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CHAPTER I 

INTRODUCTION 

1.1 Overview of fault diagnosis and accommodation 

Modern engineering technology is leading to increasingly complex systems with 

ever more demanding performance criteria. However, time-critical control recovery due 

to catastrophic failures is often left unsolved. The ultimate pursuit of a higher degree of 

autonomous behavior that provides constant health monitoring and fault tolerance for a 

complex dynamic system with minimum human intervention has high priority in order to 

achieve a successful control mission. As dynamic systems become more complex, 

experience rapidly changing environments, and encounter a greater variety of unexpected 

failures, the system is no longer reliable to perform properly because of the deviations of 

the system dynamics. Those deviations can be characterized by drastic changes of the 

system parameters or, more seriously, the inherent dynamical structure of the system. The 

system stability becomes a critical issue after those dramatic dynamic changes. In many 

safety-critical systems such as aircrafts or nuclear plants, system stability under failure 

situations seriously impacts human survivability. 

Urging by these growing demands in system safety and reliability, extensive 

research activities have been focusing on developing Fault Diagnosis and 
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Accommodation (FDA) or so-called Fault Tolerant Control (FTC) methodology to 

maintain the system stability and to avoid the loss of human life under various failure 

scenarios during the past few decades. The major objective of FDA is to detect, diagnose, 

and accommodate any system failures. Strictly speaking, the term, failure, usually refers 

to a complete breakdown and the term, fault, usually suggests that the situations are 

tolerable. Following the common terminology used in the FDA research community [l], 

the terms failure and fault will be used as synonyms throughout this dissertation. 

Failure situations can be typically characterized into three different categories, 

sensor failures, actuator failures, and component failures. Traditional FDA approaches 

are based upon the so-called physical or hardware redundancy, where redundant 

hardware components or systems are used for backup. In the event of a failure or 

malfunction, a backup system is switched. Due to the increasing complexity in modem 

hardware systems and the extra space and cost needed for the redundancies, this approach 

is both realistically and economically infeasible and unattractive. The major attention has 

moved toward the so-called model-based analytical redundancy where powerful 

computing devices and a mathematical model of the system are used to create the 

necessary redundancy to monitor and analyze the system behavior. However, because of 

the difficulty in obtaining an analytical model of a complex system and the inherent 

complexity of the system dynamics under failure situations, most of the FDA research 

works are aimed especially either at the linear system [1,3-8,ll-'21,89-92,104-108] or a 

certain type of nonlinear systems under simple failure situations [2,9-10,22-26,63,85-86], 

where the faults are usually modeled as the deviation of the system parameters, or 

additive disturbances, which limits the possible failure scenarios and restricts the 
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usefulness of these techniques. Nevertheless, for a dynamic system under totally 

unanticipated catastrophic system failures, it is not a reasonable approach to assume 

certain types of dynamic change caused by those unexpected failures. A truly 

autonomous FDA system is the one that can detect the failures, identify them, and 

perform effective control law reconfiguration to accommodate the tolerable failures in 

on-line situation without human intervention. The representative fault diagnosis (FD) and 

fault accommodation (FA) techniques reported in literatures are systematically shown in 

Figures 1.1 and 1.2, respectively. 

FD (Fault Diagnosis) approaches 

l 
Limit 

checking 

Model Free methods 

I I I l 
Special Multiple Frequency Expert 
sensors sensors analysis system 

\/ 
Hardware redundancy approaches 

[l] 

Know ledge-based 
approach 

l 
Combines analytical 

redundancy 
with heuristic 

knowledge 

[8] 

Model-based methods 

Replaced the redundancy 
by mathematical model and 
powerful computing devices 

! 
Residual generation, 

statistical testing, 
and logical analysis 

(Also referred as model-based 
analytical redundancy) 

[1-10,81-86], .... 
Interactive Multiple-Model (IMM) 

[90, 106-107] 

Figure 1.1 Typical FD approaches 

With the inherent nonlinear features and self-adaptation capability, modem 

intelligent techniques such as neural network, fuzzy logic, and evolutionary algorithms 

have received extensive interests from various academic and industrial communities 

[ 57, 71, 73-74,96-103]. The synergistic combination of these intelligent techniques and 

modem control technologies for the more general and sophisticated fault diagnosis and 
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accommodation scheme to achieve the successful autonomous control mission has 

become a challenging research discipline. 

FA (Fault Accommodation) techniques 

! 
Hardware redundancy 

! 
Switching to 

the backup system 
or component 

Parameter 

I 

i 
Linear system 

+ ! + 
LQC Additive State-space Pseudo-inverse 

method (model­
following 
methods) 
[11-12] 

identification [16] compensation pole 
reconfigurable for sensor and placement 

control actuator failures [18-19] 
[13-14] [15,17] · EA technique 
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The general SISO dynamic system can be represented by Equation (1.1) [37], 

x(k + 1) = f(x(k),u(k)) 

y(k) = h(x(k)) 
(1.1) 

where x(k)E 9\\y(k)E 9\, and u(k)E 9t denote the system state variables, output, and 

input, respectively, and f: 91n x9t-? 9tn ,h: 9tn -? 9t. The probl~ms of control related 

to system (1.1) can be divided into the following three cases [37]: 

1). f and h are known, and the state variables x(k) are accessible. 

2). f and h are unknown, but the state variables x(k) are accessible. 
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3). f and h are unknown, and only the input u(k) and system output y(k) are 

available. 

In the case 1), the system is completely known. Traditional control techniques can be 

applied directly to analyze the system and, based upon the realization of the system 

characteristics, the appropriate controllers for different control objectives can be 

developed. Case 2) corresponds to an adaptive control problem in which both f and h 

have to be estimated. However, the fact that the state variables, x(k) , are measurable 

makes the control problem relatively simpler than that in case 3) where both system 

identification and control have to be carried out using the only information available, the 

input-output data. Nevertheless, due to the complexity of the system dynamics under 

various failure scenarios, the case 3) is the major problem we are most interested in. 

Observing the system (1.1) closely, it is easy to show that the system output, y(k + 1), is 

actually a function of past outputs and inputs [37], 

[y(k), y(k-1), .. . , y(k- n + 1),u(k),u(k-1), ... ,u(k-n + l)]. For the remaining of this 

dissertation, the least available system information will be assumed and the main focus 

will be placed in the general case 3). In other words, only the system input-output 

measurements will be assumed available for the on-line fault tolerant control problems of 

our interest. 

Consider a general MIMO dynamic system that can be described by Equation 

(1.2), 

Y1 (k + d) = !1 CYi, Yz,··· Ym ,Ui,Uz,• .. un), 

Yi = { y ;( k + d -1), y ;( k + d - 2), ... , y ;( k + d - p J}, 
uj = {u /k),u/k-1), ... u/k-q)}, 

(1.2) 

P;, qj E 9t+, i = 1, 2, ... , m., j = 1, 2, ... , n., and l = 1, 2, ... , m., 
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m n 

where / 1 : 9tP x9tQ 1---7 9t, with P = L,Pi, Q = I,qj is the mathematical realization of 
i=l j=l 

the system dynamics for the l th output. y1 , Y;, u j E 9t are the l th and i th system outputs 

and j th input, respectively. d is the relative degree of the system (the smallest delay 

from the input signal to the system output). In general, / 1 may not be readily available all 

the time in mathematical format due to the difficulty of modeling a complex dynamic 

system. However, it is possible to develop a realization to describe the system behavior 

with a known bounded uncertainty within the desired working region of the system using 

all the existing modeling techniques, provided enough resource and sufficient time for the 

development of the realization [29,34,37-39], as shown in Equation (1.3). These 

techniques may include the modern intelligent technology such as artificial neural 

. networks or fuzzy-nets. 

" 
yi(k + d) = !1 Gi, Y2, ... , Ym,ui,lli, ... un) + 17/y,u), (1.3) 

where 11111 (y,u)ll 2 ::;; '50 , \/(y,u) c (Y, U), (Y, U) represents the desired working regime, 

and '50 E 9t is a known constant. Thus, ]1 , the realization of the real system with a 

known bounded uncertainty within the desired working region of the system, will be 

either a mathematical, numerical, or a combined realization and it is assumed that this 

realization is developed off-line and available. Equation (1.2) denotes a healthy system 

under the fault-free situation and Equation (1.3) is the corresponding nominal model. 

Under different component failures, the system dynamics is changed and represented by 

the following equation: 
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r 

+ 2JJ:(k-T;)F;(Yr,Y2,···Ym,U1'U2,···un,k), (1.4) 
v=l 

m n 

where F; (·): 9tP x9\Q x9t+ ~ 9t with P = L pi , Q = Lqj represents the dynamic 
i=l j=l 

change (a general time-varying function depends upon past system outputs, past control 

inputs, and the current control input) caused by the unknown and possibly unanticipated 

failure mode v for the l th output and P: (·) denotes the corresponding time profile. 

F; (,), P: (·) , and T; are assumed unknown due to the possible occurrence of 

unanticipated failures. r is the number of system failures. All the cases in which r > 1 

are referred to as multiple-failure cases. Two typical faults, incipient faults and abrupt 

faults, are considered to be involved on-line. Their characteristics can be described by the 

time varying constant gain, P: (·) , shown in Figure 1.3. 

Tz 
V k 

P: (k -T;) = (1- e-at<k-T;) )U (k -T;) 

a). Incipient fault b ). Abrupt fault 
Figure 1.3 Time profiles of the incipient and abrupt faults 

a~ E 9t+ is an unknown constant which defines the time profile of the incipient failure 

mode v and U (k) denotes the unit step function. Abrupt failures are used to represent 

the sudden change of the system dynamics due to catastrophic malfunction or failure of 
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the system component and the incipient failures are used to describe the time-varying 

effect of the system component-aging problem. The control objective is to generate 

appropriate control signals to stabilize the system and, possibly, drive the system outputs 

back to the desired trajectories, y dt (k + d) E 9t, l = 1, 2, ... , m., in on-line situations with 

the presence of the abrupt and/or incipient faults. 

1.3 Motivation and objective of study 

Clearly, observing Equation (1.4), it is easy to find that the contemporary control 

theories and technology are unable to solve the control problem with the presence of the 

unknown failure dynamics and their corresponding time-varying profiles in on-line 

situations. Under the general structure of system dynamics and various possible failure 

scenarios, existing FDA approaches are inadequate to achieve the successful control 

mission. From the on-line control point of view, it is, at least now, impossible to perform 

exact fault detection and identification right after the occurrence of failures. Conflicting 

requirements exist between the amount of time that the fault detection scheme takes and 

the information that the scheme can provide [19]. In on-line situations, the interesting and 

important question becomes how to properly control the system behavior in time to 

prevent the failure from causing more serious lost, if the system under failures is still 

controllable at that time. Afterwards, how to possibly recover the system performance 

based upon only imprecise or insufficient information while the system dynamics may 

suddenly change dramatically or continuously change with time due to the failures. The 

development of a more sophisticated intelligent on-line control methodology to identify 
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the failure dynamics and perform control law adjustments or re-configuration with the 

least human intervention is in critical need. 

Con tro 11 ab i Ii ty 

U n cont rollabl e 

______ _t _______ _ 

Nominal 
Condition 

N om in al 
working region 

Physically available working region 

System 
saturation 

Figure 1.4 FTC problem region of interest 

System status 

Of course, many system failure situations are catastrophic and uncontrollable. For 

example, if the sensor loop malfunctions such that all the readings from the sensor are 

lost or meaningless, without knowing the true failure, the only way to possibly maintain 

the system safety is by having human interference such as shut-down of the system, 

failure diagnosis, and replacement of the faulty parts. If the failures actually break down 

the control input to the system, there is no way to perform any control recovery. Figure 

1.4 shows the interest problem region of this research, the curve-line area, where the 

system behavior under failures are out of the nominal working area, but still controllable 

and within the physically available working region. The major FTC objective is to 

prevent the faulty system from moving into the saturation region and possibly drive it 

back to the nominal condition, which brings out the following important questions: 

1. Are there any conditions or constraints under which the system on-line safety and 

performance can be guaranteed? 
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2. If the answer of the first question is positive, how do we quantify those conditions 

or constraints? 

3. If the systems under failures are still controllable and the faults are still tolerable, 

what is the detail systematic procedure to effectively and efficiently detect the 

failures, identify the change of the system dynamics, reconfigure or adjust the 

control actions to accommodate the failures, maintain the system on-line safety, 

and possibly recover the system performance by using only the insufficient 

information in the on-line situation without human intervention? 

This research work is dedicated to the investigation of on-line fault tolerant 

control problems for unanticipated catastrophic system failures and to provide answers to 

the questions listed above. The major interest will focus on system component failures 

such that the system dynamics under these failures can be represented by Equation (1.4 ). 

A general intelligent on-line fault accommodation control technique and framework are 

proposed to deal with the on-line fault detection and control law reconfiguration 

problems for proper failure accommodations. Through a theoretical analysis of the on­

line fault tolerant control problems based upon discrete-time Lyapunov stability theory, 

the necessary and sufficient conditions to guarantee the system on-line stability and 

survivability have been established. Incorporating a cost-effective failure detection and a 

multiple-model based failure diagnosis process with the developed fault accommodation 

framework, a more complete architecture of the multiple-model based fault diagnosis and 

accommodation is also presented to efficiently handle the false alarms, the 

accommodation of the anticipated failures, and to reduce the unnecessary control effort 

and computational complexity in on-line situations. 
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This dissertation is organized as follows. Chapter 2 provides a more detail 

overview of the traditional and existing FDA approaches and the modem intelligent 

techniques related to the control issues. A theoretical foundation and analysis of the on­

line fault tolerant control problems is established in Chapter 3 together with the proposed 

intelligent on-line fault accommodation control methodology. In Chapter 4, extensive on­

line numerical simulations are presented to evaluate and validate the proposed 

methodology. Real-time hardware experiments are presented in Chapter 5 to substantiate 

the effectiveness of the proposed fault accommodation technique and to demonstrate the 

possibility of successful fault tolerance in real applications. A complete architecture of 

the multiple-model based fault diagnosis and accommodation framework is presented in 

Chapter 6 together with on-line simulation study and discussions. The conclusions and 

recommended future research work are given in Chapter 7. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Fault diagnosis 

Fault diagnosis typically consists of three different tasks, failure detection, failure 

isolation, and failure identification. Failure detection usually refers to the process of 

detecting system abnormal behavior due to faults, failure isolation is the task of 

determining the exact location of. the failure, and failure identification refers to the. 

determination of the size of the failure [l]. 

According to one early extensive survey [l], the approaches to failure detection 

and isolation fall into two major categories, model-free methods and model-based 

methods. The representative model-free approaches include the following methods: 

1. Limit checking: different system measurements are compared to their corresponding 

pre-specified limits (thresholds). Exceeding the corresponding limit indicates that a 

failure occurs in the corresponding location .. 

2. Installation of special sensors: using special sensors to monitor hardware limits (e.g., 

limit temperature or pressure) or measure some special variables (e.g., sound, 

vibration, etc.). 

3. Installation of multiple sensors: this method is aimed especially at detecting and 

isolating sensor failures. Measurements of the same variable from different sensors 
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are compared to decide the faulty one. The considered correct reading can be decided 

by a majority vote. 

4. Frequency analysis: some plant measurements have a typical frequency spectrum 

under normal operating conditions. Certain types of failure may have a characteristic 

signature in the spectrum that can be used for both failure detection and isolation. 

5. Expert system approach: an expert system consisting of a rule database in the form of 

"IF symptoml AND symptom2 THEN conclusion" is used for failure detection and 

isolation. 

Approaches 2 and 3 are also referred to as physical redundancy or hardware 

redundancy. The additional cost, space, and complexity of incorporating redundant 

hardware make those approaches unattractive [2]. With the availability of the inexpensive 

and powerful microprocessor, model-based methods or so-called model-based analytical 

redundancy have dominated the FDA research activities and received substantial 

attention in the past two decades [1-26,63,75,81-86]. In the analytical redundancy 

approach, a mathematical model of the . physical system is used for monitoring and 

comparison. Obviously, the major reason this approach is so prevalent is the fact that the 

information processing techniques, which use powerful computing devices and memory 

systems, can also be used to create the necessary redundancy without the need of the 

hardware instrumentation in the system [2]. 

Unlike the hardware redundancy, sensory measurements are now being compared 

with the analytically obtained values of the respective variable through the mathematical 

model. The resulting differences are so-called residuals [l]. In the ideal situation, the 

residuals will be zeros in the fault-free system and any deviation will be interpreted as an 
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indication of faults. But this is rarely true in practice with the presences of measurement 

noises and modeling errors. The deviation now can be the combinational results of 

noises, modeling errors, and faults. Naturally, with the presence of significant noises, 

statistical analysis of the residuals becomes a necessary and reasonable procedure to 

generate a logical pattern, called signature of the failure, for the proper fault detection and 

isolation. Many research activities have also been dedicated to investigate a proper 

residual generation to facilitate the fault isolation process [81-84,87-89]. Generally 

speaking, residual generation, statistical testing, and logical analysis are usually 

combined as the three stages of the fault detection and isolation procedure [3]. 

Three typical properties of the failure isolation procedure, isolability, sensitivity, 

and robustness significantly affect the usefulness of the procedure. Isolability is the 

ability of the procedure to distinguish specific failures, sensitivity is a measure 

characterizing the size of the faults that can be isolated with the presences of noises and 

disturbances, and robustness is the ability to isolate the faults in the presence of modeling 

uncertainties or errors [l]. Apparently, a good fault diagnosis scheme should be robust 

with respect to the modeling errors and sensitive to the failures. Unfortunately, the 

presences of noises, disturbances, and modeling uncertainties will obviously obscure the 

effect of faults in the residuals and possibly cause miss detection of failures and false 

alarm situations. The trade-off problems between the robustness and sensitivity of the 

fault diagnosis scheme have attracted many research efforts [4-6]. 

Other than the hardware redundancy and model-based analytical redundancy, in 

the cases where only the poor or imprecise analytical models are available, an approach 

called the knowledge-based method is suggested by [8]. This approach combines both 
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analytical and heuristic knowledge to form a knowledge base. Such knowledge may 

include the degree of component aging, history of fault statistics, etc. The core of the 

knowledge-based approach is an on-line expert system that combines the analytical 

model-based redundancy methods for the fault detection and isolation with the method of 

fault diagnosis by evaluation of heuristic knowledge about the process through an 

inference engine [8]. 

Due to the inherent complexity of nonlinear systems, most of model-based 

analytical redundancy fault diagnosis studies deal with the linear system that is subject to 

simple additive or multiplicative faults. A basic framework of the fault diagnosis and 

accommodation architecture for more general systems and failure situations is suggested 

by [2,9,10,23-25] and shown in Figure 2.1. 
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system 

Selection Residual 
logic . generation 
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Anticipated Unanticipated 
fault fault 

response response 

y 

Figure 2.1 Description of the fault diagnosis and accommodation (FDA) architecture 
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The primary function of the estimated model is to track the actual system 

dynamics. In order to detect any off-nominal system behavior, the estimated model is 

also compared with the nominal model to generate the residuals, which serve as a 

measure of the deviation between the estimated model and the nominal plant. Based on 

the residual vector and its trending, a decision can be made for whether a system failure 

is emerging or not through a fault diagnosis mechanism. Once a failure is detected, the 

characteristics of the failure are compared with the signatures of any known failure 

modes to decide whether the fault is. anticipated (known) or unexpected by using a post­

failure model bank which is updated periodically to incorporate the signatures of any new 

failures. 

The estimated model combines the knowledge of the nominal model and an on­

line approximator to keep tracking the mathematical representation of the actual system 

dynamics. The on-line approximator is used not only for the failure detection, but also for 

estimation of the size of the failures (failure identification). During the nominal situation 

which corresponds to the fault-free condition, the on-line approximator will not be 

identically zero because of the existence of the modeling uncertainty and noises. 

However, once a fault occurs, the output of the approximator should significantly deviate 

from zero, which will be considered as a failure situation. The research work [85-86] 

discusses the corresponding fault isolability condition if there is only one failure 

happened. This approach is inspired by the inherent adaptive features of neural networks 

to provide a powerful learning scheme for automated fault diagnosis [2]. It does require 

substantial computations to implement since the parameters of the nonlinear adaptive 

observers have to be adjusted on-line. Thus, the successful isolation mission can be 
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achieved only when all the assumptions and conditions are met. In other words, more 

practical and complicated FDD (Fault Detection and Diagnosis) problems such as 

detection and diagnosis of possible multiple failures still remain to be solved. 

2.2 Fault accommodation 

The ultimate objective of fault diagnosis is to properly accommodate the failures 

and maintain the system safety and reliability with the least human interference. In the 

hardware redundancy approach, fault accommodation process is completed simply by 

switching to the backup system or components. Typical fault accommodation schemes 

using model-based analytical redundancy can be divided into the following approaches: 

1. If the faults are known as the parameter variation of a linear system, the so-called 

pseudo-inverse method is used to adjust the feedback gains for proper 

accommodation of the failures. It has been shown that this method is a special case of 

classical linear model-following control [11,12]. 

2. The faulty effects appear as the changes in model parameters, which can be identified 

on-line. The control law is reconfigured automatically based upon the identified 

parameters [ 13, 14]. 

3. Linear-quadratic control methodology is used and the reconfiguration is achieved by 

choosing new values of the weighting matrices in the performance index to offset the 

effect of faults [ 16]. 

4. Compensation via additive input design for sensor failures and actuator failures 

[15,17]. 
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5. If the system subject to faults can be modeled as a linear time invariant model with 

changed parameters, state-space based pole placement together with the system 

identification process or eigenstructure assignment can be used for the reconfigurable 

control [18-19,104-105]. 

Similar to, but different from adaptation, a learning control system concept is suggested 

by [20]. A learning system is the one that has ability to improve its performance in the 

future, based upon the information it learned from the past. According to [20], the goal of 

adaptation is to update behavior through time while the learning control system correlates 

past experiences with past situations and can recall and exploit those experiences. 

Possibly inspired by the advancing intelligent neural and fuzzy logic techniques, the 

learning system concept possesses promising potential in dealing with the ultimate 

autonomous and fault tolerant control problems. However, so far, the effort has only been 

focused on the linear control system. 

Similar to fault diagnosis research work, traditional fault accommodation schemes 

are mainly based upon the powerful and well-developed linear design methodology to 

obtain the desired objectives. However, this is rarely the case in practice since all the 

systems are inherently nonlinear and the system dynamics under failure situations are 

more likely to be nonlinear and time varying. Although the control law reconfigurations 

are relatively easy to realize and solve under the assumption of linear situations, it 

actually limits the possible failure conditions and restricts the usefulness in practical 

situations. A series of research works that is devoted to more general failure cases is 

reported in [2,9,22] and also shown in Figure 2.1. 
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The failures are divided into two different groups, the anticipated faults and the 

unanticipated faults. The formers represent those well-known faults and the faults which 

happened in the past whose characteristics and effects are well characterized such that 

their corresponding signatures can be stored in the post failure-model bank for proper 

failure isolation and identification. The appropriate corresponding control actions can 

then be constructed based upon the well-understood knowledge of the failure dynamics. 

The latter refer to those failure situations whose signatures cannot be identified or 

recognized from the existing failure features. In the cases of the unanticipated faults, an 

on-line identification algorithm for the failure dynamics with control law reconfiguration 

strategy is required to properly control the system. The basic idea is outlined as follows: 

Consider the following dynamic system with modeling uncertainty and unknown 

failure dynamics: 

x = ((x) + G(x)[u + 17(x,t) + /J;(t -1'; )f;(x)] (2.1) 

where ( and G represent the nominal plant dynamics, i.e. (+Gu , 17 is the modeling 

uncertainty, and /J;, /; represent the failure mode dynamics. The fault function, /; , and 

the modeling uncertainty, 1], are assumed to be independent of u and they are in the 

range space of G. This is known as a matching condition [27]. Assume that no fault 

occurs in the dynamic system during a specified initial time period of operation. Then, 

any differences between the system dynamics and its nominal model are due to modeling 

uncertainties. Therefore, neural networks can be used to learn the modeling uncertainties. 

It is assumed that, after the certain period of time, the differences belong to the failures. 

Neural networks are used to approximate the fault dynamics. The authors in [22] 

suggested that two neural networks can be used, one for improving the accuracy of the 
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nominal model and one for fault monitoring. The control strategy is simply explained as 

follows. 

Supposed that u = a(x) is the desired controller for the nominal model, which 

causes the nominal system to exhibit the desired behavior. In the event of system failures, 

I A 

a new augmented control law, u = a(x) + (f)(x,O), is required to accommodate the 

failure. (f)(x, 8), corrective control law, is selected and adjusted based on available 

information ( 8 represents the parameters of the neural network). Obviously, in the above 

case, (fl can be chosen as -fi-x where fj and z are the NN approximators for 

modeling uncertainty and failure mode dynamics, respectively. Once the approximation 

reaches a satisfactory result, the new control law should drive the fault system to the 

desired trajectory. The idea of using neural networks to approximate the unknown failure 

mode dynamics on-line makes the control methodology more flexible to accommodate 

the system failures. 

However, observing Equation (2.1) closely, we can find that the unknown failure 

dynamics is modeled as an unknown function of past state variables only. In the cases of 

more general failure situations whose dynamics depends not only on the past state 

variables, but also on the past and current system inputs (control input), the control law 

reconstruction is substantially more difficult. As the authors pointed out in [2], one of the 

nonlinear control techniques available for such problems is that of feedback linearization 

whose idea is to transform the nonlinear system into a linear one through a change of 

coordinates and nonlinear feedback. Only when the feedback linearization is achievable, 

can the powerful linear control design techniques be used to attain the desired control 

objective. However, a system is feedback linearizable only under certain conditions [28]. 
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Modern intelligent techniques involving artificial neural networks and fuzzy logic 

have made significant progress and attracted a great deal of attention from various 

research fields during the past decade. With the capability of self-optimization and on­

line adaptation, these techniques have been successfully demonstrated and used in many 

real applications including pattern recognition, classification, automatic control, 

manufacturing, medical, telecommunications, banking, speech, oil and gas, etc [57]. It is 

a well-known fact that the traditional control design methods require mathematical 

description of the system to realize the system dynamics. Based upon those system 

features, the appropriate control law can then be designed to regulate the system 

behavior. However, it is substantially difficult to obtain a good mathematical model as 

the system gets larger, more complex, and/or subject to unanticipated faults. The artificial 

neural network has been proven to have the ability to approximate any piecewise 

continuous function given sufficient neurons in the hidden layer [56,57]. Naturally, it 

becomes a promising candidate to relax the complicated and difficult mathematical 

modeling process. Many intensive research activities have been devoted to explore the 

possibilities of using these techniques in dealing with the control problems involving 

unknown nonlinear systems. These techniques can .be typically divided into three 

different approaches, namely indirect adaptive. control, direct adaptive control, and 

multiple model techniques. 

2.3 Indirect adaptive control 

The idea of indirect adaptive control is simply shown in Figure 2.2. In the cases of 

unknown plant dynamics, an identification model is used to approximate the real plant 
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dynamics by adjusting its parameters to reduce the error between its output and the output 

of the real plant. Once the identification process completes, the controller design is based 

upon the realization of the identification model toward the real system. 

Narendra first showed the feasibility of using neural networks to identify and 

control an unknown nonlinear dynamic system in 1990 [29]. His idea is clearly shown in 

Figure 2.2. ei is used to adjust the identification model parameters and the controller is 

designed based on the identification ( estimated) model. The idea is best illustrated by the 

following example. 

Plant: y /k + 1) = f (y /k), y /k -1)) + u(k) (2.2) 

Reference model: Ym (k + 1) = 0.6ym (k) + 0.2ym (k-1) + r(k) 

Controller: u(k) = -NF(y P (k), y P (k -1)) + 0.6y P (k) + 0.2y P (k -1) + r(k). (2.3) 

Reference Ym 
model 

r 
Identification y 

model N 

u Yp 

controller plant 

Figure 2.2 l,ndirect adaptive control 

The nonlinear function, f , is assumed to be unknown. The only available information is 

that it is a function of current and past system outputs, y /k) and y P (k -1) (i.e. 
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f: 9\2 ~ 9l ). The approach is using a neural network to learn the nonlinear input-output 

mapping such that the unknown system dynamical behavior can be realized by a neural 

network model. Once the neural network identification model, NF, is trained to 

approximate the real nonlinear function f, the control signal generated by the controller 

will cancel the system non-linearity and replace it with the desired dynamics. However, 

this approach works properly only when the plant dynamics is not changing and the 

identification process has to be completed before the controller can effectively function. 

Otherwise, the incomplete identification model may mislead the controller and drive a 

stable system into an unstable situation. 

The control problem in the above case is relatively easy to solve, since the system 

is actually affine in control (i.e. the system is linear in control input). The control signal 

can be easily computed by using Equation (2.3) and the control problem is actually 

reduced to properly identifying the unknown function (nonlinear mapping), f . Although 

a large class of dynamic systems can be represented by the "affine in control" relation, in 

the cases of more complex system dynamics, the more general cases have to be 

considered. 

For the desired trajectories tracking control problem, the control design objective 

is to specify the appropriate control signal such that y(k + 1) = yd (k + 1) where yd (k + 1) 

represents the desired output at time step k + 1. By the implicit function theorem [30], the 

appropriate control input related to system (1.1) should be a function of past system 

outputs, past control in.puts, arid the desired output. It can be represented by Equation 

(2.4), 

u(k) = G(y(k), y(k -1), ... , y(k - n + 1), yd (k + 1),u(k -1), .. . ,u(k - n + 1)), (2.4) 

23 



where G : 9t2n ~ 9t. The control problem is to determine the map G from the measured 

inputs and outputs as well as the desired output to the control signal. One approach is 

using a neural network to serve as the controller (i.e., using a neural network to 

approximate the function, G [35,36,72]). However, this technique is computationally 

expensive because the static back propagation algorithm [57] cannot be used directly to 

adjust the network parameters. A more complicated training algorithm such as real-time 

backpropagation qr backpropagation through time is required for the parameter searching 

process [31-34]. 

Another approach is suggested by Narendra [37]. The idea is to linearize the 

general representation by using Taylor's series expansion to generate approximation 

models. The main feature of these models is that they are all "affine in control" such that 

the control input is easy to compute without requiring an additional neural network 

controller. The control problem is again simplified to be the identification problem of an 

unknown dynamic system. His approach is briefly shown as follows. 

Consider the system (1.1) that can be described by Equation (2.5) using only the 

system input::output information, 

y(k + d) = F(y(k), y(k-1), .. , y(k-n + l),u(k),u(k-1), .. ,u(k-n + 1)). (2.5) 

Two approximation models, NARMA-Ll and NARMA-L2, can be generated by 

expanding the general representation (2.5) in Taylor's series around different operating 

points, respectively. The NARMA-Ll model is generated around the point, 

(y(k ), y(k -1), .. , y(k - n + 1), u(k) = 0, u(k -1) = 0, .. , u(k - n + 1) = 0) 

and the NARMA-L2 is generated around the point, 

(y(k ), y(k -1), .. , y(k - n + 1), u(k -1), .. , u(k - n + 1), u(k) = 0) . 
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The NARMA-Ll model is then represented by Equation (2.6), 

n-1 

y(k + d) = f[y(k ), y(k -1), .. , y(k - n + 1)] +Lg; (y(k ), y(k -1), .. , y(k - n + l)]u(k - i), 
i=O 

(2.6) 
and the NARMA-L2 model is described by Equation (2.7), 

y(k + d) = f(y(k), .. , y(k-n + 1),u(k-1), .. ,u(k-n + 1)] + g(y(k), .. , y(k- n + 1),u(k-1), .. 

,u(k- n + l)]u(k). (2.7) 

If the NARMA-Ll model is used to approximate the system, n + 1 networks are required 

to approximate the functions f and gi (i = 0,1, .. ,n-1) with n arguments in each 

function. If the NARMA-L2 model is used, only two networks are needed to approximate 

the system dynamics and each function has 2n -:-1 inputs. 

This approach uses approximation models to represent the real system dynamics 

based upon the Taylor series expansion up to the first order such that the control input 

can be easily computed as follows. 

For NARMA-Ll model, 

n-1 

ya (k + 1) - f[y(k ), y(k -1), .. , y(k - n + l)] - Lg; [y(k ), .. , y(k - n + l)]u(k - i) 
u(k) = i=t 

· g0 [y(k), .. , y(k-n + 1)] 

For NARMA-L2 model, 

u(k) = Ya (k + 1) -_J[y(k ), y(k -1),.,, y(k - n+ 1), u(k -1), .. , u(k - n + l)] . 
g[y(k ), .. , y(k - n + 1), u(k -1), .. , u(k - n + 1)] 

(2.8) 

(2.9) 

However, using approximation models instead of the actual ones to reduce 

computational cost will degrade the control accuracy at the same time. Besides, when the 

system goes far away from the linearized points, the approximation models are no longer 
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valid to represent the actual system dynamics. In the cases that only the system input­

output data are measurable, this approach will also experience difficulty in the training 

process. It is believed that these indirect adaptive control techniques can reach the desired 

control objectives as long as the network training process converges to the desired 

accuracy, given a sufficient network structure and training time in the off-line situation. 

Apparently, the idea of the indirect adaptive control is mainly based upon the 

identification of the unknown plant dynamics. The control problems are solved through 

the realization of the identification model toward the unknown plant dynamics and the 

control action can effectively regulate the system performance only after the completion 

of the identification process. Typical identification techniques include polynomials, 

rational functions, spline functions, multiplayer neural networks, radial-basis-function 

networks, and adaptive fuzzy systems. Other than these techniques, two novel intelligent 

system identification techniques will be briefly described in the following subsection. 

2.3.1 Mixture of expert networks 

Jordan and Jacobs proposed a novel identification structure using neural networks 

called Hierarchical Mixture of Experts [38]. Based on the principle of divide-and­

conquer, it attacks a complex problem by dividing it into simpler problems whose local 

solutions can be combined to yield a solution to the complex problem. They proposed to 

solve the nonlinear supervised learning problems by dividing the input space into a 

nested set of regions and fitting simple surfaces to the data that fall in these regions. The 

structure of Mixture of Experts is shown in Figure 2.3. 
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Figure 2.3 Hierarchical Mixture of Expert Networks 

u and y represent the input and output, respectively. All of the expert networks 

in the tree are linear with a single output nonlinearity. 

(2.10) 

where U ij is a weight matrix and f is a fixed nonlinear continuous function. The upper 

level gating network is defined as follows: 

(2.11) 
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where vi is a weight vector and ;; is an intermediate variable. g; is positive and sum to 

one for each u. They can be interpreted as providing a "soft" partitioning of the input 

space. Similarly, the lower level gating networks are defined as follows: 

~v =v/u 
/ij 

and gili = ~ J: . • 
L.Je~•k 

k 

(2.12) 

The output of the network is just the weighted sum of the lower level network outputs. 

w; = }:giliwv and y = }:g;w;. 
j . 

(2.13) 

The problem of training a Mixture of Experts can be treated as a maximum likelihood 

estimation problem. The training method is called EM (Expectation-Maximization) 

algorithm. It is an iterative approach to maximum likelihood estimation [38]. 

Comparing with backpropagation networks, using Hierarchical Mixture of 

Experts (HME) in the identification process for a dynamic system can be summarized as 

follows [38]: 

1. No free parameter is required for training HME using EM algorithm while the 

backpropagation networks have some free parameters to adjust such as the learning 

rate and the momentum term. 

2. Backpropagation networks usually produce lower error than the HME, although they 

sometimes have difficulties with the local minima. 

3. Training HME is computationally expensive when the network structure is large. 

4. EM algorithm assumes known output density function for training and the choice of 

density function is problem-dependent. 
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2.3.2 Neural fuzzy inference network 

Juang and Lin proposed a self-constructing neural fuzzy inference network 

(SOFIN) with the capability of the on-line learning and self-pruning of the network 

structure for system identification [39]. The network are created and adapted as learning 

proceeds via simultaneous structure and parameter identification. It contains six layers 

and realizes a fuzzy model of the following form: 

Rule i : if xi is ~ 1 and . . . xn is ~n then y is m0i + a ji x j + .. .. , 

where Aii is a fuzzy set, m0; is the center of a symmetric membership function on y , 

and a ji is a consequent parameter. The network structure is shown in Figure 2.4 and 

briefly introduced as follows. 

Layer 1: Each node in this layer corresponds to one input variable and it transmits the 

input values to the next layer directly. 

Layer 2: Each node in this layer corresponds to one linguistic label of one of the input 

variables in Layer 1. The membership value that specifies the degree to which 

an input variable belongs a fuzzy set is computed in this layer [39]. The 

operation performed in this layer is 

(2.14) 

where u;2) is the i th input of this layer and is the same as the i th output of the 

first layer, mii and a ii are the center and the width of the Gaussian membership 

· function of the j th term of the i th input variable X;. a<2) (!) represents the 
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Figure 2.4 Structure of SOFIN · 

Layer 3: A node in this layer represents one fuzzy logic rule and performs precondition 

matching of a rule. The AND operation is used for each node in the Layer 3 

(2.15) 

where D; = diag(l! O"il ,1/ 0";2 , ••• ,1/ O"in), and 

X = (xi,x2 , •• ,xn). n is the number of Layer-2 nodes participating in the IF part 
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of the rule. The output of a Layer-3 node represents the firing strength of the 

corresponding fuzzy rule. 

Layer 4: The number of nodes in this layer is equal to that in Layer 3 and the firing 

strength computed in the Layer 3 is normalized in this layer by 

(4) 

f = ~ut) and a<4l (f) = uf , (2.16) 

Layer 5: This is the consequent layer. There are two types of nodes used in this layer. The 

note denoted by a blank circle is the essential node representing a fuzzy set of 

the output variable. Only the center of each Gaussian membership function is 

delivered to the next layer for the local mean of maximum defuzzification 

operation [ 43] and the width is used for output clustering only. The function of 

the blank node is 

(2.17) 

where a0i = m0i, the center of the Gaussian membership function. The shaded 

node is generated only when necessary. Each node in Layer 4 has its 

corresponding shaded node in Layer 5. One of the inputs to a shaded node is the 

output from Layer 4 and the others are the input variables from Layer 1. The 

shaded node function is 

f = I,ajixj and a<5l(f) = f ·u?l, 
j 

(2.18) 

where the summation is over the significant terms connected to the shaded node 

only and a ji is the corresponding parameter. The whole function performed in 

Layer 5 is 
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a<5\f) = (Lajixj +a0)u?l. 
j 

(2.19) 

Layer 6: Each node in this layer corresponds to one output variable. It combines all the 

actions suggested by Layer 5 and acts as a defuzzifier with 

(2.20) 

Initially, there is no rule in the network. They are created from the incoming 

training data received by performing the following learning processes: 

1) input/output space partitioning 

2) construction of fuzzy rules 

3) optimal consequent structure identification 

4) parameter identification 

For the details of each process and the training algorithm, please refer to [39] and the 

related methods [40-42]. 

2.4 Direct adaptive control 

Unlike the indirect adaptive control techniques, the direct adaptive control 

methods intend to skip the complex modeling process and directly focus on solving the 

control problems. The idea of the direct adaptive control problem is shown in Figure 2.5. 

The control problem is solved by the effective control signal that reduces the system 

performance error (usually defined by the tracking error between the system output and 

the desired trajectory). Based upon the truth that tuning the parameters of the neural 

controller by the gradient descent type optimization algorithm requires only the Jacobian 

of the system model with respect to the control inputs and the searching of better 
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parameters is along the negative gradient direction, the approach of the direct adaptive 

control is to either compute or estimate the plant Jacobian matrix with respect to the 

control inputs for MJMO (multiple-inputs multiple-outputs) system or the plant gradient 

with respect to the control input for SISO (single-input single-output) system. 

Reference y m ------~ 
model 

r 

controller 1---.---- plant 

Figure 2.5 Direct adaptive control 

Psaltis and Saerens suggested an approach that uses the sign of the Jacobian, 

instead of its real value in the training of the Neural Controller [35,36,44]. With the help 

of on-line estimating the sign of the plant Jacobian, the identification process and the NN 

identification model for the real system dynamics is not required for the control purpose, 

since the control input can be adjusted by using the sign of the plant Jacobian to reduce 

the tracking error. 

The idea is using numerical on-line approximation by changing each input to the 

plant slightly and measuring the change at the output, or by comparing changes from the 

previous iterations. Taking a SISO nonlinear system as an example, the latter can be 

expressed as follows, 

J (k + 1) z y P (k + l) - y P (k) and J (k + 1) is the estimated gradient. 
u(k)-u(k-1) 
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For tracking a constant desired trajectory, Equation (2.21) may have the problem of 

division by zero. So, the following equation is suggested [44], 

J(k + 1)::::: sign[y P (k + 1)- y P (k)]x sign[u(k)- u(k -1)]. (2.22) 

However, this approach may be sensitive to noise in the real applications. Also, tuning of 

the learning rate to compensate for the estimated plant Jacobian is a challenging job. 

Apparently, finding the plant Jacobian through the model is more accurate than just 

taking the sign of the plant Jacobian value. For on-line control implementation, the 

approach is only suitable for fixed or slowly varying plants [44]. 

Another interesting technique for plant Jacobian estimation is suggested by Spall 

[45-47]. Instead of using the finite difference approximation, an algorithm called SPSA 

(Simultaneous Perturbation Stochastic Approximation) is used to estimate the gradient of 

the objective function with respect to the parameters being optimized. The idea of the 

SPSA algorithm is described as follows. 

Assume Lk (Bk) is the differentiable cost function to be minimized by optimizing 

the parameter vector, Bk. The subscript, k, represents the time step or the number of 

iterations. The objective is to find an optimal parameter vector, (}*, satisfying Equation 

(2.23), 

g(B*) = dL(B)I = 0. 
aB B=e· 

(2.23) 

Consider a stochastic approximation algorithm of the form, 

(2.24) 
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to estimate Bk, where g k is the estimate of real gradient g k at k th iteration, ak is a 

scalar gain sequence. The estimate gradient is computed at each iteration using Equation 

(2.25), 

A f<+l - D-) 
A (8 )- k k 
gk k-1 - 2 A 

Ck ilk 

(2.25) 

where f~±J are estimated (observed) values of Lk (Bk-I ± ckl1k), ck is another design gain 

sequence, and 11k = (/1kP 11k2 , •.• , 11kp l is a random vector. 11k; is selected as an 

independent, bounded, symmetrically distributed zero mean random variable satisfying 

certain conditions [45]. A simple choice for each component of 11k is to use a 

Bernoulli± 1 distribution with probability of .!_ for each ± 1 outcome [ 46]. After the 
2 

A 

evaluation of the estimated gradient, the parameters, Bk, are updated using Equation 

(2.24) and the algorithm is terminated if there is little change in several successive 

iterations or the maximum allowable number of iterations has been reached. 

Observing Equation (2.25), it is easy to find that only two measurements are 

required to compute the p estimated gradients at each time step. It is much more 

efficient comparing with the standard PDSA (Finite-Difference SA) algorithm [52,53] 

where 2p measurements are required. For fast changing systems, one-measurement form 

of the gradient approximation is suggested by [ 45] as shown below, 

(2.26) 

In the high-noise environment, a variation on the gradient approximation is to average 

several gradient estimates with each estimate being made based upon an independent 
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value of /.':,.k. Another variation of the gradient approximation is to smooth the gradient 

approximation by using a weighted average of the previous and current gradient 

estimates. Based upon the same algorithm, some application-oriented research work has 

been reported [48-51]. 

The basic idea of how the SPSA algorithm works is by sending stochastic random 

testing signals into the system, computing the estimated gradients based upon 

observations of the system outputs, and adjusting the parameters according to the 

estimated gradients. The convergence property of the parameters has been studied and it 

has been shown that SPSA algorithm is theoretically more efficient than the PDSA 

algorithm [ 45]. However, it also shares the same deficiency as the PDSA algorithm, 

which is the question whether or not it is possible to reset the system from a given state to 

the previous state. To estimate the gradients, stochastic testing signals will first be sent to 

the system and, during the testing phase, no parameter update will take place until all the 

testing signals (i.e., the stochastic dither signals) go through the system and the testing 

results show in the system outputs. In on-line situations, this becomes an important issue 

since all the stochastic testing signals will go through the dynamic system and affect the 

system behavior later on. 

2.5 Multiple model approaches 

The basic idea of multiple model approach is to create different models and their 

corresponding controllers according to different operating conditions. With all the 

existing fixed models and their corresponding controllers stored in a database, an 

appropriate switching algorithm is used to choose (or switch to) the controller that 
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corresponds to the model'with the minimum identification error by monitoring the system 

and evaluating a certain criterion function [54-55]. The idea is shown in Figure 2.6 [58]. 

Yref I Controller 11 
switching u y -

-0- I I ~ 

or -1 Plant I -
I I H 

,- 1 Controller 2 1 weighting 

~ algorithm 
-I model 11 • 

~ . I~ 
• 

I model ,.,1 
I I 

,-: Controller N r - • 
• 

controller bank 
;1model M 

model bank 

Figure 2.6 Basic multiple-model adaptive control structure 

Obviously, switching to the controller corresponding to the model which best 

describes the current system dynamics can quickly improve the system transient 

performance. However, if all the models are fixed and the closest one is still far away 

from the current system dynamics, the performance cannot be guaranteed. Typical 

adaptive multiple model approaches proposed to overcome this drawback are briefly 

discussed as follows. 

2.5.1 Model switching and tuning 

Narendra combined multiple models and neural networks as the adaptive multiple 

model approach [59-61]. Apparently, the main reason of using fixed multiple models is to 

improve system transient performance. When the actual system dynamics doesn't fall 
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into any one of the existing model dynamics, an appropriate adaptive model will be 

required to adapt itself to follow the actual system and adjust the corresponding controller 

at the same time. So, he suggested using an efficient combination of fixed and adaptive 

models. Right after the switching, an adaptive model should take over from the closest 

model and should be tuned on-line in order to keep reducing the difference between the 

model and the actual system so that the system performance is improved with time and 

the steady state error can finally reach an acceptable level. The idea is to use neural 

networks as the adaptive model for on-line adaptation and tuning. 

However, so far, all the work is done for linear systems which are both 

theoretically and practically easy to be carried.out for the proposed methodology. For the 

nonlinear systems, the problems of on-line identification and control are substantially 

difficult. Also, as mentioned in [60], the answers for the creation, modification and 

pruning of models, the acquisition of their sensitivity characteristics, and the generation 

of equivalence classes of models are remaining unsolved at present. 

2.5.2 Multiple-model weighting 

· Another interesting approach was proposed by Rajagopal and Krishnamurthy 

[62]. Instead of the real switching algorithm, multiple model weighting is used based 

upon the assumption that the actual system output can be represented by a weighted sum 

of all the existing model (NN model) outputs. The idea is described as follows. 

Consider a nonlinear plant described by 

Yp (k + 1) = F(y P (k), y P (k -1), .. , Yp (k - p ), u(k -1), .. , u(k - q)) + G(y P (k), y P (k -1), .. , y P (k - p ), 

u(k -l),u(k-2), .. ,u(k-q))u(k). (2.27) 
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The approach is to create N identification models Ii, i = I,2, .. ,N, one for each one of 

the N environments that the system is expected to encounter during the operation, i.e. 

I; =NF;(.)+ NG; (.)u(k). Please note that (.) is used to represent the same arguments in 

Equation (2.27). The output of the actual plant, y P (k + 1), can be approximated by the 

weighted sum of each NN identification model, 

y P (k + 1) z L w; (k )NF;(.)+ w; (k )NG; (.)u(k). (2.28) 

So, the control input can be generated as follows: 

u(k) = [¢T ¢ J-1 ¢T [yd (k + 1) - If/], If/= L W; (k )NF;(.), and ¢ = L W; (k )NG;(.), (2.29) 

where yd (k + 1) is the desired output at time step k + 1. Hence, the key point of finding 

the appropriate control input becomes how to decide the correct weight ( contribution) of 

each existing NN model. The authors proposed using an evolutionary strategy as the 

model weight selection by minimizing the following cost function [62], 

2 2 

J(k) ~ t,P' t. y ,;(k- i) ~/·;(k- j) + kit, [w, (k)- w, (k -1)]' + k2[ 1- t, w, (k)] , 
(2.30) 

N 

where Yw/k) = L w;(k)Ij,i, Ij,i is the jth output of the ith identification model. 
i=l 

£ j, kl, k2 are design parameters, fJ is the forgetting factor that places a higher weight on 

the recent data, and p is the effective windows of past data points. Observing the cost 

function closely, we can find that the first term accounts for the estimation error, the 

second term ensures that the weight of each model doesn't change drastically during the 

optimization process, and the last term is to make sure that the sum of each weight is 

close to 1, which can be interpreted as adding stability guarantee to the whole system. 
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The switching between multiple models becomes smoother by adjusting the 

corresponding weight of each model. Using model weighting to replace the switching 

algorithm seems to have better results when the actual system is working under an 

environment that doesn't fall into the parameter space of any one of the models but is 

close to some or all of them. 

2.5.3 Interactive multiple model (IMM) 

Similar to the multiple-model weighting, an Interactive Multiple Model (IMM) 

FDD approach has been proposed in [90,106-107] where the occurrence or recovery of a 

failure in a dynamics system is modeled as a finite-state Markov chain with known 

transition probabilities. The idea can be simply described as follows. 

Assume that a set of N models has been used to represent different failure 

situations, 

x(k + 1) =(F(k) + M/k))x(k) + (G(k) + ~G/k))u(k) + (/k) 

= Fi(k)x(k) +G/k)u(k) + (/k) 

z(k+l) = (H(k)+MI/k))x(k)+17/k) 

=H/k)x(k)+17/k), · j=l,2, ... ,N. 

(2.31) 

(2.32) 

where ~F/k), ~G /k), and MI /k) (j = 2, ... , N) represent the fault-induced changes 

in system components, actuator, and sensors, respectively. They are zero for j = 1 which 

denotes the fault-free condition. The FDD and FTC problem then turns into determining 

the current model state from a sequence of noisy measurements, and to select the most 

appropriate control strategy from a set of pre-computed controllers to compensate the 

failure. The probability of a mode in effect plays a key role in determining the weights in 
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the combination of state estimates and covariances for the overall state estimation [90]. 

Several different criterions of the fault detection and diagnosis scheme based upon the 

probabilities of system modes are suggested in [90]. The effectiveness of the IMM FDD 

approach has been demonstrated on linear systems with simple failures that can be 

represented by Equations (2.32)-(2.33). However, there is no solid theoretical result to 

support the successful failure accommodation especially for unanticipated failures in 

nonlinear format due to the complexity of the problem involved. 

Generally speaking, among all existing intelligent control techniques, multiple 

model methods are probably, at present, the most efficient approach in dealing with the 

fault tolerant control problems involving anticipated faults since the anticipated failures, 

the corresponding model, and the control actions can be realized off-line. For 

unanticipated system failures in on-line situations, it is still an open question that remains 

to be solved. 
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CHAPTER III 

THE ON-LINE FAULT ACCOMMODATION TECHNIQUE 
FOR UNANTICIPATED SYSTEM FAILURES 

While most research attention has been focusing on fault detection and diagnosis, 

much less effort has been dedicated to general fault accommodation mainly because of 

the lack of well-developed control theory and techniques for general nonlinear systems. 

Existing fault accommodation techniques are mainly designed for either linear systems or 

certain classes of nonlinear systems under simple failure scenarios [2, 11-21]. However, 

for a dynamic system under unanticipated catastrophic system failures, it is not a 

reasonable approach to assume certain types of dynamic changes. In this chapter, the 

general on-line fault accommodation problems will be analyzed from both theoretical and 

realistic points of view. The main focus will be placed in developing an on-line fault 

accommodation technique for general nonlinear dynamic systems under general 

unanticipated catastrophic system failures. 

3.1 Theoretical foundation and analysis 

Without loss of the generality, we let d = 1 in Equation (1.4) and consider the 

SISO system to facilitate the analysis and derivation. Define a sliding surface function as 

shown in Equation (3.1), 
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where yd(k) and y(k) represent the desired system output and the actual system output 

at time step k, respectively. I.it represents the sampling period and a ER+ defines how 

fast the system output will converge to the desired output. The desired dynamics can then 

be described by setting the sliding surface function equal to zero (i.e., S(k) = 0) and it is 

a function of tracking error, e(k) = yd (k) - y(k). According to the discrete-time 

Lyapunov stability theory [77-80], if we choose V(e(k)) = S 2 (e(k)) as the Lyapunov 

function candidate, the controller design objective becomes seeking the control input that 

will satisfy S 2 (k+1)<S2(k) which is equivalently to say 

[S(k+l)+S(k)][S(k+l)-S(k)]<O. (To simplify the notation, e will be eliminated 

from the remaining sections of this dissertation.) This is the same as satisfying the 

following inequalities 

- S(k) < S(k + 1) < S(k) when S(k) > 0, 
(3.2) 

S(k) < S(k + 1) < -S(k) when S(k) < 0. 

For S(k) > 0, plugging in Equation (3.1), we have 

-S(k)< yd(k+l)-yd(k) _ y(k+l)-y(k) +a(y (k+l)-y(k+l))<S(k). (3.3) 
I.it I.it d 

Reorganizing the inequality, we get 

- 1 -
- S(k)-Y (k) < (-a - -)y(k + 1) < S(k)-Y (k), 

I.it 
(3.4) 

where Y (k) = Yd (k + l) - yd (k) + y(k) + ay d (k + 1) . This can be further simplified as 
I.it 
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- 1 1 - 1 1 
(Y(k)+S(k))(a+-)- >y(k+l)>(Y(k)-S(k))(a+-)-. (3.5) 

~t ~t 

In a similar manner for S(k) < 0, we obtain 

- 1 1 - 1 1 
(Y(k)-S(k))(a+-)- >y(k+l)>(Y(k)+S(k))(a+-)-. (3.6) 

~t ~t 

Notice that the left hand side and the right hand side of the inequalities (3.5)-(3.6) are 

known and can be computed at each time step. Thus, the on-line fault tolerant control 

problems become finding the effective control signal that satisfies inequality (3.5), when 

S(k) > 0 or (3.6), when S(k) < 0 at every time step. 

Let y(k + 1) = E>[y,u], which represents the system dynamics under failures, 

where y . and u represent the regression vectors of system outputs and inputs, 

recpectively. Based upon the implicit function theorem [30], the control law can be 

written as u(k)=G[y,Y(a+_!_f1,u\{u(k)}] provided G exists (i.e., u\{u(k)} 
~t 

denotes the set containing the regression vector of input excluding the current input, 

u(k) ). Since the nonexistence of G corresponds to the cases where the system becomes 

uncontrolable under the failure situations, the existence problem becomes trivial. 

Unfortunately, the realization of G can not be provided without knowing the true 

structure of the system dynamics and the failure dynamics. Thus, the control law is not 

implementable in reality. However, through the modem intelligent techniques, the 

effective control input satisfying inequalities (3.5) or (3.6) can be estimated using 

optimization algorithms without a complete realization of G . The systematic procedure 

is described as follows. 
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The unknown failure dynamics can be realized through an on-line estimator. The 

true system output, y(k + 1) , can be approximated by the sum of the outputs from the 

nominal model and the on-line estimator as follows: 

y(k + 1) = Ny(k + 1) + fy(k + 1) 

= Ny(k + 1) + Ny(k + 1) + nfy(k + 1) + nfy(k + 1), (3.7) 

Ny(k + 1) : the output of the actual system, 

fy(k + 1) : the output of the failure dynamics, 

Ny(k + 1) : the output of the nominal model, 

Ny(k + 1): the remaining uncertainty between the nominal system and the nominal 

model, 

nfy(k + 1): the output of the on-line estimator, 

njy(k + 1): the remaining uncertainty between the estimator and the failure dynamics, 

and Ny(k + 1) = Ny(k + 1) + Ny (k + l); fy(k + 1) = nfy(k + 1) + nfy (k + 1) . 

Using Equation (3.7), the inequalities become: 

for S(k) > 0, 

(S(k) + Y(k))(a +-1 )-1 > Ny(k + 1) + Ny(k + 1) + nfy(k + 1) + nfy(k + 1) > (Y(k)- S(k))(a + _!_)-1 , 
M M 

(3.8) 

for S(k) < 0, 

(Y(k) - S(k))(a + _!_)-1 > Ny(k + 1) + Ny(k + 1) + nfy(k + 1) + nfy(k + 1) > (Y(k) + S(k))(a + _!_)-1. 
!it !it 

(3.9) 

Modern intelligent optimization techniques such as genetic algorithm, immune 

algorithm, simulated annealing, reinforcement learning, etc., have been exploited in a 
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variety of areas and applications [96-103]. However, although the effectiveness in 

achieving successful optimization objectives has been demonstrated, most of them are 

applicable in off-line situations at present, due to the time-consuming iterative process. 

From the computational complexity point of view, the well-known and efficient gradient 

descent algorithm will be considered and used in the remaining of this dissertation 

because of its popularity and effectiveness in on-line applications. The optimization 

procedure is shown as follows. 

The desired point at every time step is 

- 1 1 - 1 
Desire(k) = [(Y(k) + S(k))(a +-r + (Y(k)-S(k))(a +-)-1]/2 

Define the error as 

= y (k )(a+ _!__r1 • 

M 

~t ~t 

(3.10) 

Error(k) = Desire(k)-Ny(k + 1)-Ny(k + 1)-nfy(k + 1)- nfi(k + 1). (3.11) 

The effective control input can be searched based upon the gradient descent algorithm for 

square error 

aError(k) 2 
2E (k) aError(k.) ----= rror 

au(k) au(k) 

= _2Error(k)[aNy(k + 1) + aNy(k + 1) + anfy(k + 1) + anJy(k + 1)]. (3.12) 
au(k) au(k) au(k) au(k) 

The resulting control input will be updated by 

aError(k) 2 

u(k\ew = u(k\zd -a ' 
au(k) 

(3.13) 

where a is the learning rate parameter. The searching procedure is repeated until 

inequalities (3.8) or (3.9) hold, the control input converges, or the maximum number of 
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iterations is reached. Of course, the term, nfy(k + 1), the remaining uncertainty of the 

failure dynamics, and Ny(k + 1), the remaining uncertainty of the nominal system, are 

anfy(k+l) aNy(k+l) . 
unknown and the terms, and , cannot be computed either. So, the 

au(k) au(k) 

actual searching procedure is based upon the approximated values: 

Error(k) = Desire(k)- Ny(k + 1)- nfy(k + 1) (3.14) 

aError(k) 2 = -lError(k)[aNy(k + 1) + anfy(k + 1)] . 
au(k) au(k) au(k) 

(3.15) 

[Y(k)+S(k)]~+_!_ r' 
N 

- 1 
Y(k)(a+-f' 

/)t 
[Y(k)-S(k)]~+_!_ r' 

/)t 

1 l l 
~-----------------------------------------~--------------------------------J 

r r 
M(k) 

k---~ I 

llnfy(k + 1) 
r 

ClNy(k + 1) 

Ny(k + 1) + nfy(k + 1) 

M(k) = sup ~llError(k)I} ; llnjy(k + 1) = sup ~nfy(k + 1)1}; Mly(k + 1) = sup ~Ny(k + 1)1} 
~~ ~~ ~~ 

---~ : bounded area 

Figure 3.1 The bound of the sliding surface function 

At every time step, the desired point, Y (k )(a+_!_ ) -1 , is computed, and the 
M 

effective control signal is searched to ensure that the actual result is as close to the 

desired point as possible, through the realizations of the nominal system dynamics and 

the failure dynamics. Observing inequalities (3.8) and (3 .9) closely, if nfy(k + 1) and 
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Ny(k + 1), the remaining uncertainty of the failure dynamics and the nominal system, are 

bounded, combining these results with Equations (3.10)-(3.11), we can prove that the 

desired dynamics, sliding surface function, S, is also bounded. Figure 3.1 indicates how 

the S function is bounded by the upper bounds of the nominal model uncertainty, 

Mfy(k + 1), optimization error, M(k), and the prediction error of the failure dynamics, 

8.nfi(k + 1). This can be proven given the following assumptions and detailed in 

Theorem 1. 

Assumptions: 
1. The nominal model, Ny(k + 1), is accurate and precise enough such that Ny(k + 1), 

the remaining uncertainty of the nominal system, is bounded by sup ~Ny (k + 1)1}, 
'rlk>TJ 

where T1 is the starting time step that the control input is reconfigured for proper 

failure accommodation. (Note that this constraint can be possibly relaxed since the 

accuracy of the nominal model can be achieved off-line provided sufficient time for 

the development.) 

2. The remaining uncertainty of the failure dynamics, nfi(k + 1), is the residue resulting 

from the difference between the actual fy(k + 1) and the best estimation of the on-line 

estimator and it is bound by the least upper bound, sup ~nfi (k + 1)1}. 
'r/k>TJ 

3. The error caused by the optimization algorithm is bounded by sup {IMrror(k)I}. 
'r/k>TJ 

Theorem 1: If the nominal system model is accurate and precise enough within the 

system working region such that Ny(k + 1), the remaining uncertainty 

of the nominal system, is bounded by sup ~Ny (k + 1)1}, and the on-line 
'r/k>T1 
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estimator is accurate enough such that the remaining uncertainty of the 

failure dynamics, nfy(k + 1), is bounded by the least upper bound, 

sup ~nfi (k + 1)1}, and !1Error(k), the error after the searching effort of 
'vk>Tf 

the optimisation algorithm, is finite (i.e., bounded by sup {l11Error(k)I} ), 
'vk>Tf 

the system stability after time step T1 under arbitrary unanticipated 

system failures is guaranteed in on-line situation and the sliding surface 

function, S , defined by the system performance error is also bounded 

as follows: 

L ~ S(k + 1) ~ S, 

where 

L = -[ sup ~Ny(k + 1)1}+ sup ~njy(k + 1)1}+ sup ~!1Error(k)l}](a +_!_),and 
'vk>T1 'vk>Tf 'vk>T1 J1t 

s = [ sup ~Ny(k + 1)1}+ sup ~njy(k + 1)1}+ sup ~!1Error(k)l}]ca + _!_). 
~~ ~~ ~~ M 

The sliding surface function, S , is defined as: 

where yd (k) is the desired trajectory at time step k. 

Proof: 

Let !1Error(k) represents the error after the searching effort of the optimization 

algorithm. Then, 
11Error(k) = Desire(k)-Ny(k + 1)- nfy(k + 1). 

By Equation (3.10), 
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For S(k)>O: 

Y(k)(a +J...)-1 -Mrror(k) = Ny(k + 1) + nfy(k + 1). 
tit 

Plugging in Equation (3.16) into inequality (3.8), we have 

(3.16) 

- 11- 11 - 11 
(Y(k) + S(k))(a+-)- > Y(k)(a+-)- -AError(k)+ Ny(k + 1) +njy(k + 1) > (Y(k)-S(k))(a +-)- . 

At At At 

Simplifing the inequality, we get 

1 
S(k) > [Ny(k + 1) + nfi(k + 1)-Mrror(k)](a +-) and 

At 

1 
.,.. S(k) < -[Ny(k + 1) + nfy(k + 1)-Mrror(k)](a +-). 

At 
(3.17) 

Since S(k)>O, -S(k)<[sup~Ny(k+l)J}+ sup~njy(k+l)J}+ sup~M'rror(k)JB(a+_.!_) is 
~~ ~~ ~~ M 

always true. By assumptions 1, 2, and 3, the following inequalities will hold for the worst 

condition, 

S(k) > [ sup ~Ny(k + l)J}+ sup ~n.fy(k + l)J}+ sup ~M'rror(k)J}](a + _!_). (3.18) 
'lk>Tf 'lk>Tf 'lk>T1 !J.t 

Apparently, [ sup ~Ny(k + l)J}+ sup ~njy(k + l)J}+ sup ~M'rror(k)J}](a + _!_) = inf {S(k)}, 
'lk>T 'lk>T 'lk>T /J.t 'lk>Tf I I I 

which is the greatest lower bound of S(k) and 

-[ sup ~Ny(k+l)J}+ sup ~njy(k+l)J}+ sup ~M'rror(k)J}](a+_.!_)= sup {-S(k)}, which is the 
'lk>T1 'lk>Tf 'lk>T1 /J.t. 'lk>T1 

least upper bound of -S(k), and since S(k) > S(k + 1) and -S(k) < -S(k + 1), the 

following inequalities will always hold 

[ sup ~Ny(k + l)J}+ sup ~njy(k + l)J}+ sup ~M'rror(k )j}](a + _!_) ~ S(k + 1) and 
'lk>T1 'lk>T1 'lk>T1 !J.t 
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-[ sup ~Ny(k + 1)/}+ sup ~njy(k + 1)/}+ sup ~M'rror(k)/}J(a + J_) ~ -S(k + 1), (3.19) 
~~ ~~ ~~ l1t 

for both situations, S(k + 1) > 0 and S(k + 1) < 0, which implies 

~:::;S(k+l):::;S, (3.20) 

where 

L = -[ sup ~Ny(k + 1)/}+ sup ~njy(k + 1)/}+ sup ~M'rror(k)/}J(a +-1 ) and 
~~ ~~ ~~ l1t 

E = [ sup ~Ny(k + 1)/}+ sup ~njy(k + 1)/}+ sup ~~Error(k)/}J(a + J_). 
~~ ~~ ~~ l1t 

For S(k)<O: 

Plugging in Equation (3.16) into inequality (3.9), we have 

- 11- 11 - 11 
(Y(k)- S(k))(a +-)- > Y(k)(a +-)- -AError(k) + Ny(k + 1) + njy(k + 1) > (Y(k) + S(k))(a +-)- . 

M M M 

Simplifing the inequality, we get 

1 
- S(k) > [Ny(k + 1) + nfo(k + 1)-M'rror(k)]ca +-), and 

l1t 

1 
S(k) < [Ny(k + 1) + nfo(k + 1)-M'rror(k)]ca +-). 

l1t 
(3.21) 

Since S(k)<O, S(k)<[sup~Ny(k+l)/}+ sup~n.fy(k+l)/}+ sup~~Error(k)/}J(a+J__) is 
~~ ~~ ~~ l1t 

always true. By assumptions 1, 2, and 3, the following inequalities will hold for the worst 

condition, 

- S(k) > [ sup {Ny(k + 1)/}+ sup {nfo(k + 1)1}+ sup {M'rror(k)!}J(a +-1 ) . (3.22) 
~~ ~~ ~~ l1t 
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Apparently, [ sup 1Ny(k + l)j}+ sup hty(k + l)j}+ sup 1Mrror(k)j}](a +-1 ) = inf {-S(k)}, 
Vk>T1 Vk>T1 Vk>T1 /it Vk>Tf 

which IS the greatest lower bound of -S(k) and 

-[sup1Ny(k+l)j}+ sup1nfi(k+l)j}+ sup1Mrror(k)j}](a+...!_)= sup{S(k)}, which IS the 
Vk>T1 Vk>T1 Vk>T1 /it Vk>T1 

least upper bound of S(k), and since -S(k) > S(k + 1) and S(k) < -S(k + 1), the 

following inequalities will always hold 

[ sup 1Ny(k + l)j}+ sup 1nfy(k + l)j}+ sup 1Mrror(k)j}](a + ...!_) ~ S(k + 1), and 
~~ ~~ ~~ ~ 

-[ sup 1Ny(k + l)j}+ sup hfi(k + l)j}+ sup 1Mrror(k)j}](a + ...!_) ~ -S(k + 1), (3.23) 
~~ ~~ ~~ ~ 

for both situations, S (k + 1) > 0 and S (k + 1) < 0, which implies 

L::;; S(k + 1)::;; B, (3.24) 

where 

~ = -[ sup 1Ny(k + l)j}+ sup 1nfy(k + l)j}+ sup 1Mrror(k)j}](a +...!_),and 
~~ ~~ ~~ ~ 

S =[ sup 1Ny(k + l)j}+ sup 1nfi(k + l)j}+ sup 1tiError(k)j}](a +...!_). 
~~ ~~ ~~ ~ 

We arrive at exactly the same result as Equation (3.20). Thus, the sliding surface 

function, S, is bounded by the value defined by the least upper bounds of the remaining 

uncertainty of the nominal system, the residue of the on-line estimator, and the error by 

the optimization algorithm. 

Q.E.D. 

The discrete-time Lyapunov stability theory indicates that the control problem can 

be solved as long as the numerical value of the failure dynamics is realizable at each time 
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step, which is a measure of how far the fault drives the system dynamics away from the 

desired dynamics. Based upon the above theoretical analysis, the system under 

unexpected catastrophic failures can be stabilized and the performance can be recovered 

provided an effective on-line estimator for the unknown failure dynamics such that the 

necessary and sufficient conditions are satisfied (i.e., assumptions 1, 2, and 3). Moreover, 

since the on-line estimator is used to provide the approximated numerical value of the 

failure dynamics at each time step based upon the most recent measurements (i.e., the 

failure may be time-varying), no specific structure or dynamics is required for the 

estimator. In other words, only a static function approximator that approximates the most 

recent behavior of the failure is needed for the control purpose. 

input 
----: .. Reference 

model 

Interact with supervisor 

Desired output 

1, 
~ Nominal 

controller 

1 • 

---t~N Intelligent 
>------~ control 

.----t~N regulator 

Fault detection 
mechanism 
(nominal 

model) 

Control input 

On-line 
failure dynamics 

estimator 

Actual 
plant 

dynamics 

System output 

Figure 3.2 Basic framework of the intelligent on-line fault accommodation strategy 

Figure 3.2 shows the basic framework of the intelligent control strategy for on-

line control of the system that may be subject to the unanticipated catastrophic failures. In 

on-line situations, the nominal control signal will have to go through an intelligent 
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control regulator before it can reach the system. The intelligent control regulator monitors 

and evaluates the system behavior at every time instant through a fault detection 

mechanism. During the normal operation mode that corresponds to the non-failure 

situation, the nominal control signal will be passed to the system to control its behavior. 

Once an abnormal system behavior is detected by the fault detection mechanism, an on­

line estimator is initialized and starts estimating the unknown failure dynamics. When the 

learning process converges, the control law is reconfigured and computed by the 

regulator based upon the current knowledge of the failure dynamics provided by the on­

line estimator. The intelligent control regulator also has to interact with the supervisor to 

accept higher priority commands, such as changes of the control objective or design 

parameters, and warn the supervisor for emergency shutdown of the system in cases that 

the unanticipated system failures are serious and the system is actually uncontrollable. 

3.1.1 On-line learning of the failure dynamics 

With the universal approximation capability for any piecewise continuous 

function [56,57], Artificial Neural Network becomes one of the most promising 

candidates for the on-line control problems of our interest. In this research work, neural 

network is exploited and used as the on-line estimator for the unknown failure dynamics. 

Some important features of the on-line learning using neural networks should first be 

addressed here. The structure of the on-line estimator needs to be decided (i.e., in neural 

networks, the number of hidden layers, number of neurons in each layer, and neuron 

transfer functions). It is known that neural networks are sensitive to the number of 

neurons in the hidden layers. Too few neurons can result in underfitting problems (poor 
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approximation), while too many neurons may lead to overfitting problem, where all the 

training patterns are well fit, but the fitting curve may take wild oscillations between the 

training data points [65]. The criterion for stopping of the training process is another 

important issue in the real applications. If the mean square error of the estimator is forced 

to reach a very small value, the estimator may perform poorly for the novel input data 

slightly away from the training patterns. This is the well-known generalization problem. 

Besides, in the real applications, the training patterns may be contaminated by 

measurement noises since they are the measurements from sensors. The estimator may 

adjust itself to fit the noise instead of the real failure dynamics. Some methods proposed 

to improve these problems, such as early stopping criterion and generalization network 

training algorithms, may be useful to remedy these situations [65,66]. 

In the on-line situation, the number of input-output data for the training process 

becomes a very important design parameter. The system dynamics may keep changing 

because of progressing fault severity (i.e., the incipient fault, abrupt fault, and multiple 

faults). Apparently, using all input-output measurements to train the on-line estimator 

does not make too much sense since we may use invalid training patterns to mislead the 

estimator and it is also unrealistic for on-line applications. In other words, only finite and 

limited number of data sets should be considered as training patterns to adjust the 

parameters of the estimator. A reasonable approach is to use the most recent input-output 

measurements. A set, B , that contains the most recent measurements within a fixed 

length of a time-shifting data window is used to collect the training patterns, 

B = {(e(m),t(m)lpE 9is ;f E 9ir ;k- j +1:::;; m:::;; k }, (3.25) 
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where p(m) and t(m) are the network input vector and desired output vector at time step 

m, respectively. k is the current time step and j represents the length of the time-

shifting data window which is a design parameter. This parameter has to be decided 

based upon the system computing capability, sampling rate, and the performance criteria. 

In additions, the maximum number of the effective control signal searching iterations is 

another important design parameter in teal-time applications. It has to be within an 

allowable range according to the system computing capacity in the on-line situation. For 

gradient descent type of optimization algorithms, time-varying learning rates can be used 

to possibly reduce the searching time. A simple adjustment algorithm of the time-varying 

learning rate used in the on-line simulations in the next Chapter is shown as follows: 

Define initial learning rate, a 01d, and min, max 

Inside the searching process 

{ ...................... . 
if error(i) ~ error(i -1) 

if > . 
l a.old _mm 

anew = Cl.old X q 

restore the last searching position 

end 

else 

if < l a.old - max 

anew = Cl.old X g 

end 

end 

check the stopping criterion 

} 

where i and error(i) are the searching iteration number and the searching error at the 

i th iteration, respectively. min and max are the pre-specified minimum and maximum 

56 



of the learning rates. g and q are pre-specified constant gains that satisfy the 

conditions, 0 < q < 1 and 1 < g < 2 . 

In the following sections, the on-line fault accommodation control problems 

under catastrophic system failures will be further divided into different cases according to 

prior knowledge of the nominal system and failure dynamics. Further analysis and 

discussion are provided case by case. 

3.2 Further analysis for different cases 

3.2.1 Case 1 

Consider a dynamic system under catastrophic failures, which can be represented 

by Equation (3.26), 

y(k + d) = f(y(k + d -1), .. . , y(k + d - p)) + g(y(k + d -1), ... , y(k + d -q))u(k) 
n 

+ ""LP/k-T;)f;(y(k + a -1), ... , y(k + a - p;)), (3.26) 
i=l 

where the nominal model is in "linear in control" format, J; (·) represents the dynamics 

of the failure mode i. The prior knowledge shows that the failure dynamics is an explicit 

function of past system outputs. /J; (,) is the corresponding time-varying constant gain 

and n is the number of system failures. Ji(,) , /Ji(·), and n are assumed unknown. The 

nominal model is well developed and precise enough within the working regime. 

In this case, the prior knowledge of both nominal model and failure dynamics 

provides substantial useful information for the on-line control problem. According to the 

analysis discussed in the last section, the effective on-line real-time control law can be 
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easily found by plugging the nominal model and the estimated failure dynamics into the 

inequalities (3.8) and (3.9). Ignoring the uncertainties, when S(k) > 0, we have 

(Y(k) + S(k))(a + ~t)-1 > f(,) + g(·)u(k) + F(k) > (Y(k)-S(k))(a + ~t)-1 , (3.27) 

which is equal to 

- 1 1 - 1 1 
(Y(k) + S(k))(a +-)- - f(,)-F(k) > g(·)u(k) > (Y(k)-S(k))(a +-)- - f(,)-F(k). 

M · · M 
(3.28) 

When S(k) < 0, we have 

- 1 1 - 1 
(Y(k)-S(k))(a+-)- - f(,)-F(k) > g(·)u(k) > (Y(k)+S(k))(a+-)-1 - f(·)-F(k). 

!:it !:it 
(3.29) 

where (,) is the short notation of the arguments for f and g in Equation (3.26) and 

F(k) represents the numerical value of the failure dynamics at time step k in Equation 

(3.26). If F(k) is known, the best desired control input is just the sum of the left hand 

side and right hand side of inequality (3.28) or (3.29) divided by 2g(·) (in single input 

case). Since we are interested in the unanticipated failure situations, F(k) is actually 

unknown. If we deploy an on-line estimator NF(k) to approximate the unknown failure 

dynamics, F(k) can be realized as follows: 

F(k) = NF(k) + WF(k), 

where WF(k) denotes the residue between the on-line estimator and the actual failure 

dynamics. Plugging this realization into inequalities (3.28) and (3.29) and ignoring the 

unknown term, WF(k), we have the first control law shown in Equation (3.30), 

- 1 1 1 
u(k) = [Y(k)(a +-)- - f(,)-NF(k)]-. 

!:it g(·) 
(3.30) 
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If MvF(k) is bounded such that the following condition is satisfied, 

sup ~MvF(k)I}::; li1, li1 E 9t+, (3.31) 
'vk?.T1 

where T1 is the starting time step when the on-line estimator starts compensating the 

control signal, it can be shown that the system stability under unanticipated system 

failures is guaranteed and the system performance error is also bounded (i.e., the sliding 

surface function, S , is bounded). This result can be proven and is summarized in the 

following theorem. 

Theorem 2: If the remaining .uncertainty of the failure dynamics is bounded such 

that Equation (3.31) is satisfied, using the intelligent on-line control 

law, Equation (3.30), the system stability after time step T1 is 

guaranteed and the performance error is also bounded for the system 

described by Equation (3.26) under unanticipated system failures. 

Proof: 

For S(k) > 0, plugging the control law, Equation (3.30), into inequality (3.28), we have 

(Y(k) + S(k))(a + ~t)-1 > Y(k)(a + ~t)-1 + MvF(k) > (f (k)-S(k))(a+ ~t)-1 • (3.32) 

Simplifying the inequality, we have 

So, 

1 
S(k) > [MvF(k)](a +-) > -S(k). 

!it 

1 1 
S(k) > [MvF(k)](a +-) and -S(k) < [MvF(k)](a +-). 

!it !it 
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Since S(k)>O and JMF(k)J~o. -S(k)< sup~MF(k)JXa+_!_) is always true. If 
Vk~Tf !J..t 

MF(k) is bounded such that the condition in Equation (3.31) is satisfied, the following 

inequality will hold for the worst condition 

(3.35) 

Apparently, sup~MF(k)JXa+_!_) = inf {s(k)}, which is the greatest lower bound of 
Vk~Tf /it Vk~Tf 

S(k) and - sup~MF(k)JXa+_!_) = sup{-S(k)}, which is the least upper bound of 
Vk~Tf !J..t Vk~Tf 

-S(k). Since S(k) > S(k + 1). and -S(k) < -S(k + 1), the following inequality will 

always hold 

for both situations, S(k + 1) > 0 and S(k + 1) < 0, which implies 

(3.37) 

For S(k) < O, 

(Y(k)-S(k))(a +_!_r1 > Y(k)(a +_!_r1 + MF(k) > (Y(k) + S(k))(a +_!_)-1 . (3.38) 
!it !it !it 

Simplifying the inequality, we have 

So, 

1 
-S(k) > [MF(k)](a +-) > S(k). 

!it 
(3.39) 

1 .1 
-S(k) > [MF(k)](a +-) and S(k) < [MF(k)](a +-). (3.40) 

!it !it 
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Since S(k)<O and IWF(k)l~O, S(k)< sup~WF(k)IXa+_!__) is always true. If 
\tk>Tr At 

WF(k) is bounded such that the condition in Equation (3.31) is satisfied, the following 

inequality will hold for the worst condition 

- S(k) > sup ~WF(k)IXa + _!__). 
\tk?.T1 At 

(3.41) 

Apparently, sup ~WF (k )lka + _!__) = inf {- S (k)} is the greatest lower bound of - S (k) 
\tk?.T At \tk?.Tf 

f 

. 1 . . 
and - sup ~WF(k)lka +-) = sup {S(k)} is the least upper bound of S(k). Since 

\tk?.T1 At \tk?.Tf 

-S(k) > S(k + 1) and S(k) < -S(k + 1), the following inequality will always hold 

·. 1 1 
S(k+l)~ sup~WF(k)lka+-) and - sup~WF(k)!Xa+-)~-S(k+l), 

\tk?.T1 At \tk?.Tf At 
(3.42) 

for both situations, S(k + 1) > 0 and S(k + 1) < 0, which implies 

We arrive at the same result as inequality (3.37). Thus, the system stability is guaranteed 

and the sliding surface function, S , defined by the system performance error is also 

bounded. 

Q.E.D. 

3.2.1.1 Discrete-time Sliding Mode Control (DSMC) technique 

One variation of the on-line control law can be derived based upon the discrete-

time sliding mode control technique proposed in [67]. The basic principle behind Sliding 

Mode Control technique is called invariant set theory [68]. The approach is to define a 
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sliding surface based on the desired dynamics and the control problem is solved by the 

appropriate control input to make the sliding surface an invariant set and attractive to all 

system trajectories using Lyapunov theory. The state variable trajectories starting at 

different initial conditions will eventually move close to the sliding surface. Once the 

trajectories move into the boundary layer, they will be forced to stay inside the boundary 

layer because the appropriate sliding mode control signal will drive the boundary layer to 

be an invariant set of the dynamic system. 

The discrete-time sliding model control law can be derived for a given discrete-

time nonlinear dynamic system with unmatched uncertainties. A controllable nonlinear 

system with uncertainty can be represented by Equation (3.43) 

x(t) = f (x(t)) + g(x(t))u(t) +A/(-), (3.43) 

where g(x(t)) = g(x(t))Ag(·) and both f (x(t)) and g(x(t)) are known functions of state 

vector x(t). Uncertainties (A/ 's) are bounded by constants and are explicit functions of 

the state vector, x(t). The scalar uncertainty factor Ag(·) is also bounded such that 

1/ µ ~ Ag ~ µ for some µ 2:: 1. The discrete-time model is derived by using forward Euler 

approximation, 

. _ x;(k+l)-xi(k) ._12 xi - , i- , , .. ,n, 
At 

(3.44) 

where At is the sampling period. So, the discrete-time model can be written as 

A 

x(k + 1) = x(k) + Atf(x(k)) + Atg(x(k))u(k) + AtAf(·). (3.45) 

Assume the uncertainty term A/(-) is bounded by 

ID(k)Af 01 ~ y(k)' (3.46) 

62 



where y(k) IS a constant vector and D(k) = asl = [ as as 
ax x(k) axl ax2 

as] ···-a- . 
xn x(k) 

x(k) = xd (k) - x(k), xd (k) is the desired trajectory at time step k, and S represents the 

sliding surface which is a function of x(k) and is defined based upon the desired 

dynamics. The desired control law for the system (3.43) to guarantee the boundary layer 

being attractive is determined in [67] as 

u(k)=µ2+l "(k)+[(µ2-lJl"(k)I+ . µK(k) ]sat(S(k)J 
2µ p 2µ p D(k)g(x(k)) <j>(k) ' 

(3.47) 

where 

"(k) - D(k) . [-J"(x(k)) + b.xd J 
p - D(k)g(x(k)) !it ' 

(3.48) 

<j>(k) = tit {D(k)g(k)[(3µ 2 + l)lft(k)I + (µ 2 - l)p(k)sat(S(k)/ <j>(k -1) )Jcµ 2 -1)/ 2µ 2 + 
2 

(3.49) 

K(k) = rt(k) + 2E, and rt(k) = y(k). (3.50) 

b.xd = xd (k + 1)- xd (k), E is an arbitrary positive constant, </J(k) is the boundary layer 

thickness, and the saturation function is defined to be 

l + 1 , if S (k) > <l>(k) 

sat( S(k)J = S(k) if IS(k)I::;; <j>(k) 
<l>(k) <l>(k) ' 

-1 , if S(k) < -<j>(k) 

For the detail of the control law derivations, please refer to the Appendix in [67]. 

With the sliding mode control signal, the system trajectories will be guaranteed to 

converge and be confined inside the boundary layer. This research work [67] presents a 

new technique to design a robust discrete-time sliding mode controller off-line based 
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upon discrete-time Lyapunov stability theory and guarantees the system stability with the 

known upper bound of the unmatched uncertainty. 

3.2.1.2 The alternative corrective control law 

Based upon the similar idea, tiNF(·) can be treated as the remaining uncertainty 

of the failure dynamics and the on-line approximation error can be used to estimate the 

upper bound of tiNF(·) in order to further improve the performance and increase the 

robustness property. Under different unknown failure modes, u(k) , the effective control 

law to accommodate the failures can be revised by adding a corrective control input, 

u2 (k), such that u(k) = u1 (k) + u2 (k) (i.e., ui(k) represents the nominal control law). 

The corrective sliding mode control law for the control problems of our interest is 

developed as follows: 

u 2 (k) = K(k) sat(S(k)J+U(k-TJ-NF(-), 
D(k)g(-) 9(k) g(·) 

(3.51) 

where Tc denotes the specific time step at which the difference of the sum square 

approximation error of the on-line estimator during two consecutive windows, Q, is 

below a pre-specified threshold, 8, at the first time. This implies that the on-line learning 

result cannot be further significantly improved (i.e., Q ::; 8 ). The boundary thickness and 

the controller gain are defined as 

<j>(k)=r,,(k)+E, (3.52) 

K(k) = r,,(k) + 2£, (3.53) 

where YJ(k) will be updated using the following equation 
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and 

11new(k) = {·~p~D(k),V(.)1}~ s~p{ D(k{ tP,Of,O-NF(·))}, if Q,, 6, (3.54) 

1J old , otherwise 

D(k) = S(k)-S(k-1) 
y(k)- y(k-1) 

y(k) = yd (k)- y(k), (3.55) 

where g(·) and Pi O represent g(y(k + d -1), .. , y(k + d - q)) and pi (k -r;), 

respectively, and yd(k) is the desired system output at time step k. The first term on the 

right hand side of Equation (3.51) can be obtained by setting µ = 1 in Equation (3.47) and 

ignoring the nominal controller part and the second term is the corrective control signal 

used to compensate the nominal controller. Equation (3.52) is obtained similarly by 

setting µ = 1 in Equation (3.49) and Equation (3.53) is the same as that in Equation 

(3.50). The boundary layer thickness is now redefined by the least upper bound of the 

remaining uncertainty, on-line identification error, as shown in Equations (3.52) and 

n 

(3.54). NF(·) denotes the on-line estimator which tracks LP/·)/;(·) on-line and the 
i=l 

n 

identification error is defined as Af (·) = LP/·)J; (·)- NF(-) which is the remaining 
i=l 

uncertainty of the.failure dynamics. The design parameter l represents a time period such 

that the least upper bound of the identification error is evaluated every time period, 

L = [k - l, k]. Equations (3.52)-(3.54) state that both the boundary layer thickness and the 

controller gain are automatically estimated and adjusted on-line by the estimator to 

further reduce control error. The on-line learning result is monitored and evaluated by the 

regulator using the following criterion: 
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k0 +1-l 

SSAEO= 2)Jy(k)-nfy(k)) 2 , 

k=k0 

k0 +21-1 

SSAEI = 2)!Y(k)-nfy(k))2, (3.56) 
k=k0 +l 

Q = ISSAEI - SSAEOI , 

where SSAEO and SSAEI stand for the sum square approximation errors of the on-line 

estimator during two consecutive windows, nfy(k) and fy(k) are the output of the 

estimator and the difference between the measurement and the output of the nominal 

model at time step k, respectively. The certain threshold value, 8, is defined such that 

once Q is less than or equal to the threshold value, the on-line estimation result is 

considered to be accurate enough and both the identification result and error can be used 

to further estimate a new least upper bound for the remaining uncertainty. 

Both on-line control laws are derived based upon discrete-time Lyapunov stability 

theory. Their stability constraints remain the same as shown in Theorem 2. The 

alternative corrective control law is different from the first one (i.e., Equation (3.30)) by 

estimating the upper bound of MF(·) and redefining the boundary layer thickness on-

line to provide more robustness property because of the attraction of the boundary layer. 

The price is more computations and design parameters to implement while the first 

control law is simple and straightforward. Another important point that should be 

mentioned here is that by adding U (k -Tc) in the second term of the right hand side in 

Equation (3.51) to delay the compensation of the nominal control law, it is assumed that 

the system under nominal control law will not lose the stability before time step Tc . In 

other words, Theorem 2 is not effective to describe the system stability during this time 
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period for the second control law because of the delay of compensation. However, later in 

the simulation, this delay results in less sensitivity in the selection of the learning rate in 

the learning process and a better transient performance. 

The intelligent on-line fault tolerant control scheme for case 1 can be summarized 

as follows: 

Off-line stage: 

Step 1. Obtain the nominal model, design the nominal controller, and test the 

performance of the controller with selected criterions (i.e., for example, mean 

square control errors, sum square errors). Decide the range within which the 

system is working under. the nominal condition (i.e., decide the fault detection 

threshold value) based upon the testing results. A simple but computationally 

cost-effective fault detection method used in the on-line simulations in Chapter 4 

is shown as follows: 

1 ko+ro-1 

\jl=- ~)yd(k)-y(k))2, 
(0 k=k0 (3.57) 

\jl > A , failure alarm. 

On-line stage: 

Step 2. (For the alternative corrective control law only): Set the initial upper bound, 170 , 

for the unknown failure mode dynamics. Usually, the physical limitations of the 

system are useful information for deciding the upper bounds. Decide the 

threshold value, 8, for the convergence criterion of the on-line estimator and the 

design parameter, l . 

Step 3. Keep monitoring the system behavior after the system is working and compare it 

with the nominal model response to decide if a fault has occurred. If the system 
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is still in the nominal condition range, nothing has to be done (i.e., evaluating 

Equation (3.57) and comparing with the fault detection threshold value, A). 

Step 4. If a fault is detected: initialize the on-line estimator to learn the failure mode 

dynamics by using the difference between the actual measured system output and 

the output of the nominal model as the desired target for on-line training. 

Step 5. For the first control law: 

Use the output of the estimator and control law in Equation (3.30) to compensate 

for the system failures. 

For the alternative corrective control law: 

Add the corrective control signal (i.e., u(k) = u1 (k) + u 2 (k), Equations (3.51)-

(3.55)). Evaluate Q at every time period l (i.e., Equation (3.56)). If Q:::; 8, set 

Tc equal to the current time step, k , and adjust upper bound of the remaining 

uncertainty (Note that Tc is set once and only once when the condition, Q:::; 8, 

satisfies the first time.) 

Step 6. Collect the next training pattern from the measurement, keep training the 

estimator, and observing the identification error of the estimator. Go back to the 

Step 5 for the control process. 

3.2.2 Case 2 

Consider a dynamic system under catastrophic failures, which can be represented 

by Equation (3.58). 

y(k + d) = f(y(k + d-1), ... , y(k + d - p)) + g(y(k-d -1), ... , y(k + d-q))u(k) 
n 

+ LfJ;(k -I; )f;(y(k + d -1), ... , y(k + d - P; ),u(k), ... , u(k - q;)). (3.58) 
i=l 
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This case corresponds to the situation that nominal system dynamics can be derived 

mathematically and it is in "linear in control" format. However, except for the nominal 

system dynamics, there is not much prior information for the multiple-failure dynamics 

available. It can only be described by a general function that depends upon the past 

system outputs, past control inputs, and the current control input. According to the 

analysis discussed in the last section, we need to determine the effective control signal to 

satisfy inequality (3.8) or (3.9) at each time step. In other words, the following 

inequalities have to be satisfied (i.e., ignore the remaining uncertainties), 

- 1 I - 1 I 
(Y(k) + S(k))(a +-)- > Ny(k + 1)+ nfy(k + 1) > (Y(k)-S(k))(a +-r 

M .· M 

if S ( k) > 0 , or 

- 1 I - 1 I 
(Y(k)-S(k))(a +-r > Ny(k + 1) + nfy(k + 1) > (Y(k) +S(k))(a +-r 

M M 

if S(k) < 0, 

which is equivalent to 

- 1 I - 1 I 
(Y(k) + S(k))(a +-)- - JO> gOu(k) + nfy(k + 1) > (Y(k)-S(k))(a +-r - JO 

8t 8t 

if S ( k) > 0 , or 

- 1 I - 1 I 
(Y(k)-S(k))(a +-)- - JO> g(·)u(k) + ,ify(k + 1) > (Y(k) + S(k))(a +-r - JO, 

8t 8t 

, if S(k) < 0, 

where Ny(k + 1) = J(y(k + d -1), .. . , y(k + d - p)) + g(y(k-d -1), ... , y(k + d -q))u(k), 

and 

n 

,ify ( k + 1) + nfy ( k + 1) = L, /J; ( k - T; ) J; ( y( k + d -1), ... , y( k + d - p; ), u ( k ), ... , u ( k - q;)) . 
i=I 
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The Jacobian of the nominal model with respect to the current control signal is 

clearly equal to g(y(k + d - l), ... , y(k + d - q)) and the Jacobian of the actual system 

dynamics with respect to the current control input is the sum of 

g(y(k + d -l), ... , y(k + d -q)) and the Jacobian of the failure dynamics with respect to 

the current control signal. Since the failure dynamics is realized through an on-line 

estimator, the latter can be approximated and computed through the estimator (i.e., 

computing anfy(k + l) ). However, the fact that the failure dynamics depends explicitly 
au(k) 

upon the current control input makes the on-line control problems more complicated. 

System stability and performance are directly related to the accuracy of the on-line 

estimator (i.e., the necessary condition in assumption 2). In the on-line situation, the 

computational time becomes a critical issue for both learning of the unknown dynamics 

and searching of the effective control input. Few training patterns from measurements 

may not be good enough to represent the real failure dynamics such that the on-line 

estimator may perform poorly for the searching of the effective control signal. However, 

as mentioned before, only a limited number of training patterns are allowed to use from 

both reality and accuracy point of views. Under this condition, the estimator may 

represent the failure dynamics only locally inside the domain of the limited training 

patterns and its confined neighborhood. Once the searching of the effective control 

actions moves far enough away from the domain of the training patterns, the 

extrapolation problems of the on-line estimator may emerge and degrade the system 

performance (i.e., possible violation of the necessary condition 2). This is the major 

difficulty to guarantee the system on-line stability under unanticipated catastrophic 

failures in real applications. 
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3.2.3 Case 3 

Consider a nominal system under catastrophic failures, which can be represented 

by Equation (3.59), 

y(k + d) = f(y(k + d -1), ... , y(k + d - p),u(k), ... ,u(k-q)) 

n 

+ LfJ;(k -r; )f;(y(k + d -1), ... , y(k + d - Pi)). (3.59) 
i=l 

This case corresponds to the situations where the mathematical format of the 

nominal system is not 'linear in control' or not easy to be derived. Nominal system 

dynamics is represented by a general function that explicitly depends upon the past 

system outputs, past control inputs, and current control input. Under these conditions, the 

nominal model may be realized by off-line modeling techniques (i.e., neural network or 

neural fuzzy network, etc.) and the nominal controller is also designed by the similar 

techniques [31-34]. Some prior information of the failure dynamics is available. It is 

known that the failure dynamics is only an explicit function of system past outputs, which 

makes this problem relatively easier to solve. According to inequalities (3.8) and (3.9), 

the control problem becomes to satisfy the following inequalities (i.e., ignore the 

remaining uncertainties), 

- 1 1 - 1 
(Y(k) + S(k))(a +-)- -njy(k + 1) > Ny(k + 1) > (Y(k)-S(k))(a +-f1 - njy(k + 1), 

M M 

if S ( k) > 0 , or 

- 1 1 - 1 
(Y(k)-S(k))(a +-)- - njy(k + 1) > Ny(k + 1) > (Y(k) + S(k))(a +-f1 - njy(k + 1), 

/J.t /J.t 

if S(k) < 0. 
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Because the failure dynamics does not depend explicitly on the current control input, the 

real plant Jacobian with respect to the current control input is exactly the same as the 

nominal plant Jacobian which we have good confidience with. This is because the 

nominal model can be obtained off-line and the accuracy within the desired system 

working range can be developed. At every time step, the effective control input to reduce 

the absolute value of the sliding surface function is searched based upon the negative 

gradient direction of the nominal model with respect to the current control input. Both 

sides of the inequalities are fixed during the whole searching process. In other words, the 

extrapolation problem caused by the on-line estimator because of the availability of only 

the partial information of the unknown failure dynamics at each time step in on-line 

situations does not exist during the searching process in this problem. Similar to the first 

case where the effective control input can be obtained by solving the inequalities, 

according to Theorem 1, since the first necessary condition can be relaxed by off-line 

manipulative effort, the system stability under catasrophic failures in this case can be 

guaranteed and the system performance error is also bounded as long as the necessary 

condition 2 is satisfied by the on-line estimator and the third condition is provided by the 

optimization algorithm. 

3.2.4 Case 4 

Consider a nominal system under catastrophic failures, which can be represented 

by Equation (3.60), 

y(k + d) = f(y(k + d -1), ... , y(k + d - p),u(k), ... ,u(k-q)) 
n 

+ L~; (k -I;)f;(y(k + d -1), ... , y(k + d - p;),u(k), ... ,u(k -q;)). 
i=l 

(3.60) 
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This is the most general form covering all of the above cases. Similar to case 3, 

the mathematical representation of the nominal system dynamics is not 'linear in control'. 

A general function is used to describe the system dynamics and the prior information of 

the failure dynamics is not available either, such that the failure dynamics is represented 

by a general function as well. To deal with the on-line fault accommodation control 

problems in this case, the inequalities (3.8) or (3.9) have to be solved in the most general 

way, 

(Y(k) + S(k))(a + __!_)-1 > Ny(k + 1) + nfy(k + 1) > (Y(k)- S(k))(a + __!_)-1 , 

~t ~t 

if S(k) > 0, or 

(Y(k)- S(k))(a +__!_r1 > Ny(k + 1) + nfy(k + 1) > (Y(k) + S(k))(a + __!_r1 , 
M M 

if S(k) < 0, 

where Ny(k + 1) = f(y(k + d -l), ... , y(k + d - p),u(k), ... ,u(k-q)), and 

n 

nfy(k +l) + nfy(k +l) = LB/k-~)l(y(k + d-1), ... , y(k + d- pi),u(k), ... ,u(k-qJ). 
i=l 

The effective control signals satisfying the above inequalities have to be searched at each 

time step through the nominal model and the on-line estimator. Similar to case 2, the 

major difficulty of guaranteeing system on-line safety may arise when the extrapolation 

problem emerges through the on-line estimator in the optimization process. 

The general strategy of the on-line fault accommodation technique for 

unanticipated catastrophic system failures is summarized in the following steps: 

Initial off-line stage: 
1. Obtain the nominal model and achieve its accuracy with the help of off-line 

modeling techniques. 
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2. Design the nominal controller with the required accuracy based upon the nominal 

model. 

3. Test both nominal model and controller, decide the fault detection threshold 

value, A , and ro for the fault detection scheme based upon expected measurement 

noises, modeling error, and testing results of system behavior under nominal 

controller. 

4. Choose the design parameters (maximum number of searching iterations, the 

structure of the on-line estimator, stopping criterion of the training process, and 

the length of the time-shifting data window, j ) according to the system 

computing capability, sampling rate, and the performance requirement. 

On-line stage: 
5. Keep monitoring the system performance once the system starts working. 

6. If system abnormal behavior is detected according to the fault detection 

mechanism, initialize the on-line estimator for learning process. 

7. Collect training patterns (the difference between the output of the nominal model 

and the measurement), adjust the parameters of the on-line estimator, and check 

the stopping criterion. 

8. Search the effective control signal to satisfy inequality (3.8) or (3.9). 

9. Repeat step 8 until the inequality holds, maximum number of iteration reaches, or 

the control input converges. 

10. Go back to step 7 and repeat for the control process. 
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CHAPTER IV 

SIMULATION STUDY OF THE ON-LINE FAULT 
ACCOMMODATION TECHNIQUE FOR UNANTICIPATED 

SYSTEM FAILURES 

4.1 CASE 1 

4.1.1 Single failure case 

Consider the following SISO nominal plant characterized by a NARMA model 

11t 11t 
y(k + 1) = y(k)--(cy(k)3 + k1y(k-1)) +-u(k), (4.1) 

m m 

where y(k + 1) and u(k) represent the system output and control input at time step k + 1 

and k, respectively. 11t is the sampling period and c, m, and k1 are the system 

parameters which are assumed to be known. Under unexpected failure modes, the system 

is represented by the following equations 

l1t 11t 
y(k + 1) = y(k)--(cy(k)3 + k1 y(k-1)) +-u(k) + /J(k -T)f(y(k), y(k-1)), (4.2) 

m m 

where f(y(k),y(k-1)) =bsin(y(k)xy(k-1)) is assumed to be unknown and b denotes 

an unknown constant gain. Two possible fault scenarios will be considered: 

abrupt fault: /J(k -T) = U (k -T), and 

incipient fault: /J(k -T) = (1- e-a(k-T) )U (k -T), 
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where /j._f = 0.01, c = 5, k1 = 100, m = 1, T = 100, and a= 0.05 . No information is 

available about the failure mode dynamics. In this simulation, b is chosen to be 0.5. In 

order to track the desired trajectory, yd (k + 1), the nominal control input, u1 (k), for 

Equation (4.1) is chosen as 

m /j._f 3 
u1(k)=-(-(y(k)--(cy(k) +k1y(k-l)))+yd(k+l)). (4.3) 

/j._f m 

The desired trajectory was generated by the following reference model: 

reference input: r(k) = 0.2sin( kn), 
100 

desired output: yd (k + 1) = 0.6y d (k) + 0.2y d (k -1) + r(k), and 

the sliding surface, S , is selected as 

S(k) = yd(k)-:d(k-1) _ y(k)-:(k-1) +lO(yd(k)-y(k)). (4.4) 
t t . 

The design parameters of the proposed intelligent control scheme for the simulations are 

selected as follows: 

(J) = 5, and A = 10-5 . 

For the alternative corrective control law only, we choose 

1]0 = 0.5, 8 = 0.001, and l = 10. 

4.1.1.1 Abrupt fault case 

Figure 4.1 shows the actual system output and the desired output within the total 

simulation time steps, 2,000, when the nominal controller is applied alone. As seen, the 

system performance degrades and a large deviation from the desired trajectory starts after 

the time step reaches 100, when the system suddenly experiences an abrupt fault. Figure 
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4.2 shows the system response when the proposed intelligent control scheme is applied 

with the alternative corrective control law. As clearly shown, the system performance is 

greatly improved. The controller successfully drives the output of the unknown faulty 

system back to the desired trajectory with a small range of error bounded by the 

estimated uncertainty. The fault is actually detected by the control regulator at time step 

115. The control signal is adjusted by adding the corrective control signal, u2 (k), and a 

Multi-Layer Perceptron (MLP) neural network with two-input neurons, 30 neurons in the 

first and second layer, and one-output neuron (2-30-30-1) is initialized and learns the 

unknown failure mode dynamics on-line by using the static back-propagation algorithm 

in a non-batch mode [29,34,57]. At time step, 180, the on-line identification error 

converges. The control input is tuned again by using the output of the NN identification 

model and the new least upper bound for the remaining uncertainty is estimated by using 

the converged identification error to further reduce the control error. 

Figure 4.3 shows the actual control error (difference between the actual output 

and the desired output) at each time step. Figure 4.4 is the on-line NN identification error 

plot. Note that there is no identification error defined before time step 115 because the 

learning of the neural network is initialized right after a fault is detected. Figure 4.5 

shows the actual S function and the estimated boundary layer thickness. As shown, the 

intelligent controller adjusts the boundary layer thickness on-line, which represents the 

upper bound of the remaining uncertainty in order to improve the system performance 

and to reduce control effort. Because of the sliding mode control signal, the S function 

will be confined within the boundary layer, as shown in Figure 4.5. Figure 4.6 shows the 

actual control signal at each time step. Figure 4.7 shows the system response when the 
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proposed intelligent control scheme is applied with the first control law as given in 

Equation (3.30). The same neural network on-line estimator with the same structure is 

used for the first control law and the learning rate for the on-line training is set to be 0.05. 

Comparing this response with Figure 4.2, we find that both control laws successfully 

drive the system output back to the desired trajectory within a small range of error. 

Although the system response under the first control law seems to have relatively larger 

error than that under the alternative corrective control law, the response under the first 

control law is much smoother while the system output under the alternative corrective 

control law seems to oscillate around the desired trajectory. The reason is obviously from 

the fact that the alternative corrective control law is based upon the discrete-time sliding 

mode control technique and it is the nature of the sliding mode control to drive the system 

output bouncing around the desired dynamics within the boundary layer. Figure 4.8 is the 

corresponding S function plot at each time step under the first control law. 

system response vs. desired output 

I I I 
1 -)_/\·······-·······-··t-- • ' , . , , ' I , 

. \ ' ! /\ ! (\ I (\ I (\ I .1, ,·:/\.. : .. 1 .. l\ I,! 

,., /-\---! ---1 1 \---!/ \---: 1 
\-~ I '\,--:. --li- 1,---I ---1 

)! \ !, i, . !i d , 1/ Ii , !/ I !/ 
! ., '/ ' ;, ·' I ·J " ' 'I ' ' 

l \ ii , : , 11 i/ 1 :1 ii , ;r I 1. 1 11 1 
I ' 'I ' ,. • ,, ·1 . I ' . 11 ·1 ' I ,.. . 'I . • 1 ~ J! ~ fl , ! ~ i i ! : I ; i \ i, i 

········-·-t·····-·····1············· ···········r· ·········r········f·········· t···········r·························r············r·········l···········r········--r············,·············, ··········-y···········r·············,········· 

\ l \I\!\ i \!I!\ i \I\ j \ 

-0 .5 \ .... ...I \ ..... ..i L.J t... . ..l \ /! \ ~ \ I t ... .J 1 ~ 1 

vi ijJ ul ~I ~I Yl ~ ~I Bl 1J 
·1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

0 2 0 0 4 0 0 6 0 0 BOO 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 

solid line: actual output dashed line: desired output 

Figure 4.1 System response vs. desired output with nominal controller only 
(single abrupt fault case; case 1) 
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Figure 4.9 System response vs. desired output with nominal controller only 
(single incipient fault case; case 1) 
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Figure 4.10 System response vs. desired output with the alternative corrective control law 
(single incipient fault case; case 1) 
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· (single incipient fault case; case 1) 
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Figure 4.14 Actualcontrol input with the alternative corrective control law 
(single incipient fault case; case 1) 

4.1.1.2 Incipient fault case 

Figure 4.9 shows the system response together with the desired output when the 

nominal controller is applied alone and the system suffers from an incipient fault. Again, 

the performance degrades slowly after the incipient fault occurs at time step 100. Figure 

4.10 shows the response of the same system that suffers from the incipient fault when we 

use the proposed intelligent control scheme with the alternative corrective control law. 

Apparently, the result is greatly improved. Figure 4.11 is the actual control error plot. The 

system dynamics keep changing with time until the time step reaches 900. After that, the 

incipient fault dynamics converges. However, the intelligent controller still tries to on-

line estimate the bound for the remaining uncertainty in order to reduce the performance 

error after it detects the fault as seen from Figures 4.12 and 4.13. The actual fault is 

detected at time step 125 in this case. Figure 4.14 shows the actual control input at each 

time step in this incipient fault case. 
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4.1.2 Multiple failures case 

In this Subsection, multiple system component failures are generated to validate 

the proposed intelligent control technique. The same nominal model is used again in this 

Subsection. However, the system model under multiple-failure modes is represented by 

the following equation 

f1t /1t n 
y(k + 1) = y(k)--(cy(k)3 + k1y(k-1)) +-u(k) + L/3; (k -I'; )f/y(k), y(k-1)), 

m m M 

(4.5) 

where /3; (k - I';) and J; O are the time profile and the failure dynamics under failure 

mode i, respectively. Without loss of generality, consider n = 2 where f 1 O and f 2 O 

represent unknown failure dynamics and /31 0 and /32 O are their corresponding time 

profiles, respectively. 

4.1.2.1 Consecutive abrupt failures case 

Two abrupt failures occur at time step 20 and 100, respectively, as shown below: 

f 1 (y(k ), y(k -1)) = 0.5 x sin(y(k) x y(k -1)), /31 (k - I;.) = U (k - I;.), where I;. = 20, and 

f 2 (y(k), y(k-1)) = 0.5x y(k)x y(k-1), /32 (k -Tz) = U(k-T2 ), where T2 = 100. 

Figure 4.15 shows the system behavior driven by the nominal controller only. As shown, 

without properly accommodating the failures, the system finally becomes unstable and 

the output goes unbounded after time step 230. On the other hand, Figure 4.16 shows the 

system output together with the desired output when the proposed intelligent alternative 

corrective control law is applied to the same system. Apparently, the failure dynamics 

have been properly accommodated and the control signal has been corrected by the 
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alternative corrective control law. Figure 4.17 shows the system response under the same 

failure situations with the first control law. 
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Figure 4.15 System response vs. desired output with nominal controller only 
(consecutive abrupt faults case; case 1) 
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Figure 4.16 System response vs. desired output with the alternative corrective control law 
(consecutive abrupt faults case; case 1) 
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Figure 4.17 System response vs. desired output with the first control law 
(consecutive abrupt faults case; case 1) 
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4.1.2.2 Consecutive incipient failures case 

Figure 4.18 shows the system response controlled by the nominal controller only 

when the system suffers consecutive incipient faults. The first incipient failure starts at 

time step 20, and, before the time profile of this fault converges, another incipient failure 

initiates at time step 60. The actual time profiles of these two incipient failures are given 

as follows: 

system response vs.de sired o u Ip u I 

s o 11 d 11 n e : a c I u a I o u t p u I d a s h e d I In. e : d e s i r e d o u I p U l 

Figure 4.18 System response vs. desired output with nominal controller only 
(consecutive incipient faults case; case 1) 
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Figure 4.19 System response vs. desired output with the alternative corrective control law 
(consecutive incipient faults case; case 1) 
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The failure dynamics are defined to be the same as those in 4.1.2.1. As shown in Figure 

4.18, the system output diverges to infinity because the nominal controller cannot 

properly accommodate the first failure, and, after the second failure happens, the system 

behavior is eventually out of control. Figure 4.19 indicates how the proposed alternative 

corrective control law handles the consecutive incipient system component failures. 

Observing Figures 4.20 and 4.21, we can easily conclude that the alternative corrective 

control law is adjusting itself on-line to accommodate the system failures and confines 

the performance error within a bounded range. Figure 4.22 shows the response under the 

first control law. 

4.1.2.3 Mixed incipient and abrupt failures case 

In this Subsection, the situations where the system suffers both an incipient fault 

and an abrupt fault are simulated. Figure 4.23 shows the system behavior when an 

incipient fault starts first at time step 50 and then an abrupt fault occurs at time step 100. 

The failure mode dynamics are given as follows: 

incipient failure dynamics : f 1 O = 1- e-0·7IY<kJ-yCk-lll, and 

abrupt failure dynamics : J2 0 = 0.46 x y(k) x y(k -1), 

where time profiles /J1 (k - I;_) = (1- e-a1 Ck-Ti) )U (k - I;_) , a1 = 0.02, I;_ = 50, and 

/J2 (k-Tz) = U(k-Tz), T2 = 100. 

Again, the system becomes unstable at time step 240 when it is controlled only by the 

nominal controller. Figures 4.24 and 4.25 show the proposed alternative corrective 

control law and the first control law successfully accommodate both system failures, 

respectively. Figure 4.26 shows the system response plot under the nominal controller 
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when it first suffers an abrupt fault at time step 100 and then an incipient fault starts at 

time step 140. The failure mode dynamics are defined as follows: 

abrupt failure dynamics : / 1 (·) = 1- e --o.43IY<k)-y(k-l)I , and 

incipient failure dynamics: / 2 O = 0.6xcos(y(k)x y(k-l)), 

where time profile /31 ( k - Ti) = U ( k - Ti) ; Ti = 100 , and 

Figure 4.27 is the same system response plot when the alternative corrective control law 

is applied. As shown, the significant performance improvement has been achieved by 

using the proposed intelligent controller. 
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4.1.3 A benchmark problem: three-tank system 

A well-regarded FDI benchmark problem shown in Figure 4.28 [85], the 

controlled three-tank system, is used in this Subsection to demonstrate the design of the 

nominal controller, the selection of the design parameters, and how to implement the 

proposed control technique in real application. The state equations of the system are 

given as 

.x1 = (-e1S Psign(x1 -x3 )~2glx1 -x3 1 + u1 )/A+ 711 (x,u) 

.x2 = (-e 3SPsign(x2 - x3 )~ 2glx2 -x31-e2SP~2gx2 +ui) I A-q20 +172 (x,u) 

x3 = (e1S Psign(x1 - x3 )~2glx1 - x31- e3S Psign(x3 - x2 )~2glx3 - x2 I) I A+ 173 (x,u) 

(4.6) 

Pump 1 

0~ A 
\ 

i Tank 1 

\ 
\ 
\ 
\ 

ui 

Leakage (Fault 1) 

\ 
\ 

Tank 3 

I 
I 

Pump2 

1r i Tank 2 
Uz 

Leakage (Fault 2) 

Figure 4.28 A benchmark problem (three-tank system) 

~ 

Outflow rate 

Three tanks are identical and have a cylindrical shape with cross section A= 0.0154 m2 . 

The cross section of the connection pipes is SP = 5 · 10-5 m2 and the liquid levels in the 

three tanks are denoted by x1 , x2 , and x3 , respectively with (0 ~ X; ~ 0.69 m, Vi= 1,2,3). 

The control inputs, u1 and u2 , are the flow rates coming from pumps 1 and 2 to tanks 1 
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and 2, respectively. q 20 = c1S P~2gx2 is the outflow rate from tank 2. c1 = 1, c2 = 0.8, 

and c3 = 1 denote the non-dimensional outflow coefficients, g is the gravity 

acceleration, and 17;, Vi= 1, 2, 3 represent the corresponding modeling uncertainties due 

to the inaccuracy on the cross section of connection pipes. The discrete-time model is 

derived by using forward Euler approximation, 

. ::::: X;(k+l)-x;(k) ·= 123 X; , i , , , 
llt 

(4.7) 

where llt = 0.1 second represents the sampling period. Plugging in Equation (4.7) and re-

arranging the state equations, we have the nominal model in the form of Equation (3.26) 

such that the corresponding J(,) and g(·) are found for each state equation. Initial 

condition is set to be the liquid levels x1 (0) = x2 (0) = x3 (0) = 0.15 m and the control 

objective is to keep the liquid levels at 0.2m (i.e., 

x1a (k) = x2d (k) = x 3a (k) = 0.2, Vk > 0). The modeling uncertainty is assumed to satisfy 

l11;(x,u)l~11;, V(x,u)E X, i=l,2,3, (4.8) 

where X represents the region of interest. In order to simulate the effects of modeling 

uncertainty and possible noises in· the measurements, uniformly distributed random 

values satisfying Equation (4.8) with 171 = 3.5xl0-4 , 172 = 2.05x10-4, and 173 = 6.5x10-5 

are added to the corresponding nominal state equations. 

4.1.3.1 Design of nominal controllers 

The design of the nominal controllers is based upon Equation (3.30) without the on-

line estimator. Only the liquid levels x1 (k) and x 2 (k) need to be considered in the 

controller design process since x3 (k) will eventually reach the same level as long as we 
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can keep x1(k) = x2 (k) = 0.2 m based upon the U tube principle. Thus, the nominal 

controllers are 

- 1 1 
U1 (k) = [Yl(k)(a + /)..tr - fl(·)]/ gl(·), (4.9a) 

- 1 1 
u2 (k) = [Y2(k)(a + M)- - /2(·)]/ g2(·), (4.9b) 

where Yl(k) = Xia (k + 1)- Xia (k) + X1 (k) + ax1a (k + 1), 
M 

Y2(k) = x2d (k + 1)- x2d (k) + x2 (k) + ax2d (k + l). 
M 

/1(·), /2(·), gl(·), and g2(·) are the corresponding terms obtained when we re-organized 

the nominal model into the form of Equation (3.26). Two sliding surface functions S1 

and S2 are defined for x1 and x2 , respectively, with the same form as Equation (3.1) and 

a =10. The sum of the mean square control errors (i.e., x/(k) = [x1a(k)-x1(k)] 2 and 

x/ (k) = [X2d (k)- X 2 (k)] 2 ) Within a fixed length (i.e., 5 time Steps) of time-shifting 

window is selected as a criterion to test performance of the nominal controllers with the 

presence of modeling uncertainty and possible noises. Based upon the testing results, the 

fault detection threshold value is then selected as 2.0xl0-3 in steady state condition. 
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Figure 4.29 System on-line response with the nominal control law (the three-tank system) 
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4.1.3.2 Multiple failures: leakages in the tanks 

Consider an abrupt leakage in tank 1 and an incipient leakage in tank 2 whose failure 

dynamics are 

f 1 (k) = -c17tr12 ~2gx1 (k), /31 (k -T1) = U (k - Ti), Ti = 270, 

f 2 (k) = -c21tr22 ~2gx2 (k),/32 (k-T2 ) = (1- e-a.z(k-Tz))U(k -T2 ), a 2 = 0.063, T2 = 426, 

(4.10) 
where r1 = 7.3xl0-2 and r2 = 8.4xl0-2 • No information in Equation (4.10) is assumed to 

be known except for the state variables x1 (k) and x2 (k). The physical knowledge of the. 

system provides us useful inforination to determine the initial upper bound of the failure 

dynamics. Since the failures are possible leakage problems in the tanks (i.e., the failures 

of system components), the maximum effect caused by the failure is suddenly draining 

out the liquid in the tank, which corresponds to the worst failure condition where the tank 

is completely broken. Thus, the initial upper bounds for failures can be chosen as the 

liquid levels in the tanks at the corresponding time step. Two separate 1-5-5-1 MLP 

neural networks are used to serve as the on-line failure estimators for f 1 and f 2 , 

respectively, with the same static backpropagation method as the training algorithm. The 

selection of the MLP network structure is a design parameter and may not be optimal in 

this case. Generally speaking, a more complicated structure may be required for a more 

complex function with better performance and the computational cost is expected to 

increase with the complexity. The on-line approximation result is monitored by the 

criterion shown in Equation (3.56) with l = 10 and the least upper bound of the failure 

uncertainty is computed according to Equation (3.54). Figure 4.29 shows the liquid levels 

in the tanks under the nominal control law. As the first leakage in tank 1 occurs, the 

liquid level 1 drops quickly causing dropping of the liquid level in tank 3. As the second 
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leakage problem occurs in tank 2, the liquid levels eventually drop below the initial 

condition. Applying the proposed control technique with the corrective control law, we 

observe significant performance improvement by proper reconfiguration of the control 

inputs which are the flow rates from pumps 1 and 2, as shown in Figure 4.30. The 

implementation of the first control law for this problem is straightforward and the result 

is shown in Figure 431 (i.e., with the same MLP estimators and the delay of 

compensation). 
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Figure 4.33 System response vs. desired output with the first control law in false alarm situation 

4.1.4 Fault detection delay and false alarm 

The simulation results shown in Figures 4.24 and 4.25 indicate a fault detection 

delay situation. One system failure occurred at time step 50 and it was not detected until 

the time step reached 100 at which time the intelligent control regulator initialized the on-

line estimator. However, the system response is still quite satisfactory because the 

response affected by the failure is so small that no adjustment of the control law is 

96 



required. The on-line learning and compensation is performed only after the effect caused 

by the failure is significant enough to degrade the performance. In order to test the 

proposed intelligent control framework in false alarm situation, a false failure detection 

signal is generated at time step 100 in the same system with the same failure situations. 

Right after the initialization of the on-line estimator, the failure dynamics are eliminated 

to test how the system responds to this situation. Figures 4.32 and 4.33 show the system 

output plots when the alternative corrective control law and the first control law are 

applied, respectively. The result shows compliance with the expectation from the 

analysis. The on-line estimator is triggered to learn the remaining uncertainty between the 

nominal model and the actual system dynamics in noise-free situations. 

4.1.5 Simulation test in noisymeasurement situations 

This subsection is dedicated to investigate how the intelligent control scheme 

proposed will react in noisy environments. Without loss of generality, only the multiple­

failure situations will be used to test system performance with noisy measurements. In all 

the simulation tests, random Gaussian white noise with zero mean and different variances 

will be added to the measurements. All the necessary computations including the on-line 

identification of the unknown failure dynamics, computation of the sliding surface 

function, and searching of the effective control input are based upon the noisy 

measurements without any noise reduction or cancellation process (i.e., assume no prior 

information of the noise model is available). Figure 4.34 shows the system response in a 

consecutive abrupt failures case (Subsection 4.1.2.1) controlled by the intelligent control 

regulator using the alternative corrective control law in the noisy environment with 
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Gaussian white noise, variance 4.0 x 10-4 in the measurements. The noisy measurements 

together with the actual white noise are shown in Figure 4.35. Figures 4.36-4.37 and 

4.38-4.39 are the test results for the consecutive incipient faults case (Subsection 4.1.2.2) 

and the abrupt-incipient fault case (Subsection 4.1.2.3), respectively, when the same 

variance Gaussian white noises are added to the measurements. As clearly seen, the 

system performance degrades significantly in noisy environments. It is a fully expected 

result since the measurements contain unpredictable noises such that the on-line estimator 

will have larger remaining uncertainty with regards to the failure dynamics and all the 

computations for the effective control inputs are based upon the contaminated 

measurements. 
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Figure 4.36 System response in 4.1.2.2 consecutive incipient failure case (with Gaussian white noise variance 4e-
4) using the alternative corrective control law 
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Figure 4.39 Actual noisy measurements vs. Gaussian noises in 4.1.2.3 abrupt-incipient failure case (with 
Gaussian white noise variance 4e-4) using the alternative corrective control law 

Among numerous simulation tests in noisy environments, it is found that the 

system performance is sensitive to the variance of the noise and the system behavior 

seems to oscillate around the desired trajectory. For the noise with variance higher than 

6.4xl0-3 , not only is the system performance significantly degraded, but also the 

possibility of instability is increasing. The pre-processing of the noisy measurements 

seems to be an important and necessary step for a better system performance. 

4.1.6 Comments and discussions 

The first control law derived directly from the discrete-time Lyapunov stability 

theory is simple, straightforward, and requires less computation and fewer design 

parameters to implement in a real-time situation. Once the abnormal system behavior is 

detected, the intelligent control regulator switches the control action (nominal controller) 

to follow the first control law and compensates immediately for the failure dynamics 

based upon the realization of the neural network on-line estimator for the unanticipated 
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failure dynamics without performing any convergence test of the on-line learning. The 

simulation results show: 

1. Although the system response for the first control law has relatively larger 

performance error than the error under the alternative corrective control law, it 

exhibits much smoother response. 

2. The system response is sensitive to the learning rate of the on-line training 

algorithm (i.e., static backpropagation algorithm is used here). The reason is 

apparent from the fact that the first control law does not perform the convergence 

test before the on-line learning result is used to compensate for the failure 

dynamics. Although it is true that the gradient descent algorithm is stable given a 

small enough learning rate, small learning rates will usually slow down learning 

and degrade the transient control performance, especially in the on-line situation 

where the result has a significant and immediate effect on the control error. 

The alternative corrective control law based upon the discrete-time sliding mode 

control technique requires more design parameters and more computational cost to 

implement. This is a corrective control law that is used to compensate the nominal 

control law for the accommodation of unexpected failure dynamics. The simulation 

results show: 

1. Generally speaking, the system performance error is smaller than that under the 

first control law. Although the on-line estimation of the boundary layer thickness 

for the remaining uncertainty of the failure dynamics based upon the on-line 

approximation results in much more computational burden, it is well justified in 
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the system performance and makes the control law almost insensitive to the 

learning rate of the on-line training process. 

2. The delay of nominal control law compensation (i.e., with U (k -Tc) in Equation 

(3.51)) usually results in a better transient behavior although the system stability 

cannot be theoretically guaranteed during the time period of delay. 

3. Due to the nature of the sliding mode control technique, the system response will 

oscillate around the desired dynamics within the boundary layer. 

4.2CASE2 

4.2.1 Example 1 

Consider the same system model we used in 4.1.2.1, Consecutive abrupt failures 

case, where both the failure dynamics are explicit functions of past system outputs only 

and the system behavior will go unbounded under the nominal controller. It actually 

belongs to the first case. However, the prior information of the failure dynamics are not 

available or not accurate enough such that we may misclassify it. Thus, the control 

strategy of case 2 is used to deal with the on-line fault tolerant control problems. 

Assume that the inaccurate or insufficient prior information indicates that the 

failure dynamics is an explicit function depended upon the past system outputs, 

[y(k), y(k-1)], but, we are not sure whether or not the current control input is involved 

in the argument. So, the more general argument, (i.e., [y(k), y(k-1), u(k)]), is chosen as 

the input of the NN on-line estimator. Right after a system fault is detected, a 3-2-1 MLP 

neural network is initialized as the on-line estimator for the unknown failure dynamics. A 
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time-shifting data window contains the most recent 10 sets of the system input-output 

measurements that are used as training patterns at each time step and the Levenberg­

Marquardt algorithm with Bayesian regularization is used to train the NN estimator [66]. 

When the learning process converges, a simple gradient descent optimization algorithm 

with variable learning rate is applied for the searching process of the effective control 

input. 

Figure 4.40 shows the on-line control result, where the solid line represents the 

actual system output and the dashed line is the desired output. As clearly seen from the 

figure, after the time step 32 (i.e., the first abrupt fault happened at time step 20, almost 

being detected immediately, and 10 sets of measurements were collected for the training 

process), the intelligent controller tries to drive the system output to follow the desired 

trajectory based upon only partial information of the failure dynamics available at each 

time step to estimate the Jacobian of the failure dynamics with respect to the current 

control input and search the best effective control action to satisfy inequalities (3.8) or 

(3.9). The system output seems to be controlled well even when there is another abrupt 

fault happened at time step 100. Figure 4.41 shows the output prediction from the on-line 

estimator for the unknown failure dynamics at each time step together with the actual 

output from the failure dynamics. The actual control input at each time step is shown in 

Figure 4.42. 

A much better performance can be obtained if we increase the length of the time­

shifting data window, j, from 10 to 20, using the same network structure (i.e., 3-2-1 

MLP) and the same training algorithm (i.e., Levenberg-Marquardt algorithm with 

Bayesian regularization). However, instead of using only 10 sets of input-output 
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measurements, the most recent 20 sets of the measurements are used to train the NN on-

line estimator at each time step. 
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8 0 0 

The simulation result is significantly improved as shown in Figure 4.43. Figure 

4.44 shows the output prediction of the failure dynamics from the NN on-line estimator 

together with the actual failure output. As shown, both system performance and 

prediction are much better and smoother than those in the last result. The second fault, 

happened at time step 100, caused a slight deviation of the system output from the desired 

output, but it was quickly controlled by our intelligent on-line control regulator. Figure 

4.45 shows the sliding surf ace function at each time step. It has been controlled within a 

small range of deviation from zero (i.e., the desired system behavior). The actual control 

input at each time step is shown in Figure 4.46 and it is much smoother, compared with 

that in Figure 4.42. 

Although the result is significantly improved using these design parameters for 

this case, we do exert much more computational cost as that in the last simulation since 

we double the length of the data window and trade the computational cost for the system 

performance. The result again shows the trade-off dilemma we have to face when we 

select the design parameters for the on-line fault tolerant control problems. Clearly, all 
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these design parameters have to be reasonable for the hardware computational capability 

in the real applications. 

The simulation result for the same failures in consecutive incipient faults using 

20-data window with the following time varying profiles are shown in Figures 4.47-4.50. 
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4.2.2 Example 2 

Consider the same nominal system model with different failure dynamics as 

shown in Equation (4.11), 

8t 8t i, 
y(k + 1) = y(k)--(cy(k)3 + k1y(k -1)) +-u(k) + L.J /J; (k -1'; )J; (y(k), y(k -1),u(k)), 

m m i=l 

(4.11) 

f 1 (y(k), y(k -1)) = 0.5x sin(y(k)x y(k -1)), f]1 (k -Ti)= U(k -T1), where Ti = 20, and 

The first failure dynamics does not explicitly depend on the current control input. 

However, the second failure dynamics does. Apparently, the intelligent control technique 

in case 1 is not adequate to handle this problem. A 3-3-1 MLP network with argument, 

[y(k ), y(k -1), u(k )], as network input is used as the on-line estimator in this example. 

The number of data sets for the on-line training is set to be 20 and the Levenberg-

Marquardt algorithm with Bayesian regularization is used in the training process. Figure 

4.51 shows the system output when the nominal controller is applied alone. Appreciable 

performance error appears after the first fault happened and the error gets even larger 

after the second fault occurred. However, when the proposed intelligent control regulator 

is applied, the system performance is apparently improved. The simulation results 

together with the desired output are shown in Figure 4.52. The output prediction from the 

on-line estimator at each time step together with the actual failure dynamics are plotted in 

Figure 4.53 and the control input at each time step is shown in Figure 4.54. The S 

function is plotted in Figure 4.55. Figures 4.56-4.59 show the simulation result for the 

same failure situation in the consecutive incipient faults with the following time profiles: 
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Figure 4.56 System response vs. desired output (20-data window; consecutive incipient faults; example 2; case 2) 
solid line: output of on-line estimator dashed line: actual failure output 
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Figure 4.57 Output prediction from the on-line estimator vs. actual failure dynamics output 
(20-data window; consecutive incipient faults; example 2; case 2) 
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(20-data window; consecutive incipient faults; example 2; case 2) 
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4.2.3 Simulation test in noisy measurement situations 

In order to test the proposed intelligent control strategy for case 2 in the noisy 

environment, the same Gaussian noise with zero mean and different variances are added 

to the actual output data as noisy measurements. The simulation tests are divided into 2 

parts. The first part shows the system behavior, output predictions from the on-line 

estimator, noisy measurements and the added noises, sliding surface function, and actual 

control input for Example 1 (Subsection 4.2.1). The second part shows the simulation 
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results for Example 2 (Subsection 4.2.2). The results of the first part for consecutive 

abrupt faults with variance 2.25 x 10-4 are shown in Figures 4.60-4.64. Apparently, the 

system performance degrades as the noise variance increases. In the second part, Figures 

4.65-4.69 are the results for the consecutive incipient failures in example 2 with noise 

variance 2.25xl0-4 • 
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4.2.4 Comments and discussions 

In Section 4.2, the simulation results of the intelligent control strategy for on-line 

fault tolerant control problems in the situations of case 2 are presented. According to the 

theoretical analysis presented in Chapter 3, the on-line fault tolerant control problems for 

unanticipated system failures of case 2 can be solved by deploying an estimator to 

identify the failure dynamics on-line and searching for the effective control action to 
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satisfy inequalities (3.8) or (3.9). Among the numerous simulation tests, these expected 

results have been verified and the following observations can be drawn. 

1. The design parameters such as the length of the time-shifting data window and 

training algorithms have substantial effect on the system performance. It is found 

that using 20 pairs of input-output measurements as the training pattern at each 

time step has a much better system performance than using 10-data window. 

Among all simulation tests, there does exist some situations where the system 

behavior is out of control when the design parameter, the length of the time­

shifting data window, 10 is used. It is also obviously shown that using the training 

algorithm with regularization will generally result in a better system behavior than 

using the algorithm without regularization since this technique can relax the 

network over-fitting ,problem and eliminate the guesswork in determining the 

optimal network structure [65,66]. 

2. Although the scenario with large noise is virtually equivalent to the situation with 

sensor failure where all the measurements have no actual meaning, the system 

performance still seems to be sensitive to the noise. It is found that the 

performance error increases quickly in the environment with the high variance 

white noise and the possibility of system instability increases significantly when 

the noise variance is larger than l.Oxl0-3 • Apparently, it is a reasonable result 

and fact that the contaminated noisy data have significant negative influence in 

both the computation of the sliding surface function and the searching process of 

the effective control signal. 
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4.3 CASE3 

4.3.1 Example 1: time-varying abrupt-incipient failures 

The system dynamics under unknown multiple-failure modes is represented by 

Equation (4.12), 

n 

y(k + 1) = 0.3y(k) + 0.6y(k -1) + u(k)2 -20u(k) + LfJi (k - ~ )Ji (y(k), y(k -1)), (4.12) 
i=l_ 

where the failure dynamics are defined as · 

k . . 
n=2, f 1(y(k))=0.05x-· xcos(y(k)), /31(k-7'i)=U(k-7'i), Ti =20, 

20 
f 2 (y(k), y(k-1)) = 0.6x~.-ly-(k_)_x_y-(k---l-)I , /32 (k-T2 ) = l-e--0.osck-10o)U(k-T2 ), and 

T2 = 103. 

The nominal system dynamics is first realized by a 3-30-1 MLP neural network. Training 

patterns are collected by feeding 2,000 uniformly distributed random input signals 

varying from -1.5 to 1.5 into the nominal system and, after a normalization process of 

the training patterns, the Levenberg-Marquardt_algorithm with Bayesian regularization is 

used to train the NN nominal model off-line [66]. The corresponding nominal controller 

can be developed using dynamical backpropagation or backpropagation-through-time 

algorithm [31-34]. However, these two methods are computationally expensive and 

complex since the training process of the NN nominal controller requires the realization 

of the NN nominal model. In this simulation, the nominal controller is developed off-line 

based upon the same technique discussed in Chapter 3. Through the realization of the NN 

L 

nominal model, the effective control input to reduce the S function is, first, searched, 

and then, the input-output patterns is collected for the training process of the NN nominal 

controller. In this way, the training of the NN nominal controller does not require 
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knowledge of the nominal model and the complexity of the dynamical backpropagation 

or backpropagation-through-time algorithm can be avoided (i.e., the training of the NN 

nominal controller requires only the static backpropagation algorithm.). 

Another 3-2-2-1 :MLP network is deployed as the on-line estimator and the on-

line learning algorithm used in this case is the static non-batch form backpropagation 

algorithm (i.e., same as those used in case 1) [57]. Figures 4.71-4.73 show part of the on-

line simulation results. As dearly shown, the system failures have been properly 

accommodated such that the system output has been driven back to the desired trajectory 

while the system behavior under nominal control law without appropriate adjustment of 

the control action is eventually out of control due to the time-varying failure dynamics as 

shown in Figure 4.70. Observing Figure 4.73 closely, we find that the effective control 

input generated by the intelligent control regulator still keeps changing without periodical 

pattern within 800 time steps, which is obviously because the regulator keeps adjusting 

the control inpu,t to compensate the time-'varying system dynamics. 
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Figure 4.74 System response vs. desired output.(consecutive abrupt faults; example 2; case 3) 
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4.3.2 Example 2: time-varying abrupt failures 

Consider the same nominal system with different time-varying failure dynamics 

as follows: 

y(k) 
n=2, f 1(y(k),y(k-1))=0.2x 2 , /31(k-T.J=U(k-T;), I; =20,and 

(y(k-1) + 1) 

/ 2 (y(k)) = 0.33x y(k)x sin(_!._), /31 (k -T2 ) = U(k-T2 ), and T2 = 171. 
100 

The same NN nominal model, NN on-line estimator, and the training algorithm as 

Example 1 in Subsection 4.3.1 are used here. Figures 4.74-4.76 show the simulation 

results when the system suffers from consecutive time-varying abrupt faults. The 

structure of the NN on-line estimator used in this case is much simpler than those used in 

case 1, where a 2-30-30-1 neural network was deployed as the on-line estimator. 

However, the simulation tests in both examples show positive results. This indicates that 

the on-line tracking performance is not very sensitive to the network structure while the 

static backpropagation algorithm is used for the parameter adjustments. The only 

significant difference is the pre~selection learning rate of the training algorithm. A bigger 

structure NN should use a much smaller learning rate since more parameters are adjusted 

at the same time to reduce the tracking error. Obviously, the simpler structure is always 

preferable since it demands less computational cost and possesses less chance of 

overfitting or falling into a local minimum .. 

4.3.3 Comments and discussions 

In both examples, it is assumed that the NN nominal model is accurate enough to 

represent the actual nominal system dynamics even when the system is in failure modes. 

Under this condition, the effective control input to accommodate the failure dynamics can 
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be found through the realization of the NN nominal model. If the desired actual effective 

control actions are far away from the validated domain of the NN nominal model, the 

similar extrapolation problem discussed in Chapter 3 (i.e., Subsection 3.2.2) may emerge 

to degrade the system performance or stability. Thus, it is important and necessary to 

maintain the validated domain of the nominal model as large as possible for a better and 

larger failure accommodation coverage. 

4.4 CASE4 

4.4.1 Example 1 

The system dynamics under unknown multiple-failure modes is represented by 

Equation (4.13), 

n 

y(k + 1) = 0.3y(k) + 0.6y(k-l) + u(k) 2 -5u(k) + LP/k-T;)J; (y(k), y(k-l),u(k)), 
i=l 

(4.13) 

where the failure dynamics is defined as 

k-25 · 
n = 2, fi(y(k), u(k)) = O.lx x y(k)xcos(u(k)), p1 (k -T1 ) = U(k-I;.), I;. = 25, 

20 
f 2 (y(k),y(k-l))=0.6xy(k)xy(k-l), P2 (k-T2 )=U(k-T2 ),and T2 =201. 

Similar to case 3, a 3-30-1 MLP network is first.used to realize the nominal system 

dynamics. A 3-3-1 MLP network is then used to approximate the failure dynamics on-

line with the same training algorithm in case 2. Figures 4.78-4.79 show part of the on-line 

simulation results. As shown, the system failures have been properly accommodated 

when the proposed intelligent control law is applied, while the system response under the 

nominal control law is shown in Figure 4.77. Similar to case 3, the effective control input 
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keeps changing to accommodate the time-varying failures while the nominal control law 

cannot place the behavior of the time-varying system under control. 
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Figure 4.78 System response vs. desired output (20-data window; consecutive abrupt faults; example 1; case 4) 
C antral Input 

0 . 8 

0 . 6 

0 . 4 

0 . 2 

- 0 . 2 

I 
I 
I I I I 

------- 1--------1 ------ 1-- I I I 

I I I I 
I I I I I I 

----1-------

1 
I 

- - - - - - - -I - - - - - - - - [- - - - - - - - + - - - - - - - -1- - - - + - - - - - - - -1- - +-------
I I 
I I I I 
I I I I I I 
I I ---------1- I I 
I 1 I 
I I I I 

-------1 -------+ -------J - - - - - - - + - - - - - - - -1 
I I 

I I 
------- 1 ________ 1 ________ I ____ _ __ I ________ I_ 

I I I 

' I 
I ------1---- -

-------+-------

I 
________ I-------

1 

- 0 , 4 - - - - - - - -, - - - - - - - -1- - - - - - - - T - - - - - - - - 1- - - - - - - - ,- - - - - - - - -1- - - - - - - - T - -

I I I 
I I 

- 0 . 6 
1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 

t im e s t e p 

Figure 4.79 Actual control input (20-data window; consecutive abrupt faults; example 1; case 4) 

124 



4.4.2 Example 2 

Consider the same nominal system model with different failure dynamics as 

follows: 

/J1 (k-T1)x{-[0.3y(k) + 0.6y(k-1) + 2u(k)2 + 5u(k)] + /J2 (k-T2 )x0.6x y(k)x y(k-1) + 

0.05x~x y(k)2 +4u(k)}, 
20 

where /J1(k-T1)=U(k-T;), Ti =25, /J2 (k-T2 )=U(k-T2 ), and T2 =171. Starting 

from time step, 25, the first failure will cancel the nominal system dynamics and replace 

it with a totally different time-varying system. At time step 171, the system dynamics will 

suddenly change dramatically again due to the second failure. Figure 4.80 is the on-line 

system response plot. A large deviation of the response starts right after the sudden 

change of the system. However, within 25 time steps, the failure condition has been 

properly controlled .such that the system output is driven back to the desired trajectory 

until the second failure happens at time step 171. It takes almost the same time for the on-

line estimator to catch up with the failure and place the system behavior under control. 

Figure 4.81 shows the actual control input at each time step. 
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Figure 4.81 Control input (20-data window; consecutive abrupt faults; example 2; case 4) 

4.4.3 Example 3: On-line multiple-failures accommodation for a multiple-input 
multiple-output system 

Consider a MIMO system under different failures as shown in Equation (4.14), 

(4.14) 

Tio = 25, T20 = 15 , and I'i_ 1 = 123. The nominal system is first realized through a 4-75-2 

MLP network. 2,000 input-output training patterns are collected by supplying uniformly 

distributed random inputs varying from -1.5 to 1.5. A 3-4-2 MLP network is chosen as 

the on-line estimator and the Levenberg-Marquardt with Bayesian regularization 

algorithm is used in the training process for both the NN nominal model and the NN on-

line estimator (i.e., a 4-40-2 MLP network is used as a nominal controller trained off-
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line). Figures 4.82 and 4.83 show the system response for the first output and the 

response for the second output together with the desired outputs, respectively, while the 

nominal controller alone fails to maintain the system stability under multiple failures. A 

relatively large tracking error appears in both system outputs around time step, 110. The 

same results are observed in Figures 4.84-4.85 and Figures 4.86-4.87 which are the plots 

for the on-line estimations and the sliding surface functions, respectively. This indicates 

that a relatively large estimation error has occurred at that time. 
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(MIMO system; 25-data window; consecutive abrupt faults; example 3; case 4) 
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sliding surface function S2 
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Figure 4.88 Control input ul (MIMO system; 25-data window; consecutive abrupt faults; example 3; case 4) 
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The actual control inputs are shown in Figures 4.88-4.89. In this example, the 

length of the time-shifting data window is selected as 25. Simulation tests show that this 

is a better trade-off number between the system performance and the computational 

complexity. A simple mean value of the two estimated gradient directions realized 

through the NN on-line estimator is used for the searching of the effective control inputs. 

This approach is based upon the assumption that the searching directions of the effective 

control signals to accommodate failure dynamics have no confliction, which may not 

always be true under unanticipated catastrophic system failures. In general, this becomes 

a multi-objective optimization problem that remains to be an open research issue [76]. 
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Figure 4.90 System response vs. desired output in false alarm situation 
(consecutive abrupt faults; example 2; case 4) 

4.4.4 False alarm 

In order to test the false alarm situations, the same system with the same failures 

in Example 2 of case 4 is used and, right after the system abnormal behavior detected, the 

failures are eliminated by setting the time varying constant gains of the failures to zeros. 

Figure 4.90 shows the on-line system response plot under the false alarm noise-free 
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situation. As expected, the on-line estimator tries to approximate the differences between 

the outputs of the NN nominal model and the actual measurements, which is the 

remaining uncertainty between the actual nominal system and the NN nominal model. 

4.4.5 Comments and.discussions 

The proposed on-line fault detection scheme has good resistance in miss detection 

of system failures. However, it also increases the sensitivity to the false alarm situations. 

Simulation tests in noise-free false alarm situations indicate that the on-line estimator is 

used to approximate the remaining uncertainty of the system. In noisy environments, it is 

possible for the on-line estimator to overfitthe noisy model. Thus, the pre-processing of 

the contaminated noisy measurements becomes an important process for better results. 
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CHAPTERV 

REAL-TIME HARDWARE EXPERIMENT FOR UNANTICIPATED 
FAULT ACCOMMODATION 

As discussed before, several important design parameters will affect the failure 

accommodation performance in on-line situations. In general, the selection of those 

parameters is a system-dependent problem that requires the considerations of 

performance criteria and system computing capacity. To obtain a comprehensive insight 

for quantification of the design parameters and the real-time control system, an on-line 

fault tolerant control test bed for validating the proposed on-line fault tolerant control 

framework in real hardware has been constructed. The hardware setup is shown in Figure 

5.1. It consists of .the following major components, 

1. a BALDOR de motor with maximum Y2 hp, 

2. a MAGTROL HD-505-SN dynamometer, 

3. a MAGTROL 6200 dynamometer controller/readout, 

4. one ADVANCED de motor amplifier, 

5. dSPACE software, DS1102 board and cable box with Texas 

Instruments TMS320C31 floating-point Digital Signal Processor 

(DSP), and 

6. NT workstation with Intel Pentium II-450 dual processors. 
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L-------------t DIA DS1102 A/0 1+---------..o 
Con trol signal CABLE BOX Meas urements 

Through DSP board 

NT workstation with 
Intel Pentium II-450 

Figure 5.1 Hardware experiment setup 

Adjustable break signal 

The de motor is connected to the dynamometer that is used to generate unanticipated 

friction on the motor shaft to simulate the unanticipated system failures. The control 

objective is to maintain the rotational speed of the motor (i .e., in terms of rpm) to the 

desired patterns with the presence of the unanticipated simulated failures . A computer 

with Intel Pentium 11-450 dual processors is used to simulate the intelligent control 

regulator, fault detection mechanism, and on-line estimator. An embedded encoder and 

sensor in the dynamometer provide motor rpm and torque measurements in real-time, 

respectively. The measured signals are connected to a MAGTROL 6200 dynamometer 

controller/readout with the on-line readings shown on the device screen and the same 

signals are sent to dSPACE DS 1102 cable box that is connected to the workstation 

through the TMS320C31 DSP board. An adjustable brake dial on the front panel of the 

dynamometer controller is used to generate the simulated time-varying, unknown and 
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unanticipated brakes (i.e., unanticipated workload on the de motor). All the necessary 

computation and the appropriate control input to drive the motor are computed within the 

workstation. The DSP board and dSPACE software are used to provide the necessary 

interface (AID and DIA converter) and the integration of the real-time control with high-

level languages such as MATLAB, SIMULINK, and C programs. A picture of the real-

time fault tolerant control test bed is shown in Figure 5.2. 

(·N , CONTROL 
• , I AUTONOMY 

'. Figure 5.2 Real-time fault tolerant control test bed 

In real-time environment, to close the on-line control loop as shown in Figure 5.1, 

an application source code (i .e. , obj file) has to be created and downloaded to the 

TMS320C31 DSP. The on-line fault detection scheme, failure estimation, and control 

algorithm are performed under Matlab workspace in the NT workstation which 

communicates with the DSP through dSPACE MLIB (Matlab-dSPACE Interface 

Library). Figure 5.3 shows the SIMULINK model that is used to create the application 
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source code for the real-time experiment. One 14-bit DIA converter channel and one 16-

bit AID converter channel are used to generate the control input (i.e., motor input 

voltage) and collect the torque reading from the dynamometer controller/readout, 

respectively. A discrete filter is used to reduce the effect of measurement noises in the 

torque reading. The rotational speed reading is decoded through one DS 1102 encoder 

interface channel with a 24-bit counter. The DSP with generated application code runs 

the hardware experiments in real-time with sampling period 0.01 second and the control 

signal generated by the computer is sent to regulate the real-time response by changing 

the constant value in the SIMULINK model. 

0 C' '"'" I W orkspace1 

DA C # 1 

Constant 

~1-------------------;L..--------~10Ac #3 : 

DAC #2 

Ground ~[-------IDAC #4 

ADC # 1 

ADC # 2 1----~--E§J 
ADC#3 Terminator1 

ADC # 4 

DS1102ADC 

ENC_DPOS 
channel-wise 

.____E§::1 
Term inator2 

.___--E§::1 
Te rm in a tor 

DS1102ENC_DPOS C1 Ga in 3 

DS1102DAC 

torque 

Workspace 

Ga in 5 

torque n filter 

W orkspace3 

speed 

W orkspace2 

Figure 5.3 The SIMULINK model for the real-time experiment 

Following the design procedure shown in Chapter 3, the first step is to obtain a 

nominal model for the fault-free system. It is well known that a de motor can be modeled 
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as a linear time-invariant system. For an armature-controlled de motor with the negligible 

time constant of the armature, the nominal transfer function can be represented by 

Equation (5.1) [110], 

(5.1) 

where w(s) and V(s) denote the rotational speed and motor voltage in s domain, 

respectively. Kb, Km, Ra, J, and f are motor constants. Equation (5.1) can be re-

organized as Equation (5.2) with A, b , c representing the corresponding constants, 

Aw+bw=cV. (5.2) 

Using the forward Euler approximation shown in Equation (3.44), the discrete-time 

nominal model can be derived and shown in Equation (5.3), 

w(k + 1) = [1-bAt I A]w(k) + [cAt I A]V(k) 

= funear w(k) + glinear V(k), 
(5.3) 

which is in the similar form of the nominal model in Equation (3.26). The next step is to 

identify the parameters, funear = [1-bAt I A] and gunear = [cAt I A]. Since Equation (5.3) 

is a linear time-invariant system, the batch form least square estimation method can be 

used for the identification of the parameters [109]. With the zero initial condition, 20,000 

sets of input signals generated by Equation (5.4) are sent to the system for the collection 

of the system responses, w(k) , 

V(k) = 0.015xsin(~) +0.015, k = 1,2, ... ,19,999. (5.4) 
2000 

The batch form least square method provides the parameter estimation as follows [109], 
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w(20,000) w(19,999) V(19,999) 

Z= 
w(19,999) 

,H= 
w(19,998) V(19,998) 

, 0 =[/""", l Z =HO+v, and 
glinear 

w(2) w(l) V(l) 

(5.5) 

where v and BLS represent the white noise and the least square estimation, respectively. 

The design of the nominal controller follows Equation (3.30) without the term of fault 

estimator as shown in Equation (5.6}, 

Y (k) = W desired (k + 1) - W desired (k )- w(k) + aw desired (k + 1) and 
lit 

- 1 -1 A 1 
vnominal (k) = [Y (k)(a +-) - funear X w(k)]-A-

!lt g linear 

with a= 1 and the S function defined in the form of Equation (3.1). 

(5.6) 

The final step in the off-line design stage is to evaluate the nominal model 

accuracy and the performance of the nominal controller under the fault-free situation for 

proper selection of the design parameters in the on-line fault detection scheme. The 

length of the time-shifting evaluation window for the fault detection scheme (i.e., 

Equation (3.57) with the square operation replaced by the absolute value) is pre-selected 

as 5 and the system response under nominal controller is tested using this criterion with 

the presence of measurement noises. The on-line fault detection threshold value is 

decided as 100 based upon the testing results. Under the unanticipated failures, the 

system response can be approximated by Equation (5.7), 

w(k + 1) = funear w(k) + glinear V(k) + F(Torque(k)), (5.7) 
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where F denotes the unknown effect that changes the motor rotational speed due to the 

unanticipated workload, Torque(k) . To reduce the negative effect of noisy 

measurements, the approximation target (i.e., numerical value of F) is computed based 

upon the average of the differences between the nominal model outputs and the actual 

speed readings every 10 time steps. A 1-5-5-1 MLP network is used to approximate the 

unknown failure effect, F, on-line with the static backpropagation algorithm. Four real-

time experiments with different desired trajectories and unanticipated faults have been 

performed to test the proposed failure accommodation technique. Each real-time 

experiment is complete within 5,000 time steps. The design parameters of the learning 

result criterion (i.e., Equation (3.56)) for the alternative corrective control law are l = 20 

and 8 = 10. 

5.1 Experiment 1 

The desired system response is generated by a linear model with the specified 

reference input as shown in Equation (5.8), 

ref(k) = 200xsin( kn ) + 200, 
1000 

W desired (k + 1) = 0.6w desired (k) + 0.2w desired (k -1) + ref (k ). 

(5.8) 

15-17% unknown and unanticipated workload is generated by on-line adjusting the brake 

dial on the front panel of the dynamometer controller/readout. The real-time system 

response under the nominal controller is shown in Figure 5.4. Performance degradation is 

observed once the unknown workload occurs while the better control performances are 

shown in Figures 5.5 and 5.6 when the first control law and the alternative corrective 

control law are applied, respectively. 
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5.2 Experiment 2 

The control objective in this experiment is to maintain constant rotational speed at 

1200 rpm with the presences of the measurement noise and unanticipated faults. Figure 

5.7 is the real-time response plot under the nominal controller when 18-22% of unknown 

faults occur. Without proper compensation, the nominal control law results in drop of 

rotational speed up to 300 rpm during the experiment. The significantly improved control 

performances are obtained through the applications of the first control law and the 

alternative corrective control law shown in Figures 5.8 and 5.9, respectively. 
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Figure 5.11 On-line system behavior under the first control law (experiment 3) 
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5.3 Experiment 3 

The desired rotational speed is reduced to 500 rpm with increased unanticipated 

workload 18-30% in this experiment. Figure 5.10 is the real-time system behavior plot 

under the nominal controller. Due to the increased workload, the motor rotational speed 

almost reaches zero from time step 2500 to 3850. On the other hand, successful fault 

tolerant II1Jss1on has been accomplished through the proposed on-line fai lure 

accommodation technique as shown in Figures 5.11 and 5.12. 
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Figure 5.13 On-line system behavior under nominal controller only (experiment 4) 
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5.4 Experiment 4 

Similar to Experiment 1, the desired trajectory in this experiment is selected as a 

sinusoid curve generated by the same linear model with a different reference input as 

shown in Equation (5.9), 

ref(k) = 60x sin( kn ) + 60. 
1000 

(5.9) 

The unknown workload used to generate the simulated unanticipated faults ranges from 

15% to 28%. The system behavior under the failures with the nominal controller alone is 

plotted in Figure 5.13. As clearly shown, the performance has been significantly 

degraded and the rotation actually stops during the time periods, from time step 1300 to 

1700 and 3200 to 4000, because of the relatively large unanticipated workload. Figures 

5.14 and 5.15 show the satisfactory real-time fault accommodation when the first and the 

alternative corrective control techniques are applied, respectively. 
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Figure 5.14 On-line system behavior under the first control law (experiment 4) 
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Figure 5.15 On-line system behavior under the alternative corrective control law (experiment 4) 

5.5 Summaries and discussions 

The effectiveness and efficiency of the proposed on-line failure accommodation 

technique for case 1 has been shown, and the possibility of successful on-line fault 

tolerance in real applications has been demonstrated through real-time hardware 

experiments under different desired control objectives with the presence of measurement 

noises and various unanticipated failures. Similar to the on-line simulation results shown 

in Chapter 4, the time constraint becomes a critical issue in the real-time applications. 

Successful on-line fault accommodation mission relies highly upon the computational 

capacity within the real-time control systems. The experimental results indicate that 

reducing the sampling rate in the real-time application source code will result in 

significant performance degradation due to the large difference between the real-time 

continuous system and the discrete-time approximation (i.e., system behavior exhibits 

large oscillation with sampling period higher than 0.01 sec. in the SIMULINK model 

shown in Figure 5.3). Slowing down the response time in the dual processors by 
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increasing computational complexity will cause even more serious on-line control 

problems in real-time environment because of the delay of effective control actions. For 

more general situations (i.e., cases 2-4) where much more computational cost is required 

for successful on-line failure accommodation, the currently used computer system is 

obviously not fast enough to carry out the proposed fault accommodation technique in 

real-time. In other words, a more powerful computing device such as a higher speed 

processor is mandatory for the on-line real-time fault tolerant control in the real 

applications under the more general failure scenarios. 
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CHAPTER VI 

A MULTIPLE-MODEL BASED FAULT DIAGNOSIS AND 
ACCOMMODATION ARCHITECTURE 

The major research attention so far has been primarily focused on the on-line fault 

accommodation control technique for unanticipated catastrophic system failures. 

Although this technique can be directly applied for the on-line control purpose, under the 

developed methodology and the suggested on-line fault detection scheme, all the system 

abnormal behavior will be automatically considered as a consequence resulted from 

unknown system failures. Thus, the on-line estimator will be triggered in the learning 

process for the failure dynamics and a substantial amount of computational cost will be 

spent on both on-line estimation and computation of the effective control actions even 

when the failures are anticipated and the corresponding control actions are well known. 

The simulation tests also indicate that, under the on-line fault detection scheme, the false 

alarm situations will cause unnecessary computational waste since the nominal control 

actions are adequate to control the system behavior well in fault-free situations. 

Apparently, a more sophisticated on-line fault tolerant control scheme should 

incorporate the proposed failure accommodation technique with a proper fault diagnosis 

mechanism, the post-failure models, and the corresponding post-failure control actions to 

avoid these situations. However, the detail of a systematic procedure for the on-line fault 
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diagnosis scheme to avoid the false alarms with the guarantee of miss-free-detection, 

distinguish the anticipated faults from the failure situations, and select the effective 

control actions for the anticipated failures still remains to be addressed. 
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Figure 6.1 An architecture of multiple-model based fault diagnosis and accommodation 

6.1 The multiple-model based FDA framework 

Figure 6.1 shows a basic architecture of a multiple-model based fault diagnosis 

and accommodation framework. The developed on-line fault tolerant control technique 

incorporates a separate fault detection scheme, a failure diagnosis mechanism, and post-

failure control actions to form a more sophisticated and complete FDA methodology. 

Unlike the framework shown in Figure 3.2, the intelligent control regulator is no longer 

sitting between the nominal controller and the actual system. Instead, it is now parallel 
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with the post-failure control actions and the nominal controller to emphasize that, in on-

line situations, the effective control actions that may come from one of the three sources, 

the nominal controller, the post-failure control actions, and the intelligent control 

regulator, are decided based upon system behavior or healthiness. The intelligent fault 

tolerant control technique will be applied only when it is necessary for the control 

purpose. Under this framework, the unnecessary computational waste for anticipated 

failures and false alarms could be avoided. 
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Figure 6.2 The flow chart of the multiple-model based FDA 
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A clearer picture of how this idea works is depicted in a flow chart shown in 

Figure 6.2. The system "healthiness" is continuously monitored by the fault detection 

scheme with the knowledge of the nominal system behavior every certain period of time. 

Any off-normal behavior will trigger the failure diagnosis mechanism to analyze the 

situation and further decide which control actions should be taken. If the failure is 

recognized as an expected fault1 the corresponding post-failure control actions will be 

selected as the current effective control commends. Otherwise, the developed intelligent 

FTC technique is initialized. Notice that the dashed line shown in Figure 6.1 indicates 

that only one action will be taken at every time instant. 

6.1.1 On-line fault detection and diagnosis 

With the presence of measurement noises, disturbances, and modeling errors, the 

problems of Fault Detection and Diagnosis (FDD), such as residual generation, 

sensitivity, robustness, false alarm,· miss detection, and failure isolability, are 

substantially difficult issues to solve. In spite of many research efforts dedicated to 

address the FDD problems [l,3-6,8,23-26,64,84-90], complete on-line fault detection and 

diagnosis is still far from complete due to the inherent complexity of the problems and 

the time constraint in on-line operations. The ultimate goal of fault detection and 

diagnosis is leading to the failure accommodation. Until the invention of breakthrough 

technology for FDD, from a realistic point of view, identifying a better trade-off solution 

for real implementation based upon existing technology is the best an engineer can do. 

Since the system safety is the top priority of control missions, false alarms are more 

preferable than the miss detection. Moreover, it is true that a more sophisticated fault 

149 



detection and diagnosis scheme will result in a better treatment for the failures. However, 

it also implies much more computational cost in real implementation. 

From both system safety and on-line computational complexity point of views, a 

simple, however, computationally cost-effective criterion will be used as the on-line fault 

detection scheme in Figure 6.1 and the real-time FDA simulation. This criterion evaluates 

the mean square tracking error within a certain time window shown in Equation (6.1), 

which provides an effective miss detection-free scheme. 

l ko+Wf-1 

lf/1 =-· L,(ny(k)-y(k))2. 
wf k=ko 

(6.1) 

y(k) and ny(k) denote the system output and the nominal model output at time step k, 

respectively. The design parameter, w 1 , represents the length of the evaluating window 

for fault detection. In other words, the system healthiness will be examined every w1 

time steps to decide whether or not the system is still under nominal condition by 

comparing the on-line system performance with the nominal behavior. This also implies 

that the control actions can be switched as fast as once every w 1 time steps. Unlike the 

fault detection technique reported in [23-26] where an approximator is deployed to 

approximate modeling error on-line by monitoring the system behavior and any 

significant deviation of the approximator output away from the origin is considered as a 

detection of failures, this fault detection scheme provides more computational efficiency 

since there is no need to spend computational cost in the on-line approximator only for 

the simple detection purpose of the abnormal behavior. However, sharing the similar 

spirit with [23-26], a pre-specified threshold value based upon the modeling uncertainty 
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and the expected measurement noise is used to complete the fault detection shown in 

Equation (6.1). 

Under this simple, conservative fault detection method, miss detection becomes 

trivial since the control objective is to keep the tracking error as small as possible within 

an affordable control effort. If the fault cannot be seen on the tracking error or it lasts 

only a short transient period such that the failure alarm is not triggered, the fault is not 

within our concern (i.e., its effect on the system performance does not degrade the control 

performance). Of course, the price of the trivial miss detection and computational 

simplicity is the increasing possibility of false alarms, which are possibly caused by 

unexpected interferences or noises. Howev~r, under the FDA architecture in Figure 6.1, 

the fault detection scheme will examine the system healthiness every OJ f time steps. In 

cases of failure alarms caused by unexpected disturbances or measurement noises, the 

detection scheme will eventually recognize the false alarm situations and recommend 

nominal control actions to avoid the unnecessary control effort after the effects resulting 

from unexpected disturbances or noises decays. 

In many real systems, some failures could be well knowri or anticipated according 

to the history of system behavior and/or the aging degree of the system components. For 

those known and/or expected faults, the corresponding failure patterns or signatures and 

the corresponding control actions can be developed off-line and pre-stored in a database 

for on-line control purposes. The appropriate on-line failure accommodation actions are 

then suggested by a proper fault diagnosis scheme that identifies the failure patterns on­

line. This approach shares a similar spirit with the well-known multiple-model approach 

[58]. Although there is no credible theoretical result to guarantee the stability of multiple 
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model switching, this idea has attracted substantial attention and has been widely used in 

many areas [58-62,90-95,106-108]. Similarly, the conservative diagnostic attitude should 

be preferable since the price of the misdiagnosis and mistreatment could be instability 

and unaffordable loss. 

An efficient fault isolation method used in the real-time FDA simulation is shown 

in Equation (6.2), 

ko 

lf/Jdiag; = I,([y(k)-ny(k)]- pf;(k))2, (6.2) 
k""ko-Wftliag+l 

where k0 is the current time step and pfi represents the time domain signatures of the 

post-failure model i. The principle of this method is based upon the multiple model 

approach where anticipated or possible failures are first analyzed to form a post-failure 

model bank. The corresponding post-failure control actions are also designed off-line to 

construct the post-failure control action bank according to the mathematical or numerical 

realization of the failure situations through the post-failure model bank. The effective 

control actions to achieve successful failure accommodations for anticipated faults are 

selected based upon the matching conditions of the signatures between the actual failures 

and the multiple-model based failures, which is the major fault isolation process. From 

the computational complexity point of view in the on-line situation, the time domain 

signature is considered as an appropriate cost-effective criterion for the failure diagnosis 

process. The fault isolation process is to compare the most recent time domain signatures 

between the actual failure and the post failures. The differences between the actual 

measurements and the outputs of the nominal model are considered as the outputs from 

the failure dynamics and they are compared with the "signatures", outputs, from the post 
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failure models within a certain length of time window, wfdiag. A pre-specified threshold 

value is used to compare with If/ Jdiag; for the proper selection of the anticipated failure 

condition. If none of the "signatures" of the anticipated failures meets the criterion, the 

system status will be switched to the unanticipated failure situation and the intelligent on-

line FTC approach will be initialized. 

6.2 Simulation study for the multiple-model based FDA framework 

To obtain a deeper insight into the on-line FDA problems in the real applications, 

a separate simulation study has been performed to test the FDA framework. The 

simulation is divided into two parts. They are dedicated to test the FDA framework for 

the system with different failure situations in a special case (case 1) and general cases, 

respectively. The design parameters including the threshold value of failure alarms, 

threshold value in the failure diagnosis process, lengths of the evaluating windows for 

fault detection and for failure diagnosis are pre-selected as 7.0xe-5 , 5.0xe-6 , 5, and 10, 

respectively. 

6.2.1 Example 1 (case 1) 

Consider the same nominal system as that in Subsection 4.1.1 with the nominal 

dynamics represented by Equation (4.1). Four different anticipated failures are assumed 

known and shown as follows: 

post failure 1: pf1 (k + 1) = 1- e -o.?ly(k)-y(k-l)J, 

post failure 2: pf2 (k + 1) = 0.46x y(k)x y(k-1), 

post failure 3: pf3 (k + 1) = 0.5 x sin(y(k) x y(k -1)), 

post failure 4: pf4 (k + 1) = 0.6 x cos(y(k) X y(k -1)). 
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The nominal control law is described in Equation (4.3) and, since the post failures are 

known, the corresponding control actions are easily computed as follows: 

post - failure control action 1 : 

Pfa1(k) =: (-(y(k)-: (cy(k)3 +k1y(k-1)))+ yd(k+l)-(1-e-0·7IYCk)-y(k-I)/)), 

post - failure control action 2 : 

m lit 
pfa2 (k) = lit (-(y(k) :--;;(cy(k)3 + k1y(k-l))) +yd (k + 1)-(0.46x y(k)x y(k-1))), 

post - failure control action 3 : 

m lit 
pfa3 (k) = -(-(y(k)--(cy(k)3 + k1y(k-1))) + yd (k + 1)-(0.5xsin(y(k)x y(k-1)))), 

lit . m 
post - failure control action 4 : 

m lit 
pfa4 (k) = -(-(y(k)--(cy(k)3 + k1y(k-l))) + yd (k + 1)-(0.6xcos(y(k)x y(k-1)))). 

lit m 

(6.4) 

6.2.1.1 Scenario 1 

Consider a failure situation involving the incipient anticipated failure 1 and the 

abrupt anticipated failure 2 with the time profiles shown in Equation (6.5), 

/31 (k -T;) = (1- e-o.Bx(k-T1) )U (k - T;) ; T; = 125, 

/32 (k-T2 ) = U(k-T2 ); T2 = 430. 
(6.5) 

System response under the intelligent FDA framework and the design parameters is 

shown in Figure 6.3. After time step 125, system output starts deviating from the desired 

trajectory due to the variation of system dynamics caused by the incipient failure. When 

the error is significant enough to trigger the fault detection scheme for failure alarm, the 

failure diagnosis process proceeds to identify the failure situation. Figure 6.4 shows the 

system status from the diagnosis process at every time step during the simulation. As 

clearly seen, right after the failure alarm and before the signature of the actual failure can 
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match with the signature of any post failure, the system status is switched to the 

unanticipated situation in order to properly control the failure dynamics, which is a 

reasonable reaction since proper control actions may be necessary to secure the system 

behavior before the failure situation can be recognized. 
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Approximately 10 to 15 time steps later, the fault diagnosis process recognizes 

that the failure situation matches with the anticipated failure 1 by comparing their 

corresponding signatures in the time domain. The pre-stored corresponding control 

actions are taken as the effective control commands until the time step reaches 430, at 

which time the second failure occurs. The combination of two failures produces an 

unexpected dynamics change that can not be recognized by the post-failure bank. 

Therefore, the system status is diagnosed and changes to the unanticipated condition. 

This can also be observed from the plot for the time· domain signatures of the actual 

failure and all the post failures shown in Figure 6.5. 

Without the failure diagnosis process, the post-failure banks, and the 

corresponding post-failure control actions, the system status under the intelligent 

framework in Chapter 3 will be considered as unanticipated situations after the detection 

of the system abnormal behavior. Now, as indicated in Figure 6.4, approximately 43% of 

the computational cost has been saved, while the computational complexity for fault 

diagnosis process is ignorable, compared with the cost under the unanticipated situations. 
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Figure 6.8 Signatures of post failures vs. actual failure dynamics (scenario 2; case 1; FDA simulation) 

6.2.1.2 Scenario 2 

Consider a failure situation involving the abrupt anticipated failure 3 which 

happened at time step 70 and an incipient unanticipated failure with the time profiles 

shown in Equation (6.6), 

/ 2 (y(k), y(k-1)) = 0.5x y(k)x y(k-1), 

{:J2 (k -T2 ) = (1- e-o.2xck-T2> )U (k -T2 ) ; T2 = 367. 
(6.6) 
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Figure 6.6 is the system response plot. System output quickly jumps away from the 

desired point due to the first (abrupt) failure. The failure has been recognized as the post 

failure 3 and properly accommodated within 10 time steps until the second failure 

appears. After that, the control strategy is switched to the unanticipated situation for the 

failure accommodation. Please also note that the first control law shown in Equation 

(3.30) is used in all the simulation tests of this case. Figures 6.7 and 6.8 are the plots for 

the system status and the signatures of the failures, respectively. 

6.2.1.3 Scenario 3 

Re-consider the failure situations . in scenario 1 with the following different 

profiles, 

Pi (k -I;)= U(k -I;); I;. = 100, 

{J2 (k-T2 ) = U(k -T2 ); T2 = 430. 
(6.7) 

In order to test how the threshold value in the failure diagnosis process affects the FDA 

response, the design parameter is changed from 5.0xe--{j to l.Oxe---4. Figures 6.9-6.11 

show the plots for the system on-line response, status from the failure diagnosis process, 

and the signatures of the failures. The significant difference shows in the on-line system 

status plot where it appears that the on-line failure diagnosis and control actions had been 

bouncing around between post failure 2 and the unanticipated situation, three times after 

time step 550. This is obviously the consequence of changing the threshold value in the 

diagnosis scheme since the actual failure signature is compared with the signatures of all 

the existing recognizable failures within a fixed length of time window and also since 

how much the signatures are considered a match depends totally upon the threshold 
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value. It appears that the smaller threshold value gives more restriction in failure 

recognition and provides a more conservative diagnosis result. It also implies that more 

computational cost may possibly be spent due to the conservative attitude. On the other 

hand, if the value appears to be too big, large uncertainty will exist in the diagnosis result. 

Thus, the control actions may also jump around. Moreover, if the changing rate is too 

high, it is possible to excite unmodeled system dynamics under serious vibration. 
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Figure 6.11 Signatures of post failures vs. actual failure dynamics (scenario 3; case 1; FDA simulation) 

6.2.2 Example 2 (general cases) 

Consider the same nominal system described in Equation (4.13) where the system 

dynamics is not in linear-in-control format and the nominal model is first realized by a 3-

30-1 MLP network. The nominal NN controller is designed using the same technique 

described in Section 4.3. Three post failures are shown in Equation (6.8), 

post failure 1: pf1 (k + 1) = -(0.3y(k) + 0.6y(k -1) + u(k)2 -5u(k)) + 0.06y(k) 2 + 4u(k), 

post failure 2: pf2 (k + 1) = 0.05x y(k)xcos(u(k)), 

post failure 3: pf3 (k + 1) = -0.8xu(k) 2 + 3.5u(k). 

(6.8) 

To simulate the failures in a real dynamic system, the specific mathematical formats of 

these failure dynamics are assumed unknown and have to be realized by separate network 

models. The idea is described in the following steps. 

1. Place the system under failure situations (i.e., using the nominal mathematical 

model with the failure dynamics in simulation stage). 

160 



2. Feed 3,000 uniformly distributed random input signals varying from -1.5 to 1.5 

with selected initial conditions. 

3. Collect the training patterns. The desired outputs are computed by using the 

differences between the system outputs and the outputs from the NN nominal 

model. 

4. Train the NN model for the failure dynamics. 
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Figure 6.12 System response vs. desired output (scenario 1; general case; FDA simulation) 
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Figure 6.13 System status (scenario 1; general case; FDA simulation) 

7 0 0 8 0 0 

3 separate MLP networks with different structures, 3-30-1, 2-20-1, 1-20-1, are used to 

realize the 3 post failures off-line, respectively, by following the above steps. The post-
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failure control actions are also realized off-line by using separate NN controllers (i.e., 3-

20-1, 3-20-1, and 3-10-1 MLPs) and they are obtained using the same technique as 

described in Section 4.3. The pre-selected threshold value for the diagnosis process is 

1.0 x e-4 and the rest of the design parameters are the same as those in the last section. 

6.2.2.1 Scenario 1 

Consider the failure situation involving an abrupt anticipated failure 3 starting at 

time step 70 and an incipient unanticipated time-varying failure with the corresponding 

time profile shown in Equation (6.9), 

fz(·)= 320x(l+y(k-1)2); 
ky(k) 

(6.9) 

/32 (k-T2 ) = (l-e-0.2x(k-Tz))U(k-T2); T2 = 314. 

Figures 6.12-6.14 are the on-line simulation results under the intelligent FDA framework. 

The abrupt anticipated failure 3, which happened at time step 70, ·is quickly recognized 

by the diagnosis process and the effective control commands are then switched to the 

corresponding post-failure control actions. This is clearly seen in the on-line system 

status plot shown in Figure 6.13 and the system on-line response shown in Figure 6.12. 

Observing Figure 6.14 closely, we can also see that the time-domain signatures of the 

actual failure dynamics and post failure 3 are almost indistinguishable from time step 80 

to 320. After the second change of the system dynamics caused by another time-varying 

incipient failure, the discrepancy between the signatures are getting large, which indicates 

that an unanticipated situation has occurred. 
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Figure 6.14 Signatures of post failures vs. actual failure dynamics (scenario 1; general case; FDA simulation) 

6.2.2.2 Scenario 2 

Consider the failure situation involving an incipient anticipated failure 2 with the 

time profile shown in Equation (6.10) and an abrupt anticipated failure 3 starting at time 

step 601, 

(6.10) 

Figures 6.15-6.17 are the plots of the test results. Due to the slow variation of the failure 

dynamics (with a 1 = -0.009 ), the incipient fault will not be identified as quickly as an 

abrupt failure since this incipient time profile will take almost 300 time steps to converge 

(i.e., 300 time steps are required for the profile to reach 0.9328). Figure 6.16 shows this 

expected result. The failure diagnosis scheme can not be sure of the actual failure 

situation until the time step almost reaches 300. This is also a correct decision since both 
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the failure dynamics and the corresponding control actions are realized by NN under the 

abrupt failure situation. However, we do observe some diagnostic oscillation before time 

step 290. It is apparent that the diagnostic threshold value, 1.0 x e-4 , may be too big for 

the accuracy of the NN post-failure model 2. Observing Figure 6.17 closely, we can 

easily tell that there are signature differences between the actual failure and post failure 2 

from time step 100 to 220. In other words, the NN post-failure model 2 in this case may 

be accurate enough to use a smaller threshold value in order to have a better diagnostic 

report. This result suggests that, for . better failure diagnosis, the selection of the 

diagnostic threshold value should be failure-dependent and also should be chosen based 

upon the accuracy of the NN post-failure model. 
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Figure 6.20 Signatures of post failures vs. actual failure dynamics (scenario 3; general case; FDA simulation) 

6.2.2.3 Scenario 3 

Consider the failure situation involving an abrupt anticipated failure 1 starting at 

time step 68 and an incipient time-varying unanticipated failure with the time profile 

shown in Equation (6.11), 

k f 2 (·) = 0.6x 510 x y(k)x y(k-1); 
(6.11) 

/32 (k-T2 ) = (1-e-0.2x(k-Tz) )U(k-T2 ); T2 = 523. 

Figure 6.18 indicates that a large control error occurs suddenly right after appearance of 

the abrupt failure. It is identified as post failure 1 within 10 time steps as shown in Figure 

6.19 and is properly accommodated by the corresponding post-failure control actions 

until a time-varying failure starts at time step 523. Figure 6.20 shows the observable 

signature discrepancies between the actual failure and the post failures after the time step 

530 which corresponds to an unanticipated failure situation. 
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6.3 False alarm situations 

The nominal system and the nominal controller in the general case are selected to 

test the false alarm situation under the intelligent FDA architecture. In order to simulate 

the false failure alarm possibly caused by unexpected measurement noises, uniformly 

distributed random white noises are generated and added to the measurements. The 

unknown and unexpected white noises are generated during three time periods, time step 

78 to 81, 212 to 215, and 465 to 466. The added noises are varying from -0.3 to 0.3, -

0.23 to 0.23, and -0.85 to 0.85, respectively. The simulation results are plotted and 

shown in Figures 6.21-6.23. 

Figure 6.22 indicates how the FDA framework reacts to the false alarm situation 

caused by the unanticipated noises. Once the contaminated measurements trigger the 

alarm, the system behavior is immediately examined by failure diagnosis and, since the 

measurements are contaminated by noises, it will not be recognized as any one of the 

anticipated failures. Thus, the diagnostic result will suggest an unanticipated situation. 

However, after the effect resulting from unexpected noises decays, the fault detection 

scheme discovers the system behavior is as normal as it is under the nominal situation. 

After a double check of this situation, the fault detection scheme flags a false alarm signal 

and the system status is switched back to the nominal condition. Figure 6.21 shows some 

slight deviations of the system output away from the desired trajectory during the periods 

of noisy data, which is apparently caused by the fact that the contaminated measurements 

are used directly in the fault detection scheme and in the unanticipated failure conditions 

as the learning targets for failure accommodation. 
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Figure 6.23 Signatures of post failures vs. actual failure dynamics (false alarm situations; FDA simulation) 
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6.4 Comments and discussions 

The design parameters of fault detection and diagnosis, such as the length of the 

time-shifting evaluating window and the threshold values, all have direct effects on the 

system performance. Short evaluating windows in fault detection scheme may result in a 

sensitive and nervous failure detector while a long one may appear to be too slow for 

proper fault accommodation. Similar conditions also exist for failure diagnosis. 

Apparently, the best design of these parameters should be on a system-dependent basis. 

Noisy measurement tests are omitted since the accommodation for the measurement 

noise should be incorporated within the parameter design process. 
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CHAPTER VII 

CONCLUSIONS 

7.1 Summaries of complete research work 

Prompted by the increasing demands in system safety and reliability, FDA 

techniques are quickly becoming one of the most active research areas in the intelligent 

control community. Yet, many problems remain to be solved. Contemporary fault 

diagnosis and accommodation techniques are mainly focused on either linear systems or 

certain classes of nonlinear systems with simple failure scenarios. The major reason is 

obviously resulted from the fact that the control theory and technology for general 

nonlinear systems are still not readily available at present. Nevertheless, to face the 

problems of fault accommodation for a dynamic system in the on-line situation, it is not a 

reasonable approach to assume that the changes of system dynamics caused by 

unanticipated failures are limited to certain types. 

In this dissertation, the on-line fault accommodation control problems under 

catastrophic system failures are investigated. The major interest is focused on dealing 

with the unanticipated system failures in the general format. Through discrete-time 

Laypunov stability theory, the necessary and sufficient conditions to guarantee the system 

on-line stability and performance under various failure scenarios are derived. An on-line 
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fault accommodation control framework that incorporates an efficient on-line fault 

detection scheme and effective control law reconfiguration strategy is presented. Because 

of its capabilities of self-optimization and on-line adaptation, Artificial Neural Network 

is used in this research work as the on-line estimator to approximate the unknown failure 

dynamics. 

The on~line fault accommodation control problems are further divided into four 

different cases according to the prior knowledge of both nominal system and failures. 

Their corresponding problems and solutions are investigated and discussed case by case 

through theoretical analysis and extensive simulation studies. The effective control 

actions to accommodate system failures. are automatically computed on-line by the 

control regulator through the realization of the failure dynamics by the NN estimator 

based upon partially available information of the failure dynamics. After numerous 

simulation tests for different cases under various failure situations, the following 

summaries can be drawn. 

1. The prior information of both nominal system dynamics and failures provides 

substantially useful information for on-line fault accommodation control 

problems. In both cases 1 and 3, where the multiple-failure dynamics do not 

explicitly depend upon the current control input, the on-line fault tolerant control 

problems are relatively easy to be· solved since the extrapolation problem of the 

on-line estimator during the searching process of the effective control signal does 

not exist. Two different real-time control laws for on-line accommodation of the 

system failures have been derived for case 1. 
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2. The design parameter, the length of the time-shifting data window for the training 

process of the on-line estimator, has substantial effect on the system performance. 

More training patterns usually result in a better prediction performance. However, 

it takes much more computational cost to implement. Simulation tests indicate 

that 20 seems to be a reasonable trade-off number between the system 

performance and the computational complexity (i.e., the learning process using 

the Levenberg-Marquardt algorithm with Bayesian regularization usually 

converges within 10 iterations under the Intel Pentium JI-450 dual processors). 

· The network structure of the on-line estimator and training algorithm also have 

significant influence on the on-line learning process. Using the training algorithm 

with regularization will generally result in a better system behavior than others 

and, moreover, this kind of techniques can also relax the network over-fitting 

problem and eliminate the guesswork in determining an optimal network structure 

[65]. 

3. Simulation results suggest that performing the noise reduction or cancellation 

prior to on-line fault accommodation control will result in a better system 

performance, if some statistical properties of the noise are available, since the 

contaminated noisy measurements will mislead all the interpretations of the 

system behaviors and the on-line estimator. 

4. The suggested on-line fault detection scheme has good resistance in miss 

detection of system failures. However, it also increases the sensitivity of the false 

alarm situations. Simulation tests in noise-free false alarm situations indicate that 

the on-line estimator is used to approximate the remaining uncertainty of the 
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system. In noisy environments, it is possible for the on-line estimator to overfit 

the noise instead of the actual failure dynamics. Thus, the pre-processing of the 

contaminated noisy measurements becomes an essential step to prevent the false 

alarm situations that are obviously a waste of computational source. 

5. The proposed intelligent on-line fault accommodation methodology has also been 

tested on a MIMO system under a multiple unanticipated failure situation. The 

simulation results indicate the effectiveness of the suggested framework. 

However, it is important to mention that the simulation is performed under the 

assumption that there is no conflict to achieve the control missions (performance 

recoveries for multiple outputs) under the multiple failures. This may not always 

be true in the real failure situations. The accommodations of some failures may 

require a certain degree of compromise in other objectives. 

To obtain a deeper insight for quantification of the design parameters and the real­

time control system, an experimental on-line fault tolerant control test bed for examining 

the proposed on-line control framework in real hardware is constructed. Four different 

real-time experiments for case 1 with different control objectives and various 

unanticipated faults have been performed to evaluate the performance of the proposed 

fault accommodation technique in real applications under the real-time environment. In 

general, the effectiveness of the developed on-line fault accommodation control 

technique for catastrophic system failures has been validated through extensive on-line 

simulation tests. The successful on-line fault tolerance in real applications has been 

demonstrated through real-time hardware experiments with the presence of measurement 

noises. 
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Based upon the modem intelligent techniques, the unexpected failures can be 

identified and properly accommodated on-line without a complete realization of the 

failure dynamics. The price paid for this achievement of the successful control mission 

relies on a certain degree of computational expense. Simulation results show that, under 

the Levenberg-Marquardt training algorithm with Bayesian regularization [65-66], the 

on-line simulation speed can reach 2-3 time steps per second under the Intel Pentium II-

450 dual processors. Experimental results indicate that a more powerful computing 

device such as a computer with higher speed dual processors is mandatory for the on-line 

real-time fault tolerant control in the real applications under the more general situations 

(i.e., cases 2-4). Although the currently used dual processors may not be fast enough in 

many real-time control systems that require higher sampling rate, it is believed that the 

developed on-line fault accommodation technique can be implemented on-line in most of 
' . 

the real-time control systems in near future, with the continuous performance 

improvement of microprocessors and semiconductor technology. These results show a 

promising future of the fault tolerant control for unknown and unanticipated· system 

failures in on-line real-time fashion based only upon imprecise and insufficient 

information of the failures and the modern intelligent techniques. 

A more sophisticated and complete architecture for intelligent fault diagnosis and 

accommodation has also been presented by incorporating the developed intelligent fault 

tolerant control technique with a cost-effective fault detection scheme and a multiple-

model based failure diagnosis process to efficiently handle the false alarms, the 

accommodation of the anticipated failures, and to reduce the unnecessary control effort 

and computational complexity in on-line situations. A separate simulation study has been 
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performed to test this framework on-line for both special· and general cases. Under this 

architecture, the unnecessary computational waste caused by the false alarm which is the 

major weakness of the suggested fault detection scheme can be avoided as soon as the 

effects resulted from the expected disturbance or measurement noises diminished. 

Simulation results also indicate that, under the multiple-model based failure diagnosis 

process together with the post-failure control actions, successful fault isolation mission is 

quickly reached through the multiple-model failure recognition. System performance 

recovery can be obtained through the multiple-model switching in the post-faillll'.e control 

actions, and significant saving in control effort is achieved during which only the 

anticipated failure occurs. 

7.2 Future research directions 

Following the research work completed in this dissertation, several important 

future research directions are recommended and outlined as follows. 

1. The developed on-line fault accommodation technique should be tested under 

general MIMO cases. For case 1, the on-line control problems become to solve 

simultaneous equations, which is relatively simple while, in the more general 

cases, the control problems are both theoretically and technically complicated 

since the searching of effective control signals to accommodate the multiple 

failures becomes a multi-objective optimization problem which is still one of the 

open research issues. Thus, how to systematically reorganize the priorities of the 

control missions related to both system stability and performance for the general 
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MIMO system under multiple failures m the on-line situation becomes a 

challenging work. 

2. The presented architecture of the intelligent fault diagnosis and accommodation is 

designed from both the effective and efficient points of views. By taking 

advantage of the multiple-model structure, fault recognition can be quickly 

reached. Nevertheless, under the multiple-model base switching and the on-line 

system safety point of view, the failure diagnosis and selection of the 

accommodation actions are restricted to being conservative since the incorrect 

diagnostic result and the corresponding incorrect and/or ineffective control 

actions may cause even worse consequences. It is expected that a more 

sophisticated failure diagnosis process will provide a more precise and quicker 

"cure" or "treatment" for the faulty system such that more computational burden 

and risk can be relieved during the accommodation process. (i.e., for example, a 

better fault diagnosis scheme which is capable of detecting the "incipient" 

anticipated failures.) Thus, improvement on the fault diagnosis technique with the 

least computational complexity will definitely make its contribution to the fault 

tolerant control problems. 

3. Based upon the developed fault tolerant control technique, the reconfiguration of 

the effective control actions to properly accommodate the system failures is 

achieved through an appropriate optimization algorithm and the result of the 

optimization process directly affects the system performance recovery under the 

failures. Gradient descent algorithm is considered as an appropriate choice at 

present due to its reliability and efficiency in on-line situations. However, one 
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well-known problem of the gradient type of optimization algorithms is the 

possibility of stucking at a local minimum, which will apparently result in a 

degrading performance of control recovery. Thus, a more sophisticated and 

efficient on-line optimization algorithm to possibly relax this problem is worth an 

investment of research effort. 

4. With higher speed processors, hardware experiments should continue for more 

general situations (i.e., .cases 2-4) and more experiments can be designed to 

further · validate the proposed multiple-model based fault diagnosis and 

accommodation architecture in real-time environments. 

5. Further research work should pay more attention on the change of system order 

(i.e., change of the system relative degree) under failures. In general, if the failure 

causes the reduction of the relative degree, the control problem may be relatively 

easy to handle while both system identification and control are more complicated 

if the system order increases due to failures. In either case, on-line system order 

estimation may be required prior to the processes of failure estimation and 

accommodation. 
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