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CHAPTER ONE 

INTRODUCTION 

Accurate option valuation formulas are highly demanded by practitioners in 

financial and commodity markets. Companies use option valuation formulas to predict 

prices, make trading decisions, and manage the related risk (Lapan, Moschini; and 

Hanson; Wilson, and Fung). Among the option pricing formulas developed so far, the 

Black-Scholes option valuation formula has been the most popular since its publication in 

1973. While ease of use is its advantage, the inaccuracy of the formula is widely 

recognized. At least for short maturity stock options, the biases in the Black-Scholes are 

serious (Backus et al.). Due to the inaccuracy of Black-Scholes, traders often adjust the 

volatility parameter in the formula by personal experience, use alternatives such as 

binomial tree or trinomial tree models, or use a different volatility for every strike price 

and every maturity. However, Dumas, Fleming and Whaley argue that there is no 

evidence showing superior performance of those models over the Black-Scholes formula. 

The inaccuracy problem of the Black-Scholes formula mainly arises from the 

assumptions on which the model is based being incorrect. The lognormal distribution is 

the most likely weakness. While such a distribution can describe some asset price 

processes well, most asset prices can not be well modeled by a lognormal distribution. 

For example, futures and stock price distributions tend to be more leptokurtic than a 

lognormal distribution and are sometimes skewed (Hall, Brorsen, and Irwin; Akgiray and 

Boothe). 

I 



Since volatility is the only unobservable parameter in the Black-Scholes model, the 

model gives the option price as a function of volatility. The volatility level that makes the 

function equal to the actual option price is called implied volatility. If the model were 

perfect, the implied volatility would be the same for all option market prices at a given 

time. However, many empirical studies have revealed that the implied volatility strongly 

depends on the strike price and the maturity of European options (Myers, and Hanson). If 

we plot implied volatilities of exchange-traded options against their strike prices for fixed 

maturity, the curve is typically convex in shape, rather than a straight line as suggested by 

the Black-Scholes model. The phenomenon that the volatility depends on the strike price 

is usually called the "volatility smile", since such a volatility strike structure ends up 

looking like a smile. In reality, the volatility strike structure does not have to be a smile. 

It can take on various shapes, depending on what the actual price distribution is, 

compared to the lognormal price distribution. When the actual price distribution has fatter 

tails than the lognormal model distribution does, the out-of-the-money calls and puts tend 

to show volatilities that increase as the option strikes make the options go further and 

further out-of-the-money. If the option pricing model is built to incorporate the exact 

price distribution, the volatility strike structure would be flat, i.e., the same volatility 

would reflect all the options of the same expiration time but of varying strike prices. 

Although such a perfect option pricing model, that incorporates all the price distribution 

characteristics, is not likely to exist, a relatively accurate model should be expected to 

capture the main, if not all, characteristics of the price distribution. Since the Black­

Scholes formula is not satisfactory, traders are often forced to incorporate the strike 
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structure volatility effects in the implementation of the model: the traders maintain the 

volatilities for various out-of-the-money and in-the-money options. 

Another drawback of the Black-Scholes formula is that it is applicable only to 

European options. A European option only allows exercise on a single date. Most options 

traded allow for more than one date as the possible exercise date. These options are called 

American options. A holder of an American option will compare the value he or she 

would obtain by exercising the option with the market value of the option if the right 

were held and not exercised. Since the additional early exercise privilege should not be 

worthless, an American option is worth more than its European counterpart. Thus, if we 

use the Black-Scholes formula to value an American option, under-valuation usually 

occurs. 

Many option valuation models have been developed to overcome the drawbacks of 

the Black-Scholes. However, all these models can handle only one of the two inaccuracy 

sources in the Black-Scholes, not both. For example, using the idea analogous to Taylor 

series as an approximation for an arbitrary analytical function, Jarrow and Rudd (1982) 

developed an approximate option valuation formula, in which the biases of an option 

formula are captured by a function of additional parameters measuring skewness and 

kurtosis. This model has potential to increase the accuracy of the Black-Scholes, but is 

limited to European options. Another example is the Merton jump-diffusion model 

(1976), in which the underlying price process is assumed to consist of a Poisson process 

generating the jumps. Similar to the Jarrow-Rudd approximate formula, the Merton's 

jump-diffusion model only applies to European options and, more limitedly, is only 

suitable for options with jump-diffusion asset price processes. Moreover, both the 
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Jarrow-Rudd model and the Merton jump-diffusion model reqmre additional input 

parameters that are not directly observable in the markets. They must thus be estimated 

using various statistical techniques. The additional accuracy that might be offered by 

these models is outweighed by the complexity of estimating additional parameters 

required. Due to these limitations, these two models assuming underlying distributions 

other than lognormal have received attention mainly by academics. In practice, various 

binomial tree and trinomial tree models such as the models developed by Cox, Ross and 

Rubinstein in 1979, and by Boyle in 1986 are widely used. The tree models can handle 

European options as well as American options. However, like the Black-Scholes formula, 

all these tree models assume that the underlying asset prices follow a lognormal 

distribution. 

The objective of this study is to develop a general option valuation model that is 

suitable for an arbitrary underlying asset price distribution yet can handle both European 

and American options. Such a model is valuable for practitioners because in practice the 

information about the distribution of the underlying asset price is often very limited. It is 

risky to rely on a model based on the assumption of a lognormal distribution when the 

true underlying distribution is unclear. It is also risky to simply modify a model based on 

the lognormal distribution with personal experience when it is known that the true 

distribution is significantly different from a lognormal. 

In general, a model suitable for an arbitrary distribution must capture the effects of 

higher moments. Previous empirical work has shown that the underlying distribution does 

have skewness and excess kurtosis (Sherrick, Garcia, and Tirupattur; O'Brien, Hayenga, 

and Babcock). On the other hand, a model suitable for American options can not use an 
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analytic formula because analytic valuation formulas are generally not suitable for 

American options. Therefore, the general option valuation model developed in this study 

will be a numerical scheme that incorporates higher moment parameters. 

The common numerical methods employed in option valuation include the 

binomial and trinomial tree schemes, finite difference algorithms and Monte Carlo 

simulation. This study will develop a general binomial tree model and a general trinomial 

tree model because the tree schemes are the most widely used in the finance community 

for valuation of a wide variety of option models and because of their ease of 

implementation and pedagogical appeal. 

This study is presented as follows. First, previous analytic option valuation models 

based on non-lognormal distributions and the tree schemes based on lognormal 

distributions are reviewed. The theoretical framework then follows on how a general 

binomial tree is developed and extended to a general trinomial tree, how the general 

binomial scheme converges to a higher order differential equation, for which the well 

known Black-Scholes differential equation is a special case, and converges to a general 

option valuation formula, for which the Black-Scholes formula is a special case, and how 

these general tree schemes can be implemented. Then, through numerical simulations and 

empirical analysis on the real data from the futures options on three commodities, the 

accuracy of the general binomial and trinomial tree models developed in this study is 

examined by comparison with the previous models reviewed. Finally, the conclusions 

and practical applications are discussed. 
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CHAPTER TWO 

REVIEW OF PREVIOUS OPTION PRICING MODELS 

Past option pncmg models can be categorized. into two groups: the models 

assuming the lognormal underlying distribution and the ones assuming underlying 

distributions other than lognormal. Most option pricing models are based on the 

lognormal distribution assumption. Only a few option pricing models are applicable to 

non-lognormal distributions. This chapter first introduces the lognormal distribution and 

the option pricing models based on it. Then the Edgeworth series and Merton's jump­

diffusion process as well as the option valuation models based on them are reviewd. 

Models Based on the Lognormal Distribution 

Lognormal Distribution and Black-Scholes Model 

A commonly used assumption in financial modeling is that the price process of an 

asset is governed by a Brownian motion (Hull, 2000): 

dS = µSdt + aSdz (1) 

where S is asset price, µ is the expected rate of return per unit of time from the asset, a is 

the volatility of the asset price, z denotes a standard Brownian motion with no drift, that 

is, dz = &../di with & - N(O, 1 ), and the values of dz for any two different short intervals 

of time dt are independent. Both the expected drift rate and variance rate of the process 

can change over time. But, during a very short period, they are considered constant. 
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To show Sis lognormally distributed, the process followed by the logarithm of the 

asset price is derived by Ito's lemma. From Ito's lemma (Ito), the process followed by a 

function of S, denoted as G, is 

( aG BG 1 2 82GJ 8G dG= -+µ-+-o- -- dt+o--dz. 
at as 2 as2 as 

aG aG 1 82G 1 
Define G = ln S , then - = 0, - = - , and --2 = - - 2 • It follows from Ito's lemma 

at as s as s 

that the process followed by ln S is 

Because µ and o- are constant, this equation indicates that ln S follows a Brownian 

process with drift {µ- o-2 I 2) and variance o- 2 • Let S and ST denote the asset price at 

the current time and at any later time T periods from now, according to the definition of 

a Brownian process (Ross), lnST -lnS = ln ST is normally distributed with mean 
s 

{µ-o- 2 12) and variance o- 2T. Given the current asset prices, this is to say that ST is 

lognormally distributed. 

Assuming a lognormal distribution and no riskless arbitrage, Black and Scholes 

(1973) derived a parabolic partial differential equation called the Black-Scholes equation: 

ac ac 2 o- 2 82c 
-+rS-+S ----rc=O 
at as 2 as2 

(2) 

where c denotes the premium of a European vanilla, i.e. without special features, call 

option. By using some initial and boundary conditions, the solution for the Black-Scholes 

equation is: 
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d _ ln(S I X)+(r +a2 /2)T 
I - aJf 

d _ ln(S IX)+ (r - a 2 /2)T _ d _ r;:;;T 
2 - - I (}''\J 1 

aJf 

(3) 

where X denotes the strike price corresponding to a maturity T, other notations are as 

defined before. By the put-call parity relation, the price of a European vanilla put option, 

denoted by pis given by 

p = xe-rT N(-d2)-SN(-d,) · 

Binomial Tree Models 

The Black-Scholes is an analytic formula for European options. Generally, an 

analytic formula can not handle the dynamics of value comparison between holding and 

exercising the right required with an American option. For American option valuation, 

binomial tree or trinomial tree option pricing models are widely used. Unlike the 

continuous Black-Scholes framework, the tree methods bypass the derivation of partial 

differential equations and so the comprehension of the method is accessible to a much 

wider audience in the finance community. There are various versions of the binomial and 

trinomial models. The different versions of the tree models differ in the method used to 

determine the parameters in the model. All versions of the binomial tree models have the 

same lattice structure. So do the various trinomial models. In a standard tree model, the 

asset price movement is assumed to be a discrete random walk, which converges to a 

continuous lognormal diffusion as the time interval between successive steps tends to 

zero. The tree models are consistent with the risk neutrality argument where the option 
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price obtained from the model depends only on the growth rate of a riskless bond but is 

independent of the expected rate of return of the asset. 

Let Sand S111 denote, respectively, the asset prices at the current time and at one 

period later. Suppose S111 be either Su with probability q or Sd with probability 1 - q, 

where u > d > 0. Also assume that it is possible to borrow or lend at a risk-free interest 

rater. Then to avoid risk-less arbitrage opportunities, it must be true that u > er.dt > d. To 

see this, suppose er.dt ;:::: u > d and O < q < 1. Then one could short the asset and loan the 

proceeds, thereby obtaining a profit of either er.dt - u or er111 - d, depending on the 

outcome state. The initial cost is zero, but in either case the profit is positive, which is not 

possible if there are no arbitrage opportunities. A similar argument rules out u > d ;:::: er111• 

To find the value of the call option, we use a no-arbitrage argument by referring to Figure 

1. The c in the figure represents the call option price and the X denotes the strike price. 

This figure shows the two period binomial lattices for the asset price and the value of the 

option. 

Su max(Su - X, 0) 

s C 

Sd max(Sd - X, 0) 

Figure 1. Two-period binomial lattices 

To illustrate the pricing mechanism of the binomial tree model, consider a portfolio 

consisting of a long position in L1 units of asset valued at S and a short position in one call 
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option with a value c. The current value of the portfolio is SL1 - c. Suppose the asset price 

moves to Su or Sd, then the corresponding call option value a period later is 

cu = max(Su - K, 0) 

or 

cd =max(Sd-K, 0) 

where Cu is the call option price corresponding to the upward movement of the asset price 

and Cu to the downward movement. The number Ll can be chosen so that the portfolio is 

risk-less no matter which of the two uncertain possibilities realizes. For the portfolio to 

be risk-less, the portfolio should have the same value in either of the possible situations. 

This requires that 

or 

In the absence of arbitrage opportunities, a risk-less portfolio must earn the risk 

free interest rate r. It follows that 

S!i- c = (Su!i- cJe-rAt 

or 

c = S!i-(Su!i-cJe-rt...t. 

Substituting L'.I into the equation, we have 

C = (qcu + (l-q)cd )e-rt...t (4) 

where 
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erM -d 
q= . 

u-d 

q can be interpreted as the probability that the asset price moves upward, so the 

probability that the asset price moves downward is 1 - q. By a similar way, the binomial 

tree valuation of a put option is 

p = (qpu + (1-q)pd )e-rAt 

where Pu and Pd are the put options prices in situations of upward and downward asset 

prices respectively. 

s C 

Figure 2. Two-step binomial lattices 

The extension of the binomial model with two periods from expiry 1s quite 

straightforward. By assuming that u and d stay the same for all binomial steps, the 

corresponding dynamics of the binomial process for the asset price and the call price are 

shown in Figure 2, in which Cuu denotes the call value at two periods beyond the current 

time with two consecutive upward moves of the asset price and the similar notations are 

for Cud and Cdd. 

Based on a similar argument as in formula ( 4 ), the call values cu and Cd are related 

to Cuu, Cud and Cuu as follows: 
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Cd = (qcud + (l -q)cdd )e-r111 

where Cuu = max(Su2 - K, 0), Cud = max(Sud - K, 0), Cdd = max(Sd2 - K, 0). Next, by 

substituting the above results, the call value at the current time that is two periods from 

expiry 1s 

Deductively, for an n-period binomial process, the call value is 

(5) 

where (nJ = n! is the binomial coefficient. 
j j!(n- j)! 

At this point we have introduced the general lattice structure that is followed by 

various versions of the binomial model. There are three parameters in the binomial 

rM d · 
model. The probability parameter q = e - is already determined by the procedure of 

u-d 

forming the replicating portfolio. However, u and d have not yet been determined. In the 

Blake-Scholes continuous model, the asset price dynamics are assumed to follow the 

geometric Brownian motion where S 111 is lognormally distributed. In the risk neutral s 

world, In S; becomes normally distributed with mean(r- ~
2 }1 and variance <r' Ai, 

where r is the riskless interest rate and CY 2 is the variance rate of the lognormal process. 

Correspondingly, the first and second moments of S 111 are er61 and e<2r+CJ" 2 )M 

s 
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respectively. On the other hand, for the one-period binomial option model under the risk 

neutral environment, the first and second moments of the asset price ratio S "'1 at one s 

period after the current time are given by qu + (1-q)d and qu 2 + (1- q)d2 • By equating 

the first and second moments of the asset price ratio SM in both continuous and discrete 
s 

models, the following equations are obtained: 

qu + (l-q)d = er/>J (6) 

(7) 

Equations ( 6) and (7) provide only two equations for the three unknowns u, d and 

q. The remaining condition is conventionally, and somewhat arbitrarily, chosen as 

1 
u = - so that the lattice nodes associated with the binomial tree are symmetrical. 

d' 

Writing ?f 2 = e<2r+a
2 )M, the solution to the system of equations is (Hull and White, 1988) 

1 ?f2 + 1 + ~(?f2 + 1)2 - 4e2r/',t er/>J - d 
u = d = 2er/>J ' q = u - d (8) 

The expression for u in the above formula appears to be quite cumbersome. A 

simpler formula for u, but without sacrificing the degree of accuracy, is based on 

expanding the above u in Taylor series in powers of JM : 

2 4242 34 
1 ~ (J' A r + (J' r + (J' A 3/2 0( A 2) u = +0'"1/ilf +-1.J.t+ 1.J.t + 1.J.( 

. 2 80' 
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Observe that the first three terms in the above Taylor series agree with that of ea,!ii up to 

O(M) term. This suggests the judicious choice of the following set of parameter values 

(Cox, Ross and Rubinstein, 1979): 

rt.I d 
d -a,!ii e -

=e ,q= 
u-d 

(9) 

which appear to be of simpler forms compared to those m formula (8). With the 

parameters in formula (9), the second moments of the price ratio S t..t in the continuous s 

and discrete models agree only up to O(.M2 ) • More precisely, equations in (9) are 

satisfied up to O(M 2 ) since the second moment in the discrete model is 

qu 2 +(l-q)d 2 =q(u-d)(u+d)+d2 · 

= (ert..t -d)(u + d) + d 2 

= (1 + rAf + r; Af 2 + O{Af3))2+CT21'1 +O{Af'))-1 

and the second moment in the continuous model is 

Besides the two sets of parameter values given in equations (8) and (9), two other 

versions of the set of binomial parameters have been proposed. Jarrow and Rudd (1983) 

relaxed the reconnecting condition u = _!_ and chose q = _!_ as the third condition. 
d 2 
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Solving together with the first and second moment conditions, the values for u, d and q 

are 

Following the same line of thought of seeking simplified approximate formulas, 

Jarrow and Rudd proposed the following parameter values in their binomial model: 

(r-~2 )/1,.t+u.fii (r-~2 )/1,.t-u.fii 1 
u=e d=e q=-

' ' 2 
(10) 

It can be checked easily that the Taylor expansions of 

agree up to 0(1:it), since 

Similarly, by using Taylor expansions, it can be shown that the first and second 

moment conditions are now not satisfied exactly, but only up to O(l:it2 ), for the 

simplified set of parameter values in formula (10). 

A more recent version of the binomial model was proposed by Tian (1993), who 

chose the third condition to be 

qu3 + (1-q)d3 = e3(r+u2 )M • 

The above relation is derived from matching the third moment of the discrete-time 

process and the continuous-time process for the asset price ratio. Solving the moment 

conditions from the first to the third together, the parameter values in the binomial model 

are 
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u = MV ((v +I) +~V 2 +2V -3) 
2 

d = ~ ((v +1)-~V 2 +2V-3) 

M-d 
q= 

u-d 
(11) 

where M = er!:J and V = eu2
1:!.1 • Note that ud = (MV) 2 instead of ud = I. The binomial 

tree loses symmetry about S whenever ud * I. 

Trinomial Tree Models 

A further extension of the binomial tree is the trinomial tree model introduced by 

Boyle(l 986). Like the binomial tree, the trinomial tree can be used to price both 

European and American options on a single underlying asset. Because the asset price can 

move in three directions from a given node, compared with only two in a binomial tree, 

the number of time steps can be reduced to attain the same accuracy as in the binomial 

tree. This makes trinomial trees more efficient than binomial trees. In a trinomial pricing 

model, there are three possible asset price jumps. The asset price S will become Su, Sm or 

Sd with probabilities qu, qm and qd respectively after one time period M, where 

u > m > d . The middle jump ratio m is chosen to be I. There are five parameters in 

Boyle's trinomial model. The moment conditions used in the model are the following 

equations 
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The remaining two conditions are chosen freely by Boyle to be 

ud = 1 and u = e M-.fii 

where ;i is a free parameter. Observe that Boyle's trinomial model reduces to the Cox-

Ross-Rubinstein binomial scheme when ;i = 1. The five parameters can then be 

determined by the five equations. For example, with ;i = ..fi., the parameters are given by 

(12) 

One advantage of Boyle's trinomial scheme is that lnu and lnd can be chosen to 

be any multiple of aJi;i. By choosing the parameter ;i appropriately, negative 

probability values in the calculations can be avoided. In his numerical experiments, Boyle 

claimed that best results were obtained when the probabilities are roughly equal and the 

accuracy of the trinomial scheme with five time steps is comparable to that of the Cox-

Ross-Rubinstein binomial scheme with 20 time steps. 

By dropping the restriction m = 1 in Boyle's trinomial model, Tian proposed two 

modified trinomial models. In both models, the moment conditions in Boyle's model are 

remained: 

17 



where, as defined in Tian's binomial model, M = erM and V = ea
2

1J.1 • In addition, to 

guarantee the trinomial lattice recombining properly, the following restriction is used: 

ud =m2 • 

For the other two restrictions needed to determine the parameters, Tian proposed 

two methods. The first method follows Boyle's argument that best results were obtained 

when the probabilities were roughly equal. Thus, the additional restriction in Tian' s first 

modified trinomial model is 

Solving the system of the restriction equations in his first modified model, Tian expressed 

the parameter values as 

1 
Pu= Pm= Pd =3 

u = K +.JK 2 -m2 

M(3-V) 
m=-....;__--'-

2 
(13) 

where K = M (V + 3) I 4 . 

The additional restrictions in Tian' s second modified trinomial model are based on 

the argument that the third and fourth moments of the trinomial distribution should match 

their counterparts of the continuous distribution. According to the third and fourth 

moments in the discrete and continuous models, the following two restrictions are 

imposed: 
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By solving the restriction system in his second modified trinomial model, Tian presented 

the following solution: 

md-M(m+d)+M2V 
. Pu = ( d)( ) , u- u-m 

M(u + d)- ud - M 2V 
Pm = ( u - m )( m - d) ' 

um-M(u+m)+M 2V 
pd= ' (u-d)(m-d) 

u = K + .J K 2 - m2 , 

d = K - .J K 2 - m2 , 

m=MV2 

' 
K = M (v4 + v3) . 

2 

Models Based on Non-lognormal Distributions 

(14) 

Since the bias of the Black-Scholes model is mainly due to the strong assumption 

that the underlying asset price follows a lognormal distribution, the valuation of options 

on assets that are assumed to follow stochastic processes other than Brownian motion has 

received attention by academics. One representative study in this line is the Jarrow-Rudd 

(1982) approximate option valuation model. Another example of such work is the Merton 

(1976) jump-diffusion model. 

Jarrow-Rudd Approximate Model 
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Jarrow-Rudd approximate model is based on the method of generalized Edgeworth 

series expansion. The Edgeworth series expansion is quite similar to the Taylor series 

expansion for analytic functions in function theory. The main idea of the Edgeworth 

series expansion is that a given distribution, though generally unknown, can be 

approximated by another distribution to any desired level of accuracy. Applying this 

method to the asset prices means that the true probability density function of the asset 

price can always be approximated as an Edgeworth series containing a lognormal density 

function (Johnson et al.): 

wheref(s) is the true probability density function of the asset price, and· 

1 ( (lns-µt) 2 J g(s) = exp - 2 
s a .J27; 2a t 

is a lognormal density function, s(s) is the residual error, and the cumulants ~s are 

defined by the following equations: 

00 

ai = f si f(s)ds 
-oo 

00 

µi = f (s-a1)i f(s)ds, j = 1, 2, 3, 4 
-oo 

The cumulant ~(G) is defined similarly to~ by changing the density function fromf(s) 

to g(s). 
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Thus if an Edgeworth series containing cumulants up to the fourth is used to 

approximate the true density function, the error is s(s). If the lognormal density function 

is used as an approximation for the true density function, the error will be a series of 

higher cumulants plus s(s). As long as the true distribution is not lognormal, the 

Edgeworth series is a more accurate approximation for the true probability density 

function than the lognormal density function. 

Based on the assumption that the underlying unknown probability density function 

can be approximated by (15), Jarrow and Rudd derived an approximate formula for 

European call options: 

(G) -rT (k2 - k2 (G)) (X) -rT (k3 - k3 (G)) dg(X) 
c=c +e g .-e 

2! 3! dS 

-rT ((k4 - k4 (G)) + 3(k2 - k2 (G))2) d 2 g(X) (X) 
+e 2 +& 

4!. dS 
(16) 

where c(G), with G representing that the underlying probability density function is g(s), 

is the Black-Scholes formula for the call option, and other symbols are defined as before. 

The Jarrow-Rudd formula for European put options can be obtained by the put-call 

parity, that is 

p = C - S + Xe-rT •. 

Merton Jump-Diffusion Model 

The critical assumption required for both the Black-Scholes model and the Jarrow-

Rudd approximate formula is that the underlying asset dynamics can be described by a 

stochastic process with a continuous sample path. In the Merton jump-diffusion model, 

an option pricing formula is derived for the more-general case when the underlying asset 
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price returns are generated by a mixture of both continuous and jump processes. To 

highlight the impact of non-continuous asset price dynamics on option pricing, all the 

other assumptions made by Black and Scholes are maintained in the Merton model. 

This model assumes the underlying asset price distribution satisfies the following 

jump-diffusion process: 

dS - = (µ-Ak)dt + crdz + dq s 

where µ is the instantaneous expected return on the asset, A is the mean number of 

important new information arrivals per unit of time, er is the instantaneous standard 

deviation of the return conditional on no arrivals of important new information, dz is a 

standard Gauss-Wiener process, q is the independent Poisson process describing the 

arrivals of the important new information, dz and dq are assumed to be independent. Let 

E1 denote the event that no important new information arrives in the time interval 

(t,t + M), E 2 denote the event that important new information arrives once in the 

interval, and E 3 the event that important new information arrives more than once. Then 

the Poisson process is described as a set of probabilities: 

Prob(E1) =1-lM + O(M), 

Prob(E2) = ll1t + 0(11t), and 

Prob(E3) = O(M). 

Assuming the jump component to be diversifiable, Merton obtained the following 

option valuation formulas: 
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"" e-;,.,r (ATY 
p = L ., P;(S,X,T,r,aJ, 

i=O l. 

(17) 

where ci and Pi are the Black-Scholes formulas for call and put options respectively. In 

addition to the volatility parameter o-, there are two parameters to be estimated: the 

expected number of jumps per year A and the percentage of the total volatility explained 

by the jumps y. 

Summary 

The Black-Scholes option pricing formula could be seriously inaccurate because it 

is a European option pricing formula based on the assumption that the underlying asset 

price follows a lognormal distribution. Since most option contracts in practice are 

American, the Black-Scholes model usually undervalues put options. Since the lognormal 

distribution is a strong assumption, when the true distribution differs significantly from a 

lognormal, the bias from the Black-Scholes could be serious. 

Various versions of the binomial tree and the trinomial tree are powerful yet easy to 

use when handling American options. However, present tree models are mostly based on 

the lognormal distribution assumption. Since all versions of the tree models converge 

well when the number of the time steps is large enough, the accuracy among the different 

tree models that assume lognormality should differ little. 
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The Jarrow-Rudd approximate option valuation formula is attractive because it is 

based on an Edgeworth series expansion that can approximate an arbitrary distribution at 

an acceptable level of error. However, this model is still a European option pricing 

formula. This drawback of the Jarrow-Rudd model limits its use in practice. 

The Merton jump-diffusion model is more general than the Black-Scholes because 

it incorporates the impact of the jumps of important new information. However, relative 

to the Jarrow-Rudd model, it is still a special case that is only suitable for the jump­

diffusion underlying price process, not applicable to arbitrary processes. Moreover, 

similar to the Jarrow-Rudd model, the Merton jump-diffusion model can only be used to 

value European options. 

In summary, in practice, the tree models are more powerful than the Black-Scholes 

since they can handle American options. Even for European options, since the tree 

models can converge well by using a large number of time steps, the accuracy can be 

controlled to a satisfactory level as long as the true underlying distribution is not far from 

lognormal. In the situation that the true underlying distribution can not be approximated 

well by a lognormal distribution, all the tree models reviewed in this chapter would be 

inaccurate with about the same error level. Thus, the inaccuracy of the tree models does 

not arise from the lattice structures of the trees, but from the common assumption 

underlying the different trees - the lognormal distribution. This suggests that the 

accuracy of a tree model is more likely to be improved by modifying the distributional 

assumption than the lattice structure. Of course, the more general the underlying 

distribution assumed, the more useful the tree model. Directed by such an idea, a general 

tree option pricing model suitable for arbitrary underlying distributions will follow next. 
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CHAPTER THREE 

THEORETICAL MODEL 

A general binomial tree model and a general trinomial tree model will be developed 

in this chapter. The properties such as the asymptotic limits of the general tree models are 

derived. Like the binomial and trinomial models introduced in Chapter Two, the general 

tree models have recombining lattices. The difference in the general tree models is the 

method of determining the move magnitudes and the probabilities in the trees. All the 

previous binomial and trinomial models assume that the underlying asset prices are 

lognormally distributed. The move magnitudes and the probabilities in the previous tree 

models are uniquely determined by the volatility parameter according to some formulas. 

In the general binomial and trinomial tree models developed in this study, any underlying 

distribution is allowable. The move magnitudes and the probabilities in the general tree 

models are determined by Gaussian quadrature. Gaussian quadrature sets the moments of 

the approximating discrete distribution equal to the moments of the continuous 

distribution. Since the move magnitudes and the probabilities in our general tree models 

are determined by moments that can be from any distributions, we first present a general 

expression of the moments of an arbitrary distribution. Under this general form, moments 

from any familiar distribution such as lognormal can be expressed as a special case. 

Then, based on the Guassian quadrature with the general form of moments, we will 

establish our general binomial tree model. The standard algorithm solving a Guassian 

quadrature equation system is already available (Miller and Rice; Preckel and DeVuyst). 

However, adopting this standard method to develop an algorithm for option pricing is an 
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innovation. In the case of the trinomial tree, a restriction is added to form a recombining 

tree. 

Since the binomial tree is a discrete model, it is natural to explore its asymptotic 

properties. This can be done in two ways. One way is to examine the limit of the general 

binomial tree model for a very short time. Another way is to find the limit of the general 

binomial model with a range of time to expiration. It will be shown that, by using Taylor 

series expansion, a one period general binomial tree model converges to a third order 

partial differential equation with the well-known Black-Scholes differential equation as a 

special case. On the other hand, according to the central limit theorem, the limit of a 

general binomial tree model with multiple periods is a formula similar to, but different 

from, the Black-Scholes. Again, the Black-Scholes formula can be considered as a 

special case of the limit of the general binomial tree model. 

General Form of Moments 

Let S and S,11 denote, respectively, the asset prices at the current time and at one 

period later. Suppose S follows a specific dynamic process. Though this process is 

usually unknown, the kth moment of the price ratio, Y = S />..I/ S, at a point in time can be 

generally written as a mathematical expectation of Yat the current time: 

E(Y') = }' f(y)({)' = exp{[ A(B,k)+rk + o-'k~ -!) }~1} 
wherej(y) is the probability density function of Y, Eis an expectation operator, A(B, k) is 

a function with a parameter vector e, ais a volatility parameter, r is risk-free interest rate. 

Since E(r°) = 1 is always true, we know that A(B, 0) = 0. Also, in a risk neutral world, the 
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expected rate of return on the asset is equal to the risk-free interest rate, so under this 

assumption we have E(Y) = er,1t and, thus, A(B, 1) = 0. 

Under this general expression, the moments of any specific distributions can be 

considered as special cases. For example, the case that A( B, k) = 0 for any k represents a 

lognormal distribution, i.e. lnY is normally distributed with mean (r - c?!2)11t and 

variance c?l1t. In case ofA(B,k)=,1,(e02k(k-l)l 2 -1), the asset price distribution is 

generated by the Merton (1976) jump-diffusion process. 

General Binomial Tree Model 

Now we begin to establish our general binomial tree model as well as the algorithm 

for the move magnitudes and the probabilities in the model. In a discrete random walk 

model the ratio of the asset price over a period of time is assumed to have finite possible 

n 

outcomes: Y; with probabilityq;, where i = 1, 2, ... , n and Lq; = 1. In this study, the 
i=l 

method to determine the outcomes and probabilities is based on an approximation called 

Gaussian quadrature. Simply speaking, Gaussian quadrature is a discrete approximation 

of an integral: 

"' n f g(y)f(y)dy ~ I,g(y;)q;' 
-CiJ i=l 

where g(y) is a function of the random variable Y and j(y) is the continuous density 

function. With Gaussian quadrature the evaluation points (y;) and the probabilities (q;) are 

selected so that the first k moments of the discrete distribution match those of the 

continuous distribution. 
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In our general binomial model, n = 2. The lattice of our binomial model is the same 

as the one illustrated in Figure 1. We use u and d to denote the upward and downward 

moves, and use q to represent the upward move probability. These move magnitudes and 

probabilities are determined by the moments of the asset price ratio as follows. 

The asset price ratio is a continuous random variable. Its first moment is E(Y). On 

the other hand, in a binomial tree framework, Y is assumed to take value u with 

probability q and d with probability 1- q. So its first moment is assumed to be 

qu + (1- q )d . Thus, for the first moment based on the binomial framework to be a 

correct approximation of the one based on the real continuous distribution, there should 

be an equation between the two first moments from the discrete and the continuous 

versions. Similarly, we can approximate the kth moment of Y based on the continuous 

dynamic process by the kth moment based on the binomial framework: 

00 

quk +(1-q)dk ~E(Yk)= fykf(y)dy k= 0, 1, 2, ... 
-00 

To determine the parameters u, d and q in the binomial model, we write out and 

solve the equations corresponding to the moments up to the third: 

qu 0 + (1-q)d 0 = E(Y0 ) = 1 

qu + (1-q)d = E(Y) 

qu 2 + (1-q)d 2 = E(Y2 ) 

qu 3 + (l-q)d3 = E(Y3 ) (18) 
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The first equation above is simply a repetition of q + (1-q) = 1. Under the risk-neutral 

probability structure, i.e. E(Y) = er41, the second equation is actually q = er!J.t - d , the one 
u-d 

obtained before. 

Now define a polynomial 

P(y) = (y-u)(y-d) = y 2 + C1y + C0 

It is obvious that P(u) = P(d) = 0. By comparing the coefficients of the polynomial P(y), 

it is easy t? find that 

C0 =ud and C1 =-(u+d) (19) 

Solving u and din (18), we have 

-Ci +Jc12 -4Co 
u=------

2 

Next we try to express Co and C1 as functions of the moments so that u and d can be 

determined given the moments known. Take the first three equations. Multiplying the 

first equation in (18) by C0, the second by C1 and the last by 1, we have 

Coq + Co (1- q) = Co' 

and qu 2 + (l-q)d 2 = E(Y 2 ). 

Adding them together, we have 

C0 + C1E(Y) + E(Y2 ) = qP(u) + (1-q)P(d) = 0 (20) 
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Similarly, take the second through the fourth equations. Multiplying the three 

equations by Co, C1 and 1 respectively, and adding them together, we have 

(21) 

The solution for the linear equations (20) and (21) about Co and C1 is 

C _ E(Y)E(Y3 )-(E(Y2 ))2 

0 - E(Y2 ) - (E(Y)) 2 

C = E(Y)E(Y2 )-E(Y3 ) 

I E(Y2 )-(E(Y))2 
(22) 

Thus, given C0 andC1 expressed by (22), the three parameters of our general binomial 

tree are determined by the following formulas: 

-C - 1c 2 -4C d= I '\JI O and 
2 

erllt -d 
q = (23) 

u-d 

Now we see that the parameters in our binomial option pricing model are determined by 

Co and C1, which are, in turn, functions of the general form of moments up to the third. 

The algorithm for the parameters in the binomial tree is general in the sense that it is 

applicable to any distribution with finite second and third moments. 

Special Cases of the General Binomial Model 

Since the binomial tree model developed above is general, all previous binomial 

models based on the lognormal assumption can be considered as the special cases of it. 
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Also, it can handle distributions other than the lognormal as well. The following two 

examples illustrate this advantage. 

Case 1 : Lognormal 

If Y follows a lognormal distribution, then, by denoting erAf as Mand ea-
2
"'1 as V, so 

that E(Y) = M, E(Y 2 ) = M 2V, and E(Y3 ) = M 3V 3 , we have 

C = E(Y)E(Y3 )-(E(Y2 )) 2 = M(M 3V 3 )-(M2V) 2 =M 2V 2 

0 E(Y 2 )- (E(Y)) 2 M 2V - M 2 

Thus 

(24) 

- C + J C 2 
- 4C MV r ,J ] d = I I O =-l(V +1)-V2 +2V-3 

2 2 

M-d 
q= 

u-d 

This is exactly Tian' s solution for the parameters in the binomial tree model as 

shown in (11 ). If a further constraint of ud = 1 is added, instead of using the third 

moment condition based on Guassian quadrature, the other versions of the previous 

binomial models are obtained. It is now clear that all previous binomial tree models other 

than Tian's match only the first two moments of the continuous distribution. While 

Tian's binomial model is based on Gaussian quadrature, it is restricted by the assumption 

that the underlying distribution is lognormal. 
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Case 2: Jump-Diffusion 

In case of A((), k) = ..1,(er1k(k-I)l 2 -1), the asset price distribution is generated by the 

jump-diffusion process (Merton 1976). While all previous binomial tree models are 

invalid in this case, options can still be valued with the general binomial tree model 

because the moments are available. The moments in this case are 

E(Y) = exp(r~t) 

E(Y2) = exp[(c2r + a 2) + ..1,(eY1 -1) ~t] 

E(Y3 ) = exp[(3(r + a 2 ) + ..1,( e3r 1 -1) ~t] 
Given a, 'A, and r, the values of u, d and q can be found by the general formulas 

(21). Here the powerfulness of the general binomial tree model over the previous 

binomial models is that the impact of parameters 'A, and yis reflected in the general model 

but not in any version of the previous tree models. 

Asymptotic Limit of One-step General Binomial Tree Model 

Given the general binomial tree model developed so far, one is tempted to ask the 

question: what is the continuous counterpart of the general binomial tree? The query can 

be answered by examining the asymptotic limit of the general binomial formula with one 

step and with multiple steps. We will see in this section that the limit of the one-step 

binomial process is a third order partial differential equation. In the next section, we will 

show that the limit of multi-period binomial model is an option pricing formula similar to 

the Black-Scholes. 
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We use the notation of O(L1f), where k is a positive integer, to express the concept 

of convergence of an approximation. We say that a functionj(L1t) is O(L1f) if 

Note that the statement thatj(L1t) is O(L1f) implies thatj(L1t)/L1t is O(L1f"1) since 

We now consider the limit Lit ~ 0 in the binomial formula ( 4) 

C = (qcu + (1-q)ca )e-rAt. 

We want to perform the Taylor expansion of the binomial scheme at (S, t). To avoid a 

two-variable Taylor series, we rewrite the formula as 

c(S,t-/J.t)erAt = (qc(Su,t) + (1-q)c(Sd,t)) 

By this way, the only variable at the left side of the equation is t and the right side is S. 

Then the Taylor expansion is 

erAt[c(S,t)-:; (S,t)M+O(/J.t 2 )] =c(S,t) 

+ [q(u -1) + (1-q)(d -l)]s Be (S,t) as 

1 [ ]s 82c +- q(u -1)2 + (1-q)(d -1)2 2 - 2 (S,t) 
2 as 

1 [ 3 3 ]s3 83c +- q(u-1) +(l-q)(d-1) -(St)+··· 
6 as 3 ' 

(25) 

According to the Gaussian quadrature equations that determine the parameters in the 

general binomial tree, in (23), 

q(u-1) + (1-q)(d -1) = qu -q + (1-q)d -1 + q = E(Y)-1 
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q(u-1) 2 +(1-q)(d-1)2 =qu2 +(l-q)d2 -2[qu+(l-q)d]+q+(l-q) 

= E(Y2 )-2E(Y) + 1 

q(u -1)2 + (l-q)(d -1)2 = qu 3 + (l-q)d3 -3[qu 2 + (l-q)d 2 ]+ 3[qu + (l-q)d]-[q + (1-q)] 

= E(Y3 )-3E(Y2 ) +3E(Y)-l 

Also, recall that, by Taylor expansion, 

E(Y) = exp(rAt) = 1 + rM + O(M2 ) 

E(Y2 ) = exp[(A(0,2) + 2r + a 2 )M] = 1 + (A(0,2) + 2r + a 2 ~t + O(At2 ), 

E(Y3 ) = exp[(A(0,3) + 3(r + a 2)~t] = 1 + (A(0,3) + 3(r +a2 )~t + O(At2 ) 

Substituting the results above into the Taylor expansion of the binomial formula (4) and 

rearranging the equation, we have 

Be Be 1 t 2 )s 2 B2e 1 ( ) 3 83e · -+rS-+- a +A -+- A -3A S --re+O(At) = 0 at as 2 2 as 2 6 3 2 as3 
(26) 

where Ak = A(O, k) is a parameter related to the kth moment (k = 2, 3). This equation 

indicates that e(S, t) almost satisfies a third order partial differential equation, with the 

truncation error being O(Llt). We call this partial differential equation the general option 

pricing equation because the result is valid for all versions of the binomial tree model. 

If the true distribution is lognormal, then A2 = A3 = 0, so that the general option 

pricing equation reduces to the familiar Black-Scholes equation. Alternatively, if the true 

asset price distribution is generated by Merton's jump-diffusion process, A2 = .it.(er' -1) 

and A3 = .it.(e3r' -1), the value of the call option is still determined by a third order partial 

differential equation with three parameters A, y, and a. 
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Asymptotic Limit of Multi-step General Binomial Tree Model 

Now we go further to a multiplicative n-period binomial process. The derivation 

method we use is from the classical article of Cox, Ross and Rubinstein (1979), in which 

the limit of the binomial model is the Black-Scholes formula. However, since the 

underlying distribution in our general binomial model is arbitrary rather than the 

lognormal, the result derived will be a formula other than the Black-Scholes. 

Recall Eg. (5). The call value corresponding to an n-step binomial tree model can 

be expressed as 

We define k to be the smallest non-negative integer such that Suk dn-k ~ X, that is, 

k ~ ln(X I Sdn )/ln(u Id) . It is seen that 

max(Su1 dn-1 -X 0) = . . . . { 0 
' Su 1 dn-1 -X 

when j < k 

when j ~k 

The integer k gives the minimum number of upward moves required for the asset price in 

the multiplicative binomial process such that the call expires in-the-money. The call 

formula for the above n-step binomial tree model can then be simplified as 

c = si:(~Jq1 (l-qr-J u1 dn-J e-nrM -Xe-nrt1t i:(~Jq1(l-qr-J 
J=k J J=k J 

Let <!>(n,k,q) denote the probability in the risk neutral world that the call will 

expire in-the-money, i.e. the probability that at least k successes inn trials of a binomial 

experiment, where q is the probability of success in each trial, we know 

<!>(n,k,q) = i:(~Jq1(1-qr-1 

J=k J 

35 



Further, by writing q' = uqe-rllt so thatl-q' = d(l-q)e-rM, the call price formula for the 

n-step binomial tree model can be expressed as 

C = S<'P(n,k,q')-xe-mllt<'P(n,k,q) (27) 

The first term of formula (27) gives the discounted expectation of the asset price at 

expiration given that the call expires in-the-money and the second term gives the present 

value of the expected cost incurred by exercising the call. The two terms together give the 

discounted expectation taken under the adjusted risk neutral discrete binomial probability 

distribution. The formula above is very similar to the Black-Scholes formula for a 

European call option. However, we will show that, except for a special case, the 

asymptotic limit of this general binomial tree model is generally different from the Black-

Scholes. 

We want to find the limit of the call option formula for an n-step general binomial 

tree model as n ~ oo , or equivalently t ~ 0 (since n!:it = T - t is finite). The analysis 

relies on the Central Limit Theorem stated below: 

The central limit theorem (Ross, p399) 

Let Xi, X2, ... be a sequence of independent and identically distributed 

random variables each having mean µ and variance cl. Then the 

distribution of 

X + .. ·+X -nµ 1 n 

tends to the standard normal as n ~ oo. That is, for -oo <a< oo, 

as n ~ oo. 
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When Xi, X2, ... are a sequence of independent and identically distributed Bernoulli 

random variables each having mean q and variance (1 - q), Y = X1 + ... +Xn is a 

binomial random, variable with parameters n and q. According to the central limit 

theorem above, we have the following corollary: 

Corollary (Normal approximation to the binomial distribution) 

Let Y be a binomial random variable with parameters n and q, where n is 

the number of binomial trials and q is the probability of success. For large 

n, Y is approximately normal with mean nq and variance nq(l - q) . 

Recall that<I>(n,k,q) is the probability that the number of upward moves in the asset 

price is greater than or equal to kin then-step binomial model, where q is the probability 

of an upward move. Let j denote the random integer variable that gives the number of 

upward moves during the n periods. Consider 

( . - ) ( j-nq k-l-nqJ 
1-<I>(n,k,q)=Pr J $;k-1 =Pr ~ . $; ~ 

nq(l- q) nq(l - q) 
(28) 

where j - nq is the normalized binomial variable. Let S and S' denote the asset 
~nq(l-q) 

pnce at the current time and at n periods later. Since S and S' are related by 

S' = Su1 dn-J, we then have 

S' u 
In-= jln-+ nind 

s d 

For the binomial random variable j, its mean and vanance are known to be 

E(j) = nq and Var(})= nq(l-q) respectively. Since ln(S'/ s) and} are linearly related, 

the mean and variance of ln(S'/S) are given by 
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E( In ; ) = E(j) In ; + n Ind = n( q In; + Ind) 

In the limit n-) oo, the mean and variance of the logarithm of the price ratio of the 

discrete binomial model and the continuous counterpart should agree with each other, 

that is 

limn(q In~+ Ind)= M(lf/,T - t) 
n~oo d 

limnq(l-q)(ln ~)
2 = V(lf/,T-t), T = t + nM 

n~oo d 

where M(lf/,T-t) and V(lf/,T-t) are the mean and the variance of the continuous 

logarithm price ratio random variable, both are functions of a parameter vector If/ and the 

period T - t. Since k is the smallest non-negative integer greater than or equal to 

In(X I Sd")/In(u Id), we have 

X 
In-· 

k-I = Sd" -a, where O <a~ 1, 
u 

In-
d 

so that (28) can be rewritten as 

I-<l>(n,k,q) = Pr(J ~ k-1)= Pr 

X ( u ) u In--n qln-+lnd -aln-
j-nq < S d d 

~nq(l-q) - ~nq(l-q) ln ~ 
d 
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In the limit n ~ oo, n( q In~+ Ind) converges to M(lf/,T -t) and ~nq(l-q) In~ 

to ~V(lf/,T - t) . Taking the limit n ~ oo, or equivalently L\t ~ 0, and by the virtue of 

normal approximation to a binomial distribution, we obtain 

Iim(l-<D(n,k,q)) = N S ti1-.>o d [
lnX -M(lff,T-t)-Iimaln~l 

HOO ~V(ljf,T-t) 
(29) 

The limit lim a In~ in the above equation is finite. This can be shown as follows. Recall 
!it-.>O d 

that 

where C = E(X)E(X3)-(E(X2))2 and C = E(X)E(X2)-E(X3) 
0 E(X 2 )-(E(X)) 2 1 E(X 2 )-(E(X)) 2 ' 

C lc2 4C -limC1 + limC/-4limC0 
U - I + 'V I - 0 } £11-.>0 !it-.>O M-.>O 

So that lim a In - = a lim In ~ = a n 
!iHO d !it-.>O - C - C 2 - 4C - lim C - lim C12 - 4 lim Co 

I I O !it-.>O I !it-.>O M-.>O 

By using L'Hopital 's Rule and the fact that, for any integer k, 

dE(Yk) =[A((),k)+rk+ a 2k(k-l)]E(Yk) and limE(Yk) = 1, 
d(L\f) 2 !iHO 

we have 

r C r rE(Y)E(Y3) + [A((),3) + 3r + 3a2 )E(Y)E(Y3)- 2[A((),2) + 2r + a 2 ]E(Y2 )2 
ti}Ta O = ti}Ta [A((),2)+2r+a2]i(Y2)-2rE(X)2 

A((),3)-2A((),2) + a 2 

=--------
A((),2) + a 2 
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1. C _ 1. rE(Y)E(Y2 )+[A(B,2)+2r+a2 (Y)E(Y 2 )-[A(B,3)+3r+3a2 ]E(Y3 ) Im 1 - lffi~---~'--1~---~_,,....---~-----~~ 
At~o At~o A(B,2) + 2r + a 2 E(Y2 )-2rE(X)2 

A(B,2)-A(B,3)-2a2 

=-------
A(B,2) + a 2 

Since both lim C0 and lim C0 are finite, lim In~ is finite too. A special case is that, 
Af~O Af~O Af~O d 

when Y is lognormally distributed, A(B,2) = A(B,3) = 0, thus lim C0 = 1 and ,..,~o 

limC1 = -2, so that limln~ = lnl = 0. 
Af~O Af~O d 

Now, rearranging the terms in equation (26), we have 

[ 
s . . u l ln-· +M(lf/,T-t)+limaln-

1. ""( k ) - N X .6.HO d 1m-v n, ,q - ---,====----
HOO ..jV(lf/,T-t) 

(30) 

By a similar procedure, we can also obtain 

1. ""( k ') - N X .6.HO d [
In§_+ M'(lf/,T -t) + lim a In~] 

1m-v n, ,q - -----;:::====------
Hoo ..jV'(lf/,T - f) 

(31) 

where M'(lf/,T-t) and V'(lf/,T-t), the mean and variance of the continuous random 

variable corresponding to a binomial distribution with the parameters n and q', are 

defined as 

M'(lf/,T-t) = limn(q'ln~+ Ind) 
n~oo d 

V'(lf/,T-t) = limnq'(l-q')(ln~)
2 

n~oo d 

40 



At this point, we can find the asymptotic limit of the general binomial tree 

valuation of a European call option: 

lime= Slim <l>(n,k,q')-Xe-r(T-t) lim <l>(n, k,q) 
n-+oo n-+oo n-+oo 

=SN X AHO d [
ln~+M'(lfl,T-t) + limaln~l 

.. ~V'(lfl,T - t) 

-xe-r(T-t) N X At~O d [
ln~+M(lfl,T-t)+ limaln~l 

~V(lfl,T-t) 
(32) 

lbis formula is similar to the Black-Scholes except that the arguments in the standard 

normal distribution functions are different. When the asset price ratio is lognormally 

distributed, we have 

M(\if,T-t) = (,- ~' }T-t) 

V(lfl,T-t) = u2(T-t) 

M'(lfl,T -t) = limn(q' ln ~+Ind)= limn(uqe-ri.t ln ~ + lnd) = (r + a
2 
J(T-t) 

n~oo d n~oo d 2 

V'(lfl,T-t) = limnq'(l-q')(ln ~)
2 

= u 2 (t -t) 
n~oo d 

Substituting the above results as well as lim ln u/ d = 0 into (27) and taking a limit, we 
At~O 

have the familiar Black-Scholes formula 

lime= Slim <l>(n,k,q')-xe-r(T-I) lim <l>(n,k,q) 
n-+oo n-+c:0 n-+oo 
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Now we have completed the derivation and concluded that the multiple-period 

binomial model generally converges to a formula similar to the Black-Scholes. When the 

underlying distribution is lognormal, this limit is exactly the Black-Scholes. 

American Options 

So far we have developed and examined the general binomial tree model for 

European options. An additional dynamic programming procedure is required in the 

binomial scheme in order to price an American option. When early exercise is 

considered, the option value calculated by the binomial model should be compared with 

the option's intrinsic value, which is the payoff function upon exercise at each binomial 

node. 

As an example, we consider the valuation of an American put option. First, as 

usual, we build the binomial tree that gives a discrete representation of the stochastic 

movement of the asset price. We use (n,j) to represent the node on the tree that 

corresponds to j upward moves and n-j downward moves and it is n time steps from the 

current time. Let s; and p; denote the asset price and put value at the (n, j) node 

respectively. The procedure for computing the option price proceeds backward from the 

expiration time to the current time. At each binomial node we compare the calculated 

value without immediate exercise and intrinsic value and take the maximum among them 
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as the option value. The intrinsic value of a put option is X -SJ at the (n,j) node. 

Hence, the dynamic programming procedure applied at each node is given by 

n [( n+1 (l ) n+1 \_ -,~1 X sn] 
P1 = max qp1+1 + -q P1 ,: ' - J (33) 

where}= 0, 1, ... , n. This dynamic procedure is continued until the node (n,j), i.e. the 

current time. Then the American put option premium is obtained. Since the discussion 

here is limited to non-dividend paying stock options, American call options have the 

same values as their European counterparts and thus do not need to be discussed again. 

The Sources of Pricing Biases 

From the analysis above, we see that the pricing biases in an option valuation 

model can arise from three sources: distribution bias, truncation error, and using the 

European formula to price American options. 

Distribution biases can exist in both analytic and numerical option pricing models. 

Since the true probability distribution of the underlying asset price is generally unknown, 

as long as a specific distribution is adopted to model the price, there will always be biases 

due to the· inconsistency of the true distribution and the distribution assumed by the 

model. For example, if the true distribution is not lognormal but a lognormal distribution 

is used to model the ratio of the asset prices, the effect of higher moments would be 

ignored in the resulting differential equation. Similarly, if Merton's jump-diffusion 

process is assumed but the true price process is significantly different from the jump-

diffusion, distribution bias still exists. In this case multiple parameters are included in the 

equation, but they are generally not the true parameters that should be included. 
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Truncation errors.exist in a numerical option-pricing model. In analysis of accuracy 

for a numerical scheme, a conventional method is to use the continuous solution as a 

criterion. Then the truncation error of a given numerical scheme is obtained by 

substituting the exact solution of the continuous problem into the numerical scheme, and 

the order of accuracy of a scheme is defined to be the order in powers of !it. A numerical 

scheme is said to be kth order time accurate if the local truncation error of the numerical 

scheme tends to zero for vanishing time step. For example, assuming the underlying asset 

price ratio follows a lognormal distribution, the Black-Scholes is usually used as a 

criterion and the order of accuracy of a binomial model is measured in terms of O(M). 

However, in practical use, the M in the binomial model cannot be small enough. 

Therefore, the pricing solution can be biased from the continuous solution due to this 

approximation. 

As mentioned before, an analytic valuation formula is only suitable for European 

options and analytic formulas are generally not available · for American options. 

Therefore, if an analytic option formula is used to price American options, pricing biases 

will arise. For example, if the Black-Scholes formula is used to price American put 

options, there will be some biases. 

General Trinomial Tree Model 

A natural extension of the general binomial tree model is the general trinomial tree 

model. In a trinomial tree model, we assume three possible asset price movements. The 

current asset price S will become either Su, Sm or Sd after one time period Lit, where u > 
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m > d. As an extension to the binomial formula given in equation (4), the two-period 

trinomial formula for call option value is 

(34) 

Here, Cu and qu denote the option price and the probability respectively for the 

situation when the asset price takes the value Su one period later, and similar meaning for 

Cm and qm as well as cd and qd. It seems that the parameters u, m, and d as well as qu, qm, 

and q d can be determined in a similar way as in the binomial model except that the 

Gaussian quadrature equations corresponding to the moments up to the fifth are needed. 

However, since the trinomial lattice cannot automatically recombine as the binomial 

counterpart, an additional recombining condition is needed. If we use the fifth moment 

equation, altogether there will be seven equations for six unknowns. The equation system 

will be over-determined and the solution will not be unique. Thus, to assure a unique 

solution, we only need the Gaussian quadrature equations corresponding to the moments 

up to the fourth and an equation representing the recombining condition: 

I 

quu3 + qmm3 + qdd3 = E(Y3) 

ud=m 2 

·The last equation ud = m2 is the recombining condition. 
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Such a system cannot be solved analytically as in the general binomial tree model 

because the recombining condition is nonlinear. Therefore, we use a numerical solution. 

The set of nonlinear simultaneous equations are solved for the parameters of the general 

trinomial tree model by minimizing the sum of the squared differences between the two 

sides of the equations in the system. Specifically, we can determine the parameters by 

solving the following nonlinear programming problem: 

subject to qu + qm + qd = 1 

ud-m 2 =0 

By this way, the solution for the parameters will be unique yet the recombining condition 

holds. 

Due to the complexity of the trinomial model and the fact that the analytical 

solution for the parameters in the general trinomial tree model is not available, it is 

difficult to examine the asymptotic limit of the model as in the general binomial tree 

model. Though clear analysis is not available, the same as the general binomial tree 

model, the trinomial model developed here is also a general model in the sense that all 

previous trinomial models can be considered as special cases of it. This argument is 

based on the fact that the only information required to determine the parameters in this 

trinomial model are the moments and the underlying distribution can be anything. The 

general binomial model considers the third moment that is related to skewness, while the 

general trinomial model considers the skewness as well as kurtosis. Empirical work has 
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generally not looked at moments higher than the fourth. The Gaussian quadrature 

approach could easily allow considering higher moments, but there is no evidence yet 

that there is a need to go beyond the fourth moment. 

Summary 

The general binomial and trinomial tree models developed in this study use 

parameters determined based on Gaussian quadrature. Like past binomial and trinomial 

models, American options are handled using dynamic programming. The new general 

tree models are the first option pricing models that can handle American options and can 

easily handle any i.i.d. price distribution that has finite moments. The binomial tree can 

handle skewness and the trinomial tree can handle skewness and kurtosis. Gaussian 

quadrature offers a general approach that could also capture even higher moments if more 

branches were added at each node. Since previous binomial and trinomial tree models 

have ad hoc restrictions on the parameters, we, from the theory, would expect them to 

perform worse than the general binomial and trinomial models. 

When compared with analytic option pricing models such as the Black-Scholes 

formula, the Merton jump-diffusion model, and the Jarrow-Rudd approximate model, we 

expect that the relative accuracy of the general binomial and trinomial models depends on 

whether the underlying distribution is known or not, and whether the options concerned 

are European or American. For example, for European options with lognormally 

distributed underlying asset prices, the Black-Scholes is of course the most accurate. 

However, when the distribution underlying the European options is unknown, the Jarrow­

Rudd model should be considered most accurate. Furthermore, for American options with 
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unknown underlying distributions, it seems reasonable to expect that the general binomial 

and trinomial tree models can perform better than all other models. Based on such 

hypotheses, the accuracy of the general binomial and trinomial tree models relative to the 

other option pricing models will be examined under various conditions in the next 

chapter. 

48 



CHAPTER FOUR 

NUMERICAL ANALYSIS AND EMPIRICAL EVIDENCE 

The general binomial tree and general trinomial tree models developed in Chapter 

Three sound good in theory. However, their performances in practice need to be 

investigated. In this chapter, the accuracy of the general binomial tree and general 

trinomial tree models will be examined by comparing them to other option pricing 

models. The accuracy will be examined by two methods. The first method is numerical 

analysis while the second one is an empirical study. With the study of numerical 

accuracy, the underlying asset price process and the parameters required for the various 

tree models are known. Given the known price process and parameters, option premiums 

based on different tree models can be calculated. For European options, premiums 

calculated by a closed form option pricing formula are used as the comparison criterion. 

The accuracy of the different tree models is measured by the difference between the 

premiums calculated by the tree models and the analytical solution. With the empirical 

study, the underlying asset price processes and the parameters in the option pricing 

models are not available. Instead, historical daily data, such as option premiums, strike 

prices, asset price and interest rate, are available. The parameters selected are those that 

minimize the sum of the squared errors between actual and predicted premiums. The 

parameters obtained are called implied parameters. An out-of-sample evaluation is then 

performed by using yesterday's parameters and today's futures prices to predict today's 

option premiums. The difference between the actual option premium and the one 

predicted by the implied parameters can be considered as the forecasting error of the 
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model. Thus, the accuracy of various option pricing models can be measured by such 

forecasting errors. 

Numerical Analysis 

Procedure 

The accuracy of the general binomial and trinomial tree models is compared with 

the accuracy of the other tree models under two cases of the underlying asset price 

process: a lognormal distribution and a jump-diffusion process. The lognormal represents 

the standard case while the jump-diffusion represents the non-standard case. In the 

lognormal distribution case, the option values calculated by the Black-Scholes formula 

are used as the comparison criterion. The jump-diffusion process is a particular challenge 

because four moments may not be sufficient to well approximate it. It is chosen as a 

representative non-lognormal case not only because of its practical use (Hilliard and 

Reis), but also because the analytic Merton jump-diffusion formula can be used as the 

criterion and there is no other analytic formula based on a distribution other than the 

lognormal available. The underlying asset is supposed to be a non-dividend paying stock 

with the input values given in Table 1. 

All versions of binomial tree models use the same dynamic programmmg 

procedure to obtain the option values. So do the various trinomial tree models. The 

difference among the tree models is how to determine the move magnitudes and the 

probabilities in the models. To use the general binomial and trinomial tree models, the 

move magnitudes and the probabilities are obtained using the Gaussian quadrature 

formulas and the analytical moments. The moments are obtained in turn by using some 
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given parameter or parameters, depending on the underlying asset price process assumed. 

Specifically, if a lognormal underlying distribution is assumed, the only parameter 

needed is the volatility. On the other hand, with the jump-diffusion price process, besides 

volatility, the expected number of jumps per year ;i and the percentage of the total 

volatility explained by the jumps r are needed to calculate the moments. Since all tree 

models other than the general tree models developed in this study are based on the 

lognormal distribution assumption, the only parameter needed for those models is the 

volatility. 

Table 1. Input Values for Numerical Analysis 

Parameter Values 

Stock Price S = I 00 

Exercise Price X = 90, 100, 110 

Time to maturity 

Interest rate 

Volatility 

Number of jumps 

Volatility explained by jumps 

T=6months 

r=5% 

cr = 30% 

)..=5 

y=50% 

The common dynamic programming procedure for various binomial tree models is 

illustrated as follows. The calculation is implemented in a backward way. That is, the 

option values at the nodes of the final step of the binomial tree are calculated first. Then, 

the values at the step before the final one are calculated. This procedure is continued until 

the initial step, i.e. the current time. An n-step binomial tree has n + I nodes at the final, 

or the nth, step. By using c! to denote the call value and P! the put value at the ith node 

of the nth step, the option values at the n + I nodes of the final step are calculated by 
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c! =max(O,Suidn-i -X) and 

P! =max(O,X-Suidn-i) 

where i = 0, 1, ... , n 

Then, for European options, then call and n put values at the nodes of the n - l th step are 

given by 

c!_1 = (qc!+I + (l-q)c! }-rAL and 

P!-i = (qp!+1 + (l-q)p! }-rAL 

where i = 0, 1, ... , n -l. 

For American options, the option values at then - l th step are given-by 

c;_, ~ max( Su; al;-•HI - X, (qc:·1 + (I - q)c! k'"' J 

p;_, ~ max( X - Su; al;-.. ,1. (qp:" + (I - q) P! k"" J 

i = 0, 1, ... , n - l 

By continuing the backward computation until the current time, the call and put option 

values can finally be obtained. 

For a trinomial, there are 2n + 1 nodes at the nth step. The 2n + 1 option values at 

the final step of an n-step trinomial tree are calculated as 

c! = max{sumax(i-n,O)m(n-li-nl)amax(n-i,O) -X,O) 

P! = max{x -sumax(i-n,O)m(n-Ji-nl)amax(n-i,O) ,0) 

i = 0, 1, ... , 2n 

Then the European options at then - l th step are valued as 
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where i = 0, 1, ... , n - l . 

If the options are American, the options at the ( n - l )th step are valued as 

i = 0, 1, ... , n - l 

Similar to the procedure for the binomial tree models, the backward computation is 

continued until the current time to obtain the call and put option values. 

The accuracy of the various tree models for European options is measured by a 

percentage average pricing error that is defined as 

where Mis the number of strike prices considered ( in our case, M = 3), Vs is the option 

value calculated by a tree model and Ve is the criterion option value obtained by a closed 

form option pricing formula. For American put options with an underlying lognormal 

distribution, no exact closed form pricing formula is available, option values simulated by 

different tree models are listed to see the difference among them. In fact, since American 

call option values are the same as the European counterparts for non-dividend paying 

stocks and thus the relative accuracy among the tree models can be measured as 

mentioned before, it is reasonable to expect about the same relative accuracy when 

American put options are valued by the different tree models. 
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The methods to determine the move magnitudes and the probabilities in various 

binomial and trinomial tree models have been outlined in the previous chapters. For 

clearness, the different methods are restated here. We denote the general binomial tree 

model by GBIN and the general trinomial tree model by GTRIN. The parameters in the 

general tree models are determined by the moments up to the third in GBIN and the 

fourth in GTRIN. When the underlying asset price follows a lognormal distribution, the 

kth moment of the stock price ratio Y, as introduced in Chapter Three, is 

On the other hand, when the stock price process is jump-diffusion, the kth moment of the 

price ratio, also as introduced in Chapter Three, is 

with " ~ t~' . 
For GBIN, the parameters are calculated by the following formulas: 

-C - 1c2 -4C 
d = i " i o and 

2 

er!:it -d 
q= 

u-d 

where C = E(Y)E(Y3)-(E(Y2))2 and C = E(Y)E(Y2)-E(Y3). 
0 E(Y2)-(E(Y))2 1 E(Y2)-(E(Y))2 

For GTRIN, the parameters are obtained by solving the nonlinear programming problem 
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ud-m 2 =0 

The parameters in the other tree models used for comparison are determined as 

follows: In the Cox-Ross-Rubinstein binomial tree model, denoted as CRR, 

rM d 
d -a..fiJ e -

=e ,q= 
u-d 

In the Boyle trinomial tree model, denoted as BOYLE, 

( J
2 e rt,J. I 2 _ e -a.,fiiiz 

qu = ea.JAt/2 _ e-a.JM/2 ' 

Tian's two trinomial tree models are denoted as TTRINl and TTRIN2. In TTRINl, 

u = K + .J K 2 - m2 , 

d = K - .J K 2 - m2 , and 

M(3-V) 
m= . 

2 

In TTRIN2, 
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md - M (m + d) + M 2V 
qu = ' (u-d)(u-m) 

M(u+d)-ud-M 2V 
qm = , 

(u-m)(m-d) 

um-M(u+m)+M2V 
qd = ' (u-d)(m-d) 

m = MV2 , and K = M (V 4 + V 3 ). 
2 

In both TTRINl and TTRIN2, Mand V are defined as illustrated in Chapter Two. 

Results 

Altogether six tree models are investigated and compared. The numerical 

calculations are performed with Visual Basic for Application (VBA). Table 2 reports the 

values of the European call options obtained from all six lattice procedures using time 

steps ranging from 5, 10, 20, ... , 100, 200, ... , 500. Since it is assumed that the stock 

does not pay dividends, American call options will have the same value as the European 

call options. Similar results, obtained from a study of European put options using the 

same option parameter values, are summarized in Table 3. It is clear that option values 

obtained from all models converge closely enough to the correct values, the Black-

Scholes prices. The average pricing errors of the six models for the three strike prices, in 

terms of percentage, are reported in Table 4. It is observed that, by using 500 steps, the 
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Table 2. European Calls Valued by Various Models under Lognormal Distribution 
(S = 100, r = 5%, er= 30%, T = 6 months) 

Numerical Model 

Time Steps CRR GBIN BOYLE TTRINl TTRIN2 GTRIN 
Exercise price X = 90, Black-Scholes= 15.4860 

5 15.2607 15.6792 15.5495 15.4928 15.5870 15.2722 
10 15.5495 15.5307 15.4593 15.5526 15.4255 15.5690 
20 15.4593 15.4646 15.5235 15.4999 15.5147 15.4806 
30 15.5267 15.4938 15.4732 15.5058 15.4963 15.5100 
40 15.5235 15.5094 15.4917 15.5061 15.4870 15.4593 
50 15.5010 15.461~ 15.5012 15.4851 15.4882 15.5012 
60 15.4732 15.4830 15.4938 15.4935 15.4967 15.4839 
70 15.4741 15.5005 15.4792 15.4983 15.4649 15.4795 
80 15.4917 15.4935 15.4848 15.4942 15.4936 15.4675 
90 15.4996 15.4723 15.4923 15.4853 15.4915 15.4850 

100 15.5012 15.4784 15.4936 15.4886 15.4700 15.4906 
200 15.4936 15.4836 15.4827 15.4871 15.4900 15.4820 
300 15.4893 15.4843 15.4847 15.4874 15.4882 15.4843 
400 15.4827 15.4868 15.4842 15.4878 15.4820 15.4847 
500 15.4890 15.4863 15.4859 15.4875 15.4874 15.4863 

Exercise price X = 100, Black-Scholes= 9.63487 
5 10.0474 9.5655 9.4278 9.5928 9.7596 9.8295 

10 9.4278 9.8244 9.5306 9.6166 9.4394 9.7258 
20 9.5306 9.6832 9.5826 9.6290 9.6803 9.6018 
30 9.5652 9.6081 9.6000 9.6327 9.6510 9.5841 
40 9.5826 9.5953 9.6087 9.6343 9.5895 9.6412 
50 9.5930 9.6352 9.6139 9.6352 9.6348 9.6534 
60 9.6000 9.6522 9.6174 9.6357 9.6509 9.6503 
70 9.6049 9.6581 9.6199 9.6360 9.6473 9.6390 
80 9.6087 9.6581 9.6218 9.6363 9.6340 9.6474 
90 9.6116 9.6550 9.6232 9.6364 9.6161 9.6463 

100 9.6139 9.6500 9.6244 9.6365 9.6281 9.6347 
200 9.6244 9.6419 9.6296 9.6367 9.6397 9.6390 
300 9.6279 9.6341 9.6314 9.6366 9.6381 9.6372 
400 9.6296 9.6379 9.6323 9.6365 9.6357 9.6364 
500 9.6307 9.6374 9.6328 9.6364 9.6308 9.6361 

Exercise price X = 110, Black-Scholes= 5.5871 
5 5.1367 5.9665 5.7062 5.6916 5.4322 5.4600 

10 5.7062 5.6228 5.4754 5.6030 5.5587 5.5847 
20 5.4754 5.6419 5.6295 5.6361 5.5988 5.6174 
30 5.6056 5.6378 5.6022 5.5787 5.6050 5.6139 
40 5.6295 5.6318 5.5601 5.6034 5.6055 5.6085 
50 5.6214 5.6260 5.5943 5.6076 5.6045 5.6061 
60 5.6022 5.6210 5.6020 5.5970 5.6030 5.6025 
70 5.5795 5.6166 5.5973 5.5807 5.6015 5.6006 
80 5.5601 5.6128 5.5866 5.5926 5.6000 5.5792 
90 5.5820 5.6094 5.5755 5.5976 5.5985 5.5670 

100 5.5943 5.6064 5.5874 5.5971 5.5972 5.5916 
200 5.5874 5.5878 5.5916 5.5860 5.5881 5.5909 
300 5.5848 5.5820 5.5901 5.5885 5.5829 5.5902 
400 5.5916 5.5883 5.5889 5.5878 5.5840 5.5893 
500 5.5832 5.5903 5.5863 5.5863 5.5869 5.5865 
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Table 3. European Puts Valued by Various Models.under Lognormal Distribution 
(S = 100, r = 5%, cr = 30%, T = 6 months) 

Numerical Model 

Time Steps CRR GBIN BOYLE TTRINl TTRIN2 GTRIN 
Exercise price X = 90, Black-Scholes= 3.2639 

5 3.0386 3.4571 3.3274 3.2707 3.3649 3.0501 
10 3.3274 3.3086 3.2372 3.3305 3.2034 3.3469 
20 3.2372 3.2425 3.3014 3.2778 3.2926 3.2585 
30 3.3046 3.2717 3.2511 3.2836 3.2742 3.2879 
40 3.3014 3.2873 3.2696 3.2839 3.2649 3.2372 
50 3.2789 3.2392 3.2791 3.2629 3.2661 3.2791 
60 3.2511 3.2608 3.2717 3.2714 3.2746 3.2618 
70 3.2520 3.2784 3.2571 3.2762 3.2428 3.2574 
80 3.2696 3.2713 3.2627 3.2721 3.2715 3.2454 
90 3.2775 3.2502 3.2702 3.2632 3.2694 3.2629 

100 3.2791 3.2563 3.2715 3.2664 3.2479 3.2682 
200 3.2715 3.2615 3.2606 3.2649 3.2679 3.2599 
300 3.2672 3.2622 3.2626 3.2652 3.2661 3.2619 
400 3.2606 3.2646 3.2621 3.2656 3.2599 3.2625 
500 3.2669 3.2642 3.2638 3.2652 3.2653 3.2642 

Exercise price X = 100, Black-Scholes= 7.1659 
5 7.5784 7.0965 6.9588 7.1238 7.2906 7.3605 

10 6.9588 7.3554 7.0616 7.1476 6.9704 7.2568 
20 7.0616 7.2142 7.1135 7.1599 7.2113 7.1328 
30 7.0962 7.1391 7.1309 7.1637 7.1820 7.1151 
40 7.1135 7.1263 7.1397 7.1653 7.1205 7.1722 
50 7.1240 7.1662 7.1449 7.1662 7.1658 7.1844 
60 7.1309 7.1832 7.1484 7.1667 7.1819 7.1813 
70 7.1359 7.1891 7.1509 7.1670 7.1783 7.1700 
80 7.1397 7.1891 7.1528 7.1673 7.1650 7.1784 
90 7.1426 7.1859 7.1542 7.1674 7.1471 7.1773 

100 7.1449 7.1810 7.1554 7.1675 7.1591 7.1653 
200 7.1554 7.1729 7.1606 7.1677 7.1707 7.1700 
300 7.1589 7.1651 7.1624 7.1675 7.1690 7.1680 
400 7.1606 7.1689 7.1632 7.1674 7.1666 7.1672 
500 7.1617 7.1684 7.1638 7.1673 7.1618 7.1671 

Exercise price X ~ 110, Black-Scholes= 12.8712 
5 12.4208 13.2506 12.9903 12.9757 12.7162 12.7441 

10 12.9903 12.9069 12.7595 12.8871 12.8428 12.8688 
20 12.7595 12.9260 12.9136 12.9202 12.8829 12.9015 
30 12.8897 12.9219 12.8863 12.8628 12.8891 12.8980 
40 12.9136 12.9159 12.8442 12.8875 12.8896 12.8926 
50 12.9055 12.9101 12.8784 12.8917 12.8886 12.8902 
60 12.8863 12.9051 12.8861 12.8811 12.8871 12.8866 
70 12.8636 12.9007 12.8814 12.8648 12.8856 12.8847 
80 12.8442 12.8969 12.8707 12.8767 12.8841 12.8633 
90 12.8660 12.8935 12.8596 12.8817 12.8826 12.8511 

100 12.8784 12.8905 12.8715 12.8812 12.8813 12.8753 
200 12.8715 12.8719 12.8757 12.8702 12.8721 12.8750 
300 12.8689 12.8661 12.8742 12.8727 12.8670 12.8741 
400 12.8757 12.8724 12.8730 12.8719 12.8681 12.8732 
500 12.8673 12.8744 12.8704 12.8705 12.8710 12.8706 
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Table 4. Average European Options Pricing Errors of Various Models under 
Lognormal Distribution 

(S = 100, r = 5%, cr = 30%, T = 6 months) 
Numerical Model 

Time Steps CRR GBIN BOYLE TTRlNl TTRlN2 GTRlN 
Call Prices 

5 4.599% 2.920% 1.564% 0.784% 1.573% 1.892% 
10 1.564% 0.965% l.085'Vo 0.301% 0.976% 0.507% 
20 1.085% 0.540% 0.515% 0.343% 0.289% 0.307% 
30 0.439% 0.412% 0.239% 0.100% 0.185% 0.387% 
40 0.515% 0.454% 0.264% 0.143% 0.269% 0.207% 
50 0.382% 0.287% 0.148% 0.125% 0.109% 0.210% 
60 0.239% 0.269% 0.166% 0.079% 0.174% 0.150% 
70 0,174% 0.288% 0.127% 0.069% 0.174% 0.109% 
80 0.264% 0.250% 0.051% 0.055% 0.096% 0.130% 
90 0.141% 0.232% 0.123% 0.069% 0.145% 0.161% 

100 0.148% 0.184% 0.055% 0.071% 0.118% 0.037% 
200 0.055% 0.034% 0.052% 0.015% 0.031% 0.046% 
300 0.045% 0.037% 0.033% 0.017% 0.041% 0.030% 
400 0.052% 0.019% 0.024% 0.013% 0.030% 0.021% 
500 0.044% 0.029% 0.012% 0.013% 0.018% 0.009% 

Put Prices 
5 5.386% 3.279% 1.920% 0.536% 2.013% 3.418% 

10 1.920% 1.431% 1.047% 0.807% 1.601% 1.277% 
20 1.047% 0.585% 0.737% 0.297% 0.535% 0.287% 
30 0.788% 0.336% 0.332% 0.234% 0.227% 0.551% 
40 0.737% 0.538% 0.251% 0.250% 0.269% 0.357% 
50 0.437% 0.355% 0.272% 0.064% 0.068% 0.291% 
60 0.332% 0.199% 0.200% 0.107% 0.226% 0.133% 
70 0.280% 0.333% 0.166% 0.148% 0.310% 0.120% 
80 0.251% 0.251% 0.074% 0.105% 0.115% 0.267% 
90 0.261% 0.291% 0.149% 0.042% 0.174% 0.115% 

100 0.272% 0.197% 0.128% 0.060% 0.221% 0.057% 
200 0.128% 0.059% 0.069% 0.021% 0.066% 0.070% 
300 0.072% 0.034% 0.037% 0.025% 0.049% 0.037% 
400 0.069% 0.025% 0.035% 0.027% 0.052% 0.026% 
500 0.060% 0.023% 0.013% 0.022% 0.034% 0.011% 

average pricing error from each of the models, except the CRR for puts, is less than 

0.05%. If we rank the accuracy of the various models with 500 steps, though 

thedifference is small, the most accurate one is the GTRIN. The GBIN is usually not as 

accurate as the trinomial tree models, but definitely more accurate than the CRR. With a 

266 MHz Pentium II computer, for 500 steps, the CRR and GBIN models spend the 
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minimum time, less thanl second, the BOYLE, TTRINl and TTRIN2 spend medium, 2 

seconds, and the GTRIN model spends the most, 3 seconds. Thus, actually, computing 

efficiency is not a problem, though convergence speed is somewhat different from model 

to model. 

For American put options, since there is no analytic pricing formula available as 

the comparison criterion, the values simulated by all six tree models are reported in Table 

5. The values from all models with 500 steps are very close to each other. In summary, if 

the true underlying distribution is lognormal, the general tree models, especially the 

general trinomial tree model, can be at least as accurate as any other tree models. 

For the case of a jump-diffusion process, the European option values simulated by 

the general binomial and trinomial trees are summarized in Table 6. Since all tree models 

other than the general binomial and trinomial trees are based on the lognormal 

distribution and thus do not capture the impact of the additional parameters 11, and y, the 

option values simulated by these tree models are the same as shown in Tables 2 and 3. 

The average pricing errors by all six models under the jump-diffusion price process are 

reported in Table 7. We see that if the number of the steps is large enough, the average 

pricing errors of the two general tree models developed by this study are consistently 

below one percent while the errors of the other tree models are consistently larger than 

one percent. Though the accuracy seems not as satisfactory as in the case of the 

lognormal distribution, both the general binomial and trinomial tree models are 

significantly more accurate than the CRR, BOYLE, TTRINl and TTRIN2. 
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Table 5. American Puts Valued by Various Models under Lognormal Distribution 
(S = 100, r = 5%, cr = 30%, T = 6 months) 

Numerical Model 

Time Steps CRR GBIN BOYLE TTRINl TTRIN2 GTRIN 
Exercise price X = 90 

5 3.1183 3.5038 3.3967 3.3686 3.3891 3.1168 
10 3.4343 3.3675 3.3050 3.4029 3.2768 3.4089 
20 3.3189 3.3353 3.3780 3.3638 3.3653 3.3278 
30 3.3838 3.3477 3.3353 3.3634 3.3473 3.3616 
40 3.3846 3.3687 3.3483 3.3657 3.3435 3.3151 
50 3.3655 3.3274 3.3584 3.3476 3.3421 3.3550 
60 3.3401 3.3406 3.3528 3.3527 3.3524 3.3418 
70 3.3358 3.3586 3.3400 3.3574 3.3246 3.3360 
80 3.3511 3.3539 3.3435 3.3543 3.3493 3.3268 
90 3.3588 3.3355 3.3504 3.3466 3.3488 3.3419 

100 3.3609 3.3377 3.3521 3.3482 3.3300 3.3475 
200 3.3533 3.3443 3.3428 3.3471 3.3480 3.3417 
300 3.3488 3.3438 3.3442 3.3469 3.3467 3.3432 
400 3.3435 3.3460 3.3439 3.3471 3.3416 3.3440 
500 3.3485 3.3456 3.3454 3.3467 3.3462 3.3456 

Exercise price X = 100 
5 7.7896 7.3958 7.2135 7.3960 7.4632 7.4946 

10 7.2768 7.5649 7.3063 7.3938 7.1837 7.4392 
20 7.3358 7.4495 7.3522 7.3948 7.4090 7.3524 
30 7.3558 7.3829 7.3664 7.3957 7.3954 7.3403 
40 7.3654 7.3612 7.3732 7.3966 7.3520 7.3884 
50 7.3710 7.3918 7.3776 7.3970 7.3845 7.4010 
60 7.3748 7.4073 7.3805 7.3971 7.4014 7.4023 
70 7.3777 7.4137 7.3824 7.3970 7.4001 7.3933 
80 7.3798 7.4147 7.3840 7.3970 7.3907 7.4005 
90 7)814 7.4127 7.3851 7.3969 7.3753 7.3990 

100 7.3827 7.4090 7.3861 7.3968 7.3848 7.3906 
200 7.3884 7.4001 7.3901 7.3964 7.3959 7.3974 
300 7.3903 7.3945 7.3915 7.3960 7.3955 7.3953 
400 7.3912 7.3967 7.3921 7.3958 7.3937 7.3947 
500 7.3918 7.3967 7.3925 7.3956 7.3902 7.3951 

Exercise price X = 110 
5 13.1908 13.6652 13.4161 13.4303 13.1815 13.2582 

10 13.4744 13.4547 13.3010 13.4280 13.2886 13.3278 
20 13.3386 13.4483 13.4124 13.4304 13.3477 13.3826 
30 13.4224 13.4374 13.3922 13.3870 13.3889 13.3939 
40 13.4311 13.4280 13.3680 13.4054 13.3797 13.3904 
50 13.4199 13.4208 13.3930 13.4066 13.3930 13.3913 
60 13.4029 13.4167 13.3975 13.3972 13.3901 13.3933 
70 13.3860 13.4121 13.3938 13.3873 13.3893 13.3892 
80 13.3769 13.4088 13.3857 13.3954 13.3933 13.3761 
90 13.3917 13.4059 13.3799 13.3983 13.3910 13.3697 

100 13.3995 13.4033 13.3885 13.3973 13.3887 13.3875 
200 13.3917 13.3892 13.3912 13.3890 13.3873 13.3910 
300 13.3878 13.3859 13.3902 13.3903 13.3837 13.3898 
400 13.3927 13.3901 13.3895 13.3895 13.3850 13.3891 
500 13.3868 13.3912 13.3878 13.3883 13.3867 13.3879 
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Table 6. European Options Valued by Various Models under Jump-Diffusion 
Process 

(S = 100, r = 5%, cr = 30%, T = 6 months, "A,= 5, y = 50%) 
Call Put 

Time Steps GBIN GTRIN GBIN GTRIN 
Exercise price X = 90, Merton= 15.4279 Exercise price X = 90, Merton= 3.2065 

5 15.6452 15.1594 3.4230 2.9373 
10 15.4244 15.4707 3.2023 3.2486 
20 15.4215 15.3584 3.1994 3.1363 
30 15.4182 15.3976 3.1961 3.1755 
40 15.4487 15.4251 3.2266 3.2030 
50 15.4348 15.4254 3.2127 3.2033 
60 15.4281 15.4287 3.2060 3.2066 
70 15.4318 15.4317 3.2097 3.2096 
80 15.4351 15.4233 3.2130 3.2011 
90 15.4226 15.4107 3.2005 3.1886 

100 15.4097 15.4140 3.1876 3.1918 
200 15.4263 15.4179 3.2042 3.1958 
300 15.4217 15.4243 3.1996 3.2022 
400 15.4243 15.3648 3.2022 3.1267 
500 15.4234 15.4198 3.2013 3.1977 

Exercise price X = 100, Merton= 9.5229 Exercise price X = 100, Merton= 7.0541 
5 9.2772 9.7138 6.8082 7.2448 

10 9.3956 9.6687 6.9266 7.1997 
20 9.5805 9.6463 7.1115 7.1773 
30 9.6604 9.5851 7.1914 7.1161 
40 9.5476 9.6105 7.0786 7.1414 
50 9.6296 9.5928 7.1606 7.1238 
60 9.6278 9.5769 7.1588 7.1079 
70 9.6190 9.5758 7.1500 7.1068 
80 9.6183 9.6086 7.1493 7.1396 
90 9.6188 9.5906 7.1498 7.1216 

100 9.6049 9.6052 7.1359 7.1362 
200 9.5994 9.5950 7.1304 7.1260 
300 9.5860 9.6028 7.1170 7.1338 
400 9.6001 9.5591 7.1311 7.0741 
500 9.5939 9.5986 7.1249 7.1296 

Exercise price X = 110, Merton= 5.4859 Exercise price X = 110, Merton= 12.7695 
5 5.9923 5.7325 13.2764 13.0165 

10 5.7500 5.6114 13.0341 12.8955 
20 5.5932 5.6092 12.8773 12.8933 
30 5.6282 5.6247 12.9123 12.9088 
40 5.6374 5.5784 12.9215 12.8625 
50 5.5730 5.5987 12.8571 12.8827 
60 5.6054 5.5638 12.8895 12.8479 
70 5.6185 5.5891 12.9026 12.8732 
80 5.6151 5.5912 12.8992 12.8753 
90 5.6125 5.6016 12.8966 12.8857 

100 5.6073 5.5965 12.8914 12.8806 
200 5.5973 5.5936 12.8814 12.8777 
300 5.5956 5.5871 12.8797 12.8711 
400 5.5947 5.5501 12.8788 12.8182 
500 5.5828 5.5864 12.8669 12.8705 
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Table 7. Average European Options Pricing Errors of Various Models under Jump-
Diffusion Process 

(S = 100, r = 5%, cr = 30%, T = 6 months, "A= 5, y = 0.5) 
Numerical Model 

Time Steps CRR GBIN BOYLE TTRINl TTRIN2 GTRIN 
Call Prices 

5 4.319% 4.406% 1.934% 1.635% 1.499% 2.746% 
10 1.934% 2.058% 0.159% 1.309% 0.740% 1.365% 
20 0.159% 0.867% 1.288% 1.440% 1.424% 1.331% 
30 1.089% 1.367% 1.074% 1.116% 1.320% 1.127% 
40 1.288% 1.052% 0.889% 1.273% 1.088% 0.874% 
50 1.226% 0.918% 1.136% 1.256% 1.243% 0.935% 
60 1.074% 1.094% 1.179% 1.212% 1.308% 0.664% 
70 0.956% 1.151% 1.127% 1.124% 1.218% 0.820% 
80 0.889% 1.135% 1.081% 1.189% 1.224% 0.950% 
90 1.049% 1.117% 1.035% 1.200% 1.148% 0.977% 

100 1.136% 1.064% 1.114% 1.204% 1.136% 0.990% 
200 1.114% 0.948% 1.135% 1.135% 1.164% 0.928% 
300 1.101% 0.901% 1.136% 1.150% 1.123% 0.902% 
400 1.135% 0.939% 1.130% 1.146% 1.108% 0.653% 
500 1.101% 0.847% 1.120% 1.136% 1.120% 0.893% 

Put Prices 
5 5.134% 4.736% 2.283% 1.535% 2.903% 4.345% 

10 2.283% 1.337% 0.381% 2.038% 0.620% 1.455% 
20 0.381% 0.627% 1.644% 1.635% 1.934% 1.635% 
30 1.532% 1.130% 1.131% 1.563% 1.620% 0.979% 
40 1.644% 0.721% 1.255% 1.639% 1.234% 0.692% 
50 1.437% 0.796% 1.468% 1.435% 1.458% 0.659% 
60 1.131% 0.814% 1.428% 1.498% 1.619% 0.460% 
70 1.105% 0.833% 1.275% 1.506% 1.267% 0.552% 
80 1.255% 0.857% 1.314% 1.496% 1.499% 0.736% 
90 1.408% 0.847% 1.370% 1.417% 1.389% 0.809% 

100 1.468% 0.902% 1.421% 1.450% 1.218% 0.831% 
200 1.421% 0.677%· 1.343% 1.406% 1.457% 0.734% 
300 1.385% 0.657% 1.368% 1.415% 1.418% 0.687% 
400 1.343% 0.694% 1.364% 1.417% 1.344% 1.051% 
500 1.391% 0.643% 1.377% 1.408% 1.385% 0.713% 

From the numerical simulations we see that, when the information about the 

underlying distribution is given, the general binomial and trinomial models are at least as 

accurate as the other tree models when the distribution is lognormal. When the 

underlying distribution is different from the lognormal, the general models are more 

accurate than the other models. Next, we will examine the relative accuracy of the 
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general models with unknown underlying distributions by using real data on futures 

options. 

Empirical Study 

Procedure 

The accuracy of the general binomial and trinomial models relative to the other 

models is examined by measuring the forecasting errors of the alternative models. The 

empirical study consists of three steps. First, the necessary parameters in various option 

pricing models are daily implied by using the historical data on three futures options. 

Second, the implied parameters for every business day and the real data on the next day 

are substituted into the pricing models to calculate the option values. These are the 

predicted tomorrow's option premiums based on today's information. The daily 

forecasting errors of the various models are then measured. Finally, the daily forecasting 

errors from different pricing models are presented by graphs and summarized by 

descriptive statistics. 

The parameters in all six option pricing models will be implied. Given a model and 

the data of a business day, the implied parameters are found by solving a non-linear 

programming problem 

N M 

minI(Call; -c(F,r,T,X;,()))2 + I(Put1 - p(F,r,T,X1 ,e))2 

(J i=l J=l 

where Call; is the observed option premium for the i-th call contract, Put1 is the 

observed option premium for the j-th put contract, c(·) and p(·) are option formulas for 

calls and puts respectively, Fis the observed futures price, r is the observed risk-free 
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interest rate, Tis the time of expiration of the option contract, X; and X 1 are the strike 

prices for the i-th call and the j-th put respectively, (} is the parameter vector to be 

implied. The six option pricing models considered are the Black-Scholes formula, the 

Jarrow-Rudd approximate formula, the Cox-Ross-Rubinstein binomial tree model, the 

Boyle trinomial tree model, and the general binomial and trinomial tree models 

developed in this study. All these models have been discussed before. However, since the 

underlying assets are futures rather than stocks, some modifications for the models 

should be noted. Specifically, the Black-Scholes formulas for calls and puts are 

with 

d _ ln(F IX)+ a 2T I 2 
I - aJf and 

d _ ln(F/ X)-a2T /2 -d _ r;;;T 
2 - - I CT'\/ 1 

aJf 

where F is the futures price, and the other notations are the same as defined before. The 

Jarrow-Rudd approximate option pricing formula for a call is still defined as Eq. (16) 

except that the Black-Scholes formula in it is the futures version as presented above. The 

formula for put options can be obtained by put-call parity. Since the futures price itself is 

an expectation of a spot price, the expected futures price in the future is the current 

futures price. Thus the expected ratio of the futures price in a future time over the current 

futures price is equal to one, so that the first moment condition in the Cox-Ross-

Rubinstein binomial tree model and in the general binomial tree model is 
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uq +d(l-q) = 1 

instead of 

uq+d(l-q)=erAt 

1-d 
or q=-­

u-d 

erAt -d 
or q=--­

u-d 

For the same reason, the first moment condition in the Boyle trinomial tree model and in 

the general trinomial tree model is 

rather than 

Only one parameter, the volatility a, is implied in the Black-Scholes, the Cox-Ross-

Rubinstein binomial, and the Boyle trinomial models. In the Jarrow-Rudd model, by 

using an assumption that the second cumulant of the true underlying distribution is equal 

to the one of the lognormal distribution, i.e. k2 = k2 (G) (refer to Eq. (16)), there are three 

parameters, i.e. a, k2 and k3 , to be implied. For the general binomial tree model, two 

parameters u and d are implied while the parameter q is related to u and d by the first 

moment condition. For the general trinomial tree model, move magnitudes u, m, d, and 

any two of the three probabilities corresponding to the move magnitudes need to be 

implied. 

For the tree models, the number of time periods needs to be determined. Intuitively, 

it seems that the larger the number of the steps, the smaller the fit error. However, 

experiments showed that increasing the step number did not reduce the fit errors. 

Generally, five steps can guarantee the fit error, i.e. the objective value in the nonlinear 

programming for implying the parameters, very small. 
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Once the implied parameters are obtained, the forecasting performance for each of 

the six models is measured by out-of-sample fit errors. This is a procedure of using 

yesterday's implied parameters to predict today's option prices. The forecasting error is 

the measure of the performance of the implied parameters. This study adopts the 

following measurement for the absolute forecasting error at time t: 

N M 

error,= II Call;, -c(Fi,r,,T,,Xit,B,_1) I+ II Put11 - p(F'i,r,,T,,XJl'B,_1 ) I 
i=I }=I 

To compare the performances of the models, we measure the forecasting errors in terms 

of per dollar value of the total option premium: 

error, 
(35) 

N M 

Icallil + IPutj, 
i=I j=I 

For companson convenience, the forecasting errors obtained by (35) are further 

normalized in terms of the errors from the Black-Scholes model. That is, the forecasting 

errors from each of the six models are divided by the errors from the Black-Scholes 

model. By this way, the forecasting errors of the Black-Scholes always equal one. The 

accuracy of the other models relative to the Black-Scholes can be easily detected by 

watching whether the normalized forecasting errors are larger than one or not. 

Finally, all forecasting error series are graphed together to present the relative 

accuracy intuitively. Since the forecasting errors are normalized, only the series other 

than the one from the Black-Scholes need to be graphed. The sample mean and standard 

deviation for all six series are also calculated for comparison. 

Data 
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The data that will be used in the empirical study consist of daily futures prices and 

premiums of futures options for each of three commodities - com, soybeans and wheat. 

Daily 3-month U.S. treasury bill yields will be used as the risk-free interest rates. All the 

data are from the Chicago Board of Trade. The time periods covered vary by the futures 

options but run from 200 days before the expirations of the options. The contracts for the 

futures options are July Com, November Soybean and July Wheat. All the contracts are 

in 1998. 

For a given futures in a business day, option quotes corresponding to different 

strike prices can be as many as 40. Not all these observations reflect the true relationships 

between the option premiums and the parameters in the option pricing models. The 

quotes that do not reflect the true price relationship are called "stale" prices. Stale prices 

can be easily identified by trading volume, since there would be no trade for incorrectly 

priced options. Thus an ideal method to filter the data is to assign a level of trading 

volume and only use the quotes with trading volume above the level. Since the trading 

volume data are not available, this study adopts a proxy method. Only quotes with strike 

prices higher or lower than the futures price by no more than 15% are considered valid. 

This method is based on the fact that there would be no transactions for options that are 

too deep in-the-money or too deep out-of-the-money. 

Results 

By using the forecasting error of the Black-Scholes formula as the basis, the 

relative forecasting errors of other models with the three commodity futures are shown in 

the three figures. For com (see Figure 3), by using yesterday's implied parameters, all the 
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models other than the Black-Scholes, except for the Boyle trinomial model, forecast the 

option prices more accurate than the Black-Scholes formula. Among the models, the most 

accurate ones are the general binomial tree and general trinomial tree models, whose 

forecasting errors are less than 80% of Black-Scholes. The Jarrow-Rudd model, though 

more accurate than the Black-Scholes, is not as accurate as the general binomial and 

trinomial models. The Cox-Ross-Rubinstein binomial model is about as accurate as the 

Black-Scholes. The Boyle trinomial model is obviously less accurate than Black-Scholes. 

Figure 4 shows that the relative accuracy among the models for soybean futures is 

about the same as for corn futures. The two general tree models are still the most accurate 

ones. However, different from the corn futures, the Jarrow-Rudd model performs about 

as well as the two general tree models. Also, both the Cox-Ross- Rubinstein and the 

Boyle models are less accurate than the Black-Scholes. Between these two models, the 

Cox-Ross-Rubinstein binomial model is a little better. Generally, the American option 

pricing models did not perform as well for pricing November 1998 soybeans as their 

European counterparts. 

As shown in Figure 5, there are only small differences among the models for the 

wheat futures options. The general binomial and trinomial trees as well as the Jarrow­

Rudd model are more accurate than the Black-Scholes, but not very much. The Cox­

Ross-Rubinstein binomial model is less accurate than the Black-Scholes, but not very 

much either. The least accurate model is still the Boyle trinomial tree model. The 

descriptive statistics for the forecasting errors of the six option pricing models on the 

three commodity futures are summarized in Table 8. 
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Figure 3. Forecasting Error Comparison for 1998 July Corn Contract 
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Figure 4. Forecasting Error Comparison for 1998 September Soybean Contract 
(Black-Scholes =l) 
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(Black-Scholes= 1) 
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Table 8. Descriptive Statistics of Forecasting Errors of Various Models (%) 
Model 

Black- Jarrow- Cox-Ross Boyle General General 
Commodity Scholes Rudd -Rubinstein Binomial Trinomial 
Com Mean 4.55 3.49 4.32 5.74 2.75 2.85 

Std 2.17 1.53 2.14 2.84 1.29 1.37 
Soybean Mean 8.46 5.60 9.33 9.83 6.36 5.64 

Std 4.26 2.74 5.10 5.00 3.48 4.00 
Wheat Mean 3.07 2.03 3.61 6.28 2.54 2.60 

Std 1.02 0.70 1.02 2.14 0.68 0.77 

N N 

L !Call ti - c( e,_1 )I +LI Put lj - p( e,_1 )I 
i=l j=l 

Note: The forecasting error is defined as N M , where Callti is the 

L Call;, + L Put jt 
i=l j=l 

premium for the i-th call option contract at the t-th day, Pu1tj is the premium for thej-th put option contract 
at the t-th day, c(B) and p(B) are the pricing formulas for call and put options respectively with () as the 
parameter vector in the formulas. 

In summary, the general binomial and trinomial trees are more accurate than the 

Black-Scholes formula. Between the general binomial and trinomial trees, the general 

binomial tree performs as accurate as the general trinomial tree. This suggests that for 

these grain futures, capturing skewness was important, but kurtosis was not. So see this, 

the skewness and kurtosis of the three commodity futures price ratios, calculated by using 

the implied parameters and Gaussian quadrature equations, are graphed in Figure 6 to 

Figure 11. In view of the fact that the binomial tree is simpler than the trinomial tree, the 

former should be more favorable than the latter. Since the Cox-Ross-Rubinstein binomial 

and the Boyle trinomial trees are always the two poorest among the six models examined, 

they should never be used to imply the volatility parameter. Such results are consistent 

with intuition. Since some constraints in the Cox-Ross-Rubinstein and the Boyle models 

are artificial, there must be some correct relationship among the parameters being 

violated. Since more artificial constraints are added in the Boyle trinomial, its forecasting 
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Figure 6. Skewness of 1998 July Corn Futures 
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Figure 7. Kurtosis of 1998 July Corn Futures 
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Figure 9. Kurtosis of 1998 September Soybean Futures 
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Figure 10. Skewness of 1998 July Wheat Futures 
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Figure 11. Kurtosis of 1998 July Wheat Futures 
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performance is worse than the less restricted one, the Cox-Ross-Rubinstein binomial tree 

model. It is clear that, to imply the parameters in the option pricing models and use the 

implied parameters to predict the option prices in the future, the Jarrow-Rudd model is 

always more accurate than the Black-Scholes. The fact that Jarrow-Rudd model has 

accuracy similar to the general binomial and trinomial trees offers further evidence that 

the bias in Black-Scholes for these data series is in ignoring skewness rather than 

ignoring kurtosis or any American option premium. 
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CHAPTER FIVE 

CONCLUSIONS 

The inaccuracy problem of the Black-Scholes formula is due in part to assuming a 

lognormal distribution and the fact that the formula is only applicable to European 

options while most options in practice are American. Previously developed option pricing 

models can handle one of the inaccuracy sources, but not both. Specifically, the Jarrow­

Rudd model allows arbitrary underlying distributions, but is not suitable for American 

options. The Cox-Ross-Rubinstein binomial tree model and the Boyle trinomial tree 

model can handle American options, but are not suitable when the underlying distribution 

is non-lognormal. The advantage of the general binomial tree and the general trinomial 

tree option pricing models developed in this study is that they can value American 

options with arbitrary underlying asset price distributions. 

The general binomial tree and the general trinomial tree models developed in this 

study have the same lattices as the previous binomial and trinomial trees. The 

unnecessary ad hoc restrictions imposed in previous studies are dropped. This study 

derives the parameters based on Gaussian quadrature. This allows calculating the 

parameters in the binomial tree and the trinomial tree based on the parameters of the 

underlying distribution. Implied moments can also be calculated directly from implied 

parameters. The solution of a Gaussian quadrature equation system is a standard method 

of numerical quadrature, but past binomial and trinomial models have been developed 

without using the power and generality of Gaussian quadrature. Tian' s binomial and 

trinomial trees are also based on Gaussian quadrature. However, Tian's tree models only 
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apply to lognormally distributed underlying asset prices and thus are only special cases of 

the general tree models. Moreover, Tian presented an analytical solution for his trinomial 

tree model based on the moments up to the fourth and a recombining condition, but did 

not explain how the analytical solution is derived. It is not practical to find an analytical 

solution for such an equation system in the general trinomial case. For the general 

trinomial tree model, this study uses a numerical solution based on nonlinear 

programming, but other ways of solving a system of nonlinear equations could also work. 

Using a Taylor series expansion, this study shows that the general binomial tree 

model converges to a third order partial differential equation. The well-known Black­

Scholes equation can be considered as a special case of this general differential equation. 

Furthermore, using the derivation similar to the method in Cox-Ross-Rubinstein (1979), 

this study expresses the general binomial tree formula for a call option with a fixed 

period of time before expiration as a linear combination of two binomial distribution 

functions. Then, by the central limit theorem, it is shown that the asymptotic limit of the 

general binomial tree model is a linear combination of two standard normal distribution 

functions with a form similar to the Black-Scholes formula. Generally, the arguments in 

the two standard normal distribution functions are unknown so that the limit of the 

general binomial tree is generally different from the Black-Scholes formula. When the 

underlying asset prices follow a lognormal distribution, the limit of the general binomial 

tree reduces to the Black-Scholes. 

The numerical accuracy and efficiency of the general tree models was measured for 

examples where the true premium was known since it could be obtained analytically. 

Under the lognormal distribution, where the Black-Scholes formula gives the exact 
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premium, the general tree models are at least as accurate as, or more accurate than, the 

other tree models. Under Merton's jump-diffusion process, with Merton's jump-diffusion 

model as the criterion, the general binomial and trinomial tree models are much more 

accurate than the other tree models. The comparison results under these two underlying 

asset price processes demonstrate that the superiority of the general tree models over the 

previous tree models is the "insensitivity to distribution". Though, strictly speaking, the 

calculation for the general trinomial tree is little less efficient compared to the previous 

trinomial models, this one-second more time spending for a 500-step tree can be ignored 

in practice. 

Next, the parameters in the option pricing models were implied by using .real data. 

Then the parameters implied today were used to forecast tomorrow's option premiums. 

The empirical results from this examination show that, for the futures options on com, 

soybean and wheat, the general tree models always forecast option premiums more 

accurately than the Cox-Ross-Rubinstein binomial model and the Boyle trinomial model. 

The general tree models are more accurate than the previous tree models because 

dropping the unnecessary constraints allows capturing skewness with the general 

binomial and skewness as well as kurtosis with the general trinomial models. While these 

constraints make the algorithm more convenient, they may violate some correct 

relationship between discrete moments and continuous moments. The impact of the 

incorrect constraints on the forecasting accuracy can also be detected by watching the 

accuracy difference between the Cox-Ross-Boyle binomial model and the Boyle 

trinomial model. The Boyle trinomial model predicts the option premiums less accurately 

than the Cox-Ross-Rubinstein binomial model because there are more additional 
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constraints in the Boyle than in the Cox-Ross-Rubinstein. The forecasting accuracy of the 

Jarrow-Rudd model verses the general tree models can be explained by the different 

sources of pricing biases. The bias of the Jarrow-Rudd model is mainly from valuing 

American options by the European option pricing model, while the truncation errors in 

numerical option pricing models is the main bias source of the general binomial and 

trinomial trees. Thus, relative accuracy of the Jarrow-Rudd to the general trees depends 

on the magnitude of the "American-European" error compared to the truncation error in 

the general trees. The empirical results on the three commodity futures options show that 

there is no consistent pattern about the accuracy comparison between the Jarrow-Rudd 

and the general tree models. Sometimes, the Jarrow-Rudd may forecast premiums more 

accurately than the general trees. Other times, the general trees may be more accurate. 

The Jarrow-Rudd model having accuracy close to that of the general tree models suggests 

that for this set of data, the lognormal distribution assumption is a more important source 

of error in the Black-Scholes model than using an European option pricing model to price 

American options. 

This study contributes to theory about the binomial tree and trinomial tree models 

in several aspects. It provides a general way to derive binomial and trinomial tree models 

for any arbitrary distribution with finite moments. By approaching the pricing problem as 

a dynamic programming problem using Gaussian quadrature, the model can much more 

easily handle varied situations than present restricted models that are not as closely linked 

with the va~t numerical analysis literature. A general differential equation is shown to be 

the limit of the binomial tree model. The limit of the general binomial tree has a general 

closed formula, which is similar to the Black-Scholes. Within this theoretical framework, 
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all previous binomial and trinomial option pricing models can be considered as special 

cases. 

The results of the numerical analysis and the empirical study show two practical 

ways to use the general binomial tree and general trinomial tree models. In practice, the 

choice between the two applications depends on the information available. When the 

standard option contracts on an asset are not available, but some information about the 

underlying distribution is available, so that the moments are available, we can use the 

moments to determine the parameters in a general tree model with Gaussian quadrature. 

Then the parameters determined by Gaussian quadrature can be substituted into the 

general tree to value the non-standard options. More attractively, even if we do not know 

the distribution form of the underlying prices, we can still determine the parameters in a 

general tree by using Gaussian quadrature equations as long as the moments of the 

underlying prices can be estimated. On the other hand, if some standard option contracts 

on an asset are available, we can use a general tree model with the observed option 

premiums to imply the parameters. Then, with the implied parameters, a non-standard 

option on the same underlying asset can be valued by the general tree. The empirical 

evidence in research about other futures already showed the superiority of the parameter 

implied by option data (Jorion). Also, the parameters implied by a general binomial or 

trinomial model provide an alternative to other methods (for instance, O'Brien, Hayenga, 

and Babcock) to forecast probability distributions of commodity futures prices. 

One of the great potential places to use the general tree models is energy market. 

Energy markets are being transformed by derivatives and risk management. What makes 

energies so different from the traditional financial markets is the excessive number of 
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fundamental pnce drivers, which cause extremely complex pnce behavior. This 

complexity frustrates people's ability to capture the essence of the market by specific 

distributions. In addition, due largely to the needs of end users, energy contracts often 

exhibit a complexity of price averaging and customized characteristics of commodity 

delivery. All these pricing difficulties present a terrific challenge to quantitative analysts 

and risk managers in the energy markets. A likely use of the general tree models is to 

derive moments from an actively traded market and use these moments in pricing over­

the-counter derivatives. Without requiring information about the underlying distributions, 

the general binomial and trinomial trees developed in this study provide an alternative 

method that captures the price behaviors, such as volatility, skewness and kurtosis, into a 

quantitative models that is also simple enough for quick and efficient everyday use on 

trading desks. 

We already know that previous binomial option pricing models are based on the 

lognormal distribution. When the number of the steps in those binomial models is large 

enough, the binomial models converge to the Black-Scholes formula, the closed form 

model based on the lognormal distribution. By analogy, a possible limit of the general 

binomial tree model is the Jarrow-Rudd approximate formula, because both the general 

binomial tree model and the Jarrow-Rudd model are based on arbitrary underlying 

distributions. This study derived a general closed form as the limit of the general 

binomial tree model. Subsequent theoretical research may want to investigate the 

relationship between the Jarrow-Rudd formula and the limit of the general tree models. 

In summary, the tree option pricing models developed in this study are general not 

only in theory but also, more importantly, in practice. Previous work about futures 
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options of agricultural commodities have shown that options can be part of an optimal 

marketing strategy (Catlett, and Boehlje; Frank, Irwin, Pfeiffer, and Curtis; Hauser, and 

Liu; Sakong, Hayes, and Hallam). The empirical results based on the general tree models 

in this study contribute to the knowledge about agricultural futures. The general tree 

models are superior over the previous option pricing models because they are appropriate 

for various availability of the information about the underlying distributions and, at the 

same time, reserve all the advantages of previous tree models. It can be expected that 

these versatile general models will become a choice of modeling tool for the practitioners 

in investment and risk management, especially in young derivatives markets such as 

weather markets. 
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