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INTRODUCTION 

The construction of Bedford and Fornaess 

Given a domain n c C1 and a point zo E an, we say that z0 is a peak point for 

n at. Zo if :3 a function f E C ( n) satisfying that f In E H ( n) and 

f (zo) = 1 

lf(z)I < 1, z En\ {zo}. 

Such a function f is called a peak function for n at Zo E an. 

The existence of peak functions at points of an has many important implications 

in the theory of functions of several complex variables. For strongly pseudoconvex do

mains, sharp results have been established in this area of 'research. For weakly pseu

doconvex domains, many questions remain open, however. We refer the reader to the 

introduction of [Y) for more information on the progress made in both the strongly 

and weakly pseudoconvex case. 

For strongly pseudoconvex domains, see [HS1],[P] and [G]. For a bounded do

main in (C2 , the existence of a peak function at a boundary point of finite type was 

proved by Bedford and Forn?-ess [BF] and, using a different method, by Fornaess and 

Sibony [FS]. Noell [N] extended the method of Bedford and Fqrnaess to a class of do

mains in higher dimensions. A method of proving similar results using estimates on 

the Bergman kernel was found by Fornaess and McN eal [FM]. More general results 

were proved by Herbort [H], Diedrich and.Herbort [DH] and Yu [Y]. Also, see [B], 
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[HS2] and [R] on the existence of peak function with certain smoothness up to the 

boundary. 

In this paper we will use [BF] as the starting point of our discussion of peak 

functions on pseudoconvex domains of finite type in (['.2 . We will show how the method 

of constructing such functions described there by the authors can be modified to prove 

more concrete and more precise results in this direction. 

First, we will briefly describe the construction of Bedford and Fornaess. As in 

their paper, we only need to consider the following case. Let m EN\ {O} and let 

P2m(z) = a· kz3z I: . k 

J, ' 
z E (C 

j+k=2m 

be a real-valued subharmonic but not harmonic polynomial. Then aj,k = ak,j and we 

may assume also that a2m,o = 0. Now consider the domain 

where the number 8 > 0 is chosen so that the region 

{ u E (C: 8P2m(u) + Re(u2m) < O} 

is the _union of 2m disjoint open sectors. 

Bedford and Fornaess show that we only need to study the geometry of n at O E 

an to obtain a peak function on the domain 

n' = { (z', w') E C2 : Re(w') + 8P2m(z') + Re[(z') 2m] < O} 

at O E n' of type 2m, satisfying some useful properties described below. They also 

show how one can then easily obtain a peak function with similar properties at a finite 

type boundary point of a pseudoconvex domain in C2 in general. Therefore, we will 

focus our attention on a domain n C C2 as given above. 
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Let 

£ = { (z, W, [( : r,]) E (C2 X JP : rJZ = (w} 

and Y[( : r,] E JP, put 

L[c:11] = {(z,w) E C2 : r,z = (w}. 

Then C is a line bundle over JP with projection 1r: C--+ JP. 

Since (0, 0) ~ 0, we can embed O into C using the map 

. •::::: .. (z,w) t-+ (z,w, [z: wl) E £, (z,w)EO. . ·.~ -.- .... 

Using the local_coordinates ( on U = {[( : 1] : ( E C} and rJ on V = {[1 : r,] : rJ E C}, 

we can describe n C C as follows. We have 

((w,w,[c: ll) +- (w,() E c2 

and· 

(z, r,z, [1 : r,l) +- (z, rJ) E c2 . 

Using the above local trivializations of C, we obtain 

0 n 1r-1 ([(: ll) ~ { u EC: Re(u2m) + oP2m((u) + Re((2mu2m) < O} 
M((). 

= LJ SJ(() 
j=l 

On1r-1 ([l: 77]) ""{u EC: Re(772mu2m) + oAm(u) +Re(u2m) < o}· 
N(77) 

= LJ Tj(1J) 
j=l 

where 'v'( E C, we have M(() E {1, ... , 2m} ari.d S1 ((), ... , SM(()(() C (Care disjoint 

open sectors, and 'v'77 E (C, we have N(r,) E {1, ... , 2m} and T1 (77), ... , TN(TJ)(rJ) C (Care 
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disjoint open sectors as well. Also, (r, = 1 implies [( : 1] = [1 : r,], hence M(() = N(rJ) 

and 

j E {1, ... ,M(()} 

for some permutation <J. 

In Lemma 1.1 and Lemma 1.2 of [BF), the authors describe some basic proper-

ties of the sectors Sj and Tk. They then use these properties to analyze the way these 

sectors vary with [( : rJ] E IF. This is applied to define a Riemann surface R with 

boundary 8R the following way. R is a covering space of an open subset W C IF with 

8W being a real-analytic curve in Un V C IF. Let e : R -t W be the projection map. 

Then e is is a locally biholomorphic map and V[( : r,] E W, we have 

{ 
{.S1 (a), ... , SM(a)(a)} if [( : r,] = [a: 1) 

{2-l ([( : rJl) = 
. . {T1(,8), ... ,TN(/J)(,8)} if [(: r,] = [1: ,B]. 

- - -Also,{! extends to a map (2: R -t W where Risa Riemann surface with RU 8R CR 

and W C IF is an open set with W C W. Consider the pullback 

l = e*(.C). 

- -
Then l is a line bundle over R and the sectors described above can be used to find a 

- - -smooth nonvanishing section of .C, after shrinking R if necessary. Therefore, £, is topo-

logically trivial. It follows that from the solution of the multiplicative Cousin problem, 

we can find a nonvanishing section of the dual bundle of l. This section can be used 

to define a function 

GE H(O) 

such that V[( : rJ] E IF, G is locally linear on n n L[(='1J]· Finally, the authors define a 

function F E H(O') by 

F(z',w') = IT G(z',w), (z', w') E 0', w' #- 0. 
w2m=w' 
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Using the symmetry built in the definition of F, we can take H = pl/N E H(D.) where 

N E N is chosen so large. that we have 

7r 7r - - < arg(H) < - . 
2 2 

Then exp(-H) is the desired peak function at OED.'. Also, Fis Holder 1/(2m) near 

0, hence His Holder 1/(2mN) near 0. 

In this paper, we will make a convenient and concrete choice of the smooth sec-

,·~: .. , 
tion of £ mentioned above, and for a wide variety of finite type pseudoconvex domains 

in C2, we will define a concrete G E H(D.) so that 'v'[( : rJ] E IP', G is locally linear on 

n n L[(:r,J with 

31r · 31r 
- - < arg( G) < - . 
. 4m 4m 

Then we define FE H(D.') as above, and obtain 

31r 31r - 2 < arg(F) < 2 . 

Therefore, we can take N = 3 and obtain a peak function exp(-H) where H = F 113 is 

Holder 1/(6m) = 1/(3type) near OED.'. 



CHAPTER 1 

LEVEL CURVES OF HARMONIC POLYNOMIALS 

Section 1.1 Local behavior 
.:;.:.::.:, 

In this section, we describe the local geometry of the level curves of a noncon-

stant harmonic polynomial. 

Let r > 0 and put D = {z EC: izl < r}. Assume <p E H(D) and let 

Then c.p = 0 {::}- J = 0. Assume c.p ',t O and let m = min J. Let c.p(O) = 0 and consider 

w = cp(z), z ED. Then m ~ 1 and 

where 'ljJ E H(D) satisfies 'ljJ(O) =/= 0. After shrinking r > 0 if necessary, we may assume 

that W = 'ljJ(D) is simply connected and that O (/. w. Then V'ljJ E w 3e > 0 and 

30 E [O, 271') such that 'ljJ = eei0 and both e = e('ljJ) and e = O('ljJ) are continuous on w. 

Then putting 

>.('ljJ) = log(e) + iO, 

we have that ).. E H(w). Therefore, the function u = u(z) defined by 

u - ze-k>-[1/J(z)] 
- ' z ED 

6 
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satisfies u E H(D) and w = um. We also have 

u' (0) = ei>.[v,(o)J =JO. 

Shrinking r > 0 further if necessary, we may then assume that u has a holomorphic 

inverse v = v(u) defined inn= u(D). 

Next, consider the equation 

(1.1.1) w = cp(z) = it, t E JR.. 

Let a= 1r /2m, let 

fJ - { 1r / m if m is even 

21r/m if mis odd 

and 'vj E Z, put 

and let 'Yj = v(Rj n !1). 

Fix some j E Z. Then u('Yj) = u[v(Rj n !1)] = Rj n !1 and so 'vz E "fj ::Is E JR. 

satisfying 

u = u(z) = sei(a+j/3). 

Therefore, we get w = um = ±ism, so 'vz E 'Yj is a solution to equation (1.1.1) with 

Conversely, let z E D be a solution to equation (Ll.1) and consider u = u(z). We 

have 

um= w =it= ±i/tl = /tle±in/2 

so clearly :3j E {1, ... , m} satisfying u = /tll/meiw where 

2 ., { either 
± 7r . 7r 

w= -+J-= 
2m m 

. or 

7r 2j7f 
-+-2m m 

1r (2j - l)1r 
-2 + . m m 



Therefore, if m is even, we get that 

w = { either a+ 2jf3 
or a+ (2j-1)/3 

and for m odd, we get that 

w = { either a + j /3 
or a + 1r + (j - m;-1 ) /3 . 

In each case 3k E Z such that · 

and so 

Therefore, we have z = v[u(z)] E v(.ek n n) = 'Yk· 

We conclude that 

{z ED: Re(cp(z)] = O} = LJ 'Yi. 
jEZ 

8 

Assume that j, k E Z satisfy mjj -k. Then (j - k)/3 E 1r.Z, so we have ei(o.+ifJ) = 

No~ assume that .ei n .ek =/. {O}. Then 3s, t E ~ \ {O} and 3j, k E Z such that 

sei(o.+ifJ) = tei(o.+kfJ) . 

Thens= ±t and so (j - k)/3 E 1r.Z. If mis even, then f3 = 1r/m, therefore mjj - k. If 

mis odd, then /3 = 21r/m, therefore ml2(j - k). But mis odd, so mjj - kin this case 

as well. 

We obtain that 
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We can sum up the above as follows. 

Lemma 1.1.1 Let f be a nonconstant holomorphic function in a neighborhood 

of zo E <C and assume that Re[f(z0 )] = c. Then :3 an open neighborhood U of zo, 

:3m E N \ {O}, :3 open intervals Ij C JR, j = 1, ... , m and :3 simple nonsingular analytic 

curves 6j : Ij --+ <C, j = 1, ... , m such that 

m 

{z EU: Re[f(z)] = c} = LJ{8j} 
j=l 

where, as usual, V, : I--+ <C, we put {'y} = {'y(t) : t E I}. 

Proof. Pick an r > 0 small enough so that we may define 

cp(z) = f (zo + z) - f (zo), zED 

where D = {z E <C : izl < r}. Then cp(O) = 0; Assumer is so small that the above 

discussion can be applied to cp. Using the same notation, we get that n is simply con-

nected, so Vj E {1, ... , m }, the set Ij = { s E IR : sei(a_+ifJ) E O} is an open interval. 

Then we may define 

s E Ij .. 

We obtain the simple nonsingular analytic curves 6j : Ij --+ <C, j = 1, ... , m, and the 

claim follows with U = z0 + D. 

Note 1.1.1 Them in Lemma 1.1.1 is unique and it can be given as follows. Let 

.• 
Here, the f is nonconstant, therefore f' ;/=. 0 and so K =f ©. We have m = minK. 

Note 1.1.2 Consider n above. Clearly, :3 disjoint open sets n+ and n- such 
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that 

m 

n \ LJ ej = n+ u n-
j=l 

n+ = {z E S1: Re(zm). > O} 

Also, :3 pairwise disjoint simply connected open sets nt, n;-, j = 1, ... , m such that 

·j=l 

Correspondingly, we have the disjoint ope;n sets D± = v(n±) and u± = z0 + D±, 

as well as the pairwise disjoint simply connected open sets D[ ::= v(O";), j = 1, ... , m 

and Uf = z0 + D[, j = 1, ... , m, satisfying 

m 

D \ LJ 1'i = D+ U D-
j=l 
m 

u \ LJ{oj} = u+ u u-
j=l 

m 

D+ = {z ED: Re[rp(z)] > O} = LJ D[ 
j=l 
m 

D- = {z ED: Re[rp(z)] < O} = LJ Di 
j=l 
m 

u+ ~ { z E U : Re [f (z)] > c} = U Uj 
j=l 
m 

u- = { z E U : Re [f (z)] < c} = u Uj- . 
j=l 

Note 1.1.3 If fin Lemma 1.1.1 satisfies f'(zo) =/= 0 or, equivalently, if m = 1, 

then :3! simple no:nsingular analytic curve o : I~ <C such that 

{z EU: Re[f(z)] = c} = {o}. 

Let f(z0 ) = c + ito for some t0 E R After translating I if necessary, we may assume 

that to E I and <>(to) = Zo, Since f'(zo) =/= 0, it follows that :3 a neighborhood V of Zo 
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such that f j v is invertible with a holomorphic inverse. Therefore, :lE > 0 such that 

s E (to - E, to+ E) 

is a nonsingular analytic curve satisfying { 'Y} c { o}. That is, :l a reparametrization 

t: (to - E, t 0 + E) -+ I of o such that 'Y = o o t and 'Y satisfies 

f [ "/( S)] = C + is , s E ( to - E, to + E) . 

It follows that we also have 

(l.1.2) s E (to - E, to+ E). 

Assume z0 -/= 0 and let E > 0 chosen above be so small that Vs E (to - E, t0 + E), we 

have z = 'Y(s) -/= 0. Then (l.1.2) implies 

dz/ ds i _ Im [z f' ( z) J + iRe [ z f' ( z) J 
z - zf'(z) - jzf'(z) j2 

Also, we may choose analytic functions [!, e : ( t 0 - E, t 0 + E) -+ ~ such that [! > 0 and 

z = ,'(s) = e(s)ei/J(s)' t E (to - E, to + c) . 

We obtain that izl = e(s) and arg(z) = O(s) satisfy 

(1.1.3) sign(dlzl/ds) = sign(Im[zf'(z)]), s E (to-E,to+i:) 

and 

(l.1.4) sign(darg(z)/ds) = sign(Re[zf'(z)J), s E (to - E, to + c) 

where 'i/x E ~ we put 

sign(x) = { O 
x/lxl 

if X = 0 

otherwise. 
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Section 1.2 Behavior at infinity 

In this section, we study the asymptotic behavior at infinity of the level curves of 

a nonconstant harmonic polynomial. 

Let m EN\ {O} and consider the polynomial qm(z) = zm + zm-I + · · · + 1, z E (C, 

and the closed sector Sm = { rei9 : r ~ 0, IOI S nZ:-1 }. Since the zeros of qm (z) are eijw, 

j = 1, ... , m, where w = r:r1 , it follows that 'vz E Sm, qm(z) #- 0. Therefore, :3cm > 0 

such that Vz E Sm, lqm(z)I > Cm. 

Fix n EN with n ~ 2 and let q(z) = Li7=o ajzj E (C[z] with deg(q) = n. Assume 

an-I = 0 and assume 

z E (C 

where OS k Sn - 2 and ak #- 0. Let A= 2lak/anl· Then ::IB > 0 so large that 

z E (C, izl > B :::::::} 

Let z E (C satisfy lzl > B. Then 

Let e E [-1r, 1r] and r ~ 0 satisfy , 

Clearly, ::IC > 0 so large that Va E (C with Jal > C we have 

q(z) = a !zl > B. 

Let a E (C satisfy lal > C, let q(z) = a and put b = zr11nei8/n. Then we have 
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and we have 

since IO /nl ::S 1r /n and so bf z E Sn-1· We obtain 

A A 
lb- zl < I I < . Cn-1 Z Cn-1B 

Lemma 1.2.1 Fix n EN\ {O} and let f (z) = "2.:;=0 bjzi E C[z) with deg(!)= n. 

Let z1 , ... , Zn E (C be the zeros off (z). Then V€ > 0, 3C > 0 such that Va E (C with 

ial > C and Vz E (C with J(z) = a, 3b E (C satisfying bn = a/an and 

I ( Z1 + · · · + Zn) I b+ -z <€ . . · n 

Proof. Fix an arbitrary € > 0. For n = 1 the statement is trivial. Assume 

n ~ 2 and let 

. ( Z1 + · · · + Zn) IIn ( Z1 + · · · + Zn · ) q(z) = J z + = bn z + · - Zj , 
n . n 

J=l 

n ( ) 
Z1 + ... +Zn 

an-1 = bn ~ n - Zj . = 0. 
J=l . 

z EC. 

· We claim that 30 > 0 such that Va EC, ial > C and q(w) = a imply the existence of 

b E (C with bn = a/an and lb- wl < €. This is clear if q(z) = anzn, otherwise it follows 

from the above discussion by choosing B > 0 so large that 

A 
-B<€. 
Cn-1 

Now let a E (C satisfy ial > C and let f (z) = a. Put 

Z1 + ... +Zn 
w=z-----

n 
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Then q(w) = f (z) = a, so :lb E (C with bn =a/an= a/bn satisfying 

I ( Z1 + · · · + Z ) I b + n n - z = lb - wl < E 

and Lemma 1.2.1 follows. 

Lemma 1.2.2 Using the same notation as in Lemma 1.2.1, we have the follow-

ing converse of the statement there: Ve > 0, :JC > 0 such that Vt E IR with ltl > C and 

Vb E (C with bn = it/an, :lz E (C satisfying f(z) = it and 

I ( Z1 + · · · + Zn) I b+ -z <E. 
n 

Proof. Fix an arbitrary E > 0. Choose C > 0 with the property stated in 

Lemma 1.2.1. Let t E IR satisfy !ti > C and let u1 , ... , Un be the solutions to the 

equation 

f(u) = it, 

and let b1 , ... , bn be the solutions to the equation 

BythechoiceofC > O,wehaveamapa: {l, ... ,n} --t {l,; .. ,n}suchthatVj E 

{1, ... ,n} we have 

I ( z1 + · · · + Zn) I 
bcr(j) + n - Uj < E. 

We need to show that we may choose C > 0 so large that the above map a is onto. 

Since {1, ... , n} is a finite set, it suffices to show that a is one-to-one if we choose C > 

0 large enough. 

Letr > OsatisfythatVj E {l, ... ,n}, lzjl < 1/r. LetD = {z E (C: lzl < r}. 

Then Vz ED\ {O}, we have 1/r < 11/zl, hence 1/z ~ {z1 , ... ,zn}. Therefore, Vz ED 
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we may define 

ifz=O. 
g(z) -{ f(~z) 

if z # 0 

It clearly follows that limz~o g(z) = 0, so we obtain g E H(D). Fix e E IR with O < 

e < r. Then :3R > 0 such that \:/a E (C with !al > R, the equation 

f (z) =a, z E (C 

has exactly n solutions in the region {z E C, .: lzl > 1/ e}. Therefore, \:/a E (C with 

lal > R, the equation 

g(z) = 1/a, z E (C 

has exactly n solutions in the region {z E (C : lzl < e} and no solution in its boundary, 

hence 

1 I g'(()d( 
i2?T g(()-: 1/a = n · 

1(1=1? . 

T~ing the limit of the above integral as a -+ oo, we get 

_1 I g'(()d( = n. 
i2?T g(() 

ICl=1? 

Letting e -+ 0 in the above integral, we get that g(z) has a zero of multiplicity n at 

z = 0. Thus, g(z) = zn'lj;(z) where 'ljJ E H(D) with ¢(0) # 0. We obtain g(O) = · · · = 

gCn-l) (0) = O and g(n) (0) # 0. Applying Lemma 1.1.1 to g at z0 = 0, we obtain an 

open neighborhood U of O, open intervals Ij C IR, j = 1, ... , n, and simple nonsingular 

analytic curves Oj : Ij -+ (C, j = 1, ... , n, satisfying 

n 

{z EU: Re[g(z)] = O} = LJ{oj}. 
j=l 

'i/j E {1, ... , n }, let Lj be the tangent line to { Oj} at 0. The proof of Lemma 1.1.1 

implies that :3w E IR such that 'i/j E {1, ... , n}, we have 

Lj = { tei(w+j2'll"/n) : t E IR} . 
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Fix j E {1, ... ,n}. We may assume that O E lj and dj(O) = 0. \;ft E lj, let 

Zt = dj(t) and let Wt E Li be the orthogonal projection of Zt onto Lj, Since Li is 

tangent to { 8i} at 0, we may choose {2j > 0 with (-ej, {2j) C lj and Kj > 0 such that 

\;ft E (-ej, {2j), we have 

Therefore, Vt E (-ej,{2j), we have 

(1.2.1) 

Let 1- = (-ej,O), 1+ = (O,ej) and consider the curves 

± 1 
'Y (t) = dj(t) ' t E 1±. 

Then Vt E 1±, we have 

Re(f ['Y±(t)]) = Re[f(l/zt)] = Re[l/g(zt)] = 0 

because Re[g(zt)] = 0. We may choose dj E JR with di > 0 satisfying 

Vj E {1, ... , n }, we obtain Ki and dj as described above. Put 

K = 2max{K1, ... ,Kn} 

{ 2(K + E) } 
d = max lei2,r/n _ ll' l/d1, ... , 1/dn . 

Let C > 0 chosen above be so large that Va E (C with !al >C, we have 

j(z) = a ===> lzl > d. 
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Fix t E JR with !ti > C. Let u1 , ... , Un EC be the solutions to the equation 

j(u)=it, uEC 

and let b1 , ... , bn E C be the solutions to the equation 

Vj E {1, ... , n}, we have lujl > d:::: 1/dj, hence 11/ujl < dj. Since Re[g(l/uj)] = 0, 

j = 1, ... , n, we may assume that 1/uj = 8j(tj) for some tj E (-Qj, {!j), j = 1, ... , n. 

Vj E {1, ... , n }, let Wj E Lj be the orthogonal projection of 1/uj onto Lj and let 

j = 1, ... , n, it follows that Vj, k E {1, ... , n} with j =I= k, we clearly have 

By (1.2.1) above, Vj E {1, ... , n }, we also have 

lu· -v·I < 2K· < K. J J - J -

We obtain that Vj,k E {1, ... ,n} with j =I= k, we have 

therefore 

We get lbO'(j) - bO'(k)I > 0, therefore O"(j) =I= O"(k), and Lemma 1.2.2 follows. 
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Section 1.3 Global structure 

Based on Sections 1.1 and 1.2, we will now analyze the global geometry of level 

sets of nonconstant harmonic polynomials. 

First, we show in Lemma 1.3.2 below that each smooth level curve in such a level 

set is a 1-dimensional analytic real submanifold of C, extending to infinity in both di-

rections. 

As usual., 'vz EC and Vr > 0, we put D(z,r) = {u t: C: lu - zl < r }. Fix z E (C. 

and r > 0, put U = D(z, r) and let f E H(U) with f' '¥= 0. Let c = Re[f(z)]. Then by 

Lemma 1.1.1, .:3 an open interval I C ~ and :3 a nonsingular analytic curve 'Y : I -+ U 

with z E {'Y} and Vt EI we have 

Re(f ['Y(t)]) = c. 

Since 'Y is nonsingular, we may assume that 'Y is parametrized by arclength. Let w E 

{'Y} n U, let e > 0 and put V = D(w, e). Assume that g E H(V) satisfies gJunv = 

f lunv· Then g' '¥= 0. Since f is continuous at wand w E {'Y}, we have 

Re[g(w)] = Re[l(w)] = lim Re[f(u)] = c. 
. b}3u-tw . 

It follows from Lemma 1.1.1 that :3 an open neighborhood W of w, :3m E N \ {O}, :3 

open intervals Ij C JR, j = .1, ... , m, and :3 nonsingular analytic curves Oj : Ij -t C, 

j = 1, ... ,m, such that 

m 

{u E W: Re[g(u)] = c} = LJ{oj}. 
j=l 

Since w E {'Y}, we have that :3j E {1, ... ,m} with b} n {oj} f. 0, Therefore, we may 

continue 'Y across w in arclength parametrization. 
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Note 1.3.1 Let n E N and let f(z) E (C[z] with deg(!) = n. Let a, b, c E R 

with a < b and assume that we have some nonsingular analytic curve 1 : ( a, b) -+ C 

satisfying 

f[,(t)] =c+it, t E (a, b). 

We claim that we cannot have 

1im 1,(t) I = oo. 
t-ta+ 

Otherwise, V z E {,}, we would have 

Re[f(z)] = c and a< Im[f(z)] < b. 

That is, the nonconstant polynomial J(z) would stay bounded on the unbounded set 

{ 1 }, a contradiction. 

Therefore, :3w = limt-ta+ 1 (t), and, using the above process at w E {,}, we can 

continue 1 across a E R to a slightly larger interval (a', b) :) [a, b) as a nonsingular 

curve such that we still have 

. Re(f [,(t)]) = c, t E (a', b). 

Similarly, we can continue 1 across b E JR in the same manner. 

Lemma 1.3.1 Let f E H(C) with f' "¢ 0. Fix z E C and put c = Re[f(z)]. 

Then :3 a nonsingular analytic curve 1 : R -+ (C, parametrized by arclength, such that 

{,} 3 z and Vt E R we have 

Re(f [,(t)]) = c. 

Also, let r be the set of all nonsingular analytic curves 1 : R -+ C parametrized 

by arclength and let 

Be= Be(f) = {u EC: Re[f(u)) = c} 

re= re(f) ={,Er: Vt ER, Re(f [,(t)]) = c}. 
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Then we have 

Sc(f) = LJ {,} 
· 'Yer c 

and V"f,6 Ere with{,} =J {6}, we have{,} n {6} c {u EC: f'(u) = O}. 

Proof Except for the very last statement, we can prove Lemma 1.3.1 by re-

peated applications of the above process. For this last claim, let 'Y, 6 E r c· If u E 

{,} n {6} and f'(u) =J 0, then :3 a neighborhood U of u such that Un {ry} =Un {6}. 

Since 'Y, 6 : R --+ C are both analytic curves, we get {'Y} = { 6} and Lemma 1.3 .1 

· follows. 

Notation 1.3.1 Fix n EN\ {O} and let f(z) = Lj=O ajzj E C[z] with deg(!)= 

n. Let Z = {zb ... , Zn} be the zeros of f(z), put a = (z1 + · · · + Zn)/n, and let Z' = 

. {z~, ... , z~_i} be the zeros of f'(z). Ve E IR, let Sc= Sc(f) and re ~Tc(!) as defined 

in Lemma 1.3.1. Let M be the set of all 1-dimensional analytic real submanifolds of C 

and Ve E IR, put 

By an argument similar to the one used in Section 1.1, we may choose w E R with the 

following property. Vj E {1, ... , 2n }, let 

{ rei(w+j2'1l'./n) : r ~ 0} 

N;={ 
ifl~j~n 

{rei(w+j2'1l"/n) : r;::: o} if n + 1 ~ j ~ 2n . 

Then we have 

{ 
. } 2n 

U E C : Un E _i R = LJ Nj , 
an j=l 

Lemma 1.3.2 Ve E IR, we have Mc C M. 

Proof Fixe E {Re[f(z)]: z EC} and let"( Ere. Assume:3a,b E Rwith 

a =J b such that ,y(a) = ry(b). Then :3 a bounded open connected set n c (C with 
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an C {'y}. Vj E {l, ... ,n -1}, put Cj = Re[f(z;)]. Let w ED\ Z'. Then f'(w) =/=-

0, so 3 an open neighborhood U of w such that f(U) is open. Thus, the projection 

{Re(v) : v E f (U)} off (U) on the real axis is also open, hence ::Iv E J(U) with 

d = Re(v) ·rt. {c, c1 , ... , Cn-d· Let u E U satisfy v = f(u). Consider a curve o E rd 

with u E { o}. Since d =/=- c, we have { o} n an C { o} n {'y} = 0, therefore { o} C n. 

Since d (/. {c1, ... ,cn-d, it follows that Vj E {1, ... ,n - 1} and Vy E {o}, we have 

Re[f(y)] = d =/=- Re[f(z;)], That is, Vt E JR., we have f' [o(t)] =/=- 0. Then Note 1.1.3 

implies that Vt0 E JR., =IE > 0 and a reparametrization t : (to - E, t0 + E) .:..+ JR. of o such 

that 'T/ = o o t satisfies 

f ['T/(s)] = d +is, s E (to - E, to + E). 

Piecing such local parametrizations together, we obtain rJ : JR. -t (C with { rJ} = { o} 

satisfying 

f[rJ(s)] =d+is, s E JR., 

But then rJ(s) cannot remain bounded ass -t ±oo, contradicting {'TJ} 

Therefore, 1 : JR. -t (C must be a simple curve and Lemma 1.3.2 follows. 

{o} c n. 

Next, we describe the global structure of the entire set Mc for any fixed c ER 

Consider an arbitrary M E Mc and choose I E r c with {'y} = M. Vj E 

{1, ... ,n -1}, let rj = Im[f(z;)] and let 

and 

Put r = max{lrminl, lrmaxl} and fix R > r. 

Case 1: { 1 } n Z' = 0. Then by the same argument as for the o in the proof of 

Lemma 1.3.2, we may choose a global reparametrization t : JR. -t JR. of I such that 

rJ = 1 o t satisfies 

f[rJ(s)] = c+is, s E JR.. 



22 

Put ui.1 = rJ(-R) and VM = rJ(R). Then UM =f VM since I is simple, and uM,VM ¢. Z'. 

Case 2: { 1} n Z' =f 0. Then, using the fact that I is simple and Z' is finite, we 

may define tmin = min{ t E IR : 1 (t) E Z'} and tmax = max{ t E IR : 1 (t) E Z'}. 

Let I1eft = (-oo,tmin) and Iright = (tmax,oo). Since {,Ir } n Z' = {,Ir. } n 
left right 

Z' = 0, it follows that 'it E I1eft U Iright, we have J'[,(t)] =f 0. Then, as before, :3 

reparametrizations tp : Ip -t I1eft and tq : Iq -t Iright, where Ip is either (-oo, rmin) or 

(rmax, oo) and Iq is either (-oo, rmin) or (rmax, oo), such that 'T/p = ,otp and 'T/q = 1 otq 

satisfy 

f [rJp(s)] = C +is, 

f [ 'T/q ( S)] = C + is , s E Iq. 

By the choice of 'T/p and 'T/q, we have {rJp} C { ,Ir } and {rJq} C {,Ir. }. Then 
. left right 

::Is E Ip and ::It E Iq with Isl = !ti = R. Put UM = 'T/p(s), VM = rJq(t). Then UM E 

{rJp} C {,1 11.fJ and VM E {rJq} C {'Ylr.;ghJ, so UM =f VM since I is simple, and 

UM,VM ¢. Z'. 

In both cases we find uM,VM EM with uM =f vM, satisfying 

f(uM) = c±iR 

J(vM) = c±iR. 

Also, \IN E Mc with N =f M, we have uM,VM ¢. N since uM,VM ¢. Z'. 

Let X, Y C (C be the solution sets to the equations 

f(x) = c- iR, x E (C 

f(y) = c+ iR, y E (C 
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respectively. By the above, we have the one-to-one maps c,, T : Mc-+ XU Y, c,(M) = 

UM and T(M) = VM, ME Mc, satisfying c,(Mc) n T(Mc) == 0. Therefore, Mc must be 

a finite set, satisfying 

That is, :3.e = f(e) E N \ {O} with .e ~ n and :3M1, ... , Mt E M such that Mc = 

{M1, ... ,Me}. 

Let .e = .e(O) and consider Mo = { M1, ... , Me}. 

Fix j E {1, ... , .e} and choose some 'Y E r 0 with {'Y} == Mi. VE > 0, put 

( 2E )n 
d = d(E) = lei21r/n - 11 lanl. 

Using the same notations as in Case 1 and Case 2 above, we have the following. 

Case 1: {'Y} n Z' = 0. We obtain rJ: JR:...+ C with {ry} = {'y} satisfying 

J['f/(s)] =is, s E 11. 

It follows from Lemma 1.2.1 that VE > 0, :3C > d such that Vs E JR with isl > C, 

:3b, e E C with bn = -is/ ar,; and en = is/ an satisfying 

l(b+a)-71(-s)J <E and l(e+a)-71(s)I <E. 

Case 2: {'Y} n Z' =/: 0. We obtain 'f/p: Ip-+ C with {rJp} C {,111.fJ and 'f/q: Iq-+ 

(C with { 'f/q} C { 'YI IrighJ satisfying 

f [ 'f/p ( s)] = is, · s E Ip 

f[rJq(s)]=is, sEiq. 

Again Lemma 1.2.1 implies that VE > 0, :3C > d such that Vs E Ip and Vt E lq with 

Isl, itl > C, ::lb, e EC with bn = is/an and en= it/an satisfying 

I ( b + a) - T]p ( s) I · and l(e+a) -ry(q)I < E. 
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Because of the choice C > d, in both Case 1 and Case 2 we have 

2E 
lbl, lei > lei21r/n _ lj 

therefore :3!µ E {1, ... , 2n} and :3!v E {1, ... , 2n} such that b E Nµ, and c E Nv, It 

follows that Mj is asymptotic to both a+ Nµ, and a+ Nv since in Case 1 we have 

lim Jr,(s)J = oo 
s-+±oo 

lim dist[r,(s),a + Nµ,] = lim dist[r,(s),a + Nv] = 0 
s-+-oo s-+oo 

and in Case 2 we have 

lim lr,p(s) I = lim l11q(t) I = oo 
sElp tElq 

· lsl-+oo iti-+oo, 

lim dist[r,p(s),a+Nµ,] = lim dist[r,q(t),a+Nv] = 0. 
sElv tElq 

Jsl-+oo JtJ-+oo 

'vj E {1, ... ,.e}, defineµ= µ(j),v = v(j) E {1, ... ,2n} as above. We obtain 

the maps µ, v : {1, ... , £} 4' {1, ... , 2n }. It follows from Lemma 1.2.2 that 'vc > 0, 

:3C > 0 such that 'vk E {1, ... , 2n} and 'vb E Nk with lbl > C, :3z E C satisfying 

J(z) = anbn E iffi., hence z E I'o, .and 

l(b + a) - zl < c. 

Therefore, 'vk E {1,; .. ,2n}, :3j E {1, ... ,.e} such that either k = µ(j) or k = v(j). Let 

A= µ({1, ... ,.e}) and B = v({l, ... ,.e}). Then AUE= {1, ... ,2n}. Since !Al~ .e and 

IBI ~ .e, we have 

2n ~ IA U Bl :S: IAI + IBI :S: 2£. 

Using Notation 1.3.1, we obtain the following. 
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Proposition 1.3.1 'Ve ER, 3M1 , ... , Mn EM such that 

and 3 mapsµ, v : {1, ... ,n} ~ {1, ... ,2n} with µ({1, ... ,n}) U v({l, ... ,n}) 

{1, ... , 2n} such that Vj E {1, ... , n}, Mj is asymptotic to both a+Nµ,(j) and a+Nv(j)· 

Proof Fix c E IR and \;fz E C, let g(z) = f(z) - c. Then Sc(!) = So(g), and 

Proposition 1.3.1 follows from the above argument applied to So(g). 

Section 1.4 Convergence of level curves 

Before leaving the topic of level curves, we prove in Proposition 1.4.1 below a 

simple statement about level .curves belonging to the same constant c E IR of a locally 

uniformly convergent sequence of nonconstant harmonic functions. This will be used 

in Chapter 3. 

Lemma 1.4.1 Let UC C be a convex domain and let J E H(U). Assume that 

3 an open half plane H C (C bounded by a line through O E (C such that f'(U) C H. 

Then f Ju is an invertible map. 

Proof Let f = u + iv where u, v : U --* Ill Assume on the contrary that 

3a, b EU with a# b such that J(a) = f(b). ,Since U is convex, the line segment [a, b] = 

{a+ t(b - a) : t E [O, ll} C U. Choose some arbitrary a, ,8 E IR with (a, ,8) # (0, 0), and 

consider the function 

g(t) =au[a+t(b-a)] +,Bv[a+t(b-a)], t E [O, 1]. 

Then g(O) = au(a) + ,Bv(a) = au(b) + ,Bv(b) = g(l), so 3t0 E {O, 1) such that g'(t0 ) = 0. 

Let z0 =a+ to(b - a). We obtain 

I . ( au av au av ) (Re(b- a)) 
0 = g (to) = a ax (zo) + ,8 ax (zo), a ay (zo) + ,8 ay (zo) Im(b _ a) 
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= (a:: (zo) + (3 :: (zo), -a ::(zo) + f3:: (zo)) (:it=:~) 
( 

Re(b - a) Im(b - a)) 

= ( :: (zo), :: (zo)) (;) 

-Im(b- a) Re(b- a) 

where we put z = x + iy. By letting a + if3 vary on the unit circle, we get that the 

argument of the non-zero number 

must change by an angle e ~ 1r as z varies in [a, b]. But this contradicts the fact that 

f'([a, b]) C f'(U) CH, and Lemma 1.4.1 follows. 

Lemmal.4.2 Let U C (C be a domain, let z0 E U and let f E H(U) with 

f'(z0 ) =/= 0. Given a sequence Un)~=O C H(U) with fn -+ fas n-+ oo, uniformly on 

compact sets in U, we have the following. 3N E N, 3r > 0 and 3 an open set W C (C 

with f(z0 ) E W satisfying the properties below. Put D = D(z0 , r). 

(1) DC U, and fin and Vn ~· N, fnln are all invertible in U. 

(2) WC f(D) and 'vn ~ N, WC fn(D). 

Proof (1) Let L C (C be the line through O E (C for which f'(z0 ) ..l L, and let 

H be the open half plane bounded by L with f'(z0 ) E H'. Chooser > 0 such that the 

disc D =D(i0 ,r) satisfies DC U and Vz ED, we have 

. . 1 . 
jJ'(z) - f'(zo)I < 41J'(zo)I -

Then f'(D) c H. 

Since fn -+ fas n -+ oo, uniformly on compact sets in U, we have f~ -+ f' as 

n -+ oo, uniformly on compact sets in U. Since D C U is compact, it follows that 

3N EN such that Vz ED and Vn ~ N, we have 

1 
IJ~(z) - f'(z)I < 4IJ'(zo)I. 
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Then Vz ED and Vn 2:: N, we have 

1 1 1 
\J~(z) - J'(zo)I :S \J~(z) - J'(z)I + \J'(z) - J'(zo)\ < 4\J'(zo)\ + 4\J'(zo)\ = 2\J'(zo)\. 

Therefore, Vn 2:: N, we have f~(D) CH. Now (1) follows by Lemma 1.4.1. 

(2) Consider the compact set C = {z E CC: iz - zol = r} C U. Let 'Y = J(C). 

Then f(z0 ) E int("!). Let d = dist[f(z0 ),ry). Then d > 0, so we may assume that the 

above N E N is so large that Vn 2:: N, we have 

\fn(z) - f(z)\ < d/2, z EC. 

Let W = D [f(z0 ), d/2]. Then W C int("!) and Vn 2:: N, we have W C int('Yn) where 

'Yn = fn(C). By the argument principle, we have WC J(D) and WC fn(D), n 2:: N, 

and (2) follows. 

Proposition 1.4.1 Let U C (C be a domain, and let f E H(U) and Un)':=o C 

H(U) satisfy fn -+ fas n -+ oo, uniformly on compact sets in U. Given an open 

interval I C IR and a smooth curve ( : I -+ U such that 

f[((t)] = it, t EI 

we have the following. V compact subinterval K c I, :3 an open neighborhood V of 

{ (\K }, :3 a subsequence (me)b:o C (n)~=o, :3 an open interval JC IR with K C J and 

:l smooth curves ry: J-+ U and 'l/me : J-+ U, .e EN, satisfying the properties below. 

(1) f [ry(t)] = it, t E J. 

(2) VJJ, EN, fme ['llme(t)] = it, t E J. 

(3) 'l/me -+ ry as .e-+ oo, uniformly on compact sets in J. 

(4) r/me -+ ry' as .e-+ oo, uniformly on compact sets in J. 
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(5) {17} n V = {z EV: Re[f(z)] = o}. 

(6) WEN, {?JmJ n V = {z EV: Re[fmt(z)] = O}. 

Proof Fix some compact interval KC I. 

Fix t EK. Then f' [((t)] =I= 0 since f' [((t)] ('(t) =:= i. By Lemma 1.4.2, it follows 

that 3Nt EN, 3rt > 0, 3 an open set Wt 3 f [((t)] = it such that Dt = D[((t),rt)] 

satisfies that JIDt and Vn ~ Nt, fnlDt are all invertible and Wt C f(Dt) and Vn ~ Nt, 

We obtain 

iKC LJ Wt. 
tEK 

But iK is compact, therefore 3m E N \ {O} and 3t1, ... , tm E K with t1 < · · · < tm 

such that iK C LJj=l W ti . Put 

jE{l, ... ,m}, and 

j E {1, ... ,m}, and 

Shrinking the Wj if necessary, we may assume that Wj n WH1 =I= 0, j = 1, ... , m - 1, 

but Wj n Wj+2 = 0, j = 1, .. . ,m - 2 in case m ~ 3. Let N = :max{Nt1 , ••• ,Ntm}. 

j = 1, ... , m, define some g E H(D). lt follows that g is invertible and g-1 = f Jg(W)' 

Vn ~ N and Vj E {l, ... ,m}, put 9n,j = (fnlD)- 1 . Then Vn ~ N, the fun~tion 

elements (9n,j I w., Wj), j = 1, ... , m, define some 9n E H (W). It follows that Vn ~ N, 
3 

9n is invertible and g;;1 = fnl9n(W). 

Now 'in ~ N, we have 9n(W) CD. Therefore, the sequence (gn);;,o=N C H(W) is 

uniformly bounded. By the Vitali-Montel theorem, 3 a subsequence (nk)k=O C (n);;,o=N 

and 3h E H(W) such that 9nk -+ has k -+ oo, uniformly on compact sets in W. We 
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claim that g = h. Fix an arbitrary w E Wand let z = h(w) = limk--too 9nk (w). Now 

Vy E D and V(yk)k=O C D with Yk -+ y as k -+ oo, we have 

as k-+oo. 

Indeed, Ve > 0, :3M E N such that Vk ~ M, we have 

and Jfk(x) - f(x)J < c/2, xED 

since Dis compact. It follows that Vk ~ M, we.have 

Therefore, 

We obtain g(w) = g[J(z)] = z = h(w). 

We use a similar argument for g E H(W) and (9nk)k=O C H(W) as the one we 

used for f E H(U) and Un)':'=o C H(U) above. 

Vt E K, :3Mt E N and :3t?t > 0 such that Et = D(it, gt) satisfies Et C W, and 

31ft 3 g(it) = ((t) satisfying Vt C g(Et) and Vk ~ Mt, Vt C 9nk (Et). It follows that 

iK C UteK Et, Therefore, :3£ EN\ {O} and :3T1, ... , Tf. EK such that iK C u;=l E-rr 

E}. Then KC J. Also, let 

'T/(t)=g(it), tEJ 

and Vk ~ M, let 

t E J. 

It follows that 'f/nk -+ 'f/ as k -+ oo, uniformly. on compact sets in J, since 9nk -+ g as 

k -+ oo, uniformly on compact sets in W. Also, 'l]~k -+ '1] 1 ask -+ oo, uniformly on 
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compact sets in J, since r}'(t) = ig'(it), t E J and Vk ~ M, 'T]~k (t) = ig~k (it), t E J, 

and g~k --+ g' as k --+ oo, uniformly on compact sets in W. 

This proves properties (1),(2),(3) and (4). But (5) and (6) are also clear since we 

have V C g(E) and Vk ~ M, V C 9nk (E), and iJ = rn. n E. Therefore, Proposi

tion 1.4.1 follows. 



CHAPTER2 

THE RIEMANN SURFACE 'R, 

Section 2.1 Alternative description of 'R, 

Let m EN\ {O} and consider a polynomial 

a· kZJ Z L . k 

J, ' 
z E (C 

j+k=2m 

so that P2m is real-valued and subharmonic but not harmonic at each z E (C. Then 

aj,k = ak,j and am,m > 0. Put 

n = { (z, w) E (C2 : Re(w2m) + 8P2m(z) + Re(z~m) < O} 

where c5 > 0 is chosen as in the Introduction. Then we have the Riemann surface 'R, 

associated with n, and we can use 'R, to define a peak function on the domain 

O' = {(z',w') E c2: Re(w') +8P2m(z') +Re[(z')2m] < O} 

as also described in the Introduction. 

Fix some rt E (C. Then we have 

. N('f/) 

{z E (C: Re(772mz2m) + 6P2m(z) + Re(z2m) < O} = LJ Tj('T/) 
j=l 

where T1(r,), ... , TN(r,) (17) C (Care disjoint open sectors, and the definition of n is 

based on the way these sectors vary with r, E (C. Put ~ = r,2m + 1 _ and let 

P(~, z) = Re(~z2m) + 8P2m(z), z E (C. 
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Put ao = am,m and 'i/j E {1, ... , m -1}, put aj = am+j,m-j· Define 

(2.1.1) 
m-1 

p(e, u) = eu2m + 8 L aju2j' 
j=O 

Then 'i/z = lzleiB E (C \ {O}, we have 

z EC. 

The fact that the function z 1-r P(e, z), z E C, is subharmonic but not harmonic 

for any fixed e E (C is equivalent to 

(2.1.2) Re[4m2 J1;.(u) - ufe(u) - u2 Jnu)] 2:: 0, uEC, lul=l 

whenever e E (C is fixed and we put 

if.(u) = p(e, u)' z .EC. 

This is further equivalent to the statement that 'i/ such J1;., we have 

u E (C, lul < 1 

since 've E C, the function 

is a real-valued harmonic polynomial with constant term 4m2a0 = 4m2am,m > O. 

Fix 'f/ EC, put e = 'f/2m+ 1 and let 

BER. 

Then the intersections of the open sectors T1 (rJ), ... ,TN(,,,)('f/) C (C with the unit circle 

are the open arcs A1 (rJ), ... , AN(,,,) (rJ) given by 

N('f/) 

LJ Aj('f/) = {ei9 : 91;.(B) < O}. 
j:;:l 
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Therefore, the authors in [BF] study properties of these open arcs, using the fact that 

Vt E (C, we have 

where equality holds for at most a finite number of values of(} E [O, 21r). 

Put in this light, the Riemann surface n is really associated with the polynomial 

p((,z), l,z E C, as in (2.1.1), satisfying (2.1.2). Such a Riemann surface can be de-

fined in the slightly more general setting described below. 

Let n E N \ {O}, let ao, ... , an-1 E (C and put 

n-1 

(2.1.3) p(l, z) == ezn + L ajZj' z E (C. 

j=O 

As above, Vt E C, define 

h,(z) = p(l, z), z E (C 

and assume that Vt E (C, we have 

Re[n2 fdz) - zJJ(z) - z2 Jg' (z)] > 0, z E C, lzl < 1. 

Now Vt E (C, we will study the properties of the set 

{z E (C: lzl < 1, Re[h,(z)] < o} 

instead of studying the set 

This way, we will be able to give a concrete definition of a Riemann surface n, 

associated with the polynomial p given in (2.1.3) in analogy with the Bedford-Fornaess 

Riemann surface n associated with the domain n above. 

The next 2 lemmas correspond to Lemma 1.1 and Lemma 1.2 in [BF]. 
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Lemma 2.1.1 Let c > 0 and let g : JR-+ JR be a real-analytic function such that· 

(2.1.4) c2g(8) + g" (0) 2:: 0, 

If g ,t O and g(a) = g'(a) = 0 for some a E JR, then ::Im E N \ {O} such that 

Vj E {1, ... , 2m - 1 }, we have gU)(a) = 0 and g(2m) (a) > 0. 

Proof Since g ,t O is real-analytic, ::In 2:: 2 such that g(n)(a) i= 0 and 

(n)( ) . 

g(B) = g n! ~,JO - a)n + 0 [(8 - at+i] . 

By (2.1.4), it follows that 

0 S c2g(8) + g"(() 

Therefore, g(n)(a) > 0 and n is even. This proves Lemma 2.1.1. 

Lemma 2.1.2 Let g : JR -+ JR be as in Lemma 2.1.1 and let a < (3. Then we 

have the following. 

(1) If VB E (a,(3), we have g(B) < 0, then (3- a S 1r/c. 

(2) If VB E (a,(3), we have g(B) > 0 and g(a) = g(/3) = 0, then (3- a 2:: 1r/c. 

In either case, strict inequality holds unless :3c1 , c2 E JR such that 

(2.1.5) g(B) = c1 sin(B) + c 2 cos(O), () E JR. 

Proof Since VB E (a,(3), we have g(B) i= 0, we may define 

h(O) = arctan[:~~:t], () E JR 

so that h : ( a, (3) -+ ( -1r /2, 1r /2) is a real-analytic function. 



35 

(1) In this case (2.1.4) implies 

BE (a,/3) 

and equality holds everywhere if and only if we have (2.1.5). Therefore, we have 

h'(B) = g"(B)g(B) - [g'(B)]2 < -c 

(1 + [!~~:1f)c[g(B)]2 - ' 
BE (a, /3) 

hence 

-1r ~ i/3 h'(B)de < -c(/3 - a) 

unless (2.1.5) holds. This proves (1). 

(2) Since VB E (a,,B), we have g(B) > 0 and g(a) = g(/3) = 0, we have g'(a) :2: 

0 :2: g'(,B). We claim that 

lim g'(B) = oo 
8-,a+ g(e) 

and 
. g' (B) 

hm -(e) = -oo . 8-,!3- g 

The first equality is obvious if g'(a) > 0, and it follows from Lemma 2.1.1 if g'(a) = 0. 

The other limit is similar. 

Now (2.1.4) implies c2g(B) + g"(B) 2: 0, e E (a, (3), with equality everywhere if and 

only if (2.1.5) is true. Computing as before, we get h'(B) 2: -c, e E (a,/3), hence 

-1r = i/3 h'(B)de > -c(,B - a) 

unless we have (2.1.5). This completes the proof of Lemma 2.1.2. 

Lemma 2.1.3 Let J(z) = ~]=o ajzj ¥, 0, z E (C, and let r > 0 satisfy 

(2.1.6) Re[n2 f(z)-zf'(z)-z 2 r(z)] 2: 0, z E <C, izl = r. 

Then we have the following. 
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(1) If a< /3 so that VOE (a,fJ), we have Re[f(rei8 )] < 0, then fJ - a< 1r/n. 

(2) If a < /3 so that Re[f(reia)] = Re[f(rei.B)] = 0 and VO E (a,/3), we have 

Re[f(rei8)] > 0, then /3 - a> 1r/n. 

(3) If Re [f (reia)] = Im[reia f'(reia)] = 0, then VO E [a.- 1r /n, a) n (a, a+ 1r /n], 

we have Re[f(ei8 )] > 0. 

Proof Let g(O) = Re[f(rei8 )], 0 E R Then g '¢ 0 since f ¢ 0. Also, (2.1.6) 

implies 

Re[n2 f(z) - zf'(z) - z2 f"(z)] > 0, z EC, lzl < r 

hence ao = Re[f(O)] > 0. It follows that g is not of the form (2.1.5). Now g'(O) = 

-Im[rei8 f'(rei 8 )], hence (1), (2) and (3) follow from Lemma 2.1.1 and Lemma 2.1.2 . 

. Lemma 2.1.4 Let f(z) = ~7=o ajzj '¢ 0, z EC, satisfy 

(2.1.7) Re[n2 f(z) - zf'(z)- z2 f"(z)] 2: 0, z EC, jzj = 1. 

Then we have the following. 

If a= jajeia with O < ial <1 so that Re[f(a)] = I~[af'(a)] = 0, then we have 

r E (lal, 1]. 

Proof Let a= jajeia as above and fix r E (lal, 1]. 

Let 
n 

q(z) = f (z2 ) = L ajz2j, z EC. 
j=O 

Now 
n 

n2 f(z) - zf'(z) - z2 J"(z) = L(n2 - j2)ajzj, z E (C 

j=O 

and 
n 

4n2 q(z) - zq'(z) - z2q"(z) = 4 L(n2 - j2)ajz2j, z E (C 

j=O 
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hence we have 

(2.1.8) Re[4n2q(z) - zq'(z) - z2q"(z)] 2: 0, z E CC, /z/ = 1. 

Let b = /b/ei/5' with /b/ = /a/ 112 and /3 = a/2, let s = r 112 and Vz E CC, put 

Then Vz = /z/eili E CC\ {O}, we have 

(2.1.9) 

Now q '¥:- 0 and (2.1.8) together imply that 

Re[4n2q(z)-zq'(z)-z2q"(z)] > 0, z E CC, /z/ < 1 

hence Q(O) = -2nRe(a0 ) < 0. Therefore, Q '¥:- 0. But VOE IR, we have Q(eili) = 0 and 

Q is subharmonic by (2.1.9), hence Q(z) < 0 whenever /z/ < l. In particular, we have 

But by assumption, we have 

0 = 4nRe[f (a)]+ i4Im[af'(a)] = 2nRe[q(b)] + i2Im[bq'(b)] 

n-1 n-1 

= 2nanb2n + L(n + j)ajb2j + L(n - j)o)?j. 
j=O j=O 

Therefore, we have 

and Lemma 2.1.4 follows. 
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Next, we will apply the results of Chapter 1 to give a convenient description of 

the Riemann surface n mentioned above. 

Let p(z) = "E.,7J'=o ajzj I 0, z E C, and let 

r = {z EC: Re[f(z)]}. 

Then we have 
n 

where C1 , ... , Cn are distinct smooth curves. 

We have a E Cj n Ck with j =f. kif and only if Re[f(a)] = f'(a) = 0. Let a EC 

be such a point and assume that J'(a) ~ · · · = j(m-l)(a) = 0 but j(ml(a) =f. 0. Then 

exactly m of the Cj intersect at a and their tangent lines at a divide a circle around a 

into 2m equal parts. 

Let a =f. 0 be such that f(a) = irfor some r E IR and f'(a) =f. 0. Then :3E > 0 such 

that the unique curve C C r through a has a real-analytic parametrization t r-t 'Y(t), 

t E (r - E, r + E) satifying "((t0 ) = a and 

f["/(t)] =it, tE(r-E,r+E). 

Write 

'Y(t) = Q(t)eifJ(t), t E (r - E, r + E). 

Then r/(r) = 0 is equivalent to Re['Y'(r)h(r)] = 0 which is further equivalent to 

Im[af'(a)] = 0. 

That is, the tangent line to C at a is perpendicular to a if and only if Im [ a f' (a)] = O. 

Now we also assume that 

Re[n2 f(z) - zf'(z) - z2 J"(z)] 2:- 0, z EC, jzj = 1 
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as before. Then Re[/(0)] = Re(a0 ) > O, hence Orf. r. 

Let w1 = r1 eiwi with O < r < 1 satisfy 

(2.1.10) r1 = min{JzJ : z E r} . 

If there were 2 distinct Cj C r through w1 , then they would meet at a positive angle, 

so one of them would intersect the circle T1 = { z E <C : JzJ = ri} transversally, 

contradicting (2.1.10). Therefore, :3 a unique curve 0 1 Cr through w1 . 

Now 0 1 has to be, tangential to T1 by (2.1.10), so we have 

by the above discussion. It follows that Vr E ( r1 , 1], we have 

Re[f(reiwi )] < 0 

by Lemma 2.1.3. 

For each r E (r1, l], let a1(r) < w1 < /31(r) satisfy 

Re[f(rei6 )] <0, a1(r) < () < fli(r). 

Then by Lemma 2.1.3 (1), we have 

and by Lemma 2.1.3 (3), we have 

hence we must have 

and as 
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Put a1(r1) = f31(r1) = w1 and define 

B1 = {ri°'1 (r): r E [ri, 1]} U {ri.81 : r E [r1, 1]}. 

Now Lemma 2.1.3 (3) also implies that Vz E B 1 \ { wi}, we must have 

Im[zf' (z)] =/= 0. 

That is, Vz E B 1 , :la unique smooth curve in r through z. Bycompactness, B 1 must 

be cont.ained in the same curve 0 1 C rand no other smooth curve in r intersects B 1 . 

Define also 

W1 = {rei0 : r E (r1, 1) and a 1(r) < 0 < f31(r)} 

and let 

A1 = {eiO: a1(l) < 0< /31(1)}. 

r2 = min{izi : z E r \ B1}. 

Repeat the above argument to obtain the set· 

contained in some smooth curve 0 2 C r and intersecting no other such curve, satisfy

ing 

Also, define the open set 
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and the open arc 

Keep repeating the same until we exhaust r n {z E C: izl < 1}, that is, until we 

get 
m 

r n {z E C : izl :::; 1} = LJ Bj 
j=l 

for some m E {1, ... , n}, where B1 , ... , bm are. disjoint smooth curves. Then we will 

also have the disjoint unions 

m 

{z EC: lzl <1 and Re[f(z)] < 0} = LJ Wj 
j=l 

m 

{z EC: izl = 1 and Re[f(z)] < o} = LJ Aj 
j=l 

satisfying 8Wj = Bj U Aj, j E {1, ... ,m}. 

Since Vj E {1, ... , m}, Wj = rjeiwj and Wj E Aj, Lemma 2.1.3 (2) implies that the 

Wj are separated by an angle of at least 1r/n. 

Let 
n-1 

p(c;,.z) = c;zn + L' c;,z EC 
j=O 

and for each fixed { E C, consider the polynomial 

fe(z) = p(c;,z), . z EC. 

By the above arguments, we have that Ve; EC, :3m = m(e) EN and :3w1 (c;), ... ,wm(c;), 

Bi (c;), ... , Bm(c;), W1 (c;), ... , Wm(c;) and A1(c;), ... , Am(<;) as described above. 

Clearly, w1 ( c;), ... , Wm ( c;) are precisely the solutions to the system of equations 

Re [Je ( w)] = Im [ w f H w) J = 0 , w EC, iwl < 1 
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which is equivalent to the single equation 

n-1 n-1 
(2.1.11) 2newn + I)n + j)_ajWj + 2)n - j)arwj = 0' w EC, lwl < 1. 

j=O j=O 

The way the Wj(e) are separated for each e E C for which m(e) i= 0 implies that 

each Wj can be viewed as a local real-analytic diffeomorphism. Therefore, (2.1.11) can 

be used to define a Riemann surface with boundary an given by 

n = { (e, w) E C2 : lwl < 1 and (e, w) satisfies (2.1.11)} 

where the projection 1r: n-+ U onto UC C, 1r(e, w) = e, is the local coordinate, and 

an= {(e,w) E C2 : jwj = 1 and (e,w) satisfies (2.1.11)}. 

Since clearly :lK > 0 such that 1e1 > K implies m(e) = n, and also W1 (e), ... 'Wn (f) -+ 

0 as lei -+ oo, n extends to a Riemann surface over U U { oo} C JP. 

Section 2.2 The map e : C \ {O} -+ C and its critical points 

Fix n EN\ {O} and ao, ... , an-1 EC. Let 

n-1 

p(e, z) = ezn + :z= ajzj, e,z EC. 
j=O 

We will use the notation a2p = ap/az and a?P ~ a2p/az2 • Consider the equation 

2nRe[P(e, z)] + i2Im[za2p(e, z)] = 0, e,zEC.· 

The above equation can be put in the equivalent form 

n-1 n-1 

(2.2.1) 2nezn + L(n + j)ajZj + L(n - j)a{zj = 0, e, z E (C 

j=O j=O 

which defines the real-analytic function e = e(z), z E (C \ {O}. 
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Let 

n-1 n-1 

g(z) = L_(n - j)ajzj and h(z) = L_(n2 - j2)ajzj, z E <C. 
j=O j=O 

Lemma 2.2.1 The map l : <C \ {O} -+ <Chas a real-analytic inverse z = z(l) 

defined in a neighborhood of fo = t(z0 ), satisfying z(fo) = z0 , if and only if we have 

both Re[g(zo)] =/: 0 and Re[h(zo)] =/: 0. 

Proof Let I C IR. be an open interval and let z = w(t), t E I, be a smooth 

curve. Then, taking d/dt of both sides of equation (2.2.1) and assuming that w(t) =/: 0, 

t E J, we get 

dl dw/dt dw/dt n-l . . . 
2n-Wn + 2n2lwn __ + -- L_J(n + J)ajWJ 

dt W W j=O 
(2.2.2) 

+ (dw~dt) I: j(n - j)afwj = 0, t EI. 
J=O 

Here, we used the fact that d(w)/dt = dw/dt. 

Fix some to E I, some zo E <C with zo =/: 0 and put fo = l(zo). 

First, pick a smooth curve u : I-+ <C with u(t0 ) = z0 , satisfying 

du/dt 
--=l 

u 
at t = t 0 . 

Then equation (2.2.2) with w = u implies that, at t = t0 , we have 

dl n-1 . n-1 . 

-2n dtZo = 2n2lozo + L_j(n + j)ajZb + Lj(n - j)a{i& 
j=O j=O 

( 
n-1 ) ( n-1 ) 

=2nRe nfoz0+ ~jajzi +i2Im n2 foz0+ L_j2ajzi 
J=O J=O 

= 2nRe[zo82p(fo, zo)] + i2Im[zo82p(fo, zo)] + i2Im[z58~p(fo, zo)] 

= 2nRe [zo82p(fo, zo)] + i2Im [z58~p(lo, zo)] . 

That is, the directional derivative of l : <C -+ <C at z0 = u(t0 ) in the direction of z0 is 

given by 

(2.2.3) 



Next, pick a smooth curve v : I--+ C with v(t0 ) = zo, satisfying 

dv/dt . 
--=i 

V 
at t = t 0 . 

Then, as above, equation (2.2.2) with w = v and t = t 0 implies 

· n-1 n-1 

-2n dde Zo = i2n2eozo + i L j(n + j)ajzl - i L j(n - j)ajztJ 
t · O . 0 J= J= 

=i[i2nlm(nfoz0+ ~jaizl) +2Re(n2foz0+ ~j2aizl)] 
J-0 . J-0 

.. = i (i2nlm[zo82p(eo, zo)] + 2Re[zo82p(fo, zo)] + 2Re[z58~p(fo, zo)]) 

= i2Re[zo82p(fo,zo) + z3o~p(fo,zo)]. 

It follows that the directional derivative of e at z0 in the direction of izo is given by 

(2.2.4) 

Now Re[P(fo, zo)] = 0 by (2.2.1), therefore we have 

(
n-1 ) 

= -Re ~(n-j)ajzf . 
J=O 

Also, we have 

(
n-1 ) 

= -Re ~(n2 -j2)ajzl . 
J=O 
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Using the usual identification R2 = R + iR, let A : R2 \ {(O, O)} --+ R2 X 2 be the 

derivative map of the map e: R2 \ {(O, O)} --+ R2. 

Fix zo E R2 \ {(O, O)} and let fo = e(zo). It follows from (2.2.3) and (2.2.4) that 

the real 2 x 2 matrix A(zo), written in the basis {z0,iz0}, has the form 

(2.2.5) 
1 

( nRe[g(zo)] 

A(zo) = -
nz0 

Im[z58~p(fo, zo)] 
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Now~ has the reqired inverse at z = z0 if and only if det[A(zo)] -=I= 0, and Lemma 2.2.1 

follows. 

Before studying the critical points of the map ~ : C \ {O}, we make a few observa-

tions. 

Note 2.2.1 Fix m E N and b1, ... , bn E C. Let J(z) = ~j=O bjzj, z E C, let 

z = rei6 , r E JR\ {O}, e E JR, and consider the real-analytic map 

F(r, e) = Re[f(z)], r E JR\ {O}, 0 E JR. 

Then a simple computation shows that 

[)F 
r or (r,O) = Re[zf'(z)] 

~: (r,e) = -Im[zf'(z)]. 

Let ro > 0 and Oo E JR and assume that zo = r0 ei60 satisfies 

Re [ zo J' ( zo)] -=I= 0 . 

It follows from the implicit function theorem that 3 an open interval I C JR with 00 E I 

and 3 a real-analytic function r = r(O), e E J, with r(00 ) = r0 such that 

(2.2.6) F(r, 0) = 0, 0 E J. 

Let I C JR be an open interval, consider some smooth real-valued function r = 

r(O), e EI, with O Fj. r(I), and let z = rei6• Then we have 

d dr/de 
dORe[J(z)] = -r-Re[zf'(z)] - Im[zf'(z)], e EI 

(2.2.7) 
d dr/de 
dOim[f(z)] = -r-Im[zf'(z)] + Re[zf'(z)], 

Again, consider r = r(O), e EI given by (2.2.6). Assume further that 

Im[zof'(zo] = 0. 
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Then dr / df) = 0 at f) = fJ0 . Applying (2.2. 7) once again, we get 

d2r I = r Re[zof'(zo) + z5f"(zo)] = r Re[h(zo)] 
dfJ2 8=80 Re[zof'(zo)] Re[g(zo)] 

since Re[f(zo)] = 0, g(z) = nf(z) ~ zf'(z) and h(z) = n 2 f(z) - zf'(z) - z2 f"(z). 

Note 2.2.2 Let f (z), z E C, and F(r, fJ), r E JR\ {O}, f) E JR, be as in Note 2.2.1. 

Now let ro > 0, ()0 E JR and let z0 = r0eiBo satisfy 

Im [ zo J' ( zo) J =J O . 

Then 3 an open interval IC JR\{O} with TQ° EI and 3 a real-analytic function f) = fJ(r), 

r E I, with fJ(r 0 ) = ()0 such that 

(2.2.9) F(r,fJ)==O, r E J. 

Assume that I C JR\ {O} is an open interval, f) = fJ(r), r E J, is a smooth real-

valued function and z = rei8 . Then we have 

(2.2.10) 

d 1 df) 
-d Re[f(z)] = -Re[zf'(z)] - -d Im[zf'(z)] , 

r r . r 
rEJ 

d 1 df) 
-d Im[f(z)] = -Im[zf'(z)] + -d Re[zf'(z)] , r EI. 

r r r 

Again, consider f) .:._ fJ(r), r E J, given by (2.2.9). Assume also that 

Re[zof'(zo)] =Ci. 

Then df) / dr = 0 at r = ro. Applying (2.2.10) one more time yields 

(2.2.11) 
d2 f) _ 1 Re[z5f"(zo)] 1 Re[h(zo)] 
dr2 lr=ro - - r 2 Im[zof'(zo)] = - r 2 Im[zof'(zo)] 

since Re[f(zo)] = Re[zof'(zo)] = 0 and h(z) = n2 f(z) - zf'(z)...,. z 2 f"(z). 

Next, we study critical points of e: (C \ {O}--+ (C where Re[h(z)] = 0. 
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Note 2.2.3 Let z0 E (C \ {O} with Re[h(z)] = 0, let fo = ~(zo) and put 

f (z) = p(fo, z), z E (C. 

Assume that f'(zo) =I= 0. Since we have 

Im[zof'(zo)] = Im[zo82p(fo,zo)] = 0 

by definition of the map l, it follows that 

Re[zof'(zo)] =I= 0. 

Put z0 = r0 ei80 . Then Note 2.2.1 implies that :3 an open interval I C ffi. with 

80 EI and :3 a real-analytic function r = r(B), e EI, satisfying r(80 ) = r0 and 

F(r, 8) = Re[f(z)] = 0, e EI 

where VB E I, we put z = rei8 . By repeated applications of (2.2.6), we obtain that 

dr -I -o d() 8=80 -
and 

d2 r -I -o d82 8=80 -

. ]_ (d3r I ) = _ Im[3z5f"(zo) + z5f"'(zo)] = Im[zoh'(zo)] = _ Im[zoh'(zo)] 
ro d83 8= 80 . Re[zof'(zo)] Re[zof'(zo)] Re[g(zo)] 

since Im[zof'(zo)] = 0, h(z) = n2f(z)- zf'(z) - z2 f"(z) and g(z) = nf(z) - zf'(z). 

Section 2.3 The map x: v H- w 

Let k, n EN with O < k < n and consider the polynomial 

x,yEC. 

Definition 2.3.1 The map <p : (C \ {O} -r (C. 
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Vv E (C \ {O}, define cp = cp(v) by the equation 

Vv0 E (C \ {O}, let A(v0 ) be the derivative matrix at vo of the map cp. Then we 

have 

(

Re(nvg + n + k) 

A(vo) = n(n - k) 
Vo 

Im(nvg) 

-Im(nvg) l 
Re(nvg + n + k) 

written in the basis { v0 , iv0}. Vv E (C \ {O}, we have that v is a critical point of cp if 

and only if 

Re(nvk + n + k) = Im(vk) = 0. 

Definition 2.3.2 The map 1/J : (C \ {O} -+ (C. 

Vw E (C \ {O}, define 1/J = 1/J(w) by 

Re[p('i/J,w)] = Im[w82p('i/J,w)] = 0. 

This 1/J is the same map l:!,S the map E that we introduced in Section 2.2 for a 

more general polynomial. Therefore, all the statements there apply to 1/J. 

Vw0 E (C \ {O}, let B(w0 ) be the derivative matrix at w0 ofthe map 'i/J. Then we 

have 

B(wo) = n(n - k) 
wn 

0 

Re(nw~ + n + k) 0 

Re[(n + k)wg + n + k] 

written in the basis { wo, iwo}. The critical points of the map 1/J form the curves given 

by the equation 

Re( nwk + n + k) = 0 , w EC 
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and the curves given by the equation 

Re(wk + 1) = 0, w E <C. 

We state a few simple facts about these curves without proofs. 

No two of the curves given by the above equations intersect. Consider the half 

rays starting at O that form the set { v E <C : Im( vk) = 0}. Then each half ray intersects 

none or two of the above curves, and every point of intersection of a half ray with a 

curve is the unique point on that curve which is closest to 0. 

Let 

V = { v E <C : Re( nvk + n + k) > 0} . 

Then all curves given by Re(wk + 1) = 0 are contained in V. Let 

W = {w E <C: Re(wk + 1) > O}. 

Then W C V. Finally, let 

Vo = { v E V \ { 0} : 0 < arg ( v) < 1r / k} 

Wo = {w E W\ {O}: 0< arg(w) < 1r/k}. 

We will use the following construction to define a map x : V0 -t W 0 . 

Construction 2.3.1 Fix v0 E V0 . Let ({)o = 'P(v0 ) and put 

f(z) =p(<po,z), z E <C. 

Then f(vo) = 0. Also, f'(vo) # 0 since vo E Vo implies Im(v~) > 0 and so we have 

vo.f'(vo) = vo.f'(vo) - nf(vo) = -[(n - k)n 2 v~ + n(n2 - k2 )] # O. 

Therefore, ::la > 0 and a simple nonsingular analytic curve 'Y : (-a, a) -t <C with 

"f(O) = vo satisfying 

f['Y(t)] =it, t E (-a,a). 



Since v0 #- 0, (1.1.3) and (1.1.4) imply that z = 'Y(t), t E (-a, a), satisfies 

sign( d!:l lt=J = sign (Im[vof' (vo)]) 

= -sign (Im[nf(vo) - vof'(vo)]) 

= -sign[(n - k)n2Im(v~)] = -1 

and 

. (darg(z)I ) . ( [ · '( )]) sign dt t=O = sign Re v0f v0 

= -sign (Re[nf(vo) - vof'(vo)]) 

= -sign (Re[(n ~ k)n2v~ + n(n2 - k2)]) 

= ~sign[Re(nv~ + n + k)] = -1. 

This last equality follows from the fact that v0 E V0 C V. 

Continue the given parametrization of 'Y analytically on ( -a, oo) as far as pos-

sible. Assume b > 0 is such that 'Y can be extended to (-a, b), and that z = 5(t), 

t E (-a,b), satisfies dlzl/dt <0 and darg(z)/dt < 0. Then Vt E (-a,b), we have 

0 < -lm[zf'(z)] < nt ~ lm[zf'(z)] 

(2.3.1) = nlm[f (z)] - Im[zf'(z)] 

and 

Re[zf'(z)] = -Re[nf(z) - zf'(z)] = -(n - k)nRe(nzk + n + k) 
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as above. Therefore, Vt E (-a, b), z = ,'(t) satisfies Im(zk) > 0 and Re(nzk+n+k) > 0, 

hence z E Vo. 

Let zo = limt--,b- z, which exists by Note 1.3.1. Then we have f (zo) = ib. Also, 

(2.3.1) implies 

0 S -lm[zof'(zo)] S (n - k)n2lm(z~). 
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If it were the case that Im(z~) = 0, then we would have 

0 = Im[zof'(zo)] = Im[zof'(zo)] + (n - k)n2Im(z~) = nlm[f(zo]. 

But it follows from the definitions of z0 and z = 'Y(t), t E (-a, b), that Im[f (zo)] = bi= 

0, a contradiction. Therefore, it must be that Im(z8) > 0, 'hence O < arg(z0 ) < 1r /k. 

Next, we claim that Re(nz8 + n + k) i= 0. We can prove this as follows. Consider 

g(z) = nzk + n + k, z E <C. Vt> -0, write 

n + k . i9 ---+it=re 
n 

with r > 0 and 1r/2 < e < 1r. Define the curve o: (O,oo)-+ <C by 

o(t) = r1fkei 9/k,. t E (O,oo). 

Then we have 

9 [o(t)] =it, t E (O,oo) 

and 

{o} = {z E <C: O < arg(z) < 1r/k and Re[g(z)] = o}. 

Assume that Re [g(zo)] = 0. Since the curve 'Y: (-a, b) -+ <C satisfies 

we have that {'Y} n {z E <C: Im(zk) = O} = 0. Now v0 E {'Y} satisfies O < arg(v0) < 1r/k 

by assumption, so we have that 

{'Y} C {z E <C: 0 < arg(z) < 1r/k} 

since { 'Y} does not intersect any of the half rays that bound this last set. We obtain 

that zo E {o}. Since Vt E (0, oo), z = o(t) satisfies 

zg'(z) = nkzk = nk(- n: k + it) 



we obtain that Re[zg'(z)] < 0 and lm[zg'(z)] > 0. It follows that 

Put 

~>0 
dt 

and 
darg(o) O 

dt < 

A= {z. EC: izl ~ izol} 

on 

B = {z EC: 0 < arg(z) ~ arg(zo)}. 

(O,oo). 

Then we have {o} CA U B. Since z = -y(t), t E (-a,b), satisfies dlzl/dt < 0 and 

darg(z)/dt < 0, it follows that {'Y} n (AU B) = 0. 

Also, Vz E {'Y}, we have Re[g(z)] > 0. But the above arguments show that 

Vz E {'Y }, we have that the closed line segment [O, z] satisfies 

[O,z] n {o} #_ 0. 

In fact, [O, z] n {o} = { w} for some w E C and so 

Re[ug'(u)] > 0, u E [O,w) 

Re[vg'(v)] < _O, · v E (w, z]. 

We get Re [zg' (z)] < 0, a contradiction. 
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Therefore, it must be that Re(nz~+n+k) > 0, which together with O < arg(z0 ) < 

1r / k implies zo E Vo. 

Now 

Re[zof'(zo)] = Re[zof'(zo)] - nRe[f(zo)] = -(n - k)nRe(nz~ + n + k) =I= 0 

so f'(zo) =I= 0. Therefore, 'Y : (-a, b) -+ C extends analytically across b. Since Vt E 

(-a, b), z = -y(t) satisfies lm[zf'(z)] < 0, we have Im[zof'(zo)] ~ 0. If Im[zof'(zo)] < 

0, then :3c > b such that "I extends to (-a, c) analytically, and z = -y(t), t E (-a, c), 
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satisfies dlzl/dt < 0 and darg(z)/dt < 0. This means that if d > 0 is the smallest 

number for which 'Y extends analytically to (-a, d) as above but w0 = limt-td- ry(t) 

satisfies Im[wof'(wo)] = 0, then wo E Vo. 

Now we will show that wo E W0 as well, that is, Re(w8 + 1) > 0. Assume on 

the contrary that Re(w8 + 1) = 0. The same way as for z0 above, we can prove that 

Re[w0 f'(w0 )] i= 0. We obtain Re[wof'(wo)] < 0 because darg(z)/dt < 0 on (-a,d). 

But h(z) = (n2 - k 2)n2 (wk + 1) satisfies Re[h(wo)] = 0 and Im[w0h'(w0 )] = (n2 -

k2 )n2klin(w8) > 0 since wo E V0 . Let w0 = r0ei9oi. Then Note 2.2.2 implies that :3 

an open interval I C ~ with 00 E I and :3 a real-analytic function r = r(O), (J E I, 

satisfying r(00 ) = r0 and 

Re[J(z)] = 0, (J EI 

where VO E J, we put z = lzlrei8 • We obtain that 

drl -0 
d(J 8=80 ~ ' 

and 

Therefore, r = ro - 003 + 0(04 ) with some C > O, and so r is a strictly decreasing 

function near (J = Oo. But z = ry(t), t E (-a, d), satisfies 

darg(z) 0 
dt < ' t E (-a,d) 

hence (J = O(t) = arg(z) is a strictly decreasing function on (-a, d). We obtain that 

the composition r = r o O(t), t near d, is strictly increasing. But r = r(t) = lzl, t near 

d, contradicting the fact that dlzl/dt < 0 on (-a, d). 

Definition 2.3.3 The map x : Vo -+ W0 • 

Let vo E Vo, let cpo = cp(vo) and put f(z) = p(cp0 ,z), z E C. Let d > 0 and 

'Y : [O, d] -+ (C be such that 

J['Y(t)] = it, t E [O, d] 
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as above. That is, putting z = -y(t), t E [O, d], we have dizl/dt < 0 and darg(z)/dt < 0 

on (0, d), and putting w0 = -y(d), we have Im[wof'(wo)] = 0. Then we define 

x(vo) = wo. 

Proposition 2.3.1 (1) The map x v0 -+ x(V0 ) is a global real-analytic 

diffeomorphism. 

(2) x extends continuously to V0 with x(V0 ) C W0 . 

(3) lim lx(v)I = oo. 
lvi-+oo 

Proof Since 'efv E V0 , we have w = x(v) E W0 , that is, Re(wk + 1) > 0, it follows 

that w is not a critical point of the map 7/J : (C \ {O} -+ C. Therefore, 7/J is invertible on 

a neighborhood of w. But cp = cp(v) satisfies 

Re[p(cp,w)] = lm[w82(cp,w)] = 0 

by the definition of w = x(v), so cp = 7/J(w) by the definition of 7/J. Therefore, if xis 

continuous, then we have 

X = W-1 o cp 

on a neighborhood of v. Since v E V0 and r.p = cp( v) imply p( cp, v) = 0 and 

Re[v82p(cp,v)] = Re[v82(cp,v)] - nRe[p(cp,v)] = -(n- k)nRe(nvk + n + k) < 0 

we have that 82p(cp, v) ¥- 0. Therefore, cp is invertible on a neighborhood of v. We 

obtain that x is also invertible on a neighborhood of v and 

on this neighborhood. It follows that x is a local real-analytic diffeomorphism if it is 

continuous. 
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It follows that to prove (1), it is enough to show that xis continuous and 1 - 1. 

Fix v0 E V0 and consider some sequence (vj)f;:0 C Vo such that Vj -? vo as 

j-? cx:i. Let wi = x(vj), j EN. 

Assume that 

_lim Wj = wo 
J-+OO 

is false. Then :l E > 0 and a subsequence (wit)~0 C (wj)f'=1 such that 

(2.3.2) REN. 

Let 'Pi= cp(vj), j EN, and WEN, let · 

z E <C. 

Then fie -? Jo as R-? oo, uniformly on compact sets in <C, where 

fo(z) = p(cpo,z), z E <C. 

By construction, :la, d > 0 and :l a simple nonsingular analytic curve 'Y : (-a, d + 

a) -? <C satisfying 

Jo ['Y(t)] =it, t E (-'-a, d + a) 

Jo ['Y(O)] == Vo and Jo['Y(d)] = wo. 

Consider the compact interval K = [O, d] C (-a, d + a). Then Proposition 1.4.1 

implies that :l an open neighborhood U of blx }, :la subsequence (m»)f=o C (jg)~0 , 

:l an open interval JC ~ with KC J and :l smooth curves rt: J-? U and 'T/m,. : J-? 

U, ,\ EN, satisfying properties (1)-(6) there. 

Since Vj -? Vo E {17} as j -? oo, property (6) of Proposition 1.4.1 implies that 
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Now w0 E W0 implies that 'I/; is a diffeomorphism on an open neighborhood D 

of w0 with D C W0 . But cp is continuous, hence cpj -r cpo as j -r oo. It follows that 

:JN E N such that V j 2:: N, we have 

cpj E '1/;(D). 

Therefore, we have that Vj 2:: N, :J!zj ED with 'l/;(zj) = cpj and 

lim Zj == wo. 
N-:S_j-:,oo 

We may assume that the above Dis chosen so small that D C U. 

Let A EN. Then by property (6) in Proposition 1.4.1, :Jtm,,_ E J such that 

Since Zm,,_ E Wo, it follows that l77m,,_ I has a local minimum at tm,,_. By construction, 

we have 

Also by construction, we have 

j EN 

hence the sequence (wmJf=o is bounded. Therefore, :Jy E (C and :J a subsequence 

It follows that 

lim Wµ,v = y. 
11--"tOO 

Re[f(y)] = Im[yf'(y)] = 0. 

Therefore, y E {111[0,d]} since Zµ,v -t Wo = 77(d) and Wµ,v E {17µ,vl[o,tµv]} where 

77µ,Jtµ,v) = Zµ,v· But (2.3.2) implies that we must have y E {11l[o,d)}, contradicting 

the choice of d. 



Therefore,· we must have 

and continuity of x is proved. 

_lim Wj = wo 
3-+oo 
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Now let v1 , v2 E Vo and assume that x(v1) = x(v2) = w0. Then cp(v1 ) = 1/J(wo) = 

f (z) = p( cpo, z), z E CC. 

Then 3a, d1 , d2 > 0 and :3 smooth curves 'Yj : (-a, dj + a) -+ CC, j = 1, 2, such that 

f['Yj(t)] = it, t E (-a, dj +a), j = 1, 2 

and j = 1,2. 

But then we get 

hence d1 = d2. Also, we have wo E {'Yi} n {'Y2} and f'(w0 ) ¥= 0, so we must have 

It follows that v1 = v2 , and (1) follows. 

Proof of (2) Define x(t) = t, t 2:'.: 0, and x(tei1r/k) = tei1r/k, O ~ t ~ 1. 

We can use Construction 2.3.1 to define x(v) for 

where 8 is the same as in Construction 2.3.1. 

Then we can use the same argument as in (1) above to prove that the extended x 

is continuous on· 
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We need to handle the case v0 = (n!k)I/kei1r/k differently, since then it is no 

longer .true that 3')': (-a, d + a) -+ C such that 1'(0) = v0 and 

Jo['Y(t)] =it, t E (-a, d +a). 

Let v0 = (n!k) 11kei1r/k, let (vj)~1 C Vo\ {v0 } satisfy Vj-+ vo as j-+ oo, and 

'i/j EN, put cpj = cp(vj) and 

Jj(Z) = p(cpj, z), z EC. 

Assume that 3w0 E (C such that Wj =;= x(vj), j EN\ {O}, satisfy 

_lim Wj = wo . 
.1-+oo 

Then we will show that 3a, d > 0 and 3 a smooth curve 1' : (0, d + a) -+ Vo such that 

11'1 and arg('Y) both decrease on (0, d + a) and we have 

lim ')'(t) = Vo 
t-+O+ 

and ')'(d) :::: Wo, 

First of all, we must have 'llio E W0 since (wj)~1 C W0 by construction of x on 

Vo\ {vo}. 

Next, observe that 'i/j EN, 3aj, dj > 0 ~nd :la smooth curve 'Yj : (-aj, dj+aj) -+ 

' Vo\ { vo} such that 

t E (-aj,dj +aj) · 

and '}'j(dj) = Wj. 

Now {8} n Wo = 0, so f'(wo) #- 0. Let fo(wo) = id for some d E lll Then 3(3 > 0 

and 3 a smooth curve ')' : ( d - (3, d + (3) -+ C such that 1'( d) = w0 and 

Jo ['Y(t)] =it, t E (d - (3, d + (3). 
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But limj-+ooWj = w0 implies that Jj --+ Jo as j --+ oo, uniformly on compact sets in 

(C. Consider the compact interval K = [d - fJ/2,d + fJ/2] C (d - f],d + fJ). Then by 

Proposition 1.4.1, ::l an open neighborhood U of bJK}, ::l an open interval JC IR with 

KC J, ::la subsequence (je)~0 C (j)~1 , ::la smooth curve 'T/: J--+ U and 't:/£ EN, ::l a 

smooth curve rje : J--+ U satisfying properties (1)-(6) there. 

Now ::JN E N such that 't:/£ ;:;:: N, we have Wje E U. It follows from Proposi-

tion 1.4.1 (6) that 

£EN. 

Therefore, V£ E N, we have dje E J arid 'Yh is a continuation of 'T/je to ( -afo dje + O'.je). 

such that 

It is clear that we have dje --+ d as £ --+ oo since 

as .e --+ oo. Then d ;:;:: 0. We claim that d > 0, that is, J0 (w0 ) ¥- 0. Indeed, assuming 

Jo(wo) = 0, we get a contradiction as follows. Since Jje --t Jo as£--+ oo, uniformly on 

compact sets in <C, Hurwitz' theorem implies that ::l a sU:bsequence (m>..)f=o C (jg)~0 

such that V>. E N, ::lzm>, E U satisfying Zm>, --+ Wo as >.--+ oo and 

Again, Proposition 1.4.1 (6) implies that\/),, EN, Zm>, E {'Tim>,} C {(m>,}. But W;:;:: N, 

we have 
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hence { (jJ can contain at most 1 zero of he Therefore, 'r;/).. E N, we have Vm>- = Zm>. 

and 

Vo= lim Vm>. = lim Zm>. = Wo 
>.-+oo >.-+oo 

contradicting vo ~ Wo. 

Next, we claim that Re(w8 + 1) =/= 0. Indeed, assuming Re(w8 + 1) = 0, we 

get a contradiction in the following way. We have Im[wof~(w0 )] = 0. As in Con-

struction 2.3.1, we may then assume that fJ > 0 is chosen so small that z = rJ(t), 

t E ( d - fJ /2, d), satisfies 

on (d - fJ/2, d). 

but we have that 'r/£ E N, z = 'T/jt (t), t E (0, djt), satisfies 

dlzl < 0 
dt 

contradicting 'T/jt -+ 'f/1 as£-+ oo, uniformly on K, since we have djt -+ d > 0. 

It follows that wo E Wo since we have Re[f0 (w0 )] = Im[w0 f~(w0 )] = 0 and we 

have just seen that fo(wo) =I= 0 and Re(w8 + 1) =I= 0, hence w0 ~ 8W0 . 

Now we have that lrJ(t)I has a local minimum at t = d. Let a E (0, d) satisfy that 

'T/ extends to (a, d + fJ/2) with lrJI and arg(rJ) both decreasing on (a, d) and 

fo[rJ(t)] =it, t E (a,d + fJ/2). 

Observe that this implies { rJ} C V0 since 'r;/ compact subinterval K' C ( a, d + 

fJ/2), a subsequence of ((jt IK,)~0 must converge to rJlk' uniformly on K' by Proposi-

tion 1.4.1, and we have {(jt} C Vo,£ EN. 

Let zo = limt-+b- rJ(t) and assume that Im[zof'(zo)] = 0. 

We claim that z0 satisfies Re(z8 + 1) =I= 0 and Re(nz8 + n + k) =I= 0. 
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Assume on the contrary that Re(zg + 1) = 0. Then z0 E W0 . Since { 8} n W0 = 0, 

we have Jo(z0 ) 'I- 0. Therefore, we can extend 'fJ to (a-€,d+f3/2) for some€> 0. Now 

we get a contradiction the same way as for w0 above. 

Next assume that Re(nzg + n + k) = 0. Then zo E {o}. Since fo(zo) = ia 'I- 0, we 

have zo 'I- vo. Therefore, lzol > lvol· Then ::1€ > 0 such that 

Consider the compact interval K 1 = [a+€,d] C (a,d+(3/2). Then by Proposition 1.4.1, 

3 an open neighborhood U1 of {rJIK }, 3 an open interval J1 C R with K1 C J1, 3 a 
1 . 

subsequence (m>.)f=o C (ji)~0 , 3 a smooth curve Oo : J1 -+ U1 and VA E N, 3 a 

· smooth curve Om>. : J 1 -+ U1 such that we have properties (1)-(6) there. But then 

Proposition 1.4.1 (6) implies that we must have {om>. Ir } C {(m>.}. By Construe-
. . m>,, 

tion 2.3~1, we have 

contradicting (m>. (a+€) = Om>. (a+€) -+ Oo(a + €) = ry(a + €). 

It follows that 3b E (0, a) such that 'Tl extends to (b, d + (3 /2) with 

fo[rJ(t)] =it, tE(b,d+f3/2). 

But as we saw above, zo = rJ(d) is not a critical point of the map ¢, so¢ is invertible 

in an open neighborhood D of zo. We have <.po = c.p(v0 ) = 'lj;(z0 ). Therefore, 3M E N 

Consider the compact interval K 2 = [a, d] C (b, d + (3 /2). Using Proposition 1.4.1 as 

above, we obtain a subsequence (umJf=o C (uje)~0 such that VA EN, we have 
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It follows that we must have Im[zof~(zo)] =I- 0. 

We obtain that 'f/ must extend to (O,d + /3/2) with 1"11 and arg('f/) both decreasing 

on (0, d + /3/2) and 

Jo ['f/(t)] =it, t E (0, d + (3 /2) . 

Let uo = limt-+o+ 'f/(t). Then fo(uo) = 0 and uo E Vo, 

If u0 =I- v0 , then we claim that Re(u~ + n + k) =I- 0. This can be proved the same 

way as for z0 above. Then :le > 0 such that 'f/ extends to ( -E, d + (3 /2) satisfying 

Jo ['f/(t)] =it, t E (-c,d + /3/2). 

Consider the compact intervalK2 = [O, d] C (-E, d + /3/2). Applying Proposition 1.4.1 

and Hurwitz' theorem as for wo above, we obtain a subsequence (m>..)f=o C (h)~0 

and a sequence (umJf=o with Um>. -+ uo as,\-+ oo such that\;/)., EN, we have 

But then we must have Um>. = Vm>., ,\ E N, implying 

a contradiction. 

Now we prove that x has a limit at v0 = (n!k)l/kei/k. 

Let cp0 = cp(v0 ) and put 

fo(z) = p(cpo,z), z EC. 

Let (vj)f;:1 C Vo\ { vo} satisfy 

Vj-+ Vo as j-+ 00 
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and Vj EN\ {O}, put Wj = x(vj). As before, we conclude that (wj)~1 is a bounded 

sequence. Therefore, :3w0 E (C and :3 a subsequence (w}e)~0 C (wj)~1 such that 

as £-+oo. 

It follows from the above discussion that w0 E W0 , ::lo:, d > 0 and :3 a smooth 

curve 'Y: (O,d + o:)-+ V0 such that hi and arg(ry) both decrease on (O,d + o:) and we 

have 

fo[ry(t)] =it, t E (0, d + o:) 

lim ry(t) = vo 
t-to+. 

and ry(d) = Wo. · 

Assume that 

as j-+oo. 

Then ::le> 0 and :3 a subsequence (wm.Jr'=o C (wj)~1 such that 

Again, (wm.Jr'=o is a bounded sequence, therefore :3z0 E (C and :3 a subsequence 

lim wµ,, = zo. 
v-too 

The same way as above, we obtain that z0 E W0 , :3(3, c > 0 and :3 a smooth curve 

( : (0, c + (3) -+ Vo such that 1(1 and arg(() both decrease on (0, c + (3) and we have 

fo[((t)] =it, t E (0, c + (3) 

lim ((t) = v0 
t-tO+ 

and ((c) = zo. 
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Clearly, z0 #- w0 , hence 1 #- (. This leads to a contradiction as follows. Since 

f~(v 0 ) = 0 but f~'(v 0 ) #- 0, we have that :3 2 distinct smooth curves in r 0 (!0 ) intersct-

ing at v0 at a right angle. Since cp0 = cp( v0 ) implies 

l.{JoVo = -n2v~ - n 2 + k2 = k(n + k) 

we have that 

That is, f 0 (!0 ) is symmetric about the line L through O and v0 . 

It follows that the tangent lines at v0 of the 2 curves in r 0 (!0 ) intersecting at v0 

are either L1 = Land L2 = {vo + tiv0 : t E IR}, or L 3 = {vo + te-itk : t E IR} and 

L4 = {v0 + teitk : t E IR}. But L1 cannot be a tangent line because L1 <t r 0 (!0 ), hence 

the mentioned symmetry about L1 = L would force 2 distinct curves in r 0 (!0 ) to have 

L 1 as tangent line at v0 , an impossibility. 

Thus, L 3 and L4 must be the tangent lines at v0 . But a smooth curve through 

v0 , tangent to L 3 , must have points arbitrarily close to v0 on either side of v0 that are 

not in V0 , contradicting the existence of the 2 distinct curves I and ( with {,}, { (} c 

fo(fo), satisfying{,},{(} C V0 and v0 E {,},{(}. 

Therefore, we. have that 

wo = lim x(v) 
Wo3v-+vo 

exists. If we define 

x(vo) = wo 

then we have continuity of x at v0 and (2) is proved. 

(3) This easily follows from the fact that Vv0 E V0 , w0 = x(v0 ) and cp0 = cp(v0 ) 

imply that cpo = 'lj;(wo). 
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This concludes the proof of Proposition 2.3.1. 

Section 2.4 Properties of the map x 

In this section, we make the assumption that n, k E N are chosen so that n/2 ~ 

k < n. 

Lemma 2.4.1 Let Vo= (n!k)l/k ei'll"/k, let cpo = cp(vo) and put 

fo(z) = p(cpo, z), z EC. 

Let v = r11kei'll"/k, r E [1, ntk]. Then vk = -r. Let w = x(v). Then 

. 7f 
0 < arg(v) - arg(w) ~ 2n, r E [1, n!k]. 

Proof By definition of x, we have 

Therefore, =IE> 0 such that Vr E (1, 1 + 1:), we have 

. 7f 
0 < arg(v) - arg(w) < 2n, 

Then :3t2 E ( 0, 1) such that 



That is, the system of equations in z E <C 

(2.4.1) 
Re[fo(z)] = 0 

Im[zf~(z)] = 0 

has a solution with z = z(r, t) = r11kei1r/kte-i tn, r E (1, n!k), t E (0, 1). 

Equivalently, the system of equations in (r, t) E ffi.2 

x(r, t) = -n2rtk cos(~:) + n2 - k2 = 0 

y(r, t) = (n2 - k2 - n2r)tn + nkrtk sin(~:) = 0 

has a solution with r E (1, n!k), t E (0, 1). 

Now x{r, t) = 0 implies rtk = C where 

. n2 - k2 
C=. (k)>O. n 2 cos · 2; 
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Therefore, x(r, t) = 0, t > 0, defines t = t(r), r E [1, n!k], as a decreasing function. To 

obtain a contradiction with (2.4.1), it suffices to show that we have 

(2.4.2) . y[r,t(r)] > 0, 

We compute 

. · · (kw) y(r, t) = tn-k [(n2 - k2)tk - n2rtk] + nkrtk sin 2n 

if rtk = C. Put 

where a, b > 0 satisfy 

· (kw) = tn-k [(n2 - k2 )tk - n 2 CJ + nksin 2n 

ak = _n_c 
n+k 

and 

t E [a, b] 
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Then u is an increasing function. To see this, we compute 

u'(t) =n(n-k)tn-k-l[(n+k)tk-nC] > 0, t E (a, b). 

The equation rtk = C, r, t > 0 defines a decreasing function t = t(r), r E [1, n!k]. It 

follows that the function 

q(r) = y[r, t(r)] 

decreases on [1, n;k] since u(t) increases on [a, b], t = t(r) decreases on [1, n;k] and 

t: [1, n;k] -+ [a, b]. 

Therefore, to prove (2.4.2), it is enough to show that 

y[r, t(r)] ~ 0 at ~ 
n+k 

'T"=--. 
n 

But 'T" = n;k implies 

and t = t(r) implies 

k n -k 
t =---

n cos(kw) 
. 2n 

Im[zf'(z)] = -k(n + k)tk [tn-k - sin(~:)] . 

Now we need to show 

(2.4.3) [ l "',/ ( ) n - k . k1r 
· <sm - . 

n cos ( ~~) - 2n 

Let x = k/n. Then x E rt 1) and (2.4.3) is equivalent to 

[ l 1.-1 
1-x "' · 1r 

( , ~ sin(-x), 
cos ~x) 2 

xE(!,l). 

We have cos(1r/4) = v'2/2 and cos(1r/2) = 0, and cos(!x) is concave down 'ix E 

(t 1). It follows that 

v2 ( 1 - X) < COS ( i X) , xE(!,1) 
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hence we need to show 

xE[!,l]. 

Therefore, Lemma 2.4.1 follows from Lemma 2.4.2 below. 

Lemma 2.4.2 Let 

( 
1 ) 1/x 

u(x) = v12 v12 and v(x) = sin( %x), XE [!, 1]. 

Then u(x) :s:; v(x), x E [t 1]. 

Proof We have u(l/2) = v12/2 = v(l/2) and u(l) = 1 = v(l). 

Assume :3x0 E ( !, 1) such that u(x0) > v(x0). 

Since both u(x) and v(x) are positive in[!, 1], we may define 

y(x) = log[u(x)] and z(x) = log[v(x)] , xE[!,1]. 

Then y(l/2) = z(l/2) and y(l) = z(l). Since log is an increasing function, we have 

y(x0) > z(xo). Also, we have 

'( ) _ log 2 
y X - 2x2 and xE[!,l]. 

It follows that y'(l/2) = 2log2 < 1r/2 = z'(l/2). To see this, note that 16 < 

(27/10) 3 < e3 ,thereforelog16 < 3 < 1r. Also,wehavey'(l) = !log2 > 0 = z'(l). 

These together with y(l/2) = z(l/2) and y(l) = z(l) imply that =IE> 0 such that 

y(x) < z(x), and X E (1 - E, 1). 

Then the assumption y(xo) > z(xo) for some xo E ( !, 1) implies that =ix1 , x2 E 

( t 1) with x1 =I= x2 such that y(xj) = z(xj), j = 1, 2. This together with y(l/2) = 

z(l/2) and y(l) = z(l) implies that =it1 , t2, t 3 E (!, 1) with t1 < t2 < t 3 such that 

j = 1, 2, 3. 
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Let y1(x) = 2y'(x)/'rr and z1(x) = 2z'(x)/1r. Then Yi(tj) = z1(tj), j = 1,2,3. It 

follows that 

j = 1, 2, 3. 

Therefore, :ls1, s2 E (!, 1) with s1 # s2 such that 

d d 
- arctan[y1(x)] = -d arctan[z1(x)] 
dx X 

at 

hence :Jr E ( ! , 1) satisfying 

(2.4.4} at X =r. 

Now an easy computation shows that 

(2.4.5) 

d2 
- 2 arctan[y1(x)] = 0 
dx 

X = ± (y12log 2) 1/2 
7rv'3 

d2 
dx2 arctan [ z1 ( x)] = 0 . 

Using log 16 < 3 < 1r.Jf!2 once again, we obtain 

( v12log2) 1/2 < ! 
7rv'3 2 

leading to a contradiction between (2.4.4) and (2.4.5). It follows that the assumption 

u(x0 ) > v(x0 ) for some x 0 E ( !, 1) cannot be true, and we have Lemma 2.4.2. 

Lemma 2.4.3 Let v = v(r), r > 0 be given by 

Then 

where w = x(v). 

k n+k . 
V =---+ir 

n 
with 0 < arg(v) < 1r/k. 

7r 
0 < arg(v) - arg(w) ::; 2n, r > 0 
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Proof As before, put cp = cp( v) and 

f(u) = p(cp,u), u EC. 

Let z = z(r, t) = vte-iz"n, r, t > 0, v = v(r). Then we have 

~Im[zf'(z)] = -k(n + k)tn + tk [ k(n + k) sin(::) + nkrcos ( :: ) ] 

= tk [-k(n+k)tn-k +k(n+k)sin(::) +nkrcos(::)]. 

Fix r > 0 and consider the equation 

Im[zf'(z)] = 0, z = z(r, t), t > 0. 

Clearly, :3!t = t(r), r > 0, satisfying this equation. 

Vr > 0, r near 0, we have that cp = cp( v) satisfies 

dcp_kn(n~k)r( k.) - - I 12k n + + inr · dr v vn 

since 

( 
( 

O -nim
0 

( vk. ) ) 
A(v) = n n - k) . . 

vn k nim(v ) 

written in the basis { v, iv} as in Definition 2.3.1, and 

dv kr k(n+k). 
- = --v- . iv 
dr lvl2k nlvl2k 

Here, we used the identification IR2 =IR+ ilR as usual. We obtain 

kn(n-k)r( k . ) dcp n(n-k)B( )dw ---- n + + inr = - = w -
lvl2kvn dr- wn dr 

0 

(
Re(nwk + n + k) 

_ n(n - k) 
wn 

kim(wk) 

) 
dw 
dr

(n + k)Re(wk + 1) 

where B(w) is written in the basis {w,iw} as in Definition 2.333. 
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It follows from Proposition 2.3.1 and Lemma 2.4.1 that :k: = E(r) > 0, r > 0, such 

that E ---+ 0 as r ---+ 0 and 

Therefore, in the coordinate system {1/wn, i/wn }, we have that 1/vn approaches the 

vector 1/v~ 

= 1/[v(O)t E QIV but 

B(w)w = ~Re(nwk + n + k) + i__nlm(wk) ES 
wn wn , 

where Sis an open sector with S C QI. That is, arg[B(w)w) stays bounded away 

from both O and 1r/2, Yw near wo = x(vo). 

We obtain that 

dcp kn(n - k)r . · . _ 
dr = lvl2kvn (n + k + mr) E LB(w)w' Yr near O. 

It follows that dw/dr EL;, Yr near 0, hence arg(w) is decreasing Yr near 0. 

Therefore, we have 

. . 7r 

0 < arg(v) - arg(w) < - , 
2n 

r > 0, r near 0 

since O < arg(vo) - arg(wo) :S 2: where Vo-: v(O) and wo = x(vo), 

We claim that if lvl is large enough, then 

'iv, w E <C \ {O}, put 

7r 
arg(v) - arg(w) < - . 

2n 

and 



and ( wn ) w=ar . . g n+k k + n-k -k -w -w 2n 2n 

Clearly, VE> 0, 3C > 0 such that Vv, w EC with lvl, lwl > C, we have 

la - e1 < c/2 

l,B - wl < c/2. 

therefore 

IB - wl ::; IO - al + la - ,Bl + l,B - wl < la - ,Bl + E. 

Now x, y E C \ {O} implies 

I arg(x) - arg(y)I = I arg(l/x) - arg(l/y)I 

and w = x(v) implies 

hence a= ,B. 

Fix E > 0 and let C > 0 be as above. Since 

lim lx(v)I = oo 
lvl-400 

it follows that 3D > C such that Vv E Vo with lvl > D, we have lwl > C where 

w = x( v). Therefore, we have 

= 10 - wl < la - ,Bl + E = E 

whenever v E V0 with lvl > D and w = x(v). Here, we used the fact that 

( 1 ) (wn-k) arg vn-k = arg vn-k - arg(wn-k) 
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since n - k ~ k and we have 

Therefore, it is enough to show that 

(2.4.6) I ( n+kwk+n-kii/)1 (n-k)1r arg 2n 2n < __ _ 
wn 2n ' 

w EC\ {O}. 

Clearly, it is enough to check the above inequality when w varies on the unit cir-

cle so wk = eirr c, E lll Then ' ' . 

n+k k n-k k () .k . () - 2-w + - 2-. W = COS CJ' + i- Sill CJ' •. 
n n n 

If the left hand side of (2.4.6) reaches its maximum with lwl = 1, then wk = eirr for 

some c, E (0, 1r /2) and we have 

d arg [ cos( c,) + ik sin(u)] 
dun =l. 

We obtain 

[ - sin(u) + ik cos(u)] kjn 
1 = Im cos(u) + i{sin(u) = (kjn) 2 + [1 - (kjn) 2 ] cos2 (a) 

hence 

k 
cos2 (a) = -

n + k' 
so sin2 (u) = _n_ 

n+k 
and tan(a) = vn/k. 

Note that a E {0,1r/2) implies tan(a) > 0. Let 

( n + k k n - k k) . k . 
T = arg --w + --ii; = arg[Re(eirr) + i-Im(eirr)]. 

2n 2n n 

It follows that tan( T) = ~ tan( c,) = ,Jkln. Therefore, we have. 

tan(u _ T) = tan(a) - tan(T) = tan(a) - tan(T) = ! ( Jn/k _ Jk/n). 
1 + tan(a) tan(T) 2 2 



We obtain 

(n - k) 2 
tan2 (o- - r) = -'----

4nk 
and . 2 tan2{o- - r) (n -k) 2 

sm ( o- - 7 ) = 1 + tan 2 ( o- - T) = n + k 

hence sin( o- - T) = ~:;.!. But clearly, o- - T < 1r /2, therefore 

~(o- - r) < sin(o- - r) 
7f 

as was required. This proves (2.4.6). 

and 
(n - k)1r (n - k)1r 

O"-T< <---
2(n + k) . 2n 

Assume that :3ro > 0 such that vo = v(ro) and wo = x(vo) satisfy 

. 7f 
arg(vo) - arg(wo) > 2n. 

We obtain a contradiction as follows. 

Since Vr > 0 with r either near O or near oo, we have 

7f 
. arg(v) - arg(w) < -2 , . n w = x(v), v = v(r) 
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it follows that :3r1 , r 2 > 0 ;with r 1 i= r2 such that Vj. = v(rj) and Wj = x(vj), j = 1, 2, 

satisfy 

7f 
arg(vj) - arg(wj) = 2n, j = 1,2. 

Putting z = z(r, t) = vteifn, r, t > 0, v = v(r), we obtain that the system of equations 

Re[f(z)] = 0 

Im[zf'(z)] = 0 

have at least 2 distinct solutions, (r1 , ti) =I= (r2 , t 2 ). Here, as before, we put cp = cp(v) 

and 

f.(u) =p(cp,u), u EC. 



Now we compute 

O=Re[f(z)] =-n2rtn+tk[n2rsin(~:)-n(n+k)cos(~:)] +n2 -k2 

0 = ~ Im [z J' ( z) J = tk [-k ( n + k )tn-k + k ( n + k) sin ( ~:) + nkr cos ( ~:)] . 
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Since the second equation clearly defines t = t(r) as an increasing function of r, r 1 -=/-

After eliminating r from these equations, we obtain that 

has at least 2 distinct solutions, t 1 -=/- b Note that t 1 , t 2 < 1 since by construction, 

Jwj = Jx(v)f < Jvj \::Iv E Vo. We may assume that t1 < t2. 

Taking derivatives of both sides, multiplying by t and collecting like terms, we 

get that 

(2.4. 7) 

n(2n -k)t2(n-k) [1- sin(~:)] - n 2tn-k [1-sin(~:)] sin(~:)+ kncos(~:) = O 

has at least 1 solution t = s E JR with t 1 < s < t 2 < 1. But this is a quadratic equation 

in tn-k with discriminant 

(1 - y) 2 [n2y2 - 4k(2n - k)(l + y)] 

where we put y = sin(~;). Then 1/-/2 :Sy< 1 since n/2 :S k < n. But 'ii such values 

of y and k, we have y2 < y and 4k(2n - k)(I + y) > 2n2 , hence 

(1 - y) 2 [n2y2 - 4k(2n - k)(l + y)] < -n2 (1 - y) 2 < O 

contradicting the existence of a solution t = s of (2.4. 7). This proves Lemma 2.4.3. 



76 

Lemma 2.4.4 Consider v = r 1fkei1r/k and w = x(v), r E [1, n,t:k]. Then lwl is 

an increasing function of r. 

Proof \Ir E [1, n!k], v = r 1 fkei 11-fk satisfies Im(vk) = 0. Therefore, using the 

basis { v, iv}, we have 

(
-nr+on+k 

A(v) = n(n - k) 
vn 

where -nr + n + k > 0. Now 

dv _ ! 1/k-1 i1r/k _ _!__ 
dr ....,... k r e - kr v · 

It follows that d arg( v) / dr = 0 and 

dcp = A(v) dv = n(n - k)i(-nr + n + k) _!__. 
dr dr vn kr 

Also, we have 

(

Re(nwk + n + k) 

dcp = B(w) dw = n(n - k) 
dr dr wn 

klm(wk) 

0 

(n + k)Re(wk + 1) 

) 
dw 

dr 

where the entries of B(w) are all positive. Since Lemma 2.4.1 implies O < arg(v) -

arg ( w) ~ 2: , it follows that v E Q IV in the coordinate system { 1 / wn, i / wn}. There-

fore, we have dcp/dr E QIV as well, since dcp/dr II v. Then we must have dcp/dr E 

Li/w = LB(w)iw' But 

n(n:k) (Re(nwk+n+k)) ELiwn 

w klm(wk) 1 

hence lw/ increases as claimed. This proves Lemma 2.4.4. 

Lemma 2.4.5 Consider v = v(r), r > 0 given by vk = _n;k + ir with O < 

arg(v) < 1r/2. Let w = x(v). Then lwl is an increasing function of r. 
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Proof By a similar argument as above, we get that 

dr.p L- - L-
dr E i/wn - b(w)iw 

since O < arg(v) - arg(w) ::; :n. Therefore, lwl increases \fr> 0 in the same way. This 

proves Lemma 2.4.5. 

Lemma 2.4.6 \fv E V0 , w = x(v) satisfies 

7r 
0 < arg(v) - arg(w) < - . 

. 2n 

Proof Assume v0 E V0 and w0 = x(v0 ) satisfy 

7r 
arg(vo) - arg(wo) ~ 2n. 

If the above inequality is strict, then :3t > 1 such that v = tv0 E V0 satisfies 

arg( v) - arg( w) = 2: since the half ray L = { tv : t > O} intersects { o} and v1 E L n { o} 

Therefore, it is enough to consider the case arg( v0 ) - arg( w0 ) = ;n. Then we have 

arg(l/wn) - arg(l/vn) = 1r/2, hence 1/vn lines up with -i/wn. It follows that 1/vn 

lines up with B(w)(-iw). 

Let ((t) = tv, t > 0. Then ('(t) = v and arg[('(t)] = arg(v). Therefore, ('(1) E 

QIV in the coordinate system {1/wn,i/wn}, hence w = w(t) = x[((t)] satisfies that 

arg ( w) is decreasing at t = 1. It follows that 

arg[((t)] - arg(w) 

increases at t = 1. As above, we conclude that :3ti > 1 such that v1 = ((ti) E V0 

satisfies 

arg[((ti)] - arg(w1) = ~ 
2n 
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Repeating the same argument over and over, we obtain a sequence (tj)f=1 C R. 

such that 1 < ti < · .. < tj < ... and 

_lim tjVO = V00 E { 6} 
J-400 

or 

(2.4.8) 

where Wj = x(tjvo), j E N \ {O}. 

Assume that we have the first possibility above. 

_lim tj = oo 
3--+oo 

j EN\ {O} 

Then the same considerations at v00 show that arg(tv0 ) - arg(w) increases at t = 

t 00 where t 00 vo = v00 and w = x(tvo). But we have a sequence (tjvo)f=1 converging to 

v00 satisfying (2.4.8). Therefore, arg(tvo) - arg(w), w = x(tvo), cannot be increasing at 

t = t00 , a contradiction. 

In the other case, we get a contradiction because 

7r 
arg(v) - arg(w) < 2n 

if !vi -+ oo and w = x(v) as we have seen, yet we obtained a sequence (vj)f=1 such 

that lvjl = tjlvol-+ oo and Wj = x(vj), j E N\{O}, satisfies (2.4.8). 

This proves Lemma 2.4.6. 

Lemma 2.4.7 Let 

V = {z E (C: Re[g(z)] > O} \ {reii 71"/k: 1 :Sr :S (n!k) 11\ j = 1, ... , 2k} 

where g(z) = nzk + n + k, z EC, as before. Then we have the following. 

(1) X extends continuously to V as a global real-analytic diffeomorphism with 

x(O) = 0. 



(2) Let v0 E V \ {O}, let <po = cp(vo) and put 

fo(z) =p(cpo,z), z EC. 

If w0 = x(v0 ) satisfies lwol < 1, then 3a,(3 E JR such that the open arc 

Ao = { iw : a < w < /3} 

satisfies wo/lwol E Ao and 

Re[fo(z)] <0, z E Ao. 

Also, we have 

3n . 3n -- < arg(vo) - arg(z) < - , 
2n 2n 

z E Ao. 

(3) b.. C x(V) where b.. = {z E C : izl < 1 }. 

Proof (1) and (2) Let v0 E V0 , let w0 = x(v0 and put 

fo(z) = p(cpo,z),. z EC 

where 'Po= cp(vo)- Assume lwol < 1. Then by Section 2.1, 3a,(3 E JR with 

such that the open arc 

satisfies wo / lwo I E Ao and 

. n 
0</3-a<

n 

Ao = { eiw : a < w < /3} 

Re[fo(z)] < 0, z E Ao. 
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it follows that we have 

7f 
0 < arg{vo) - arg{wo) < 2n 

31r 31r -- < arg(vo) - arg(z) < - , 
2n 2n 

Let Vi be the reflection of Vo about the line 

Fix v0 = r 11kei1r/kei8 E V0 and let <po= c.p(vo)- Then 

We obtain 

= p(c.po,vou), u E <C. 
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z E Ao. 

It follows that whenever v0 E V0 and v1 E Vi are reflections of each other about 

L1 and 'Pi = c.p( Vj), j = 0, 1, then 

z E <C, j = 0, 1 
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satisfy 

whenever u0 and u1 are reflections of each other about L1 . Therefore, for such corre-

sponding Uj E Vj, j = 0, 1, we have 

Re[fo(uo)] = Re[fi(u1)]. 

Let w0 = x(v0 ), let w1 be the reflection of w0 about L1 and define 

Assume lwo I = lw1 I < 1. Then the corresponding arcs Ao and its reflection A1 about 

3w · 3w -- < arg(v ·) - arg(z) < - , 
2n 3 2n 

z E Aj , j = 0, 1 . 

Let£ E {1, ... ,2k} and assume that we have defined V0 , ... , Ve-1 and extended x 

to V0 U · · · U At-l as above. Put 

Lt= {til1r/k : t E IR.} 

and let Ve be the reflection of 17t_1 about Li. Let Vj E Vj, j=f-1,£, and assume that 

vt-1 and vi are reflections of each other about Li. Let W£-l = x(vi-i), let Wt be the 

reflection of Wt-I about Lt and define 

Assume lw.e-11 = lw.el < 1. Then the corresponding arcs A.e-i and its reflection A.e 

3w 3w 
= -2 < arg(vj) - arg(z) < - , 

n · 2n z E Aj, j = £ - 1, £. 
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Continuing inductively in this fashion, we obtain (1) and (2) since clearly, V2k 

and V0 are again reflections of each other about the real line Lo = IR, so xiv2 k and xlvo 

will match up in the same way. Note that we need to define 

x(z) = z, z E {reii 71-/k : 0 ~ r < 1, j = 1, ... , 2k} 

to get the desired extension of x to all of V. 

(3) This clearly follows from Lemma 2.4.4 and Lemma 2.4.5. 

This concludes the proof of Lemma 2.4.7. 



CONCLUSION 

Fix £, m E N with m/2 ~ R, < m and let 

where z = lzlei9 E C\{O}. Then P2m(z) is a subharmonic but not harmonic real-valued 

homogeneous polynomial in z and z of degree 2m. 

Consider the domain 

0 = {(z,w) E c2: Re(w2m) +0P2m(z) +R~(z2m)} 

where o > 0 is chosen so that the region 

{z E (C: 8P2m(z) +Re(z2m)} 

is the union of 2m disjoint open sectors, as in [BF). 

Based on the preceding analysis of the Riemann surface 'R, associated with the 

above domain n C C2 , we now prove the following main result of this paper. 

Theorem Let 

O' = { (z', w') E c2 : Re( w') + 8IP'2m (z') + Re [ (z')2m]} . 

Then O E an' is of finite type 2m and :3 a function H continuous on 0' and holomor

phic on a neighborhood U' of 01 \ {O} with O ~ U' such that His a peak function for 

U' at OE au'. Also, H = exp(-G) where G is Holder 1/(6m)=l/(3type) near OE (C2 . 
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Proof Let (z, w) E n. Then :3[( : 77] E IP' such that 

(z, w) E On L[c:71] 

where 

Assume z i- 0. Then we may assume that ( = 1, that is, we have 

Put 

.W='f/Z. 

N(77) 

{u E(C: (u,'T}u) E 0} = LJ S3 
j=l 

where S1 , ... , SN(7J) C (C are disjoint open sectors. Then :l!k E {l, ... , N('f/)} such that 

Let Wk E I:::,,, = { u E (C : juj < 1} be the corresponding point of R as given in Sec-

tion 2.1. Then :l!vk E (C \ {O} satisfying 

where x is the map associated with the polynomial 

with~= 'T}2m + 1, as defined in Definition 2.4.3. 

Define 

Then by construction, we have 

z 
g(z,w) = - . 

Vk 

3~ 3~ 
- 4m < arg(g(z,w)] < 4m · 

t, z E (C 



Next, assume that (0, w0 ) En and let 

satisfy Zj-:/=- 0, j EN\ {O}, and (zj,wj)-+ (O,w0 ) as j-+ oo. Put 

w· 
'T/ . - -1. 

J - ' z· J 

j EN\ {O} 

N(v) 

{u E cc: (U,'f/jU) En}= u Sv('T/j), j EN\ {O} 
v=l 

as above, and \f j E N \ {O}, let kj E {1, ... , N(r]j)} satisfy 

Then we have 

But we have 

obtain that 

as j-+oo. 

Define 

Now (0, w0 ) E n implies that 

hence we have 

Wo 
g(O, wo) = - 4m2o. 

7i [ ] 7i - 4m < arg g(O,wo) < 4m. 
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We obtain the function g(z, w), (z, w) E 0, such that V[( : 77] E IP', g is locally 

linear on On L[(:'IJ]· Therefore, g E H(O) and g clearly extends continuously to O with 

g(O, 0) = O 

and g extends to a function holomorphic on an open neighborhood U of O \ {O} with 

0 (/:. U such that V[( : 77] E IP', the extended g is locally linear on Un L[(:'IJ), satisfying 

3n 3n 
- 4m < arg[g(z,w)] < 4m' (z,w) EU. 

We define a peak function on O' a:s follows. Let (z', w') E O' satisfy w' i= 0. Then 

put 

F(z',w') = IT g(z',w) 
w 2 m,=w' 

as in [BF]. Let w = w1 , ... , w2m be the distinct solutions to the equation 

We obtain 

hence 

Also, put 

w2m -w' - , w E CC. 

g(z',w1) = · · · = g(z1 ,w2m) 

F(z', w') = [g(z1, w1)]2m. 

F(z',O) = [g(z',0)] 2m, (z', 0) E O'. 

Then \f(z', w') E O', we clearly have 

3n 3n - 2 < arg[F(z',w')] < 2 . 
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Clearly, F extends to a continuous function on 0' and extends to a holomorphic func-

tion on an open neighborhood U' of 0' \ {O} with O ~ U', so that we have 

3~ 3~ - 2 < arg [ F (z', w')] < 2 , (z',w') EU'. 

Finally, define 

G(z', w') = [ F(z', w') J 113 , (z', w') E U' 

H(z',w') = exp[-G(z',w')], (z',w') E O' 

with G(O, 0) = 0, hence H(O, 0) = 1. 

Then H is the required peak function since G = F 113 and F is easily seen to be 

Holder 1/(2m)=l/type near OE (['.2 as in [BF). 
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