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ABSTRACT 
 

Seismogenic fault geometries are important to understanding the seismic potential of 

fault slip in natural systems. Their orientation relative to the principal tectonic stress directions 

control their susceptibility to slip. While fault orientations can be ascertained through detailed 

field mapping or subsurface imaging, rapid automatic identification of fault structures may be 

useful for future seismic hazard analysis. We apply a methodology workflow that can be 

automated and utilize central Oklahoma seismicity since 2010 as a test of the concept. To 

conduct this retrospective analysis, we utilize a Python package, easyQuake, that was recently 

developed by the Oklahoma Geological Survey (OGS), to augment their earthquake monitoring 

via pickers that are trained on millions of seismograms with neural network deep learning. The 

easyQuake software was used to analyze seismic data collected from 2009 to 2015 - specifically 

to investigate the possible migration of earthquake nucleation in the Jones, Oklahoma region - 

as well as increase the catalog completeness and accuracy. Jones is the area of interest for this 

study as it was an early case study for large volume (~1 Mbbl/mo) wastewater injection 

inducing earthquakes at greater than 10 km distances. The software outputs a catalog in 

QuakeML format, of which the associated metadata, such as pick times, can be read into 

hypoDD format. The catalog is then relocated with hypoDD to explore cluster and fault 

geometries, as well as earthquake sequence migration. With the hypoDD results, we utilize 

machine-learning techniques packaged in the Python machine-learning library scikit-learn for 

spatial clustering (e.g., DBSCAN) followed by linear regression (e.g., RANSAC) of those clusters 

to identify suspected fault segments. We identified potential instances of previously 

unmapped, seismically active segments in the Jones area and plan to expand the analysis to 
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examine a wider range of the state’s fault segments and more current seismic sequences. Many 

of the segments mapped would not have been identifiable without the expansion of the 

microseismic catalog easyQuake provides. This type of work improves our understanding of the 

seismic hazard as it increases the database of known fault segments throughout the broader 

region and shows that these seismogenic fault segments can be identified automatically. 

PLAIN LANGUAGE SUMMARY 
 

We study how central Oklahoma’s fault systems may be organized. We begin with data 

from 2010, during a time of higher-than-normal seismic activity. To study these events and 

subsurface features today, using historical data, we use easyQuake, a Python package recently 

developed by the Oklahoma Geological Survey. This package uses machine learning techniques 

to supplement the earthquake monitoring systems already in place. Data from 2009 to 2015 

was analyzed using this new software to make the catalogs both more complete and more 

accurate, and to look at how earthquakes developed in the Jones, Oklahoma region. The 

software creates a catalog file in QuakeML format; this allows the associated metadata, such as 

pick times, to be read into the hypoDD format. Jones was an early case study for large volume 

wastewater injection which was potentially causing earthquakes. HypoDD is used to relocate 

the events, which allows us to explore cluster and fault geometries, as well as earthquake 

sequence migration with machine-learning techniques. Events are sorted into clusters, followed 

by linear regression of those clusters to identify suspected fault segments. This type of work 

improves our understanding of the seismic hazard as it increases the database of known fault 

segments throughout the broader region.



 1 

CHAPTER 1: INTRODUCTION 
 

1.1 Introduction 

 
What is causing increased seismicity in Oklahoma over the last decade has been a topic of 

interest (e.g., McNamara et al., 2015; Schoenball & Ellsworth, 2017). The level of connection 

with wastewater injection wells is not entirely known, though there has been a strong 

correlation between wastewater injection volumes and seismic activity in the region (e.g., 

Keranen et al., 2014; Walter et al., 2019). One of the avenues for induced seismicity explored in 

this study is the possible relationship between hydraulic loading levels and seismic activity as is 

studied in other parts of the world (e.g., Costain & Bollinger, 2010, Foulger et al., 2017, Grasso 

et al., 2018). Due to data limitations, among other reasons, it is difficult to prove definitively if 

these events were induced or naturally occurring. “Definitively” is always difficult, though, as 

these are subsurface features whose environment is difficult to replicate for laboratory 

experiments.  

To increase the completeness and accuracy of available data, easyQuake is employed to 

create a catalog that can be further analyzed. easyQuake is an open-source Python package 

designed for automated data collection via pickers trained on millions of seismograms with 

neural network deep learning (Walter et al., 2020). The primary area of this study is central 

Oklahoma, focusing near Jones, OK as it is home to a massive wastewater injection site, 

pumping roughly 1Mbb/month (Keranen et al., 2014). Later in the study, the same techniques 

used for Jones area applied to a broader region. 
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Small earthquakes – below M2.5 – have often not been reported in official catalog 

databases as it has not been mandatory. Smaller events could be reported, but the USGS 

mandatory reporting cutoff for the lower 48 states was M2.5. A more complete microseismic 

catalog will examine smaller events and help fill in seismic hazard information for areas that are 

currently not covered. Looking at even just 2010 we see there are many events below M2.5 that 

went unreported by the USGS. 

 

 

Fig 1.1.1. USGS events shown as green dots; easyQuake events shown as blue crosses. 
We see here that there are many more microseismic events occurring than are captured 
in the official catalog due to the M2.5 mandatory reporting cutoff. 
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Following a system based on and similar to the FaultID algorithm of Skoumal et al., 2019, 

preliminary fault maps are created by relocating and clustering seismic events, then using 

cluster orientations to delineate potential fault segments. Based on the origin times of events 

and their locations along proposed fault lines, we examine earthquake migrations and the 

relationship with pressure propagation from wastewater injection, similar to Keranen 2014.  

 

Fig 1.1.2. Earthquake catalog and swarm migration data. From Keranen et al., 2014. (a) 
Catalog of events with well locations, injection volumes, and known faults. (b) Event 
depths. (c) Distance from events March 2010-October 2010 to the Southeast OKC 
disposal wells. (d) March 2010-October 2010 event locations. This figure serves as a 
baseline for several aspects of this study. Primarily: the location of the high-volume 
wastewater injection wells, and the event-to-well distances. 
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1.2 Regional Background 

 
Central Oklahoma is home to part of an active seismic zone that extends through the Texas 

panhandle; the earthquakes in this region are typically shallow compared to other seismically 

active regions (Walter et al., 2018). One of Oklahoma’s major fault systems is the Nemaha fault 

system, which runs North-South and is surrounded by smaller faults (Lawson and Luza, 1995). 

Another major system is the Meers fault, which could produce an M7.0 or larger earthquake if 

the entire length were to rupture (Walter et al., 2019).  

 

Figure 1.2.1 Comparison of seismic rates - monthly(left) and daily(right) - over time 
reported in the USGS catalog. Only events with a magnitude M2.5 or greater are reported. 
The top two panels show 2009 through 2021 data. The lower panels show 2009 through 
2015 as this was the end of the period concurrent with the Keranen14 study. The past two 
years have seen a return of seismicity rates to levels near pre-2014 range. 
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The Jones area is just East of the Nemaha fault, and West of the Wilzetta fault, as shown in 

Figure 1.1.2. Prior to 2009, central Oklahoma was seismically quiet compared to the following 

years (e.g., Skoumal et al., 2019; Schoenball et al., 2017, Schoenball et al., 2018).  Figure 1.2.1 

shows the USGS reported seismic events for 2009 through 2015. As shown here there were 

generally fewer than five events M2.5 or above per day until 2013. Before 2009 there were 

even fewer. In 2015 though there were up to 20 events M2.5 or above, which is in stark 

contrast to the prior years. Four of the five ‘large’ earthquakes - M5.0 or greater - in this region 

have been in the last twelve years, as well as three events just under M5.0 which were either 

foreshocks or aftershocks of these events (Walter et al. 2019) as shown in Table 1.2.1. 

 

 

Table 1.2.1 Significant Oklahoma Earthquakes, organized by Magnitude. From Walter et al., 
2019. The region has seen more large events in the past decade than would be expected 
from the regional history. Of the ten events listed in this table, only two occurred prior to 
2011. 
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Figure 1.2.3 From Keranen et al., 2014. Large figure shows locations of injection wells and 
their monthly volume, known major faults, major cities, and seismic events color coded by 
date range. Subfigure A shows the number of earthquakes per 1000km2 in California vs. 
Oklahoma for 2002-2014. Subfigure B shows the area of seismic swarm in both Central OK 
and Jones for 2007-2013. 
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CHAPTER 2: METHODOLOGY 
 

2.1 Outline 

 
Catalog data was imported from the following sources using either open-source Python 

packages or files provided by the OGS: 1) Downloaded from the supplemental materials section 

of Keranen et al. 2014 as a CSV file, 2) Imported data via ObsPy “Client” from the USGS 

database, 3) Downloaded data files provided by OGS, and 4) a QuakeML file created via 

easyQuake (Walter et al., 2020) using the OGS catalog seismograms. The data from these 

catalogs was imported to a Python working environment, Spyder, for analysis. Files of the 

catalogs after being relocated with HypoDD (Waldhauser, 2001) were also imported to work 

with and compared to the original data. Keranen14’s catalog was already relocated, so there is 

not a relocated versus non-relocated analysis set for this catalog. In Python, the event locations 

are converted from UTM coordinates to a Cartesian coordinate system for calculations and 

analysis. Events in these catalogs – both relocated and non-relocated – were run through a 

clustering algorithm and the resulting clusters were then run through an algorithm for linear 

regression. From these regressions, potential fault segment delineations are identified, and the 

plots are converted back to UTM coordinates for comparison and presentation of the resulting 

2D segments. Length estimates for the segments are controlled by the clustering and regression 

results, so any limitations or inaccuracies of the prior workflow steps affect length outcome. 
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Fig 2.1.1 This figure outlines the workflow for this study. Skoumal et al., 2019’s FaultID 
system for fault identification is adopted as the basis for this study’s system. This workflow 
helps automate fault identification. 
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2.2 easyQuake 

 
We utilize easyQuake (Walter et al., 2020), a machine learning tool for earthquake catalog 

development created by researchers at OGS for automated event phase picking and event 

association. Catalogs created with machine learning tools such as this, rather than by a human 

manually picking or through template matching, can detect and label phase types for events 

that are smaller than would otherwise be identified by deterministic algorithms (Walter et al., 

2020).  

With easyQuake, data that has been previously collected can be used, or current data can 

be downloaded from International Federation of Digital Seismograph Networks (“FDSN”) 

servers (Walter et al., 2020). It utilizes a deep-learning phase picker, for which there are 

currently two options from which the user can choose, followed by aggregating the station 

picks with an adaptation of the PhasePApy 1D associator (Chen and Holland, 2016). Finally, 

easyQuake calculates local magnitudes and absolute locations from Hypoinverse, then bundles 

all the associated metadata into a Quake Markup Language, “QuakeML,” file (Walter et al., 

2021).

 

 

Figure 2.2.2 Workflow for easyQuake. We start with seismic data, move through phase 
picking and association, then location and magnitude calculations, resulting in an automated 
file for earthquake analysis. This is a process that is typically done manually by an analyst.  
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 There are currently two ML phase picker options for easyQuake: a generalized phase picker 

(Ross et al., 2018) or an EQTransformer (Mousavi et al., 2020). Ross et al., 2018’s phase picker is 

a convolutional neural network that scans continuous seismic data and classifies the dominant 

category of each 4 second window as primarily P-wave, S-wave, or noise. Mousavi et al., 2020’s 

EQTransformer is also a deep learning neural network; it picks first P and S phases based on 

attention mechanism. Mousavi et al., 2020 notes that not all pieces of a seismic signal are 

equally relevant for specific classification tasks, so it is useful to determine the relevant 

sections. The attention mechanism is applied to model the interaction of local (narrow windows 

around specific phase arrivals) and global (full waveform) seismic features (Mousavi et al., 

2020).  

Based on early testing of both pickers on Oklahoma data, OGS determined that the pre-

trained GPD model performs slightly better than EQTransformer, as it detects more events, so 

this study utilizes the generalized phase picker option. The phase picker is discussed in further 

detail in Walter et al., 2020. 

After phase picking, the picks are utilized by Chen and Holland’s (2016) PhasePApy 1D 

associator with relevant formatting modifications made to the associator. Upon association, an 

event magnitude is calculated based on Hutton and Boore (1987) and absolute locations were 

derived via Hypoinverse.  

ML = log10(A) + 1.11 log10(D) + 0.00189D – 2.09

  

Equation 1 Hutton and Boore Formulation for local magnitude (ML) calculation where A is 
the horizontal displacement maximum amplitude in nm as is denoted in Walter et al., 2020. 
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Finally, easyQuake aggregates all the pick, amplitude, magnitude, and arrival metadata into 

QuakeML format. QuakeML files can be converted into hypoDD files for relocation and/or HASH 

(Hardebeck and Shearer, 2002) input files for determining focal mechanisms. Oklahoma event 

focal mechanisms have been examined in more detail in past studies (e.g., McNamara, Benz, et 

al., 2015, McNamara, Rubenstein, et al., 2015, Qin et al., 2019, etc.), so they were not 

recalculated for this study. 

In general, continuous seismograms are located in folders corresponding to a YYYYMMDD 

format. Location ranges are latitude and longitude based. This study began primarily focused on 

2010-2014 data, and a geographic range of roughly 35-36N, -96.5- -98W, following Keranen et 

al., 2014, (refer to Figure 1.1.2) though was later expanded to cover a broader region. After 

easyQuake has completed its run, the catalog files may be analyzed as any other catalog file 

might be, such as relocation and clustering as we have done in this study. 

2.3 Relocation 

 
Relocation is commonly conducted after computing absolute locations to account for 

systematic unmodeled velocity variations in the subsurface. Earthquakes can be relocated with 

software that uses the “double difference” approach, which is the residual between observed 

and theoretical travel-time differences (Waldhauser and Ellsworth, 2000). This approach uses 

an iterative least-squares method to minimize RMS errors for event locations (Waldhauser and 

Ellsworth, 2000).  

One such double-difference relocation software program is HYPODD (Waldhauser, 2001), a 

FORTRAN package that can be used with event catalogs and/or waveform data from most 
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seismic networks (Waldhauser and Ellsworth, 2000). When relocated, the relative earthquake 

locations commonly cluster along linear features that, when combined with focal mechanisms, 

can constrain the strike and sense of slip of pre-existing faults (e.g., Skoumal, et al., 2019). Each 

event is related to its neighbors with direct measurements (Waldhauser and Ellsworth, 2000). 

Figure 2.3.1, below, shows a conceptual illustration of the double difference algorithm.  

Two events’ initial locations are related to their trial hypocenters based on catalog data or 

cross-correlation data links. Trial hypocenters can be connected using cross-correlated data or 

catalog data. The algorithm selects a least-squares solution by finding the vector difference 

between event hypocenters and makes a series of adjustments through the number of user-

selected iterations. Relevant equations for this process are discussed in Waldhauser and 

Ellsworth, 2000. 
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As is described in greater detail in both Waldhauser and Ellsworth (2000) and Waldhauser 

(2001), the double difference algorithm provides uncertainties an order of magnitude smaller 

than those for catalog locations. The primary detriment to this system is the availability, or lack 

thereof, of station data and the way available stations are organized geographically when the 

event is observed (Waldhauser, 2001). Figure 2.3.2 shows an example of how relocation is used 

and the differences between a catalog relocation and one done using cross-correlated data.  

Figure 2.3.1 Waldhauser 2001 Figure 1. An illustration of the double difference relocation 
algorithm. Circles represent trial hypocenters. These are connected by solid lines for cross-
correlation data or dashed lines for catalog data links. The two events, i and j, have initial 
locations shown with open circles. Stations k and l are shown with inverted triangles above 
the surface line. The small arrows show the slowness vectors, s, and the larger arrows show 
the relocation vectors, Dx. dt is the travel-time difference between the two events observed 
at the stations.  
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Figure 2.3.2 Figure from Waldhauser 2001. Relocation of California events with 3 
independent data sets a. original locations, b. double difference locations, c. P-wave cross 
correlation times, d. S-wave cross correlation times, and e. all three.  Top set is map view, 
bottom set is NW-SE cross sections). This is an excellent example of how relocating 
earthquakes can provide a clearer insight to fault lineations. 



 

 
15  

2.4 Clustering 

 
Events in this study are grouped into clusters based on spatial relationships. Clustering can 

be carried out by numerous techniques that have, in recent years improved with 

implementations of machine learning techniques (e.g., Xu and Wunsch, 2005). 

After exploring several options for clustering based on previous studies (e.g., Xu and 

Wunsch, 2005, Skoumal et al., 2019), we chose the Density-Based Spatial Clustering of 

Applications with Noise, “DBSCAN,” algorithm from the scikit-learn Python package (Ester et al., 

1996). Clusters are organized based on how densely spaced the events are.  

The algorithm is designed to classify arbitrarily shaped data clusters; events are assigned to 

a cluster if a certain number of points are within a certain radius from other individual events in 

the “neighborhood” (Ester et al., 1996). This is ideal for working with earthquake data, as 

events do indeed tend to occur in “arbitrarily” shaped arrangements. While, as previously 

mentioned, events do tend to cluster along linear features, the edges of these clusters are not 

uniformly and predictably shaped, so there is a need for the algorithm to be able to account for 

this arbitrary nature.  DBSCAN also allows the user to select some input parameters to better 

suit the needs of the data. 

The user-selected parameters in this study were “eps” and “min_samples.” “eps” is the 

maximum distance – here, in meters – between two events for them to be considered ‘in the 

same neighborhood,’ which means this parameter can have a strong effect on which events are 

sorted into which cluster. The “min_samples” parameter determines how many events must be 

in a neighborhood for an event to be a ‘core point,’ and therefore a cluster surrounding that 

point.  
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Defining a set of input parameters as “good” is fairly subjective. Visual qualitative analysis is 

done to inspect clustering results, as well as comparing the number of clusters and number of 

noise points with the total number of events in the dataset. This can be a lengthy trial-and-error 

process depending on the data. The final selected input parameters were eps=850m and 

min_samples=5. 

In addition to optimizing input parameters, filters can be used post-clustering to remove 

errors that are due to other factors. This dataset has filters applied to drop events with the 

following limits: RMS values less than 0 and greater than 5, vertical errors greater than 3500m, 

and an azimuthal gap greater than or equal to 180 degrees. 

DBSCAN also provides the ability to classify points as ‘noise’ rather than all data points 

being clustered. This means that earthquakes are not forced into a cluster if there is not one in 

which it readily fits based on the inputs, which means outliers do not affect the results as 

greatly (Ester et al., 1996). This ability is beneficial for this study as earthquakes can occur 

singly, not necessarily as part of a cluster. A clustering algorithm that could not sort out noise 

points would be more sensitive to outliers and could skew results of cluster lineation 

orientations (e.g., Dudik et al., 2015).  
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2.5 Regression 

 
After relocating the events and identifying clusters, mapping is done using regression 

algorithms to identify linear features. The Random Sample Consensus algorithm, “RANSAC,” – 

again from scikit-learn – is used for this identification. Orientations of clusters’ regression lines 

are what indicate a potential fault segment’s presence and orientation. RANSAC was selected 

over a standard linear regression as it is less sensitive to outliers without introducing a 

noticeable level of bias beyond that of a standard regression. 

 

Figure 2.3.3 Figure from https://scikit-learn.org/. Comparison of RANSAC to standard linear 
regression. Green dots represent inliers of the dataset and yellow dots are outliers. This 
figure demonstrates how RANSAC creates a regression line more accurately represents the 
target data. A standard linear regression is more likely to be skewed by outliers than one 
done using RANSAC. 
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RANSAC is iterative; unlike standard linear regression RANSAC does not start with the 

maximum amount of data points and then chip away at outliers, but rather RANSAC uses the 

smallest feasible initial data set and expands from there to include more inlying data points 

(Fischler & Bolles, 1981). Much like the ability of DBSCAN to label points as noise, RANSAC’s 

ability to exclude outliers helps keep results more accurate with less manual filtering. 

 The resulting lineations and corresponding propagation rates of events along them can 

be used to examine the possibility of future event sequence migrations and increase the 

available data for earthquake forecasting. Propagation rates of events along these segments 

are examined via the dates of event occurrences and events’ spatial relationships to the 

segment lineation.  
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CHAPTER 3: RESULTS  
 

3.1 Catalog Comparisons 

 
The easyQuake catalog captures the most events out of the catalogs examined. When 

the catalogs are limited by date to work with only 2010 data, and limited geographically to the 

Jones area, OGS contains 788 and easyQuake contains 2092. The USGS catalog has by far the 

fewest Oklahoma events reported, with only 130 are in the Jones area. Table 3.1.1 lists the 

extent of catalog content.  

Catalog  Number of events in 2010  Number of events in 2010; 
limited to Jones region 

USGS 193 130 

OGS 1053 788 

Keranen14 610 586 

easyQuake 5336 2092 

 

 

 The Gutenberg-Richter plots shown in Figures 3.1.1 through 3.1.6 are based on the non-

relocated catalogs, as relocation does not change the magnitude. The non-relocated data 

contains events that were unable to be relocated, though they occurred. 

Table 3.1.1 Number of events reported for each catalog used in this study. This allows for an 
easy comparison of catalog sizes. The first column lists the catalogs by name. The second 
column shows the number of events in each catalog for 2010. (NOTE: The USGS catalog is 
limited here to the Oklahoma region, this is not the entire national catalog) The final column 
lists the number of events in each catalog for 2010 in only the Jones region.  
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 Based on the plot in Figure 3.1.1, above, the magnitude of completeness for the 

easyQuake 2010 Jones data is approximately M1.6 as this is where the relationship of the event 

cumulative magnitude frequency and event magnitude values stops behaving in a 

logarithmically linear fashion. This is a visual estimation based on the resulting plots. 

The easyQuake catalog appears to have the smallest magnitude of completeness of the 

group. 

Visual estimates for the magnitudes of completeness are shown to be 2.2 for OGS, 2.5 

for USGS, and 2.0 for easyQuake. 

Figure 3.1.1 A Gutenberg-Richter plot of the easyQuake catalog of events in the Jones area 
for 2010. The large dots are Cumulative Magnitude Frequency of events. The small dots are 
Magnitude-Frequency. 
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Figure 3.1.2 A Gutenberg-Richter plot of the OGS catalog of events for 2010 in Jones, OK. 

Figure 3.1.3 A Gutenberg-Richter plot of the USGS catalog of events for 2010 in Jones, OK. 
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 Examining the entire 2010 catalogs, rather than only the Jones area, provides a clearer 

picture of the events’ magnitude and frequency relationships that year. The Jones-only data still 

shows the same general relationship, but with less clarity and lower accuracy due to the small 

size of the datasets. Figures 3.1.4 through 3.1.6 show Gutenberg-Richter plots for each of the 

three catalogs during 2010 with no geographic limitations.  

Though based on larger sample sizes, the relationships stay the same, with easyQuake 

containing the most events, and USGS containing the fewest. For 2010, the OGS catalog 

contains 1053 events, while the easyQuake 2010 catalog contains 5336. The USGS reports 193 

Oklahoma events in 2010. This is not the entirety of the USGS 2010 catalog; it is limited to the 

Oklahoma region but covers the entire state. Keranen14’s catalog contains 610 events in 2010, 

and 586 within the geographic limitations. Gutenberg-Richter plots were not created for 

Keranen’s catalog as magnitude data was not available.  

 
Figure 3.1.4 A Gutenberg-Richter plot of the USGS catalog of events for 2010. 
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Figure 3.1.5 A Gutenberg-Richter plot of the easyQuake catalog of events for 2010. 

Figure 3.1.6 A Gutenberg-Richter plot of the OGS catalog of events for 2010. 
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3.2 Original Data Versus Relocations 

 
We created plots of both the relocated and non-relocated earthquake catalogs for the 

same region. Figures 3.2.1 through 3.2.3 show these plots for the easyQuake 2010 data.  Figure 

3.2.1 displays the original, non-relocated event locations, while figures 3.2.2 and 3.2.3 display 

relocated events.  

Events are assigned a color based on the date of occurrence on a gradient scale, with 

older events in purple(oldest) to blue shades, and newer events in green to yellow(youngest).  

Earliest events are shown to occur in late March, and latest events occur in mid-to-late 

December.  

 

 

The most seismically active area is the eastern side of Oklahoma County, just northwest 

of 35.5°N, -97°W. Jones, OK falls within this region. This area is shown to have events 

Figure 3.2.1 Original (non-relocated) locations for the easyQuake 2010 data 

Oklahoma 

Coal 
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throughout the year. To the southeast, Coal County is also fairly active, but with fewer events 

than Oklahoma Co. There are also groups of events that happened at relatively the same time 

as each other in several other counties, though these counties do not show year-round activity 

like Oklahoma and Coal counties do.  

Relocation of the data provides a more accurate picture of the event locations. Even 

with the default parameters for HYPODD relocation (Figure 3.2.2), the events are more tightly 

arranged than before any relocation. However, too many valid events are dropped in this case, 

so the input parameters need to be adjusted to minimize this issue.  

Figure 3.2.3 shows the 2010 easyQuake data using the optimized relocation parameters. 

It has more events successfully relocated than Figure 3.2.2, while remaining more tightly 

organized than Figure 3.2.1. These optimized parameters are used for relocation of all catalogs, 

not for only the 2010 data. It allows for as many valid events as possible to be relocated. 

 

 
Figure 3.2.2 easyQuake 2010 data relocated via HYPODD with the default parameters 
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 After catalogs have been relocated, they can be more appropriately compared. Figure 

3.2.4 shows a closer look at how relocated data is more tightly organized than before 

relocation, which assists in more accurately organizing events into clusters. More accurate 

clusters mean more accurate linear regressions, which in turn means more accurate fault 

segment delineations. The optimized parameters are user-defined and are not easy to 

determine, though once a parameter set has been established for a region it is easy to apply. It 

is important for the user to spend time researching how HYPODD works and how the 

parameters affect the relocations. Making random adjustments does not do the trick – one 

needs to actively work toward building an intuition for what the data needs for a proper 

relocation. 

Figure 3.2.3 easyQuake 2010 data relocated via HYPODD with optimized, user-selected 
parameters, labeled “KS Best” 



 

 
27  

a  

b  

 

  

Figure 3.2.4 (a)easyQuake data for 2010, non-relocated. (b)easyQuake 2010 data relocated 
via HYPODD with optimized, user-selected parameters, labeled “KS Best”. These show us 
how relocated data is more tightly organized than before relocation, which assists in more 
accurately organizing events into clusters. More accurate clusters = more accurate linear 
regressions = more accurate fault segment delineations. 
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3.3 Comparison to Keranen et al., 2014 

 
As seen in Figure 1.1.2 c, Keranen14 created a plot of the distance from the injection 

well at approximately 35.43°N, -97.46°W.  Figure 3.3.1 is a recreation of this plot using the 

catalog data provided in the supplementary materials section of Keranen et al., 2014. This plot 

presents a ramp-like structure, inclining from March to October (right to left). From March to 

June, most events are roughly 18km from the well. Event-to-well distance steadily increases to 

approximately 25km June through September, then plateaus near 27km from September to 

October.  

 

Figure 3.3.1 Recreation of Figure 1.1.2c using the Keranen et al., 2014 catalog for March 
through October of 2010. This plot prominently displays a ramp-like feature that indicates 
possible event migration away from the high-volume wastewater injection site. 
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Figure 3.3.2 Keranen, OGS, easyQuake, and USGS data for March through October of 2010. 
Distances from events to the injection well site at 35.43°N, -97.46°W. Limited to a maximum 
of 50km from the injection site. Stars (purple) represent Keranen events. Dots (green) 
represent OGS events. Crosses (blue) represent easyQuake events. Triangles (red) represent 
USGS events. We see here that the ramp is not an artifact of the Keranen14 data but 
appears in all four of the examined catalogs. 
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When examining all four catalogs simultaneously on the same scale as Figure 1.1.2 c, as 

is displayed in Figure 3.3.2, it can be seen that the “ramp” does not appear to be an artifact of 

Keranen14’s catalog data, though the feature is less apparent when utilizing the easyQuake 

catalog. This is more clearly shown below, in Figure 3.3.3. All four catalogs contain the same 

structure at roughly the same location. They also all show a set of events throughout the zone 

from approximately 15km to 30km all occurring in October 2010. 

 

Figure 3.3.4 Keranen14(purple stars) and relocated easyQuake(blue crosses) data for March 
through October of 2010. This allows us to see the differences more clearly between the 
ramp structure as seen in the Keranen14 and easyQuake catalogs. We see that the ramp is 
less apparent of a feature in the easyQuake than the Keranen14 
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 However, when examining the rest of the catalog, which includes data further away, the 

ramp is no longer a prominent structure. The farthest event from the well in the Keranen14 

catalog for this date range is roughly 150km away. Though these events are included in the 

catalog, they are far enough away from the wells such that they may not be related to the well 

activity.  

 

 

  

Figure 3.3.5 Keranen, OGS, easyQuake, and USGS data for March through October of 2010. 
Distances from events to the injection well site at 35.43°N, -97.46°W. Stars (purple) 
represent Keranen events. Dots (green) represent OGS events. Crosses (blue) represent 
easyQuake events. Triangles (red) represent USGS events. 
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3.4 Lake Levels 

 
Some cases of seismicity have been reportedly induced by hydraulic loading pressure 

changes in places such as France, Canada, China, and India (e.g., Costain & Bollinger, 2010, 

Foulger et al., 2017, Grasso et al., 2018). 

In addition to the comparisons of Keranen’s data to other catalogs, reservoir data was 

examined in the Jones area to determine the area’s hydraulic loading levels’ contribution to the 

increased seismicity.  Figure 3.4.1 shows the reservoir locations relative to Jones, and Figure 

3.4.2 compares the gage height levels with local seismicity. 

Two reservoirs in the vicinity are Wes Watkins Reservoir, shown in red, and the 

Shawnee Reservoir, in blue. While the Wes Watkins Reservoir gage height is consistently higher 

than that of the Shawnee Reservoir, the two reservoirs’ levels’ movements mimic each other. 

Gage heights are at a local maximum during 2010, and generally decrease until reaching a low 

point in 2013. After this low point there is a spike in both reservoirs, before steadily decreasing 

again.  

Seismicity rates in this area as reported by the USGS do not follow the same trend as the 

reservoir gage heights. The seismicity for the area is fairly consistent, topping out near five 

earthquakes greater than M2.5 per day (Figure 3.4.1a) and staying below fifty per month 

(Figure 3.4.1b) for 2009 through 2013, with a sharp increase beginning sometime between 

2013 and 2014. The beginning of said sharp increase does happen to coincide with the spike in 

both reservoirs’ gage heights, but as the gage heights return to decreasing, the seismicity rate 

continues to increase. 
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a b 

 

Figure 3.4.1 Map view of reservoirs with relation to Jones, OK. Jones is positioned in the 
upper left (Northwestern) corner of this map. Wes Watkins Reservoir is circled in red and 
Shawnee Reservoir circled in blue. Lake Stanley Draper is also in the vicinity but not shown in 
this map. It falls just outside the map in the southeast corner. Lake level data was not readily 
available at the time of study for Stanley Draper, so only Wes Watkins and Shawnee are 
evaluated here. 

Figure 3.4.2 Plots of local seismicity (black) versus reservoir gage heights (red and blue) for 
2009-2015.  (a)Earthquakes larger than M2.5 per day vs gage height. (b) Earthquakes larger 
than M2.5 per month vs gage height. The apparent lack of correlation between gage heights 
and seismicity rates indicates that these lake levels are not likely tied to the increase in 
earthquake occurrences during this timeframe.   
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3.5 Clusters and Lineations 

 
For each catalog examined, a figure was created to look at both the original and 

relocated datasets. Figure 3.5.1 below, demonstrates the differences between clustering results 

for relocated and non-relocated data, with the exception of the Keranen14 catalog, as it was 

previously relocated for the Keranen14 study before distribution. 

 Clusters are determined by DBSCAN. Tables 3.5.1 through 3.5.4 compare resulting 

clusters and noise points for each step in the trial-and-error process for optimizing input 

parameters. Selected parameter runs are highlighted green. Tables are listed in the order for 

which parameters were tested.  

The final parameter selections, as highlighted in the tables, are as follows: eps=850, 

min_samples=5, event dropped if vertical error above 3500, and event dropped if RMS below 0 

or above 5. 
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OGS 2010 OGS, Relocated 2010 

Figure 3.5.1 Keranen14, OGS, easyQuake, and USGS data for 2010. Red Triangle represents 
injection well site.  Green, Inverted Triangle represents seismic monitoring stations. Black 
dots are events that are considered noise points and are not part of any cluster. Circles with 
color indicated clusters.  
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Table 3.5.1 DBSCAN Trial values. Trials to select value for min_samples. Final selection 
highlighted in green. 
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Table 3.5.2 DBSCAN eps Trials with a Vertical Error filter. Vertical Error greater than n is 
dropped. Trials done to select value for eps. Final selection highlighted in green. 

Table 3.5.3 Vertical Error trials. eps = 850. min_samples = 5. Events are dropped if the 
Vertical Error is greater than n. Trials done to select value for Vertical Error (here, n). Final 
selection highlighted in green. 
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The two figures below (Figures 3.5.2 and 3.5.3) show delineated clusters for the 

easyQuake 2010 data. These figures demonstrate the difference relocation makes on both 

clustering and delineation results. The relocated data has more events sorted into clusters and 

fewer noise points. This also allows the linear regressions to reflect the fault segments and their 

orientations more accurately, as the clustering is more accurate. 

 

 

Table 3.5.4 Trials to select RMS filter. eps = 850. min_samples = 5. Events are dropped if the 
Vertical Error is greater than 3500.  
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 In Figure 3.5.4, we see the relocated easyQuake catalog for 2010 after clustering, 

both before and after regression. Figure 3.5.4 shows the data after clustering, both 

before(3.5.4a) and after(3.5.4b) delineation. Clustering for the 2010-2021 catalogs use the 

above-defined parameter selections. The individual year catalogs have an eps of 800m, 

min_samples of 5, and are not filtered further. 

a b

 

Figure 3.5.2(left) Plot of linear regressions for easyQuake 2010, non-relocated events. 
  

Figure 3.5.3(right) Plot of linear regressions for easyQuake 2010, relocated events. 
  

Figure 3.5.4 (a) Cluster results for easyQuake 2010 relocated catalog in Jones. Black dots 
represent noise points. Colored circles show events belonging to clusters (b) Delineations of 
clusters for easyQuake 2010 relocated catalog in Jones. Blue dots represent events 
belonging to clusters. Black dots represent noise point events. Red lines show regressions. 
 

easyQuake Relocated 2010 

easyQuake Relocated 2010 easyQuake Non-relocated 2010 
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Figure 3.5.5 This is a portion of the current official preliminary fault map of Oklahoma as 
reported by the USGS. It was created by researchers at OGS and was published in 2015. It is 
clear that Oklahoma county does not have many mapped fault segments as represented in 
the official map. One of the main goals of this study is to help fill the gaps of unmapped 
seismogenic fault segments. 
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easyQuake Relocated 2010 

Figure 3.5.6 (top) Fault lineations for easyQuake 2010, relocated events. 
  
Figure 3.5.7 (bottom) Fault lineations for easyQuake 2010-2021, relocated events. 
  

easyQuake Relocated 2010-2021 
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 It was discussed in Chapter 2.5 that RANSAC was selected for creating the linear 

regressions as it is less susceptible to outliers without introducing more bias than a standard 

linear regression would. Figures 3.5.8 through 3.5.11 compare the standard linear regressions, 

“line_y,” to RANSAC regressions. 

 
a b  
 

 
 

 
 
a     b    

  

Figure 3.5.8 (a) Estimated fault lengths for easyQuake 2010 catalog based on standard linear 
regression (b) Estimated fault lengths for easyQuake 2010 catalog based on RANSAC 
 

Figure 3.5.9 (a) Estimated fault azimuths for easyQuake 2010 catalog based on standard 
linear regression (b) Estimated fault azimuths for easyQuake 2010 catalog based on RANSAC 
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Rose diagrams for the estimated fault orientations are shown below to represent the 

regional fault azimuth estimates more accurately, due to the bilateral nature of faults. Both 

rose diagrams show a general NE-SW trend for events. The standard regression shows 

orientations estimates to be predominantly N70°E and N100°E, while the RANSAC shows 

predominantly N60°E and N90°E.  

 
 

 Since we are looking at faults based on earthquake occurrences, we know them to be 

seismogenic faults. A fault is most likely to be seismogenic if it is optimally oriented with 

relation to the regional stress field. Given this, the 2010 relocated easyQuake data’s lineations 

indicate a regional stress field of predominantly N80°E. 

Both diagrams’ results have a general agreement with accepted SHmax measurements, 

but the RANSAC results are more closely aligned with the N68°E and N59°E range discussed in 

Figures 3.5.10 and 3.5.11 Fig 3.5.9(left) is a rose diagram of estimated fault azimuths for the 
relocated easyQuake 2010 catalog based on standard linear regressions. Fig 3.5.10(right) is a 
rose diagram the same data but based on RANSAC regressions.  
 

easyQuake Relocated 2010 Standard Regression easyQuake Relocated 2010 RANSAC Regression 
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Skoumal et al., 2019 than are the standard regression results. When the data frame is expanded 

to include 2010 through 2021 data though, we see the regional stress field is indicated to more 

predominantly be aligned with N80°E. 

 

 

  

Figure 3.5.12 Rose diagram for the relocated easyQuake catalog for 2010 through 2021. 
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3.6 Examining a Broad Region 

 

 

 
 

 The expanded selection of relocated easyQuake data is substantially larger than the 

dataset limited to the Jones area in only 2010. We examine this larger dataset to look at the 

broader region, rather than local to one city one year. This helps examine seismic activity for 

the state as a whole over time. 

Figure 3.6.1 Delineated clusters for the relocated 2010-2021 easyQuake catalog. Blue dots 
represent events belonging to clusters. Black dots represent noise point events. Red lines 
show cluster regression lines. 
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a b  
 

 
  

Figure 3.6.2 Gutenberg Richter plot for the 2010 through 2021 easyQuake data. 

Figure 3.6.2 (a) Estimated fault azimuths for the relocated 2010 through 2021 easyQuake 
data (b) Estimated fault lengths for the relocated 2010 through 2021 easyQuake data. (b) 
shows the relationship of fault length to occurrence is roughly logarithmic, just as is the 
relationship between event magnitudes and occurrence rates. 
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3.7 Propagation Rates 

 
 To examine the concept of event propagation along faults, we look at the locations of 

events relative to their corresponding fault. If propagation is indeed occurring, we would expect 

to see events located farther along the fault as time goes on. In Figure 3.6.2, we see several 

faults with repeated events at the same locations over time. There are also several instances of 

faults with seismic activity along the entire length at once. Due to the compound estimates in 

this workflow, we see some fault lengths longer than would be expected, as seen in Figure 

3.7.1. 

 

Figure 3.7.1 Distance along faults for events over a period of twelve years, 2010 through 
2021. This plot displays relocated easyQuake data. Events belonging to the same fault are 
assigned the same color. 
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These figures do show fault lengths much longer than we would expect. These are 

generally artifacts of the clustering. Since there are several steps of parameter selections and 

adjustments, there is a compoundment of estimations, which can lead to a few outlying results 

such as this. It is difficult for DBSCAN to properly cluster datasets this large, which is why it is 

particularly helpful to examine individual years at a time as at the beginning of this study. 

 

 

Figure 3.7.2 Distance along faults for events over a period of twelve years, 2010 through 
2021. This plot displays relocated easyQuake data and is limited to 70km fault distances and 
smaller. Events belonging to the same fault are assigned the same color. We can see 
instances of events at multiple distances along fault lengths at the same time which would 
indicate that more of the fault is rupturing at once than just individual locations. 
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Figure 3.7.3 Distance along faults for events over a period of twelve years, 2010 through 
2021. This plot displays relocated easyQuake data and is limited to 10km fault distances and 
smaller. Events belonging to the same fault are assigned the same color. This figure shows 
that over time, events are occurring at different locations along their respective faults, but 
that there is no clear migration pattern at this time. 
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Figure 3.7.4 shows the propagation rates of events along faults found with the relocated 

easyQuake data for 2010 through 2021. It has a roughly symmetrical distribution centered right 

around 0.0 meters per hour. A “negative” propagation rate indicates that events are occurring 

closer the earliest event on the fault, not that the propagation is slowing down. The 

propagation rate is with respect to the earliest event on a fault; Westward movement is 

denoted as negative, while Eastward movement is denoted as positive. Over 200 of the faults 

Figure 3.7.4 Histogram of event propagation rates along faults in meters per hour. Event 
occurrences are migrating along their respective fault segments at a rate most typically 
averaging near 0.0 meters per hour. 
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found have propagation rates in this range. Overall event propagation along faults in Oklahoma 

for the last twelve years would be slow, as events tend to stay centered around the earliest 

event on a fault based on the histogram in Figure 3.7.4. 
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CHAPTER 4: DISCUSSION AND CONCLUSIONS 
Overview 

• Machine learning techniques for earthquake catalog analysis are continuously 

developing.  

• A more complete catalog yields more information about a region’s seismic activity, 

which can detect and reveal patterns that would otherwise be missed. 

• An automated system for identifying faults and their orientations can help improve the 

seismic hazard map more quickly and efficiently than manual methods. 

• Historical data can be useful for current regional studies as advancements in machine 

learning techniques have expanded the information it is possible to glean from the 

archived data. 

 
It is important to study seismogenic faults and their geometries to better understand 

the potential for fault slippage and therefore, potential seismic activity. A strike-slip fault that is 

optimally oriented with respect to the principal tectonic stress direction of the region has an 

increased susceptibility to slipping. If an area has a large number of these optimally oriented 

faults, there is a higher potential seismic hazard, so it is beneficial to have as complete of a fault 

map as possible to help mitigate risk. This workflow begins with earthquake catalog data, so we 

know the faults identified are seismogenic. This means that faults identified with this method 

are more likely to be optimally oriented faults and have a higher level of seismic hazard.  

Orientations of faults that are visible at the surface can be determined via field mapping, such 
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as the exposed faults and fracture systems mapped in Kolawole et al., 2019, as well as manually 

determined from subsurface images, as is also done in Kolawole et al., 2019. These types of 

methods can be time consuming and more susceptible to human error than an automated 

identification system. 

Skoumal et al., 2019 utilized a system they have dubbed the FaultID algorithm. FaultID is 

what this study has been modelled after to identify potential fault lineations and improve the 

completeness and accuracy of the regional fault map. As was found in the Skoumal et al., (2019) 

study, this system delineates potential fault segments that were previously unmapped. This is 

done without field mapping or subsurface imaging. The resulting segments in the Skoumal19 

study are generally aligned with the regional stress field, as are the segments identified in this 

study, which means these faults are what would be considered “optimally oriented”. However, 

that study utilized a regional network based matched-filter catalog which would be biased 

towards only detecting events nearby existing events. Applying the general methodology of 

clustering and identifying lineations with a machine-learning derived catalog eliminates that 

bias. 

 Our methodology can be utilized with any earthquake catalog available and can be 

expanded to explore other regions of interest. It works to create an automated workflow for 

mapping seismogenic faults. Resulting fault maps can then be used for other studies and 

analyzing regional characteristics such as stress state, as in Qin et al., 2019. Adjustments need 

to be made to each parameter selection based on the region’s geology; for example, HYPODD 

will need an updated velocity model input to reflect the region’s subsurface, as well as 

clustering and regression parameter adjustments based on available data. 
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Oklahoma has more microseismicity than are typically recorded by the current seismic 

monitoring system as evidenced in Figure 1.1.1. Machine learning techniques, such as those 

implemented with easyQuake, are improving the data collection and analysis process, as it 

captures more events and corresponding spatio-temporal data than the USGS network alone. 

Events with small magnitudes – ≤M2.0 – are often not captured by the current networks and 

USGS does not report events with magnitudes below M2.5. Figures 3.1.1 through 3.1.6 are 

Gutenberg-Richter plots of these catalogs, which show easyQuake as having the smallest 

magnitude of completeness of the available datasets. Data coverage is generally lacking for 

events smaller than M0, but advancements in techniques such as easyQuake can help lessen 

these deficiencies. 

Other regional studies show events which were potentially induced by high-volume 

wastewater injection, as well as possible migrations due to the increased pore pressure from 

these injections. As in Keranen et al., 2014, catalog data is used to plot the distances of events 

to Southeast Oklahoma City disposal wells. These distances are used to monitor fault segment 

orientation and potential event sequence migrations with relation to a high-volume disposal 

well. In Figures 3.3.1 and 3.3.3 there is a ramp-like feature in the dataset that would indicate a 

migration of events away from the well over time, as Keranen suggests. The same structure is 

seen in all four of the analyzed catalogs. The feature is less apparent in the easyQuake data, 

however, than in the Keranen14 data. When expanded to examine distances beyond 50km 

from the well, the ramp structure is no longer prominent. Keranen14 asserts that the high-

volume wastewater injection is increasing the pore pressure in the area and inducing seismicity 

as the pore pressure field diffuses across the fault damage zone. While this assertion seems 
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reasonable, more research is needed to verify the other assertion that the injections from on 

one specific site are causing event migrations along the faults suggested in Keranen et al., 2014. 

The Keranen14 study suggests a propagation rate of approximately ten kilometers from the 

beginning of June to the beginning of August 2010, based on Figure 1.1.2c. This is equivalent to 

1 kilometer per 6.1 days, or ~0.007 km/hr. Given the slow rates shown in Figure 3.7.4, this does 

not seem to be an unreasonable rate. 

Several faults seem to have ruptured along their entire lengths on multiple occasions, as 

seen in Figures 3.7.1 through 3.7.3. Whether specific events caused these ruptures could be 

studied in the future and may be made easier to determine with the implementation of a 

system for rapid automated fault identification such as tested in this study. 

Hydraulic loading pressure has been cited as a source of induced seismicity in several 

regions of the world, such as for reservoir impoundment (e.g., Costain & Bollinger, 2010, 

Foulger et al., 2017, Grasso et al., 2018). This hypothetical cause was tested for regional 

reservoirs versus seismicity to determine the possibility of the increased seismicity being due to 

local reservoir levels.  There is a clear lack of correlation between nearby reservoir levels with 

local seismic rates.  The reservoirs’ levels’ movements mimic each other, but seismicity rates in 

this area do not follow the same trend. The seismicity for the area is fairly consistent, with a 

sharp increase between 2013 and 2014. The beginning of said sharp increase coincides with the 

spike in both reservoirs’ gage heights, but as the gage heights decrease, the seismicity rate 

continues to increase. Based on this data, these reservoirs do not appear to be inducing 

seismicity in the Jones area, as the reservoir gage heights and local seismicity levels would be 

expected to have a much higher degree of correlation if this were the case.  
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After successfully testing this system on the 2010 subset of Oklahoma catalog data, we 

expanded the study area to the entire state of Oklahoma. This expansion results in over 700 

potential fault segments, as shown in Figure 3.5.6, and represented again in Figure 3.6.1. These 

segments were able to be identified in a short amount of time, with no reliance on surface 

mapping or subsurface imaging. The average fault length is 2.87km. The largest fault we 

identified through our clustering is approximately 87km. Future studies could implement a 

workflow such as the one we proposed and extend it by including a relative stress inversion 

(e.g., Qin et al., 2019) for seismic hazard studies in a specific region. These types of studies, 

coupled with other passive-source methodologies such as shear wave splitting (e.g., Ortega-

Romo et al., 2021), could be undertaken at the small to regional scale prior to the start of 

unconventional hydrocarbon activities in order to couple the delineation of fault geometries 

with inferences of the regional stress field. 
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APPENDIX 
 

For python scripts and HYPODD input: 
https://github.com/kaycee-sims 

 
 


