
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

INFORMED, INTERACTIVE, AND INTERPRETABLE MACHINE
LEARNING FOR FORWARD KINEMATICS OF ROBOT ARMS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

BY

SAI TEJA KANNEGANTI
Norman, Oklahoma

2022



INFORMED, INTERACTIVE, AND INTERPRETABLE MACHINE
LEARNING FOR FORWARD KINEMATICS OF ROBOT ARMS

A DISSERTATION APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY THE COMMITTEE CONSISTING OF

Dr. Dean Frederick Hougen, Co-chair

Dr. Jin-Song Pei, Co-chair

Dr. Charles Darren Nicholson

Dr. Christan Grant

Dr. Sridhar Radhakrishnan



© Copyright by Sai Teja Kanneganti 2022
All Rights Reserved.



Acknowledgements

Firstly, I would like to express my sincere gratitude to both of my advisors Dr.

Dean Hougen and Dr. Jin-Song Pei for their continuous support, encouragement,

excellent supervision, patience, tremendous knowledge, and making my doctoral

research more enjoyable. I would like to thank both of them for being very

supportive during my tough times. I enjoyed the broad technical discussions

with Dr. Hougen which played a significant role in my job interviews. I would

also like to thank Dr. Pei for the quick feedbacks she has provided which played

an important role in timely graduation. I could not have asked for better advisors.

I would like to thank Dr. Sridhar Radhakrishnan for his guidance and trust

in my abilities in the last six years. I would also like to thank Dr. Christan

Grant and Dr. Charles Nicholson for their insights in improving this dissertation.

Special thanks to Dr. Phillip Chilson for encouraging me to pursue Doctor of

Philosophy.

I would like to thank my family (parents, grand parents, and brother) for

supporting, motivating me through out this journey. Special thanks to my

brother, Gowtham Teja Kanneganti for caring and sharing intellectual thoughts

that helped me during this journry.

I would also like to thank CS graduate students and friends for making this

journey more enjoyable. I would also like to thank CS non-teaching staff for their

iv



administrative support. I would like to thank REAL lab (Robotics, Evolution,

Adaptation, and Learning Laboratory) for the technical discussions, opportuni-

ties, and collaborations it has provided me. Finally, I would like to thank the

Gallogly College of Engineering and the School of Computer Science for the op-

portunities it has given me and for shaping me into what I am today.

v



Abstract

Machine learning (ML) is becoming increasingly sought after in diverse domains.

Unfortunately for this objective, most ML research has focused too much on

improving performance on evaluation metrics such as accuracy to the exclusion

of other qualities like interpretability. However, to make important decisions,

ML models need to be interpretable. The goal of interpretable machine learning

(IML) is to build models that are understandable to users. One approach to IML

is to have meaning to each of its components. Thus, IML aids in building models

that are trustworthy and improve fairness in artificial intelligence. In informed

ML, prior knowledge is explicitly integrated into the ML pipeline/training pro-

cess. Interactive ML enables ML models to be interactively steered by people

and is more advantageous for the tasks where human knowledge is needed in the

analysis process. In this work, we proposed the I3 framework that brings together

the ideas of being informed, interactive, and interpretable. In this work we rein-

troduced, highlighted, and established the larger picture to one approach in the

context of being informative, interactive, and interpretable. Pei et al.’s work is

a strong candidate and is one instantiation of I3 framework. In this work, Pei

et al.’s work is used to approximate the kinematics of a robotic arm using inter-

pretable artificial neural networks (ANNs). Pei et al.’s work is developed using

applied mathematics for engineering mechanics and is based on approximating

vi



nonlinear functions where domain knowledge and visually observable features

of the data are used to design ANNs. Pei et al.’s work is informed as scien-

tific knowledge through applied mathematics, engineering and world knowledge

through vision are represented in the form of algebraic equations, logic rules, and

human feedback. The represented knowledge helps to narrow down the hypothe-

ses for network architecture. Pei et al.’s work involve integrating prior knowledge

obtained by examining the dominant features of the data. Then the interactive

process involves choosing an appropriate basis function from the visualization

of the function to be approximated; this helps in designing the ANN architec-

ture and its initial values. Interpretability is the result of being informed and

interactive. After analyzing Pei et al.’s work, we present a feasibility study ap-

proximating the kinematics of a simplified robotic arm. We extend Pei et al.’s

work and its use for a different application, noting the challenges that arise while

extending this work to more inputs and to multiple hidden layers. This approach

leads to training success, good generalization, and interpretability.

vii



Contents

Acknowledgements iii

Abstract vi

List of Figures x

List of Tables xiii

1 Introduction 1
1.1 Introduction to interpretable machine learning . . . . . . . . . . . 1

1.1.1 Informative . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Interactive . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Interpretable . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Introduction to robot kinematics and robotic arm used . . . . . . 5
1.3 Intended contributions . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related Work 8
2.1 Background of informed, interactive, and interpretable ML . . . . 8

2.1.1 Informed ML . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Interactive ML . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Interpretable ML . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Fundamentals of ANNs . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Determining the structure of ANNs . . . . . . . . . . . . . 15
2.2.2 Weight initialization . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Pei et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Robotic arm and target equations . . . . . . . . . . . . . . . . . . 24

2.4.1 Simplified PUMA robotic arm . . . . . . . . . . . . . . . . 25
2.4.2 Target equations . . . . . . . . . . . . . . . . . . . . . . . 25

3 Research Questions 28
3.1 Structural issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Research question 1.1 - Structural transferability . . . . . 29

viii



3.1.2 Research question 1.2 - Extensibility to more hidden layers 30
3.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Research question 2.1 - Domain transferability . . . . . . . 31
3.2.2 Research question 2.2 - Concatenating prototypes . . . . . 32
3.2.3 Research question 2.3 - Performance evaluation . . . . . . 33

3.3 Other Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Research Question 3.1 - Robustness to noise . . . . . . . . 33

4 Experiments 35
4.1 Data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Prototypes used . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1 Approximating constant - Prototype A . . . . . . . . . . . 40
4.3.2 Approximating arithmetic and polynomial operations - Pro-

totype B . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.3 Approximating cosine curves - Prototype C . . . . . . . . 41

4.4 Initial architecture and parameter values for I3 . . . . . . . . . . . 44
4.4.1 Approximating Equation 2.3: x̂ = 0.5 cos(2πθ̂1) + 0.5 . . . 45
4.4.2 Approximating Equation 2.4: ŷ = 0.5 sin(2πθ̂1) + 0.5 . . . 48
4.4.3 Approximating Equation 2.10 . . . . . . . . . . . . . . . . 50

4.5 Other architectures used . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.1 Architecture to approximate Equation 2.13 ŷ = 0.5 sin(2πθ̂1)∗

cos(2π(θ̂3 + 1/8)) + 0.5 . . . . . . . . . . . . . . . . . . . . 55
4.5.2 Architecture to approximate Equation 2.14 x̂ = −0.25 cos(2πθ̂1)∗

[sin(2π(θ̂2 + θ̂3)) − cos(2πθ̂2)] + 0.5 . . . . . . . . . . . . . 59
4.6 Tools and software used . . . . . . . . . . . . . . . . . . . . . . . 59

5 Results 61

6 Discussion 66
6.1 Structural issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1.1 Structural transferability . . . . . . . . . . . . . . . . . . . 66
6.1.2 Extensibility to more hidden layers . . . . . . . . . . . . . 67

6.2 Initialization issues . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2.1 Domain transferability . . . . . . . . . . . . . . . . . . . . 67
6.2.2 Concatenating prototypes . . . . . . . . . . . . . . . . . . 68
6.2.3 Performance evaluation . . . . . . . . . . . . . . . . . . . . 71

6.3 Effect of noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3.1 Robustness to noise . . . . . . . . . . . . . . . . . . . . . . 73

7 Conclusions 74

ix



8 Future Work 76
8.1 Theoretical advancements . . . . . . . . . . . . . . . . . . . . . . 76
8.2 Practical advancements . . . . . . . . . . . . . . . . . . . . . . . . 77

Bibliography 79

A Appendix 83
A.1 Initial parameters for other equations using I3 . . . . . . . . . . . 83

x



List of Figures

1.1 Generic artificial neural network where biases are not included.
p1, p2 are inputs, H corresponds to activation function of hidden
layer, and O corresponds to activation function of output layer. . 2

2.1 Taxonomy of informed machine learning as directly adopted from (Von Rue-
den et al., 2021), where the current work is highlighted in green,
in the backdrop of existing main paths shown in gray. . . . . . . . 9

2.2 Frequency of term artificial intelligence (AI) and machine learning
(ML) in the English language corpus (Source: Google books ngram
viewer). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Frequency of term explainable artificial intelligence (XAI) and in-
terpretable machine learning (IML) in the English language corpus
(Source: Google books ngram viewer). . . . . . . . . . . . . . . . 13

2.4 Taxonomy of IML in ANNs based on three dimensions adopted
from (Zhang et al., 2021), where the current work is highlighted
in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Sigmoid function. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 ANN architecture used to approximate a constant term. Nodes

labeled S and L have sigmoidal and linear activation functions,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Approximating constant (1) as linear sum of two sigmoidal units. 23
2.8 3-D orientation of simplified PUMA robotic arm. . . . . . . . . . 26

4.1 Prototype C used to approximate cosine term. . . . . . . . . . . . 42
4.2 x̂ to be approximated given θ̂1 (a) Target function to be approx-

imated (b) Prototype function obtained using I3 to approximate
target function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 ANN architecture with one hidden layer and four hidden nodes.
S, L nodes correspond to sigmoidal, linear activation functions
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Prototype 2 used to approximate sine term. . . . . . . . . . . . . 48

xi



4.5 ŷ to be approximated given θ̂1 (a) Target function to be approx-
imated (b) Prototype function obtained using I3 to approximate
target function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 ANN architecture to approximate term 1. S, L nodes correspond
to sigmoidal, linear activation functions respectively. . . . . . . . . 50

4.7 Black is for target function, while red is the approximated function
(without training). . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.8 Non condensed ANN architecture to approximate term 2. S, L
nodes correspond to sigmoidal, linear activation functions respec-
tively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.9 Condensed ANN architecture to approximate term 2. S, L nodes
correspond to sigmoidal, linear activation functions respectively. . 54

4.10 ANN architecture to approximate term 3. Nodes labeled S and L
have sigmoidal and linear activation functions, respectively and p
can be any input/value . . . . . . . . . . . . . . . . . . . . . . . . 55

4.11 ANN architecture before condensing hidden layer - for θ̂2, θ̂3 as
inputs and x̂ as output. S, L nodes correspond to sigmoidal, linear
activation functions respectively. . . . . . . . . . . . . . . . . . . . 56

4.12 ANN architecture after condensing hidden layer - for θ̂2, θ̂3 as in-
puts and x̂ as output. S, L nodes correspond to sigmoidal, linear
activation functions respectively. . . . . . . . . . . . . . . . . . . . 57

4.13 ANN architecture after condensing hidden layer - for θ̂1, θ̂3 as in-
puts and ŷ as output. S, L nodes correspond to sigmoidal, linear
activation functions respectively. . . . . . . . . . . . . . . . . . . . 58

4.14 ANN architecture after condensing hidden layer - for θ̂1, θ̂2, θ̂3 as
inputs and x̂ as output. S, L nodes correspond to sigmoidal, linear
activation functions respectively. . . . . . . . . . . . . . . . . . . . 60

5.1 Scatter plot of prototypical example of learning a function (a) Ex-
cellent learning (b) Moderate learning (c) NW Learning poorly . . 64

6.1 Initial errors reported for θ̂1 as input and x̂ as output. . . . . . . . 68
6.2 Initial errors reported for θ̂1,θ̂3 as input and ŷ as output. . . . . . 69
6.3 History of error Vs epochs for Equation 2.13. The spike in the

black rectangular box indicates the large updates in ANN weights
and biases during training. . . . . . . . . . . . . . . . . . . . . . . 70

6.4 History of error Vs epochs for Equation 2.14. The spike in the
black rectangular box indicates the large updates in ANN weights
and biases during training. . . . . . . . . . . . . . . . . . . . . . . 70

6.5 Errors reported while training across all repetitions (a) ŷ given θ̂1

(b) x̂ given θ̂2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.6 History of errors when NW stuck at local optima while training ŷ

given θ̂1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xii



A.1 ANN architecture before condensing hidden layer. S, L nodes
correspond to sigmoidal, linear activation functions respectively. . 85

A.2 ANN architecture after condensing hidden layer. S, L nodes cor-
respond to sigmoidal, linear activation functions respectively. . . . 85

A.3 x̂ to be approximated given θ̂3 (a) Target function to be approx-
imated (b) Prototype function obtained using I3 to approximate
target function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.4 ANN architecture before condensing hidden layer - for θ̂1, θ̂2 as in-
puts. S, L nodes correspond to sigmoidal, linear activation func-
tions respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.5 ANN architecture after condensing hidden layer - for θ̂1, θ̂2 as in-
puts. S, L nodes correspond to sigmoidal, linear activation func-
tions respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.6 ANN architecture before condensing hidden layer - for θ̂2, θ̂3 as
inputs and ẑ as output. S, L nodes correspond to sigmoidal, linear
activation functions respectively. . . . . . . . . . . . . . . . . . . . 96

A.7 ANN architecture after condensing hidden layer - for θ̂2, θ̂3 as in-
puts and ẑ as output. S, L nodes correspond to sigmoidal, linear
activation functions respectively. . . . . . . . . . . . . . . . . . . . 97

A.8 ANN architecture before condensing hidden layer - for θ̂1, θ̂3 as
inputs and x̂ as output. S, L nodes correspond to sigmoidal, linear
activation functions respectively. . . . . . . . . . . . . . . . . . . . 101

A.9 ANN architecture after condensing hidden layer - for θ̂1, θ̂3 as in-
puts and x̂ as output. S, L nodes correspond to sigmoidal, linear
activation functions respectively. . . . . . . . . . . . . . . . . . . . 102

A.10 ANN architecture before condensing hidden layer - for θ̂1, θ̂3 as
inputs and ŷ as output. S, L nodes correspond to sigmoidal, linear
activation functions respectively. . . . . . . . . . . . . . . . . . . . 104

A.11 ANN architecture after condensing hidden layer - for θ̂1, θ̂3 as in-
puts and ŷ as output. S, L nodes correspond to sigmoidal, linear
activation functions respectively. . . . . . . . . . . . . . . . . . . . 105

xiii



List of Tables

2.1 Derived weights and biases in approximating the first two poly-
nomials (Pei et al., 2005) and the basic arithmetic operations of
addition and multiplication (Pei et al., 2013). w[0] and w[1] are the
arbitary values used while designing. . . . . . . . . . . . . . . . . 21

2.2 Equations for different input-output combinations derived using
forward kinematics of robotic arm. In the kinematics equations,
the joints has only one cycle (0 − 2π). Note: Some of the input-
output combinations are excluded from the table as they either
have constant value or have the same as other existing input-
output combination. . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Comparison of models with two different initializations. For Noise
level, N, L, M, and H correspond to no, low, medium, and high
noise, respectively. Best Error is the smallest error reported in
any repetition from either approach based on the architecture sug-
gested by the I3. M-W p-value is the value of the Mann-Whitney
U test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Comparison of models with two different initializations (Kanneganti
et al., 2021). For Noise level, N, L, M, and H correspond to no,
low, medium, and high noise, respectively. M-W p − valueNW is
the p-value of the Mann-Whitney U test for NW and I3. . . . . . 65

xiv



Chapter 1

Introduction

This chapter introduces artificial neural networks (ANNs), informed machine

learning, interactive machine learning and interpretable machine learning (IML).

Outlines the Pei et al. (2001 to 2022) on which this dissertation is built. This

chapter also introduces the motivations and contributions of this dissertation, the

domain (robot kinematics) on which Pei et al. was extended.

1.1 Introduction to interpretable machine

learning

Machine learning (ML) is a subset of artificial intelligence (AI) that allows soft-

ware applications to understand and discover patterns from data or experiences

and makes accurate predictions without being explicitly programmed to do so.

Artificial neural networks (ANNs) are computational models implemented in soft-

ware or custom-made hardware devices that attempt to capture the behavioral

and adaptive features of biological nervous systems. ANNs are subset of ML

1



H

H

H

H

O output

Hidden
layer

Input
layer

Output
layer

p1

p2

Figure 1.1: Generic artificial neural network where biases are not included. p1,
p2 are inputs, H corresponds to activation function of hidden layer, and O cor-
responds to activation function of output layer.

algorithms. An ANN is composed of several interconnected units, nodes, or neu-

rons as in Fig. 1.1. Some of these units receive information directly from the

environment (input units), some have a direct effect on the environment (output

units), and others communicate only with units within the network (internal, or

hidden, units) (Floreano and Mattiussi, 2008).

ANNs are universal function approximators (Cybenko, 1989; Hornik, 1991),

i.e., the multilayer ANNs with as few as one hidden layer can represent a wide

variety of interesting functions when given appropriate weights. By having suffi-

ciently many nodes in its hidden layer(s), any continuous nonlinear function can

be learned by sigmoidal ANNs to any desired degree of accuracy. Unfortunately,

standard ANNs are opaque because there is no inherent meaning to the hidden

nodes. This makes it difficult to understand the model and restricts its use in

making important decisions. To bridge this knowledge gap for modeling kine-

matics, we use interpretable machine learning, i.e., ML in which the response of

the model given the input is inherently understandable (Rudin, 2019). We begin

by recognizing existing research (Pei et al.) in nonlinear function approxima-

tion. This long-term multidisciplinary research effort has made strides toward

2



providing end users of ANNs with interpretable modeling tools for engineered

systems (Pei, 2001; Pei et al., 2005, 2013; Pei and Mai, 2008; Pei et al., 2008,

2021).

In Pei et al., ANNs are engineered as transparent, linear-in-the-weight param-

eterization tools by using domain knowledge/constraints and visual features to

determine appropriate basis functions. With few hidden nodes to activate these

basis functions, the modeling capability of sigmoidal ANNs is systematically re-

vealed without relying on training. The key is the developed ANN initialization

theory and practical procedures that can be interpreted via domain knowledge. A

rich repository of direct (non-iterative) techniques and reusable ANN prototypes

can be aggregated as the basis functions needed for specific problems, leading to

interpretable ANNs as well as improved training performance and generalization

as validated by simulated and real-world data (Pei, 2001; Pei et al., 2005; Pei and

Mai, 2008; Pei et al., 2008, 2013, 2021).

In this work we have reintroduced, highlighted, and established the larger

picture to Pei et al. in the context of being informative, interactive, and inter-

pretable. As we develop this I3 framework, it is a general framework for bringing

together the ideas of being informed, interactive, and interpretable. Previous

work by Pei et al. can be interpreted as a candidate in this I3 framework as it

satisfies the above three components. Throughout the document, for brevity we

will refer to Pei et al. as I3. But Pei et al. is one instantiation of I3 framework

and this framework itself could be instantiated in other ways.

3



1.1.1 Informative

Additional integration of prior knowledge into the training process is called in-

formed ML (Von Rueden et al., 2021). I3 is informed as I3 involves integrating

prior knowledge:

1. The basis functions suggested by domain knowledge.

2. To examine dominant features from visualization of data.

More about this is explained with an example in Section 2.1.1 and Section 4.4.3.

1.1.2 Interactive

Interactive ML enables ML models to be interactively steered by humans and is

more advantageous for the tasks where human knowledge is needed in the analysis

process (Jiang et al., 2019). I3 is interactive as it involves:

1. Choosing appropriate prototype and variant.

2. Adjust certain weights and biases in selected prototype.

More about this is explained in Section 2.1.2, and with an example in Section

4.4.3.

1.1.3 Interpretable

IML is an young field and there is no unified definition for interpretability (Lip-

ton, 2018; Molnar et al., 2020; Murdoch et al., 2019). In this work we refer to

interpretability as having meaning to each of its components. Interpretability is

the result of being informative and interactive. The interpretability lies in:

4



1. To have meaning to each of its components.

2. The similarity between the output of the initial ANN and the target func-

tion.

This approach is used to model forward kinematics of robot arms and thus the

title “Informed, interactive, and interpretable machine learning for forward kine-

matics of robot arms”.

1.2 Introduction to robot kinematics and

robotic arm used

Experiments were conducted using multiple nonlinear datasets based on a sim-

plified model of a PUMA (Programmable Universal Manipulation Arm or Pro-

grammable Universal Machine for Assembly) robot arm. PUMA is a serial robot

and it consists of sequence of links and joints.

Kinematics describes the relationship between a robot’s joint coordinates and

its spatial layout. It is a fundamental and classical topic in robotics. Kinematics

calculations are used for tasks such as positioning a gripper at a position in

space, designing a mechanism to move a tool between two points, and predicting

if robot’s motion would collide with obstacles. Kinematics is concerned with only

the instantaneous values of a robot’s coordinates and is not concerned about the

movements under forces and torques.

In this work, we are only concerned with forward kinematics—using the kine-

matic equations to calculate the positions of the robot’s links from specified values

for the joints (Hauser, 2020). In our experiments, we design models for predicting

the end position in X, Y, and Z three-space given normalized waist (θ̂1), shoul-

5



der (θ̂2), and elbow (θ̂3) angles. This research is only carried out using carefully

simulated datasets. More about this robotic arm is discussed in Section 2.4.

1.3 Intended contributions

This work is the first to use this I3 approach for robotics. The intended con-

tributions of this work are:

1. This work sees the power of informed, interactive, and inter-

pretable ML, and identifies Pei et al. being informed, interactive,

and interpretable. This work reintroduces, validates, facilities Pei

et al. to be a full-fledged informed, interactive, and interpretable

approach. Bringing together the ideas of informed, interactive,

and interpretable ML makes this work more accessible for broader

audience.

2. Developing the terminology of I3 that tries to mean in accordance

with the ideas that are put together. Developing the terminol-

ogy helps to make Pei et al. connected to other areas and more

accessible for broader audience.

3. Even though Pei et al. has done multi-disciplinary research, ap-

plications are mainly limited to engineering mechanics. The work

on epidemic curves (Hougen et al., 2020) and (Pei et al., 2021)

are in the middle of the transition from engineering mechanics

domain to computer science domain. This present work is from

computer science ML view point. Tremendous effort is made to

select and refine the terminologies. This helps to make this ap-

6



proach understandable by different audience and strengthen the

approach by contributing ideas from other perspectives.

4. To demonstrate the feasibility of transferring the I3 to a different

application (robot kinematics). Robot kinematics is chosen as a

flexible example for how to transfer this to a new domain.

5. To demonstrate the feasibility and determine the challenges of

using I3 to develop and train ANNs with more inputs. Scaling up

inputs allows us to model muti-dimensional input spaces.

6. To demonstrate the feasibility and determine the challenges of us-

ing I3 to develop and train ANNs with more hidden layers when

needed. More hidden layers allows for the modeling of more com-

plex functions.

7. Earlier I3 has used Levenberg-Marquardt as an optimizer. In this

work we have used I3 using Adam as an optimizer. Using Adam

facilitates the way for training deeper ANNs. More about this is

discussed in Section 2.2.3.

The remainder of this dissertation is organized as follows: The overview of

I3 and other related work is explained in Chapter 2. Research questions and

hypothesis are discussed in Chapter 3. The experimental setup, the data used,

the architectures and initial values of target equations are explained in Chapter 4.

The results and discussion are detailed in Chapter 5 and Chapter 6, respectively.

Conclusions of this work are mentioned in Chapter 7 and future work is mentioned

in Chapter 8.

7



Chapter 2

Related Work

This chapter explains background of informed, interactive, and interpretable ML

and also explains some of the fundamentals of ANNs, an overview of the existing

work and the foundation on which this research is built. This section details the

robotic arm used and outlines the target equations that will be modeled later.

2.1 Background of informed, interactive, and

interpretable ML

This section discusses the background of the three ingredients proposed in I3 -

informed, interactive, and interpretable ML.

2.1.1 Informed ML

Despite its success, ML algorithms have limits when there is insufficient amount

of training data. A potential solution is the additional integration of prior knowl-

edge into the training process which leads to the notion of informed machine

8



Figure 2.1: Taxonomy of informed machine learning as directly adopted
from (Von Rueden et al., 2021), where the current work is highlighted in green,
in the backdrop of existing main paths shown in gray.

9



learning (Von Rueden et al., 2021). Figure 2.1 shows the taxonomy of informed

machine learning. The taxonomy consists of the three dimensions knowledge

source, knowledge representation, and knowledge integration. Source informs the

source of knowledge that is integrated. Representation informs how knowledge is

represented. Integration informs where in the learning pipeline knowledge is inte-

grated. Informed machine learning describes learning from a hybrid information

source that consists of data and prior knowledge. The prior knowledge comes

from an independent source, is given by formal representations, and is explicitly

integrated into the machine learning pipeline.

Each dimension contains a set of elements that represent the spectrum of dif-

ferent approaches found in the literature as illustrated in Fig. 2.1. There are three

different sources of knowledge. They are scientific knowledge, world knowledge,

and expert knowledge. Scientific Knowledge is from the subjects of science, tech-

nology, engineering, and mathematics and this knowledge is typically formalized

and validated explicitly through scientific experiments. World knowledge refers

to facts from everyday life that are known to almost everyone and can thus also

be called general knowledge. It can be more or less formal. Generally, it can be

intuitive and validated implicitly by humans reasoning in the world surrounding

them. Expert knowledge is the knowledge that is held by a particular group of

experts.

The I3 uses two sources, scientific knowledge obtained through applied math-

ematics and engineering (I3 is first developed using applied mathematics for engi-

neering mechanics) and world knowledge through vision (in I3 dominant features

in the data are visualized). More about this is discussed in Section 2.3.

The second dimension is knowledge representation and knowledge can be rep-

resented in one or more of the following representations: algebraic equations,

10



differential equations, simulation results, spatial invariances, logic rules, knowl-

edge graphs, probabilistic relations, and human feedback.

In I3 knowledge is represented in algebraic equations (knowledge represented

in polynomial functions, arithmetic equations, etc.), logic rules (selecting proto-

type and variant from visually observable features), and through human feedback

(choosing appropriate prototype and variant, and adjusting weights and biases

of ANNs in selected prototype).

There are four different ways of integrating knowledge in ML pipeline. They

are in training data (incorporating knowledge in the training data), hypothesis set

(knowledge integrated to define ANN architecture and hyper-parameters), learn-

ing algorithm (knowledge integrated to modify loss function), and final hypothesis

(the output of model can be validated against existing knowledge). I3 helps in

determining the structure of ANN, so knowledge is integrated in hypothesis set.

So, the I3 is an informed machine learning approach, where the scientific

knowledge through engineering and the world knowledge through vision is repre-

sented in the form of algebraic equations, logic rules and through human feedback.

And the represented knowledge helps to narrow down the hypothesis for network

architecture.

2.1.2 Interactive ML

The typical interactive ML workflow includes two steps in each iteration. First,

the intermediate results of the model as well as the data is visually presented

to the user, the user explores the visualization results, draw understandings and

insights about the data and the model, then input feedback to the model. Second,

the model is incrementally updated by integrating the human input (Jiang et al.,

11



2019). Hence, interactive ML enables ML models to be interactively steered by

humans and is more advantageous for the tasks where human knowledge is needed

in the analysis process (Jiang et al., 2019). Some of those approaches are visual

cluster analysis, interactive dimensionality reduction, etc.

In order to be interactive I3 brings the world knowledge from informed as-

pect. In I3 visualization of data, choosing prototype and variant, and adjusting

weights and biases of ANNs in selected prototype are done prior to any modeling

and helps in determining appropriate ANN architecture. More about prototype

and I3 is explained in Section 2.3. This approach is slightly different from the

definition explained above, where visualization (interactive component) is done

on the intermediate results of the model when compared to I3 where visualization

is done before modeling; For instance, in cluster analysis and in dimensionality

reduction visualization is performed after modeling (clustering or reducing the

dimension of data). I3 also integrates the human feedback by choosing appropri-

ate prototype and variant, and adjusting weights and biases of ANNs in selected

prototype.

2.1.3 Interpretable ML

Figure 2.2 shows the level of interest in AI and ML. The level of interest in AI

picked up around 1960 and reached to its peak around 1990, then the interest in

AI decreased till 2014 and then kept increasing again. The level of interest in ML

picked up after 1980 and exploded after 2012. It could be this explosion that is

recreating interest in AI. Figure 2.3 shows the level of interest in Explainable AI

(XAI) and IML. The level of interest in XAI picked up around 2002 and reached

to its peak around 2009, then the interest in XAI decreased till 2014 and then

12



Figure 2.2: Frequency of term artificial intelligence (AI) and machine learning
(ML) in the English language corpus (Source: Google books ngram viewer).

Figure 2.3: Frequency of term explainable artificial intelligence (XAI) and inter-
pretable machine learning (IML) in the English language corpus (Source: Google
books ngram viewer).

kept increasing again. The level of interest in IML picked up after 2012. It is

this increase in interest in IML that drives interest in XAI.

By observing Fig. 2.2 and Fig. 2.3 we can infer that most of the earlier ML

research has focused on improving evaluation metrics to the exclusion of other

qualities like interpretability. Recently, adoption of IML models or systems has

been expanding (Carvalho et al., 2019). IML is an young field and there is no

unified definition for interpretability (Lipton, 2018; Molnar et al., 2020; Murdoch

et al., 2019). One definition of interpretability is the ability to provide expla-

nations in understandable terms to humans (Doshi-Velez and Kim, 2017). One

13



Figure 2.4: Taxonomy of IML in ANNs based on three dimensions adopted
from (Zhang et al., 2021), where the current work is highlighted in green.

approach to IML is to have meaning to each of its components; In this work we

refer to this meaning for interpretability. I3 is interpretable because of informed

and interactive nature of this approach.

With increase in success of deep neural networks, there is also increase in

concern about their black-box nature (Zhang et al., 2021). Taxonomy of IML in

ANNs based on three dimensions is discussed in (Zhang et al., 2021) and shown

in Fig. 2.4. One of the challenges of IML models is evaluation of interpretability.

Some of the challenges of IML are discussed in (Rudin et al., 2022; Vollert et al.,

2021).

First dimension to categorize IML is by active and passive approaches. Active

approaches change the network architecture or training process for better inter-

pretability. Passive approaches have post hoc explanations for trained ANNs.

Post hoc explanations provide interpretability after a model has been developed.

Second dimension to categorize IML is by type of explanations the models pro-

vide. Third dimension is local vs. global interpretability. Local interpretability

14



refers to explaining ANN’s predictions on individual samples, global interpretabil-

ity refers to explaining network as a whole, and semi-local refers to explaining

group of similar inputs together.

I3 is an active approach, explains hidden semantics, and has global inter-

pretability. I3 is active as ANN architecture is designed based on domain knowl-

edge and by visualizing data, explains hidden semantics as hidden nodes and

layers have meaning in the ANN, has global interpretability as we are explaining

the ANN as a whole rather than explaining for individual or group of similar

inputs.

2.2 Fundamentals of ANNs

This section discusses about determining structure of ANNs, weight initialization

approaches, and the optimizers.

2.2.1 Determining the structure of ANNs

There are multiple approaches in determining the structure of ANNs. One of the

ways is to try to use heuristics or rules of thumb. Another way is to iteratively

(increasing/decreasing number of hidden layers/nodes by trail and error) try to

determine the correct structure of the ANN.

Heuristic approaches

Below are three approaches for determining the structure of ANN using heuristic

approach:

1. There are few approaches that suggest the structure of neural networks.

Chapter 5.9 of (Kruse et al., 2011) suggests to use (number of inputs +

15



number of outputs)/2 hidden units in case of single hidden layer. Using

this approach, for equations with one input and one output just requires

one hidden unit. Similarly, for equations with two inputs and one output

just requires one or two hidden units. But these are very less number of

hidden units and so this guidance is not applicable to approximate equations

of robotic arms.

2. Chapter 7.1 of Mehlig (2021) discusses splitting target function as a combi-

nation of basis functions. This approach recommends using 2 hidden nodes

for each basis function. However, it does not discuss the approach to ob-

tain the number of basis functions. However, this approach suggests a large

number of basis functions which results in larger number of hidden nodes

for sine or cosine functions, which is related to the equations of robotic

arms.

3. Approach in (Jones, 1997) discusses about approximating continuous func-

tions using a linear combination of sigmoidal functions. The author men-

tioned that any continuous function can be approximated by a Finite Fourier

cosine series and a function can be approximated using the difference of two

non-decreasing functions. Thus a linear combination of sigmoidal function-

s/ridge functions can be helpful in approximating a continuous function.

For a given function, we can have a maximum error of 1/i, where i is the

even number of neurons; So, by taking i sufficiently large the construction

may be made sufficiently accurate. This approach mentions the relation-

ship between the upper bound of error and the number of neurons. This

paper did not explicitly mention the architecture required for a given target

function; However, in this approach author has qualitatively explained the

16



number of neurons w.r.t performance.

Iterative approaches

Iterative approaches has different ways of iteratively trying to determine the

structure of ANN by increasing/decreasing number of hidden layers/nodes by

trail and error. Some such mechanisms are listed below:

1. Start with a small structure and keep growing the structure and stop at an

error we are hoping at.

2. Start with a large network and reduce the size of network.

Other approaches

1. Bayesian regularization is a special case of iterative approach. This ap-

proach starts with a large structure. After training, some of the weights

goes to zero. The number of non zero weights (effective weights) are less

than total available weights. This approach helps to reduce the size of

ANN to the effective number of parameters. This is a principle pruning

approach. This helps to get a good estimate of number of weights required

to approximate the target function (Demuth et al., 2014).

Pei et al.

The I3 brings more knowledge (domain knowledge and visually dominant fea-

tures) to determine the structure of ANNs while approximating the target func-

tion.

17



2.2.2 Weight initialization

ANNs can be viewed as a function with learnable parameters (weights and bi-

ases). The performance of ANNs, convergence to optimal solution depends on

how the parameters are initialized before the start of training. Thus, a better

way of initialization is required for modeling ANNs. Two popular initialization

techniques are discussed below: Nguyen-Widrow (Nguyen and Widrow, 1990)

and Xavier (Glorot and Bengio, 2010) initializations.

In Nguyen-Widrow (NW) initialization, weights are assigned in such a manner

that the region of interest is divided into small intervals. The training process

speeds up by setting the initial weights of the hidden layer, so that each hidden

node is assigned its own interval at the start of training. The network is trained

with each hidden node still having the freedom to adjust its interval size and

location during the training. Thus, the NW approach generates initial weights

and bias values for a layer such that the active regions of the layer’s neurons

are distributed approximately evenly over the input space (Nguyen and Widrow,

1990). In case of sigmoidal ANNs, the weights converge quicker when the input

to the activation function falls in the region having more slope. Xavier initial-

ization (Glorot and Bengio, 2010) sets the initial values of parameters in such a

way that aids for quicker convergence and better performance in ANNs. This ap-

proach is quickly adopted and used as a state-of-the-art initialization technique.

2.2.3 Optimizer

An optimizer is a method or algorithm that changes the attributes of a neu-

ral network, such as weights, biases, and learning rate. This helps in reducing

overall loss and decrease the error or improve the accuracy. There are many

18



optimizers but Adaptive Moment Estimation (Adam) (Kingma and Ba, 2017) is

generally used for deep learning. Levenberg–Marquardt (Moré, 1978) is preferred

for training shallow ANNs especially when error is mean squared error (MSE).

Adam is an extension of stochastic gradient descent (SGD) and is used to

update network parameters while training. Unlike using a single learning rate

for SGD, Adam computes adaptive learning rates for each parameter, i.e., Adam

optimizer updates the learning rate for each network weight individually. Adam

has both the benefits of Adagrad and RMSProp (Root Mean Square) algorithms,

both of these algorithms are also an extension of SGD algorithms (Kingma and

Ba, 2017). This has been used as a default optimizer in most of deep learn-

ing models. Adam has proven to be efficient algorithm interms of runtime and

memory usage.

Levenberg–Marquardt (LM) commonly known as Damped Least Squares method

and is used to solve non-linear least squares problems. Least squares problems

arise in the context of fitting a parameterized mathematical model to a set of data

points by minimizing an objective expressed as the sum of the squares of the errors

between the model function and a set of data points. The LM uses two different

minimization algorithms: the gradient descent and the Gauss-newton method. In

the gradient descent method, the sum of the squared errors is reduced by updating

the parameters in the steepest-descent direction. In the Gauss-Newton method,

the sum of the squared errors is reduced by assuming the least squares function is

locally quadratic in the parameters, and finding the minimum of this quadratic.

The LM acts more like a gradient-descent method when the parameters are far

from their optimal value, and acts more like the Gauss-Newton method when the

parameters are close to their optimal value (Gavin, 2019).

19



2.3 Pei et al.

Traditional ML algorithms are opaque. IML is transparent as it injects domain

knowledge into ML design. This results in a system that is understandable and

trustworthy. Early IML research for pattern classification using ANNs states,

“the first layer partitions the input space into a number of cells. The sole function

of additional layers is then to group these cells into decision regions” (Makhoul

et al., 1989). This fundamental idea can also be found in deep learning (LeCun

et al., 2015) and explainable AI (XAI) (Gunning et al., 2019). This fundamental

idea is the basis of designing transparent sigmoidal neural networks for function

approximation.

In the work reviewed here (Pei, 2001; Pei et al., 2005, 2013; Pei and Mai,

2008; Pei et al., 2008, 2021), static nonlinear functions are approximated using

feedforward ANNs, using sigmoidal activation functions with a one or two hidden

layer(s), and taking an input vector to produce a scalar output. I3’s fundamental

approach is applied mathematics and has the potential of being useful beyond

engineering mechanics. To design interpretable neural networks, I3 uses domain

knowledge including visually observable features to determine (a) structure of the

network (including the number of hidden nodes) (b) initial values of the parame-

ters (weights and biases in the network) as the first approximation of the function

to be learned, and then trained on the data for local optimization. These initial

parameters are obtained based on theory and not from training. Determining

structure and initial values of ANNs is a longstanding question (Sontag, 1992)

that remains open in general.

Structure, parameter values to carry out basic computing operations and poly-

nomial functions with certain approximation accuracy have been derived in earlier

20



work, including the number of hidden nodes, weights, and biases for approximat-

ing four basic arithmetic operations (Pei et al., 2013) and the number of hidden

nodes, weights, and biases for approximating polynomial terms p0, p1, p2, and

p3 (Pei et al., 2005). Table 2.1 has derived values of the weights and biases for

some of the functions that are used in this dissertation. In Table 2.2, p1 × p2 has

larger weights to ensure low error. All the functions can be approximated with

just one hidden layer.

Table 2.1: Derived weights and biases in approximating the first two polynomi-
als (Pei et al., 2005) and the basic arithmetic operations of addition and mul-
tiplication (Pei et al., 2013). w[0] and w[1] are the arbitary values used while
designing.

Target Weights in Biases in Weights in
Function Input Layer, W1 Input Layer, b Output Layer, W2

p0

[
w[0]

−w[0]

] [
0
0

] [
1 1

]
p1

[
w[1]

−w[1]

] [
0
0

] [
+ 2
w[1] − 2

w[1]

]
p1 + p2


0.1 0
−0.1 0

0 0.1
0 −0.1




0
0
0
0




20
−20
20
−20


T

p1 × p2



0.1 0.1
−0.1 −0.1

1 1
−1 −1
0.1 −0.1
−0.1 0.1

1 −1
−1 1





−10
−10

0
0

−10
−10

0
0





5.5076165 × 105

5.5076165 × 105

−50.006810
−50.006810

−5.5076165 × 105

−5.5076165 × 105

50.006810
50.006810



T

The author is sharing their understanding as follows, below is an example to

demonstrate approximating a constant term (p0 = 1) using two logistic sigmoidal

units (S) where

S(x) =
1

1 + e−x
(2.1)

21



10 5 0 5 10
x

0.0

0.2

0.4

0.6

0.8

1.0

S(
x)

Sigmoid function

Figure 2.5: Sigmoid function.

S

S
L output

Hidden
layer

Input
layer

Output
layer

W1 W2

p

Figure 2.6: ANN architecture used to approximate a constant term. Nodes la-
beled S and L have sigmoidal and linear activation functions, respectively.

where x = W T × P + b, where W T is the transpose of the weight matrix, P is

the input to the sigmoidal unit and b is the bias. Output of S can be observed

in Fig. 2.5.

In Fig. 2.6, W1 is the array of weights from the input layer to the hidden layer

and W2 is the weight array from the hidden layer to the output layer. Likewise,

b1 is the bias array of the hidden nodes and b2 is the bias of the output node.

From Table 2.1, W1 could be [1,−1], and W2 has the value of constant we

would like to approximate, so W2 becomes [1, 1], b1 takes the values of [0, 0],

and b2 equals [0]. Considering p as the input, the output takes the value of

1 × (S(p × 1 + 0)) + 1 × (S(p × −1 + 0)) + 0. Solving this gives an output of

1. Figure 2.7 also demonstrates approximating a constant, we can observe the

output of both the hidden nodes and the linear sum of these two hidden nodes

22



10 5 0 5 10
p

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tp

ut
 o

f n
od

es

Approximating constant

First node
Second node
Output

Figure 2.7: Approximating constant (1) as linear sum of two sigmoidal units.

can be observed at output node and it equals to 1.

This approach can be used to approximate any constant value. Thus, I3

provides a meaningful interpretation of nodes used in the ANNs, thus comes

under IML. In this work, I3 initialization refers to the parameter determination

using I3 approach explained in this section.

Domain knowledge provides useful information. First, I3 tries to answer these

questions: (a) What are the useful relations between input and output? One way

of understanding these relations is by visually observing the features of the data.

(b) What sigmoidal neural network prototypes can be used for each useful feature?

Prototypes and their variants are predetermined ANNs that are constructed in

advance from a forward formulation based on either algebraic or geometric capa-

bilities of linear sums of sigmoidal functions to capture some specific/dominant

features of the nonlinear function to be approximated (Pei and Mai, 2008). We

match each dominant feature to a prototype before concatenating them within

one or more hidden layers for backpropagation to be applied. This technique

captures important features and discloses more inner-workings through visual-

ization, theoretical, and mathematical work. This study helps understand, using

23



a meaningful application, what ANN prototypes really are and how to use ANN

prototypes effectively, and even make new prototypes.

2.4 Robotic arm and target equations

Robot kinematics may serve as a useful domain for developing the theory for I3

by providing a scalable application problem. This is because robot kinematics

allows us to start simple, then gradually add complexity in the number of input

variables, the number of output variables, and the complexity of the relationships

between them, thus provides a path for developing more complex ANNs. Increase

in complexity of relationships requires more hidden layers.

Robot kinematics can also be useful as a gradually extensible application

domain. Using forward kinematic equations, it is possible to describe the idealized

location of a robot arm. However, in practice there are problems with joint

slippage, sag, and other mechanical issues. When greater weight is carried, the

arm tends to sag more from the ideal position, potentially resulting in large

discrepancies between what the idealized model predicts and what is observed in

practice. As we deal with more complex robotic arms, it becomes more difficult

to adequately model them using just equational models. For these reasons, it

is appropriate to learn the model by trying different joint angles and measuring

the location of the end effector. One approach is to build ML models of robotic

arms. This work helps users to understand models and potentially provides better

models.

24



2.4.1 Simplified PUMA robotic arm

The target robot arm is a simple two-link robot arm, as depicted in Fig. 2.8

with waist joint θ1 that rotates 360 degrees in the horizontal plane; shoulder

joint θ2, that rotates 360 degrees vertically, with 0 degrees straight out to one

side; and an elbow joint θ3 that also rotates vertically, with 0 degrees bent up

at a right angle to the first link. The elbow rotation can be from −90 to +90

degrees (considered the “elbow forward” configuration) or +90 to +270 degrees

(considered the “elbow backward” configuration). Each link (l1 and l2) is 1/2

unit length and the first link (l1) is situated at the origin. The arm is assumed

to have zero volume which allows for full range of motion on all joints without

the risk of self collisions.

2.4.2 Target equations

The kinematics equations for the series chain of a robot with revolute or prismatic

joints are obtained using a rigid transformation [Ji] to characterize the relative

movement allowed at each joint and a separate rigid transformation [Ki] to define

the dimensions of each link. The result is a sequence of alternating joint and link

transformations from the base to the end link,

[T ] = [J1][K1][J2][K2] . . . [Jn][Kn] (2.2)

where [T ] is the transformation locating the end-link. The equations for the

forward kinematics of our simplified arm are obtained using (2.2) and can be

seen in Table 2.2.

25



x

y

z

j1

θ1

l1
j2

θ2

l2

j3

θ3

End effector

Figure 2.8: 3-D orientation of simplified PUMA robotic arm.

26



Table 2.2: Equations for different input-output combinations derived using for-
ward kinematics of robotic arm. In the kinematics equations, the joints has only
one cycle (0 − 2π). Note: Some of the input-output combinations are excluded
from the table as they either have constant value or have the same as other
existing input-output combination.

Inputs Output Equation

θ̂1 x̂ 0.5 cos(2πθ̂1) + 0.5 (2.3)

θ̂1 ŷ 0.5 sin(2πθ̂1) + 0.5 (2.4)

θ̂2 x̂ 0.5 cos(2πθ̂2 + π/4) + 0.5 (2.5)

θ̂2 ẑ 0.5 sin(2πθ̂2 + π/4) + 0.5 (2.6)

θ̂3 x̂ − 0.5 sin(2πθ̂3) + 0.5 (2.7)

θ̂1, θ̂2 x̂ 0.5[cos(2πθ̂1) cos(2πθ̂2 + π/4) + 1] (2.8)

θ̂1, θ̂2 ŷ 0.5[sin(2πθ̂1) cos(2πθ̂2 + π/4) + 1] (2.9)

θ̂2, θ̂3 x̂ 0.25 cos(2πθ̂2)−0.25 sin(2π(θ̂2 + θ̂3))+0.5 (2.10)

θ̂2, θ̂3 ẑ 0.25 sin(2πθ̂2)+0.25 cos(2π(θ̂2 + θ̂3))+0.5 (2.11)

θ̂1, θ̂3 x̂ 0.25 cos(2πθ̂1) ∗ [1 − sin(2πθ̂3)] + 0.5 (2.12)

θ̂1, θ̂3 ŷ 0.5 sin(2πθ̂1) ∗ cos(2π(θ̂3 + 1/8)) + 0.5 (2.13)

θ̂1, θ̂2, θ̂3 x̂ −0.25 cos(2πθ̂1)∗[sin(2π(θ̂2+θ̂3))−cos(2πθ̂2)]+0.5
(2.14)

θ̂1, θ̂2, θ̂3 ŷ 0.5−0.25 sin(2πθ̂1)∗ [sin(2π(θ̂3 − θ̂2)) + cos(2πθ̂2)]
(2.15)

27



Chapter 3

Research Questions

This chapter introduces the research questions of this study. The research ques-

tions correspond to structural issues, initialization. Below are the list of research

questions used in this study.

1. Is the I3 to structural determination sufficient to adapt to robot kinematics?

2. Is the I3 to structural determination sufficient to allow for appropriate de-

sign of multilayer feedforward ANNs?

3. Is the I3 to initialization adapt to robot kinematics?

4. While concatenating, does the initial parameters of these prototypes effect

their learning ability?

5. For the structure recommended by the I3, what is the performance of I3

initialization w.r.t. other state-of-the-art initialization?

6. When compared to other initialization models, are the I3 models robust to

noise?

28



Research questions related to structural issues will be covered in Section 3.1,

initialization issues will be covered in Section 3.2, and other issues will be covered

in Section 3.3.

3.1 Structural issues

Research questions in this section focus on structural aspect of I3. First research

question focus on structural transferability of I3, this includes evaluating the

performance of two robot kinematics functions corresponding to two different

prototypes. Second research question focus on extensibility of I3 for sigmoidal

ANNs with more hidden layers.

3.1.1 Research question 1.1 - Structural transferability

Motivation: The I3 has been applied extensively to engineering mechanics (Pei

et al., 2021; Pei, 2001; Pei et al., 2005, 2013; Pei and Mai, 2008; Pei et al., 2008)

and also to epidemics (Hougen et al., 2020). Transferring this approach to another

domain helps to advance theory of I3 and also advance the applicability of this

approach to other domains.

Research question: Is the I3 to structural determination sufficient to adapt to

robot kinematics? First component in adapting to robot kinematics is determin-

ing structure for ANNs and these structures give us relatively small architecture

that is still sufficient to adequetely represent the function once it is modeled.

Hypothesis 1.1.a: The structure recommended by prototype function in Fig.

11(b) of (Pei et al., 2013) will give sufficient representational power to approxi-

mate x̂ = 0.5 + 0.5 cos(2πθ̂1).

Hypothesis 1.1.b: The structure recommended by prototype 3 - variant c

29



in Fig. 3 of (Pei and Mai, 2008) will give sufficient representational power to

approximate ŷ = 0.5 + 0.5 sin(2πθ̂1), x̂ = 0.5 − 0.5 sin(2πθ̂3).

Reasoning for hypotheses: The I3 is about approximating nonlinear static

functions thus it has the potential of being applied to where approximating non-

linear static functions is relevant.

3.1.2 Research question 1.2 - Extensibility to more

hidden layers

Motivation: Having able to extend the I3 for multilayer feedforward neural net-

works with more hidden layers shows the extensibility of this approach. Extensi-

bility allows us to apply this approach to wide variety of problems.

Research question: Is the I3 to structural determination sufficient to allow for

appropriate design of multilayer feedforward ANNs?

For this research question we have three sub hypothesis. First is related to

ANNs with two hidden layers, while the second is related to ANNs with three

hidden layers and the third is related to ANNs with four hidden layers.

Hypothesis 1.2.a: Following this I3 technique will lead to neural networks that

are able to approximate two hidden layers. The functions that require two hidden

layers correspond to Equation 2.5, Equation 2.6, Equation 2.8, Equation 2.9,

Equation 2.10, Equation 2.11, and Equation 2.12.

Hypothesis 1.2.b: Following this I3 technique will lead to neural networks

that are able to approximate three hidden layers. The function that require

three hidden layers correspond to Equation 2.13.

Hypothesis 1.2.c: Following this I3 technique will lead to neural networks that

are able to approximate four hidden layers. The function that require four hidden

30



layers correspond to Equation 2.14.

Reasoning for hypotheses: The I3 is applied to approximate functions with

one, two hidden layers. Thus, it has the potential to apply for functions requiring

more hidden layers; Complex functions can be modeled by concatenating multiple

smaller networks.

3.2 Initialization

Research questions in this section focus on initialization aspect of I3. First re-

search question focus on domain transferability of I3, this includes evaluating

the performance of two robot kinematics functions corresponding to two different

prototypes. Second research question focus on concatenating multiple prototypes

and the third research question focus on performance evaluation.

3.2.1 Research question 2.1 - Domain transferability

Motivation: The I3 has been applied extensively to engineering mechanics (Pei

et al., 2021; Pei, 2001; Pei et al., 2005, 2013; Pei and Mai, 2008; Pei et al.,

2008) and also to epidemics (Hougen et al., 2020). Transferring I3 to another

domain helps to advance theory of this I3 and also advance the applicability of

this approach to other domains.

Research question: Is the I3 to initialization adapt to robot kinematics? Sec-

ond component in adapting to robot kinematics is to have initial values that

have advantages like having low initial error. We want to determine structure

and initial values for couple of representative equations.

Hypothesis 2.1.a: The initial values recommended by prototype function

in Fig. 11(b) of (Pei et al., 2013) will facilitate to approximate x̂ = 0.5 +

31



0.5 cos(2πθ̂1).

Hypothesis 2.1.b: The initial values recommended by prototype 3 - variant

c in Fig. 3 of (Pei and Mai, 2008) will give sufficient representational power to

approximate ŷ = 0.5 + 0.5 sin(2πθ̂1), x̂ = 0.5 − 0.5 sin(2πθ̂3).

Reasoning for hypotheses: The I3 is about approximating nonlinear static

functions thus it has the potential of being applied to where approximating non-

linear static functions is relevant.

3.2.2 Research question 2.2 - Concatenating prototypes

Motivation: Increase in inputs or increase in hidden layers results in concatenat-

ing multiple prototypes. When concatenating prototypes, preventing the explod-

ing gradients problem (large error gradients results in extremely large updates to

ANN model weights during training) helps models for stable learning.

Research question: Concatenating and condensing networks results in multi-

plication of incoming and outgoing weights. While concatenating, does the initial

parameters of these prototypes effect their learning ability?

Hypothesis 2.2.a: Concatenating prototypes results in exploding gradients i.e.,

large error gradients accumulate and leads to large updates in ANNs, which

results in unstable learning.

Reasoning: When we concatenate and condense networks, this results in mul-

tiplication of incoming and outgoing weights and causes larger weights in the

ANN which could lead to exploding gradients.

Hypothesis 2.2.b: Percentage of functions that become unstable increase with

increase in number of hidden layers.

Reasoning: Weights explode more with increase in number of hidden layers

32



and this makes model more unstable.

3.2.3 Research question 2.3 - Performance evaluation

For the structure recommended by the I3, what is the performance of I3 initial-

ization w.r.t. other state-of-the-art initialization?

Hypothesis 2.3.a: In general, we expect our I3 to have better performance in

terms of error, i.e., lower Mean Squared Error (MSE).

Hypothesis 2.3.b: In general, we expect our I3 to be more consistent, i.e.,

does not get stuck at local optima, when compared to Xavier or Nguyen-Widrow

initialization.

Reasoning for hypotheses: Initial values of the prototypes are obtained based

on theoretical justification and expect the model to start at right part of search

space. So, we expect I3 to be consistent and have better performance.

3.3 Other Issues

3.3.1 Research Question 3.1 - Robustness to noise

Motivation: It is important to design models that also perform well when there

are mechanical issues in the robotic arm. Designing such models helps roboticists

make practical decisions in real-world applications.

Research question: Are the models developed using I3 approach robust to

noise, i.e., with increase in the noise does the models learn the function over

noise? Hypothesis 3.1.a: We believe that increase in noise does not favor any of

the initialization approach (NW or I3).

Reasoning for hypothesis: For noisy data, we do not have any evidence that

33



suggests either of the initialization approach performs better than the other.

34



Chapter 4

Experiments

An objective of our work is to see the feasibility of designing interpretable ANN

models for a simplified robotic arm. Apart from interpretability, we are hypothe-

sizing that ANNs trained using I3 will have training success and good generaliza-

tion capabilities. We are also interested analyzing the performance when varying

the number of input features. In this work we have used one, two, and three input

features to predict a target variable. This helps us analyze the complexities and

performance involved while training with more input features. Discussed below

are data generation, experimental setup, and initial parameters for the I3 used in

this paper.

4.1 Data generation

Synthetic motor noise is obtained by adding noise after the input. For each

input-output combination, we generate data at four different noise levels—no,

low, medium, and high noise. Low, medium, and high noise data have zero-mean

35



noise with a standard deviation of 5, 10, and 15 degrees, respectively. Using

the equations in Table 2.2, data is generated by adding noise to the input angles

before computing the output, resulting in noisy output while retaining the original

(non-noisy) value for each input.

The noise in the high noise case is greater than is generally observed in real-

world use, although if arms were used nearer to their physical carrying capacity,

such noise might be seen. However, noise model used in this research is crude and

is not actually a good representation of overall types of errors we would likely

have for a real robotic arm. Here, we are also assuming that the robotic arm

itself does not occupy any physical space.

In our kinematics we have three input angles (θ1, θ2, and θ3) that determine

the end position (x, y, and z) of the robot end effector. When we experiment

with one input, we are interested in learning the input-output relation w.r.t. that

single input. Then we vary that input alone by keeping all the remaining inputs

constant at 0. When we experiment with two inputs, we are interested in learning

the output relation w.r.t. these two inputs. Then we vary only those two inputs.

While modeling, varying inputs are treated as inputs to a neural network.

For each input-output combination, we have generated 4,000 samples of data

for each category of noise. All the input angles are randomly generated covering

the entire input range. Based on the noise levels, noise is randomly added to the

data. While training each model, 3,000 samples of this data are used for training,

500 samples are used for validation, and the remaining 500 samples are used for

testing.

Input angles vary from 0 to 360 degrees (0 to 2π radians) and are normalized

between 0 and 1. Normalizing inputs is common practice in ML as it speeds

convergence. For every input combination (varying inputs), we obtained possible

36



minimum and maximum values for each output. These minimum and maximum

values are used as lower and upper bound to normalize each output variable.

By normalizing outputs, error reported will be uniform across all input-output

combinations and thus helps for easy and fair comparison. Thus, inputs (θ̂1, θ̂2,

and θ̂3) and outputs (x̂, ŷ, and ẑ) are scaled between 0 and 1. This scaled data

is used for training the ANNs.

4.2 Experimental design

To compare with our I3 initialization, we use NW and Xavier initializations. The

Adam optimizer is used for training these ANNs. For shallow neural networks, we

have observed that the LM optimizer performs better than Adam. However, we

used Adam here as we are interested in continuing on to train the deeper neural

networks that will be engineered when we add more inputs. LM is not feasible for

training deep neural networks as it is very slow to converge, this is particularly

true if the model has more parameters which requires the algorithm to converge

slowly. One of the other limitation of LM is, when the least-squares function is

very flat, the algorithm may easily become lost in parameter space (Transtrum

and Sethna, 2012).

A learning rate of 0.007 was chosen based on preliminary experimentation.

We used a mini-batch size of 32 and trained models for 1, 500 epochs. Gradient

descent updates weights of ANNs after calculating the error on the whole dataset,

on the other hand stochastic gradient descent updates weight after calculating the

error on a single observation. Gradient descent is is slow but stable, on the other

hand stochastic gradient descent is fast but unstable. Mini-batch gradient descent

updates weights after calculating error on certain/less number of observations;

37



This results in fast and stable learning. Usually it is preferred to use the size

of mini-batch in the powers of 2 (16, 32, 64, 128); this helps for better use

of available computational resources as computers inherently use binary code.

Models are trained for 1500 epochs as we observed that it takes 1500 epochs to

learn and converge to a solution. When MSE is used as the loss function, the

optimizer tries to reduce the square of the error, which magnifies the penalties of

larger errors as compared to those of smaller errors. Based on the applications of

robotic arms, it makes sense to more substantially penalize larger errors. Thus,

the loss and the evaluation metric used are both MSE.

For each dataset, we do 30 repetitions to collect statistically meaningful re-

sults. For each repetition, data is randomly split between training, validation,

and test. Models are trained with initial parameters and their performance is

recorded.

To compare results, the Mann–Whitney U test is chosen because it is a non-

parametric test used to compare two distributions of independent samples. Non-

parametric methods allow statistical inferences without making the assumption

that the samples have been taken from a particular distribution. The Mann–

Whitney U test is a commonly used alternative to two sample t-test when the

distribution is non-normal (McKnight and Najab, 2010).

4.3 Prototypes used

Not all prototypes to be presented are designed in this study. In fact,

only a small number is created in this study. In this work the author

have not only used prototypes but also learned why prototypes work,

and how to use these prototypes to new target equations; More impor-

38



tantly using the function composition, i.e., building larger functions

from smaller functions, along with multiple prototypes. Where each

prototype is used to build a smaller function.

A prototype is a design of often small sigmoidal ANN with one hidden layer

to approximate a particular mathematical operation, which is often normalized

in terms of input(s) and/or output. Not all situations for applying the existing

prototypes are defined rigorously. As a result, some prototypes have variants,

e.g., Prototypes 1 to 3, each with three variants

When a prototype is used to a specific target function (or a mathematical

operator), one has to pay attention to the input range(s) and output range so

that a chosen prototype can be applied. The resulted application of a prototype

can be considered as an application instance of the chosen prototype. This is a

design process, meaning that multiple choices could be possible.

In the study, the author took a significant amount of time to learn the proto-

types relevant to this study, and then applied them correctly and as effectively as

possible. However, different choices of prototypes, prototype variants (if applica-

ble), and instances are possible. The author mostly limited his choice to just one

to follow the defined research questions.

Prototypes related to approximating constant and polynomial operations are

discussed in (Pei et al., 2005) and prototypes related to approximating four basic

arithmetic operations are discussed in (Pei et al., 2013). The prototpye used for

cos is discussed in (Pei et al., 2013). Below are the three prototypes that are used

to approximate equations.

39



4.3.1 Approximating constant - Prototype A

Prototypes related to approximating constant is discussed in (Pei et al., 2005).

Approximating constant is explained in Section 2.3. Initial parameters for ap-

proximating a constant are in Table 2.1. These values can be used to approximate

any constant. Below are some of the subprototypes used to approximate the con-

stant.

1. Approximating 1 - Instance A.1:

This requires two hidden nodes. W1 are [1,−1], and W2 has the value of

constant we would like to approximate, so W2 becomes [1, 1], b1 takes the

values of [0, 0], and b2 equals [0].

2. Approximating 0.5 - Instance A.2:

This requires two hidden nodes. W1 are [1,−1], and W2 has the value of

constant we would like to approximate, so W2 becomes [0.5, 0.5], b1 takes

the values of [0, 0], and b2 equals [0].

3. Approximating 0.125 - Instance A.3:

This requires two hidden nodes. W1 are [1,−1], and W2 has the value of

constant we would like to approximate, so W2 becomes [0.125, 0.125], b1

takes the values of [0, 0], and b2 equals [0].

4.3.2 Approximating arithmetic and polynomial

operations - Prototype B

Prototypes related to approximating polynomial operations are discussed in (Pei

et al., 2005) and prototypes related to approximating four basic arithmetic op-

40



erations are discussed in (Pei et al., 2013). Initial parameters for approximating

arithmetic and polynomial operations are in Table 2.1. Below are some of the

subprototypes used to approximate arithmetic and polynomial operations.

1. Approximating first order polynomial (p1) - Instance B.1:

This requires two hidden nodes. W1 are [0.1,−0.1], and W2 are [20,−20],

b1 takes the values of [0, 0], and b2 equals [0].

2. Approximating addition of two first order polynomials (p1 + p2) - Instance

B.2:

This requires four hidden nodes. W1 are [[0.1,−0.1, 0, 0], [0, 0, 0.1,−0.1]]

([0.1, -0.1, 0, 0] corresponds to incoming weights from p1 and [0 , 0, 0.1, -0.1]

corresponds to incoming weights from p2), and W2 are [20,−20, 20,−20], b1

takes the values of [0, 0, 0, 0], and b2 equals [0].

3. Approximating multiplication of two first order polynomials (p1 ∗ p2) - In-

stance B.3:

This requires eight hidden nodes. W1 are

[[0.1,−0.1, 1,−1, 0.1,−0.1, 1,−1], [0.1,−0.1,−1, 1,−0.1, 0.1,−1, 1]] and

W2 are [5.507e5, 5.507e5, -50.006, -50.006, -5.507e5, -5.507e5, 50.006, 50.006],

b1 takes the values of [−10,−10, 0, 0,−10,−10, 0, 0], and b2 equals [0].

4.3.3 Approximating cosine curves - Prototype C

θ̂ is an input angle and it varies from 0 to 1.

1. Approximating 0.5 cos(2π × t) - Instance C.1:

41



1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Input

0.00

0.05

0.10

0.15

0.20

0.25

Ou
tp

ut

Prototype 1

Figure 4.1: Prototype C used to approximate cosine term.

The prototpye used for cos is discussed in (Pei et al., 2013). Fig. 4.2(a)

shows the function to be approximated. Dominant features including visu-

ally observable features in the data help us to design the architecture and

initial values of neural network. This function closely takes the shape of the

prototype function in Fig. 11(b) of (Pei et al., 2013), which is also depicted

in Fig. 4.1 where the first order partial derivative of a sigmoidal function

(S) with respect to bias is observed

∂S(W, p, b)

∂b
=

e−(Wp+b)

(1 + e−(Wp+b))2
(4.1)

and is plotted using W = 7 and b = 0, where W and b are the incoming

weight and bias of the neuron, and p is the input. This prototype function

in Equation (4.1) can be approximated using linear sum of two sigmoidal

functions (Hougen et al., 2020) and the equation is as follows

∂S(W, p, b)

∂b
≈ 1

2∆b

(
S(W, p, b+ ∆b) − S(W, p, b− ∆b)

)
(4.2)

Equation (4.2) is Euler forward formula and can be approximated using two

42



hidden nodes, as shown in Fig. 2.6. We choose a small value of ∆b equals

to 0.1, it is an empirical choice and needs to be a small value. We are doing

an approximation of ∂S(W,p,b)
∂b

.Based on the above information, W1 are [7,

7]. From (4.2), we can observe that W2 are [ 1
2∆b

, − 1
2∆b

] respectively. Thus,

W2 becomes [5, -5]. b1 takes the values of [b + ∆b, b − ∆b], b1 equals [0.1,

-0,1], and b2 equals [0].

Initial weights to approximate are obtained in three steps. First we scale the

prototype function to our required input and output range. Our required

input and output range is from 0 to 1 and can be observed in Fig. 4.2(a).

The input and output range for the prototype is from -1 to 1 and 0 to 0.25

respectively, which can be seen in Fig. 4.1. The prototype function can

be made closer to Fig. 4.2(a), by only considering the input range between

[-0.6 to 0.6], the weights and bias of scaled function can be obtained by

substituting values of θ̂1 = 0 for p = -0.6 and θ̂1 = 0.5 for p = 0. Now,

W1 changes to [8.4, 8.4] and b1 changes to [-4.1, -4.3]. To scale the output

between 0 and 1, W2 are multiplied by 4, thus W2 changes to [20, -20]. Now

these weights are better used for our input and output ranges.

In second step, we flip the function by changing the sign of the output.

Thereby bringing the prototype function more closer to function in Fig. 4.2(a).

Sign of the output can be reversed by changing the sign of the final layer

weights, thus W2 becomes [-20, 20].

In final step, we add a constant of 1, to bring this function more closer to

the function in Fig. 4.2(a). To add a constant we need two hidden nodes as

described in Chapter 2, Section 2.3. Now W1 corresponding to these two

hidden nodes are [1, -1], b1 corresponding to these two hidden nodes are [0,

43



0], and W2 corresponding to these two hidden nodes are [1, 1]. Now, we

have a total of 4 hidden nodes, 2 from earlier prototype function and 2 from

the the addition of constant. Thus our final initial parameters are: W1 are

[8.4, 8.4, 1, -1], b1 are [-4.1, -4.3, 0, 0], W2 are [-20, 20, 1, 1], and b2 equals

[0]. Now these weights are used to approximate function in Fig. 4.2(b). This

function is very close to the function we are interested in approximating,

i.e., Fig. 4.2(a). These parameters takes the shape of ANN architecture in

Fig. 4.3.

4.4 Initial architecture and parameter values

for I3

Equations in Table 2.2, do not include constant values; approximating a constant

does not require any nonlinear approximation and can be approximated using

two hidden nodes as described in Prototype A.

In this section, detailed explanations will be given first to how to apply pro-

totypes for typical target functions and also demonstrates the architecture and

getting initial values using three equations. Architecture and initial values for

other equations are explained in Section A.1 of this work.

When the complexity of a target function goes up, function composition is

applied to identify first individual terms to be approximated, and then how each

individual term can be composed step-by-step into mathematical operators. ANN

prototypes are then applied step-by-step to approximate these identified math-

ematical operators, aiming for constructing one neural network for the target

function in an interpretable manner.

44



0.0 0.5 1.0
1

0.00

0.25

0.50

0.75

1.00

x

(a) Target function

0.0 0.5 1.0
Input

0.00

0.25

0.50

0.75

(b) Prototype function

Figure 4.2: x̂ to be approximated given θ̂1 (a) Target function to be approximated
(b) Prototype function obtained using I3 to approximate target function.

The number of the individual terms making up the target function is the

number of sub-neural networks. The number of these steps for an individual term

is often the number of hidden layers requires for the sub-neural network. Since

different individual terms making up a function can have different complexity,

the resulted sub-neural network can demand different numbers of hidden layers.

This is a challenge to constructing a standard, fully connected feedforward neural

network. Feedforward neural network is a class of ANNs in which the connections

between nodes do not form a cycle.

To meet this challenge, one of design choices is to identify the deepest sub-

neural network, and extend all other sub-neural networks to have the same depth.

Extension can be done in different ways, in this study typical treatments are as

follows following precious work (Pei et al., 2013; Pei and Mai, 2008). Approximate

an input or intermediate output as itself to add one more hidden layer, and the

two hidden nodes required to approximate a constant term are only added to the

last hidden layer for the target function.

4.4.1 Approximating Equation 2.3: x̂ = 0.5 cos(2πθ̂1) + 0.5

Fig. 4.2(a) shows the function to be approximated. Dominant features including

visually observable features in the data help us to design the architecture and

45



initial values of neural network. This function closely takes the shape of the

prototype function in Fig. 11(b) of (Pei et al., 2013), which is also depicted in

Fig. 4.1 where the first order partial derivative of a sigmoidal function (S) with

respect to bias is observed in Equation (4.1) and is plotted using W = 7 and

b = 0, where W and b are the incoming weight and bias of the neuron, and p is

the input. This prototype function in Equation (4.1) can be approximated using

linear sum of two sigmoidal functions (Hougen et al., 2020) as in Equation (4.2).

Equation (4.2) is Euler forward formula and can be approximated using two

hidden nodes, as shown in Fig. 2.6. We choose a small value of ∆b equals to 0.1,

it is an empirical choice and needs to be a small value. We are doing an approx-

imation of ∂S(W,p,b)
∂b

.Based on the above information, W1 are [7, 7]. From (4.2),

we can observe that W2 are [ 1
2∆b

, − 1
2∆b

] respectively. Thus, W2 becomes [5, -5].

b1 takes the values of [b+ ∆b, b− ∆b], b1 equals [0.1, -0,1], and b2 equals [0].

Initial weights to approximate are obtained in three steps. First we scale the

prototype function to our required input and output range. Our required input

and output range is from 0 to 1 and can be observed in Fig. 4.2(a). The input

and output range for the prototype is from -1 to 1 and 0 to 0.25 respectively,

which can be seen in Fig. 4.1. The prototype function can be made closer to

Fig. 4.2(a), by only considering the input range between [-0.6 to 0.6], the weights

and bias of scaled function can be obtained by substituting values of θ̂1 = 0 for

p = -0.6 and θ̂1 = 0.5 for p = 0. Now, W1 changes to [8.4, 8.4] and b1 changes to

[-4.1, -4.3]. To scale the output between 0 and 1, W2 are multiplied by 4, thus W2

changes to [20, -20]. Now these weights are better used for our input and output

ranges.

In second step, we flip the function by changing the sign of the output.

Thereby bringing the prototype function more closer to function in Fig. 4.2(a).

46



S

S

S

S

L output

W1 W2

p

Figure 4.3: ANN architecture with one hidden layer and four hidden nodes. S,
L nodes correspond to sigmoidal, linear activation functions respectively.

Sign of the output can be reversed by changing the sign of the final layer weights,

thus W2 becomes [-20, 20].

In final step, we add a constant of 1, to bring this function more closer to

the function in Fig. 4.2(a). To add a constant we need two hidden nodes as

described in Chapter 2, Section 2.3. Now W1 corresponding to these two hidden

nodes are [1, -1], b1 corresponding to these two hidden nodes are [0, 0], and W2

corresponding to these two hidden nodes are [1, 1]. Now, we have a total of 4

hidden nodes, 2 from earlier prototype function and 2 from the the addition of

constant. Thus our final initial parameters are: W1 are [8.4, 8.4, 1, -1], b1 are

[-4.1, -4.3, 0, 0], W2 are [-20, 20, 1, 1], and b2 equals [0]. Now these weights are

used to approximate function in Fig. 4.2(b). This function is very close to the

function we are interested in approximating, i.e., Fig. 4.2(a). These parameters

takes the shape of ANN architecture in Fig. 4.3.

Note: For the later functions involving cosine terms, we will be using the

above mentioned prototype with some variation in weights and bias that suits

well with the function to be approximated. From here on, this prototype will be

referenced as “Prototype C”.

47



1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Input

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Ou
tp

ut

Prototype 2

Figure 4.4: Prototype 2 used to approximate sine term.

0.0 0.5 1.0
1

0.00

0.25

0.50

0.75

1.00

y

(a) Target function

0.0 0.5 1.0
Input

0.00

0.25

0.50

0.75

1.00
(b) Prototype function

Figure 4.5: ŷ to be approximated given θ̂1 (a) Target function to be approximated
(b) Prototype function obtained using I3 to approximate target function.

4.4.2 Approximating Equation 2.4: ŷ = 0.5 sin(2πθ̂1) + 0.5

Fig. 4.5(a) shows the function to be approximated. This function closely takes

the shape of the prototype 3, variant c in Fig. 3 of (Pei and Mai, 2008), which

is also depicted in Fig. 4.4. To approximate this prototype function we require

two hidden nodes, similar to Fig. 2.6. The initial parameters to approximate this

function follows, W1 are [20, 10], W2 are [1, -1]. b1 takes the values of [0, 0] and

b2 equals to [0]. These initial values can be found in Table. 1 of (Pei and Mai,

2008).

Similar to equation in Subsection 4.4.1.a, initial weights to approximate are

obtained in three steps. First we scale the prototype function close to our required

input and output range. Our required input and output range is from 0 to 1.

48



The input and output range for the prototype is from -1 to 1 and -0.15 to 0.15

respectively. The prototype function can be made closer to Fig. 4.5(a), by only

considering the input range between [-0.6 to 0.6]; the weights and bias of scaled

function can be obtained by substituting values of θ̂1 = 0 for p = -0.6 and θ̂1 =

0.5 for p = 0. Now, W1 changes to [24, 12] and b1 changes to [-12, -6]. To scale

the output between -0.5 and 0.5 (the difference between minimum and maximum

value of function changes from 0.3 to 1.0), W2 are multiplied by 3.3, thus W2

changes to [3.3, -3.3]. Now these weights are better used for our input and

output ranges.

In second step, we flip the function by changing the sign of the output.

Thereby bringing the prototype function more closer to function in Fig. 4.5(a).

Thus W2 becomes [-3.3, 3.3]. In final step, we add a constant of 0.5, this changes

output range from -0.5 to 0.5 to our required range of 0 to 1. To add a constant

we need two hidden nodes. Now W1 corresponding to these two hidden nodes

are [1, -1], b1 corresponding to these two hidden nodes are [0, 0], and W2 cor-

responding to these two hidden nodes are [0.5, 0.5]. Now, we have a total of 4

hidden nodes, 2 from earlier prototype function and 2 from the the addition of a

constant. Thus our final initial parameters are: W1 are [24, 12, 1, -1], b1 are [-12,

-6, 0, 0], W2 are [-3.3, 3.3, 0.5, 0.5], and b2 = [0]. Now these weights are used to

approximate function in Fig. 4.5(b). This function is very close to the function

we are interested in approximating, i.e., Fig. 4.5(a). These parameters takes the

shape of ANN architecture in Fig. 4.3.

Note: For the later functions involving sine terms, we will be using the above

mentioned prototype with some variation in weights and bias that suits well with

the function to be approximated. From here on, this prototype will be referenced

as “Prototype 2”.

49



S

S

S

S

L output

W1 W2

θ̂2

Figure 4.6: ANN architecture to approximate term 1. S, L nodes correspond to
sigmoidal, linear activation functions respectively.

4.4.3 Approximating Equation 2.10

x̂ = 0.25 cos
(

2πθ̂2

)
︸ ︷︷ ︸

Term 1

+
[
−0.25 sin

(
2π
(
θ̂2 + θ̂3

))]
︸ ︷︷ ︸

Term 2

+ 0.5︸︷︷︸
Term 3

(4.3)

This equation can be approximated by first approximating three of its com-

ponents separately, then using these approximations to approximate the whole

equation. First part involves approximating 0.25 cos(2πθ̂2), second part involves

approximating −0.25 sin(2π(θ̂2 + θ̂3)) and the later part involves approximating

0.5.

Approximating Term 1: 0.25 cos(2πθ̂2)

Four hidden nodes are used to approximate this term, i.e, 0.25 cos(2πθ̂2) given θ̂2

as input. The initial weights and bias for this component are obtained similar to

Subsection 4.4.1. Thus, W1 becomes to [8.4, 8.4, 1, -1] and bias of hidden neurons

becomes [-4.1, -4.3, 0, 0], W2 becomes to [-10, 10, 0.25, 0.25], and bias for output

linear node is [0]. The architecture to approximate this term is seen in Fig. 4.6.

50



Figure 4.7: Black is for target function, while red is the approximated function
(without training).

Approximating Term 2: −0.25 sin(2π(θ̂2 + θ̂3))

Four hidden nodes are used to approximate (θ̂2 + θ̂3), as it requires four nodes to

approximate sum of two first order polynomial terms as mentioned in Table 2.1.

So, W1 are [[0.1, -0.1, 0, 0], [0, 0, 0.1, -0.1]], b1 are [0, 0, 0, 0], and W2 are [20,

-20, 20, -20] and b2 is [0].

All the components in earlier equations are designed to take input

within the range of 0 to 1 and has one cycle. However, (θ̂2 + θ̂3) has

an input range of 0 to 2. sin(2π(θ̂2 + θ̂3)) and has two cycles. To facil-

itate two cycles there are two modifications done while designing the

architecture:

1. For this particular equation, to approximate sin term we have

used prototype 3, variant a in Fig. 3 of (Pei and Mai, 2008)

rather than prototype 3, variant c. Variant a is more suitable

51



for this equation as output of variant a is from zero to zero so

that when we concatenate two of these prototypes side by side,

the inference with each other’s output is nominal in the summed

output.

2. Two hidden nodes are sufficient to approximate the equation with

one cycle - −0.25 sin(2π(θ̂2)) or −0.25 sin(2π(θ̂3)), as the input range

is from 0 to 1. However, to facilitate for an input range of 0

to 2 (two cycles); we need to use the prototype twice which in-

volves some dialations and shifts. Thus, we require two hidden

nodes to approximate between 0 to 1 and two additional hidden

nodes to approximate between 1 and 2. Figure 4.7 shows how close

is sin(2π(θ̂2 + θ̂3)) to the approximation made using initial values from the

above prototype.

Four hidden nodes are used to approximate term 2, i.e, −0.25 sin(2π(θ̂2 + θ̂3))

given (θ̂2 + θ̂3) as input. This function −0.25 sin(2π(θ̂2 + θ̂3)) closely takes the

shape of the prototype 3, variant a. To approximate this prototype function we

require two hidden nodes, similar to Fig. 2.6. The initial parameters to approxi-

mate this function follows, incoming weights are [10, 5], outgoing weights are [1,

-1]. Bias of hidden layer takes the values of [0, 0] and bias at final layer equals

to [0]. These initial values can be found in Table. 1 of (Pei and Mai, 2008).

This paragraph explains the initial parameters of first two hidden nodes used

to approximate for an input range of 0 to 1. These parameters are obtained in

two steps. First we scale the prototype function close to our required input and

output range. Our required input range is from 0 to 1 and our required output

range is from -0.25 to 0.25. The input and output range for the prototype is

52



from -1 to 1 and -0.15 to 0.15 respectively. The entire input range ([-1.0 to 1.0])

of prototype function can be used to approximate this function; the weights and

bias of scaled function can be obtained by substituting values of θ̂1 + θ̂2 = 0.5 for

p = 0 and θ̂1 + θ̂2 = 1 for p = 1. Now, incoming weights changes to [20, 10] and

bias of hidden neurons changes to [-10, -5]. To scale the output between -0.25 and

0.25 (the difference between minimum and maximum value of function changes

from 0.3 to 0.5), thus the outgoing weights are multiplied by 1.65, thus outgoing

weights changes to [1.65, -1.65] and bias for output linear node is [0]. Now these

weights are better used for our input and output ranges. In second step, we flip

the function by changing the sign of the output. Thereby bringing the prototype

function more closer to the function. Thus outgoing weights becomes [-1.65, 1.65].

The initial parameters of next two hidden nodes used to approximate for an

input range of 1 to 2. These are obtained in a similar way as above two nodes.

The only difference comes in scaling; Here, the weights and bias of scaled function

can be obtained by substituting values of θ̂1 + θ̂2 = 1.5 for p = 0 and θ̂1 + θ̂2

= 1 for p = -1. Thus, incoming weights changes to [20, 10] and bias of hidden

neurons changes to [-30, -15], outgoing weights changes to [-1.65, 1.65], and bias

for output linear node is [0]. Thus W3 is [20, 10, 20, 10], W4 is [-1.65, 1.65, -1.65,

1.65], b3 becomes [-10, -5, -30, -15], and b4 is [0]. The architecture to approximate

term 2 is seen in Fig. 4.8 and can be condensed to Fig. 4.9 as explained in (Pei

et al., 2013).

Approximating Term 3: 0.5

Approximating 0.5 can be seen in Instance A.2 of Subsection 4.3.1. This requires

two hidden nodes. W1 are [1, -1], and W2 has the value of constant we would

like to approximate, so W2 becomes [0.5, 0.5], b1 takes the values of [0, 0], and

53



S

S

S

S

L

S

S

S

S

L output

W1 W2 W3 W4

θ̂2

θ̂3

Figure 4.8: Non condensed ANN architecture to approximate term 2. S, L nodes
correspond to sigmoidal, linear activation functions respectively.

S

S

S

S

S

S

S

S

L output

W1 W2 ×W3 W4

θ̂2

θ̂3

Figure 4.9: Condensed ANN architecture to approximate term 2. S, L nodes
correspond to sigmoidal, linear activation functions respectively.

54



S

S
L output

W1 W2

p

Figure 4.10: ANN architecture to approximate term 3. Nodes labeled S and
L have sigmoidal and linear activation functions, respectively and p can be any
input/value

b2 equals [0]. The architecture to approximate term 2 is seen in Fig. 4.9.

Coming to the function composition. Approximating term 1 requires one hid-

den layer, where as approximating term 2 requires one more additional layer. We

want to have a fully connected neural network and term 2 controls the depth of

the neural network. So, we use two additional nodes in first hidden layer that

takes θ̂2 as input and gives θ̂2 as output; this uses the weights from Instance B.1.

Term 3 can be added by adding two hidden nodes in the last hidden layer (as

approximating constant can take any input value). Fig. 4.11 shows the archi-

tecture used to approximate Equation Equation 2.10. This architecture can be

condensed to Fig. 4.12 as explained in (Pei et al., 2013).

4.5 Other architectures used

This section shows the architectures of ANNs with three and four hidden layers

used to approximate Equation 2.13 and Equation 2.14 respectively.

4.5.1 Architecture to approximate Equation 2.13

ŷ = 0.5 sin(2πθ̂1) ∗ cos(2π(θ̂3 + 1/8)) + 0.5

Approximating above equation requires three hidden layers with 6, 6, 10 units in

each of its hidden layer. The condensed architecture can be in seen in Fig 4.13.

55



S

S

S

S

S

S

L

L

S

S

S

S

S

S

S

S

S

S

L output

W1 W2 W3 W4

θ̂2

θ̂3

Figure 4.11: ANN architecture before condensing hidden layer - for θ̂2, θ̂3 as inputs
and x̂ as output. S, L nodes correspond to sigmoidal, linear activation functions
respectively.

56



S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

L output

W1 W2 ×W3 W4

θ̂2

θ̂3

Figure 4.12: ANN architecture after condensing hidden layer - for θ̂2, θ̂3 as inputs
and x̂ as output. S, L nodes correspond to sigmoidal, linear activation functions
respectively.

57



S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

L output

W1 W2 W3 ×W4 W5

θ̂1

θ̂3

Figure 4.13: ANN architecture after condensing hidden layer - for θ̂1, θ̂3 as inputs
and ŷ as output. S, L nodes correspond to sigmoidal, linear activation functions
respectively.

58



4.5.2 Architecture to approximate Equation 2.14

x̂ = −0.25 cos(2πθ̂1) ∗ [sin(2π(θ̂2 + θ̂3)) − cos(2πθ̂2)] + 0.5

Approximating above equation requires four hidden layers with 8, 10, 8, 10 units

in each of its hidden layer. The condensed architecture can be in seen in Fig 4.14.

4.6 Tools and software used

All our experiments are executed in TensorFlow version 2.5.0 using Python ver-

sion 3.7.10. Initial weights of neural networks with NW approach are obtained

from MATLAB version 9.6. Other details of optimizer, and other algorithms used

are mentioned in Section 4.2.

59



S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

L output

W1 W2 W3 ×W4 W5 ×W6 W7

θ̂1

θ̂3

θ̂3

Figure 4.14: ANN architecture after condensing hidden layer - for θ̂1, θ̂2, θ̂3 as
inputs and x̂ as output. S, L nodes correspond to sigmoidal, linear activation
functions respectively.

60



Chapter 5

Results

Results in Table 5.1 and Table 5.2 are obtained when models are trained on train-

ing data and evaluated on test data. In Table 5.1, “Best Error” is the smallest

error reported in any repetition from any of the initialization approach using the

architecture suggested by the I3 approach. So, values in “Best Error” suggests

that the architectures recommended by I3 approach is capable of approximating

the equations; this helps to evaluate research questions related to structural issues

(structural transferability, extensibility to more hidden layers).

“Mean MSE” is the mean of the MSE error reported for all the 30 repetitions.

Similarly, “Median MSE” is the median of the MSE error reported for all the 30

repetitions. “NW”, “Xavier”, and “I3” are the three different initialization ap-

proaches used for comparison. For each input output combination, initialization

approach with the lowest mean, median error is underlined. M-W p − valueNW

is the p-value of the Mann-Whitney U test for NW and I3. M-W p − valueX

is the p-value of the Mann-Whitney U test for Xavier and I3. p-value less than

0.05 indicates the results (errors) are statistically significant and these values are

61



T
ab

le
5.

1:
C

om
p
ar

is
on

of
m

o
d
el

s
w

it
h

tw
o

d
iff

er
en

t
in

it
ia

li
za

ti
on

s.
F

or
N

oi
se

le
ve

l,
N

,
L

,
M

,
an

d
H

co
rr

es
p

on
d

to
n
o,

lo
w

,
m

ed
iu

m
,

an
d

h
ig

h
n
oi

se
,

re
sp

ec
ti

ve
ly

.
B

es
t

E
rr

or
is

th
e

sm
al

le
st

er
ro

r
re

p
or

te
d

in
an

y
re

p
et

it
io

n
fr

om
ei

th
er

ap
p
ro

ac
h

b
as

ed
on

th
e

ar
ch

it
ec

tu
re

su
gg

es
te

d
b
y

th
e

I3
.

M
-W

p-
va

lu
e

is
th

e
va

lu
e

of
th

e
M

an
n
-W

h
it

n
ey

U
te

st
.

R
ep

et
it

io
n

C
o
u

n
t

In
p

u
t

O
u

tp
u

t
B

es
t

E
rr

o
r

M
-W

M
ea

n
M

S
E

M
ed

ia
n

M
S

E
N

W
L

o
ca

l
O

p
ti

m
a

X
a
v
ie

r
L

o
ca

l
O

p
ti

m
a

I3

L
o
ca

l
O

p
ti

m
a

p
−

v
a
lu
e N

W
p
−
v
a
lu
e X

N
W

X
a
v
ie

r
I3

N
W

X
a
v
ie

r
I3

θ̂ 1

x̂
7
.9

6
4
e-

0
7

3
.0
1
9
e-
1
1

4
.6
1
5
e-
1
0

5
.0

4
2
e-

0
6

1
.7

7
9
e-

0
5

5
.0

8
5
e-

0
5

4
.3

3
0
e-

0
6

1
.7

1
0
e-

0
5

4
.2

9
9
e-

0
5

0
0

0

ŷ
2
.0

5
2
e-

0
7

1
.3
3
6
e-
0
7

0
.0

5
7

2
.0

1
8
e-

0
3

7
.2

9
0
e-

0
6

4
.6

0
4
-0

6
6
.1

8
0
e-

0
6

4
.4

9
3
e-

6
1
.8

4
9
e-

0
6

7
0

0

θ̂ 2

x̂
1
.2

3
2
e-

0
7

5
.5
7
2
e-
1
0

8
.1
5
2
e-
1
1

1
.8

9
1
e-

0
5

3
.0

9
1
e-

0
6

6
.8

6
6
e-

0
5

9
.7

5
5
e-

0
7

9
.1

8
0
e-

7
5
.2

1
9
e-

0
5

1
0

0

ẑ
1
.0

1
2
e-

0
7

0
.0
0
9

0
.4

2
8

1
.3

8
2
e-

0
5

4
.9

4
8
e-

0
6

8
.4

4
0
e-

0
6

1
.5

0
0
e-

0
6

2
.2

9
3
e-

6
3
.0

1
6
e-

0
6

1
0

0

θ̂ 3
x̂

2
.7

2
8
e-

0
7

3
.9
8
8
e-
0
4

0
.1

0
5

8
.1

7
1
e-

0
4

8
.7

3
3
e-

0
6

5
.5

6
6
e-

0
6

5
.7

8
9
e-

0
6

6
.5

6
4
e-

0
6

2
.8

8
7
e-

0
6

2
0

0

θ̂ 1
,θ̂

2

x̂
2
.6

5
0
e-

0
5

1
.2
4
7
e-
0
4

0
.7

0
6

2
.0

5
8
e-

0
4

5
.1

2
6
e-

0
4

2
.9

4
7
e-

0
4

1
.0

0
4
e-

0
4

3
.5

1
3
e-

0
4

2
.6

7
2
e-

0
4

0
0

0

ŷ
3
.5

5
8
e-

0
5

2
.0
3
3
e-
0
9

5
.0
9
2
e-
0
8

2
.1

9
2
e-

0
4

3
.7

4
0
e-

0
4

1
.0

0
7
-e

0
3

1
.2

1
9
e-

0
4

2
.9

3
5
e-

0
4

8
.3

4
5
e-

0
4

0
0

0

θ̂ 2
,θ̂

3

x̂
3
.3

8
1
e-

0
6

4
.0
7
7
e-
1
1

3
.0
1
9
e-
1
1

3
.3

4
8
e-

0
5

2
.5

7
4
e-

0
5

5
.3

9
9
e-

0
4

2
.1

8
1
e-

0
5

1
.8

0
6
e-

0
5

4
.9

7
1
e-

0
4

0
0

0

ẑ
3
.2

1
1
e-

0
6

3
.0
1
9
e-
1
1

3
.6
8
9
e-
1
1

2
.1

3
4
e-

0
5

6
.5

7
7
e-

0
5

1
.6

9
6
-e

0
3

1
.6

0
7
e-

0
5

2
.7

8
9
e-

0
5

1
.0

0
6
e-

0
3

0
0

0

θ̂ 1
,θ̂

3

x̂
3
.4

5
9
e-

0
6

3
.0
1
9
e-
1
1

3
.0
1
9
e-
1
1

2
.4

6
2
e-

0
5

1
.9

5
2
e-

0
5

9
.4

7
9
e-

0
4

1
.8

2
4
e-

0
5

1
.4

8
0
e-

0
5

5
.3

2
8
e-

0
4

0
0

0

ŷ
4
.6

6
8
e-

0
6

3
.0
1
9
e-
1
1

3
.0
1
9
e-
1
1

2
.8

6
1
e-

0
5

4
.1

2
5
e-

0
5

1
.0

5
9
-e

0
2

2
.0

8
1
e-

0
5

3
.3

2
7
e-

0
5

2
.0

5
0
e-

0
3

0
0

0

θ̂ 1
,θ̂

2
,θ̂

3
x̂

6
.6

1
9
e-

0
5

3
.0
1
9
e-
1
1

5
.5
7
2
e-
1
0

2
.6

9
7
e-

0
4

1
.2

2
9
e-

0
3

5
.5

8
8
e-

0
3

2
.4

1
6
e-

0
4

1
.9

1
2
e-

0
4

3
.2

2
2
e-

0
3

0
1

0

62



italicized in the table. Last three columns in Table 5.1 indicates in how many

repetitions (out of 30) does NW, Xavier, and I3 initialization stuck at local op-

tima. All these columns are used to analyze research question - performance

evaluation.

In Table 5.2, “Noise level” indicates the level of noise in the data; N, L, M,

and H correspond to no, low, medium, and high noise, respectively. “Mean MSE”

and “Median MSE” are the mean and median of the MSE error reported across

all the 30 repetitions for NW and I3. “M-W p − valueNW is the p-value of the

Mann-Whitney U test for NW and I3” is the p-value of the two sided Mann-

Whitney U test for errors reported by NW and I3. Similar to Table 5.1, p-values

are italicized, mean and median errors are underlined. So, Table 5.2 is used to

analyze research question - robust to noise.

Fig. 5.1(a), Fig. 5.1(b), and Fig. 5.1(c) are prototypical examples of learning

excellently, learning moderately and learning poorly respectively. Actual values

in Fig. 5.1 are the values obtained using equations and these values correspond

to 0 error. In Fig. 5.1(a), models from both the approaches learned very well to

approximate the function over the entire region of input. In Fig. 5.1(b), models

from both the approaches moderately learned to approximate function. We can

observe that these models did not precisely learn for some input range. NW

initialization approach in Fig. 5.1(c) has learned poorly. This is the result of the

optimizer stuck at local optima. These figures correspond to training on no noise

data (Kanneganti et al., 2021).

63



0.0 0.2 0.4 0.6 0.8 1.0
1

0.0

0.5

1.0

y

NW MSE   : 4.00E-06
I3 MSE: 8.81E-07

(a) Both models Learning Excellently - Repetition 1
NW Predictions
I3 Predictions
Actual Values

0.0 0.2 0.4 0.6 0.8 1.0
1

0.0

0.5

1.0

y

NW MSE   : 1.79E-05
I3 MSE: 2.04E-05

(b) Both models Learning Moderately - Repetition 4
NW Predictions
I3 Predictions
Actual Values

0.0 0.2 0.4 0.6 0.8 1.0
1

0.0

0.5

1.0

y

NW MSE   : 9.54E-03
I3 MSE: 1.86E-06

(c) NW Learning Poorly - Repetition 5
NW Predictions
I3 Predictions
Actual Values

Figure 5.1: Scatter plot of prototypical example of learning a function (a) Excel-
lent learning (b) Moderate learning (c) NW Learning poorly

64



Table 5.2: Comparison of models with two different initializations (Kanneganti
et al., 2021). For Noise level, N, L, M, and H correspond to no, low, medium, and
high noise, respectively. M-W p− valueNW is the p-value of the Mann-Whitney
U test for NW and I3.

Input Output
Noise
Level

M-W
p−

valueNW

Mean MSE Median MSE
NW I3 NW I3

θ̂1

x̂

N 3.019e-11 5.042e-06 5.085e-05 4.330e-06 4.299e-05
L 0.002 1.021e-03 1.141e-03 1.000e-03 1.091e-03
M 0.185 3.919e-03 4.074e-03 3.901e-03 4.036e-03
H 0.245 8.579e-03 8.850e-03 8.579e-03 8.618e-03

ŷ

N 1.336e-05 2.018e-03 4.604e-06 6.180e-06 1.849e-06
L 0.108 2.973e-03 1.053e-03 1.107e-03 1.058e-03
M 0.245 5.255e-03 4.141e-03 4.243e-03 4.130e-03
H 0.641 9.827e-03 9.002e-03 9.030e-03 8.954e-03

θ̂2

x̂

N 5.572e-10 1.891e-05 6.866e-05 9.755e-07 5.219e-05
L 2.278e-05 1.091e-03 1.338e-03 1.063e-03 1.232e-03
M 6.097e-03 4.080e-03 4.395e-03 4.002e-03 4.362e-03
H 0.030 8.827e-03 9.183e-03 8.701e-03 9.083e-03

ẑ

N 0.009 1.382e-05 8.440e-06 1.500e-06 3.016e-06
L 0.162 1.028e-03 1.081e-03 1.020e-03 1.070e-03
M 0.620 3.914e-03 3.979e-03 3.869e-03 3.887e-03
H 0.491 8.510e-03 8.594e-03 8.265e-03 8.609e-03

θ̂3 x̂

N 3.988e-04 8.171e-04 5.566e-06 5.789e-07 2.887e-05
L 0.853 1.869e-03 1.069e-03 1.052e-03 1.072e-03
M 0.994 4.862e-03 4.114e-03 4.062e-03 4.098e-03
H 0.717 9.513e-03 8.728e-03 8.619e-03 8.790e-03

θ̂1, θ̂2

x̂

N 1.247e-04 2.058e-04 2.947e-04 1.004e-04 2.672e-04
L 1.370e-03 1.346e-03 1.537e-03 1.290e-03 1.481e-03
M 0.004 4.438e-03 4.748e-03 4.413e-03 4.693e-03
H 0.864 9.482e-03 9.484e-03 9.302e-03 9.267e-03

ŷ

N 2.033e-09 2.192e-04 1.007e-03 1.219e-04 8.345e-04
L 8.890e-10 1.352e-03 2.475e-03 1.294e-03 2.205e-03
M 5.091e-06 4.387e-03 5.449e-03 4.353e-03 5.057e-03
H 3.324e-06 8.922e-03 1.051e-02 8.868e-03 9.989e-03

65



Chapter 6

Discussion

This chapter discusses the interpretation of results in Chapter 5 linking the re-

search questions and hypothesis in Chapter 3. This chapter has four sections.

First section discusses about structural issues, second section discusses initial-

ization issues, third chapter discusses the effect of noise and the final section

discusses other interpretations that are observed.

6.1 Structural issues

6.1.1 Structural transferability

The prototype corresponding to cosine is used to approximate Equation 2.3. Sim-

ilarly, the prototype corresponding to sine is used to approximate Equation 2.4,

Equation 2.7. The best error reported (Table 5.1) to approximate Equation 2.3,

Equation 2.4, Equation 2.7 is 7.964e− 07, 2.052e− 07, 2.728e− 07 respectively.

Response: Above errors indicate that the structure recommended by I3 can

be used to approximate above equations in robot kinematics.

66



6.1.2 Extensibility to more hidden layers

Two hidden layers are used to approximate Equation 2.5, Equation 2.6, Equa-

tion 2.8, Equation 2.9, Equation 2.10, Equation 2.11, and Equation 2.12. The

best errors reported for these equations are 1.232e− 07, 1.012e− 07, 2.650e− 05,

3.558e − 05, 3.381e − 06, 3.211e − 06, and 3.459e − 06 respectively. Three hid-

den layers are used to approximate Equation 2.13, and the best error reported is

4.668e− 06. Four hidden layers are used to approximate Equation 2.14, and the

best error reported is 6.619e− 05.

Response: Above errors are very low even for more complicated equations

involving more hidden layers and indicates that the I3 is sufficient to allow for

multilayer feedforward ANNs with more hidden layers. This extensibility of I3

allows to apply this approach for this new domain.

6.2 Initialization issues

6.2.1 Domain transferability

For domain transferability we would like to compare the performance of initial

values recommended by the two prototype functions. The mean error for Equa-

tion 2.3 using NW, Xavier, and I3 initializations is 5.042e-06, 1.779e-05, 5.085e-05

respectively. Similarly, the mean error for Equation 2.4 using NW, Xavier, and

I3 initializations is 2.018e-03, 7.290e-06, 4.604-06 respectively. For both these

equations, we could observe that I3 initialization performed well w.r.t. other

state-of-the-art approaches.

While approximating most of the equations, we observed that the initial values

67



0 5 10 15 20 25 30
Repetitions

10 2

10 1

100

Lo
ss

 (M
SE

)

Error Before Training

NW
I3

Figure 6.1: Initial errors reported for θ̂1 as input and x̂ as output.

recommended by the I3 results in lower initial error (error before the start of

training process) as seen in Fig. 6.1, Fig. 6.2. Having lower initial error helps

to converge quickly to optimal solution; However, it is not always guaranteed to

converge quickly to optimal solution. Approximating x̂ given θ̂1 (initial errors in

Fig. 6.1) requires one hidden layer. Approximating ŷ given θ̂1,θ̂3 (initial errors

in Fig. 6.2) requires three hidden layer. I3 initialization continues to have lower

initial error even with increase in number of hidden layers.

Response: Initial values recommended by the I3 approach results in lower

initial error.

6.2.2 Concatenating prototypes

For I3, we observed that the models with one and two hidden layers are stable,

i.e., ANN model weights and biases do not have extremely large updates during

training. However, models with higher hidden layers, Equation 2.13 (three hidden

layers) and Equation 2.14 (four hidden layers) are unstable for some epochs of

68



0 5 10 15 20 25 30
Repetitions

10 1

100

101

Lo
ss

 (M
SE

)

Error Before Training
NW
I3

Figure 6.2: Initial errors reported for θ̂1,θ̂3 as input and ŷ as output.

training. This can be observed from Fig. 6.3 and Fig. 6.4. I am inferring that this

unstability in models is due to large initial values in I3 which leads to exploding

gradients.

While approximating Equation 2.13, we observed that only few repetitions

have unstable learning and we also observed that the unstability in ANN occurred

only once. However, while approximating Equation 2.14, we observed that many

repetitions have unstable learning and we also observed that the unstability in

these ANNs occurred more than once and can be observed from Fig. 6.4. This

also infers that models are likely to become unstable with increase in number of

hidden layers.

Response: We infer that weights could explode and lead to exploding gradi-

ents with larger hidden layers as a result of condensing layers and concatenating

prototypes.

69



100 101 102 103

Epochs

10 4

10 3

10 2

10 1

100

Lo
ss

 (M
SE

)

Loss Vs Epochs - Repetition 4

NW Train
NW Validation
I3 Train
I3 Validation

Figure 6.3: History of error Vs epochs for Equation 2.13. The spike in the black
rectangular box indicates the large updates in ANN weights and biases during
training.

100 101 102 103

Epochs

10 4

10 3

10 2

10 1

100

Lo
ss

 (M
SE

)

Loss Vs Epochs - Repetition 24

NW Train
NW Validation
I3 Train
I3 Validation

Figure 6.4: History of error Vs epochs for Equation 2.14. The spike in the black
rectangular box indicates the large updates in ANN weights and biases during
training.

70



0 5 10 15 20 25 30
Repetitions

10 6

10 5

10 4

10 3

10 2

Lo
ss

 (M
SE

)

(a) Errors After Training for y given 1 - No noise

NW
I3

0 5 10 15 20 25 30
Repetitions

10 6

10 5

10 4

Lo
ss

 (M
SE

)

(b) Errors After Training for x given 2 - No noise
NW
I3

Figure 6.5: Errors reported while training across all repetitions (a) ŷ given θ̂1 (b)
x̂ given θ̂2.

6.2.3 Performance evaluation

This subsection discusses performance w.r.t MSE and also being consistent, i.e.,

does not get stuck at local optima.

For single input equations, w.r.t MSE all the three initializations performed

well as each of those initializations performed well for one equation or the other.

However, coming to higher inputs (two and three), we can observe that NW and

Xavier initializations have lower errors than I3 and these results are statistically

significant.

While approximating some functions, Table 5.1 strongly indicates that I3 ini-

71



100 101 102 103

Epochs

10 6

10 5

10 4

10 3

10 2

Lo
ss

 (M
SE

)

Loss Vs Epochs - Repetition 5

NW Train
NW Validation
I3 Train
I3 Validation

Figure 6.6: History of errors when NW stuck at local optima while training ŷ
given θ̂1.

tialization performs consistently and converge to reasonable accuracy for all the

repetitions. However, from Table 5.1, Fig. 6.5(a), and Fig. 6.5(b) we can observe

that NW initialization results in model stuck at local optima for one or more

repetitions. This is also observed when NW outperforms I3 initialization in many

repetitions, this can be observed for 13th repetition in Fig. 6.5(b). Fig. 6.6 shows

the progression of error during the training, it is a prototypical example of NW

being stuck at local optima. NW does not have just one initial values but rather

has multiple initial values. We observed that one or more of these initial values

are resulting the model to stuck at local optima. Besides being informative, inter-

active, and interpretable, I3 models also help minimize the error; it is suggested

to model using both approaches as I3 helps validate if the NW model got stuck

at local optima.

Response: I3 initialization performs consistently and converge to reasonable

error for all the repetitions (when trained for 1500 epochs).

72



6.3 Effect of noise

6.3.1 Robustness to noise

From Table 5.2, we can observe that noise does not favor any initialization

method. Noise does increase the amount of error and it reduce the likelihood

that either method will statistically significantly outperform the other. Both

NW and I3 approach seem to be equally affected by noise levels. There wasn’t a

strong distinguishing factor between the algorithms based on noise.

Response: Noise does not favor any initialization method.

73



Chapter 7

Conclusions

This work demonstrates robot kinematics as an application to I3. Below are some

of the conclusions drawn from this work.

In this work we have shown that the structure recommended by Pei et al. is

capable of approximating equations in other domain (robot kinematics). More-

over, in this work we have extended Pei et al. to three and four hidden layers and

also to three inputs. Results also indicate that the structure recommended by Pei

et al. is capable of extending to more hidden layers. For single input equations,

all the three initializations performed equivalently well and have low error after

training. However, models trained using higher inputs (two and three) tend to

have lower trained error for Xavier and NW initializations. We also observed that

some of the models trained using three, four hidden layers are unstable during

training (when trained for 1500 epochs using Adam optimizer). On the other

hand, Pei et al. helps to be consistent and prevents from getting stuck at local

optima.

Being able to adopt to a new domain (robot kinematics) helps to advance the

74



applicability of Pei et al. to other domains. In this work we have demonstrated

the Pei et al. for higher number (three) of inputs, this allows to model multi-

dimensional input spaces. Being able to extend to higher number (three and four)

of hidden layers allows to model more complex equations. Models developed in

this work used Adam optimizer and these models learned well to approximate

the equations and this facilitates the way for training deeper ANNs.

We also observed that both NW and Pei et al. seem to be equally affected

by noise. In this work we have demonstrated that limited number (four) of

prototypes can approximate twelve equations. In fact, these four prototypes can

approximate even more equations formed by the combination of these prototypes.

In this work, we have also extended the Pei et al. to work for multiple cycles.

We see the power of informed, interactive, and interpretable ML and devel-

oped the terminology of I3 that tries to mean in accordance with the ideas that

are put together. Bringing together the ideas of informed, interactive, and inter-

pretable ML and developing the terminology of I3 makes this work more accessible

for broader audience.

We saw the potential of the Pei et al. approach for a broader application,

and took the risk for the little-known work to Computer Science ML community.

This study not only explores a new domain beyond where the Pei et al. approach

had been applied, but also provides some much needed new interpretation and

presentations of terminologies and even way of thinking in the original work

to facilitate broader applications and better acceptance especially in Computer

Science ML community.

75



Chapter 8

Future Work

This chapter has two sections. First section deals with theoretical advancements

and the second section deals with practical advancements.

8.1 Theoretical advancements

This section discusses some of the future work that could help to develop the

theory of Pei et al.

Deeper ANNs (three and four-layered-ANNs) trained using Pei et al. have

unstable learning for some portion of training. In future we would like to observe

weights, biases of ANNs when they are unstable (the portion of training when

weights change drastically) and this provides more information about the reasons

that is leading to unstable learning. In this work, there could be multiple possi-

bilities for weights and biases to cause exploding gradients. Below effects can be

examined further:

1. Explore the effect of concatenating prototypes on weights and biases.

76



2. Explore the effect of condensing layers. This can be studied by comparing

the performance (from history of error Vs epoch figures) of both condensed

and non-condensed ANNs.

3. Explore if any specific prototype(s) leads to unstable learning.

8.2 Practical advancements

Below are some of the future work that extends practical advancements to this

works.

In this work, we have modeled the forward kinematic equations of simplified

PUMA robotic arm, i.e, we have used three input angles (joints) - θ1, θ2, θ3 and

upto four hidden layers. A typical PUMA robotic arm can be equipped with a

spherical wrist and has six input angles, the other three input angles (θ4, θ5, θ6)

are used to determine roll, pitch, and yaw. By modeling forward kinematics of

complete robotic arm helps to determine roll, pitch, yaw and more importantly

extends the work to more inputs and more hidden layers.

In this work, we have modeled equations for forward kinematics of robotic

arm. In robot kinematics, there is also Inverse kinematics which calculates the

joint variables given the desired location of the end effector. One of the chal-

lenges of inverse kinematics is, unlike forward kinematics there could be multiple

solutions (combination of joint angles) for a given input (location of end effector).

However, using Pei et al. for inverse kinematics makes this more meaningful and

interpretable.

In this work, number of inputs have been gradually increased from one to

three. However, all these models predict a single output value (x̂ or ŷ or ẑ).

In future, we would like to design models that have multiple inputs and have

77



multiple outputs. Designing such models decreases the total number of models

required to calculate all the outputs.

Noise model used in this work is crude and is not actually a good representa-

tion of overall types of errors we would likely have for a real robotic arm. Using

real world data will help us to have more interpretation of functioning of robot

arms in real world applications.

In this work, we have demonstrated one capable model (architecture and

initial values) for each target function. We did not have time to explore optimal

designs. In the future, we will experiment and analyze the performance of other

capable Pei et al. models.

78



Bibliography

Diogo V Carvalho, Eduardo M Pereira, and Jaime S Cardoso. Machine learning
interpretability: A survey on methods and metrics. Electronics, 8(8):832, 2019.

G. Cybenko. Approximation by superpositions of sigmoidal function. Mathemat-
ics of Control, Signals, and Systems, 2:303–314, 1989.

Howard B. Demuth, Mark H. Beale, Orlando De Jess, and Martin T. Hagan.
Neural Network Design. Martin Hagan, Stillwater, OK, USA, 2nd edition,
2014. ISBN 0971732116.

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable
machine learning. arXiv preprint arXiv:1702.08608, 2017.

Dario Floreano and Claudio Mattiussi. Bio-inspired artificial intelligence: theo-
ries, methods, and technologies. MIT press, 2008.

Henri P Gavin. The levenberg-marquardt algorithm for nonlinear least squares
curve-fitting problems. Department of Civil and Environmental Engineering,
Duke University, 19, 2019.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international con-
ference on artificial intelligence and statistics, pages 249–256. JMLR Workshop
and Conference Proceedings, 2010.

D. Gunning, M. Stefik, J. Choi, T. Miller, S. Stumpf, and G.-Z. Yang. XAI -
explainable artificial intelligence. Science Robotics, 4(37):eaay7120, 2019.

Kris Hauser. Robotic systems, 2020. URL https://motion.cs.illinois.edu/

RoboticSystems/.

K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural
Networks, 4:251–257, 1991.

Dean Frederick Hougen, Jin-Song Pei, and Sai Teja Kanneganti. Toward inter-
pretable machine learning for understanding epidemic data. In 2020 IEEE

79

https://motion.cs.illinois.edu/RoboticSystems/
https://motion.cs.illinois.edu/RoboticSystems/


International Conference on Big Data; IEEE International Workshop on Fair
and Interpretable Learning Algorithms, pages 3677–3681, December 2020. doi:
10.1109/BigData50022.2020.9377834.

Liu Jiang, Shixia Liu, and Changjian Chen. Recent research advances on inter-
active machine learning. Journal of Visualization, 22(2):401–417, 2019.

Lee K Jones. The computational intractability of training sigmoidal neural net-
works. IEEE Transactions on Information Theory, 43(1):167–173, 1997.

Sai Teja Kanneganti, Jin-Song Pei, and Dean Frederick Hougen. Developing
interpretable machine learning for forward kinematics of robotic arms. In 2021
IEEE Symposium Series on Computational Intelligence (SSCI), pages 01–09,
2021. doi: 10.1109/SSCI50451.2021.9660074.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2017.

Rudolf Kruse, Christian Borgelt, Christian Braune, Sanaz Mostaghim, Matthias
Steinbrecher, Frank Klawonn, and Christian Moewes. Computational intelli-
gence. Springer, 2011.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–444, 2015.

Zachary C Lipton. The mythos of model interpretability: In machine learning,
the concept of interpretability is both important and slippery. Queue, 16(3):
31–57, 2018.

J. Makhoul, A. El-Jaroudi, and R. Schwartz. Formation of disconnected decision
regions with a single hidden layer. In International Joint Conference on Neural
Networks, volume I, pages 455–460, June 1989.

Patrick E. McKnight and Julius Najab. Mann-Whitney U test. In The
Corsini Encyclopedia of Psychology. American Cancer Society, 2010. ISBN
9780470479216. doi: https://doi.org/10.1002/9780470479216.corpsy0524.

Bernhard Mehlig. Machine Learning with Neural Networks. Cambridge University
Press, Oct 2021. ISBN 9781108494939. doi: 10.1017/9781108860604. URL
http://dx.doi.org/10.1017/9781108860604.

Christoph Molnar, Giuseppe Casalicchio, and Bernd Bischl. Interpretable ma-
chine learning–a brief history, state-of-the-art and challenges. In Joint Euro-
pean Conference on Machine Learning and Knowledge Discovery in Databases,
pages 417–431. Springer, 2020.

Jorge J Moré. The Levenberg-Marquardt algorithm: Implementation and theory.
In Numerical analysis, pages 105–116. Springer, 1978.

80

http://dx.doi.org/10.1017/9781108860604


W James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin
Yu. Definitions, methods, and applications in interpretable machine learning.
Proceedings of the National Academy of Sciences, 116(44):22071–22080, 2019.

Derrick Nguyen and Bernard Widrow. Improving the learning speed of 2-layer
neural networks by choosing initial values of the adaptive weights. In 1990
International Joint Conference on Neural Networks, pages 21–26. IEEE, 1990.

J. S. Pei. Parametric and Nonparametric Identification of Nonlinear Systems.
Ph.d. dissertation, Columbia University, 2001.

J. S. Pei and E. C. Mai. Constructing multilayer feedforward neural networks to
approximate nonlinear functions in engineering mechanics applications. ASME
Journal of Applied Mechanics, 75, 2008.

J. S. Pei, J. P. Wright, and A. W. Smyth. Mapping polynomial fitting into
feedforward neural networks for modeling nonlinear dynamic systems and be-
yond. Computer Methods in Applied Mechanics and Engineering, 194(42-44):
4481–4505, 2005.

J. S. Pei, E. C. Mai, and J. P. Wright. Mapping some functions and four arith-
metic operations to multilayer feedforward neural networks. In SPIE Interna-
tional Symposia Smart Structures & Materials/NDE, 2008.

J. S. Pei, E. C. Mai, J. P. Wright, and S. F. Masri. Mapping some functions and
four arithmetic operations to multilayer feedforward neural networks. Nonlin-
ear Dynamics, 71(1-2):371–399, 2013.

J. S. Pei, D. F. Hougen, S. T. Kanneganti, J. P. Wright, E. C. Mai, A. W. Smyth,
S. F. Masri, A. Derkevorkian, F. Gay-Balmaz, and L. Komini. Interpretable
machine learning for function approximation in structural health monitoring.
In A. Cury, D. Riberiro, F. Ubertini, and M. D. Todd, editors, Structural Health
Monitoring Based on Data Science Techniques. Springer, 2021. in press.

Cynthia Rudin. Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead. Nature Medicine Intel-
ligence, 1:206–215, 2019.

Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang Huang, Lesia Semenova, and
Chudi Zhong. Interpretable machine learning: Fundamental principles and 10
grand challenges. Statistics Surveys, 16:1–85, 2022.

E. D. Sontag. Feedforward nets or interpolation and classification. Journal of
Computer and System Sciences, 45:20–48, 1992.

81



Mark K. Transtrum and James P. Sethna. Improvements to the Levenberg-
Marquardt algorithm for nonlinear least-squares minimization, 2012.

Simon Vollert, Martin Atzmueller, and Andreas Theissler. Interpretable machine
learning: A brief survey from the predictive maintenance perspective. In 2021
26th IEEE international conference on emerging technologies and factory au-
tomation (ETFA), pages 01–08. IEEE, 2021.

Laura Von Rueden, Sebastian Mayer, Katharina Beckh, Bogdan, Giesselbach,
Sven Giesselbach, Raoul Heese, Birgit Kirsch, Julius Pfrommer, Annika Pick,
Rajkumar Ramamurthy, Michal Walczak, Jochen Garcke, Christian Bauck-
hage, and Jannis Schuecker. Informed machine learning - a taxonomy and
survey of integrating prior knowledge into learning systems. IEEE TRANS-
ACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021.

Yu Zhang, Peter Tiňo, Aleš Leonardis, and Ke Tang. A survey on neural network
interpretability. IEEE Transactions on Emerging Topics in Computational
Intelligence, 2021.

82



Appendix A

Appendix

A.1 Initial parameters for other equations

using I3

This section discusses the architecture and initial values for equations which are

not discussed earlier in Section 4.4

c. x̂ = 0.5 cos(2πθ̂2 + π/4) + 0.5

This equation is similar to equation in Subsection 4.4.1.a, except it has a positive

phase shift of π/4. Approximating this equation involves two steps. First, we

approximate 2πθ̂2 + π/4 and then feed this as an input to neural network with

initial values as explained in Subsection 4.4.1.a, i.e., x̂ = 0.5 cos(2πθ̂1) + 0.5.

To approximate 2πθ̂2 + π/4 we need four hidden nodes, two for approximating

2πθ̂2 (first order polynomial term) explained in (Pei et al., 2005) and two for

approximating π/4 (constant term). To approximate 2πθ̂2, W1 are [0.1, -0.1], b1

83



are [0, 0], W2 are [40π, -40π], and b2 equals [0]. To approximate π/4, W1 are [1,

-1], b1 are [0, 0], W2 are [π/4, π/4], and b2 = [0].

Thus to approximate 2πθ̂2 + π/4 the initial values used are, W1 are [0.1, -0.1,

1, -1], b1 are [0, 0, 0, 0], W2 are [40π, -40π, π/4, π/4], and b2 = [0]. Now, we con-

catenate the neural network with initial values as explained in Subsection 4.4.1.a.

Thus, W3 are [8.4, 8.4, 1, -1], b3 are [-4.1, -4.3, 0, 0], W4 are [-20, 20, 1, 1], and

b4 = [0]. This takes the shape of neural network architecture in Fig. A.1. This

neural network can be condensed to neural network in Fig. A.2, by removing the

hidden layer with nodes having linear activation. Hidden layer can be removed

by performing matrix multiplication of incoming and outgoing weights of that

layer (Pei et al., 2013).

So, the new weights formed is a product of W2 and W3. This causes new

weights to explode and results in unstable learning. More about this is dis-

cussed in Chapter 6. Thus W2 ×W3 becomes [[336π, 336π, 40π, -40π], [-336π,

-336π, -40π, 40π], [2.1π, 2.1π, π/4, -π/4], [2.1π, 2.1π, π/4, -π/4]]. Here, first sub

list ([336π, 336π, 40π, -40π]) corresponds to outgoing weights from first hidden

node of first hidden layer to all the four hidden nodes of second hidden layer

respectively. Similarly, second sub list ([-336π, -336π, -40π, 40π]) corresponds

to outgoing weights from second hidden node of first hidden layer to all the four

hidden nodes of second hidden layer respectively. After condensation, bias values

to the nodes remain unchanged. The results shown in Table 5.1 are obtained

after condensing a hidden layer with linear activation units.

d. ẑ = 0.5 sin(2πθ̂2 + π/4) + 0.5

This equation is similar to equation in Subsection 4.4.2.b, except it has a positive

phase shift of π/4. Approximating this equation involves two steps. First, we

84



S

S

S

S

L

S

S

S

S

L output

W1 W2 W3 W4

p

Figure A.1: ANN architecture before condensing hidden layer. S, L nodes corre-
spond to sigmoidal, linear activation functions respectively.

S

S

S

S

S

S

S

S

L output

W1 W2 ×W3 W4

p

Figure A.2: ANN architecture after condensing hidden layer. S, L nodes corre-
spond to sigmoidal, linear activation functions respectively.

85



approximate 2πθ̂2 + π/4 and then feed this as an input to neural network with

initial values as explained in Subsection 4.4.2.b. To approximate 2πθ̂2 + π/4 we

need four hidden nodes, two for approximating 2πθ̂2 (first order polynomial term)

explained in (Pei et al., 2005) and two for approximating π/4 (constant term).

To approximate 2πθ̂2, W1 are [0.1, -0.1], b1 are [0, 0], W2 are [40π, -40π], and b2

equals [0]. To approximate π/4, W1 are [1, -1], b1 are [0, 0], W2 are [π/4, π/4],

and b2 = [0].

Thus to approximate 2πθ̂2 + π/4 the initial values used are, W1 are [0.1, -0.1,

1, -1], b1 are [0, 0, 0, 0], W2 are [40π, -40π, π/4, π/4], and b2 = [0]. Now, we con-

catenate the neural network with initial values as explained in Subsection 4.4.2.b.

Thus, W3 are [24, 12, 1, -1], b3 are [-12, -6, 0, 0], W4 are [-3.3, 3.3, 0.5, 0.5], and

b4 = [0]. This takes the shape of neural network architecture in Fig. A.1. This

neural network can be condensed to neural network in Fig. A.2, by removing the

hidden layer with nodes having linear activation. Hidden layer can be removed

by performing matrix multiplication of incoming and outgoing weights of that

layer (Pei et al., 2013).

So, the new weights formed is a product of W2 and W3. This causes new

weights to explode and results in unstable learning. More about this is discussed

in Chapter 6. Thus W2 ×W3 becomes [[960π, 480π, 40π, -40π], [-960π, -480π,

-40π, 40π], [6π, 3π, π/4, -π/4], [6π, 3π, π/4, -π/4]]. Here, first sub list ([960π,

480π, 40π, -40π]) corresponds to outgoing weights from first hidden node of first

hidden layer to all the four hidden nodes of second hidden layer respectively.

Similarly, second sub list ([-960π, -480π, -40π, 40π]) corresponds to outgoing

weights from second hidden node of first hidden layer to all the four hidden

nodes of second hidden layer respectively. After condensation, bias values to

the nodes remain unchanged. The results shown in Table 5.1 are obtained after

86



0.0 0.5 1.0
3

0.00

0.25

0.50

0.75

1.00

x

(a) Target function

0.0 0.5 1.0
Input

0.00

0.25

0.50

0.75

1.00
(b) Prototype function

Figure A.3: x̂ to be approximated given θ̂3 (a) Target function to be approximated
(b) Prototype function obtained using I3 to approximate target function.

condensing a hidden layer with linear activation units.

e. x̂ = −0.5 sin(2πθ̂3) + 0.5

Fig. A.3(a) shows the function to be approximated. This function has sine term

and uses Prototype 2. This function closely takes the shape of function approx-

imated in Section 4.4.2. To approximate this prototype function we require two

hidden nodes, similar to Fig. 2.6. The initial parameters to approximate this

function follows, W1 are [20, 10], W2 are [1, -1]. b1 takes the values of [0, 0] and

b2 equals to [0]. These initial values can be found in Table. 1 of (Pei and Mai,

2008).

Initial weights to approximate are obtained in two steps. First we scale the

prototype function close to our required input and output range. Our required

input and output range is from 0 to 1. The input and output range for the

prototype is from -1 to 1 and -0.15 to 0.15 respectively. The prototype function

can be made closer to Fig. A.3(a), by only considering the input range between [-

0.6 to 0.6]; the weights and bias of scaled function can be obtained by substituting

values of θ̂1 = 0 for p = -0.6 and θ̂1 = 0.5 for p = 0. Now, W1 changes to [24,

12] and b1 changes to [-12, -6]. To scale the output between -0.5 and 0.5 (the

difference between minimum and maximum value of function changes from 0.3 to

87



1.0), W2 are multiplied by 3.3, thus W2 changes to [3.3, -3.3]. Now these weights

are better used for our input and output ranges.

In second step, we add a constant of 0.5, this changes output range from

-0.5 to 0.5 to our required range of 0 to 1. To add a constant we need two

hidden nodes. Now W1 corresponding to these two hidden nodes are [1, -1], b1

corresponding to these two hidden nodes are [0, 0], and W2 corresponding to these

two hidden nodes are [0.5, 0.5]. Now, we have a total of 4 hidden nodes, 2 from

earlier prototype function and 2 from the the addition of a constant. Thus our

final initial parameters are: W1 are [24, 12, 1, -1], b1 are [-12, -6, 0, 0], W2 are [3.3,

-3.3, 0.5, 0.5], and b2 = [0]. Now these weights are used to approximate function

in Fig. A.3(b). This function is very close to the function we are interested

in approximating, i.e., Fig. A.3(a). These parameters takes the shape of ANN

architecture in Fig. 4.3.

f. x̂ = 0.5[cos(2πθ̂1) cos(2πθ̂2 + π/4) + 1]

As discussed in Subsection 4.4.1.a, two hidden nodes can be used to approximate

cos(2πθ̂1) and these two nodes require θ̂1 as input. Similarly, two hidden nodes

can be used to approximate cos(2πθ̂2 + π/4) and these two nodes require θ̂2

as input. The later has a phase shift of π/4, so, cos(2πθ̂2 + π/4) can still be

approximated by using either cos(2πθ̂2) or sin(2πθ̂2). The same architecture is

capable of learning phase shifts in the input. We choose to approximate using sin

prototype. Fig. A.4 shows the architecture used to approximate this equation.

First two hidden nodes in the first hidden layer approximates cos(2πθ̂1) and

next two hidden nodes in that layer approximates cos(2πθ̂2 + π/4). The missing

connections between inputs and first hidden layer has an initial value of 0. So,

W1 are [[8.4, 8.4, 0, 0], [0, 0, 24, 12]], b1 are [-4.1, -4.3, -12, -6], and W2 are [[-20,

88



0], [20, 0], [0, -3.3], [0, 3.3]]. The nonzero weights corresponding to these four

hidden nodes are discussed below.

The nonzero weights corresponding to first two hidden nodes are discussed in

this paragraph. First we scale the prototype C to our required input and output

range. Our required input and output range is from 0 to 1. The input and output

range for the prototype is from -1 to 1 and 0 to 0.25 respectively, which can be

seen in Fig. 4.1. The prototype function can be made closer to cos(2πθ̂1), by only

considering the input range between [-0.6 to 0.6], the weights and bias of scaled

function can be obtained by substituting values of θ̂1 = 0 for p = -0.6 and θ̂1 =

0.5 for p = 0. Now, W1 changes to [8.4, 8.4] and b1 changes to [-4.1, -4.3]. To

scale the output between 0 and 1, W2 are multiplied by 4, thus W2 changes to

[20, -20]. Now these weights are better used for our input and output ranges. In

second step, we flip the function by changing the sign of the output. Thereby

bringing the prototype function more closer to cos(2πθ̂1). Sign of the output can

be reversed by changing the sign of the final layer weights, thus W2 becomes [-20,

20].

Similarly, the nonzero weights corresponding to last two hidden nodes are

discussed in this paragraph. First we scale the prototype 2 to our required input

and output range. Our required input and output range is from 0 to 1. The input

and output range for the prototype is from -1 to 1 and -0.15 to 0.15 respectively,

which can be seen in Fig. 4.4. The prototype function can be made closer to

cos(2πθ̂2 + π/4) by only considering the input range between [-0.6 to 0.6]; the

weights and bias of scaled function can be obtained by substituting values of θ̂1

= 0 for p = -0.6 and θ̂1 = 0.5 for p = 0. Now, W1 changes to [24, 12] and b1

changes to [-12, -6]. To scale the output between -0.5 and 0.5 (the difference

between minimum and maximum value of function changes from 0.3 to 1.0), W2

89



are multiplied by 3.3, thus W2 changes to [3.3, -3.3]. Now these weights are better

used for our input and output ranges. In second step, we flip the function by

changing the sign of the output. Thereby bringing the prototype function more

closer to cos(2πθ̂2 + π/4). Thus W2 becomes [-3.3, 3.3].

Approximating two first order polynomial terms requires 8 nodes and it’s

initial values are mentioned in Table 2 of (Pei et al., 2013). So, cos(2πθ̂1) ×

cos(2πθ̂2 + π/4) can be approximated using 8 hidden nodes. Two hidden nodes

can be used to add a constant of 1. To approximate a constant term, the last two

hidden nodes in third hidden layer are connected to first node in second hidden

layer. So, W3 are [[0.1, 0.1], [-0.1, -0.1], [1, 1], [-1, -1], [0.1, -0.1], [-0.1, 0.1], [1, -1],

[-1, 1], [1, 0], [-1, 0]], b3 are [-10, -10, 0, 0, -10, -10, 0, 0, 0, 0]. W4 are [5.507e5,

5.507e5, -50.006, -50.006, -5.507e5, -5.507e5, 50.006, 50.006, 1, 1]. W4 are the

final weights, above W4 weights needs to be further divided by 2 as the whole

equation is divided by 2. So, final W4 are [2.7535e5, 2.7535e5, -25.003, -25.003,

-2.7535e5, -2.7535e5, 25.003, 25.003, 0.5, 0.5] and b4 = [0]. This weights and

architecture in Fig. A.4 can be condensed to Fig. A.5 by removing the hidden

layer with nodes having linear activation function (Pei et al., 2013).

g. ŷ = 0.5[sin(2πθ̂1) cos(2πθ̂2 + π/4) + 1]

As discussed in Subsection 4.4.1.b, two hidden nodes can be used to approximate

sin(2πθ̂1) and these two nodes require θ̂1 as input. Similarly, two hidden nodes

can be used to approximate cos(2πθ̂2 + π/4) and these two nodes require θ̂2

as input. The later has a phase shift of π/4, so, cos(2πθ̂2 + π/4) can still be

approximated by using either cos(2πθ̂2) or sin(2πθ̂2). The same architecture is

capable of learning phase shifts in the input. We choose to approximate using sin

prototype (prototype 2). Fig. A.4 shows the architecture used to approximate

90



S

S

S

S

L

L

S

S

S

S

S

S

S

S

S

S

L output

W1 W2 W3 W4

θ̂1

θ̂2

Figure A.4: ANN architecture before condensing hidden layer - for θ̂1, θ̂2 as inputs.
S, L nodes correspond to sigmoidal, linear activation functions respectively.

91



S

S

S

S

S

S

S

S

S

S

S

S

S

S

L output

W1 W2 ×W3 W4

θ̂1

θ̂2

Figure A.5: ANN architecture after condensing hidden layer - for θ̂1, θ̂2 as inputs.
S, L nodes correspond to sigmoidal, linear activation functions respectively.

92



this equation. First two hidden nodes in the first hidden layer approximates

sin(2πθ̂1) and next two hidden nodes in that layer approximates cos(2πθ̂2 +π/4).

The missing connections between inputs and first hidden layer has an initial value

of 0. So, W1 are [[24, 12, 0, 0], [0, 0, 24, 12]], b1 are [-12, -6, -12, -6], and W2 are

[[-3.3, 0], [3.3, 0], [0, -3.3], [0, 3.3]]. The nonzero weights corresponding to these

four hidden nodes are discussed below.

The nonzero weights corresponding to first two hidden nodes and next two

hidden nodes are same, as both of them use prototype 2. These weights and biases

for two hidden nodes are discussed in this paragraph. First we scale the prototype

C to our required input and output range. Our required input and output range

is from 0 to 1. The input and output range for the prototype is from -1 to 1 and

-0.15 to 0.15 respectively, which can be seen in Fig. 4.4. The prototype function

can be made closer to sin(2πθ̂2) by only considering the input range between [-0.6

to 0.6]; the weights and bias of scaled function can be obtained by substituting

values of θ̂1 = 0 for p = -0.6 and θ̂1 = 0.5 for p = 0. Now, W1 changes to [24,

12] and b1 changes to [-12, -6]. To scale the output between -0.5 and 0.5 (the

difference between minimum and maximum value of function changes from 0.3

to 1.0), W2 are multiplied by 3.3, thus W2 changes to [3.3, -3.3]. Now these

weights are better used for our input and output ranges. In second step, we flip

the function by changing the sign of the output. Thereby bringing the prototype

function more closer to sin(2πθ̂2). Thus W2 becomes [-3.3, 3.3].

Approximating two first order polynomial terms requires 8 nodes and it’s

initial values are mentioned in Table 2 of (Pei et al., 2013). So, sin(2πθ̂1) ×

cos(2πθ̂2 + π/4) can be approximated using 8 hidden nodes. Two hidden nodes

can be used to add a constant of 1. To approximate a constant term, the last two

hidden nodes in third hidden layer are connected to first node in second hidden

93



layer. So, W3 are [[0.1, 0.1], [-0.1, -0.1], [1, 1], [-1, -1], [0.1, -0.1], [-0.1, 0.1], [1, -1],

[-1, 1], [1, 0], [-1, 0]], b3 are [-10, -10, 0, 0, -10, -10, 0, 0, 0, 0]. W4 are [5.507e5,

5.507e5, -50.006, -50.006, -5.507e5, -5.507e5, 50.006, 50.006, 1, 1]. W4 are the

final weights, above W4 weights needs to be further divided by 2 as the whole

equation is divided by 2. So, final W4 are [2.7535e5, 2.7535e5, -25.003, -25.003,

-2.7535e5, -2.7535e5, 25.003, 25.003, 0.5, 0.5] and b4 = [0]. This weights and

architecture in Fig. A.4 can be condensed to Fig. A.5 by removing the hidden

layer with nodes having linear activation function (Pei et al., 2013).

i. ẑ = 0.25 sin(2πθ̂2) + 0.25 cos(2π(θ̂2 + θ̂3)) + 0.5

This equation is similar to equation in 4.4.3. So, we will be using first hid-

den layer nodes to approximate θ̂2 and (θ̂2 + θ̂3). So, W1 and θ̂2 are same as

in 4.4.3. The main difference from 4.4.3 equation is, here θ̂2 is used to approx-

imate 0.25 sin(2πθ̂2) and (θ̂2 + θ̂3) is used to approximate 0.25 cos(2π(θ̂2 + θ̂3)).

So, W1, b1, W2, and b2 are same as 4.4.3. Thus, W1 are [[0.1, -0.1, 0.1, -0.1, 0, 0],

[0, 0, 0, 0, 0.1, -0.1]], b1 are [0, 0, 0, 0, 0, 0], and W2 are [[20, 0], [-20, 0], [0, 20],

[0, -20], [0, 20], [0, -20]]. The second hidden layer consists of two linear nodes, so

b2 are [0, 0].

The third hidden layer consists of ten hidden nodes. First two hidden nodes

are used to approximate the first component, i.e, 0.25 sin(2πθ̂2) given θ̂2 as in-

put. The initial weights and bias for this component are obtained similar to

Subsection 4.4.2.a. For approximating this sin function, a regular variant (pro-

totype 3, variant c) is used. Thus, incoming weights becomes [24, 12] and bias

of hidden neurons becomes [-12, -6], outgoing weights becomes [-1.65, 1.65]. In-

termediate six hidden nodes are used to approximate the second component, i.e,

0.25 cos(2π(θ̂2 + θ̂3)) given (θ̂2 + θ̂3) as input. Prototypes are generally designed to

94



take input within the range of 0 to 1. However, (θ̂2 + θ̂3) has a range of 0 to 2; to

facilitate this there is a modification done while designing the architecture. Four

hidden nodes are sufficient to approximate 0.25 cos(2π(θ̂2)) (two hidden nodes for

one cycle of cos and two hidden nodes for shifting), as the input range is from 0 to

1. However, to facilitate for an input range of o to 2 it requires a total of 6 hidden

nodes; We require two hidden nodes to approximate one cycle between 0 to 1,

two more hidden nodes to approximate another cycle between 1 and 2, and two

hidden nodes for shifting. The final two hidden layers are used to approximate a

constant of 0.5.

The parameters corresponding to first 2 hidden nodes of 0.25 cos(2π(θ̂2 + θ̂3))

are obtained similar to 4.4.1. The incoming weights, bias and outgoing weights of

these two hidden neurons becomes [8.4, 8.4], [-4.1, -4.3], and [-10, 10] respectively.

The parameters of next 2 hidden nodes are used to approximate cos for the

second cycle. The incoming weights, bias and outgoing weights of these two

hidden neurons becomes [8.4, 8.4], [-12.5, -12.7], and [-10, 10] respectively. The

parameters of next 2 hidden nodes are used to shift a cos curve (generated by

earlier 4 hidden units) by 0.25. Thus the incoming weights, bias and outgoing

weights of these two hidden neurons becomes [1, -1], [0, 0], and [0.25, 0.25]

respectively.

Last two hidden nodes in third hidden layer are used to approximate a con-

stant of 0.5, these nodes are connected to hidden node that outputs (θ̂2 + θ̂3);

Now for these two nodes, the incoming weights becomes [1, -1] and bias of hidden

neurons changes to [0, 0], outgoing weights becomes[0.5, 0.5].

Thus, W3 are [[24, 12, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 8.4, 8.4, 8.4, 8.4, 1, -1, 1, -1]],

b3 are [-12, -6, -4.1, -4.3, -12.5, -12.7, 0, 0, 0, 0], W4 are [-1.65, 1.65, -10, 10, -10,

10, 0.25, 0.25, 0.5, 0.5], and b4 equals to [0]. These weights and architecture in

95



S

S

S

S

S

S

L

L

S

S

S

S

S

S

S

S

S

S

L output

W1 W2 W3 W4

θ̂2

θ̂3

Figure A.6: ANN architecture before condensing hidden layer - for θ̂2, θ̂3 as inputs
and ẑ as output. S, L nodes correspond to sigmoidal, linear activation functions
respectively.

Fig. A.6 can be condensed to Fig. A.7 by removing the hidden layer with nodes

having linear activation function.

j. x̂ = 0.25 cos(2πθ̂1) ∗ [1 − sin(2πθ̂3)] + 0.5

This equation consists of approximating two parts and then multiplying their

products. First part approximates 0.25 cos(2πθ̂1) and the second part approxi-

mates [1 − sin(2πθ̂3)]. Approximating first part uses prototype Cand requires θ̂1

as input and requires four hidden nodes to approximate it, as discussed below:

Equation (4.2) can be approximated using two hidden nodes, as shown in

Fig. 2.6. We choose a small value of ∆b equals to 0.1, it is an empirical choice

96



S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

L output

W1 W2 ×W3 W4

θ̂2

θ̂3

Figure A.7: ANN architecture after condensing hidden layer - for θ̂2, θ̂3 as inputs
and ẑ as output. S, L nodes correspond to sigmoidal, linear activation functions
respectively.

97



and needs to be a small value. Based on the above information, W1 are [7,

7]. From (4.2), we can observe that W2 are [ 1
2∆b

, − 1
2∆b

] respectively. Thus, W2

becomes [5, -5]. b1 takes the values of [b + ∆b, b− ∆b], b1 equals [0.1, -0,1], and

b2 equals [0].

Initial weights to approximate are obtained in three steps. First we scale the

prototype function to our required input and output range. Our required input

and output range is from 0 to 1 and can be observed in Fig. 4.2(a). The input

and output range for the prototype is from -1 to 1 and 0 to 0.25 respectively,

which can be seen in Fig. 4.1. The prototype function can be made closer to

Fig. 4.2(a), by only considering the input range between [-0.6 to 0.6], the weights

and bias of scaled function can be obtained by substituting values of θ̂1 = 0 for

p = -0.6 and θ̂1 = 0.5 for p = 0. Now, W1 changes to [8.4, 8.4] and b1 changes

to [-4.1, -4.3]. To scale the output within the range of 0.5 (-0.25 to 0.25), W2 are

multiplied by 2, thus W2 changes to [10, -10]. Now these weights are better used

for our input and output ranges.

In second step, we flip the function by changing the sign of the output.

Thereby bringing the prototype function more closer to equation 0.25 cos(2πθ̂1).

Sign of the output can be reversed by changing the sign of the final layer weights,

thus W2 becomes [-10, 10].

In final step, we add a constant of 0.25, to bring this function more closer

to the equation 0.25 cos(2πθ̂1). To add a constant we need two hidden nodes as

described in Chapter 2, Section 2.3. Now W1 corresponding to these two hidden

nodes are [1, -1], b1 corresponding to these two hidden nodes are [0, 0], and W2

corresponding to these two hidden nodes are [0.25, 0.25]. Now, we have a total

of 4 hidden nodes, 2 from earlier prototype function and 2 from the the addition

of constant. Thus our final initial parameters are: W1 are [8.4, 8.4, 1, -1], b1 are

98



[-4.1, -4.3, 0, 0], W2 are [-10, 10, 0.25, 0.25], and b2 equals [0]. Now these weights

are used to approximate sub equation 0.25 cos(2πθ̂1).

Approximating second part requires, four hidden nodes. Two of these hidden

nodes are used to approximate a constant 1, to add a constant (1) we need two

hidden nodes as described in Chapter 2, Section 2.3. Now W1 corresponding to

these two hidden nodes are [1, -1], b1 corresponding to these two hidden nodes

are [0, 0], and W2 corresponding to these two hidden nodes are [1, 1]. 2 other

nodes are used to approximate − sin(2πθ̂3) (similar to approximating sin(2πθ̂2)

in Section A.1) as discussed below:

The equation − sin(2πθ̂3) closely takes the shape of the prototype 3, variant c

in Fig. 3 of (Pei and Mai, 2008), which is also depicted in Fig. 4.4. To approximate

this prototype function we require two hidden nodes, similar to Fig. 2.6. The

initial parameters to approximate this function follows, W1 are [20, 10], W2 are

[1, -1]. b1 takes the values of [0, 0] and b2 equals to [0]. These initial values can be

found in Table. 1 of (Pei and Mai, 2008). First we scale the prototype 2 function

close to our required input and output range. Our required input range is from

0 to 1 and required output range is 2 (-1 to 1). The input and output range

for the prototype is from -1 to 1 and -0.15 to 0.15 respectively. The prototype

function can be made closer to − sin(2πθ̂3), by only considering the input range

between [-0.6 to 0.6]; the weights and bias of scaled function can be obtained

by substituting values of θ̂1 = 0 for p = -0.6 and θ̂1 = 0.5 for p = 0. Now, W1

changes to [24, 12] and b1 changes to [-12, -6]. To scale the output within the

range of 2 (-1 to 1) (the difference between minimum and maximum value of

function changes from 0.3 to 2.0), W2 are multiplied by 6.6, thus W2 changes to

[6.6, -6.6]. Now these weights are better used for our input and output ranges.

So, finally W1 are [[8.4, 8.4, 1, -1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 1, 24, 12]], b1 are

99



[-4.1, -4.3, 0, 0, 0, 0, -12, -6], and W2 are [[-10, 0], [10, 0], [0.25, 0], [0.25, 0], [0,

1], [0, 1], [0, 6.6], [0, -6.6]]. The second hidden layer now consists of two linear

nodes, so b2 are [0, 0].

We need 10 hidden nodes in third hidden layer, architecture is observed in

Fig. A.8. First, 8 hidden nodes are used to approximate the product of above two

approximations. Next 2 hidden nodes are used to approximate a constant of 0.5.

Thus, W3 are [[0.1, -0.1, 1, -1, 0.1, -0.1, 1, -1, 0, 0], [0.1, -0.1, 1, -1, -0.1, 0.1, -1,

1, 1, -1]], b3 are [10, 10, 0, 0, 10, 10, 0, 0, 0, 0], and W4 are [5.5076e5, 5.5076e5,

-50.0068, -50.0068, −5.5076e5, −5.5076e5, 50.0068, 50.0068, 0.5, 0.5], and b4 is

[0]. These weights and architecture in Fig. A.8 can be condensed to Fig. A.9.

k. ŷ = 0.5 sin(2πθ̂1) ∗ cos(2π(θ̂3 + 1/8)) + 0.5

This equation consists of approximating two parts and then multiplying their

products. First part approximates 0.25 sin(2πθ̂1) and the second part approxi-

mates cos(2πθ̂3 + 1/8).

Approximating first part requires θ̂1 as input and requires two hidden layers

to approximate it. Two hidden nodes are used in first hidden layer and it is

used to approximate just θ̂1. Two hidden layers are used in second hidden layer

to approximate 0.25 sin(2πθ̂1). We require one additional layer in first part than

necessary as the target function involves a cosine function of (2πθ̂3+1/8), number

of hidden nodes used for this target function is more than needed as we want to

have a fully connected neural network and (2πθ̂3 + 1/8) controls the depth of the

neural network.

Approximating second part requires, two hidden layers with four hidden nodes

each. Two hidden units in first hidden layer are used to approximate θ̂1 and two

hidden nodes are used to approximate 1/8. The resultant sum (θ̂3 + 1/8) is fed

100



S

S

S

S

S

S

S

S

L

L

S

S

S

S

S

S

S

S

S

S

L output

W1 W2 W3 W4

θ̂1

θ̂3

Figure A.8: ANN architecture before condensing hidden layer - for θ̂1, θ̂3 as inputs
and x̂ as output. S, L nodes correspond to sigmoidal, linear activation functions
respectively.

101



S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

L output

W1 W2 ×W3 W4

θ̂1

θ̂3

Figure A.9: ANN architecture after condensing hidden layer - for θ̂1, θ̂3 as inputs
and x̂ as output. S, L nodes correspond to sigmoidal, linear activation functions
respectively.

102



as an input to second hidden layer with four hidden units, these hidden units are

used to approximate cos of the input, i.e., cos(2πθ̂3 + 1/8).

Two of these hidden nodes are used to approximate a constant 1 and 2 other

nodes are used to approximate − sin(2πθ̂3) (similar to approximating sin(2πθ̂2)

in Section A.1). So, W1 are [[8.4, 8.4, 1, -1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 1, 24, 12]],

b1 are [-4.1, -4.3, 0, 0, 0, 0, -12, -6], and W2 are [[-10, 0], [10, 0], [0.25, 0], [0.25,

0], [0, 1], [0, 1], [0, 6.6], [0, -6.6]]. The second hidden layer now consists of two

linear nodes, so b2 are [0, 0].

We need 10 hidden nodes in third hidden layer, architecture is observed in

Fig. A.8. First, 8 hidden nodes are used to approximate the product of above two

approximations. Next 2 hidden nodes are used to approximate a constant of 0.5.

Thus, W3 are [[0.1, -0.1, 1, -1, 0.1, -0.1, 1, -1, 0, 0], [0.1, -0.1, 1, -1, -0.1, 0.1, -1,

1, 1, -1]], b3 are [10, 10, 0, 0, 10, 10, 0, 0, 0, 0], and W4 are [5.5076e5, 5.5076e5,

50.0068, 50.0068, 5.5076e5, 5.5076e5, 50.0068, 50.0068, 0.5, 0.5], and b4 is [0].

These weights and architecture in Fig. A.10 can be condensed to Fig. A.11.

103



S

S

S

S

S

S

L

L

S

S

S

S

S

S

L

L

S

S

S

S

S

S

S

S

S

S

L output

W1 W2 W3 W4 W5 W6

θ̂1

θ̂3

Figure A.10: ANN architecture before condensing hidden layer - for θ̂1, θ̂3 as
inputs and ŷ as output. S, L nodes correspond to sigmoidal, linear activation
functions respectively.

104



S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

L output

W1 W2 W3 ×W4 W5

θ̂1

θ̂3

Figure A.11: ANN architecture after condensing hidden layer - for θ̂1, θ̂3 as inputs
and ŷ as output. S, L nodes correspond to sigmoidal, linear activation functions
respectively.

105


	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Introduction to interpretable machine learning
	Informative
	Interactive
	Interpretable

	Introduction to robot kinematics and robotic arm used
	Intended contributions

	Related Work
	Background of informed, interactive, and interpretable ML
	Informed ML
	Interactive ML
	Interpretable ML

	Fundamentals of ANNs
	Determining the structure of ANNs
	Weight initialization
	Optimizer

	Pei et al.
	Robotic arm and target equations
	Simplified PUMA robotic arm
	Target equations


	Research Questions
	Structural issues
	Research question 1.1 - Structural transferability
	Research question 1.2 - Extensibility to more hidden layers

	Initialization
	Research question 2.1 - Domain transferability
	Research question 2.2 - Concatenating prototypes
	Research question 2.3 - Performance evaluation

	Other Issues
	Research Question 3.1 - Robustness to noise


	Experiments
	Data generation
	Experimental design
	Prototypes used
	Approximating constant - Prototype A
	Approximating arithmetic and polynomial operations - Prototype B
	Approximating cosine curves - Prototype C

	Initial architecture and parameter values for Lg
	Approximating Equation 2.3: Lg
	Approximating Equation 2.4: Lg
	Approximating Equation 2.10

	Other architectures used
	Architecture to approximate Equation 2.13 Lg
	Architecture to approximate Equation 2.14 Lg

	Tools and software used

	Results
	Discussion
	Structural issues
	Structural transferability
	Extensibility to more hidden layers

	Initialization issues
	Domain transferability
	Concatenating prototypes
	Performance evaluation

	Effect of noise
	Robustness to noise


	Conclusions
	Future Work
	Theoretical advancements
	Practical advancements

	Bibliography
	Appendix
	Initial parameters for other equations using Lg


