
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

AN ANALYSIS OF THE INFORMATION CONTENT OF RADAR DETECTION

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

TREY T. CRUMP

Norman, Oklahoma

2022



AN ANALYSIS OF THE INFORMATION CONTENT OF RADAR DETECTION

A THESIS APPROVED FOR THE

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY THE COMMITTEE CONSISTING OF

Dr. Justin Metcalf, Chair

Dr. Joseph P. Havlicek

Dr. Nathan Goodman



© Copyright by TREY T. CRUMP 2022

All Rights Reserved.



Abstract

The availability of the electromagnetic spectrum (EMS) was an unseen issue in the past,

as there was sufficient spectrum access to suit the needs of its’ consumers. Today, the use

of the EMS has been become integrated within our daily lives. Applications varying from

civil infrastructure to automotive radar has readily consumed the spectrum to communicate,

sense, and interpret information [1]. Given the inflation of spectrum use, it is important

that we investigate the amount of information and bandwidth that different spectrum-based

applications are using and how different parameters can impact spectrum use. Previous

work has identified the fundamental decision bound of pulse-Doppler radar, defined by the

Rayleigh range-Doppler resolution, of 1 decision per second per Hz of transmitted bandwidth

and has identified a Bayesian detection capacity expression [1].

In this thesis, a closed form expression is derived for detection capacity of radar, which

does not require a priori probabilities. Furthermore, detection capacity expressions for

multiple receivers and the use of M of N integration are also derived. These expressions

are used to analyze the information content of different commonly used radar detectors

for different assumptions. Another primary focus of this thesis was the analysis of the

information content of both fluctuating targets and cell averaging constant false alarm rate

(CA-CFAR). The novel analysis of these different radar/target assumptions show the effect

that radar detection has on the spectrum. Finally, detection bandwidth and transmit range

are connected to determine how signal-to-noise ratio can impact transmit range and spectral

usage.
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Chapter 1

Introduction

1.1 Motivation

Within the last generation, the use of the electromagnetic spectrum (EMS) has become

integrated within our daily lives. In the past, the availability of the spectrum was an unseen

issue as there was sufficient spectrum access to suit the needs of its’ consumers. Today,

applications varying from civil infrastructure to radar has readily consumed the spectrum to

communicate, sense, and interpret information [1]. Given the recent inflation of spectrum use,

it is important that we have a means to quantify the amount of information and bandwidth

that is being used for different spectrum-based applications.

To quantify the information/bandwidth used over a network, information theoretics have

been widely used to characterize communication systems and their capacity, benefiting from

their uniform nature [1], [2]. There have been some successful radar detection channel models

to find the information theoretics of a system [1], [3], although they require a priori proba-

bilities, which are often very difficult or even impossible to determine, especially in radar.

Different parameters of radar and target characteristics have yet to be analyzed from

an information theoretic standpoint. It is important to find the information from these

assumptions and characteristics in order to properly investigate spectral management from

a radar perspective. The spectral bound of information that a pulse-Doppler can make is
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1 decision per second per Hz of transmitted bandwidth [1]. To best manage this resource,

we must determine how different processors use the transmitted bandwidth, such as cell

average constant false alarm rate (CA-CFAR) processors. The fundamental goal is optimize

and regulate our use of the spectrum from a radar standpoint given our spectrally cluttered

environment.

1.2 Thesis Objective

The primary aim of this thesis is to examine the information capacity from a radar detection

perspective for different target models. Furthermore, this thesis aims to expand on previ-

ously defined Bayesian detection capacity to develop a model that does not rely on a priori

probabilities. Another aim of this thesis is to examine the information of common hypothesis

distributions for varying sensor and variance values. Lastly, this thesis aims to find the effect

of using different detection processors such as CA-CFAR.

1.3 Thesis Layout

This thesis contains five chapters which detail the aspects of the application of information

theoretics to radar detection for different radar and target assumptions.

Chapter 2 will be focused on background and related work. Section 2.1 discusses radar

fundamentals, focusing on the principle and operation of radar. Key concepts such as max-

imum unambiguous range, range resolution, the Doppler effect, and the radar equation are

covered. Section 2.2 focuses on information theory, mainly the fundamental ideas of informa-

tion. Concepts such as entropy, differential entropy, joint and conditional entropy, relative

entropy and mutual information, Fisher information, and channel capacity are discussed.

Section 2.3 discusses the theory behind detection from both a general and radar focused

perspective and outlines important results and detectors. Bayesian detection, the Neyman-

Pearson test, detection considerations within the confines of radar, distributed detection,

and Bayesian distributed detection without fusion are summarized.

2



Chapter 3 provides differential entropy expressions/information content expressions for

commonly used hypothesis distributions. Differential entropy expressions for Gaussian,

Rayleigh, and Erlang distributions are provided.

Chapter 4 reviews previous models while providing a closed-form expression for detection

capacity that does not rely on a priori probabilities. Furthermore, the detection capacity of

different system and target assumptions are analyzed. Section 4.2 covers detection capacity

expressions for the cases of single/multiple receivers and no integration/integration. Section

4.3 shows examples of different detectors for the case of hard decision detection with no

integration. Section 4.4 shows examples of different detectors for the case of hard decision

detection with integration. Section 4.5 gives expressions for the detection capacity of CFAR.

Furthermore, fluctuating targets are also covered from a non-CFAR and CFAR perspective

within the section to best show the change in detection capacity for different target assump-

tions.

Finally the conclusions of the thesis are presented in Chapter 5 including a discussion of

possible extensions to the work.
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Chapter 2

Background and Related Work

2.1 Radar Processing

RADAR, or RAdio Detection And Ranging, is a system that emits electromagnetic energy

from an antenna (or antennas) for the detection and location of reflecting objects such as

aircraft, ships, spacecraft, vehicles, and people [4]. Operation entails radiating energy into

space and detecting the echo signal reflected from the object/target. The energy reflected

is returned to the radar which indicates the presence (or absence) of a target. The basic

principle of radar is shown in Figure 2.1.

Figure 2.1: Basic radar operating principles [4].
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2.1.1 Operating Principles

The radar transmitter transmits an electromagnetic pulse through an antenna and the elec-

tromagnetic energy is echoed back from the target/object to be received by the radar receiver.

The range to a target can be found by measuring the time it takes for the radar signal to

travel to the target and back to the radar. The most common radar waveform is a series of

short-duration, rectangular-shaped pulses (known as a pulse train). Electromagnetic energy

in free space travels at the speed of light c, so intuitively the range R with respect to target

at time Tr is defined as [4]

R =
cTr
2

. (2.1)

2.1.2 Maximum Unambiguous Range

Once a radar transmits a signal, sufficient time must be allowed for all of the echo signals

to return to the radar before the next pulse is transmitted to avoid destructive interference

between the signals. If the time between pulses Tp is too short, an echo signal from a long-

range target could arrive after the transmission of the following pulse and could be mistakenly

associated with the pulse. The range beyond which targets appear as second-time-around

echos is the maximum unambiguous range, Run, given by [4]

Run =
cTp
2

, (2.2)

where Tp is defined as the pulse repetition interval (sometimes denoted as PRI), or the

amount of time between radar pulses. The inverse of the pulse repetition period is the pulse

repetition frequency Fp (sometimes denoted as PRF), varying from several hundred pulses

per second and several tens of thousands of pulses per second.

The range resolution, ∆R, is the minimum range between two targets that can be distin-

guished. In general, the radar range resolution is inversely proportional to signal bandwidth
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β, defined as [5]

∆R ≈ c

2β
. (2.3)

2.1.3 Doppler Effect

If a radar and a scatterer/target are not at rest with respect to each other, the frequency

of the received echo will differ from the transmitted frequency due to the Doppler effect.

Properly accounted for Doppler shifts can be used to detect echos from moving targets in the

presence of much stronger echos from clutter or can be used to improve cross-range resolution.

Uncompensated or improperly sensed Doppler shifts can cause a loss of sensitivity for some

types of waveforms. Doppler shift can be expressed as the change in frequency between the

transmitted signal, Ft, and the modified received signal, αvFt. Given a target moving at

velocity v, define βv ≡ v/c. Let αv =
1+βv
1−βv so the Doppler shift Fd can be expressed as

Fd = αvFt − Ft =
2v

(1− βv)λ
, (2.4)

where λ = c/Ft, or the wavelength of the transmitted sinusoidal waveform signal [5].

2.1.4 The Radar Equation

The radar equation is the fundamental connection between the range of a radar and the

physical characteristics of the radar/target. The characteristics of the radar include the

transmitter, receiver, antenna, target, and the environment. This equation allows for us

to determine the maximum range that a radar can detect a target and how the different

characteristics can affect the overall radar performance. The simplest form of the radar

range equation can be expressed as

Rmax =

[
PtGAeσ

(4π)2Smin

] 1
4

, (2.5)

6



where Pt is the transmitted power (W), G is the antenna gain, Ae = Gλ2/4π is the antenna

effective aperture (m2), σ is the radar cross section of the target (m2), and Smin is the

minimum detectable signal (W) [4]. The radar cross section of a target is defined as

σ =
power reflected toward source/unit solid angle

incident power density/4π
= 4πR2 |Er|2

|Ei|2
, (2.6)

where R is the range to the target, Er is the electric field strength of the echo signal back to

the radar, and Ei is the electric field strength incident on the target [4]. Change in viewing

aspect of a radar can result in major changes in the radar cross section.

2.1.5 Detection in Noise

Even if a radar were to be operating in a completely noise free environment, there would still

be noise generated by the thermal agitation of the receiver. The resistance of the receiver

has an effective temperature T0 (K) which causes thermal noise with spectral density N0,

defined as N0 = kT0 where k is Boltzmann’s constant and is defined as k = 1.38∗10−23J/deg.

Assuming an standard temperature T0 = 290K modified by a noise factor Fn and a half-

power bandwidth B with signal-to-noise ratio χ, the minimum detectable signal is defined

as [4]

Smin = kT0BFnχ . (2.7)

Furthermore, by incorporating losses L = LTLRLother, where LT is the transmit loss, LR is

the receive loss, and Lother is random loss, we can express the radar range equation with

noise and losses as [4]

Rmax =

[
PtGAeσ

(4π)2kT0BFnχL

]1/4
. (2.8)

For an example of the radar range equation, let us calculate the range for the radar

characteristics found in Table 2.1 for χ values of 13dB, 10dB, and 3dB.
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Table 2.1: Radar characteristics for range plots.

Radar Range Equation Parameter Value

Frequency, f 8 GHz

Wavelength, λ = c/f 0.0375 m

Transmit Power, PT 60 dBW

Directive Transmit Gain, GT 38 dB

Directive Receive Gain, GR 38 dB

Bandwidth, B = 1/τp 2.5 MHz

Noise Figure, Fn 8 dB

Loss, L = LTLRLother 7 dB

T0 290 K

Radar Cross Section, σ 3.98 m2

The results of plugging the radar characteristics found in Table 2.1 into Equation (2.25),

are found in Table 2.2.

Table 2.2: Rmax for varying χ values.

Signal-to-Noise Ratio, χ Radar Transmit Range, Rmax

13dB 75.1 km

10dB 77.2 km

3dB 92.9 km

Lower SNR values correspond with higher transmit range as the minimum detectable signal

threshold is reduced as SNR decreases.

2.1.6 Radar Signal Processing

From our monostatic, pulsed operation of a radar system previously described, we now have

the means to process the received signal. Furthermore, we need to process the received

8



signal to extract measurement data such as target range and radial velocity. An individually

transmitted radar pulse with radar carrier frequency Ft can be described as

x̄(t) = a(t) sin(2πFtt+ θ(t)) , (2.9)

where a(t) is the constant amplitude pulse envelope and θ(t) is the phase modulation of the

pulse [5]. a(t) is an ideal square pulse envelope of amplitude A and duration τ seconds. The

received signal will be be a combination of echoes of x̄(t) from targets and noise, expressed

as

ȳ(t) = ka(t− t0) exp (j[2πFt(t− t0) + θ(t− t0) + ϕ(t)]) + n(t) , (2.10)

where n(t) is the receiver noise, k is the echo amplitude factor due to propagation losses,

and ϕ(t) is the echo phase modulation due to target interaction [5]. The most important

parameters of the received signal are the delay time t0, the echo component amplitude k|a(t)|

and its relative power to the noise component, and the echo phase modulation function

θ(t − t0) + ϕ(t) [5]. These parameters allow for us to estimate important values such as

target range, radial velocity, scattering strength, and range resolution.

2.2 Information Theory

2.2.1 Entropy

Entropy is the measure of uncertainty of a single random variable [2]. It is the average

amount of information intrinsic to the given random variable’s outcomes. The entropy of a

random variable X with a probability mass function (PMF) of p(x) is given by

H(X) = −
∑
x∈X

p(x) log2 p(x) , (2.11)

where logarithms are to base 2 due to entropy being measured in bits [2]. Thus, entropy is

the average number of bits required to describe the random variable. Suppose we have an
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unbiased game of heads and tails. Since the game is unbiased, the probabilities of winning

are (1
2
, 1
2
). The entropy of the unbiased game of heads and tails can be calculated as

H(X) = −1

2
log

1

2
− 1

2
log

1

2
= 1 bit. (2.12)

Figure 2.2: Binary entropy H(p) v. p [2].

Figure 2.2 shows the relationship of H(p) and p for a binary entropy distribution. This

allows us to see that the entropy of a distribution is a concave function and is equal to 0

when p = 0 and p = 1.

2.2.2 Differential Entropy

Differential entropy provides a measure of the uncertainty, or information, of a continuous

random variable. For random variable X and probability density function f(x), the differen-
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tial entropy is defined as [2]

H(X) = −
∫
X

f(x) log f(x)dx . (2.13)

2.2.3 Joint and Conditional Entropy

From the definition of entropy, it follows that the joint entropy is the measure of uncertainty

between two random variables [6]. The joint entropy H(X,Y) of a pair of discrete random

variables (X,Y) with joint distribution p(x, y) is defined as [2]

H(X,Y) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) . (2.14)

Additionally, the conditional entropy of two random variables is the average amount of

information needed to encode the outcome of one random variable given the value of the

other random variable is known. If H(X,Y) ∼ p(x, y), the conditional entropy H(X,Y) is

defined as

H(Y|X) = −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x)

= −E log p(Y|X) ,

(2.15)

where E denotes the expected value operator [2]. One important theorem tells us that

conditioning reduces entropy, meaning more trials reduces the average amount of surprisal

between two random variables

H(X|Y) ≤ H(X) , (2.16)

with equality if and only if X and Y are independent [2].
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2.2.4 Relative Entropy and Mutual Information

The relative entropy, or Kullback–Leibler divergence, is the measure of statistical difference

between two statistical objects (ex. random variables or probability distributions). For

Kullback-Leiblber divergence DKL(p||q), this would be the measure of how different distri-

bution q is from distribution p. It can be used to quantify the information gain between

different states if the state of the environment can be described statistically. The relative

entropy DKL(p||q) of the probability mass function p with respect to the probability mass

function q is defined as [2]

DKL(p||q) =
∑
x

p(x) log
p(x)

q(x)
. (2.17)

Moreover, the mutual information between two random variables is the amount of informa-

tion obtained from one random variable by observing the other random variable. The mutual

information between two random variables X and Y is defined as [2]

I(X;Y) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)

= H(X)−H(X|Y) .

(2.18)

Due to mutual information being the amount of information shared between two random

variables, we can also use it to quantify information gain between different states. Figure

2.3 shows the relation between entropy and mutual information [2].

12



Figure 2.3: Relationship between mutual information and entropy [2].

2.2.5 Fisher Information

Fisher information, J , quantifies the amount of information that can be extracted from a

measurement/score function [7]. The score, V, of distribution f(x; θ) is V = ∂
∂θ

ln f(X; θ)

where X ∼ f(x; θ). The Fisher information is the variance of the score, defined as [2]

J(θ) = Eθ

[
∂

∂θ
ln f(X; θ)

]2
. (2.19)

Per the Cramer-Rao inequality, the inverse of the Fisher Information Matrix is bounded by

the Cramer-Rao lower bound which bounds the variance of the unbiased maximum likelihood

estimates x̂ of x, for example giving us the track accuracy [7]

E[[x̂(X)− x]2] ≥ J−1 . (2.20)

13



2.2.6 Channel Capacity

The basic idea of communication is the transmission of information from point A to B

through a channel/medium µAB. This transfer of information through a communication

channel is much like a wave propagating through a dielectric material. The wave/information

will propagate or be sent from point A to point B but will suffer from dielectric losses/noise.

These losses in a communication channel come from noise and imperfections within the

process of sending information. Within our communication channel, the highest information

rate that can be achieved with an arbitrarily small error probability is known as the channel

capacity. The information channel capacity of a discrete memoryless channel with input

alphabet X and output alphabet Y and a probability transition matrix p(y|x), shown in

Figure 2.4 is defined as [2]

C = max
p(x)

I(X;Y) . (2.21)

Figure 2.4: Basic information channel.

For an example of channel capacity, let’s examine the binary symmetric channel (BSC),

shown in Figure 2.5. Binary channels have two inputs/outputs, with input alphabet X with

elements {0, 1} ∈ X and output alphabet Y with elements {0, 1} ∈ Y with an error probability
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of p. An error occurs when a 0 is received as a 1, or vice versa. Since we do not know where

the error occurs, given that none of the received bits are reliable (or certain), they are random

variables.

Figure 2.5: Binary symmetric channel [2].

The mutual information between the input alphabet and output alphabet is found by using

Equation (2.18) [2]

I(X;Y) = H(Y)−H(Y|X)

= H(Y)−
∑

p(x)H(Y|X = x)

= H(Y)−H(p)

≤ 1−H(p) ,

(2.22)

where H(p) is the binary entropy function, defined as

H(p) = −p log(p)− (1− p) log(1− p) . (2.23)

The inequality, I(X;Y) ≤ 1−H(p), follows due to Y being a binary random variable. Equality
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is achieved when the input distribution is uniform [2]. Since we are looking at the maximiza-

tion of mutual information between the two alphabets, the channel/information capacity is

achieved by the equality (i.e. uniform input distribution)

C = 1−H(p) bits. (2.24)

The channel capacity of the binary symmetric channel is shown in Figure 2.6. We can see

that the channel capacity of the binary symmetric channel is convex, unlike concave nature

of binary entropy (shown in Figure 2.2). This is due to the channel capacity being the

complement of the binary entropy function (for the binary symmetric channel).

Figure 2.6: Channel capacity of binary symmetric channel.

2.3 Detection Theory

There are many situations in which we are presented with a decision-making problem, or the

problem of making a choice with a variety of different possibilities. For example, in radar a

decision must be made as to whether or not a target is present or absent when the signal
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comes back to the receiver. In communications, a waveform is transmitted over a channel

and based on the received waveform, we need to determine the symbol that was transmitted.

From these applications, we can see that the basic problem is making a decision from many

possible choices with noisy observations.

In a decision making problem, we are faced with a multitude of different hypotheses.

The simplest choice is that of binary decisions. Binary decisions are decisions that are either

a hard ’yes’ or a hard ’no’ (sometimes referred to as hard decisions), typically encoded

with either a ’1’ or a ’0’. An example of a binary decision process is the choice between two

hypotheses, typically denotedH0 andH1 for target absence and target presence, respectively.

Another decision process is that of soft decisions. It is essentially a ’maybe’, typically taking

a value between 0 and 1.

The formation of a hypothesis problem starts with a source, which outputs one of the

two hypotheses. The source is not known as there would be no decision problem. After

the source, there is some probabilistic transition mechanism that generates a point in the

observation space by some probability law. A decision rule partitions the observation space

into different decision regions according to different hypotheses. The hypothesis for which

the decision rule maps the observation to is then marked as ’true’ or ’1’. In this chapter, we

will be outlining different detection methods relevant to the problem that we are studying.

The derivations in the following section largely follow from [8].

2.3.1 Bayesian Detection

Let us assume a simple binary hypothesis testing problem, where the hypotheses are either

H0 or H1. The observation will be denoted as ′y′ so that the conditional densities under

the two different hypotheses are p(y|H0) and p(y|H1). In this section, the two conditional

densities are assumed as known. This means that the observation space is filled by points

under the two hypotheses. The Bayesian problem formulation denotes the two a priori

probabilities of the two hypotheses as P0 and P1 respectively. Within a binary detection
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problem, four outcomes can occur. Two outcomes are deciding the correct hypotheses and

two outcomes are incorrectly deciding the hypotheses. In this scenario, costs are assigned to

each possibility, denoted as Cij for i = 0, 1 and j = 0, 1. This represents the cost of declaring

Hi true while Hj is present. For the Bayesian problem formulation, the decision rule that

minimizes the average cost must be determined. The Bayes risk function R is given as

R =
1∑
i=0

1∑
j=0

CijPj

∫
Zi

p(y|Hj)dy , (2.25)

where Zi is the decision region corresponding to hypothesis Hi [8]. Equation (2.25) can be

rewritten as [8]

R = P0C00 + P1C11 +

∫
Z0

[P1(C01 − C11)p(y|H1)− P0(C10 − C00)p(y|H0)]dy . (2.26)

The likelihood ratio test (LRT) can be expressed as [8]

p(y|H1)

p(y|H0)

H1

≷
H0

P0(C10 − C00)

P1(C01 − C11)
. (2.27)

The left hand side is known as the likelihood ratio and the right hand side is denoted as the

threshold. The likelihood ratio is tested against the threshold to determine which hypothesis

should be determined.

When C00 = C11 = 0 and C10 = C01 = 1, the cost of a correct decision is set to zero and

the cost of an error is set to one. The Bayes risk function is now

R = P0

∫
Z1

p(y|H0)dy + P1

∫
Z0

p(y|H1)dy , (2.28)

which is the average probability of error [8]. The Bayes test in this case simply minimizes

the average probability of error, the threshold η is given by P0

P1
in this case. In digital

communication systems, when η = 1, the resulting receivers are called minimum probability

18



of error receivers. The error decisions used in radar are summarized in Table 2.3.

Table 2.3: Different detection probabilities.

Probability Description Equation

Probability of Detection, PD The probability that a target is de-

clared when a target is present

∫
Z1

p(y|H1)dy

Probability of False Alarm, PFA The probability that a target is de-

clared when a target is not present

∫
Z1

p(y|H0)dy

Probability of Miss, PM The probability that is a target is

not declared when a target is

present

∫
Z0

p(y|H1)dy

The average probability of error in decision making within a Bayesian framework is given

by [8]

Perror = P0PFA + P1PM . (2.29)

We can rewrite the Bayesian risk function in terms of parameters PFA and PM , giving R

as [8]

R = C00(1− PFA) + C10PFA+

P1[(C11 − C00) + (C01 − C11)PM − (C10 − C00)PFA] .

(2.30)

2.3.2 Neyman-Pearson Test

In most practical applications, the a priori probabilities are usually unknown and the cost

assignments are difficult to determine. The cost of missing a target cannot be calculated

easily since the target’s presence may not be known. In radar, we use a special case of the

Bayes criterion called the Neyman-Pearson criterion. Within this criterion, the rule/decision

process is designed to maximize PD while keeping PFA under a set value. The radar system

designer will designate the acceptable PFA based on the operation of the radar and its sen-
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sitivity to higher/lower PFA values. Given a fixed system, increasing PD has the implication

of increasing PFA as well. Let α denote the acceptable value of PFA. The function that

maximizes PD while keeping PFA is defined as follows [8]

F = λ(1− α) +

∫
Z0

[p(y|H1)− λp(y|H0)] dy , (2.31)

for Lagrange multiplier λ ≥ 0, different from our previously defined λ, which was defined as

wavelength. The LRT is given as [8]

Λ(y) =
p(y|H1)

p(y|H0)

H1

≷
H0

λ . (2.32)

The threshold of the test is λ that satisfies the constraint [8]

PFA =

∫ ∞

λ

p(Λ|H0)dΛ = α . (2.33)

2.3.3 Radar Detection

For a given radar measurement testing for the presence of a target, one of two hypotheses

can be true:

H0 = Target is not present

H1 = Target is present

where H0 is denoted as the null hypothesis while H1 is denoted as the alternative hypothesis.

Due the statistic nature of the signals, the analysis starts with a conditional PDF of each of

the two hypotheses:

py(y|H0) = PDF of y given that a target was not present

py(y|H1) = PDF of y given that a target was present
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One of the most important parts of the detection problem is developing these two PDFs

to achieve detection performance as close to optimal as possible. However, this thesis is

primarily focused on the information of these hypotheses, so the design these PDFs will not

be covered. Generally, detection will be based on N samples of data yn forming a column

vector y, where y is

y ≡ [y0...yN−1]
T . (2.34)

The simplest detection example is the detection of the presence or absence of a constant

in zero-mean Gaussian noise of variance σ2
w, denoted N(µ, σ2) = N(0, σ2

w). Let w be a vector

of independent identically distributed (i.i.d.) zero mean Gaussian random variables. When

the hypothesis is H0, meaning the constant is absent, observation vector y = w will follow

an N-dimensional normal distribution with a scaled identity covariance matrix. When the

constant is detected (hypothesis H1), y = m+w = m1N +w and the distribution is shifted

to a nonzero mean of m1N

H0 : y ∼ N(0N , σ
2
wIN)

H1 : y ∼ N(m1N , σ
2
wIN) ,

(2.35)

where m > 0 and 0N , 1N , and IN are vectors of N zeros, N ones, and the identity matrix of

order N respectively [5]. The required PDFs are [5]

p(y|H0) =
N−1∏
n=0

1√
2πσ2

w

exp

(
−1

2

(
yn
σw

)2
)

p(y|H1) =
N−1∏
n=0

1√
2πσ2

w

exp

(
−1

2

(
yn −m

σw

)2
)

.

(2.36)

After modeling the PDFs, the likelihood ratio and the log-likelihood ratio can be calculated

21



from Equation (2.36) as [5]

Λ(y) =

∏N−1
n=0

1√
2πσ2

w

exp

(
−1

2

(
yn−m
σw

)2)
∏N−1

n=0
1√
2πσ2

w

exp

(
−1

2

(
yn
σw

)2) , (2.37)

lnΛy =
N−1∑
n=0

(
−1

2

(
yn −m

σw

)2

+
1

2

(
yn
σw

)2
)

=
1

σ2
w

N−1∑
n=0

myn −
1

2σ2
w

N−1∑
n=0

m2 .

(2.38)

Substituting Equation (2.38) into the log-likelihood ratio gives the decision rule

N−1∑
n=0

yn
H1

≷
H0

σ2
w

m
ln(−λ) +

Nm

2
≡ T , (2.39)

where all of the constraints have been combined into a single constant T [5].

The left hand term,
∑N−1

n=0 yn is denoted as the sufficient statistic for this problem. The

sufficient statistic is a function of the data y that allows for the data to appear in the

likelihood ratio only through a single function, Υ(y). Thus when making a decision that is

optimal under the Neyman-Pearson criterion, knowing the sufficient statistic is as good as

knowing the actual data [5]. It can be interpreted as a geometric coordinate transformation

chosen to place all of the useful information in the first coordinate [5], [9].

2.3.4 Constant False Alarm Rate Detection

Constant false alarm rate (CFAR) detection sets a constant false alarm rate via an adapative

detector threshold. Cell-averaging CFAR tests each available data sample for the presence or

absence of a target, the current cell under test (CUT), xi, is compared against the threshold

determined by interference power, which is estimated from the data. If the data in the

CUT exceeds the threshold set by the interference power, the detection processor declares a

target present within the range-Doppler bin. The detection processing is based on two major
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assumptions [5]:

• The neighboring cells contain interference with the same statistics as the CUT (ho-

mogeneous interference), so that they are representative of the interference that is

competing with the potential target

• The neighboring cells do not contain any targets; purely interference

Zero mean, complex interference statistics can be estimated from the measured samples in

the nearby cells. For Gaussian interference and linear or square law detectors, the interference

will be Rayleigh or exponential distributed, respectively. In either case, the interference PDF

has only one free parameter, the mean interference power. Thus, the CFAR processor must

estimate the mean interference power in the CUT by using the measured data in the adjoining

cells [5].

Consider the optimal detector, the square law case. The PDF of a cell xi, assuming the

interference is independent and identically distributed (i.i.d.) white Gaussian noise (WGN)

in the I and Q signals with power σ2
w/2 in each, is [5]

pxi(xi) =
1

σ2
w

exp(−xi/σ
2
w) . (2.40)

Knowledge of σ2
w is needed to set the threshold. When exact knowledge is not available, it

must be estimated. Assume that N cells in the vicinity of the cell under test are used to

estimate σ2
w, and that the interference in each is i.i.d. WGN. The joint PDF of a vector x of

N such samples is [5]

px(x) =
1

σ2N
w

N∏
i=1

exp(−xi/σ
2
w) . (2.41)

For the case of a square law detector, the expression for the estimated threshold is [5]

T̂ =
α

N

N∑
i=1

xi . (2.42)
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Defining zi = (α/N)xi gives T̂ =
∑N

i=1 zi with the PDF of zi being

pzi(zi) =
N

ασ2
w

e−Nzi/ασ
2
w , (2.43)

where α is the acceptable value of PFA provided by Equation (2.33) [5]. The PDF of T̂ is

the Erlang density [5]

pT̂ (T̂ ) =


(

N
ασ2

w

)N
T̂N−1

(N−1)!
e−NT̂/ασ

2
w , T̂ > 0

0, T̂ < 0

. (2.44)

Assuming that we have a single sample of a Swerling I or II target with threshold T̂ , we have

a probability of detection and probability of false alarm equal to [5]

PD = exp[−T̂ /(1 + χ̄)]

PFA = exp[−T̂ /σ2
w] .

(2.45)

2.3.5 Distributed Detection

Detection networks can be single or multi-nodal networks with varying topologies. An ex-

ample of a distributed detection network is in MIMO radar, where an array of receivers

each make local detection decisions based on local thresholds/decision rules. Non-fused dis-

tributed detection focuses on making local sensor decisions based on local decision rules

without performing fusion to obtain a global decision. Fused distributed detection makes

local sensor decisions based on local decision rules and fuses those decisions to obtain a global

decision.

2.3.6 Bayesian Distributed Detection

Consider a binary hypotheses problem with H0 and H1 being the two hypotheses with

a priori probabilities P0 and P1, respectively. Let two detectors, DM1 and DM2, collect
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observations y1 and y2 and make decisions µ1 and µ2 respectively. The joint conditional

density functions under the two hypotheses are p(y1, y2|Hi), i = 0, 1. The decisions µi are

given by [8]

µi =


0, H0 is declared present

1, H1 is declared present .

(2.46)

Local decisions µi are only based on the local observations of their respective detector/sensor.

The costs are given as Cijk with i, j, k = {0, 1}, where Cijk represents the cost of DM1

deciding Hi, DM2 deciding Hj when Hk is present.

The goal is to obtain decision rules at both of the detectors that minimize the average

cost. Like the Bayesian example in Section 2.3.1, the Bayes risk function is given by [8]

R =
∑
i,j,k

∫
y1,y2

PkCijkp(µ1, µ2|y1, y2,Hk)p(y1, y2|Hk) . (2.47)

Due to the local decisions being independent and not depending on the hypothesis present,

Equation (2.47) can be rewritten as [8]

R =
∑
i,j,k

∫
y1,y2

PkCijkp(µ1|y1)p(µ2|y2)p(y1, y2|Hk) . (2.48)

Expanding and simplifying Equation (2.48), R becomes [8]

R =

∫
y1

p(µ1 = 0|y1)
∑
j,k

∫
y2

Pkp(µ2|y2)p(y1, y2|Hk) [C0jk − C1jk] . (2.49)

Minimizing R allows us to create the decision rule and making the assumption that C0j0 <

C1j0, meaning that the cost of DM1 making an error when H0 is present is more than the

cost of it being right regardless of the decision of DM2 [8]

P1p(y1|H1)

P0p(y1|H0)

µ1=0

≷
µ1=1

∑
j

∫
y2
p(µ2|y2)p(y2|y1,H0)[C1j0 − C0j0]∑

j

∫
y2
p(µ2|y2)p(y2|y1,H1)[C0j1 − C1j1]

. (2.50)
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Assuming that observations y1 and y2 are conditionally independent given any hypothesis,

the right hand side of Equation (2.50) becomes a threshold t1 [8]

t1 =
P0

∫
y2
p(y2|H0) ([C110 − C010] + p(µ2 = 0|y2)[C100 − C000 + C010 − C110])

P1

∫
y2
p(y2|H1) ([C011 − C111] + p(µ2 = 0|y2)[C001 − C101 + C111 − C011])

. (2.51)

This threshold t1 is a function of p(µ2 = 0|y2) which decides the decision rule at DM2, giving

us a function of t2. Therefore these thresholds can be expressed as functions where [8]

t1 = f1(t2)

t2 = f2(t1) .

(2.52)

2.4 Related Work

Information theoretic measures have been the fundamental measure of defining spectral util-

ity in communications, with information capacity/channel capacity being the fundamental

bound for the utility of traditional communication systems [2], [10]. While the uniform na-

ture of communication systems allows for convenient use of information theoretic analyses,

in radar it is more challenging to establish a model.

2.4.1 Detection Rate

The detection rate, or the fundamental bound of decisions per second per Hz of transmitted

bandwidth, has been derived in [1] where a pulse-Doppler radar was assumed. From Section

2.1, we know that a pulsed radar unambiguously measures Rua = cTPRI

2
meters per PRI.

From the pulsed nature of the radar, there are

Nr,ua =
Rua

∆r

=
cTPRI
2

2B

c
= BTPRI (2.53)
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range bins sampled every PRI [1]. Collecting M pulses yields a Doppler space with M bins

associated with each N range bin. So each CPI gives

NRD = BTPRIM (2.54)

total range-Doppler bins [1]. Provided that

NCPI =
1

TCPI
=

1

TPRIM
(2.55)

CPIs are measured each second [1]. The highest number of range-Doppler bins that a radar

can generate per second is then equal to

Nbins = NRDNCPI = BTPRIM
1

TPRIM
= B , (2.56)

giving us the fundamental bound on the number of unique decisions a pulse-Doppler radar

may make per second, defined by the Rayleigh range-Doppler resolution [1]. This means

that the radar is able to make 1 decision per second per Hz of transmitted bandwidth,

independent of center frequency and type of waveform transmitted [1].
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Chapter 3

Information of Common Hypothesis

Distributions

In this chapter we will be analyzing the differential entropy of different observation distribu-

tions for 1 to M sensors with 1 to N observations.

3.1 Gaussian Distribution

Due to the Gaussian distribution’s entropy properties (i.e. Gaussian distributions have the

largest entropy, or information) we will first be analyzing this distribution for the information

content for 1 to M sensors with 1 to N observations. Firstly, we assume that we know the

noise distribution and the target (i.e. a constant in Gaussian noise). From our previous

example in Section 2.3.3, we know that Gaussian decision distributions can be modeled as

P (yij|H0) =
1√
2πσ2

w

exp

(
−1

2

(
yij
σw

)2
)

P (yij|H1) =
1√
2πσ2

w

exp

(
−1

2

(
yij − sj

σw

)2
)
,

(3.1)

for sj individual, independently spaced sensors, where j = 1, ...,M . Furthermore, there are

i = 1, ..., N observations y, so we have 1 to N observations for each 1 to M sensors. The
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notation for observation i on sensor j is denoted yij. To illustrate how the sensor number

impacts the PDF P (yij|H1), Figure 3.1 shows how the PDF is shifted for 0 to 3 sensors.

Figure 3.1: P (yij|H1) for j independently spaced sensors.

Due to Gaussian entropy not relying on mean, the entropy of both hypothesis distributions

will be the same, regardless of sensor number. For a Gaussian distribution, the differential

entropy is [11]

h(yH0
ij ) = h(yH1

ij ) =
1

2
log(2πeσ2) . (3.2)

The relationship between differential entropy for different variances is seen in Figure 3.2.
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Figure 3.2: Differential entropy of a Gaussian with varying σ2.

3.2 Rayleigh Fluctuation Environment

A common distribution for the problem of radar detection is the Rayleigh fluctuation envi-

ronment. Under hypothesis H0, the PDF of zn = |yn| is Rayleigh [5]

pzn(zn|H0) =


2zn
σ2
w
e−z

2
n/σ

2
w zn ≥ 0 ,

0 zn < 0 .

(3.3)

Under hypothesis H1, zn is a Rician voltage density [5]

pzn(zn|H1) =


2zn
σ2
w
e−(z2n+m̃

2)/β2
I0

(
2m̃zn
σ2
w

)
zn ≥ 0 ,

0 zn < 0 ,

(3.4)
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where I0(•) is the modified Bessel function

I0(x) =
∞∑
m=0

1

m!Γ(m+ 1)

(x
2

)2m
. (3.5)

The differential entropy under hypothesis H0 is [11]

h(zH0
n ) = 1 + log

σw

2
√
2
+

γ

2
, (3.6)

where γ is the Euler-Mascheroni constant given by

γ = −
∫ ∞

0

e−x log xdx ≈ 0.57721566490153286060651209008. (3.7)

The differential entropy under hypothesis H1 can only be found numerically by using the

formula found in Equation (2.13).

3.3 Erlang Distribution

The differential entropy of the estimated threshold T̂ from Section 2.3.4 can be expressed

as [11]

h(T̂ ) = log

(
Γ(N)ασ2

w

N
eN+(1−N)ψ(N)

)
, (3.8)

where Γ(x) is the gamma function and Ψ(y) is the digamma function, respectively provided

as

Γ(x) = (x− 1)!

Ψ(y) =
d

dy
ln(Γ(y)) ∼ ln y − 1

2y
.

(3.9)

31



Chapter 4

Detection Capacity

4.1 Introduction

From our elementary understanding of detection from the radar detection section, we know

that one way to decide if something is detected or not is encoding a decision 0 for H0 and

a decision 1 for H1, which is called a hard decision. While this relatively simplistic view

of encoding either a 0 or 1 is adequate in theory, actual detection scenarios rely on soft

decisions. A soft decision is essentially a ’maybe’ instead of a hard ’yes’ or ’no’, where

instead of deciding either a 0 or 1, it takes the value of somewhere in-between. Soft decisions

allow for more accurate detection scenarios at the cost of computational resources. Instead

of sending a simple one-bit decision to the sensor fusion center, it sends multi-bit decisions.

There are three main methods for data fusion in these multi-sensor distributed binary

detection systems (i.e. MIMO radar), that vary in performance and resource based trade-offs.

The best approach theoretically is centralized detection, where all of the sensor observations

are sent directly to a central detector where the decision processing is performed. This has

optimal performance, as all of the detection data is sent to the fusion center, at the cost

of communication bandwidth and computational resources. Another method that is used is

binary decision fusion. Decisions are made at the local sensors, sending the fusion center

either a 0 or 1 instead of soft decisions that could be multiple bits. This method has the
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advantages of optimal communication bandwidth and computational cost, although at the

cost of performance. This cost in performance comes from the fact that the fusion center

only receives binary partial information.

In Section 4.2, the derivation of detection capacity found in [1] will be expanded upon to

find a closed form expression of channel capacity. The key benefit of having this closed form

expression is that this expression does not depend on a priori probabilities. Subsection 4.2.1

shows the derivation of a closed form expression for detection capacity of hard decisions and

shows a plot of channel capacity for various probabilities of detection and probabilities of

false alarm. Subsection 4.2.3 expands on the channel capacity expression shown in Section

4.2.1 to add integration over multiple trials. Binary, or M of N integration is implemented,

with plots showing the effect of integration on channel capacity in a hard detection system.

Section 4.3 shows the effect that different detectors (constant, known RCS in known noise

with known/unknown phase) have on detection capacity with no integration. The results

match up with the results provided in [1], which confirms that our novel aspect of finding

an expression that does not depend on a priori probabilities is correct. Section 4.4 shows

the effect that different detectors have on detection capacity with integration. Section 4.5

shows the effect of using different processors such as CA-CFAR as well as the effect of having

target fluctuation and clutter.

4.2 Detection Capacity of Hard Decisions

4.2.1 Single Receiver

Assume the case of one decision maker, DM1, and that this decision maker has only makes

hard decisions, the case that H0 ∈ {0, 1} or H1 ∈ {0, 1}. Furthermore, assume that there

is only a single trial, so there is no integration within the fusion center. We can model this

detection problem as a binary channel model as we are only deciding between encoding a 0

or 1. For the case of PFA = PD, we have a completely noisy channel of zero capacity. If we

have that PD = 1−PFA, this case reduces to the case of a binary symmetric channel, where
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the channel capacity is CHD = 1−Hb(PD) bits [2]. Given the case of PFA = 0, it reduces to

a Z-channel. If PFA and PD do not match the first three cases, more specifically the channel

cross-over probability is not the same, we can model this as a binary asymmetric channel,

shown in Figure 4.1.

Figure 4.1: Binary asymmetric channel.

For symmetry, the values of PFA and 1− PD are restricted to the following values [12]

0 ≤ PFA ≤ 1− PD ≤ 1 (4.1)

PFA ≤ 1− PFA (4.2)

PFA ≤ PD . (4.3)

Figure 4.2 shows the different regions of interest/soft constraints for our model. The

region Ω are the bounds provided by Equations (4.1) and (4.2). For the cases that violate

the constraints, the model can simply be flipped (which will use the same detection capacity

expression). For the case of PFA > 1−PFA, we can simply flip all zeros to ones and vice-versa

to get an equivalent channel with PFA ≤ 1 − PFA. The case where PFA > PD, we can flip

the output to get an equivalent channel with PFA ≤ PD. Furthermore, for the case where
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PFA > PD, we can flip the input to get an equivalent channel with PFA ≤ PD [12].

Figure 4.2: Binary channel bounds.

Radar detectors typically utilize a Neyman-Pearson test, where a priori probabilities do

not play a part of the hypothesis procedure. Bayesian detection frameworks, which are

primarily seen in communications and other applications, incorporate a priori probabilities

into detection threshold estimates [3], [13]. From [1], we know that for random variable H,

where H denotes the probability of a target being present in a range-Doppler bin (P (H0) =

P0 and P (H1) = 1 − P0), the probability of deciding that a target is not present is the

marginalization

P (µ0) = P (µ = 0) = P (H0)P (µ = 0|H0) + P (H1)P (µ = 0|H1)

P (µ0) = P0(1− PFA) + (1− P0)(1− PD) .

(4.4)
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Similarly, the probability of deciding a target is present is the marginalization

P (µ1) = P (µ = 1) = P (H0)P (µ = 1|H0) + P (H1)P (µ = 1|H1)

P (µ1) = P0PFA + (1− P0)PD .

(4.5)

The mutual information of the input and output random variables of the hard decision

detection problem can be expressed as [1], [3], [8]

I(H;µ) =
∑
T

∑
µ

P (H, µ) log
P (H|µ)
P (H)

= P0(1− PFA)[log(1− PFA)− log(Pµ0)]

+ (1− P0)(1− PD)[log(1− PD)− log(Pµ0)]

+ (1− P0)PD[log(PD)− log(Pµ1)]

+ P0PFA[log(PFA)− log(Pµ1)] .

(4.6)

Since we know that the channel capacity of a hard decision is the maximization of mutual

information, we can express it as [12]

CHD =
PFA

PD − PFA
Hb(1− PD)−

PD
PD − PFA

Hb(PFA) + log

[
1 + 2

Hb(PFA)−Hb(1−PD)

PD−PFA

]
, (4.7)

where Hb(•) is the binary entropy function, defined in Equation (2.23). The full derivation

is provided in Appendix A. The input distribution P (H) that achieves channel capacity is

given by [12]

P (H0) = 1− P (H1) =
1
2x

+ PD − 1

PD − PFA
, (4.8)

where x is defined as

x =
Hb(PFA)−Hb(1− PD)

PD − PFA
. (4.9)

We can now plot the hard decision channel capacity for the case of one receiver, provided by

Equation (4.7).
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Figure 4.3: Hard decision detection capacity for various PFA values.

Figure 4.3 shows the relationship between detection capacity and probability of false

alarm. Lower PFA values such as PFA = 10−12, PFA = 10−9, PFA = 10−6, and PFA = 10−3

have higher detection capacity rates as there is less uncertainty between the hypotheses.

High PFA values such as PFA = 10−2 and PFA = 10−1 have lower detection capacity rates as

there is more uncertainty due to the probability of false alarm being high (i.e. there will be

a higher chance that there is an incorrect hypothesis).

4.2.2 Multiple Receivers without Integration

We can expand our expression for channel capacity for N decision makers/sensors. To do

this, we use the fact that our sensor array is independent. Given that our channels are

independent, we can use the additive property of channel capacity C(c1×c2) = C(c1)+C(c2),

giving us

CHDN
=

N∑
i=1

CHDi
. (4.10)
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This may seem to violate our fundamental bound, found in Equation (2.56), of 1 decision

per second per Hz of transmitted bandwidth, but the overall value will be normalized by

the fusion center. The normalization by the fusion center will be done by the fusion center’s

global threshold.

4.2.3 Binary Integration

To expand Section 4.2.1 to the case of multiple trials with integration, we can use the M

of N decision rule [5]. After coherent or incoherent integration, the detection process is

followed by comparing the data with a threshold test (LRT such as section 2.3.1 or 2.3.2).

The result of the threshold test has two outcomes, the binary test of deciding the hypothesis

of target absent or target present. Given N trials of the detection process, there will be N

binary decisions available. Each decision ofH1 will have some probability of PD being correct

and a probability of PFA being incorrect. To improve the reliability of the binary detection

decision, the decision rule can be modified such that there must be some number of M

successful target detects for N detection trials. This process is also called binary integration,

modeling our probabilities as binomial distributions. This allows for us to replace our PD

and PFA in Equation (4.7) with [5]

PBD =
N∑

r=M

(
N

r

)
prD(1− pD)

N−r

PBFA =
N∑

r=M

(
N

r

)
prFA(1− pFA)

N−r ,

(4.11)

where
(
N
r

)
is equal to (

N

r

)
=

N !

(N − r)!r!
. (4.12)

One example of the M of N decision rule is putting N = 4 and varying the M count. Table

4.1 shows the effect on probability for different numbers of success for the case of N = 4

trials [5]. Furthermore, Table 4.2 summarizes the effect of each of the different M cases for
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the M of N decision rule.

Table 4.1: Binary integrated probabilities for M of 4 decision rule [5].

p PM=1 PM=2 PM=3 PM=4

0.9 0.999 0.996 0.948 0.656

0.8 0.998 0.973 0.819 0.410

0.5 0.938 0.688 0.313 0.063

10−3 0.004 5.992× 10−6 4.00× 10−9 1.0× 10−12

10−6 4.0× 10−6 6.0× 10−10 4.00× 10−18 1.0× 10−24

Table 4.2: Summary of M of N decision rule for N = 4.

M

of 4

Description

1 of

4

The ”1 of 4” rule increases the effective PD, reducing the SNR required to achieve

the goal PD, at the cost of also increasing PFA

2 of

4

The ”2 of 4” rule reduces PFA and increases PD so long as single-trial PD is high

(PD ≥ 0.23)

3 of

4

The ”3 of 4” rule has the same benefits as the ”2 of 4” rule but single-trial PD

must be high (PD ≥ 0.75)

4 of

4

The ”4 of 4” rule is good for PFA reduction but is not good for improving PD

Figures 4.4, 4.5, 4.6, 4.7, and 4.8 show the non-normalized detection capacity for different

values of M for PFA = 10−7, 10−5, 10−3, 0.1, and 0.3. For the M of 4 rule, M = 1 has the

greatest slope for the lower PFA values such as PFA = 10−7 and PFA = 10−5. At PFA =

10−3, M = 1 starts to lower in the maximum detection capacity, peaking at approximately

C = 0.98. At PFA = 0.1 and PFA = 0.3, M = 1 continues to lower in detection capacity

for the higher probabilities of detection, peaking at C = 0.46 and C = 0.21 respectively for
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PD = 1, while increasing the detection capacity at lower PD, with values of C = 0.20 and

C = 0.55 for PD = 0. M = 1 has a detection capacity of zero at PD = 0.1 and PD = 0.3

for PFA = 0.1 and PFA = 0.3. For PFA = 10−7 and PFA = 10−5, M = 2 had the second

greatest slope. Unlike the case of M = 1, M = 2 did not suffer from the lowering of maximal

detection capacity for PFA = 10−3, achieving C = 1 at PD = 1.

For the cases of PFA = 0.1 and PFA = 0.3, the maximal detection capacity reduces to

C = 0.85 and C = 0.45 at PD while also achieving a detection capacity of C = 0.03 and

C = 0.21 for PD = 0. For the case of M = 3, maximal C at PD = 1 is not reduced. C

stays at around 0 for PFA = 0.1 at PD = 0 but increases to 0.05 for PFA = 0.3. C is still

high for PFA = 0.1 and PFA = 0.3 at PD = 1, peaking at C = 0.98 and C = 0.79. M = 4

had the highest detection capacity peaks for higher PFA, peaking at C = 0.98 and C = 0.94

at PD = 1. Moreover, M = 4 never had a detection capacity above zero until the case of

PD = PFA for lower PD.

Choosing the case of M = 1 maximizes detection capacity, or information rate, at lower

PD for higher PFA such as PFA = 0.1 and PFA = 0.3. This is due to the ”1 of N” achieving

a high binary integrated PD for relatively low single-trial PD values, meaning that the infor-

mation rate would be the most volatile at this point. Choosing a value of M = 4 minimizes

the detection capacity at lower PD for higher PFA such as PFA = 0.1 and PFA = 0.3, but

maximizes the detection capacity at PD ≈ 1. This is due to the ”4 of 4” rule being good for

false alarm reduction at the cost of being bad at improving detection, meaning it takes a very

high PD for the information rate to be maximized. The case of M = 3 has high detection

capacity at higher PFA at PD = 1 and also has a non-zero detection capacity for PFA = 0.3 at

PD = 0, albeit the lowest of the non-zero cases. This follows from our understanding of the

M = 3 decision rule, as the ”3 of 4” rule only increases probabilities equal to approximately

0.75 or higher. The case of M = 2 has the second highest detection capacity at higher PFA

values for PD = 0 but also has the third highest detection capacity at PD = 1. This makes

sense as the ”2 of 4” rule provides good false alarm reduction for small values of probability
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while providing detection improvement for large values of probability, improving detection

down to a probability value of approximately 0.25.

For smaller values of PFA such as PFA = 10−7, PFA = 10−5, and PFA = 10−3, the

detection capacity is maximized under all of the values of PD for the case of M = 1. This is

primarily due to the ”1 of N” rule achieving a high binary integrated probability of detection,

and since PFA is very small, the simultaneous rise of PFA is negligible.

Figure 4.4: CHD v. PD for M of 4 Rule, PFA = 10−7
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Figure 4.5: CHD v. PD for M of 4 Rule, PFA = 10−5

Figure 4.6: CHD v. PD for M of 4 Rule, PFA = 10−3
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Figure 4.7: CHD v. PD for M of 4 Rule, PFA = 0.1

Figure 4.8: CHD v. PD for M of 4 Rule, PFA = 0.3
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4.3 Detection Capacity of Hard Decision Detectors without Integration

4.3.1 Constant, Known RCS in Known Noise with Known Phase

The simplest detector example is where the target reflection is a known, constant amplitude

with known phase and known noise. Under the optimal likelihood ratio (LRT) test, the

probability of detection is [5]

PD =
1

2
erfc

[
erfc−1(2PFA)−

√
χ
]
. (4.13)

The detection capacity of a single receiver with no integration deciding only hard decisions

is plotted in Figure 4.9 for SNR values of 13dB, 10dB, and 3dB.

Figure 4.9: Detection capacity for constant, known RCS with known phase in known noise.

The detection capacity of a single receiver with no integration deciding only hard decisions

is plotted against range in Figure 4.10 for PFA values of 10−12, 10−9, and 10−6. The transmit

range is calculated with the radar characteristics provided in Table 2.1.
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Figure 4.10: Detection capacity v. transmit range for constant, known RCS with known
phase in known noise

We can see that as the transmit range increases, the detection capacity generally decreases

as well. From Section 2.1, we know that as SNR decreases, transmit range is increased. It

follows from Figure 4.9 that SNR decreasing aligns with lower detection capacity, which gives

us an inverse relationship between transmit range and channel capacity.

4.3.2 Constant, Known RCS in Known Noise with Unknown Phase

To see the difference in detection capacity between detectors, we can find the channel capacity

of a detector of having unknown or random phase. The optimum LRT envelope detector has

a PD of [5]

PD = QM

(√
2χ,
√

−2 ln(PFA)
)
, (4.14)

where QM(•) is known as Marcum’s Q function, given by [5]

QM(α, γ) =

∫ +∞

γ

texp

[
−1

2
(t2 + α2)

]
I0(αt)dt . (4.15)
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The difference between having known and unknown phase on PD and PFA for different SNR

values can be seen in Figures 4.11, 4.12, and 4.13.

Figure 4.11: PD v. PFA for χ = 3dB.

Figure 4.12: PD v. PFA for χ = 10dB.
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Figure 4.13: PD v. PFA for χ = 13dB.

Furthermore, the SNR loss from having unknown phase is plotted for various PFA values in

Figures 4.14 and 4.15.

Figure 4.14: χ v. PD for PFA = 10−6.
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Figure 4.15: χ v. PD for PFA = 10−4.

The detection capacity of a single receiver with no integration deciding only hard decisions

is plotted in Figure 4.16.
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Figure 4.16: Detection capacity for constant, known RCS with unknown phase in known
noise.

The detection capacity of a single receiver with no integration deciding only hard decisions

is plotted against range in Figure 4.17 for PFA values of 10−12, 10−9, and 10−6.
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Figure 4.17: Detection capacity v. transmit range for constant, known RCS with unknown
phase in known noise.

Comparing with Figure 4.9, we can see the y-intercept is lower than the case of having

known phase. The introduction of a single random variable in detection process decreases the

rate at which information can be transmitted without an arbitrarily low error. The difference

in detection capacity between the two detectors is shown in Figure 4.18. We see that for

higher SNR values, the information penalty is higher for near optimal detector performance

(PFA → 0) while the information penalty is higher at worse detector performance (PFA → 1)

for lower SNR values.
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Figure 4.18: Difference in detection capacity, ∆C, for various SNR values.

4.4 Detection Capacity of Hard Decision Detectors with Integration

4.4.1 Constant, Known RCS in Known Noise with Known Phase

To find the detection capacity for a constant, known RCS in known noise detector using

integration, we can plug the modified binary false alarm probability, Equation (4.11), into

the expression for PD in the constant, known RCS in known noise, Equation (4.13), to

find the probability of detection with integration. Figures 4.19, 4.20, 4.21, and 4.22 show

the effect of integration on detection capacity for M of N processing, plotting PFA before

integration against detection capacity.
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Figure 4.19: Detection capacity for constant, known RCS with known phase in known noise
for 1 of N integration.

Figure 4.20: Detection capacity for constant, known RCS with known phase in known noise
for 2 of N integration.

52



Figure 4.21: Detection capacity for constant, known RCS with known phase in known noise
for 3 of N integration.

Figure 4.22: Detection capacity for constant, known RCS with known phase in known noise
for 4 of N integration.
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Plot 4.19 shows the 1 of 4 rule for a detector with constant, known RCS in known noise.

We can see that the overall normalized channel capacity is high for smaller values of PFA.

This is due to the 1 of 4 rule increasing the effective PD while also increasing PFA, aligning

with the fact that detection capacity depends primarily on PD. Figures 4.20, 4.21, and 4.22

show the 2 of 4, 3 of 4, and 4 of 4 rules respectively. We can see that the channel capacity

is significantly reduced at low PFA as M increases. This is due to single trial PD being

relatively low for an actual detector, meaning PD only increases at higher values of PFA.

The detection capacity of a single receiver with integration deciding only hard decisions

is plotted against range in Figures 4.23, 4.24, 4.25, and 4.26 for PFA values of 10−12, 10−9,

and 10−6.

Figure 4.23: Detection capacity v. transmit range for constant, known RCS with known
phase in known noise for 1 of N integration.
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Figure 4.24: Detection capacity v. transmit range for constant, known RCS with known
phase in known noise for 2 of N integration.

Figure 4.25: Detection capacity v. transmit range for constant, known RCS with known
phase in known noise for 3 of N integration.
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Figure 4.26: Detection capacity v. transmit range for constant, known RCS with known
phase in known noise for 4 of N integration.

4.4.2 Constant, Known RCS in Known Noise with Unknown Phase

To find the detection capacity for a constant, known RCS with unknown phase in known

noise detector using integration, we can plug the modified binary false alarm probability,

Equation (4.11), into the expression for PD in the constant, known RCS with unknown

phase in known noise, Equation (4.14), to find the probability of detection with integration.

Figures 4.27, 4.28, 4.29, and 4.30 show the effect of integration on detection capacity for M

of N processing.
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Figure 4.27: Detection capacity for constant, known RCS with unknown phase in known
noise for 1 of N integration.

Figure 4.28: Detection capacity for constant, known RCS with unknown phase in known
noise for 2 of N integration.
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Figure 4.29: Detection capacity for constant, known RCS with unknown phase in known
noise for 3 of N integration.

Figure 4.30: Detection capacity for constant, known RCS with unknown phase in known
noise for 4 of N integration.
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The case of constant, known RCS with unknown phase in known noise with integration

follows the same trend as the case of constant, known noise in known noise with integration,

provided in Section 4.4.1. The notable difference between the two detectors is a slightly

lower detection capacity for case of unknown phase.

The detection capacity of a single receiver with integration deciding only hard decisions

is plotted against range in Figures 4.31, 4.32, 4.33, and 4.34 for PFA values of 10−12, 10−9,

and 10−6.

Figure 4.31: Detection capacity v. transmit range for constant, known RCS with unknown
phase in known noise for 1 of N integration.
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Figure 4.32: Detection capacity v. transmit range for constant, known RCS with unknown
phase in known noise for 2 of N integration.

Figure 4.33: Detection capacity v. transmit range for constant, known RCS with unknown
phase in known noise for 3 of N integration.
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Figure 4.34: Detection capacity v. transmit range for constant, known RCS with unknown
phase in known noise for 4 of N integration.

Again, the detection capacity is slightly lower than the previous detector but follows the

same trends. This is due to the SNR being lower for this detector.

4.5 Detection Capacity of CFAR

From our elementary understanding of CFAR from Section 2.3.4, we can find the detection

capacity for different CFAR assumptions such as differing CUT amount and threshold levels.

To explore various detector and clutter assumptions of CFAR, we can refer to Table 4.3.

Table 4.3: Target category map [14].

Clutter Constant Target Fluctuating Target

No Clutter I II

Zero Mean Clutter III IV

The target parameters are provided in Table 4.4. Parameters Nt, Xt, and Y will be used
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for the fixed threshold, no target fluctuation case. Adding target fluctuation will add target

fluctuation parameter K. Changing from a fixed threshold to an adaptive threshold intro-

duces Nr and replaces Y with α.

Table 4.4: Target parameters [14].

Target

Parame-

ter

Description

Nt Number of target cells integrated

Nr Total number of target-free cells averaged

Xt Total signal level from all Nt target cells

Y Fixed threshold, compared to Xt

α Threshold parameter, replaces normalized threshold parameter Y , by αy,

where y is a random variable representing a target free cell’s response

K Target fluctuation parameter

The primary target fluctuation model is based on the standard chi-square/Gamma density

function with parameters Xt and K [14]

p(x|Xt, K) =
xK−1

Γ(K)

(
K

Xt

)K
exp(−Kx/Xt), x ≥ 0 . (4.16)

4.5.1 Category I: Constant Target, No Clutter

Before analyzing CFAR, we should first analyze the case in which we have a constant target

with no clutter to compare between clutter/non-clutter target scenarios. The probability of

detection and probability of false alarm for the case of category I, the constant target and
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no clutter case, are [14]

PD,i(Nt, Xt, Y ) =
Nt−1∑
m=0

e−Y
Y m

m!
+

∞∑
m=Nt

e−Y
Y m

m!
×

(
1−

m−Nt∑
i=0

e−Xt
(Xt)

i

i!

)
, (4.17)

PFA,i(Nt, Y ) =
Nt−1∑
m=0

e−Y
Y m

m!
. (4.18)

The first term of Equation (4.17),
∑Nt−1

m=0 e−Y Ym

m!
, is the noise term which will only change if

clutter is introduced. The term,
(
1−

∑m−Nt

i=0 e−Xt (Xt)i

i!

)
, is the target term, which will only

change if target fluctuation is introduced. The probability of false alarm, Equation (4.18),

is calculated by setting the total signal level, Xt, equal to zero.

Plugging in Equations (4.17) and (4.18) into Equation (4.7) allows us to find the detection

capacity of a constant target, no clutter detector. Figure 4.35 shows the detection capacity

for varying target cells given threshold Y = 13. We can see that higher total signal levels

correspond to higher capacity peaks but lower to 0 at around Nt = 25. Detection capacity

flattens out at Nt = 25 because the probability of false alarm gets too high due to the ratio

of threshold and number of target cells. Another interesting trend that we can see is where

each total signal level has peak capacity. For example, for a total signal level Xt = 10, the

capacity peaks at around 10 target cells averaged. This is due to Xt again being the total

received SNR from the samples containing the target, meaning lower SNR values require

more target cells to be averaged to achieve higher probabilities of detection and to meet the

threshold.
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Figure 4.35: Detection capacity v. number of target cells averaged for Y = 13.

Figure 4.36 shows the detection capacity for varying thresholds for a total target cell of

Nt = 1. Higher total signal levels stay at peak detection capacity for a higher threshold

range due to the fact that it takes longer for the second term in Equation 4.17 to go towards

0.
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Figure 4.36: Detection capacity v. threshold for Nt = 1 and α = 0.148.

4.5.2 Category II: Fluctuating Target, No Clutter

The probability of detection for the case of category II, fluctuating target and no clutter,

is [14]

PD,ii(Nt, Xt, Y,K) =
Nt−1∑
m=0

e−Y
Y m

m!
+

∞∑
m=Nt

e−Y
Y m

m!

×

[
1−

m−Nt∑
i=0

Γ(k + i)

i!Γ(K)

(
1

1 +Xt/K

)K (
Xt/K

1 +Xt/K

)i]
.

(4.19)

Due to the probability of false alarm simply being the probability of detection with Xt set

to zero, the probability of false alarm of category II simplifies to category I, provided by

Equation (4.18). We can see that our target term has changed from adding fluctuation to[
1−

∑m−Nt

i=0
Γ(k+i)
i!Γ(K)

(
1

1+Xt/K

)K (
Xt/K

1+Xt/K

)i]
but the first term has stayed the same due to the

lack of clutter. Substituting Equations (4.19) and (4.18) into Equation (4.7) will give us a

detection capacity expression reliant on Nt, Xt, Y , and fluctuation K. The four special cases
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of the model, K = 1, Nt, 2, and 2Nt are the Swerling fluctuation model cases of I, II, III,

and IV respectively. A summary of the different Swerling models is provided in Table 4.5.

Table 4.5: Summary of Swerling models [4].

Swer-

ling

Model

Description

I Echo pulses received on any one scan are of constant amplitude throughout the

entire scan but are independent (uncorrelated) from scan-to-scan.

II Fluctuations are independent from pulse to pulse rather than scan to scan.

III Constant RCS within a scan and independent from scan to scan like case I but

aims to represent targets that can be modeled together as one large scatterer

together with a number of small scatterers.

IV Pulse to pulse fluctuation but aims to represent the same types of targets as

case III.

Figure 4.37 shows the effect of fluctuating targets on detection capacity. Detection ca-

pacity v. total signal power is plotted for Nt = 3 and Y = 13 for various fluctuation values.

From the plots, we can see that the Swerling models that are independent from pulse-to-

pulse (Swerling models II and IV) have the highest detection capacity relative to their scan

to scan counterparts (Swerling models I and III). This high channel capacity is due to the

two Swerling models having higher fluctuation/K values than the other two models. As

K → ∞, the fluctuating target simplifies to a constant target due to the number of target

cells increasing. Furthermore, we see that targets that can be modeled together as one large

scatterer will some small scatterers (Swerling models III and IV) have higher capacities than

scatterers that are modeled as many small and independent scatters (Swerling models I and

II). This is due to less fluctuation and information required for the larger scatter, so there’s

a smaller chance of error, giving a smaller information penalty.
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Figure 4.37: Detection capacity v. total signal power for Nt = 3 and Y = 13.

4.5.3 Category III: Constant Target, Zero Mean Clutter

The probability of detection and probability of false alarm for the case of category III, the

constant radar cross section and CFAR case with zero mean clutter, are [14]

PD,iii(Nt, Nr, Xt, α) =
Nt−1∑
m=0

(Nr +m− 1)!

(Nr − 1)!m!

(
1

1 + α

)Nr
(

α

1 + α

)m
+

∞∑
m=Nt

(Nr +m− 1)!

(Nr − 1)!m!

(
1

1 + α

)Nr
(

α

1 + α

)m

×

(
1−

m−Nt∑
i=0

e−Xt
(Xt)

i

i!

)
,

(4.20)

PFA,iii(Nt, Nr, α) =
Nt−1∑
m=0

(Nr +m− 1)!

(Nr − 1)!m!

(
1

1 + α

)Nr
(

α

1 + α

)m
. (4.21)

We can see that the target term,
(
1−

∑m−Nt

i=0 e−Xt (Xt)i

i!

)
is the same as the target term

in category I, as there is no fluctuation. The noise term has changed from category I/II
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due to the addition of clutter on the model. Furthermore, we can see that our fixed thresh-

old parameter Y has been changed to an adaptive threshold α, as described in Table 4.4.

Substituting Equations (4.20) and (4.21) into Equation (4.7) gives us a detection capacity

expression dependent on the number of target cells integrated Nt, total signal level from all

target cells Xt, number of clutter cells averaged Nr, and the threshold parameter α.

Figure 4.38 shows the relationship between the number of clutter cells averaged and

detection capacity for threshold α = 0.148 and target cells averaged Nt = 1. We can see

high total signal level Xt and number of clutter cells averaged correspond with the highest

detection capacity. This is due to the accuracy increasing, as PFA gets smaller as the number

of clutter cells averaged increases for a set threshold with a high total signal level. Moreover,

we can see that for lower total signal levels from the target cells such as Xt = 10 and Xt = 20,

there seems to be diminishing returns as the cells could be filled with clutter only.

Figure 4.38: Detection capacity v. number of clutter cells averaged for Nt = 1 and α = 0.148.

Figure 4.39 shows the relationship between the number of target cells averaged and

detection capacity for threshold α = 0.148 and clutter cells averaged Nr = 100. Again, we
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see that high total signal level corresponds to higher detection capacity but it seems that

having higher target cells averaged reduces detection capacity significantly. This is due to

the increase of PFA that having a Nt to Nr ratio causes for a set threshold α. When target

cells increase relative to clutter cells, it follows that there would be a higher probability of

error, or false alarm, as there are more cells to possibly flag as a target when it is only clutter.

Figure 4.39: Detection capacity v. number of target cells averaged for Nr = 100 and α =
0.148.
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4.5.4 Category IV: Fluctuating Target, Zero Mean Clutter

For the chi-square fluctuating target case of CFAR with zero mean clutter, we can express

the probability of detection as [14]

PD,iv(Nt, Xt, Nr, α,K) =
Nt−1∑
m=0

(Nr +m− 1)!

(Nr − 1)!m!

(
1

1 + α

)Nr
(

α

1 + α

)m
+

∞∑
m=Nt

(Nr +m− 1)!

(Nr − 1)!m!

(
1

1 + α

)Nr
(

α

1 + α

)m

×

[
1−

m−Nt∑
i=0

Γ(K + i)

i!Γ(K)

(
1

1 +Xt/K

)K (
Xt/K

1 +Xt/K

)i]
.

(4.22)

Due to the probability of false alarm being derived by setting Xt to zero in Equation (4.22),

it follows that the probability of false alarm will be the same as the case of a non fluctuating

target, given by Equation (4.21). Similarly, the detection capacity can be calculated by sub-

stituting Equations (4.22) and (4.21) into Equation (4.7). This gives us a similar expression

as before, but introduces the target fluctuation parameter, K.

To compare between fluctuating and constant targets for CFAR, Figures 4.40, 4.41, 4.42,

and 4.43 show the detection capacity for various total clutter cells for Swerling models I, II,

III, and IV with the capacity of a non-fluctuating target shown for Nt = 3 and α = 0.148.

The fluctuating and constant target models for CFAR follow the same trends as categories

I and II. Swerling models II and IV again have the highest channel capacity relative to the

non-fluctuating target due to the high K value. Again, there is an information penalty for

adding noise and fluctuation, which agrees with our intuition as more uncertainty increases

the information penalty as we saw in the previous sections with the addition of random

phase.
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Figure 4.40: Detection capacity v. number of clutter cells averaged for Nt = 3, α = 0.148,
and Xt = 10.

Figure 4.41: Detection capacity v. number of clutter cells averaged for Nt = 3, α = 0.148,
and Xt = 20.
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Figure 4.42: Detection capacity v. number of clutter cells averaged for Nt = 3, α = 0.148,
and Xt = 30.

Figure 4.43: Detection capacity v. number of clutter cells averaged for Nt = 3, α = 0.148,
and Xt = 40.
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Chapter 5

Conclusion

To support the growing use of the spectrum, bandwidth and information usage need to

be analyzed for different operations and applications. Previous work has started to ana-

lyze pulse-Doppler radar from an information theoretic perspective, with key contributions

of providing a fundamental decision bound of 1 decision per second per Hz of transmit-

ted bandwidth and a Bayesian detection capacity expression [1]. This thesis has the novel

contributions of improving on previously derived detection capacity expressions to find an

expression best suited for radar (i.e. does not rely on a priori probabilities). Furthermore,

detection capacity has been expanded for different radar parameters such as multiple re-

ceivers and M of N integration. Detection capacity has been analyzed for different detectors

such as known and unknown phase for different radar assumptions.

Some of the key points from this thesis are the relationships between range, signal-to-

noise ratio, PFA, PD, and detection capacity. Analysis of existing literature on radar signal

processing has shown the relationship between SNR and range, primarily that a decrease in

SNR leads to higher transmit range. Conversely, decreasing SNR leads to a lower detection

capacity due to the minimum detectable signal threshold being reduced. Furthermore, it

leads to the reduction of detection capacity at higher transmit ranges, with higher proba-

bilities of false alarm corresponding to a more gradual reduction in detection capacity over

transmit range. From the analysis of different detectors, we can see that the introduction of
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random/unknown phase reduces the detection capacity, which agrees with our intuition as

the increase in uncertainty causes an information penalty.

The effect of M of N integration on channel capacity also has been analyzed for dif-

ferent detectors. Comparing the detection capacity performance of M of N processing has

shown that 1 of N processing improves non-normalized detection capacity compared to non-

integrated detection. 1 of N processing has higher capacity peaks at the cost of capacity at

higher probabilities of false alarm. 2 of N , 3 of N , and 4 of N processing have higher capacity

at higher probabilities of false alarm but suffer from lower capacity at lower probabilities of

false alarm. Moreover, range plots show that 1 of N processing has higher non-normalized

detection capacity compared to non-integrated detection. 2 of N , 3 of N , and 4 of N pro-

cessing suffer in capacity at higher transmit ranges, due to the rapid decrease in SNR at

certain PFA/PD.

Basic target fluctuation environments have been covered for standard chi-square/Gamma

density functions. Swerling models I and IV have the highest detection capacity peaks relative

to non-fluctuating targets. This is due to the fact that as K → ∞ there is less detection

capacity degradation as they become closer to the case of a non-fluctuating target. For

lower total signal power, the fluctuation/non-fluctuating target models converge to the same

capacity as Nr → ∞. The performance of CFAR is also analyzed for different numbers of

clutter cells and target cells averaged. We can see that as the total number of clutter cells

averaged increases, the detection capacity also increases. This is because PFA decreases as

the total number of clutter cells averaged increases. Conversely, as the number of target

cells averaged increases, detection capacity decreases. Again, this is due to the relationship

that Nt and Nr have on PFA. For higher Nt, PFA increases rapidly, causing the decrease in

channel capacity.

This thesis has expanded on various important target and radar assumptions. However,

it has also opened up many avenues for future work. Much of the future work could fo-

cus on the analysis of soft decision frameworks and further target assumptions, using the
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unnormalized M of N plots as an example of how soft decision frameworks can improve

detection capacity. Target assumptions such as different fluctuation and environments could

be a good next step. Furthermore, connecting this work to distributed detection networks

should be the key goal, with the ultimate goal of optimizing a fusion center based on infor-

mation/capacity/bandwidth cost.
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Appendix A

Derivation of Detection Capacity

The mutual information between the true hypothesis, H, and decision, µ, is defined as

I(H;µ) =
∑
H

∑
µ

P (H, µ) log

(
P (H|µ)
P (H)

)
. (A.1)

The input distribution of priors can be expressed as

P (H) =


P0 H = 0

P1 H = 1

, P0 + P1 = 1. (A.2)

The a posteriori probability of deciding no target is present is the marginalization

P (µ0) = P (µ = 0) = P (H0)P (µ = 0|H0) + P (H1)P (µ = 0|H1)

P (µ0) = P0(1− PFA) + (1− P0)(1− PD).

(A.3)

Similarly, the a posteriori probability of deciding a target is present is the marginalization

P (µ1) = P (µ = 1) = P (H0)P (µ = 1|H0) + P (H1)P (µ = 1|H1)

P (µ1) = P0PFA + (1− P0)PD.

(A.4)
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The mutual information can now be expressed as

I(H;µ) =
∑
H

∑
µ

P (H, µ) log
P (H|µ)
P (H)

= P0(1− PFA)[log(1− PFA)− log(Pµ0)]

+ (1− P0)(1− PD)[log(1− PD)− log(Pµ0)]

+ (1− P0)PD[log(PD)− log(Pµ1)]

+ P0PFA[log(PFA)− log(Pµ1)].

(A.5)

The channel capacity is defined as the maximum (over the input distribution) of the mutual

information between the input and output

C = max
p(H)

I(H;µ) = max
p(H)

[H(µ)−H(µ|H)] . (A.6)

We can define the conditional entropy as

H(µ|H) = P (H0)h(P (µ = 1|H0) + P (H1)h(P (µ = 0|H1)

= P0h(PFA) + (1− P0)h(1− PD),

(A.7)

where h(•) is defined as the binary entropy function, provided by Equation (2.23). We can

now rewrite the mutual information between the input and output distribution as

I(H;µ) = H(µ)−H(µ|H)

= h(P0(1− PFA) + (1− P0)(1− PD))

− P0h(PFA)− (1− P0)h(1− PD)

= h(P0[1− PFA − (1− PD)] + (1− PD))

− P0[h(PFA)− h(1− PD)]− h(1− PD).

(A.8)
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We want to find the a priori probability, P0, that maximizes the mutual information

I(H;µ) = h(P0[1− PFA − (1− PD)] + (1− PD))

− P0[h(PFA)− h(1− PD)]− h(1− PD).

(A.9)

Following calculus, to find the a priori probability that maximizes the mutual information,

we want to take the derivative of the function with respect to the variable, set the derivative

equal to zero, and solve for the variable. Taking the derivative of the mutual information

with respect to the a priori probability, ∂
∂P0

I(H;µ), gives

I ′(H;µ) = (1− PFA − (1− PD)) log2

(
1

P0[1− PFA − (1− PD)] + (1− PD)
− 1

)
− [h(PFA)− h(1− PD)].

(A.10)

Setting the derivative I ′(H;µ) = 0 gives

1

P0[1− PFA − (1− PD)] + (1− PD)
− 1 = 2

h(PFA)−h(1−PD)

1−PFA−(1−PD) . (A.11)

Solving for the a priori probability P0 gives us

P0 =
1

1− PFA − (1− PD)

(
1

2
h(PFA)−h(1−PD)

1−PFA−(1−PD) + 1
− (1− PD)

)
. (A.12)

Plugging the a priori probability into the derivative I ′(H;µ) gives us a channel capacity of

CHD =
PFA

PD − PFA
h(1− PD)−

PD
PD − PFA

h(PFA) + log

[
1 + 2

h(PFA)−h(1−PD)

PD−PFA

]
. (A.13)
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