(27 +1)-T2(r +1))

To further simplify the corréction procedure, these analytical relationships have
been presented graphically. The relative error plots show where FOA estimates are
acceptable and where they are unacceptable and need to be corrected. In specific
situations, a given ﬁ1ﬁction may be very nonlinear (represented either by a very large or
very small exponent of a power function). These situations can be identified and dealt
with by using the relative error plots. There are several other features of error plots,
which are discussed in the following section.

The relative errbr is zero for a power function at certain values of the exponents,
which changes with the type of distribution used for the input random variable. These

/ exponents are 0 and 1 as shown by E(ﬁy) plots (Figures 2-1, 2-3, 2-5, 2-7, 2-10) for all

the considered distributions. In the same way, there are two exponent values for E(o"ﬁ)

where FOA estimates for the variance have no error. One of these exponents is 1 and the
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other changes with the distribution type and CV of the input parameter‘ as shown in Table
2-2. The average values of these second exponents are 1.75, 1.70, 1.65, 0.28, -0.34 and
0.30 for the uniform, the triangular, the normal, the exponential, the lognormal, and the
gamma distributions respectively.

Table 2-2 shows that when the exponent of a power function lies within the
tabulated range for each distribution, the FOA variance estimate will have almost no error

and the power function will behave like a linear function as far as the variance prediction

is concerned. These situations are depicted by E(é',z,)vs. r plots in Figures 2-2, 2-4, 2-6,
2-8, and 2-11. In general, it can be concluded that application of FOA will provide good
results when the exponent of a power function lies in the vicinity of these exponent
values, and the error will be small regardless of the CV values of the input variable. This
contradicts previous findings that FOA Vworks well only when CV <£0.2.

When the exponent of a power function falls between 1 and 1.7 for normal,

uniform, and triangular distributed parameters, the FOA overestimates the actual

variance. However, the overestimation is small as shown by the negative values of E(é',z,)
in Figures 2-2, 2-4, and 2-11. When the exponent falls outside this range, the FOA
underestimates the actual variance. When the parameter is lognormally distributed and

the exponent falls between -0.34 and 1, the FOA may highly overestimate the actual

variance depending upon the parameter CV values as shown by negative values of E(é',z,)
in Figure 1.6. When the exponent falls outside this range, FOA underestimates the actual
variance. In the case of the gamma distribution, when the exponent falls between 0.3 and
1, the FOA overestimates the actual variance. For exponents outside this range the FOA

underestimates the actual variance. Relative error plots further endorse the conclusion
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that the parameter distribution type affects the accuracy of FOA predicted means and
variances.

Even a very small exponent (very close to zero) may give a very high relative
error in FOA predicted variance for some of the distributions (nc;rmal, uniform, and
triangular). Error plots of the normal distribution (Figures 2-10 and 2-11) show that
significant errors occur in both the mean and variance of a power function predicted
using FOA.

Similarly Tables 6-4 and 6-5 present the developed expressions
for E(ﬁy )and E (6,2, )for an exponential function (Y = be™ )

Table 6-4: Generalized relative error in FOA predicted mean of a power function

Distribution -~ Relative error in FOA predicted variance, £(z,)

Uniforn‘l 2_\/50/1 cv e\/—icyICV,

1 _ X X

(erEC;lXCVX _ 1)

Symmetrical 62 ﬂz cp? ec,lxcy,‘/ﬁ
trianglﬂar - (ecy,CV,w/g _ 1)2
Normal :

1- exp[— —;—cz,qusz:I
Gamma 1

1- (1 —cu CV}? )CV} explcu,)
Exponential 1- (1 ~cl, )exp (c L, )
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Table 6-5: Generalized relative error in FOA predicted variance of a power function

Distribution Relative error in FOA predicted variance, E (o‘-f,)
Uniform 1264yt Cv o2 Y,
1 — X x

(ez‘ﬁ”"‘cy" - ll(x@c,uxC V.- 1)22‘/3“‘ s 1 B CV, + l]
Symmetrical - 725 /J: CV: ezfscy,cyx
triangular (e“"‘-v": - 1)Z [(3c2ijV} - 2Xe2“°”x”-v 4 1)+ 26754 (3c2 122 + 2)]
Normal . c’ol

exp(czo-f Iexp(czof )— 1]
Gamma | ¢ p2CV 2 exp(2cu,)

(1 —2cu CV} )_E—:ﬁ -~ (1 —cu,CV} )_ﬁ

Exponential - c?u? exp(2eu, )
(N

These mathematical relationships have been presented graphically in Figures 3.1
to 3.9. These relative error plots indicate that relative error in both the means and the
variances of an exponential function is small when exponent mean value is small.
However, an exception of this generalization has been observed in relative error plots of
variance when input parameter has the gamma or the exponential distribution. In these
cases, the relative error is small at two points of exponent mean values. For example, in
case of the gamma distribution, one of such point is zero and the other varies from -1.33
to -1.71 with the CV of input parameter.

In order to determine the higher-order moments of a model output correctly, a
simple approach of using generic expectation functions (GEFA) as a function of means
and CVs of input random variables is proposed. GEFA are easy to develop and simple to

apply to problems related to reliability, risk, and uncertainty analysis. Several expectation

208



functions based on commonly used probability distributions have been developed (Tables

6-6 and 6-7) for a power and an exponential function.

Table 6-6: Generic expectation functions for some commonly used probability density

functions

Name Generic expectation function, £ [ ’]

Uniform o
s [1+CV B —ll-cr,3 ”]
23(r +1)CV, e cr 3" - - )

Symmetrical U +2 +2
i 1+CV, V6 1-CV,6 —2]
triangular 6(- + 1Yr +2)CV2 [(+ 6] +li-cv, 6]
Unsymmetrical

triangular 2[(,3 _ a))a’” + (a) _ a)ﬂr+2 + (a B ﬁ)co’”]
(r+1fr+2{p-o)o-a)sf-a)

Lognormal r(r-1)
= wli+crz)
Gamma CV;’/J:YF(CV);Z + 7‘)
T (CVx")
Exponential ,u;,l"(r + 1)
Normal ri2(
My Zﬂ (Zn)-(iznin);l CV}", whenr is an even positive integer;

¢ %2 NC2n) o . e
My o CV,", when r is an odd positive integer; and
n=0 n .

when r is anything but a positive integer,

7 1+’—(’—i)CV;+ ...... +’(’“1X’n‘2) """ ( ""+1)CV;+
2 2% (n12)!
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Table 6-7: Generic expectation functions for some commonly used probability density

functions
Name Generic expectation function, £ [X ’]

Unlform b r [e rep, (1+CVx \/5) —e rep (1~CV,‘r \/3)

2\/—3_rc,ux Ccv,
Symmetrical b e e V) Lrew,(i-cv,VE)
triangular —5 57| € —e’

6ric’ulCv?
Unsymmetrical 25" [(¢ - g)exp(rcw)+ (8 - w)exp(rea)+ (@ — &) exp(re )]
triangular r(f-afo-aff-w)
Normal

b’ exp(rc,u + :12 ric2 ,uf\,CV;j
Gamma 1

b (1 —cru CV} )'CV.T2
Exponential b

(e,

The parameters £, , and @ of a unsymmetrical triangular distribution are the maximum,
minimum, and mode values of X, which can be obtained by substituting » = 0, 1, and 2

respectively in the following relationship.

a,f,o= ﬂx{l +2v2¢v, cos[z3 + 3008 ( 5 }’x)]} (6-2)

The developed expectation functions are general. Using them, any order of
moment can be estimated exactly. The knowledge of higher-order moments can be used
to identify the most suitable distributions from the commonly used distributions as well
as to determine an appropriate distribution by satisfying higher-order moments. Using
such a distribution with its correct parameters, one can find a good estimate of reliability,

risk and uncertainty of a system.
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A comprehensive study on reliability analysis of open channel flow has been
carried out using GEFA. It has been concluded that an increase in uncertainty of the
Manning's roughness coefficient increases the estimated risk that a given depth of flow
will be exceeded. The variation in types of distribution for the Manning's roughness
coefficient has negligible effect at smaller CVs, however, the effect is more pronounced
at higher CVs. The most significant impﬁct was observed due to the type of distribution
used to represent the peak annual flow in the performance function at both smaller and
higher CVs of the Manning's coefficients. The problems due to distribution fitting can be
removed by incorporating the actual observed data in the performance ﬁmqtion. No other
method provides any flexibility to incorporate actual observed data into the performance
function. GEFA can be used regardless of whether the peak annual flow is represented by
a distribution or by the actual observed data.

Several other practical examples related to uncertainty, risk, and reliability
analys‘is of hydrologic, hydraulic, and environmental systems are presented which show
that the developed techniques are easy to apply, simple to understand, efficient to
compute, and give accurate results. The limitation of the proposed technique is that it can
only be applied to functions that involve un-correlated input randofn variables.

Conclusions

It is investigated and mathematically proven that exactness of FOA estimates
depends up on three factors parameter CV, parameter distribution type, and degree of
nonlinearity in the functional relationship, as opposed to earlier belief that only two
factors the degree of nonlinearity in the functional relationship and parameter uncertainty

were relevant. However, in some specific situations all distribution types may give
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comparable results. Further it has been shown that FOA estimates are erroneous even
when input parameters are normally distributed. This clears the misconception that FOA
works well when input variables are normally distributed. Two approaches for reliability,
risk, and uncertainty analysis are presented. The first is a correction procedure for
correcting the FOA estimates for parameter uncertainty, parameter distribution type, and
model non-linearity. The second is the use of generic expectation functions for evaluating
exact moments of model output.

The FOA estimate correction technique is particularly useful for determining
exact values of the first two moments of model output generally required for uncertainty
analysis. Analytical relationships are developed to determine the relative errors in FOA
estimates for the means and variances of power and exponential functions using several
commonly used distributions. Using these relative error functions, one can correct tﬁe
FOA estimates for the means and variances of component power functions for
nonlinearity, and distribution type to evaluate the exact mean and variance of model
output. For ease in application, analytical relative error expressions are presented
graphically. These plots can be used to determine an approximate relative error for a
given exponent of a power function and CV of its random variable. Another advantage of
relative error plots is they present an overall idea about the suitability of FOA in a given
situation without making any calculations. Special cases are identified when applying
FOA to a nonlinear power function for estimating its variance will give a negligible or no
error. This method provides a procedure for incorporating known information on the

types of input variable distributions.
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In reliability and risk analysis, information on the model output distribution is
very important. Knowledge of higher-order moments helps to identify the appropriate
distribution for the model output. A simple approach of developing generic expectation
functions is described. Analytical expressions of generic expectation functions for
generalized power and exponential functions were derived using several commonly used
input parameter distributions. These expectation functions can be used to determine exact
estimates of any order of model output moments.

Many hydrologic applications involve representing a random variable by a certain
distribution, but it is seldom possible to fit given data exactly. Incorporating the actual
observed data in the performance function could solve problems due to distribution
fitting. No other method provides such flexibility to incorporate actual observed data into
the performance function. GEFA can be used irrespective whether the peak annual flow
is represented by a distribution or by the actual observed data.

Recommendations

As summarized and concluded in the preceding sections and presented in the
previous chapters, the objectives of this study have been fully accomplished. Proposed
and developed uncertainty analysié using corrected first order approximation method, and
reliability and risk analysis using GEFA can be used as very efficient, easy, accurate tools
to carryout reliability, risk, and uncertainty analysis of an engineering system. For further
enhancement, future research should be focussed on the following areas.

1. While developing the two approaches, the correction procedure for correcting the
FOA estimates for parameter uncertainty, parameter distribution type, and model non-

linearity and the generic expectation function approach for evaluating the exact
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moments of a model output, input parameters are assumed to be independent. This is
a practical limitation of the developed method as there are many situations where
input parameters are highly correlated. Thus, there is need to develop parallel
expressions considering correlation among input variables.

. For a power function of normally distributed input random variable with a negative
exponent, the relative errors in FOA predicted estimates were obtained using a trial
and error procedure. This procedure works well when CV and magnitude of exponent
of input random variable are small but gives a significant error at higher CV and
exponent magnitude. This need further research work of developing an analytical
expression for determining the exact relative error in FOA estimated estimates.

. For an exponential function of a lognormally distributed input random variable, the
relative error expressions could not be derived either analytically or numerically. This
also needs to be further investigated in order to develop relative error functions.

. While applying GEFA to reliability analysis of open channel flow, it has been
observed that in most cases a commonly used distribution can be employed to
evaluate risk or reliability corresponding to a given depth of flow. But specific
situations may arise where no available distribution can be used with confidence. The
exactness of reliability estimates improves by incorporating the higher-order
moments into determining the distribution of performance function. Thus, future
research should be focussed to develop a simple procedure of deriving an output
distribution involving higher-order moments exactly. It is recommended that output

distribution should incorporate at least first four moments exactly.
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5. Many engineering problems can be solved using relative error expressions and
generic expectation functions for power and exponential functions. However, some
specific fields use other component functional forms quite frequently. For example a
complementary error function, erfc(.), has appeared very frequently in analytical
groundwater contaminant transport models. Thus, it is recommended that similar
relative error functions should be developed for other frequently used functional

forms.
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- APPENDIX 1

DEVELOPMENT OF RELATIVE ERROR FUNCTIONS FOR A POWER

FUNCTION

Uniform Distribution

The probability density function p, (x) for the continuous uniform distribution is

px(x)=(ﬂia),as X<p (I-1)

where o and f are the distribution parameters. Using the methods of moments, the

estimates for o and S are given (Haan, 1977) as

& = 1y ~30y =, (1-3CV,) (1-2)
=y +B0y = uy (14307, ) (1-2b)

where CVx is the coefficient of variation of X, defined as

cv, =2« (1-3)
Hx '
Using equations (2-26), (I-1), (I-2a) and (I-2b) E[X'] is given as

g
rl_ 1 r — /U:‘, +I_ _ +1 :
E[X ]—J———(ﬂ_a)X = [ SeNE) A BN | e

Similarly E[X*'] can also be written as
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B
X2r =

3 yi,’ sl 2r+1 3
Y e [(1+CVXJ§) (-cv 3) ] (1-5)

a

Substituting E[X] in (2-26), uyis given as

Hy =cm[ﬁ N i e \/5)’“} (1-6)

Similarly substituting E[X"] from (I-4) and E[X*] from (I-5) in (2-27), the expression for
o> becomes

cZ{z\/ECVX(rH)Z[(HCVX\/E)Z (1 CVX\/_ )Z } 2r+1)[(1+CVXJ_ f (1_ . ‘BYHT}/&’

¥ 12 +1) (2 +1)cV2

(I-7)
Substituting (2-22) and (I-6) in (2-24), the expression for relative error in FOA predicted

mean, E(/,)is given as

23(r+1)CV,
((+cr v3) " --cr 5) ]

E(fy) =1~ 1-8)

Now substituting (2-23) and (I-7) in (2-24), the relative error in FOA predicted variance

E(6 i) can be represented as

122r + 1) 2 +1) "

{2£CKY(’+1)2[(1+CI/’(‘B)& (- } o H{(l*"CVX‘/_ 3™ (1—CVXJ3Y+I]2}

1-9)

E()l—

Symmetrical Triangular Distribution
The probability density function p, (x) for the symmetrical triangular distribution

is
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2 (X-a)

pX(x)=(,B—a) (}/—a)

, whena< X <y

2_(p-X) , wheny< X < f3 (1-10)

P02 (7]

where @, f, y are the minimum, maximum, and mode values of X. When it is
symmetrical, y = uy. The methods of moments estimates for « and [ are
&=#X—\/EO'X=,UX(1—-\/ECVX) (I-11a)
B=1iy + V60 =y [1+6CT ) | (I-11b)

Using (2-26), (I-10), (I-11a) and (I-11b) E[X'] is given as

sl 6(r + 1)(!:;-1 2)Cv; [(1 OV fB] - 7B - 2} 12

Similarly E[X*] can also be written as

L e e =LA SO S A0 M 13)

Substituting E[X"] from (I-12) into (2-26), uyis given as

Hy = &+ 1)25_:: 2)r? [(1 + CVX\/g)+2 + (1 _ CVX\/ETH “2] 14

Similarly substituting E[X'] from (I-12) and E[X*] from (I-13) in (2-27), the expression

for o’y is written as

cz{i’;(r +1)r+ 2)2CV}[(1 +CA6f " - cn o] - 2] ~(er+ 1{(1 +Cr 6 +{1- 6] - 2]2}#)2;

o 3q2r + fr+17 (r+ 27 CVy

(1-15)
Substituting (2-22) and (I-14) in (2-24), the expression for relative error in FOA predicted

mean, E(/, )is given as
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B(,)=1- [( 6(r +1)r+2)CV 2 ©16)

1+CVV6) ™ - v, V) 7 -2

Now substituting (2-23) and (I-15) in (2-24), the relative error in FOA predicted variance

E(6°2) can be expressed as

F(o“’%) 1 { 3({2r + 1)r2(r + 1)2(r + 2)2C Iﬁr

Wr+1)r+ 2)201;%[(1 + CV)'(\/E)ZHZ +(1 —CV)'(\/E)ZHZ —2}—(2” 1{(1 + cg(JErz + (1—015(J3y+2 - ]z}

(1-17)

Lognormal Distribution
If X is lognormally distributed with mean, yy, and variance, o’y, its probability

density function is given (Haan, 1977) as

_1[111,\’—/4,, 2

1 2 o J
(¥)=——=ce¢ v L,X>0 (I-18)
Px o, X2

where V = In(X) is normally distributed with parameters yy and o’y. The parameters

and oy are defined (Haan, 1977) as

1| a4
=21 119
#r=3 n[CV}-x—l:l (-19)
o2 =In(cV2 +1) (1-20)

Substituting (I-18) in (2-26), E[X'] is written as

i - _%[lnX—/ly)z
. r\_ r-i oy -
E(x")= a,\/Eg[X e dx (1-21)
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In(X) — 4y

Assuming, =Z , the random variable X can be written as, X = e(“”"VZ), (I-21)
Oy
is rewritten as
1 1? 1 e (z )
Elxr )= —— J‘ r(uy+oyZ) CXp_f dz = J‘ei llyr+cryr -—(z-roy iz s
( ) V2m o N - (1-22)
But

®© 1 2
1 -~(z-roy)
e? dzZ =1
Y -[

Equation (I-22) can be written as

E( r)= e(#yr+%03r2) . | (1-23)

Substituting 2 in place of r, E[X*"] can be written as

E(XZr )= e2(u,,r+a'§r2) (1_24)

Substituting 7= 1 in (I-23), uxcan be written as

(sr+3e7) (1-25)

Hx =e

Substituting (I-25) in (22), the FOA estimate for mean uy can be written as

fy = cexp(r;t,, + %raﬁ J (I-26)

The exact value of uy can be obtained by substituting value of E[X'] from (I-23) in (2-

26) as:

Uy = cexp(r,u,, + %rza,z, ) (1-27)
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Substituting (I-26) and (I-27) in (2-24), the relative error in FOA predicted mean

E(/,)can be expressed as

c exp(r,u,, +% ro} )

E(i,)=1- =1- expB rl-r)o? ] (1-28)

(3]
cexp| ru, +~2—r oy
Substituting (I-20) in (I-28), E(, ) can be rewritten as

B2y ) =1-(1+Cy2 )t (1-29)
Substituting (I-25) in (23), the FOA estimate for variance o’y can be written as

67 =c*r? exp(2r,u,, +ro; )CV} (I-30)
Substituting E[X"] from (I-23) and E[X*] from (I-24) in (2-27), the exact variance can
be written as

or=c? exp(Zry,, +rio, Iexp(rza,z, )— 1] (I-31)
Substituting (I-30) and (I-31) in (2-24), the relative error in FOA predicted variance

E(6) can be expressed as

cir? exp(2r,u,, +_r0',3 )CV; r? exp_(ra,% )CV;

E@62)=1- =1- (132
@) c? exp(2r,u,, +ric? lexp(rzoi )— IJ exp(rza,f ]Lexp(rzd2 )— IJ (-32)
Substituting (I-20) in (I-32), E(é'j ) can be rewritten as
2 2 2 r
Bt =1-— " CV (cvz +1) 33

(cv2 +1)er {(CV} +1) —l]

Gamma Distribution

The gamma density function is given by
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( 20 e-b:X(a—l)

Dxlx T@) X, a,and 1>0 (I-34)

where o and A are the distribution parameters. Using method of moments « and A are

expressed (Haan, 1977) as

A=fx (1-35)
Oy -
2
oy CVy

Substituting (I-34) in (2-26), E[X']is written as

0

N AT e~ xlavr) _I‘(a+r) ' |
Blx7)= I(@) 5[ Ta - FT(a) (-37)

Replacing r by 2r in (I-37), E[X*"] is written as

E(x™)= %a—;(i—;) (1-38)

Substituting » = 1 in (I-37), ux can be given as

_Tla+1)

e (1-39)

a
Hx 1

Substituting (I-39) in (2-22), the FOA estimate for mean uycan be given as
i =q 2] (1-40)

The exact value of xy can be obtained by substituting (I-37) in (2-26) as

1y = 2(0; zrar)) | (1-41)

Substituting (I-40) and (I-41) in (2-24), the relative error in FOA predicted mean

A

E(j1, ) can written as
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aT(a)

E(i,)=1-——% 1-42
(&y) T(a+r) (I-42)
Substituting « in terms of CVy from (I-36), (I-42) is rewritten as
CV'T ! -
. CVy
E(fy)=1- 2 (1-43)
r 1+rCV 4
Ccv?
Substituting (I-39) in (2-23), the FOA estimate for variance o’y can be written as
2.2 2r 2

12}‘

Substituting E[X"] from (I-37) and E[X*"] from (I-38) in (2-27), the exact variance can be

written as
ol = i:_ [F(a)f‘(a + 22r) T+ r)jl (1-45)
A I'“(a)

Substituting (I-44) and (I-45) in (2-24), the relative error in FOA predicted variance

E(6) can be expressed as

2 _2r ~p2-2
Ver
B} =1-— 4 Tl @ (1-46)
L(a)(a+2r)-T“(a+r)
Substituting (I-36) in (I-46), E(&, ) can be rewritten as
2
r2CV 2(1-2r) T 1
. i CV;
E(iy,)=1- (1-47)

2
e\ 1 ) | {1erers
cv? Cv? Cv?
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Exponential Distribution

Exponential distribution is a special case of the gamma distribution with o = 1.
Substituting & =1 in (I-42), the relative error in FOA predicted mean is given as

foy_q 1 3
E(4,)=1 G+ (1-48)

Substituting =1 in (1-36), CVx=1. On substituting CVx =1 in (I-47), the relative error
in FOA predicted variance E(é'; ) can be expressed as

2
¥

a2
BE,)=1- [r@r+1)-12(r+1)] -9
Normal Distribution
The probability density function of normal distribution is
px(x)= ! e_%[%x) (I-50)
ox2r
where u, and o’  are the parameters of normal distribution.
Substituting (I-50) in (2-26), the E[X'] is written as
(x" R = 2
E(x )zaXJZr—JX e dx 1-51)
Assuming, £;—ﬂ‘l =Z , the random variable X can be written as, X =(uy +0,2), (-
x

51) is rewritten as

2

E(X’):T;_; T@X ro Z) e az (1-52)

Equation (I-52) is difficult to integrate. Its integral exists when x is represented by the

standard normal distribution for which uy =0, ox= 1. The resulting equation is
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2

1 T, 32
EZ"|=— |Z'e ? dZ ' I-53
@5 | (53)
The integral of (I-53) is

=(r=1)r—3)..... (3X1), when r is even

E( ,) 2/2rKj;Jr1)/2]

E(z")=0, when r is odd (I-54)
Equation (I-54) can be used to compute E[X].

E(x7)=E[(uy +ox2) | =B+ cvy2)] (1-55)

When CVx < 1.0, (I-55) can be expanded using Binomial Theorem as

B(xr)= ,uf\,E[l +rCVZ + (r2 Depaz s N2 Ddrontl) o } (I-56)

n!

Taking expectation of all terms, (I-56) is written as

Hx );f,{urcz{qzh'( )crﬁqzzh ...... '(r—lxr_z)""(r_n+1)CV’XbIZ”]+...} (1-57)

nl
From (I-54), E[Z"] =0 when r is odd. Therefore all the terms containing odd powers of Z

will vanish from (I-57) and the resulting equation is written as

B ')=y;([1+ =) cy2pz2ys e O N 2le ) }

n!
(I-58)
When r is a positive integer, RHS of (I-58) is finite and terminates when n = r +1.

Consequently, (I-57) can be written as

'E(X’ )= Uy r/z(g,-):r/ ,%iE[Z 2i | whenr is even (1-59a)
=0

-~
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E( ’)= y;(r_zl?/z(g,.):V}"E[z’“], when 7 is odd (I-59b)
i=0

For values of » other than a positive integer (2-53) does not converge. In order to
determine E[X'], (2-58) needs to be truncated. When r is a positive fraction, E[X] can be
obtained using (2-59a) and (2-59b) with rounded value of # to its nearest whole number.
In cases when r is negative, the truncating error depends upon the magnitudes of » and
CVy. Further, there exists a minimum truncating error for a given combination of » and
CVy, beyond which no improvement in E[X'] is possible. To evaluate the approximate
value of E[X"), a trial and error procedure was used to determine the number of terms to
be summed up to obtain E[X"] corresponding to the minimum truncating error for a given
combination of ¥ and CVy.

After estimating E[X'] and E[X*], (2-26) and (2-27) are used to determine sy and
0',%. Substituting uy, 0',% and the FOA estimates [, and 6'; into (2-24), the relative
error in FOA predicted estimates of the mean and variance, E(j, )and E(o“';), can be

determined. Figures 2-10 and 2-11 show plots of E(/,)and E(&)})vs. r for various

values of CVyranging from 0.02 to 0.33.
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APPENDIX II

CHARACTERIZATION OF A TRIANGULAR DISTRIBUTION

Consider a random variable X ~ Triangular (a, b, c¢), where a, b, and ¢ are the
minimum, maximum , and mode values of a random variable X. The values of x4, CV,,

and y can be represented in terms of g, b, and ¢ as

Uy =§(a +b+c) ‘ (II-1)
1 ya® +b*+c? —(ab+bc+ca)
- 11-2
e J2 atb+c ({-2)
V2 2(a3 +b° +c3)——3[ab(a +b)+bc(b +c)+ calc+ a)]+12abe
Yx =T (I1-3)

[az +b* +c* —(ab +bc+ca)]%
If the values of g, CV;, and ¥ are known then a unique triangle can be delineated by
determining its parameters a, b, and c. Simplifying (II-1), (II-2), and (II-3) and writing

known quantities on the RHS as

a+b+c=3u, (11I-4)
ab +be +ca =3 (1-2CV}2) (11-5)
abe = ,ui,(lO;/XCV; - 6CV } +1) (11-6)

Eliminating a and b, (H-4), (I1-5), and (II-6) can be expressed in terms of ¢ as

¢ =3ppc® +3u2(1-2CV2) e - 1 (107, CV3 —6CV2 +1)=0 (11-7)
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Equation (II-7) is a cubic equation which can be solved using Cardan’s method

(Borofsky, 1950). In order to solve (II-7), the quadratic term needs to be eliminated.
Substituting ¢ =y + 1, , (II-7) can be rewritten as

¥ =6uyCVyy~10y  uzCVy =0 (I1-8)
For a real triangle, (II-8) does not involve any imaginary quantities. This can be enforced
with the help of the triple angle formula

4cos’ @ —3cosf = cos30 (11-9)
Substituting w = cos 8, (1I-9) is rewritten as

w—Sw-0530 g | (I1-10)
4 4

It is clear that w = cos@ is a root of (II-10). Using this, (II-8) can be solved by analogy.
Substituting y = Aw in (II-8)

2 A2 3 A3
W — 6uxCVy We 10y, uxCVy —

: = 0 (-11)

Comparing the coefficients of w in (II-10) and (II-11)

6piCVy 3

11-12

A 4 ( )

Comparing the constant terms of (II-10) and (II-11)
3 3
IOyX,u;‘,CVX _ cos36 (1-13)
A 4

Simplifying (II-12) and retaining only positive value, A is given as
A=22u,CV, 11-14)

On simplifying (II-13)
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5 5
cos3f =—=y, =cos| cos™!| — 1I-15
2 { (NE x H ({-13)

Equation (II-15) is a trigonometric equation, which can be solved for @as

2m 1 5
="—+=cos”| — ' 1I-16

Equation (II-16) gives a general value of 6, substituting » = 0, 1, and 2 particular values

of @ can be obtained. Using (II-16), the general solution of (1I-8) is

2m 1
y=ﬂz=/lcos¢9=2x/§,uXCVX cos[ 3 += cos ( x/_ny] It-17)
Using (I1-17), the solution of (II-7) is

c=y+uy = /ux{1+2\/—CV cos{%+1cos ( \/—}’Xﬂ} (1I-18)

Equation (II-18) shows that maximum magnitude of coefficient of skewness for a

triangular distribution is —
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