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Estimating Fees for Managed Futures: 

A Continuous-Time Model with a Knockout Feature 

Abstract 

Past research regarding incentive fees based on high-water marks has developed models 

for the specific characteristics of hedge funds. These theoretical models have used either 

discrete time or a Black-Scholes type differential equation. However, for managed 

futures, high-watermarks are measured more frequently than for hedge funds, so a 

continuous-time model for managed futures may be appropriate. A knockout feature is 

added to our continuous model which is something unique to managed futures although it 

could also have some relevance to hedge funds. The procedures allow deriving the 

distribution function for the fund's survival time, which has not been derived in past 

research. The distribution of the maximum until ruin is derived as well, and used to 

provide an estimate of expected incentive fees. An estimate of the expected fixed fee is 

also obtained. The model shows that the expected incentive fee would be maximized if 

all funds were invested in margins, but for total fees to be maximized in the presence of a 

knockout feature, less than half of the funds should be invested. This is precisely what 

fund managers do. This result suggests that designing a fund with incentive fees only 

may cause fund managers to adopt the highest leverage, and thus, highest risk possible. 

Key Words: hedge funds, managed futures, incentive fee, high-water marks, ruin. 
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Estimating Fees for Managed Futures: 

A Continuous-Time Model with a Knockout Feature 

1. Introduction 

Commodity funds are investment partnerships that pool money from investors to trade 

primarily futures and options on futures. Hedge funds are similar, but usually concentrate 

on stocks. Hedge funds use short selling, derivatives, and other strategies that a mutual 

fund is not permitted to use. Besides a fixed management fee of around one to three 

percent of returns, managers of commodity and hedge funds are paid an incentive fee. It 

is usually paid at the end of each period (typically a month for commodity funds and a 

quarter or year for hedge funds), and it consists of a fraction (around one fifth) of returns 

above the maximum managed capital reached in the previous periods. 

Incentive fees seem to better align the manager's objective with that of investors, but the 

effect of this fee on managers' actions is still unclear. For example, commodity fund 

managers do not invest all the available capital and sometimes will not accept new money 

when performing well. Commodity fund managers usually invest less than half of all 

available funds in futures margins and keep the rest in U.S. Treasury Bills. Our aim is to 

better understand both fees so as to measure the benefits they provide to managers and 

investors. Past research in this area cannot explain why commodity fund managers invest 

only part of all available capital (Grinblatt and Titman; Goetzmann, Ingersoll, and Ross; 

Carpenter). One important difference between hedge and commodity funds is that 

managed capital in many commodity funds is not allowed to drop beyond a certain fixed 

value, usually a fraction of the initial capital. If this happens, the fund is considered 
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ruined. We will refer to this as the knockout feature of the contract. A similar rule 

characterizes a down-and-out option, where the option becomes worthless if the asset 

price ever falls to or below a given barrier. Most hedge funds do not have a formal 

knockout rule; perhaps because most of them are considerably less risky than commodity 

funds. Investors could, however, follow a type of stop-loss rule, which would be 

equivalent to the knockout feature if they were allowed to withdraw funds on a short 

notice. Another analogy with option theory is worth noting. The incentive fee can be 

viewed as the payoff of a path-dependent option, in particular, a lookback option. In fact, 

Goetzmann, Ingersoll,and Ross take advantage of this analogy and obtain an expression 

for valuing a hedge fund contract based on the Black-Scholes model for options. 

Grinblatt and Titman's attempt to solve the manager's investment problem assuming that 

he can hedge the fee in his personal portfolio, leads to the manager opting for increasing 

the variance of managed capital to infinity. Carpenter argues that the manager cannot 

hedge the fee in his account since shorting securities that he purchases on his client's 

behalf is a breach of fiduciary duty. She develops a dynamic optimal trading strategy that 

maximizes a fund manager's expected utility of terminal wealth. In her model, when the 

asset value decreases and bankruptcy approaches, the manager increases portfolio 

volatility up to infinity. 

However Brown, Goetzmann, and Park, find that hedge fund managers do not behave 

according to what would be expected by the theory. On the contrary, they find that 

managers do not increase portfolio variance when performing poorly. They argue that a 

possible explanation to this is that fund managers engage in a trade-off between 

maximizing the option-like feature of their contract and avoiding ruin because of the high 
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cost involved in closure. However, ruin, made explicit as a knockout feature, is not 

considered in the previous models. Ruin will not only reduce the size of the incentive fee 

by reducing the life of the fund, but it will also lead to not receiving the fixed fee beyond 

the time of ruin. 

The purpose of this paper is to develop a model that will account for this knockout 

feature in order to analyze its influence on the incentive fee, fixed fee, and therefore 

management performance. The continuous-time approach allows obtaining complete 

distributions for the life of a fund and the maximum until ruin. The distribution of the life 

of a fund is not found in the literature since the knockout feature has not been modeled 

previously. For the sake of simplicity, it is assumed that the incentive fee is paid all at 

once and at the end, eliminating in this way any possible periodic withdrawal. The 

expected fixed fee will be higher as the probability of ruin becomes smaller, since it is an 

increasing function of the life of the fund. Graphs are included at the end that show that 

the knockout feature's effect on the incentive fee alone, does not explain why commodity 

fund managers prefer to invest only a fraction of total capital. However, once the fixed 

fee is considered, results indicate that managers may be better off by investing less than 

half of total equity in margins, when the chance of ruin is high. This result corresponds to 

their actual behavior. As they increase investment, the volatility of managed capital 

increases, ruin is more likely, and therefore total fees are reduced. 

5 



2. Continuous Models for the Life of a Fund and the Incentive Fee 

We will assume that capital, managed by a commodity or hedge fund behaves according 

to a Brownian motion process. A Brownian motion is chosen to model managed capital 

rather than a geometric Brownian motion to ease the derivation of the distributional 

forms. The fact that there is still no consensus on what is the process that drives returns in 

commodity funds, (Clark) supports our decision in that respect. Let {X(t), t ~ O} be the 

process, managed capital follows. This Brownian motion is characterized by: 

1. Initial capital is known and will be denoted by xo. 

2. The mean and variance parameters of the process, µ andcr 2 , are also known and are 

both positive. 

3. The fund will stop operating as soon as one of the following events occur: 

a. Managed capital falls below a fixed amount a < x0 , or 

b. t * units of time have passed since the process started 1• 

4. The incentive fee that the manager will receive consists of a fraction of the maximum 

reached by the process during its life minus the initial capital. 

Since we are interested in estimating this incentive fee as well as the average life of the 

fund we will proceed as follows: 

1. Obtain the distribution of T, the time at which a fund stops operating, i.e., the life of 

the fund. 

1 Notice we can always let/ be big enough so as to relax this restriction and have as the only 
reason for closure going below a. However, the restriction is necessary since without it, the probability of 
the life of a fund being infinite would be positive and we would not have a proper distribution, i.e., one that 

integrates to one in the open interval ( -oo, oo) . 
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2. Obtain the distribution of Mr , the maximum up to this stopping time T, find the 

expected value of M r and therefore, have the expected incentive fee as a function of 

2 * parameters xo, µ , cr , and t . 

3. The Probability Distribution of T, the Life of a Fund 

Let {X(t), t ~ o} be a Brownian motion process with mean and variance parameters µ >O 

and cr 2 >O starting at x0. Let Ta be the time the process reaches a<x0, if it ever does. 

Under certain conditions, the distribution of this random variable is known to be inverse 

Gaussian and as we shall see, it will be useful in deriving the distribution of the life of a 

fund. The life of a fund, T can be defined as follows: 

(1) 

where Ta is the time at which managed capital would fall to $a and t * is the longest period 

of (fixed) time a fund will operate. The distribution of the first hitting time, Ta, has been 

thoroughly studied and its derivation as well as its properties can be found in Chhikara 

and Folks. Since we are considering a process with positive drift, there is a chance that 

the process will never hit a, which is below x0. We will call this event [T0 = oo] and 

Excluding this possibility, i.e., given that a will be reached at some finite point in time, 

the distribution of the time the process first hits a is inverse Gaussian with parameters 

-v and A, which are functions of the parameters of the process: x0, µ , cr 2 , and a. The 

notation commonly used is the following: 
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In order to simplify notation we will refer to Ta I (Ta < oo) by T: where c refers to the 

conditional nature of this random variable. The cumulative distribution function of T: 
can be expressed in terms of the parameters of the process as follows: 

( µt - x + a J 2 (- µt - x + a J F1: (t;µ,cr 2, x0 ,a)=<l> cr/i +exp(2µ(x0 -a)/cr )<I> crJ (2) 

where µ,cr 2 > 0, x0 > a > 0. 

Knowing this we can go back to derive the distribution of the life of a fund. We will start 

by obtaining the probability that the fund stops operating at Ta. We want P(T < t) for 

f E (0, f*) . 

By definition of T, and since t • < oo, the following holds: 

P(T < t) = P(Ta < t and Ta < oo) 

= P(T: < t )P(Ta < oo) 

=Fr; (t) P(Ta < 00) 

Thus, the cumulative distribution function (CDF) of the life of a fund is 

{
/µ(a - x0 ) /cr 2 <I> ( µt-x0 + aJ+<l> ( - µt - x0 + aJ 

~~= crJt crJt 

1 

if !E(O,t°) 

if t = t" 

From this, we can obtain the probability that the fund stops operating at/: 

P(T = t" )= l -e2µ(a-x0 ) / cr 2 <I> ( µt-x0 + aJ-<l> (- µt-x0 + aJ. 
(J' Jt (J' Jt 
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Another way to obtain this last result is deriving it directly from the definition of T. 

Since [Ta > t' and Ta < oo] and [Ta = oo] are disjoint events, the following holds: 

Multiplying and dividing the first term of the right hand side by P(Ta < oo ), allows us to 

express P(T = t*) in terms of the CDF of Tac (which is known) in the following way: 

= P(Tac > t' )P(Ta < oo )+ P(Ta = oo) 

= ( 1- FT;(t') ~(Ta < 00 )+ P(Ta = 00) 

Since P(Ta < oo )+ P(Ta = oo) = 1, we can multiply through and further simplify the 

expression to obtain P(T = t ·) = 1- F7: (t • )P(Ta < oo). 

4. The Probability Distribution of Mr, the Maximum up to Time T 

Our next aim is to derive the distribution of the maximum value reached by managed 

capital during the life of a certain fund. Since the incentive fee is a fraction of the 

difference between this maximum and the initial capital, such a fee could be estimated by 

a (E(M r )- x0 ) where E(M r) is the expected value of the maximum, xa the initial capital 

and a , a number between zero and one. In what follows, the distribution of Mr will be 

obtained based on its relationship with another functional of a Brownian motion whose 

distribution and properties have already been derived and summarized by Borodin and 

Salminen (p.233). This functional represents the time a process takes to exit a given 
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interval, assuming that the initial point is contained in the interval. Denote by T a,m the 

first exit time from the interval (a, m) of the Brownian Motion process with positive drift 

and with parameters previously defined; its PDF is given b/ 

P(T E dt) = e -~ e- "-2 - ss{t' m-xo m- a )+ e- "-2 - ss{t' Xo - a Ill -a ) dt 
µ 21 [ µ(a-x0 ) µ(m- x0 ) ~ 

a,m ~ ' a ' er ~ ' a ' a 
(4) 

where the function ss(t; u, v) is defined as 

ss(t;u, v) = ~ v~ 2kv exp(-(v-u + 2kv}2 /2t ), u < v 
~ 2n t 312 

The first term of the density function is the probability of exiting at (t, dt) through a and 

the second term, the probability of exiting at (t, dt) but through m. To obtain the PDF of 

M T, notice that the following equivalence holds: 

[MT > m] =[maximum up toT is greater than m] 

= [m is reached before min ¥a J }] 

= [m is reached before a and t'] 

= [exit through interval (a,m) occurs through m and before t'] 

= [ra ,m < 1· and X(T0 , 111 ) = m] (5) 

where ta is the time it takes to reach a. From this, P(M T > m) can be expressed as 

P(T0 •111 < t • and X(T0 •111 ) = m) for all m>xo. This probability can be obtained by integrating 

the second term of equation ( 4). When m=x0, the equivalence in (5) does not make much 

sense since at the initial point, the process is already at the upper limit of the interval. We 

2 When cr 2 = 1 , the density below becomes the one that Borodin and Salminen present in their handbook. 
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can say that the probability that the process exits (a, xo) before i* and that it does so from 

x0, is one, therefore, P(Mr < x0 ) = 0 as expected. Finally, we can express the CDF of 

Mr , the maximum capital reached by a fund during its life as 

{ 

, µ 21 µ(m -x0 ) 

( ) 1- f1 e-~+- cr ' - ss(t· xo-a m-a )dt 
F, m = J1 , cr , cr 

MT 0 

0 

if m > Xo 

if m = Xo 

Since Mr is a positive random variable, its expected value may be obtained 

by integrating its CDF in the following way: 

(6) 

• µ 11 µ(m-xo) 
= X + f"' f1 e -~+- cr- ' - ss1t· Xo-a m-a)dt dm. (8) 

o Jxo Jo ~ , cr ' cr 

So once parameters µ , cr 2 , and x0 are estimated from the process followed by managed 

capital, the expected incentive fee can be estimated as 

oo t• J.l 1t µ(m -x0 ) 

£(Incentive fee)= a f f e - 2" 2 +~ ss ( t; x0;
0 

' 111;; 0 ) dt dm (9) 
Xo 0 

where a, as before, is the fraction of the maximum reached by managed capital over its 

initial value. Slutsky's theorem guarantees this estimator to be consistent as long as µ 

and cr are consistent for µ and cr respectively. 
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5. The Expected Fixed Fee 

Besides the incentive fee, fund managers receive a fixed fee, usually paid at the end of 

each month. It consists of a percentage of the funds available at the end of the month, and 

it is paid as long as the fund operates. 

Mathematically we could define it as p I '.:: X(i), where p is the monthly rate and IIT II is 

the greatest integer smaller than or equal to T, the life of the fund in months. However, 

two difficulties arise when taking the expected value of the fixed fee. 

First, with discrete payments we would have to calculate E(x( IITII )) . So, to make the 

problem tractable we assume continuous payments. Now the fixed fee can be represented 

as lim,,,-+00 -¥,;- I;::·x(i Im), since the bigger m is, the closer X~I mT II ! m) is to X(T). 

Still, there is one more difficulty with this approach. When taking the expected value, we 

will need to know the distribution of X given that ruin occurs at time T. But the mean 

process of managed funds given ruin at Tis unknown. What is known is the mean 

process after reaching the point of ruin a, if the fund were to continue operating. It would 

be the mean of a Brownian motion process starting at a and having a positive slope equal 

to µ. We call this process Xr(t). 

Then, let us redefine the fixed fee in the following way: 

p rmt· mt· l ff= lim - I x (u m)- I x ,(i! m) 
m~oo m 

i = I i=mT 

(10) 

This is the total fixed fee without a knockout rule minus the forgone fixed fee due to ruin. 

Taking expectations we arrive at 
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E(!f)= Er(Ex(ff IT= T)] 

=Er lim f I(x0 +µi!m}- I(a+µ((i-mT} !m}} [ [
mt* mt' ]] 

m~CJJ m i=I i=mT 

(11) 

The term in brackets is the area under the mean process of a Brownian motion starting at 

x0, with mean µ , minus the area under the mean process of a Brownian motion starting at 

time T , position a, with the same mean parameter, up to time/. 

Since the distribution of the life of the fund has already been derived (recall it was a 

mixture of a discrete and continuous distribution), numerical integration is performed in 

Matlab to obtain the estimated fixed fee. The sum of estimated fixed and incentive fees 

constitutes the manager's total income. 

6. Interpretation of Numerical Results 

The distribution of the life of a fund is given so that it is possible to know how likely a 

fund is to survive in the presence of the knockout feature. Figure 1 shows how the mean 

and variance of the fund are related to the probability of ruin. Initial capital was assumed 

to be $1 ,000,000 and the knockout point, $500 thousand. It is clear that a higher mean 

will move capital away from the knockout value but as variance increases, the chance of 

ruin increases as well. If the fund manager is fired due to ruin, he loses both, fees and 

reputation. 

The expected incentive fee, which is a fixed percentage of the expected maximum until 

ruin, was plotted against the proportion of equity invested in margins (figure 2). This 
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proportion will determine the size of the mean and variance parameters of the process. 

Due to the complexity of the expression for the expected maximum ( equation 8), 

numerical integration was performed to calculate the double integral. Gaussian 

quadrature with 96 points was used for this purpose (Davis and Rabinowitz). The 

computer program was implemented in Matlab. 

The expected maximum is definitely an increasing function of equity invested, although 

it increases at a decreasing rate. This outcome suggests that fund managers would 

maximize their expected incentive fee by investing all available capital. Figure 3 shows 

how the expected fixed fee behaves for processes with different mean parameters. When 

fixed fees are added to incentive fees, for processes with a small mean parameter (1.5-2), 

the maximum total fee is reached by investing less than all available capital (figure 4). As 

the mean increases, ruin becomes less likely, and managers are better off investing all 

available capital. For the fixed fee, the fraction p is set at 0.03/12 referring to an annual 

rate of 0.03, and the incentive fee percentage is 20. 

Managers may also want to avoid ruin in order to maintain their reputation, since this is 

precisely what preserves the opportunity of managing funds later. 

7. Conclusions 

Past research on incentive fees cannot explain why futures fund managers do not invest 

all their capital. A model is developed that considers a knockout feature, and both 

incentive and fixed fees. With incentive fees alone, fund managers would maximize fees 

by investing all of their capital. With fixed plus incentive fees, however, and when ruin is 

more likely, fund managers are better off by investing only part of their capital. 
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Thus, the effect of the knockout rule on total fees can explain why managers do not 

invest all their capital. Our results suggest that designing a hedge fund with incentive fees 

only would cause managers to adopt the highest leverage attainable. 

Another reason for the knockout rule could be a desire to terminate funds that have a 

negative drift before all capital is lost. Also, it could be that since fund managers are 

encouraged to take higher risk due to the incentive fee, the knockout rule would keep 

them from taking extremely high risk. If this were the case, the knockout rule would be 

protecting the investor's interests. 

The knockout feature in our model only determines the end of the fund whereas in reality, 

ruin implies loss of reputation to the manager that will definitely influence future income. 

Considering the loss of reputational capital is likely to reinforce our finding that 

managers are better off keeping part of their funds in Treasury Bills. 

Our simple model was able to replicate manager's behavior by considering the effects of 

the knockout feature on the sum of fixed and incentive fees. This suggests that future 

research should consider incorporating the knockout rule into more elaborated models 

that include withdrawals, random benchmarks, and dynamic leverage adjustments, but 

that have not yet been able to explain manager's behavior. 
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Figure 1. Probability of ruin vs. standard deviation for various mean values 
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Figure 2. Expected incentive fee vs. leverage for various mean values 
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Feeder Cattle Price Slides 

Abstract 

A theoretical model is developed to explain the economics of determining price 

slides for feeder cattle. The contract is viewed as a dynamic game with continuous 

strategies where buyer and seller are the players. We determine the value of the slide that 

guarantees unbiased estimate of cattle weight. An empirical model using Superior 

Livestock Auction (SLA) data shows that price slides used are smaller than those needed 

to cause the producer to give unbiased estimates of weight. Consistent with the model ' s 

predictions, producers slightly underestimate cattle weights. 

Key Words: asymmetric information, feeder cattle, price slide, game theory 
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Feeder Cattle Price Slides 

1. Introduction 

Feeder cattle prices normally decrease as cattle weights increase. Also, a given 

buyer only wants cattle that are within some weight range. Thus, feeder cattle weight is 

critical in determining price. Estimating the weight of cattle can be difficult for both 

buyers and sellers. This is especially true when cattle are sold for future delivery. In 

many private treaty sales the buyer never sees the cattle before purchase (although an 

order buyer might). In video auctions, the buyer only sees the cattle on a television 

screen. Thus, the seller is often better able to estimate weights than the buyer. Since 

sellers and buyers have asymmetric information about cattle weights, contracts need to be 

structured to provide sellers with an incentive to accurately estimate average delivery 

weights. 

The usual approach to dealing with uncertain weight is to adjust the original 

contract price by a "price slide." The price slide (sometimes called a one-way slide) 

specifies the rate at which the contract price will be reduced when the average delivered 

weight is greater than the weight established in the contract plus a specified tolerance. 

With a one-way slide, no adjustment is made to the contract price if delivered cattle 

weigh less than the specified limit. Suppose, for example, that a producer estimates 

average delivered weight at 500 lbs. The producer could sell cattle at $70/cwt. with a 

price slide of 10 cents per cwt. for each pound of actual average weight over 520 lbs. If 

cattle average 530 lbs. at delivery, then $1/cwt (10 cents/cwt./lbs.xlO lbs.) is deducted 

from the contract price, i.e., from the $70/cwt. If, however, actual average weight is 515 
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lbs., no adjustment is made from the contract price. 1 The one-way price slide is an 

implicit option and therefore the value of the option should be reflected in the price. 

Superior Livestock Auction (SLA) currently sells over a million head a year 

which is more than any other auction in the United States. Feeder cattle sold through 

SLA are sold with a price slide. Most private treaty sales also use a price slide, though 

price slides are not used in traditional auctions. The interest of producers in the topic is 

demonstrated by two extension articles (Bailey and Holmgren; and Prevatt) on price 

slides. However, no research has yet been done in support of extension efforts. 

A contract has four essential variables: the contract price (base price), the price 

slide, the allowable weight difference (weight tolerance), and the estimated cattle average 

delivery weight (base weight). Bailey and Holmgren argued that sellers may obtain 

higher contract price offers if they select small allowable weight differences ( or weight 

tolerances) and large price slides. Other important elements of the contract are time to 

delivery and cattle weight variability. Characteristics such as breed, sex, lot size, 

condition location, and frame size are also likely to be considered when setting the 

contract price. 

Bailey, Brorsen, and Fawson found the surprising result that time to delivery has a 

positive effect on prices at Superior Livestock Auction (SLA), while other empirical 

studies on cash forward contracting have consistently found that forward contract prices 

decrease as time to delivery increases ( e.g., Brorsen, Coombs, and Anderson; Elam). The 

1 Prevatt refers to the compensation scheme in (1) as a one-way slide. If buyer and seller had symmetric 
information, a two-way slide could be used where premiums are paid if cattle are lighter than expected, but 
one-way slides are most commonly used. 
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positive relationship between time to delivery and the contract price could be due to the 

implicit option created by the price slide. 

In this paper, a theoretical model is developed to explain the economics of 

determining price slides for feeder cattle that will encourage sellers to accurately estimate 

cattle weight. The contract between buyer and seller is viewed as a dynamic game with 

continuous strategies where buyer and seller are the players. If, as in reality, the seller is 

to set the value of the price slide, necessary conditions for (subgame perfect) equilibrium 

can be obtained. It is also possible to determine the value of the slide (as an exogenous 

variable) so that equilibrium is reached when the seller gives an unbiased estimate of 

cattle weight. In other words, optimal values of the slide are obtained so that it is in the 

seller's best interest to give an accurate estimate of the cattle's weight. Our research 

shows that either price slides should be set higher than Prevatt suggests, or the weight 

tolerance needs to be lower. The model's predictions are compared to actual SLA 

observations. The slides used in SLA are smaller than those needed to give the producer 

an incentive not to underestimate weight. Consistent with the model's predictions, 

producers slightly underestimate cattle weights. 

2. Analytical Model 

Consider a feeder cattle buyer who contracts with a seller for future delivery of 

cattle at a price per cwt. established at the time of the contract (this is the contract price, 

p 0). The seller estimates the average weight of the cattle to be sold, called the base 

25 



weight (y0), and sets the price slide (y>O). To this the buyer responds by offering a 

contract price (p0) per cwt. that maintains expected utility at zero (to simplify the model, 

perfect competition is assumed so that neither buyer nor seller are able to make profits). 

The seller then decides either to accept or reject the contract. 

The price slide modifies the contract price in the following way: 

. -{Po-y(y-yo-8) if Y~Yo+o 
P(Y,Yo,Po,Y ,o) - .f ~ 

Po I Y < Yo +u 
(1) 

The tolerance in feeder cattle weight estimation error is known as weight 

tolerance and is represented by o>O. We assume that it is pre-established so that neither 

buyer nor seller can decide upon its value2• The delivery weight is given by y, and p(y) is 

the price actually paid per cwt. at the time of delivery, when the average weight is finally 

revealed to buyer and seller. The payment p(y) is a compensation scheme which 

penalizes the seller if delivered weights are greater thany0+o. Compensation schemes of 

this type are used in many real world contractual relationships where asymmetric 

information exists (e.g., Phlips; Harris and Raviv). 

Let rs and sb be the seller's payoff and the buyer's share of the cattle's value in 

total dollars, respectively: 

r,. = {(Po -y (y - Yo - o ))y if Y ~ Yo + O (2) 

PoY if Y < Yo +o 

sb ={(v(y,z)-Po+y(y-y0 -o))y if y~y0 +0 (3) 

(v (y,z)- p 0 )y if y < Yo +o 
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Here, v(y,z) is the value per cwt. of the cattle when weight is known and z is a 

vector of other relevant variables. So, if weight were known with certainty, the buyer 

would be paying the real market value for cattle and his share would be zero. We assume 

that v(y,z) is a decreasing function of y since heavier cattle are normally worth less per 

pound than lighter cattle. The utility of buyer and seller will depend on s6 and rs 

respectively. 

The contract can be viewed as a two-person dynamic game with continuous 

strategies that will be approached using 'backwards induction' (Gibbons; Fundenberg and 

Tirole). The stages of the game are as follows: 

1. The seller offers an estimate of the weight Yo and the price slide y. 

2. The buyer offers a price per cwt., the contract price Po. 

3. The seller either accepts or rejects the offer. 

Assume the seller accepts the contract at stage 3. This implies that the buyer 

offered a contract price that, given the values of y 0 and y (fixed for the buyer), maximizes 

the seller's utility while keeping the buyer's utility at its reservation level (which we will 

assume to be zero). So the seller knows the problem with which the buyer is confronted. 

If he could solve the buyer's problem, that is obtain the buyer's best response function 

p~(y0 ,y) that guarantees the buyer his reservation utility, the seller would be able to 

select the optimum values for weight and price slide, y~ and y ·, so that p~ (y~, y ·) 

2 In practice, the weight tolerance is also a choice variable of the seller. For a time, the SLA did fix the 
weight tolerance, but quit since it was unpopular. In order to keep the model as simple as possible, weight 
tolerance is assumed fixed. Weight tolerances observed in the SLA do vary little for a given weight range, 
so the assumption is reasonable. 
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maximized his own utility. The existence of p; (y0 , y), y; , and y • would guarantee sub

game perfection and the problem would be solved. 

Unfortunately, although the seller knows the general problem faced by the buyer, 

he is not able to 'rationally guess' the buyer's subjective probability distribution of cattle 

weights (note that the distribution of weights is crucial in calculating expected profit or 

utility). Most likely the buyer will choose a distribution of weights based on the 

information given by the seller (y0 and y). With this probability distribution, the buyer is 

to obtain his best response function p;(y0 ,y) . Assuming the distribution is normal, we 

obtain a necessary condition for optimally selecting the price slide that suggests the price 

slide should be bigger than the market's weight discount and not equal to it as has been 

proposed by Prevatt. Closed form solutions for the optimal slide problem, however, 

would require estimating two more parameters: the buyer's estimate of the cattle' s mean 

weight and variance (the empirical section, however, does use regression to estimate the 

buyer' s subjective mean and variance of cattle weights). With less equations than 

variables, solutions are no longer possible, but future research could focus on trying to 

determine general characteristics of the buyer's subjective distribution function that 

would allow for equilibrium solutions to the problem. 

Still, with further assumptions on the probability distribution of weights used by 

buyer and seller, values for the slide are found as if determined exogenously , such that the 

seller has no incentive to give an erroneous estimate of the cattle' s weight. 
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2.1. A lower bound for the price slide 

The buyer' s problem is to find p 0 that makes his expected utility from the 

transaction equal to his reservation utility, i.e.: 

(4) 

where Yo and y are taken as constants, uh is the buyer's utility function, andh is the 

buyer' s subjective density function of cattle weights. Assume the solution to the buyer' s 

problem is the best response function p~ (y0 , y); then the seller' s problem is to find Yo and 

y that satisfy 

(5) 

where us is the seller' s utility as a function of his payoff andfs is the density function of 

cattle weights according to the seller' s beliefs. Assuming risk neutrality we can directly 

substitute (3) into (4) and express the buyer' s problem as 

fYo+o 

(v(y) - Po)Y h (y)dy + 
Ymin 

or 

Rearranging, we have that the contract price should satisfy 

Eb (v (y )y ) +y (m~: (y - Yo -8 )yf b(y )dy 

Po = Eh (y ) 
(6) 

where Eh denotes the expectation with respect to the buyer' s density function of cattle 
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weights. 

This result indicates that the contract price is the buyer's expected value of cattle 

per cwt. plus the discount per cwt. the buyer expects due to the slide. In other words, the 

buyer includes the expected discount in the contract price. 

To analyze the seller' s problem, one more assumption is made; the seller' s 

distribution of weights is assumed normal with unspecified parametersµ and ci. So, by 

substituting equation (2) into (5), the seller's problem can be expressed as: 

max 
Yo,Y 

y fYmax (y- µ) 2 

E(rJ=p't(y0 ,y)µ- ~ (y-y0 -8)yexp(- 2 2 )dy. 
cr 7t Yo +il cr 

The first order conditions are 8E(r5 ) / 8y0 = 0 , and 8E(r5 )/ oy = 0 . Thus a 

necessary condition is: 

8E(r ) I 8y = µ 8p • I 8y +y j"max - 1-y exp(- (y-µ) 2 ) dy = O. 
s O O O i o +6 cr 5 2cr 2 

(7) 

Note that the integrand in this expression is the one for the expected value of y , although 

the integral is computed over only part of the range. Thus, realizing that the following 

inequality holds 

_I_ f max y exp(- (y -µ) 2 ) dy <_I_ rmax y exp(- (y -µ) 2 ) dy = µ 
cr ..fin O +8 2cr 2 cr ..fin . 2cr 2 , mm 

we can rearrange the first order condition as follows: 

1 f>'ma, ( (y - µ) 2 )d 
cr ~ .!vo+o y exp - 2cr 2 y 
------------<I 

µ 
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Therefore, we have as a necessary (but not sufficient) condition for optimality that 

(8) 

Equation (8) says that the slide should be set above the absolute value of the slope of the 

buyer's best response function. Since p~(y0 ,y) is expected to be very close to the real 

value of the cattle, v(y), equation (8) also suggests that the slide should be greater than 

the market's weight discount and not equal to it as extension articles have suggested. 

2.2. A price slide that provides incentives for unbiased estimates of cattle 

weight 

Now let us further assume that the slide could be determined by a 'supervising 

entity' in order to promote fair contracts. Rather than letting the seller set the price slide 

value to his own convenience, we would like to set the value of the slide so that 

equilibrium is reached when the seller gives an unbiased estimate of the weight. 

The seller's revenue in equation (7) is still maximized but now, y is set 

exogenously. Now the seller has only the base weight as a choice variable, and thus only 

one first-order condition: 8E(rs) I 8;;0 = 0. This condition gives base weight Yo as a 

function of the price slide. If we want the base weight to be the real mean weight, then 

impose y O = µ , and solve for y ... The price slide y •• is the value of the slide that makes 

the seller accurately estimate cattle weight. Since the buyer knows that the price slide is 

not a variable for the seller any more, he will take the seller's estimate of weight as the 

mean of his own subjective probability distribution of weights; i.e., µh = y0 • The variance 

of weights is assumed to be equal for buyer and seller, cr2• 
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Withy··, the seller optimizes revenue (by satisfying his first order condition) by 

letting his real estimate of the weight µ be the base weighty 0. The value of the slide 

derived by proceeding in this way, and after simplification is: 

•• y (9) fmax (y- µ -8 )y(1- + y-1:__)exp - 1_ (y-µ )2 dy + (µ + 8) exp(- L )' 
+o µ cr 2 2 cr 2cr 2 

where y,,,;11 and Ymax are -oo and oo respectively in theory, but for interpretation purposes 

they can be understood as realistic lower and upper bounds for the weight of the animal 

since the probability of y values beyond those limits can be considered negligible. The 

derivation of equation (9) is given in the appendix. It should be noticed that this slide is 

an increasing function of the weight tolerance, so the smaller the weight tolerance, the 

smaller the slide needed to guarantee unbiased estimates of weight. Equation (9) above 

will be used to interpret results in the following section. 

4. Empirical Models 

In this section we take an empirical approach to better understand feeder cattle 

contracts and check the findings from the previous section. First we test whether base 

weights are unbiased predictors of actual weights. Then, using regression analysis we 

obtain estimated mean and variance equations of cattle weight at delivery based on 

market characteristics, delivery time, and the information the buyer can access: base 

weight, price slide, and weight tolerance. We assume the buyer can use these equations 
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to obtain his subjective distribution of cattle weight, and thus the expected discount 

applied to the price per cwt. of cattle as well as the base price. 

Since the model suggests that the contract price be a function of the discount due 

to the slide as well as market and cattle characteristics ( equation 6), a second regression is 

performed that regresses the contract price on the expected discount and other 

characteristics. This price regression allows us to check how the slide, through the 

expected discount, affects the price-time to delivery relationship. Finally, the slide 

required for sellers to provide an unbiased estimate of the weight (y·· given in equation 

(9)) is obtained for the data and compared to slides actually used. 

The data used in this section are actual Superior Livestock Auction data for the 

1987-1989 period (3688 observations) and the 1993-1994 period (2364 observations). 

The data contain information on lot characteristics, contract prices, base weights, and 

other relevant variables needed to estimate the models for cattle weighing not more than 

900 pounds. The weight tolerance for the 1993-1994 data is constant at 10 lbs. and thus, 

does not enter as a variable in the regressions. In what follows, the 1987-1989 period will 

be referred to as period 1 and the 1993-1994 period, as period 2. 
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3.1. Test for unbiasedness 

If sellers' estimates of average delivered weights are unbiased, the mean of the 

difference between actual and estimated delivery weights should be zero. This 

hypothesis is tested using a paired differences t-test. 

The t-ratio of the paired t-test is 8.15 for period 1 and 7.24 for period 2. These 

values indicate that the actual and estimated weights are significantly different at the 5 

percent level, so sellers underestimate average weights. Table 1 shows that the bias was 

small (5.65 lbs. and 5.37 for periods 1 and 2 respectively). Since the raw data deviate 

from normality we also test the bias non-parametrically with the sign test, and confirm 

that it is statistically different from zero at the 5% level. 

3.2. Weight bias and weight variability 

Recall the buyer is to propose a contract price. According to equation (6), the contract 

price should be a function of the expected discount and the expected market value of the 

cattle. To construct these expectations, the buyer needs to assume a probability 

distribution of weights. lfhe assumes normality, it is necessary to estimate weight mean 

and variance based on the information received from the seller and some other 

information accessible to him.3 Although we did not derive or assume values for these 

3 Other variables such as dummies for quarters and regions in the mean equation, a time by weight 
interaction in the variance equation, or a variable signaling economic conditions after signing the contract 
and before delivery could have been included. However, we keep the model simple since we assume the 
buyer cannot access all this information. Weather for instance needs to be predicted in order to include 
seasonality in the model. When seasonal dummies were included, parameters changed substantially across 
periods. 

34 



parameters in the theory section, it is possible to obtain them empirically with the data 

available. 

The following equations are used to estimate weight mean and variance: 

(10) 

where the u's are independent and normally distributed with mean zero and variance 

cr; = exp(P 0 + P,Yo + P2yi + P3slide + P4 w _tol + P5head-' + 

+ P6steers + Piime + pg1ime2 + P9MidWest + p10West + 
+ P, 1South + P12Upper + P13WCoast + P, 4LSW) 

(11) 

The variable y is actual weight, y0 is base weight, Steers is a dummy variable for 

steers, Time denotes time to delivery, slide is the price slide, and w _tol is the weight 

tolerance. MidWest, West, South, Upper, WCoast, and LSW, are dummy variables 

representing the regions where the cattle are located.4 The inverse of the number of head 

in the lot, head-', is included to capture the reduced variability from averaging over a 

large number of animals. Equations ( 10) and ( 11) are estimated in SAS using the Mixed 

procedure with the local=exp() option in the Repeated statement (i.e. maximum 

likelihood). 

These equations are used to define the buyer's expectations about mean and 

variance of weight difference. With them and the base weight given by the seller, the 

buyer estimates cattle weight distribution at delivery and proposes a contract price. 

4 There are 7 regions: MidWest: Nebraska, Kansas, Colorado, Missouri, Illinois, and Iowa. West: Montana, 
Wyoming, Idaho, Utah, and Nevada. South: Mississippi, Florida, Louisiana, Alabama, Arkansas, North 
Carolina, Georgia, Tennessee, and Kentucky. Upper: South Dakota, North Dakota, Minnesota, and 
Wisconsin. WCoast: California, Arizona, Oregon, and Washington. LSW: Texas, Oklahoma, and New 
Mexico. East: States east of Illinois and north of Kentucky. 
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The parameter estimates of equations (10) and (11) are reported in table 2. The 

assumption that weight variability increases with time to delivery is also tested using 

these same equations. The parameter estimates of time to delivery in the cattle weight 

variance equation (table 2) indicate that time to delivery has a positive effect on the 

variance of base weight. The parameter for the price slide is not consistently significant 

in the mean equation but it is negative and significant in the variance equation for both 

periods, indicating that sellers do use slightly larger slides when more certain about 

weights. As expected, our variables are better able to explain the variability in the bias 

than the bias itself. In fact, Buse' s R2 is only 0.024 and 0.04 for the mean equation in the 

first and second period respectively. The parameter estimate for weight tolerance in the 

first period suggests that reducing the weight tolerance decreases the bias. The bias 

varies greatly with weight. With low base weights the bias tends to decrease, while high 

base weights tend to increase the bias. The variance is also heavily influenced by weight 

with sellers being much less accurate at estimating weight of light-weight cattle. The 

inverse of number of head per lot in the variance equation has a positive coefficient as 

expected indicating more error variance with small lot sizes. 

3.3. Contract price 

With weight mean and variance estimates obtained from equations (10) and (11), 

the buyer should be able to construct the expected discount per cwt., which, according to 

equation (6), is given by: Ep = y fYmax (y- Yo -8 )yfh(y)dy I Eb (y) . 
J,,o +6 
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Assuming normality, these two parameters completely specify a distribution of 

weights at delivery time so that the expected discount can be estimated. The contract 

price is explained as follows: 

Po =ao +a 1 Yo +a 2y~ +a1 Head +a 4 Head 2 +a 5 Steers +a 6 Time + 

+a 7 Time2 +a 8 Futures +a 9 MidWest+a 10 West +a 11 South+ (12) 
34 

+a 12 Upper+a 13 WCoast+a 14 LSW +a,5Ep+ Ia;Oc;+u+E 
i=l6 

where E has mean zero and variance cr; , whereas u is an error component associated with 

the day of the sale having zero mean and variance cr ~ . 

The variable p 0 is the contract price, Ep is the estimated expected discount per 

cwt. 5, Futures is the current price of the futures contract that will be the nearby futures at 

the time of delivery. Oc is other market and lot characteristics such as breed, flesh, and 

frame, Head is the number of head, and all other variables are defined as before. This 

random-effects model is estimated using the Mixed procedure in SAS. The estimated 

mean equation is used to plot the contract price against base weight and time to delivery. 

The difference between the average expected discount and the average of actual 

discounts is small although statistically significant (table 1). Thus, the model used for the 

distribution of weights is imperfect. This could be due to some minor misspecification 

such as incorrect functional form or non-normality. 

Buse's R2 for the price equation is 0.83 and 0.80 for the first and second periods 

5 The use of the variable Ep creates a generated regressor problem. As Hoffman shows, parameter estimates 
are still consistent with a generated regressor, but estimates of standard errors are biased. Monte Carlo 
studies by Hoffman show that this bias is small (<10%) except when using a lagged dependent variable. 
No correction is made here since the estimated coefficient is several times its standard error. 
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respectively. Regression estimates are shown in table 3. The base weight was included 

in equation (12) in quadratic form. As seen in table 3, the parameter estimate of the base 

weight is negative while that of the square of the base weight is positive. Figure 1 shows 

the effect of the base weight on the contract price for periods 1 and 2. As expected, the 

contract price decreases as base weight is increased. 

The effect of time to delivery on the contract price is plotted in figures 2 and 3. 

Figures 2 and 3 show, for periods 1 and 2 respectively, the contract price as a function of 

time to delivery resulting from estimating equations 12 and 11, i.e., when the estimated 

discount is entered as an explanatory variable. These relationships are compared, in the 

same figure, with the relationship between contract price and time to delivery when the 

estimated discount variable is not accounted for, but otherwise all other variables are kept 

in the model. For the first period, including the expected discount widens the range in 

which time to delivery has a negative effect on the contract price. Price increases with 

small values oftime to delivery and decreases otherwise. In the actual data set, however, 

most of the values of time to delivery are within the range where the contract price 

slightly increases. An explanation of this could be that buyers in this market pay a 

premium to reduce their input risk or it could be that sellers wanting to sell cattle 

immediately must pay a liquidity cost in that most buyers are demanding cattle for future 

delivery. However, in the second period (figure 3), including the expected penalty does 

make the price negatively related to delivery time in the range of O to 40 days. So once 

the discount generated by the price slide is accounted for, the positive effect of time to 

delivery on price is reversed for a good part of the relevant range. The hypothesis that 
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this positive relationship is due to the implicit option created by the price slide cannot be 

rejected for period 2. 

The parameter for expected discount was significant and positive for both data 

sets ( 4.45 and 3 .31 ). According to equation ( 6), however, a value close to one was 

expected. The coefficient estimate was also sensitive to changes in the specification of 

the weight-difference mean equation that was used to obtain the expected penalty. 

However, while the size of the coefficient was fragile, it always remained positive and 

significant, suggesting that the option-like value of the slide is indeed recognized by 

buyers. The parameter being greater than one means sellers have an incentive to use 

large price slides and low weight tolerances. 

3.4. Comparing the actual price slide with the model's predictions 

To see if in reality the price slide is set at the value that makes the seller want to 

provide an unbiased estimate of cattle's weight (according to the analytical model), an 

estimate of the weight discount is needed. This is taken to be the change in the contract 

price due to a unit increase in weight. In other words, the weight discount is estimated as 

the derivative of the price equation with respect to weight6• For periods 1 and 2 weight 

discounts were estimated as 4.36 and 4.87 (cents/cwt.)/lb. respectively. On average, the 

slide is around 1.29 times the market weight discount for the first period and 1.41 times 

the weight discount for the second period. 7 This suggests that there has been a tendency 

to increase the slide above the market weight discount over time. But when calculating 

6 We are using 8f>o I 8y0 as an estimate of av I 8y. 

39 



the slide that according to the model should give unbiased estimates of weight ( equation 

9), we obtain, for period 1, a 10.48 (cents/cwt.)/lb. optimal slide for the mean weight, 

which is about 2.4 times the corresponding weight discount. For period 2, a similar 

situation is shown: The optimal slide for the average base weight, according to equation 

(9) is 11.07 (cents/cwt.)/lb., about 2.3 times the corresponding weight discount. Thus in 

both cases, equation (9) indicates that either a bigger price slide, or (if the slide is to be 

kept at about the market weight discount) a smaller weight tolerance (since the slide is 

increasing in the weight slide) is needed to guarantee unbiased estimates of weight. 

Since the model predicts that the price slides used at SLA are not big enough to 

avoid unbiased estimates of cattle weight, we would expect to see this difference in the 

data. In fact, as seen in table 1, actual weights are slightly larger than base weights. 

4. Conclusions 

Feeder cattle sold through video auctions and by private treaty are often for future 

delivery. Because delivery weights are not known when cattle are contracted, sellers 

must estimate them. Since sellers and buyers have asymmetric information about cattle 

weights, contracts need to be structured to provide sellers with an incentive to accurately 

represent their estimates of average delivery weights. 

7 We estimate the weight discount for each observation, obtain the slide-weight discount ratio, and average 
over all observations. 
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The usual approach to dealing with weight uncertainty is to adjust the contract 

price by a price slide. The analytical model provides the solution to how cattle should be 

valued in the presence of a price slide. 

Comparative statics results show that the price slides used are not sufficient to 

impose unbiased predictions of cattle weights. Furthermore, empirical results confirm 

that the price slides used are too small to impose unbiasedness and that sellers 

underestimate weights. 

Sellers often ask extension economists for advice on how to pick slides. The 

theoretical results suggest using price slides double the market's discount for weight if 

large weight tolerances are used, or to use small weight tolerances if a price slide close to 

the market's weight discount is to be used. Empirical results show sellers receive more 

than the expected discount in terms of higher prices. Thus, results suggest that larger 

price slides or lower weight tolerances should be encouraged. 
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Table 1. Summary Statistics of Selected Variables, Superior Livestock Video Cattle Auction Data, 1987-1989, 1993-1994. 

1987-1989 period 1993-1994 period 
Std. Std. 

Variable Units Mean Min. Max. Dev. Mean Min. Max. Dev. 

Base weight lbs. 624.05 270.0 890.0 133.8 608.15 225.0 895.0 126.6 
Actual weight lbs. 629.70 302.8 960.4 134.2 613.52 92.5 933.3 128.4 

Contract price $/cwt. 82.65 57.0 130.0 10.4 87.42 55.0 134.5 10.8 

Weight difference lbs. 5.65 -360.1 282.4 42.1 5.37 -238.9 193.0 36.1 

Price slide ( cents/cwt)/lb 5.39 3.0 10.0 2.9 7.04 1.0 15.0 2.7 

Weight tolerance lbs. 15.12 0.0 35.0 7.3 10.00 10.0 10.0 0.0 

Head 131.11 9.0 2000.0 116.4 117.23 25.0 1000.0 84.7 

Time to delivery days 38.31 0.0 290.0 35.4 28.36 2.0 145.0 25.7 
.i::,. Discount ($/cwt.) 0.65 0.0 27.2 1.6 0.79 0.0 11.0 1.4 N 

Estimated discount ($/cwt.) 0.69 0.2 3.5 0.5 0.90 0.2 6.7 0.5 

Discount- 0.05 -25.7 2.2 1.5 0.12 -9.9 4.3 1.3 
Est. Discount 

Note: The number of observations for the 1987-1989 period is 3688 and for the 1993-1994 period, 2364. 



Table 2. Parameter Estimates of the Cattle Weight Difference (Actual Weight 
minus Base Weight) Mean and Variance Equations. Feeder Cattle Auction Data. 

1987-1989 period 1993-1994 period 

Parameter Standard Parameter 
Variable Estimate Error Estimate 
Mean equation 

Intercept 53.45* 13.52 160.94* 
Slide -0.35 0.34 -2.71 * 
Weight tolerance 0.45* 0.10 
Base weight -12.61 * 4.16 -38.09* 
Base weight squared 0.63* 0.34 2.48* 

Variance equation 
Exp(lntercept) 1071.63* 634.76 7754.48 
Slide -0.09* 0.01 -0.11 * 
Weight tolerance -5.8E-3 3.8E-3 
Base weight -5.3E-2 0.18 -0.16 
Base weight squared -5.6E-4 0.01 5.3E-3 
Steers 6.5E-2 0.05 -0.13* 
Time 9E-3* l.7E-3 l.8E-2* 
Time squared -3E-5* l. lE-5 -l.2E-4* 
Head-1 0.16* 0.03 0.18* 
Mid West -6.7E-2 5.7E-2 -0.56* 
West 7.5E-2 7.2E-2 -0.74* 
South -6.4E-2 8.9E-2 -0.69* 
Upper 0.23 0.32 -0.58* 
WCoast 0.20 0.15 -0.32 
LSW -0.74* 

Notes: Asterisks denote significance at the 10 percent level. 
Base weight in the regression is in cwt. and base weight squared in cwt.2 

Head is in hundreds and time in days. 
The dependent variable is measured in lbs. 
Weight tolerance is fixed at IO lbs. for the 1993-1994 period. 
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Standard 
Error 

16.47 
0.50 

4.94 
0.41 

6287.99 
0.02 

0.22 
0.02 
0.07 
3.2E-3 
3.3E-5 
0.08 
0.25 
0.26 
0.26 
0.30 
0.28 
0.25 



Table 3. Parameter Estimates of the Contract Price Equation, Superior Livestock 
Video Cattle Auction Data. 

1987-1989 period 1993-1994 period 

Parameter Standard Parameter Standard 
Variable Estimate Error Estimate Error 
Intercept 72.47* 4.59 65.31 * 9.70 
Futures price 0.80* 0.05 0.74* 0.09 
Steers -6.82* 0.12 -5.34* 0.19 
Head 0.48* 0.09 0.74* 0.26 
Head2 -2.9E-2* 0.01 -6.7E-2 4.3E-2 
Base weight -12.24* 0.54 -10.33* 1.55 
Base weight squared 0.63* 0.04 0.45* 0.11 
Expected Discount 4.45* 0.35 3.31 * 0.66 
Time 5.6E-3 4.4E-3 -4.4E-3 1.2E-2 
Time squared -5.7E-5* 2.6E-5 6.2E-5 l.lE-4 
English-Exotic-Cross -0.95* 0.40 -0.20 0.66 
English-Cross -0.93* 0.41 1.36* 0.71 
Exotic-Cross -1 .27* 0.45 0.92 0.75 
Angus -0.36 0.73 5.32* 1.10 
Dairy -8.85* 0.58 -14.71 * 0.93 
Heavy -2.68* 1.14 
Medium Heavy -2.73* 0.47 2.54 1.83 
Medium Flesh -2.38* 0.44 2.38 1.79 
Light-Medium Flesh -2.02* 0.47 2.63 1.79 
Large Frame 6.65* 1.10 4.08* 0.87 
Medium-Large Frame 5.89* 1.09 2.58* 0.62 
Medium Frame 4.35* 1.17 2.00* 0.61 
Hom -1.64* 0.48 -1.11* 0.35 
Mid West 0.93* 0.15 5.52* 0.75 
West 1.56* 0.19 5.92* 0.80 
South -1.44* 0.22 -0.10 0.77 
Upper 1.49* 0.83 5.99* 0.88 
WCoast -0.89* 0.37 1.68* 0.79 
LSW 2.69* 0.77 
Truck -0.88* 0.25 
Mixed 1.62* 0.20 1.94* 0.24 
Miles -0.11 * 0.02 
Sale (random effect) 4.55* 1.27 2.20* 1.01 
Note: Asterisks denote significance at the 10 percent level. Base weight is in cwt., Base weight squared in 
cwt.2, Head and Miles in hundred units. 
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Figure 1. The effect of cattle weight on the contract price. Superior Livestock auction data. 
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Appendix 

Derivation of equation 9. 

The seller' s problem is: 

- * •• y •• r max (y - µ )2 
max E(r5 )-p0 (y0 ,y )µ- ~ (y-y0 -8)yexp(- 2 )dy , 

Yo CT 21t o +o 2cr 
(A. I) 

where the slide is fixed at y •• . 

The first order condition is: 

8E(rJ I 8y0 = µ 8p~ I 8y0 +y •• j"m•x ~ y exp(- (y- µr) dy = 0. 
.!vo +o av' 21t 2cr 

(A.2) 

It is left to see what op~ I 8y0 is. If the slide is given such that it is in the seller' s best 

interest to accurately estimate cattle weight, then the buyer can trust the seller's estimate 

Yo, and take it as the mean of weight distribution. Thus, Eh(y) = y0 • Also, we assume 

both buyer and seller take the variance of weights to be cr 2 • 

With these assumptions we can obtain the derivative of the buyer's best response function 

with respect to the base weight: 

8p* /cy =_J_(-'-[[v(y)yexp(-(Y-Yo )2 )dy+y r (y-y -O)yexp(- (Y-Yo) 2 )dy]) 
0 0 8y O ayo Ji; "' 2cr 2 .!vo +6 0 2cr 2 

+y l~+o (y- Yo -8 )y (y~;0 ) exp(- (y;:~) 2 )dy +y (y0 +8) exp(- 2°cr\ )-
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- _L l oo V (y )y exp(- (y-yo/ )dy + _J_ foo (y- Y -() )y exp(- (y-yo/ )dy] 
Yo 00 2a 2 Yo ~ o +8 0 2a 2 

(A.3) 

Replace (A.3) in (A.2). This gives us the base weight as a function of the slide. 

Therefore, if we want the value of the slide that makes the base weight equal to the real 

average cattle weight, µ , we need only to replace y0 with µ , and solve for the slide, y •• : 

8E(r) I 8y I = - 1-[J_ [m"' (y- µ -8 )y exp(- (y-µ)2 ) dy-
s O y = µ a lli µ +o 2a 2 

(A.4) 

+y .. f+0 (y- µ -8 )y (ya-:) expCc~~~ )2 )dy+y .. (µ +8) exp(- 2°0 \ ) ]= o 

Thus, solving for the slide yields equation 9. 
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Paper III 

Aggregate versus Disaggregate Data in the 

Measurement of School Quality. 
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Aggregate versus Disaggregate Data in the Measurement of School 

Quality 

Abstract 

Estimators of school quality based on aggregate or school level data are developed here. 

These estimators are compared with the commonly used OLS estimators as well as with 

the shrinkage estimators based on the more informative two-level data. The theoretical 

results are supported by a Monte Carlo experiment. Results show that for samples 

containing small schools (sample average may be about 100 students per school but 

sample includes several schools with about 30 students), the proposed estimator performs 

better than OLS and only slightly worse than the shrinkage estimator. While our 

aggregate data-estimates are not as precise as those with disaggregate data, the difference 

is smaller than previous research suggests. Thus, the proposed estimator should be used 

when school officials are unable to gather disaggregate data. The proposed estimator can 

also be used to measure efficiency of industrial or agricultural firms where the use of 

aggregate data can be a wise choice. 
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Aggregate versus Disaggregate Data in the Measurement of 

School Quality 

1. Introduction 

Over the last three decades, resources devoted to education have continuously 

increased while student performance has barely changed (Odden and Clune). In response 

to this fact, several states now reward and provide incentives for public schools that 

perform better than others, based on their own measures of school quality (Ladd). Test 

scores are used not only by policymakers in reward programs but are also presented in 

state report cards issued to each school. Already more than 35 states have comprehensive 

report cards reporting on a variety of issues including test scores and a comparison of 

school variables with district and state averages. But often the information presented is 

misleading or difficult to interpret. Accurate information on school performance is 

needed if report cards and reform programs are to succeed in improving the public school 

system. 

Hierarchical linear modeling (HLM), a type of multilevel modeling, has been 

recognized by most researchers as the appropriate technique to use when ranking schools 

by effectiveness. As Webster argues, HLM recognizes the nested structure of students 

within classrooms and classrooms within schools, producing a different variance at each 

level for factors measured at that level. Multilevel data, also called disaggregate data is 

needed to implement HLM. For example, two-level data could consist of variables for 

students within schools. The value-added framework within the HLM methodology has 

become popular among researchers (Hanushek, Rivkin, and Taylor; Goldstein; 

Woodhouse and Goldstein). Value-added regressions are able to isolate school's effect on 
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test scores during a given time period, by using regressors such as previous test scores, 

and student and school characteristics. But as of 1996, among the 46 out of 50 states that 

have accountability systems with some type of assessment, only 2 had used value-added 

statistical methodology in implementing such systems (Webster). Multilevel analysis has 

been said to involve complicated statistical analyses that school officials are unable to 

understand (Ladd). 

A common approach is to use aggregate data. As opposed to having data for each 

student within each school, aggregate data refers to having only averages of these data 

over all students, within a school. School administrators may be able to obtain records of 

each student's individual test score but may not be able to match them with their parents ' 

income, for example. Therefore, average test scores in a school are matched to the 

average income in the respective school district. 

To obtain a measure of school quality with aggregate data, it is common to 

regress school mean outcome measures on the means of several demographic and school 

variables The residuals from this regression are totally attributed to the school effect, and 

thus, are used to rank schools. Although the use of aggregate data has been widely 

criticized in the literature (Webster; Woodhouse and Goldstein), many states use 

aggregate data, in part due to their inability to match data sets by student or 

computational problems such as the lack of software able to handle so many 

observations. 

The purpose of this work is to propose a new and more efficient estimator of 

quality based on aggregate data, and then compare it with the commonly used OLS 

estimator as well as with the value-added-disaggregate estimator. Evidently, estimators 

55 



based on disaggregate data will perform better than any estimator based on aggregate 

data. The questions that arise are: by how much will their performances differ? Should 

schools be using OLS, when they can use a more efficient aggregate estimate at no extra 

cost? 

One of Goldstein's main oppositions to aggregate data models is that they say 

nothing about the effects upon individual students. Also, aggregate data does not allow 

studying differential effectiveness, which distinguishes between schools that are effective 

for low achieving students and schools that are effective for high achieving students. The 

inability to handle differential effectiveness is a clear disadvantage of aggregate as 

compared to disaggregate data. However, when aggregate data are all that schools have, 

is it still possible to detect the over and under performing schools? When using OLS on 

aggregate data, it has been observed that small schools are disproportionately rewarded 

(Clotfelter and Ladd). The estimator proposed here eliminates that bias. 

Woodhouse and Goldstein argue that residuals from aggregate level regression 

analysis are highly unstable and therefore, unreliable measures of school efficiency. 

Woodhouse and Goldstein analyze an aggregate model used in a previous study and show 

how small changes in the independent variables as well as the inclusion of non-linear 

terms will change the rank ordering of regression residuals. However, their data set is 

small and they do not examine whether disaggregate data would have also lead to fragile 

conclusions. 

As of today, most of the research has focused on criticizing the commonly used 

aggregate data model, which uses OLS residuals to estimate school quality. Goldstein, for 

example, illustrates the instability of aggregate data models with an example in which he 
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compares estimates coming from an aggregate model versus estimates from several 

multilevel models showing they are different. The aggregate model, however, does not 

provide an estimate of the between-student variance, which suggests that the author does 

not use MLE residuals to estimate school effects. Maximum likelihood estimation is 

possible since the form of heteroskedasticity for the aggregate model is known (Dickens). 

While it is expected that aggregation will attenuate the bias due to measurement 

error, few researchers have compared aggregate data models versus multilevel models 

while considering measurement error. Hanushek, Rivkin, and Taylor analyze the impact 

of aggregation on specified models aimed at measuring school resource effects on student 

learning, and find that aggregation produces an ambiguous bias on the estimated 

regression parameters. Thus they suggest an empirical examination of the effects of 

aggregation in the presence of measurement error. 

Although it has become conventional wisdom that aggregate data should not be 

used to measure school quality, the literature on which this argument is based on, is 

insufficient to support the claim. Research comparing aggregate with disaggregate 

models, (Goldstein, Woodhouse) have used ordinary least squares rather than maximum 

likelihood estimators so the validity of their criticism is unclear. Standardized efficient 

estimators of school quality based on aggregate data, as well as their confidence intervals 

will be developed here and compared to multilevel estimators with and without 

measurement error. Since many states either continue to use aggregate data or use other 

less accurate measures to rank and reward schools, the relevance of this issue cannot be 

denied. 
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2. Theory 

Estimators for the effect of schools on student achievement based on disaggregate 

data have been developed and reviewed extensively in the education literature, and will 

be presented only briefly here. However, since aggregate data have been disregarded due 

to the loss of information that aggregation implies, little effort has been devoted to 

develop appropriate estimators for aggregate data. 

This section consists of three parts. The first part will show how aggregation of a 

2-level error components model, with heterogeneous number of first-level units within 

second-level units, leads to a model with heteroskedastic error terms. Therefore, for 

estimators of the parameters of the model to be efficient, ML or GLS estimation is 

required. The aggregate data estimator is presented as well as its standardized version. 

The second part derives confidence intervals for the aggregate data estimator and 

presents the confidence intervals commonly used for disaggregate data. The third part 

introduces measurement error in the model and derives the bias when estimating the 

parameters of the explanatory variables in both the disaggregate and aggregate models. 

2.1. Aggregation of a Simple 2-Level Error Components Model 

Consider the following model: 

(1) 

where Yu is the test score of the i1h student in the jth school, (X~) ii is the fixed part of the 

model, likely to be a linear combination of student and school characteristics, such as 
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previous test score (for a value added measure), parents' education, and average parents' 

income for each school, u 1 is the random effect for school, that we are trying to estimate, 

and eiJ is the unexplained portion of the test score, with distributions given by 

In matrix notation the model is: 

Y=XP +Z u+e, (I.a) 

where 

Z u+e - N(O, V) , 

[
cr ; In1 +cr;Jn1 

V= 

0 cr ;1. ~cr;J. 1 
J J J 

The random effect u 1 represents the departure from the overall mean effect of 

schools on students' scores. While the intercept contains the overall mean effect of 

schools, u 1 measures by how much school j deviates from this mean. 

The shrinkage estimator of u 1 is (Goldstein): 

(2) 

where they iJ ' s are called raw residuals and J3 is the MLE of p . So the school effect for 

school} is estimated by the raw residuals, averaged over all students, and ' shrunken' by a 
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factor that is a function of the variance components and the number of students in the 

school. The larger the number of students in a school, the closer this factor is to one. But 

if school size is small, there will be less information to estimate the school effect. Thus, 

the shrinkage factor becomes smaller, making the estimate of the school effect deviate 

less from the overall mean. 

Now let us see how the model changes with aggregation. Adding over all students 

within each school, 

I ,, . I"· I"· 1 Y . = 1 (Xr) .. + n u . + 1 e 
i= I I/ i =I I-' I/ J J i= I I/ 

and dividing by the number of students in each school, leads to the following model: 

Y1 =(XP) .1 +u1 +e.1 , J=l , ... ,J (3) 

u1 - iid N(O, cr ,; ), e1 - N(O,cr ; In), cov(u 1 ,e) = 0 , 

where the dot is the common notation to denote that the variable has been averaged over 

the corresponding index; students in this case. The error term for the aggregated model 

will be v1 - (O,cr ! +cr ; In) . 

Again, in matrix notation the model is: 

(3.a) 

l I J' 
11 1 n1 

X = a 

0 

u+ea - N(O,VJ , 

r
cr ,; +cr ; I n1 

V = a 

0 
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We are interested in estimating the random effects u 1 's. For this, we estimate the 

MLE residuals of the error term VJ. Following a procedure similar to the one used with 

disaggregate data, we define our estimator as the conditional mean of u 1 given vJ, i.e., 

u1 = E(u1 I v), This value can be shown to be (see appendix): 

2 

- (Ju ( A ) u j = 2 2 ( yj - x.., ) j ' 
(cr 11 +cr e In) 

(4) 

A 

where p is the MLE of p for the aggregate model. Notice that this estimator has the 

same shrinkage factor as the disaggregate estimator. 

However, the school effects in (4) are heteroskedastic, while the true school 

effects are not. Thus, to correct for heteroskedasticity, we divide the estimator by its 

standard deviation obtaining the standardized estimator of school effect: 

u = (Y -(XP) ) 
1 / 2 2 ·1 1 

'\}(J11 +cr e l nj 
(5) 

Thus, the set of ii 1 's may also be used to rank schools. 

2.2. Confidence Intervals for the Estimates of School Quality 

A confidence interval for school effects is : u 1 ± t, -a 12cr 11 1,;. Thus, it is necessary to 

obtain the conditional variance of the random effect given its estimator; that is, 

Cov(ul u) . 

For both, disaggregate and aggregate estimators, the covariance matrix is derived 

similarly. First it is necessary to obtain the joint distribution of the vector of school 
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effects u and its estimator. For this, notice that in both cases, the estimator is a linear 

combination of the vector of dependent variables, test scores in our case. Thus the joint 

distribution can be derived from the joint of u and Y. Then, using a theorem from Moser 

(theorem. 2.2.1, page 29), the conditional covariance matrix of school effects is obtained. 

A derivation of this covariance matrix is given in the appendix. 

The conditional covariance matrix based on the disaggregate estimator is: 

Cov(uiu)=er;I-er,~Z'V-1 ~-X(X'v-1xf X')v-1z , (6) 

The conditional covariance matrix based on the aggregate estimator is: 

Cov(u I u) =er; I -er :va-J (va -xurx:v/ xa) xJva-l. (7) 

2.3. Bias in Estimation Introduced by Measurement Error 

Let us consider a two-level model with measurement error. Following Goldstein's 

notation. The model is: 

i = 1, .. . , n J j = 1, ... , J (8) 

X hu = xhu +mhij ' h = l, ... ,H 

where y u is the real test score for the /h student in the /h school, q u is the measurement 

error for y u , q u - N ( 0, er i) , Yu is the observed test score, x hU is the true measure of the 

62 



h1h student or school characteristic corresponding to the /h student in the/h school, m"iJ is 

the measurement error for x"iJ, u 1 is the random component for school}, eiJ is the residual, 

and cr <" 1 l is the covariance of measurement errors from two explanatory variables, h1 
1, 12 111 

and h2, for the same student. The covariance of measurement errors from any two 

variables is assumed to be equal for all students regardless of the school they attend. 

Following Goldstein (1995), it can be seen that without measurement error, J3 

could be estimated by the FGLS estimator 13 = (x'v -1 xr1 (x'V-1 y). But measurement 

error as defined by model (8) implies that E(x'v -1 x) -1 = (X'v -1 X)-E(m'v -1 m); so 

an unbiased estimator for J3 in the presence of measurement error is proposed by 

Goldstein to be: 

13 = [X'V-1 X -E(m'V-1 m)r1 (X'V-1Y). (9) 

When measurement error is not taken into account, the matrix E(m'v -1 m) is 

omitted. Using Goldstein's derivation of E(m'v -1 m) and realizing that the inverse of 

(n1 -l)cr! +cr ; 
V is also a block diagonal with elements 2 2 2 in the diagonal, each element 

cr e ( n JO' u + cr e ) 

(hi,h2 ) oftheH x H matrix E(m'v -1 m) can be expressed as 

'°'J n .{(n - l)cr,; +1} cr(h1 ,h2)m . 
~ 1; 1 1 1 cr 2 n cr 2 + cr 2 

e J u e 

(10) 

Now let us see how does this omitted matrix, E(m'v -1 m) , compares with the one to be 

obtained when aggregating the model. Aggregating the true disaggregate model, we 

obtain: 

y.J = (xJ3 ).1 + u 1 + e.J' j = 1, . .. , J (11) 
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Y . =y . +q . . ) .) .) 

xh . = xh + mh . . ) .) .) 

cov(q.J,qJ') = 0 

where notation is as in model (8). 

Notice how the covariance of measurement error between any two fixed 

explanatory variables is reduced in the aggregate model. Now the covariance matrix of 

the true model is a diagonal matrix with elements defined in the first part of this section; 

and which will be denoted by Va. Following a procedure analogous to Goldstein's 

derivation for the disaggregate model, one can obtain the following unbiased estimator of 

p for the aggregate model: 

(12) 

where the subscript a denotes aggregate data. As can be seen, the bias now will depend 

on E(m:va - I m a), an H x H matrix whose (h1, h2 ) element is 

J cr 
"'""' (h, ,hz)III 
L,i 2 2 · 
J~ l njcr II +cr e 

(13) 

As can be seen by comparing values in (10) and (13), the bias in p due to 

measurement error is attenuated in the aggregate model. Bias in the estimation of p 

without accounting for measurement error, is likely to affect the estimators of school 

effects, as suggested in (2) and (4). This result is worth considering since adjustments for 

measurement error are seldom made and, as Woodhouse et. al. argue, different 
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assumptions about variances and covariances of measurement error may lead to totally 

different conclusions (when ranking schools, for example). Therefore, when not 

correcting for measurement error, gains from aggregation may somewhat offset the 

negative consequences of aggregation. Then, at least asymptotically, aggregate estimates 

of school effects may be less inaccurate than what researchers have claimed. 

However, to examine the properties of our aggregate and disaggregate estimators 

of school effects in small samples, a Monte Carlo study will be necessary. Also, from the 

study we will be able to compare the estimators' asymptotic and small sample behavior. 

3. Data and Procedures 

A Monte Carlo study was used to compare aggregate and disaggregate estimates 

of school effects with their true values. These values were also compared to OLS 

estimates with aggregate data since this is what is most often done. The model on which 

the data generating process was based, was taken from Goldstein's 1997 paper, table 3, 

page 387, since it was simple, and provided estimates of the random components for 

school and student, based on real data. 

This model regresses test scores of each student against a previous test score, a 

dummy variable for gender, and a dummy for type of school (boys', girls', or mixed 

school). Test scores were transformed from ranks to standard normal deviates. The 

random part consists of the school effect and the student effect. 

According to Goldstein, multilevel analysis provides the following estimated 

model: 
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fscoreiJ = -0.09+ 0.52PscoreiJ + 0.14GirliJ + O.IOGirlsSch1 + 0.09BoysSch1 , 

i = 1, . . . , n 1 j = 1, ... J . (14) 

The estimated variance of school effects, also called between-school variance, is 

6; = 0.07, and the variance of student effects, also called within-school variance, is 

6; = 0.56. These values and the estimates of the fixed part of the model were used to 

generate the disaggregate data using SAS. At each replication a number of 

n 1 observations were generated for each school, where n 1 was a random realization of a 

lognormal distribution with mean equal to 100 and variance equal to 50000. Lagged test 

scores were generated as the sum of two normally distributed components. The first was 

a school component, common for each student within a school. The second was an 

individual component, generated for each different student. Dummy variables were 

generated from binomial distributions. The random components of the model for school 

and student were generated using a normal with zero mean and variance 6 ,; = 0.07 and 

6; = 0.56 respectively, and the actual test score was obtained as in equation (2). Then 

measurement error was introduced to the previous and actual test scores. Measurement 

error was assumed to be a normal random variable with a zero mean and a standard 

deviation of 0.2. All dummy variables are assumed measured without error. 

Once a disaggregate data set is generated, estimates for school effects and 

variance components are obtained using multilevel analysis as provided by the Mixed 

procedure in SAS. Then, the disaggregate data set is aggregated by schools. Residuals as 

well as the two components of the variance of the error term are estimated using 

NLMIXED in SAS. At this point, we will have a set of 100 true school effects (since the 
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number of schools in the sample is 100), and two sets of estimated school effects using 

aggregate and disaggregate data. Each of these sets generates a ranking of the schools in 

the sample. The greater the school effect, the better the school ' s performance, and 

therefore, the higher its position will be in the ranking. We will also have standardized 

rankings for each estimate and the OLS estimate of school effects to see how this set 

compares to the alternative estimators and to the true ranking. Finally, we compute the 

estimated variance components under both approaches and compare them with the true 

values. 

A comparison of the school effect estimators is done in several different ways. 

Spearman's correlation coefficient is calculated for all estimators in order to measure the 

degree of correlation of each ranking with the true schools ranking. Another measure 

used for comparison is the root mean squared error of the estimates, and finally we 

compare the top-ten set of schools obtained with each estimator, with the true top-ten set. 

The whole process described above constitutes a single iteration of the Monte Carlo 

study. As many as 1000 iterations were conducted. 

As many iterations as needed can be performed for each set of parameter values 

of interest. In particular, outcomes with and without measurement error are compared in 

order to see if the aggregate estimator is in fact more robust to errors in measurement 

than the disaggregate estimator. The parameters used to randomly generate the number of 

students in each school are also changed, to corroborate the theory' s suggestion that as 

schools in the sample grow larger, the difference in the estimators' performance will 

narrow1• 

1 This is because the shrinkage factor tends to one and also because the larger the sample, the closer 
averages are to their true means. 
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4. Results 

Table 1 shows the first set of results for 1000 samples, each of 100 schools whose 

size is distributed lognormal with mean 100 and variance 50000. As expected, the 

disaggregate estimator performs best on almost all measures. The aggregate estimator's 

performance, however, is surprisingly good, and clearly above the OLS estimator's 

performance. OLS in fact tends to reward small schools. The average school size for the 

top ten schools as estimated by OLS is about 76, while the true average for this group is 

about 99. However, table 1 also shows that both the aggregate and disaggregate 

estimators tend to reward large schools. This can be explained as follows: OLS estimators 

are based on residuals whose variance is cr ,; +cr; In. So, small schools will have a larger 

variance and will be more likely to be either at the bottom or top of the rankings. 

The aggregate and disaggregate estimators have a shrinkage factor that 

compensates for these large residuals by reducing the residuals of small schools. Recall 

2 

the shrinkage factor is , "", . This factor is always less than one, but decreases with 
cru +a e I n 

school size, bringing down the absolute value of small school residuals. Results in table 1 

suggest that the shrinkage factor may over-compensate for the residuals effect, and thus, 

leave only large schools in the extremes. Estimators with a smaller shrinkage factor (the 

factor is Jcr; +'er ; 1 n ) such as the standardized aggregate ( equation 5) and standardized 

disaggregate estimators seem to alleviate this problem. Table 1 shows how the average 

size for the top ten schools according to the standardized estimators only differs by two 

or three students from the true top-ten group size average. These standardized estimators 
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also seem to give a somewhat better match than their non-standardized versions when 

determining how many of the real top ten schools are selected by the estimators. 

When measuring the root mean squared error (RMSE) of the estimators with the 

true ranking we find again that the disaggregate estimator performs only slightly better 

than the aggregate estimator. For the standardized estimators, the RMSE's were 

calculated using the standardized true rankings, and thus, cannot be compared to the non

standardized versions. Since we are measuring the performance of the estimators by their 

ability to match the true ranking and not the true values of the school effects, the RMSE 

might not be as good of a measure as all the others presented in the table. 

The between- and within-school variance estimates are presented in Table 1. 

Although the aggregate point estimates are very close to the true variances, by looking at 

the standard deviations of these estimates, it is clear that aggregation will always reduce 

the ability to estimate the within schools variance as compared to the disaggregate 

estimator. 

Table 2 introduces measurement error as 20% of the highest possible test score. 

We had hypothesized that measurement error would have less effect on the aggregate 

estimators. This is true but almost unperceivable, considering that a 20% measurement 

error is high. Thus, measurement error is relatively unimportant in this case. 

Finally, table 3 shows the results for ranking estimates when schools have on 

average 350 students. As school size increases, the variation in averaged residuals due to 

students ( cr ; I n ) becomes insignificant. This implies that aggregation becomes less of a 

concern for estimating school effects (thus, the aggregate and disaggregate estimators 

should perform more alike now), and heteroskedasticity is almost insignificant (thus OLS 
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is not as bad of a choice as before). In fact, table 3 shows differences among ranking 

measures have narrowed for all estimators, and that the problem with small or large 

schools being consistently rewarded, has almost disappeared. However, aggregate data 

will no longer be able to estimate the variance components of the model with any 

accuracy. 

5. Conclusions 

Researchers argue that value-added multilevel models provide the most accurate 

measures of school quality. But most states continue to use aggregate data (usually not in 

a value added framework) to rank and reward schools. Research criticizing aggregate 

models, by comparing them with disaggregate models, have used ordinary least squares 

rather than maximum likelihood estimators so part of their criticism is uncertain. States 

need to know the correct way to handle aggregate data and how much accuracy is lost by 

using aggregate data. Efficient estimators of school quality based on aggregate data and 

confidence intervals are derived here and compared to multilevel and OLS estimators 

with and without measurement error. A Monte Carlo study is used in order to perform 

this comparison that includes measuring the correlation of aggregate versus disaggregate 

estimates with the true values of school effects. 

Results show that when many small schools are present in the data, the proposed 

aggregate data estimator performs better than OLS on aggregate data, and only slightly 

worse than the disaggregate data estimator. However, as school size increases, the three 

estimates perform more alike. 
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Even though the aggregate data estimator is only slightly worse than the 

disaggregate data estimator for ranking schools based on efficiency, we still want to 

encourage the collection of disaggregate data because of their many uses in 

understanding school quality and student learning. 

Also, OLS estimators do tend to reward small schools over bigger ones, as the 

empirical literature has shown, while the shrinkage disaggregate estimator unexpectedly 

rewards large schools. A standardized version of this estimate is presented that eliminates 

this problem. 

Thus, when school officials are able to collect multilevel data, this study suggests 

they consider standardizing the estimates of school quality before ranking schools. 

However, when disaggregate data are not available, and small schools are present in the 

sample the standardized aggregate estimator proposed here should be used over the OLS 

approach. 

The methods proposed and evaluated here provide a one-dimensional measure 

that can be used to understand school quality. However, an efficiency measure based on 

standardized test scores is not the only measure that should be considered when 

evaluating schools. This study provides new information about the strengths and 

weaknesses of alternative methods and data. Our application is to schools, but these 

results are applicable to measuring efficiency in any industry where aggregate data may 

be the only data available. 
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Table 1. Comparison of estimates of school quality using aggregate vs. disaggregate data 
with no measurement error. 

Measure Type of estimator Mean Std.Dev. 
Spearman Disaggregate 0.8527 0.0341 

Std. disaggregate 0.8444 0.0375 

Aggregate 0.8431 0.0367 

Std. aggregate 0.8373 0.0399 

OLS 0.8167 0.0451 

RMSE Disaggregate 0.1332 0.0136 

Std. disaggregate 0.5378 0.0573 

Aggregate 0.1416 0.0164 

Std. aggregate 0.0591 0.0592 

OLS 0.1873 0.0284 

Top Ten Disaggregate 6.50 1.203 

Std. disaggregate 6.53 1.178 

Aggregate 6.33 1.284 

Std. aggregate 6.42 1.207 

OLS 6.01 1.258 

School Size Avg. Real Group 98.96 69.27 

In Top Ten Group Disaggregate 126.13 85.78 

Std. disaggregate 101.60 73.26 

Aggregate 126.93 82.45 

Std. aggregate 102.14 73.58 

OLS 76.34 60.19 

Variance Estimates Dis. Within Sch. 0.560 0.008 

Dis. Between Sch. 0.070 0.013 

Agg. Within Sch. 0.572 0.342 

Agg Between Sch. 0.067 0.016 

Note: Results are for 1000 simulations, each including 100 schools. The number of students per 
school is a lognormal random variable with mean 100 and variance 50000. Mean is the average 
over all simulations, RMSE is root mean squared error, Top Ten is the average number of schools 
ranked in the top ten with the estimator, that belong to the true top ten set. Estimators compared 
are the disaggregate estimator, its standardized version, the aggregate estimator, its standardized 
version, and the OLS estimator of school effects. Variance estimates are also presented for the 
disaggregate and aggregate methods. 
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Table 2. Comparison of estimates of school quality using aggregate vs. disaggregate data 
with measurement error. 

Measure Type of estimator Mean Std.Dev. 
Spearman Disaggregate 0.8445 0.0346 

Std. disaggregate 0.8362 0.0381 

Aggregate 0.8391 0.0363 
Std. aggregate 0.8330 0.0394 

OLS 0.8119 0.0455 

RMSE Disaggregate 0.1364 0.0135 
Std. disaggregate 0.5513 0.0575 

Aggregate 0.1433 0.0165 
Std. aggregate 0.0561 0.0590 
OLS 0.1925 0.0302 

Top Ten Disaggregate 6.43 1.236 
Std. disaggregate 6.42 1.192 
Aggregate 6.30 1.260 
Std. aggregate 6.35 1.205 
OLS 5.94 1.244 

School Size Avg. Real Group 103.40 86.84 
In Top Ten Group Disaggregate 131.58 96.26 

Std. disaggregate 104.83 89.76 
Aggregate 132.50 96.79 
Std. aggregate 107.39 90.93 
OLS 78.79 75 .18 

Variance Estimates Dis. Within Sch. 0.610 0.009 
Dis. Between Sch. 0.071 0.013 
Agg. Within Sch. 0.611 0.361 
Agg Between Sch. 0.067 0.016 

Note: Results are for 1000 simulations, each including 100 schools. The number of students per 
school is a lognormal random variable with mean 100 and variance 50000. Measurement error is 
20% in actual and previous scores. Mean is the average over all simulations, RMSE is root mean 
squared error, Top Ten is the average number of schools ranked top ten with the estimator, that 
belong to the true top ten set. 
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Table 3. Comparison of estimates of school quality using aggregate vs. disaggregate 
data for large schools. 

Measure Type of estimator Mean Std.Dev. 
Spearman Disaggregate 0.9620 0.0140 

Std. disaggregate 0.9620 0.0140 

Aggregate 0.9588 0.0178 

Std. aggregate 0.9606 0.0168 

OLS 0.9558 0.0185 

RMSE Disaggregate 0.0693 0.0114 

Std. disaggregate 0.2718 0.0440 

Aggregate 0.0854 0.0330 

Std. aggregate 0.2794 0.0521 
OLS 0.0746 0.0140 

Top Ten Disaggregate 8.17 0.967 
Std. disaggregate 8.16 0.974 
Aggregate 7.94 1.139 
Std. aggregate 8.09 1.029 

OLS 8.05 1.043 

School Size Avg. Real Group 348.73 73.10 
In Top Ten Group Disaggregate 351.07 71.59 

Std. disaggregate 347.13 70.57 

Aggregate 375.02 71.02 
Std. aggregate 359.47 67.65 
OLS 345.76 70.64 

Variance Estimates Dis. Within Sch. 0.610 0.005 
Dis. Between Sch. 0.071 0.011 

Agg. Within Sch. 2.344 3.447 
Agg Between Sch. 0.060 0.016 

Note: Results are for I 00 simulations, each including I 00 schools. The number of students per 
school is a lognormal random variable with mean 350 and variance 50000. Measurement error is 
20% in actual and previous scores. Mean is the average over all simulations, RMSE is root mean 
squared error, Top Ten is the average number of schools ranked top ten with the estimator, that 
belong to the true top ten set. 
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Appendix 

Derivation of the aggregate estimators of school effects 

Recall equation (3.a) which shows the aggregate model: 

However, the aggregate model has no way of differentiating among its random terms, 

thus we rewrite the model as: 

We are to obtain the conditional mean of u given the total residual w = u +ea based on 

the distributions of u and e. 

Since u and e are independent normal random vectors, its distribution is given by: 

2° ] , N being the total number of students. 
cr e / N 

But ( : " ) is a linear combination of (:), this is: 

0 

(:} A,(:)= 0 is an n1 vector of 1 ' s. Thus, 

its distribution will be as follows: 

From this random vector, we construct (:) pre-multiplying ( :J by A , = ( ; ; :, } 

Then, its distribution will be: 
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(:)-N(o,A,A,v,,,A,' A,') 

Having the joint distribution of u and w = u + e O , our estimator is easily derived (Moser, 

theorem 2.2.1) as: 

[ 

cr 2 l u w 
cr 2+cr 2 / 11 I 

E(u I w)-Cov(u, w) Cov(wr' (w)- . , ; : 'w 

a;+a; / 111 J 

Derivation of the conditional covariance matrix Cov(u I u) 

Disaggregate data: Recall equation ( 1.a): 

Y =XP +Zu+e 

Z u+e - N(O,V) 

The shrinkage estimator of school effects ( equation 2) in matrix notation is: 

(*) 

This shows clearly that the shrinkage estimator is a linear combination of the independent 

variable vector. 

Thus, we can derive the joint distribution of (u, u)' by knowing the distribution of 

(u, Y)' . 

[ ] ([O ] , [:,2u
1

2
ZJ cr uV

2 Z']J. The distribution of (u,Y)' is: ; - N xp v 
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In general, u and any linear combination of Y of the form u = AY , will be jointly 

distributed as follows : 

[u] -N[[o ] [ CT,; I CT ! Z' A ']J u xn. 'CT 2AZ AVA' J-' II 

Then, by Moser' s theorem 2.2.1, the conditional covariance is: 

Cov(ul u) =CT ;I -CT :z, A '(AVA' ) -1 AZ . 

Equation ( 6) is obtained by replacing A with CT,; Z' v -l (/ - x(x' v-1 X t X' v -1 ) ' from 

(*), in the expression above. 

Aggregate data: Again, we will use the same argument. First, re-express the aggregate 

estimators of school quality in matrix notation: 

The distribution of ( u, Y0 )' is : 

So, the distribution of u and A Ya, a linear combination of Ya is: 

and the conditional covariance matrix is: 

Cov(u I u) =CT,; I -CT: A, (AVA, r 1 A. 

When A= CT ;Va - l (/ -Xa (xa 'Va - l X a t1 X a 'Va - I) ' we obtain equation (7). 
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