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1. INTRODUCTION 

Since the first diode lasers were theoretically considered [1-3] and later 

experimentally realized [4-8], the temperature dependence of the laser characteristics, 

especially the gain coefficient, has been identified as one of the important issues in 

semiconductor laser physics. Generally the optical gain is considered as a function of 

temperature in reference to the lattice temperature, while the temperature of the electron 

and hole ensembles are assumed to be equal to the lattice temperature. Possible 

temperature differences between the carrier ensembles and the lattice vanish on a short 

time scale (-10- 13 - 10-12 sec) because of phonon emission. Thus, assumption of equal 

carrier and lattice temperatures is justified unless fast processes in the semiconductor 

laser medium are considered. 

Over the last three decades the development of lasers that produce ultrashort 

(picosecond and shorter) pulses has lead to new methods of measurements that allow the 

investigation of ultrafast phenomena in semiconductor media [9, 10] . Besides academic 

interest, there are several technological problems that require understanding of ultrafast 

processes in semiconductor optoelectronic devices. These problems originate from the 

increased demand for high-speed devices with very short response times. The theoretical 

models that are used to describe the steady-state or slow transient behavior of 

optoelectronic devices are inadequate on these short time scales and new, improved 

theories are necessary. In particular, it is important to understand the functional behavior 



of the gam with respect to the carrier temperature m semiconductor diode lasers and 

amplifiers when they interact with ultrashort pulses. 

1.1. Gain Nonlinearities in Semiconductors 

The results of experiments where the ultrafast response of semiconductor laser 

amplifiers are investigated indicate that gain nonlinearities in the form of a substantial 

gain suppression are present on picosecond and femtosecond time scales [ 11-16]. These 

experiments emphasize the limitations of theoretical models that describe the dynamics of 

light-matter interaction in semiconductor optoelectronic devices using the rate equations 

with a linear gain [17-21] . 

The term linear gain means that the gain coefficient is approximated as a linear 

function of the carrier density. To avoid confusion in terminology the gain coefficient 

and gain function are considered here as distinct terms. The gain or gain (absorption) 

coefficient is generally defined and measured using the premise of Lambert's law 

I(z) = J(z0 )exp(gz) : 

( 1.1) 

where I is the intensity of field, and z is the coordinate along the direction of propagation. 

The term gain function is used to refer to any function that represents a certain 

relationship between the gain (absorption) coefficient and other parameters, such as 

carrier density, temperature, etc. The particular form of the gain function depends upon 

the relevant structural details of the medium and the model chosen for its calculation, i.e. 

the gain function represents the gain coefficient in the frame of a particular theoretical 
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model. For example, in semiconductor laser theories where the matter-field interaction is 

described using first-order perturbation theory only single-photon band-to-band 

transitions are included in the gain function calculation. However, there are many 

processes that contribute to the increase (decrease) of photon numbers in the 

semiconductor medium that are not explicitly included in the gain function calculation. 

The influence of these processes is either neglected or taken into account indirectly. 

Therefore, the gain coefficient defined by Eq. (1.1) and used for experimental 

measurements is distinguished from the gain function, a term more closely connected to 

the theoretical or empirical model. 

The term gain nonlinearity is usually used to describe the deviation of the gain 

coefficient from its linear functional dependence on carrier density: 

(1.2) 

where y is the differential gain coefficient and N co is the carrier density at transparency 

Here the transparency condition is identified with the condition of zero gain function. 

Equation ( 1.2) is purely an empirical expression; it is not the result of any particular 

theoretical analysis. Nevertheless, the linear form of the gain is widely accepted because 

it adequately represents the gain coefficient in many practical cases. If any deviation 

from the linear gain is observed, there is a tendency to account for nonlinearities by 

simply modifying the right hand side of Eq. (1.2). This procedure usually requires one or 

more fitting parameters. A typical modified gain function has the form: 

( 1.3) 
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where NP is the photon density, and s and o are fitting parameters (s is also known as 

the gain suppression coefficient). Depending on the particular system under 

consideration, the value of parameter o that best fits the experiment usually ranges 

between 0.5 and 1.0. The value of s is also obtained by an experimental fitting and is 

considered to be influenced by many factors such as spectral hole burning (SHB) and 

carrier heating (CH). For a low intensity field the gain function (Eq. (1.3)) can be 

approximated by a simpler form: 

(1.4) 

Although usage of these nonlinear forms of the gam coefficient provides an 

agreement between theoretical models and experimental results, the physical picture 

behind these fitting parameters remains vague, especially when it is generally accepted 

that there are many factors that lead to nonlinear gain behavior. 

The nonlinear forms of the gain coefficient (Eqs. ( 1.3) and (1.4)) are convenient in 

modeling because they are expressed in terms of easily measured quantities and also 

because they are able to describe gain nonlinearities (such as gain suppression on a short 

time scale). However, in these expressions there is no parameter that directly reflects the 

influence of a specific nonlinear phenomenon. If we are interested in, for example, CH 

effects then expressions (1.3) or (1.4) do not show explicit dependence in on earner 

temperature, earner energy density, or any other parameter that may describe earner 

heating. In fact, there is no way to tell whether an observed gain suppression is the result 

of carrier heating, spectral hole burning, or other phenomena, unless the gain coefficient 

is explicitly expressed through parameters that account for these processes. 
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In order to describe the carrier heating effect in diode laser (amplifier) dynamics, 

Oraevsky et al. [22, 23] introduced a nonlinear gain function that includes the carrier 

temperature: 

(1.5) 

where 11T is the deviation of carrier temperature from that of the lattice, and~ is a fitting 

parameter. This form of the gain function describes gain suppression due to carrier 

heating; however, it still contains a fitting parameter that needs to be inferred from a 

quantitative fit to experimental results. Thus, the empirical expressions for the gain 

function are not adequate for the description of the temperature dependence of the gain 

and a more accurate theoretical approach is required. 

The gain function that is based on a simple free-carrier model or a more 

sophisticated model for semiconductor medium is much different from expression ( 1.2) 

or its nonlinear modifications. The free-carrier quasi-equilibrium theory in a two-band 

approximation leads to the following expression for the gain function [24]: 

g = C(ffi,T1 )IMJ 2 P,[J(µe ,Te )+f(m,, ,T,.)-1] = g(ffi,T1 ,Te ,T,, ,µe ,µ,,) , (1.6) 

where C is a function that depends on the material parameters and the transition 

frequency, M is the transition matrix element, p, is the reduced density of states, f is the 

Fermi distribution function, and µ e(h) and Te(hJ are the electron (hole) chemical potential 

and temperature, respectively. This gain function is not convenient for analysis of the 

laser dynamics. Except for the frequency and perhaps the lattice temperature the other 

parameters that explicitly influence the gain function are not easily measured. This 

probably explains why the empirical form of the gain function has general acceptance. 
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1.2. Semiconductor Laser Dynamics with and without the Gain Function 

The gain coefficient (and its functional form) is perhaps the most important 

characteristic parameter of a semiconductor laser medium. Usually the laser media are 

described by the material polarization, population inversion, and their relationship with 

the electromagnetic field. In the case of semiconductor laser media the polarization 

decays in a time scale (-10- 14 -10- 13 sec) which is much shorter than the decay times for 

the population inversion (carrier lifetime - 10-9 sec) and the field (photon lifetime - 10-12 

sec) [ 18]. For very fast relaxation times adiabatic elimination of material polarization 

becomes possible and one can use the gain function in the semiconductor laser dynamics. 

If the dependence of the gain on the electromagnetic field and carrier density is found it 

significantly simplifies investigations by lowering the number of independent variables. 

Often an empirically obtained linear gain function ( 1.2) or its modified nonlinear version 

with one or more fitting parameters (similar to Eq. (1.3)) satisfactorily describe dynamic 

behavior of the systems under consideration. The accuracy of the simplified dynamic 

models depends on the functional form of the gain function. 

The gain function can also be obtained using theoretical models that are based on 

our understanding of the structure of semiconductor laser media. In this case no fitting 

parameters are used, however the theoretical models are based on certain assumptions 

and, therefore, produce gain functions that represent the gain coefficient with limited 

accuracy. For example, the gain function (1.6) is derived assuming quasi-equilibrium 

Fermi-Dirac distribution of carriers. It is obvious that it cannot be used when the carrier 

ensemble is disturbed in such a way that it is no longer in quasi-equilibrium. In 

particular, this is the case when spectral hole burning is observed, i.e. there is a dip in the 
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carrier distribution function. As a result, the carrier temperature becomes a physically 

meaningless value because the temperature as a thermodynamic parameter is defined only 

for the systems at equilibrium [25, 26]. The Fermi distribution function with a dip at 

some energy (spectral hole) is not associated with any particular value of temperature; it 

is no longer a Fermi-Dirac distribution function. In this case expression ( 1.6) is not an 

adequate representation of the gain coefficient. 

A non-equilibrium carrier system eventually relaxes and becomes a Fermi 

ensemble, and only then does the system have a definite temperature which can be 

determined to be different or not from the lattice temperature. The time scale of 

relaxation is determined by carrier-carrier scattering and is roughly given by [27, p. 175] 

(1.7) 

where N e has units of cm-3. In lasers and amplifiers the carrier density is on the order of 

1018 cm-3 or more, which makes 'tc - c about 10-13 sec. Experimental results idicate even 

shorter relaxation times; for example, the experiments with a GaAs sample excited by a 

femtosecond pulses leads to 'tc - c"" 3xl0- 14 sec at N e = 1017 cm-3 and 'tc - c"" l 3xl0-15 sec at 

N e = 1018 cm-3 [12, 28]. On this time scale the elimination of the polarization is no 

longer justified; hence, the gain function is no longer an appropriate parameter in the 

dynamical picture. 

For time scales shorter than l 0- 13 sec. the material polarization must be included 

into the dynamical picture and a microscopic theory is used to describe the semiconductor 

lasers . In microscopic theories the gain is calculated using its relationship with material 

polarization (P) and the electromagnetic field (E) [ 19]: 

g- Im(P/E), ( 1.8) 

7 



but the gain function itself is not a dynamic variable in those theories. Currently, there is 

no well-developed theory that, with proper adjustment, can be used for all types of 

semiconductor laser media. This situation is partially explained by the diversity of the 

semiconductor laser media and the complexity of semiconductor materials themselves. 

Microscopic theories for semiconductor media as a part of solid state physics have 

been developed during the last fifty years [29-32). The current state of these theories can 

be found in a number of textbooks and review papers [33-35]. Most theoretical models 

for semiconductor lasers utilize certain analogies between the two-level system and the 

two-band model of semiconductors by considering semiconductor media as complex 

ensembles of two-level systems with specific selection rules and line broadening 

mechanisms. These models are usually described using a density-matrix theory [36]. 

Interaction of the electromagnetic field with semiconductors can also be described 

using kinetic theory, which is based on the Boltzmann equation for the carrier distribution 

function. For example, the theory developed by Galitskii and Elesin [37-39) describes 

gain suppression, spectral hole burning, and other effects in semiconductor lasers . Both 

kinetic and density-matrix-based theories lead to rate equations when appropriate 

approximations are made. 

During the past two decades a significant effort has been made to develop a 

microscopic theory for dynamics in semiconductor laser media that is conceptually 

similar to Maxwell-Bloch equations for two-level systems [40]. The theory based on 

Maxwell-Bloch equations for semiconductors is a very effective tool in the description of 

nonlinear phenomena and spatio-temporal dynamics in semiconductor laser media [ 19, 

41-46]. Progress in this direction is tangible; however, this theory (and most microscopic 
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theories) require a significant numerical effort and computer CPU time. In most cases a 

large number of equations must be solved in order to deduce the gain spectrum. Even 

with modern computers some problems cannot be solved in a reasonable time period. 

Although microscopic theories can provide accurate descriptions of phenomena in 

semiconductor laser media, they are rarely used in device modeling and semiconductor 

laser dynamics. In general, the lack of simplicity, and in many cases lack of clarity in 

microscopic theories make them unattractive for qualitative analysis and quick 

estimations, which are usually important for experimentalists. This task is usually left to 

the rate equations. 

1.3. Modified Rate Equations for Semiconductor Laser Dynamics 

Rate equations are widely used in semiconductor laser dynamics and device 

modeling because of their conceptual simplicity and physical clarity. They can be derived 

phenomenologically [20, 47, 48], from the wave equation [ 18], or from quantum-

mechanical considerations [39, 49) and consist of two differential equations for photon 

density and for carrier density: 

(1.9a) 

dN, N, 
--=J---gNP, 

dt 'ts 
(1.9b) 

where 'tp is the photon lifetime, 'ts is the spontaneous lifetime of carriers, r is the 

confinement factor, ~sp is the spontaneous emission factor, and J is the effective 

pumping rate. 
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This system of equations is a basic form of the rate equations for a semiconductor 

laser. Depending on the particular problem under consideration, the system of equations 

( 1.9) can be modified to include additional terms or equations. For example, the model 

based on modified rate equations that describe the dynamic behavior of a semiconductor 

laser with delayed optical feedback is known as the Lang-Kobayashi model [50]. 

Modified rate equations can also be used to describe external cavity semiconductor lasers 

[51 ], semiconductor microcavity lasers [52, 53], and a variety of other laser structures 

[54-56]. 

The rate equations are easily modified to include the gain nonlinearities. No other 

modification of the rate equations except for the gain function is necessary when a 

nonlinear gain function of the form ( 1.3) or (1.4) is used because the gain function is 

expressed in terms of dynamical variables that are already included into the dynamics. 

However, when the gain function is expressed in terms of parameters other than photon 

and carrier densities, then the rate equations need to be modified. For example, when the 

gain function is used with explicit (carrier) temperature dependence such as Eq. (1.5), 

then the system of the rate equations ( 1.9) becomes incomplete. To obtain a closed set of 

equations, we must modify Eqs. (1.9) to include an equation for the carrier temperature. 

Conceptual simplicity of the rate equations makes it easy to incorporate a new dynamical 

variable if necessary. The modified rate equations obtained in such a way are powerful 

tools for semiconductor laser dynamics. They have the clarity of the rate equations and 

extend their applicability. Furthermore, on short time scales, the modified rate equations 

are complementary to microscopic theories. Although less accurate in details compared 

to the microscopic theories, they offer clear physical interpretations. 
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1.4. Phenomenology of Carrier Heating Effects 

The observation of gain suppression in semiconductor amplifiers on a 

subpicosecond time scale [ 11-15) has stimulated an active theoretical effort to describe 

and interpret these results . SHB and CH are pointed out as one of the main reasons for 

gain suppression in these systems. In some cases all the observed gain nonlinearities 

were explained by dynamic carrier heating [ 13), which triggered special attention to the 

carrier heating influence on gain dynamics. Although different aspects of the influence of 

CH on the behavior of diode lasers have also been considered [57-59), the Kesler-Ippen 

experiment underlines the significance of CH effects on the subpicosecond time scale. 

Carrier heating ( or dynamic carrier heating) can roughly be described in the 

following way: excitation of the semiconductor disturbs the ensemble of carriers, which 

initially have a quasi-Fermi distribution with a temperature (Tc) corresponding to the 

lattice temperature ( T1 ). As a result of this excitation the carrier ensemble redistributes to 

form a quasi-Fermi distribution with a temperature different from the lattice temperature 

(Tc t:- T1 ) . This is a consequence of the smaller heat capacity of the electron ensemble 

compared to the heat capacity of the lattice. The electron ensemble is heated almost 

instantaneously because of the small heat capacity and some time is required for 

relaxation . During this time the electrons and the lattice have distinct temperatures. 

The term, carrier heating, can be misleading when carriers do not form a quasi

equilibrium ensemble because a non-equilibrium ensemble does not have a definite 

temperature and an actual increase in temperature cannot be calculated or measured. In 

this case the term means that the system has higher occupation probabilities for carriers in 

the high-energy states of the band compared to the Fermi distribution. For example, an 
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external pulse with a carrier frequency larger than that of the bandgap can excite electrons 

to energy levels deep within the conduction band so that the electron distribution function 

is no longer given by the Fermi function. In this case the electron system is heated 

because hot particles (high energy electrons) are added to the electron ensemble or cold 

particles are removed frOm it by stimulated emission. The same logic suggests that 

removing hot particles from the system cools the ensemble; however, this is not always 

the case (see Chapter 4). 

Carrier heating is a result of a variety of processes (see below for details) that 

involve carrier injection and/or excitation of a semiconductor medium by an 

electromagnetic field, and the subsequent cascade of recombination processes that take 

place on different time scales. A description of the individual heating mechanisms is 

detailed in subsequent chapters. 

A most profound result of CH is a gain nonlinearity that is exhibited in the form 

of gain suppression and recovery on the time scale of the order of a picosecond. Gain 

suppression due to CH is similar to gain suppression due to SHB - a major suppression 

factor on a sub-picosecond time scale. However, there are significant differences 

between CH and SHB. CH influences the medium at all frequencies, i.e. it affects 

amplifying, absorbing and even the transparent medium, while SHB affects the gain 

coefficient at certain frequencies and an amplifying medium only. This is the most 

important difference between CH and SHB, which is simply a dip in the gain spectrum 

caused by stimulated emission. 

Figures 1.1 and 1.2 (pp. 14-15) schematically demonstrate the deformation of the 

gain spectrum and electron distribution functions in a bulk semiconductor laser medium 
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due to SHB and CH. In the case of SHB the gain function is affected only when it is 

above the level of the losses, i.e. only certain frequencies are affected. When CH is 

considered the gain shifts downward affecting all frequencies. 

We emphasize the schematic nature of Figs. 1.1 and 1.2 because in reality, 

depending on the time scale, SHB and CH may be present simultaneously. For time 

scales shorter than 0.1 ps SHB is dominant, while CH may last up to several picoseconds 

or more. Also it is worth mentioning that in the case of CH the transparency photon 

energy n(J};J, which is determined from the limiting case of the gain condition [ 1, 2] 

n,(O ~ µ, -µ", (1.10) 

is shifted because the chemical potentials of electrons ( µ. ) and holes ( µ") are 

temperature dependent. The green curve in Fig. 1.1 b (p. 14) shows the gain function with 

fixed chemical potentials. 

The theoretical description of CH is complicated because various radiative and 

non-radiative processes directly or indirectly affect the carrier ensemble. Both 

microscopic and rate equation approaches are applied to investigate different aspects of 

the carrier heating effects. Microscopic theories, briefly described in Section 1.2, in 

principle account for all possible effects in the medium including SHB and CH effects. 

However, in most cases the modified rate equations appear to be more convenient and 

widely used in the literature [22, 23, 60-66]. The latter approach requires the inclusion of 

the carrier temperature (or energy density) in the gain dynamics. 
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Figure 1.1. Gain function deformations due to (a) spectral hole burning, and (b) carrier 
heating. The blue curves correspond to undeformed gain function. The red curves 
correspond to deformed gain functions. The green dashed line in (a) represents the level 
of losses. The green curve in (b) demonstrates the carrier heating effect with fixed 
chemical potentials of carriers. 
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Figure 1.2. Electron distribution function affected by (a) spectral hole burning, and (b) 
carrier heating. The blue curves correspond to unperturbed distribution function. The 
red curves correspond to perturbed distribution functions. 
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The gain (absorption) nonlinearity due to CH can be theoretically described in the 

same way as all nonlinearities, i.e. by introduction of the nonlinear gain function into the 

rate equations. For example, the gain function Eq. (1.5) describes gain suppression due to 

CH, which itself is described by the corresponding carrier temperature increase that is a 

result of an increased number of photons produced in a medium and/or brought on by an 

external signal. 

1.5. Preview of Thesis 

Although the earner heating influence on gain dynamics has attracted much 

attention, the dynamic behavior of the carrier temperature is usually not of interest. In 

most cases the carrier temperature appears only in an ad hoc explanation of the nonlinear 

behavior of the gain. However, the efficiency of CH by an external signal depends on the 

gain; furthermore, changes in the gain influence the carrier temperature. This feedback 

leads to interesting dynamic behavior of both the gain and the carrier temperature. 

Therefore, the gain dynamics should be considered along with the carrier temperature 

dynamics. 

This thesis reports the investigation of the dynamic behavior of the gain function 

and the carrier temperature in semiconductor laser media. As a basis for this research we 

use modified rate equations. The details and the logic behind the model are discussed in 

Chapter 2. Temperature dynamics of a cw diode laser and the laser response to external 

picosecond pulses are discussed in Chapter 3. The temperature dynamics of the 

spontaneously recombining carrier ensemble with a discussion of differences between 

Fermi and Boltzmann statistics is considered in Chapter 4. Chapter 5 is devoted to gain 
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and temperature dynamics in semiconductor laser medium close to transparency. The 

laser medium far from transparency is considered in Chapter 6, where the gain and 

temperature dynamics is considered for different external-pulse energies. Chapter 7 

summarizes the results. The thesis is supplemented with Appendices, which address 

issues related to certain physical aspects relevant to the model and the derivation of 

analytical expressions. The results of the investigation are published in the literature [67-

70] and have been reported at annual meetings of Optical Society of America [71, 72]. 
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2. MODEL DESCRIPTION 

In this chapter we present a model for the theoretical investigation of gain and 

carrier temperature dynamics in semiconductor laser media. We consider the relationship 

between the gain coefficient and the carrier temperature through a temperature-dependent 

gain function. Regardless of the structure of the laser medium (bulk or lower dimensional 

structures) the theoretical models show that the gain is an explicit function of the carrier 

temperature. Therefore, the system of rate equations (1.9) must be extended to 

accommodate the new dynamic variable: the carrier temperature. 

The next section describes the model equations, definitions of dynamical 

variables, the significance of each term, and the physics behind them. The free-carrier 

and two-photon absorption terms, the gain function, and the carrier energy density 

equation are described separately in subsequent sections. 

2.1. Model Equations 

The model equations are: 

dN p _ 1 NC 2 
-- - --Np +rv grgN p +r~sp --v grsFCANcN p -v grsTPAN p +kN px' 

di 'tp 'ts 
(2.1 a) 

dNC j NC N N 2 --= ---Vgrg p +VgrSTPA p ' 
dt -r. 

(2.1 b) 

(2.1 C) 
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where NP is the photon density, N px is the external pulse photon density, Ne is the 

carrier density, U is the carrier energy density, U1 is the carrier energy density at the 

lattice temperature, 't P is the photon lifetime, r is the confinement factor, v gr is the 

group velocity, ~sp is the spontaneous emission factor, 'ts is the spontaneous lifetime of 

carriers, 'te is the carrier recombination time, 't I is the energy density relaxation time, 

s FCA is the free-carrier absorption (FCA) cross-section, sTPA is the two-photon absorption 

(TPA) cross-section, k is the coupling coefficient, nro is the photon energy, g is the gain 

function (in cm-'), J is the effective carrier injection rate, and Q represents the pumping 

in energy density equation. 

The photon density is related to the electric component of the electromagnetic 

field, E, through the following expression [18, 20] 

IEl 2 

N =nn --, 
P gr 81tn(J) (2.2) 

where n is the refractive index, ngr is the group velocity index. It is derived in Appendix 

A (p. 151 ). In certain cases it is preferable to use the field equation instead of photon 

density equation. The photon density equation with external signal can be derived from 

the field equation (see Appendix B, p. 155). 

The photon lifetime in the cavity is given by 

(2.3) 

where ac denotes the cavity losses, which consists of facet losses, 

1 ( 1 J a --In --
m - 2L R,R2 ' 

(2.4) 
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where L is the cavity length, R1 and R2 are facet reflectivities, and internal losses ai. 

Usually the internal losses include FCA, scattering and diffraction losses , however 

because FCA is an important heating factor we include it as a separate term. For a typical 

semiconductor laser ai ""40 cm- 1 [ 18], including 10-15 cm-1 that is attributed to the FCA 

[ 17, 73] . In this theory the internal losses are considered as scattering and diffraction 

losses only unless specified otherwise. 

The second term in Eq. (2.la) represents the gam or single-photon interband 

absorption. The gain function, g, is discussed in detail in Section 2.4 below. The third 

term represents the photon density change due to spontaneous recombination of carriers. 

We identify this term along with the spontaneous recombination rate in the carrier density 

equation. The spontaneous recombination of carriers plays an interesting role in the 

temperature dynamics of the carrier ensemble when there is no external signal. This topic 

is discussed further in Chapter 4. The FCA and TP A terms are discussed in Sections 2.2 

and 2.3. 

The last term in Eq. (2.1 a) describes an external signal. The external signal is 

included in the model because carrier heating is observed in the interaction of the medium 

with short optical pulses. The expression for the coupling coefficient is obtained from the 

following consideration. In steady state and in the absence of gain (or absorption) or 

other less important effects (i.e. there is no production and loss of photons in the 

medium), the photon density in the medium must be equal to (1-R) times the photon 

density of the external signal. Thus, 

1-R 
k=--. 

't p 

(2.5) 
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where R is the power reflection coefficient of the laser facet through which the external 

signal enters the laser medium. This expression is appropriate for a medium with a low 

reflectivity facet. In the case of a high reflectivity facet the expression for the coupling 

coefficient is derived using the coupling coefficient of the field (see Appendix B, p. 155). 

The external optical signal is considered as a Gaussian pulse in the following form 

Npxo [ (t-t J2
] N px (t) = Jir.!!l't exp - !!>/ . (2.6) 

From this expression we obtain the peak photon density of the pulse 

N 
N max = N (t ) = pxO . 

px px a Jir_ !!J. 't (2.7) 

The time parameter ta corresponds to the pulse peak arrival time. The pulse photon 

density is equal to its half-maximum value N ;:X /2 when 

exp[-( 1 ~~· J} ~. (2.8) 

or when t± = t 0 ± !!l't~ and therefore the Full-Width Half-Maximum (FWHM) pulse 

duration is 

(2.9) 

The external pulse energy is defined as 

(2.10) 

where dV = S · cdt, S is the external beam cross-section, c is the speed of light in free 

space, so that 

+= 

& = f N px (t)nw · Scdt = N pxonw · Sc . (2.11) 
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To consider the transverse profile of the photon density in the external optical 

beam one must integrate over the transverse plane taking into account N pxo, which is not 

a constant but a function of the transverse coordinates. In this case the external pulse 

energy is given by 

& = liro ·C fJ N pxo(x,y)dxdy. (2.12) 

However, we do not consider this case because the active medium transverse profile is 

much smaller than the external beam profile and we can take N pxo as a constant value. 

In our calculations we deal with not the total energy of the external pulse, & , but the 

energy of the portion of the pulse that overlaps the cross section of the active region of 

the sample, i.e. 

(2.13) 

where S is the cross section of the medium facet. 

The carrier density is defined by the integral expression: 

NC (µ,T) = I p(E)f (E,µ,T)dE' (2.14) 

where f(E,µ,T) is the Fermi-Dirac distribution function, p(E) is the density of states in 

the corresponding band, E is the energy of an individual electron, and µ is the chemical 

potential. For definiteness, since N c is the same for electrons and holes (local 

electroneutrality condition), we consider the words "electron" and "carrier" to be 

synonymous and we take the zero of energy to be at the top of the valence band. 

The effective carrier injection rate is given by 

(2. 15) 

where ll;,,1 is the efficiency of the carrier injection, i 1s the bias current, q. is the 

22 



elementary charge, and V is the active volume. The effective injection rate can also be 

considered as the loss rate of the carriers from the adjacent region to the active region 

where N 1 is the earner density in the adjacent region. This form of the effective 

pumping rate is useful when the optical pumping is used. 

The recombination term in Eq. (2.1 b) represents the carrier leakage rate from the 

active region and the spontaneous carrier recombination rates. The later we split into 

radiative and non-radiative parts. Several processes contribute to the spontaneous non-

radiative recombination of carriers; such as the recombination involving traps and Auger 

recombination [74] . The rate of recombination involving traps is proportional to the 

carrier density over a wide range of Nc. The Auger recombination rate is proportional to 

N }', and for Nc ::;; 1019 cm-3 is significantly less than the spontaneous radiative and trap-

involving recombination rates. 

In general, the carrier recombination time, 't., can be written as 

(2.17) 

where A is a coefficient that describes the carrier leakage and recombination via traps, B 

is bimolecular recombination coefficient [20], and C is the Auger recombination 

coefficient. The spontaneous recombination rate BN}, which is commonly used in the 

literature, corresponds to the non-degenerate carrier ensemble. In some cases linear 

dependence on N c is used [75]. In Appendix C (p. 158) we show that the spontaneous 

radiative recombination is proportional to N } for non-degenerate and to Nc for 

degenerate carrier ensemble. In the semiconductor laser the carrier ensemble is 
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degenerate, therefore we use the spontaneous recombination term which is proportional to 

the carrier density. An approximate expression that works for both degenerate and non-

degenerate semiconductors is considered in Appendix C (p. 158), where the spontaneous 

radiative recombination is discussed in detail and an expression for spontaneous 

recombination rate is derived for both degenerate and non-degenerate carrier ensembles. 

If we ignore nonradiative recombination processes and Auger recombination (which is 

justified for moderate carrier densities Ne~ 10 19-1020 cm- 1) then "C. is equal to the 

spontaneous lifetime of carriers "Cs . 

2.2. Free Carrier Absorption 

Free-carrier absorption is an intraband indirect transition of carriers (the energy 

change is accompanied by momentum change). From energy and momentum 

conservation laws it follows that free carriers cannot absorb photons without assistance of 

phonons or impurities [76, 77]. 

Formally, we define the FCA coefficient in the same way as the interband (gain) 

absorption coefficient and it is related to the time rate of change of the photon density as 

follows: 

(2.18) 

In the classical description the free-carrier absorption in semiconductors is treated 

in the same manner as in the theory of metals, i.e. on the basis of the Drude model. The 

only difference is that in semiconductors the free carrier concentration is several orders of 

magnitude less than in metals. 
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The free-carrier absorption coefficient calculated classically is given by [76- 79] 

(2.19) 

where e is the elementary charge, m.11 is the effective mass, and 'tm is the momentum 

relaxation time. In the low-frequency limit ( (J)t m << 1) 

(2.20) 

where cr is the low-frequency conductivity. Since we are interested in near-infrared and 

optical frequencies, i.e. the high frequency limit where (J)t m >> 1, 

(2.21) 

In general, the FCA coefficient has a more complicated frequency dependence 

than Eq.(2.21) suggests, because 't m depends on the character of the involved scattering 

processes [27, 79]. Experimental results suggest that aFcA - ro - p , where the parameter p 

varies between 1.5 and 3 [77, 80]. Note that because aFcA is inversely proportional to 

the effective mass, the holes are less affected by FCA than electrons. 

In our model we use the FCA cross-section as a parameter instead of aFcA. 

Comparing the time rate of change of the photon density that is due to FCA (see 

Eq. (A.17) in Appendix A, p. 154). 

(2.22) 

With the FCA term in (2.1 a) we obtain 
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(2.23) 

Using sFcA as a parameter 1s more appropriate for the problems we are 

considering because in this case the carrier density dependence in the dynamic equations 

is explicit. Indeed, the frequency dependence of s FCA is implied. 

The free-carrier absorption is usually considered as a minor factor in 

semiconductor laser dynamics and is often ignored. However, FCA is one of the major 

heating factors and must be always present in carrier energy density equation, even if one 

can neglect the FCA term in the photon density equation. Finally, there is no FCA term 

in (2.1 b) because it does not affect the carrier density. 

2.3. Two-Photon Absorption 

Most experiments where the gain suppression that is attributed to carrier heating is 

observed use the pump-probe technique [9]. Existence of two overlapping pulses in the 

medium increases the probability of TPA, however, the effect in most experiments is 

usually negligible, and consequently most carrier heating theories do not include TPA as 

a serious heating factor either. Mark and M¢rk used TPA to explain a negative 

component opposing SHB in the absorption region, near the transparency point [ 16]. In 

our theory we are interested in the heating effect of TP A, which could be significant when 

high-energy external pulses are interacting with the medium. 

The TPA coefficient is defined phenomenologically as follows 

(2.24) 
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The quantum mechanical consideration that uses the second-order perturbation 

theory leads to the following expression [81-83) 

Here 

29 7t e4 
K---- 5-.r,;;; C 2 , 

and 

(2.25) 

(2.26) 

(2.27) 

where m0 is the free electron mass (not the effective mass) and Pcv is the interband 

momentum matrix element. K is a material-independent constant equal to 1940 in units 

such that aTPA is measured in cm/GW. E P is a nearly material-independent constant and 

for most direct gap semiconductors is equal to 21 e V [83]. Comparison of the theoretical 

expression with experimental results for aTPA indicates that Eq. (2.25) underestimates 

TPA coefficient several times. To overcome this discrepancy the parameter K is adjusted 

so that aTPA fits the experimental results [83) . 

As was pointed out in the previous section, in our theory it is preferable to work 

with absorption cross-sections rather than coefficients. The TPA cross-section can be 

obtained in the following way. First, we find the time rate of change for photon density at 

a given position using (2.24) and (A.15) (see Appendix A, p. 153) so that 

dN P f \)\1 2 -- = -V g,aTPA \flffiV gr J1-'I p. 
dt 
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Now comparing the right hand side of Eq. (2.28) with the TPA term in Eq. (2.la) 

we obtain 

STPA = (J,TPA V gr' (2.29) 

We note that because of the band-gap energy dependence on carrier density the 

value of aTPA will change with the carrier density, however it does not change 

significantly when the change in carrier density is within two orders of magnitude. We 

have the TP A term in all dynamic equations because TPA affects all dynamical variables. 

2.4. Gain Function 

In this section we consider a simple model for the medium, which allows us to 

obtain an analytical expression for the gain function in order to describe the carrier 

temperature dynamics in a semiconductor laser media. Because a simple analytical 

expression for the gain function is not available we need an approximate analytical 

expression. We are interested in such an approximation because any approximation of 

the gain function that contains the carrier temperatures should intrinsically account for 

gain nonlinearity due to carrier heating. 

In Eq. (1.6) the electron and hole temperatures appear in the gain function through 

the corresponding distribution functions: 

(2.30) 

where £. and Eh are electron and hole energies respectively, and k 8 is the Boltzmann 

constant. By choosing the top of the valence band to be the zero level of energy one can 

write: 
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(2.31 a) 

(2.31 b) 

where m = m.mh/(m. +mh), m.u,) is the electron (hole) effective mass, and £g is the 

bandgap energy. From Eqs. (2.31) we obtain: 

(2.32) 

At zero temperature the highest energy that the carriers can have is equal to their chemical 

potential : 

m,, 
µ. = £g --µ,,. 

m. 
(2.33) 

For non-zero temperatures relation (2.33) is not exact but remains a good approximation 

even at room temperature. Using the above relations we can write the right hand side of 

Eq. (2.30) as 

(2.34) 

Here we note that the argument of the second hyperbolic tangent is much smaller 

than that of the first because 

Tm 
_e _e <<} 
T,, mh (2.35) 

which is guaranteed by the small electron-hole effective mass ratio and provided that the 

hole temperature is close to the electron temperature. The later condition is usually 

satisfied because the electron-hole scattering process ensures energy exchange between 

both carrier ensembles, especially for high carrier densities [84]. Thus, Eq. (2 .30) along 
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with expression (2.34) and provided that condition (2.35) is satisfied indicates that the 

gain function has a much weaker dependence on hole temperature variations than on 

electron temperature variations. As a result we neglect the second term in Eq. (2 .30): 

Therefore, it is sufficient to consider only the electron dynamics . 

Using the previous argument, the gain function (1.6) can be written as 

g = G(ro) tanh(µe - Ee), 
2k8 Te 

(2.36) 

(2.37) 

where Ee is given by Eq. (2.30a). For simplicity of formulas from now on we will drop 

the sub-index e. The frequency-dependent function G(ffi) in (2.37) has the form [24]: 

(2.38) 

However expression (2.37) combined with Eq. (2.38) does not fit experimental 

data for the gain function very well. That is, the square-root dependence on photon 

energy does not fit experimental data. Gain spectra in semiconductors show tail states 

below the band edge that modify the density of states [ 17, 18]. The origin of the 

exponential tail below the conduction band is explained by the fluctuation of the periodic 

potential of the lattice, which is caused by dopants [74, 85-87]. Even in pure 

semiconductors a tail below the conduction band is observed experimentally and is 

known as Urbach's tail [32, 33, 88-90]. The tail states in a pure material, in particular, 

can be explained as a result of exciton-phonon interactions that lead to broadening of 

excition absorption spectrum. As a result the exciton absorption spectrum merges with 

the fundamental absorption edge of the conduction band. The resulting absorption 
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spectrum has an exponential tail below the conduction band. This justifies the 

exponential form of the density of states for electrons in the model for a laser medium 

with an undoped active region. 

In order to have a more realistic form of the gain function that is close to the 

experimental gain spectra in our calculations we use Rivlin's model [47, 48], which 

approximates the electron density of states near the band edge as an exponential. Rivlin's 

model is based on homostructure lasers and describes a diode laser made of a p-n junction 

where the p-type dopants form narrow acceptor levels at the top of the valence band. 

Therefore, the density of states for holes is approximated by a B-function. The density of 

states for electrons is approximated by the exponential function 

p(E) ~ p, exp(:,). (2.39) 

with 

(2.40) 

where ~ is the density of the dopants and E I is an empirical band tail parameter. This 

density of states function merges with the square-root function that is obtained from the 

free-carrier model for a semiconductor material 

( 2m )h 
P,(E)= pf- ~£-Eg. (2.41) 

This model allows to obtain an analytical form for the gain function that works very well 

not only for homostructure lasers but also for heterostructure lasers. 

Currently produced semiconductor lasers, which are made of a bulk material, are 
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heterostructure lasers with an active region that is made of undoped material. For this 

type of laser we can argue that a model similar to Rivlin's model for a semiconductor 

laser medium is also applicable. The o-function-like density of states for holes can be 

justified in the following way. The majority of the optical transitions are taking place 

between the heavy-hole valence band and the conduction band [ 17, 19). Because of the 

large effective mass ratio of the holes and electrons the interband transitions take place 

between a very narrow strip on top of the valence band, which can be approximated by 

the o-function, and a wide region around the bottom of the conduction band, which can be 

approximated by exponential function. Also, this large effective mass ratio means that 

the reduced density of states is almost equal to the electron density of states [20) 

P-1 = p-1 + p-1 ::::: p-1 
r e h e (2.42) 

Thus, in Rivlin's model the gain function has the form of Eq. (2.37) with the 

coefficient 

(2.43) 

for transitions from the band edge including tail states. For transitions from higher 

energy states of the conduction band Eq.(2.38) is used as long as the band can be 

considered as parabolic. For moderate injection rates most of the stimulated transitions 

occur near the band edge where Eq. (2.33) is applied. 

In heterostructure lasers, where the active region is not necessarily doped, the 

parameter l; can also be considered an empirical parameter that can be deduced from 

experimental absorption curves. The material parameters (refractive index, bandgap, etc.) 

depend on the lattice temperature and photon frequency. Although expression (2.43) is 
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derived for homostructure lasers [17, 19], it represents the temperature and frequency 

dependence of the gain function for heterostructure lasers very well. Figure 2.1 (p. 34) 

demonstrates the behavior of the gain (Eqs. (2.37) and (2.43)) as a function of the photon 

energy for a fixed temperature and chemical potential. For current theory the most 

important property of the gain function is its temperature dependence, which is 

represented by Eq. (2.37) very well. This temperature dependence is the same for even 

the low-dimensional laser media. Of course, G(ro) is different for lower dimensional 

structures because it is directly proportional to the reduced density of states. 
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Figure 2.1. The gain coefficient as a function of photon energy for fixed carrier 
temperature and chemical potential calculated from Eq. (2.37). The expression (2.43) is 
used for G(co). The blue and red curves correspond to different temperatures (T,ed> Tb,ue). 
The blue and green curves correspond to different chemical potentials (µblue< µgreen). The 
material parameters used for these calculations correspond to GaAs. 
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2.5. Carrier Energy Density Equation 

The carrier energy density equation is a major extension of the rate equations that 

makes it possible to describe the carrier heating effects. We begin with the definition of 

carrier energy density 

U(µ,T) = I £p(£)/ (£,µ,T)d£ (2.44) 

The similarity of this integral with Eq. (2.14) suggests that the carrier energy 

density equation can be derived along with the carrier density equation using 

semiclassical density-matrix equations (see, for example, Refs [91] and [92] for details). 

The resulting equation is similar to Eq. (2.lc), however, it does not include FCA and 

TPA. We include them phenomenologically. The FCA term is present in the photon 

density equation as an additional loss factor and in the energy density equation as a 

heating factor. There is no FCA term in the carrier density equation because FCA is an 

intraband process and does not change the carrier density. However, there is a TP A term 

in all equations. We ignore intraband (i .e. free-carrier) TPA absorption as a process with 

much smaller probability compared with interband TPA. 

In general, all terms in the carrier energy density equation reflect the influence of 

processes that are included in either the photon density or the energy density equations. 

As a result the equation for carrier energy density can be constructed from ordinary rate 

equations. Below we describe each term in Eq. (2. lc) and its origin. 

We start with the pumping term Q. In general, it is an independent external 

factor. However in some cases it is possible to express this term explicitly via the carrier 

and lattice temperatures, the injection current and other relevant parameters. This 

requires information about the relationship among the dynamical parameters, which is 
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discussed in the next section. We address the issue of the pumping term of Eq. (2. lc) 

separately in Section 2.7 (p. 42). 

The second term in Eq. (2. lc) represents carrier energy loss due to spontaneous 

recombination and is analogous to the spontaneous radiative recombination term in the 

carrier density equation. The influence of spontaneous recombination on carrier 

temperature is a topic of special discussion and is considered in Chapter 4. The third 

term accounts for the energy density relaxation due to interaction with the lattice and is 

assumed to be exponential with a characteristic time 't I determined by carrier-lattice 

interactions. The parameter U 1 is the carrier energy density at the temperature of the 

lattice UL = Uc (µ,T/). 

The time parameter 't I is related to the electron energy relaxation time in the 

band. The highly excited carriers transfer energy to the lattice by phonon emission 

(intravalley electron-phonon scattering). For both acoustic and optical phonons the 

longitudinal modes dominate the transverse modes [78]. The scattering between 

electrons and acoustic phonons is quasi-elastic and leads to mainly electron momentum 

relaxation. This is a result of energy and momentum conservation that restricts the 

scattering by acoustic phonons to long-wavelength modes [27, 77]. The same restriction 

applies to the optical phonons but their energy is higher and as a result the energy 

relaxation is mainly due to longitudinal optical (LO) phonon emission. The energy of LO 

phonons is about 30 me V and highly excited electrons emit many phonons during the 

relaxation. As a result, the energy relaxation time depends on the electron energy. 

Table 2.1 below contains several values for energy relaxation time 'tw due to LO 

phonons with a corresponding number of emitted LO phonons v : 
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£-Eg 

V= MJ. ' 
LO 

(2.45) 

where tzQ LO is the LO phonon energy. The numerical values in Table 2.1 are inferred 

from Fig. 5.3 in Ref. [77] (p.203). 

Table 2.1. Electron Energy Relaxation Times 

V 5 10 15 20 

't LO (sec) 3x10- 13 5x10- 13 6x10- 13 7x10- 13 

The carrier energy density relaxation time 't 1 1s related to the earner energy 

relaxation time through the integral 

J l Ep(E)/(E,µ,T)dE 
'tLO(E) 

't1 J Ep(E)/(E,µ,T)dE 
(2.46) 

In our theory we consider 't I as a constant and use 't 1 = 0.5 ps in numerical simulations. 

The last three terms in Eq. (2. lc) represent the major heating (or cooling) factors, 

namely, single-photon interband transitions, free-carrier absorption (FCA), and two-

photon absorption (TPA). The energy density variation due to these processes is 

intuitively understandable and the signs of each term in Eq. (2. lc) represent either an 

increasing or decreasing effect. However, the energy density increase (decrease) does not 

imply that the carrier temperature also increases (decreases). For example, consider the 

energy change due to interband transitions 1. Carrier absorption leads to an increase in 

1 Throughout this thesis the term interband transitions refers to the single-photon interband transitions) 
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earner energy density and the corresponding term ( - tzrov g,gN P) is positive because 

g < O for the absorbing medium. For an amplifying medium ( g > 0) a decrease in carrier 

energy density occurs, however the carrier temperature increases because only cold 

carriers satisfy the gain condition (Eq. ( 1.10)) and their stimulated recombination leaves 

the carrier ensemble with hot carriers. Thus, photon emission leads to carrier heating. 

Does this mean that the single photon absorption leads to carrier cooling? Absorption 

leads to the increase in carrier density and therefore the energy per particle should 

decrease, however we cannot answer this question unambiguously. The dynamic 

variables have a mutual influence so the effect of each process must be considered along 

with other processes. 

In order to be specific, we correlate carrier heating (cooling) with the carrier 

temperature increase (decrease). The example in the previous paragraph demonstrates 

that the carrier temperature and energy density do not adequately represent each other. In 

order to have a closed set of equations in the system Eqs. (2.1) we must either replace 

Eq. (2.1 c) by the carrier temperature equation or supplement these equations with a 

relationship between dynamic variables. 

The form of the gain function Eq. (2.37) suggests that we need relationships 

between the carrier density and the chemical potential, and between the carrier 

temperature and carrier energy density. In fact, we have five dynamic variables: N , p 

N c, U, µ, and T; any pair of functions taken from the different sets { N c , µ} and { U, T} 

along with NP may be chosen as a set of dynamical variables for Eqs. (2.1 ). 

The carrier temperature equation is derived from a mathematical manipulation of 
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the earner density and earner energy density equations. Using the differential 

relationship between functions it can be written formally as : 

dT -(au aNC _ au aNC Y'(aNC du_ au dNC 1_ 
dt aT aµ aµ aT ) aµ dt aµ dt ) 

(2.47) 

The carrier temperature equation obtained in this way still requires the knowledge of the 

functional relationship between the dynamic variables and does not simplify the problem. 

Note, that the carrier temperature equation has a rather simple form when the electron 

ensemble is assumed to obey the Boltzmann statistics [22, 23]. This assumption is valid 

for low carrier densities. The problems we are interested in deal with a carrier ensemble 

that obeys Fermi statistics. If analytical expressions of the functions N c = N c (µ, T) and 

Uc = Uc (µ,T) are known then it is more convenient to work with the carrier density 

equation which is mathematically simpler and intuitively clearer. 

2.6. Relations Among Dynamic Variables 

The system of equations (2.1) needs to be supplemented by expressions that 

describe the relationships among the dynamic variables. The mathematical difficulty here 

is associated with the integrals that contain the Fermi function. In general, these integrals 

do not have analytical solutions. Nevertheless, certain assumptions allow for the 

derivation of satisfactory approximate expressions. Below we discuss two methods for 

calculation of the analytical expressions for Nc (µ,T) and Uc (µ,T). 

In Appendix D (p. 162) we derive an expression that approximates integrals of the 

following form 
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= 

I= f p(E)f (£)d£, (2.48) 
0 

where p(E) is an arbitrary differentiable function and f(E) is the Fermi-Dirac 

distribution function. This method of calculation uses the Taylor expansion of p(E). By 

applying the approximate expression obtained in Appendix D (p. 162) we can calculate 

the integrals (2.14) and (2.44) for both the parabolic band edge and the exponential band 

tail models. Details of these calculations can be found in Appendix E (p. 166). 

The second method of calculation uses the following approximation for the 

Fermi-Dirac function: 

-{1-0.Sexp[(c - µ)/k8 T ], 
f (£,µ,T) - [( )/ ] 0.5exp µ-£ k 8 T , 

£ :::;µ 

£>µ 
(2.49) 

This approximation is more accurate for low temperatures and exact at zero temperature. 

Figure 2.2 (p. 41) demonstrates the degree of accuracy of the chosen approximation. The 

expressions for Nc (µ,T) and Uc (µ,T) based on this approximation are derived in 

Appendix F (p. 169). 

The degree of accuracy for the expressions that use both methods mentioned 

above is about the same. Mathematically, the first method manipulates the density of 

states while the second method manipulates the distribution function . In both cases the 

resulting expressions are more accurate for low temperatures. The expressions that are 

obtained and based on approximation (2.49) are particularly simple. An advantage of 

using Eq. (2.49) is the possibility of calculating the integrals with a finite upper limit, 

which becomes necessary when the pumping terms are calculated (see Section 2.7, p. 42) . 
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Figure 2.2. Exact and approximate Fermi functions at 70K (solid lines) and 300K 
(dashed lines). The exact Fermi functions (blue lines) are plotted according to Eq.(D.2) 
(p. 162); the approximate Fermi functions (red lines) are plotted according to (Eq.(2.49)). 

The model for the medium that we choose for our theory (see Section 2.4) uses 

the conduction band with an exponential band tail. The expressions for this case are: 

N P,E, ( µ) 
c = 1 - 8 2 exp ~ ' (2.50) 

{ 1-38 2
} 

U=Nc µ-E, 1-82 ' (2.51) 

where we introduce the dimensionless temperature 8 = k 8 T,,/E, . From these expressions 

one can calculate the chemical potential, carrier temperature and hence the gain 

coefficient at any given moment, thus making it possible to follow the behavior of all the 

dynamic variables. 
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2. 7. The logic behind the pumping term 

Having analytical expressions for Nc (µ,T) and Uc (µ,T) clarifies the meaning of 

the pumping term Qin Eq. (2. lc). The pumping term in this equation has the meaning of 

an effective energy flow into the active region due to the carrier injection. In general, Q 

is an independent parameter of the problem. However, it can be expressed explicitly via 

other dynamical variables; in particular, one can express Q in terms of the effective 

pumping rate J. This can be done using the fact that Q is related to the pumping term in 

carrier density equation J in the same way as U is related to Ne. 

We consider the carrier injection as an effective carrier density decay away from 

the adjacent regions into the active region: 

(2.52) 

where 

~ 

N 1 = Jp(E)/(E,µ1 ,T1 )dE. (2.53) 
0 

The chemical potential µ 1 must be larger than the chemical potential inside the 

active region in order to ensure the current flow through the diode (semiconductor laser is 

a forward biased diode). We assume that the carrier temperature in Eq. (2.53) is equal to 

that of the lattice because the injected carriers before reaching the active region interact 

with the lattice long enough to reach a common temperature. 

Using the results of Appendix F, namely Eq. (F.20) (p. 173) we obtain 

(2.54) 
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Similarly for the pumping term in Eq.(2. lc) we can write 

(2.55) 

This integral is calculated in the same way as U in Appendix F (p. 169) and the result is 

(2 .56) 

Using Eq. (2.54) we obtain an expression for µ 1 : 

(2.57) 

and thus obtain an expression for Q in terms of known parameters and the effective 

injection rate: 

(2 .58) 

Expression (2.58) is obtained assuming that there are no barriers to separate the 

active region from adjacent regions . Now suppose that before entering the active region 

the carriers must overcome an energy barrier of height £b . In this case the injection rate 

with a barrier J b can be written as 

(2.59) 

Similarly, 

(2.60) 

Thus, the barrier lowers the pumping rate; however, we note that mainly cold (low 
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energy) carriers are blocked by the barrier, and therefore mainly hot carriers are injected 

into the active region. As a result the carrier temperature in the active region should 

increase. This is another heating mechanism: injection heating [66] . 

The integrals in Eqs. (2.59) and (2.60) can be handled using the approximate 

Fermi function (2.49) and by applying the same technique as in Appendix F (p. 169). The 

details of the calculation can be found in Appendix G (p. 176) and the resulting 

expressions for the barriers that are higher than µ 1 are obtained from Eqs. (G.25) and 

(G.28) (pp. 183 and 185): 

(2.61) 

(2.62) 

For low barriers Eb < µ 1 and using Eqs. (G.26) and (G.30) of Appendix G (pp. 184, 187) 

we have 

(2.63) 

(2.64) 

where ii denotes the expression in the figure brackets in Eq. (G.29) (p. 186). We note, 

however, that when the barrier is lower than the Fermi energy it is usually neglected. The 

influence of the barrier is affected by the pumping rate. The above expressions for the 

pumping terms do not include tunneling effects. Our main interest is in laser devices 

where the pumping rate is high enough to overcome barriers, which is accomplished by 

increasing bias voltage across the p-n junction. 
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2.8. Limitations and Advantages of the Model 

In this section we summarize the usefulness and limitations of our model which is 

created to describe carrier temperature and gain dynamics in semiconductor laser media. 

Our model is based on ordinary rate equations for a semiconductor laser extended to 

include carrier energy density. Thus, the model shares all the useful characteristics of the 

rate equations and at the same time their limitations. The advantage of the rate equations 

compared to microscopic theories is their clarity and simplicity. Despite limited accuracy 

the rate equations remain a versatile tool in the investigation of the dynamical behavior of 

semiconductor laser devices. An important advantage of the model is its simple structure 

that allows easy comparison of different heating effects. This can be done by artificially 

increasing, decreasing, or even shutting down a particular heating mechanism. 

The model does not include SHB, but it can be incorporated into the theory rather 

easily, if necessary. if we modify the gain function (2.37) by the nonlinear factor 

( 1 + sN P r0 as in Eq. ( 1.3), where s is the gain suppression coefficient due to spectral

hole burning. This demonstrates the flexibility of the model that easily modifies to 

accommodate more rigorous requirements of a particular problem where particular effects 

are important. 

The main goal of this model is description of the mutual influence of the gain and 

carrier temperature; the inclusion of other effects makes the nature of interaction less 

clear. On a time scale longer than 0.1-0.2 ps the influence of SHB is negligible compared 

with the carrier heating effect. For shorter time scales SHB becomes important and the 

model becomes inadequate. For longer time scales, in principle, there is no limitation, 

however, the carrier heating effects are only important on the picosecond time scale. 
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The gain function used in this theory includes only the electron temperature. The 

hole temperature is not considered because of condition (2.35), i.e. the electron 

temperature is not several times higher than the hole temperature. With very high-energy 

pulses this condition may no longer be satisfied and the rate equations themselves may no 

longer be adequate for even qualitative theoretical description. 

The analytical expressions that we have derived are accurate for low temperatures, 

T, < £ 1 /k 8 . This limitation is highlighted mathematically by terms proportional to 

( 1- 8) in the denominators of certain expressions. For a band tail parameter £ 1 -20 me V 

they are accurate for temperatures up to -230 K. For higher temperatures the integral 

expressions (2.14) and (2.44) should be used instead of the corresponding analytical 

approximations. The integrals with Fermi functions allow approximate analytical 

solutions only in the low temperature limit. This imposes another limitation on the 

external pulse energy because high-energy pulses can heat the electrons to very high 

temperatures. Here we note that in the high temperature limit the electron system can be 

described by the Boltzmann distribution function and a different model needs to be 

applied for this case. 

Our analysis of gam and temperature dynamics is based on the solution of 

Eqs. (2.1) using Eqs. (2.37) and (2.43); the carrier temperature and chemical potential are 

found using Eqs. (2.50) and (2.51 ). For the numerical procedures Eqs. (2.1) are converted 

to dimensionless form (see Appendix H, p. 188) and solved using the the 4th order Runge

Kutta method [93]. The parameters for calculations are chosen in such a way that during 

the calculations the values of all dynamic variables remain within the limits of 

applicability of the model to ensure validity of the analytical expressions. 
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3. CARRIER TEMPERATURE DYNAMICS IN STEADY STATE 
LASER OPERATION 

The nonlinearity of the gam that is caused by earner heating is observed in 

experiments with short (picosecond and femtosecond) pulses suggesting that sudden 

changes in photon density play a significant role in the dynamics of semiconductor lasers. 

Thus it is of interest to investigate the relationship between the carrier temperature and 

photon density in the medium. A diode laser in a cw operation regime is a convenient 

system to study this relationship because the gain and the photon density are constant. 

The photon density can also be controlled by carrier injection rate, thus making it possible 

to examine the relationship between the carrier temperature and photon density. 

3.1. Steady State Gain and Carrier Temperature 

The steady-state laser operation is maintained by a constant injection rate that is 

high enough to compensate for the energy losses. Therefore, the gain coefficient in a cw 

laser is constant and given by 

g =J_(a. +-1 ln(-1 JJ. 
0 r · 2L RR I 2 

(3 .1) 

This expression is obtained from the steady-state solution of Eq. (2.1 a), ignoring 

TP A and including FCA in the internal losses. Sub index O is used for the steady-state 

values in this chapter. 

The steady-state value for the carrier temperature can be obtained from Eq. (2.37) 
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(3 .2) 

where £. is given by Eq. (2.3 la) and is approximately equal to the photon energy nro. 

The steady-state value of the chemical potential is obtained from Eq. (2.1 b) using 

Eq. (2.50), and is given by 

(3.3) 

The transcendent form of Eq. (3.2) does not lead to a clear analytical expression 

for relationship between the carrier temperature and photon density. Therefore we use 

numerical calculations to study the behavior of the carrier temperature in the cw diode 

laser. 

3.2. Steady-State Behavior 

We choose an InGaAsP diode laser that is operating on a single mode for 

numerical calculations. The parameter values used in these calculations are presented in 

Table 3.1 (p. 49). The material characteristics are calculated for an In 1_xGaxAsyP1_y 

quaternary alloy with y = 0.55 and x = 0.25 using the following expressions found in Ref. 

[ 18]: 

£g = l.35-0.72y +0.12y 2 ' 

and 

Yi 
n = {o - y )[8.4x + 9.6(1 - x)] + y[13.1x + 12.2(1 - x)]} 2 . 
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Table 3.1. Parameter Values for lno.1sGao.2sAso.ssPo.4s Diode Laser 

Parameter Symbol Value 

Cavity length L 200µm 

Active region width Lw 2µm 

Active layer thickness Lt 0.2µm 

Facet reflectivity R 0.32 

Confinement factor r 0.3 

Spontaneous emission factor ~sp 
10-S 

Refractive index n 3.319 

Group velocity index ng, 4 

Band gap energy £g 0.99 eV 

Band tailing parameter £, 20meV 

Dopant concentration ~ 10 18 cm-3 

Energy density relaxation time 't I 5x10- 13 sec 

Spontaneous recombination time 'ts 2x10-9 sec 

Free carrier absorption cross-section SFCA 5x10- 18 cm2 

Photon energy fl(J) 0.989 eV 

Internal losses (without FCA loss) a; 30cm- 1 

Two-photon absorption coefficient (J,TPA 35 cm/GW 

Lattice temperature Tt 70K 
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The photon lifetime in the cavity is calculated using expression (2.3). The laser 

facets are assumed identical R1 = R2 = R and we assume that there is no barrier between 

the active and adjacent regions. This means that the temperature of the pumped carriers 

is equal to the lattice temperature; i.e., there is no injection heating. The lattice 

temperature is maintained constant (e.g., by a cryogenic bath) at 70 K. The other 

parameter values in Table 3.1 (p. 49) are either calculated using the corresponding 

expressions from Chapter 2 or taken from the literature, mainly from Ref. [18) . The 

threshold current density is obtained from numerical calculations. 

The initial conditions for Eqs. (2.1) are taken arbitrarily because for ordinary 

differential equations the final solution is independent of its initial conditions. We 

choose the lattice temperature as the initial condition for the carrier temperature in each 

numerical experiment. The initial value of carrier density is l.08x1018 cm-3, a value 

slightly below the carrier density at threshold. This particular value is chosen to avoid the 

collection of an unnecessarily large amount of numerical data when the laser is below 

threshold. From the initial values of T and N c we calculate the initial conditions for the 

chemical potential and carrier energy density. The equations are solved using the 4th 

order Runge-Kutta method [93] . 

The laser threshold for the chosen parameter values is reached with an effective 

injection current (1Jinl) approximately equal to 7.1 mA. This value is chosen as a 

reference injection current. Calculations are done for injection rates 1 %, 10%, twice, 10 

times, and 25 times above the threshold. Our focus of interest is in the carrier 

temperature behavior (the gain coefficient is constant) and its relationship to the photon 

density. 
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Figures 3 .1-3.4 (pp. 52 - 55) show the evolution of three dynamical variables N,,, 

N c , and T during a typical semiconductor laser turn-on transition through the relaxation 

oscillations to cw behavior. We do not include the external signal in these calculations 

(Npx = 0). The results for the photon density and carrier density steady-state behavior are 

similar to those of a laser without including the earner temperature dynamics (i.e. 

assuming instantaneous temperature relaxation). This indicates that the earner 

temperature has a little impact on steady-state laser output power. Nevertheless, the 

carrier temperature behavior is of interest because it provides information about the 

relationship between carrier ensemble and photon density in the medium. 

In the cw regime of laser operation, the carrier temperature is affected, in general, 

by processes such as stimulated emission, free carrier absorption, two-photon absorption, 

spontaneous recombination, carrier-lattice interactions, and carrier injection. Other minor 

effects are disregarded in this analysis (e.g., nonradiative recombination). Overall , these 

processes keep the carrier temperature above the lattice temperature, even before the laser 

starts to produce photons. There is an apparent difference in carrier temperature behavior 

before and after the threshold is reached. The carrier temperature behavior before 

threshold is considered in Section 3.3. 

The qualitative behavior of the carrier temperature mimics the behavior of the 

photon density when the laser is in a cw regime. As one can see in Figs. 3.1-3.4 (pp. 52 -

55), the temperature difference between the carriers and the lattice in the cw limit 

becomes noticeable at high pumping rates. 
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Figure 3.1. Laser transition to cw behavior for pumping at 1 % above the threshold rate: 
(a) photon density, (b) carrier density, and (c) carrier temperature. 
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Figure 3.2. Laser transition to cw behavior for pumping at 10% above the threshold rate: 
(a) photon density, (b) carrier density, and (c) carrier temperature. 
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(a) photon density, (b) carrier density, and (c) carrier temperature. 
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However, we find that this temperature difference has negligible influence on the output 

power of the laser. In fact, when we compare the photon densities that are calculated in 

the model without the temperature dynamics we obtain only a quarter percent difference 

even when the pumping current is 25 times threshold. Numerical values are presented in 

Table 3.2 for the carrier and lattice temperature differences (T0 -T1 ), the photon densities 

that are calculated with and without carrier temperature dynamics, and the percent 

difference between them when different pumping rates are used. 

Table 3.2. Steady State Values For Photon Density and Carrier Temperature 
Deviation from the Lattice Temperature 

Pumping Rate (J) TO - Tl N po (To* T1) Npo(To=T1) % diff. 

1.0111h 0.0021 K 0.73544xl013 cm-3 0.73540x1013 cm-3 0.005 % 

l. IOJ1h 0.0232 K 0.79196x1014 cm-3 0.79252x1014 cm-3 0.041 % 

2.00],h 0.2579 K 0.79759x1015 cm-3 0.79818x l015 cm-3 0.074 % 

10.0J,h 2.9842 K 0.71780xl016 cm-3 0.71892xl016 cm-3 0.156 % 

25.0lth 8.6356 K 1.91232x 1016 cm-3 1.91724xl016 cm-3 0.257 % 

In Fig. 3.5 (p. 58) we compare the laser behavior with and without the carrier 

temperature dynamics for a pumping rate twice the threshold value. Apparently, when 

the carrier temperature dynamics is taken into account, the transient oscillations damp 

faster. Thus, the carrier temperature has little effect on the laser performance as a light 

source but it does affect the laser response to external perturbations such as the injection 

modulation or external pulses. The modulation response of the laser with carrier 
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temperature dynamics is considered in Refs. [64, 94]. We will consider the cw laser 

response to external pulses in Section 3.4. 

Calculations show that except for FCA all other earner heating effects have 

negligible influence on the carrier temperature and photon density. In Table 3.3 we 

present data for '1.T = T0 -T1 and N po that is calculated for J=2]1h and where FCA, TP A, 

and the spontaneous (radiative) recombination are separately excluded from the 

equations. This is done by setting the corresponding coefficient ( s FcA , ~ sp , or aTPA) to 

zero. In addition, in Fig. 3.5 (p. 58) we present the laser dynamics for J=2J1h with FCA 

excluded from the model equations. These results once again show that the carrier 

heating processes have little impact on cw laser operation. Thus, when a cw laser is 

considered without an external signal one can neglect the carrier heating effects (usually 

in semiconductor laser rate equations FCA is accounted for by including it in the internal 

losses). 

Table 3.3. Influence of Carrier Heating Processes on Steady State Values 
For Photon Density and Carrier Temperature Deviation from 

the Lattice Temperature for 1=2.lth 

Process '1.T Npo Npo % diff. 

(Process excluded) (Process included) 

Spontaneous 2.4xl0-5 K 7.9758 (xl014 cm-3) 7.9759 (xl0 14 cm-3) 0.001% 
Emission 

Two-Photon 1.3x10-5 K 7.9776(x10 14 cm-3) 7.9759(x10 14 cm-3) 0.021 % 
Absorption 

Free-Carrier 0.21457 K 8.494l(xl014 cm-3) 7.9759(xl014 cm-3) 6.293% 
Absorption 
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3.3. Carrier Temperature Behavior Below the Threshold 

The carrier temperature behavior in the time interval between the initiation of the 

pumping and the laser emission (below threshold interval) is determined mainly by 

spontaneous recombination, carrier-lattice interactions and pumping rate. For low 

pumping rates the behavior of the carrier temperature is almost constant; however, in all 

cases the carrier temperature behavior is qualitatively the same in the interval below 

threshold and is best represented by Fig. 3.4c (p. 55; note the time scale differences in 

graphs). For comparison, in Fig. 3.6 (p. 60) we present the enhanced-scale graphs for 

carrier and lattice temperature difference T -T1 for pumping rates that are I%, I 0% and 

twice above the threshold value. The qualitative behavior is almost identical for all 

pumping rates. Initially the temperature increases to a value that is higher than that of the 

lattice. The time scale of this behavior is about a picosecond, close to the carrier energy 

relaxation time (0.5 ps). Then a longer period of gradual decrease follows until the laser 

reaches the threshold. The time interval required to reach the threshold is shorter for high 

pumping rates (see Figs. 3.1-3.5, pp. 52 - 55, 58). 

The behavior described above needs interpretation. First we consider initial fast 

increase of the carrier temperature. Note that we start our numerical calculations with a 

fixed value of the carrier density, which we assume was already pumped into the system. 

Thus, mathematically, the carrier and carrier energy densities experience a sudden jump. 

From the other side, by setting the initial carrier temperature equal to the lattice 

temperature we ignored the fact that the pumping which is accompanied by FCA, TPA 

and spontaneous recombination processes affects the carrier temperature and, therefore, 

the temperature of carrier ensemble is in fact different from the lattice temperature. 
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Therefore, when we start numerical calculations the initial carrier temperature 

(arbitrarily chosen to be equal to the lattice temperature) immediately relaxes to its true 

value. Of course, the model equations do not allow immediate relaxation; the fastest 

relaxation time is the energy density relaxation time. Thus, the initial increase in the 

carrier temperature is a result of the arbitrary choice of the initial conditions. Note that 

one cannot start from zero values for carrier density because then it is meaningless to use 

a statistical model for carriers in the conduction band. 

The observed behavior remains qualitatively the same for calculations that were 

carried out with different initial conditions. However, it should be pointed out that even 

in experiments when the carrier injection is applied (bias voltage is turned on) the carrier 

ensemble is disturbed and a certain time is required to relax. The carrier temperature 

after relaxation is not necessarily the same but is determined by the corresponding 

relationships with all other ensemble characteristics that might be changed by the carrier 

injection. Thus, it is plausible that the carrier temperature initially may experience fast 

changes when pumping is turned on and, therefore, the behavior described above is not 

entirely a mathematical artifact (numerical turn-on effect). 

Now we discuss the slow decrease in carrier temperature that follows its initial 

fast behavior. This part of the graph can be approximated by a linear function ; however, 

the slopes are larger for high pumping rates. The numerical values for the slopes that are 

calculated for different pumping rates are presented below in Table 3.4. In all cases the 

slopes are negligibly small but noticeably different from each other. The latter fact 

indicates that the overall temperature decrease is related to the rate of carrier density 

increase. 
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Table 3.4. Slopes for Linearly Decreasing Part of Temperature Graphs 

Pumping Rate (]) 1.0lJih l. lOJrh 2.00Jrh 10.0lth 25 .0Jrh 

Slope -4.90x10-8 -6.26x10-7 -5.43x10-3 -6.49x10-3 -5.19x10-2 

Increasing the number of carriers leads to less energy per particle and hence a 

lower temperature of carrier ensemble. The carrier density is increasing linearly (see 

Figs. 3. lc-3.5c, pp. 52 - 55, 58), however the relationship between carrier temperature 

and inverse carrier density is not linear. The functional relationship between T and N c 

can be obtained by rearranging Eq. (2.51 ): 

(3 .6) 

where we introduced the dimensionless parameter 

(3.7) 

These expressions show that the temperature is a complicated function of U, Ne, 

and µ and, therefore, the temperature behavior is not determined solely by the carrier 

density behavior. 

For comparison we consider the Boltzmann ensemble of carriers where 

(3.8) 

and an increase in carrier density is accompanied by a proportional increase in energy 

density so that the temperature remains the same. 

62 



The situation is quite different for the Fermi ensemble. From Eq. (3.7) it follows 

that increasing N c leads to decreasing z, hence, increasing the value of the fraction under 

the square root in Eq. (3.6) and ultimately to temperature decrease. Simultaneous 

changes (increase for both parameters) in U and µ ensures a slow linear decrease of 

carrier temperature while the laser is pumped and no substantial number of photons are 

generated in the medium. This, however, does not mean that carrier injection is a cooling 

factor. The temperature of the carriers remains higher than the lattice temperature at all 

times. When the laser threshold is reached the number of photons generated becomes 

large enough so that the absorption and emission processes along with FCA and TP A lead 

to a carrier temperature increase. 

It is of interest to investigate the separate influence of FCA, TP A, and 

spontaneous (radiative) recombination. The influence of FCA in the steady state regime 

is demonstrated in Fig. 3.5 (p. 58) and as we can see it is a major heating factor. In 

contrast, as we pointed out earlier, TPA has little influence. Indeed, corresponding terms 

in Eqs. (2.1) have similar weights when NP - N c, i.e. for very high pumping rates. 

However, it is more appropriate to examine the effect of FCA and TPA in a passive 

medium with an external signal for the following reasons: Both FCA and TPA are 

proportional to the photon density and one needs a large number of photons to enhance 

their influence on carrier temperature for investigation. It is advantageous to use the 

photons of the external signal since the photon generation itself in the medium is an 

effective heating factor because mainly cold carriers participate in laser action. Carrier 

heating due to photon generation is demonstrated in Fig. 3.5 (p. 58) where one of the 

curves is obtained without FCA. There is noticeable heating even without FCA. We 
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consider the relative influence of FCA and TPA in detail in Chapter 6. 

Calculations for the cw laser show that the influence of spontaneous radiative 

recombination on the carrier temperature and the steady-state laser operation is negligible. 

When FCA and TPA are present the spontaneous emission can always be neglected. 

There is a very small decrease in carrier temperature when the spontaneous term in 

Eq. (2. la) is excluded. However, it is of interest to study how spontaneous recombination 

affects the carrier temperature. This problem is discussed in the next chapter in detail. 

3.4. Laser Response to External Pulses 

In order to examine the response of the laser to photon density perturbations by an 

external signal, we apply resonant optical pulses. In Fig. 3.7 (p. 66) we demonstrate the 

laser response to Gaussian pulses with (a) 10, (b) 25 and (c) 50 ps duration (FWHM). 

The external signals are normalized in such a way that all pulses carry the same energy, 

&x =0.1 pJ (see Chapter 2 for description of the external pulses). The laser is pumped at 

a rate twice the threshold value. The photon densities are plotted as a function of time, 

along with the results of the model assuming equal lattice and carrier temperatures (i.e. 

assuming instantaneous temperature relaxation). 

behavior is presented in Fig. 3.8. (p. 67) 

The corresponding temperature 

When the 50 ps pulse is applied, the laser response is virtually the same for the 

model inclusive of temperature dynamics as for the one without it; however, the response 

to the shorter pulses is different. The oscillations damp faster when the carrier 

temperature dynamics is taken into account, and this difference becomes more noticeable 

for shorter signal duration. Thus, the carrier temperature dynamics plays a significant 
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4. TEMPERATURE DYNAMICS OF A RECOMBINING 
FREE-CARRIER ENSEMBLE 

In this section we consider the dynamical behavior of the temperature of an 

ensemble of particles during a radiative recombination process. The more general 

physical system that is relevant here can be described as a system of particles and 

antiparticles that can annihilate each other. In particular, we are interested in 

semiconductor media where electron-hole pairs recombine to produce photons. This 

process of annihilation will change the statistical characteristics of the carrier ensemble 

and, therefore, influence other associated processes such as interband transition 

probabilities. Thus, it is important to know how the carrier density (the chemical 

potential) and carrier energy density (carrier temperature) are changing due to radiative 

recombination in degenerate (Fermi ensemble) and non-degenerate (Boltzmann 

ensemble) semiconductors. 

The radiative recombination process is accompanied by other processes that may 

change the statistical properties of the system under consideration. For instance, the 

photons produced during the recombination can be re-absorbed by the free-carrier 

absorption process. In addition, the electrons and holes can be trapped by impurities thus 

decreasing the density of carriers. This and other processes further complicate an already 

complicated analysis. For example, the recombination rate can be a function of several 

factors. In the analysis below we shall include one such factor, namely we shall consider 

radiative recombination taking into account the possibility that the radiation 
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recombination rate is a function of the carrier energy. All other processes that affect the 

statistical properties of the carriers simultaneously with the radiative recombination are 

not considered. Therefore, all the results of this analysis are exclusively due to the 

radiative recombination process. 

4.1. Temperature Relaxation Rate 

The temperature of the ensemble influences the behavior of both the particle 

density (M) and energy density (Ui), therefore the temperature dynamics can be deduced 

from the behavior of Ni and Ui, The sub-index i is a common index that refers to the 

electrons (i = e) and holes (i = h) . Because the reasoning below is similar for electrons 

and holes we shall drop the sub-index for simplicity. The equations that describe the 

evolution of particle density can be written in the following way: 

dN = 

-d = -J w(E)p(E)f (E,µ,T)dE, 
t 0 

(4.1) 

where w(E) is the probability of recombination of particles with energy E, J (E,µ,T) is 

the distribution function for particles, T is the temperature, µ is the chemical potential, 

and p(E) is the density of states. Using temperature in the expression above means that 

we assume that a thermal equilibrium of the ensemble is established very fast so that the 

recombination process does not create a non-equilibrium ensemble. The spontaneous 

recombination time 'ts usually is on the order of few nanoseconds. The carrier ensemble 

reaches the quasi-equilibrium condition in less than I 00 femtoseconds. Thus, our 

assumption is fairly reasonable. 
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The energy density equation has the following form: 

dU = 

- = -J w(E)(Ec + E )p(E)f(E)dE. 
dt O 

(4.2) 

The left-hand side of this expression can also be written in terms of its partial derivatives: 

du au dN au dT 
----+-
dt - aN dt aT dt · (4.3) 

This expression allows us to write an equation for the temperature evolution during the 

recombination process 

dT (auy 1
= (au 1 dt = aT) I w(E) aN -Eg -E f(E)f(E,µ,T)dE. (4.4) 

Further analysis of this express10n reqmres more details of the system under 

consideration. We need explicit expressions for the density of states and the distribution 

function. Also we must specify the structure of the function w(E) and obtain expressions 

for N and U. 

4.2. Energy Dependent Recombination Rate 

For the probability of recombination w(E) we assume the following structural 

form 

1 (Eg + EJq 
w(E) =- , 

'ts E g 

(4.5) 

where 'ts is an energy independent constant, E c is the bandgap energy, E is the carrier 

energy measured from the band edge, and q is the parameter specified below. Equation 

(4.5) suggests that 't 5 is the recombination rate from the band edge: 't; 1 = w(O). The 

specific form of the function (4.5) is chosen based on the fact that the probability for 
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spontaneous recombination in free space is proportional to the squared matrix element of 

the dipole moment and cubed frequency of emitted photon . The parameter q accounts for 

any differences that may exist between spontaneous recombination processes m 

semiconductors and free space. If the matrix element of the dipole moment 1s 

independent of frequency then q = 3. In general, however the parameter q t:3. For 

example, calculation of the dipole moment in a quantum-well structure gives the 

frequency dependence ro-2 [98] (implying q = 1). We do not exclude the possibility of 

other functional dependencies in different cases; therefore, for the sake of generality, 

throughout this chapter we shall keep q as a parameter. 

Using the binomial series we can write a useful simple expression for 

recombination rate 

w(E) = _l (1 +~)q ::: _l [1 +q~] 
'ts £g 'ts £g 

(4.6) 

Here we used the fact that the thermal energy of carriers is much smaller than the band 

gap energy £ << £ g. 

4.3. Boltzmann Ensemble (Nondegenerate Semiconductor) 

In nondegenerate semiconductors the carrier ensemble has characteristics of the 

Boltzmann ensemble. The corresponding distribution function is given by 

(µ-EJ 
/(£)=exp kBT (4.7) 

and the relationship between the carrier density and carrier energy density is 
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From this expression it follows that 

au 3 
-=-k T aN 2 B ' 

and 

au 3 
-=-Nk . ar 2 B 

Using these expressions and (4.6) in the integral (4.4) we obtain 

- = --- 1 + q- -k 8 T - £ p O .J£ f ( £ )d£ . dT 2 1 s= ( E J( 3 ) 
dt 3NkB 't , 0 Eg 2 

This integral can be simplified as : 

dT 2 1 { 3 q 3 q s= 2 c } -=--- -Nk8 T-U+--Uk 8T-- £ p0 vE/(E)dE = 
dt 3Nk B 't s 2 £ g 2 £ g 0 

or 

(4 .8) 

(4.9) 

(4.10) 

( 4.11) 

(4.12) 

As we see the change in temperature due to spontaneous recombination depends on the 

sign of q. The temperature decreases if q>O, increases if q<O, and remains the same if 

q=O. This behavior has a simple interpretation. For positive q the hotter particles 

recombine faster than the colder ones, therefore the ensemble is cooled. For negative q 

the situation is reversed. At q =0 the recombination rate is the same for all particles and 

the temperature of the ensemble remains unchanged. 
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4.4. Fermi Ensemble (Degenerate Semiconductor) 

We shall consider pure and heavily doped materials separately because they have 

different relationships between carrier density and carrier energy density. 

Case (a): Parabolic band approximation 

For degenerate semiconductors in the parabolic band approximation we have (see 

Appendix E for derivation, p. 166) 

(4.13) 

2 _ 5/( 5 ) 
V ""'NE +-p µ 12 1 +-x 2 

g 5 ° 2 ' 
( 4.14) 

(1tk8 TJ -where x = 2 µ and µ = µ - E g • From these expressions we have 

(4.15) 

Now, we have 

au u au aµ -=-+--
aN N aµ aN 

where 

and 

au aµ =iN(l-lx 2)[~jl l+x 2/2]""'~-(2-3x 2 J. 
aµ aN s 3 N 1 - x 2 / 6 s µ 6 - x 2 

Therefore, 
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and 

au 12 _ 2 N 
-=-µx -
dT 5 T 

Using expressions (4.16), (4.17), and (4.6) in the integral (4.4) we obtain: 

dT 5T 1 J~ ( E J[ -( 2 + x 2 
; ) c - = _ 2 1 + q - 3µ 6 2 - E p O "\J E f ( E )dE 

dt 12Nµx 'ts O E g - X 

or 

(4.16) 

(4.17) 

dT ST 1 { (2+x 2
)[ q V-NEgl [V-NEg q f~ 2 c ]} -=--- 3 l+ - _ +--- E p ...;E/(E)dE . 

dt 12x 2 'ts 6-x 2 Eg N Nµ EgNµ 0 ° 

(4.18) 

The integral in this expression can be calculated using the results of Appendix D 

(p. 162) (Eq.(D.17) with p(E) = E2p 0 Jr,): 

f~ p 0E2 Jr,dE 2 _11( 35 2) 1 _ 2 (6+35x 2 ) -----::::-p0µ 12 1+-x =-Nµ 2 . 

0 (E-µ) 7 6 7 2+x 
l+exp -k-

BT 

(4.19) 

Substituting this result into ( 4.18) we obtain 

-=--- 3 l+q-- l+2x - -(1+2x )+q-- , dT ST l { (2+x 2
)[ 3 µ ( 2 )] [3 2 µ 1 (6+35x 2

)]} 

dt 12x 2 'ts 6 - X 2 5 E g 5 E g 7 2 + X 2 

which simplifies to 

dT = __'!!____1 {i(2-3x 2
) + µ I_(9-8x 2 

)} 

dt 12x 2 'ts 5 6-x 2 q Eg 35 3+x 2 

or 
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dT = Tµ 2 _1 {( 2 - 3x 2 
) + µ _I ( 9 - 8x 2 J} . 

dt 20 2 'ts 6 - X 2 q £ g 21 3 + X 2 ) 

Thus, 

d0 2 = _I _ 2 {( 2 - 3x 2 
) + µ _1 ( 9 - 8x 2 

)} . 

dt 'tsµ 6-x 2 q £g 21 3+x 2 

For extremely low temperatures (x<<l) this expression become 

d0 2 1 I _ 2 { µ 3} -=--µ l+q--
dt 't s 3 £ g 7 

Case (b ): Exponential Tail Approximation 

In this case we have (see Appendix E, Eq.(E.6), p.166) 

and (Eq. (E.8)) 

where x = (~ k 8 T). The energy density partial differentials are 
2 £, 

au s 2 N 
- = - £ X -ar 3 1 r 

Using these expressions and ( 4.6) in the integral ( 4.4) we obtain: 

dT 3T 1 f= ( £ j( 4x 2 J ( £ J - = 2 1 + q - µ + £ t - - £ Pt exp - f ( £ )d£ 
dt 8N£ 1 X 't s O £ g 3 £ 1 

75 

(4.20) 

(4.21 ) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 



which simplifies to 

dT 3T {[ 4x 
2 

] q [( 4x 
2 J 5~ ( E : ]} -= 2 µ+£ 1 -- N-U+- µ+£ 1 -- U- E2 p 1 exp - f(E)dE , 

dt 8N£ 1x 'ts 3 Eg 3 0 £ 1 

and 

dT 3T 1 
----R 
dt - 8x 2 't s ' 

(4.28) 

where 

(4.29) 

The integral in this expression can be calculated using the results of Appendix D 

(p. 162), Eq. (D.17) with p(E) = E2 p 1 exp[E/£ 1 )): 

and using (4.23) we obtain 

f~ 2 ( E ) [ 2 1 - 2x 2 / 3 2£: l E p1 exp - f(E)dE"" N µ -2µ£, 2 / + 2 / • 

0 E 1 1 + 2x 3 1 + 2x 3 
(4.30) 

For low temperatures we can use an approximate expression ( I + 2x 2 /3 )-1 
"" l - 2x 2 /3 in 

( 4.30) and keep only the terms on the order of x 2 . As a result the expression for R is 

simplified to the following expression 

or 
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(4.31) 

Thus, 

de 2 1 3 2 { q [ ( 16 2 ) ( 2 2 )]} -z--£ 1+- µ 1+-x -2£ l+-x . 
d( 'ts 4 I tg 3 I 3 

(4.32) 

For extremely low temperatures (x<<l) this expression becomes 

de 2 1 3 2 [ q ( )] -,::;--£ l+- µ-2£ . 
dt 't4 1 £ 1 

s g 

(4.33) 

The results for both pure and doped materials are similar and indicate that the 

behavior of the degenerate semiconductor is completely different from that of the 

nondegenerate semiconductor, in which the sign of parameter q determines the carrier 

temperature dynamical behavior due to spontaneous recombination. Here the differential 

of the carrier temperature at low temperatures is a strongly positive value for positive q 

and for q = 0, which indicates that spontaneous radiative recombination leads to heating 

of the carrier ensemble. For negative values of parameter q we still have a recombination 

In the case (a) recombination cooling for negative q is highly unlikely because an 

extremely large value of q is required: µ - £ g << £ g . For semiconductors with tail states 

(case (b)) the recombination cooling is possible if q < -1.042 (an estimate using 

µ = £ g = 1 eV and a band tail parameter £ 1 = 20 meV). 

The effect of recombination heating ( or cooling), however, is not significant when 

a short (much shorter than a nanosecond) external pulse travels through the material. 
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This is a result of the longer time scale of the spontaneous recombination process. In 

general , for short-scale processes the recombination heating can be neglected as well as 

the spontaneous recombination process itself. For longer time scales, the actual change in 

temperature due to recombination heating is small compared to the temperature variations 

due to stimulated processes (see Chapter 3). If no stimulated processes are present, 

spontaneous recombination keeps the temperature of the carriers different from the lattice 

temperature. 
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5. CARRIER HEATING INFLUENCE ON GAIN 

In this chapter we focus on the response of the gain and carrier temperature to an 

external pulse. In our analysis we are interested in dynamics related to carrier heating 

effects, namely local carrier temperature deviation from the lattice temperature and 

corresponding variation of the gain coefficient. Spatial behavior of the carrier 

temperature is irrelevant here since the external pulse front always confronts a carrier 

ensemble unperturbed by the pulse itself. In addition, the earner ensemble is not 

influenced by carriers from adjacent regions already heated by the pulse because the pulse 

travels much faster than the heat transfers. Thus, unless a pump-probe experiment is 

numerically simulated or pulse reshaping is considered, the short samples (short enough 

to exclude propagation effects such as pulse reshaping) are convenient for investigation of 

carrier temperature and gain coefficient dynamics because spatial effects do not 

complicate the analysis. 

Therefore we choose for our investigation a 1-µm thin sample that is assumed to 

be antireflection-coated so that the medium is a single-pass system. For such a short 

sample one can use the photon density equation (2.1 a) with 't P = L/v gr ; for longer 

samples the photon density equation should be replaced by a traveling-wave equation 

(see, for example, Ref. [95]). 
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5.1. Medium Parameters 

We use material parameters relevant to GaAs [99]. The parameter values used in 

calculations are presented in Table 5.1. 

Table 5.1. Parameter Values for GaAs Medium 

Parameter Symbol Value 

Sample length L lµm 

Active region width Lw 2µm 

Active layer thickness Li 0.2µm 

Confinement factor r 0.3 

Spontaneous emission factor ~ sp 
10-5 

Refractive index n 3.62 

Group velocity index n gr 4.5 

Band gap energy Eg (0) 1.5077 eV 

Band tailing parameter E, 20meV 

Dopant concentration ~ 101s cm-3 

Energy density relaxation time 't I 5xl0-13 sec 

Spontaneous recombination time 'ts 1x 10-9 sec 

Free carrier absorption cross-section SFCA 5x l0-18 cm2 

Photon energy tzro 1.5 eV 

Lattice temperature T1 70K 
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The calculations are performed for 70 K lattice temperature. The choice of low 

lattice temperature allows us to use the analytical expressions for relationships between 

dynamic variables which simplify the problem to ordinary differential equations. For 

high lattice temperatures, as was mentioned in Chapter 2, the equations are integro

differential and a simple analysis is no longer possible. 

We choose the lattice temperature as the initial condition for the earner 

temperature m each numerical experiment. The steady-state values of all dynamic 

variables before the arrival of the external pulse are determined by the carrier injection 

rate. By the proper choice of the injection current one can make the sample absorbing, 

transparent, or amplifying. It is convenient to use, as a reference, the injection rate J 0 

that makes the sample transparent without any external signal. From Eq. (2.1 b) we find 

the relationship between J O and the carrier density at transparency to be J O = N co/T.. , 

and because in our model Nco is a dynamic variable (see Eq. (5.6) below) the value of ] 0 

depends on system parameters and is determined numerically. In particular, for the 

parameter values given in Table 5.1 (p. 80) we have N co = 1.67x 1018 cm·3 and the 

corresponding injection current is 0.106 mA. 

The transparency condition here is identified formally with the condition of zero 

gain (g = 0). However, because the FCA and TPA are not included in the gain function , 

the sample appears to be transparent to the external optical signal only when there is a 

small amplification in the medium, which compensates for the FCA, TPA and other 

minor losses. In other words, the sample must be slightly amplifying in order to exhibit 

zero net absorption, i.e., for the sample to return to its pre-pulse state immediately after 

the departure of the external pulse. In addition, because the transparency is achieved by 
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compensation of FCA and TPA (as well as interband absorption), which are dependent on 

the photon density, whether the sample will appear transparent or not depends on the 

external pulse energy and duration (see Section 5.5). 

The external pulse also can change the carrier density dramatically. As a result 

the bandgap dependence on the carrier density must be taken into account. The bandgap 

narrowing due to many-body effects is accounted for by considering the bandgap energy 

as a function of carrier density according to the expression [100]: 

E (N ) = E (0) - 1 6 X 10-8 N jj . g C g • C 
(5 .1) 

The external pulse is coupled to the system via the coupling coefficient k given by 

(2.5); because our sample is antireflection coated, k = 1/'t P • The FCA cross section is 

chosen to be sFcA = 5xl0-18 cm2, this value leads to FCA losses equal to 10 cm-1 for 

Ne =2xl018 cm-3 which is consistent with the values given in the literature [73]. 

The TPA absorption coefficient is calculated according to Eq.(2.24). For given 

parameter values and Eg calculated according to Eq. (5.1) we obtain aTPA -6.28 cm/GW. 

This is a considerable underestimation compared with experimental results [83, 101]. In 

order to have more realistic values for our calculations we use Eq. (2.24) with K=9700 

which gives aTPA -31.4 cm/GW. These values are given for orientation only because 

aTPA is not a constant due to dependence on E g , which is a dynamic variable. 

Nevertheless, we note that the value of aTPA does not change significantly when the 

change in carrier density is within a couple of orders of magnitude. 
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5.2. Gain Dynamics 

The behavior of the amplifying medium is extensively studied both 

experimentally and theoretically using diode laser amplifiers (see Chapter 1 for 

overview). In this section we focus on carrier temperature and gain dynamics in a 

forward-biased GaAs p-n junction for different carrier injection rates. The calculations 

described in this section are performed using 0.5 ps (FWHM) Gaussian pulses with 

&x = 0.1 pJ energy, unless specified otherwise. The external pulse amplitude is peaked at 

t = 0. The dynamics is observed for a fixed carrier injection rate, then we choose another 

value for the carrier injection rate and repeat the calculations. 

The injection rates J = 0.99 JO and J = 1.01 JO are applied in order to obtain 

initially absorbing (g < 0) and amplifying (g > 0) media respectively. As we discussed in 

the previous section, a J = I .OJ O injection rate corresponds to an initially zero gain 

function (g = O); however the sample appears absorbing because of FCA and TP A. For 

the parameter values given in Table 5.1 (p. 80) the sample becomes really transparent for 

J = 1.00245 JO . In this case the carrier density immediately before and after the pulse is 

the same, i.e. the pulse does not experience net absorption or gain. Corresponding 

changes in the carrier density from before to after the pulse are t:,N c = 3.38x 1015 cm-3 for 

J = 0.99 JO, M c= - 2.07x l015 cm-3 for J = 1.01 JO, and M c= 0 for J = 1.00245 JO. 

Figure 5.1 (p. 84) demonstrates the gain dynamics (time evolution of the 

normalized gain function gL) due to the external signal, namely, saturation and recovery 

in the cases of amplification, transparency, and absorption. In all cases there is noticeable 

carrier heating. 
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Figure 5.1. Subpicosecond gain dynamics; gain suppression due to carrier heating and 
recovery in the case of: (a) amplification; (b) transparency; (c) absorption. 
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Corresponding behavior of the carrier temperature is demonstrated in Fig. 5.2. There are 

slight differences in maximum carrier temperatures. The temperature is higher for a 

higher injection rate, which is natural because a high pumping rate leads to higher carrier 

density and therefore higher FCA that heats the system. These results show qualitative 

agreement between the model developed in this paper and the experimental results of 

Ref. [13] (see the next section for analysis). 

Interestingly, when the sample has initially zero gain the carrier ensemble is 

heated more effectively. Figure 5.3 (p. 87) demonstrates the gain and carrier temperature 

behavior for the g = 0 case. The gain behavior is similar to that of the absorbing medium 

but the temperature is much higher (compare Fig. 5.3b (p. 87) with Fig. 5.2). 
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In this case the process that has the maJor influence on the earner system is FCA. 

Because of zero gain there are no interband transitions. For 0.1 pJ pulse energy TPA has 

a much smaller effect than FCA (see the next chapter for a more detailed comparison of 

these two processes). Thus initially the pulse transfers energy to the medium via FCA 

with very small initial changes in carrier density. This leads to significant carrier heating 

because FCA increases the energy per particle in the carrier ensemble. 

Eventually interband transitions (net absorption) occur because FCA makes lower 

energy states available for electrons. As a result the medium with initially zero gain 

coefficient behaves as an absorbing medium which is demonstrated in Fig. 5.3a (p. 87) . 
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5.3. Analysis of Carrier Heating Influence on Gain 

The results presented above can be analyzed using analytical approximations 

obtained in the frame of the model described in Chapter 2. Near the transparency region, 

µ is close to the energy of the emitted photons and therefore 

µ - fl(J) 
-'------ < < 1. 

2Ed8 
(5 .2) 

The hyperbolic tangent function of small argument can be replaced by its 

argument and the gain function (2.36) can be approximated as 

µ - nro 
K"""G(ro) 2k T . 

B e 

Using the same approximation we can rewrite Eq.(2.49) in the form: 

p IE 1 ( µ J p IE 1 ( Piro J ( µ - nw J ( µ - nro J N =--exp - =--exp - exp ""'N 1+ , 
c 1-82 E 1- 8 2 E E cO E 

I I t t 

where the transparency density is defined by 

Using expressions (5.3) and (5.4) one can write the gain function as: 

where the parameter "( = G/2Nc08 is the differential gain coefficient. 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

Equation (5.6) shows that heating of the carriers leads to gain suppression. For 

small variations of 9 from 9 1 and taking into account the temperature dependence of 

both "( and N co, we can expand g to first order in t,,.9/9 1 = ( 9 - 9 1 ) /0 1 , and obtain 
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(5.7) 

One can see that the gain function (5.7) is different from that of the linear model 

given by Eq.(1.5). If we try to rewrite the gain function (5.7) in the form of Eq. (1.5), we 

find that ~=b+ 1, y= y 1 , and there exists a second temperature-dependent term, 

It is also relevant to compare Eq.(5.7) with Eq.(1.4), which is common in the 

literature [60- 62]. We can make this comparison by rewriting Eq. (5.7) in the following 

way: 

(5.8) 

and applying a Taylor expansion for the fractional temperature difference 118/81 in terms 

of NP to obtain 118/81 =a0 +a,NP +··. In this expression a0 and a, are parameters that 

can be calculated from carrier temperature equation (see Eq. (2.47)) . The parameter a0 is 

the fractional carrier temperature deviation when NP= 0 and it depends on the pumping 

characteristics (see below threshold behavior of carrier temperature in laser, Chapter 3). 

Now the gain function can be presented in the same way as in Eq. (1.4) by writing 

(5.9) 

and 

(b + l)a 1 
s= . 

1- (b + l)a 0 

(5.10) 

Note however, that Eq.(5.8) includes an additional term, ( - y 1N coib 118/81 ), that 

also gives a contribution to gain suppression due to carrier heating, but which is 

independent of N c - N coi . This term causes a decrease in g with an increase in carrier 
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temperature whether there is gam, transparency, or absorption. In the numerical 

calculations in the previous section we considered the behavior of the gain function when 

there is carrier heating in the following three different cases: 

a) N c > N cot (amplifying medium); the carrier heating leads to a drop in the gain 

since both temperature-dependent terms in the gain function tend to suppress the gain. 

b) Nc = Ncot (transparent medium); the only nonzero term in Eq.(5.9) is negative 

due to carrier heating, making the transparent medium absorptive. 

c) Nc < Ncot (absorbing medium); in this case the two temperature-dependent 

terms play against each other. One term (proportional to N c - N cot ) tends to increase g, 

while the other term tends to decrease it. When Nc is close to Ncot, then the second 

term dominates, 1.e., bNc 01 >>(b+l)IN-Ncoil and the gain decreases (absorption 

increases). When Nc <<Ncol' then bNcot <<(b+l)IN-Ncoil and the gain increases 

(absorption decreases) (this case is considered in Chapter 6 in more detail). Moreover, 

these gain changes due to carrier heating relax much faster than the spontaneous 

recombination time and can only be observed on the subpicosecond time scale. 

Thus, in the cases of gain, transparency, and absorption (for Nc - Ncot ), the gain 

function has a minimum when the carrier temperature is maximum. This is precisely the 

behavior that was observed by Kesler and Ippen in their experiment with laser amplifiers 

[13]. Figure 5.1 (p. 84) demonstrates qualitative behavior of the gain function similar to 

that observed in the Kesler-Ippen experiment and corresponds to the situation when 

bNcot >> (b + l)IN -Nc 01 J. Because of this we see the dip in the gain function in all three 

cases. 
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It should be noted that in experiments the gain behavior is not measured directly. 

In ultrafast measurements based on pump-probe technique usually a transmission change 

is measured. For a single-pass system (antireflection coated sample) the transmission 

coefficient is given by 

[ out ( ) Tr=-=exp gL. 
I;,, 

(5 .11) 

Correspondingly the fractional transmission change related to the change in gain 

coefficient as follows: 

!1Tr ( ) - = exp /j,gL - I 
Tr 

(5.12) 

In our numerical analysis we use the value of gL to follow the gain dynamics. 

5.4. Gain Behavior Far From Transparency Region 

The results presented in Section 5.2 are obtained for a sample that is close to 

transparency. The analysis of gain behavior in the previous section suggests that in the 

case of an absorbing sample far from the transparency region, where N c is much less 

than N cot , the gain function will have a peak at the point of maximum carrier heating. 

To verify this result we carry out calculations using a sample with a low injection rate, J = 

0.5 JO. The result is presented below in Fig. 5.4 (p. 92). As expected, there is a peak in 

the gain behavior that indicates absorption suppression due to carrier heating. 
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Figure 5.4. Gain (a) and carrier temperature (b) behavior in the case of an absorbing 
medium far from transparency (J = 0.5 JO). 
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For the injection rate 1 = 0.7510 there is no noticeable gam or absorption 

suppression, although there is carrier heating (see Fig. 5.5, p. 94). This indicates that 

carrier heating does not always lead to gain or absorption suppression . Also note that the 

carrier temperature is higher for the sample with larger absorption (the sample with 

1 = 0.510 ), although FCA initially is larger for the less-absorbing sample (because of 

larger carrier density). This is a result of heating due to carrier absorption; increasing 

carrier density in the conduction band means more energy in the carrier ensemble and also 

leads to larger FCA and therefore more heating. The carrier density changes from before 

to after the pulse are ~c=8.79xl016 cm-3 for 1=0.510 and ~c=5.72xl0 16 cm-3 for 

1= 0.7510-

The results for an amplifying sample (1 = 1.510 and 1 = 1.2510 ) are qualitatively 

the same (see Fig.5.6, p. 95), as they should be according to the analysis in Section 5.3. 

Corresponding changes of the carrier density before and after the pulse are: 

~c=-l.57x10 17 cm-3 for 1= 1.510 and ~c=-8.49x1016 cm-3 forl= 1.2510 . 

The gain and carrier temperature behavior under the influence of short pulses with 

different energies is considered for a strongly absorbing or amplifying medium in the next 

chapter. 
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5.5. Gain Behavior in a Transparent Medium 

As we mentioned earlier (Section 5.2) the sample is really transparent for injection 

rates higher than JO, which gives a zero gain coefficient. In this section we investigate 

the influence of external pulse parameters on the behavior of the sample. For this 

purpose we fix the carrier injection rate at J = 1.00245 JO, which makes the sample 

transparent for a pulse with 0.1 pJ energy and 0.5 ps duration (FWHM). We follow the 

gain behavior for a 0.5-ps pulse with energy 0.2 pJ and 0.05 pJ. Another set of 

calculations is carried out with 0.25-ps and 1.0-ps pulses with 0.1 pJ energy. The results 

are presented in Figs. 5.7 and 5.8 (pp. 97-98). For comparison, in both figures we include 

the results of calculations for a 0.5 ps pulse with 0.1 pJ energy. As we see, whether the 

medium is transparent depends not only on the carrier injection rate and other medium 

parameters, but also on parameters of the external pulse. For example, if the medium is 

transparent for a 1-ps pulse with 0.1 pJ energy, then it is amplifying for a pulse with the 

same duration but lower energy and for a pulse with the same energy but longer duration. 

For a pulse with the same duration but higher energy and for a pulse with the same energy 

but shorter duration the medium will appear absorbing. The graphs for carrier density in 

Figs. 5.7b-5.8b clearly show the increase (decrease) of the carrier density in the case of 

absorption (amplification). In the case of transparency the gain coefficient and the carrier 

density are the same before and immediately after the pulse passes through the medium. 

These results show that the external pulse influences the state of the medium; the 

transparent medium may appear as absorbing, amplifying or transparent depending on the 

energy and duration of the pulse. The Influence of an external pulse on the state of an 

absorbing or amplifying medium is considered in the next chapter. 
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6. GAIN AND CARRIER TEMPERATURE DYNAMICS 

In the previous chapter we considered mainly the behavior of the medium that is 

close to transparency (weakly absorbing or amplifying, and transparent). Typical 

behavior of the gain and carrier temperature in a medium far from transparency was also 

demonstrated. In this chapter, we consider a medium far from transparency region 

(strongly absorbing or amplifying) in more detail. In particular, we change the external 

pulse energy and monitor the state of the medium before and after the pulse as well as the 

gain and carrier temperature dynamics during the interaction. The numerical procedure 

and medium parameters are the same as in Chapter 5 (see Section 5.1, Table 5.1, p. 80). 

From a practical point of view the medium far from transparency is important 

because in most applications amplifiers operate in the high gain regime, far from the 

transparency region. Carrier dynamics in an absorbing medium is also of interest and 

relevant devices are saturable absorbers (reverse-biased p-i-n structures). (See Refs. 

[ 102-104] for carrier heating effects in these devices). Here, we focus on carrier 

temperature and gain dynamics in a forward-biased p-n structure in the case of strong 

absorption or amplification. 

The analysis in the previous chapter (Section 5.3) shows that, generally, 

depending on carrier injection rate and pulse energy, we observe the following short-time 

behavior of the gain: i) gain suppression in an amplifying medium; ii) absorption 

enhancement both in a transparent (zero gain) medium and in an absorbing medium close 
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to transparency; and iii) absorption suppression m an absorbing medium far from 

transparency. The calculations show that in all these cases the suppression or 

enhancement is caused by substantial carrier heating and relaxes on the time scale of 't 1 

(see figures in Chapter 5). 

6.1. Dynamic Behavior in an Amplifying Medium 

The results described in this section are obtained using pulse energies ranging 

from &x = 0.1 pJ to 25.0 pJ with the injection rate le = 1.75 JO (strongly amplifying 

medium). In figures 6.1 and 6.2 (pp. 101 - 102) we demonstrate the behavior of the 

dimensionless gain coefficient (gL) and carrier temperature. 

The results for low energy pulses are qualitatively similar; an initially amplifying 

medium shows gain suppression accompanied by carrier heating. The gain function 

always stays in the amplifying region. For pulses with higher energy we see the usual 

gain suppression too, but in the case of the 5.0-pJ and 25-pJ pulses the gain function 

becomes negative for a short time. As a result some part of these pulses are actually 

absorbed. However, while the 5.0-pJ pulse is amplified, the 25-pJ pulse actually 

experiences absorption (as evident from the change in the carrier density before and after 

the pulse, see Fig. 6.3, p. I 03). This is explained by the fact that the 25-pJ pulse saturates 

the gain faster than the 5.0-pJ pulse and a substantial part of the 25-pJ pulse sees an 

absorbing medium rather than an amplifying medium. The temperature curves (Figs. 

6.lb and 6.2b) are qualitatively the same for all pulse energies. We note, however, that 

the maximum carrier temperature is not directly proportional to the pulse energy but 

shows some nonlinear dependence (see Section 6.4 for details). 
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Figure 6.3. Carrier density behavior for various pulse energies. 

6.2. Dynamic Behavior in An Absorbing Medium 

The case of an initially absorbing medium is shown in Figs. 6.4 and 6.5 

(pp. 105-106). Absorption suppression (the gain coefficient peak) caused by carrier 

heating is noticeable for the 0.1-pJ pulse (the blue curve in Fig. 6.4, p. 105). For the 

1.0-pJ pulse (the green curve) the absorption suppression is hardly visible, and for the 

2.0-pJ pulse there is no gain coefficient peak at all, although in all cases there is 

substantial carrier heating, as seen in Fig. 6.4b (p. 105). The carrier temperature behavior 

is quite similar for all three pulses; it is interesting that the 1.0-pJ pulse heats the carriers 

almost as effectively as the 2.0-pJ pulse (green and red curves in fig. 6.4b, p. 105). Also, 

comparison of the results for the 0.1-pJ and 1.0-pJ pulses show that there is 
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approximately 1.4 times difference in peak carrier temperature changes for pulses with 

energies that differ by a factor of ten. 

To understand the behavior demonstrated in Figs. 6.4 and 6.5 (pp. 105 - 106) we 

compare the carrier densities before (t = -2 ps) and after (t = +6 ps) the external pulse. 

The carrier density changes from -0.4xl018 cm-3 to -0.5xl018 cm-3 for the 0.1-pJ pulse, 

to - 1.2xl018 cm-3 for the 1.0-pJ pulse, and to - 1.6xl018 cm-3 for the 2.0-pJ pulse. The 

higher energy pulses pump more energy into the medium, but they also produce a greater 

increase in the carrier density, hence less energy per particle. The increase in carrier 

density tends to lower the carrier temperature because absorption involves cold carriers 

(absorbed carriers occupy the bottom of the conduction band). The graph with carrier 

density plots for pulse energies ranging from 0.1 pJ to 25 pJ is presented in Fig. 6.6 

(p. 107). 

Next we apply pulses with energies &x=3.0 pJ, 5.0 pJ and 25.0 pJ; the results are 

included in Fig. 6.5 (p. 106). We see both quantitative and qualitative changes in the 

dynamic behavior of the gain and carrier temperature from that presented in Fig. 6.4 (p. 

105). Here the pulse energies are high enough to make the initially absorbing medium 

amplifying. Note that in the amplifying medium the energy of the 3-pJ pulse is not 

enough to bleach the medium (Fig. 6.2a), while here in the absorbing medium a pulse 

with the same energy bleaches the medium and makes it amplifying. The initially 

negative gain function reaches a slightly inclined plateau near the transparency region 

(g - 0) before becoming positive. The plateau is wider for higher energy pulses. Further 

increase of the gain coefficient is a consequence of carrier cooling, which is evident from 

the carrier temperature graph (Fig. 6.5b, p. 106). 
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Figure 6.6. Carrier density behavior for various pulse energies. 

The most unexpected behavior observed for higher pulse energies is the double-peak 

behavior of the carrier temperature. This indicates that the carrier temperature dynamics 

is significantly different from the single peak temperature behavior observed when an 

external pulse with smaller energy is applied (Fig. 6.4b, p. 105), i.e. the temperature 

behavior changes qualitatively when the applied pulse has energy enough to bleach the 

sample. A second temperature-peak appears and its amplitude increases with increasing 

pulse energy almost the same way as in the case of the amplifying medium. This type of 

behavior of carrier temperature is observed only in a strongly absorbing medium. For 

comparison we carry out calculations similar to those that led to the results presented in 

Figs. 6.4 and 6.5 (pp. 105-106) but with injection rates equal to 0.75J0 and 0.5J0• The 

results are presented in Figs. 6. 7 and 6.8 (pp. 109-110). 
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The carrier temperature has only one peak when the pumping rate is 0.75]0 (Fig. 6.7b, 

p. 109) and 0.5]0 (Fig. 6.8b, p. 110); however in the latter case the maximum carrier 

temperature is preceded by a bump, which becomes a local maximum (the first peak) for 

lower pumping rates (Fig. 6.5b, p. 106) when high-energy pulses are applied. Thus, the 

pumping rate affects the carrier temperature dynamics. 

In contrast, the gain behavior is remarkably similar for different pumping rates. 

The initial rapid raise of the gain coefficient leads to the increase in carrier density. As a 

result the carrier temperature significantly increases because of FCA and TPA (since they 

both are proportional to carrier density). In turn the high carrier temperature has a 

negative impact on the further increase of the gain coefficient, which is slowed down 

while temperature reaches its (second) peak. Finally, when the external pulse leaves the 

medium, the carriers cool down and the gain coefficient increases again. Further changes 

in the gain coefficient are due to carrier recombination, which leads to a gain decrease on 

the nanosecond time scale to its initial (pre-pulse) value determined by the pumping rate. 

The above results suggest that the carrier temperature behavior needs more detailed 

investigation. We discuss the carrier temperature dynamics in more detail in the next 

section. 
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6.3. Carrier Temperature Behavior 

In previous sections the carrier temperature behavior is described along with the 

gam behavior. In this section we focus on carrier temperature as a parameter that 

represents carrier heating efficiency. As a quantitative measure for heating efficiency we 

use the maximum temperature deviation from the lattice temperature (~T max), Generally, 

tiT max increases with increasing photon density in the medium. The photon density in the 

passive (non-lasing) medium, which is the case under consideration in this chapter, is 

directly proportional to the external pulse energy. However, as we shall see below, ~T max 

is not a linear function of the external pulse energy ( & x ). To clarify the functional 

dependence between them we present the graph of ~T max vs. & x in the 0.1 pJ-50 pJ 

range. Figure 6. 9 (p. 112) demonstrates the results calculated for amplifying (pumped at 

a rate of 1 = 1.7510), transparent (1 = l .Olo) and absorbing (1 = 0.2510) samples. The 

external pulse has 0.5 ps (FWHM) duration and the other parameters are the same as in 

Table 5.1 (p. 80). 

In the case of amplifying and transparent samples we have a single temperature 

peak. In the case of absorbing sample there is a single peak for low energy pulses and 

two peaks for higher energy pulses (see the temperature graphs in this and previous 

chapters). 

The first temperature peak observed in calculations for an absorbing sample 

increases rapidly for small energies and exhibits asymptotic behavior for high pulse 

energies (the horizontal asymptote is at the level of ~T - 55 K). The higher the pulse 

energy the sooner the carrier temperature reaches the first peak. For the low energy 
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pulses this is the only maximum (see Figs. 6.4b and 6.5b, pp. 105 - 106). For 0.1-pJ 

pulse the temperature peak is reached after the pulse peak passes the medium (t > O); for 

pulse energies higher than 1.0-pJ the temperature peak is reached before the pulse peak 

arrival (t < 0). This first peak increases with higher pulse energies and stops to increase 

when the external pulse bleaches the sample and the gain coefficient is close to zero. At 

this point the cooling effect due to the increased number of carriers overcomes the 

heating effect due to the energy influx and we see a decrease in temperature followed by 

further increase to the second maximum (see Fig. 6.5b, p. 106). 
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The changes in the gain coefficient are less rapid close to transparency because of 

a less effective interaction between the medium and the external pulse; however the 

carrier temperature and, less rapidly, the gain coefficient, continue to increase while the 

pulse is still in the medium. The second temperature peak is reached after most of the 

pulse has passed the medium. Furthermore, the hot carriers relax, leading to an increase 

in the gain coefficient, which becomes positive as a result of carrier cooling. 

The second temperature peak, which becomes as high as the first peak for about 

6 -pJ pulses, increases with higher pulse energies, although it depends on the pulse energy 

nonlinearly (see below). For pulse energies larger than 20 pJ the second peak is almost 

the same as the only temperature peak observed in the calculations for an amplifying 

sample, where the peak is always reached after most of the pulse has passed the medium. 

For low energy pulses the absorbing medium is heated more effectively than the 

amplifying medium. This suggests that carrier heating due to energy pumping into the 

carrier ensemble, which is the case in the absorbing sample, is more effective than carrier 

heating due to recombination of cold carriers in the amplifying sample. FCA and TPA 

have little impact for small energy pulses (see the next section for more details). For 

higher energy pulses, however, these processes play a greater role and, in fact, become 

major heating factors . As a result, we see almost equal temperature peaks for absorbing, 

transparent and amplifying media. 

The data points in Fig. 6.9 (p. 112) are well fit by certain curves that are obtained 

using nonlinear regression. The data points for a transparent and absorbing sample 

(second peak) almost coincide. All four sets of data points can be fitted to the following 

curves, which are represented by a nonlinear function: 
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!iT =a+ b ln &x +c(ln &J2 +d(ln &J3
. (6.1) 

The values for fitting parameters a, b, c, and dare presented in Table 6.1. 

Table 6.1. Curve Fitting Parameters 

a b C D 

Absorbing (1 st peak, the blue curve) 48.1808 4.9347 -1.72951 0.233912 

Absorbing (2nd peak, the green curve) 11.2415 15.6713 4.94831 -0.233562 

Transparent (the pink curve) 11.2415 15.6713 4.94831 -0.233562 

Amplifying (the red curve) 31.2872 14.1251 2.96306 0.0 

It should be noted that the data points fit very well to the curve with 

corresponding parameters from Table 6.1 for low energies ( & x < 10 pJ). For higher 

energies all data points ( except for the first peak of temperature for the absorbing sample) 

fit to the curve that corresponds to the amplifying sample. This indicates that for high 

external pulse energies the carrier temperature behavior is mainly due to high photon 

density in the medium brought by the external signal. In particular, as we mentioned 

above, FCA and TP A become main heating factors. For low energy pulses the interband 

transitions have a more significant effect. 

The complexity of functional relationship between of !iT and & x is a result of 

nonlinear relationships among dynamic variables and in general, due to the nonlinearity 

of the model equations. Thus, the carrier temperature behavior needs additional 

investigation. In particular, the role of each heating mechanism must be clarified. We 

devote the next section to this task. 
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6.4. Influence of Two-Photon and Free-Carrier Absorption 

To clarify the carrier heating dependence on the external pulse energy we need to 

investigate how the main heating processes (FCA, TP A, and interband transitions) are 

affected when the pulse energy is increased. For this purpose we repeat all previous 

calculations with certain terms that represent FCA and TPA removed from the model 

separately and together. Comparison of these calculations with the results that include all 

heating mechanisms reveals the partial influence of particular heating processes. 

The gain and temperature dynamics described above is a result of several 

processes. The carrier temperature increases due to the energy influx via interband 

absorption, FCA, and TP A, which in turn affects the gain coefficient. Also the carrier 

temperature can be affected by changing the carrier density. More carriers also mean less 

energy per particle, and the temperature, as a measure of average energy, may decrease. 

While interband absorption brings energy to the system it also increases the carrier 

density. This may decrease the temperature even though the total carrier energy is 

increased. FCA does not change the carrier density but it increases the total energy of the 

system, thus it is always a heating factor. TPA changes the carrier density but it creates 

mostly hot carriers. Although radiation takes energy away from the carrier ensemble it 

also takes away cold carriers, thus leading to higher temperatures. 

To understand the source of the second peak in the temperature response shown in 

Fig. 6.5b (p. 106), we should identify which processes are significantly different in this 

case as compared with cases that show a single temperature-peak. The second peak 

appears only in the case of an absorbing medium far from transparency when the pulse 

energy is high enough to bleach the medium, so that we are dealing with substantial 

115 



changes in both carrier and photon densities. FCA is proportional to both carrier and 

photon densities and, therefore, in this case the efficiency of FCA is much higher than in 

the other cases. TPA also experiences significant growth in efficiency since it is 

proportional to the square of the photon density. So we expect both FCA and TPA to be 

responsible for the double-peak behavior. This conjecture is supported by the results 

obtained when FCA and TPA are eliminated (together and separately) from the numerical 

experiment by setting s FcA and/or sTPA equal to zero. The calculations are done for the 

same pulse energies as in previous sections. The results are presented below for 

amplifying and absorbing samples. 

Amplifying Sample 

The results for an amplifying sample are presented in Figs. 6.10-6.15 

(pp. 118- 123). For low pulse energies the main heating factors appearing are the 

interband transitions and in a lesser degree FCA. The heating effect of TP A is negligible 

for the 0.1-pJ pulse but is more visible for higher energies. The influence of FCA and 

TPA is more noticeable for high-energy pulses because their terms in Eqs. (2.1) involve 

the photon density; however, most of the carrier heating is due to interband transitions for 

pulse energies less than 5 pJ. Interband transitions cause carrier heating because the 

carriers participating in these transitions are predominantly cold carriers. Thus, the 

temperature of the carriers increases even though the total energy of the electronic 

ensemble decreases. For the 5-pJ pulse FCA and TPA together are heating the system as 

much as interband transitions. For the 25-pJ pulse (Fig. 6.15, p. 123) TPA is a greater 
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heating factor than FCA, which is consistent with the TP A being a quadratic function of 

the photon density while FCA is a linear function of the photon density. 

The figures below show that for high pulse energies FCA and TP A together are 

heating the carrier system more effectively than interband transitions. Note that when 

FCA and TP A are eliminated the 5-pJ and 25-pJ pulses do not change the sign of the gain 

function. Without FCA and TP A the 5-pJ pulse does not bleach the sample, and in the 

case of the 25-pJ pulse the gain coefficient reaches the zero level (at this point 

temperature reaches its maximum) but does not become negative. This is a natural result 

because in the system with zero gain there are no single-photon band-to-band transitions, 

hence there are no changes in carrier density and the chemical potential. Therefore, 

according to Eq. (2.37) the gain function must only increase, because the carrier 

temperature is decreasing. 
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Figure 6.10. Gain (a) and carrier temperature (b) behavior in a strongly amplifying 
medium pumped at a rate of l.75J0• The external pulse has 1.0 ps (FWHM) duration and 
0.1 pJ energy. The curves correspond to calculations with FCA and TPA (blue), without 
FCA (green), without TPA (red), and without FCA and TPA (pink). The blue curve is 
overlapped with the red, and the green curve overlapped with the pink curve. 
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Figure 6.13. Gain (a) and carrier temperature (b) behavior in a strongly amplifying 
medium pumped at a rate of 1.75J0 • The external pulse has 1.0 ps (FWHM) duration and 
3.0 pJ energy. The curves correspond to calculations with FCA and TPA (blue), without 
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Absorbing Sample 

In the absorbing medium interband transitions dominate the dynamics for low 

energy pulses (Figs. 6.16-6.18, pp. 126 - 128), however, in contrast to the dynamics in an 

amplifying sample, the influence of FCA is much smaller, which is explained by a small 

carrier density. For higher energy pulses interband transitions dominate the early 

dynamics but become less important after the gain reaches the plateau near the 

transparency region (see Figs. 6.19-6.21, pp. 129 - 131 ). When the medium becomes 

transparent the interband absorption stops and the carrier temperature relaxes due to 

interaction with the lattice (phonon emission). Finally, the medium becomes amplifying 

when the carriers cool down. 

Note that without FCA and TPA the gam function remains close to the 

transparency region, although carrier cooling leads to a slight increase in the gain function 

afterwards. However, when FCA or TPA is present, the second peak appears in the 

temperature graphs. 

The emergence of the second temperature peak is already visible in 3-pJ pulse 

(Fig. 6.19, p. 129), but a clear peak is observed only for higher energy pulses (Figs. 6.20 

and 6.21, pp. 130 - 131 ). Furthermore, the first peak appears in the absorption region 

when the pulse is partially absorbed and the dominant heating factor is the (single

photon) absorption (note the small difference at the first peak between the curves with 

and without FCA and TPA). The second peak appears when the pulse is completely 

absorbed and the medium is in the transparency region where the FCA and TP A are the 

dominant heating mechanisms. As in the case of the amplifying sample, for the 5-pJ 

pulse (Fig. 6.20, p. 130) FCA is dominant; for the 25-pJ pulse (Fig. 6.21, p. 131) TP A 
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has more influence. 

With FCA and TPA the medium absorbs more, increasing the carrier density. The 

FCA does not change the carrier density by itself, but it assists the single-photon 

absorption by making electronic states available at the bottom of the energy band. 

Another observation that we would like to point out is the non-cumulative 

influence of FCA and TP A. The maximum change in carrier temperature due to the total 

heating effect of FCA and TP A is less than the sum of the changes obtained when only 

FCA or TP A is included. They are independent heating factors, but they heat the carrier 

ensemble more efficiently when they act separately. This is especially evident for high

energy pulses when FCA and TPA have quantitatively similar effects (Figs. 6.20 and 

6.21, pp. 130 - 131). Both FCA and TPA create carriers in the same region of the energy 

levels in the conduction band - approximately /iro above the band edge. Having more 

carriers in this region leads to lower probabilities of transitions from the band edge (FCA) 

and from the valence band (TPA). Thus in this context FCA and TPA are self- and 

mutually saturating processes. 

125 



-0.74 

-0.75 

-0.76 

~ 
-0.77 

-0.78 

-0.79 

95 

-~ - 90 Q) .... 
::, -e 

85 Q) 
Q. 
E 
Q) 
I- 80 .... 
Q) 

·c:::: .... 
co 

75 0 

70 

- without FCA 
- without TPA 

f-+--+-t--+-+-+-+-t-+---+-+--+-+-+---+----t--+--+-+---+----< - without FCA & TPA 

-2 -1 0 1 

- with FCA & TPA 

2 

Time (ps) 

3 4 

(a) 

(b) 

5 6 

Figure 6.16. Gain (a) and carrier temperature (b) behavior in a strongly absorbing 
medium pumped at a rate of 0.25J0• The external pulse has 1.0 ps (FWHM) duration and 
0.1 pJ energy. The curves correspond to calculations with FCA and TPA (blue), without 
FCA (green), without TPA (red), and without FCA and TPA (pink). All curves are 
overlapped. 
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Figure 6.17. Gain (a) and carrier temperature (b) behavior in a strongly absorbing 
medium pumped at a rate of 0.25J0• The external pulse has 1.0 ps (FWHM) duration and 
1.0 pJ energy. The curves correspond to calculations with FCA and TPA (blue), without 
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Summary of Temperature Behavior With and Without FCA and TPA 

Finally, to summarize the carrier temperature behavior with and without FCA and 

TP A we present graphs for the maximum temperature deviation from the lattice 

temperature as a function of external pulse energy. Figures 6.22 and 6.23 (pp. 133 - 134) 

demonstrate the results obtained for amplifying (pumped at a rate of J=l.75]0), 

transparent (]= 1.0]0), and absorbing (]=0.25]0) samples. The results for the absorbing 

sample are presented below in separate graphs: Figs. 6.23a for the first peak and 6.23b the 

second peak, respectively (p. 134). 

These graphs are obtained using data points taken from the earlier calculations for 

gam and carrier temperature dynamics shown in Figs. 6.10 - 6.21 (pp. 118- 123, 

126 - 131). Additional calculations are carried out for pulse energies higher than 25 pJ 

(and certain low energies), with and without FCA and TPA. 

The result for an amplifying sample obtained without FCA and TPA (Fig. 6.22a, 

blue curve, p. 133) is remarkably similar to the result for the first peak of an absorbing 

sample (Fig. 6.23a, p. 134). The corresponding curve for an initially transparent sample 

shows no difference between the lattice and carrier temperatures (Fig. 6.22b, blue curve, 

p. 133). This indicates that initial carrier heating in non-transparent samples is mainly 

due to the interband transitions. 

Furthermore, from Figs. 6.22a and 6.23 it is evident that in an initially absorbing 

sample interband transitions lead to more effective heating than in an initially amplifying 

sample. In an initially transparent sample without FCA and TP A there is no net interband 

transition, consequently no carrier heating at all. 
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For higher pulse energies, due to saturation the maximum temperature curve 

reaches a horizontal asymptote, which indicates an upper limit of carrier heating due to 

interband transitions. Nevertheless, for low-energy pulses interband transitions are the 

dominant heating factor. Even when high-energy pulses are applied and FCA along with 

TPA are taken into account the initial carrier heating is due to interband transitions. This 

is evident from the double-peak behavior of the carrier temperature. To understand this 

behavior we consider the evolution of the three main processes (interband transitions, 

FCA and TP A) that affect carrier temperature in an initially absorbing sample. 

Because initial carrier density in the conduction band is small the process that has 

highest probability to absorb the photons is the interband transition. Both FCA and TPA 

have much less probability at the beginning. Interband transitions lead to higher free

carrier density, hence more FCA. Increasing photon density leads to higher probability of 

FCA, TPA and saturation of interband transitions. Thus, all three processes reach their 

maximum efficiency at different times. As a result the temperature peak does not 

coincide with the photon density peak. For example, when a 0.1 - pJ external pulse is 

applied the temperature peak appears only after most of the external pulse is absorbed 

(see Fig. 6.16b, p. 126). In the case of a 1-pJ pulse the temperature peak appears before 

the external pulse peak reaches the medium (Fig. 6.17b, p. 127). In these examples the 

single-photon interband transition is the dominant heating factor. In the case of a 2-pJ 

pulse FCA has noticeable influence after most of the pulse is absorbed, while the single

photon interband transition is the dominant heating factor at the beginning, before the 

external pulse peak reaches the medium (Fig. 6.18b, p. 128). 
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With increasing pulse energy the carrier temperature peak appears at earlier times, 

because high-energy pulses saturate the medium earlier. In contrast, FCA and TP A reach 

the maximum efficiency almost simultaneously and only after most of the external pulse 

is absorbed. The efficiency of FCA and TPA increases with pulse energy. As a result a 

second temperature peak appears (Fig. 6.20, p. 130), which become larger than the first 

peak for high-energy pulses (Fig. 6.21, p. 131 ). Thus, in an initially absorbing sample 

there are two peaks in the carrier temperature curve because of the time delay between 

processes that affect the carrier temperature. 

The double-peak temperature behavior is observed only in strongly absorbing 

samples because in amplifying, transparent and weakly absorbing samples there is a 

significant carrier heating due to FCA and TP A from the beginning. As a result when the 

initially dominant heating process (the single-photon interband transition) reaches the 

saturation level, FCA and TPA are strong enough to ensure further temperature increase. 

Thus we see only one temperature peak, although there is a time delay between processes 

that affect the carrier temperature, which is more visible when high-energy pulses are 

applied (see Figs. 6.14 - 6.15, pp. 122-123). 

Another piece of information that we obtain from Figs. 6.22 and 6.23 is the energy 

of the external pulse that causes equal heating due to FCA and TPA, &eq . For all samples 

and chosen parameter values we obtain &.q z 12 pJ. In the case of the amplifying sample 

the value is slightly larger. When & x > &.q , TPA has a larger influence than FCA, which 

is more effective when &x < &eq (see also discussion in Section. 6.4 ). 
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Mathematically &.q can be estimated by equating TPA and FCA terms in 

Eq. (2.1) (p. 18): sTPAN P = sFcANc, and using Eq.(2.10) (p. 21). However, calculation of 

integral (2.10) requires knowledge of NP and, therefore, N c at all times. In addition 

both FCA and TPA cross-sections are not constants, which complicates the calculation of 

&.q . Thus, carrier temperature graphs (Figs. 6.22 and 6.23) present useful information 

about the relative efficiencies of FCA and TP A. 
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7. SUMMARY AND CONCLUSIONS 

A system of modified rate equations that includes the carrier temperature as a 

dynamical variable is used to describe the interaction of electromagnetic radiation with 

semiconductors. We develop a model that takes into account the nonlinear functional 

dependence of the gain coefficient on carrier density and temperature. The model gives a 

simple description of the gain and carrier temperature dynamics and allows for a clear 

interpretation of results . The rate equations for photon and carrier densities are modified 

to include a third rate equation for the energy density, and by using an analytical 

approximation for the complex dependence of the gain on the chemical potential and 

temperature of the carriers. The model relies on the assumption of a quasi-equilibrium 

Fermi-Dirac carrier distribution and, therefore, all dynamic behavior results from the 

interactions of the quasi-equilibrium carrier ensemble with the external pulse and the 

lattice. We are effectively treating the carrier temperature as a dynamic variable. Non

equilibrium processes such as spectral hole burning are not present in this model - and 

probably they have no significant impact on the picosecond time scale. 

One of the purposes of our approach to the problem of carrier heating in 

semiconductor laser media was to develop a simple model. We have derived 

approximate analytical relations between dynamic variables that significantly simplify 

both the numerical analysis and the physical interpretation. If we use the general 

expressions for relationships between dynamical variables, then the validity of our model 
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is limited only by the duration of the generated or external pulses, which cannot be 

shorter than the times for the polarization relaxation and the establishment of quasi

equilibrium. However, in this case the numerical analysis becomes more complex and 

the physical interpretation less transparent. 

We investigate the evolution of the dynamical variables during a typical laser 

turn-on transition to cw behavior. We find that in the cw lasing regime the carrier 

temperature is always greater than the lattice temperature, but that this temperature 

difference has little impact on the output power. This result is valid for conditions both 

near and also well above threshold. 

Investigation of the laser operating in cw regime subject to external pulses show 

that when long pulses (several tens of picoseconds) are applied the laser response is 

virtually the same for the model inclusive of temperature dynamics as for the one without 

it; however, the response to the shorter pulses is different. The oscillations damp faster 

when the carrier temperature dynamics is taken into account, and this difference becomes 

more noticeable for shorter signal duration. Thus, the carrier temperature dynamics plays 

a significant role in the dynamical response of the laser on time scales up to several tens 

of picoseconds. 

Calculations with pulses of higher and lower energy show qualitatively similar 

results. Except for faster oscillation damping, the character of the photon density 

oscillations in the cw laser caused by the external pulse is similar to that of those 

calculated without carrier temperature dynamics regardless of the pulse energy or 

duration . 
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The temperature dynamics, which is central to our model, is reflected in the 

behavior of the gain function. We study this behavior through the response of a laser or 

laser medium to an applied optical pulse. Gain dynamics is indirectly observed in the 

response of a laser to a sufficiently short picosecond pulse, where we show that there is a 

noticeable change compared to models without the temperature dynamics. However, 

application of a subpicosecond pulse to a laser medium allows direct observation of gain 

dynamics. 

We have considered the dynamic behavior of the gain and carrier temperature in 

a short semiconductor laser medium, subject to external optical pulses, on a picosecond 

time scale. We investigate the response of weakly amplifying, transparent, and weakly 

absorbing media. By applying pulses of different energies to strongly absorbing media, 

we see variation in the evolution of the gain that demonstrates the role played by carrier 

density in addition to that of carrier heating. 

We study the cases for media whose pre-pulse states are strongly absorbing, 

transparent, and strongly amplifying at the frequency of the pulse. The results show that 

the various physical processes that influence the gain and the carrier temperature 

contribute differently depending on the initial state of the medium and the pulse energy. 

In particular, we note the competing effects associated with the pulse changing the energy 

density and the carrier density simultaneously. We also point out how FCA and TPA can 

dominate when the gain is near the transparency region. This leads to initial gain 

suppression followed by gain enhancement due to interband absorption made possible by 

FCA and TP A. It can also lead to a double peak in the carrier temperature response and a 

plateau followed by an increase in the gain as shown. Although FCA and TPA are both 
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heating factors, however their influence is non-cumulative. 

Finally, we note that although the bandgap energy is a function of carrier density 

due to many-body effects, which leads to bandgap shrinkage, this functional dependence 

(see Eq. (5.1 ), p. 82) does not noticeably affect the dynamic behavior of the gain and the 

carrier temperature for pulse energies considered in this work. Higher pulse energies and, 

hence, more dramatic changes in the carrier density, are expected to have a more visible 

influence. 

The results presented in this thesis can be verified with existing experimental 

techniques. Additional controllable signals can be tised to provide more accurate 

information about the gain and carrier temperature dynamics. For example, a low 

frequency (co<< £gin) external signal can be used to heat the electron ensemble without 

changing the carrier density. This will significantly increase the role of FCA without 

direct influence on interband transitions and TP A, thus highlighting the influence of FCA. 
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APPENDIX A. RELATIONSHIP BETWEEN ELECTROMAGNETIC FIELD 
AND PHOTON DENSITY 

Thermodynamic expression of the internal energy density m a medium with 

electromagnetic field is given by [ 1] 

1 - - 1 - -
dU = TdS + sdp + -E · dD + -H ·dB, 

47t 47t 
(A. 1). 

where T is the temperature of the medium, S is the entropy, s is the chemical potential per 

unit mass ( s = µ I m , µ is the chemical potential per particle, m is the mass of the 

molecule), p is the density of the medium, E is the electric field, D the electric 

displacement, H is the magnetic field, and B is the magnetic induction. For constant 

density and entropy the time derivative of energy density gives the expression for the 

divergence of the Poynting vector: 

- - au V·S=--. at (A. 2) 

This expression can also be obtained using definition of the Poynting vector and 

Maxwell's equations as follows 

V ·S=-V· ExH =-H· VxE -E· VxH~=-- E·-+H· - . (A.3) - - C - r- -] C r- (- -) - (- -)~ 1 r- ajj - ajj J 
41t 41t 41t at at 

Thus, at constant entropy and density Eq. (A.1) for non-dispersive medium gives 

1 L.D. Landau, E.M. Lifshits, Electrodynamics of continuous media, (Nauka, Moscow, 
1992). 
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(A. 4) 

where £ is the dielectric function, and µ is the magnetic susceptibility (not to be confused 

with the chemical potential). 

In a dispersive medium the corresponding expression for the energy density 

calculated for complex fields is given by [ 1]: 

U = _l_[d(cro) EE*+ d(µro) HH *] 
16n dro dro 

(A. 5) 

The real and complex fields are related as follows: 

(A. 6) 

Time averaging will eliminate second harmonic terms, E 2 and E *2 , and, therefore, we 

obtain E~e = EE*/2. 

Thus, in terms of real fields (A.5) become 

U = _I [d(cro)fij2 + d(µro)IHl 2] , 
8n dro dro 

(A. 7) 

so that Eq.(A.7) and Eq.(A.4) are consistent with each other when dispersion is neglected. 

This result is obtained for fields of form f = f (t)exp(-irot) with slowly varying 

amplitude. 

For a monochromatic plane wave this expression can be simplified using the 

relationship between magnetic and electric fields obtained from Maxwell's equations: 

(A. 8) 

where k = .Ji,µ o/c. From (A.8) follows that £EE* = µHH * and using (A.5) we obtain 
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I [ d(Eoo) d(µoo)1 * I d(µEoo 2 ) * 
V = µco + EOO EE = EE 

l 61tµco dco doo l 61tµco doo 
(A. 9) 

The differential in this expression can be simplified as follows 

(A. 10) 

As a result we obtain 

(A. 11) 

Using definitions of the refractive index n = Jiµ and the group velocity v gr = dco/dk 

we obtain 

1 EE * 
V =-nngr--, 

2µ 47t 
(A. 12) 

where ngr = c/v gr and is known as group velocity index. Dividing (A.12) by photon 

energy and taking into account the fact that for most semiconductors µ = 1, we obtain the 

relationship between photon density and electric field: 

EE * 
N =nn --

P gr 81tnCO 

Using the relationship between intensity and field 

n IEl 2 

l=c - -
2 47t ' 

we obtain 

I 
N = ---

P V gr · nCO 

(A. 13) 

(A. 14) 

(A. 15) 

Derivation of (A.13) is done usmg expressions obtained for a transparent 

dielectric medium. Nevertheless , we can consider a laser diode as a transparent medium 
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and absorption or gain can be considered as specific factors that change the intensity of 

field. Thus using (A.13) in semiconductor media is justified. 

Using obtained expressions and Eq. (I.I) one can connect the gain (absorption) 

coefficient with the photon density 

dNP =(~+-! ~:N =gN 
dz dZ V dt P P' 

gr 

(A. 16) 

and for time rate of change of the photon density of a pulse traveling in the medium at 

given position we have 

dNP 
dt=vg,gNP. (A. 17) 
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APPENDIX B. DERIVATION OF PHOTON DENSITY EQUATION FROM 
THE FIELD EQUATION 

We begin with the equation describing the time dependence of the slowly varying 

amplitude of the electromagnetic field E: 

dE 1 1 
-=--(I+i~)E+-(l+ia)gE+KF, 
dt 2~c 2 

(B. 1) 

where ~ = 2(wc - ro )~c, We is the cavity eigenfrequency, a is the linewidth enhancement 

factor, and F is the external field amplitude. Here we have neglected spontaneous 

emission, free carrier absorption, two-photon absorption and other minor effects. 

Equation (B.1) is similar to Lang-Kobayashi equations (see Ref. [50] in the main text) 

without delayed optical feedback . 

The field coupling coefficient is given by [2] 

1-R 
K= 

~ rt ,,{ii , 
(B. 2) 

where R is the power reflection coefficient of the laser facet through which the external 

signal is entering the laser medium and ~ rt is the laser cavity roundtrip time. 

Consider the external signal as a multimode field with a random modal phase 

distribution: 

F(t) = L,Fn(t )e - i<MU+<i> n> ' 
n 

(B. 3) 

2 N. Schunk, K. Petermann, Noise Analysis of Injection-Locked Semiconductor Injection 
Lasers, IEEE Journal of Quant. Electron. QE-22, 642 (1986). 
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where ~Q = Q- ro, and cp 0 is randomly distributed in the interval (0,21t). This form of 

the external signal is justified because mainly we deal with short pulses, which contain 

many modes . 

To derive the equation for photon density we write a formal solution of Eq.(B .1) 

in the form: 

(B. 4) 

where 

D(t) = J (-1 - g + i(~ - ag)Jdt'. 
0 '[ C 

(B. 5) 

The solution (B.4) satisfies the initial condition E=O at t=O. This initial condition is 

chosen for convenience since the final result does not depend on initial conditions. In 

principle we can satisfy any initial condition if we add to expression (B.4) the general 

solution of Eq.(B. l) for F=O. We calculate the value EE* which is proportional to the 

photon density in a cavity (see Appendix A, p. 151 ): 

EE* =K 2 exp[-ReD(t)Jfdt'fdt"exp -D(t')+-D*(t") (t')F * (t") . 
1 1 [l 1 f 
0 0 2 2 

(B. 6) 

Now we must calculate 

F(t')F * (t") = L,F0 (t')F~. (t")e - i<Mll '-6fft "+<P u- <P n>. (B . 7) 
Q ,Q' 

Assume that the external signal has a broad band spectrum so that F 0 (t) is a slowly 

varying function of Q. Now split the sum (B.7) into two parts : 

L,Fn (t')F ~. (t ")e - i<6 rn ·- 6 n'i"+<P" -<Pn > = L,F0 (t ')F ~ (t ")e - ;6nu·-n + 
Q,Q' Q 

+ L.,Fn (t ')F ~. (t")e - i(6Q/ '-MY1"+<P" -<P" >. 
n,en· 
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Since Fn(t) is a slowly varying function of Q we can use the following approximation: 

LFn (t')F~ (t")e-i6il(l'- t") ""Fro (t')F; (t") Ie-i6il(1 '-1") (B. 9) 
n n 

and 

I Fn (t')F ~. (t")e - i (t,.Q'('- 6nt"+<l>11 -<l>1!') "" Fro (t')F; (t") I e -i(6Q'/'- 6ill"+<l>,du l =0, (B. 10) 
Q ;,eQ' Q ;,e Q ' 

where w is the central frequency of the external pulse. The last sum is equal to zero since 

the phases in the exponent are randomly distributed in the interval (0, 2rr). Now we 

replace the sum on the right side of Eq. (B.9) by the integral 

F (t')F *(t") 
""2rr ro ro 8(t' - t") 

~Q ' 
0 

(B. 11) 

where ~Q0 is the frequency interval between adjacent modes. After substitution of the 

relation (B.11) into (B.6) and integration over tn we obtain 

2 t 

EE* = 2rr~exp[- ReD(t)Jf exp[ReD(t')]jFro (t')l2 dt'. 
~Qo o 

(B . 12) 

Converting Eq.(B.12) back to a differential equation and multiplying by nngrf (8n · nro) 

we obtain 

dNP 1 
- + - N -g(n)N =kN 

dt 't C p p pX ' 
(B. 13) 

where N px (t) = nng, IFro (t)j 2 1s the density of external signal photons and 
~Q0 't c 8rr1iro 

k = 21tK 2 't c,. The terms describing spontaneous emission, the free carrier absorption, and 

two-photon absorption (which are small compared to interband absorption) are introduced 

phenomenological Iy. 
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APPENDIX C. SPONTANEOUS RECOMBINATION RATE 

The functional dependence of the spontaneous radiative recombination rate on 

the density of carriers depends on the degree of statistical degeneracy of the carriers. We 

discuss this problem below. 

The spontaneous radiative recombination rate can be presented in general form 

as a function of carrier density and temperature: 

(C. I) 

where w c)P, p ') is the probability of interband recombination of carriers with momenta 

p and p', and // and J,; are distribution functions of carriers in the valence and 

conduction bands correspondingly. The factor 4 appears due to spm degeneracy of 

electrons and holes . 

The integral (C. l) can be simplified by taking into account the following 

circumstances: i) in an isotropic material distribution functions depend only on energy, ii) 

in direct gap semiconductors optical transitions preserve the momentum of carriers. 

This means that wcv(p ,p') = w(£)8(p - p')and (C.I) can be rewritten in the 

following form: 

(C. 2) 
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where me,,, is electron (hole) effective mass in the conduction (valence) band, 

p l 
£= -

2m' 

-=-+-, 
m me m,, 

4rc-fi,m X c----
- (2rcn)3 ' 

and 

Here we use the parabolic band approximation. 

(C. 3) 

(C. 4) 

(C. 5) 

(C. 6) 

The probability of transition w(E) depends on the carrier energy Eg + E. As far 

as Eis determined by the carrier temperature, one can take E g >> E and neglect the energy 

dependence of the probability of recombination. Therefore one can replace w(E) by the 

constant w0 • 

The density of the carriers is defined by 

Yz [ [ J i-J N._,, =2C(m._,,) ' j exp £-µ ,.,, +I -./Ed£, 
m O kBTe.h 

(C. 7) 

If the ensemble of carriers is far from degeneracy, 

[
£ -µ._,,) I 

exp >> 
kBTe,h 
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and in this case we obtain 

X ( J me,/, - µ , ,,, 
N, ,,, =c.frr,(- kBT,,,,J exp k T . 

m B e ,li 

(C. 8) 

Assuming common temperature for electrons and holes T, = T,, = Tc we obtain 

(C. 9) 

where 

2 1 1 ( m 2 JX w0 R (T ) = '- 1 -- V ' 
sp c ..,;re (2rc1i) C m.m,, (k 8 TJ12 

(C. 10) 

Under the condition of electro-neutrality, N, = N,, = N c, the expression (C.9) leads to a 

quadratic dependence of the spontaneous recombination rate on carrier density. 

Consider the case of degeneracy when the di stribution function is equal to 1 for 

£ ::; µ e.h and zero for £ ~ µ ,_,,. Calculation of the integrals (C.2) and (C.7) gives 

4 m,,,, -( Jx 
N e ,h = 3 --;;;-µ e ,h C, (C. 11) 

(C. 12) 

Thus in this case the spontaneous recombination rate is proportional to the 

density of carriers ; therefore one can introduce the spontaneous recombination time 

I w0 
-= 2 1 . 

't s (2rcn )· 
(C. 13) 
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Apparently, the spontaneous recombination rate cannot be described by a simple 

analytic formula in any range of densities and temperatures. Therefore we propose an 

approximation of the integral (C.9) in the form 

The ratio Nc/Nco is known as the degeneracy parameter [3] . At Nc << Nco the 

formula (C.14) is identical to the case of the Boltzmann statistics of the carriers. Now we 

require that (C.14) must be identical to (C.12) in the other limiting case when Nc >> Nco. 

From this condition we obtain 

[ k T ]X 
Nc 0 = 2 (m e + m,,\;Pz 2 • 

(C. I 5) 

This is an expression for the degeneracy concentration of the Fermi ensemble of particles 

with mass M = me+ m1, [4]. The most typical situation in semiconductors is m , << m,, , 

and N co is practically equal to the degeneracy concentration of holes and significantly 

higher than that of the electrons in the conduction band. In a semiconductor laser we deal 

with a statistically degenerate ensemble of carriers and, therefore, assumption of linear 

dependence on carrier density for spontaneous radiative recombination is justified. 

3 B.R. Nag, Theory of Electrical Transport in Semiconductors, (Pergamon Press, I 972). 
4 R . Kubo, Statistical Mechanics, (North-Holland, Amsterdam, 1971 ). 

16 1 



APPENDIX D. CALCULATION OF INTEGRALS WITH THE EXACT 
FERMI FUNCTION 

We need to calculate an integral of the following form 

= 

I= f p(E)f (E)d£, (D. I ) 
0 

where p( £) is some differentiable function and 

f(E,µ,T)=[l+ex{ :~: Jr (D. 2) 

Introducing new notations t} = k 8 T and t}x = £ - µ we obtain 

% % ( .Cl )d = .Cl 

f f pµ.- ux x fp (µ +ux)dx 
=t} p(µ - t}x)dx - t} x +t} x , 

0 0 l + e O 1+e 
(D. 3) 

where we replaced (I+ e-x r by 1 - ( I + e X r . Now introducing y = µ - t}x we obtain 

Jo s= p(µ - t}x )dx s= p(µ + t}x) - p(µ - t}x )dx 
I = - p(y )dy + t} X + t} X , 

µ / I + e O I + e 
µ / f} 

(D. 4) 

or taking into account that dy = d£ we write 

Jµ s= p(µ - t}x)dx s= p(µ + t}x) - p(µ - i}x)dx 
I = p(E)d£ + t} X + t} X • 

0 % l + e O l +e 
(D. 5) 
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In the next step we neglect the second term in above expression because its lower 

limit has very large value µ/t} >> I (for moderate temperatures) and the under-integral 

expression is an exponentially decreasing function. 

Using Taylor expansion 

( .Cl ) ~ p (II ) (µ) (-Cl )11 
p µ + uX = L,; uX . 

11 =0 n! 

we simplify the numerator of the last term 

[ ( tlX) 2 ( tlX) 3 l p(µ + i}x) -p(µ -t}x) = p(µ) + p'(µ)t}x + p"(µ)--+ p"'(µ)--+· · · -
2! 3! 

[ 
( - tlX )2 ( - tlX )' l 

- p(µ)+p'(µ)(-t}x)+p"(µ) +p"'(µ) + .. = 
2! 3! 

2 '( )·Cl 2 "'( )(t}x) ' = p µ ux+ p µ --+···. 
3! 

Thus, we obtain 

= p(211-l\µ) 
[p(µ+t}x)-p(µ-t}x)]=2~ (2n-1)! (t}x) 211-1, 

and the integral (D.5) becomes 

µ = p (2 11 -1\µ) = (t}x) 211 -1dx 
I= f p(£)d£ + 2{} L ( )1 f x = 

0 11 = 1 2n - I . 0 I + e 

where 

f= x 211-1dx 

J 211 = o I+ ex . 
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For simplicity of formulas we replace 2n by a and evaluate this integral in the following 

way. Using the following relationship (formula 1.112 #1 in Ref.[5]) 

1 e-x -x r= ( )j jx 
--= =e -1 e 
1 X 1 - X ' + e + e j=o 

(D. 9) 

we can write 

J a= f xa-le -xf (- IYejxdx = f (- IY f xa-le -x(j+l)dx = 
O j =O j =O O 

and since the last integral by definition is Euler's Gamma function we obtain 

(D. 10) 

This expression can be simplified further using the following relation (0.233 #4 in Ref.[5] 

(D. 11) 

where s(a) is Riemann's zeta function. 

Thus, 

(D. 12) 

In particular case of an even integer number: a =2n (n = 1,2,3, .. . ) 

2 211 - I - I 
] 211 = (] - 21- 211 )r(2n )s(2n) = 2 21I- I r(2n )s(2n) (D. 13) 

Next we use expressions (Ref.[5] formula 8.339 #1) 

5 I.S. Gradshtetyn, I.M. Ryzhik, Table of integrals, series, and products, (Academic Press, 
Orlando, 1980). 
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r(2n) = (2n-1)! (D. 14) 

and (Ref.[5] formula 9.542 #1) 

(D. 15) 

where B 2,, are Bernoulli numbers. Below we list low-index Bernoulli numbers (Ref.[5] 

formula 9.71 ). 

Finally we obtain 

2211- I - I 
J 211 = 2n 7t 2" IB2,, I- (D. 16) 

In particular 

Using these results we obtain 

µ 1t 2 71t4 
I= Jp(E)dE + -it 2p'(µ) +-t} 4p"'(µ)+ · ·. 

0 6 360 
(D. 17) 
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APPENDIX E. EXPRESSIONS FOR CARRIER DENSITY AND CARRIER 
ENERGY DENSITY 

Expressions for parabolic band edge model 

The density of state has a form 

I (2m) Yz p(c) = 21t h Ji,= Po-Ji,. (E. I) 

We use Eq. (D.17) with the chemical potential measured from the band edge because in 

undoped material there are no available states in the gap. 

Jµ - 2 Yz I - ~1-p(t)dt - Po -3 µ , P (µ) - Po ,~ , 
0 2µ 12 

Using the above expressions we obtain 

Ill 3 
P (µ)=Po~· 

8µ12 

[ ( J2 ( J4 l 2 i I 1t~ 7 1t~ 
N(µ~)=-pµ Yz t+--- +--- +···. 

C ' 3 O 2 2 µ 40 2 µ (E. 2) 

Here we use the notations introduced in Appendix D (p. 162). The expression for carrier 

energy density is obtained similarly using p0£-[i, instead of p0 -Ji,. The result is 

(E. 3) 

In the calculations above we imply that the bottom of the band corresponds to the 

zero level of energy. If, say, the top of the valence band is chosen as a zero level then µ 

must be replaced by µ - £ g and in the expression for energy density an additional term 
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N c£ g that is not associated with the energy of thermal motion ( corresponds to self-

energy) should be added. 

In low temperature limit an approximate expression that links U and N c is: 

U z'}_N µ[1+2(1t ~)
2 _2_(2:_ ~)4

]. 
5 C 2µ 4 2µ 

(E. 4) 

Expressions for exponential band tail model 

The density of states has a form 

(E. 5) 

In this case it is convenient to measure the chemical potential from the middle of the band 

gap because of tail states in the gap. 

µ 

f p(E)dE = p 1E1 exp(µ/£ 1 ), 

0 

p'(µ ) = p, _I exp(µ/Ei) , 
Et 

111 I(/) p (µ) = p, ~expµ £, . 
I 

Using above expressions we obtain 

N(µ , ~) = p,E, exp(µ/£ 1 )[1 + ~( 7t ~J2 
+ ~(7t ~J4 

+ ... J. 
3 2 £ 1 45 2 £ 1 

(E. 6) 

The express10n for earner energy density 1s obtained similarly using the 

expression Ep 1 exp(E/ £ 1 ) instead of p, exp(E/£ 1 ) . 

µ ,%', 
f Ep 1 exp(E/£ 1 )dE = p 1E~ f x exp(x )dx = p,£ 1 exp(µ / E1 )[(µ - £ 1 ) + £1 exp(- µ /£ 1 )] • 

0 0 

The last term can be neglected because E1 << µ. 
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The result is 

+£ (1+~(7t __Q_J 2 +_!±(7t __Q_;4+ ... J-2£ +2£ _!±(2:___Q_J4+··] 
I 3 2 £ 45 2 £ I I 45 2 £ 

t I I 

or 

( J
4 

14 1t ~ 
)- - -- - ··· 

45 2 £1 
(E. 7) 

For low temperatures this expression becomes 

(E. 8) 
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APPENDIX F. CALCULATION OF INTEGRALS WITH AN 
APPROXIMATE FERMI FUNCTION 

We need to calculate an integral of form similar to (D.1) but using an approximate 

Fermi distribution function given by Eq.(2.49) (p. 40). We carry out calculations for 

parabolic band-edge and exponential band-tail approximations separately. 

Expressions for parabolic band-edge model 

For undoped material we have 

I (2m)h 
p(c) = - -- J£ = PoJE · 

27t n 

With the chemical potential measured from the band edge we have 

The first integral is straightforward: 

(F. I) 

(F. 2) 

(F. 3) 

The second integral and third integrals are expressed through the incomplete gamma 

functions (Ref.[5] formula 8.35): 
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µ (E-µj,, µ ( xj X ( µj% I .J£ exp ~ r£ = I~µ -X exp - t} lx = t} -2 exp - t}) ! .Jt exp(- ( )dt = 

(F. 4) 

where we used intermediate notations x = µ - E, t = x/8. 

(F. 5) 

Using these calculations we can write 

(F. 6) 

The incomplete gamma function r(a, x) has an asymptotic representation for large values 

of x (Ref.[5] formula 8.357): 

1 [M-1(-1)"'r(1-a+m) -Ml r(a,x)=xa- exp(-x) L ,,, ( _ ) +o(lxl ) . 
m =O X r ] CX. 

(F. 7) 

In particular 

(F. 8) 

For large z we can replace cosh(z) by exp(z)/2 and, keeping only the lower order terms in 

above approximation, obtain 

2 v { 3 ( I I I 3 J} N = - p µ 12 I + - - + - ?- - , + - 4 · 
c 3 ° 4 z 2z - 4z 4z 

(F. 9) 

Calculations for the energy density are similar: 
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(F. 10) 

The first integral is straightforward: 

(F. 11 ) 

and 

(F. 13) 

Thus 

2 s1 { 5 ( I ) Yi [ ( 5 ) 3-Jn ]} = 5Poµ 12 1+ 2 ~ r 2'z cosh(z) - -4-exp(- z) . (F. 14) 

Using the following approximation, 

r(5'i ,z) = zh exp(- z)[1-l + ~ -~ + a(lzl -4 
)] , 12 z 2z- 4z · (F. 15) 

and for large z replacing cosh(z) by exp(z)/2 we obtain 
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2 s1 { 5 ( I 3 3 3 J} V=-p µ12 1+- ---+-+- . 
5 ° 4 z z2 2z 3 4z 4 

(F. 16) 

For low temperature we have an approximate expression, 

V "" ~ Nµ{ I + _!_ t} - 67 ( t} )2}. 
5 2 µ 16 µ 

(F. 17) 

Expressions for exponential band tail model 

Several expressions are used to clarify the sequence of the steps. These 

expressions appear between the lines during the evaluation of the integrals and show 

either the new notations that were introduced or approximations based on which some 

terms were neglected. 

The density of states has a form 

p(E) = p1 exp(E/£ 1 ) . 

Using (2.49) and (F.18) in (2.14) we obtain 

{Jµ ( £ } I Jµ ( £ £ µ } I J~ ( £ £ µ } } = p I exp - £ - - exp - + - - - £ + - exp - - - + - £ = 
0 £1 2 0 £1 t} t} 2 µ £/ t} t} 
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(F. 18) 

a + > O 

a_ < O 



a _ < 0 :::::} exp( a _ CX)) ---1 0 

µ » £, =>exp(-:,)-, 0 

(F. 19) 

The final result for carrier density is 

(F. 20) 

where 8 = TJ/E 1 • 

For carrier energy density we have 

{Jµ ( E } I Jµ ( E E µ} 1 s= ( E E µ ) } =p1 Eexp - E-- Eexp -+--- E+ - Eexp ---+ - dE = 
o E1 2 o E1 f} f} 2 µ E1 f} f} 
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= P+:r exp(:, t', -{ J- 2~; exp(-~ )(exr(a.e )(a,£ - I~:)+ 

+ 2~, exp(~)( exp(a_e)(a £-1~:)} = 

= p+}xr(:, J:, -1] + 1]- 2~; exp(-~ )[exp(a,µ)(a ,µ- 1)+ 1 ]+ 

+ 2~, exp(~)[ l,i_p[ exp(a =)(a_= - I)]- exp(a µ )(a µ-I)]}= 

a_< 0 => limexp(a_c)(a_E -1) = 0 

( µ J{ 1 [ µ £ ; t} 2 £~t} 4 2[t} 2 +£;]]} - £ ex - - £ - - - 2 + -- p I I p £ µ I 2£ £ t} 2 _ £ 2 [ 2 2 ] 2 £ 2 t} 2 -
I I I I t} -£1 I 
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( µ ){ µe 2 1 + e 2 2 } = p 1E1 exp - µ - E1 +--? + [ ]? E,0 = 
E, 1-0- 1-02 -

= __£& ex (l:_){(µ - E )( I - 0 2 ) + µ0 2 + I + S 
2 E 0 2} = 1-02 p E I 1-0 2 I 

I 

{ [ 
? 1 + 9 2 

? ]} =Ne µ - E1 1-0- - 1_ 0 2 e- · (F. 21) 

{ 1- 30 2
} 

U=Nc µ-E, l-82 . (F. 22) 

For 0<<1 one can expand Eqs. (F.20) and (F.22) in terms of 0 and keep only the lowest 

order terms: 

(F. 23) 

(F. 24) 
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APPENDIX G. CALCULATION OF INTEGRALS FOR PUMPING TERMS 
WITH A BARRIER 

We need to calculate an integral of form (D. l) but with some finite upper limit 

Eb. Initially we will assume Eb >µ;the other case, Eb <µ,is considered afterwards. 

Using the method of calculation presented in Appendix D (p. 162) does not lead 

to analytical results. If we proceed in the same way and use the same notations then case 

Eq. (D.5) become 

E,, - µ E1, - µ 

I= Jµ p(E)dE + t} J,'} p(µ - ttx)dx + t} J,'} 

I +e x 
0 % 0 

p(µ + 1'.tx) - p(µ - ttx )dx 
I +ex 

(G. 1) 

In Appendix E (p. 166) we neglected the second integral because its lower limit 

has very large value µ/1'.t >> I (for moderate temperatures), the upper limit was infinity 

and the integrand is an exponentially decreasing function . Here we cannot do that 

because the second integral is not negligibly small: 

2µ - E,, p(E)dE 

= J (E-µj 
0 I+exp ~ ) 

2µ - E1, 2µ - E,, 

Jp(E)dE =/(2µ-Eb)- Jp(E)dE=1(2µ-b) (G. 2) 
0 0 

where we used (1 + e -x r = I - (t + ex r. Plugging (G.2) into Eq. (G. 1) we obtain 
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b- µ 

I~ p(µ + i}x) - p(µ - i}x)dx 
l(b)-1(2 -b)=i} µ l+ex 

0 

which is just an identity. Thus, this method does not work for finite upper limits. 

(G. 3) 

Below we calculate the desired analytical expressions using the method presented 

in Appendix F (p. 169). 

Expressions for parabolic band edge model 

For undoped material we have 

1 (2m)X 
P(E) = - - -./£ = p -./£. 

27t fl 0 
(G. 4) 

With the chemical potential measured from the band edge we have 

(G. 5) 

The first integral is straightforward 

(G. 6) 

The remammg integrals can be expressed through the incomplete gamma 

functions (Ref.[5] Section 8.35). We have already calculated the second integral in 

Appendix F (Eq. (F.4 ), p. 170): 

(G. 7) 
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The third integral has a similar structure 

I £,, ( µ £ l J J [£" ( µ £) µ ( µ £) l 
2 [ ~exp -i-r£ =2 [ ~exp -i- d£ -[ ~exp ; d£ = 

(G. 8) 

where we used relationship between incomplete gamma functions (Ref.[5] formula 

8.356 #3). Using these results we can obtain 

(G. 9) 

Comparing this expression with Eq. (F.6) we obtain 

1 v ( I ) h ( 3 Z£ b ) I = N - -p µ 12 - r - - e z 
j C 2 Q Z 2' µ (G. 10) 

We can simplify this expression using an asymptotic representation of the incomplete 

gamma function for large values of z (Eq. (G.7)). 
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(G. 11) 

Keeping only the lower order terms in above approximation we obtain 

(G. 12) 

or using Eq.(F.9) 

I zN 
j C 

2(~)/i [ (~ )][~t+~(t)'-~(t}'J 
1- 4 µ exp - z µ - I I +~(_!_+ _I_ - _ l_ j 

4 z 2z 2 4z 3 ) 

(G. 13) 

As expected, in the high barrier limit 

For Eb < µ the integral (G.6) become 

(G. 14) 

where we used Eq.(G.7). Using approximation for gamma function (see Eq.(G.11) 

above) we obtain: 

(G. 15) 

or 
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(G. 16) 

When the barrier is negligible we obtain 

liml(Eb) = 0. 
r,, -,o 

Because the approximations that we have used during the derivations are the using 

the low-temperature limit, Eqs.(G. 13) and (G.16) converge in the limit of Eb = µ only at 

zero temperature. 

Next we calculate the integral 

E1, 

IQ = f Ep(E)f(E,µ,T)dE. (G. 17) 
0 

The logic of calculations is the same as for (G.5). We start from the case when the barrier 

is higher than Fermi energy of carriers, Eb > µ. The resulting expression is: 

(G. 18) 

Comparing this expression with Eq. (F.11) we obtain 

I s1 ( I )12 [ 5 zE ) I = U - - p µ 12 - r - _ b e z . 
Q 2 ° z 2' µ 

(G. 19) 

Using approximation (F.1 5) for the incomplete gamma function we obtain 
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(G. 20) 

or, using Eq.(F.16), 

~ (~J% exp[- z(~ -1 I][_!_~ -3
2 (~J2 + -;(~J' i 

4 µ µ ) z £ b z £ b 2z £ b ) 

IQ ""U 1- l+~(_!_-~+-3-+_3_1 
4 z z2 2z 3 4z 4 ) 

(G. 21) 

As it should be, 

limIQ(Eb) = U. 
Eh~oo 

For Eb<µ the integral (G.17) become 

(G. 22) 

Using approximation (F.15) for the incomplete gamma function we obtain 

(G. 23) 

or 

1- ~exp[- z(~ + 1Jl(_!_~ -3
2 (~J2 +-;-(~YI 

4 µ J z £ b z £ b 2z £ b ) ) 

(G. 24) 
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As in the case of 11 , Eqs.(G.24) and (G.21) for IQ converge in the limit of £b =µ only 

at zero temperature. 

Expressions for exponential band tail model 

We use the same technique of derivation as in Appendix F (p. 169). The density 

of states has a form given by Eq. (F.18) (seep. 172). First we consider the case £b > µ. 

Using (2.49) and (F.18) in (2.14) we obtain 

= p 1 f exp - £--f exp -+--- £ +-f exp ---+- d£ = {
µ ( £ } 1 µ ( £ £ µ} I£,, ( £ £ µ ~ } 
0 £/ 2 0 £1 t} t} 2 µ £/ t} t} 

1 I a + > 0 
a =-+- · 

± £ - t} ' a _ < O 
t 
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µ » E, => exp( -: )---> 0 

where we have used notations from Appendix F and Eq.(F.19) (p. 173). 

For very large barrier we have 

lim 11 c £ b) = N c . 

For £b < µ we have 

= P, H exp(:: )-1]-±exp(-~ JI exp(u,e}t+ 

= p,Hexp( :: )-i]-exp(-~ )lexp(~::·H}= 

= p,e, {[exp(:: )-i]-z(/+~ )[exp(:: + e,; µ) -exp(-~ J ]} = 

183 

(G. 25) 



µ » E, cc> exp[-:,)---> 0 

(G. 26) 

For a negligible barrier this expression becomes zero: 

limI1(cb)=O. 
Eb ----,0 

In the limit of cb = µ the expressions (G.25) and (G.26) coincide even for 

nonzero temperatures: 

(G. 27) 

Next we calculate IQ beginning with the case ch > µ. 
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+ 2~, exp(~ j( exp(a_e )(a_e - I~:·)}= 

= p,{e;[ exp(:,)(:, - I)+ iJ- 2~; exp(-~ )exp(a , µ)(a,µ- I)+ t]+ 

+ 2~, exp(~ )[exp(a e, )(a_e, - I)- exp(a_µ )(a_µ-1) J} = 

+ 2~, [exp(a_(e, -µ ))(a_e, -1)-(a µ-1)]} = 

( µ)(1-a cb) [ ] =U-p 1£ 1 exp- - 2 expa _(cb-µ)= 
£, 2£,a_ 

= U - p £ exp - - 1 + _ b - 1 
7 exp - h - = ( µJI( £ 1-8) £8 2 

[ (£ -µ;1-8] 
' ' £, 2 £, 8 (1-8 )- er 8 

=U (G. 28) 

For a very large barrier we have 
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For Eh < µ we have 

{
Eh ( £ } J E1, ( £ £ µ } } 

=p, f £exp - £-- f £exp-+--- £ = 
0 £, 2 0 £( 1} 1} 

or 
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(G. 30) 

where ii denotes the expression in figure brackets in (G.29). 

In the limit of f\ = µ expressions (G.28) and (G.29) coincide even for nonzero 

temperatures: 

(G. 31) 
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APPENDIX H. DIMENSIONLESS MODEL EQUATIONS 

Dimensionless model equations (Eqs. (2.1 ), p. 18) are obtained through the 

following procedure: 

'ts 'ts 'ts 
(2.1 a)X-=-, (2.1 b )X-=-, and (2. lc )x -=-:::-, 

N N Nhro 

where N is some constant with dimensionality cm·3 and ro is some reference frequency. 

For stable numerical code, the parameter N should be on the order of the carrier density 

(=1017-1018 cm·\ we use N=1018 cm·3. The parameter ro is chosen in such a way that 

ni.o is equal to the bandgap energy (0.99 e V) of the laser medium (InGaAsP alloy) which 

was used in cw laser dynamics. 

The dimensionless equations used in numerical analysis are 

dX 1 

d't = -y C X + rGX + r~ spy - (j FCA XY - (j TPA X - + xx px' 

dY 1 - = P -Y -GX + crrPAx - , 
d't 

dZ ( ) 1 - = Z P - Z - cpGX - y I Z - Z 1 + cpcrXY + 2cr rPA X - , 
d't 

where we used the following notations for dimensionless values 

(H. 1) 

(H. 2) 

(H. 3) 

X = N_P ; y = ~ ; z = _v ; X = N !x ; y = ~ ; y I = ~ ; G = g't . ; X = k't ; 
N N Nni.o px N C 't C 't I s s 

ffi ]'t s Q'Cs vi - -
<p = ffi; p = N ; zp = Nhw ; zl = Nhw; (j FCA = Vg,SFCA 't ,N ; (jTPA = Vg,sTPA 't ,N . 
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