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CHAPTER 1

INTRODUCTION

1.1 Overview of fault diagnosis and accommodation

Modern engineering technology is leading to increasingly complex systems with
ever more demanding performance criteria. However, time-critical control recovery due
to catastrophic failures is often left unsolved. The ultimate pursuit of a higher degree of
autonomous behavior that provides constant health monitoring and fault tolerance for a
complex dynamic system with minimum human intervention has high priority in order to
achieve a successful c.ontrol mission. As dynamic systems become more complex,
experience rapidly changing enviroﬂments, and encounter a greater variety of unexpected
failures, the system is no longer reliable to perform properly because of the deviations of
the system dynamics. Those deviations can be characterized by drastic changes of the
system parameters or, more seriously, the inherent dynamical structure of the system. The
system stability becomes a critical issue after those dramatic dynamic changes. In many
safety-critical systems such as aircrafts or nuclear plants, system stability under failure
situations seriously impacts human survivability.

Urging by these growing demands in system safety and reliability, extensive

research activities have been focusing on developing Fault Diagnosis and



Accommodation (FDA) or so-called Fault Tolerant Control (FTC) methodology to
maintain the system stability and to avoid the loss of human life under various failure
scenarios during the past few decades. The major objective of FDA is to detect, diagnose,
and accommodate any system failures. Strictly speaking, the term, failure, usually refers
to a complete breakdown and the term, fault, usually suggests that the situations are
tolerable. Following the common terminology used in the FDA research community [1],
the terms failure and fault will be used as synonyms throughout this dissertation.

Failure situations can be typically characterized into three different categories,
sensor failures, actuator failures, and component failures. Traditional FDA approaches
are based upon the so-called physical or hardware redundancy, where redundant
hardware components or systems are used for backup. In the event of a failure or
malfunction, a backup system is switched. Due to the increasing complexity in modern
hardware systems and the extra space and cost needed for the redundancies, this approach
is both realistically and economically infeasible and unattractive. The major attention has
moved toward the so-called model-based analytical redundancy where powerful
computing devices and a mathematical model of the system are used to create the
necessary redundancy to monitor and analyze the system behavior. However, because of
the difficulty in obtaining an analytical model of a complex system and the inherent
complexity of the system dynamics under failure situations, most of the FDA research
works are aimed especially either at the linear system [1,3-8,11-21,89-92,104-108] or a
certain type of nonlinear systems under simple failure situations [2,9-10,22-26,63,85-86],
where the faults are usually modeled as the deviation of the system parameters, or

additive disturbances, which limits the possible failure scenarios and restricts the



usefulness of these techniques. Nevertheless, for a dynamic system under totally
unanticipated catastrophic system failures, it is not a reasonable approach to assume
certain types of dynamic change caused by those unexpected failures. A truly
autonomous FDA system is the one that can detect the failures, identify them, and
perform effective control law reconfiguration to accommodate the tolerable failures in
on-line situation without human intervention. The representative fault diagnosis (FD) and
fault accommodation (FA) techniques reported in literatures are systematically shown in

Figures 1.1 and 1.2, respectively.

FD (Fault Diagnosis) approaches

Model Free methods Knowledge-based Model-based methods
approach l

Replaced the redundancy
by mathematical model and

powerful computing devices

Limit Special Multiple Frequency Expert Combines analytical
checking sensors sensors analysis system redundancy

with heuristic
knowledge Residual generation,

statistical testing,

Hardware redundancy approaches (8] and logical analysis
1] ' (Also referred as model-based
analytical redundancy)
[1-10,81-86],....

Interactive Multiple-Model (IMM)
[90,106-107]

Figure 1.1 Typical FD approaches

With the inherent nonlinear features and self-adaptation capability, modern
intelligent techniques such as neural network, fuzzy logic, and evolutionary algorithms
have received extensive interests from various academic and industrial communities
[57,71,73—74,96—103]. The synergistic combination of these intelligent techniques and

modern control technologies for the more general and sophisticated fault diagnosis and



accommodation scheme to achieve the successful autonomous control mission has

become a challenging research discipline.
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Figure 1.2 Typical FA approaches

1.2 Problem statement

The general SISO dynamic system can be represented by Equation (1.1) [37],

x(k+1) = f (x(k), u(k))

1.1
y(k) = h(x(k)) (-0

where x(k)e R",y(k)e R, and u(k)e R denote the system state variables, output, and

input, respectively, and f:R"XR > R",h:R" > R. The problems of control related

to system (1.1) can be divided into the following three cases [37]:

1). f and h are known, and the state variables x(k) are accessible.

2). f and h are unknown, but the state variables x(k) are accessible.



3). f and h are unknown, and only the input u(k) and system output y(k) are
available.

In the case 1), the system is completely known. Traditional control techniques can be

applied directly to analyze the system and, based upon the realization of the system

characteristics, the appropriate controllers for different control objectives can be

developed. Case 2) corresponds to an adaptive control problem in which both f and A
have to be estimated. However, the fact that the state variables, x(k), are measurable

makes the control problem relatively simpler than that in case 3) where both system
identification and control have to be carried out using the only information available, the
input-output data. Nevertheless, due to the complexity of the system dynamics under
various failure scenarios, the case 3) is the major problem we are most interested in.

Observing the system (1.1) closely, it is easy to show that the system output, y(k +1), is

actually a function of past outputs and inputs [37],
[y(k), y(k-1),... , yk —n+1),u(k),utk =1),...,u(k—n+1)]. For the remaining of this
dissertation, the least available system information will be assumed and the main focus
will be placed in ~th¢ general case 3). In other words, only the system input-output
measurements will be assumed available for the on-line fault tolerant control problems of
our interest.

Consider a general MIMO dynamic system that can be described by Equation
(1.2),

V(K +d) = Ty, Tgree. Voo Tl iy T,
. ={y;k+d-1),y,(k+d-2),....y,(k+d~-p,)},
ﬁj :{uj(k)’uj(k_1)7"'uj(k—qj)}a

pi,qjei)i+,i=1, 2,....m,j=L2,.. . n,and 1 =1,2,..., m.,

(1.2)



where f, : R7XR? > R, with P = 2 p., Q0= Zq ; is the mathematical realization of

i1 =
the system dynamics for the Ith output. y,,y,,u, € R are the /th and ith system outputs
and jth input, respectively. d is the relative degree of the system (the smallest delay
from the input signal to the system output). In general, f, may not be readily available all

the time in mathematical format due to the difficulty of modeling a complex dynamic
system. However, it is possible to develop a realization to describe the system behavior
with a known bounded uncertainty within the desired working region of the system using
all the existing modeling techniques, provided enough resource and sufficient time for the
development of the realization [29,34,37-39], as shown in Equation (1.3). These
techniques may include the modern intelligent technology such as artificial neural

networks or fuzzy-nets.
Vi EAD)= F (T Tgreor T oty oy T, ) + 1, (9,10, (1.3)

where “;71 (y,u)“ , S0, V(y,u)c(Y,U), (Y,U) represents the desired working regime,

and J, € R is a known constant. Thus, f,, the realization of the real system with a

known bounded uncerfainty within the desired working region of the system, will be
either a mathematical, numerical, or a combined realization and it is assumed that this
realization is developed off-line and available. Equation (1.2) denotes a healthy system
under the fault-free situation and Equation (1.3) is the corresponding nominal model.
Under different component failures, the system dynamics is changed and represented by

the following equation:



Y k4= £,(5)2Tga Vil Tl I,

+ 3 Bilk =T (3, Vg Tyl iy i, k), (L4

v=1

where F/():R7xREXR* >R with P=) p,, 0= q, represents the dynamic

i=1 j=1
change (a general time-varying function depends upon past system outputs, past control

inputs, and the current control input) caused by the unknown and possibly unanticipated

failure mode v for the Ith output and B.(-) denotes the corresponding time profile.

Fv’ OF ,Bé (), and TV’ are assumed unknown due to the possible occurrence of

unanticipated failures. r is the number of system failures. All the cases in which r >1
are referred to as multiple-failure cases. Two typical faults, incipient faults and abrupt

faults, are considered to be involved on-line. Their characteristics can be described by the

time varying constant gain, /3. (-), shown in Figure 1.3.

B, (k~T,) B,k ~T;)
A A
1 1
l > 1 >
L k - L k
BLk—=T!) =1~ YUk -T') BLk-T)=U(k~T")
a). Incipient fault b). Abrupt fault

Figure 1.3 Time profiles of the incipient and abrupt faults

ol e R* is an unknown constant which defines the time profile of the incipient failure
mode v and U(k) denotes the unit step function. Abrupt failures are used to represent

the sudden change of the system dynamics due to catastrophic malfunction or failure of



the system component and the incipient failures are used to describe the time-varying
effect of the system component-aging problem. The control objective is to generate
appropriate control signals to stabilize the system and, possibly, drive the system outputs

back to the desired trajectories, y,(k+d)e R,1=1,2,..., m., in on-line situations with

the presence of the abrupt and/or incipient faults.

1.3 Motivation and objective of study

Clearly, observing Equation (1.4), it is easy to find that the contemporary control
theories and technology are unable to solve the control problem with the presence of the
unknown failure dynamics aﬁd their corresponding time-varying profiles in on-line
situations. Under the general structure of system dynamics and various possible failure
scenarios, existing FDA approaches are inadequate to achieve the successful control
mission. From the on-line control point of view, it is, at least now, impossible to perform
exact fault detection and identification right after the occurrence of failures. Conflicting
requirements exist between the amount of time that the fault detection scheme takes and
the information that the scheme can provide [19]. In on-line situations, the interesting and
important question becomes how to properly control the system behavior in time to
prevent the failure from causing more serious lost, if the system under failures is still
controllable at that time. Afterwards, how to possibly recover the system performance
based upon only imprecise or insufficient information while the system dynamics may
suddenly change dramatically or continuously change with time due to the failures. The

development of a more sophisticated intelligent on-line control methodology to identify



the failure dynamics and perform control law adjustments or re-configuration with the

least human intervention is in critical need.
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Uncontrollable
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....... AR AR AR System status
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-
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- .
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 J

Physically available working region

Figure 1.4 FTC problem region of interest

Of course, many system failure situations are catastrophic and uncontrollable. For
example, if the sensor loop malfunctions such that all the readings from the sensor are
lost or meaningless, without knowing the true failure, the only way to possibly maintain
the system safety is by having human interference such as shut-down of the system,
failure diagnosis, and replacement of the faulty parts. If the failures actually break down
the control input to the system, there is no way to perform any control recovery. Figure
1.4 shows the interest problem region of this research, the curve-line area, where the
system behavior under failures are out of the nominal working area, but still controllable
and within the physically available working region. The major FTC objective is to
prevent the faulty system from moving into the saturation region and possibly drive it

back to the nominal condition, which brings out the following important questions:
1. Are there any conditions or constraints under which the system on-line safety and

performance can be guaranteed?



2. If the answer of the first question is positive, how do we quantify those conditions
or constraints?

3. If the systems under failures are still controllable and the faults are still tolerable,
what is the detail systematic procedure to effectively and efficiently detect the
failures, identify the change of the system dynamics, reconfigure or adjust the
control actions to accommodate the failures, maintain the system on-line safety,
and possibly recover the system performance by using only the insufficient
information in the on-line situation without human intervention?

This research work is dedicated to the investigation of on-line fault tolerant
control problems for unanticipated catastrophic system failures and to provide answers to
the questions listed above. The major interest will focus on system component failures
such that the system dynamics under these failures can be represented by Equation (1.4).
A general intelligent on-line fault accommodation control technique and framework are
proposed to deal with the on-line fault detection and control law reconfiguration
problems for proper failure accommodations. Through a theoretical analysis of the on-
line fault tolerant control problems based upon discrete-time Lyapunov stability theory,
the hecessary and sufficient conditions to guarantee the system on-line stability and
survivability have been established. Incorporating a cost-effective failure detection and a
multiple-model based failure diagnosis process with the developed fault accommodation
framework, a more complete architecture of the multiple-model based fault diagnosis and
accommodation is also presented to efficiently handle the false alarms, the
accommodation of the anticipated failures, and to reduce the unnecessary control effort

and computational complexity in on-line situations.
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This dissertation is organized as follows. Chapter 2 provides a more detail
overview of the traditional and existing FDA approaches and the modern intelligent
techniques related to the control issues. A theoretical foundation and analysis of the on-
line fault tolerant control problems is established in Chapter 3 together with the proposed
intelligent on-line fault accommodation control methodology. In Chapter 4, extensive on-
line numerical simulations are presented to evaluate and validate the proposed
methodology. Real-time hardware experiments are presented in Chapter 5 to substantiate
the effectiveness of the proposed fault accommodation technique and to demonstrate the
possibility of successful fault tolerance in real applications. A complete architecture of
the multiple-model based fault diagnosis and accommodation framework is presented in
Chapter 6 together with on-line simulation study and discussions. The conclusions and

recommended future research work are given in Chapter 7.
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CHAPTER 11

LITERATURE REVIEW

2.1 Fault diagnosis

Fault diagnosis typically consists of three different tasks, failure detection, failure
isolation, and failure identification. Failure detection usually refers to the process of
detecting system abnormal behavior due to faults, failure isolation is the task of
determining the exact location of the failure, and failure identification refers to the
determination of the size of the failure [1].

According to one early extensive survey [1], the approaches to failure detection
and isolation fall into two major categories, model-free methods and model-based
methods. The representative model-free approaches include the following methods:

1. Limit checking: different system measurements are compared to their corresponding
pre-specified limits (thresholds). Exceeding the corresponding limit indicates that a
failure occurs in the corresponding location.

2. Installation of special sensors: using special sensors to monitor hardware limits (e.g.,
limit temperature or pressure) or measure some special variables (e.g., sound,
vibration, etc.).

3. Installation of multiple sensors: this method is aimed especially at detecting and

isolating sensor failures. Measurements of the same variable from different sensors
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are compared to decide the faulty one. The considered correct reading can be decided
by a majority vote.

4. Frequency analysis: some plant measurements have a typical frequency spectrum
under normal operating conditions. Certain types of failure may have a characteristic
signature in the spectrum that can be used for both failure detection and isolation.

5. Expert system approach: an expert system consisting of a rule database in the form of
“IF symptom1l AND symptom2 THEN conclusion” is used for failure detection and
isolation.

Approaches 2 and 3 are also referred to as physical redundancy or hardware
redundancy. The additional cost, space, and complexity of incorporating redundant
hardware make those approaches unattractive [2]. With the availability of the inexpensive
and powerful microprocessor, model-based methods or so-called model-based analytical
redundancy have dominated the FDA research activities and received substantial
attention in the past two decades [1-26,63,75,81-86]. In the analytical redundancy
approach, a mathematical model of the physical system is used for monitoring and
comparison. Obviously, the major reason this approach is so prevalent is the fact that the
information. processing techniques, which uée powerful computing devices and memory
systems, can also be used to create the necessary redundancy without the need of the
hardware instrumentation in the system [2].

Unlike the hardware redundancy, sensory measurements are now being compared
with the analytically obtained values of the respective variable through the mathematical
model. The resulting differences are so-called residuals [1]. In the ideal situation, the

residuals will be zeros in the fault-free system and any deviation will be interpreted as an
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indication of faults. But this is rarely true in practice with the presences of measurement
noises and modeling errors. The deviation now can be the combinational results of
noises, modeling errors, and faults. Naturally, with the presence of significant noises,
statistical analysis of the residuals becomes a necessary and reasonable procedure to
generate a logical pattern, called signature of the failure, for the proper fault detection and
isolation. Many research activities have also been dedicated to investigate a proper
residual generation to facilitate the fault isolation process [81-84,87-89]. Generally
speaking, residual generation, statistical testing, and logical analysis are usually
combined as the three stages of the fault detection and isolation procedure [3].

Three typical properties of the failure isolation procedure, isolability, sensitivity,
and rbbustness significantly affect the usefulness of the procedure. Isolability is the
ability of the procedure to distinguish specific | failures, sensitivity is a measure
characterizing the size of the faults that can be isolated with the presences of noises and
disturbances, and robustness is the ability to isolate the faults in the presence of modeling
uncertainties or errors [1]. Apparently, a good fault diagnosis scheme should be robust
with respect to the modeling errors and sensitive to the failures. Unfortunately, the
presences of noises, disturbances, and modeling uncertainties will obviously obscure the
effect of faults in the residuals and possibly cause miss detection of failures and false
alarm situations. The trade-off problems between the robustness and sensitivity of the
fault diagnosis scheme have attracted many research efforts [4-6].

Other than the hardware redundancy and model-based analytical redundancy, in
the cases where only the poor or imprecise analytical models are available, an approach

called the knowledge-based method is suggested by [8]. This approach combines both
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analytical and heuristic knowledge to form a knowledge base. Such knowledge may
include the degree of component aging, history of fault statistics, etc. The core of the
knowledge-based approach is an on-line expert system that combines the analytical
model-based redundancy methods for the fault detection and isolation with the method of
fault diagnosis by evaluation of heuristic knowledge about the process through an
inference engine [8].

Due to the inherent complexity of nonlinear systems, most of model-based
analytical redundancy fault diagnosis studies deal with the linear system that is subject to
simple additive or multiplicative faults. A basic framework of the fault diagnosis and
accommodation architecture for more general systems and failure situations is suggested

by [2,9,10,23-25] and shown in Figure 2.1.

-
r ___E Compensator U o] Actual y
system
‘V¢ y N

\ 4

Nominal Estimated
model model
[ |
Selection Residual
logic generation
A 4
y
Post-failure _ Fault
model bank [°7 »1 diagnosis
[ [
A
Anticipated Unanticipated
fault fault
response response

Figure 2.1 Description of the fault diagnosis and accommodation (FDA) architecture
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The primary function of the estimated model is to track the actual system
dynamics. In order to detect any off-nominal system behavior, the estimated model is
also compared with the nominal model to generate the residuals, which serve as a
measure of the deviation between the estimated model and the nominal plant. Based on
the residual vector and its trending, a decision can be made for whether a system failure
is emerging or not through a fault diagnosis mechanism. Once a failure is detected, the
characteristics of the failure are compared with the signatures of any known failure
modes to decide whether the fault is anticipated (known) or unexpected by using a post-
failure model bank which is updated periodically to incorporate the signatures of any new
failures.

The estimated model combines the knowledge of the nominal model and an on-
line approximator to keep tracking the mathematical representation of the actual system
dynamics. The on-line approﬁ(imator is used not only for the failure detection, but also for
estimation of the size of the failures (failure identification). During the nominal situation
which corresponds to the fault-free condition, the on-line approximator will not be
identically zero because of the existence of the modeling uncertainty and noises.
However, once a fault occurs, the output of the approximator should significantly deviate
from zero, which will be considered as a failure situation. The research work [85-86]
discusses the corresponding fault isolability condition if there is only one failure
happened. This approach is inspired by the inherent adaptive features of neural networks
to provide a powerful learning scheme for automated fault diagnosis [2]. It does require
substantial computations to implement since the parameters of the nonlinear adaptive

observers have to be adjusted on-line. Thus, the successful isolation mission can be
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achieved only when all the assumptions and conditions are met. In other words, more
practical and complicated FDD (Fault Detection and Diagnosis) problems such as

detection and diagnosis of possible multiple failures still remain to be solved.

2.2 Fault accommodation
The ultimate objective of fault diagnosis is to properly accommodate the failures
and maintain the system safety and reliability with the least human interference. In the
hardware redundancy approach, fault accommodation process is completed simply by
switching to the backup system or components. Typical fault accommodation schemes
using model-based analytical redundancy can be divided into the following approaches:

1. If the faults are known as the parameter variation of a linear system, the so-called
pseudo-inverse method is used to adjust the feedback gains for proper
accommodation of the failures. It has been shown that this method is a special case of
classical linear model-following control [11,12].

2. The faulty effects appear as the changés in model parameters, which can be identified
on-line. The control law is reconfigured automatically based upon the identified
parameters [13,14].

3. Linear-quadratic control methodology is used and the reconfiguration is achieved by
choosing new values of the weighting matrices in the performance index to offset the
effect of faults [16].

4. Compensation via additive input design for sensor failures and actuator failures

[15,17].
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5. If the system subject to faults can be modeled as a linear time invariant model with
changed parameters, state-space based pole placement together with the system
identification process or eigenstructure assignment can be used for the reconfigurable
control [18-19,104-105].

Similar to, but different from adaptation, a learning control system concept is suggested

by [20]. A learning system is the one that has ability to improve its performance in the

future, based upon the information it learned from the past. According to [20], the goal of
adaptation is to update behavior through time while the learning control system correlates
past experiences with past situations and can recall and exploit those experiences.

Possibly inspired by the advancing intelligent neural and fuzzy logic techniques, the

learning system concept possesses promising potential in dealing with the ultimate

autonomous and fault tolerant control problems. However, so far, the effort has only been
focused on the linear control system.

Simﬂar to fault diagnosis research work, traditional fault accommodation schemes
are mainly based upon the powerful and well-developed linear design methodology to
obtain the desired objectives. However, this is rarely the case in practice since all the
systems are inherently nonlinear and the system dynamics under failure situations are
more likely to be nonlinear and time varying. Although the control law reconfigurations
are relatively easy to realize and solve under the assumption of linear situations, it
actually limits the possible failure conditions and restricts the usefulness in practical
situations. A series of research works that is devoted to more general failure cases is

reported in [2,9,22] and also shown in Figure 2.1.
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The failures are divided into two different groups, the anticipated faults and the
unanticipated faults. The formers represent those well-known faults and the faults which
happened in the past whose characteristics and effects are well characterized such that
their corresponding signatures can be stored in the post failure-model bank for proper
failure isolation and identification. The appropriate corresponding control actions can
then be constructed based upon the well-understood knowledge of the failure dynamics.
The latter refer to those failure situations whose signatures cannot be identified or
recognized from the existing failure features. In the cases of the unanticipated faults, an
on-line identification algorithm for the failure dynamics with control law reconfiguration
strategy is required to properly control the system. The basic idea is outlined as follows:

Consider the following dynamic system with modeling uncertainty and unknown

failure dynamics:
x =) +G®u+nxt)+ B, —T,)f,(x] 2.0
where { and G represent the nominal plant dynamics, i.e. {+Gu, 1 is the modeling

uncertainty, and f,, f; represent the failure mode dynamics. The fault function, f,, and

i

the modeling uncertainty, 77, are assumed to be independent of u and they are in the

range space of G. This is known as a matching condition [27]. Assume that no fault
occurs in the dynamic system during a specified initial time period of operation. Then,
any differences between the system dynamics and its nominal model are due to modeling
uncertainties. Therefore, neural networks can be used to learn the modeling uncertainties.
It is assumed that, after the certain period of time, the differences belong to the failures.
Neural networks are used to approximate the fault dynamics. The authors in [22]

suggested that two neural networks can be used, one for improving the accuracy of the
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nominal model and one for fault monitoring. The control strategy is simply explained as
follows.
Supposed that u = a(x) is the desired controller for the nominal model, which

causes the nominal system to exhibit the desired behavior. In the event of system failures,

a new augmented control law, u'=a(x)+(p(x,é), is required to accommodate the
failure. @(x, é), corrective control law, is selected and adjusted based on available

information (8 represents the parameters of the neural network). Obviously, in the above

case, ¢ can be chosen as —7—y where 7 and y are the NN approximators for

modeling uncertainty and failure mode dynamics, respectively. Once the approximation
reaches a satisfactory result, the new control law should drive the fault system to the
desired trajectory. The idea of using neural networks to approximate the unknown failure
mode dynamics on-line makes the control methodology more flexible to accommodate
the system failures.

However, observing Equation (2.1) closely, we can find that the unknown failure
dynamics is modeled as an unknown function of past state variables only. In the cases of
more general failure situations whose dynamics depends not only on the past state
variables, but also on the past and current system inputs (control input), the control law
reconstruction is substantially more difficult. As the authors pointed out in [2], one of the
nonlinear control techniéues available for such problems is that of feedback linearization
whose idea is to transform the nonlinear system into a linear one through a change of
coordinates and nonlinear feedback. Only when the feedback linearization is achievable,
can the powerful linear control design techniques be used to attain the desired control

objective. However, a system is feedback linearizable only under certain conditions [28].
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Modern intelligent techniques involving artificial neural networks and fuzzy logic
have made significant progress and attracted a great deal of attention from various
research fields during the past decade. With the capability of self-optimization and on-
line adaptation, these techniques have been successfully demonstrated and used in many
real applications including pattern recognition, classification, automatic control,
manufacturing, medical, telecommunications, banking, speech, oil and gas, etc [57]. It is
a well-known fact that the traditional control design methods require‘ mathematical
description of the system to realize the system dynamics. Based upon those system
features, the appropriate control law can then be designed to regulate the system
behavior. However, it is substantially difficult to obtain a good mathematical model as
the system gets larger, more complex, and/or subject to unanticipated faults. The artificial
neural network has been proven to have the ability to approximate any piecewise
continuous function given sufficient neurons in the hidden layer [56,57]. Naturally, it
becomes a promising candidate to relax the complicated and difficult mathematical
modeling process. Many intensive research activities have been devoted to explore the
possibilities of using these techniques in dealing with the control problems involving
unknown nonlinear systems. These techniques can be typically divided into three
different approaches, namely indirect adaptive control, direct adaptive control, and

multiple model techniques.
2.3 Indirect adaptive control

The idea of indirect adaptive control is simply shown in Figure 2.2. In the cases of

unknown plant dynamics, an identification model is used to approximate the real plant
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dynamics by adjusting its parameters to reduce the error between its output and the output
of the real plant. Once the identification process completes, the controller design is based
upon the realization of the identification model toward the real system.

Narendra first showed the feasibility of using neural networks to identify and
control an unknown nonlinear dynamic system in 1990 [29]. His idea is clearly shown in

Figure 2.2. e, is used to adjust the identification model parameters and the controller is

designed based on the identification (estimated) model. The idea is best illustrated by the

following example.

Plant: y, (k+1)= f(y,(k),y,(k—-1))+u(k) 2.2)

Reference model : y, (k+1)=0.6y, (k) +0.2y, (k—1)+r(k)

Controller : u(k) =—-NF(y,(k),y,(k—=1))+0.6y,(k)+0.2y ,(k—-1)+ r(k). (2.3)
o Reference Yo
model
€c
r 2
- Identification | *
"| model (NF) €
)
A
u . Yp
:: controller »  plant

Figure 2.2 Indirect adaptive control

The nonlinear function, f, is assumed to be unknown. The only available information is

that it is a function of current and past system outputs, y,(k) and y, (k—1) (.e.
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f:R?* — R). The approach is using a neural network to learn the nonlinear input-output

mapping such that the unknown system dynamical behavior can be realized by a neural
network model. Once the neural network identification model, NF, is trained to
approximate the real nonlinear function f, the control signal generated by the controller
will cancel the system non-linearity and replace it with the desired dynamics. However,
this approach works properly only when the plant dynamics is not changing and the
identification process has to be completed before the controller can effectively function.
Otherwise, the incomplete identification model may mislead the controller and drive a
stable system into an unstable situation.

The control problem in the above case is relatively easy to solve, since the system
is actuaily affine in control (i.e. the system is linear in control input). The control signal
can be easily computed by using Equation (2.3) and the control problem is actually
reduced to properly identifying the unknown function (nonlinear mapping), f . Although
a large class of dynamic systems can be represented by the “affine in control” relation, in
the cases of more complex system kdynamics, the more general cases have to be
considered.

For the desired trajectories tracking control problem, the control design objective

is to specify the appropriate control signal such that y(k +1) =y, (k +1) where y,(k+1)

represents the desired output at time step k +1. By the implicit function theorem [30], the
appropriate control input related to system (1.1) should be a function of past system
outputs, past control inputs, and the desired output. It can be represented by Equation
2.4),

uk) =G(y(k),y(k=1,....,ytk—n+1),y,(k+1),u(k -1),...,utk —n+1)), (2.4)
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where G : R* — R. The control problem is to determine the map G from the measured
inputs and outputs as well as the desired output to the control signal. One approach is
using a neural network to serve as the controller (i.e., using a neural network to
approximate the function, G [35,36,72]). However, this technique is computationally
expensive because the static back propagation algorithm [57] cannot be used directly to
adjust the network parameters. A more complicated training algorithm such as real-time
backpropagation or backpropagation through time is required for the parameter searching
process [31-34].

Another approach is suggested by Narendra [37]. The idea is to linearize the
general representation by using Taylor’s series expansion to generate approximation
models. The main feature of these models is that they are all “affine in control” such that
the control input is easy to compute without requiring an additional neural network
controller. The control problem is again simplified to be the identification problem of an
unknown dynamic system. His approach is briefly shown as follows.

Consider the system (1.1) that can be described by Equation (2.5) using only the
system input-output information,

yk+d)=F(y(k),y(k =1),..,y(k —n+1),uk),ulk —1),.,u(k —n+1)). (2.5)
Two approximation models, NARMA-L1 and NARMA-L2, can be generated by
expanding the general representation (2.5) in Taylor’s series around different operating
points, respectively. The NARMA-L1 model is generated around the point,
(y(k), y(k =1),..,y(k—n+D,uk) =0,u(k—-1)=0,..,u(k—n+1)=0)
and the NARMA-L2 is generated around the point,

(y(k), y(k =1),..,y(k =n+1D,u(k —1),..,u(k —n+1),u(k) =0).
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The NARMA-L1 model is then represented by Equation (2.6),

n—1
yk+d) = fly(k), y(k =1),.., y(k =n+ D]+ Y, g, (y(k), y(k =1),.., y(k = n+ Duk i),

i=0
(2.6)
and the NARMA-L2 model is described by Equation (2.7),

yk+d)= ]_‘(y(k),.., vk —n+1D,uk -1),..,ulk —n+ D]+ g(y(k),.., y(k —n+1),u(k ~1),..
Jak—n+Duk). 2.7

If the NARMA-L1 model is used to approximate the system, n+1 networks are required

to approximate the functions f and g,(i=0l,.,n—-1) with n arguments in each
function. If the NARMA-L2 model is used, only two networks are needed to approximate
the system dynamics and each function has 2n -1 inputs.

This approach uses approximation models to represent the real system dynamics
based upon the Taylor series expansion up to the first order such that the control input
can be easily computed as follows.

For NARMA-L1 model,

Yok +1) = fly(k), y(k = D),..., y(k —n+1)] - 2 gilyk),... y(k —=n+DJu(k 1)

u(k) = =l '
' go[)’(k)’, )’(k —n+ 1)]

2.8)

For NARMA-L2 model,

v, (k+1)— ];[y(k), vk =1),...,y(k—n+1),u(k—-1),..,u(k —n+1)] .

u(k) = =
gly(k),... y(k —n+1),u(k =1),..,u(k —n+1)]

(2.9)
However, using approximation models instead of the actual ones to reduce
computational cost will degrade the control accuracy at the same time. Besides, when the

system goes far away from the linearized points, the approximation models are no longer
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valid to represent the actual system dynamics. In the cases that only the system input-
output data are measurable, this approach will also experience difficulty in the training
process. It is believed that these indirect adaptive control techniques can reach the desired
control objectives as long as the network training process converges to the desired
accuracy, given a sufficient network structure and training time in the off-line situation.
Apparently, the idea of the indirect adaptive control is mainly based upon the
identification of the unknown plant dynamics. The control problems are solved through
the realization of the identification model toward the unknown plant dynamics and the
control action can effectively regulate the system performance only after the completion
of the identification process. Typical identification techniques include polynomials,
rational functions, spline fuhctions, multipléyer neural networks, radial—basis-function
networks, and adaptive fuzzy systems. Other than these techniques, two novel intelligent

system identification techniques will be briefly described in the following subsection.

2.3.1 Mixture of expert networks

Jordan and Jacobs proposed a novel identification structure using neural networks
called Hierarchical Mixture of Experts [38]. Based on the principle of divide—and--
conquer, it attacks a complex problem by dividing it into simpler problems whose local
solutions can be combined to yield a solution to the complex problem. They proposed to
solve the nonlinear supervised learning problems by dividing the input space into a
nested set of regions and fitting simple surfaces to the data that fall in these regions. The

structure of Mixture of Experts is shown in Figure 2.3.
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Figure 2.3 Hierarchical Mixture of Expert Networks

in the tree are linear with a single output nonlinearity.

where U is a weight matrix and f'is a fixed nonlinear continuous function. The upper

Wy = f(UUu) s

level gating network is defined as follows:

£, =v,u and g, =

27
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where v, is a weight vector and ¢, is an intermediate variable. g, is positive and sum to

one for each u. They can be interpreted as providing a "soft" partitioning of the input

space. Similarly, the lower level gating networks are defined as follows:

&, =v, u and g (2.12)

Jk Zeé‘k ’
k

The output of the network is just the weighted sum of the lower level network outputs.

w;, = Zgjliwij and y= zgiwi . (2.13)
j i

The problem of training a Mixture of Experts can be treated as a maximum likelihood
estimation problem. The training method is called EM (Expectation-Maximization)
algorithm. It is an iterative approach to maximum likelihood estimation [38].

Comparing with backpropagation networks, using Hierarchical Mixture of
Experts (HME) in the identification process for a dynamic system can be summarized as
follows [38]:

1. No free parameter is required for training HME using EM algorithm while the
backpropagation networks have some free parameters to adjust such as the learning
rate and the momentum term.

2. Backpropagation networks usually produce lower error than the HME, although they
sometimes have difficulties with the local minima.

3. Training HME is computationally expensive when the network structure is large.

4. EM algorithm assumes known output density function for training and the choice of

density function is problem-dependent.
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2.3.2 Neural fuzzy inference network

Juang and Lin proposed a self-constructing neural fuzzy inference network

(SOFIN) with the capability of the on-line learning and self-pruning of the network

structure for system identification [39]. The network are created and adapted as learning

proceeds via simultaneous structure and parameter identification. It contains six layers

and realizes a fuzzy model of the following form:

Rule i: if x; is A, and ... x, is 4, then y is m;, +a,x; +....,

where A; is a fuzzy set, m,, is the center of a symmetric membership function on y,

and a; is a consequent parameter. The network structure is shown in Figure 2.4 and

briefly introduced as follows.

Layer 1:

Layer 2:

Each node in this layer corresponds to one input variable and it transmits the
input values to the next layer directly.
Each nodé in this layer corresponds to one linguistic label of one of the input
variables in Layer 1. The membership value that specifies the degree to which
an input variable belongs a fuzzy set is computed in this layer [39]. The
operation performed in this layer is
f@?)= —L@i and a®(f)=e’, (2.14)
i

where u” is the ith input of this layer and is the same as the ith output of the

first layer, m; and o are the center and the width of the Gaussian membership

function of the jth term of the ith input variable x,. a® (f) represents the
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output of the second layer. Please note that the number of fuzzy sets for each

input variable is not necessarily identical in this network.

31
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Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

X

Figure 2.4 Structure of SOFIN -

Layer 3: A node in this layer represents one fuzzy logic rule and performs precondition

matching of a rule. The AND operation is used for each node in the Layer 3

f(ul'(3)) — Hui(B) — e—[D,-(X—M,-]T[D,-(X—M,-)] and a(3) (f) — f , (215)

where D, =diag(l/o,l/0,,.1/0,), M,=(m ,m,,..m ), and

>"in

X =(x,x,,..,x,). n is the number of Layer-2 nodes participating in the IF part
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Layer 4:

of the rule. The output of a Layer-3 node represents the firing strength of the
corresponding fuzzy rule.
The number of nodes in this layer is equal to that in Layer 3 and the firing

strength computed in the Layer 3 is normalized in this layer by

4
u;
2

2.16)
7 (

f=Yu? and a“(f)=

Layer 5: This is the consequent layer. There are two types of nodes used in this layer. The

note denoted by a blank circle is the essential node representing a fuzzy set of
the output variable. Only the center of each Gaussian membership function is
delivered to the next layer for the local mean of maximum defuzzification
operation [43] and the width is used for output clustering only. The function of

the blank node is

f=Yu® and a®(f)=f-ay,, (2.17)

where a,, =m,,, the center of the Gaussian membership function. The shaded

node is generated only wheh necessary. Each node in Layer 4 has its
corresponding shaded node in Layer 5. One of the inputs to a shaded node is the
output from Layer 4 and the others are the input variables from Layer 1. The

shaded node function is

f=Ya,x; and a®(f)=f-u®, (2.18)

where the summation is over the significant terms connected to the shaded node

only and a is the corresponding parameter. The whole function performed in

Layer 5 is
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a® (f)= (Y aux; +au. (2.19)

Layer 6: Each node in this layer corresponds to one output variable. It combines all the

actions suggested by Layer 5 and acts as a defuzzifier with

f@®)=Yu® and a9 (f)=f. (2.20)

Initially, there is no rule in the network. They are created from the incoming
training data received by performing the following learning processes:
1) input/output space partitioning
2) construction of fuzzy rules
3) optimal consequent structure identification
4) parameter identification
For the details of each process and the training algorithm, please refer to [39] and the

related methods [40-42].

2.4 Direct adaptive control

Unlike the indirect adaptive control techniques, the direct adaptive control
methods intend to skip the complex modeling process and directly focus on solving the
control problems. The idea of the direct adaptive control problem is shown in Figure 2.5.
The control problem is solved by the effective control signal that reduces the system
performance error (usually defined by the tracking error between the system output and
the desired trajectory). Based upon the truth that tuning the parameters of the neural
controller by the gradient descent type optimization algorithm requires only the Jacobian

of the system model with respect to the control inputs and the searching of better
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parameters is along the negative gradient direction, the approach of the direct adaptive
control is to either compute or estimate the plant Jacobian matrix with respect to the
control inputs for MIMO (multiple-inputs multiple-outputs) system or the plant gradient

with respect to the control input for SISO (single-input single-output) system.

Reference Vo

model

€c

»
L

controller plant

Y

—yvy

Figure 2.5 Direct adaptive control

Psaltis and Saerens suggested an approach that uses the sign of the Jacobian,
instead of its real value in the training of the Neural Controller [35,36,44]. With the help
of on-line estimating the sign of the plant Jacobian, the identification process and the NN
identification model for the real system dynamics is not required for the control purpose,
since the control input can be adjusted by using the sign of the plant Jacobian to reduce
the tracking error.

The idea is using numerical on-line approximation by changing each input to the
plant slightly and measuring the change at the output, or by comparing changes from the
previous iterations. Taking a SISO nonlinear system as an example, the latter can be

expressed as follows,

y,(k+D -y, (k)

T = S -1

and J(k +1) is the estimated gradient. 22D
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For tracking a constant desired trajectory, Equation (2.21) may have the problem of
division by zero. So, the following equation is suggested [44],

J(k+1) = signly, (k +1) =y, (k)] x sign[u(k) —u(k —1)]. (2.22)

However, this approach may be sensitive to noise in the real applications. Also, tuning of
the learning rate to compensate for the estimated plant Jacobian is a challenging job.
Apparently, finding the plant Jacobian through the model is more accurate than just
taking the sign of the plant Jacobian value. For on-line control implementation, the
approach is only suitable for fixed or slowly varying plants [44].

Another interesting technique for plant Jacobian estimation is suggested by Spall
[45-47]. Instead of using the finite difference approximation, an algorithm called SPSA
(Simultaneous Perturbation Stochastic Approximation) is used to estimate the gradient of
the objective function with respect to the parameters being optimized. The idea of the
SPSA algorithm is described as follows.

Assume L, (8,) is the differentiable cost function to be minimized by optimizing
the parameter vector, 8,. The subscript, k, represents the time step or the number of

iterations. The objective is to find an optimal parameter vector, 0", satisfying Equation
(2.23),

W _OLO)|
8O === - 0. (2.23)

Consider a stochastic approximation algorithm of the form,

0,=6,,-a,8,0,), (2.24)
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to estimate 6, , where g, is the estimate of real gradient g, at kth iteration, a, is a

scalar gain sequence. The estimate gradient is computed at each iteration using Equation

(2.25),
. [® _fo
gk(ﬁk_1)=—~——k20 A" , (2.25)
k—k

where [(¥ are estimated (observed) values of L, (6, , c,A,), ¢, is another design gain
sequence, and A, = (Akl,Akz,...,Akp)T is a random vector. A, is selected as an

independent, bounded, symmetrically distributed zero mean random variable satisfying

certain conditions [45]. A simple choice for each component of A, is to use a
Bernoulli+1 distribution with probability of % for each £1 outcome [46]. After the

evaluation of the estimated gradient, the parameters, ék, are updated using Equation

(2.24) and the algorifhm is terminated if there is little change in several successive
iterations or the maximum allowable number of iterations has been reached.

Observing Equation (2.25), it is easy to find that only two measurements are
required to compute the p estimated gradients at each time step. It is much more
efficient comparing with the standard FDSA (Finite-Difference SA) algorithm [52,53]

where 2p measurements are required. For fast changing systems, one-measurement form

of the gradient approximation is suggested by [45] as shown below,

A

(+)

oA I
£.00,)=—"". (2.26)
A,

In the high-noise environment, a variation on the gradient approximation is to average

several gradient estimates with each estimate being made based upon an independent
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value of A,. Another variation of the gradient approximation is to smooth the gradient

approximation by using a weighted average of the previous and current gradient
estimates. Based upon the same algorithm, some application-oriented research work has
been reported [48-51].

The basic idea of how the SPSA algorithm works is by sending stochastic random
testing signals into the system, computing the estimated gradients based upon
observations of the system outputs, and adjusting the parameters according to the
estimated gradients. The convergence property of the parameters has been studied and it
has been shown that SPSA algorithm is theoretically more efficient than the FDSA
algorithm [45]. However, it also shares the same deficiency as the FDSA algorithm,
which is the question whether or not it is possible to reset the system from a given state to
the previous state. To estimate the gradients, stochastic testing signals will first be sent to
the system and, during the testing phase, no parameter update will take place until all the
testing signals (i.e., the stochastic dither signals) go through the system and the testing
results show in the system outputs. In on-line situations, this becomes an important issue
since all the stochastic testing signals will go through the dynamic system and affect the

system behavior later on.

2.5 Multiple model approachés
The basic idea of multiple model approach is to create different models and their
corresponding controllers according to different operating conditions. With all the
existing fixed models and their corresponding controllers stored in a database, an

appropriate switching algorithm is used to choose (or switch to) the controller that
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corresponds to the model with the minimum identification error by monitoring the system

and evaluating a certain criterion function [54-55]. The idea is shown in Figure 2.6 [58].

Y e » Controller 1 » switching u y
_——’@— or * Plant >
* » Controller 2 » weighting
algorithm N
* e — model 1|
. .
model 2l¢
» Controller N H i
®
controller bank
“Imodel 1\||<
model bank

Figure 2.6 Basic multiple-model adaptive control structure

Obviously, switching to the controller corresponding to the model which best
describes the current system dynamics can quickly improve the system transient
performance. However, if all the models are fixed and the closest one is still far away
from the current system dynamics, the performance cannot be guaranteed. Typical
adaptive multiple model approaches proposed to overcome this drawback are briefly

discussed as follows.

2.5.1 Model switching and tuning

Narendra combined multiple models and neural networks as the adaptive multiple
model approach [59-61]. Apparently, the main reason of using fixed multiple models is to

improve system transient performance. When the actual system dynamics doesn’t fall
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into any one of the existing model dynamics, an appropriate adaptive model will be
required to adapt itself to follow the actual system and adjust the corresponding controller
at the same time. So, he suggested using an efficient combination of fixed and adaptive
models. Right after the switching, an adaptive model should take over from the closest
model and should be tuned on-line in order to keep reducing the difference between the
model and the actual system so that the system performance is improved with time and
the steady state error can finally reach an acceptable level. The idea is to use neural
networks as the adaptive model for on-line adaptation and tuning.

However, so far, all the work is done for linear systems which are both
theoretically and practically easy to be carried out for the proposed methodology. For the
nonlinear systems, the problems of on-line identification and control are substantially
difficult. Also, as mentioned in [60], the answers for the creation, modification and
pruning of models, the acquisition of their sensitivity characteristics, and the generation

of equivalence classes of models are remaining unsolved at present.

2.5.2 Multiple-model weighting

~ Another interesting approach was proposed by Rajagopal and Krishnamurthy
[62]. Instead of the real switching algorithm, multiple model weighting is used based
upon the assumption that the actual system output can be represented by a weighted sum
of all the existing model (NN model) outputs. The idea is described as follows.
Consider a nonlinear plant described by
Y, (k+D)=F(y,(k),y,(k=D,.,y,(k=p)utk =1,..ulk—q)+G(y, k), y,(k-D,.,y,(k-p),

u(k —1),uk —2),..,u(k —g))u(k). (2.27)
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The approach is to create N identification models 7;, i =1,2,.., N, one for each one of

the N environments that the system is expected to encounter during the operation, i.c.

I, = NF,(.)+ NG, ()u(k) . Please note that (.) is used to represent the same arguments in
Equation (2.27). The output of the actual plant, y,(k +1), can be approximated by the

weighted sum of each NN identification model,

v, (k+1D) = 3 w,()NF, () +w, (NG, (u(k). (2.28)

So, the control input can be generated as follows:

uk)=lp7 o] 9" [y, (k+D-y], v = Y w,(k)NF,(), and =3 w,(k)NG,(), (2.29)
where y, (k +1) is the desired output atl time step &k +1. Hence, lthe key point of finding
the appropriate control input becomes how to decide the correct weight (contribution) of
each existing NN model. The authors proposed using an evolutionary strategy as the
model weight sellection by minimizing the following cost function [62],

|2

V,lk=i)=y, (k= j)

J(k) = }p: B 2| ’ + k1_2 [w, (k) ~w,(k-DJ + kz{l - Zwi (k)H ,

(2.30)

&

N
where ywj(k)=2wi(k)l i I;; 1s the jth output of the ith identification model.
i=1

€;,kl,k2 are design parameters, f is the forgetting factor that places a higher weight on

the recent data, and p is the effective windows of past data points. Observing the cost
function closely, we can find that the first term accounts for the estimation error, the
second term ensures that the weight of each model doesn’t change drastically during the
optimization process, and the last term is to make sure that the sum of each weight is

close to 1, which can be interpreted as adding stability guarantee to the whole system.
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The switching between multiple models becomes smoother by adjusting the
corresponding weight of each model. Using model weighting to replace the switching
algorithm seems to have better results when the actual system is working under an
environment that doesn’t fall into the parameter space of any one of the models but is

close to some or all of them.

2.5.3 Interactive multiple model (IMM)

Similar to the multiple-model weighting, an Interactive Multiple Model (IMM)
FDD approach has been proposed in [90,106-107] where the occurrence or recovery of a
failure in a dynamics system is modeled as a finite-state Markov chain with known
transition probabilities. The idea can be simply described as follows.

Assume that a set of N models has been used to represent different failure
situations,

x(k+1) = (F(k)+AF,(k))x(k) + (G(k) + AGj'(k))u(k) +¢ (k)

231)
= F,(k)x(k) + G, (kyu(k) + { ; (k)

2(k+1) = (H (k) +AH ;(k))x(k) + 7, (k)

. (232)
= H ,(k)x(k) +7, (k), j=12,.,N.

where AF,(k), AG,(k), and AH (k) (j=2,..,N) represent the fault-induced changes

in system components, actuator, and sensors, respectively. They are zero for j=1 which
denotes the fault-free condition. The FDD and FTC problem then turns into determining
the current model state from a sequence of noisy measurements, and to select the most
appropriate control strategy from a set of pre-computed controllers to compensate the

failure. The probability of a mode in effect plays a key role in determining the weights in
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the combination of state estimates and covariances for the overall state estimation [90].
Several different criterions of the fault detection and diagnosis scheme based upon the
probabilities of system modes are suggested in [90]. The effectiveness of the IMM FDD
approach has been demonstrated on linear systems with simple failures that can be
represented by Equations (2.32)-(2.33). However, there is no solid theoretical result to
support the successful failure accommodation especially for unanticipated failures in
nonlinear format due to the complexity of the problem involved.

Generally speaking, among all existing intelligent control techniques, multiple
model methods are probably, at present, the most efficient approach in dealing with the
fault tolerant control problems involving anticipated faults since the anticipated failures,
the corresponding model, and the control actions can be realized off-line. For
unanticipated system failﬁres in on-line situations, it is still an open question that remains

to be solved.
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CHAPTER 111

THE ON-LINE FAULT ACCOMMODATION TECHNIQUE
FOR UNANTICIPATED SYSTEM FAILURES

While most research attention has been focusing on fault detection and diagnosis,
much less effort has been dedicated to general fault accommodation mainly because of
the lack of well-developed control theory and techniques for general nonlinear systems.
Existing fault accommodation techniques are mainly designed for either linear systems or
certain classes of nonlinear systems under simple failure scenarios [2, 11-21]. However,
for a dynamic system under unanticipated catastrophic system failures, it is not a
reasonable approach to assume certain types of dynamic changes. In this chapter, the
general on-line fault accommodation problems Will be analyzed from both theoretical and
realistic points of view. The main focus will be placed in developing an on-line fault
accommodation technique for general nonlinear dynamic systems under general

unanticipated catastrophic system failures.

3.1 Theoretical foundation and analysis
Without loss of the generality, we let d =1 in Equation (1.4) and consider the
SISO system to facilitate the analysis and derivation. Define a sliding surface function as

shown in Equation (3.1),
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Yak) =y, (k=1 _ y(k) - y(k—-1)

S(k) =
“ At At

+a(y, (k)= y(k)), G.1)

where y, (k) and y(k) represent the desired system output and the actual system output

at time step k, respectively. At represents the sampling period and a€ R" defines how
fast the system output will converge to the desired output. The desired dynamics can then

be described by setting the sliding surface function equal to zero (i.e., S(k) =0) and it is
a function of tracking error, e(k)=y,(k)—y(k). According to the discrete-time
Lyapunov stability theory [77-80], if we choose V(e(k))=S 2(e(k)) as the Lyapunov
function candidate, the controller design objective becomes seeking the control input that
will satisfy S*(k+1)< S*(k) which s equivalently  to say
[Stk+1)+SE)]Sk+1)-S(k)]<0. (To simplify the notation, e will be eliminated
from the remaining sections of this dissertation.) This is the same as satisfying the

following inequalities

—S(k) < S(k+1)< S(k) when S(k)>0,
(3.2)
S(k)< Stk +1)<—S(k) when S(k)<0.

For S(k) >0, plugging in Equation (3.1), we have

~S(k) < yd(“zt_ Y (k) y(k”A)t_ YO |y, (e+1) - yk +1) < S(K).  (3.3)

Reorganizing the inequality, we get
—-S(k)-Y (k)< (——a——A%)y(k+1) <S(k)-Y (k), (3.4)

Yy (k +1) —y, (k) + y(k)

where Y (k) = Ar

+ay,(k +1) . This can be further simplified as
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(Y (k) + S(k))(a +Ait)—1 > y(k+1) > (Y (k) - S(k))(a +i)‘1 : (3.5)
In a similar manner for S(k) <0, we obtain
¥ (k) - Sk))(a+ i—t)‘l > y(k+1) > ¥ (k) + Sk))a + é)”l . (3.6)

Notice that the left hand side and the right hand side of the inequalities (3.5)-(3.6) are

known and can be computed at each time step. Thus, the on-line fault tolerant control

problems become finding the effective control signal that satisfies inequality (3.5), when
S(k)>0 or (3.6), when S(k)<0O0 at every time step.

Let y(k+1)=O[y,i], which represents the system dynamics under failures,

where y and u represent the regression vectors of system outputs and inputs,

recpectively. Based upon the implicit function theorem [30], the control law can be
written  as u(k):(_?[i,?(a+i)‘l,ﬁ\{u(k)}] provided G exists (i.e., #\{u(k)}

denotes the set containing the regression vector of input excluding the current input,
u(k)). Since the nonexistence of G corresponds to the cases where the system becomes
uncontrolable under the failure situations, the existence problem becomes trivial.
Unfortunately, the realization of G can not be provided without knowing the true
structure of the system dynamics and the failure dynamics. Thus, the control law is not

implementable in reality. However, through the modern intelligent techniques, the

effective control input satisfying inequalities (3.5) or (3.6) can be estimated using

optimization algorithms without a complete realization of G . The systematic procedure

is described as follows.
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The unknown failure dynamics can be realized through an on-line estimator. The
true system output, y(k +1), can be approximated by the sum of the outputs from the
nominal model and the on-line estimator as follows:

y(k+1) = Ny(k+1)+ fy(k+1)
=Nyk+ D)+ Nyk+D)+nfy(k+)+nfyk+1), (3.7)
Ny(k +1): the output of the actual system,
fy(k +1) : the output of the failure dynamics,
Ny(k +1) : the output of the nominal model,
Ny (k +1): the remaining uncertainty between the nominal system and the nominal
model,
nfy(k +1) : the output of the on-line estimator,
nfy(k +1) : the remaining uncertainty between the estimator and the failure dynamics,
and Ny(k+1)=Ny(k+1)+ Ny(k+1); f(k+1) =nfy(k+D)+nfyk+1).
Using Equation (3.7), the inequalities become:
for S(k)>0,
(S(k) + Y (k))(a + th—)_l >Ny(k +1) + Ny(k +1) + nfy(k + 1) + nfy (k +1) > (Y (k) - S(k))(a + Ait)_l’
(3.8)
for S(k)<O,
(¥ (k) = S(k))a + Zl—t-)‘1 >Ny(k + 1)+ Ny (k + 1) + nfy(k + D)+ nfy(k + 1) > (Y (k) + S(k))(a + Ait)‘l.
(3.9)
Modern intelligent optimization techniques such as genetic algorithm, immune

algorithm, simulated annealing, reinforcement learning, etc., have been exploited in a
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variety of areas and applications [96-103]. However, although the effectiveness in
achieving successful optimization objectives has been demonstrated, most of them are
applicable in off-line situations at present, due to the time-consuming iterative process.
From the computational complexity point of view, the well-known and efficient gradient
descent algorithm will be considered and used in the remaining of this dissertation
because of its popularity and effectiveness in on-line applications. The optimization
procedure is shown as follows.

The desired point at every time step is

Desire(k) =[(Y (k) + S(k))(a + i)—l +(Y (k) - S(k))a+ Ait)‘I 1/2

— 1.
—Y(k)(a+E) . (3.10)

Define the error as
Error(k) = Desire(k) — Ny(k +1) - Ny(k+ 1) —nfy(k + 1) —nfy (k +1). (3.11)

The effective control input can be searched based upon the gradient descent algorithm for

square error
0Error(k)* — 2 Error(k) JError(k)
du(k) ou(k)
_ —2Err0r(k)[aN5}(k +1) 4 ONy(k +1) + onfy(k +1) + onfy (k + 1)]. (3.12)

du(k) du(k) du(k) ou(k)
The resulting control input will be updated by

oError(k)*

u(k),,, =uk),, ~a o l)

, (3.13)

where « is the learning rate parameter. The searching procedure is repeated until

inequalities (3.8) or (3.9) hold, the control input converges, or the maximum number of
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iterations is reached. Of course, the term, nfy(k +1), the remaining uncertainty of the

failure dynamics, and Ny(k +1), the remaining uncertainty of the nominal system, are

nfyk+1) . NGk +1)
du(k) du(k)

unknown and the terms, , cannot be computed either. So, the

actual searching procedure is based upon the approximated values:

Erfor(k) = Desire(k)— Ny(k +1) — nfy(k +1) (3.14)
dError(k)* " ONS(k+1)  Infy(k +1)
il e _ 15
(k) Error(k)[ (k) + Au (k) ] (3.15)
= 1 2 . s 1.4
[Y(k) +S(k)] @+ N) Y(k)(a+ m) [Y(k)—Sk)]a+ At)

Anfy(k+1)| AE(k) ANy (k +1)

N3k + 1)+ nfy(k + 1)

AE(k) = sup {AError(k)|} ; Anf5(k +1) = sup {nf5(k + )|} ; AN (k +1) = supﬂN"(kH)‘}

Vk>T, Vk>T, Vk>T,

] : bounded area

Figure 3.1 The bound of the sliding surface function

At every time step, the desired point, }_’(k)(a-l-Ai)'l, is computed, and the
t

effective control signal is searched to ensure that the actual result is as close to the
desired point as possible, through the realizations of the nominal system dynamics and

the failure dynamics. Observing inequalities (3.8) and (3.9) closely, if nfy(k+1) and
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Ny (k +1), the remaining uncertainty of the failure dynamics and the nominal system, are
bounded, combining these results with Equations (3.10)-(3.11), we can prove that the
desired dynamics, sliding surface function, S, is also bounded. Figure 3.1 indicates how
the S function is bounded by the upper bounds of the nominal model uncertainty,
ANy (k +1), optimization error, AE(k), and the prediction error of the failure dynamics,
Anfy(k +1). This can be proven given the following assumptions and detailed in
Theorem 1.

Assumptions:
1. The nominal model, Ny(k +1), is accurate and precise enough such that Ny(k +1),

the remaining uncertainty of the nominal system, is bounded by sup ﬂW(k+1)]},
VEk>T,

where T, is the starting time step that the control input Ais reconfigured for proper
failure accommodation. (Note that this constraint can be possibly relaxed since the

accuracy of the nominal model can be achieved off-line provided sufficient time for

the development.)

2. The remaining uncertainty of the failure dynamics, nfy(k +1), is the residue resulting

from the difference between the actual fy(k +1) and the best estimation of the on-line

estimator and it is bound by the least upper bound, sup ﬂnﬁ (k+ 1)[}.
Vk>Tf

3. The error caused by the optimization algorithm is bounded by sup {lAError(k)l} .
Vk>T

Theorem 1: If the nominal system model is accurate and precise enough within the

system working region such that Ny(k +1), the remaining uncertainty

of the nominal system, is bounded by sup ﬂNy (k +1)l}, and the on-line
v

k>Ty
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estimator is accurate enough such that the remaining uncertainty of the

failure dynamics, nfy(k+1), is bounded by the least upper bound,

sup ﬂnﬁ (k+ 1)|}, and AError(k), the error after the searching effort of

Vk>T,

the optimisation algorithm, is finite (i.e., bounded by sup {|{AError(k)|}),

Vk>Tf
the system stability after time step 7, under arbitrary unanticipated

system failures is guaranteed in on-line situation and the sliding surface
function, S, defined by the system performance error is also bounded
as follows:

T<Sk+D<E,

where

s = —[ sup {NF (k + D[}+ sup {5 (k + D|}+ sup ﬂAError(k)ﬂ(a + —) and

Vk>T, Vk>T)

== { sup {5 (k + |} sup {5 (k + D|}+ sup ﬂAError(k)|}J(a + ——)

The sliding surface function, S, is defined as:

Ya(k) =y, (k—1)  y(k)—y(k-1)
At At

S(k) = +a(y, (k) - y(k)); a€R’,

where y, (k) is the desired trajectory at time step & .

Proof:

Let AError(k) represents the error after the searching effort of the optimization
algorithm. Then,
AError(k) = Desire(k)— Ny(k +1) —nfy(k +1).

By Equation (3.10),
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Y (k)a+ 117)_1 — AError(k) = Ny(k +1) + nfy(k +1).. (3.16)
For S(k)>0:
Plugging in Equation (3.16) into inequality (3.8), we have
(Y (k) + S (k))(a +§) 1>V (k)a +é) 1 AError(k)+ Ny(k +1) +nfy (k +1) > (¥ (k) - S(k))(a +i) -
Simplifing the inequality, we get

S(k) > [Ny (k +1) + nfy (k +1) — AError(k)|(a + i) and

— S(k) < ~[NF (k +1) + nfj (k +1) - AError(k))(a + é) . (3.17)
Since S(k) >0, —S(k) <[ sup N5k + D}+ sup fnf5k + D}+ sup {ABrror(offa+—) is
Vk>T, VT, VksT, At

always true. By assumptions 1, 2, and 3, the following inequalities will hold for the worst

condition,

S(k)y>[ sup {N3 (k + D[} +
A\

sup {5k + 1| }+ sup {AError(k)fita + ERY (3.18)

k>T; VST, VST, At

Apparently, [ sup {N3(k +D{}+ sup {nf5k + D|}+ sup {AError®)|Jita + = inf IS0,
kST, VA>T, VA>T, At"  VET;

which ~ is the greatest lower bound of S(k) and

~sup {NF G+ D)+ sup {f§tk + Df}+ sup {ABrrorofita +--) = sup {- Sk}, which is the
VST, VST, At v

VE>T k>T,

least upper bound of —S(k), and since S(k)>S(k+1) and —S(k)<-S(k+1), the

following inequalities will always hold

[ sup N5k + Df}+ sup {5k + D}+ sup AError()fi(a+——)= Sk +1) and
VST, VST, VE>T, At
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—[sup {N5(k +Df}+ sup Ja5ck + D1+ sup {ABrror(eflita + ——) S-Sk +1), (3.19)
VST, VA>T, At

Vk>T,

for both situations, S(k+1)>0 and S(k +1) <0, which implies

T<S(k+DSE, (3.20)
where
%= sup Nk + Df}+ sup {5k + Df}+ sup {ABrror(ofia+—) and
VST, VST, VST, At
= =[ sup {NFk + D[}+ sup {5k + D1+ sup {AError(ifita+—) .
kST, kST, VEST, Ar
For S(k)<O0:

Plugging in Equation (3.16) into inequality (3.9), we have
(Y (k) - S(k)a+ é)‘l > Y (k)a+ é)‘l — AError(k)+ Ny (k+ 1)+ nfj (k +1) > (F (k) + S(k))(a + é)‘l :
Simplifing the inequality, we get

~S(k) > [Ny (k +1) + nfy (k +1) — AError(k))(a + Zl?) , and
S(k) < [Ny (k +1)+ nfy (k +1) — AError(k)J(a + Xl?) . (3.21)

Since  S(k)<0, (k)< sup {N5(k +Df}+ sup {uf5k + D[} + sup JABrror(offita+—) is
VST, Vk>T, At

Vk>T,

always true. By assumptions 1, 2, and 3, the following inequalities will hold for the worst

condition,

— S()>[ sup N5k + D1+ sup {uch + D} + sup JAError(ofica + ). (3.22)
VEST, VkST, VEST, At
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Apparently, [ sup {Ny(k +D[}+ sup {5k + 1+ sup ﬂAError(k)|}](a - —) = inf {— S},

vk>T,

which is the greatest lower bound of -S&k) and

[ sup {35 +f}+ s {nf5 i +D|}+ sup ﬂAError(k)‘}](a+—)— sup {S(k)}, which is the

Vk>T,

least upper bound of S(k), and since —S(k)>S(k+1) and S(k)<-S(k+1), the

following inequalities will always hold

[ sup N5k + Df}+ sup a5tk + D[+ sup JAEmor(tffica+—) 2 Sk +1), and
ViksT, VEST, VST, At

[ sup {NFk + | }+ sup {nfick +D[}+ sup ﬂAError(k)|}](a+—)< -S(k+1), (3.23)

Vk>Tf Vk>Tf
for both situations, S(k +1) >0 and S(k +1) <0, which implies
Z<Sk+D)<LE, (3.24)

where

== sup {Ny(k + 1| }+ s {nf5 & + D+ sup ﬂAErmr(k)]}](a + —) and

VEST,

== sup {v5 @k +}+ sup w5k +|}H+ sup ﬂAErmr(k)l}](a + —)

VAT,
We arrive at exactly the same result as Equation (3.20). Thus, the sliding surface
function, S, is bounded by the value defined by the least upper bounds of the remaining
uncertainty of the nominal system, the residue of the on-line estimator, and the error by

the optimization algorithm.

QED.

The discrete-time Lyapunov stability theory indicates that the control problem can

be solved as long as the numerical value of the failure dynamics is realizable at each time
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step, which is a measure of how far the fault drives the system dynamics away from the

desired dynamics. Based upon the above theoretical analysis, the system under

unexpected catastrophic failures can be stabilized and the performance can be recovered

provided an effective on-line estimator for the unknown failure dynamics such that the

necessary and sufficient conditions are satisfied (i.e., assumptions 1, 2, and 3). Moreover,

since the on-line estimator is used to provide the approximated numerical value of the

failure dynamics at each time step based upon the most recent measurements (i.e., the

failure may be time-varying), no specific structure or dynamics is required for the

estimator. In other words, only a static function approximator that approximates the most

recent behavior of the failure is needed for the control purpose.

input
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mechanism " estimator
(nominal
model) A

A

Figure 3.2 Basic framework of the intelligent on-line fault accommodation strategy

Figure 3.2 shows the basic framework of the intelligent control strategy for on-

line control of the system that may be subject to the unanticipated catastrophic failures. In

on-line situations, the nominal control signal will have to go through an intelligent
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control regulator before it can reach the system. The intelligent control regulator monitors
and evaluates the system behavior at every time instant through a fault detection
mechanism. During the normal operation mode that corresponds to the non-failure
situation, the nominal control signal will be passed to the system to control its behavior.
Once an abnormal system behavior is detected by the fault detection mechanism, an on-
line estimator is initialized and starts estimating the unknown failure dynamics. When the
learning process converges, the control law is reconfigured and computed by the
regulator based upon the current knowledge of the failure. dynamics provided by the on-
line estimator. The intelligent control regulator also has to interact with the supervisor to
accept higher priority commands, such as changes of the control objective or design
parameters, and warn the supervisor for emergency shutdown of the system in cases that

the unanticipated system failures are serious and the system is actually uncontrollable.

3.1.1 On-line learning of the failure dynamics

With the universal approximation capability for any piecewise continuous
function [56,57], Artificial Neural Network becomes one of the most promising
candidates for the on-line control problems of our interest. In this research work, neural
network is exploited and used as the on-line estinizitor for the unknown failure dynamics.
Some important features of the on-line learning using neural networks éhould first be
addressed here. The structure of the on-line estimator needs to be decided (i.e., in neural
networks, the number of hidden layers, number of neurons in each layer, and neuron
transfer functions). It is known that neural networks are sensitive to the number of

neurons in the hidden layers. Too few neurons can result in underfitting problems (poor
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approximation), while too many neurons may lead to overfitting problem, where all the
training patterns are well fit, but the fitting curve may take wild oscillations between the
training data points [65]. The criterion for stopping of the training process is another
important issue in the real applications. If the mean square error of the estimator is forced
to reach a very small value, the estimator may perform poorly for the novel input data
slightly away from the training patterns. This is the well-known generalization problem.
Besides, in the real applications, the training patterns may be contaminated by
measurement noises since they are the measurements from sensors. The estimator may
adjust itself to fit the noise instead of the real failure dynamics. Some methods proposed
to improve these problems, such as early stopping criterion and generalization network
training algorithms, may.be useful to remedy thesé situations [65,66].

In the on-line situation, the number of input-output data for the training process
becomes a very important design parameter. Thé system dynamics may keep changing
because of progressing fault severity (i.e., the incipient fault, abrupt fault, and multiple
faults). Apparently, using all input-output measurements to train the on-line estimator
does not make too much sense since we may use invalid training patterns to mislead the
estimator and it is also unrealistic for on-line applications. In other words, only finite and
limited number of data sets should be considered as training patterns to adjust the
parameters of the estimator. A reasonable approach is to use the most recent input-output
measurements. A set, B, that contains the most recent measurements within a fixed

length of a time-shifting data window is used to collect the training patterns,

B ={(pm).cm)|pe K1 e Rk - j+1<m<k}, (3.25)
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where p(m) and #(m) are the network input vector and desired output vector at time step

m, respectively. k is the current time step and j represents the length of the time-

shifting data window which is a design parameter. This parameter has to be decided
based upon the system computing capability, sampling rate, and the performance criteria.
In additions, the maximum number of the effective control signal searching iterations is
another important design parameter in real-time applications. It has to be within an
allowable range according to the system computing capacity in the on-line situation. For
gradient descent type of optimization algorithms, time-varying learning rates can be used
to possibly reduce the searching time. A simple adjustment algorithm of the time-varying
learning rate used in the on-line simulations in the next Chapter is shown as follows:
Deﬁ'ne initial learning rate, O, ,and min, max

Inside the searching process

if error(i) = error(i—1)
if O,y 2 min
(xnew = aold Xq

restore the last searching position

end
else
if o, <max
Q= Oy X 8
end
end

check the stopping criterion

}

where i and error(i) are the searching iteration number and the searching error at the

ith iteration, respectively. min and max are the pre-specified minimum and maximum

56



of the learning rates. g and ¢ are pre-specified constant gains that satisfy the
conditions,0<g <1l and 1< g<2.

In the following sections, the on-line fault accommodation control problems
under catastrophic system failures will be further divided into different cases according to
prior knowledge of the nominal system and failure dynamics. Further analysis and

discussion are provided case by case.

3.2 Further analysis for different cases

3.2.1 Case 1

Consider a dynamic system under catastrpphic failures, which can be represented

by Equation (3.26),
yk+d)= f(y(k+d-1),....y(k+d—p))+g(ytk+d-1),...,y(k +d —gq)u(k)
+2,Bi(k—Ti)f,.(y(k+d—1),...,y(k+d—pl.)), (3.26)
where the nominal model is in “linear in control” format, f,(-) represents the dynamics
of the failure mode i. The prior knowledge shows that the failure dynamibs is an explicit
function of past system outputs. B,(-) is the corresponding time-varying constant gain
and n is the number of system failures. f,(-), B,(-), and n are assumed unknown. The

nominal model is well developed and precise enough within the working regime.
In this case, the prior knowledge of both nominal model and failure dynamics
provides substantial useful information for the on-line control problem. According to the

analysis discussed in the last section, the effective on-line real-time control law can be
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easily found by plugging the nominal model and the estimated failure dynamics into the

inequalities (3.8) and (3.9). Ignoring the uncertainties, when S(k) >0, we have
- 1 _ = 1. ._
(Y (k) + S(k))a+ E) "> fO)+ gOuk) + Fk) > (Y (k) - S(k))(a+ E) LoG2)
which is equal to

¥ (k) + S (k))(a +Ait)‘1 ~ fQ)=F(k) > gOu(k) > (¥ (k) - S(k))(a +A%)“l —fO-Fk).

v (3.28)
When S(k) <0, we have

F (k) - SE)(a +Ait>'1 — FO=F®) > gOulk) > F(k) + S(K))a +K1;>‘1 —fO-F).
(3.29)

where (-) is the short notation of the arguments‘ for f and g in Equation (3.26) and
F (k) represents the numerical value of the failure dynamics at time step k& in Equation
(3.26). If F(k) 1s known, the best desired control input is just the sum of the left hand
side and right hand side of inequality (3.28) or (3.29) divided by 2g(:) (in single input
case). Since we are interested in the unanticipated failure situations, F(k) is actually
unknown. If we deploy an on-line estimator NF'(k) to approximate the unknown failure
dynamics, F(k) can be realized as follows:
F (k)= NF(k)+ ANF (k) ,
where ANF (k) denotes the residue between the on-line estimator and the actual failure

dynamics. Plugging this realization into inequalities (3.28) and (3.29) and ignoring the

unknown term, ANF' (k) , we have the first control law shown in Equation (3.30),

u(k) = [T (k)@ + ) - £ - NF (k)] —— . (3.:30)
At g()
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If ANF (k) is bounded such that the following condition is satisfied,

sup {ANF (k)| }< &7, e R, (3.31)

V2T,
where T, is the starting time step when the on-line estimator starts compensating the

control signal, it can be shown that the system stability under unanticipated system

failures is guaranteed and the system performance error is also bounded (i.e., the sliding

surface function, S, is bounded). This result can be proven and is summarized in the

following theorem.

Theorem 2: If the remaining uncertainty of the failure dynamics is bounded such
that Equation (3.31) is satisfied, using the intelligent on-line control

law, Equation (3.30), the system stability after time step 7, is

guaranteed and the performance error is also bounded for the system
described by Equation (3.26) under unanticipated system failures.

Proof:

For S(k) >0, plugging the control law, Equation (3.30), into inequality (3.28), we have
¥ (k) + S(k))a+ Ait)*1 >Y (k)(a+ Zl-t-)‘1 +ANF (k) > (Y (k) - S(k))(a + i)“l . (332
Simplifying the inequality, we have
S{k) > [ANF (k)](a + é) >-S(k). (3.33)
So,

S(k) >[ANF (k)l(a + Ait) and — S(k) <[ANF (k)(a +é) . (3.34)
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Since S(k)>0 and [ANF(K)|20, -S(k)< sup{]ANF(k)l}(a+i) is always true. If
Vk2T,

ANF (k) is bounded such that the condition in Equation (3.31) is satisfied, the following

inequality will hold for the worst condition

S(k) > sup {ANF (k)[j(a + —) (3.35)

k2T,

Apparently, sup ﬂANF (k)|}(a+—) = 1nf {S (k)} which is the greatest lower bound of

Vk2T,

S(k) and — sup ﬂANF (k)l}(a+——) = sup {—S (k)} which is the least upper bound of

Vk>Tf >Tf
—S(k). Since S(k)>S(k+1) and —S(k)<-S(k+1), the following inequality will

always hold

S(e+1) < sup {ANF (&) a + -—) and — sup ﬂANF(k)l}(a + —) <-S(k+1), (3.36)

kT,
for both situations, S(k+1)>0 and S(k +1) <0, which implies
- sup {ANF (k)| + —) <S(e+D < sup {]ANF(k)]}(a + —) (3.37)
2Ty
For S(k) <0,
(Y (k) - S(k))a +i)"1 > Y (k)(a+ i)"l +ANF (k) > (Y (k) + S (k))(a + i)“l . (3.38)
Simplifying the inequality, we have
— S(k) > [ANF (k)](a + i) > S(k). (3.39)
So,

— S(k) > [ANF (k)](a + Ait) and S(k) <[ANF (k)](a + Zl—t) . (3.40)
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Since S(k)<0 and |ANF(k)|>0, S(k)< supﬂANF(k)l}(aJri) is always true. If
Vk>T;

ANF (k) is bounded such that the condition in Equation (3.31) is satisfied, the following

inequality will hold for the worst condition

~S(k)> sup {ANF (k) a + —) (3.41)

VT,

Apparently, sup ﬂANF (k)]}(a + ~A1—t) = vl;lg {— S (k)} is the greatest lower bound of — S(k)
VT, =Ty
and - sup ﬂANF (k)l}(a + —) = sup {S (k)} is the least upper bound of S(k). Since
Vk>T/ Vk>Tf

—S(k)>S(k+1) and S(k) <—-S(k +1), the following inequality will always hold

S(k+1) < sup {ANF (k)[a + ~—) and - sup ﬂANF(k)|}<a + —) <-Sk+1), (342

VT,

for both situations, S(k+1) >0 and S(k +1) <0, which implies

~ sup JANF (k)[}(a + —) < S(k+1) < sup {ANF (k)[)(a + —)

k>Tf k>Tf
We arrive at the same result as inequality (3.37). Thus, the system stability is guaranteed
and the sliding surface function, §, defined by the system performance error is also

bounded.

Q.ED.

3.2.1.1 Discrete-time Sliding Mode Control (DSMC) technique
One variation of the on-line control law can be derived based upon the discrete-
time sliding mode control technique proposed in [67]. The basic principle behind Sliding

Mode Control technique is called invariant set theory [68]. The approach is to define a
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sliding surface based on the desired dynamics and the control problem is solved by the
appropriate control input to make the sliding surface an invariant set and attractive to all
system trajectories using Lyapunov theory. The state variable trajectories starting at
different initial conditions will eventually move close to the sliding surface. Once the
trajectories move into the boundary layer, they will be forced to stay inside the boundary
layer because the appropriate sliding mode control signal will drive the boundary layer to
be an invariant set of the dynamic system.

The discrete-time sliding model control law can be derived for a given discrete-
time nonlinear dynamic system with unmatched uncertainties. A controllable nonlinear

system with uncertainty can be represented by Equation (3.43)

W) =f (x(1)) + g(x(@)u(®) + A (), (3.43)
where g(x(t)) = g(x(¢))Ag(-) and bdth f (x(2)) and g(x(z)) are known functions of state
vector x(¢). Uncertainties (Af ’s) are bounded by constants and are explicit functions of
the state vector, x(z). The scalar uncertainty factor Ag(-) is also bounded such that
1/u < Ag <p for some w=1. The discrete-time model is derived by using forward Euler

approximation,

. x(k+1)—x,(k)
x =

. , i=1,2,..n, 3.44
' At (344)

where At is the sampling period. So, the discrete-time model can be written as
x(k+1) = x(k)+ Atf (x(k)) + Atg (x(k)u(k) + AtAf () . (3.45)
Assume the uncertainty term Af(-) is bounded by

IDIAF O] < ¥ (k) (3.46)
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where y(k) is a constant vector and D(k):a_S

ox

s 0% OX, ox, -
X(k)=x,(k)—x(k), x,(k) is the desired trajectory at time step k, and S represents the
sliding surface which is a function of X(k) and is defined based upon the desired

dynamics. The desired control law for the system (3.43) to guarantee the boundary layer

being attractive is determined in [67] as

ui+l, nr-1). UK (k) S(k)
u(k) = 2 p(k){[—zpt )Ip(k)|+D(k)§(x(k))}sat(q)(k)j, (3.47)
where
.. DK [ - Ax,
p(k)——D(k)g(x(k))[ f(x(k)) + o } (3.48)

P+ (u* =1) plk)sar(S(k)/ o(k ~D)lw? ~1/2p° +

o) = Hpwgolen’ +1

1+ k) + 2u’e} (3.49)
K(k) =n(k)+2¢e,and nk)=y(k). (3.50)
Ax, =x,(k+1)—x,(k), € is an arbitrary positive constant, ¢(k) is the boundary layer
thickness, and the saturation function is defined to be
+1 , if S(k)> ¢k)
sa{ S (k)J _ 50 |S (k)| < o(k)

o(k) o(k)
=1, if S(B) <—0(k)

For the detail of the control law derivations, please refer to the Appendix in [67].
With the sliding mode control signal, the system trajectories will be guaranteed to
converge and be confined inside the boundary layer. This research work [67] presents a

new technique to design a robust discrete-time sliding mode controller off-line based
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upon discrete-time Lyapunov stability theory and guarantees the system stability with the

known upper bound of the unmatched uncertainty.

3.2.1.2 The alternative corrective control law

Based upon the similar idea, ANF(:) can be treated as the remaining uncertainty
of the failure dynamics and the on-line approximation error can be used to estimate the
upper bound of ANF(-) in order to further improve the performance and increase the
robustness property. Under different unknown failure modes, u(k), the effective control
law to accommodate the failures can be revised by adding a corrective control input,
u,(k), such that u(k)=u,(k)+u,(k) (i.e., u,(k) represents the nominal control law).
The corrective sliding mode control law for the control problems of our interest is

developed as follows:

u, (k)= K sat S(k) +U(k—TC);]\LO, (3.5
D(k)g() | o(k) g()

where T, denotes the specific time step at which the difference of the sum square

approximation error of the on-line estimator during two consecutive windows, Q, is
below a pre-specified threshold, &, at the first time. This implies that the on-line learning
result cannot be further significantly improved (i.e., < 8). The boundary thickness and
the controller gain are defined as
0(k) =n(k)+e, (3.52)
K(k) =n(k)+2¢, (3.53)

where M(k) will be updated using the following equation
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DUIAFO) J= sgp{

D(k)(; B0 - NF(')J'} s 6, (3.54)

W, » Otherwise

Moy () = S‘ip{

and

3 Sk)-Sk-1)

Dk ;
“ yk)—yk -1

yk) =y, (k)= y(k), (3.55)

where g() and p,() represent g(y(k+d-1),..,y(k+d—q)) and p,(k-T,),
respectively, and y, (k) is the desired system output at time step k. The first term on the

right hand side of Equation (3.51) can be obtained by setting u =1 in Equation (3.47) and
ignoring the nominal controller part and the second term is the corrective control signal
used to compensate the nominal controller. Equation (3.52) is obtained similarly by
setting W =1 in Equation (3.49) and Equation (3.53) is the same as that in Equation
(3.50). The boundary layer thickness is now redefined by the least upper bound of the

remaining uncertainty, on-line identification error, as shown in Equations (3.52) and

(3.54). NF(-) denotes the on-line estimator which tracks Zﬂi () f;() on-line and the

i=1

identification error is defined as Af (-)=25i () f,()—NF(-) which is the remaining

=1
uncertainty of the failure dynamics. The design parameter / represents a time period such
that the least upper bound of the identification error is evaluated every time period,
L= [k -1 ,k]. Equations (3.52)-(3.54) state that both the boundary layer thickness and the
controller gain are automatically estimated and adjusted on-line by the estimator to
further reduce control error. The on-line learning result is monitored and evaluated by the

regulator using the following criterion:
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kg tl-1

SSAEO = Y (fy(k) —nfy(k))’

k=k,

ko+20-1

SSAEL="Y (fy(k) - nfy(k))* , (3.56)

k=ko+l
Q =|SSAE1- SSAE(Q| ,

where SSAEQ and SSAE1 stand for the sum square approximation errors of the on-line
estimator during two consecutive windows, nfy(k) ‘and fy(k) are the output of the
estimator and the difference between the measurement and the output of the nominal
model at time step &, respectively. The certain threshold value, ¢, is defined such that
once € is less than or equal to the threshold value, the on-iine estimation result is
considered to be accurate enough and both the identification result and error can be used
to further estimate a new least upper bound for the remaining uncertainty.

Both on-line control laws are derived based upon discrete-time Lyapunov stability
theory. Their stability constraints remain the same as shown in Theorem 2. The
alternative corrective control law is different from the first one (i.e., Equation (3.30)) by
estimating the upper bound of ANF(-) and redefining the boundary layer thickness on-
line to provide more robustness property because of the attraction of the boundary layer.
The price is more computations and design parameters to implement while the first
control law is simple and straightforward. Another important point that should be

mentioned here is that by adding U(k —7,) in the second term of the right hand side in

Equation (3.51) to delay the compensation of the nominal control law, it is assumed that

the system under nominal control law will not lose the stability before time step 7. In

other words, Theorem 2 is not effective to describe the system stability during this time
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period for the second control law because of the delay of compensation. However, later in

the simulation, this delay results in less sensitivity in the selection of the learning rate in

the learning process and a better transient performance.

- The intelligent on-line fault tolerant control scheme for case 1 can be summarized

as follows:

Off-line stage:

Step 1.

Obtain the nominal model, design the nominal controller, and test the
performance of the controller with selected criterions (i.e., for example, mean
square control errors, sum square errors). Decide the range within which the
system is working under the nominal condition (i.e., decide the fault detection
threshold value) based upon the testing results. A simple but computationally
cost-effective fault detection method used in the on-line simulations in Chapter 4

is shown as follows:

ko+o-1

v=g 2030, (3.57)

W > A, failure alarm.

On-line stage:

Step 2.

Step 3.

(For the alternative corrective control law only): Set the initial upper bound, 7,,

for the unknown failure mode dynamics. Usually, the physical limitations of the
system are useful information for deciding the upper bounds. Decide the
threshold value, &, for the convergence criterion of the on-line estimator and the
design parameter, /.

Keep monitoring the system behavior after the system is working and compare it

with the nominal model response to decide if a fault has occurred. If the system
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is still in the nominal condition range, nothing has to be done (i.e., evaluating
Equation (3.57) and comparing with the fault detection threshold value, ).

Step 4. If a fault is detected: initialize the on-line estimator to learn the failure mode
dynamics by using the difference between the actual measured system output and
the output of the nominal model as the desired target for on-line training.

Step 5. For the first control law:

Use the output of the estimator and control law in Equation (3.30) to compensate
for the system failures.

For the alternative corrective control law:

Add the corrective control signal (i.e., u(k)=u, (k)+ur2 (k), Equations (3.51)-
(3.55)). Evaluate Q at every time period [ (i.e., Equation (3.56)). If Q<5 , set
T, equal to the current time step, &k, and adjust upper bound of the remaining
uncertainty (Note that 7, is set once and only once when the condition, Q <,
satisfies the first time.)

Step 6. Collect the next training pattern from the measurement, keep training the

estimator, and observing the identification error of the estimator. Go back to the

Step 5 for the control process.

3.2.2 Case 2
Consider a dynamic system under catastrophic failures, which can be represented
by Equation (3.58).

yk+d)=f(y(k+d-1),....y(k+d - p))+g(ytk—d-1),...,y(k+d —g)u(k)
+ 2Bk =T) fi(y(k +d =D),....y(k +d = p,),u(k),....u(k = q,)) . (3.58)
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This case corresponds to the situation that nominal system dynamics can be derived
mathematically and it is in “linear in control” format. However, except for the nominal
system dynamics, there is not much prior information for the multiple-failure dynamics
available. It can only be described by a general function that depends upon the past
system outputs, past control inputs, and the current control input. According to the
analysis discussed in the last section, we need to determine the effective control signal to
satisfy inéquality (3.8) or (3.9) at ‘each time step. In other words, the following

inequalities have to be satisfied (i.e., ignore the remaining uncertainties),
(Y (k) + S(k))(a + Zl?)_l > N9k +1) +nfy(k +1) > (¥ (k) — S (k))(a + é)—l
‘if S(k)>0,or
(Y (k) - S(k))a+ i;)‘l > Ny(k +1) + nfy(k +1) > (¥ (k) + S (k))(a + i)‘l

if S(k)<O0,

which is equivalent to
() + S(0)a+-0)" = £ > gOulo)+ nfy(+1) > FR) = SE)a+-0)" = £
if S(k)>0, or
) = SENa+-)" = FO> gOu) +nfyk+1) > TE) + SENa+-)" = £,

,if S(k) <0,
where Ny(k+1) = f(y(k+d-1),...,y(k+d~p))+g(yk—d-1),...,y(k+d —q)u(k),

and

nfy(k +1) +nfyk +1) = iﬁi(k—Ti)fi(y(k+d—1),...,y(k+d—pi),u(k),--~,u(k—q,-))-
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The Jacobian of the nominal model with respect to the current control signal is
clearly equal to g(y(k+d—1),...,y(k+d—q)) and the Jacobian of the actual system

dynamics with respect to the current control input is the sum of

g(ytk+d-1),...,y(k+d —q)) and the Jacobian of the failure dynamics with respect to

the current control signal. Since the failure dynamics is realized through an on-line

estimator, the latter can be approximated and computed through the estimator (i.e.,

Infy(k +1)
du(k)

computing ). However, the fact that the failure dynamics depends explicitly

upon the current control input makes the on-line control problems more complicated.
System stability and performance are directly related to the accuracy of the on-line
estimator (i.e., the necessary condition in assumption 2). In the on-line situation, the
computational time becomes a critical issue for both learning of the unknown dynamics
and searching of the effective control input. Few training patterns from measurements
may not be good enough to represent the real failure dynamics such that the on-line
estimator may perform poorly for the searching of the effective control signal. However,
as mentioned before, only a limited number of training patterns are allowed to use from
both reality and accuracy point of views. Under this condition, the estimator may
represent the failure dynamics only locally inside the domain of the limited training
patterns and its conﬁned neighborhood. Once the searching of the effective control
actions moves far enough away from the domain of the training patterns, the
extrapolation problems of the on-line estimator may emerge and degrade the system
performance (i.e., possible violation of the necessary condition 2). This is the major
difficulty to guarantee the system on-line stability under unanticipated catastrophic

failures in real applications.
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3.2.3 Case 3
Consider a nominal system under catastrophic failures, which can be represented
by Equation (3.59),

yk+d)= f(ylk+d-1),...,y(k+d - p),u(k),....u(k — q))
e B k=T f.(yk+d=1),...,yk+d - p,)). (3.59)
i=1

This case corresponds to the situations where the mathematical format of the
nominal system is not ‘linear in control’ or not easy to be derived. Nominal system
dynamics is represented by a general function that explicitly depends upon the past
system outputs, past control inputs, and current control input. Under these conditions, the
nominal model may be realized by off-line modeling techniques (i.e., neural network or
neural fuzzy nétwork, etc.) and the nominal controller is also designed by the similar
techniques [31-34]. Some prior information of the failure dynamics is available. It is
known that the failure dynamics is only an explicit function of system past outputs, which
makes this problem relatively easier to solve. According to inequalities (3.8) and (3.9),
the control problem becomes to satisfy the following inequalities (i.e., ignore the

remaining uncertainties),

(Y (k) + S(k))(a + Zl?)_l —nfy(k +1) > N5k +1) > (Y (k) — S (k))(a + Ait)—1 —nfy(k+1),
if S(k)>0, or

(Y (k) - S(k)(a+ i)-l —nfy(k +1) > Nk +1) > (¥ (k) + S(k))(a + é)“l —nfy(k+1),

if S(k)<0.
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Because the failure dynamics does not depend explicitly on the current control input, the
real plant Jacobian with respect to the current control input is exactly the same as the
nominal plant Jacobian which we have good confidience with. This is because the
nominal model can be obtained off-line and the accuracy within the desired system
working range can be developed. At every time step, the effective control input to reduce
the absolute value of the sliding surface function is searched based upon the negative
gradient direction of the nominal model with respect to the current control input. Both
sides of the inequalities are fixed during the whole searching process. In other words, the
extrapolation problem caused by the on-line estimator because of the availability of only
the partial information of the unknown failure vdynamjcs at each time step in on-line
situations does not exist during the searching process in this problem. Similar to the first
case where the effective control input can be obtained by solving the inequalities,
according to Theorem 1, since the first necessary condition can be relaxed by off-line
manipulative effort, the system stability under catasfophic failures in this case can be
guaranteed and the system performance error is also bounded as long as the necessary
condition 2 is satisfied by the on-line estimator and the third condition is provided by the

optimization algorithm.

3.2.4 Case 4
Consider a nominal system under catastrophic failures, which can be represented
by Equation (3.60),
yk+d)= f(y(k+d-1),...,y(k+d — p),u(k),...,u(k —q))

+# 3B k=T (ke +d =D,y d = p) k).l —g.)).
(3.60)
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This is the most general form covering all of the above cases. Similar to case 3,
the mathematical representation of the nominal system dynamics is not ‘linear in control’.
A general function is used to describe the system dynamics and the prior information of
the failure dynamics is not available either, such that the failure dynamics is represented
by a general function as well. To deal with the on-line fault accommodation control
problems in this case, the inequalities (3.8) or (3.9) have to be solved in the most general

way,
(¥ (k) + S (k))(a + é)* > Ny(k +1) + nfy(k +1) > (¥ (k) - S(k))(a + Ait)-1 ,

if S(k)>0, or
(Y (k) - S(k))(a +Ait)—1 > Ny(k +1) +nfy(k +1) > (Y (k) + S(k))(a + i)*l ,

if S(k)<0,

where Nj(k+1) = f(y(k+d —1D),...,y(k +d — p),u(k),...,u(k —q)), and
nfy(k + ) +nfy(k+1) = iBi(k—7})fi(y(k+d—l),...,y(k+d—pi),u(k),..-,u(k_qi))-

The effective control signals satisfying the above inequalities have to be searched at each
time step through the nominal model and the on-line estimator. Similar to case 2, the
major difficulty of guaranteeing system on-line safety may arise when the extrapolation
problem emerges through the on-line estimator in the optimization process.

The general strategy of the on-line fault accommodation technique for
unanticipated catastrophic system failures is summarized in the following steps:

Initial off-line stage:
1. Obtain the nominal model and achieve its accuracy with the help of off-line

modeling techniques.
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2.

3.

Design the nominal controller with the required accuracy based upon the nominal
model.

Test both nominal model and controller, decide the fault detection threshold
value, A, and o for the fault detection scheme based upon expected measurement
noises, modeling error, and testing results of system behavior under nominal
controller.

Choose the design parameters (maximum number of searching iterations, the
structure of the on-line estimator, stopping criterion of the training process, and

the length of the time-shifting data window, j) according to the system

computing capability, sampling rate, and the performance requirement.

On-line stage:

5.

6.

10.

Keep monitoring the system performance once the system starts working.

If system abnormal behavior is detected according to the fault detection
mechanism, initialize the on-line estimator for learning process.

Collect training patterns (the difference between the output of the nominal model
and the measurement), adjust the parameters of the on-line estimator, and check
the stopping criterion.

Search the effective control signal to satisfy inequality (3.8) or (3.9).

Repeat step 8 until the inequality holds, maximum number of iteration reaches, or
the control input converges.

Go back to step 7 and repeat for the control process.
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CHAPTER IV

SIMULATION STUDY OF THE ON-LINE FAULT
ACCOMMODATION TECHNIQUE FOR UNANTICIPATED
SYSTEM FAILURES

4.1 CASE1

4.1.1 Single failure case

Consider the following SISO nominal plant characterized by a NARMA model
At At
y(k+1) = y(k)—z(cy(k)3 +k1y(k—1))+;u(k), (4.1

where y(k+1) and u(k) represent the system output and control input at time step & +1
and k, respectively. At is the sampling period and ¢, m, and k, are the system

parameters which are assumed to be known. Under unexpected failure modes, the system

is represented by the following equations
At 3 At
y(k+1) = y(k) — (cy(k)” +k y(k~1))+ —’;u(k) + Bk =T) f(y(k), y(k 1)), (4.2)

where f(y(k), y(k —1)) =bsin(y(k)X y(k ~1)) is assumed to be unknown and b denotes

an unknown constant gain. Two possible fault scenarios will be considered:

abrupt fault: f(k—-T)=U(k-T), and

incipient fault: Bk —T)=(1-e**“ Uk -T),
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where Atr=0.01, ¢=5, k£, =100, m=1, T =100, and & =0.05. No information is
available about the failure mode dynamics. In this simulation, b is chosen to be 0.5. In

order to track the desired trajectory, y,(k+1), the nominal control input, u,(k), for

Equation (4.1) is chosen as
m At 3
u, (k) = E(—(y(k) —Z(Cy(k) +hyk=1D)+y,(k+D). (4.3)
The desired trajectory was generated by the following reference model:
reference input: r(k) =0 Zsin(—”) :
pet ©1007

desired output: y,(k+1)=0.6y,(k)+0.2y,(k-1)+r(k), and
the sliding surface, S, is selected as

YakK) =y, (k1)  y(k)—y(k-1)

S(k) =
() At At

+100y, (k) - y(k)). (4.4)

The design parameters of the proposed intelligent control scheme for the simulations are
selected as follows:

®w=5,and A =107.

For the alternative corrective control law only, we choose

n, =0.5, §=0.001,and / =10.

4.1.1.1 Abrupt fault case

Figure 4.1 shows the actual system output and the desired output within the total
simulation time steps, 2,000, when the nominal controller is applied alone. As seen, the
system performance degrades and a large deviation from the desired trajectory starts after

the time step reaches 100, when the system suddenly experiences an abrupt fault. Figure
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4.2 shows the system response when the proposed intelligent control scheme is applied
with the alternative corrective control law. As clearly shown, the system performance is
greatly improved. The controller successfully drives the output of the unknown faulty
system back to the desired trajectory with a small range of error bounded by the
estimated uncertainty. The fault is actually detected by the control regulator at time step

115. The control signal is adjusted by adding the corrective control signal, u,(k), and a

Multi-Layer Perceptron (MLP) neural network with two-input neurons, 30 neurons in the
first and second layer, and one-output neuron (2-30-30-1) is initialized and learns the
unknown failure mode dynamics on-line by using the static back-propagation algorithm
in a non-batch mode [29,34,57]. At time step, 180, the on-line identification error
converges. The control input is tuned again by using the output of the NN identification
model and the new least upper bound for the remaining uncertainty is estimated by using
the converged identification error to furthef reduce the control error.

Figure 4.3 shows the actual control error (difference between the actual output
and the desired output) at each time step. Figure 4.4 is the on-line NN identification error
plot. Note that there is no identification error defined before time step 115 because the
learning of the neural network is initialized right after a fault is detected. Figure 4.5
shows the actual S function and the estimated boundary layer thickness. As shown, the
intelligent controller adjusts the boundary layer thickness on-line, which represents the
upper bound of the remaining uncertainty in order to improve the system performance
and to reduce control effort. Because of the sliding mode control signal, the S function
will be confined within the boundary layer, as shown in Figure 4.5. Figure 4.6 shows the

actual control signal at each time step. Figure 4.7 shows the system response when the
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proposed intelligent control scheme is applied with the first control law as given in
Equation (3.30). The same neural network on-line estimator with the same structure is
used for the first control law and the learning rate for the on-line training is set to be 0.05.
Comparing this response with Figure 4.2, we find that both control laws successfully
drive the system output back to the desired trajectory within a small range of error.
Although the system response under the first control law seems to have relatively larger
error than that under the alternative corrective control law, the response under the first
control law is much smoother while the system output under the alternative corrective
control law seems to oscillate around the desired trajectory. The reason is obviously from
the fact that the alternative corrective control law is based upon the discrete-time sliding
mode control technique and it is the nature of the sliding mode control to drive the system
output bouncing around the desired dynamics within the boundary layer. Figure 4.8 is the

corresponding S function plot at each time step under the first control law.

system response vs. desired output
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Figure 4.1 System response vs. desired output with nominal controller only
(single abrupt fault case; case 1)
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system response vs. desired output
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Figure 4.13 S function vs. on-line estimated boundary layer with the alternative corrective control law
(single incipient fault case; case 1)
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Figure 4.14 Actual control input with the alternative corrective control law
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4.1.1.2 Incipient fault case

Figure 4.9 shows the system response together with the desired output when the
nominal controller is applied alone and the system suffers from an incipient fault. Again,
the performance degrades slowly after the incipient fault occurs at time step 100. Figure
4.10 shows the response of the same system that suffers from the incipient fault when we
use the proposed intelligent control scheme with the alternative corrective control law.
Apparently, the result is greatly improved. Figure 4.11 is the actual control error plot. The
system dynamics keep changing with time until the time step reaches 900. After that, the
incipient fault dynamics converges. However, the intelligent controller still tries to on-
line estimate the bound for the remaining uncertainty in order to reduce the performance
error after it detects the fault as seen from Figures 4.12 and 4.13. The actual fault is
detected at time step 125 in this case. Figure 4.14 shows the actual control input at each

time step in this incipient fault case.
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4.1.2 Multiple failures case

In this Subsection, multiple system component failures are generated to validate
the proposed intelligent control technique. The same nominal model is used again in this
Subsection. However, the system model under multiple-failure modes is represented by

the following equation
At s At .
y(k +1) = y(k) _Z(Cy(k) +k y(k—=1) +;u(k) + 2 B.(k=T,) f,(y(k), y(k ~ 1)),
i=1
4.5)
where B,(k—T,) and f,(-) are the time profile and the failure dynamics under failure
mode i, respectively. Without loss of generality, consider n =2 where f,(-) and f,(})
represent unknown failure dynamics and f,(-) and f,(?) are their corresponding time

profiles, respectively.

4.1.2.1 Consecutive abrupt failures case

Two abrupt failures occur at time step 20 and 100, respectively, as shown below:
fi(y(k), y(k —1)) = 0.5xsin(y(k)x y(k =1)), B, (k-T,)=U(k—T,), where T, = 20, and
k), y(k—=1) =0.5x y(k)x y(k-1), B,(k-T,)=U(k-T,), where T, =100.
Figure 4.15 shows the system behavior driven by the nominal controller only. As shown,
without properly accommodating the failures, the system finally becomes unstable and
the output goes unbounded after time step 230. On the other hand, Figure 4.16 shows the
system output together with the desired output when the proposed intelligent alternative
corrective control law is applied to the same system. Apparently, the failure dynamics

have been properly accommodated and the control signal has been corrected by the
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alternative corrective control law. Figure 4.17 shows the system response under the same

failure situations with the first control law.

system response vs. doesired ouitput
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Figure 4.15 System response vs. desired output with nominal controller only
(consecutive abrupt faults case; case 1)
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Figure 4.16 System response vs. desired output with the alternative corrective control law
(consecutive abrupt faults case; case 1)
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Figure 4.17 System response vs. desired output with the first control law
(consecutive abrupt faults case; case 1)
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4.1.2.2 Consecutive incipient failures case

Figure 4.18 shows the system response controlled by the nominal controller only
when the system suffers consecutive incipient faults. The first incipient failure starts at
time step 20, and, before the time profile of this fault converges, another incipient failure

initiates at time step 60. The actual time profiles of these two incipient failures are given

as follows:

Bk—-T)=(1-e*"U(k-T,), where ¢ =0.01 and T, = 20,
and B,(k—T,) = (1—e *“™)U(k -T,), where o, =0.001 and T, = 60.
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Figure 4.18 System response vs. desired output with nominal controller onl
gu p y
(consecutive incipient faults case; case 1)
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.5
1 d; &l (3 3 i # - £ £ 3 & #
O
3 IR i i P i it P b F o 1 j 4 '
T LS - Ll ;‘? Ldd Ll IR 5?‘1 i
§‘;é%g‘§§§i§%§igifiﬁi’gs§§ Pt
RS N LT N T R O A O Voo I
o § L] AN WO T . i : L % s § P
oo o I T oo S
N N RN R
i 1] iy b b I U ] b : !
S O %;%i’zéagi %;af%;ga”ii
U b 1 i 5 ; i ; 1y i 1 =
VARV VARVERY IR AR VAN VARVARY IRVER VAN VARTARY
R R AL TR R L e
o 50¢C 1000 1600 2000 2800 3000
solid lin e

iactualoutputdashed line : desired autput

Figure 4.19 System response vs. desired output with the alternative corrective control law
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Figure 4.21 S function vs. on-line estimated boundary layer with the alternative corrective control law
(consecutive incipient faults case; case 1)
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Figure 4.22 System response vs. desired output with the first control law
(consecutive incipient faults case; case 1)
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The failure dynamics are defined to be the same as those in 4.1.2.1. As shown in Figure
4.18, the system output diverges to infinity because the nominal controller cannot
properly accommodate the first failure, and, after the second failure happens, the system
behavior is eventually out éf control. Figure 4.19 indicates how the proposed alternative
corrective control law handles the consecutive incipient system component failures.
Observing Figures 4.20 and 4.21, we can easily conclude that the alternative corrective
control law is adjusting itself on-line to accommodate the system failures and confines
the performance error within a bounded range. Figure 4.22 shows the response under the

first control law.

4.1.2.3 Mixed incipient and abrupt failures case

In this Subsection, the situations where the system suffers both an incipient fault
and an abrupt fault are simulated. Figure 4.23 shows the system behavior when an
incipient fault starts first at time step 50 and then an abrupt fault occurs at time step 100.

The failure mode dynamics are given as follows:

incipient failure dynamics : f,(-)=1- e Ty D) ,and

abrupt failure dynamics : f,(-) =0.46 X y(k)x y(k ~1),

where time profiles B, (k~T,)=(1—e **“ ™ U(k-T,), &, =0.02, T, =50, and

B, (k-T,)=U(k-T,), T, =100.

Again, the system becomes unstable at time step 240 when it is controlled only by the
nominal controller. Figures 4.24 and 4.25 show the proposed alternative corrective

control law and the first control law successfully accommodate both system failures,

respectively. Figure 4.26 shows the system response plot under the nominal controller
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when it first suffers an abrupt fault at time step 100 and then an incipient fault starts at

time step 140. The failure mode dynamics are defined as follows:

abrupt failure dynamics : f, () =1—¢ 230

, and

incipient failure dynamics : £, (-) = 0.6 X cos(y(k) X y(k —1)),

where time profile f,(k—-T,)=U(k—T,) ; T, =100, and

B k-T,)=(1~e**™\U(k-T,), o, =0.08 , T, =140.

Figure 4.27 is the same system response plot when the alternative corrective control law

is applied. As shown, the significant performance improvement has been achieved by

using the proposed intelligent controller.
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Figure 4.23 System response vs. desired output with nominal controller only
(incipient-abrupt fault case; case 1)

system response vs. desired output

Figure 4.24 System response vs. desired output with the alternative corrective control law
(incipient-abrupt fault case; case 1)
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4.1.3 A benchmark problem: three-tank system

A well-regarded FDI benchmark problem shown in Figure 4.28 [85], the
controlled three-tank system, is used in this Subsection to demonstrate the design of the
nominal controller, the selection of the design parameters, and how to implement the
proposed control technique in real application. The state equations of the system are
given as

X, =(—¢,S ,sign(x, ~x3)m+u, )/ A+, (x,u)

X, —xs‘ —CESN/Zch2 +u,) [ A—=q,y +n,(x,u)
X, =(c,S ,sign(x, — x,) 2g[x, —x3| —C3SPngn(X3 —);2)1I2g|x3 = x,|)/ A+ n,(x,u)

X, =(—¢;S  sign(x, — x;),/28

(4.6)
Pump 1 Pump 2
N\ ~\
—> () ‘ i | () «
o ‘ /
l Tank 1 " Tank 3 Tank 2
u, U,
L
Y I X X,
G - G €y
|_I_I I'G_I I i
I ' L Outflow rate

Leakage (Fault 1) s Leakage (Fault 2)

P

Figure 4.28 A benchmark problem (three-tank system)

Three tanks are identical and have a cylindrical shape with cross section A =0.0154 m”.
The cross section of the connection pipes is S, = 5-107 m* and the liquid levels in the
three tanks are denoted by x,, x,, and x;, respectively with (0 <x, <0.69 m, Vi =1,2,3).

The control inputs, u, and u,, are the flow rates coming from pumps 1 and 2 to tanks 1
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and 2, respectively. g,, =¢,S,4/28x, is the outflow rate from tank 2. ¢, =1, ¢, =0.8,
and ¢, =1 denote the non-dimensional outflow coefficients, g is the gravity

acceleration, and #,, Vi =1, 2,3 represent the corresponding modeling uncertainties due

to the inaccuracy on the cross section of connection pipes. The discrete-time model is

derived by using forward Euler approximation,

s x,(k+1)—x, (k)
! At
where A7 =0.1 second represents the sampling period. Plugging in Equation (4.7) and re-

,i=123, 4.7)

arranging the state equations, we have the nominal model in the form of Equation (3.26)

such that the corresponding f(-) and g(-) are found for each state equation. Initial
condition is set to be the liquid levels x,(0)=x,(0)=x,(0)=0.15m and the control
objective is to keep the liquid levels at 0.2m (i.e.,
x,, (k) = x,, (k) =x,,(k)=0.2, Vk > 0). The modeling uncertainty is assumed to satisfy
I, (ew)| <7, V(x,u)e X, i=1,2,3, (4.8)
where X represents the region of interest. In order to simulate the effects of modeling
uncertainty and possible noises in the measurements, uniformly distributed random
values satisfying Equation (4.8) with 7, =3.5x107*,7, = 2.05x107, and 7, =6.5x107

are added to the corresponding nominal state equations.

4.1.3.1 Design of nominal controllers

The design of the nominal controllers is based upon Equation (3.30) without the on-

line estimator. Only the liquid levels x,(k) and x,(k) need to be considered in the

controller design process since x,(k) will eventually reach the same level as long as we
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can keep x,(k)=x,(k)=0.2m based upon the U tube principle. Thus, the nominal

controllers are

() = F10)a+ )" = FIOV 16, (4.92)

i (B) = [T 24 a+-0) = 20/ 820 (4.9)
where i) = 2k _zltd B+0E | o k+1),

YZ(k) _ Xoq (k +1)—Zztd (k) +x,(k) tax,, (k+1)

f16), £2(9), gl(-),and g2(-) are the corresponding terms obtained when we re-organized
the nominal model into the form of Equation (3.26). Two sliding surface functions S,

and S, are defined for x, and x,, respectively, with the same form as Equation (3.1) and
a =10. The sum of the mean square control errors (i.e., )’Zf(k) =[x, (k) —x, (k)}* and

izz(k) =[x,,(k)—x,(k)]*) within a fixed length (i.e., 5 time steps) of time-shifting
window is selected as a criterion to test performance of the nominal controllers with the
presence of modeling uncertainty and possible noises. Based upoh the testing results, the

fault detection threshold value is then selected as 2.0x 107 in steady state condition.

system on-line response under the nominal control law
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Figure 4.29 System on-line response with the nominal control law (the three-tank system)
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4.1.3.2 Multiple failures: leakages in the tanks
Consider an abrupt leakage in tank 1 and an incipient leakage in tank 2 whose failure

dynamics are

(k) = e 2%, (). Bk ~T,) =U(k~T;), T; = 270,

fo (k) = —c,mr2\[2gx,(k), B, (k —T,) = A— e ** ™ (k —T,), o, = 0.063, T, = 426,
(4.10)
where 7, =7.3x107* and r, =8.4x107. No information in Equation (4.10) is assumed to

be known except for the state variables x,(k) and x, (k). The physical knowledge of the

system provides us useful information to determine the initial upper bound of the failure
dynamics. Since the failures are possible leakage problems in the tanks (i.e., the failures
of system components), the maximum effect caused by the failure is suddenly draining
out the liquid in the tank, which corresponds to the worst failure condition where the tank
is completely broken. Thus, the initial upper bounds for failures can be chosen as the
liquid levels in the tanks at the corresponding time step. Two separate 1-5-5-1 MLP

neural networks are used to serve as the on-line failure estimators for f, and f,,

respectively, with the same static backpropagation method as the training algorithm. The
selection of the MLP network structure is a design parameter and may not be optimal in
this case. Generally speaking, a more complicated structure may be required for a more
complex function with better performance and the computational cost is expected to
increase with the complexity. The on-line approximation result is monitored by the
criterion shown in Equation (3.56) with I =10 and the least upper bound of the failure
uncerfainty is computed according to Equation (3.54). Figure 4.29 shows the liquid levels
in the tanks under the nominal control law. As the first leakage in tank 1 occurs, the

liquid level 1 drops quickly causing dropping of the liquid level in tank 3. As the second
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leakage problem occurs in tank 2, the liquid levels eventually drop below the initial

condition. Applying the proposed control technique with the corrective control law, we

observe significant performance improvement by proper reconfiguration of the control

inputs which are the flow rates from pumps 1 and 2, as shown in Figure 4.30. The

implementation of the first control law for this problem is straightforward and the result

is shown in Figure 4.31 (i.e., with the same MLP estimators and the delay of

compensation).
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system response vs. desired output
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Figure 4.32 System response vs. desired output with the alternative corrective control law in false
alarm situation
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Figure 4.33 System response vs. desired output with the first control law in false alarm situation

4.1.4 Fault detection delay and false alarm

The simulation results shown in Figures 4.24 and 4.25 indicate a fault detection
delay situation. One system failure occurred at time step 50 and it was not detected until
the time step reached 100 at which time the intelligent control regulator initialized the on-
line estimator. However, the system response is still quite satisfactory because the

response affected by the failure is so small that no adjustment of the control law is
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required. The on-line learning and compensation is performed only after the effect caused
by the failure is significant enough to degrade the performance. In order to test the
proposed intelligent control framework in false alarm situation, a false failure detection
signal is generated at time step 100 in the same system with the same failure situations.
Right after the initialization of the on-line estimator, the failure dynamics are eliminated
to test how the system responds to this situation. Figures 4.32 and 4.33 show the system
output plots when the alternative corrective control law and the first control law are
applied, respectively. The result shows compliance with the expectation from the
analysis. The on-line estimator is triggered to learn the remaining uncertainty between the

nominal model and the actual system dynamics in noise-free situations.

4.1.5 Simulation test in noisy measurement situations

This subsection is dedicated to investigate how the intelligent control scheme
proposed will react in noisy environments. Without loss of generality, only the multiple-
failure situations will be used to test system performance with noisy measurements. In all
the simulation tests; random Gaussian white noise with zero mean and different variances
will be added to the measurements. All the necessary computations including the on-line
identification of the unknown failure dynamics, computation of the sliding surface
function, and searching of the effective control input are based upon the noisy
measurements without any noise reduction or cancellation process (i.e., assume no prior
information of the noise model is available). Figure 4.34 shows the system response in a
consecutive abrupt failures case (Subsection 4.1.2.1) controlled by the intelligent control

regulator using the alternative corrective control law in the noisy environment with
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Gaussian white noise, variance 4.0x10™ in the measurements. The noisy measurements
together with the actual white noise are shown in Figure 4.35. Figures 4.36-4.37 and
4.38-4.39 are the test results for the consecutive incipient faults case (Subsection 4.1.2.2)
and the abrupt-incipient fault case (Subsection 4.1.2.3), respectively, when the same
variance Gaussian white noises are added to the measurements. As clearly seen, the
system performance degrades significantly in noisy environments. It is a fully expected
result since the measurements contain unpredictable noises such that the on-line estimator
will have larger remaining uncertainty with regards to the failure dynamics and all the
computations for the effective control inputs are based upon the contaminated

measurements.

system response vs. desired out
- T T o

solid line : actual output dashed line : desired output

Figure 4.34 System response in 4.1.2.1 consecutive abrupt failure case (with Gaussian white noise variance 4e-4)
using the alternative corrective control law
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Figure 4.35 Actual noisy measurements vs. Gaussian noises in 4.1.2.1 consecutive abrupt failure case (with
Gaussian white noise variance 4e-4) using the alternative corrective control law
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Figure 4.37 Actual noisy measurements vs. Gaussian noises in 4.1.2.2 consecutive incipient failure case (with

Gaussian white noise variance 4e-4) using the alternative corrective control law
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Figure 4.38 System response in 4.1.2.3 abrupt-incipient failure case (with Gaussian white noise variance 4e-4)
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Figure 4.39 Actual noisy measurements vs. Gaussian noises in 4.1.2.3 abrupt-incipient failure case (with
Gaussian white noise variance 4e-4) using the alternative corrective control law

Among numerous simulation tests in noisy environments, it is found that the
system performance is sensitive to the variance of the noise and the system behavior

seems to oscillate around the desired trajectory. For the noise with variance higher than

6.4x107, not only is the system performance significantly degraded, but also the
possibility of instability is increasing. The pre-processing of the noisy measurements

seems to be an important and necessary step for a better system performance.

4.1.6 Comments and discussions

The first control law derived directly from the discrete-time Lyapunov stability
theory is simple, straightforward, and requires less computation and fewer design
parameters to implement in a real-time situation. Once the abnormal system behavior is
detected, the intelligent control regulator switches the control action (nominal controller)
to follow the first control law and compensates immediately for the failure dynamics

based upon the realization of the neural network on-line estimator for the unanticipated
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failure dynamics without performing any convergence test of the on-line learning. The
simulation results show:

1. Although the system response for the first control law has relatively larger
performance error than the error under the alternative corrective control law, it
exhibits much smoother response.

2. The system response is sensitive to the learning rate of the on-line training
algorithm (i.e., static backpropagation algorithm is used here). The reason is
apparent from the fact that the first control law does not perform the convergence
test before the on-line learning result is used to compensate for the failure
dynamics. Although it is true that the gradient descent algorithm is stable given a
small enough learning rate, small learning rates will usually slow down learning
and degrade thé transient control performance, especially in the on-line situation
where the result has a significant and immediate effect on the control error.

The alternative corrective control law based upon the discrete-time sliding mode

control technique requires more design parameters and more computational cost to

implement. This is a corrective control law that is used to compensate the nominal
control law for the accommodation of unexpected failure dynamics. The simulation
results show:

1. Generally speaking, the system performance error is smaller than that under the
first control law. Although the on-line estimation of the boundary layer thickness
for the remaining uncertainty of the failure dynamics based upon the on-line

approximation results in much more computational burden, it is well justified in
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the system performance and makes the control law almost insensitive to the
learning rate of the on-line training process.

2. The delay of nominal control law compensation (i.e., with U(k —T,) in Equation
(3.51)) usually results in a better transient behavior although the system stability
cannot be theoretically guaranteed during the time period of delay.

3. Due to the nature of the sliding mode control technique, the system response will

oscillate around the desired dynamics within the boundary layer.

4.2 CASE 2

4.2.1 Example 1

Consider the same system model we used in 4.1.2.1, Consecutive abrupt failures
case, where both the failure dynamics are explicit functions of past system outputs only
and the system behavior will go unbounded under the nominal controller. It actually
belongs to the first case. However, the prior information of the failure dynamics are not
available or not accurate enough such that we may misclassify it. Thus, the control
strategy of case 2 is used to deal with the on-line fault tolerant control problems.

Assume that the inaccurate or insufficient prior information indicates that the
failure dynamics is an explicit function depended upon the past system outputs,
[y(k),y(k—1) 1, but, we are not sure whether or not the current control input is involved
in the argument. So, the more general argument, (i.e., [y(k), y(k —1), u(k)]), is chosen as

the input of the NN on-line estimator. Right after a system fault is detected, a 3-2-1 MLP

neural network is initialized as the on-line estimator for the unknown failure dynamics. A
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time-shifting data window contains the most recent 10 sets of the system input-output
measurements that are used as training patterns at each time step and the Levenberg-
Marquardt algorithm with Bayesian regularization is used to train the NN estimator [66].
When the learning process converges, a simple gradient descent optimization algorithm
with variable learning rate is applied for the searching process of the effective control
input.

Figure 4.40 shows the on-line control result, where the solid line represents the
actual system output and the dashed line is the- desired output. As clearly seen from the
figure, after the time step 32 (i.e., the first abrupt fault happened at time step 20, almost
being detected immediately, and 10 sets of measurements were collected for the training
process), the intelligent controller tries to drive the system output to follow the desired
trajectory based upon only partial information of the failure dynamics available at each
time step to estimate the Jacobian of the failure dynamics with respect to the current
control input and search the best effective control action to satisfy inequalities (3.8) or
(3.9). The system output seems to be controlled well even when there is another abrupt
fault happened at time step 100. Figure 4.41 shows the output prediction from the on-line
estimator for the unknown failure dynamics at each time step together with the actual
output from the failure dynamics. The actual control input at each time step is shown in
Figure 4.42.

A much better performance can be obtained if we increase the length of the time-
shifting data window, j, from 10 to 20, using the same network structure (i.e., 3-2-1
MLP) and the same training algorithm (i.e., Levenberg-Marquardt algorithm with

Bayesian regularization). However, instead of using only 10 sets of input-output
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measurements, the most recent 20 sets of the measurements are used to train the NN on-

line estimator at each time step.
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Figure 4.40 System response vs. desired output (10-data window; consecutive abrupt faults; example 1; case 2)
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Figure 4.41 Output prediction from the on-line estimator vs. actual failure dynamics output
(10-data window; consecutive abrupt faults; example 1; case 2)
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Figure 4.42 Actual control input (10-data window; consecutive abrupt faults; example 1; case 2)
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Figure 4.43 System response vs. desired output (20-data window; consecutive abrupt faults; example 1; case 2)
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Figure 4.46 Actual control input (20-data window; consecutive abrupt faults; example 1; case 2)

The simulation result is significantly improved as shown in Figure 4.43. Figure
4.44 shows the output prediction of the failure dynamics from the NN on-line estimator
together with the actual failure output. As shown,» both system performance and
prediction are much better and smoother than those in the laét result. The second fault,
happened at time step 100, caused a slight deviation of the system output from the desired
output, but it was quickly controlled by our intelligent on-line control regulator. Figure
4.45 shows the sliding surface function at each time step. It has been controlled within a
small range of deviation from zero (i.e., the desired system behavior). The actual control
input at each time step is shown in Figurc 4.46 and it is much smoother, compared with
that in Figure 4.42. ‘

Although the result is significantly improved using these design parameters for
this case, we do exert much more computational cost as that in the last simulation since
we double the length of the data window and trade the computational cost for the system

performance. The result again shows the trade-off dilemma we have to face when we

select the design parameters for the on-line fault tolerant control problems. Clearly, all
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these design parameters have to be reasonable for the hardware computational capability

in the real applications.
The simulation result for the same failures in consecutive incipient faults using

20-data window with the following time varying profiles are shown in Figures 4.47-4.50.

B(k—T)=1-e2*"NU(k-T,) where o, =0.05 and 7, = 20,
1 1 1 1 1

B,k —T,)=(1-e * U (k—T,) where &z, =0.05 and T, =100.
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Figure 4.47 System response vs. desired output (20-data window; consecutive incipient faults; example 1; case 2)
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Figure 4.48 Output prediction from the on-line estimator vs. actual failure dynamics output
(20-data window; consecutive incipient faults; example 1; case 2)
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4.2.2 Example 2

Consider the same nominal system model with different failure dynamics as

shown in Equation (4.11),

Yk +1) = y(k) —%(cy(kf +hy(k 1) +—§fu<k) + 3 B k=T £,(y(k), y(k =D, u(k)),
4.11)

fi k), y(k —1)) = 0.5xsin(y(k) x y(k -1)), ,31 (k=T,)=U(k-T,), where T, = 20, and

f, (y(k),u(k)) =0.005x y(k)xu(k), B,(k-=T,)=Uk~-T,), T, =100, n=2.

The first failure dynémics does not explicitly depend on the current control input.
However, the second failure dynamics does. Apparently, the intelligent control technique
in case 1 is not adequate to handle this problem. A 3-3-1 MLP network with argument,
[y(k), y(k—1),u(k)], as network input is used as the on-line estimator in this example.
The number of data sets for the on-line training is set to be 20 and the Levenberg-
Marquardt algorithm with Bayesian regularization is used in the training process. Figure
4.51 shows the system output when the nominal controller is applied alone. Appreciable
performance error appears after the first fault happened and the error gets even larger
after the second fault occurred. However, when the proposed intelligent control regulator
is applied, the system performance is apparently improved. The simulation results
together with the desired output are shown in Figure 4.52. The output prediction from the
on-line estimator at each time step together with the actual failure dynamics are plotted in
Figure 4.53 and the control input at each time step is shown in Figure 4.54. The §
function is plotted in Figure 4.55. Figures 4.56-4.59 show the simulation result for the
same failure situation in the consecutive incipient faults with the following time profiles:

Bik—T)=1-e*™U(k-T,) where o, =0.05 and T, =20,
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Figure 4.52 System response vs. desired output (20-data window; consecutive abrupt faults; example 2; case 2)
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Figure 4.58 Actual control input (20-data window; consecutive incipient faults; example 2; case 2)
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Figure 4.59 Sliding surface function at each time step
(20-data window; consecutive incipient faults; example 2; case 2)

4.2.3 Simulation test in noisy measurement situations

In order to test the proposed intelligent control strategy for case 2 in the noisy
environment, the same Gaussian noise with zero mean and different variances are added
to the actual output data as noisy measurements. The simulation tests are divided into 2
parts. The first part shows the system behavior, output predictions from the on-line
estimator, noisy measurements and the added noises, sliding surface function, and actual

control input for Example 1 (Subsection 4.2.1). The second part shows the simulation
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results for Example 2 (Subsection 4.2.2). The results of the first part for consecutive

abrupt faults with variance 2.25x107*are shown in Figures 4.60-4.64. Apparently, the
system performance degrades as the noise variance increases. In the second part, Figures
4.65-4.69 are the results for the consecutive incipient failures in example 2 with noise
variance 2.25x107*.
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Figure 4.60 System response vs. desired output
(Gaussian white noise variance 2.25e-4; 20-data window; consecutive abrupt faults; example 1; case 2)
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Figure 4.61 Output prediction from the on-line estimator vs. actual failure dynamics output
(Gaussian white noise variance 2.25e-4; 20-data window; consecutive abrupt faults; example 1; case 2)
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(Gaussian white noise variance 2.25e-4; 20-data window; consecutive abrupt faults; example 1; case 2)
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Figure 4.65 System response vs. desired output
(Gaussian white noise variance 2.25e-4; 20-data window; consecutive incipient faults; example 2; case 2)
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Figure 4.66 Output prediction from the on-line estimator vs. actual failure dynamics output
(Gaussian white noise variance 2.25e-4; 20-data window; consecutive incipient faults; example 2; case 2)
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Figure 4.67 Actual noisy measurements vs. Gaussian noises
(Gaussian white noise variance 2.25e-4; 20-data window; consecutive incipient faults; example 2; case 2)
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4.2.4 Comments and discussions

(Gaussian white noise variance 2.25e-4; 20-data window; consecutive incipient faults; example 2; case 2)

In Section 4.2, the simulation results of the intelligent control strategy for on-line

fault tolerant control problems in the situations of case 2 are presented. According to the

theoretical analysis presented in Chapter 3, the on-line fault tolerant control problems for

unanticipated system failures of case 2 can be solved by deploying an estimator to

identify the failure dynamics on-line and searching for the effective control action to

116



satisfy inequalities (3.8) or (3.9). Among the numerous simulation tests, these expected
results have been verified and the following observations can be drawn.

1. The design parameters such as the length of the time-shifting data window and
training algorithms have substantial effect on the system performance. It is found
that using 20 pairs of input-output measurements as the training pattern at each
time step has a much better system performance than using 10-data window.
Among all simulation tests, there does exist some situations where the system
behavior is out of control when the design parameter, the length of the time-
shifting data window, 10 is used. It is also obviously shown that using the training
algorithm with regularization will generally result in a better system behavior than
using the algorithm without regularization since this technique can relax the
network over-fitting problem and eliminate the guesswork in determining the
optimal network structure [65,66]./

2. Although the scenario with largé noise is virtually equivalent to the situation with
sensor failure where all the measuremeﬁts have no actual meaning, the system
performance still seems to be sensitive to the noise. It is found that the
performance error increases quickly in the environment with the high variance
white noise and the possibility of system instability increases significantly when
the noise variance is larger than 1.0x107. Apparently, it is a reasonable result
and fact that the contaminated noisy data have significant negative influence in
both the computation of the sliding surface function and the searching process of

the effective control signal.
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4.3 CASE3

4.3.1 Example 1: time-varying abrupt-incipient failures

The system dynamics under unknown multiple-failure modes is represented by

Equation (4.12),

y(k +1) =03y(k) +0.6y(k —1) + u(k)* - 20u(k) + En:ﬂt (k=T f,(y(k), y(k-1)), (4.12)

where the failure dynamics are defined as -

n=2, [0(0)=005x-xcos(y (k). fi(k~T)=Uk~T,), T, =20,

Fo(y(k), y(k=1)) = 0-6><\/|y(k)>< Yk =D, B,(k=T,) =1-*¥*Oy(k ~T,), and
T, =103.

The nominal system dynamics is first realized by a 3-30-1 MLP neural network. Training
patterns are collected by feeding 2,000 uniformly distributed random input signals
varying from —1.5 to 1.5 into the nominal system and, after a normalization process of
the training patterns, the Levenberg-Marquardt algorithm with Bayesian regularization is
used to train the NN nominal model off-line [66]. The corresponding nominal controller
can be developed using dynamical backpropagation or backpropagation-through-time
algorithm [31-34]. However, these two methods are computationally expensive and
complex since the training process of the NN nominal controller requires the realization
of the NN nominal model. In this simulation, the nominal controller is developed off-line
based upon fhe same technique discussed in Chapter 3. Through the realization of the NN
nominal model, the effecﬁve control input to reduce the S function is, first, searched,
and then, the input-output patterns is collected for the training process of the NN nominal

controller. In this way, the training of the NN nominal controller does not require
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knowledge of the nominal model and the complexity of the dynamical backpropagation
or backpropagation-through-time algorithm can be avoided (i.e., the training of the NN
nominal controller requires only the static backpropagation algorithm.).

Another 3-2-2-1 MLP network is deployed as the on-line estimator and the on-
line learning algorithm used in this case is the static non-batch form backpropagation
algorithm (i.e., same as those used in case 1) [57]. Figures 4.71-4.73 show part of the on-
line simulation results. As clearly shown, the system failures have been properly
accommodated such that the system output has been driven back to the desired trajectory
while the system behavior under nominal control law withouf appropriate adjustment of
the control action is eventually out of control due to the time-varying failure dynamics as
shown in Figure 4.70. Observing Figure 4.73 closely, we find that the effective control
input generated by the intelligent control regulator still keeps changing without periodical
pattern within 800 time steps, which is obviously because the regulator keeps adjusting
the control input to compensate the time-varying system dynamics.
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Figure 4.70 System response vs. desired output with nominal controller
(abrupt-incipient faults; example 1; case 3)
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4.3.2 Example 2: time-varying abrupt failures

Consider the same nominal system with different time-varying failure dynamics

as follows:

n=2, f.(y(k), y(k ~1)) = 0.2x—2%) ),ﬂl(k—TI)zU(k—Tl),T1=20,and

(y(k—1)% +1
£,(y(k)) =0.33x y(k)XSin(%), B (k~T,)=U(k-T,),and T, =171.

The same NN nominal model, NN on-line estimator, and the training algorithm as
Example 1 in Subsection 4.3.1 are used here. Figures 4.74-4.76 show the simulation
results when the system suffers from consecutive time-varying abrupt faults. The
structure of the NN on-line estimator used in this case is much simpler than those used in
case 1, where a 2-30-30-1 neural network was deployed as the on-line estimator.
However, the simulation tests in both examples show positive results. This indicates that
the on-line tracking performance is not very sensitive to the network structure while the
static backpropagation algorithm is used for the parameter adjustments. The only
significant difference is the pre-selection learning rate of the training algorithm. A bigger
structure NN should use a much smaller learning rate since more parameters are adjusted
at the same time to reduce the tracking error. Obviously, the simpler structure is always
preferable since it demands less computational cost and possesses less chance of

overfitting or falling into a local minimum.

4.3.3 Comments and discussions
In both examples, it is assumed that the NN nominal model is accurate enough to
represent the actual nominal system dynamics even when the system is in failure modes.

Under this condition, the effective control input to accommodate the failure dynamics can
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be found through the realization of the NN nominal model. If the desired actual effective
control actions are far away from the validated domain of the NN nominal model, the
similar extrapolation problem discussed in Chapter 3 (i.e., Subsection 3.2.2) may emerge
to degrade the system performance or stability. Thus, it is important and necessary to
maintain the validated domain of the nominal model as large as possible for a better and

larger failure accommodation coverage.

4.4 CASE 4

4.4.1 Example 1

The system dynamics under unknown multiple-failure modes is represented by
Equation (4.13),
Yk +1)=0.3y(k) +0.6y(k —1) + u(k)* — 5u(k) + Y B, (k =T,) f, (y(k), y(k —1),u(k)),
i=1
(4.13)

where the failure dynamics is defined as

2 Xy xcos(()), B, (k~T,) =U(k~T,) T, =25,

n=2, f,(y(k)uk) = 0.1x
£, y(k=1) = 0.6% y(k)x y(k ~1), f,(k~T,)=U(k~T,), and T, = 201.

Similar to case 3, a 3-30-1 MLP network is first used to realize the nominal system
dynamics. A 3-3-1 MLP network is then used to approximate the failure dynamics on-
line with the same training algorithm in case 2. Figures 4.78-4.79 show part of the on-line
simulation results. As shown, the system failures have been properly accommodated
when the proposed intelligent control law is applied, while the system response under the

nominal control law is shown in Figure 4.77. Similar to case 3, the effective control input
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keeps changing to accommodate the time-varying failures while the nominal control law

cannot place the behavior of the time-varying system under control.
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Figure 4.77 System response vs. desired output with nominal controller

(consecutive abrupt faults; example 1; case 4)
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Figure 4.78 System response vs. desired output (20-data window; consecutive abrupt faults; example 1; case 4)
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Figure 4.79 Actual control input (20-data window; consecutive abrupt faults; example 1; case 4)
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4.4.2 Example 2

Consider the same nominal system model with different failure dynamics as
follows:
B (k= T)x{-[0.3y(k) + 0.6 y(k — 1) + 2u(k)* + Su(k)]+ B, (k = T,)x 0.6 X y(k)X y(k 1) +

0.0SX%X y(k)? + 4u(k)},

where S (k-T))=Uk~T,), T, =25, B,(k-T,)=U(k-T,), and T, =171. Starting
from time step, 25, the first failure will cancel the nominal system dynamics and replace
it with a totally different time-varying system. At time step 171, the system dynamics will
suddenly change dramatically again due to the second failure. Figure 4.80 is the on-line
system response plot. A large deviation of the response starts right after the sudden
change of the system. However, within 25 time steps, the failure condition has been
properly controlled such that the system output is driven back to the desired trajectory
until the second failure happens at time step 171. It takes almost the same time for the on-
line estimator to catch up with the failure and place the system behavior under control.

Figure 4.81 shows the actual control input at each time step.
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Figure 4.80 System response vs. desired output (20-data window; consecutive abrupt faults; example 2; case 4)
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Figure 4.81 Control input (20-data window; consecutive abrupt faults; example 2; case 4)

4.4.3 Example 3: On-line multiple-failures accommodation for a multiple-input
multiple-output system

Consider a MIMO system under different failures as shown in Equation (4.14),

(K 2 2
y(k+1)= # +u, (k)" +u,(k)” —16u, (k) —20u, (k) + Af, (k),
v, (k+1) = yl—(k)—y—z——(ﬁzz +u, (k)u, (k) + 20u, (k) — Su, (k) + Af, (k),
I+ y,(k)

k—25

Af, (k) = By (k—T,,)x0.1x v, (k)cos(u, (k)) + f,,(k —T,,)x0.6y,(k)y, (k),

Af, (k) = B (k = Tp) X 0.1% y, (k) y, (k)
(4.14)

whete B, (k—T,)=U(k=T,), Pfy(k=T,)=U(k=Ty), Poplk—Ty)=U(k~Ty),
T,=25, T, =15, and T;; =123. The nominal system is first realized through a 4-75-2
MLP network. 2,000 input-output training patterns are collected by supplying uniformly
distributed random inputs varying from —1.5 to 1.5. A 3-4-2 MLP network is chosen as
the on-line estimator and the Levenberg-Marquardt with Bayesian regularization

algorithm is used in the training process for both the NN nominal model and the NN on-

line estimator (i.e., a 4-40-2 MLP network is used as a nominal controller trained off-
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line). Figures 4.82 and 4.83 show the system response for the first output and the
response for the second output together with the desired outputs, respectively, while the
nominal controller alone fails to maintain the system stability under multiple failures. A
relatively large tracking error appears in both system outputs around time step, 110. The
same results are observed in Figures 4.84-4.85 and Figures 4.86-4.87 which are the plots
for the on-line estimations and the sliding surface functions, respectively. This indicates

that a relatively large estimation error has occurred at that time.
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Figure 4.82 System response, y1, vs. desired output, y1d
(MIMO system; 25-data window; consecutive abrupt faults; example 3; case 4)
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Figure 4.83 System response, y2, vs. desired output, y2d
(MIMO system; 25-data window; consecutive abrupt faults; example 3; case 4)
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Figure 4.84 Output prediction, nfyl, from the on-line estimator vs. actual failure dynamics output, fyl
(MIMO system; 25-data window; consecutive abrupt faults; example 3; case 4)
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Figure 4.85 Qutput prediction, nfy2, from the on-line estimator vs. actual failure dynamics output, fy2
(MIMO system; 25-data window; consecutive abrupt faults; example 3; case 4)
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The actual control inputs are shown in Figures 4.88-4.89. In this example, the
length of the time-shifting data window is selected as 25. Simulation tests show that this
is a better trade-off number between the system performance and the computational
complexity. A simple mean value of the two estimated gradient directions realized
through the NN on-line estimator is used for the searching of the effective control inputs.
This approach is based ﬁpon the assumption that the searching directions of the effective
control signals to accommodate failure dynamics have no confliction, which may not
always be true under unanticipated catastrophic system failures. In general, this becomes

a multi-objective optimization problem that remains to be an open research issue [76].

S olid line: system output dashed line: desired output

\ A L : AN
0.8 ——-—f -~ L |___/___*‘-;__l ________ T T T ‘577‘ ________ | S Y_!_ ________

! / i i z o P/ L]
0.6 F—4————\“ a4~ 1——/——~—4¥+ ———————— | EEY et [ e S

vy | I Vo b I

[ i [ [ [ Ll
0.4 Fof----\iT T A T [ A AT-- - [ M T T T T

1 ( 1 ] \1 l Wt
R R o bromeee TR to e A b
E ------- o Hoommm--- fommooe Ao-mmmee- e RS

U R Y I A S N r A
P I S -ZI ________ !_\ Y L |_\ ______ VA |_\ ______ Jl—
o N A A T
S I N RRr SRR TR N
y / 4 / i
S 2 S — L N A N L O A CA ]
A LN NS NS
0 200 300 400 500 8600 700 800
tim e step
Figure 4.90 System response vs. desired output in false alarm situation
(consecutive abrupt faults; example 2; case 4)
4.4.4 False alarm

In order to test the false alarm situations, the same system with the same failures
in Example 2 of case 4 is used and, right after the system abnormal behavior detected, the
failures are eliminated by setting the time varying constant gains of the failures to zeros.

Figure 4.90 shows the on-line system response plot under the false alarm noise-free
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situation. As expected, the on-line estimator tries to approximate the differences between
the outputs of the NN nominal model and the actual measurements, which is the

remaining uncertainty between the actual nominal system and the NN nominal model.

4.4.5 Comments and discussions

The proposed on-line fault detection scheme has good resistance in miss detection
of system failures. However, it also increases the sensitivity to the false alarm situations.
Simulation tests in noise-free false alarm situations indicate that the on-line estimator is
used to approximate the remaining uncertainty of the system. In noisy environments, it is
possible for the on-line estimator to overfit the noisy model. Thus, the pre-processing of

the contaminated noisy measurements becomes an important process for better results.
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CHAPTER V

REAL-TIME HARDWARE EXPERIMENT FOR UNANTICIPATED

FAULT ACCOMMODATION

As discussed before, several important design parameters will affect the failure

accommodation performance in on-line situations. In general, the selection of those

parameters is a system-dependent problem that requires the considerations of

performance criteria and system computing capacity. To obtain a comprehensive insight

for quantification of the design parameters and the real-time control system, an on-line

fault tolerant control test bed for validating the proposed on-line fault tolerant control

framework in real hardware has been constructed. The hardware setup is shown in Figure

5.1. It consists of the following major components,

1.

2.

a BALDOR dc motor with maximum %2 hp,

a MAGTROL HD-505-8N dynamometer,

a MAGTROL 6200 dynamometer controller/readout,

one ADVANCED dc motor amplifier,

dSPACE software, DS1102 board and cable box with Texas
Instruments TMS320C31 floating-point Digital Signal Processor
(DSP), and

NT workstation with Intel Pentium II-450 dual processors.
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ADV)BI\‘]':CED BALDOR MAGTROL HD-505-8N Simulated faults
AMpInE dc motor :.: dynamometer ;
L J |
MAGTROL 6200 dynamometer
controller/readout
dSPACE
D/A DS 1102 A/D [
Control signal CABLE BOX Measurements

Through DSP board
Adjustable break signal

NT workstation with
Intel Pentium 11-450
dual processors

Figure 5.1 Hardware experiment setup

The dc motor is connected to the dynamometer that is used to generate unanticipated
friction on the motor shaft to simulate the unanticipated system failures. The control
objective is to maintain the rotational speed of the motor (i.e., in terms of rpm) to the
desired patterns with the presence of the unanticipated simulated failures. A computer
with Intel Pentium II-450 dual processors is used to simulate the intelligent control
regulator, fault detection mechanism, and on-line estimator. An embedded encoder and
sensor in the dynamometer provide motor rpm and torque measurements in real-time,
respectively. The measured signals are connected to a MAGTROL 6200 dynamometer
controller/readout with the on-line readings shown on the device screen and the same
signals are sent to dSPACE DS1102 cable box that is connected to the workstation
through the TMS320C31 DSP board. An adjustable brake dial on the front panel of the

dynamometer controller is used to generate the simulated time-varying, unknown and
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unanticipated brakes (i.e., unanticipated workload on the dc motor). All the necessary
computation and the appropriate control input to drive the motor are computed within the
workstation. The DSP board and dSPACE software are used to provide the necessary
interface (A/D and D/A converter) and the integration of the real-time control with high-
level languages such as MATLAB, SIMULINK, and C programs. A picture of the real-

time fault tolerant control test bed is shown in Figure 5.2.

oxp1 CONTROL
AUTONOMY

Figure 5.2 Real-time fault tolerant control test bed

In real-time environment, to close the on-line control loop as shown in Figure 5.1,
an application source code (i.e., obj file) has to be created and downloaded to the
TMS320C31 DSP. The on-line fault detection scheme, failure estimation, and control
algorithm are performed under Matlab workspace in the NT workstation which
communicates with the DSP through dSPACE MLIB (Matlab-dSPACE Interface

Library). Figure 5.3 shows the SIMULINK model that is used to create the application
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source code for the real-time experiment. One 14-bit D/A converter channel and one 16-
bit A/D converter channel are used to generate the control input (i.e., motor input
voltage) and collect the torque reading from the dynamometer controller/readout,
respectively. A discrete filter is used to reduce the effect of measurement noises in the
torque reading. The rotational speed reading is decoded through one DS1102 encoder
interface channel with a 24-bit counter. The DSP with generated application code runs
the hardware experiments in real-time with sampling period 0.01 second and the control
signal generated by the computer is sent to regplate the real-time response by changing

the constant value in the SIMULINK model.

l 0 { - input

Constant W orkspacet
DAC #1
————————— P |DAC #2
=] p|DAC #3
Ground : ) L pe|DAC #4

DS1102DAC

1
10-2-12-22-37-42-5,-€7-77-8;-9 W
Discrete Filter G ain2 torque

NS B W W orkspace

ADC #2 |——————— P .
© Gain$s

ADC #3 —-——I Terminator?
ADC #4 »EI torquenfiiter

Terminator2
DS1102ADC W orkspace3
>

Terminator

ENC_DPQS speed
channel-wise

DS1102ENC_DPOS_C1 Gain3 Gaind W orkspace?2

Figure 5.3 The SIMULINK model for the real-time experiment

Following the design procedure shown in Chapter 3, the first step is to obtain a

nominal model for the fault-free system. It is well known that a dc motor can be modeled
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as a linear time-invariant system. For an armature-controlled dc motor with the negligible
time constant of the armature, the nominal transfer function can be represented by
Equation (5.1) [110],

_w(s) _ K,
V(s) [R,(Us+f)+K,K,]

G(s) (5.1)

where w(s) and V(s) denote the rotational speed and motor voltage in s domain,
respectively. K,, K, , R,, J, and f are motor constants. Equation (5.1) can be re-

organized as Equation (5.2) with A, b, ¢ representing the corresponding constants,
Aw+bw=cV. (5.2)
Using the forward Euler approximation shown in Equation (3.44), the discrete-time

nominal model can be derived and shown in Equation (5.3),

w(k +1) =[1-bAr/ Alw(k) +[cAt/ AV (k)
= flinear W(k) + glinearV(k)’

(5.3)
which is in the similar form of the nominal model in Equation (3.26). The next step is to
identify the parameters, f, .. =[1—-bAt/A] and g, =[cAt/A]. Since Equation (5.3)
is a linear time-invariant system, the batch form least square estimation method can be
used for the identification of the parameters [109]. With the zero initial condition, 20,000
sets of input signals generated by Equation (5.4) are sent to the system for the collection

of the system responses, w(k),

kr
2000

V (k) =0.015x%sin( )+0.015, £ =1,2,...,19,999. 54

The batch form least square method provides the parameter estimation as follows [109],
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w(20,000) w(19,999) V(19,999)

19,999 19,998) V(19,998 ‘
_| WIS Ty | w9998 VIS ),Hz{fl’"“"},ZzHH+v,and
: : . 8 linear
w(2) w(l) 40
6,5 = { ’} =(H"H"H"Z, (5.5)
8 linear

where v and éLS represent the white noise and the least square estimation, respectively.

The design of the nominal controller follows Equation (3.30) without the term of fault

estimator as shown in Equation (5.6),

W gasired (K T D) = W gpire (k) — w(k)

(k)= At

+aw,,...(k+1) and

Vnominal (k) = [?(k)(a + i)_l - f‘linear X W(k)] ~ 1 (56)

linear
with a =1 and the S function defined in the form of Equation (3.1).

The final. step in the off-line design stage is to evaluate the nominal model
accuracy and the performance of the nominal controller under the fault-free situation for
proper selection of the design parameters in the on-line fault detection scheme. The
length of the time-shifting evaluation window for the fault detection scheme (i.e.,
Equation (3.57) with the square operation replaced by the absolute value) is pre-selected
as 5 and the system response under nominal controller is tested using this criterion with
the presence of measurement noises. The on-line fault detection threshold value is
decided as 100 based upon the testing results. Under the unanticipated failures, the
system response can be approximated by Equation (5.7),

W(k + 1) = flinear W(k) + glinearv(k) + F(Torque(k)) ’ (57)

137



where F denotes the unknown effect that changes the motor rotational speed due to the

unanticipated workload, Torque(k). To reduce the negative effect of noisy

measurements, the approximation target (i.e., numerical value of F') is computed based
upon the average of the differences between the nominal model outputs and the actual
speed readings every 10 time steps. A 1-5-5-1 MLP network is used to approximate the
unknown failure effect, F', on-line with the static backpropagation algorithm. Four real-
time experiments with different desired trajectories and unanticipated faults have been
performed to test the proposed failure accommodation technique. Each real-time
experiment is complete within 5,000 time steps. The design parameters of the learning
result criterion (i.e., Equation (3.56)) for the alternative corrective control law are [ =20

and 6 =10.

5.1 Experiment 1
The desired system response is generated by a linear model with the specified

reference input as shown in Equation (5.8),

Kz 4 200,
1000 (5.8)

wdesired (k + 1) = 0'6wa’esired (k) + 0‘2wdesired (k - 1) + ref(k)

ref (k) = 200 x sin(

15-17% unknown and unanticipated workload is generated by on-line adjusting the brake
dial on the front panel of the dynamometer controller/readout. The real-time system
response under the nominal controller is shown in Figure 5.4. Performance degradation is
observed once the unknown workload occurs while the better control performances are
shown in Figures 5.5 and 5.6 when the first control law and the alternative corrective

control law are applied, respectively.
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5.2 Experiment 2

The control objective in this experiment is to maintain constant rotational speed at
1200 rpm with the presences of the measurement noise and unanticipated faults. Figure
5.7 is the real-time response plot under the nominal controller when 18-22% of unknown
faults occur. Without proper compensation, the nominal control law results in drop of
rotational speed up to 300 rpm during the experiment. The significantly improved control
performances are obtained through the applications of the first control law and the
alternative corrective control law shown in Figures 5.8 and 5.9, respectively.
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Figure 5.7 On-line system behavior under nominal controller only (experiment 2)
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Figure 5.8 On-line system behavior under the first control law (experiment 2)
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Figure 5.9 On-line system behavior under the alternative corrective control law (experiment 2)
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Figure 5.10 On-line system behavior under nominal controller only (experiment 3)
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Figure 5.11 On-line system behavior under the first control law (experiment 3)
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5.3 Experiment 3
The desired rotational speed is reduced to 500 rpm with increased unanticipated
workload 18-30% in this experiment. Figure 5.10 is the real-time system behavior plot
under the nominal controller. Due to the increased workload, the motor rotational speed
almost reaches zero from time step 2500 to 3850. On the other hand, successful fault
tolerant mission has been accomplished through the proposed on-line failure

accommodation technique as shown in Figures 5.11 and 5.12.
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Figure 5.12 On-line system behavior under the alternative corrective control law (experiment 3)
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Figure 5.13 On-line system behavior under nominal controller only (experiment 4)
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5.4 Experiment 4
Similar to Experiment 1, the desired trajectory in this experiment is selected as a
sinusoid curve generated by the same linear model with a different reference input as
shown in Equation (5.9),

T

k
+60. 59
1000) 6:2)

ref (k) = 60X sin(

The unknown workload used to generate the simulated unanticipated faults ranges from
15% to 28%. The system behavior under the failures with the nominal controller alone is
plotted in Figure 5.13. As clearly shown, the performance has been significantly
degraded and the rotation actually stops during the time periods, from time step 1300 to
1700 and 3200 to 4000, because of the relatively large unanticipated workload. Figures
5.14 and 5.15 show the satisfactory real-time fault accommodation when the first and the

alternative corrective control techniques are applied, respectively.
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Figure 5.14 On-line system behavior under the first control law (experiment 4)
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Figure 5.15 On-line system behavior under the alternative correétive control law (experiment 4)

5.5 Summaries and discussions

The effectiveness and efficiency of the proposed on-line failure accommodation
technique for case 1 has been shown, and the possibility of successful on-line fault
tolerance in real applications has been demonstrated through real-time hardware
experiments under different desired control objectives with the presence of measurement
noises and various unanticipated failures. Similar to the on-line simulation results shown
in Chapter 4, the time constraint becomes a critical issue in the real-time applications.
Successful on-line fault accommodation mission relies highly upon the computational
capacity within the real-time control systems. The experimental results indicate that
reducing the sampling rate in the real-time application source code will result in
significant performance degradation due to the large difference between the real-time
continuous system and the discrete-time approximation (i.e., system behavior exhibits
large oscillation with sampling period higher than 0.01 sec. in the SIMULINK model

shown in Figure 5.3). Slowing down the response time in the dual processors by
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increasing computational complexity will cause even more serious on-line control
problems in real-time environment because of the delay of effective control actions. For
more general situations (i.e., cases 2-4) where much more computational cost is required
for successful on-line failure accommodation, the currently used computer system is
obviously not fast enough to carry out the proposed fault accommodation technique in
real-time. In other words, a more powerful computing device such as a higher speed
processor is mandatory for the on-line real-time fault tolerant control in the real

applications under the more general failure scenarios.
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CHAPTER VI

A MULTIPLE-MODEL BASED FAULT DIAGNOSIS AND
ACCOMMODATION ARCHITECTURE

The major research attention so far has been primarily focused on the on-line fault
accommodation control technique for unanticipated catastrophic system failures.
Although this technique can be directly applied for the on-line control purpose, under the
developed methodology and the suggested on-line fault detection scheme, all the system
abnormal behavior will be automatically considered as a consequence resulted from
unknown system failures. Thus, the on-line estimator will be triggered in the learning
process for the failure dynamics and a substantial amount of computational cost will be
spent on both on-line estimation and computation of the effective control actions even
when the failures are anticipated and the corresponding control actions are well known.
The simulation tests ‘also indicate that, under the on-line fault detection scheme, the false
alarm situations will cause unnecessary computational waste since the nominal control
actions are adequate to control the system behavior well in fault-free situations.

Apparently, a more sophisticated on-line fault tolerant control scheme should
incorporate the proposed failure accommodation technique with a proper fault diagnosis
mechanism, the post-failure models, and the corresponding post-failure control actions to

avoid these situations. However, the detail of a systematic procedure for the on-line fault
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diagnosis scheme to avoid the false alarms with the guarantee of miss-free-detection,

distinguish the anticipated faults from the failure situations, and select the effective

control actions for the anticipated failures still remains to be addressed.
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Figure 6.1 An architecture of multiple-model based fault diagnosis and accommodation

6.1 The multiple-model based FDA framework

v

Figure 6.1 shows a basic architecture of a multiple-model based fault diagnosis

and accommodation framework. The developed on-line fault tolerant control technique

incorporates a separate fault detection scheme, a failure diagnosis mechanism, and post-

failure control actions to form a more sophisticated and complete FDA methodology.

Unlike the framework shown in Figure 3.2, the intelligent control regulator is no longer

sitting between the nominal controller and the actual system. Instead, it is now parallel
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with the post-failure control actions and the nominal controller to emphasize that, in on-
line situations, the effective control actions that may come from one of the three sources,
the nominal controller, the post-failure control actions, and the intelligent control
regulator, are decided based upon system behavior or healthiness. The intelligent fault
tolerant control technique will be applied only when it is necessary for the control
purpose. Under this framework, the unnecessary computational waste for anticipated

failures and false alarms could be avoided.
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Figure 6.2 The flow chart of the multiple-model based FDA
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A clearer picture of how this idea works is depicted in a flow chart shown in
Figure 6.2. The system “healthiness” is continuously monitored by the fault detection
scheme with the knowledge of the nominal system behavior every certain period of time.
Any off-normal behavior will trigger the failure diagnosis mechanism to analyze the
situation and further decide which control actions should be taken. If the failure is
recognized as an expected fault, the corresponding post-failure control actions will be
selected as the current effective control commends. Otherwise, the developed intelligent
FTC technique is initialized. Notice thaf the dashed line shown in Figure 6.1 indicates

that only one action will be taken at every time instant.

6.1.1 On-line fault detection and diagnosis

With the presence of measurement noises, disturbances, and modeling errors, the
problems of Fault Detection and Diagnosis (FDD), such as residual generation,
sensitivity, robustness, falsc alarm,» miss detection, and failure 1solability, are
substantially difficult issues to»éolve. In spite of many research efforts dedicated to
address the FDD problems [1,3-6,8,23-26,64,84-90], complete on-line fault detection and
diagnosis is still far from complete due to the inherent complexity of the problems and
the time constraint in on-line operations. The ultimate goal of fault detection and
diagnosis is leading to the failure accommodation. Until the invention of breakthrough
technology for FDD, from a realistic point of view, identifying a better trade-off solution
for real implementation based upon existing technology is the best an engineer can do.
Since the system safety is the top priority of control missions, false alarms are more

preferable than the miss detection. Moreover, it is true that a more sophisticated fault
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detection and diagnosis scheme will result in a better treatment for the failures. However,
it also implies much more computational cost in real implementation.

From both system safety and on-line computational complexity point of views, a
simple, however, computationally cost-effective criterion will be used as the on-line fault
detection scheme in Figure 6.1 and the real-time FDA simulation. This criterion evaluates
the mean square tracking error within a certain time window shown in Equation (6.1),

which provides an effective miss detection-free scheme.

kptwp-1
v, =— O (ny(k) - y(k))*. 6.1)
wf k=ky

y(k) and ny(k) denote the system output and the nominal model output at time step &,

respectively. The design parameter, @, , represents the length of the evaluating window

for fault detection. In other words, the system healthiness will be examined every @ r

time steps to decide whether or not the system is still under nominal condition by
comparing the on-line system performance with the nominal behavior. This also implies

that the control actions can be switched as fast as once every @, time steps. Unlike the

fault detection technique reported in [23-26] where an approximator is deployed to
approximate modeling error on-line by monitoring the system behaviof and any
significant deviation of the approximator output away from the origin is considered as a
detection of failures, this fault detection scheme provides more computational efficiency
since there is no need to spend computational cost in the on-line approximator only for
the simple detection purpose of the abnormal behavior. However, sharing the similar

spirit with [23-26], a pre-specified threshold value based upon the modeling uncertainty
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and the expected measurement noise is used to complete the fault detection shown in
Equation (6.1).

Under this simple, conservative fault detection method, miss detection becomes
trivial since the control objective is to keep the tracking error as small as possible within
an affordable control effort. If the fault cannot be seen on the tracking error or it lasts
only a short transient period such that the failure alarm is not triggered, the fault is not
within our concern (i.e., its effect on the system perfqrmance does not degrade the control
performance). Of course, the price of the trivial miss detection and computational
simplicity is the increasing possibility of false alarms, which are possibly caused by
unexpected interferences or noises. However, under the FDA architecture in Figure 6.1,

the fault detection scheme will examine the system healthiness every @, time steps. In

cases of failure alarms caused by unexpected disturbances or measurement noises, the
detection scheme will eventually recognize the false alarm situations and recommend
nominal control actions to avoid the unnecessary control effort after the effects resulting
from unexpected disturbances or noises decays.

In many real systems, some failures could be well known or anticipated according
to the history of system behavior and/or the aging degree of the system components. For
those known and/or expected faults, the corresponding failure patterns or signatures and
the corresponding control actions can be developed off-line and pre-stored in a database
for on-line control purposes. The appropriate on-line failure accommodation actions are
then suggested by a proper fault diagnosis scheme that identifies the failure patterns on-
line. This approach shares a similar spirit with the well-known multiple-model approach

[58]. Although there is no credible theoretical result to guarantee the stability of multiple
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model switching, this idea has attracted substantial attention and has beén widely used in
many areas [58-62,90-95,106-108]. Similarly, the conservative diagnostic attitude should
be preferable since the price of the misdiagnosis and mistreatment could be instability
and unaffordable loss.

An efficient fault isolation method used in the real-time FDA simulation is shown

in Equation (6.2),

Vg = S50 ~ny(0)]= pf, (k))?, 62)

k=ky—  fiag +1
where k, is the current time step and pf; represents the time domain signatures of the

post-failure model i. The principle of this method is based upon the multiple model
approach where anticipated or possible failures are first analyzed to form a post-failure
model bank. The corresponding post-failure control actions are also designed off-line to
construct the post-failure control action bank according to the mathematical or numerical
realization of the failure situations through the post-failure model bank. The effective
control actions to achieve successful failure accommodations for anticipated faults are
selected based upon the matching conditions of the signatures between the actual failures
and the multiple-model based failures, which is the major fault isolation process. From
the computational complexity point of view in the on-line situation, the time domain
signature is considered as an appropriate cost-effective criterion for the failure diagnosis
process. The fault isolation process is to compare the most recent time domain signatures
between the actual failure and the post failures. The differences between the actual
measurements and the outputs of the nominal model are considered as the outputs from

the failure dynamics and they are compared with the “signatures”, outputs, from the post
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failure models within a certain length of time window, @, . A pre-specified threshold

value is used to compare with . .~ for the proper selection of the anticipated failure

condition. If none of the “signatures” of the anticipated failures meets the criterion, the
system status will be switched to the unanticipated failure situation and the intelligent on-

line FT'C approach will be initialized.

6.2 Simulation study for the multiple-model based FDA framework
To obtain a deeper insight into the on-line FDA problems in the real appﬁcations,
a separate simulation study has been performed to test the FDA framework. The
simulation is divided into two parts. They are dedicated to test the FDA framework for
the system with different failure situations in a special case (case 1) and general cases,
respectively. The design parameters inchiding the threshold value of failure alarms,

threshold value in the failure diagnosis process, lengths of the evaluating windows for

fault detection an}d for failure diagnosis are pre-selected as 7.0xe%, 5.0xe™, 5, and 10,

respectively.

6.2.1 Example 1 (case 1)

Consider the same nominal system as that in Subsection 4.1.1 with the nominal
dynamics represented by Equation (4.1). Four different anticipated failures are assumed

known and shown as follows:

post failure 1: pfi(k+1)=1— ¢ Oy GD]

post failure 2: pf, (k+1) =0.46 X y(k)x y(k 1),
post failure 3 : pf,(k +1) = 0.5xsin(y(k) X y(k —1)),
post failure 4 : pf, (k +1) = 0.6 xcos(y(k)x y(k —1)).

(6.3)
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The nominal control law is described in Equation (4.3) and, since the post failures are
known, the corresponding control actions are easily computed as follows:

post — failure control action1:

Pl (k) == (< (k) —%(cy(kf thy(k=1) + y, (k+1) = (1= PO,

post — failure control action 2 :

pfu, (k) = %(—(y(k) - %(Cy(k)3 +k y(k =)+ y,(k+1) = (0.46x y(k)x y(k —1))),
post — failure control action 3 :

pfus (k) = %(—(Y(k) —%(Cy(k)3 +ky(k—1) + y, (k+1) - (0.5xsin(y(k) X y(k =1)))),
post ~ failure control action 4 :

pfu,(k) = -Z}t-(—(y(k) —%(cy(k)3 +k y(k=1))) + y, (k+1) = (0.6 xcos(y(k)x y(k —1)))).

6.4)

6.2.1.1 Scenario 1
Consider a failure situation involving the incipient anticipated failure 1 and the

abrupt anticipated failure 2 with the time profiles shown in Equation (6.5),

Bk =T) == *> Uk ~T,); T, =125,
B,(k-T,)=U(k-T,); T, =430.

(6.5)
System response under the intelligent FDA framework and the design parameters is
shown in Figure 6.3. After time step 125, system voutput starts deviating from the desired
trajectory due to the variation of system dynamics caused by the incipient failure. When
the error is significant enough to trigger the fault detection scheme for failure alarm, the
failure diagnosis process proceeds to identify the failure situation. Figure 6.4 shows the

system status from the diagnosis process at every time step during the simulation. As

clearly seen, right after the failure alarm and before the signature of the actual failure can
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match with the signature of any post failure, the system status is switched to the
unanticipated situation in order to properly control the failure dynamics, which is a
reasonable reaction since proper control actions may be necessary to secure the system

behavior before the failure situation can be recognized.
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Figure 6.3 System response vs. desired output (scenario 1; case 1; FDA simulation)
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Figure 6.5 Signatures of post failures vs. actual failure dynamics (scenario 1; case 1; FDA simulation)
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Approximately 10 to 15 time steps later, the fault diagnosis process recognizes
that the failure situation matches with the anticipated failure 1 by comparing their
corresponding signatures in the time domain. The pre-stored corresponding control
actions are taken as the effective control commands until the time step reaches 430, at
which time the second failure occurs. The combination of two failures produces an
unexpected dynamics change that can not be recognized by the post-failure bank.
Therefore, the system status is diagnosed and changes to the unanticipated condition.
This can also be observed from the plot for the time domain signatures of the actual
failure and all the post failures shown in Figure 6.5.

Without the failure diagnosis process, the post-failure banks, and the
corresponding post-failure control actions, the system status under the intelligent
framework in Chapter 3 will be considered as unanticipated situations after the detection
of the system abnormal behavior. Now, as indicated in Figure 6.4, approximately 43% of
the computational cost has been saved, while the computational complexity for fault
diagnosis process is ignorable, compared with the cost under the unanticipated situations.

system response vs. desired output

o 800

200 300 400 500 600 7
solid line: actual output dashed line: desired output

-
o

Figure 6.6 System response vs. desired output (scenario 2; case 1; FDA simulation)
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6.2.1.2 Scenario 2

Consider a failure situation involving the abrupt anticipated failure 3 which

happened at time step 70 and an incipient unanticipated failure with the time profiles

shown in Equation (6.6),

J2(y(k), y(k =1) = 0.5% y(k)x y(k - 1),

6.6
B,(k—T,)=(1-e > U (k-T,); T, =367. ©0
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Figure 6.6 is the system response plot. System output quickly jumps away from the
desired point due to the first (abrupt) failure. The failure has been recognized as the post
failure 3 and properly accommodated within 10 time steps until the second failure
appears. After that, the control strategy is switched to the unanticipated situation for the
failure accommodation. Please also note that the first control law shown in Equation
(3.30) is used in all the simulation tests of this case. Figures 6.7 and 6.8 are the plots for

the system status and the signatures of the failures, respectively.

6.2.1.3 Scenario 3
Re-consider the failure situations in scenario 1 with the following different

profiles,

B(k-T,)=U(k—T,);T, =100,

B,(k—T,)=U(k~T,); T, = 430. (6.7)

In order to test how the threshold value in the failure diagnosis process affects the FDA

response, the design parameter is changed from 5.0xe™ to 1.0xe™. Figures 6.9-6.11
show the plots for the system on-line response, status from the failure diagnosis process,
and the signatures of the failures. The significant difference shows in the on-line system
status plot where it appears that the on-line failure diagnosis and control actions had been
bouncing around between post failure 2 and the unanticipated situation, three times after
time step 550. This is obviously the consequence of changing the threshold value in the
diagnosis scheme since the actual failure signature is compared with the signatures of all
the existing recognizable failures within a fixed length of time window and also since

how much the signatures are considered a match depends totally upon the threshold
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value. It appears that the smaller threshold value gives more restriction in failure
recognition and provides a more conservative diagnosis result. It also implies that more
computational cost may possibly be spent due to the conservative attitude. On the other
hand, if the value appears to be too big, large uncertainty will exist in the diagnosis result.
Thus, the control actions may also jump around. Moreover, if the changing rate is too

high, it is possible to excite unmodeled system dynamics under serious vibration.
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Figure 6.9 System response vs. desired output (scenario 3; case 1; FDA simulation)
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Figure 6.10 System status (scenario 3; case 1; FDA simulation)
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signatures of post failures and actual failure
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Figure 6.11 Signatures of post failures vs. actual failure dynamics (scenario 3; case 1; FDA simulation)

6.2.2 Example 2 (general cases)

Consider the same nominal system described in Equation (4.13) where the system
dynamics is not in linear-in-control format and the nominal model is first realized by a 3-
30-1 MLP network. The nominal NN controller is designed using the same technique

described in Section 4.3. Three post failures are shown in Equation (6.8),

post failure 1: pf,(k +1) =—(03y(k) + 0.6 y(k —1) + u(k)* — 5u(k)) + 0.06 y(k)* + 4u(k),
post failure 2 : pf, (k +1) = 0.05x y(k)xcos(u(k)),

post failure 3: pf,(k+1) = —-0.8xu(k)* +3.5u(k).
(6.8)

To simulate the failures in a real dynamic system, the specific mathematical formats of
these failure dynamics are assumed unknown and have to be realized by separate network
models. The idea is described in the following steps.

1. Place the system under failure situations (i.e., using the nominal mathematical

model with the failure dynamics in simulation stage).
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2. Feed 3,000 uniformly distributed random input signals varying from —1.5 to 1.5
with selected initial conditions.

3. Collect the training patterns. The desired outputs are computed by using the
differences between the system outputs and the outputs from the NN nominal
model.

4. Train the NN model for the failure dynamics.
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Figure 6.13 System status (scenario 1; general case; FDA simulation)
3 separate MLP networks with different structures, 3-30-1, 2-20-1, 1-20-1, are used to

realize the 3 post failures off-line, respectively, by following the above steps. The post-
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failure control actions are also realized off-line by using separate NN controllers (i.e., 3-
20-1, 3-20-1, and 3-10-1 MLPs) and they are obtained using the same technique as

described in Section 4.3. The pre-selected threshold value for the diagnosis process is

1.0xe™ and the rest of the design parameters are the same as those in the last section.

6.2.2.1 Scenario 1

Consider the failure situation involving an abrupt anticipated failure 3 starting at
time step 70 and an incipient unanticipated time-varying failure with the corresponding
time profile shown in Equation (6.9),

N ky(k) ]
.0 320x(L+ y(k =1’ (6.9)

B,k =T,)=1-e > U (k-T,); T, =314.

Figures 6.12-6.14 are the on-line simulation results under the intelligent FDA framework.
The abrupt anticipated failure 3, which happened at time step 70, is quickly recognized
by the diagnosis process and the effective control commands are then switched to the
corresponding post-failure control actions. This is clearly seen in the on-line system
status plot shown in Figure 6.13 and the system on-line response shown in Figure 6.12.
Observing Figure 6.14 closely, we can also see that the time-domain signatures of the
actual failure dynamics and post failure 3 are almost indistinguishable from time step 80
to 320. After the second change of the system dynamics caused by another time-varying
incipient failure, the discrepancy between the signatures are getting large, which indicates

that an unanticipated situation has occurred.
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signatures of post failures and actual failure

6 T |
!signature. of actual failure { f ! - !
--isignaturel of post failure 1 | : ; PG :
4 --=-=-=lsignature.of postfailure2 ' _______1________ R A 4
- isignature of post failure 3 o o I(l
l ! : ! 0 ! )
2 | | Do P LAY oo 1
I
| Rt
: j
0 bt it SN : 7 A e e
A )'4 Y ,
o / 3
| i 1 5
B e e i il R mm - Bt S e e T SRl 4
i | | M?
| | ! 1
1 1 i !
B e B I R e e p—— e I
1 l ) i 1 ) i
i [ t 1 1 1 rlf
1 [ i 1 1 [ ' \}M\ i
e I . L A L L PR
i ! 1 i I I i I
1 I ! ! I | |
i I 1 ( | | |
| | ! | i | t
-8 ! ) 1 L ) ) i ;
100 200 300 400 500 600 700 800

time step

Figure 6.14 Signatures of post failures vs. actual failure dynamics (scenario 1; general case; FDA simulation)

6.2.2.2 Scenario 2
Consider the failure situation involving an incipient anticipated failure 2 with the
time profile shown in Equation (6.10) and an abrupt anticipated failure 3 starting at time

step 601,

B k=T) == Uk -T); T, =25. (6.10)

Figures 6.15-6.17 are the plots of the test results. Due to the slow variation of the failure
dynamics (with ¢; =-0.009), the incipient fault will not be identified as quickly as an
abrupt failure since this incipient time profile will take almost 300 time steps to converge
(i.e., 300 time steps are required for the profile to reach 0.9328). Figure 6.16 shows this
expected result. The failure diagnosis scheme can not be sure of the actual failure

situation until the time step almost reaches 300. This is also a correct decision since both
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the failure dynamics and the corresponding control actions are realized by NN under the

abrupt failure situation. However, we do observe some diagnostic oscillation before time

step 290. It is apparent that the diagnostic threshold value, 1.0xe™, may be too big for
the accuracy of the NN post-failure model 2. Observing Figure 6.17 closely, we can
easily tell that there are signature differences between the actual failure and post failure 2
from time step 100 to 220. In other words, the NN post-failure model 2 in this case may
be accurate enough to use a smaller threshold value in order to have a better diagnostic
report. This result suggests that, for better failure diagnosis, the selection of the
diagnostic threshold value should be failure-dependent and also should be chosen based

upon the accuracy of the NN post-failure model.
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signatures of post failures and actual failure
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Figure 6.17 Signatures of post failures vs. actual failure dynamics (scenario 2; general case; FDA simulation)
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signatures of post failures and actual failure
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Figure 6.20 Signatures of post failures vs. actual failure dynamics (scenario 3; general case; FDA simulation)

6.2.2.3 Scenario 3
Consider the failure situation involving an abrupt anticipated failure 1 starting at
time step 68 and an incipient time-varying unanticipated failure with the time profile

shown in Equation (6.11),

k
VACE O.6X%>< yk)xyk—=1);

B,(k—=T,)=(1-e*** Uk -T,); T, =523.

(6.11)

Figure 6.18 indicates that a large control error occurs suddenly right after appearance of
the abrupt failure. It is identified as post failure 1 within 10 time steps as shown in Figure
6.19 and is properly accommodated by the corresponding post-failure control actions
until a time-varying failure starts at time step 523. Figure 6.20 shows the observable
signature discrepancies between the actual failure and the post failures after the time step

530 which corresponds to an unanticipated failure situation.
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6.3 False alarm situations

The nominal system and the nominal controller in the general case are selected to
test the false alarm situation under the intelligent FDA architecture. In order to simulate
the false failure alarm possibly caused by unexpected measurement noises, uniformly
distributed random white noises are generated and added to the measurements. The
unknown and unexpected white noises are generated during three time periods, time step
78 to 81, 212 to 215, and 465 to 466. The added noises are varying from -0.3 to 0.3, -
0.23 to 0.23, and —0.85 to 0.85, respectively. The simulation results are plotted and
shown in Figures 6.21-6.23.

Figure 6.22 indicates how the FDA framework reacts to the false alarm situation
caused by the unanticipated noises. Once the contaminated measurements trigger the
alarm, the system behavior is immediately examined by failure diagnosis and, since the
measurements are contaminated by noises, it will not be recognized as any one of the
anticipated failures. Thus, the diagnostic result will suggest an imanticipated situation.
However, after the effect resulting from unexpected noises decays, the fault detection
scheme discovers the system behaviof is as normal as it is under the nominal situation.
After a double check of this situation, the fault detection scheme flags a false alarm signal
and the system status is switched back to the nominal condition. Figure 6.21 shows some
slight deviations of the system output away from the desired trajectory during the periods
of noisy data, which is apparently caused by the fact that the contaminated measurements
are used directly in the fault detection scheme and in the unanticipated failure conditions

as the learning targets for failure accommodation.
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6.4 Comments and discussions

The design parameters of fault detection and diagnosis, such as the length of the
time-shifting evaluating window and the threshold values, all have direct effects on the
~ system performance. Short evaluating windows in fault detection scheme may result in a
sensitive and nervous failure detector while a long one may appear to be too slow for
proper fault accommodation. Similar conditions also exist for failure diagnosis.
Apparently, the best design of these parameters should be on a system-dependent basis.
Noisy measurement tests are omitted siﬁce the accommodation for the measurement

noise should be incorporated within the parameter design process.
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CHAPTER VII

CONCLUSIONS

7.1 Sufnmaries of complete research work

Prompted by the increasing demands in system safety and reliability, FDA
techniques are quickly becoming oh’e of the most active research areas in the intelligent
control community. Yet, many problems remain to be solved. Contemporary fault
diagnosis and accommodation techniques are mainly focused on either linear systems or
certain classes of nonlinear systems with simple failure scenarios. The major reason is
obviously resulted from the fact that the control theory and technology for general
nonlinear systems are still not readily available at present. Nevertheless, to face the
problems of fault accommodation for a dynamic system in the on-line situation, it is not a
reasonable approach to assume that the changes of system dynamics caused by
unanticipated failures are limited to certain types.

In this dissertation, the on-line fault accommodation control problems under
catastrophic system failures are investigated. The major interest is focused on dealing
with the unanticipated system failures in the general format. Through discrete-time
Laypunov stability theory, the necessary and sufficient conditions to guarantee the system

on-line stability and performance under various failure scenarios are derived. An on-line
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fault accommodation control framework that incorporates an efficient on-line fault
detection scheme and effective control law reconfiguration strategy is presented. Because
of its capabilities of self-optimization and on-line adaptation, Artificial Neural Network
is used in this research work as the on-line estimator to approximate the unknown failure
dynamics.

The on-line fault accommodation control problems are further divided into four
different cases according to the prior knowledge of both nominal system and failures.
Their corresponding problems and solutions are investigated and discussed case by case
through theoretical analysis and extensive simulation studies. The effective control
actions to accommodate system failures are automatically computed on-line by the
control regulator through the realization of the failure dynamics by the NN estimator
based upon partially available information of the failure dynamics. After numerous
simulation tests for different cases under various failure situations, the following
summaries can be drawn.

1. The prior information of both nominal system dynamics and failures provides
substantially useful information for on-line fault aécbmmodation control
problems. In both cases 1 and 3, where the multiple-failure dynamics do not
explicitly depend upon the current control input, the on-line fault tolerant control
problems are relatively easy to be solved since the extrapolation problem of the
on-line estimator during the searching process of the effective control signal does
not exist. Two different real-time control laws for on-line accommodation of the

system failures have been derived for case 1.
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2. The design parameter, the length of the time-shifting data window for the training
process of the on-line estimator, has substantial effect on the system performance.
More training patterns usually result in a better prediction performance. However,
it takes much more computational cost to implement. Simulation tests indicate
that 20 seems to be a reasonable trade-off number between the system
performance and the computational complexity (i.e., the learning process using
the Levenberg-Marquardt algorithm with Bayesian regularization usually
converges within 10 iterations under thé Intel Pentium II-450 dual processors).
The network sfructure of the on-line estimator and training algorithm also have
significant influence on the on-line learning process. Using the training algorithm
with regularization will generally result in a better system behavior than others
and, moreover, this kind of techniques can also relax the network over-fitting
problem and eliminate the guesswork in determining an optimal network structure
[65].

3. Simulation results suggest that performing the noise reduction or cancellation
prior to on-line fault accommodation cohtrol will result in a better system
performance, if some statistical properties of the noise are available, since the
contaminated noisy measurements will mislead all the interpretations of the
systgm behaviors and the on-line estimator.

4. The suggested on-line fault detection scheme has good resistance in miss
detection of system failures. However, it also increases the sensitivity of the false
alarm situations. Simulation tests in noise-free false alarm situations indicate that

the on-line estimator is used to approximate the remaining uncertainty of the
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system. In noisy environments, it is possible for the on-line estimator to overfit

the noise instead of the actual failure dynamics. Thus, the pre-processing of the

contaminated noisy measurements becomes an essential step to prevent the false
alarm situations that are obviously a waste of computational source.

5. The proposed intelligent on-line fault accommodation methodology has also been
tested on a MIMO system under a multiple unanticipated failure situation. The
simulation results indicate the effectiveness of the suggested framework.
However, it is important to mention that the simulation is performed under the
assumption that there is no conflict to achieve ‘the control missions (performance
recoveries for multiple outputs) under the multiple failures. This may not always
be true in the real failure situations. The accommodations of some failures may
require a certain degree of compromise in other objectives.

To obtain a deeper insight for quantification of the design parameters and the real-
time control system, an experimental on-line fault tolerant control test bed for examining
the proposed on-line control framework in real hardware is constructed. Four different
real-time experiments for case | 1 with different control objectives and various
unanticipated faults have been performed vto evaluate the performance of the proposed
fault accommodation technique in real applications under the real-time environment. In
general, the effectiveness of the developed on-line fault accommodation control
technique for catastrophic system failures has been Validatéd through extensive on-line
simulation tests. The successful on-line fault tolerance in real applications has been
demonstrated through real-time hardware experiments with the presence of measurement

noises.
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Based upon the modern intelligent techniques, the unexpected failures can be
identified and properly accommodated on-line without a complete realization of the
failure dynamiés. The price paid for this achievement of the successful control mission
relies on a certain degree of computational expense. Simulation results show that, under
the Levenberg-Marquardt training algorithm with Bayesian regularization [65-66], the
on-line simulation speed can reach 2-3 time steps per second under the Intel Pentium II-
450 dual processors. Experimental results indicate that a more powerful computing
device such as a computer with higher speed dual processors is mandatory for the on-line
real—tirhe fault tolerant control in the real applications under the more general situations
(i.e., cases 2-4). Although the currently used dual processors may not be fast enough in
many real-time control systems that require higher> sampling rate, it is believed that the
developed on-line fault accommodation technique can be implemented on-line in most of
the real-time control systems in near future, with the cohtinuous performance
improvement of microprocessors and semiconductor technology. These results show a
promising future of the fault tolerénf control for unknown and unanticipated: system
failures in on-line real-time fashion based only upon imprecise and insufficient
information of the failures and the modern intelligent techniques.

A more sophisticated and complete architecture for intelligent fault diagnosis and
accommodation has also been présented by incorporating the developed intelligent fault
tolerant control technique with a cost-effective fault detection scheme and a multiple-
model based failure diagnosis process to efficiently handle the false alarms, the
accommodation of the anticipated failures, and to reduce the unnecessary control effort

and computational complexity in on-line situations. A separate simulation study has been
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performed to test this framework on-line for both special and general cases. Under this
architecture, the unnecessary computational waste caused by the false alarm which is the
major weakness of the suggested fault detection scheme can be avoided as soon as the
effects resulted from the expected disturbance or measurement noises diminished.
Simulation results also indicate that, under the multiple-model based failure diagnosis
process together with the post-failure control actions, successful fault isolation mission is
quickly reached through the multiple-model failure recognition. System performance
recovery can be obtained through the multiple-model switching in the post-failure control
actions, and significant saving in control effort is achieved dun’ng which only the

anticipated failure occurs.

7.2 Future research directions
Following the research work completed in this dissertation, several important
future research directions are recommended and outlined és follows.

1. The developed on-line fault accommodation technique should be tested under
general MIMO cases. For case 1, the on-line control problems become to solve
simultaneous equations, which is relatively simple while, in the more general
cases, the control problems are both theoretically and technically complicated
since the searching of effective control signals to accommodate the multiple
failures becomes a multi-objective optimization problem which is still one of the
open research issues. Thus, how to systematically reorganize the priorities of the

control missions related to both system stability and performance for the general
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MIMO system under multiple failures in the on-line situation becomes a
challenging work.

The presented architecture of the intelligent fault diagnosis and accommodation is
designed from both the effective and efficient points of views. By taking
advantage of the multiple-model structure, fault recognition can be quickly
reached. Nevertheless, under the multiple-model base switching and the on-line
system safety point of view, the failure diagnosis and selection of the
accommodation actions are restricted to being conservative since the incorrect
diagnostic result and the corresponding incorrect and/or ineffective control
actions may cause even worse consequences. It is expected that a more
sophisticated failure diagnosis process will prbvide a more precise and quicker
“cure” or “treatment” for the faulty system such that more computational burden
and risk can be relieved during the accommodation process. (i.e., for example, a
better fault diagnosis scheme which is capable of detecting the “incipient”
anticipated failures.) Thus, improvement on the fault diagnosis technique with the
least computationél complexity will definitely make its contribution to the fault
tolerant control problems. |

Based upon the developed fault tolerant control technique, the reconfiguration of
the effective control actions to properly accommodate the system failures is
achieved through an appropriate optimization algorithm and the result of the
optimization process directly affects the system performance recovery under the
failures. Gradient descent algorithm is considered as an appropriate choice at

present due to its reliability and efficiency in on-line situations. However, one
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well-known problem of the gradient type of optimization algorithms is the
possibility of stucking at a local minimum, which will apparently result in a
degrading performance of control recovery. Thus, a more sophisticated and
efficient on-line optimization algorithm to possibly relax this problem is worth an
investment of research effort.

With higher speed processors, hardware experiments should continue for more
general situations (i.e., cases 2-4) and more experiments can be designed to
further - validate the proposed multiple-model based fault diagnosis and
avccommodation‘architecture in real-time environments.

Further research work should pay more attention on the change of system order
(i.e., change of the system relative degree) under failures. In general, if the failure
causes the reduction of the relative degree, the control problem may be relatively
easy to handle while both system identification and control are more complicated
if the system order increases due to failures. In either case, on-line system order
estimation may be required prior to the processes of failure estimation and

accommodation.
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