
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

EFFICIENT NEURAL ARCHITECTURE SEARCH USING A GENETIC
ALGORITHM

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

BY

BRANDON S. MORGAN
Norman, Oklahoma

2022

EFFICIENT NEURAL ARCHITECTURE SEARCH USING A GENETIC
ALGORITHM

A MASTER’S THESIS APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY THE COMMITTEE CONSISTING OF

Dr. Dean Hougen

Dr. Dimitrios Diochnos

Dr. Chongle Pan

© Copyright by BRANDON S. MORGAN 2022
All Rights Reserved.

Abstract

NASNet and AmoebaNet are state-of-the-art neural architecture search systems

that were able to achieve better accuracy than state-of-the-art human-made con-

volutional neural networks. Despite the innovation of the NASNet search space,

it lacks the ability to express flexibility in terms of optimizing non-convolutional

operation layers, such as batch normalization, activation, and dropout. These

layers are hand designed by the architect prior to optimization, limiting the ex-

ploration possible for model architectures by narrowing down the search space.

In addition, the NASNet search space can not allow for many non-classical op-

timization techniques to be applied as it lacks the ability to be expressed in a

fixed-length, floating-point, multidimensional array. Lastly, both NASNet and

AmoebaNet use an extensive amount of computation, both evaluating 20,000

models during optimization, consuming 2,000 GPU hours worth of computation.

This work addresses these limitations by, first, changing the NASNet search space

to include optimization of non-convolutional operation layers through the addi-

tion of a building block that allows for the optimization for the order and inclusion

of these layers; second, proposing a fixed-length, floating-point, multidimensional

array representation to allow other non-classical optimization techniques, such

as particle swarm optimization, to be applied; and third, proposing an efficient

genetic algorithm, while using state of-the-art techniques to reduce training com-

iv

plexity. After only 1,300 models evaluated, consuming 190 GPU hours, evolving

on the CIFAR-10 benchmark dataset, the best model configuration yielded a test

accuracy of 94.6% with only 1.3 million parameters, and a test accuracy of 95.09%

with only 5.17 million parameters, outperforming both ResNet110 and WideRes-

Net. When transferring to the CIFAR-100 benchmark dataset, the best model

configuration yielded a test accuracy of 71.1% with only 1.3 million parameters,

and a test accuracy of 76.53% with only 5.17 million parameters.

v

Contents

Abstract iv

List of Figures viii

List of Tables x

List of Algorithms xi

1 Introduction 1

2 Background Knowledge 4
2.1 Introduction to Computational Intelligence 4
2.2 Machine Learning . 5

2.2.1 Supervised Learning . 6
2.3 Optimization Theory . 11

2.3.1 Classical Numerical Methods 13
2.4 Evolutionary Computation . 15

2.4.1 Genetic Algorithms . 16
2.4.2 Representation . 18
2.4.3 Exploration vs. Exploitation 19
2.4.4 Selection Operators . 20
2.4.5 Reproduction Operators 23
2.4.6 Survival Operators . 26
2.4.7 Termination . 27
2.4.8 Control Parameters . 28
2.4.9 The Basic Genetic Algorithm 29

2.5 Particle Swarm Optimization . 30
2.5.1 Global Best and Local Best 31
2.5.2 Control Parameters . 35

2.6 Artificial Neural Networks . 36
2.6.1 Introduction . 36
2.6.2 The Artificial Neuron . 37
2.6.3 Dense Neural Networks . 39

vi

2.6.4 Convolutional Neural Networks 41
2.6.5 Activation Functions . 45
2.6.6 Generalization . 51
2.6.7 Optimizers . 57
2.6.8 Advanced Convolutional Neural Networks 63

2.7 Neural Architecture Search . 76
2.7.1 Search Space . 76
2.7.2 Search Algorithm . 77
2.7.3 Evaluation Strategy . 78

3 Related Work 80
3.1 NASNet . 80
3.2 AmoebaNet . 85
3.3 Super Convergence . 87

4 Approach and Methodology 89
4.1 Changing the NASNet Search Space 89
4.2 Constructing The Chromosome 93
4.3 Constructing the Algorithms . 99

4.3.1 Impact of Initial Population Size 100
4.3.2 The Genetic Algorithm . 101
4.3.3 The Particle Swarm Algorithm, with Subswarm 110
4.3.4 Training the Models . 114

5 Experiments and Results 116
5.1 Initial Algorithm Comparison . 118

5.1.1 Cascading Genetic Algorithm 120
5.1.2 Aging Genetic Algorithm 122
5.1.3 Non-Aging Genetic Algorithm 124
5.1.4 PSO Algorithms . 126
5.1.5 Subswarm PSO . 128
5.1.6 Best Algorithms . 130
5.1.7 Creation of Mutation Only Algorithm 132

5.2 Evolution of Chosen Algorithms 133
5.2.1 Global Search Phase . 133
5.2.2 Local Search Phase . 139

5.3 Best Model Scaling . 142
5.4 Best Model Transfer . 145

6 Discussion 147
6.1 Initial Algorithm Comparison . 147
6.2 Evolution of Chosen Algorithms 149

6.2.1 Global Search Phase . 149

vii

6.2.2 Local Search Phase . 150
6.3 Best Model . 150
6.4 Best Model Scaling . 155
6.5 Best Model Transfer . 156
6.6 Future Work . 156

7 Conclusion 158

viii

List of Figures

2.1 An example of overfitting. 8
2.2 Hold-Out Method for Cross-Validation 10
2.3 K-Fold Cross-Validation . 11
2.4 Example Function with Derivative and Minimum Critical Points . 12
2.5 Flowchart of a Basic Genetic Algorithm 17
2.6 Selection Operators . 22
2.7 Point Crossover . 24
2.8 Parent Competition . 27
2.9 Global Competition . 27
2.10 Basic PSO Flowchart . 31
2.11 Geometric Representation of gbest Components 33
2.12 Perception . 38
2.13 Example Feed-Forward Neural Network 40
2.14 Spatial Convolution . 43
2.15 Spatial and Temporal Convolution 43
2.16 Spatial Convolution with stride of 2 45
2.17 Basic ConvNet . 46
2.18 Derivatives for Sigmoid and TanH 48
2.19 Rectified Family . 50
2.20 Image Augmentation Techniques 56
2.21 AlexNet Architecture . 64
2.22 VGG16 Architecture . 66
2.23 ResNet Modules . 68
2.24 ResNet50 Architecture . 70
2.25 InceptionV1 Module . 71
2.26 InceptionV3 Module . 73
2.27 InceptionV3 Module . 75

3.1 NasNet Model Construction . 82
3.2 Normal Cell Module with Residual Connections 82
3.3 Normal Cell Example . 83
3.4 Single Cycle Learning Rate Schedule 88

ix

4.1 The After Block . 91
4.2 Order for After . 91
4.3 After for Cell . 93
4.4 Example for Constructing Connections from Connection Choice

Array . 97
4.5 Example for Constructing After from After Array 99
4.6 Crossover Operator Example . 103

5.1 Gray-scale CIFAR10: Cascading GA Aging vs Non Aging 121
5.2 Gray-scale CIFAR10: Aging GA 123
5.3 Gray-scale CIFAR10: Non Aging GA 125
5.4 Gray-scale CIFAR10: Age vs. Non Age PSO 127
5.5 Gray-scale CIFAR10: SubSwarm PSO 129
5.6 Gray-scale CIFAR10: Best Algorithms Comparison 131
5.7 Full Scale Evolution Initial Fitness Results 135
5.8 Full Scale Evolution Fitness Results 136
5.9 Full Scale Evolution Similarity Results 137
5.10 Full Scale Evolution Max and Mean Age Results 138
5.11 Cascading Mutation Genetic Algorithm Fitness Results 140
5.12 Cascading Mutation Genetic Algorithm Similarity Results 140
5.13 Cascading Mutation Genetic Algorithm Cumulative Model Results 141
5.14 Model Projections - CIFAR10 . 144

6.1 Best Model - Normal Cell . 152
6.2 Best Model - Reduction Cell . 154

x

List of Tables

3.1 NASNet Search Space Operations 84
3.2 NASNet-A Test Accuracy on CIFAR10 Dataset 85
3.3 AmoebaNet Search Space Operations 86
3.4 NASNet-A Test Accuracy on CIFAR10 Dataset 87

4.1 Cascading Genetic Algorithm Reduction Schedule 110

5.1 Genetic Algorithm Variants 117
5.2 Particle Swarm Variants . 118
5.3 Gray Scale CIFAR10 Model Number of Filters and Dropout

Percentages . 119
5.4 Cascading Mutation Algorithm Reduction Schedule 132
5.5 Full Scale Model: Number of Filters and Dropout Per-

centages . 134
5.6 Model Scaling - Number of Filters and Parameters 142
5.7 Model Scaling - Dropout Percentages and Weight Decay . 143
5.8 CIFAR10 Model Comparison 145
5.9 CIFAR100 Model Comparison 146

xi

List of Algorithms

1 Basic Genetic Algorithm . 30
2 gbest PSO Algorithm . 34
3 lbest PSO Algorithm . 35

4 Individual Object Structure . 94
5 Normal and Reduction Cell Object Structure 94
6 Hidden Node Object Structure . 95
7 Crossover Operator . 104
8 Mutation Operator . 106
9 Reproduction Operator . 108
10 Proposed Genetic Algorithm . 109
11 SubSwarm PSO Algorithm . 113

12 Cascading Mutation only Reproduction Operator 133

xii

Chapter 1

Introduction

Convolutional neural networks are neural networks that are specifically designed

for processing images. Since the emergence of AlexNet [17], many different ar-

chitectures have been proposed by researchers in order to maximize performance.

The most notable networks, utilized throughout this paper, are VGGNet [25],

ResNet [12], Inception [30], Inception-ResNet, and Xception [29]. These archi-

tectures serve as the foundation from which most advanced convolutional neural

networks stem. However, these human-made architectures are carefully designed

based upon current research, and researchers rarely explore other variants or

possibilities. As a result, manually exploring architectures can be an extremely

time consuming process. With the goal of exploring other possible network archi-

tectures automatically, the domain known as neural architecture search (NAS)

emerged. Arguably, the first recognized NAS system was [28], which utilized a

genetic algorithm to evolve the architecture of a neural network for a reinforce-

ment learning problem. Since NEAT, the most recognized NAS system applied

to convolutional neural networks at large scale, arguably, is NASNet [38]. NAS-

Net proposed a highly complex, yet powerful, search space from which scalable

1

networks could be created. NASNet utilized a recurrent neural network trained

through reinforcement learning to explore the search space. Shortly after NAS-

Net, AmoebaNet [22] emerged, which tackled the NASNet search space, except

utilizing a mutation-only genetic algorithm. Both NAS systems were extremely

successful, achieving better than state-of-the-art human-made models on two very

prominent benchmark image dataset, CIFAR10 [16] and ImageNet [3]. Despite

the success of the NASNet search space, it suffers from three primary issues.

First, despite being a search space that explores possible architectures, it was

static in terms of non-convolutional operational layers. In the NASNet search

space, non-convolutional operation layers, such as batch normalization, activa-

tion, and dropout, were not allowed to be explored, but were preset by the user.

As a result, this static formulation hindered the range from which possible model

architectures could be created. Secondly, the NASNet search space lacked the

ability to be expressed in terms of a fixed, continuous, floating-point multidimen-

sional array, which most non-classical optimization techniques, such as particle

swarm optimization, leap frog, hill climber, and low-level genetic algorithms, re-

quire to be applied. As a result, the representation of the NASNet search space

prevented other non-classical optimization techniques from being applied and

tested. Third, both NASNet and AmoebaNet used an extreme amount of com-

putation, as both systems each consumed 2,000 GPU hours worth of computation

while evaluating 20,000 models over the course of 7 days with 450 GPUs.

In this work, a number of proposals are described in order to lessen these

three primary issues. First, in order to allow for the optimization of the non-

convolutional operational layers, an extension to the NASNet search space was

created for the ability to control the inclusion, or exclusion, and ordering between

the non-convolutional operational layers. Second, in order to allow for other

2

non-classical optimization algorithms, such as particle swarm optimization to be

applied, a new representation of the altered NASNet search space was proposed.

Third, in order to reduce the computational requirements, the phenomenon of

super convergence [26] was utilized in order to speed up the training of models at

small projections. In addition, a few different variants of a genetic and particle

swarm optimization were discussed and tested at small scale in order to examine

the performance of the search algorithms when only 1,300 models were allowed

to be evaluated.

The organization of this thesis adheres to the following layout. Chapter 2

introduces the necessary background information necessary to understand the

foundation of this work in advanced convolutional networks and non-classical op-

timization techniques. Chapter 3 introduces the related work of AmoebaNet and

NASNet in greater detail as a means to better understand the NASNet search

space. Chapter 4 introduces the methodologies behind the creation of the After,

the new representation, and the proposed genetic and particle swarm algorithms.

Chapter 5 showcases the results from the experiments that were performed for

comparing the chosen algorithms, as well as the full-scale optimization on the

CIFAR10 dataset. Chapter 6 reviews over the results found in Chapter 5, ex-

pounding upon them in detail while also mentioning future work. Lastly, Chapter

7 summarizes the research, contributions of this work, and results.

3

Chapter 2

Background Knowledge

2.1 Introduction to Computational Intelligence

Computational intelligence (CI) is a sub-field of artificial intelligence (AI) de-

voted to modeling intelligence from biological inspirations. CI comprises of many

different fields, namely artificial neural networks (ANN), evolutionary computa-

tion (EC), and swarm intelligence (SI). The inspiration behind ANNs is to model

biological neural networks found in the brain for learning patterns and under-

lying functions. Both EC and SI seek to solve optimization functions; however,

EC solves such problems while being inspired from biological evolution, while SI

is inspired from swarm behavior. The process of applying evolution or swarm

behavior for the optimization of ANNs in some capacity is referred to as neuro-

evolution (NE). NE is an exciting field and topic of AI as the idea of automatizing

deep learning models has tremendous applications such as solving controller like

environments [28].

In this chapter, the necessary background knowledge will be discussed in

order to fully understand and grasp the research of this work. First, a brief

4

overview of machine learning and optimization theory will be discussed in order

to understand the basics of supervised learning and optimization. Next, a deep

dive into EC will be pursued in order to understand the evolutionary and swarm

intelligent algorithms utilized throughout the work. On the other-end of the

spectrum of CI, ANNs will be discussed along with their extension for image

processing, convolutional neural networks (CNNs). Subsequently, the field of

neural architecture search (NAS) will be discussed in order to understand the

intersection between EC and CNNs.

2.2 Machine Learning

Machine learning is a branch of AI and computer science focused on learning

representations from data. There are three main types of learning in machine

learning: supervised, unsupervised, and reinforcement learning. In supervised-

learning, the objective is to learn an underlying function to map input-output

pairs. Supervised learning is mainly utilized for classification, when the output

is discrete, or for function approximation, also known as regression, when the

output is continuous. Unsupervised learning is learning when no defined output

value is available; but instead, the objective is to learn some type of representation

from the input. An example of an unsupervised learning task is clustering, where

the objective is to group data points together based on some type of learned

representation from the algorithm. Lastly, reinforcement-learning, like supervised

learning, takes in a set of inputs; however, the outputs are no longer trying

to be mapped, but instead, the outputs are now rewards where the goal is to

maximize the said reward. In machine learning, a model is utilized to learn

the representations and mapping in supervised, unsupervised, and reinforcement

5

learning. Because supervised learning is the only type of machine learning utilized

in this work, it will be the only category discussed in further detail.

2.2.1 Supervised Learning

In supervised learning, machine learning models are trained upon a training data

set, which consists of n example input-output pairs, (x1, y1), . . . (xn, yn), where x

is the input and y is the actual output, otherwise known as ground-truth. The

objective is to find an underlying function, utilizing the machine learning model,

to map the input to the ground truth in the training set.

For supervised learning algorithms, error, or loss, functions have been created

in order to measure how good a model performs at a particular task. Machine

learning models try to minimize the error of these loss functions in order to achieve

maximum success at better representing the underlying function. Throughout the

research of this work, primarily one very important loss function was utilized,

cross entropy.

Cross Entropy

Cross-entropy is a type of loss metric utilized for classification type scenarios,

when the output variable is discrete. Cross entropy, which originated from infor-

mation theory, measures how well two probability distributions are similar con-

cerning a random variable. For discrete distributions, cross entropy is described

in Equation 2.1,

H(P,Q) = −
m∑
i=1

Pi log2(Qi) (2.1)

where P represents the predicted distribution, Q represents the actual distri-

6

bution, m is the total number of classes, and i is the ith partition representing

the probabilities for the ith class from the distribution.

Most classification machine learning algorithms output a discrete probability

distribution representing all the possible classes. Cross entropy works by sum-

ming up the probabilities of the actual class occurring for a given data instance,

multiplied by the algorithms predicted probability. In this way, the objective for

classification machine learning algorithms utilizing cross-entropy is to match the

actual class distribution for all data instances. Even though the output from

these algorithms is a probability distribution across all possible classes, the pre-

dicted class can easily be obtained by taking the largest probability amongst the

predicted distribution to be the overall predicted class for a given data instance.

However, cross entropy lacks the ability to extend applicable information in clas-

sification, as quantifying how well the predicted distribution matches the actual

does not yield satisfactory application. To resolve this issue, simple accuracy can

be utilized in order to measure how accurate the model is at predicting classes.

In its simplest form, accuracy is defined to be the sum of the number of times the

predicted class matches the output class over the total number of data instances

utilized

Accuracy =
Number of Correct Predictions

Total Number of Predictions
(2.2)

Overfitting and Underfitting

A common issue that arises with machine learning models is over-fitting, a phe-

nomenon that occurs when the error on the training dataset is small but the

error on another dataset, containing unseen data, is much larger. This secondary

dataset is often called the test-set, which is used to test how well the machine

7

learning model is capable of generalizing to new unseen input data. For an exam-

ple of overfitting, please refer to Figure 2.1. The blue line represents the actual

trend, where both the blue and orange points are sampled from this trend with

added noise; however, the blue points represent the training dataset while the

orange points represent the testing dataset. An 8th degree polynomial model as

applied to the training dataset and its predicted regression curve was plotted in

orange. One can see that the polynomial over-fitted the the training data and

does not generalize well to the testing dataset as the mean squared error (MSE),

a loss function for regression type problems, for the testing set is roughly 17.5

times larger than the training.

Figure 2.1: An example of overfitting.

Possible solutions to overfitting will be discussed later on in the section on

artificial neural networks. In contrast to overfitting, underfitting occurs when

the model is unable to learn an acceptable representation as the accuracy metric

is extremely poor. Underfitting occurs from two particular scenarios, either the

machine learning model is not complex enough to learn a representation, or when

8

the data is insufficient in terms of information across the variables. When the

data is insufficient, little to nothing can be done on the side of the machine

learning engineer; however, if the model cannot learn, then more complex models

containing adjustable numbers of trainable parameters can be utilized in order

to increase complexity.

Cross-Validation

Machine learning algorithms can be extremely powerful at prediction; however,

most algorithms have a set of hyper-parameters that need to be tuned in order to

achieve acceptable results. Hyper-parameters are parameters that are not learned

by the model, but instead are set by the user in order to affect the learning and

algorithmic process. Because the success of these algorithms greatly depends on

the initialization of these hyper-parameters, there have been established method-

ologies on how to choose and select such parameters. The simplest methodology

is to try out different sets and combinations of hyper-parameters for the selected

machine learning algorithm by training each unique combination on the training

dataset, and then comparing their generalization on the testing set. Although

this process seems fool-proof, by comparing the algorithms on the testing set,

the machine learning engineer is inadvertently starting to bias towards the test

dataset, which is supposed to be completely unseen data instances for evaluation.

A simple way to bypass this problem is to create a secondary test set, known as

the validation dataset. The choices of hyper-parameters are again trained on

the training dataset, but then are compared for generalization on the validation

dataset, and then the best combination from the validation set is selected to

measure its success against the test dataset. The process of comparing different

hyper-parameters or models is known as cross-validation.

9

Figure 2.2: Hold-Out Method for Cross-Validation

This methodology of selecting and creating particular training, validation,

and testing datasets is commonly referred to as the hold-out method, where a

subset of the data is held out for each particular phase of training, comparison,

and evaluation, as depicted in Figure 2.2. In practice, when the amount of data is

minimal, utilizing a hold-out method is ineffective as the method only works when

the sample size is large enough for each hold-out set to resemble the population.

K-fold cross-validation is a sampling procedure that alleviates this problem by

training the model a total of K times, each on a different fold of the dataset. The

entire dataset is split into a training and testing set, and the training set is split

into K folds, where each fold is sub split into a training and validation set. The

average error metric across all validation sets from all K folds is then utilized to

compare the hyper-parameters, while the best is selected for evaluation on the

test set, as depicted in Figure 2.3.

Another common necessity in machine learning is comparing different ma-

chine learning models. The same process described for selecting hyper-parameters

above can be utilized for comparing models: train each model on the training set,

compare using the validation set, and then select the best from the validation set

and measure its performance against the test set. The same process can also be

utilized for K-fold cross validation when the amount of data is insufficient.

10

Figure 2.3: K-Fold Cross-Validation

2.3 Optimization Theory

Optimization theory is a field of mathematics devoted to solving optimization

problems. An optimization problem can be defined as a function with a set of

inputs and outputs, where the goal is to find the global minimum or maximum

of the given function. Machine learning and almost every other sub-field of AI

is built off solving different types of optimization problems, whether it be max-

imizing the distance between a set of points in an embedding, or minimizing

the cross-entropy loss for an ANN in a classification type scenario. The abil-

ity to minimize these error functions quickly and efficiently has allowed for new

breakthroughs in Machine Learning and AI.

Optima, otherwise known as critical-points, or extrema, are points of a func-

tion where the first derivative function value is equal to zero, or does not exist.

There are four types of critical-points: weak, strong, global, and saddle points.

The goal for optimization algorithms is to find the global minimum or maximum

11

critical point, which is defined to be the critical point whose function value is

either the global maximum or global minimum across all critical points. How-

ever, it is common for optimization algorithms to become trapped in local weak

extrema, which represent suboptimal solutions. Please see Figure 2.4 on how

critical points are depicted in a univariate function.

Figure 2.4: Example Function with Derivative and Minimum Critical Points

Many different types of optimization algorithms have been proposed in or-

der to solve such optimization problems. They can be divided into three main

categories: classical numerical methods, guided random search techniques, and

local greedy searches. Classical numerical methods encompass methods that uti-

lize knowledge concerning the gradient or Hessian matrix, the first and second

derivative of the function. Such algorithms include Newton's method and gra-

dient descent. Guided random search techniques encompass algorithms that do

12

not utilize knowledge of the gradient or hessian matrix, such as evolutionary al-

gorithms, leap frog, particle swarm optimization, or simulated annealing. Lastly,

local greedy searches are single population algorithms that also do not require

derivative knowledge, but search locally about a point by taking small steps in

different directions, such as hill climber.

Two of the three categories are commonly utilized throughout this work, clas-

sical numerical methods and guided random search techniques. Because both

methodologies are vital for understanding optimization, both will be described

in detail.

2.3.1 Classical Numerical Methods

Classical numerical methods can be described as a set of algorithms that have

been developed to find global critical points by knowledge of the gradient or Hes-

sian matrix. In machine learning models, the objective function to optimize is a

loss function, typically MSE for regression or cross-entropy for classification. For

both loss functions, optimization refers to finding the set of weights or parameters

that will minimize the error, i.e. find the global minimum critical point. The in-

puts to these loss functions would be the weights, the set of trainable parameters,

and the output would be the loss function value across the data instances.

Classical numerical methods are iterative algorithms that begin with an ini-

tial guess and iteratively update that guess in order to be closer to the global

minimum critical point. The initial guess represents the initial input to the loss

function, some type of random initialization of the weights and trainable pa-

rameters. Most iterative numerical algorithms follow equation 2.3 for updating

13

trainable parameters:

wi+1 = wi − αdi (2.3)

where wi are the weights of the current iteration, α is the learning rate, and

di represents the search direction of the current iteration. The search direction

signifies which direction the weights are to step towards, while the learning rate

scales the direction in order to control the magnitude of the step. The two most

commonly utilized numerical algorithms for optimization in machine learning is

gradient descent and stochastic gradient descent (SGD). Gradient descent uses

the sum of the gradients evaluated at the previous weight across all data points

as the search direction, as seen in equation 2.4, where ∇ is the partial derivative

of the loss function with respect to the weights, evaluated at the current weight

wi.

wi+1 = wi − α∇F (w)|w=wi
(2.4)

The difference between gradient descent and SGD is that gradient descent

creates the step direction by summing the gradients for all points, while SGD

creates the step direction by calculating the gradient at a single point. In this

way, SGD would update the weights a total of n times before the number of

points evaluated would equal that of gradient descent. The benefit of utilizing

SGD over standard gradient descent is that it is computationally cheaper to

update the weights, as the gradient is only evaluated at a single point; however,

it will take longer to converge as the calculated gradient is biased towards a

single point instead of the population. In order to overcome this problem, an

extension of SGD known as mini-batch SGD, partitions the training dataset into

batches for calculating the gradient. For the rest of this thesis, when SGD is

14

mentioned, mini-batch SGD is assumed. Now, SGD updates the weights through

the direction from the mean of the gradients across the batch.

wi+1 = wi − α
1

n
∇

n∑
j

F (w)|w=wi
(2.5)

This can be seen in Equation 2.5, as the step direction is replaced with the

average of the gradients across the batch, where i is the ith weight, n is the total

size of the mini batch, and j is the jth sample from the mini batch. Now, the

only hyper-parameter to tune would be the batch size. Large batch sizes better

represent the population but require longer to update the weights, while smaller

batch sizes update the weights faster at the cost of being biased towards the

batch.

2.4 Evolutionary Computation

Evolutionary Computation is a sub field of CI where the goal is to mimic biological

behavior in order to create intelligence. The two most common fields of EC are

Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). Both GA

and PSO algorithms are population-based guided random search algorithms for

solving optimization functions. In contrast to classical numerical methods, guided

random search algorithms do not utilize knowledge about the function, like the

gradient or Hessian matrix. As a result, guided random search algorithms can be

applied to non-differentiable functions. First, GAs will be introduced along with

some of its variants. Next, PSO will be introduced in two of its most popular

forms.

15

2.4.1 Genetic Algorithms

Genetic algorithms seek to mimic the process of evolution in order to optimize op-

timization functions. From its biological inspiration, evolution can be described

as a process by which individuals become more fit through three main mech-

anisms: natural selection, differential reproduction, and mutation. Natural se-

lection occurs when individuals, that are poorly adapted for their environment,

have higher probabilities of dying and not reproducing. As a result, individuals

that are better adapted to their environment than others have higher probabili-

ties of surviving and reproducing. Differential reproduction occurs subsequently

from natural selection as only those fit enough to survive their environment are

those able to reproduce. Because only those fit enough to survive reproduce,

their offspring will share the genetic material of their parents, which in tern will

produce offspring that are inherently more fit than their predecessors. Mutations

occur either randomly, by chance of their genome; or, are guided through adap-

tation from selective breeding. GAs leverage these three processes for optimizing

optimization functions.

Translating these processes to numerical mechanisms has posed an interest-

ing task for AI practitioners. However, a general outline has been established.

First, the fitness-function itself needs to be chosen. The fitness-function is a

function that maps the chromosome representation of the individual to a scalar

fitness value based on the optimization problem. Second, the representation of

individuals within the genetic algorithm needs to be created. Third, the selec-

tion operators for choosing which individuals reproduce needs to be engineered.

Fourthly, the reproduction operators detailing how the offspring will be created

from the parents needs to be established. Lastly, the survival operators for se-

16

lecting which offspring and/or parents are to survive needs to be decided. The

general overview of evolutionary algorithms can be seen in Figure 2.5.

Figure 2.5: Flowchart of a Basic Genetic Algorithm

First, the initial population is created. The exact implementation of this ini-

tialization depends upon the practitioners goals of exploration and exploitation,

a topic that will be discussed later on. After this initialization, the algorithm en-

ters into a loop, where each iteration of the loop is known as a generation. Each

individual in the population is evaluated by the optimization function to obtain

its fitness score; assuming minimization, individuals with lower fitness scores in-

dicate better fitness. Next, the selection operators are applied to select which

17

individuals from the population are to reproduce offspring. After selection, the

offspring are created from applying the reproduction operators between the sets

of parents. Finally, the survival operators are applied to the offspring and parents

to select which individuals will survive on to the next generation. Termination

occurs later on after certain criteria have been met.

2.4.2 Representation

From its biological inspiration, cells can be regarded as the basic building block

of organisms. Each cell is built off different strands of chromosomes, where each

chromosome is composed of DNA containing many different units of genes, which

are regarded to be the fundamental components of heredity. The entire composi-

tion of genes is known as the genome. The genotype is regarded as a set of genes

from an individuals genome. On the other hand, the phenotype, refers to how

the genotype of an individual is expressed in its environment.

When constructing the fitness function, f , can be described more formally as

a function that takes in the phenotype representation of the chromosome, Γ, and

maps it into a scalar value from the Real domain, R:

f : Γ→ R (2.6)

Typically, genetic algorithms represent the individual by its chromosome, an

nx-dimensional vector with either floating point or binary numbers. As a result,

each variable value from the nx-dimensional vector represents a gene. On the

other hand, the phenotype is completely dependent on the optimization function.

For multivariate optimization functions that originate from the Real domain, the

phenotype of an individual is regarded as a point in space. For other types of

18

optimization functions, the genotype and phenotype will change based upon the

problem at hand. For example, as will be described later, the phenotype of an

individual can be a convolutional neural network, whereas its genotype is the

encoding of the network in a fixed length multivariate domain.

An intermediate function is needed in order to convert the chromosome of an

individual to its phenotype to obtain its fitness score from the fitness function.

Altogether, the fitness function can be described as a function f , that accepts

the nx-dimensional vector of the chromosome Sc, encodes it into its phenotype

representation using the function Φ, and passes it through the objective function

to obtain its scalar fitness value:

f : Sc
Φ−→ Γ→ R (2.7)

2.4.3 Exploration vs. Exploitation

Exploration is defined to be the process of searching the domain space of an

optimization function in order to find newer and better solutions. On the other

hand, exploitation, otherwise referred to as convergence, refers to the process of

refining the current best solution in order to refine the most promising areas of the

domain space. The exploration vs. exploitation tradeoff plagues many areas of

optimization algorithms, as practitioners want to both explore for newer solutions

while also refining the current best. In GAs, exploration and exploitation are

handled by their selection, reproduction, and survival operators.

Selective-pressure refers to how long it would take for a population-based

search algorithm to create a totally uniform population. In this way, algorithms

with high selective pressure decrease diversity, i.e., exploration, in favor of ex-

19

ploitation; while algorithms with low selective pressure increase diversity while

having poor exploitation.

The purest form of an exploratory algorithm would simply be a pure ran-

dom search by sampling from the domain space. In this way, the search space

is explored much greater than other types of search algorithms as there is no re-

finement of the current best individuals. On the other end, the purest form of an

exploitative algorithm would be a single population hill climber whose step-size

is extremely small relative to the domain space. In this way, the entire search

space of the optimization function is not explored; however, the current solution

is refined to a degree such that it finds a minimum or maximum critical point,

either global or local.

2.4.4 Selection Operators

Once the optimization function, representation, and initial population have been

established, each individual in the current population is evaluated to obtain its

fitness score, i.e. its function value. From this list of fitness scores, the selection

operators can be applied to select which individuals will reproduce with one other.

The overall goal of selection operators is to mimic selective breeding by pairing

up individuals that are more fit in order to create fitter offspring. There are four

popular types of selection: random, proportional, tournament, and elitism. The

number of parents varies between implementation, but standard GAs only utilize

two parents, while paring up parents with, or without, replacement. Random

selection is implemented by randomly pairing up individuals within the popula-

tion with no regard to their fitness scores. By doing so, this selection procedure

favors exploration over exploitation. On the other end of the spectrum, elitism

20

is implemented by only pairing up individuals with the best fitness scores, favor-

ing exploitation over exploration. The middle-ground between the two comprises

of both proportional and tournament selection. Proportional selection creates a

probability distribution from the normalized fitness values of the individuals and

randomly selects parents proportional to their normalized fitness value. Both

exploration and exploitation are maintained as the individuals fitness value is

normalized to a probability. In this way, individuals with better fitness values

have larger probabilities of being selected while also allowing for poorer individ-

uals to reproduce for the sake of exploration. Tournament selection works by

randomly selecting groups, i.e. tournaments, of individuals where only the best

individual from the group is selected. The tournament size controls the explo-

ration vs. exploitation trade-off, as a tournament size equal to the population

size is equivalent to selecting the best individual from the population, while a

tournament size of one is equivalent to random sampling.

One can see examples of these in Figure 2.6. Note, in Figure 2.6, the objective

is to maximize the fitness scores. In each subplot of Figure 2.6 there are six total

individuals along with their respective chromosome and fitness value. Subplot

2.6a show random selection for two parent pairs, where the parents are chosen

uniformly random from the population. Subplot 2.6b showcases elitism by sorting

the individuals by their fitness value, and then pairing up individuals from that

sorted order. Subplot 2.6c showcases proportional selection by calculating the

probabilities of the individual being selected by dividing its fitness score by the

sum of fitness scores. Parents are then sampled from these probabilities. Subplot

2.6d showcases tournament selection where the parents are selected by the winners

of independent tournaments.

21

(a) Random Selection

(b) Elitism Selection

(c) Proportional Selection

(d) Tournament Selection

Figure 2.6: Selection Operators

22

2.4.5 Reproduction Operators

The goal of the reproduction operators is to utilize the existing genetic material

of the parents, while also introducing new material, in order to further explore

the domain space. Exploration is performed by two main operations, crossover

and mutation. Crossover is utilized in order to globally search throughout the

domain space, while mutation is used for local search. Crossover is implemented

by selecting and assigning genes from the parents chromosome to the offspring,

while mutation is implemented by randomly changing one or more of the genes.

When the chromosome is continuous and fixed, crossover can be applied in two

different fashions. First, the mean of the parents chromosomes can obtain to

act as the crossover between the parents. Because the mean of the parents is

deterministic, only one offspring will be produced. In order to create multiple

offspring while utilizing mean crossover, the offspring can be created as a linear

combination of the parents where the coefficient is sampled normally. This can

be depicted in Equation 2.8, where x̃ represents the child, x1 refers to the first

parent, x2 to the second parent, i to the ith child, j to the jth gene/variable, and

γ is the random variable sampled from the Gaussian Normal distribution with

mean 0.5 and standard deviation 0.15.

x̃ij = (1− γ)x1j + γx2j

Where γ ∼ N(0.5, 0.15)

(2.8)

Second, point crossover can be applied. Point crossover is implemented by

selecting one or more points in the genotype and simply swapping, i.e. crossing

over, the sections of genes that fall between the two points. This process can

be extended to uniform point crossover where all genes are inherited randomly

23

from the parents. Examples of this can be seen in Figure 2.7. In part a, the two

parents and their chromosomes are depicted. In part b there is mean crossover,

in this instance calculated by taking the geometic mean between the parents. In

part c, the seventh bit from the left is selected to be the point crossover where

the genes of the parents are swapped to create two children. In part d, one point

crossover is extended to multi-point crossover where the fourth and seventh bits

are selected as crossover points. Lastly, part e showcases uniform point crossover

where genes are uniformly randomly swapped between parents.

Figure 2.7: Point Crossover

Crossover globally explores the domain space as it can hop across the fitness

landscape; however, its only flaw is that it can only explore the genotype space

that is already known, as it relies upon the variable values already existing within

the population, unless mean crossover is utilized with a randomly sampled coef-

ficient. In order to explore new areas, mutation is incorporated to introduce new

24

genetic material by slightly changing gene values. Mutation can be implemented

by either randomly changing a single, or multiple, variable values by adding a

uniformly random number within a given set of bounds, or by adding a mutation

vector of small uniformly random numbers within a given set of bounds to the en-

tire chromosome. The first option can be depicted in Equation 2.9, where the jth

gene/variable of the child x̃ is changed by adding a small random number sampled

from the uniform distribution with respect to the bounds of that variable. The

latter version of mutation by adding a whole mutation vector can be depicted by

Equation 2.10, where the child is changed by adding a vector samples from the

uniform distribution with respect to the bounds of the entire chromosome.

x̃j = x̃j + U(−xboundj , xboundj) (2.9)

x̃ = x̃+ U(−xbound, xbound) (2.10)

Together, crossover and mutation are extremely powerful mechanisms for both

searching globally and locally. In most genetic algorithms, performing crossover

and/or mutation to every offspring is not wanted, but instead are performed

probabilistically. In this way, if the offspring always replace the parents, then the

information of the parents is not lost from the current generation to the next,

as crossover and mutation are only performed probabilistically. In addition, by

increasing the probabilities of crossover and mutation, the algorithm will favor

exploration as the original genetic material of the parents will be lost as the

offspring would have a higher probability of altering their makeup.

25

2.4.6 Survival Operators

After the reproduction operators have been applied to the parents to obtain the

offspring, the survival operators are then applied to select which individuals from

the population will survive on to the next generation. The goal of the survival

operators is to mimic natural selection. The creation of the new population can

be performed in a few different fashions. One possibility is that the offspring

immediately replace the parents. A second possibility is that the offspring and

parents are pooled together, from which the survival operators will be applied to

the joined combination of parents and offspring. Assuming the first option, the

survival operator would simply be taking the offspring in favor over the parents.

However, if the number of offspring is greater than the number of parents, then

any of the selection operators discussed earlier can be applied for survival. On

the other hand, if the survival operators are to be applied between the parents

and offspring, then competition for survival can be either applied at the parent

or population level. Parent level competition entails only applying the survival

operators between the immediate parents and their immediate offspring. Parent

level competition can be seen in Figure 2.8, which showcases two parent offspring

pairs, where the winners by elitism within the offspring parent pairs are combined

to form the next population. Competition between the entire population entails

applying the survival operators between the overall pooled offspring and parents.

The standard survival operators applied are the same as for selection. Global level

competition can be seen in Figure 2.9, which utilizes the same parent offspring

pairs from Figure 2.8 except pools the parents and offspring together. From these

two pools, the winners are selected through elitism to obtain the next population.

Parent level competition slows down exploitation while global level competition

26

speeds up exploitation as the fitness values of all parents and offspring are known

and can be utilized during the selection process.

Figure 2.8: Parent Competition

Figure 2.9: Global Competition

2.4.7 Termination

Termination of the genetic algorithm can occur in a few different ways. The

simplest approach would be to stop when the set number of generations has been

reached. Alternatively, termination can occur when the mean fitness values has

stalled for a set number of generations. Early stopping utilizing the mean fitness

instead of the best fitness is necessary as the best fitness can be static for a long

period of time while the mean fitness can still be obtaining better values as the

selection and survival operators will slowly start to converge to the best.

27

2.4.8 Control Parameters

Genetic algorithms contain many hyper-parameters that need tuning in order to

be successful. Specifically, initial population size, generation size, number of gen-

erations, probabilities of crossover and mutation, and max mutation bounds. The

probabilities of crossover and mutation refer to the probabilities of performing

crossover or mutation on a given offspring. The max mutation bounds refers to

a set of bounds that contain the max values for each gene that the offspring is

able to be mutated. These hyper-parameters directly control the exploration vs.

exploitation trade-off. Large generation sizes allow for more exploration as the al-

gorithm is capable of holding more diversity within each generation at the cost of

poorer convergence. The probabilities of crossover and mutation directly control

exploration and exploitation as higher probabilities favor exploration while lower

probabilities favor exploitation. The max mutation bounds also contribute to

exploration and exploitation as lower max mutation bounds favor exploitation as

the chromosome is only slightly changed, while larger max mutation bounds favor

exploration as the chromosome is greatly changed from the larger perturbation.

These three hyper-parameters: probabilities of crossover, mutation, and max

mutation bounds, can either be static, dynamic, or self-adaptive. Static hyper-

parameters stay the same throughout the entire lifetime of the algorithm, whereas

dynamic parameters typically decrease from large values to small values over the

course of the algorithms lifetime. An example of a dynamic schedule is logis-

tic decay, which logistically decreases the parameters value with each subsequent

generation. Lastly, self-adaptive parameters adapt by either increasing or decreas-

ing depending upon certain statistics of the current algorithm's execution. For

example, a simple self-adaptive schedule increases the probabilities of crossover

28

and mutation if the mean fitness value approaches the best fitness, indicating

too much convergence, in order to encourage more exploration, while decreasing

the probabilities if the gap between the mean and best fitness becomes too large,

indicating too much exploration, in order to encourage more exploitation.

The selection of these hyper-parameters can become very problematic for prac-

titioners as they directly control the success of the algorithm. As a result, this

higher level, abstract, view of the hyper-parameters can turn into an optimiza-

tion function itself. In circumstances when the objective function is extremely

computationally expensive to evaluate, it can be inefficient and futile to try to

optimize these higher level parameters that control the run, instead relying on the

initialization of the practitioner. Later on, during the explanation of the genetic

algorithm utilized in this work, a simple work-around will be provided in order

to escape from this dilemma.

2.4.9 The Basic Genetic Algorithm

Now that the necessary background information has been discussed over the ba-

sics of genetic algorithms, a simple procedure can describe the algorithm. The

basic genetic algorithm can be detailed in Algorithm 1. The algorithm takes in

the fitness function F , along with the selection, reproduction, and survival oper-

ators. The algorithm first initializes the population by randomly sampling from

the domain space, and then obtains their respective fitness. The algorithm en-

ters into a for loop where the parents are chosen from the current population and

their associated fitness values utilizing the selection operators. After the parents

are selected, the offspring are created utilizing the reproduction operators, and

then their associated fitness values are obtained. Lastly, the population of the

29

next generation and its fitness values are calculated through the survival opera-

tors. This loop continues for a total of max gen iterations, after which the best

individual is returned as the final solution.

Algorithm 1 Basic Genetic Algorithm

Input: Fitness Function, F : Sc
Φ−→ Γ → R; max gen; Selection, Reproduction,

and Survival Operators
population = random initialization()

fitness = fitness function(population)

for i until max gen do
parents = selection operators(population, fitness)
offspring = reproduction operators(parents)

fitness offspring = fitness function(offspring)

population, fitness = survival operators(parents, fitness,

offspring, fitness offspring)

end
Return Best Individual from Population

2.5 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is another branch of CI for optimizing ob-

jective functions, but seeks to do so by mimicking the behavior of swarms. From

its biological inspiration, the collective behavior of animals or insects in swarms

is typically performed in order to find resources, fend off predators, or migrate

to breeding or resting grounds. The unpredictable ability for swarms of birds

to fly independent from each other, yet maintain a social behavior of flying in

formation with the flock intrigued many early researchers. It can observed that

birds maintain both cognitive and social experience. The birds fly where their

experience and intuition drive them, which represents their cognitive experience,

while at the same time maintaining the structure and direction of the flock, their

30

social experience. The basic flowchart for PSO algorithms can be seen in Figure

2.10.

Figure 2.10: Basic PSO Flowchart

2.5.1 Global Best and Local Best

Translating the behaviors of swarms to an algorithm for optimization has been

extremely successful. Like GAs, PSO algorithms are population-based algorithms

where each individual in the population represents a particle. Each particle main-

tains a current position and keeps track of three components: current velocity

and cognitive and social components. Like GAs, particles are represented by

their genotype and phenotype. Their genotype would be the multidimensional

31

vector of variable values, while their phenotype would be the implementation of

their genotype in their environment.

Each particle in a PSO algorithm keeps track of their own independent velocity

and position vectors. Particles in PSO algorithms are updated by adding their

current position to their new velocity component, as seen in equation 2.11.

xi(t+ 1) = xi(t) + vi(t+ 1) (2.11)

The initial positions of the particles correspond to the initialization of the

initial population for GAs. With each iteration of the PSO algorithm, the new

velocity vector is calculated by the linear combination of the particles current

velocity, cognitive, and social components. This can be seen in equation 2.12.

vi(t+ 1) = wvi(t) + c1r1(yi(t)− xi(t)) + c2r2(ŷi(t)− xi(t)) (2.12)

In equation 2.12, vi(t) is the particles current velocity, (yi(t)−xi(t)) represents

the cognitive component, and (ŷi(t) − xi(t)) refers to the social component. In

both the the cognitive and social components, xi(t) refers to the particles current

position at time t. The cognitive component is the difference vector between the

particles personal best position, yi(t), and the particles current position. Each

particle keeps track of its history of positions along with their respective fitness

scores. The personal best position is the position in the history of positions

for a particle where its fitness score is the best, where best is dependent upon

maximization or minimization. The social component is the difference vector

between the best position, ŷi(t), and the particles current position. The best

position can either be defined to be the best position globally, across all particles,

or locally, only from some number of surrounding neighbors. If the best position

32

is the best position globally across all particles, the PSO algorithm is referred

to as gbest. On the other hand, lbest is another type of PSO algorithm where

the best position is the best position from a group of neighboring particles. The

exact implementation of this neighborhood will not be detailed as lbest is never

used in this research work.

Figure 2.11: Geometric Representation of gbest Components

The geometric representation of the components from the velocity vector can

be seen in Figure 2.11. In Figure 2.11, there are three points, the current particles

position in blue, its personal best position in orange, and the global best position

in green. After creating the difference vectors, the green arrow represents the

social component multiplied by a small random number and the c2 coefficient,

while the orange arrow represents the cognitive component, multiplied by a small

33

random number and the c1 coefficient. Lastly, the particles current velocity is

depicted by the blue arrow, representing its current inertia, multiplied by the w

coefficient.

Because gbest utilizes the global best position across all particles, it achieves

very good convergence; however, it can lack exploration as it can commonly

become stuck in local optima. The complete gbest PSO algorithm is given in

Algorithm 2:

Algorithm 2 gbest PSO Algorithm

Input: Fitness Function, F : Sc
Φ−→ Γ→ R; max iter; w, c1, c2 coefficients

particles = random initialization()

velocities = random initialization()

for i until max iter do
fitness = fitness function(particles)

gbest position = best particle() . # Best global Fitness
for each particle do

update velocity using equation 2.12
update position using equation 2.11

end

end
Return Best Particle from Swarm

On the other hand, lbest has the ability to escape from local optima because

its current best position is only defined to be the best position from amongst

the particles set of neighbors. The complete lbest PSO algorithm is given in

Algorithm 3:

34

Algorithm 3 lbest PSO Algorithm

Input: Fitness Function, F : Sc
Φ−→ Γ→ R; max iter; w, c1, c2 coefficients

particles = random initialization()

velocities = random initialization()

for i until max iter do
fitness = fitness function(particles)

lbest position = best particle() . # Best local Fitness
for each particle do

update velocity using equation 2.12
update position using equation 2.11

end

end
Return Best Particle from Swarm

2.5.2 Control Parameters

Like GAs, PSO algorithms have their own set of hyper-parameters that need fine

tuning. Besides the initial population size, swarm size, and number of iterations;

PSO algorithms have to tune three extremely vital coefficients that control the

success of the algorithm: w, c1, c2. The w coefficient is applied to the velocity

vector during its update. It is commonly referred to as the inertia coefficient.

This parameter controls how much the previous velocity will impact the con-

struction of the current velocity. Large inertia values lead to exploration while

small values lead to exploitation. The parameters c1 and c2 control the influence

of the cognitive and social components respectively. Having c2 set to 0 makes

the algorithm a version of hill climber that utilizes only its own experience. Hav-

ing c1 set to 0 makes the algorithm a purely greedy algorithm that converges

to only the current best solution. It is typical that c1 and c2 need to balance

each other, as increasing one will intuitively decrease the other. In this way, w,

c1, and c2 control the exploration vs. exploitation trade off. These three hyper-

35

parameters are vital for achieving success. Like section 2.4.8 over parameters

in GAs, the same methods for updating these hyper-parameters can be applied

here to PSO parameters. These three coefficients can be either static, dynamic,

or self-adaptive. Dynamic implementation starts with large w and c1 values to

encourage exploration, but slowly decrease them while simultaneously increas-

ing c2 in order to achieve convergence. Self-adaptive mechanisms update these

three coefficients depending upon the statistics from the current iteration of the

algorithm, as described in section 2.4.8.

2.6 Artificial Neural Networks

2.6.1 Introduction

On the other end of the spectrum in CI, Artificial Neural Networks (ANNs) were

first created with the goal of modeling artificial intelligence by trying to model

biological neural networks found in the brain. ANNs have been shown to be suc-

cessful at learning representations for classification, function approximation, and

pattern recognition. ANNs first evolved from the appearance of the perception,

which was later scaled to deep feed-forward networks containing multiple hidden

units and layers. With performance issues on image recognition tasks rising, con-

volutional neural networks (CNNs) were created in order to handle the new data

types. CNNs were shown to be extremely successful and efficient, opening up

a whole new field of research for researchers to dive into. Over the past couple

of years, many different types of CNN architectures and models have been cre-

ated, namely, AlexNet, VGGNet, ResNet, and Inception. Each model has their

own unique set of additions and contributions that have helped form the basis

36

of advanced CNN research today. With more advanced model architectures, the

problem of over-fitting became more prevalent to a point that researchers started

to dive into reducing such occurrences through the addition of new layers and

augmentation techniques. ANNs and CNNs are known for being extremely large,

containing up to tens of millions of parameters, creating a very difficult optimiza-

tion problem. As a result, advanced optimizers have been explored in order to

find better weight solutions faster and more efficiently.

2.6.2 The Artificial Neuron

As the name implies, the artificial neuron is built off the intuition of the biological

neuron. Biological neurons each take in a set of inputs, referred to as synapses,

apply some type activation function to the synapses, and then outputs a signal.

From this inspiration, an artificial neuron is a function that maps a set of inputs

to a non-linear output. The artificial neuron is capable of learning representations

for two particular scenarios: classification and regression. The artificial neuron

can be depicted in Figure 2.12, where x represents an input, w represents a

learnable weight, f represents a non-linear activation function, and o represents

the corresponding output.

In Figure 2.12, net, is calculated to be the weighted sum between the inputs

and the weights, plus the bias term b, the intercept. This can be seen in Equation

2.13.

net = b+
n∑
i=1

xiwi (2.13)

There have been many activation functions created in recent years, but the

most foundational function first applied was the sigmoid function, depicted in

37

Figure 2.12: Perception

Equation 2.14, where λ is a hyperparameter that is set by the user, typically set

to 1.

f(net) =
1

1 + e−λ(net)
(2.14)

The goal for an activation function is to obtain non-linearity between the

input and output, so that the weight parameters can be optimized to the point

that the predicted output from the perception either matches or closely resembles

the actual output. The sigmoid function outputs a value between [0, 1]; great for

regression tasks where the actual output has been normalized to this scale, or for

binary classification where values above 0.5 go to class 1, while values less than

0.5 go to class 0.

Artificial neurons are capable of learning through gradient descent, which

updates the weight values through the gradient-descent algorithm depicted in

Equation 2.4, re-iterated here in Equation 2.15 for ease. Assuming one utilizes the

mean squared error function (MSE), given in Equation 2.16, the partial derivative

38

is given in Equation 2.17, where ∂f
∂net

(xi) is the partial derivative of the activation

function with respect to the weights, evaluated at xi.

wi+1 = wi − α∇F (w)|w=wi
(2.15)

MSE =
1

n

n∑
i=1

(ŷi − yi)2 (2.16)

∇F (w)|w=wi
= −2(ŷi − yi)

∂f

∂net
(xi) (2.17)

2.6.3 Dense Neural Networks

Artificial neurons were extremely successful; however, they were incapable of

learning most types of complex functions and non-linearly separable classifica-

tion problems. Abstracting outward to biological neural networks, which are

comprised of millions of artificial neurons, artificial neural networks are com-

posed of many artificial neurons. The most basic artificial neural network is

known as a feed-forward neural network, indicating that all of the connections

between neurons goes forward throughout the network, none backward. Feed-

forward networks compose of an input layer, an output layer, and any number of

hidden layers composing of any number of hidden units, neurons. Hidden units

refer to neurons that are not directly observed by either the input or output

layers. Feed forward networks can be depicted as below in Figure 2.13, with an

arbitrary number layers with each an arbitrary number of inputs and outputs

Figure 2.13 showcases an example of a feed forward neural network with

an input layer, composed of the variable values from X, the first hidden layer,

39

Figure 2.13: Example Feed-Forward Neural Network

composed of neurons from f(net11) to f(net1n), a second hidden layer, composed

of neurons from f(net21) to f(net2n), and finally an output layer, composing of

multiple output neurons, f(net31) to f(net3n). Each layer has their own set of

unique, independent, weights and biases. Due to the mathematical nature of the

network, the weights and biases for each layer can be represented as matrices

and vectors, W j and Bj, where j is the hidden layer. As a result the net input

for each layer now becomes the matrix multiplication of its input matrix and its

current weight matrix plus the bias vector. This is shown in Equation 2.18, where

f(net)j−1 is the output from the previous jth layer.

netj = f(net)j−1W j +Bj (2.18)

Updating the weights of feed-forward neural networks is similar to the percep-

tion, as gradient descent or SGD can be utilized. However, because feed-forward

neural networks utilize multiple hidden layers, where the output of each layer

40

is composed of inputs evaluated multiple times at different activation functions,

it requires a methodology known as back propagation in order to calculate the

partial derivative for the weights. Back propagation calculates the gradient with

respect to the weights of layers using the chain rule of calculus. As a result, the

gradients of the earlier layers of networks are calculated by a multiplicative chain

of the gradients from the subsequent layers.

2.6.4 Convolutional Neural Networks

Introduction

Standard images are stored in memory as a three-dimensional matrix: one di-

mension for the height of the image, one for the width, and another for the

color channel. Colored images contain three color channels: red, green, and blue;

referred to as RGB. As an example, suppose a colored image is 128x128; it is

stored in memory as a 128x128x3 array; in this way, an image is comprised of

three 128x128 matrices, one for each RGB channel. Because standard neural net-

works require a single feature vector as input, multi-dimensional feature matrices

cannot be applied. To overcome this issue, images can be flattened into a single

vector of input. From the previous example, the 128x128x3 colored image can be

flattened into a 49,152 element feature vector for input. Although this solution

allows for images to be processed by neural networks, the flattening procedure

loses important information concerning the images, such as the spatial and tem-

poral representation. Spatial representation refers to the surrounding neighbors

of a pixel while the temporal representation refers to the depth of the pixel in

the RGB channels.

An extension of feed-forward neural networks was created to solve this prob-

41

lem by utilizing convolutions, giving the model the name convolutional neural

network, also referred to as ConvNet. Early ConvNets composed of three simple

layers, convolutional kernels, pooling layers, and dense layers. Convolutional ker-

nels and pooling layers will be discussed shortly, while dense layers refer to the

simple feed forward networks described earlier.

Convolutional Kernel

Convolutional layers in neural networks compose of a kernel and a bias that are

applied to multi-dimensional inputs. For image processing, the kernel composes

of a three-dimensional array of learnable weights that are applied to the input.

This three-dimensional array has the same format as an image: a height, width,

and third dimension for the number of channels. The height and width of the

kernel must always be equal to or smaller than height and width of the input;

however, the third dimension for the number of channels can either be greater

or lesser than that of the input. The kernel for standard image processing can

be described as a hyper-cube that is applied to subsections of the image, that is

then slid over to the next set of pixels for convolution.

The convolution operation works by simply creating a linear combination

between its weights and the selected pixel values from the input selection. Figure

2.14 shows this operation spatially as the input is a 4x4 input and the kernel is

2x2. The convolution operates beings by first selecting a subsection equal to the

kernel size, applies the linear combination between the subsection and kernel and

utilizes the sum as the output pixel. The kernel is then slid over one pixel to

obtain the next subsection. Figure 2.14 shows that the output dimension shrinks

by 1 on all sides as only three 2x2 kernels can be applied to the input while

only sliding one pixel at at time without falling off the image. Padding can be

42

applied to keep the output dimensions equal to the input. In practice, the input

is typically a three dimensional array, by which a three dimensional kernel is

applied to the input, as show in Figure 2.15.

Figure 2.14: Spatial Convolution

Figure 2.15: Spatial and Temporal Convolution

Convolutional layers comprise of four very important hyper-parameters: ker-

nel size, depth, stride, and padding. Kernel size refers to what height and width

the kernel should have, while depth refers to how many channels the kernel has.

A 7x7 kernel refers to a kernel with both height and width of 7 pixels. Larger

kernels heights and widths have more receptive range as they contain more pixels

per operation. If the kernels size does not evenly fit into the input image dimen-

sions, padding can be applied by adding a layer of zeros to the dimensions the

image so that the output dimensions will match the input dimensions. Stride

will be discussed in the Pooling Layer subsection. It is common in practice to

43

apply an activation function after a convolutional layer to obtain non-linearity,

otherwise the convolution layer would simply be a weighted sum of pixels.

Pooling Layer

The objective of pooling layers is to reduce the dimensionality of the input in

order to both save computation and reduce noise. Pooling layers are invariant to

small perturbations to the input, meaning that if the input is changed slightly the

output from the pooling layers is still the same or extremely similar. There are two

common pooling layers utilized in practice, max and average. Like convolution

layers, pooling layers have kernels sizes only for their width and height, along

with a stride. In this way, because pooling layers lack another dimension for

output channels, the number of channels for the output is the same as the input.

However, the kernels for both max and average pooling no longer consist of

trainable weights but instead take either the maximum or average value for a

selected subsection from the input.

Pooling layers are known for their reduction in computation by acting as a

cheap alternative to convolution layers as they do not require trainable param-

eters. In addition, with the inclusion of a stride, pooling layers can reduce the

dimensionality of the input along the width and height axes. Stride refers to

how many pixels are slid across by the kernel. Up until now, all examples have

utilized a stride of one, meaning that once the kernel has been applied to a sub-

section of the input, it is slide across by one pixel to obtain the new subsection

of the input. With a stride of two, the input dimensions are cut in half. Strides

can also be implemented in convolution layers in order to reduce dimensionality

as well, but pooling layers are sometimes favored in practice because they are

cheaper in computation and are less prone to overfitting. A convolution layer

44

with stride of two can be depicted in Figure 2.16, where each color corresponds

to the subsection for the corresponding output pixel.

Figure 2.16: Spatial Convolution with stride of 2

Simple ConvNet

Now since the basic building blocks for a CNN architecture has been discussed, a

basic ConvNet architecture can be constructed. Figure 2.17 showcases a simple

ConvNet architecture where the input is a 224x224x3 image followed by three

modules of max pooling, convolution, and ReLU activation. After these three

modules, a max pooling layer is applied before the data is flattened into two

subsequent dense layers before exiting to the softmax output layer. ReLU and

softmax activation functions will be discussed shortly.

2.6.5 Activation Functions

The objective of an activation function is to apply a non-linear function to the

input in order to obtain a non linear output. The sigmoid function was mentioned

previously in Section 2.7.2, but now will be expanded upon. The sigmoid function

is a monotonically increasing function ranging from 0 to 1. Because of the closed

45

112 x 112 x 8

56 x 56 x 16

28 x 28 x 32

14 x 14 x 64

7 x 7 x 128

1 x 1 x 4096 1 x 1 x 1000

convolutional + ReLU

max pooling

fully connected + ReLU

softmax

Input

224x224x3

Figure 2.17: Basic ConvNet

bounds, the sigmoid function squeezes its input when projecting. As a result,

neurons with negative sums will project extremely close to zero. As a result,

these values near zero will force the neurons of the next layer to become less

important as their weighted sum will be smaller, due to the near zero scaling

from the previous neuron.

A closely related neighbor to the sigmoid function is the tanh function, given

in equation 2.19.

f(net) =
enet − e−net

enet + e−net
(2.19)

The tanh function is a monotonically increasing function that ranges from

-1 to 1. Instead of turning off the neurons of the next layer when the previ-

ous sums are negative, the tanh function outputs a negative number, allowing

for information to still carry on throughout the network. However, both the

46

sigmoid and tanh function greatly suffer from exploding or vanishing gradients

when the network has many layers. Because larger networks contain many layers,

the methodology of back propagation multiplies the gradients in chains of sub-

sequent layers in order to obtain the gradient of current respective layer. When

this chain of multiplications becomes too large, the gradient explodes, i.e., tends

towards infinity; whereas when the chain of multiplications becomes too small,

the gradient vanishes, i.e. tends towards zero. Exploding gradients often ruin a

model as the model weights will tend towards infinity. On the other hand, van-

ishing gradients will not ruin a model but leave it stagnate as the magnitude of

the gradient will not be large enough for the optimization algorithm to continue

minimization.

Both the sigmoid and tanh function are extremely prone to both exploding and

vanishing gradients as they heavily rely upon the initialization of their weights.

When the initial weights are too large for a respective model, the back propagated

error for larger networks will explode as the chain multiplication of a large error

will tend toward infinity. On the other hand, because the derivative of the sigmoid

and tanh function have relatively small max values, 0.25 for sigmoid and 1 for

tanh, as can bee seen in Figure 2.18, the chain multiplication of extremely small

gradients will compound towards zero.

These limitations of both sigmoid and tanh functions led researchers and

practitioners alike to move from traditional activation functions to a family of

activations known as rectified activation functions. ReLU, short for rectified

linear activation unit, is an activation function, given in equation 2.20, that

returns the max between 0 and net.

f(net) = max(0, net) (2.20)

47

Figure 2.18: Derivatives for Sigmoid and TanH

As a result, negative input sums will turn off nodes of subsequent layers in-

stead of letting a small amount of information pass. By turning off neurons, the

input from one layer to a next becomes sparse. There are four primary advan-

tages of sparsity given by the authors in Deep Sparse Rectifier Neural Networks

[9]. The first is information disentanglement, which refers to how small changes

in input lead to small changes in output. When the input to a layer is dense,

the representation becomes entangled as small changes to the input will lead to

larger changes in output. However, if the representation is sparse and robust,

small input changes will lead to only small changes in the output. The second

advantage is efficient variable-size representation. Because of sparsity, the num-

ber of active neurons in a network will vary, forcing the model to control an

efficient representation amongst all neurons. Third, linear separability. Sparse

representations are either more likely, or more easily linearly separably, leading to

better model performance. Lastly, distributed but sparse representations. Sparse

48

representations force the model to distribute information across the network as

at any moment neurons can be turned off by their input.

Despite the success of ReLU activations, it suffers from another phenomenon

referred to as the dying ReLU problem, which occurs when most the neurons

output zeros, thus leading to more inactive neurons in subsequent layers. In

addition, the derivative of the ReLU is defined to be zero when the input is less

than zero. As a result, when most of the neurons become inactive, so do their

gradients, leading to poor learning. To alleviate this problem, a family member

of the rectified linear units referred to as leaky rectified linear unit, Leaky ReLU,

has been established [34].

Leaky ReLU, is equivalent to ReLu, but instead of outputting zero when the

input is less than zero, it leaks information by having an extremely small slope

for negative values, as can be seen by multiplying the input by α, in Equation

2.21.

f(net) =


net net > 0

α ∗ net net < 0

(2.21)

Another member of the rectified family created to solve this issue is the ex-

ponential linear unit, ELU [32]. When the input is negative, instead of having

a small negative slope like Leaky ReLU, ELU has an exponential decay ranging

from -1 to zero, given in Equation 2.22.

f(net) =


net net > 0

α ∗ (enet − 1) net < 0

(2.22)

A close relative to ELU is the scaled exponential linear unit, SELU [15].

SELU, like ELU, utilizes an exponential when the input is negative and returns

49

the identity when the input is positive; however, SELU, scales ELU by a constant,

λ, as can be seen in Equation 2.23. In the original paper, the λ and α were

empirically found to be 1.0507 and 1.6733.

f(net) =


λ ∗ net net > 0

λ ∗ α ∗ (enet − 1) net < 0

(2.23)

Altogether, the plots for all activation functions from the rectified family

discussed thus far are depicted in Figure 2.19:

Figure 2.19: Rectified Family

Unlike the previous activation layers which are applied to hidden dense or

convolution layers, the softmax activation layer is the activation applied to the

last output layer. The softmax activation function normalizes the sum of expo-

nential from its input, creating a probability distribution, as shown in equation

2.24.

50

f(net) =
enet∑
i e
neti

(2.24)

Because the softmax layer creates a probability distribution, it can be applied

directly to a cross-entropy loss function for evaluation. The benefit of utilizing

softmax over simply standardizing the output for creating a probability distribu-

tion, is that the exponential of the softmax function cancels out the logarithm in

cross entropy, allowing for the loss to be roughly linear with respect to its input.

As a result, the loss will never saturate, leading to efficient learning [10].

2.6.6 Generalization

In Section 2.2.1 on overfitting and underfitting, the phenomenon known as over-

fitting was discussed. Overfitting occurs when the model performance on the

training data greatly exceeds the performance of the model on the test or valida-

tion data. Generalization refers to when the model performance on the testing or

validation data is near that of the training data or better. Overfitting can occur

when the model complexity is too large, i.e. it has too many trainable parameters,

and the model starts to memorize the input data; or, when the model weights

start to become too large for a small set of neurons. There have been many

approaches taken to increase generalization, but the methodologies that will be

focused on here will be weight penalization, early stopping, neuron dropping, and

data augmentation.

L1 and L2 Regularization

Weight decay is a simple way to penalize models for having large weights. Two

prominent methodologies have been established, Lasso (L1) and Ridge (L2) [18].

51

Both L1 and L2 add a penalization term to the error function that increases when

the magnitude of the weights of the model increases. The difference between L1

and L2 is that the L1 penalty term is built off the sum of the absolute values of

the weights, as can be seen in Equation 2.25, while the L2 penalty term is built

of the sum of the squared values of the weights, as can be seen in Equation 2.26,

where L(w) refers to the loss function given the weights of the model, and wi

refers to each individual weight.

L(w) + λ
∑
i

|wi| (2.25)

L(w) + λ
∑
i

w2
i (2.26)

Both L1 and L2 have a coefficient, λ, that defines how much influence the

penalty term has in regards to the error function. Too large of a value will lead

to underfitting, as the weights will become too small to learn any representation,

while too large of a value will lead to overfitting, as the weights will become

too large. Because L2 penalizes the size of the coefficients, the overall final

weights will be comparatively small. On the other hand, because L1 penalizes

the magnitude of the coefficients, some of the weights will be driven towards zero,

creating sparse weights.

Early Stopping

A very similar approach to L2 weight decay is early stopping. Early stopping

prevents the model from having too large of weights by stopping training when the

model starts to overfit. Typically, the test or validation set is given to the model

during training. After each epoch, the test or validation set is evaluated for its

52

generalization capabilities. Whenever the performance on the test or validation

data starts to decline, indicating overfitting, as the model weights are becoming

too large, the training stops in order to preserve the smaller weights.

Dropout

Dropout [27] is a layer introduced to reduce overfitting, not by adding a penal-

ization term to the loss function but instead by dropping neurons, along with

their weights, during training. With each pass throughout the network, a ran-

domly sampled set of neurons, along with their associated weights, are dropped,

simulating sparsity. The only hyper parameter needed for a dropout layer is the

dropout percentage, which refers to the percentage of nodes between two lay-

ers to be randomly dropped. By randomly dropping neurons and weights, the

model is forced to not rely upon a set of weights with large values, but now must

rely upon a randomly sampled set of weights. Dropout also increases model ro-

bustness as each training pass throughout the network samples a random set of

weights. As a result, each training pass through the network relies upon a dif-

ferent randomly sampled subnetwork, which decreases inter-neuron dependencies

that cause overfitting.

Batch Normalization

Another layer utilized for increasing generalization is batch normalization. Unlike

the previous techniques utilized for increasing generalization, batch normalization

[13] was mainly designed to solve a phenomenon in activation functions known

as internal covariate shift. Each convolution and dense layer will have its own

unique input distribution. Whenever this distribution changes during training it

is referred to as covariate shift. Internal covariate shift occurs when the distri-

53

bution of network activations changes due to the weight updates of the model.

This internal covariate shift can slow down training as the entire model has to

compensate for internal distribution shifts at different layers within the network.

Batch normalization was proposed to solve this issue by standardizing the input

before being sent to the activation layer. The standardization works by simply

transforming the input into Z-scale for each dimension, where the mean and vari-

ance are calculated for that particular mini-batch sample, as shown in Equation

2.27, where k is the kth dimensional input, E is the mean and V is the variance

of the mini-batch sample.

n̂et
k

=
netk − E[netk]√

V ar[netk]
(2.27)

In addition to speeding up training, the authors found that applying batch

normalization also increased generalization.

Image Augmentation

Another methodology of increasing the generalization of a network is through

data augmentation, which refers to the process of augmenting the training data

by diversification. As a result, data augmentation creates artificially realistic

data that the model can learn underlying representations from. This process is

more commonly applied to convolutional neural networks as image augmentation

is typically more intuitive than when the data is not an image.

From the success of L1 regularization, dropout, and ReLU activation as a

means of creating robustness and regularization through sparsity, Cutout is a

simple regularization technique that drops a patch of pixels from the input image

prior to being fed into the model. Unlike dropout, which drops neurons ran-

54

domly during training, Cutout drops the pixels before even being processed by

the model. Cutout was shown to improve regularization over baseline models [4].

Overfitting can occur when the model starts to memorize pixel representations

and can become very sensitive to noise. Another form of image augmentation

created to solve this issue is mixup [2]. Mixup changes the images by creating

convex combinations between images. Because the input image is no longer

resembling only one class, the output label is adjusted in order match the linear

combination between the images.

The last image augmentation technique to be discussed combines both Cutout

and Mixup, referred to as cutmix [35]. The downside of Cutout is that vital

information of the input image is left out as a randomly selected patch is dropped,

while the problem with Mixup is that the samples generated are unrealistic and

can cause ambiguity in the transformed training labels. Cutmix solves both

problems by selecting a random patch of an image and replaces that patch with

the same patch from another image. CutMix was shown to outperform both

Cutout and Mixup on numerous data sets and model architectures.

Examples of these augmentation techniques can be found in Figure 2.20. Part

a and part b of Figure 2.20 showcase the original two images from an example

dataset. Part c performs Cutout on the original cat image by replacing a ran-

domly patched box with zeros. Part d performs a linear combination between

the cat and dog for Mixup. Lastly, part e showcases Cutmix, where a randomly

patched box from the cat image is replaced with the associated box coordinates

from the book image.

55

(a) Original Picture for Cat (b) Original Picture for Book

(c) Cutout Example (d) Mixup Example

(e) CutMix Example

Figure 2.20: Image Augmentation Techniques

56

2.6.7 Optimizers

Training and optimizing deep CNN pose a challenge for both efficiency and per-

formance. The ability to converge fast is desirable in order to reduce computa-

tional costs, but also the desire to converge to minima points that yield better

performance is even more desirable. The optimization landscapes of deep neural

networks are vast and complex terrains with steep cliffs, saddle points, plateus,

and valleys [10]. Being able to maneuver across this landscape is vital in order to

achieve better performance. Over the history of deep learning, many different op-

timizers have been created. Within the context of this work, variants of SGD will

be discussed along with AdaGrad, RMSProp, and Adam. Lastly, weight decay

for both SGD and Adam will be introduced as a methodology for generalization.

SGD and Momentum

For reiteration, SGD across a single batch is given by

wi+1 = wi − α
1

n
∇

n∑
j

F (w)|w=wi
(2.28)

Because SGD updates a single batch across the gradient average instead of the

gradient of the full dataset, each update step can become noisy in the sense that

it takes a non-perfect step. In addition, SGD can become stuck in local ravines of

the optimization landscape. In order to escape from such local ravines and take

better steps, momentum can be applied. Momentum can be explained like a ball

rolling down a hill. As the ball keeps rolling down the hill, it picks up momentum

and speed which helps it reach the bottom quicker. Just like this simple analogy,

momentum incorporated with SGD can speed up convergence and escape local

minima; however, it can also become sporadic and bounce out of an optimal

57

critical point if it becomes too large. Momentum is implemented by updating

the weights by the weighted subtraction of the average moving gradient, given in

equation 2.29.

vi+1 = γvi + (1− γ)α
1

n
∇

n∑
j

F (w)|w=wi

wi+1 = wi − vi+1

(2.29)

A velocity term is kept and updated at every time step, as in PSO. The γ

parameter represents the momentum hyperparameter. Controlling this hyperpa-

rameter influences how much the previous velocity will impact the weight update.

Algorithms which utilize momentum incorporate what is known as moving av-

erages, the average of past gradients that move due to iteration updates. From

Equation 2.29, each velocity update is a linear combination of the current gradi-

ents plus the previous gradients, vi. With this incorporation, momentum acts a

source of accumulation in order to utilize the history of gradients in calculating

the next step.

A variation of momentum is known as Nesterov Momentum [21],

vi+1 = γvi + (1− γ)α
1

n
∇

n∑
j

F (w)|w=wi+α∗vi (2.30)

Nesterov and standard momentum are equal except for the calculation of the

gradient. Nesterov calculates the gradient with respect to the projected position,

wi + αvi. By calculating the gradient with respect to the projected position, the

gradient influences the direction of where to step based upon that projection.

58

AdaGrad

One issue with all variants of SGD is that the learning rate is static for all pa-

rameters. Although this rate can be increased or decreased, it is increased or

decreased for all parameters. This can become problematic because learning

rates with very small values will take much longer to convergence while learn-

ing rates with extremely large of can lead to oscillation and divergence. As a

result, having a static learning rate for all parameters can limit the learning of

some parameters while causing others to oscillate. In this way, it is desirable to

have individual learning rates for each parameter in order for better optimiza-

tion; however, manually setting millions of learning rates is infeasible. Adaptive

Subgradient Methods for Online Learning and Stochastic Optimization [5] pro-

posed an algorithm called AdaGrad to solve this issue by adaptively scaling the

learning rate for each parameter. A learning rate is still given to the algorithm

to represent the maximum ceiling, but each parameter has the ability to scale

up to the learning rate. The algorithm has the ability of changing the learning

rate based on the sum of the squared gradients over the course of training. The

algorithm can be seen in Equation 2.31, where the gradient of the kth parameter

at time step i.

gi,k =
1

n
∇F (w)|w=wi+α∗vi

wi+1 = wi −
α√

ε+
∑i

j g
2
(i,k),j

gi,k
(2.31)

The learning rate is scaled by the denominator, the square root of ε, the sta-

bility term, plus the sum of the squared gradients over the course of all iterations

of training. As a result, parameters with large gradients over the course of train-

ing will scale the learning rate to decrease, while smaller gradients will yield an

59

increase in scaling of the learning rate. Because the denominator is dependent

upon only the gradients of that particular weight, the each individual learning

rate becomes scaled to adapt to training.

RMSProp

Another issue with all variants of SGD is that the gradient average can have issues

when the magnitudes of one gradient of the batch is extremely large, which can

negatively affect optimization. Root Mean Squared Propagation, RMSprop, is

an unpublished algorithm that seeks to fix this issue by normalizing the squared

average of the gradients. Simultaneously, it also tries to solve the problem with

AdaGrad where the adaptive learning rates for individual can pre-converge to

zero before overall model convergence due to that fact that the gradients can be

very large early on during training, resulting in the accumulation of gradients

over time to be larger than what is reflected from recent gradients. In this way,

AdaGrad has the ability only to adaptively decrease individual learning rates,

but not increase. RMSProp solves both problems described above by taking a

weighted moving average of the squared gradients from previous iterations and

its current, then scaling the learning rate by that said value. The RMSProp

algorithm can be given in equation 2.32, where si,k is the moving average of

gradients for the kth weight.

gi,k =
1

n
∇F (w)|w=wi+α∗vi

si,k = γsi−1,k + (1− γ)g2
i,k

wi+1 = wi −
α

√
ε+ si,k

gi,k

(2.32)

60

Adam

The Adam optimizer, introduced in Adam: A Method for Stochastic Optimiza-

tion [14], sought to combine RMSProp with momentum in order to accelerate

convergence while also having the ability to adaptively increase and decrease the

learning rate per parameter. The moving averages of the gradients and the mov-

ing averages for momentum are calculated by equation 2.33, then the current

time steps momentum and moving average of gradients after calculation are nor-

malized by two hyper parameters β1 and β2 raised to the ith power, as shown in

equation 2.34. Finally the weights are updated in equation 2.35, with the notice-

able difference in that ε is included outside the square root instead of inside, as

in RMSProp and AdaGrad. However, Adam introduces now two very important

hyper parameters to tune other than the max ceiling learning rate, β1 control-

ling the momentum and β2 controlling the moving average of gradients. In the

original paper, the authors suggest β1 = 0.9 and β2 = 0.999.

gi,k =
1

n
∇F (w)|w=wi+α∗vi

vi,k = β1vi−1,k + (1− β1)gi,k

si,k = β2si−1,k + (1− β2)g2
i,k

(2.33)

v̂i,k =
vi,k

1− βi1

ŝi,k =
si,k

1− βi2

(2.34)

wi+1 = wi − v̂i,k
α

ε+
√
si,k

gi,k (2.35)

61

Decoupled Weight Decay

As discussed in section 2.6.6 over generalization techniques, L1 and L2 regular-

ization were both explored as methodologies to regularize neural networks. Both

regularization techniques added an additional cost metric to the calculation of

the cost function. In the current discussion on optimizers, this would be applied

during the calculation of the gradient. However, a problem arose with adaptive

optimizers, such as Adam, where the L1 and L2 regularization would become

adapted for each individual parameter, negating the intent. Despite applying

weight regularization directly to the loss function, another methodology of weight

decay has been proposed for adaptive optimizers. In Decoupled Weight Decay

Regularization [20], the authors propose a weight decay mechanism that is decou-

pled from the loss function and is directly applied to the weight update step. The

Adam optimizer incorporated with decoupled weight decay is commonly referred

to as AdamW. AdamW changes the update step for each parameter, which can be

seen in equation 2.36. Instead of multiplying the gradient directly, AdamW scales

the previous weight position by the weight decay coefficient, λ, before adding it

to the rest of the expression. As a result, decoupled weight decay regularizes all

weights equally by scale λ in order to prevent weights from becoming too large,

leading to overfitting.

wi+1 = wi − v̂i,k
α

ε+
√
si,k

+ λwi (2.36)

62

2.6.8 Advanced Convolutional Neural Networks

AlexNet

In order to compare new and upcoming CNN architectures, universal benchmark

image recognition datasets were established for accurate comparison. The most

staple benchmark utilized to compare all major models is ImageNet LSVRC-

2010, which comprises of 1.2 million high-resolution images across 1000 unique

classes. One of the first successful ConvNets on this benchmark dataset was

an architecture called AlexNet [17], created in 2012. The AlexNet architecture

contained only eight simple convolution layers, three max pooling layers, three

dense layers, and one dropout layer, which can be seen in Figure 2.21.

The first convolution layer contained a kernel with size 11x11, followed by a

max pooling layer, then a kernel with size 5x5, max pooling layer, and then the

remaining convolution layers had a kernel size of 3x3 followed by a max pooling

layer. The original idea behind the decreasing kernel sizes was to capture spatial

representation proportional to the input size. After each convolution and dense

layer, a ReLU activation function was applied.

Although, this relatively small architecture contained only a few convolution

layers, the final model totaled to 62.3 million trainable parameters and achieved

62.5% test accuracy on the ImageNet benchmark dataset. Since the emergence

of AlexNet, a plethora of different CNN architectures have been explored, from

VGGNet and ResNets to Inception and Xception.

VGGNet

Shortly following AlexNet, VGGNet networks emerged [25], extended the number

of layers in AlexNet to a much larger scale. VGG networks follow the same pro-

63

Figure 2.21: AlexNet Architecture

cedure as AlexNet, a feed forward network composed of blocks of convolutional

kernels where each block is followed by a max pooling layer for dimensionality re-

duction, wrapping up with three dense layers. Another unique difference between

AlexNet and VGG is that the authors of Very Deep Convolutional Networks show-

cased that large kernel sizes of 11x11, 7x7, and 5x5 can be reduced by stacking

64

multiple 3x3 convolutional layers. By reducing the kernel size and stacking more

kernels, the number of trainable parameters is reduced dramatically while also

not losing any model performance.

65

Figure 2.22: VGG16 Architecture

66

Two prominent models were created, VGG16 and VGG19, where the numeric

represented the number of convolutional layers plus dense layers. The VGG16

architecture can be seen in Figure 2.22. Together, VGG16 contained 138.4 million

parameters and VGG19 contained 143.7 million parameters while both yielding

a new best test accuracy for the time of 71.3% on ImageNet.

ResNet

Shortly following after VGG19, deep residual connections, commonly referred to

as ResNets were created [12]. The authors of Deep Residual Learning for Image

Recognition incorporated many new ideas into their models: skip connections,

bottleneck modules, global average pooling, and batch normalization. The au-

thors observed a phenomenon where the test and training error was worse for

networks containing a very large number of convolution layers, up to 200. They

believe the reason behind this occurrence is due to the fact that extremely deep

convolutional networks are too difficult to optimize as information becomes lost

throughout the network. They addressed the issue by incorporating deep residual

learning via skip connections that passed information from one layer to another

by skipping subsequent layers, which can be seen in Figure 2.23a, where n refers

to the number of filters, and the plus symbol refers to layer wise element addition.

67

(a) Residual Module (b) Residual Module with Bottleneck

Figure 2.23: ResNet Modules

68

The architecture was broken down into modules that were stacked repeatedly.

Each module contained two convolutional layers with kernel sizes of 3x3, followed

by a ReLU activation after each layer. In addition, following after each convo-

lution, but right before the activation, a batch normalization layer was added

in order to reduce the likelihood of internal covariate shift. Unlike AlexNet and

VGG, ResNets achieved dimensionality reduction by utilizing a convolution layer

with a stride of two instead of the cheaper max pooling layer.

In addition to skip connections, Deep Residual Learning for Image Recogni-

tion also proposed a bottleneck module. Even after reducing kernel sizes, the

computational costs for two stacked 3x3 kernels is dependent on the number of

projecting channels from the previous layer. The motivation behind the bottle-

neck module is to reduce this computation. The bottleneck module is a building

block that contained three convolution layers, the first and last with a kernel size

of 1x1 and the middle with a kernel size of 3x3, as can be seen in Figure 2.23b,

where 4n refers to four times the amount of filters for that module.

The smaller kernel size of 1x1 offers a cheap computation that will reduce and

restore the information within the module. The first 1x1 kernel will compress the

information fed into the 3x3 kernel by decompressing the number of channels,

while the last 1x1 kernel will restore the information by projecting it back into

the original feature space by increasing the number of channels. The purpose of

this compression and decompression is to not only reduce computational costs,

but also extract the most important features. Although this compression and

decompression might seem to lose information, the combination with skip con-

nections incorporates previous uncompressed information with the current helps

prevent any major information loss.

Lastly, unlike AlexNet and VGG, ResNets utilized a single global average

69

pooling layer instead of dense layers before the final dense output. By utilizing

global average pooling, the number of parameters decreases greatly while also not

degrading performance. Like average pooling, global average pooling performs

dimensionality reduction by averaging pixels, except across the channels instead

of the height and width. For example, an input of 16x16x512 is reduced down to

a 1x1x512 as each feature map is reduced via averaging.

By varying the number of repeated modules per model, ResNet model sizes

can grow dependent upon the computational resources available. On the Ima-

geNet benchmark dataset, ResNet152, where the numeric refers to the number of

total layers, achieved a result of 76.6% accuracy while only having 60.4 million

parameters. For a full example of a ResNet architecture, Figure 2.24 show the

ResNet50 architecture where Block64x3 refers to the bottleneck module described

in Figure 2.23b where n = 64 and the module is repeated three times.

Figure 2.24: ResNet50 Architecture

70

Inception V1

Around the time of ResNets, an architecture referred to as Inception [30] took

a very different approach to constructing convolutional neural networks. Unlike

VGG and ResNets, Inception challenged the idea of creating very large deep

neural networks. Instead, Inception brought the idea of shallower models with

more layers clustered together per module. Creating larger models by stacking

more layers or increasing the number of channels leads to two prominent issues,

over fitting and increased computational cost. Inception proposed a way to solve

both problems by creating sparse architectures. Their research showed that com-

bining relatively sparse information into dense information can lead to increased

performance. With this theoretical research as a basis, Inception proposed the

revolutionary idea of clustering layers together and combining their outputs as

input into the next module. This can be seen in Figure 2.25. The final architec-

ture is created by stacking multiple inception modules up to the computational

resources available.

Figure 2.25: InceptionV1 Module

71

In Figure 2.25, the current module has four output connections fed into the

next module. The first is from a 1x1 convolution, while the second is a 3x3

convolution preprocessed by a 1x1 convolution, the third is a 5x5 convolution

preprocessed by a 1x1 convolution, and the last connection is from a max pooling

layer with a stride of one that is followed by a 1x1 convolution. The intuition

behind the different kernel sizes in the module was to capture different spatial

representations of the image. The output from the four layers was combined

using filter concatenation, which combined the output by stacking them via the

filter/channel dimension. Although this increased the number of channels for the

next module, the cheap 1x1 convolutions preceding three of the four connections

for the next module allowed for compression back to a smaller dimension.

This module was repeated a number of times where it was then followed by

max pooling for dimensionality reduction. By repeating this process, the final

model was created. Like ResNets, Inception utilized ReLU after each convolution

layer and global average pooling right before the output layer. This architecture

was known as InceptionV1, for version one.

Inception V2-V3

Versions two and three of Inception were released in a single paper called Rethink-

ing the Inception Architecture for Computer Vision [31]. InceptionV2 reduced the

computational costs of InceptionV1 by reducing the 5x5 kernel into two stacked

3x3 kernels. In addition to this reduction, InceptionV2 utilized factorization to

achieve even smaller network sizes without diminishing performance. Stacked

convolutional kernels can be factorized to asymmetric convolutions, nx1 convolu-

tions. For example, a 3x3 convolution would be factorized to a 1x3 and 3x1. By

factorizing the kernels, the computational requirements were reduced as applying

72

a 1x3 kernel followed by a 3x1 kernel is more computationally efficient than a

3x3. See Figure 2.26 for the construction of the new module.

Figure 2.26: InceptionV3 Module

73

Lastly, like ResNets, InceptionV2 switched from applying max pooling for

dimensionality reduction after modules as in InceptionV1, to applying a stride

factor of 2 for each of the convolution layers in a module.

InceptionV3 expanded on InceptionV2 with the addition of regularizes, such

as batch normalization layers between kernels, dropout layers, and label smooth-

ing. Label smoothing is the methodology of increasing regularization by making

the model less confident concerning its predictions, reducing over fitting. The au-

thors showed that two problems can arise with using simple cross entropy; the first

being that if a model can learn to assign extremely large probabilities to ground

truth labels during training, which can decrease generalization; secondly, because

the gradient of cross entropy with respect to the input distribution is bounded

between -1 and 1, the ability for the model to adapt is reduced if it becomes too

confident concerning the learning samples. As a result, label smoothing reduces

the confidence of the largest quantile from the predicted distribution while in-

creasing the probabilities of the rest of the quantiles to a small degree. The exact

alteration of a predicted distribution P for an ith observation is given in Equation

2.37, where α is the source of degrading confidence and K is the total number

of classes. As an example, assuming a predicted distribution for a observation

to be Pi = (1, 0, 0) with 3 classes and α = 0.10, the new predicted distribution

to fed into cross entropy will be P̂i = (0.933, 0.033, 0.033), which decreases the

confidence of the current largest prediction while also giving a small boost to

other classes.

P̂i = (1− α)Pi +
α

K
(2.37)

Lastly, InceptionV3 changed the module from InceptionV2 by using factorized

74

7x7 kernels instead of 3x3. Even though a single 7x7 kernel is more computation-

ally complex than a 3x3, factorizing the kernel into 1x7 and 7x1 kernels reduced

the complexity by 33%. InceptionV3 achieved 77.9% accuracy with only 23.9

million parameters on the ImageNet benchmark dataset.

Inception V4, Inception-ResNet, and Xception

InceptionV4 and Inception-ResNet were released again in a single paper called

Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learn-

ing [29]. Although the exact additions for InceptionV4 will not be discussed,

Inception-ResNet combined Inception style modules with residual connections.

The architecture was changed by adding a 1x1 convolution after the filter con-

catenation to compress the channels to its original size to then be added to

the previous modules output. See Figure 2.27 for the Inception-ResNet module.

Inception-ResNet achieved 80.3% accuracy with only 55.9 million parameters on

the ImageNet benchmark dataset.

Figure 2.27: InceptionV3 Module

75

The last member of the Inception family is Xception, introduced the paper

Deep Learning with Depthwise Separable Convolutions [1]. The architecture of

Xception is fairly simple, the exact same as InceptionV2 except each convolution

layer was swapped for a depth-wise separable convolution layer. The original hy-

pothesis of Inception was to introduce sparsity spatially by combining the output

from multiple convolutional kernels. Xception expanded upon this hypothesis

by introducing sparsity not only spatially but also temporally via the channels.

This effect can be captured by using depth wise separable convolutions, which

separates the convolutional kernel into its depth wise and spatial kernels to be

applied separately to the input. Xception achieved 79% accuracy with only 22.9

million parameters on the ImageNet benchmark dataset.

2.7 Neural Architecture Search

Current state of the art CNN architectures have mainly been hand designed by

practitioners and researchers alike. Although hand designing architectures allows

for the implementation of current domain knowledge, it closes the door to other

possible types of architectures which could achieve better performance. The

domain of exploring neural network architectures using some type of automated

process can be referred to as Neural Architecture Search (NAS). NAS systems

are composed of three primary functions: search space, search algorithm, and

evaluation strategy [19].

2.7.1 Search Space

The search space defines the domain from which possible architectures can be

constructed. Too large of a search space can lead to great exploration but poor

76

convergence qualities, while too small of a search space can lead to simple local

greedy searches with poor exploration. There have been three primary search

spaces for NAS systems: global, micro, and hierarchical. Global search spaces

include search domains where no user bias is induced and every hyperparameter

and possible combination of layers and connections is decided by the search algo-

rithm. In global search spaces, the learning rate, optimizer, number of channels,

kernel size, stride, regularization, number of layers, connections between layers,

and other hyperparameters are all decided by the algorithm. Micro searches uti-

lize user domain knowledge in order to limit the search space to possibly efficient

architectures rather than completely random. The most common type of mi-

cro search utilizes cell-based modules that are designed by the search algorithm,

which are combined and repeated to create the full model. Lastly, hierarchical

search domains incorporate non-repeating cells that are built on top of each other

as a non-cyclic directed graph.

2.7.2 Search Algorithm

The search algorithm defines how the NAS system will be able to maneuver about

the search space. The NAS search space can be translated in to an optimization

problem where the input is the created model and the output is the performance

on some benchmark dataset. There are four common types of search algorithms

in NAS systems: evolutionary algorithms, Bayesian optimization, reinforcement

learning, and one-shot methods. As explained in section 2.4, evolutionary algo-

rithms are population-based search algorithms which incorporate mutation and

crossover in order to produce better individuals. Bayesian optimization creates a

predictive model, samples from its prior beliefs concerning possible models, and

77

then updates the prior based upon the sampled results. Reinforcement learning

is a sub-field of machine learning which is very similar to supervised learning.

Unlike supervised learning, the label output is regarded as a reward, from which

the reinforcement learning algorithm learns to maximize. For NAS search spaces,

typical reinforcement models utilize a recurrent neural network to generate ar-

chitectures and optimizes the weights using a standard reinforcement learning

algorithm. Lastly, one-shot methods create a large hyper-graph of all possible

combinations of the search space, training this extremely large model for a cou-

ple of iterations. After convergence, different connections and layers, along with

their associated finished weights, are randomly sampled and evaluated.

2.7.3 Evaluation Strategy

The evaluation strategy defines the function that will grade each inputted model.

The issue that arises with NAS systems for evaluating models is the fact that

each inputted model needs to be trained on a given benchmark dataset for com-

parison. In this case, two datasets are primarily utilized, one for training the

model and a second for validation. The best validation accuracy, or loss, is then

utilized as the final score for the model. However, due to the nature of stochas-

tic non-deterministic training, each model might yield a different final validation

score from trial to trial, adding to the complexity of the optimization problem.

In addition, training each model until convergence will yield the most accurate

results, but can become extremely time consuming when the models and datasets

are very large. Besides training until convergence, a few possible alternatives have

been proposed in order to reduce training time. The simplest way to limit time

complexity would be to limit the number of training epochs, risking the chance

78

of models not converging well, or train on a smaller subsample dataset. Another

option is to internally share weights between models by using another models

weights as the currents starting initial weights. Lastly, predictive models can be

used in order to estimate the performance of models based upon certain criteria.

The benchmark image dataset discussed thus far has been ImageNet, but

training a model upon this extremely large dataset can take days. As a result, it

is common for NAS systems to evaluate models on much smaller and somewhat

easier datasets, such as the CIFAR10 dataset. The CIFAR10 dataset is composed

of 60,000 32x32 RGB images spanning over 10 unique classes. 50,000 of the

images are split for training and 10,000 are split for testing. It is common for

NAS systems to evaluate models on this smaller dataset before taking the best

for testing on ImageNet.

79

Chapter 3

Related Work

The purpose of Chapter 2, Background Information, was to introduce the nec-

essary information for the reader to understand the concepts and material being

manipulated throughout this work. Chapter 3, Related Work, introduces three

very vital and important papers that layout the map from which this work re-

ceived inspiration from. First, the NASNet search space will be introduced, a

revolutionary domain space that incorporated material from ResNets, Inception,

and Xception, along with the ability to scale models after the searching process.

Secondly, AmoebaNet will be introduced in order to showcase the current re-

search utilizing genetic algorithms to maneuver about the NASNet search space.

Lastly, Super Convergence will be described in order to demonstrate how the

convergence of neural networks can be sped up.

3.1 NASNet

The design of the search space for NAS systems is vital in order to create pow-

erful but yet unique architectures. In order to narrow down the search space

80

to architectures practitioners know will perform well, domain knowledge can be

utilized in the creation of the search space. In, Learning Transferable Architec-

tures for Scalable Image Recognition [38], the authors propose a search space

that would revolutionize the NAS domain, the NASNet search space, a micro

cell-based search space. The most powerful component of the NASNet search

space is its scalability. Scaling CNN architectures poses a difficult task, as some

practitioners allow the scaling of the model to be determined during the architec-

ture search; however, larger models during the searching process will naturally

take more computational resources to evaluate and possibly over fit the dataset.

Instead, the NASNet search space defines two primary cells â normal and reduc-

tion. The search algorithm only optimizes these two independent cells, which can

then be stacked upon each other for scalability after the searching process. The

stacking of the cells is designed such that the normal cell is repeated n number

of times, before being followed by a reduction cell; this process of stacking the

normal cell, followed by a reduction cell, is repeated until the input dimension

down samples to the desired size. The exact construction can be seen in Figure

3.1, where a normal block of cells is followed by a reduction, then a normal block,

reduction, normal block, and then output stem.

The number of filters per convolution layer in each cell is determined by the

stage of the model in which the cell lies. After each reduction cell, the number

of filters per layer doubles to match the spatial dimensionality reduction. For

example, the first block of normal cells after input could have 32 filters, then the

next block of normal cells after the first reduction cell will have 64, and then the

final block will have 128. As a result, scalability can not only go depth wise, but

also width wise by increasing the number of initial filters.

Both the normal and reduction cells receive two input connections and outputs

81

Figure 3.1: NasNet Model Construction

one single connection. The first input connection is the output from the previous

cell while the second input connection is the skip connection input from the

second previous cell, which can be seen by Figure 3.2.

Figure 3.2: Normal Cell Module with Residual Connections

This skip connection input was incorporated due to the success of ResNet ar-

chitectures, as residual connections allow for older information to pass throughout

the network. The output connection is the filter concatenation from a set of hid-

82

den states. The hidden states are Inception like building blocks containing multi-

ple hidden states, or nodes, that receive two connections and applies one unique

operation to each input. The number of hidden states is defined by the architect,

but the search algorithm has the ability to define the topology of the connections

and which operations to apply to each incoming connection. The only difference

between the normal and reduction cell, besides being optimized independently,

is that the reduction cell utilizes a stride of two at each first input connection

in order to achieve dimensionality reduction. An example construction for a cell

containing 5 nodes is given in Figure 3.3.

Figure 3.3: Normal Cell Example

The list of possible operations to be applied at each hidden state are hand-

picked from current state of the art research. In the NASNet search space, 13

possible operations were given, listed in Table 3.1.

The NASNet search space combined scalability with the domain knowledge

83

Table 3.1: NASNet Search Space Operations

Operations

Identity 1x3 3x1 Conv.
1x7 7x1 Conv. 3x3 Dilated Conv.
3x3 Avg. Pool 3x3 Max Pool
5x5 Max Pool 7x7 Max Pool

1x1 Conv. 3x3 Conv.
3x3 Sep. Conv. 5x5 Sep. Conv.
7x7 Sep. Conv.

of residual connections and inception like building blocks in order to produce a

search space with the ability to create powerful but yet unique architectures. For

the final details of the search space, all convolution layers followed the order of

an ReLU activation, convolution operation, and then batch normalization. How-

ever, when depth wise separable convolution was employed as an operation, two

were applied to the connection instead of one. In addition, when the operation

was depth wise separable convolution, no batch normalization was applied be-

tween the two separable convolutions. Lastly, in order to satisfy dimensionality

consistency, 1x1 convolution layers were inserted as necessary.

After designing the search space, the search algorithm selected was a rein-

forcement learning recurrent neural network controller to generate the model

architectures, updating the weights of the control using Proximal Policy Opti-

mization [24]. Finally, the evaluation strategy created to score each model was

to train each model on the CIFAR10 dataset, utilizing a randomized subsample

of 5000 images from the 50,000 training images as validation. Each model was

scaled to n = 4 and trained for 20 epochs with a batch size of 128 on the remain-

ing 45,000 training images, equating to approximately 7,000 mini-batch weight

updates. The searching process utilized 500 GPUs over four days of optimization,

84

resulting in 2,000 total GPU hours, and evaluated a total of 20,000 models. The

best model, termed NASNet-A, was then scaled to n = 6 with 768 filters in the

penultimate layer and n = 7 with 2304 filters in the penultimate layer, on the

CIFAR10 dataset, their results can be seen in Table 3.2. The penultimate layer

is the final global averaging layer before being fed into the output layer.

Table 3.2: NASNet-A Test Accuracy on CIFAR10 Dataset

Architecture Parameters (Millions) Test Accuracy

NASNet-A (6@768) 3.30 97.35%
NASNet-A(7@2304) 27.60 97.60%

3.2 AmoebaNet

With the success of Learning Transferable Architectures for Scalable Image Recog-

nition, other researches decided to tackle the newly designed NASNet search

space, except from the side of evolutionary computation. In Regularized Evo-

lution for Image Classifier Architecture Search [22], the authors proposed an

evolutionary algorithm with two core components which achieved very similar

results with the original reinforcement learning controller. The authors utilized

the same NASNet search space, except limited the number of operations to only

eight operations, getting rid of almost all standard convolution operations in favor

of separable convolution, listed in Table 3.3.

The genetic algorithm proposed by the authors was a population-based muta-

tion only algorithm with aging. The algorithm randomly initialized a population,

sampled from the population with replacement, and utilized tournament style

selection to choose the best model from the sample to be mutated. After muta-

tion, the new individual was then added back to the population and the oldest

85

Table 3.3: AmoebaNet Search Space Operations

Operations

Identity 3x3 Sep. Conv.
5x5 Sep. Conv. 7x7 Sep Conv.
3x3 Avg. Pool 3x3 Max Pool

3x3 Dilated Sep. Conv. 1x7 7x1 Conv.

from the population was removed. Because training each CNN architecture is

non-deterministic, the authors believe that holding onto the best individual can

diminish performance if the model was incapable of repeating its performance.

As a result, the only way for a model to survive was if it were passed down to its

child through mutation. By incorporating aging, the genetic algorithm was less

prone to early convergence. The genetic algorithm only mutated an individual

with one of two possibilities, randomly changing the connections or operations of

a node. The authors did not state as to why crossover was not utilized. The au-

thors ran their evolutionary algorithm with five different configurations, changing

the population size and the number of samples to drawn for tournament selec-

tion, for comparison. In their results, the authors report that a population size

of 100 individuals with 25 randomly sampled for tournament selection performed

the best. Each trial run for evolution evaluated a total of 20,000 models after

running 450 GPUs for 7 days. Each model was scaled to n = 3, training for 25

epochs on 45,000 of the training set, and used the rest of the 5,000 training im-

ages for validation. The best model after evolution was dubbed AmoebaNet-A,

which was scaled to n=6 with 32 and 36 starting filters. Their results can be seen

in Table 3.4.

86

Table 3.4: NASNet-A Test Accuracy on CIFAR10 Dataset

Architecture Parameters (Millions) Test Accuracy

AmoebaNet-A (N=6, F=32) 2.60 96.60%
AmoebaNet-A (N=6, F=36) 3.20 96.66%

3.3 Super Convergence

Learning rate schedules are common practice when it comes to training deep

neural networks. Exponential decay is a type of learning rate scheduler that

exponentially reduces the learning rate of an optimizer so that the step sizes

become smaller for better convergence. One type of learning rate schedule has

been shown to speed up the training time of large CNN architectures. In Super-

Convergence: Very Fast Training of Neural Networks Using Large Learning Rates

[26], the authors propose a cyclic learning rate schedule that cycles once from a

minimum to a maximum learning rate. Cyclic learning rates were based on the

combination between curriculum learning and simulated annealing. By increasing

the learning rate during training, the step size towards the gradient increases in

magnitude, allowing for the algorithm to converge faster. In addition, by allowing

the optimizer to have a larger learning rate, it has the ability to escape from local

critical and saddle points. For an example of a single cycle learning rate schedule,

Figure 3.4 depicts a cyclic learning rate schedule from 0.001 up to 0.10 and back

down again over the course of 90,000 mini-batch weight updates.

However, setting the maximum learning rate is another hyper parameter to

tune, as it was shown to be dependent upon the model, dataset, and regularization

approaches taken. Too large of a maximum learning rate will oscillate the weights

too great and could lead to divergence. The authors proposed a learning rate test

where the learning rate was slowly increased from one value to another for about

87

Figure 3.4: Single Cycle Learning Rate Schedule

10,000 minibatch weight updates. After the test, the maximum learning rate

was selected to the learning rate right before any major oscillations or drops in

performance. The authors showcased the power of this type of scheduling by

achieving 92.4% on the CIFAR10 benchmark dataset within only 10,000 mini-

batch updates using a Resnet56 model while cycling the learning rate from 0.1

to 3 on SGD optimizer. In comparison, their control group was Resnet56 model

trained with a static learning rate of 0.35 on SGD, which achieved only 91.2% after

80,000 mini-batch updates. They termed this phenomenon super convergence.

88

Chapter 4

Approach and Methodology

In Chapter 4, Approach and Methodology, the contributions of this work will

be explained in detail. As a reminder, the purpose of this work is to adapt the

NASNet search space to include the optimization of non-convolutional operators,

project the representation of the adapted NASNet search space into a static

fixed length multi-dimensional vector so that vector optimization algorithms can

be applied, and propose an algorithm, which was later found to be a genetic

algorithm, with capabilities of maximizing exploration and exploitation given a

limited number of fitness evaluations.

4.1 Changing the NASNet Search Space

The NASNet search space serves as a staple backbone from which many NAS

systems can choose to augment for their optimization needs, as was seen with

AmoebaNet. In this work, the NASNet search space was augmented for a few

various reasons. First, the 7x7 separable convolution operator was removed as it

is equivalent to two stacked 3x3 separable kernels, leading to a reduced cost in

89

both memory and computation for training a model with such a layer. Second,

the NASNet search space was expanded as it lacks the ability to optimize non-

convolutional operational layers, such as activation, batch normalization, and

dropout. These non-convolutional operational layers were kept static, hand de-

signed from the domain research in both NASNet and AmoebaNet by following

up convolutional layers with batch normalization and ReLU activation. In this

work, the search space was extended in order to include the optimization of these

layers in order to explore more possible network architectures, while also breaking

traditional ground. This new addition was compiled into a new building block,

termed the After. The After, refers to the cleanup maintenance performed after

the operations of a hidden state node. Once the chosen operations are applied

to their respective inputs and are combined through element wise addition at a

hidden state node, the output is run through the After. Figure 4.1 shows hid-

den state node 1 of an example architecture, where after filter concatenation is

applied, the After block follows before sending off the input.

The After contains three layers: activation, batch normalization, and dropout.

The choices available for optimization include selecting the activation function

for the activation layer, which include ReLU, Leaky Relu, SeLU, and ELU; inde-

pendent inclusion of the batch normalization and dropout layers; and lastly, the

order in which the activation function and batch normalization was constructed.

In order to see the possible orderings and inclusions, observe Figure 4.2. Figure

4.2 showcases two possible paths from the input that both then end with the

dropout layer. One path is activation then batch normalization, and the other

is batch normalization then activation. The green boxes refer to layers that are

always included, while the tan boxes refer to layers that can be included.

By allowing the activation function to change for each independent node, the

90

Figure 4.1: The After Block

Figure 4.2: Order for After

search space now allows for architectures to select specific activations based upon

the chosen operations at the given hidden node. Although batch normalization

was originally applied before the activation [13], as it is currently debated whether

91

or not batch normalization solves the internal covariate shift phenomenon or acts

as a reguralizer [23]. As a result, by incorporating a mechanism with the ability to

select the order of batch normalization and activation, the search spaces allows to

independently select the best option on a per hidden state node basis. In addition,

the search space allows for the independent inclusion of batch normalization and

dropout. Although batch normalization was created to solve the internal covariate

shift, little theoretical basis supports its effectiveness in practice [8]. By allowing

to independently include, or not, batch normalization at each hidden state node,

the search algorithm has the ability to select which choice is best on a per node

basis. In the original NASNet search space, the only dropout layer included was

right before the softmax output layer. In this work, the search space was extended

by allowing the inclusion, or not, of a dropout layer as the last layer of the After

in order to include regularization or not for a particular node. The percentage

dropout for the dropout layer is hand designed by the architect, allowing for

scalability based upon the model at hand.

In addition to applying an independent After, after each hidden state node,

each normal and reduction cell also had the ability to design an After for their

output connection to the next cell and for their skip connection, which can be

seen in Figure 4.3, where the After from the current cells filter concatenation is

applied to two different connections, one for the next cell and the other for the

skip connection. Lastly, an After was inserted right before the softmax activation

layer, but after the global average pooling layer.

92

Figure 4.3: After for Cell

4.2 Constructing The Chromosome

The NASNet model creation has been defined as more of a phenotypical creation

than genotypical. In the original work, the model was recursively created using a

recurrent neural network controller by taking the argmax of the softmax output

from a designated set of possible choices. In AmoebaNet, the model represen-

tation was more genotypical than NASNet, but still represented each model as

a directed graph. The issue at hand becomes that common non-classical op-

timization algorithms such as particle swarm optimization, or low-level genetic

93

algorithms utilizing mean crossover or vector mutation, require fixed length chro-

mosomes containing continuous floating-point values. In this work, a fixed length

chromosome array with continuous floating-point values for the altered NASNet

search space is proposed.

For each of the selected PSO and genetic algorithms, which will be discussed

extensively later, each individual in the population was composed with a normal

cell, a reduction cell, and output After. Each normal and reduction cell was

composed of n number of hidden state nodes, and a next connection After. Each

hidden state node was composed of four choice vectors and an output After. The

new proposed chromosome first starts at the hidden state node level. Algorithms

4, 5, and 6 detail the structure of the individual, normal and reduction cells, and

hidden state nodes.

Algorithm 4 Individual Object Structure

Object Individual
normal cell : Cell
reduction cell : Cell
After : float[7]
age : int . Used by GA and PSO

end Object

Algorithm 5 Normal and Reduction Cell Object Structure

Object Cell
hidden nodes : HiddenNode[n]
After : float[7]

end Object

94

Algorithm 6 Hidden Node Object Structure

Object HiddenNode
connection vector 1 : float[index]
connection vector 2 : float[index]
operation vector 1 : float[12]
operation vector 2 : float[12]
After : float[7]

end Object

At the node level, four choice vectors are utilized for constructing the chosen

operations and connections. Two of the four are for selecting connections, one for

each connection, and the rest of the two are for selecting operations, one for each

operation. The two operation choice vectors are fixed length arrays containing

12 elements, one for each possible operation, where the selected operation is the

argmax from the choice vector.

The two connection choice vectors are fixed length arrays containing index

number of elements, where index refers to the hidden state node index in the cell.

The chosen connection is calculated to be the argmax index of the choice vector.

Each cell begins with two hidden state nodes, index 0 for the output from the

previous cell and index 1 for the output from the skip connection. The second

hidden state node index contains a connection vector with two elements, index

zero for the previous cells connection and index one for the skip connection. The

third node index now has a connection vector containing three elements, index

zero for the previous connection, index one for the skip connection, and index

two for the output from hidden node index 2. This process can be repeated

ad infinitum, depending upon the number of chosen hidden nodes. Because the

selected connection and operation are defined to the argmax of the respective

choice vectors, the exact initialization does not matter; however, for clarity, all

choice vectors were uniformly randomly initialized between -1 and 1. Figure 4.4

95

displays an example of this where three nodes are given, where beside each node

are the two connection choice arrays already initialized with their random values.

From node one, the argmax for both connection one and two is one, indicating

that both op1 and op2 receive their input from the skip connection. Moving onto

node two, the first connection array has an argmax of zero, indicating that op1

takes input from the previous connection, while op2 takes input from node one

as the argmax for connection array two is two. The same process can be applied

for node three.

96

Figure 4.4: Example for Constructing Connections from Connection Choice Array

97

The chromosome for an After was defined to be a static seven element array

uniformly randomly initialized between -1 and 1. If an element for an After was

greater than zero, it was considered to be on, else it was considered to be off. If

the zero-index element of the After array was on, then batch normalization was

applied after activation, else it was before. If index five was on, then the batch

normalization layer was included. If index six was on, then the dropout layer was

included. Indices one through four dealt with the selection of the activation layer.

Each of the four indices referred to the four possible activation functions, ReLU,

Leaky ReLU, SELU, and ELU. Like the choice vectors previously described, the

chosen activation function was the argmax of these four indices. In Figure 4.5,

an example After array is given. Elements from the array that are red indicate

that these elements either turned off a layer or were not the argmax from the

activations. On the contrary, elements in blue indicate that these elements either

turned on a layer or were the argmax from the activations. Because the element

for order was positive, path one was utilized instead of path two. Because the

element for ELU was the largest from the activation elements, the chosen activa-

tion was ELU. Because the element value for batch normalization was negative,

batch normalization was turned off and not included. Lastly, because the element

value for dropout was positive, dropout was turned on and included.

As it now has been described, each node can now be represented by a static

floating-point dimensional vector as the only variable is dependent upon the num-

ber of hidden state nodes, which is statically defined by the architect. Each

normal and reduction cell is composed of n number of hidden state nodes, not

counting the previous or skip connections, along with an After vector for the skip

and next connections. Because the After vectors are static seven element arrays,

and each of the n hidden state nodes are static floating-point dimensional ar-

98

Figure 4.5: Example for Constructing After from After Array

rays, each normal and reduction cell are static floating-point dimensional arrays.

Because each individual is composed of a normal and reduction cell, along with

an After for right before the output layer, each individuals entire genotype can

be represented by a static floating point dimensional array. Because each indi-

viduals genotype can be represented by a static floating point dimensional array,

the doors have been opened for more non-classical optimization problems to be

applied. The contribution of this new representation is exploratory as now any

non-classical optimization technique requiring static floating-point dimensional

arrays can be applied to the NASNet search space.

4.3 Constructing the Algorithms

In order to efficiently navigate the newly designed altered NASNet search space

representation, two primary algorithms were compared and contrasted, a genetic

and a particle swarm algorithm. One of the primary foci of this work is to

efficiently search throughout the search space for network architectures while also

reducing the massive amount of computation required. Previous NAS systems,

99

such as NASNet and AmoebaNet, explore and train 20,000 models, equating to

thousands of GPU hours worth of computation. In this work, only 1,300 models

will be trained and evaluated in order to showcase efficiency. It is expected

that with such a limited number of total fitness function evaluations allowed,

constructing the algorithms for convergence will greatly hinder exploration and

may pre-convergence to poor solutions. As a result, the 1,300 fitness function

evaluations were split into two separate sections, one for a global search and

another for a local search. The proposed PSO and genetic algorithms operated

with the goal in mind of a global search, while a mutation only genetic algorithm

was utilized to refine the best solutions for a local search. The global search

component utilized 1,000 fitness function evaluations and the local search utilized

only 300 fitness function evaluations.

When constructing the algorithms, a number of concerns arose; specifically,

the impact of the initial population size, dealing with the selection of hyper

parameters for the GA, dealing with the selection of hyper parameters for the

PSO, and the impact of model training on reliability of repeatable results.

4.3.1 Impact of Initial Population Size

The purpose of the initial population is to introduce a wide array of diversity

from which the optimization algorithm can begin its optimization. It is common

to uniformly randomly initialize the initial population from the search space at

hand. However, the initial population size is often coupled with the size of the

population for the algorithm. A smaller population size allows for convergence,

but can lead to sup-optimal solutions, where each run can be drastically different

due to the initialization. A larger population can allow for better exploration, but

100

may take more iterations in order to achieve convergence. As a result, the initial

population size can be seen as a variable that also controls the performance of

the algorithm. In this work, the initial population size is detached from the pop-

ulation size during the loop of optimization. By detaching the initial population

size, the initial population size can be increased to encourage initial diversity and

then greedily cut down to the standard population size for convergence during

the run of optimization.

4.3.2 The Genetic Algorithm

As detailed in section 2.4, genetic algorithms require a representation, selection

operator, reproduction operator, survival operator, and selection for hyper pa-

rameters. As previously discussed in section 4.2, the chromosome representation

for the genetic algorithm is a fixed length floating point multidimensional array.

For the selection operator, random selection for pairing individuals from the pop-

ulation for mating was utilized in order to encourage exploration. To balance the

random selection, elitism was utilized for the survival operator, in order to achieve

convergence. Two primary forms of elitism were compared, parent level elitism

and global level elitism. Parent level elitism refers to greedily taking the best set

of individuals from the immediate parent offspring pairs to form the next pop-

ulation, while global level elitism greedily takes the best set of individuals from

the entire pool of parent and offspring pairs. With the success of AmoebaNet

in being able to utilize aging evolution as a source of regularization, aging was

also implemented with the survival operator. However, instead of removing the

oldest individuals from the populations with each iteration, a maximum age was

set forth such that the children always replaced their parents if their parents age

101

exceeded a maximum set age limit. This was performed so that the information

of the parents were not lost as the children can be extremely different due to

crossover being a global search operator.

For reproduction, both crossover and mutation were utilized. Previously de-

fined crossover and mutation operators in section 2.4.5 are performed with a focus

at the genotype level. In contrast, the crossover and mutation operators proposed

in this work are performed with the phenotype level in mind, but still operate at

the genotype level. However, any of the previously defined crossover and muta-

tion operators could be applied as the representation has been projected into a

fixed length continuous array. Crossover was performed at the phenotype level by

randomly selecting, from a parent, one of the n hidden state nodes as a crossover

point, and then swapping the sub tree above and below the crossover point with

the other parent in order to create two children. Each hidden state node con-

tains five components, two for choosing connection, two for choosing operations,

and one for the After. All five components are swapped during crossover for a

node. See Figure 4.6a, for an example where the second hidden state node was

chosen as a crossover point when there exist only three hidden state nodes, and

see Figure 4.6b for how the children were constructed from the crossover point.

Despite crossover being applied from a phenotype level perspective, because cell

is composed of nodes with fixed length arrays, this crossover mechanism can be

seen at the genotype level of simply swapping subsections of the chromosome,

similar to multi-point crossover. Crossover was applied for the both the normal

and reduction cells of an individual, where the crossover point was independently

randomly chosen for both. Algorithm 7 showcases the full crossover operator,

where random node() selects the random node index .

102

(a) Crossover Point

(b) Creation of Children

Figure 4.6: Crossover Operator Example

103

Algorithm 7 Crossover Operator

Input: Parent 1 (type: Individual); Parent 2 (type: Individual)
normal cell crossover point = random node()
reduction cell crossover point = random node()

child 1 = copy(Parent 1)
child 2 = copy(Parent 2)

for node until normal cell crossover point do
child 1.normal cell.nodes[node] =

Parent 2.normal cell.nodes[node]
end
for node until reduction cell crossover point do

child 1.reduction cell.nodes[node] =

Parent 2.reduction cell.nodes[node]
end
for node until normal cell crossover point do

child 2.normal cell.nodes[node] =

Parent 1.normal cell.nodes[node]
end
for node until reduction cell crossover point do

child 2.reduction cell.nodes[node] =

Parent 1.reduction cell.nodes[node]
end
Return child 1, child 2

104

In this implementation, mutation was applied after crossover. At the pheno-

type level, mutation was implemented to be changing the connection, operator,

or After of a particular node at three different levels. First, one of the hidden

state nodes was randomly selected and either their connection, operator, or After

was mutated. At the genotype level, mutation was implemented by randomly

swapping the argmax value with another random indexed value from the choice

array for either the connection, operator, and activation arrays. For other aspects

of the After, mutation was implemented by changing the sign of the element in

order to turn a layer from off to on or from on to off. Mutation was only applied

once, to only one of these components, where the choice for which was chosen

uniformly random. Second, mutation was applied to the After of the last layer

of the cell with 25% probability. Third, mutation was applied for the After ap-

plied right before the output softmax layer. This last After, applied right before

the output softmax layer, was never crossed over; but instead, was only mutated

with 25% probability when creating the child. Algorithm 8 showcases the full

mutation operator, where normal cell mutation point selects the random node

index of the normal cell to be mutated.

105

Algorithm 8 Mutation Operator

Input: child (type: Individual)
normal cell mutation point = random node()
red cell mutation point = random node() . red for Reduction

r = random.uniform(0, 1)
if r > 0.66 then

child = mutate connection(
child.normal cell.nodes[normal cell mutation point].connections)

end
else if r > 0.33 then

child = mutate operation(
child.normal cell.nodes[normal cell mutation point].operations)

end
else

child = mutate after(
child.normal cell.nodes[normal cell mutation point].after)

end
if if random.uniform(0, 1) < 0.25 then

child = mutate after(child.normal cell.after)
end

. Reduction Cell
r = random.uniform(0, 1)
if r > 0.66 then

child = mutate connection(
child.reduction cell.nodes[red cell mutation point].connections)

end
else if r > 0.33 then

child = mutate operation(
child.reduction cell.nodes[red cell mutation point].operations)

end
else

child = mutate after(
child.reduction cell.nodes[red cell mutation point].after)

end
if if random.uniform(0, 1) < 0.25 then

child = mutate after(child.reduction cell.after)
end
if random.uniform(0, 1) < 0.25 then

child = mutate after(child.after)
end
Return child

106

The inclusion of the crossover operator was to efficiently globally search the

domain space while mutation was utilized for local search. As stated in section

2.4.8, genetic algorithms have many different hyper parameters to set before

evolution, such as probabilities of mutation and crossover. In order to reduce the

need for tuning, this work did not utilize such probabilities; but instead, always

performed crossover and mutation between a given set of parents, paired with

either global or parent level elitism to ensure the information of the parents were

not lost, as well as aging for a source of regularization.

From the crossover and mutation operators, the reproduction operator was

built with the goal of creating the next generation. Algorithm 9 displays the

overall process where the parents are randomly paired, and the pairs of parents

begin reproduction. Crossover is applied to achieve the two children, which then

undergo mutation. If parent elitism is enabled, then only the best two from the

immediate parent offspring pair are selected for the next generation. If global

elitism is enabled instead, then the best half from the total pooled parents and

children are selected for the next generation. In addition, themax age component

is also utilized to ensure that those which are greater than the maximum age

limit are always rejected. Together, the entirety of the genetic algorithm can be

detailed in Algorithm 10.

107

Algorithm 9 Reproduction Operator

Input: Generation (type: array of Individual); parent elitism (type: Bool);
global elitism (type: Bool); max age (type: int)
Parents = random pairing(Generation)

next generation = []

for (Parent 1, Parent 2) in Parents do
child 1, child 2 = crossover operator(Parent 1, Parent 2)

child 1 = mutation operator(child 1)

child 2 = mutation operator(child 2)

if parent elitism then
next generation.add(best two(Parent 1, Parent 2, child 1,

child 2, max age))

end
else

next generation.add(Parent 1, Parent 2, child 1, child 2))
end

end
if global elitism then

next generation = best half(next generation, max age)
end
Return next generation

The last hyper parameter needing to be tuned was the population size. Three

different sizes were tested, 10, 16, and 20. It was expected that the smaller popu-

lation sizes would achieve better convergence while the larger would achieve better

exploration. Convergence was defined to be when the models in the population

become extremely similar to one another or when the mean fitness approaches

the best fitness.

108

Algorithm 10 Proposed Genetic Algorithm

Input: Fitness Function, F : Sc
Φ−→ Γ→ R; max gen (type: int); init size (type:

int); gen size (type: int); max age (type: int)

init population = random initialization(init size)

init fitness = fitness function(population)

population, fitness = take best(gen size, init population,

init fitness)

for i until max gen do
increment ages(population)

population = reproduction operator(population, parent elitism,

global elitism, max age)

fitness = fitness function(population)
end
Return Best Individual from Population

Cascading Genetic Algorithm

Lastly, a cascading genetic algorithm was introduced. From the discussion on

the influence of the initial population size, this was extended to an algorithm

that starts off with a very large population size and slowly decreases it over the

course of evolution to encourage exploration early on and exploitation later on.

The exact rate of decrease could open up discussion, but was set to a step-wise

schedule, starting with n individuals in the population for three iterations and

then reducing down by bn/2c every subsequent 4i iterations, where i begins at

1 and increases with each subsequent reduction, until a population size of 6 was

reached. All together, the population reduction schedule followed the schedule

given in Table 4.1, where a population size of 100 was utilized for 3 iterations,

before switching to a population size of 50 for 4 iterations, and so on, until 1,000

fitness functions were reached for the global search phase.

Other than this reduction schedule, the cascading genetic algorithm still fol-

lowed the same format as Algorithm 10.

109

Table 4.1: Cascading Genetic Algorithm Reduction Schedule

Population Size Number of Iterations

100 3
50 4
25 8
12 16
6 19

4.3.3 The Particle Swarm Algorithm, with Subswarm

Two different PSO algorithms were utilized, the first being the gbest PSO algo-

rithm, discussed in section 2.5.1, and a new PSO algorithm termed subswarm

PSO. The gbest PSO algorithm performs very well at converging to solutions as

each particle utilizes the best particles position in the calculation of the direction

vector. On the other hand, the lbest PSO algorithm performs very well at hy-

perspaces containing many local minima, as each particle only utilizes the best

particles position from a neighborhood of particles. However, when the number

of fitness function evaluations is already limited to such a small degree, conver-

gence can be considered more important. As a result, the gbest version of PSO

was chosen in favor due to this reasoning.

To contrast gbest PSO, gbest subswarm PSO was also chosen. Subswarm

optimization is an extension of PSO, also known as cooperative split PSO, first

introduced by Van den Bergh and Engelbrecht [6]. The algorithm divides the

population of particles into two or more subswarms that co-optimize different

sections of a problem. In its first introduction, two subswarms of particles co-

optimized both the weights and architecture of a neural network. The benefit of

utilizing such a subswarm partition is that the algorithm is able to optimize sec-

tions of the problem instead of the problem at whole, which the authors argued

110

leads to finer grained searches. In the altered NASNet search space, there are

two primary components that are optimized, the normal and reduction cell. Due

to this independence, subswarm PSO can be applied in order co-optimize the

normal and reduction cells by two independent swarms, one for normal and one

for reduction. The structure and construction of both the velocity and position

components of the particles are the same; however, each refer to a different sub-

section of the entire chromosome. As a result, evaluating each subswarm particle

poses a challenge as each sub swarm particle only refers to a partial solution.

The simple fix first provided by Engelbrecht was to take the best solution from

the other swarm in order to construct the entire model for the current particle.

Both gbest and subswarm PSO have three hyper parameters, w for inertia,

c1 for the cognitive component, and c2 for the social component. The balance

between these hyper parameters is vital in order to achieve exploration and ex-

ploitation. As a result, leaving these hyper parameters static can hinder both

exploitation and exploration; however, implementing a reduction schedule where

c1 decreases while c2 increases, to encourage exploration early on and convergence

later on, can lead to premature convergence or no convergence if the rate is too

high or low. As a result, a self-adaptive schedule is adopted based upon a cosine

schedule [33]. The schedule works by adaptively changing the coefficients from a

min value to max value following a cosine function. To do so, a related distance

function was created to measure the distance between the fitness value of the

current particle and the global best. By using this related distance function, the

hyper parameters can self-adapt by increasing exploration, increasing w, if the

distance is small, while increasing convergence, increasing c2, if the distance is

large. As a result, c1 is made static, 2.05 in this implementation. The distance

function is seen in Equation 4.1, where f is the fitness value, i is the ith particle,

111

t is the current time step, G is the global best.

ζti =
f t−1
i − f t−1

G

f t−1
G

(4.1)

In order to achieve the cosine slope, two intermediary functions were created,

one for w and one for c2. Equation 4.2 shows the new calculation for w, given

the distance function value for the ith particle. Equation 4.3 shows the new

calculation for c2, given the distance function value for the ith particle.

wti = 0.9 ∗ 2(1− cos(
π

2
ζti)) + 0.45 (4.2)

c2
t
i = 0.5 ∗ 2.2(1− cos(

π

2
ζti)) + 2.5 (4.3)

Together, equation 2.11 and 2.12 for calculating the velocities and new positions

of the particles can be updated to incorporate this new adaptive schedule, as

shown in equations 4.4 and 4.5.

vi(t+ 1) = wtvi(t) + 2.05r1(yi(t)− xi(t)) + ct2r2(ŷi(t)− xi(t)) (4.4)

xi(t+ 1) = xi(t) + vi(t+ 1) (4.5)

Lastly, the concept of aging was also applied to both gbest PSO and subswarm

to allow for the regularization of the global best position. To prevent holding onto

a global best position that cannot repeat its fitness score, as the fitness function

is stochastic, once the global best position has not changed for age iterations, it

was replaced by the global best from the current set of particles. This can be

112

seen in Algorithm 11 where in the best particle update step, it incorporates the

maximum age for selecting the new global best position.

Algorithm 11 SubSwarm PSO Algorithm

Input: Fitness Function, F : Sc
Φ−→ Γ→ R; max iter (type: int); max age (type:

int)
swarm 1 particles = random initialization()

swarm 1 velocities = random initialization()

swarm 1 gbest age = 0

swarm 2 particles = random initialization()

swarm 2 velocities = random initialization()

swarm 2 gbest age = 0

for i until max iter do
for particle in swarm 1 particles do

swarm 1 fitness.add(fitness function(particle,

best particle(swarm 2 particles)))

end
swarm 1 gbest position = best particle(swarm 1 particles,

swarm 1 gbest position, swarm 1 gbest age, max age)

increment swarm 1 gbest age

for particle in swarm 1 particles do
update velocity using equation 4.4
update position using equation 4.5

end
for particle in swarm 2 particles do

swarm 2 fitness.add(fitness function(particle,

best particle(swarm 1 particles)))

end
swarm 2 gbest position = best particle(swarm 2 particles,

swarm 2 gbest position, swarm 2 gbest age, max age)

increment swarm 2 gbest age

for particle in swarm 2 particles do
update velocity using equation 4.4
update position using equation 4.5

end

end
Return Best Particle from Each Swarm

113

4.3.4 Training the Models

Despite reducing the total number of models allowed for creation, the reality of

training and evaluating the models on a benchmark dataset still stands. Training

a full scale model until convergence would be ideal, but the cost of training the

model far outweighs the benefit as an extreme amount of computation would be

necessary. Instead, each model was projected to n = 2, referring to only utilizing

two cells in each normal cell module for creation, and only 3 hidden state nodes

were used for each cell, instead of 5 as in NASNet and AmoebaNet. Although

utilizing 3 hidden nodes may lead to a degrade in model performance, it speeds

up training by providing a less complicated model and less number of parameters.

The new proposed NASNet search space also allows for the inclusion of a dropout

layer, where the dropout percentages were set based upon the model size. Each

model was created by stacking a normal cell module with a reduction cell twice,

and then ended with another normal cell right before the global averaging and

softmax output, as shown in Figure 3.1. With this construction, there are four

dropout percentages to be defined, one for each of the three normal cell modules

and one for the last After before.

In addition to this smaller projection of the model, each model was only

trained upon half of the selected benchmark dataset. By only using half the

dataset for training, convergence can be expedited as the dataset difficulty has

been reduced. The issue of over fitting could be an issue when using only half the

dataset for training, but due to the model sizes already being extremely small

projections, over fitting was not considered to be a problem. Lastly, in order to

achieve reliable results, all models were trained until convergence on this smaller

dataset. Convergence can take a many number of mini-batch weight updates

114

utilizing a standard learning rate; therefore, in order to reduce the number of

weight updates, a one-shot cycle learning rate was utilized in order to speed

up convergence. It is common for NAS systems to utilize shared weights when

training models; however, this was not performed as it can be hard to distin-

guish between which the optimization algorithm is optimizing, the architecture

or weights. To prevent over fitting the smaller model architecture by prioritiz-

ing the weights instead of the architecture, shared weights were not utilized and

each model was trained from scratch. Together, achieving efficient and reliable

model evaluation was discussed to be training extremely small scale models on a

subsection of the benchmark dataset until convergence, while utilizing a one-shot

cycle learning rate schedule.

115

Chapter 5

Experiments and Results

Section 4.3.2 introduced a few variants of the proposed genetic algorithm. First,

either global or parent level elitism was able to applied as the survival operator.

Second, aging could also be applied as a secondary level survival operator. Third,

three possible generation sizes were proposed: 10, 16, and 20. Lastly, a cascad-

ing genetic algorithm variant was proposed, which reduced the generation size

gradually to encourage exploitation. With the discussion on the importance of

the initial population, all non cascading genetic algorithm variants began with an

initial population size of 50, and greedily cut down to their respective generation

sizes. Because only 1,000 fitness functions were available for the primary global

search, a generation size of 10 ran for 95 iterations, 60 iterations for size 16,

and 47 iterations for size 20. For the aging variants, the maximum age was set

dependent upon the generation size. It was expected that algorithms with larger

generation sizes need a longer threshold for age as they naturally take longer

to converge. With this information, all possible genetic algorithm variants are

detailed in Table 5.1.

Section 4.3.3 introduced a few variants of the proposed PSO algorithm. First,

116

Table 5.1: Genetic Algorithm Variants

Algorithm Parent or
Global
Elitism

Population
Size

Number of
Iterations

Maximum
Age

GA Parent 10 95 5
GA Parent 16 60 6
GA Parent 20 47 7
GA Global 10 95 5
GA Global 16 60 6
GA Global 20 47 7
GA Parent 10 95 None
GA Parent 16 60 None
GA Parent 20 47 None
GA Global 10 95 None
GA Global 16 60 None
GA Global 20 47 None

CASC Parent - - 6
CASC Global - - 6
CASC Parent - - None
CASC Global - - None

gbest was discussed in favor of lbest due to its property of accelerated conver-

gence. Second, a gbest variant known as subswarm optimization was proposed

as a means of optimizing the normal and reduction cells independently. Lastly,

three possible population sizes were proposed: 10, 16, and 20. Like the genetic

algorithms, all PSO algorithms began with an initial population of 50, greedily

taking the best down to the size of the set population. In addition, the number

of iterations and selected maximum ages per algorithm was the same as the ge-

netic algorithm, dependent upon the population size. With this information, all

possible PSO variants are detailed in table 5.2.

From tables 5.1 and 5.2, there exist 26 total possible algorithms proposed as

viable algorithms to search the new NASNet search space representation. Un-

fortunately, the computational resources available were insufficient to test each

117

Table 5.2: Particle Swarm Variants

Algorithm Population
Size

Number of
Iterations

Maximum
Age

PSO 10 95 5
PSO 16 60 6
PSO 20 47 7
PSO 10 95 None
PSO 16 60 None
PSO 20 47 None

SUBSWM 10 95 5
SUBSWM 16 60 6
SUBSWM 20 47 7
SUBSWM 10 95 None
SUBSWM 16 60 None
SUBSWM 20 47 None

possible combination. Instead, a preliminary evolution was performed with each

combination on a smaller gray scale version of the CIFAR10 dataset to obtain the

best variant. Once the best combination was obtained, it was applied full scale

to CIFAR10 for 1,000 fitness function evaluations for the global search. After

optimization, a mutation only genetic algorithm was utilized for the local search

phase by being applied to the final population of the algorithm in order to fine

tune the best model. Finally, the best model was selected and projected for full

scale testing on CIFAR10 and was then transferred to another closely related

benchmark dataset, CIFAR100. CIFAR100 is benchmark dataset which contains

60,000 32x32 RGB images spanning over 100 unique classes.

5.1 Initial Algorithm Comparison

With 26 possible algorithms, a preliminary optimization was utilized in order to

obtain the best combination for the full scale problem. This preliminary problem

118

was created to be smaller and easier than the actual CIFAR10 dataset in order

to test the full optimization of each algorithm without wasting too many compu-

tational resources. The CIFAR10 dataset was reduced down from 10 classes to 2,

leaving only 10,000 for training and 2,000 for validation. This was performed in

order speed up convergence as the problem becomes easier to classify. The images

were also projected to gray scale in order to reduce the dimensionality, to further

reduce computation. In addition to the reduced dataset, as a means to create

smaller models for faster evaluation, each model was only projected to n = 2 for

number of cells per normal cell module, with 2 filters for the starting cell, and

n = 3 for number of hidden state nodes. The chosen number of filters per mod-

ule along with the dropout percentages are given in Table 5.3. These dropout

percentages were not empirically decided but were through intuition based upon

the model size.

Table 5.3: Gray Scale CIFAR10 Model Number of Filters and Dropout
Percentages

Cell Module 1 Cell Module 2 Cell Module 3 Last After

Number of Filters 2 4 8 -
Dropout Percentage 2.5% 5.0% 7.5% 10%

Each model was only allowed to train for 14 epochs with batch size of 100,

equating to only 1,400 mini-batch weight updates. Given the limited number of

weight updates, a one-shot cycle learning rate schedule was utilized to achieve

super convergence. The schedular had a minimum learning rate of 0.001 and a

maximum learning rate of 0.1. The Adam optimizer was chosen for optimization

as it utilizes momentum along with adaptive learning rates for each individual

parameter for faster and more stable convergence.

Due to the very small dataset, using validation accuracy as the primary metric

119

during optimization was insufficient as many models often achieved the exact

same validation accuracy; instead, a scaled validation loss was utilized as the

primary metric as it was more unique. Cross-entropy loss is a metric that is

to be minimized; therefore, to allow it to be primary metric for optimization

by the proposed algorithms, it was scaled by 1
loss

so that smaller loss values

would yield higher fitness scores, as the goal is maximization. Each possible

algorithm was ran three times to obtain a mean evaluation. Within each run,

the best and min fitness were recorded with each iteration to track progress

and convergence. In addition, the mean similarity between individuals was also

tracked with each iteration to measure convergence as well. Similarity was defined

to be the proportion of matching operations and connections between any two

individuals.

5.1.1 Cascading Genetic Algorithm

The results for the cascading genetic algorithm are depicted in Figure 5.1. Fig-

ure 5.1 showcases aging vs. non aging for the algorithm, where the best fitness

are depicted by the solid lines, while the min fitness are depicted by the dashed

lines. As one can see, using global elitism along with no aging achieved the

largest final best fitness as well as the largest final min fitness while having the

lowest mean similarity. From this figure it appears that for the cascading algo-

rithm, utilizing no aging performed better than the aging counterparts, where

global elitism performed better than parent elitism in terms of achieving a better

best and min fitness score. It is interesting to note that by incorporating ag-

ing, the mean similarities were higher than their non aging counterparts, which

seem counter-intuitive as aging can be seen as a form of regularization against

120

convergence.

Figure 5.1: Gray-scale CIFAR10: Cascading GA Aging vs Non Aging

121

5.1.2 Aging Genetic Algorithm

The results for the aging genetic algorithm are depicted in Figure 5.2, where the

best fitness are depicted by the solid lines, while the min fitness are depicted by

the dashed lines. As one can see, using parent elitism with a population size

of 20 achieved the largest final best and min scores out of the algorithms, while

being middle of the pack for similarities. From this figure it appears that for

aging algorithm, utilizing parent elitism performed better than the global elitism

counterparts in terms of achieving a better best and min fitness score. As to

be expected, the algorithms with smaller population sizes and longer iterations

achieved more convergence as their mean similarities were higher than their coun-

terparts.

122

Figure 5.2: Gray-scale CIFAR10: Aging GA

123

5.1.3 Non-Aging Genetic Algorithm

The Results for the non aging genetic algorithm are depicted in Figure 5.3, where

the best fitness are depicted by the solid lines, while the min fitness are depicted

by the dashed lines. As one can see, using global elitism with a population size of

16 achieved within the top two for best fitness; however, it achieved the best min-

imum value by far when compared to the other algorithms, showcasing its ability

to converge the population. For both population sizes 10 and 20, parent elitism

performed better than their global elitism counterparts. As to be expected, the

algorithms with smaller population sizes and longer iterations achieved more con-

vergence as their mean similarities were higher than their counterparts.

124

Figure 5.3: Gray-scale CIFAR10: Non Aging GA

125

5.1.4 PSO Algorithms

The results for aging vs. non aging PSO algorithm are depicted in Figure 5.4,

where the best fitness are depicted by the solid lines, while the min fitness are

depicted by the dashed lines. As one can see, using no aging with a population size

of 10 achieved the largest best and min fitness values. From this figure, it appears

that the non aging variants had better stable min fitness values, showcasing better

convergence. It is interesting to note that the similarity scores are extremely large

compared to the previous genetic algorithms, showcasing the ability for PSO to

converge to solutions extremely fast.

126

Figure 5.4: Gray-scale CIFAR10: Age vs. Non Age PSO

127

5.1.5 Subswarm PSO

Lastly, the results for subswarm PSO are depicted in Figure 5.5, where the best

fitness are depicted by the solid lines, while the min fitness are depicted by the

dashed lines. Similarity scores were not tracked as there were two independent

swarms. As one can see, using no aging with a population size of 10 achieved the

second largest best and largest min fitness values. It is interesting to note that

the best fitness for population 20 with aging achieved the largest best score by

far, but its min fitness did not follow.

128

Figure 5.5: Gray-scale CIFAR10: SubSwarm PSO

129

5.1.6 Best Algorithms

Now that all the possible algorithms have been explored, the best from each of the

previously discussed figures were compiled in Figure 5.6. Figure 5.6 showcases the

best algorithms from each section in order to solidify on the final algorithm. As

one can see, using a genetic algorithm with global elitism at a population size of

16 achieved the largest best and min fitness across all algorithms while also having

above average convergence in terms of similarity scores. From these results, this

algorithm was chosen as the final to be tested on the full scale evolution.

130

Figure 5.6: Gray-scale CIFAR10: Best Algorithms Comparison

131

5.1.7 Creation of Mutation Only Algorithm

As stated before, all 1,300 fitness function evaluations were split in between the

global and local search phases, 1,000 for the global and 300 for the local. All

of the previously discussed algorithms were applied to the global search phase.

For the local search phase, the goal in mind is to narrow down the global search

results to a local search about the best solution. Although a PSO algorithm

could have been utilized due to its measured ability to converge to solutions, as

the results above showcase, a mutation only algorithm was utilized in order to be

consistent with using a genetic algorithm and previously defined research utilizing

a mutation only genetic algorithm. The final population from the global search

phase was utilized as the initial population for the mutation only algorithm. From

the results discussed above, the cascading genetic algorithm achieved achieved the

best convergence out of the genetic algorithms in terms of yielding a larger mean

similarity score over evolution. Because the goal of the local search phase is

to perform a local search, convergence is important. As a result, a cascading

mutation only genetic algorithm was utilized to narrow down the final generation

from the global search phase to a best solution. The population reduction scheme

followed that given in Table 5.4.

Table 5.4: Cascading Mutation Algorithm Reduction Schedule

Population Size Number of Iterations

10 5
5 5
3 8

Due to the success of non aging and global level elitism, the cascading mu-

tation only genetic algorithm did not utilize aging and incorporated global level

elitism. Reproduction was performed by creating three children from randomly

132

mutating one of the nodes of the parent. The cascading mutation only genetic

algorithm still follows the format of Algorithm 10, but no aging component was

utilized and the reproduction operator was replaced with a specifically created

reproduction operator for the mutation only algorithm. This new operator is

detailed in Algorithm 12, which showcases that each individual creates three ran-

domly mutated offspring, that are then pooled together with their parents for

global level elitism.

Algorithm 12 Cascading Mutation only Reproduction Operator

Input: Generation (type: array of Individual); gen size (type: int)

for individual in Generation do
next generation.add(individual)
next generation.add(mutation operator(individual))
next generation.add(mutation operator(individual))
next generation.add(mutation operator(individual))

end
next generation = best individuals(next generation, gen size)
Return next generation

5.2 Evolution of Chosen Algorithms

5.2.1 Global Search Phase

The previous section compared and contrasted all of the proposed algorithms on

a preliminary gray scale reduced CIFAR10 dataset. The best combination was

found to be a genetic algorithm utilizing global elitism with an initial population

size of 50 and generation size of 16. This algorithm was then projected to the full

scale evolution on the entire CIFAR10 dataset. As mentioned in section 4.3.4, in

order to reduce the computation required to train each model, the dataset size

was reduced to half, while each model was projected to n = 2 for number of cells

133

per normal cell module, with 4 filters for the starting cell, and n = 3 for number

of hidden state nodes. The chosen number of filters per normal cell module along

with their dropout percentages are given in Table 5.5.

Table 5.5: Full Scale Model: Number of Filters and Dropout Percent-
ages

Cell Module 1 Cell Module 2 Cell Module 3 Last After

Number of Filters 4 8 16 -
Dropout Percentage 5% 10% 15% 20%

From the 50,000 training images for CIFAR10, the first 20,000 were used for

training the models while the last 10,000 were used for validation. The test images

were not touched at all during any stage of evolution in order to prevent over

fitting the CIFAR10 dataset as a whole. Each model was only allowed to train

for 300 epochs with a batch size of 1000, equating to 6,000 mini-batch weight

updates. In order to speed up convergence, a one-shot cycle learning rate was

utilized, ranging from a min learning rate of 0.001 to 0.05. AdamW optimizer

was utilized with a weight decay coefficient of 1e − 7. Unlike the gray-scale

experiments, validation accuracy was utilized as the primary metric to optimize.

The global search phase evolution process was performed on one A100 GPU,

elapsing 121 hours, equating to only 5 days, to evaluate 1,000 models. To be-

gin, Figure 5.7 showcases the box plot of the initial population for the genetic

algorithm, the validation accuracies range from 55% to 79% with median around

75%.

134

Figure 5.7: Full Scale Evolution Initial Fitness Results

135

The fitness results from evolution are depicted in Figure 5.8.

Figure 5.8: Full Scale Evolution Fitness Results

136

The similarity scores can be seen in Figure 5.9. The max and mean ages for

each iteration from the evolution are shown Figure 5.10.

Figure 5.9: Full Scale Evolution Similarity Results

137

Figure 5.10: Full Scale Evolution Max and Mean Age Results

138

5.2.2 Local Search Phase

After the completion of the global search phase, the local search phase was en-

acted. Unlike the global search phase, the local search phase trained models with

different parameters. Each model was projected to the same dimension as pre-

viously described in Table 5.5, but now each model was trained upon the entire

data set instead of half, in order to get a better evaluation. From the 50,000

training images available for the CIFAR10 dataset, the first 40,000 were utilized

to train the model and the last 10,000 were utilized as validation. Each model

was trained upon this dataset partition for 200 epochs with batch size of 1,000,

equating to 8,000 mini-batch updates, 33% more than the global search phase.

Again AdamW, with a weight decay of 1e−7, was utilized as the optimizer, along

with a one-shot cycle learning rate schedule with an initial learning rate of 0.001

and a maximum learning rate schedule of 0.1.

The final generation from the genetic algorithm was trained using this new

evaluation strategy and the best 10 were selected to be the initial population for

the cascading mutation only genetic algorithm. The local search phase process

was performed on one A100 GPU, elapsing 69 hours, equating to a little less than

2.9 days. In total, the entire evolution process elapsed 190 hours, 7.92 days, on

one A100 GPU; a reduction by over 90% in time elapsed when compared to both

NASNet and AmoebaNet.

The fitness results from the cascading mutation only genetic algorithm are

depicted in Figure 5.11.

139

Figure 5.11: Cascading Mutation Genetic Algorithm Fitness Results

Figure 5.12: Cascading Mutation Genetic Algorithm Similarity Results

140

Figure 5.13 showcases the results from the mutation only algorithm from a

different perspective. Figure 5.13 showcases a scatter plot of the cumulative

searched models during the local search process along with their validation accu-

racy and number of parameters from their projection in the evaluation strategy.

Figure 5.13: Cascading Mutation Genetic Algorithm Cumulative Model Results

141

5.3 Best Model Scaling

The best model was scaled to a various set of projections in order to obtain a full

picture of its potential. The model was scaled to n = 2, n = 4, and n = 6 with

various starting filters. Each model was trained using the entire 50,000 training

images available from the CIFAR10 dataset and utilized the 10,000 test images

as validation, as is common for comparing models on CIFAR10. Evolution did

not utilize the test images as validation in order to ensure model transferabil-

ity. Each model trained upon this dataset partition utilizing the CutMix image

augmentation described in section 2.6.6 in order to encourage generalization, for

a total of 900 epochs with a batch size of 512, equating to roughly 88,000 mini

batch weight updates. In order to speed up convergence, AdamW optimizer was

utilized along with one shot cycle learning rate with a minimum learning rate

of 0.001 and a maximum learning rate of 0.05. Table 5.6 showcases all model

projections in terms of number of filters and number of parameters in millions.

Table 5.7 showcases all model projections in terms of dropout percentages and

weight decay values.

Table 5.6: Model Scaling - Number of Filters and Parameters

n Cell Module 1 Cell Module 2 Cell Module 3 Parameters (Millions)

2 4 8 16 0.0477
2 8 16 32 0.1845
2 16 32 64 0.7247
2 32 64 128 2.8728
2 64 128 256 11.4391
4 8 4 8 0.3314
4 16 32 64 1.3035
4 32 64 128 5.1702
6 16 32 64 1.8823
6 32 64 128 7.4675

142

Table 5.7: Model Scaling - Dropout Percentages and Weight Decay

n Cell Module 1 Cell Module 2 Cell Module 3 Last After Weight Decay

2 5% 10% 15% 20% 1e− 7
2 7.5% 12.5% 17.5% 22.5% 5e− 7
2 12.5% 17.5% 22.5% 27.5% 5e− 7
2 30% 35% 40% 50% 5e− 6
2 45% 50% 55% 65% 5e− 5
4 10% 15% 20% 25% 1e− 7
4 20% 25% 30% 40% 5e− 7
4 32.5% 37.5% 42.5% 52.5% 7.5e− 6
6 30% 35% 40% 50% 5e− 6
6 35% 40% 45% 55% 1e− 5

Each model was ran and evaluated three times, Figure 5.14 plots each model

configuration with their respective number of cells per module, n, along with their

number of starting filters (@n), validation accuracy, and number of parameters

in millions.

143

Figure 5.14: Model Projections - CIFAR10

144

Table 5.8 records the mean test accuracy for each of the model configurations

as well as the results from other state of the art models for comparison.

Table 5.8: CIFAR10 Model Comparison

Architecture
Number of
Parameters
(Millions)

Test
Accuracy

Search
Cost (GPU

Hours)

Search
Method

NASNetA (n = 6@768) [38] 3.30 97.35 2,000 Reinforcement
AmoebaNetA (n = 6@32) [22] 2.60 96.60 2,000 Evolution
AmoebaNetA (n = 6@36) [22] 3.20 96.66 2,000 Evolution

ResNet110 [12] 1.7 94.54 - Human
ResNet1001 [12] 10.2 95.38 - Human

WideResNet (w x 4) [36] 8.70 95.03 - Human
DenseNet(k=24) [7] 27.20 96.26 - Human

PyramidNet(α=48) [11] 1.70 95.42 - Human
PyramidNet(α=84) [11] 3.80 96.27 - Human

Ours n = 2@4 0.0477 86.20 190 Evolution
Ours n = 2@8 0.1845 89.89 190 Evolution
Ours n = 2@16 0.7247 93.76 190 Evolution
Ours n = 2@32 2.8728 94.68 190 Evolution
Ours n = 2@64 11.4391 95.47 190 Evolution
Ours n = 4@8 0.3314 93.03 190 Evolution
Ours n = 4@16 1.3035 94.60 190 Evolution
Ours n = 4@32 5.1702 95.09 190 Evolution
Ours n = 6@16 1.8823 93.50 190 Evolution
Ours n = 6@32 7.4675 94.84 190 Evolution

5.4 Best Model Transfer

From the results in Table 5.8, the best model configurations, relative to number

of parameters, was selected to be n = 4@16 and n = 4@32, as n = 4@16 achieved

94.60% mean test accuracy with only 1.3 million parameters, while n = 4@32

achieved 95.09% mean test accuracy with only 5.17 million parameters. These

two configurations were then transferred and tested on the CIFAR100 dataset

utilizing the same training methodologies, learning rate schedule, dropout rates,

etc, as CIFAR10. However, a new configuration was added to see the middle

ground between n = 4@16 and n = 4@32. This new model configuration was

145

n = 4@24, where the dropout rates were the mean between n = 4@16 and

n = 4@32, and the weight decay value was set to 5e−6. The results for the three

configurations, along with state of the art models for comparison, are depicted

in Table 5.9.

Table 5.9: CIFAR100 Model Comparison

Architecture
Number of
Parameters
(Millions)

Test
Accuracy

Search
Cost (GPU

Hours)

Search
Method

ResNet110 [12] 1.7 75.67 - Human
ResNet1001 [12] 10.2 77.29 - Human

WideResNet (widthx4) [36] 8.70 77.11 - Human
DenseNet(k=24) [7] 27.20 80.75 - Human

PyramidNet(α=48) [11] 1.70 76.88 - Human
PyramidNet(α=84) [11] 3.80 79.34 - Human

Ours n = 4@16 1.3035 71.1 190 Evolution
Ours n = 4@24 2.933 73.26 190 Evolution
Ours n = 4@32 5.1702 76.53 190 Evolution

146

Chapter 6

Discussion

6.1 Initial Algorithm Comparison

The proposed genetic and particle swarm algorithms were all successful at op-

timizing model architectures on the reduced gray scale version of the CIFAR10

dataset. The different components utilized between algorithms were split in per-

formance. Aging across the board yielded worse results compared to their non

aging counterparts. This could be due to the maximum set age limit was too low,

causing the loss of better solutions. However, this poses another hyper parameter

necessary to tune. As a result, future work could entail eliminate aging as a con-

sideration when using the smaller population sizes utilized in this work. Parent

vs. global level elitism was split in performance with respect to aging. Parent

level elitism performed worse than global for aging in the genetic algorithm while

being slightly better for the non-aging component. The reasoning behind this

could be perhaps due to the fact that both aging and parent level elitism act as a

form of regularization against convergence; therefore, when combined, the results

are worse than their counterparts as too much regularization was applied.

147

For the PSO algorithms, all under performed when compared to the genetic

algorithms. The best and min results for the PSO algorithms were all lower than

that of the genetic algorithm variants while being at the same hyper parameter

settings. A couple of reasons could be supplied to explain this deficient. First,

unlike the genetic algorithm, the PSO algorithms utilize low level genotype trans-

formations to explore the domain space. As a result, perhaps the newly designed

representation for the NASNet was insufficient to represent the search space.

Second, the PSO algorithm itself is insufficient to efficiently explore the new

representation. Third, the most likely position, the PSO algorithms exhibited

extremely fast pre-convergence, which can be seen as the mean similarity scores

for all PSO algorithms were between 85% and 90%, almost 20% higher than the

genetic algorithm counterparts. Future work needs to be performed in order to

solidify this claim. From the introduction of the Adam optimizer, the concept of

scalable learning rates could be intermingled with the PSO algorithms in order

to prevent pre-convergence by scaling the w, c1 and c2 coefficients based upon

the similarity scores. From the variants of the PSO algorithms, gbest PSO out-

performed subswarm PSO in all aspects. Despite breaking down the search space

into two different sections to independently optimize, subswarm PSO struggled

to optimize its particles. The reasoning is unknown for why this has occurred.

Tt could be explained by the creation of the models for evaluation. Because

each subswarm only deals with a particular section of the genome, each particle

is evaluated by combining the best particle from the other subswarm to create

the entire genome. However, the best particle from the other subswarm was

defined to be which particle yielded the best fitness score, where that particles

fitness score was created by combining that particle with another particle from

the other subswarm. As a result, it cannot be determined whether the yielded

148

fitness score was mainly contributed by either the current particle or its counter-

part subswarm particle. As a result, future work could entail using either random

or proportional selection when choosing the particle from the other subswarm in

order to reduce this concern.

6.2 Evolution of Chosen Algorithms

The full-scale global evolution phase was extremely successful, evaluating 1,000

models in 121 hours. The secondary phase of local search utilizing the cascad-

ing mutation only genetic algorithm was successful, but not only slightly when

compared to the full-scale global phase, as the best fitness only increased by 1%

after 69 hours of evolution. Future work could entail eliminating this secondary

phase and evolving the global evolution phase further, as the time elapsed for the

mutation only algorithm could have been utilized to evaluate another 570 models

during the global search phase.

6.2.1 Global Search Phase

The best algorithm was then ran for full scale evolution for the global search

phase. The results are depicted in Figures 5.8, 5.9, and 5.10. From Figure 5.8,

the genetic algorithm for the global level search was successful at evolving the

newly designed NASNet search space on the CIFAR10 dataset by increasing the

best fitness value from less than 80% to 83%. In addition, the min fitness value

finished past 82%. From Figure 5.9, the similarity scores were given, showcasing

a moderate level of convergence during the global search phase. It is interesting

to note that the min fitness was a little over 1% less than the final best fitness,

which could indicate population convergence; however, the final mean similarity

149

score was not extremely large, less than 70, indicating that many of the solutions

present in the final generation are similar in terms of most building blocks but

still are very distinct. Figure 5.10 plots the max and mean ages from the global

search phase, showcasing that the algorithm held onto one individual for almost

half the lifespan of the algorithm. In addition, it appears that it went through a

few trends of holding onto very old individuals before replacing them.

6.2.2 Local Search Phase

After the global search phase, the cascading mutation only genetic algorithm was

utilized for the local search phase. The results are depicted in Figures 5.11, 5.12,

and 5.13. From Figure 5.11, the mutation only genetic algorithm was successful at

evolving the final generation by pushing it from a final best validation accuracy of

85.72% to 86.50%. The algorithm showcased good convergence, as to be expected

by the cascading nature, as the final min fitness almost approaches the final best.

Another support to this claim is Figure 5.12, which reveals that the min similarity

score starts to approach 90% from 60%. Figure 5.13 plots the cumulative models

found during the local search phase. As one can see, there does not seem to

be any obvious skew in favoritism between small and large models, in terms of

number of parameters, which is beneficial as it showcases that the search space is

well built to not bias in any one direction. The best model trained achieved 86.5%

validation accuracy while being around the mean for number of parameters.

6.3 Best Model

The normal cell for the best model architecture can be seen in Figure 6.1, which

showcases each nodes connection along with their operation and the contents of

150

the After to the right hand side. From Figure 6.2, one can see that out of the six

operations available, three of them are 1x5 5x1 convolutional kernels, showcasing

that the evolution heavily favored this operation. By assessing the Afters, one

can see that all Afters contain both batch normalization and dropout, which

were allowed to turned on or off, indicating that the algorithm heavily favored

these operations in the normal cell. The ordering is split between activation

then batch normalization and batch normalization then activation, while being

uniform in terms of activations found. As a result, not much can be concluded

from those two aspects. Three of the six possible connections utilize the previous

connections input, therefore it seems that the normal cell relies more upon the

direct connection from the previous cell.

151

Figure 6.1: Best Model - Normal Cell

152

The reduction cell for the best model can be seen in Figure 6.2, which show-

cases each nodes connection along with their operation and the contents of the

After to the right hand side. Unlike the normal cell, the reduction slightly fa-

vored the average pooling layer, while also slightly favoring convolution layers

with larger kernels such as the 5x5 and again 1x5 5x1. By assessing the Afters,

one can see that all Afters contain batch normalization, which were allowed to

turned on or off, indicating that the algorithm heavily favored these operations

in the reduction cell. The inclusion of dropout is split between two included and

two not, therefore it cannot be concluded whether the algorithm favored, or not

favored, the dropout layer. However, three of the four Afters utilize a batch nor-

malization then activation ordering, showcasing that the algorithm favored this

structure for the reduction cell. Three of the six possible connections for the cell

utilize the output from hidden node state one, revealing that the reduction cell

heavily relies upon the calculation from this node.

153

Figure 6.2: Best Model - Reduction Cell

154

The final model after evolution heavily relied upon factored 1x5 5x1 convo-

lutions in the normal cell. This could be a reason to extend the NASNet search

space to include more factorized operations such as 1x7 7x1 or stacked 1x5 5x5

5x1 operations, or perhaps include a 1xn nx1 layer, where n is also optimized in

the node.

6.4 Best Model Scaling

Projecting the final model for comparison on the CIFAR10 dataset yielded very

similar results to other state of the art models such as ResNet, WideResNet, and

smaller versions of PyramidNet; however fell short when compared to AmoebaNet

and NASNet, as one can see from Table 5.8. The reasoning behind this occurrence

could be explained by three observations. First, the proposed evolution process

evaluated less than 15% of the total number of models evaluated in AmoebaNet

and NASNet; therefore, it can be expected that the final model does not match

the refined searches of the other NAS systems. Second, only three hidden state

nodes were utilized instead of five as in AmoebaNet and NASNet. The original

reasoning behind this reduction in hidden state nodes was to speed up evaluation

as training with less hidden state nodes; however, perhaps three hidden nodes is

insufficient to create extremely good models. As a result, future work could entail

evolving using five nodes; or, evolve using three nodes but then project the final

population to five nodes and then perform a secondary level of evolution. In this

way, the evolutionary phase can be split into two sections, one performed using

three nodes, which reduces the complexity of the optimization problem at hand

while also reducing the time required to train models, and the second projected

the final to five nodes for a secondary phase of evolution in order to obtain a

155

better model. Lastly, the inclusion of dropout posed as a problem due to its

requirement of a dropout percentage. As a result, model results can vary based

upon the setting of these dropout percentages. Future work could entail either

eliminating dropout layers from within the cells or establish a set function that

yields the dropout percentage based upon the model at hand, instead of manually

tuning the parameters.

6.5 Best Model Transfer

Transferring the model to CIFAR100 yielded slightly worse results than state of

the art models, as one can see from Table 5.9. It is unclear whether this was

observed due to the hyper parameter settings for the dropout layers, which can

be seen as a secondary optimization problem, or that the evolution algorithm

heavily over fitted the model architecture to the CIFAR10 dataset. Further work

would need to be performed in order to solidify either claim. Future work could

entail evaluating a model on multiple datasets, averaging their results, in order

to ensure model transferability; however, training a model multiple times greatly

increasing the computational costs.

6.6 Future Work

Lastly, in the context on future work, the NASNet search space could be further

expanded to include components from other state of the art models such as

PyramidNet [11], which slowly increasing the number of channels per cell instead

of sharply increasing with each reduction cell, or DenseNet [7], which utilizes

skip connections from all previous cells, or ShuffleNet [37], which utilizes grouped

156

convolutions. Although the NASNet search space was revolutionary at the time,

better state of the art models have been created, whose research can be combined

with the NASNet search space to create a newer search space with the ability to

yield even more efficient and powerful models.

157

Chapter 7

Conclusion

The emergence of the NASNet search space was revolutionary as it allowed for

NAS systems to eliminate the need of concern to allow for model scalability

during the searching process, as each model could be scaled independently from

the searching process. It has provided the cornerstone from which this work

derived its search space. However, the NASNet search space lacked the ability

to express optimization of non-convolutional operational layers, such as batch

normalization, activation, and dropout. This work introduced these components

into the NASNet search space to allow for the search algorithm to select the best

possible combination of these non-convolutional operational layers on a per node

basis. In addition to changing the NASNet search space, it was projected into

a fixed length continuous floating point dimensional array. Previously defined

NAS systems created models at the phenotype level, using a recurrent neural

network controller that recursively produced networks through its softmax layer,

or using a directed graph as in AmoebaNet. Standard non-classical optimization

algorithms, such as PSO, leap frog, hill climber, low level genetic algorithms, and

others, all require a fixed length continuous floating point dimensional array for

158

optimization. As a result, this limitation on the current NASNet search space

representation narrows down the possible optimization algorithms that can able

be applied. In this work, a fixed length continuous floating point dimensional

array of the altered NASNet search space was proposed. The details of its creation

are found in section 4.2.

After the creation of the new NASNet search space, two non-classical opti-

mization algorithms were selected for optimization, a genetic and a particle swarm

algorithm. The genetic and particle swarm algorithms encompassed many dif-

ferent variations. Variations used to control convergence, such as parent level

vs. global elitism; variations for controlling regularization through aging; vari-

ations used to control exploration through population size; and, variations at

the algorithmic level with different major components, such as cascading ge-

netic algorithm and gbest subswarm optimization. Unfortunately, all possible

combinations were not able to be tested full scale due to the computational re-

quirements. However, all were tested on a preliminary gray scale reduced version

of CIFAR10. From those results, the best algorithm was selected to be a genetic

algorithm utilizing global level elitism, without aging, and a population size of

16.

With the goal in mind of reducing the computational cost of searching the new

NASNet search space, as previous implementations evaluated 20,000 models, re-

quiring 2,000 GPU hours, the search phase was limited to only 1,300 fitness func-

tion evaluations. From which, two independent search phases were constructed, a

global and a local search. The global search phase had the goal in mind of explo-

ration the search space while exhibiting slight convergence in the final population.

The goal of the local search phase was to narrow down the final population from

the global search in order to refine around the best solution. The best genetic

159

algorithm from the preliminary gray scale reduced version of CIFAR10 was se-

lected to be search algorithm for the global search phase. Because the goal of

local search phase was convergence, a cascading mutation only was introduced

and selected to be the search algorithm of the local search phase. The results

from the global search phase showcase that the newly designed NASNet search

space, the new representation, and the designed genetic algorithm, were success

at representation and evolution as the best validation accuracy increased from a

starting position of 79.7% to 83% over the course of only 121 GPU hours on one

A100 GPU. In addition, the results from the local search phase showcase that

the cascading mutation only genetic algorithm was able to refine the best model

from 85.65% to 86.50% over the course of 69 GPU hours, while also increasing

min similarity score from 60% to 90%.

The best model was then projected to a number of different model configura-

tions, varying the number of cells per normal module and the number of start-

ing filters. The best model configurations obtained from the CIFAR10 dataset

was considered to be n = 4@16 and n = 4@32, as n = 4@16 achieved 94.60%

mean test accuracy with only 1.3 million parameters, while n = 4@32 achieved

95.09% mean test accuracy with only 5.17 million parameters. The results were

very comparable to state-of-the-art models, as the configurations were better

than ResNet110 and WideResNet, but fell short compared to NASNet-A and

AmoebaNet-A. The best configurations were then transferred to the CIFAR100

dataset to assess model transferability. The results indicate that the model con-

figurations fell slightly behind state-of-the-art models, indicating that the model

either lacked the ability to efficiently transfer datasets or the hyper parameters

for regularization were not sufficient. This question was left for future work.

In conclusion, the newly proposed representation for the proposed altered

160

NASNet search space were designed well enough for the chosen search algorithms

to search and explore the domain space. It is hoped that this new representation

can encourage other non-classical optimization algorithms to tackle the NAS-

Net search space. In addition, the methodologies incorporated for speeding up

model evaluation, along with the selected genetic algorithms, were able to yield

state of the art models while requiring less than 10% of computation required by

AmoebaNet and NASNet.

161

Bibliography

[1] Franciois Chollet. “Xception: Deep Learning with Depthwise Separable

Convolutions”. In: CoRR (2017).

[2] Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. “mixup: Be-

yond Emperical Risk Minimization”. In: (2018).

[3] Deng et al. Imagenet: A large-scale hierarchical image database. 2009, pp. 248–

255.

[4] Terrance DeVries and Graham W. Taylor. “Improved Regularization of

Convolutional Neural Networks with Cutout”. In: (2017).

[5] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive Subgradient Meth-

ods for Online Learning and Stochastic Optimization”. In: Journal of Ma-

chine Learning Research (2011).

[6] Andries P. Engelbrecht. Computational Intelligence, An Introduction. John

Wily and Sons, Ltd, 2007.

[7] Z. Liu G. Huang and K. Q. Weinberger. “Densely Connected Convolutional

Networks”. In: CoRR (2016).

[8] Divya Gaur, Joachim Folz, and Andreas Dengel. “Training Deep Neural

Networks Without Batch Normalization”. In: CoRR (2020).

162

[9] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep Sparse Rectifier

Neural Networks”. In: International Conference on Artificial Intelligence

and Statistics 15 (2011).

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016.

[11] Dongyoon Han, Jiwhan Kim, and Junmo Kim. “Deep Pyramidal Residual

Networks”. In: CoRR (2017).

[12] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In:

CoRR (2015).

[13] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating

Deep network Training by Reducing Internal Covariate Shift”. In: (2015).

[14] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Op-

timization”. In: ICLR (2017).

[15] Gunter Klambauer, Thomas Unterthiner, and Andreas Mayr. “Self-Normalization

Neural Networks”. In: Neural Information Processing Systems (2017).

[16] Alex Krizhevsky. “Learning multiple layers of features from tiny images”.

In: (2009).

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Clas-

sification with Deep Convolutional Neural Networks”. In: NIPS (2012).

[18] Anders Krogh and John Hertz. “A simple Weight Decay Can Improve Gen-

eralization”. In: (1991).

[19] George Kyrakides and Konstantinos Margaritis. “An Introduction to Neural

Architecture Search for Convolutional Networks”. In: CoRR (2020).

163

[20] Ilya Loshchilov and Frank Hutter. “Decoupled Weight Decay Regulariza-

tion”. In: ICLR (2019).

[21] YU. E. Nesterov. “A Method of Solving A Convex Programming Problem

with Convergence Rate O(1/k2)”. In: (1983).

[22] Esteban Real et al. “Regularized Evolution for Image Classifier Architecture

Search”. In: CoRR (2018).

[23] Shibani Santurkar et al. “How Does Batch Normalization Help Optimiza-

tion?” In: CoRR (2019).

[24] J. Schulman et al. “Proximal Policy Optimization Algorithms”. In: (2017).

[25] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Net-

works For Large-Scale Image Recognition”. In: ICLR (2015).

[26] Leslie Smith and Nicholay Topin. “Super-Convergence: Very Fast Training

of Neural Networks Using Large Learning Rates”. In: CoRR (2018).

[27] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Net-

works from Overfitting”. In: Journal of Machine Learning Research (2014).

[28] Kenneth O. Stanley and Risto Miikkulainen. “Evolving Neural Networks

through Augmenting Topologies”. In: Evolutionary Computation 10.2 (2002),

pp. 97–127.

[29] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. “Inception-v4,

Inception-ResNet and the Impact of Residual Connections on Learning”.

In: CoRR (2016).

[30] Christian Szegedy et al. “Going Deeper with Convolutions”. In: CoRR

(2014).

164

[31] Christian Szegedy et al. “Rethinking The Inception Architecture for Com-

puter Vision”. In: CoRR (2015).

[32] Djork-Arne Clevert andThomas Unterthiner and Seep Hochreiter. “Fast

and Accurate Deep Netowrk Learning by Exponential Linear Units (ELUS)”.

In: International Conference on Artificial Intelligence and Statistics (2016).

[33] Zhengjiya Wu and Jianzhong Zhou. “A Self-Adaptive Particle Swarm Op-

timization Algorithm with Individual Coefficients Adjustments”. In: IEEE

(2007).

[34] Bing Xu, Naiyan Wantand Tianqi Chen, and Mu Li. “Empirical Evaluation

of Rectified Activations in Convolution Network”. In: (2015).

[35] Sangdoo Yun et al. “CutMix: Regularization Strategy to Train Strong Clas-

sifiers with Localizable Features”. In: (2019).

[36] S. Zagoruyko and N. Komodakis. “Wide Residual Nnetwork”. In: BMVC

(2016).

[37] Xiangyu Zhang et al. “ShuffleNet: An Extremely Efficient Convolutional

Neural Network for Mobile Devices”. In: IEEE (2018).

[38] Barret Zoph et al. “Learning Transferable Architectures for Scalable Image

Recognition”. In: CoRR (2018).

165

	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Background Knowledge
	Introduction to Computational Intelligence
	Machine Learning
	Supervised Learning

	Optimization Theory
	Classical Numerical Methods

	Evolutionary Computation
	Genetic Algorithms
	Representation
	Exploration vs. Exploitation
	Selection Operators
	Reproduction Operators
	Survival Operators
	Termination
	Control Parameters
	The Basic Genetic Algorithm

	Particle Swarm Optimization
	Global Best and Local Best
	Control Parameters

	Artificial Neural Networks
	Introduction
	The Artificial Neuron
	Dense Neural Networks
	Convolutional Neural Networks
	Activation Functions
	Generalization
	Optimizers
	Advanced Convolutional Neural Networks

	Neural Architecture Search
	Search Space
	Search Algorithm
	Evaluation Strategy

	Related Work
	NASNet
	AmoebaNet
	Super Convergence

	Approach and Methodology
	Changing the NASNet Search Space
	Constructing The Chromosome
	Constructing the Algorithms
	Impact of Initial Population Size
	The Genetic Algorithm
	The Particle Swarm Algorithm, with Subswarm
	Training the Models

	Experiments and Results
	Initial Algorithm Comparison
	Cascading Genetic Algorithm
	Aging Genetic Algorithm
	Non-Aging Genetic Algorithm
	PSO Algorithms
	Subswarm PSO
	Best Algorithms
	Creation of Mutation Only Algorithm

	Evolution of Chosen Algorithms
	Global Search Phase
	Local Search Phase

	Best Model Scaling
	Best Model Transfer

	Discussion
	Initial Algorithm Comparison
	Evolution of Chosen Algorithms
	Global Search Phase
	Local Search Phase

	Best Model
	Best Model Scaling
	Best Model Transfer
	Future Work

	Conclusion

