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Summary 

Problem: Complex systems are composed of many interdependent subsystems with a level of 

complexity that exceeds the ability of a single designer. One way to address this problem is to 

partition the complex design problem into smaller, more manageable design tasks that can be 

handled by multiple design teams. Partitioning-based design methods are decision support tools 

that provide mathematical foundations, computational methods to create such design processes. 

Managing the interdependency among these subsystems is crucial and a successful design process 

should meet the requirements of the whole system which needs coordinating the solutions for all 

the partitions after all.  

Approach: Partitioning and coordination should be performed to break down the system into 

subproblems, solve them and put these solutions together to come up with the ultimate system 

design. These two tasks of partitioning-coordinating are computationally demanding. Most of the 

proposed approaches are either computationally very expensive or applicable to only a narrow 

class of problems. These approaches also use exact methods and eliminate the uncertainty. To 

manage the computational complexity and uncertainty, we approximate each subproblem after 

partitioning the whole system. In engineering design, one way to approximate the reality is using 

surrogate models (SM) to replace the functions which are computationally expensive to solve. This 

task also is added to the proposed computational framework. Also, to automate the whole process, 

creating a knowledge-based reusable template for each of these three steps is required. Therefore, 

in this dissertation, we first partition/decompose the complex system, then, we approximate the 

subproblem of each partition. Afterwards, we apply coordination methods to guide the solutions 

of the partitions toward the ultimate integrated system design. 
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Validation: The partitioning-approximation-coordination design approach is validated using 

the validation square approach that consists of theoretical and empirical validation. Empirical 

validation of the design architecture is carried out using two industry driven problems namely the 

‘a hot rod rolling problem’, ‘a dam network design problem’, ‘a crime prediction problem’ and ‘a 

green supply chain design problem’. Specific sub-problems are formulated within these problem 

domains to address various research questions identified in this dissertation. 

Contributions: The contributions from the dissertation are categorized into new knowledge in 

five research domains: 

• Creating an approach to build ensemble of surrogate models when the data is limited – when the 

data is limited, replacing computationally expensive simulations with accurate, low-dimensional, 

and rapid surrogates is very important but non-trivial. Therefore, a cross-validation-based 

ensemble modeling approach is proposed. 

• Using temporal and spatial analysis to manage the uncertainties - when the data is time-based 

(for example, in meteorological data analysis) and when we are dealing with geographical data 

(for example, in geographical information systems data analysis), instead of feature-based data 

analysis time series analysis and spatial statistics are required, respectively. Therefore, when the 

simulations are for time and space-based data, surrogate models need to be time and space-based. 

In surrogate modeling, there is a gap in time and space-based models which we address in this 

dissertation. We created, applied and evaluated the effectiveness of these models for a dam 

network planning and a crime prediction problem.  

• Removing assumptions regarding the demand distributions in green supply chain networks – in 

the existent literature for supply chain network design, there is always assumptions about the 
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distribution of the demand. We remove this assumption in partition-approximate-compose of the 

green supply chain design problem. 

• Creating new knowledge by proposing a coordination approach for a partitioned and 

approximated network design. A green supply chain under online (pull economy) and in-person 

(push economy) shopping channels is designed to demonstrate the utility of the proposed 

approach. 

Besides the contributions I have made in this dissertation, I have identified new gaps and 

questions. The first gap in using data-driven approximation models in creating rule-based 

computational frameworks, knowledge-based platforms, and ontologies to manage the knowledge 

resulting from the modeling. I posed the question of “What is the mathematics underlying 

automating the data-driven modeling and approximation models?” to address this gap. The second 

gap is on embedding the social aspect in the cyber-physical-social systems. I posed the question 

of “social aspect of the cyber-physical-social systems”. The third gap is on utilization of digital 

threads in green supply chain as a cyber-physical-social system. to address this gap, I pose the 

questions of: (i) how can seamless visibility across the supply chain enable informed decision 

making? (ii) how can prescriptive decisions enable supply chain planners to navigate through 

unforeseen and exceptional scenarios?
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CHAPTER 1 MOTIVATION AND PROBLEM IDENTIFICATION 

The foundational premise for this dissertation is that a solutions approach involving 

partitioning, approximation, and coordination to manage computational complexity. This 

framework is needed in complex engineered design systems, especially in cyber-physical-social 

systems. A cyber-physical-social systems design revolution is underway in the recent past where 

the focus is to build these systems in the context of a low-carbon economy and pull economy. 

Designing a cyber-physical-social system with plenty of interconnectivities is a complex problem. 

Adding the characteristics of a low carbon economy where online shopping is considered alongside 

the traditional in store shopping makes this design problem even more complex. Recent 

advancements in data gathering and analysis through machine learning and simulation-based 

approximations through surrogate modeling have made managing these complexities and 

associated uncertainties easier. Also, besides approximation, partitioning a cyber-physical-social 

system into manageable partitions is another way to manage the complexity. Also, this provides 

an opportunity to further use of approximation through surrogate modeling in portioned problems 

with less computational expense.  

The major challenge arising in cyber-physical-social systems design is the management of 

uncertainty and complexity along with coordinating the solutions for the portioned system. Multi-

level modeling approaches and approximation through surrogate models are usually domain-

specific demanding considerable knowledge and insight in supply chains, transportations, 

healthcare and energy networks and thus corresponds to detailed design. System-based design 

approaches for cyber-physical-social systems are mostly domain-independent. 

The conventional way of surrogate modeling only involves feature-based data analysis while 

a cyber-physical-social system design requires temporal, spatial, textual and imagery data analysis. 
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Also, conventional supply chain designs lacks considering pull economy’s features including 

online shopping channel’s dynamics with in-store shopping. Therefore, a multi-level partitioning 

and coordination approach to deal with multi-channel systems such a supply chain with in-store 

and online shopping is proposed in this dissertation. 

In Chapter 1, a foundation is laid for achieving the goals addressed in this dissertation, where 

motivation, background and frame of reference in Sections 1.1 and 1.2, are presented which 

contains literature review and discussion on following topics: (1) approximation through surrogate 

modeling, (2) partitioning and coordination of multi-echelon, multi-channel and multi-commodity 

cyber-physical-social system, (3) pull-push economy under carbon mitigation scenarios, (4) 

challenges and research gaps in managing complexity and uncertainty in designing cyber-physical-

social systems transitioning from push economy to pull economy in the context of a low carbon 

economy. Authors principal goal in this dissertation is identified by carrying out a gap analysis 

and hypothesis are laid to address these gaps. Research questions worthy of investigation are 

framed and the expected new knowledge on answering the research questions are identified. An 

overview of the hypothesis expected contributions and validation strategy are discussed in each 

section. The organization of the dissertation and a road map for accomplishing the chapters panned 

are presented in Chapter 1. 

This chapter is revisited for checking structural soundness of the dissertation where literature 

review, design approach, developed method, and validation of hypotheses are discussed in 

following chapters. 
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1.1 Motivation for Managing Computational Complexity and Uncertainty 

in Designing Evolving CPS Systems  

(Transitioning from Push to Pull, Low Carbon Economy Using Multi-Echelon Partitioning - 

Approximation - Coordination Approach) 

Complex systems are composed of many interdependent subsystems with a level of complexity 

that exceeds the ability of an only one design team. We define complexity in the context of 

engineering design where the models are incomplete and inaccurate. Complex problems cannot be 

solved exactly and require approximating the reality. Also, they are complex due to the large 

number of system components which is required to be partitioned into manageable partitions. One 

way to address this problem is to partition the complex design problem into smaller, more 

manageable design tasks that can be handled by one single design team. Partitioning-based design 

methods are decision support tools that provide mathematical foundations, computational methods 

to create such design processes. Managing the interdependency among these subsystems is crucial 

and a successful design process should meet the requirements of the whole system which needs 

coordinating the solutions for all the partitions after all. Partitioning and coordination should be 

performed to implement the partitioning-based design: partitioning the system into subproblems 

and determining the coordination method to direct subproblem solutions toward the ultimate 

system design. These two tasks of partitioning-coordinating are computationally demanding. Most 

of the proposed approaches are either computationally very expensive or applicable to only a 

narrow class of problems. These approaches also use exact methods and eliminate the uncertainty. 

To manage the computational complexity and uncertainty, we approximate each subproblem after 

partitioning the whole system. In engineering design, one way to approximate the reality is using 

surrogate models (SM) to replace the functions which are computationally expensive to solve. This 

task also is added to the proposed computational framework. Also, to automate the whole process, 
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creating a knowledge-based reusable template for each of these three steps is required. Therefore, 

in this dissertation, I first partition/decompose the complex system, then, we approximate the 

subproblem of each partition. Afterwards, we apply coordination methods to guide the solutions 

of the partitions toward the ultimate system design. 

1.1.1.  Motivation of designing multi-echelon, multi-channel supply chain design in a 

low carbon, push-pull economy 

A push economy is where suppliers work to secure products or inventory in anticipation of 

consumer demand and the push for the flow of the products is from the suppliers to the customers. 

One of the examples of a push economy is in-store shopping or bricks and mortar shopping 

channel. On the other hand, in a pull system, the supply chain only responds when there is 

consumer demand. Bricks and clicks channel where customers order online and pick up from the 

curb side as well as pure players which is pure online shopping are two of the examples of a pull 

economy (Fowler et al., 2019). 

A low carbon economy is an economy based on sustainable actions, mainly focused on 

reducing or even sequestering the greenhouse gases (GHG) generated in the production chain, 

resulting in less environmental impact. To achieve a low-carbon economy, green supply chains are 

required. A green supply chain or sustainable network is defined as the operational management 

method to reduce the environmental impact along the life cycle of the green product, from the raw 

material to the end product and covers the entire life cycle of the product: manufacturing, storage, 

transport, marketing, use and disposal (Peng et al., 2020). 

To study the dynamics of a low carbon, push-pull economy, a multi-echelon (including 

warehouses, stores and customers), multi-channel (including in-store and online shopping), a green 

supply chain is designed and modelled to calculate the difference in expected carbon emissions 
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between in-store shopping, curb side customer pickup versus e-commerce-based online retailing 

involving last mile delivery to customers’ homes to quantify which channel has the least harmful 

impact on the environment. 

1.1.2.  Addressing the challenges of managing computational complexity and 

uncertainty in multi-echelon, multi-channel supply chain  

(In a low carbon, pull economy)   

There are some challenges associated with managing computational complexity and 

uncertainty in designing such a model and framework as the problem is multi-level and therefore 

computationally expensive. To deal with the computational expense, a clear boundary should be 

set around the problem. Therefore, several assumptions have been made: 

Two level problem is studied including the in-store and online shopping channels, and a bi-

level programming model is used to formulate this supply chain.  

Also, greenness of the model is provided by monetizing the greenhouse gas emission due to 

transportation 

Although several assumptions are made to manage the computational complexity, the problem 

is still an NP-Hard problem and cannot be solved exactly. Therefore, a surrogate-based 

approximation method is used to manage the computational complexity and uncertainty of the 

problem. To identify the appropriate approximation method, a critical evaluation of the literature 

and several contributions on surrogate models and approximation approaches are conducted in 

Chapters 2-7. 
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1.2 Gaps, Research Questions/Questions, Hypothesis, New Knowledge, 

Functionality, and Utility 

Gap 1: We observe that a framework for selecting a more appropriate SM for a given function 

with specific requirements are lacking. 

Research Question 1: To address Gap 1, we pose Research Question 1 in the form of three 

questions which answering them enables me to create New Knowledge 1: (1.1) What are the main 

classes of the design of experiment (DOE) methods, surrogate modeling methods and model-fitting 

methods based on the requirements of size, computational time, and accuracy? (1.2) Which 

surrogate modeling method is suitable based on the critical characteristics of the requirements of 

size, computational time, and accuracy? (1.3) Which DOE is suitable based on the critical 

characteristics of the requirements of size, computational time, and accuracy? 

Hypothesis 1: Based on these three characteristics of time, size, and accuracy, we hypothesize 

that there are six different qualitative categories for the surrogate models through a critical 

evaluation of the literature. 

New Knowledge 1: we come up with six detailed categories using them, we provide a 

framework for selecting an efficient surrogate modeling process to assist those who wish to select 

more appropriate surrogate modeling techniques for a given function. The value of such a 

framework is in providing practical guidance for researchers and practitioners in industry to choose 

the most appropriate surrogate model based on incomplete information about an engineering 

design problem. Another contribution is to use three drivers, namely, computational time, 

accuracy, and problem size instead of using a single measure that authors generally use in the 

published literature. 

Functionality and Utility: Providing foundations for automating the SM selection process. 
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Gap 2: In engineering design, to replace costly computer simulations a single surrogate model 

is selected based on previous experience. There is a gap in SM pool of knowledge in creating 

ensembles (combinations) of SM when the data is limited. 

Research Question 2: what is the mathematics to create an ensemble of SMs which is more 

accurate and less computationally expensive when the data is sparse and limited? 

Hypothesis 2: we hypothesize, based on an analysis of the published literature, that fitting an 

ensemble of surrogates (EoS) based on cross-validation errors is more accurate but requires more 

computational time. 

New Knowledge 2: A new method to build ensemble of SMs which is accurate and 

computationally inexpensive when the data is sparse. 

Functionality and Utility: Enabled prediction with sparse data by ensemble of SM. 

Gap 3: The choice of SM is extremely important since there are many types of SMs, and they 

also have different hyper-parameters. Traditional manual selection approaches are very 

computationally expensive, they lack interpretability and cannot be generalized. 

Research Question 3: what is the mathematics to automate the SM selection? 

Hypothesis 3: we hypothesize to build an interpretable decision tree to map four critical 

features, including problem scale, noise, size of sample and nonlinearity, to the types of SM and 

select the promising SM; then, use a genetic algorithm (GA) to find the appropriate hyper-

parameters for each chosen SM. 

New Knowledge 3: The new knowledge created through addressing this gap is a method to 

create a rule-based model for an automatic SM selection called AutoSM. The drastic increase in 

the selection pace by pre-screening of SM types based on selection rule extraction is the scientific 

https://www.sciencedirect.com/topics/computer-science/rule-extraction
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contribution of our proposed method. The proposed AutoSM, unlike previous EA-based automatic 

SM selection methods, is not a black box and is interpretable. 

Functionality and Utility: SM selection easier and faster than existing selection methods by 

creating a systematic and organized automated selection process. 

Gap 4: There is a gap in SM literature in dealing with time-based (temporal) data. 

Research Question 4: What is the appropriate SM to use when the data includes time-

dependent variables as predictors? 

Hypothesis 4: we hypothesize by replacing the DOE with the time lags analysis, we find the 

SM which is useable in temporal variables. These SMs are better than classic time series analysis 

methods like ARIMA. Also, EoS are better than individual SM in temporal variables. 

Key outcome 1: Dealing with temporal data by incorporating time series (lag analysis) with 

SM. This is new in surrogate modelling literature. Temporal data can be used in SM using different 

time lags. We also show that using EoS, we achieve more accurate predictions. 

Functionality and Utility: Enabled dealing with temporal data in SM. 

Gap 5: There is a gap in SM literature in dealing with space-based (spatial) data. 

Research Question 5: What is the appropriate SM to use when the data includes space-

dependent variables as predictors? 

Hypothesis 5: we hypothesize by Replacing the design of experiments with the geographically 

weighted correlation analysis, we find the surrogate model which is useable with spatial variables. 

Key outcome 2: Using the spatial statistics and particularly the concept of the geographically 

weighted regression in surrogate modelling, we created spatial SMs. 
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Functionality and Utility: Enabled dealing with spatial data in SM. 

Gap 6: There is a gap in partitioning a complex design problem, approximate and coordinate 

the solutions of the partitions. 

Research Question 6: What is the mathematics to partition and coordinate a multi-channel, 

multi-echelon supply chain design problem? 

Hypothesis 6: we hypothesize the research question can be addressed by designing a multi-

channel, multi-echelon supply chain in the form of a bi-level model where the upper level is to 

design the supply chain, including identifying the layout, the number of warehouses and stores, 

while the lower level is to identify the tour in online shopping. Then, using approximation 

(surrogate modelling) in the partitioning-coordination framework and making it partitioning-

approximation-coordination framework, we propose an approach using surrogate approximation-

based model where we manage the computational complexity by iteratively approximating the 

delivery van tour function in online shopping (which is also called the lower-level function) in the 

multi-channel, multi-echelon green supply chain. 

New Knowledge 4: Creating an algorithm to solve a complex problem (an NP hard bi-level 

programming problem) using partitioning, approximation, and coordination.  

Functionality and Utility: A method for calculating the difference in expected carbon 

emissions between in-store shopping, curb side customer pickup versus e-commerce-based online 

retailing involving last mile delivery to customers’ homes to quantify which channel has the least 

harmful impact on the environment. SM approximations are created during the generations of an 

evolutionary algorithm, where the population members serve as the samples for creating the 

approximations. One of the important features of the proposed algorithm is the creation of an 
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auxiliary problem using the Kriging-based metamodel of the lower-level optimal value function 

that solves an approximate relaxation of the bilevel problem. Using the auxiliary problem when 

used for local search we are able to accelerate the tour finding and supply chain design toward the 

bilevel solution. 

1.3 Validation Square 

1.3.1.  Theoretical structural validity – Is the design method internally consistent? 

The proposed design method is based on partitioning-based design method. The base method was 

implemented in previous example problems. The internal consistency of the method is supported 

by its logical process and successful implementation. The internal consistency of all applications 

on test problems are based on agreement with existing design theory and effectiveness of 

implementation in an interdependent complex system architecture. 

1.3.2.  Empirical structural validity – Are the example problems used in modeling 

the method appropriate choices? 

The example problems studied in this dissertation are complex systems with interdependent 

network architecture. The dam network planning problem is a network with interdependencies 

among dams, users and fish which should be partitioned, approximated and composed to obtain 

the ultimate system result. The crime forecasting problem is a network problem with geographic 

and demographic interdependencies. The green supply chain design problem is a network problem 

with interdependencies among different echelons, including supplier, customer, retailor and the 

warehouse besides different channels, including online and in-person shopping channels. The hot 

rod rolling problem is also a multi-stage problem with vertical and horizontal interdependencies. 
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1.3.3.  Empirical performance validity – Does the application of the method to the 

problems in the dissertation produce practical results? 

Results from the example problems demonstrate the benefits of using approximating the reality in 

partitioning/coordination framework over traditional design methods which do not consider the 

uncertainty management.  

1.3.4.  Theoretical performance validity – Does the application of the method to 

other problems produce practical results? 

The previous three steps in the Validation Square build confidence in the expansion of the 

proposed approach to other similar example problems. Based on the internal consistency of the 

proposed approach, the appropriateness of the selected example problems, and the effective 

implementation of the proposed approach in solving the example problems, one can one can 

conclude that applying the proposed approach to similar problems are produce practical and 

desirable results. 

1.4 Contributions 

The contributions from the dissertation are categorized into new knowledge in five research 

domains: 

• Creating an approach to build ensemble of surrogate models when the data is limited – 

when the data is limited, replacing computationally expensive simulations with accurate, 

low-dimensional, and rapid surrogates is very important but non-trivial. Therefore, a cross-

validation-based ensemble modeling approach is proposed (Chapter 6). 

• Creating practical guide for researchers and practitioners in industry to choose the most 

appropriate surrogate model based on incomplete information about an engineering design 

problem (Chapters 2 and 3). 
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• Creating a new method to build ensemble of SMs which is accurate and computationally 

inexpensive when the data is sparse (Chapter 6). 

• Using temporal and spatial analysis to manage the uncertainties - when the data is time-

based (for example, in meteorological data analysis) and when we are dealing with 

geographical data (for example, in geographical information systems data analysis), instead 

of feature-based data analysis time series analysis and spatial statistics are required, 

respectively. Therefore, when the simulations are for time and space-based data, surrogate 

models need to be time and space-based. In surrogate modeling, there is a gap in time and 

space-based models which we address in this dissertation. We created, applied, and 

evaluated the effectiveness of these models for a dam network planning and a crime 

prediction problem (Chapters 4 and 5).  

• Removing assumptions regarding the demand distributions in green supply chain networks 

– in the existent literature for supply chain network design, there is always assumptions 

about the distribution of the demand. We remove this assumption in partition-approximate-

compose of the green supply chain design problem (Chapter 8). 

• Creating knowledge-based reusable templates for each of the three steps – we create 

reusable templates for each of three steps of partition-approximate-compose approach in 

knowledge-based platform which is available in the cloud. These reusable templates enable 

the designers and users with low domain knowledge to use these approaches in an 

automatic way (Chapter 7).  

• Creating an algorithm to solve a complex problem (an NP hard bi-level programming 

problem) using partitioning, approximation, and coordination (Chapter 8). 
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1.5 Research Thrusts and Layout of the Dissertation 

In , different research thrusts that are completed in this dissertation and how they are connected 

are shown. Also, the connection between these research projects and their correspondent 

contributions as well as their connection to each chapter of the dissertation are shown in Figure 

1.1 and Figure 1.3. The connection between chapters and research questions, hypothesis and how 

we verify and validate the structure of my dissertation is shown in Figure 1.3. Based on the 

proposed framework in  and the skeleton of the dissertation in Figure 1.2, the layout of the 

dissertation is created and shown in Figure 1.4. 

 

 

 

 

 

 

 

 

 

 

 Figure 1.1. Partitioning-approximation-coordination framework. 

As shown in Figure 1.2, four research questions are posed to address the gaps in the dissertation. 

Gap 1, which is on classifying the surrogate models based on common selection criteria is 

addressed in Chapters 2 and 3. Also, Gap 2 on creating EoS which are more accurate than 

individual surrogates is addressed in Chapter 6. 
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Figure 1.2. Skeleton of the dissertation. 

Gap 3 on creating a systematic way for model selection is addressed in Chapter 7 while Gaps 

4 and 5 on temporal and spatial surrogate models are addressed in Chapters 4 and 5, respectively. 

Finally, Gap 8, which is on creating the partitioning, approximation and coordination is addressed 

in Chapter 8.  

1.6 Verification and Validation of Chapters of Dissertation 

In Figure 1.4, we show how we verify and validate the organization and structure of my dissertation 

chapters using the Verification and Validation Square (Seepersad et al., 2006). Please note that 

this is only to verify and validate the structure and organization of the dissertation and we verify 

and validate the mathematics and knowledge that we create through my dissertation within in each 

chapter using the proper mathematics, formulation, modeling, and methods. 
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Figure 1.3. Organization of Dissertation Chapters according to Verification and Validation 

Square. 

Table 1.1. Verification types and their associated chapters 

Validation type Chapter 

Theoretical structural validity – is the partition-approximate-coordinate design 

architecture internally consistent? 

Chapters 1, 2, 3, 4, 

5, 6, 7 

Empirical structural validity – Are the example problems appropriately chosen? Chapters 4, 5, 6, 7 

Empirical Performance Validity – Does the application of method to the sample 

problems produce practical results? 

Chapters 4, 5, 6, 7 

Theoretical Performance Validity – Is the partition-approximate-coordinate 

design architecture applicable for the other problems? 

Chapter 7 
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Table 1.2. Connection between research questions, chapters, and validation square 

Research Questions (RQ) 1 2 3 4 5 6 7 8 

RQ1: What are the main classes of SMs 

based on the requirements of size, 

computational time, and accuracy? 

TSV TSV TSV TSV 

EPV 

EPV EPV SEV 

EPV 

TPV 

RQ2: what is the mathematics to create an 

ensemble of SMs which are more accurate 

and less computationally expensive when the 

data is sparse and limited? 

TSV TSV TSV    ESV 

EPV 

TPV 

RQ3: what is the mathematics to automate 

the SM selection? 

TSV TSV TSV 

ESV 

TSV 

ESV 

ESV 

EPV 

ESV 

EPV 

EPV TPV 

RQ4: What is the appropriate SM to use when 

the data includes time-dependent variables as 

predictors? 

TSV TSV TSV    ESV 

EPV 

TPV 

RQ5: What is the appropriate SM to use when 

the data includes space-dependent variables as 

predictors? 

TSV TSV TSV    ESV 

EPV 

TPV 

RQ6: What is the mathematics to partition and 

coordinate a multi-channel, multi-echelon supply 

chain design problem? 

TSV TSV TSV    ESV 

EPV 

TPV 

1.7 Dissertation Overview and Roadmap 

The relationship of research efforts with the constructs of the design architecture developed is 

shown in Figure 1.2. An overview of this dissertation is presented as roadmap in Figure 1.4. The 

figure is intended to help navigate through the dissertation and develop an overall picture as to 

what is discussed in each chapter thereby establish context.  
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Figure 1.4. The dissertation overview and roadmap. 

 

Chapter 1 

- Motivation 

- Importance of the problem in reality 

- Research questions and hypothesis 

- Solution approaches 

- Validation approach 

- Theoretical structural validation 

- Literature review about organized complexity 

- Highlighting the contribution of this work from the surrogate 
modeling perspective 

- Literature review about computational complexity 

- Highlighting the contribution of this work from the network 

partitioning perspective 

- Theoretical structural validation                         (Gap 1) 

- Problem definition 

- Exploring the surrogate modeling selection criteria 

- Classifying the surrogate models based on the selection criteria 

- Assumptions, inputs, outputs, constraints, and limitations 

- Reviewing the literature in surrogate modeling 

- Identifying the criteria for surrogate model selection 

- Classifying the surrogate models based on the identified criteria  

- Creating a framework for surrogate modeling selection based 
on the criteria 

- Theoretical structural validation                          (Gap 1) 

 

Chapter 2 

Chapter 3 

- Select the surrogate model type, function type, and 

hyperparameter  

- Select the features that we categorize the methods based on 

them. 

- Identifying the most appropriate hyperparameter.  

- Applying these different surrogate types and optional types 

in different theoretical and real-world problems to find the 

most appropriate surrogate type along with most appropriate 
optional type.                                                

                                                                           (Gap 2) 

Chapter 5 Chapter 4 

Chapter 6 

- Building a design of experiments to generate data for a test 

problem  

- Using k-fold cross validation with iterations to split the data  

- Using surrogate models to build the ensemble of surrogates  

- Using individual surrogate models and the ensemble of 
surrogates to predict the target variable of the test problem 

- Comparing the individual surrogate models with the 

ensemble of surrogate to see if the hypothesis is correct 

- Empirical structural validation                           (Gap 5) 

- Defining different time lags 

for each surrogate model 

- Identifying suitable time 

series analysis method 

- Identifying suitable 
ensemble of surrogates and 

machine learning method 

- Building the surrogate 
models based on each 

category and comparing 

them in an example based 
on the time dependent 

- Empirical structural validity 

(Gap 4)  

- Integrating the whole results in Questions 2, 3, 4 and 5 and 
build a comprehensive model by considering the criteria 

found in Research Question 1.  

- Finding an appropriate design approach which using that we 

address the small- and large-scale problems. 

- Empirical performance validity                          (Gap 3) 

Chapter 7 

Chapter 8 

- Summarizing the problem and its outputs 

- Possibility of application in other problems 

- Future research  

- Questions for further investigation 

- Theoretical performance validity                         (Gap 6) 

Using network 

partitioning to manage 

the computational 

complexity 

 

Approximation of 

reality using surrogate 

modeling  

Finding appropriate 

criteria for surrogate 

model selection  

 

 

Motivation and problem 

identification 

Hypothesis 

testing 

Hypothesis 

testing 

Closure 
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Now, that the outline, layout, and overall theme of the dissertation is established, we provide 

the critical evaluation of the literature on surrogate modelling as the first portion of this dissertation 

on approximation methods to replace computationally expensive models and manage complexity 

and uncertainty in engineering design problems. Also, we provide the frame of reference on 

complexity definition and managing computational complexity and uncertainty in designing multi-

echelon, multi-channel, multi-commodity systems design for evolving cyber-physical-social 

systems in a low-carbon pull economy. 
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CHAPTER 2 FRAME OF REFENCE AND LITERATURE 

REVIEW 

Managing Computational Complexity and Uncertainty in Designing Evolving Cyber-Physical-

Social Systems Transitioning from Push to Pull, Low Carbon Economy Using Multi-Echelon 

Partitioning - Approximation - Coordination Approach – Current Trends and Practices 

In Chapter 2, the frame of reference on the efforts associated with partitioning and coordination 

is given. Several critical issues associated with the current capabilities of partitioning and 

coordination is discussed in this chapter. Some of the major elements of computational complexity, 

multi-echelon and multi-channel green supply chain design are discussed in this chapter. The 

relationship of these research efforts reviewed in this chapter with the constructs of the systematic 

approach developed in this dissertation is highlighted in Figure 2.1. 

 Figure 2.1. Relationship of research efforts with the constructs of the systems-based design 

architecture and connection between chapters of the dissertation. 

In Section 1.1, the importance of managing computational complexity and uncertainty in 

designing multi-echelon, multi-channel supply chain is explained. In Section 2.2, the necessity of 
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creating a partitioning-approximation-coordination design approach is discussed. Also, in Section 

2.3, the structure of the partitioning-based decision-making approach is articulated. Then, in 

Section 2.4, approximation of reality using surrogate modeling is elaborated in a way that they can 

be used in managing computational complexity. In Section 2.5, the use of network partitioning and 

coordination in managing computational complexity in a green supply chain design is explained. 

2.1 Managing Computational Complexity and Uncertainty in Designing 

Multi-Echelon, Multi-Channel Supply Chain  

(For Evolving Cyber-Physical-Social Systems in A Low-Carbon Push-Pull Economy) 

Climate change is caused by carbon emissions and 70% of carbon emissions are generated 

within supply chains. So, designing green supply chains (GSC) is critical in mitigating climate 

change. Also, online shopping has gained huge share of retail sales during the past years, especially 

during the pandemic. For example, Walmart year over year growth in online sales reached to 97%. 

This provides a huge opportunity to design greener supply chains and mitigate climate change. 

The significance of this work is in enabling retailers like Walmart to: 

▪  adapt post Covid-19 market and build greener supply chains 

▪  design a new business model transitioning from a push economy to an on-line based pull 

economy.   

▪  use predictive analytics to simulate the demand 

▪  show whether traditional or online shopping is greener 

▪  design a green and low-cost configuration. 

The mathematics we created in this chapter is not specific for on-line retailing and can be used 

in designing any evolving cyber-physical-social systems such as healthcare, manufacturing, 

energy, and transportation. 
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2.1.1.  Motivation of designing multi-echelon, multi-channel supply chain design in 

a low carbon, push-pull economy 

A push economy is where suppliers work to secure products or inventory in anticipation of 

consumer demand and the push for the flow of the products is from the suppliers to the customers. 

One of the examples of a push economy is in-store shopping or bricks and mortar shopping 

channel. On the other hand, in a pull system, the supply chain only responds when there is 

consumer demand. Bricks and clicks in shopping where customers order online and pick up from 

the curb side as well as pure players which is pure online shopping are two of the examples of a 

pull economy (Fowler et al., 2019). 

A low carbon economy is an economy based on sustainable actions, mainly focused on 

reducing or even sequestering the greenhouse gases (GHG) generated in the production chain, 

resulting in less environmental impact. To achieve a low-carbon economy, green supply chains are 

required. A green supply chain or sustainable network is defined as the operational management 

method to reduce the environmental impact along the life cycle of the green product, from the raw 

material to the end product and covers the entire life cycle of the product: manufacturing, storage, 

transport, marketing, use and disposal (Peng et al., 2020). 

To study the dynamics of a low carbon, push-pull economy, a multi-echelon (including 

warehouses, stores and customers), multi-channel (including in-store and online shopping), green 

supply chain is designed and modelled to calculate the difference in expected carbon emissions 

between in-store shopping, curb side customer pickup versus e-commerce-based online retailing 

involving last mile delivery to customers’ homes to quantify which channel has the least harmful 

impact on the environment.  
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2.1.2.  Addressing the challenges of managing computational complexity and 

uncertainty in designing multi-echelon, multi-channel supply chain  

(in a low carbon, push-pull economy)  

In this dissertation, we define computational complexity in the context of engineering design 

where the models are incomplete and inaccurate. Computationally complex problems cannot be 

solved exactly and require approximating the reality. Also, they are computationally complex due 

to the large number of system components which is required to be partitioned into manageable 

partitions. There are some challenges associated with managing computational complexity and 

uncertainty in designing such a model and framework as the problem is multi-level and therefore 

computationally expensive. To deal with the computational expense, a clear boundary should be 

set around the problem. Therefore, several assumptions have been made: (i) Two level problem is 

studied including the in-store and online shopping channels, and a bi-level programming model is 

used to model this supply chain; (II) Greenness of the model is provided by monetizing the 

greenhouse gas emission. 

Although several assumptions are made to manage the computational complexity, the problem 

is still an NP-Hard problem and cannot be solved exactly. Therefore, a surrogate-based 

approximation method is used to manage the computational complexity and uncertainty of the 

problem. To identify the appropriate approximation method, a critical evaluation of the literature 

and several contributions on surrogate models and approximation approaches is conducted in 

Chapters 2-7. 

2.2 Creating Partitioning-Approximation-Coordination Design Approach 

To create a comprehensive problem to cover all three portions of this dissertation, partitioning, 

approximation, and coordination, we use a multi-channel (online and in-store shopping), multi-
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echelon (warehouse, store, and customer), green supply chain problem. To model and solve this 

problem, partitioning is required to partition the supply chain into smaller partitions and assign a 

store for each partition. Also, because there are two channels, including online and in store, a bi-

level programming is needed where the lower level is to model the tour distance finding problem 

in online shopping and upper level is to model the supply chain design problem where the layout, 

number and size of the stores and warehouses are determined. This bi-level problem is NP-hard 

and nontrivial, so, we need approximation to solve it. Finally, since in the bi-level problem, upper 

level and lower-level problems must be partitioned and approximated concurrently, we need to 

coordinate these problems. 

Figure 2.2. The idea of partitioning and coordination. 
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2.2.1.  Problem statement of managing computational complexity using partitioning 

and coordination 

As shown in Figure 2.2, for managing computational complexity which is the topic of this 

dissertation, complex systems are partitioned into interdependent subsystems which are more 

manageable design tasks that can be handled by one single design team (T.1 in Figure 2.2). 

Managing the interdependency among these subsystems is crucial and a successful design process 

should meet the requirements of the whole system which needs composing the solutions for all the 

partitions after all.  

Therefore, two tasks should be performed to implement the partitioning-based design: (T.1) 

partitioning the system into subproblems and (T.3) determining the composing method to direct 

subproblem solutions toward the ultimate system design. These two tasks of partitioning-

composing are computationally demanding. Most of the proposed approaches are either 

computationally very expensive or applicable to only a narrow class of problems. These 

approaches also use exact methods and eliminate the uncertainty.  

To manage the computational complexity and uncertainty, we approximate each subproblem 

after partitioning the whole system. In engineering design, one way to approximate the reality is 

using surrogate models (SM) to replace the functions which are computationally expensive to solve 

(T.2 in Figure 2.2). This task also is added to the proposed computational framework. Also, to 

automate the whole process, creating a knowledge-based reusable template for each of these three 

steps is required (T.4). Therefore, in this dissertation, we first partition/decompose the complex 

system, then, we approximate the subproblem of each partition. Afterwards, we apply composing 

methods to guide the solutions of the partitions toward the ultimate system design. 
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As shown in Figure 2.2, managing computational complexity which is the topic of my 

dissertation starts with the question of “is the problem huge?” If the problem is huge, it means we 

have computational complexity and we need to partition the problem. Partitioning-based methods 

are appropriate when systems are large and sparsely connected (Sobieszczanski-Sobieski and 

Haftka, 1997), when the design environment is distributed (Chen et al., 2000), or when specialized 

computational algorithms can be exploited for solving particular subproblems (Kusiak and Larson, 

1995). The techniques introduced in this article can be used to assess quantitively whether 

partitioning-based computational models are appropriate for a particular problem.  

2.2.2.  Using network partitioning to manage the computational complexity  

When the size of a network is huge, partitioning methods are used to deal with the 

computational complexity. Based on the gaps and limitations of the methods in the literature, there 

are four main classes forming partitioning approaches: (i) Graph partitioning, (ii) Hierarchical 

clustering, (iii) Partitional clustering, (iv) Spectral clustering; from which the spectral clustering is 

the only approach that is used for both partitioning of a network and then composition of the 

partitioned network. So, we use that.  

2.3 Partitioning-Based Decision-Making Approach (T1 in Figure 2.2) 

A typical system design approach used in industry involves designing subsystems in sequence. 

For example, in design-based design where the decision is in different horizontal and vertical levels, 

this approach does not account explicitly for all design interactions. A simplified schematic of this 

process of decision-based design process where each decision in each level interacts with other 

decisions is shown in Figure 2.3. 
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Figure 2.3. A partition hierarchy of a complex system. 

 In this example, the decision-based design (DBD) is performed first and is based on horizontal 

and vertical-level requirements. DBD also depends on the needs of the other subsystems, and they 

can be designed simultaneously. Similar to Figure 2.3, a lot of design problems do not have 

consecutive processes and they follow a network architecture. In such cases a network-based 

approach is needed. In network-based approach to reduce the computational complexity different 

approaches are taken. One of the strongest methods are used for this purpose are partitioning-based 

decision-making approaches.  

Generally, partitioning-based approaches developed for situations where several engineering 

analyses must be integrated for designing a single component or product, where each analysis 

relates to a different aspect of the same component. Applying the decomposition-based decision-

making needs the completion of two important preliminary steps. First, a system partition must be 

defined, and then a strategy for coordinating the solution of the resulting subproblems must be 

constructed (T1 in Figure 2.1). Making partitioning and coordination decisions can be viewed as 

a preprocessing step for appropriate system design. Figure 2.3 illustrates these preliminary steps. 

The original, unpartitioned system is depicted in Figure 2.4.a., where the vertices represent 
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components of a system or analyses pertinent to system design, and the edges connecting the 

vertices represent interactions between the components or analyses. The first step is to decide 

which subproblem each component should belong to. The outcome of this step is a system partition, 

shown in Figure 2.4.b. Once the partition is defined, a coordination strategy can be devised (T2). 

An important aspect of many coordination strategies is the subproblem solution sequence, 

illustrated in Figure 2.4.c. 

 
 

 

a. Unpartitioned system b. system partitioned into 

sub-problems 

c. sub-problem coordination 

strategy  

Figure 2.4. Process for implementing partitioning-based design. 

The way a network is partitioned influence what interaction patterns are most effective. In 

addition, the type of interaction patterns desired (e.g., hierarchical vs. nonhierarchical) influence 

partitioning decisions. These two sets of decisions are coupled. Moving back to the context of 

petitioning-based design, system partitioning, and coordination decisions are also coupled. How a 

system is partitioned influence coordination decisions, and vice versa. This relationship is pictured 

in Figure. 2.5. Proving and investigating the relationship between partitioning and coordination 

decisions is the primary theme of this dissertation. Partitioning and coordination decisions have 

been studied independently, but the relationship between them has not been systematically 

analyzed. Subsequent chapters show that partitioning and coordination decisions are in fact 

coupled. Techniques are introduced for analyzing these decisions, studying intrinsic tradeoffs, and 
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making partitioning and coordination decisions for important classes of partitioning-based design 

methods. 

 

 

 

Figure 2.5. Finding coupling approaches between partitioning and coordination decisions 

2.4 Approximation of Reality Using Surrogate Modeling (T2 in Figure 2.1) 

In model‐based realization of complex systems, we are forced to address the issue of 

computational complexity. One critical issue that must be addressed is the approximation of reality 

using surrogate models to replace expensive simulation models of engineering problems. So, 

approximating the problem decreases the computational cost of the method dramatically. However, 

a trade-off among the accuracy, dimension of the problem and computational time is required. 

Therefore, we are looking at different problems with different approaches. We hypothesize that a 

mathematical framework is a solution for the trade-off among accuracy, dimension of the problem 

and computational time.  

2.4.1.  Finding appropriate criteria for surrogate model selection (T2.1 in Figure 

2.1) 

To find the appropriate set of criteria, we need to critically evaluate the literature. For selecting 

appropriate surrogate modeling methods for a given function with specific requirements there is a 

gap for a selection framework based on appropriate criteria. To address this gap, we first need to 

find the appropriate criteria as the main criteria for automated surrogate selection. Second, we need 

to find the categories of design of experiments, surrogate modeling and model fitting methods 

based on these criteria. 

partitioning 
decisions 

coordination 
decisions 
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2.4.2.  Using time dependent features in surrogate modeling (T2.2 in Figure 2.1) 

We substitute expensive experimentation and simulation with efficient surrogate models to 

address this computational complexity. Sometimes, the challenge is that the target variable which 

we want to predict is time dependent and we must consider the effect of the historical data on the 

target variable. In surrogate modeling literature, the is a gap of dealing with time dependent 

variables. In general, when the variable is time dependent, each time lag of the variable is 

considered as a new predictor and is taken as a non-time dependent variable into account. However, 

this method is ineffective when the number of time dependent variables is increased. Many 

possible scenarios are neglected in this method which decrease the reliability of the solution. 

Therefore, to address the gap of time dependent surrogate models, we integrate time series analysis 

and machine learning with surrogate models to predict the target variable. To examine the impact 

of time series in surrogate models, we use different time lags as features within the surrogate model 

and predict the target variable for different time steps ahead. 

2.4.3.  Using machine learning to automatically find appropriate function types and 

hyper-parameters   

For effective application of surrogate models, the choice of surrogate models is extremely 

important. However, existing approaches often lack considering different function types and 

hyper-parameter values for the surrogate models. To address this gap, we need to create new 

mathematics to automatically identify the appropriate function type for each surrogate model and 

identify the appropriate value for the hyper-parameters within the function types to explore 

different prediction scenarios considering different predictors. We particularly need decision trees 

as interpretable machine learning method to automatically adjust the appropriate predictors. We 

incorporate the consideration of the features of the problem and demands form designers; and then 

we use it to develop an interpretable model to reduce the number of surrogate model candidates, 
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which greatly improves the model selection speed. We also illustrate a tree structure with 

summarized model selection rules which also provides suggestions for choosing fast real-time/run-

time/online model selections.    

2.4.4.  Using ensemble of surrogates to use the advantages of various individual 

surrogates when the sample is undersized (T2.4 in Figure 2.1) 

Surrogate models are often used instead of costly simulations in engineering problems. In general, 

an individual surrogate is selected according to the knowledge based on previous experience. 

Studies show that fitting an ensemble of surrogates based on cross-validation errors is more 

accurate but yields a more time-consuming approximation.  There is a gap of using ensemble of 

surrogates based on a weighted average surrogate of individual surrogates based on overall error 

when the sample data is undersized. This kind of ensemble of surrogates have higher accuracy 

than individual surrogates even when fewer data points are used and so it demands less 

computational time. Also, the use of ensemble of surrogates results in accurate and relatively 

insensitive predictions at a reduced computational expense. This is new because it is used for a 

problem which ensemble of surrogates has not been used for it before. 

2.4.5.  Automating the process of surrogate modeling (T4 in Figure 2.1) 

In simulation‐based realization of complex systems, there is a gap of a dynamic and fully 

automated framework for surrogate model selection. In this dissertation, we want to fill this gap 

of existing literature and need of academic and practical world by considering appropriate set of 

surrogate models and the appropriate set of criteria to choose the surrogate models. 

2.5 Using Network Partitioning to Design a Green Supply Chain 

In supply chain network design for a manufacturing or material design process, a retailer may 

determine the number and locations of facilities based on the cost of opening the facility, the cost 
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of a customer driving to the facility, and the cost of a replenishment truck driving to the facility 

from a warehouse. However, this does not include the system's greenhouse gas (GHG) emissions. 

Given the existential threat posed by global warming, it is pertinent to consider how the design of 

this system affects its GHG emissions. In this section, we consider a green supply chain (GSC), in 

which GHG is minimized. We model the supply chain as a network of customers and store 

locations, with customers driving in cars to and from stores and the retailer resupplying the stores 

from a central warehouse. The number and location of stores is determined while designing the 

supply chain.   

We consider the GSC problem to be an instance of the general k-median problem. Our 

contributions are (1) to remove the assumption of uniform demand, and instead build a model of a 

GSC based on real-world population data; (2) to model the GSC as a two-echelon k-median 

problem. For input, we used a high-precision population density map of Puerto Rico, which 

provides population density at a resolution of 30 meters by 30 meters. Data is stored as a 3-tuple 

of the x-y coordinates of each location and the number of people living at that location [116]. We 

analyzed two subsets of this data. The first contains the entire island, which has an area of 9,104 

km2 (170 km by 60 km), and a population of 3,994,259 people. The second contains the city of 

San Juan, Puerto Rico’s largest city and capital. We considered both the city and the surrounding 

area, sub-setting a region with an area of roughly 2,500 km and a population of 2,199,923. 

We consider two extreme scenarios: one that minimizes only the retailer’s operating cost, and 

one that minimizes only emissions. After designing the GSC, we conduct a sensitivity analysis and 

consider the effect of a carbon tax in encouraging a greener system. We also consider various 

scenarios under which emissions might increase or decrease. Based on our results, specific 

scenarios can lead to a lower overall GHG emission. For example, doubling the fuel efficiency of 
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cars decreases emissions by 46% compared to the baseline scenario. The proposed design approach 

is not limited to GSC design and can be extended to other design problems, including selecting 

material suppliers, locating manufacturing facilities, and healthcare provider networks. 

2.6 Role of Chapter 2 in This Dissertation 

In Chapter 2, we provided the frame of reference on surrogate modeling as the first portion of my 

dissertation on approximation methods to replace computationally expensive models and manage 

complexity and uncertainty in engineering design problems. Also, we provided the frame of 

reference on complexity definition and managing computational complexity and uncertainty in 

designing multi-echelon, multi-channel, multi-commodity systems design for evolving cyber-

physical-social systems in a low-carbon pull economy. Now, that the frame of reference on 

surrogate modeling as the approximation methods for managing computational complexity in 

engineering design problems as well as the frame of reference for partition and coordination of 

complex design problems are provided, we critically evaluate the literature on surrogate modeling 

in Chapter 3. 
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CHAPTER 3 SURROGATE MODEL CLASSIFICATION AND 

SELECTION CRITERIA 

In Chapter 3, a review of the existing efforts associated with surrogate modelling and 

partitioning, and coordination is given. Several critical issues associated with the current 

capabilities of surrogate modelling is discussed in this chapter. Some of the major elements of 

computational complexity, uncertainty management, verification and validation, multi-echelon 

and multi-channel supply chain design, low carbon, pull economy, etc. are discussed in this 

chapter. Also, the objective in this chapter is to introduce and review the foundations based on 

which the surrogate model selection criteria is developed. Besides the underlying surrogate model 

approaches, methods and tools reviewed are classified in terms of concept, application to surrogate 

model process and value in design.  

In Chapter 3, the theoretical foundations for designing simulation-based design processes are 

discussed. These foundations include existing design constructs using surrogate models, different 

surrogate models and different evaluation measures. Also explored in this chapter is regarding 

design process modelling. Foundational constructs are reviewed from this area. Relevant literature 

for each of these areas is referenced, discussed, and critically evaluated to show the appropriateness 

of use of these constructs for the design architecture developed in the dissertation. The literature 

review in Chapter 3 is used to identify availability, strengths, and limitations of these constructs in 

the context of managing complexity and uncertainty using approximation through surrogate 

modelling and becomes an essential component of theoretical structural validation. The 

relationship of these research efforts reviewed in this chapter with the constructs of the systematic 

approach developed in this dissertation is highlighted in Figure 3.1. 
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Figure 3.1. Relationship of research efforts with the constructs of the systems-based design 

architecture and connection between chapters of the dissertation. 

In Section 3.1, a critical evaluation of the literature on surrogate modeling is provided. While 

in Section 3.2, design of experiment (DOE) methods are shown and different DOEs are compared, 

model choices of surrogate models, model fitting methods and their comparison are explained in 

Sections 3.4, 3.5 and 3.6 respectively.  Results of critical evaluation of literature on surrogate 

modeling and the verification and validation of critical evaluation of literature on surrogate 

modeling are illustrated in Sections 3.7 and 3.8 respectively. 

ABBREVIATIONS USED IN THIS CHAPTER 

ANN   Artificial Neural Network  

CCD   Central Composite Design  

CFD  Computational Fluid Dynamics  

CPU   Central Processing Unit 

DOE  Design of Experiments 
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DST   Dempster–Shafer Theory 

EA  Evolutionary Algorithm 

FD   Factorial Design 

FEA  Finite Element Analysis  

FFD   Fractional Factorial Design 

EMO  Evolutionary Multiple-Objective 

DOE  Design of Experiments  

GSME  Generalized Mean Square Error 

KRG   Kriging 

LS   Least Squares  

MAE   Mean Absolute Error 

MAPE   Mean Absolute Percentage Error  

MAXE-CV  Maximum Absolute Cross-Validation Error  

MSEGO  Multiple Surrogate Efficient Global Optimization  

MEMO  Multimodal-based Evolutionary Multiple-Objective 

NSGA-II Non-dominated Sorting Genetic Algorithm II 

OA   Orthogonal Array 

PCA  Principal Component Analysis 

POF  Pareto Optimal Front 

PRESS  Predicted Residual Error Sum of Squares  

PRS  Polynomial Response Surface  

PSO  Particle Swarm Optimization  

RBDO   Reliability-Based Design Optimization 

RBF  Radial Basis Function 

RMSE  Root Mean Square Error 

RSM  Response Surface Models 
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SE  Square Error   

SVM   Support Vector Machines  

WAS  Weighted Average Surrogate 

WLSR   Weighted Least Square Regression 

In simulation-based realization of complex systems, we are forced to address the issue of 

computational complexity. One critical issue that must be addressed is the approximation of reality 

using surrogate models to replace expensive simulation models of engineering problems. In this 

section, we critically review over two hundred papers. We find that a framework for selecting 

appropriate surrogate modeling methods for a given function with specific requirements is lacking. 

To address this gap, we hypothesize that a trade-off among three main drivers, namely, size (how 

much information is necessary to compute the surrogate model), accuracy (how accurate the 

surrogate model must be) and computational time (how much time is required for surrogate 

modeling process) is needed.  In the context of the hypotheses, we review the state-of-the-art 

surrogate modeling literature to answer the following three questions: 

1. What are the main classes of the design of experiment (DOE) methods, surrogate modeling 

methods and model-fitting methods based on the requirements of size, computational time, 

and accuracy? 

2. Which surrogate modeling method is suitable based on the critical characteristics of the 

requirements of size, computational time, and accuracy? 

3. Which DOE is suitable based on the critical characteristics of the requirements of size, 

computational time, and accuracy? 

Based on these three characteristics, six different categories for the surrogate models are 

framed through a critical evaluation of the literature. These categories provide a framework for 
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selecting an efficient surrogate modeling process to assist those who wish to select more 

appropriate surrogate modeling techniques for a given function. It is also summarized in Tables 

3.4, 3.5, and Figure 3.5). Artificial neural networks, response surface models, and Kriging are 

more appropriate for large problems, less computation time and high accuracy, respectively. 

Also, Latin Hypercube, fractional factorial designs and D-Optimal designs are appropriate 

experimental designs. 

3.1 Critical Evaluation of The Review Papers Written on Surrogate 

Modeling 

Over the last few decades, computer simulation models, which are often used to represent 

physical problems via mathematical models and computer code, have begun to play a crucial role 

in engineering problems. Many simulation models are applied in various types of engineering 

problems, including optimization design, uncertainty design, reliability analysis, reliability-based 

design optimization (RBDO) and robust design. However, these computer simulations have a 

strong tendency to be computationally expensive due to their excessively detailed representation 

of real-world systems. Furthermore, many model-based engineering problems require simulation 

models to be run thousands of times to develop an appropriate solution, which also demands a high 

computational budget. 

Surrogate models (sometimes called metamodels) are commonly used to replace expensive 

simulation models of engineering problems to mitigate the large computational budget in 

engineering design problems. One or more variables are altered, and then, the impact of this change 

is analyzed. Thus, researchers have developed experimental design methods as alternatives to 

physical experiments. These methods have been implemented as simulation-based designs to 

enhance the efficacy of these studies.  
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Various applications that use experimental design techniques in simulation-based design are 

statistically arguable. Because computer code is deterministic, the error of approximation is not 

caused by random effects. However, in physical experiments, random errors, such as measurement 

errors, can occur. Many researchers in computer-based design have eliminated this uncertainty and 

consider the error of approximation. Therefore, due to this difference between physical 

experiments and computer experiments, appropriately designed experiments considering both 

measurement and approximation errors are necessary for the efficient use of computer simulation 

and analysis to manage uncertainty. Hence, in this chapter, we review the literature regarding 

surrogate modeling and shed light on the state-of-the-art methods in this area of research. The 

intellectual questions that are posed and investigated in this chapter are summarized in Table 3.1. 

Table 3.1. Questions investigated in this chapter. 

Research Questions                                                                                                Relevant 

Sections                                                                                                                                                                                

1. What are the main classes of the design of experiment (DOE) methods, 

surrogate modeling methods and model-fitting methods based on the 

requirements of size, computational time, and accuracy? 

3.2.2, 3.2.3, 

3.5.1, 3.5.2  

2. Which surrogate modeling method is suitable based on the critical 

characteristics of the requirements of size, computational time and accuracy? 

3.3, 3.4, 3.5.2  

3. Which DOE is suitable based on the critical characteristics of the 

requirements of size, computational time and accuracy? 

3.5.1, 3.5.2 
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The abovementioned questions help us to identify more appropriate surrogate modeling 

process, including the selection of a DOE to produce data and subsequent use of a model to 

represent the generated data. Then, we need to create the best fit between the model and the data. 

Thus, section two is divided into three subsections based on this classification. In the first 

subsection (3.2), DOE methods are introduced and described. Then, before describing the different 

DOE techniques, we explain the problem of size and how to address this issue with the most well-

known dimensionality reduction methods, such as principal component analysis, variable 

screening, partitioning, and Bayesian updating.  

A broad range of DOE techniques are then reviewed. In the second subsection, an overview of 

different methods that can be used to represent the data generated by DOEs is provided. In this 

subsection, in addition to methods that have been used by researchers for a long time, such as 

response surface models, Kriging and neural networks, more recently developed methods, such as 

reference-point-based Nondominated Sorting Genetic Algorithm II (R-NSGA-II), are reviewed. 

In the third subsection, methods used for fitting the selected models to represent the data are briefly 

discussed. Finally, an approach for comparing different surrogate modeling methods is introduced 

based on these fitting indicators. 

Although computers become faster and more powerful every day, the increasing computational 

complexity demand is still much higher than the increasing power and speed of computers. 

Additionally, serious difficulties in using computer simulations can occur due to their high fidelity 

regardless of how fast and powerful the computers used are. Even methods, such as parallel 

computing, which is a computation in which many calculations or executions of processes are 

carried out simultaneously, are not very helpful (Grama, 2013).  

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Process_(computing)
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The most important disadvantage of parallel computing is that designing and producing shared-

memory machines becomes increasingly difficult and expensive as the number of processors 

increases. A second disadvantage is the lack of scalability between memory and CPUs because 

adding more Central Processing Units (CPUs) can geometrically increase traffic on the shared-

memory-CPU path and, in coherent cache systems, geometrically increase traffic associated with 

cache/memory management (Geist, 2000). Therefore, instead of using the original costly computer 

analysis, statistical approximation methods are used to build surrogates for expensive, complicated 

computer-based code to efficiently manage computational complexity. We use these surrogate 

models in the initial phases of the design to explore the solution space and develop a set of solutions. 

There are many types of surrogate modeling techniques for approximating reality. Response 

surface methodology (RSM) (Box et al., 1978b) and artificial neural networks (ANN) (Cheng and 

Titterington, 1994) are methods used for creating fast estimations of intricate mathematical models. 

Thus, many people have used Kriging instead of complicated mathematical models, such as (Sacks 

et al., 1989). Recently, other statistical methods, such as inductive learning (Simpson et al., 2001), 

adaptive learning (Picheny et al., 2010), and different machine learning methods, including genetic 

algorithms (Deb et al., 2017; Li et al., 2017) and support vector machines (SVM) (Brereton and 

Lloyd, 2010; Gunn, 1998; Viana et al., 2013), have attracted attention. 

The principal challenge faced by all designers who use metamodels is as follows: what is more 

appropriate approach for the surrogate modeling process? What are the circumstances in which 

one approach can be more appropriate? In several papers, the authors use one surrogate modeling 

method for a task. Simpson et al. (Simpson et al., 1998) compared Kriging and polynomial 

regression to address an optimization design problem with three design variables. In (Giunta et al., 

1994), another comparison between Kriging and regression functions was performed. Additionally, 
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(Varadarajan et al., 2000) compared polynomial regression to the ANN technique to address an 

engine design problem including nonlinear thermodynamic performance. In (Yang et al., 2000), 

four surrogate modeling techniques, including ANN and stepwise regression, were compared in a 

vehicle accident investigation. Although problem-specific factors must be considered in the 

selection of a surrogate modeling approach, we believe that a comprehensive study comparing and 

classifying the different techniques and a well-an organized process for examining the relative 

advantages of different methods remain lacking.  

Multiple factors in a particular problem, including linearity/nonlinearity, the size of the 

problem, the desired level of accuracy, the speed of the process, the required amount of information, 

the size of the sample, and the availability of convenient computer code, impact the 

appropriateness of a surrogate modeling technique. We believe that using one measure of merit, 

such as accuracy, for comparing surrogate models in surrogate modeling is not efficient, and 

multiple measures, such as a combination of accuracy, convenience, robustness, efficiency, 

simplicity, and model transparency, must be considered as mentioned in (Jin et al., 2000). 

Therefore, we contend that to select one metamodeling technique for a task, knowledge regarding 

the characteristics of various surrogate modeling techniques using various modeling measures is 

needed.  

In this chapter, a comparative study investigating the characteristics of several surrogate 

modeling techniques is conducted with a focus on a critical review of the surrogate modeling 

literature using different modeling criteria to provide guidance to engineering designers. The tools, 

methods, and techniques used in the surrogate modeling process are discussed in detail here. The 

surrogate modeling process has three main steps, including (a) selecting a DOE to generate data, 

(b) selecting a model to describe the data, and (c) fitting the model to the observed data. In section 
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there are three main subsections based on the three principal steps of the surrogate modeling 

process, including a review of the methods used for the design of experiments (DOEs) and their 

evaluation, analysis of model selection and assessment, and model fitting and evaluation. 

In this section, an overview of the reviews of the surrogate modeling literature is presented. A 

summary of previous review papers is provided in Table 3.2. In (Simpson et al., 2001), the authors 

perform a broad survey of metamodeling uses in aerospace and mechanical systems; in 

(Barthelemy and Haftka, 1993), a review of metamodeling applications in structural optimization 

is carried out. The use of surrogate modeling in multidisciplinary design optimization is discussed 

in (Sobieszczanski-Sobieski and Haftka, 1997). A review by (Viana, 2008) advises against 

employing a single surrogate model and alternatively proposes that multiple surrogate models are 

appropriate and even can be used in association with one another. The multiple surrogate model 

methods are useful in water resource applications (Chen et al., 2006).  

Similarly, to radial basis function (RBF) models, the minimum number of design points needed 

to fit a Kriging model is the number of coefficients in the polynomial augmenting the 

approximation. Kriging users only need to specify the lower and upper bounds of the correlation 

parameters, although the appropriate bounds can be difficult to specify. Kriging correlation 

parameters can be interpreted to some extent in that large values of a dimension indicate a highly 

nonlinear function in that dimension, while small values indicate a smooth function with limited 

variation (Maier and Dandy, 2000).  

(Simpson et al., 2008) report that the prevalent theme in six highly cited metamodeling (or 

design and analysis of computer experiments) review papers is indeed the high cost of computer 

simulations. Global optimization algorithms based on response surface models, such as EGO 
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(Jones et al., 1998), GMSRBF, MLMSRBF (Regis and Shoemaker, 2007), and Gutmann’s method 

(Gutmann, 2001), and uncertainty analysis algorithms, such as ACUARS (Mugunthan and 

Shoemaker, 2006) and RBF-enabled MCMC (Bliznyuk et al., 2008), can help circumvent the 

computational budget limitations associated with computationally intensive simulation models. 

Therefore, surrogate modeling may only be beneficial when the simulation model is 

computationally intensive, justifying the expense of performing a second level of abstraction 

(reducing model fidelity), which typically leads to analyses with reduced accuracy. However, even 

though (Jones, 2001) and (Simpson et al., 2008) both note that surrogate modeling has more 

advantages than simply reducing computational time, reviewing other possible motivations for 

surrogate modeling is beyond the scope of this chapter. 

The literature regarding response surface surrogates for engineering design optimization 

problems are also reviewed in (Simpson et al., 2001) and (Wang et al., 2014). The literature 

regarding response surface surrogate modelling is summarized in a discussion panel held at the 9th 

AIAA/ ISSMO Symposium on Multidisciplinary Analysis and Optimization (Simpson et al., 

2004). The literature regarding response surface modelling and motivations from a historical 

perspective is evaluated in (Simpson et al., 2008) with a focus on the appeal of lower-fidelity 

physically based surrogate modelling.  

Recent advances in surrogate modelling, including advances in lower-fidelity physically based 

surrogates in the field of optimization is reviewed in (Forrester and Keane, 2009). Special journal 

issues focusing on surrogate modelling summarize the first and second International Workshops 

on Surrogate Modelling and Space Mapping for Engineering Optimization (Bandler and Madsen, 

2001; W. Bandler et al., 2008)). Another special issue publication regarding surrogate modelling 
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is a thematic journal issue focusing on surrogate modelling for sensitivity analyses and the 

reduction of complex environmental models (Ratto et al., 2012).  

Additionally, there are more specific review papers focusing on specific tools/strategies 

involved in surrogate modelling. Kleijnen [2009] reviews Kriging and its applications in response 

surface surrogate modelling. Multiple function approximation models acting as response surface 

surrogates are reviewed and compared in (Jin et al., 2001) and (Chen et al., 2006). In another study, 

response surface surrogate modelling used with evolutionary optimization algorithms (Jin, 2005). 

Gradient-enhanced metamodels, which involve function gradients that use common auxiliary 

information and are useful for predicting functions based on locally changing behaviors is 

reviewed in (Laurent et al., 2017).  

These authors review the main metamodels using function gradients in addition to function 

values. Additionally, structural crashworthiness in design optimization is reviewed in (Fang et al., 

2017).  Surrogate modelling has become increasingly popular over the last decade within the water 

resources community, which is consistent with the increasing utilization of metamodels in the 

scientific literature since 1990 as documented by Viana and Haftka (Viana, 2008). 

As shown in Table 3.2, no survey analyzes the characteristics of more appropriate surrogate 

model for a design problem. Additionally, a comprehensive set of criteria for identifying 

appropriate surrogate models is lacking. Furthermore, no authors have discussed the automation 

of the surrogate modeling process. We aim to address these gaps in this chapter. 
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Table 3.2. Summary of previous review papers 

Paper Focus Type of Problem Types of Metamodels 

(Fang et al., 2017) Design optimization for 

structural crashworthiness 

Engineering design Polynomial response surface (PRS) model, radial basis function 

(RBF) model, Kriging (KRG) model, artificial neural network (ANN) 

model, comparison of different surrogate models, ensemble of 

surrogates 

(Laurent et al., 

2017) 

Gradient-enhanced 

surrogate models 

Numerical comparisons of metamodels 

carried out for approximating analytical test 

functions 

Classical, weighted and moving least squares, Shepard weighting 

functions, and kernel-based methods that are radial basis functions, 

Kriging and support vector machines 

(F. A. C. Viana, 

and R. T. Haftka, 

2008) 

Multiple surrogate models Engineering design Kriging, radial basis neural networks, linear Shepard and 

support vector regression 

(Chen, Tsui, 

Barton, & 

Meckesheimer, 

2006) 

Wastewater treatment 

stochastic dynamic 

programming (SDP)  

Aerospace engineering: engineering design 

and optimization; electrical engineering: 

CAD/CAM modeling and optimization; 

chemical engineering: optimization of a 

continuous-stirred tank reactor; continuous-

state stochastic dynamic programming 

Two-dimensional response, surfaces and one ten-dimensional surface, 

polynomial response surface models, MARS, spatial correlation 

models, OA designs, regression trees and related methods, least 

interpolating polynomials, ANNs, RBFs 
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Paper Focus Type of Problem Types of Metamodels 

(Kleijnen, 2009) Extension of Kriging to 

random simulation and 

discussion of bootstrapping 

to estimate the variance of 

the Kriging predictor  

In addition to classic one-shot statistical 

designs, such as Latin hypercube sampling, 

sequentialized and customized designs for 

sensitivity analyses and optimization are 

reviewed 

Kriging and its applications in response surface surrogate modeling, 

such as RBF models 

(Maier & Dandy, 

2000) 

Review of modeling issues 

and applications 

Neural networks for forecasting water 

resource parameters  

ANN 

(Jones, Schonlau, 

& Welch, 1998) 

Efficient global 

optimization 

Balancing the requirement to use the 

approximating surface (using sampling when 

it is reduced) with the requirement to 

enhance the estimation (by sampling when 

forecast error can be significant) 

Response surface methodology 

(Sacks et al, 1989) Many scientific phenomena 

are currently investigated 

by sophisticated computer 

models or code. Usually, 

the computer models are 

computationally expensive 

Design and analysis of computer experiments RSM, neural networks, function bounds 
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Paper Focus Type of Problem Types of Metamodels 

to run, and the mutual 

objective of the experiment 

is to fit a cheaper predictor 

of the output to the data 

(Sobieszczanski-

Sobieski and 

Haftka 1989) 

Primary challenges in 

MDO include 

computational expense and 

organizational complexity 

Engineering design Kriging, radial basis neural networks, linear Shepard 

 

(Barthelemy and 

Haftka, 1993) 

Applications of nonlinear 

programming methods to 

large structural design 

problems could be cost-

effective if suitable 

approximation concepts are 

introduced 

Design and analysis of computer experiments RSM, neural networks, function bounds 

(Regis & 

Shoemaker, 2007) 

Efficient global 

optimization 

Groundwater bioremediation models Response surface surrogates  

GMSRBF and MLMSRBF   
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Paper Focus Type of Problem Types of Metamodels 

(Mugunthan & 

Shoemaker, 2006) 

Uncertainty analysis 

algorithms 

Assessing the impacts of parameter 

uncertainty in computationally expensive 

groundwater models 

ACUARS and RBF-enabled MCMC  

 

(Bliznyuk et al., 

2008) 

Basic sequential framework Automatic calibration and 

Bayesian uncertainty 

analysis of an environmental 

model 

Radial basis functions 

(Jones, 2001) Adaptive-recursive 

framework 

Local optimization  Response surface surrogate modeling, Kriging 

(T. Simpson et al., 

2008) 

Multi-level/multi-fidelity 

approximations and 

ensembles of metamodels 

Availability of metamodels in commercial 

software for design space exploration and 

visualization 

Two-dimensional response, surfaces and one ten-dimensional surface, 

MARS, spatial correlation models, OA designs 

(T. W. Simpson et 

al., 2001) 

Computer-based 

engineering design 

Approximation of deterministic computer 

analysis codes 

Two-dimensional response, surfaces and one ten-dimensional surface, 

polynomial response surface models, MARS, spatial correlation 

models, OA designs, regression trees and related methods, least 

interpolating polynomials, ANNs, RBFs 

(Wang et al., 

2007) 

Model approximation, 

design space exploration, 

Finite element Polynomial (linear, quadratic, or higher), splines (linear, cubic, and 

NURBS), multivariate adaptive regression splines (MARS), Gaussian 
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Paper Focus Type of Problem Types of Metamodels 

problem formulation, 

optimization support 

analysis (FEA) and computational fluid 

dynamics (CFD) 

process, Kriging, radial basis functions (RBF), least interpolating 

polynomials, artificial neural network (ANN), knowledge base or 

decision tree, support vector machine (SVM), hybrid models 

 

(Simpson et al., 

2004)  

Approximation methods in 

multidisciplinary analyses 

and optimization 

Design of experiments versus design 

and analysis of simulations or computer 

experiments, reflecting experimental results, 

and data from approximation models, 

capturing uncertainty with approximation 

methods, addressing problems with 

numerous variables 

Surfaces and one ten-dimensional surface, MARS, spatial correlation 

models, RBFs 

(Forrester & 

Keane, 2009) 

Efficient global 

optimization 

Advances in lower-fidelity physically based 

surrogates 

in the field of optimization 

Polynomials, moving least squares, radial basis functions, radial basis 

function models of noisy data, Kriging, universal Kriging, blind 

Kriging with noisy data, support vector, support vector predictor 

(Bandler & 

Madsen, 2001; W. 

Bandler, Koziel, & 

Madsen, 2008) 

Editorial-surrogate 

modeling and space 

mapping 

Engineering optimization Artificial neural network approaches, Kriging, quadratic response 

surfaces, and approaches based on splines 
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Paper Focus Type of Problem Types of Metamodels 

(Ratto, Castelletti, 

& Pagano, 2012) 

Tools involved in surrogate 

modeling 

Reduction and sensitivity analyses of 

complex environmental models 

RSM, Kriging, RBF, ANN 

(Y. Jin, 2005) Comprehensive survey of 

fitness approximation in 

evolutionary computation 

Response surface surrogate modeling if used 

with evolutionary optimization algorithms 

Response surface surrogate, evolutionary algorithms 

(Chen et al., 2003) Primarily on the task of 

metamodeling, which is 

driven by the goal of 

optimizing a complex 

system via a deterministic 

simulation model. Also, the 

case of a stochastic 

simulation, and 

examples of both cases 

Applications in electrical engineering, 

chemical engineering, mechanical 

engineering, and dynamic programming 

Response surfaces, Kriging, regression splines, regression trees, 

neural networks, orthogonal arrays, Latin hypercubes, number-

theoretic methods 
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3.2 Design of Experiments (DOEs) 

In this section, we explain the DOEs, discuss the different types of DOEs and perform a 

comparison of the types; for any comparison, some indices or metrics are needed; thus, we 

provide an overview of existing and most frequently used evaluation methods used as metrics 

for assessing DOEs. To efficiently use computer-based code, constructing experimental design 

methods appropriately is essential. Thus, engineers have attempted to observe the effects of 

changes in one parameter on other parameter(s) for a long time. Additionally, in another 

method, engineers have examined large factor sets through a systematic or random process to 

compare the factor sets simultaneously. A plethora of different approaches can be used to 

design and apply such experiments to the creation of surrogate models. In this section, we 

review the various types of DOEs and measures of merit used to evaluate the DOEs. 

3.2.1.  The problem of size in surrogate modeling  

In the surrogate modeling process, addressing the problem of size, which is related to the 

number of variables, is among the greatest challenges. Hence, addressing this issue first is 

essential as it directly influences the entire process of surrogate modeling and particularly the 

DOE. Because the computational time is directly related to the number of factors, an effective 

strategy for managing the computational time is to reduce the problem dimension. Thus, before 

introducing different DOEs for the generation of design points, which are a combination of 

design variables (factors), reviewing some of the most frequently used dimensionality 

reduction tools is helpful.  
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3.2.2.  Principal component analysis as a dimensionality reduction method 

In principal component analysis (PCA) technique, we use an orthogonal conversion through 

to transform an  observed variable set which is correlated with an independent linear set of 

variables called principal components (PCs) (Jolliffe, 2005). The number of PCs is always 

smaller than the number of initially observed design variables. In this conversion, the highest 

variance is assigned to the first PC, and the subsequent variances are second highest, third 

highest, etc. on an orthogonal basis (Jolliffe., 2002). PCA eigenvalues to determine lower-

dimensional sets of variables which retain the maximum possible information (Gao et al., 2018). 

PCA is appropriate for reducing very high dimensionality in the solution space. For example, 

thousands of variables could be reduced to less than a dozen.  

3.2.1.  Variable screening as a dimensionality reduction method 

Screening the variables refers to discovering significant variables in a set of random 

variables. In this definition, the word "significant" has various implications based on the 

problem investigated (He et al., 2013). These types of experiments are used to identify the most 

notable factors and then reduce the number of variables to construct higher-order models. There 

are several types of variable screening methods; for example, (Koch et al., 1999) use a Pareto 

method to examine the outcomes of an experimental design in grading the significance of the 

factors in each response. As a DOE method, the 2-level fractional factorial design has been 

applied to screen 26 control and noise factors including 64 designs and one center point. At the 

end of the process, 18 factors remain; 14 factors are control factors, and four factors are noise 

factors. Additionally, in (Cho et al., 2014), the authors introduce a useful approach for variable 

screening in surrogate modeling with fractional output variance based on univariate dimension 
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reduction. In this variable selection process, the authors chose variables that yield higher output 

variance as vital factors. In this industrial study, the authors select 14 factors from a set of 44 

design variables and consider 11 constraints for the output variance. 

3.2.2.  Partitioning as a dimensionality reduction method 

Partitioning the problem and multiple-dimensional or multiple-level optimization represent 

other approaches for addressing dimensionality. A comprehensive survey of methods used to 

decompose a problem into more manageable partitions is available in (Lewis and Mistree, 

1998). In addition, in (Sobieszczanski-Sobieski and Haftka, 1997), several multidisciplinary 

design optimization techniques for framing and solving partitioned problems concurrently are 

introduced. Moreover, Balling and Wilkinson in (Balling and Wilkinson, 1997) classify 

hierarchical partitioning methods into the following three classes: i) single-stage problems, ii) 

concurrent subproblems, and iii) collaborative techniques. The most distinctive feature of the 

single-stage methods is the single discipline feasible exploration and design. In the 2nd type of 

problem partitioning, we address partitions independently and concurrently during the solution 

process. Then, the compatibility of the solutions for each subproblem is assessed (Koch et al., 

1999). 

3.2.3.  Bayesian updating as a dimensionality reduction method 

If several simulations can be performed and many design variables must be included in the 

surrogate model, Bayesian updating is useful and can overcome the difficulties causing 

classical stochastic optimization to fail (Cheng and Currie, 2004). Thus, in the case of 

numerous design variables and a complex simulation model, only limited runs can be 
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implemented, and approximating all coefficients of the surrogate model using classical tools, 

such as maximum likelihood, may be impossible (Liang and Mahadevan, 2016). In such cases, 

Bayesian updating has an enormous benefit.  

In Bayesian updating, the initial probability distribution f(x) is the first estimate of the 

probable value of the parameters that can achieve a feasible solution for starting the simulation 

runs. Then, the start point value is gradually improved, and estimates of the distribution of x 

become more accurate as the simulation runs proceed (Beck and Au, 2002). Therefore, the 

prior lack of information regarding the parameters is addressed by allocating initial 

distributions to the parameters and using experimental data. We revise this lack of information 

and update their distributions (from initial to subsequent) according to the data observed using 

Bayesian updating analysis (Ghanem and Doostan, 2006; Kennedy and O'Hagan, 2001). 

There are two types of model updating strategies, namely, bias-correction and calibration, 

which differ in formulation and the technique used to obtain a solution (Xiong et al., 2009). 

We can use bias-correction if the calibrating parameters of the model cannot enhance accuracy 

(Easterling and Berger, 2002; Hasselman et al., 2005). We can also use bias-correction to 

capture the probable model error caused by inaccurate modeling; for instance, a linear method 

can be used to model nonlinear behavior that usually cannot be captured by other methods 

(Kennedy and O'Hagan, 2001). Additionally, using the calibration approach, typically, two 

types of inputs serve as controllable variables and uncontrollable variables that are unchanged 

during the simulations. However, the uncontrollable variables should be calibrated (Trucano et 

al., 2006).  
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3.2.4.  The main types of experimental designs 

Numerous surrogate modeling methods are available, including factorial designs, fractional 

factorial designs (Gunst and Mason, 2009; Montgomery, 2017), central composite designs 

(Montgomery, 2017), Box-Behnken (Box and Behnken, 1960), orthogonal arrays (Hedayat et 

al., 2012), (Dey, 1985; Montgomery, 2017), D-optimal (Myers et al., 2016), Placket-Burman 

(Gustafsson et al., 2013), hexagon (Montgomery, 2017), hybrid (Myers et al., 2016), Latin 

Hypercube (McKay et al., 1979; Montgomery, 2017), random selection, grid search 

(Barthelemy and Haftka, 1993; Corchado et al., 2007; Güntert et al., 1998; Hsu et al., 2003), 

etc. We review some of these methods.  

3.2.5.  Factorial designs 

Factorial designs are the most fundamental experimental designs. In this experimental 

design method, the number of factor levels identifies the number of design points. Two main 

factorial designs (FD) are 2k (for two levels and k  factors) (Box and Hunter, 1961) and 3k.  2k 

designs are used to evaluate main effects and interactions and 3k design are used to assess the 

quadratic core interactions and impacts. In FD, factor refers to a design variable that may affect 

the other design variable, that is, the response variable. Level describes the discrete possible 

values that each factor can take; in DOEs, to ensure that the process is reasonable, we merely 

consider limited possible values for factors (Box et al., 1978a). For instance, in a two-factorial 

design, there are three (low-medium-high) levels, leading to 32=9 different design points. 
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3.2.6.  Fractional factorial designs (FFDs) 

The number of runs needed for a full factorial design increases exponentially and rapidly 

exceeds the available resources of most experimenters by increasing the factors through a 2k 

factorial design, e.g., a full iteration of the seven factors requires 128 runs. Under such 

circumstances, the engineering designer can obtain knowledge regarding the critical impacts 

using only a small portion of the full design (Montgomery, 2017). Fractional factorial designs 

(FFD) utilize the particular specifications of the design to decrease the size of an experiment 

and limit the loss of critical knowledge that might be ignored by not performing a wide-range 

study simultaneously involving probable groups of the levels. Screening is among the principal 

uses of this type of DOE (Gunst and Mason, 2009). 

In experiments commonly using this type of DOE, the number of required designs is 2k-p, 

such that 
1

2𝑝
 is the fraction. Typically, we use a 2k design to recognize and screen the critical 

design variables. In addition, we can use 2k-p for this purpose. The rare effect principle can 

occur if numerous factors lead a system predominated by significant effects and interactions 

with low order. Therefore, to screen the factors, 2-level designs can be used (Montgomery, 

2017).  

3.2.7.  Central composite designs 

Central composite designs (CCDs) are typical second-order designs used to explore higher-

order impacts, mainly quadratic effects, that require many design points. CCDs are 2-level FDs 

with 2k star points for a design with k factors. Each star point is placed at a position with a β 

distance from each factor. The distance between the center and each star in the design solution 
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space is |β|>1 if the distance between the center and a factorial point is ±1 unit for each factor. 

For example, if there are three factors, by using β=1, the star points are placed in the middle of 

the faces of a cube (Montgomery, 2017).  

3.2.8.  Orthogonal arrays 

Orthogonal arrays (OAs) are the experimental designs recommended by Taguchi. The 

designs represent a type of FFD that is used primarily in 2 or 3 levels (Owen, 1992). These 

designs are built to decrease the number of essential design points; for instance, with 4, 12 and 

16 design points, it is possible to assess 3, 11 and 15 variable/impacts by second level L4, L12, 

and L16 arrays. This type of design is also known as a Plackett-Burman design (Hedayat et al., 

2012).  

3.2.9.  Space-filling designs    

In the early stages of design very little is known about the mathematical models of the 

design and exploring a design space identifying the appropriate surrogate model can be 

impossible. Space filling design allow users to explore all regions of the design space equally. 

Space-filling designs are used to assist designers in very early stages of  design (Montgomery, 

2017). 

3.3 Comparison of Different DOEs: Evaluation Metrics 

Selecting the appropriate design is critical for efficient experimentation, that is, balancing 

between obtaining knowledge about the relationships among factors, the response variables 

and computational time. Thus, after providing an overview of the available and useful DOEs, 

in this subsection, we review the criteria used to evaluate and compare DOEs. Then, we 
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critically discuss the utility and usefulness of each DOE that is introduced in Section 3.2.2 

based on knowledge regarding the DOE and its cost and computational time. In this subsection, 

we review some measures of merit used to evaluate the appropriateness of a chosen DOE for 

generating design points. 

3.3.1.  Unsaturated, Saturated, and Supersaturated Designs 

The most significant challenge in DOEs is the size of the problem. Unsaturated designs are 

the most common types of designs in which the number of design points is twice the number 

of factors. In saturated DOEs, the number of design points and number of factors are equal 

(Chen and Lin, 1998). However, the design points and factors have different characteristics; 

for example, a fractional factorial design that is saturated enables us to predict significant 

effects in an unbiased way with small size and variance (Montgomery, 2017). There are many 

examples of saturated designs, and OAs, which were proposed by Taguchi, and two-level 

Placket-Burman designs are the most frequently used designs (Simpson et al., 2001).  

Supersaturated designs represent a particular type of FD and are typically used if the factors 

outnumber the observations (Nguyen, 1996). Building this sort of design by a random process 

is recommended (Kathleen and Cox, 1962; Lin, 1993). In this type of design, we do not have 

an adequate number of runs to approximate significant effects. We use this type of design in 

the screening process to identify principal and sparse factors through a process which requires 

limited computation(Phoa et al., 2009). Frederick and co-authors in (Phoa et al., 2009) studied 

supersaturated designs using the Dantzig selector and found that this variable selection method 

is highly effective in predicting the size of the model. If the essential runs of the simulations 
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are not extremely expensive, using unsaturated designs for predictive functions is 

recommended (Simpson et al., 2001). 

3.3.2.  Minimum bias  

All approximators must be unbiased. Thus, the long-term expected value or average should 

be the same as the estimated parameter (Karson et al., 1969). Unbiasedness is necessary; 

however, this feature alone is not always sufficient to ensure that an approximator is a good 

approximator (Montgomery, 2017). 

3.3.3.  Minimum variance 

The variance of the coefficient predictions in a first-order model is minimal if we build it 

as follows in Equation 3.1:  

2

1

N

iu

u

x N
=

=  
Equation 3.1

  

where the approximation variance (ŷ) is an unmoving variance, and the distance from the 

design center is constant (Simpson et al., 2001).  

3.3.4.  Rotatability 

Rotatability is an evaluation metric used for second-order models. For a 2nd-order model, 

we should create appropriate approximations for the entire solution space. One of the 

characteristics that shows that a model is “appropriate” is a rationally constant variance at the 

approximated response (Khuri, 1988). Box and Hunter recommended that a 2nd-order RSM 

must have rotatability. Thus, the variance of the approximator is the same at all points x that 
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are equidistant from the center of the design. Thus, the deviation of the approximated response 

is consistent on spheres (Box and Hunter, 1957).  

This feature in a design problem means that the variance remains constant as the design is 

rotated around the center (0, 0, . . . , 0), and thus, this design is called a rotatable design (Draper 

and Guttman, 1988). Rotatability is a rational foundation for selecting a response surface 

design. RSM is used to create an approximation and the place of approximation is unknown 

before implementing the experiment, using a design that creates equally accurate 

approximations in the estimation in all directions is reasonable (Khuri, 1988).  

3.3.5.  Orthogonality 

If the summation of the products of the N design points for each xi and xj is zero (as shown 

below), the design is orthogonal.  

1

0
N

iu ij

u

x x
=

=  
Equation 3.2

  

 Thus, if the aggregation of the products of the corresponding components of two vectors 

of the same length is zero, the design is orthogonal. Additionally, if the impacts of any factor 

balance out the impacts of other factors (sum to zero), the experimental design is orthogonal 

(Gunst, 1996). By performing a comprehensive review of designs of experiments and a 

comparison of different DOEs and evaluation metrics of DOEs, we determined that the critical 

characteristics that should be considered by a designer/decision-maker in identifying the most 

appropriate surrogate modeling method are the problem of size, the accuracy level needed for 

the output of the surrogate model and the computational time (Xue et al., 2013). In this section, 
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we compare the utility and appropriateness of the previously introduced DOEs based on the 

required numbers of factors and design points, the computational time and the expected 

accuracy level.  

3.4 Model Choice in Surrogate Modeling 

In this subsection, we summarize some of the models that can be used to represent the data 

generated in the previous step with DOEs. 

3.4.1.  Response surfaces 

If we assume that x is an independent vector of factors and y is the vector of response, then 

the impact of x on y and their relationship is: 

𝑦 = 𝑓(𝑥) + 𝜀 Equation 3.3

  

 where ε denotes the normally distributed random error with a mean of zero and a standard 

deviation of 0 (Box and Draper, 1987). Because the actual response surface function is 

indefinite, instead of f(x), a new response surface g(x) is built and used as a surrogate for f(x). 

Thus, ŷ = g(x) yields the estimated values of f(x) (Khuri and Mukhopadhyay, 2010). Because 

knowledge regarding the relationship between the response variables and factors in most RSM 

problems is limited, we should first perform an appropriate estimation of the correct function 

of the response and factors (Deaton and Grandhi, 2014). The approximating function is the 1st-

order model if we can appropriately demonstrate the actual model by a linear function of the 

factors.  
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𝑦 =  𝛼0 + 𝛼1𝑥1 + 𝛼2𝑥2 +⋯+ 𝛼𝑖𝑥𝑖 + 𝜖 Equation 3.4

  

However, sometimes, we need to use a higher-order polynomial, such as a 2nd-order model 

(see Equation 3.5), if there is curvature in the problem. 

𝑦 =  𝛼0 +∑𝛼𝑖𝑥𝑖 +∑𝛼𝑖𝑖𝑥𝑖
2

𝑘

𝑖=1

𝑘

𝑖=1

+∑∑𝛼𝑖𝑖𝑥𝑖
𝑖<𝑗

𝑥𝑗 + 𝜖 

Equation 3.5

  

  Regardless of whether RSM uses either a linear or a higher order function, a polynomial 

model is not always a rational estimation of the actual functional relationship throughout the 

region of the factors. These models typically perform well in a relatively small space 

(Montgomery, 2017). RSM is very easy to use and very convenient.  

3.4.2.  Kriging 

Kriging is a surrogate modeling technique introduced as a mixture of a polynomial model 

of x, that is, f(x), and localized deviations of x, that is, Z(x), as shown in Equation 3.6. 

𝑦(𝒙) = 𝑓(𝒙) + 𝑍(𝒙) Equation 3.6

  

 

where Z(x) refers to the concept of a normally distributed Gaussian random process with a 

mean of zero, variance 2, and non-zero covariance. In Equation 3.6, f(x) is a polynomial 

function of an RSM that delivers a ‘global' model and is often a fixed function (Stein, 2012). 

Kriging is a Gaussian process regression and is a technique of interpolation. The interpolated 

values are modeled by a Gaussian process using information about prior covariances (Gano et 

al., 2006).   



 

63 
 

3.4.3.  Radial basis functions (RBF) 

This technique is a mathematical function that accepts real values, and its value is 

calculated based on the distance between the origin and each point (Shan and Wang, 2010). 

Alternatively, the distance between the center point and each point can be used, as shown in 

Equation 3.7.  

Q(x) = Q (‖𝑥‖) (distance from the origin point); Q (x, c) = Q (‖𝑥 − 𝑐‖) 
(distance from the center point)        

Equation 3.7

  

In surrogate modeling, the integration of these functions is used to estimate complicated 

mathematical functions. We can use these functions to construct surrogate models, as shown 

in Equation 3.8. 

ŷ(𝑥)  =  ∑𝑟𝑖𝑄(‖𝑥 − 𝑥𝑖‖)

𝑀

𝑖=1

 

Equation 3.8

  

 where the surrogate function ŷ refers to the integration of M radial basis functions, and 

each function is linked to a distinct 𝑥𝑖 and has a weight of 𝑤𝑖 (Broomhead and Lowe, 1988).  

3.4.4.  Inductive learning 

Machine learning is categorized in five significant paradigms: genetic algorithms, case-

based learning, neural networks, analytic learning and inductive learning (Dumais et al., 1998). 

Inductive learning is a machine learning paradigm that is similar to metamodeling and 

regression. In this method, the necessary rules are derived from examples; these condition-

action rules are used to divide the data into distinct classes and are the principal modeling 
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concepts and can simplify the interpretation by incorporating these into decision trees 

(Michalski, 1983). 

We train the data in (xi, yi) pairs, where xi is the feature vector values, and each yi is the 

related result value. In the inductive learning technique, both the features and results can 

assume real values. However, the data can be fitted well if discrete values are used. Therefore, 

converting real values into discontinuous representations is a possibility. Then a decision tree 

can be created by training algorithms as soon as the data are gathered, which is possible after 

selecting appropriate features for separating and classifying the data. Choosing the features in 

a systematic manner that requires the least amount of information instead of chance is always 

recommended (Witten et al., 2016). 

The parameters represent undetermined components that must be learned from the data. In 

linear regressions, the coefficients θ are the parameters. To represent the parameters, we 

typically use θ (since there are numerous parameters in a model, this is a loose definition) 

(Madala and Ivakhnenko, 1994). 

3.4.5.  Boosted trees 

Friedman introduced boosted trees or a gradient boosting machine as a method of 

supervised learning (Friedman, 2001). The boosted trees method is used in supervised learning 

problems in which multiple features xi are available in a training dataset to estimate the response 

variable yi. In supervised learning, the model typically denotes the mathematical construction 

of how to estimate yi based on xi. For instance, a linear model is very common, and the 

estimation is given by 𝑦̂ = ∑ 𝛼𝑗𝑥𝑖𝑗𝑗 , which is a linear combination of weighted input features. 
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The approximation value can have different explanations based on the problem. For instance, 

to obtain the probability of a positive group in a logistic regression, logistic transformation can 

be used, and a ranking score can also be used to rank the output (Madala and Ivakhnenko, 

1994). Boosted trees produce a prediction model in the form of an ensemble of weak prediction 

models that are typically decision trees. The boosted trees method is used to build models in a 

stage-wise fashion, which is similar to other boosting methods, and generalizes the models by 

allowing the optimization of an arbitrary differentiable loss function (De'Ath, 2007).  

Boosted trees represent a tool for surrogate modeling and predictive data mining and have 

some specific properties. Boosted trees inherit the desirable features of trees while eliminating 

many undesirable features. The most desirable feature is robustness (La Fuente and Andres, 

2016; MacCalman et al., 2016). All boosted trees are invariant under all (strictly) monotone 

transformations of individual input variables. For example, using xj, log xj, e
xj, or xα

j as the jth 

input variable yields the same result. Thus, the need to consider input variable transformations 

is eliminated. Sensitivity to long-tailed distributions and outliers is also eliminated (Jagadeesh 

et al., 2016).  

Boosted trees are entirely robust against outliers in the output variable y. Boosted trees also 

have a fair measure of robustness against output outliers (Lemercier et al., 2012). Internal 

feature selection is another benefit of decision tree conjecture. Trees are generally reasonably 

robust to the addition of input variables that are not relevant (Sim et al., 2018). Additionally, 

tree-based models address missing values in a unified and elegant manner (Song et al., 2018); 
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studying external imputation schemes is not necessary. Boosted trees also inherit these 

properties.  

The principal disadvantage of single tree models is inaccuracy (Friedman, 2001). 

Inaccuracy is a result of the coarse characteristics of their piecewise continuous estimates, 

particularly for smaller trees. For larger trees, a major disadvantage is uncertainty, and the fact 

that they include predominately high-order interactions. These disadvantages are mitigated by 

boosting (Burnham and Anderson, 2003; Han et al., 2011; Vapnik, 2013; Witten et al., 2016). 

Boosted trees enhance stability by using small trees and averaging many of these trees. The 

interaction level of boosted tree approximations is adequately controlled by limiting the size of 

the individual constituent trees.  

The most significant advantages of single tree models are interpretability, whereas boosted 

trees are thought to lack this feature (Duda et al., 2012). Small trees can be easily interpreted; 

however, due to instability, such interpretations should be treated with caution. The 

interpretability of more massive trees is questionable (Ripley, 2007). Another drawback of 

boosted trees is that they overfit their training sets and have a very high variance. Attempts 

have been made to use of random forests to overcome this drawback.   

3.4.6.  Random forests 

Random decision forests or merely random forests are ensemble learning techniques for 

regression, classification, and other tasks that perform by building an aggregation of decision 

trees at the training stage and outputting the group that is the mode of the groups (classification) 
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or mean estimation (regression) of single trees (Ho, 1995, 1998). Random decision forests 

correct for decision trees' habit of overfitting to their training set (Friedman et al., 2001). 

The first algorithm used for random decision forests was created by Tin Kam Ho (Ho, 1995) 

using the random subspace method (Ho, 1998), which, in Ho's formulation, was used to apply 

the "stochastic discrimination" approach to the classification proposed by Eugene Kleinberg 

(Kleinberg, 1990, 1996; Kleinberg, 2000). An expansion of this method was introduced by Leo 

Breiman (Breiman, 2001) and Adele Cutler (Cutler et al., 2012), and "Random Forests" is their 

trademark. The extension combines Breiman's "bagging" idea and the random selection of 

features first introduced by Ho (Ho, 1995) and subsequently developed independently by Amit 

and Geman (Amit and Geman, 1997) for building a controlled variance ensemble of decision 

trees.  

Decision trees are a popular approach for many machine learning works. Tree learning is 

invariant under scaling, and various other conversions of feature values are robust to the 

insertion of irrelevant features and generate inspectable models. However, these models are 

rarely accurate (Friedman et al., 2001). Mainly, trees that are grown very deep can learn 

extremely abnormal patterns. Although these trees have considerable variance, they have a low 

bias because they overfit their training sets (Krauss et al., 2017). These trees can average 

multiple deep decision trees that have been trained on various parts of the same training set to 

decrease the variance (Friedman et al., 2001). However, while this approach is associated with 

a small increase in bias and some loss of interpretability, it generally dramatically boosts the 

performance of the final model.       
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3.4.7.         Adaptive learning/active learning 

Adaptive learning, sequential sample selection/design or active learning is a particular 

machine learning technique that is semi-supervised, and its algorithm can refer to the 

information source interactively to achieve the favored outcomes for a newly generated data 

set (R., 1970). This approach is also called an optimal design of experiments and is often used 

if many data points are unlabeled and/or cannot be labeled manually due to cost. In such cases, 

active learning is instrumental in collecting data; although the computation is very expensive, 

identifying the precise distribution of the data is nontrivial is in the initial stages of design, and 

accordingly, an iterative process is needed to select the data points (Gorissen et al., 2010). In 

active learning, there is a function for minimizing the number of samples chosen during the 

iterations and maximizing the knowledge attained by each step (Gorissen et al., 2010).  

3.4.8.  Hyperdimensional performance models 

Hyperdimensional Performance Models are another type of surrogate models which are 

introduced by Turner in 2005. The distinct feature of Turner’s proposed method is that 

surrogate models are constructed from a wide variety of mathematical basis functions but 

Hyperdimensional Performance Models (HyPerModels) are derived from Non-Uniform 

Rational B-splines (NURBs). Based on Turner’s results, this can cause many unique 

advantages when compared to other surrogate modeling approaches. NURBs are defined by a 

set of control points, knot vectors and the NURBs orders, resulting in a highly robust and 

flexible curve definition that has become the de facto computer graphics standard. The defining 

components of a NURBs HyPerModel can be used to define adaptive sequential sampling 

algorithms that allow the designer to efficiently survey the design space for interesting regions. 
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The data collected from design space surveys can be represented with a HyPerModel by 

adapting NURBs fitting algorithms, originally developed for computer graphics, to address the 

unique challenges of representing a hyperdimensional design space. With a HyPerModel 

representation, visualization of the design space or design subspaces such as the Pareto 

subspace is possible. HyPerModels support design space analysis for adaptive sequential 

sampling algorithms, to detect robust design space regions or for fault detection by comparing 

multiple HyPerModels obtained from the same system. Significantly, HyPerModels uniquely 

allow multi-start optimization algorithms to locate the global surrogate model optimum in finite 

time. HyPerMaps defines the necessary algorithms to adaptively sample a design space, 

construct a HyPerModel and to use a HyPerModel for visualization, analysis or optimization. 

With HyPerMaps, an engineering designer has a window into the hyperdimensional design 

space, allowing the designer to explore the design space for undiscovered design variable 

combinations with superior performance capabilities.  

The main problem with Turner’s proposed hyperdimensional performance models is that 

he presumes that all the models are incomplete and inaccurate. Surrogate models are used to 

approximate the design space and using them to find the global optimum solution is not a 

logical conclusion. What we propose in this survey is the qualitative practical guidance for 

industrial designers who are looking for good enough solutions. Also, in Turner’s study, 

hyperdimensional performance models are used to create robust solutions again is not possible 

while he is looking for single solutions on the boundary and assume that models are complete 

and accurate. So, in our review, surrogate models are defined and critically evaluated as 
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methods to approximate the reality to find the solutions which are relatively insensitive to the 

variations. 

3.4.9.  Multiple surrogates 

Frequently, an individual surrogate is chosen to model a specific problem and develop an 

approximation function based on prior knowledge from past experience. The idea of generating 

an ensemble of surrogates has been used for a long time. Multiple surrogates have been used 

to overcome the drawbacks of other approaches. For example, adaptive sampling algorithms 

that add one point per cycle are readily available. These algorithms use uncertainty estimators 

to guide the selection of the next sampling point(s). The addition of one point at a time may be 

inefficient if running simulations in parallel is possible. To address this problem, (Viana et al., 

2010a) proposed an algorithm for adding several points per optimization cycle based on the 

simultaneous use of multiple surrogates. In another study, (Song et al., 2018) analyzed the 

effectiveness of multiple surrogates in providing accuracy, robustness, and efficiency 

requirements for many specific problems. Additionally, the performance estimates and the 

simultaneous application of multiple surrogates are studied in . Furthermore, in the context of 

surrogate endpoints, multiple surrogates are used and two simple, complementary ways to 

address the relative benefits of multiple surrogates over a single surrogate are proposed in (Xu 

and Zeger, 2001). The disadvantages of composite and multiple surrogates and their lack of 

quasi-concavity are studied in (Karwan and Rardin, 1980). The effectiveness and found that 

even though empirical evidence has suggested that the Dempster–Shafer theory (DST)-based 

mixed surrogate approach and weighted average surrogates (WAS)-based ensemble methods 
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are better than individual surrogates, these methods do not generalize well to all classes of 

problems are debated in  (Babaei and Pan, 2016).  

Multiple surrogates are also extensively used in surrogate-assisted optimization. For 

example, (Viana et al., 2013) used the multiple surrogate efficient global optimization 

(MSEGO) algorithm to overcome the problem of adding several points per optimization cycle. 

The existing global optimization algorithms have been shown to have the potential to be 

adapted to locate multiple candidate designs, but the key to efficiency lies in the parallelization 

of optimization processes (Chaudhuri and Haftka, 2014; Villanueva et al., 2013). In addition, 

the trade-offs among thrust, current or power consumed, and efficiency by analyzing 

predictions of Pareto fronts generated from multiple surrogates are studied in (Chaudhuri et al., 

2014). (Acar, 2015) argued that MAXE is more important than RMSE; in ensemble, the weight 

factors need to be identified by minimizing the maximum absolute cross-validation error 

(MAXE-CV). Multiple surrogates to reduce uncertainty in optimal point search in a surrogate-

assisted optimization process are used in (Adhav et al., 2015).  

The design optimization and reported the flow parameter optimization of a bi-directional 

impulse turbine are used in (Badhurshah and Samad, 2015). MSEGO is used to improve the 

convergence ratio of an uncertainty estimator called expected improvement (EI) and other 

modeling methods (Wang et al., 2016). Moreover, in some studies, design space reduction has 

been incorporated into the optimization method using an ensemble of surrogates (Song et al., 

2018). Multiple surrogates are used to design a thin-walled compliant mechanism component. 
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The proposed optimization problem is addressed with a multiple-objective genetic algorithm 

in sequentially updated surrogate models. 

In another engineering design problem, a sophisticated design space is explored when the 

shape optimization of a bluff body is performed to facilitate mixing while minimizing the total 

pressure loss (Mack et al., 2005). In another study, a sequential quadratic programming is used 

to search for the optimal point from the constructed surrogates in shape optimization of a 

turbomachinery blade (Samad et al., 2006). For a single problem, the choice of test surrogate 

could depend on the experimental design (Goel et al., 2007) while for a multiple set problems 

and ensemble of model with multiple regional optimized weight factors (EM-MROWF) can be 

useful (Yin et al., 2018) where the design space is divided into multiple subdomains, each of 

which is assigned a set of optimized weight factors. 

Some studies analyze the surrogate model-based design optimization concern of the 

modeling fidelity of the approximation functions. (Bellary and Samad, 2017) address this issue 

using multiple surrogates based on the same data to offer approximations from an alternative 

modeling perspective. These authors proposed an approach to optimize the performance of a 

centrifugal impeller as a case study.  A multiple-surrogate-assisted optimization approach is 

used and evaluated at various levels of fidelity. Some researchers have focused on multiple 

surrogates of only one surrogate type (Habib et al., 2017). For example, an ensemble of radial 

basis function (ERBF) method is presented to determine weights by solving a quadratic 

programming subproblem (Shi et al., 2016). implemented multiple-surrogate-assisted multiple-

objective optimization for computationally expensive engineering design.  
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Many research studies have been conducted using multiple surrogates as evolutionary 

computation methods. These authors studied the search performance of using different 

metamodeling techniques, ensembles, and multiple-surrogates in a surrogate-assisted memetic 

algorithm (Lim et al., 2007). A multiple-surrogate model is further applied to optimize a 

dimpled channel and integrate multiple objectives related to heat-transfer and friction-loss into 

a single objective (Samad et al., 2007). Multiple surrogates are used coupled with an 

evolutionary genetic algorithm to identify the pareto optimal fronts (POFs) of two centrifugal 

pumps with different specifications to enhance their performance (Bellary et al., 2016).  

The authors found that WAS performs better in both objectives than does any other 

individual surrogate. Multiple surrogates are used along with NSGA-II for the optimization of 

a `structure/control' simultaneous design approach to introduce frequency-dependent 

weighting functions to the H1-control synthesis framework as design variables (Bhat et al., 

2010). The authors applied this method for vibration-attenuation in hypersonic vehicles. 

Additionally, multiple surrogate models are used along with an evolutionary algorithm that 

operated in parallel to combine their features and solve a costly multiple-objective optimization 

problem (Arias-Montano et al., 2012a).  

Different metamodels are used to treat the problem of response approximation based on 

different theories (Basudhar, 2012). While these metamodels differed in the manner in which 

they addressed the approximation problem, they also had certain inherent similarities. A 

multiple-objective evolutionary algorithm is embedded in multiple adaptive spatially 

distributed surrogates of multiple types (Bhattacharjee et al., 2017). In another study, the same 
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group used multiple surrogates to exploit the best features of several strategies and specifically 

compared two possible versions of pre-selection in multiple-objective optimization 

(Bhattacharjee et al., 2016). A multiple-objective evolutionary algorithm with multiple 

adaptive spatially distributed surrogates is introduced. The multiple-surrogate-based PSO 

(MSPSO) framework is used, which consists of inner and outer loop optimization (Lv et al., 

2018).  

Subsequently, authors have attempted to use different applications to show the 

effectiveness of using multiple surrogates in different problems with different characteristics. 

For instance, multiple-surrogate modeling is used to minimize the RMS error in metamodeling 

(Viana and Haftka, 2008). These authors explored the use of the best PRESS solution or a 

weighted surrogate if a single surrogate is needed. Then, the advantages of using multiple 

surrogates for approximation and reduction of helicopter vibration is studied in (Glaz et al., 

2009). A bi-directional impulse turbine used in a wave energy device is simulated using a CFD 

technique, and shape optimization is performed with a multiple-surrogate-assisted multiple-

objective evolutionary algorithm in (Ezhilsabareesh et al., 2018). 

Cross-validation has been used extensively to assign weights to different surrogates by 

generating multiple surrogates and facilitate the measurement of accuracy during the process 

of using multiple surrogates. However, some authors have used cross-validation to estimate the 

required safety margin with a given desired level of conservativeness (percentage of safe 

predictions) (Viana et al., 2009). These authors also determine how well they could minimize 

the losses in accuracy associated with a conservative predictor by selecting among alternate 
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surrogates. Additionally, Viana and co-authors discussed whether to use the best PRESS 

solution or a weighted surrogate if a single surrogate is needed (Viana and Haftka, 2008). These 

authors proposed the minimization of the integrated square error as a way to compute the 

weights of the weighted average surrogate model. The authors found that generating a broad 

set of different surrogates and then using PRESS as a criterion for selection are beneficial. 

3.5 Model Fitting in Surrogate Modeling 

To fit a surrogate model to the dataset under study, some fitting indicators are required. 

There are several model fitting indicators that most important ones are studied in this section. 

For example, in Section 3.5.1., least squares analysis is explained as the most important model 

fitting technique while weighted least square regression technique is discussed in Section 3.5.2. 

Also, in Section 3.5.3., a logarithm type of likelihood function is explained as the log-likelihood 

technique. Backpropagation, R-square, mean absolute percentage error, mean absolute error, 

and cross-validation are described in the subsequent sections. 

3.5.1.  Least squares analysis to create the surrogate model 

The least squares (LS) analysis is a standard method in regression analyses that predicts a 

set of functions in an overdetermined system1. The objective is to identify the values of the 

model’s parameters that fit best. Thus, the aim is to minimize the integration of the estimation 

errors’ squares (Vinzi et al., 2010).  

 
1 Sets of equations that have more equations than unknowns 



 

76 
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑆 =∑𝑒𝑖
2

𝑛

𝑖=1

 
Equation 3.9

  

An error is the subtraction of the response’s real value from its estimation. Each data point 

has one error, and the eventual goal is to ensure that both the sum and the mean of the errors 

equal zero. In the surrogate modeling process, the LS method predicts the parameters by 

polynomials. Then, the fitted RSM is implemented. Subsequently, the approximated model 

should be almost equal to the exact model if it is a sufficient prediction of the actual model 

(Montgomery, 2017).  

3.5.2.   Weighted least square regression (WLSR) 

The typical LS analysis presumes homoscedasticity, suggesting that the variance in the 

errors is constant. If the errors have no static variation in typical LS (this is also called 

heteroscedasticity), the method of WLSR is useful   (Hansen et al., 2012). In the surrogate 

modeling process, a WLSR at a given point involves identifying the best multivariate 

polynomial approximation (Bettebghor et al., 2011).  

3.5.3.   Log-likelihood 

Log-likelihood is a logarithm type of likelihood function. The likelihood is a function of 

combinations of coefficients and parameters in a model that creates a statistical collection of 

data. The likelihood is a critical tool in statistical analyses used to estimate an unknown 

parameter by using a data set. Usually, using log-likelihood as the likelihood is more 

straightforward, and this logarithm grows gradually and achieves the same value as the original 
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function at the optimal point. Therefore, using log-likelihood instead of likelihood is possible 

in searching for the maximum value of a model (Montgomery, 2017). 

3.5.4.   Backpropagation 

Backpropagation is a technique used to compute the loss function’s gradient in an ANN’s 

weights. We use backpropagation as a method to enhance the efficacy of ANN by adapting the 

weights. Backpropagation is also used for training the data (Demuth et al., 2014). The 

backpropagation process is an iterative two-step process, that is, propagation and weight 

adjustment. Once a given vector enters a space, it is propagated throughout the process until it 

arrives at the final layer. Then, using a loss function, the outcome is analyzed against the ideal 

result, and we can compute the error value of each neuron in the last layer. Accordingly, starting 

from the output, the values of the error are propagated backward, and this cycle continues until 

each neuron attains a corresponding error value that approximately denotes its contribution to 

the primary output (Chauvin and Rumelhart, 2013). 

3.5.5.   R-square (R2) 

R-square is a percentage of the deviation of the response variable and is estimated using 

the data of the factors. In surrogate models, we use R-square to examine the level of the model’s 

accuracy. The adjusted R2 is another version of R2, that considers the number of parameters, R2 

and adjusted R2 are some of the leading indicators of accuracy in simulation-based design. 

However, R-square and adjusted R-square can be inadequate, and a high R2 can be elusive; 

thus, using additional different data points is necessary (Simpson et al., 1997). Several other 
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measures, such as root mean square (RMS) and mean absolute error (MAE), are used for 

examining the model accuracy (Venter et al., 1997).  

3.5.6.   Mean absolute percentage error (MAPE)  

This indicator is very frequently used for testing the accuracy of the approximation because 

it is interpretable and scale-independent (Dobler and Anderson-Cook, 2005). However, MAPE 

may generate undefined or infinite values, when the real values are insignificant (near to 0). 

Thus, in many disciplines, MAPE can be problematic because having minimal values is a 

standard issue in many experiments (Makridakis et al., 1998). To address this issue in MAPE, 

another version of this measure was developed to measure the accuracy of the estimation, 

which is called MAAPE2 (Kim and Kim, 2016).  

3.5.7.   Mean absolute error (MAE) 

MAE is another indicator used to measure two variables’ variance. For example, if A and 

B are variables in two different experiments of one clear case, the values of A and B are 

comparisons between the estimated and observed phenomena (or between current time and 

previous time). Thus, if we generate a scatter chart (such as the chart shown in Figure 3.2) of m 

points, where the point k has a location (ak, bk). (See Equation 3.10) 

The MAE is the mean distance (vertical) from each point to the line A=B. MAE is also the 

average distance (horizontal) between each point and the B=A line. 

 

2 Mean arctangent absolute percentage error 

𝑀𝐴𝐸 =
∑ |𝑏𝑘 − 𝑎𝑘|
𝑚
𝑘=1

𝑚
 

Equation 3.10
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Figure 3.2. Comparison between two experiments in an engineering design problem.  

3.5.8.   Cross-validation 

This validation method is used to evaluate the validation of the outputs of a statistical study 

and generalize the results to other sets of data. In this method  the data is divided into test and 

training data sets and the process is repeated several times (Geisser, 1993). In surrogate 

modeling, if we wish to fit a model to a given known data set, we train the model by running it 

with the training data set. Then, the surrogate model is validated against the test data. Using 

this method gain insight into whether the surrogate model can be generalized into a new 

independent set of data (Lucas, 1994).  

Each replication of the cross-validation technique contains three phases; in phase one, we 

divide the data into the two subsets, apply the analysis to the training subset and validate the 

study using the testing subset. Many replications are performed to avoid variability with 

distinct partitions of the original data, and the mean of the results over the replications is used 

as the final validation outcome (Lucas, 1994). 
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We use this method instead of conventional methods for validation, such as dividing the 

set of data into 60 percent for training and 40 percent for testing. The lack of adequate data to 

partition into two training-testing data sets can lead to a loss of significant modeling capability 

and testing efficiency to partition into two training-testing datasets (Seni and Elder, 2010). 

One of the greatest difficulties faced by designers is a situation in which two computer 

codes are available, and one code is more accurate than the other but also more expensive (time 

consuming) to run. The issue of building surrogate models based on combining the high-

accuracy fitting method and low-accuracy fitting method has drawn significant attention. 

Related work includes Kennedy and O’Hagan (Kennedy and O'Hagan, 2000, 2001), Higdon et 

al. (Higdon et al., 2004), Reese et al. (Reese et al., 2004), and Qian and Wu (Qian et al., 2008). 

The fundamental idea of these methods is to run the high-accuracy and low-accuracy data with 

a pair of nested space-filling designs (Qian et al., 2009) and then fit a surrogate model based 

on the low-accuracy data and refine it by incorporating the more accurate high-accuracy data. 

These methods work in a uni-stage experimentation fashion as the run sizes of the high-

accuracy and low-accuracy data need to be predetermined, and all data from the two sources 

are obtained in a single stage. Additionally, Xiong and Wu (Xiong et al., 2013) propose a 

sequential framework for designing and analyzing a pair of high-accuracy and low-accuracy 

data. This framework is desirable in situations in which it is difficult to predetermine the 

number of runs needed for the high-accuracy and low-accuracy data. This framework is also 

useful when the high-accuracy and low-accuracy methods cannot be performed in a large 

number of runs simultaneously due to experimental constraints. In another study, (Zhou et al., 



 

81 
 

2011) proposed a new approach to the emulation of computer code with qualitative and 

quantitative factors. The approach inherits the flexibility of the unrestrictive correlation 

structure of qualitative factors used by Qian, et al. (Qian et al., 2008) but replaces their 

complicated estimation procedure with a clever parameterization using hypersphere 

decomposition, which was initially proposed by Jackel and Rebonato (Jaeckel and Rebonato, 

1999) for modeling correlations in financial models. This new parameterization essentially 

turns the required optimization problems with positive definite constraints proposed by Qian 

et al. (Qian et al., 2008) into standard nonlinear optimization problems with box constraints. 

3.6 Comparison of Chosen Surrogate Models 

The appropriateness of a surrogate model depends on the trade-off between the model 

accuracy and the computational expense of its development and execution, which we consider 

the computational time. Because no surrogate model is perfect, any surrogate model used for a 

system's physical behavior can be refined further to increase its accuracy, although, 

unsurprisingly, at an increased computational expense (Paiva et al., 2010). On the other hand, 

an alternative approach to reduce the computational expense is to replace detailed simulations 

with simplified approximate simulations, thereby sacrificing accuracy for reduced 

computational time. In this case, a strategy to maintain  accuracy along with reducing the 

computation time can be to integrate data from approximate and detailed simulations to build 

a surrogate model that describes the relationship between output and input parameters (Qian et 

al., 2006). Therefore, the question asked by a designer is, ‘How much refinement of a surrogate 

model is appropriate for a particular design problem?' Value-of-information has been addressed 
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in the engineering design literature to determine whether to make a decision using the available 

information or collect more information before reaching a decision (Messer et al., 2010). 

However, the main drawback of applying existing value-of-information-based metrics for 

model refinement problems is that the existing metrics only account for time, size and accuracy 

separately; these metrics do not account for all three combined in surrogate models, and this 

consideration has an impact on design decisions (Panchal et al., 2009).  

To address the lack of current metrics in the context of model refinement, in this chapter a 

value-of-information-based method for identifying the appropriate amount of refinement of 

surrogate models is proposed. The approach introduced in this chapter can be utilized by 

designers and analysts in developing useful surrogate models for specific design problems 

while efficiently utilizing their model development resources. In this subsection, we compare 

the chosen surrogate models by balancing accuracy and computational time. We consider the 

dimensionality of the problem (the number of factors or design variables), the surrogate 

modeling process time and the level of precision in this comparison. 

3.7 Results of Critical Evaluation of Literature on Surrogate Modeling 

In this section, we outline the primary applications of each DOE, selecting a model to 

represent the data and model-fitting approaches to evaluate the fitness of the chosen models. 

We first discuss how we review the surrogate modeling process, and then, we recommend more 

appropriate approaches based on evaluation metrics, computational time and accuracy.  
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3.7.1.  Review of the applications of DOE, data representation models, and 

model-fitting methods  

In this subsection, we summarize the different DOE techniques, various models used for 

representing data and methods used to evaluate the fitness of each model to the generated data 

by each DOE method. Here, we also discuss several surrogate modeling methodologies. For 

example, we conclude that if we use the fractional factorial design as a DOE and a linear or 

quadratic polynomial as the model representing the data, which are generated by a fractional 

factorial design, we can use LS regression as the model-fitting method; this process is a type 

of response surface methodology (RSM). An initial summary of different surrogate modeling 

procedures is provided in Table 3.3 (Simpson et al., 2001). 

Table 3.3. Surrogate modeling techniques. 

Design of 

Experiment 

Surrogate Model Choice Model Fitting 

Classic Methods ▪ Multivariate Adaptive Regression 

Splines (MARS) 

▪ Log-likelihood 

▪ (Fractional) 

Factorial 

▪ Polynomial (Linear, quadratic, or 

higher) 

▪ Best Linear Unbiased 

Predictor (BLUP) 

▪ Alphabetical 

Optimal 

▪ Kriging ▪ (Weighted) Least Squares 

Regression 

▪ Central 

Composite  

▪ Splines (Linear, cubic, or NURBS) ▪ Best Linear Predictor 

▪ Box-Behnken ▪ Radial Basis Functions (RBF) ▪ Sequential or Adaptive 

Metamodeling 

▪ Plackett-

Burman 

▪ Artificial Neural Network (ANN) ▪ Multipoint Approximation 

(MPA) 
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Space-filling 

Methods 

▪ Least Interpolating Polynomials ▪ Back Propagation (for ANN) 

▪ Hammersley 

Sequence 

▪ Support Vector Machine (SVM) ▪ Entropy (inf.-theoretic, for 

inductive learning on 

decision tree) 

▪ Simple Grids ▪ Knowledge Base or Decision Tree  

▪ Minimax and 

Maximin 

▪ Hybrid Models  

▪ Orthogonal 

Arrays 

▪ Gaussian Process  

▪ Uniform 

Designs 

  

▪ Latin 

Hypercube 

  

Hybrid Methods   

Importance 

Sampling 

  

Discriminative 

Sampling 

  

Directional 

Simulation 

  

Sequential or 

Adaptive 

Methods 
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Random or 

Human Selection 

  

3.7.2.   Suggestions for DOEs, model selection and application, and model-

fitting methods 

In this subsection, we develop scenarios that engineering designers may face while 

addressing problems. The computing time, number of design variables, and desired accuracy 

level for achieving an efficient surrogate modeling process are the main critical factors that 

should be considered. Additionally, we consider accuracy in the explanation of the following 

nine different states: a-i, a-ii, a-iii, b-i, b-ii, b-iii, c-i, c-ii, and c-iii. Then, we explain the time-

size-accuracy triangle (see Figure 3.3) in more detail. 

 

Figure 3.3. Problem characterization based on the two aspects of time and size. 

Note: v indicates the number of variables. 

As shown in  

, we always should balance “the needed speed of a surrogate modeling process," "the 

required accuracy" and "the number of dimensions or degree of complexity we aim to maintain 

within the model." To achieve this trade-off, information about the available tools and their 
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characteristics, capabilities, pros, and cons and problem-specific knowledge are needed; we 

provide the reader with this knowledge. 

 

 

 

 

 

Figure 3.4. Time-size-accuracy triangle 

 

First, we review some state-of-the-art approaches to addressing the time-size-accuracy 

triangle. Deb et al. in (Deb et al., 2017) classified the various metamodeling methodologies for 

multiple-objective optimization and proposes a comparative analysis by explaining the pros 

and cons of each method. Another primary outcome of this chapter is the classification of some 

surrogate modeling methods into six categories.  

In addition, Deb et al. in (Tutum and Deb, 2015) and (Deb et al., 2017) applied two distinct 

selecting functions based on the following two recent ideas: (i) the KKT proximity measure 

function and (ii) the multimodal-based evolutionary multiple-objective (MEMO) selection 

function. Subsequently, they apply outcome surrogate modeling approaches to several standard 

two- and three-objective constrained and unconstrained test problems; the authors compared 

the efficiency of two surrogate modeling approaches, that is, ANN and Kriging, by applying 
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these selection function methods to these problems. According to their results, the performance 

of the MEMO-based approach is high, and the ANN surrogate modeling technique is generally 

better able to approximate the multimodal selection function landscape portrayed by the overall 

approach. Additionally, the MEMO selection function enables the process to be completed 

using only a fraction of the solution evaluations (limited to 500 to 2000) compared to the 

hundreds of thousands of solution assessments.  

Therefore, Deb and co-authors conclude that the MEMO method and ANN are more 

appropriate if the goal is to reduce the number of runs and, accordingly, the required time of 

the surrogate modeling process. Based on their recommendation, the use of different 

architectures and deeper ANNs for better accuracy models, the use of other selection function 

modeling after successful EMO approaches and extending the approach to many-objective 

problems need to be further studied and are suggested as future research topics. 

The authors also increased the understanding of the behavior of EMO approaches when 

confronting a substantial number of objectives and proposed some initial empirical analyses 

for multiple problems with multiple objectives (Li et al., 2017). The authors found that the 

reference-point-based Nondominated Sorting Genetic Algorithm II (R-NSGA-II), which is 

suggested when searching for a region of interest (ROI)s, results in very competitive and 

consistent solutions for addressing problems with many objectives. 

In addition to the extensive work investigating massive objectives and constraints, in (Deb 

and Myburgh, 2016), the authors proposed a method to simultaneously meet the time and size 

requirements. Evolutionary Algorithms (EAs) can meet the size requirements suitably, but the 
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run time is not efficient using these methods. However, in this study, Deb et al. proposed a 

method that can identify the optimum solution very quickly with 300 to 2000 integer variables. 

Additionally, the method can manage computational complexity by addressing 50000 to 109 

variables. It is very promising that the authors can solve such a large problem in seconds.  

A cross-validation method is propose for creating more accurate surrogates (Viana et al., 

2010b). The authors found that cross-validation is useful for surrogate selection, although it is 

inaccurate when there are few data points (Viana et al., 2010b). The authors concluded that 

variable screening is a useful process to reduce the price of the metamodeling process and that 

extreme dimensionality reductions are possible. These authors also recommended other 

methods, such as non-depersonalization or PCA, to improve the accuracy of the approximation. 

Sequential sampling also enables us to use a limited computational budget efficiently (Viana 

et al., 2013).  

The multiple-surrogate method is more appropriate (or based on the authors’ results better-

performed) than Kriging if we use more than 100 experimental designs. This method is more 

appropriate if we wish to obtain the results within 5 minutes. Additionally, the authors apply 

the proposed method to problems with less than ten variables; thus, this approach is appropriate 

for the (b-i) type problems in our taxonomy shown in Figure 3.5.  

Furthermore, the comprehensive literature review shown in Table 3.4 confirms that our 

results regarding the classification of methods based on time-size-accuracy triangle criteria are 

justifiable. 
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Table 3.4. Critical literature review table: survey of engineering application of DOE, data 

representation models, and model fitting. 

Papers/Criteria Computational Time Number of Variables Method and Accuracy 

Level 

 
1<time<5 

minute 

time>5 

minute 

v<10 

 

10<v<100 100<v 

 

 

(Viana et al., 

2010b) 

 
 

 
  

RSM - Medium 

(Koch et al., 

1999) 

 
  

 
 

Kriging - High 

(Li et al., 2017) 
 

 
  

 Neural Network – 

Medium 

(Li et al., 2017)  
   

 Genetic Algorithm II 

(R-NSGA-II) 

(Jiang et al., 

2016; Panchal 

et al., 2008) 

     Kriging - High 

(Yang et al., 

2006) 

     Neural Network – 

Medium 

(Geisser, 1993; 

Jiang et al., 

2016; Jin et al., 

2001; Viana et 

al., 2010b) 

     RSM - Medium 

(Maier and 

Dandy, 2000) 

     Neural Network – 

Medium 
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Papers/Criteria Computational Time Number of Variables Method and Accuracy 

Level 

 
1<time<5 

minute 

time>5 

minute 

v<10 

 

10<v<100 100<v 

 

 

(Myers et al., 

2016) 

     RSM - High 

(Schmidhuber, 

2015; Seni and 

Elder, 2010) 

     GE – High 

(Krauss et al., 

2017) 

     Neural Network – 

High/ GE - High 

After reviewing the surrogate modeling literature, the results of this analysis using the 

proposed taxonomy are summarized in Figure 3.5. 

• b-i) Experimental time is less than 5 minutes and the number of variables is less than 10 

When the desired experimental time is less than 5 minutes and the number of variables is 

less than 10, response surface methodology performs well; however, this method is not 

appropriate if the functions are nonlinear, or we have discrete and binary variables and 

continuous variables. Under such circumstances, we can use Kriging, but we should consider 

that utilizing this method leads to more complexity and that we can only use this method for 

deterministic applications.  

• b-ii) computational time more than 5 minutes and no more than one variable 

If the desired experimental time is between 5 and 100 minutes and the number of variables 

is between 10 and 100, Kriging is a more appropriate method, and the response surface model 
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loses efficiency. In addition, we can use ANN instead of RSM; however, if we need more 

accuracy, Kriging is the better choice. Meanwhile, we can use variable screening and other 

dimensionality reduction methods if the number of factors is greater than 10 (Koch et al., 1999).  

• b-iii) The number of variables is very high, greater than 100 

If the number of variables is very high, greater than 100, response surface models are not 

useful, and we can use neural networks, genetic algorithms, and other evolutionary algorithms. 

Additionally, we can use Kriging with some adjustments. However, using Kriging or RSM is 

possible if we perform some preliminary dimensionality reduction steps using variable 

screening and PCA.  

In this category, concerning time, extensive research studies have been performed (Deb et 

al., 2017; Deb and Myburgh, 2016; Li et al., 2017) to demonstrate that evolutionary algorithms 

can execute the process quickly. However, these algorithms are not as accurate as they are fast, 

and sometimes, we need to integrate the algorithms with other more precise methods, such as 

Kriging (Viana et al., 2013). Multiple surrogates represent a new approach to addressing such 

situations in which we can combine more accurate surrogates, such as those obtained by 

Kriging, with faster surrogates, such as every evolutionary method, to compensate for the 

weakness of each surrogate with the advantages of other surrogates.  

• c-i) The computational time can be more than 5 minutes 

In this category, if the computational time can be more than 5 minutes and we do not have 

more than one variable, we can use RSM. However, the time can be reduced using Kriging or 

by using evolutionary algorithms, such as genetic algorithms and neural networks. 
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• c-ii) The experiment time is less than 5 minutes, and the number of variables is between 

10 and 100 

If we have more experiments which require than 5 minutes and the number of variables is 

high, for example between 10 and 100, we can use Kriging (for high accuracy) and every 

evolutionary algorithm (for a more rapid process). In addition, we can use RSM after 

implementing some dimensionality reduction methods. 

• c-iii) The number of variables is more than 100 

Evolutionary algorithms, such as ANN and genetic algorithms, are always appropriate if 

the number of variables is immense. Therefore, in this category of problems, it is better to use 

evolutionary algorithms. Albeit Kriging can be used if we use some dimensionality reduction 

methods before the process of surrogate modeling.  

This six-type classification, which contains a wide range of surrogate models, demonstrates 

the differences among the models and allows us to adopt more appropriate model for a specified 

variable size and level of accuracy in a given amount of time. In Table 3.5, we summarize the 

general characteristics of the surrogate models. Based on our survey of the literature and the 

results reported in multiple studies, various methods are recommended for various situations 

in Figure 3.5. For example, Kriging is a method that results in high levels of accuracy and 

adequately performs for large problem sizes but not for problems with more than approximately 

50 variables. Additionally, some authors mention in their outcomes that due to the complexity 

of the modeling, more time is needed to run Kriging models (Jin et al., 2001). 



 

93 
 

Table 3.5. General characteristics of surrogate models 

Model 

selection 

Time  Dimensionality Accuracy Complexity Linearity Deterministic/ 

Stochastic 

Response 

Surfaces 

Rapid if can 

be used 

Useful if the 

number of 

factors is less 

than 10  

Not very 

high but 

acceptable 

Easy to 

apply and 

well-

established  

More 

appropriate 

for linear 

functions 

Appropriate if 

errors are 

random 

Kriging Slow but 

accurate 

Applicable if 

the number of 

factors is more 

than 50  

Very high Complex 

but very 

flexible  

Can be 

implemented 

for both 

linear and 

nonlinear 

functions 

Appropriate for 

deterministic 

uses 

Evolutionary 

Algorithms, 

such as GA, 

ANN 

Quick but 

not very 

accurate 

Appropriate for 

problems with 

very many 

parameters 

(~10,000)  

Low level 

of 

accuracy 

Useful if 

the 

complexity 

is very high 

Proper for 

very 

nonlinear 

problems  

Best performed 

in deterministic 

uses 

Thus, we placed the Kriging models in the triangle relatively close to the desired accuracy 

and relatively high or medium problem size, which needs much more computational time than 

other methods. Kriging is placed close to the desired accuracy because it has a high level of 

accuracy and is at a medium distance from the problem size vertex because it is good enough 

for high-dimensional problems, but we placed it far from the computational time vertex 

because it is time-consuming. 
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Figure 3.5. The Classification of some surrogate modeling techniques in a time-size-accuracy 

triangle. 

Another example is ANN, which performs well for high-dimensional problems with high 

levels of nonlinearity. ANN has also been developed in recent years, and although the initial 

versions were poor at the computational time criteria (they were very time-consuming), they 

are currently very fast. However, ANN is not very accurate as discussed in the literature 

(Broomhead and Lowe, 1988; Cheng and Titterington, 1994; Demuth et al., 2014) literature. 

RSM has been used for a long time with high efficiency for small-sized problems with 

acceptable levels of accuracy, but it is not very rapid for even some small problems. RSM loses 

its efficiency as the size of the problem grows, and if the functions are nonlinear (Khuri and 

Mukhopadhyay, 2010; Myers et al., 2016; Simpson et al., 1998; Simpson et al., 1997; Venter 

et al., 1997). Therefore, we placed RSM close to the accuracy and computational time vertexes 

because it is better in these criteria than in the size criteria. RSM is a very convenient and easy 
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to use surrogate modeling method, and due to its characteristics, even though it is not very fast, 

accurate or efficient in high-dimensional problems, RSM is frequently used.  

Finally, we studied genetic algorithms in the literature and found that this evolutionary 

algorithm (EA), similar to other types of EAs, is very fast in modeling and better in solving the 

models, but its most powerful aspect is its ability to address high-dimensional problems (Lin 

et al., 2015). Additionally, although it was not accurate in the past, similar to other EAs, some 

recent studies (Cho et al., 2014; Deb et al., 2017; Deb and Myburgh, 2016; Yang et al., 2006) 

have shown that the updated versions have significantly improved in accuracy over time. Thus, 

we decided to place this method at the center of the triangle but somewhat close to the size and 

time criteria.  

As the results have shown, conventional methods, such as RSM and Kriging, are generally 

more appropriate if we wish to achieve more accurate surrogate models, and EAs are more 

appropriate if we wish to address high dimensionality and high linearity and obtain faster 

results. However, in this chapter, we find that EAs have achieved higher accuracy than they 

did previously; specifically, GA is currently faster and more accurate. In the future, studying 

deep neural networks and comparing these networks to genetic algorithms could be an exciting 

research topic. The idea of using multiple surrogates, as proposed in (Viana et al., 2013), 

enables EAs to be integrated and compensate for the weaknesses of various surrogate methods; 

thus, this concept is an excellent area for future research. Finally, the time of the simulation is 

strictly associated with the circumstances under which the models run, e.g., the power of the 

computer used. Therefore, these circumstances should always be considered in comparisons. 
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3.8 Verification and Validation of Critical Evaluation of Literature on 

Surrogate Modeling 

Verification and validation were addressed from the perspective of dissertation chapters in 

Chapter 1. In the context of surrogate modelling and predictive analytics, verification and 

validation consists of the following activities (Panchal et al., 2013): 

1. Individual Model verification and validation – a single model focusing on single length 

and/or time scales. 

2. Multiscale Model verification and validation – single model or coupled set of models 

spanning multiple length and/or time scales in an integrated manner. 

3. Multi-physics Model verification and validation – ensuring the mathematical and 

physical consistency of modelling framework spanning multiple phenomena. 

4. Design Process verification and validation – ensuring that the design process in its 

configured form yields a solution that meets design requirements. 

5. Design (outcome) verification and validation – comparing design outcomes to system-

level requirements. 

3.8.1.  Individual model verification and validation 

Model verification and validation has received significant attention in the past years due to 

advent in simulation-based design technologies. The following tasks are associated with model 

verification and validation (Sargent, 2010); the process of verification and validation is 

illustrated in Figure 3.6. 
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• Conceptual model verification and validation: process of validating whether the  

assumptions underlying a model and its sub-models are correct and that the representation of 

the system including models and sub-models are correct and reasonable for the intended study. 

• Model verification: Process of assuring that the computer model is “good enough” in terms 

of accuracy of representation of a conceptual model. 

• Operational validation: Process of determining whether the computerized model is 

sufficiently accurate for the needs of the simulation study. 

• Data validation: Checking the accuracy and consistency of the numerical data used to 

support the models in the simulation study. 

Multiscale model verification and validation is important as valid individual models for 

specific length and time scales won’t necessarily result in valid multiscale models across scales. 

 

 

 

 

 

Figure 3.6. Model verification and validation process (Sargent, 2010). 

 

3.8.2.  Multiscale model verification and validation 

The following tasks are involved with multiscale model verification and validation: 
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• Compatibility validity: Compatibility validity is the process of determining whether the 

input ranges of an upper-level model is consistent with the domain of outputs of a lower-level 

model. This ensures whether the output domain of the lower-level model is a subset of the valid 

input domain of the upper-level model. 

• Uncertainty propagation check: The goal here is to check that the effects of uncertainty at 

lower length scales do not amplify beyond the desired uncertainty bounds or limits set for 

which the design decisions are to be made. This can be viewed both from bottom-up and top-

down perspectives. From a top-down perspective the uncertainty limits allowable for a system 

is used to determine the allowable uncertainty limits for lower scales and thereby manage the 

propagation across a chain of models. 

3.8.3.  Design process verification and validation 

The goal in design process verification and validation is to ensure that the design process 

yields design solutions worthy of investigation satisfying the design requirements. In the 

simulation-based design of complex systems, design processes represent the way design 

decision networks and simulation models are configured to achieve the design task. One 

approach to verify and validate a design process is with the help of the verification and 

validation square framework with a square consists of four quadrants, as shown in Figure 3.7. 

1. Theoretical Structural Validity: Is the design method internally consistent? 

Internal consistency of the design method is checked – this includes, checking the logical Internal 

consistency of the design method is checked – this includes, checking the logical soundness of 

the constructs used in the design method both individually and integrated. 
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Figure 3.7. The verification and validation square (Pedersen et al., 2000; Seepersad et al., 

2006). 

2. Empirical Structural Validity: Are the example problems appropriately chosen for testing 

the design method? The appropriateness of the chosen example problems to test the efficacy of 

the design method is checked. 

3. Empirical Performance Validity: Does the application of method to the sample problems 

produce practical results? Checking the ability of the design method to produce useful results 

worthy of investigation for the chosen example problems. 

4. Theoretical Performance Validity: Is the design method applicable for the other problem? 

Here the ability of the design method to produce useful results beyond the chosen example 

problems is established. This requires the designer to take a “leap of faith” which is supported 

by the confidence gained by carrying out verification and validation process 1 – 3 in 

establishing the generic nature of the design method. 

3.8.4.  Design outcome verification and validation 

The goal here is to ensure the validity of the design outcome rather than the prediction 

models used for the design. The process involves gaining confidence in the resulting design 

when compared with the system-level design requirements. Experiments are generally carried 
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out to test the design outcomes. Li and co-authors propose an approach for design outcome 

validation. The approach is illustrated for a simple cantilever beam design subject to vibration. 

3.8.5.  Verification and validation in this dissertation 

In this dissertation, the different verification and validation approaches described are used 

to verify and validate the design methods, simulation models, prediction models, and design 

results. The verification and validation square framework are used to verify and validate the 

surrogate model selection architecture proposed in Chapter 3 of this dissertation. The 

architecture is tested for the hot rod rolling process chain problem introduced in Chapter 4. 

Four other example problems are used for achieving this. The first example involves 

macrostructural design of a hot rolling process chain involving the product, which is discussed 

in Chapters 6 and 7 of the dissertation. The second example involves designing a blue pipe. 

Both these examples are discussed in Chapter 7 of the dissertation. The comprehensive 

example problem discussed in Chapter 8 involves the multi-echelon, multi-channel, green 

supply chain design where a surrogate model used to map the results of one level of the model 

into the other. This comprehensive example is used to test the partitioning-approximation-

coordination method developed in this dissertation and serves the Theoretical and Empirical 

Structural and Performance validations of the design method. Individual, surrogate models and 

ensemble of surrogate models used in the example problems are tested in terms of concept, 

accuracy, operation, and data and are discussed in detail in Chapters 4, 5, 6 and 7. 

In Chapter 3, Gap 1, which is on “classifying the surrogate models based on common 

selection criteria” is addressed through answering the Research Question 1, “What are the main 

classes of the design of experiment (DOE) methods, surrogate modeling methods and model-

fitting methods?”. We hypothesized that surrogate modelling methods can be classified based on 

the problem size, computational time, and accuracy. The key outcome of addressing this gap is to build 
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a framework to provide guidance for researchers and practitioners to choose the most appropriate 

surrogate model based on incomplete information about an engineering design problem. 

3.9 Closing Remarks on Critical Evaluation of the Surrogate Modeling 

Literature 

In the simulation-based realization of complex systems we are forced to address the issue 

of computational complexity. Surrogate models are used to replace expensive simulation 

models of engineering problems. We suggest that a framework for selecting a more appropriate 

surrogate model for a given function with specific requirements is lacking. To address this gap, 

we hypothesize that a trade-off among three main drivers, namely, size (how much information 

is necessary), accuracy (how accurate the model must be) and computational time (how much 

time is required for the surrogate modeling process) is needed. In the context of these 

hypotheses and our critical review of the state-of-the-art surrogate modeling literature we 

summarize our findings to three questions in Table 3.2: 

Question 1: What are the main classes of design of experiment (DOE) methods, surrogate 

models and model-fitting methods based on the requirements of size, time and accuracy? 

Finding 1: As shown in Table 3.5 and Figure 3.5 based on three critical characteristics 

identified through the critical evaluation of the literature, six different categories of the 

surrogate models are introduced. This classification is a framework for selecting an efficient 

surrogate modeling process to assist those who aim to select a more appropriate surrogate 

modeling technique for a given function.  
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Question 2: Which surrogate model is suitable based on the critical characteristics of size, 

time and accuracy? Which DOE is appropriate based on the requirements of size, time and 

accuracy? 

Finding 2: As shown in Section 3.7.2, Figure 3.5, Artificial Neural Network, response 

surface models, and Kriging are more appropriate when the following characteristics are 

considered large problem size, less computation time and high accuracy, respectively. 

Question 3: Which DOE is more suitable based on the critical characteristics of the 

requirements of size, time accuracy? 

Finding 3: As shown in the Section 3.7.2, and based on the answer to the Question 2, Latin 

hypercube, fractional factorial design, and D-Optimal are appropriate DOEs for of large 

problem size, less computation time and high accuracy, respectively. 

We offer a designer or decision make the opportunity of particularizing the choice of 

surrogate model for specific situations. However, sometimes, deciding which surrogate model 

to use is difficult. As shown in Figure 3.5, if only one or two priorities are to be considered, 

the decision of which method to use is not difficult. For instance, if computational time is the 

only concern, ANN and RSM are good. If accuracy and problem size are the most important 

issues, Kriging is the appropriate method. The central question here is which of the surrogate 

models or which combination of models should be used if we wish to achieve a balance among 

these three priorities. A possible answer is using multiple-surrogate and cross-validation 

approaches.  In addition, what we presented here can help us develop a rule base for automating 

the process of surrogate model selection. This is becoming increasingly important as 

computational platforms help us to move closer to automating design processes. We discuss 
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this matter in Chapter 6. Now, that we have completed the surrogate modelling automation 

concept. It is time to discuss how different types of variables can be dealt with some 

modifications in surrogate modelling process. In the next two chapters (Chapters 4 and 5), the 

focus is on using surrogate modelling when we have temporal and spatial variables in the 

dataset. 

In Chapter 3, the Gap 1, which is on classifying the surrogate models based on common 

selection criteria is addressed and the research question of “What are the main classes of the 

design of experiment (DOE) methods, surrogate modelling methods and model-fitting 

methods?” (Research Questions 1) is answered by posing the hypothesis of “surrogate 

modelling methods can be classified based on the problem size, computational time, and 

accuracy”. This hypothesis is tested and proved to be correct, and the outcome is published in 

(Alizadeh et al., 2020a). 
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CHAPTER 4 APPROXIMATION OF REALITY USING 

TEMPORAL SURROGATE MODELING 

The objective in this chapter is to introduce how time series models and temporal predictive 

models can be used as surrogate models. We incorporate the time series and particularly the 

concept of the lag with the surrogate modeling in this chapter. We proposed the idea of 

temporal surrogate models by adding this feature (time) as a new feature in the process of 

surrogate modeling. We also bring the idea of ensemble of surrogates by using the RF as an 

ensemble of decision trees and machine learning method. The findings in this chapter can be 

used by people who are working on surrogate models and forecasting, those who wants to 

incorporate forecasting methods and time series models with surrogate modeling. Also, it is of 

use for the practitioners who want to implement expert systems and machine learning-based 

forecasting methods in different engineering design applications. For example, decision makers 

in water and energy planning can use the models created in this chapter to predict the inflow 

of dams based on monthly weather conditions.  

Surrogate models have been used to replace computationally expensive analysis models in 

engineering design problems. However, time-dependent variables and historical data are 

usually ignored in the surrogate modeling process. For instance, in a dam network design, using 

hydraulic simulations to estimate the water flow is computationally expensive, and the data is 

in the form of time series. So, we need time-dependent surrogate models to replace these 

simulations and manage this computational complexity. In this chapter, we describe surrogate 

models to predict the amount of water flow into a reservoir. The challenge is that the flow is a 

time-dependent variable, and we need to incorporate time-series into surrogate models. Thus, 

there are three contributions: (1) using surrogate modeling to predict flow for dam network 

design, (2) incorporating time series analysis in surrogate models for water network design, (3) 
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using an ensemble of surrogates to increase the accuracy of prediction. We also demonstrate 

how to integrate surrogate models and machine learning with time series analysis for more 

accurate and faster prediction. Due to the availability of data, we use the Buffalo Reservoir on 

the Red River Basin as an example. Based on the time series data for flow, evaporation, 

precipitation, and maximum and minimum temperature, three surrogate models are used to 

examine the impact of integrating time series into surrogate models.   

These are multivariate autoregressive integrated moving average (MARIMA), a classic 

time series analysis method; artificial neural network (ANN), and random forest (RF) methods, 

two machine learning surrogate models. We use seven different time lags as features within an 

RF model, as an ensemble of surrogate models, and predict the flow for seven-time steps ahead. 

We successfully incorporate the time series data and particularly the concept of the time lag 

within surrogate models. We show that RF as the ensemble of surrogates provides more 

accurate predictions than the other two surrogate models. Although this method has been 

demonstrated for the Red River Basin, it could also be applied to designing anything in which 

time-dependent flow is an issue, for example, in biomedical applications, the management of 

manufacturing processes and product sales as well as any products in which fluid flow is an 

issue.  

Nomenclature 

ACF = Autocorrelation Function 

AI = Artificial Intelligence 

ANFIS = Adaptive Neuro-Fuzzy Inference System 

ANN = Artificial Neural Network 

ARIMA = AutoRegressive Integrated Moving Average 
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DT = Decision Tree 

FFNNs = Feed-forward neural networks 

LMBP = Levenberg–Marquart Back Propagation 

MA = Moving Average 

MARIMA = Multivariate AutoRegressive Integrated Moving Average 

PACF = Partial Autocorrelation Functions 

RF = Random Forest 

RMSE = Root Mean Square 

SSA = Singular Spectrum Analysis 

WMRA = Wavelet Multi-Resolution Analysis 

VAR = Variable Autoregressive 

4.1 Frame of Reference on Building Temporal Surrogate Models 

Time series analysis, a series of data points indexed (or listed or graphed) in time order, is 

used to study the characteristics of the target variable concerning time-independent variables. 

This means to estimate the response variable in the name of prediction, use the time as the point 

of reference. Using this method, designers can find the periodical trends in their data and 

understand the underlying causes of these systematic patterns over time.  

They enable design engineers to foresee next-generation product features before they 

become insignificant or mainstream by capturing the changes in consumer preferences (as they 

relate to product design) over time (this is called trend mining in product design) (Tucker and 

Kim, 2011). An accurate and efficient time series analysis is fundamental for building digital 
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twins. As a critical part of a digital twin, the time series prediction of the performance and 

efficacy of complex equipment must be used during the lifecycle of the complex equipment, 

including the design, manufacturing, operation, and maintenance stages (Hu et al., 2021). 

Therefore, it is essential to build real-time and leading time insight, a critical technology for 

digital twin-based product design, service, and manufacturing (Tao et al., 2018). These 

methods can also be used in uncertainty estimation to predict technology evolution  (Zhang et 

al., 2019).  

Temporal and spatial analysis has gained attention from the engineering design community 

recently. A well-studied example is a time-dependent system reliability analysis, where there 

is a deterioration in the properties of the structure’s material or a random process such as 

random loading. There are several solutions to the time-dependent reliability problem. One of 

the most common ones is the outcrossing rate method.  

The performance functions’ outcrossing rates at a random time point are computed and 

converted to reliability assuming the Poisson, Markov, or their enhanced versions. For instance, 

in time-dependent reliability problems, an outcrossing rate model and its efficient calculation 

approach are developed for systems design problems, and based on the presented model, a 

time-dependent system reliability analysis method is proposed (Jiang et al., 2017). Surrogate 

models are important methods used for time-dependent reliability problems to manage the non-

linear extreme value functions  (Hu and Du, 2015). In another study, a Kriging model is used 

to build a nested response surface of time corresponding to the extreme value of the limit state 

function (Wang and Wang, 2012). 
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Single-loop Kriging (SILK) surrogate modeling method for time-dependent reliability 

analysis are used to manage the computational complexity of a double-loop procedure (Hu and 

Mahadevan, 2016). Also, an envelope approach is developed to time-dependent mechanism 

reliability defined in a period where a specific motion output is required (Du, 2014). In another 

study, a time-variant reliability analysis method is developed using failure processes 

decomposition to transform the time-variant reliability problems to the time-invariant problems 

for dynamic structures under uncertainties (Yu and Wang, 2018). Moreover, a transferred limit 

state function technique is proposed for efficiently estimating the dynamic failure probability 

of the structure with the multiple temporal and spatial parameters (Shi et al., 2017). 

Another time-dependent set of engineering design problems requires the estimation of flow. 

Here we study streamflow in dam network design due to the availability of data. Multi-user 

water reservoirs design has a crucial impact on providing a consistent water supply for local 

municipal demands, irrigation needs, electricity generation, and fish preservation (Sechi et al., 

2019). Hence, multi-user reservoir design requires a careful operation policy to address the 

distinct requirements. To design such a reservoir, accurate forecasting models are required to 

know how much water should be stored in the reservoir how much can be used for municipal, 

agricultural, and environmental conservation, mainly the water uses of fish (Jung and Kim, 

2018).  

This information is essential for the reservoir to operate efficiently. Hence, we must choose 

an appropriate forecasting model with acceptable accuracy by comparing different predictive 

models. By obtaining accurately estimated inflow and targeting the accurate amount of water 

that needs to be stored in the reservoir, we can decrease the water loss due to evaporation 
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(Worland et al., 2018). Therefore, each period's estimations can be used to set a better water 

system design strategy and management policy to regulate the release and storage times on 

Buffalo Reservoir. However, after a critical evaluation of the literature, we find a gap in 

predicting the water inflow on the Red River basin and Buffalo Reservoir design. Therefore, in 

this chapter, our objective is to find a model of the highest accuracy by comparing MARIMA, 

ANN, and RF (Random Forest); besides, we aim to identify the most impactful time lag and 

prior hydrological status of the water inflow.  

Lag is the delay or time step in the timeline. Consider a discrete sequence of values. For 

Lag 1, we compare our time series with a lagged time series. In other words, we shift the time 

series by one before comparing it with itself. For lag 2, we compare our time series with two 

lagged time series. In other words, we shift the time series by two before comparing it with 

itself. With the proposed model, we provide a tool for water resource management and identify 

the significant, influential factors for Buffalo Reservoir water inflow. 

Determining the appropriate reservoir operation policy relies on accurate flow 

measurement, accurate flow simulation, or accurate approximation of water flow into a 

reservoir (Li et al., 2016a). However, as shown in Figure 4.1, accurate measurement of the 

water flow into a reservoir using physical experiments is expensive, and accurate water flow 

simulation is time-consuming and computationally expensive. So, we use surrogate modeling 

alternative statistical models - models of models or metamodels – for expensive computer 

simulations and physical experiments to manage the computational complexity. 
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Physical Experiment  

(Physical Measurement) 

Simulation (Hydraulic 

Simulations) 

Surrogate Model  

(Time Series Analysis) 
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Time Consuming  

Time Consuming Reduced Cost and Time 

Figure 4.1. Surrogate modeling in dam flow measurement. 

As shown in Figure 4.1, accurate measurement of the water flow into a reservoir is 

expensive and accurate simulation of the water flow is time consuming. So, we use surrogate 

modeling, which are alternative statistical models - models of models or metamodels – for 

expensive computer simulations and physical experiments to manage the computational 

complexity. According to the forecast circumstances and available information, various 

surrogate models can be used for various forecasting situations. While certain models often 

provide high predictive accuracy, as of yet, there is no widespread consensus for forecast 

models across different stream flow scenarios or basins.  

As such, it is necessary to analyze the suitability of multiple stream flow forecast models 

for a particular forecast circumstance.  Based on the literature, three classes of the prediction 

models of time series analysis models, including Multivariate Autoregressive Integrated 

Moving Average (MARIMA), RF, and Artificial Neural Networks (ANNs), are used in 

forecasting water planning variables are analyzed. Afterwards, taking the accuracy measures 

into account, the most precise predictive model is proposed together with an effective method 

for selecting efficient estimators. In much previous research, implementation of these forecast 
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methods has been studied in different engineering prediction problems including stream flow 

predictions. Two popular machine learning prediction models, ANN and RF, have been widely 

used to approximate various water resource planning goals like the spreading coefficient of 

natural streams, evaporation loss, earthquake likelihood, conservation water wildlife, and 

global solar radiation.  

For example, Adamowski (Adamowski, 2008) compared the accuracy level of various 

forecast methods in a daily water demand forecast problem in in the city of Ottawa, Canada. 

He investigates several ANN, time series analysis, and multiple regression methods to predict 

maximum day to day water needs. He used data for a ten-year period and variables such as the 

highest recorded temperature and the highest water need for each day. He found that artificial 

neural networks perform better than other models in terms of accuracy and the robustness of 

the results in the highest daily water need compared with the other time series analysis and 

multiple linear regression models (Adamowski, 2008) . In some of the forecasting problems, a 

combination of artificial neural networks is used to capture the existing nonlinear relationships 

between the predictors and predicted values.  

Fundamentally, building a precise prediction model using artificial neural networks 

depends on (i) the right choice of variables to use in forecasting and (ii) validating the created 

models after the training process. Coulibaly and co-authors (Coulibaly et al., 2000) analyzed 

how different training methods can affect the accuracy of the artificial neural networks. He 

found that there are no hard or soft rules to prescribe an exact training/validating process for a 

specific problem. Nevertheless, in many cases such as (Imrie et al., 2000; Othman and Naseri, 

2011), a general ANN with LMBP3 construction and method are used to achieve a general and 

comprehensive way of building ANNs. For example, Valipour and co-authors look for an 
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optimal scheme to build ANNs for forecasting a reservoir stream flow on an Iranian reservoir 

planning problem (Valipour et al., 2012). Some researchers show that concurrently using the 

efficient stream flow-lagged values together with the other efficient estimators would enhance 

the approximation accuracy. They use combinations of ANNs with other forecasting models 

(for example SSA 4 , WMRA 5 , and MA 6 ) to enhance the stream flow forecast accuracy 

according to the data from different reservoirs in China. Based on their comparison, they found 

that integration of ANN with moving average has the highest accuracy (Wu et al., 2009). 

ANFIS7 is another forecasting method to create runoff and stream flow prediction models. 

Most of the studies in which ANFIS has been utilized are conducted on hydrologic prediction 

models. For example, a reservoir’s inflow on the Nile River Basin is estimated in (Atsalakis et 

al., 2007; El-Shafie et al., 2007).  130 years of historical data was used to build an ANFIS 

model to predict daily stream inflow. During this study, they show that based on the forecast 

accuracy measure, ANFIS has a better prediction accuracy in comparison with the earlier 

ANN-based prediction model. Pramanik and co-authors (Pramanik and Panda, 2009) compare 

the performance of ANFIS with the performance of the ANN through estimating the outflow 

from a reservoir in Mahanadi River Basin on a daily basis using the outflow information of the 

other reservoirs on the upstream. They find that the accuracy of the ANFIS is consistently 

higher than the accuracy of the ANN which means the ANFIS results are more robust with less 

variation. Similar results are obtained by other studies. For example, Talebizadeh and co-

authors (Talebizadeh and Moridnejad, 2011) reported the same findings in a study on 

fluctuations of the water levels on the Urmia Lake. However, it is not a universal result, and 

 
4 Singular Spectrum Analysis 

5 Wavelet Multi-Resolution Analysis 

6 Moving Average 

7 Adaptive Neuro Fuzzy Inference System 
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some researchers reported the opposite. For example, Karimi and co-authors (Karimi-Googhari 

and Lee, 2011) achieved higher accuracy from ANN than ANFIS.  

ANN has also been compared with other methods. For example, in India, Jain and 

Srivastava  (Jain and Srivastava, 1999) estimate the Indravati Reservoir’s stream flow on a 

monthly basis using autoregressive integrated moving average and ANN. They find ANN more 

accurate than the ARIMA. Another example is in Iran where Mohammad and co-authors 

(Mohammadi et al., 2005) estimate the a reservoir’s stream inflow using the same methods and 

find ARIMA more accurate due to their objective which was, daily predictions. Based on their 

finding, ARIMA leads to better accuracy than neural network in daily inflow predictions.  

Climate changeability metrics like uncertain daily, weekly or monthly precipitations are 

other influential indices which distinguish the performance of the forecast methods. For 

example, Muluye and Coulibaly (Muluye and Coulibaly, 2007) combine time series data of 

stream flow along with the climate to increase the forecast accuracy, to estimate the seasonal 

stream flow to the reservoir from a watershed. 

The runoff regime is in the area of study is mainly stream flow dominated system. Thus, 

we choose and use the most influential physical estimators from the forecasting model 

development process. Other researchers also use the same physical variables. For example, 

Shukla and co-authors (Shukla et al., 2013) studied diverse predictors which influence the 

hydrologic predictability of the land surface..  So, taking the characteristics of the study area 

into account can lead to proper selection of the hydrologic forecast model. 

As can be seen from the literature, we need accurate forecasting models to know how much 

water should be stored in the reservoir, how much can be used for municipal, agricultural and 

environmental conservation, which is mainly the water use of fish.  Using this information, we 

can make the operation of the reservoirs effective and efficient. Hence, we need to choose an 
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appropriate forecast model with acceptable accuracy through comparing different predictive 

models from the literature to effective operation of the Buffalo Reservoir on the Red River 

Basin. By obtaining precisely estimated inflow and targeting accurate amount of water which 

needs to be stored in the reservoir, we can decrease the water loss due to evaporation. 

Therefore, the estimations for each time period can use to set the better water management 

strategy to regulate the release and storage times on Buffalo Reservoir.  

After critical evaluation of the literature, we find that there is a gap in using ensemble of 

models in time series analysis and stream flow prediction. So, we propose random forest as 

ensemble of models. Also, we find that there is no way in time series analysis to find the actual 

model for calculating the amount of the stream flow. Therefore, we propose MARIMA, ANN 

and random forest as surrogates of actual stream flow functions.  

The rest of the chapter is organized as following, in Section 4.2, we explain the study area 

and the data which is utilized. In Section 4.3, we explain the forecasting models that we use for 

the stream flow prediction. Then, in Section 4.4, we discuss the results that we obtain from 

each predictive model and quantity of stream flow for a specific period of forecasting. Finally, 

in Section 4.5, we summarized the findings along with the closing statements. The accurate 

stream flow prediction model helps to more accurate daily operation of the reservoir. Also, 

when values for the short-term forecast are used in provision of the better operation plans and 

the observed day to day estimates are used to improve the forecasting accuracy. 

4.2 Red River Basin and Available Data 

As shown in Figure 4.2, there are thirty-eight reservoirs throughout the Red River Basin. 

In this chapter, we aim to predict the daily inflow of one of the reservoirs, namely, the “Buffalo 

Reservoir," in this reservoir network on the Red River Basin. The water in the Red River Basin 

is used for multiple purposes, including generating electricity delivering water to North Texas, 
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North Louisiana, Southern Oklahoma, Kansas, Eastern New Mexico, Missouri, South 

Arkansas, and Colorado. The basin has two reclamation reservoirs, Lugert-Altus and Tom 

Steed. Reclamation reservoir is the largest wholesaler of water in the country. These type of 

water reservoirs provide water to more than 31 million people and provide one out of five 

Western farmers (140,000) with irrigation water for 10 million acres of farmland that produce 

60 percent of the nation's vegetables and 25% of its fruit and nut crop. Reclamation is also the 

second largest producer of hydroelectric power in the western United States. Its 53 power plants 

annually provide more than 40 billion kilowatt hours generating nearly a billion dollars in 

power revenues and produce enough electricity to serve 3.5 million homes (USBR, 2022b). 

 

Figure 4.2. Positions of the 38 dams over the red river basin (Zamani Sabzi et al., 2019). 

Lugert-Altus and Tom Steed reclamation reservoirs provide 99% of the freshwater sources 

for about 45,000 people and agricultural water supply for about 48,000 acres of land. The water 

supply needs in the study area are both immediate and severe. This is because of water quantity, 

the quality of water, and aging infrastructure. An intense drought has been in effect in this area 

since 2011, and both Lugert-Altus and Tom Steed Reservoirs are at record lows. In 2015, the 

red river basin experienced a severe drought followed by flooding; both of these events impact 

people, planet, and profit. Therefore, managing the supply and sensible distribution of fresh 

Buffalo Reservoir 
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water to support human activity while sustaining vigorous, effective ecosystems is a major 

ecological challenge (Poff et al., 2016).  

We use data from a recent large-scale, comprehensive analysis of the hydrology, societal 

water usage, and water availability for the Red River by Xue (Xue et al., 2016) and McPherson 

(McPherson and Kellogg, 2016) with their co-authors. The current water management 

protocols may cause substantial water shortages due to evaporation. Therefore, retaining water 

in reservoirs is necessary as it enhances the probability of meeting the water demand in the Red 

River Basin. However, a decision support scheme for managing the water resources that 

stabilize the demand for consistent water resources in the face of evaporation loss has 

significant advantages. This decision support scheme is used when there is uncertainty in the 

climate condition and dynamic water circulation.  

We need to know the accurate amount of streamflow for each reservoir to plan on the water 

storage and use for different purposes, including agricultural, industrial, municipal, and 

environmental conservation, which is the water demand of fish. To find the accurate amount 

of streamflow, we need to find what data and which predictive model to use.   Therefore, we 

use precipitation, evaporation, minimum and maximum temperature, and the inflow time series 

data as predictors to predict the inflow rate in Buffalo Reservoir in seven days.  

In the next section, we explain the data set. In this chapter, we aim at predicting the water 

inflow in Buffalo Reservoir on the Red River Basin. We use five different predictors for this 

purpose: previous inflow of the reservoir, amount of precipitation, amount of evaporation, and 

maximum temperature and minimum temperature. In addition, we also use Multivariate Auto-

Regressive Integrated Moving Average (MARIMA) (Pektas and Cigizoglu, 2013),  RF 

(Herrera et al., 2010), and ANN. Based on our gap analysis in Section 4.1, ANN and RF are 

machine learning ensembles of the surrogate method, which are effective when we have non-
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stationary data with non-linear behavior. MARIMA is the only classic time series analysis 

method used when we obtain extremely low out-of-sample accuracy.  

Our problem has a unique feature with both independent variables (e.g., precipitation, 

temperature) and dependent variables (inflow in the previous day and other time-related varia-

bles). We use the time series model, MARIMA, as a Variable Autoregressive (VAR) analysis 

method, as discussed in Section 3.1. We analyze our problem as a single, specific time series 

prediction model using this method. We also use a completely different approach of non-linear 

machine learning models, ANN and RF, to deal with the data nonlinearity and fit them to our 

time series. Finally, we divide the data into two sets to validate the results, one training dataset 

and one test data set.  

4.3 Method for Predicting Water Inflow in Buffalo Reservoir 

The problem analysis is performed by conducting time series analysis as surrogate models 

through MARIMA, RF, and ANN. The recorded historical data are used for streamflow 

forecasting models. Comparing the accuracy of the built models, the model with the highest 

accuracy is used to estimate the streamflow. As shown in Figure 4.2, our method consists of 

three main phases, including Data Understanding and Preparation (Phase 1); Modeling (Phase 

2); Comparison between Models based on R-Squared and RMSE (Phase 3).  

Phase 1: In Phase 1, we find the available data on Buffalo Reservoir (Gaitan et al., 2016). 

Based on its relevancy and feasibility for time series analysis and streamflow prediction, we 

use all the five variables in Figure 4.3 as predictors, and the dataset is clean without any missing 

values or outliers. We use the data modelled by global climate models (GCMs), which are the 

outputs from the Coupled Model Inter-comparison Project Phase 5 (CMIP5) (Taylor et al., 

2012). The CMIP5 consists of more than 50 GCMs from 20 modeling centers which were used 

to replicate the past and simulate future climate throughout the Red River Basin. The time 
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period for the past replications of GCM is from 1900 to 2005 and the time period for the 

forecasting simulations of GCM is from 2006–2099 (Flato et al., 2014).   

The first predictor is the stream inflow to the Buffalo Reservoir, a numeric variable ranging 

from zero to 629 acre-feet per day. Flow is an input variable when it is used for the current 

period. It is also used as an output variable with different time lags. For example, we use one-

time lag, which means we use the flow into Buffalo Reservoir from one previous period. We 

also use two-time lags, which means we use the flow into Buffalo Reservoir from the only flow 

of the second previous time lag. We continue this until the seventh time lag, using the inflow 

from only the seventh period before the current period. The second predictor is the precipitation 

that goes into of the Buffalo Reservoir. It is a numeric variable ranging from 0 to 95.30 acre-

feet per day, and it is an output variable.  

The third predictor is the evaporation from the Buffalo Reservoir each day. This variable 

ranges from 0.007 to 0.39 acre-feet and is used as an out output variable. The fourth and the 

fifth predictors are the maximum and minimum temperature in the Buffalo Reservoir, which 

ranges from -22.98 ºF to 27.19   
  
  
   

ºF and are output variables. 

Table 4.1. Data description 

Variable Type Description 

Flow Numeric/input and output Between 0 and 629 (acre-feet/day) 

Precipitation Numeric/input Between 0 and 95.39 (acre-feet/day) 

Evaporation Numeric/input Between 0.007 and 0.39 (acre-feet/day) 

Maximum 

Temperature 

Numeric/input Between -22.98 and 27.19 (Fahrenheit) 

Minimum 

Temperature 

Numeric/input 
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Figure 4.3. Explanation of the method 

Phase 2: in Phase 2, we create three types of predictive models, MARIMA, ANN, and RF. 

Phase2-1 (MARIMA modeling): As shown in Figure 4.3, we first create the MARIMA 

model. Formulating the MARIMA model is summarized in Figure 4.3, Phase 2-1. The steps 

for building the MARIMA model are as follows: 

Step 2-1-1: We first implement the static test on the data. We use AR and MA operators to 

identify whether the time series is a stationary sequence. If not, we difference the data to make 

it stable. The maximum likelihood estimation method is used to evaluate the parameters in 

MARIMA. Then the resulting model is tested.  



 

120 
 

Step 2-1-2: in this step, we diagnose whether the residual error of the time series is white 

noise or not. A time series is a white noise if the variables are independent and identically 

distributed with a mean of zero. By white noise, we mean that all the predictors have the same 

variance (σ2), and every value has a zero correlation with the other variables in the time series. 

If it is not, we re-estimate the parameters until the generated residual error becomes white noise.  

Step 2-1-3: Finally, MARIMA is used for prediction with suitable parameters.  

Phase 2-2 (ANN Modeling): As shown in Figure 4.3, we create the ANN model after 

building the MARIMA model. The procedure to formulate the ANN model is summarized in 

Figure 4.3, Phase 2-2. The steps for building the ANN model are as follows: 

Step 2-2-1: We load the data and identify the input and output variables in this step. Our 

problem identifies precipitation, evaporation, maximum and minimum temperature, and the 

previous period (lag) flow as input variables. Also, we define the flow for the current period as 

the output variable. 

Step 2-2-2: In this step, we normalized the data so that all the inputs are at a close range. 

Step 2-2-3: In this step, we design the ANN, with (1) one input layer with five neurons as 

input variables; (2) one and two hidden layers, here we chose one hidden layer design after 

comparing the results; (3) one output layer with one output. 

Step 2-2-4: We implement the ANN algorithm with the imported data and create 

architecture in Step 3. We then use the training data to train the model. 



 

121 
 

Step 2-2-5: In this step, if the created ANN model has converged, we calculate the MSE 

and RMSE for the training data. We selected the design with one input layer with five input 

variables, one hidden layer, and one output layer with one output variable.  

Step 2-2-6: We test the trained network with the test data in this step. Then we calculated 

RMSE and R-Squared and use them to compare with MARIMA and RF models results.  

Phase 2-3 (RF Modeling): As shown in Figure 4.3, we create the RF model after building 

MARIMA and ANN models. 

The procedure to formulate the RF model is summarized in Figure 4.3, Phase 2-3. The steps 

for building the RF model are: 

Step 2-3-1: In this step, we load the data and create random vectors using a probability 

distribution. These probability distributions are calculated based on classes that are difficult to 

classify. 

Step 2-3-2: In this step, a random vector can be incorporated into the tree-growing process 

in multiple ways. The leaf nodes of each tree are labeled by estimates of the posterior 

distribution over the data class labels. Each internal node contains a test that best splits the data 

space to be classified. A new, unseen instance is classified by sending it down every tree and 

aggregating the reached leaf distributions. Each node is split best among the randomly chosen 

subset of predictors at that node instead of the complete set. 

Step 2-3-3: In this step, we ensemble the decision trees created in Step2. 
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Phase 3: We build a MARIMA model using only a one-time lag and forecast only one 

period with MARIMA since we cannot forecast more than one step. We build one type of ANN, 

but we forecast the seven subsequent periods with that. Also, to examine the importance of 

different time lags, we build seven types of the random forest using the set of lags of (1, 2, 3, 

4, 5, 6, 7). We find that the time lag of 7, which means using the seventh day before the day 

that we forecast for it, estimate the next days’ flow, captures the nature of the problem more 

accurately than other time lags. So, we use the random forest with seven lags, but we forecast 

the next seven days’ flow with that. Then, in Phase 3, we compare the results of MARIMA, 

ANN, and random forest, based on two accuracy measures, R-Squared and Root Mean Square 

Error (RMSE). We use the R software and packages “for,” “MARIMA,” and “RandomForest” 

to implement the models. 

4.4 Predicting the Inflow in Buffalo Reservoir using Multivariate 

AutoRegressive Integrated Moving Average (MARIMA)  

MARIMA is a multivariate method to analyze time series introduced by Box and co-authors 

(Box et al., 2015). Usually, MARIMA models are generalized types of the univariate ARMIA 

models (Box et al., 2015). However, ARIMA has the issue of overfitting (Bennett et al., 2014), 

so, we use MARIMA to avoid this issue. The non-seasonal ARIMA is MARIMA (d, p, q), 

where d is the number of lags of the moving average, p is the number of orders of differencing, 

and q is the number of moving average lags. In this chapter, the three phases of MARIMA (e.g., 

identification, approximation, and diagnosis) are used to obtain the model with the highest 

accuracy to estimate streamflow. Suitable values for p and q are found by analyzing the 



 

123 
 

autocorrelation ACF8 and PACF9. Shukla and co-authors (Shalamu, 2009) and Abudu and co-

authors (Abudu et al., 2010), and Zamani and co-authors (Zamani Sabzi et al., 2018) used a 

univariate ARIMA in the seasonal form to forecast the streamflow for each month.  

A MARIMA model is defined by Equation 4.1 to Equation 4.5 as follows: 

𝛾(𝐴)𝑦𝑡 = 𝛼(𝐴)𝑏𝑡 Equation 4.1

  

Where 𝑦𝑡 is the dependent variable of the amount of inflow in time t, A is the lag, 𝑏𝑡 shows 

noise. 

𝑦𝑡 = 1 − 𝐴
𝑑𝑌𝑡  Equation 4.2

  

as stationary series,  

𝛾(𝐴) = 1 − 𝛾1𝐴 − 𝛾2𝐴
2 −⋯− 𝛾𝑝𝐴

𝑝 Equation 4.3

  

  as non-seasonal autoregressive series, 

𝛼(𝐴) = 1 − 𝛼1 − 𝛼2𝐴
2 −⋯− 𝛼𝑞𝐴

𝑞 Equation 4.4

  

As for non-seasonal moving mean series, q stands for the order of the moving mean series, 

such that p shows the auto-regression series order. Then, the lag A is computed by Equation 

4.5:  

 
8 Autocorrelation Function 

9 Partial Autocorrelation Functions 
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𝐴𝑌𝑡 = 𝑌𝑡−1 Equation 4.5

  

The data we have are not stationary due to the unstable variance and mean of non-seasonal 

day-to-day data of streamflow. Therefore, to forecast the daily streamflow, we need to stabilize 

the data to use in the MARIMA model. In other words, we need to implement adequate 

differencing to stabilize the time series' average and variance.  

MARIMA model has three parameters: p, which identifies how many previous lags or time 

steps – in these problems days – must be input; q, which determines the subsequent observation 

is the average of how many previous lags or time steps (here days); d, determines how many 

nonseasonal differences are required to achieve stationary data.  

The parameter q is calculated by plotting the PACF, and the parameter p is calculated by 

plotting the ACF. D is found by trying different differencing terms and choosing the value for 

d, which results in the lowest variance. The autocorrelation is less than -0.5 which is a very low 

variance (Brockwell and Davis, 2009). The parameters that produce the highest accuracy of the 

MARIMA model are p=7, q=1, and d=1 and we can use the most appropriate lag set (1, 2, 3, 

4, 5, 6, 7. This is the most vital auto-regression parameter. 

4.5 Predicting the Inflow in Buffalo Reservoir Using RF 

We use RF because trees are weak learners and unstable. However, the observed predictive 

accuracy is improved through an ensemble of many decision trees, as in RFs. In other words, 

they may cause a minimal error with considerable variance. One of the approaches to boost the 
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functionality of DT10 is to integrate the responses of various decision trees. In an RF model, 

we train a lot of decision trees such that every tree is trained through a random feature subset 

(Breiman, 2001). This helps de-correlate the individual trees of the forest. We define an RF, an 

ensemble of decision trees, as 𝑹 = {𝑻𝒌}𝒌∈[𝒎]. The RF is used to calculate the average of single 

decision tree outcomes, thus: 

(𝒚) =
𝟏

𝒎
∑ 𝑻𝒌(𝒚)

𝒌∈[𝒎]
 

Equation 4.6

  

 A random sample of m features is set at each node to create the RF. Only these m features 

are considered for splitting. Typically: m = √𝑝 or m = log2 p (p is the number of features). 

Then, we try to improve bagging, which is accomplished with an ensemble algorithm that fits 

several models of various samples of a training dataset, then combines all models’ predictions 

- "de-correlating" the trees. Forming an RF is an expansion of bagging which also choses 

subsets of features used in all samples randomly.   

Consider one strong predictor in our data set which reduces a measure of error the most. 

All our trees tend to make the same cuts because they all share the same features. This makes 

all these trees look remarkably similar, hence increasing correlation. We allow the random 

forest to choose only several predictors in performing the split randomly to solve tree 

correlation. Now the trees all have different randomly selected features to perform cuts on. 

Therefore, the feature space is split into different predictors, de-correlating all trees to decrease 

variance.  

 
10 Decision Tree 
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Third, the RF is built by assembling these decision trees. Using RF instead of a single 

decision tree decreases the interpretability but usually increases the accuracy of the ultimate 

result. Finally, we want to see if an ensemble of trees in the configuration of RF performs better 

than classic time series analysis methods like MARIMA. 

4.6 Predicting the Inflow in Buffalo Reservoir using Artificial Neural 

Network (ANN) 

We use ANNs as a machine learning technique. ANNs are predictive techniques created 

based on the neural structure of the human brain. These models can be used to recognize the 

variables’ complicated and non-linear relationships. Usually, ANNs are modeled via multiple 

layers of interconnected neurons and calculated using historical data and future values. In this 

chapter, we use a common type of ANNs, the FFNNs11.  

In Figure 4, a classic construction of the ANN computation function is shown with a layer 

for input, another layer for output, and a hidden layer. In such a 3-layer ANN, we calculate the 

output variables by turning the non-linearity of the problem into the linear arrangements of the 

input elements. Finally, the outputs are clearly articulated and computed via Equation 4.7: 

𝑦̂𝑗 = 𝑓0[∑𝑧𝑗𝑖 ∗ 𝑓𝑔 (∑𝑧𝑖𝑗𝑥𝑗 + 𝑧𝑖0

𝑀

𝑗=1

) + 𝑧𝑗0]

𝑁

𝑖=1

 

Equation 4.7

  

 when the variable of zij stands for the most appropriate allocated weight, which links the 

jth element in the network in the first layer (input layer) to the ith element on the second layer 

 
11 Feed-forward neural networks 



 

127 
 

(hidden), zi0 is the measured error, which is allocated to the ith element on the second layer, fg 

represents the so-called “activation function” in the second layer, zji is the measured weight 

which connects the ith element on the second layer to the jth element on the layer output, zj0 is 

the error amount allocated to the jth element on the layer of output, and f0 is the output activation 

function such as the following: 

𝑆(𝑚) = 0.5∑∑[𝑥𝑞𝑗(𝑚) − 𝑥̂𝑞𝑗(𝑚)]
2

𝑃

𝑗=1

𝑀

𝑞=1

 

Equation 4.8

  

 in which M is the number of observations (inputs) used, P is the number of estimated 

output variables, 𝑥𝑞𝑗(𝑚) is the observed variables (target), and 𝑥̂𝑞𝑗(𝑚) is the projected value 

for the jth element by mth replication. One of the functions which are built for assessing the 

accuracy of the created ANNs is: 

𝐼𝑡+1,𝑡+2,𝑡+3,𝑡+4,𝑡+5,𝑡+6,𝑡+7 = 𝑓(𝐼𝑡, 𝐸𝑡 , 𝑃𝑡, 𝑇𝑀𝑎𝑥, 𝑇𝑀𝑖𝑛, 𝑀𝑗) Equation 4.9

  

such that 𝐼𝑡+1,𝑡+2,𝑡+3,𝑡+4,𝑡+5,𝑡+6,𝑡+7 is the estimated streamflow on day to day basis at 1 to 

7 days before; It is the  observed day to day amount of flow at the given day of It; 𝐸𝑡 is the 

evaporation from the Buffalo Reservoir; 𝑃𝑡 is the precipitation into the Reservoir and 𝑇𝑀𝑎𝑥 is 
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the maximum recorded temperature, and 𝑇𝑀𝑖𝑛 is the minimum recorded temperature, Mj is the  

 Figure 4.4. Typical construction of an ANN with a single layer of input, hidden, and output. 

4.7 Results and Discussions of Predicting the Inflow in Buffalo 

Reservoir 

We divide the data into training and test sets to compare the predictive models based on 

their accuracy performance—30% of the dataset between 2002 and 2018 is used to as a test 

dataset. As shown in Table 4.2 and Table 4.3,  we build one type of MARIMA using only a 

one-time lag. We forecast only one period with MARIMA since we cannot forecast more than 

one step with MARIMA. We build one type of ANN, but we forecast seven subsequent periods 

with that.  
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Also, to examine the importance of different time lags, we build seven types of RF using 

the set of lags of (1, 2, 3, 4, 5, 6, 7). Comparing the results of MARIMA, ANN, and RF, we 

see that RF has the highest R-Squared values for all the prediction scenarios, as shown in Table 

4.2. Also, as shown in Table 4.3, the RMSE of the RF model is lower than the ANN and 

MARIMA models. 

MARIMA, ANN, and RF, as shown in Table 4.2, are compared based on the accuracy 

performance in forecasting. We use the 𝐸𝑡 , 𝑃𝑡 ,  𝑇𝑀𝑎𝑥 , 𝑇𝑀𝑖𝑛, and 𝐼𝑡  to create the models and 

estimate the next step. In Table 4.2, we provide the forecasted inflow amount for 𝐼𝑡+1, 𝐼𝑡+2,

𝐼𝑡+3, 𝐼𝑡+4, 𝐼𝑡+5, 𝐼𝑡+6, 𝐼𝑡+7. RF has the lowest RMSE in forecasting the streamflow to Buffalo 

Reservoir, as illustrated in Table 4.3. MARIMA is the next most accurate method for predicting 

one-day stream, but it is only used to predict one day lag. In Table 4.2 the forecasting accuracy 

performance of the different utilized methods is shown. To compare accuracy, both RMSE and 

correlation measures are used. 

 

Table 4.2. Performance evaluation and comparison between MARIMA, ANN and RF 

models. 

R2 Values  

Model Type 

lags 

It+1 It+2 It+3 It+4 It+5 It+6 It+7 

MARIMA 0.923 - - - - - - 

ANN 0.895 0.799 0.522 0.398 0.358 0.356 0.356 

RF 0.947 0.948 0.947 0.948 0.949 0.948 0.982 

Although the R2 of the daily forecasting model (which is in the first row in Table 4.2 and 

used to forecast the next day) is marginally lower than the chosen RF model (3rd row of the 
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numerical findings in the RF model of Table 4.2), it is not chosen as the most appropriate model 

because the forecast for the next week (It+7) has a higher R-Squared.  Also, the daily MARIMA 

forecasting model is acceptably accurate. However, MARIMA is a suitable method for a 

weekly forecast. We illustrate the forecasted amounts versus the observed amounts in Figure 

4.5 to Figure 4.7. 

Table 4.3. Accuracy of the used forecast method in various forecast time horizons 

Accuracy measure It+1 It+2 It+3 It+4 It+5 It+6 It+7 

RMSE (MARIMA) 9.444 - - - - - - 

RMSE (ANN) 8.324 8.235 8.264 8.298 8.165 8.268 8.458 

RMSE (RF)  7.15 7.28 7.22 7.26 7.25 7.24 7.24 

While the correlation coefficient of the daily forecasting model (which is in the first row in 

Table 4.2 and used to forecast the next day) is marginally lower than the chosen RF model (3rd 

row of the numerical findings in the RF model of the Table 4.2), it is not chosen as the most 

appropriate model because the forecast for the next week (It+7) has a higher R-Squared. 
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. 

 

Figure 4.5. Visualization of the predicted, actual, and residual values.  

a) Predicted values vs. observed values using MARIMA. b) Residual plot over the time. 30% 

of the data between 2002 and 2018 is used for testing the results. 

 

Since the chosen models of RF, MARIMA and ANN are used to forecast for the subsequent 

seven days, and only with MARIMA model we predict the next one day on daily inflow 

forecasting models. Also, daily MARIMA forecasting model is meaningfully accurate, 

however, because of its larger error, MARIMA is not selected as a suitable method for weekly 

forecast.  We illustrate the forecasted amounts versus the observed amounts in Figure 4.5 to 

Figure 4.7. 
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Figure 4.6. Visualization of the predicted, actual, and residual values. 

a) predicted values vs. observed values using ann. b) residual plot over the time. 30% of the 

data between 2002 and 2018 is used for testing the results. 

Figure 4.7. Visualization of the predicted, actual, and residual values. 

a) Predicted values vs. observed values using RF. b) Residual plot over the time. 30% of the 

data between 2002 and 2018 is used for testing the results. 
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4.8 On Verification and Validation – Theoretical Structural Validity 

(TSV) 

The relationship of these research efforts reviewed in this chapter with the constructs of the 

systematic approach developed in this dissertation is highlighted in Figure 4.8. In Section 4.1, 

a critical evaluation of the literature on temporal variables, the ways to deal with them and how 

to create surrogate models which are able to deal with temporal variables are provided. While 

in Section 4.2, the data used in surrogate modeling, and water inflow prediction is described. 

Creation of MARIMA, RF, and ANN models are explained in Sections 4.4, 4.5 and 4.6 

respectively. Results of predicting the inflow in Buffalo reservoir using surrogate modeling 

and the verification and validation of created models are illustrated in Sections 4.7 and 4.8 

respectively. 

Figure 4.8. Relationship of research efforts with the temporal surrogate models and 

connection between chapters of the dissertation. 
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4.8.1.  TSV of function-based design (Gap 4 in Figure 4.7) 

Theoretical structural validation refers to accepting the validity of individual constructs 

used in the systematic function-based approach and accepting the internal consistency of the 

way the constructs are put together. Theoretical structural validation involves systematically 

identifying the scope of the proposed approach’s application, reviewing relevant literature and 

identifying the research gaps that is existing, identifying the strengths and limitations of the 

constructs uses based on literature review, determining the constructs and approaches that can 

be leveraged for the systematic function-based approach while reviewing literature on the 

advantages, disadvantages and accepted domains of application, and checking the internal 

consistency of the constructs both individually and when integrated. 

In Chapter 4, we establish the generic nature of the systematic approach and why the 

approach is appropriate for concept generation during early stages of design. By carrying out 

literature search, it is shown that the systematic surrogate-based approach and the associated 

constructs have been previously applied for problems in various domains in a successful 

manner and are verified and validated. The use of these generic systematic approach for dealing 

with temporal data in the surrogate modeling process is not addressed in past literature. Based 

on the critical review of literature in Chapter 4, it is inferred that the application of dynamic 

surrogate modeling is mostly on areas related to mechanical, control, software and process 

engineering and is mostly applied for selection of materials for replacing computationally 

expensive simulations. 

The theoretical structural validity of the time-based surrogate modeling approach for 

predicting in temporal datasets to achieve accurate predictions and ensemble od time-based 

surrogate models which are accepted by the logical procedure of literature review, gap analysis 

and development and evaluation individual and ensemble surrogates. Empirical studies need 
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to be carried out to establish the usefulness and effectiveness of the approach and is addressed 

in Chapter 4. 

4.8.2.  TSV of temporal surrogate models (Gap 4 in Figure 4.7) 

Theoretical structural validation refers to accepting the validity of different features, 

including temporal used in the surrogate modeling and accepting the internal consistency of 

the way the different surrogate models are put together. Theoretical structural validation 

involves systematically identifying the scope of the proposed framework’s and design 

method’s application, reviewing relevant literature and identifying the research gaps that is 

existing, identifying the strengths and limitations of the constructs used based on literature 

review, determining the constructs and approaches that can be leveraged for the time series 

analysis and time-based surrogate models and the concept of the ensemble of surrogates while 

reviewing literature on the advantages, disadvantages and accepted domains of application, and 

checking the internal consistency of the constructs both individually and when integrated. In 

Chapters 1 and 2, the need for a surrogate modeling for managing computational complexity 

is established. The individual surrogate modeling is critically reviewed in Chapter 3 and the 

functionalities and limitations associated with the methods are established. The limitations of 

individual surrogate models in terms of the following are discussed: i) when using individual 

surrogate models, the fitness of the models to the data in the entire solution space is not taken 

into account, ii) surrogate models have limitations in terms of dealing with temporal and spatial 

data, iii) there is no systematic and organized way to automatically choose the appropriate 

surrogate model. 

In Chapter 4, Gap 4, which is on Integrating SM and time series, is posed after a critical 

evaluation of the literature. To address this gap, Research Question 4 is posed as “what is the 

appropriate SM to use when the data includes time-dependent variables as predictors? Then, to answer 
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this question, we hypothesized that through replacing the design of experiments with the time lags 

analysis, we find the SM which is useable in temporal variables. By testing this hypothesis through 

creation of spatial surrogate models and testing it on dam water inflow prediction problem on Buffalo 

reservoir on the Red river, we enabled dealing with temporal data by incorporating time series (lag 

analysis) with SM as the key outcome. Also, we enabled temporal data can be used in SM using different 

time lags. These SMs are better than classic time series analysis methods like ARIMA, MARIMA and 

ARIMAX. Also, EOS are better than individual SM in temporal variables.  

Now, that we have discussed how to deal with temporal data in surrogate modeling, we are 

going to talk about how to build mathematics to deal with spatial variables and features in the 

dataset. This helps us to integrate spatial statistics and specially the idea of geographically 

weighted regression with surrogate modeling. 

4.9 Closing Remarks on Predicting the Inflow in Buffalo Reservoir 

Surrogate modeling replaces computationally expensive simulations and costly, 

complicated physical experiments in many engineering design problems. However, there is a 

gap in using surrogate modeling in other fields. Dam network design is one field where 

measuring the flow into the reservoir can be done by physical measurement, which is an 

expensive, or hydrological simulation, which is very time-consuming and computationally 

expensive. Therefore, surrogate models as simulations can be used to manage this 

computational complexity. However, the challenge of using surrogate modeling for flow 

prediction is that the flow values are time dependent. Also, ensembles of surrogates have been 

widely used in engineering design. For example, we use the random forest as an ensemble of 

decision trees in this problem. In this chapter, there are three contributions (1) using surrogate 
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modeling to predict flow for dam network design, (2) incorporating time series analysis in 

surrogate models for water network design, and particularly the concept of lag with surrogate 

modeling in this chapter using different time lags. This is new in surrogate modeling literature; 

(3) using and ensemble of surrogates in an RF model to improve accuracy and achieve more 

accurate predictions.  

The problem of predicting flow for dam network design has the unique feature of 

independent variables (e.g., precipitation, temperature) and dependent variables (inflow in the 

previous day and other time-related variables). We use time series models in this problem using 

ARIMA to include lags of the dependent variable, stream inflow. However, using this classic 

time series method for analysis, we obtain an unacceptably low out-of-sample accuracy. The 

RF method is the most accurate predictive model for this problem. Therefore, selecting suitable 

surrogate models to create an ensemble of surrogates is another takeaway for this chapter. Also, 

based on our findings by comparing three types of inflow prediction models, we explain the 

importance of choosing the appropriate features as predictors of forecast accuracy. For 

example, discovering and using climate changeability metrics (such as previous inflow values 

as time-related metrics (𝐼𝑡+1, 𝐼𝑡+2, 𝐼𝑡+3, 𝐼𝑡+4, 𝐼𝑡+5, 𝐼𝑡+6, 𝐼𝑡+7 ) using RFs leads to greater 

forecasting accuracy for stream inflow forecasting. Data-driven decisions on predictor 

selection and surrogate model selection are other salient features of our method. Using time-

related metrics for daily stream inflow forecasting does not improve the forecast accuracy as 

well as using the seventh previous time step (lag) forecast. The influence of an existing 

observed trend is more evident for longer forecast horizons. Consequently, we can create a 

forecast function using the influential physical estimator. By comparing the accuracy of 

different models, we find that using more information via an ensemble of models can enhance 

the forecasting performance.  
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Our method is useful for other engineering problems, particularly water planning problems, 

empowering water resource planners to conserve the water to meet agricultural, environmental, 

and social needs and hydropower energy generation as in all water planning problems, the 

amount of water is uncertain and needs to be estimated. Overall, preprocessing the monthly 

historical data to classify the recorded data and accumulating the time-related stream flow 

pattern metrics enhances the forecast accuracy of the built predictions. We learn that forecast 

accuracy in both RF and ANNs depends heavily on the choice of the estimators and analysis 

of the chosen estimators. Greater forecast accuracy is obtained by analyzing the historical data 

and choosing appropriate time lags. Especially on the prediction of a weekly basis, using RF 

together with the time-related metrics meaningfully enhance the forecast accuracy.  

The methods proposed in this chapter can be used by people who are working on surrogate 

models, forecast model designers, those who want to embed machine learning in forecasting 

methods and time series models with surrogate modeling; and practitioners who want to 

implement expert systems in practical problems. In this chapter, the method has been 

demonstrated for an environmental management problem, water resource planning. This 

problem has been used because of the availability of data, however it could also be applied to 

designing anything in which time dependent flow is an issue, for example, biomedical 

problems, the management of product sales including the acceptance of new products, and 

monitoring manufacturing processes as well as products in which fluid flow is an issue. 
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CHAPTER 5 APPROXIMATION OF REALITY USING 

SPATIAL SURROGATE MODELING 

The objective in this chapter is to introduce how spatial statistics and geographically 

weighted regression predictive models can be used as surrogate models. We incorporate the 

geographical neighbourhoods and particularly the concept of correlation of census blocks as a 

feature with the surrogate modeling in this chapter. We proposed the idea of spatial surrogate 

models by adding this feature (space/location) as a new feature in the process of surrogate 

modeling. The findings in this chapter can be used by people who are working on census data 

and computationally expensive simulations. 

Purpose: While the geography of crime has been a focal concern in criminology from the 

very start of the discipline, the development and use of statistical methods specifically designed 

for spatially referenced data has evolved more recently. Besides geographical location, 

demographic information has significant impact in criminology. In this chapter, we aim to 

discover hidden patterns in crime data and predict the crime rate based on socio-spatial 

information. 

Design method/approach: We use two different geospatial statistics methods; point 

pattern analysis to discover the hidden spatial patterns within the data, and geographically 

weighted regression to predict the crime rate. We use Los Angeles city as an example to 

exercise the designed models. The dataset which is used includes detailed crime reporting data 

with socio‐spatial data.  

Findings: We find spatial autocorrelation between demographic features specially gender, 

age and population and use it to cluster the counties in Los Angeles city. We predict the crime 

rate in Los Angeles with an acceptable accuracy of R2 = 0.8. Also, we detect meaningful crime 

patterns and clear clusters with high crime rate in the study area. 
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Originality/value: Addressing the gap of using social and demographic data in discovering 

patterns in crime rate. Also, clustering the Los Angeles counties into several communities with 

mutual criminological features which enables us to prevent the spatial diffusion of the crimes 

by focusing on high crime rate areas. The proposed model can play a critical role in the efficient 

allocation of scarce law enforcement resources 

5.1 Frame of Reference for Spatial Surrogate Models 

The spatial-demographic crime distribution is getting increasing attention from both 

researchers (sociologists, criminologists, geographers, economists, etc.) and law enforcement 

agencies (Bernasco and Elffers, 2010; Li et al., 2014; Ratcliffe, 2010; Roth et al., 2013; Tita 

and Radil, 2010). One of the most under‐researched area of criminology is that of socio‐spatial 

crime patterns (Ratcliffe, 2010). It has been clearly highlighted that there is a need to combine 

geographic and demographic analyses and representation of the data (Roth et al., 2013). 

Therefore, this is the gap in the literature which we address the present chapter. 

In Chapter 5, we aim at addressing such needs by proposing a pattern recognition approach 

along with geographically weighted regression (GWR) using socio‐spatial urban crime count 

data. We then apply to a dataset consisting of 12 month (2010) counts of crimes for the 1800 

census tracts in Los Angles, California. Socio‐demographic census tract characteristics and 

unobserved heterogeneity (random effects) across census tracts.  

Another motivation to conduct this research comes from the research of (Gorr and Harries, 

2003) and (Cohen et al., 2007) ,that study a range of prediction models for city crimes. When 

there is no potential socio‐economic predictors and spatially lagged response variables, they 
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find that different kinds of exponential levelling led us to find the best mean prediction point 

accuracy based on average squared and average absolute ratio prediction error. Relative to 

these contributions, we benefit from two key advantages. First, as mentioned above, we are 

able to generalize the forecasting and clustering procedure developed by (Liesenfeld et al., 

2016) for latent spatial count models to account also for temporal lags as well as unobserved 

and observed (socio‐economic) heterogeneity. Second, we benefit from access to highly 

disaggregated and, foremost, internally consistent data at the census tract level combining 

Uniform Crime Reporting (UCR) data classified according to the handbook of the US 

Department of Justice (2004) with socio‐economic data from the 2000 census. 

As a preview of our main results, we test hypothesis of having pattern and crime clusters 

based on socio‐economic descriptions for crime intensities and identified significant 

endorsement of the ‘non-random crime distribution’ phenomenon, whereby the concentration 

of crime in a census tract provides a principal measure for more potential future crimes (Anselin, 

2013; Cohen and Gorr, 2005; Cohen et al., 2007; Wilson and Kelling, 2003). More importantly, 

we can calculate the density and severity of the crimes for the city of Los Angeles to reduce 

the severe crimes in a specific census tract. These findings emphasize the crucial significance 

of completely relying on urban spatial dependence but can also provide a valuable means for 

effective distribution of law enforcement resources. 

We also build geographically weighted regressions which demonstrate the remarkable 

predictive performance of the created model relative to ordinary least squares (OLS) model (a 

broadly used benchmark). Furthermore, we can implement point pattern analysis (cluster 
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analysis) tests, not just point projections, but also obtainable forecasting intervals. Finally, we 

use this point pattern analysis test to produce statistical validation of our clustering schemes. 

The chapter is organized as follows. In Section 5.2 we provide a review of the literature on 

the socio‐economic determinants of variations in crime rates across geographic regions and 

their spatial and temporal dependence. Also, we provide a critical evaluation of the literature 

on crime studies in Los Angeles city. In Section 5.3 we describe the data. Section 5.4 presents 

the point pattern analysis method and geographically weighted regression model and in Section 

5.5 we illustrate the results of the analysis and discuss the findings and closing remarks are 

articulated in Section 5.6. 

5.2 Predictors and Dependence in Space of Crime Rates 

5.2.1.  Predictors used in crime rate prediction in Los Angeles city 

Practical studies in crime research usually utilize predictive models to describe observed 

patterns in crime rates within geographic areas with static borders, for example, census tracts 

(Helbich and Jokar Arsanjani, 2015), counties (Baller et al., 2001), police precincts (Helbich 

and Griffith, 2016), or census block groups (Wo, 2019). The foundational context includes 

sociologic concepts of crime consisting of social ecology and location‐based models (Pineda-

Ríos et al., 2019). Social ecology concepts like social disorder (Persad, 2019) describe the 

geographical changes in crime severity based on changing social circumstances of the society. 

Under location‐based models, such as repetitive activities (Cornish and Clarke, 2014) and the 

logical option method  (Tuck and Riley, 2017), the geographical difference of crime severities 

is identified by the connection in demographic and spatial features. These concepts focus on 
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some measures of structural circumstances which can enable us to project the crime’s 

geographical dispersal. Structural covariates are used in experiential studies are the indicators 

of population composition (density, distribution and size) (Canter and Shalev, 2017), structure 

and population of the residents (proportion of different races, age, gender) (Gray and Parker, 

2019; Petersen and Ward, 2015; Peterson et al., 2017; Probst et al., 2019), family organization 

(proportion of female‐headed families, separation rate) (Gottlieb and Sugie, 2019), socio‐

economic features (employment, income) (Aaltonen et al., 2016; Conley and Topa, 2002; 

Narayan and Smyth*, 2004)  and type of residence (houseowner, rental, and vacancy 

percentage) (Tolnay et al., 1996). 

5.2.2.  Spatial dependence of crime data  

If criminal actions were only identified by the foundational elements which are included in 

a prediction model, then there must be no spatial relationship beyond that produced by 

foundational resemblances of areas which are geographically close to each other (Andresen, 

2019). However, spatial clustering generally cannot be fully described by conventional 

indicators of foundational resemblance among geographical areas (Tita and Radil, 2010; 

Wright and Skubak Tillyer, 2017).  

Spatial autocorrelation has gained increasing attention in practical crime studies for two 

main reasons (Papachristos and Bastomski, 2018): (1) it is statistical and because of that the 

approximations of the impacts of predictors and their errors can be unstable if the spatial 

autocorrelation of data is overlooked (LeSage and Pace, 2009). Therefore, studying spatial 

autocorrelation is crucial when we are evaluating the peripheral impacts of foundational 



 

144 
 

predictors on crime data. (2) spatial correlation by itself is of high significance in criminology 

as positive spatial autocorrelation is taken as indication of spatial dispersal of specific kinds of 

crime (Tolnay et al., 1996). These impacts can show that gangs and criminals are connected 

together through networks (Faust and Tita, 2019; Nakamura et al., 2019) and cultural behaviors, 

where violence disperse all over people and spatial units via direct social contacts (Papachristos 

and Bastomski, 2018; Tita and Greenbaum, 2009). 

5.2.3.  Critical evaluation of the literature on crime research in Los Angeles 

Even though spatial statistics has not been used for crime research in Los Angeles city, 

expensive criminological research has been conducted over this city. One of the early studies 

on criminology over LA county is conducted by (Woolsey, 1979) explaining the . The studies 

on crime in Los Angeles city can be categorized into three groups: 1) criminal/victim features-

based crime research: this type of crime research is based on the socio-demographic features 

on either criminals or victims of the crimes ; 2) crime type-based research: this type of crime 

research is focused on the type of the crime; 3) methodological crime research: this type of the 

crime research is focused on creating or using methods and tools from different disciplines in 

crime research.  

With respect to the criminal/victim features-based crime research in Los Angeles city, 

Rochelle and co-authors introduced a large framework to evaluate demographic characteristics 

such as gender, community, ethnicity, and race in exposure to crime (Hanson et al., 2000). Han 

and co-authors study and evaluate the relationship between use of local parks in low-income 

urban neighborhoods and the crime rates in Los Angeles during a 2-year study period (2013–
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2015) (Han et al., 2018). Burley investigates the impact of Portland's green infrastructure 

initiative on neighborhood violence (Burley, 2018). Beland and Brent investigate the 

association of high traffic jam and crime to predict traffic’s psychological expenses (Beland 

and Brent, 2018). 

With respect to crime type-based research, RAND corporation studies the impact of 

business growth districts in Los Angeles on reported violent crime and youth violence (Rand, 

2009). Ridgeway and MacDonal studied the effect of rail transportation on crime in 

neighborhoods near transit stations (Ridgeway and MacDonald, 2017). Levine and Wachs 

study bus incident crimes in Los Angeles (Levine and Wachs, 1986). Haberman study the 

extent to which hot spots of various crime types overlapped spatially (Haberman, 2017). 

With respect to methodological crime research, Anderson and co-authors used geographical 

zoning on crime using over two hundred blocks chosen in eight various relatively high crime 

neighborhoods in Los Angeles (Anderson et al., 2013). Tahani and co-authors used spatial 

statistics find the criminal hotspots (Almanie et al., 2015). Also, Wand and co-authors use a 

deep learning spatio-temporal estimator, ST-ResNet to collectively approximate crime 

distribution over the Los Angeles area (Wang et al., 2017). 

Based on the critical evaluation of the literature, there is a gap in using spatial-demographic 

information to study the crime in LA city and predict the crime rate. To address this gap, in our 

approach, we integrate two aspects of the research on crime, including criminal/victim features-

based and methodological crime research over the Los Angeles city on the data set which is 

described in the Section 5.3. 
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5.3 Data Set Used for Crime Rate Prediction in Los Angeles City 

5.3.1.  Describing the data, features, and characteristics 

Our crime dataset includes 12 month (January 210 to December 2010) for each of the 180 

census tracts in Los Angeles.  

Our dependent variable yi is defined as the number of crime in census tract i(i = 1,…,138) 

for a total of 513 individual observations. In addition, in order to account for heterogeneity 

across census tracts, we collected data from the Census 2000 (US Census Bureau and Social 

Explorer Tables) on the following 55 socio‐economic variables: number of people in each 

census tract (tot_pop), number of white people in each census tract (white), number of black 

people in each census tract (black), number of people in each census tract (native), number of 

people in each census tract (asian), number of no Hispanic Latin people in each census tract 

(nohisl), number of Hispanic Latin people in each census tract (hislat), number of male people 

in each census tract (male), number of female people in each census tract (female), number of 

male people in each census tract under the age of 5 (male_under 5), number of female people 

in each census tract under the age of 5  (female_under 5), number of male people in each census 

tract between 10 and 14 years old (male10-14), number of female people in each census tract 

between 10 and 14 years old (female10-14), number of male people in each census tract 

between 15 and 17 years old (male15-17), number of female people in each census tract 

between 15 and 17 years old (female15-17), number of male people in each census tract 

between 18 and 19 years old (male18-19), number of female people in each census tract 

between 18 and 19 years old (female18-19), number of male people in each census tract who 
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are 20 years old (male20), number of female people in each census tract who are 20 years old 

(female20), number of male people in each census tract between 22 and 24 years old (male22-

24), number of female people in each census tract between 22 and 24 years old (female22-24), 

number of male people in each census tract between 25 and 29 years old (male25-29), number 

of female people in each census tract between 25 and 29 years old (female25-29), number of 

male people in each census tract between 30 and 34 years old (male30-34), number of female 

people in each census tract between 30 and 34 years old (male30-34), number of male people 

in each census tract between 35 and 39 years old (male35-39), number of female people in each 

census tract between 35 and 39 years old (female35-39), and number male and female between 

40-44, 45-49, 50-54, 55-59, 60-61, 62-64, 65-66, 67-69, 70-74, 75-79, 80-84, 85and up. 

In our descriptive analysis, we combined the age-related variables into 3 different age 

groups including under 17, between 18 and 39, and over 40 years old for male and female 

separately. So, instead of dealing with 55 variables we are dealing with 15 variables. 

5.4 Methods Used for Crime Rate Prediction and Different Spatial 

Analysis 

To create a spatial surrogate model for the dataset under study, some spatial statistics 

methods can be used. The most important ones are studied in this section. For example, in 

Section 4.4.1., point pattern analysis is explained as the most important spatial statistics 

technique while variance-mean ratio technique is discussed in Section 5.4.2. Also, in Section 

5.4.3., distance-based point pattern measures are explained. Nearest neighbor distances method 

is explained in Section 5.4.4 while implementing the G, F, and K functions over the data set, 
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in sections 5.4.5., 5.4.6., respectively followed by the interpretation of the results in Section 

5.4.8. 

5.4.1.  Point pattern analysis method to spatially analysis the location under 

study 

Using point pattern analysis, we investigate the spatial organization of points in often two-

dimensional space. We also want to identify any cluster structure exists in the spatial data. The 

hypothesize in point pattern analysis approach is that if any pattern observed, it has been 

produced by a particular spatial process, including independent random process (IRP) or 

complete spatial randomness (CSR). To shed more light on how point pattern analysis works, 

we are exploring the probability of the observed pattern being resulted by either IRP or CSR. 

Therefore, the spatial statistics is utilized to test this hypothesis. 

If the variable under study, which is a crime distribution, follows a Poisson distribution, the 

number of points in spatial unit is a randomly distributed event or follows IRP or CSR process. 

This behavior is due to one of the critical characteristics of the Poisson distribution which is its 

mean and variance being equal to 1. In other words, if the variance mean ratio (VMR) of point 

pattern is near to 1, it means that the studied point pattern is randomly distributed or in other 

words, follows IRP or CSR. Accordingly, we can interpret the p-value as how probable is for 

the point pattern under study to have IRP or CSR. Thus, we cannot accept the null hypothesis 

if the p-value is smaller than 0.05. 
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5.4.2.  Variance-mean ratio (VMR) analysis of crime rate prediction in Los 

Angeles city 

Variance-mean ratio can be used to interpret the point pattern. There are two main scenarios, 

including the ratio less than or greater than 1. The distribution of the spatial units in the point 

pattern (here counties of the Los Angeles) is not homogenic when the VMR is greater than 1. 

In other words, there is more claustration in the point pattern what is expected if IRP or CSR 

exists. In contrary, the distribution of the spatial units in the point pattern (here counties of the 

Los Angeles) is homogenic when the VMR is less than 1. In other words, there is less 

claustration in the point pattern what is expected if IRP or CSR exists. 

5.4.3.  Distance-based point pattern measures 

Another way of looking into the claustration level of point patterns is to use the distance-

based point pattern measures. We can use the distances between points to determine if the point 

pattern does not follow the Poisson distribution and therefore is more clustered than expected. 

5.4.4.  Nearest neighbor distances  

The nearest neighbor distance shows the average distance from each point in the area under 

study to its nearest point. By investigating the nearest neighbor distances, we can discover 

clustering or separation patterns within a point pattern. To measure the nearest neighbor 

distances, we can use different distance measures including the Euclidean distance as shown 

in Equation 5.1 as the distance between two events/points pi and pj as  

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝𝑖, 𝑝𝑗) =  √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 
Equation 5.1

  

  Then, the average distance for each point is calculated using Equation 5.2. 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝𝑖) =
1

𝑛
 ∑min𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝𝑖)

𝑛

𝑖=1

 
Equation 5.2

  

Where min Distance (𝑝𝑖) is the minimum of the distances between 𝑝𝑖 and all other points 

in its neighborhood. Then, we can derive the expected value of the average nearest neighbor 

distance as Clark and Evans did in 1954 when the point patterns follow ICP or CSR as 

described in Equation 5.3 and Equation 5.4, where α is the intensity of the process (Clark and 

Evans, 1954). 

𝐸𝑥𝑝(𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ) =  
1

2√𝛼
 

Equation 5.3

  

 Afterwards, we can use the “R” statistic as the ratio of the observed average nearest 

neighbor distance to the expected distance as shown in Equation 5.4. 

𝑅 = 2 ∗ √𝛼 ∗  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝𝑖) Equation 5.4

  

In our crime prediction example, the distribution of the spatial units in the point pattern 

(here counties of the Los Angeles) is not homogenic when R is much less than 1. In other 

words, there is more claustration in the point pattern what is expected if IRP or CSR exists. In 

contrary, the distribution of the spatial units in the point pattern (here counties of the Los 

Angeles) is homogenic when R is much greater than 1. In other words, there is less claustration 

in the point pattern what is expected if IRP or CSR exists.  

5.4.5.  Implementing the G function over the data set 

The G function is the modified version of the nearest neighbor method and explains the 

cumulative frequency distribution of the nearest-neighbor distances. For a given distance dis, 

G(dis) gives the proportion of all nearest-neighbor distances that are less than dis as shown in 

Equation 5.5: 
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𝐺(𝑑𝑖𝑠) =  
1

𝑛
∗  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝𝑖) < 𝑑𝑖𝑠) 

Equation 5.5

  

5.4.6.  Implementing the F function over the data set 

F function, as shown in Equation 5.6, measures the distances between two points in the 

pattern and a set of random points in the location area under study. Assuming 𝑥1, 𝑥2, … , 𝑥𝑛 as 

a randomly chosen geographical points, and min𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝𝑖, 𝑃) as the minimum distance 

from 𝑝𝑖 to any geographical point in the point pattern. 

𝐹(𝑑𝑖𝑠) =  
1

𝑛
∗  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝𝑖, 𝑃) < 𝑑𝑖𝑠)  

Equation 5.6

  

5.4.7.  Implementing the K Function over the data set 

The K function is created to overcome the drawbacks in F and G functions as they ignore 

so much information including the distance between a point and its non-nearest points. In order 

to measure the K(dis), we put a circle of radius r centered on each point 𝑝𝑖 in the point pattern. 

C (𝑝𝑖, r) represents the circle. We count the number of other events inside each circle of radius 

d as shown Equation 5.7: 

𝐾(𝑑𝑖𝑠) =  
1

𝑛𝛼
∑ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑡ℎ𝑒𝑟 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑒𝑎𝑐ℎ 𝑐𝑖𝑟𝑐𝑙𝑒 𝑜𝑓 𝑟𝑎𝑑𝑖𝑢𝑠 𝑟 (𝐶 (𝑝𝑖 , 𝑑))

𝑛

𝑖=1
 

Equation 5.7

  

 As shown in Equation 5.7, the value of K(dis) is the average count for all points, and it is 

between 0 and 1 since it is scaled by the general intensity of the point patterns. 

5.4.8.  Interpretation of the results of hypothesis testing for F, G, K 

When we are using the visualizations of these functions, we need to know under what 

circumstances each of these functions helps us to determine the level of claustration and 

separation in the point pattern. For example, G values are higher than expected when G curve 

is above expected line. Thus, the crime data over the spatial units is clustered while in contrary 
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random points are far from points or in other words, they are clustered when F curve is below 

the expected line. On the hand, we cannot interpret K function easily and in a straightforward 

way. However, generally it shows more linear behavior for an evenly spaced point pattern. 

5.5 Spatial Prediction Model  

Our goal is to predict crime using different census data. In order to achieve this goal, we 

followed three steps as shown in 5.1. 

1) We first investigate which covariates might we include in the regression model. First a 

regular spatial regression model is fitted to the census data to predict the crime rate based on 

demographic data.  

2) Afterwards, by conducting the Moran’s I test, we justified that there is a spatial 

autocorrelation between the crime rate and demographic information of the Los Angeles census 

tracts. 

3) We created a geographically weighted regression model to predict the crime rate using 

demographic data of Los Angeles. 
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 Figure 5.1. Spatial prediction model. 
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5.5.1.  Step 1: Linear spatial regression model 

In Step 1.1., we built a spatial linear regression model using all the attributes as predictors. 

Then, in Step 1.2., we conducted a F-statistic test and calculated the R-squared and the adjusted 

R-squared. In Step 1.3., we omitted the insignificant predictors from the model to make it as 

simple and accurate as possible. We check any improvements in terms of accuracy and the 

simplicity of the model. 

5.5.2.  Step 2: Identifying the spatial autocorrelation 

In Step 2.1., we plot the choropleth12 of residuals of the best fitted linear model in Step 1. 

If there is a meaningful spatial pattern in the choropleth and the global model "mis-specified", 

there is justification for fitting a geographically weighed regression model. If we do not find 

any noticeable pattern in the residual choropleth, we move in Step 2.3. In Step 2.3., we apply 

a Moran’s I test to see if there is a need to fit the GWR model using Equation 5.8. 

𝐼 =  [
𝑚

∑ (𝑦𝑗 − 𝑦̅)2
𝑚
𝑗=1

] ∗  [
∑ ∑ 𝑤𝑗𝑖(𝑦𝑗 − 𝑦̅)(𝑦𝑖 − 𝑦̅)

𝑛
𝑖=1

𝑚
𝑗=1

∑ ∑ 𝑤𝑗𝑖
𝑛
𝑖=1

𝑚
𝑗=1

] 
Equation 5.8

  

Where the first argument of the equation shows the total number of the point patterns 

divided by the overall variance of the data set. The nominator of the second argument shows 

the covariance term and subscript I and j represent different areal units while the denominator 

of the second argument is to show the normalization using the overall spatial weights in the 

point pattern. If there is a considerable reason to have a spatial correlation, we fit the GWR 

model in Step 3.2. To compute the Moran’s I value, we use K nearest neighbors for spatial 

 
12 A type of statistical thematic map that uses intensity of color to correspond with an aggregate summary of 

a geographic characteristic within spatial enumeration units, such as population density or per-capita income. 
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weights. The function returns a matrix with the indices of points belonging to the set of the k 

nearest neighbors of each other, where K represents the number of neighbors to each county. 

So, we try different K values to find the best K value which leads to the least p_value which 

indicates significant spatial autocorrelation. 

5.5.3.  Step 3: building geographically weighted regression model 

After conducting the Moran’s I test as described in Step 2.3 and concluding that there is 

meaningful spatial autocorrelation between the number of crime in each county and the spatial-

demographic attributes, we build a geographical weighted regression model using the Gaussian 

kernel following these steps: 

1. Set a random bandwidth as the initial value for the number of nearest neighbors of each 

spatial unit. The bandwidth is calculated using Equation 5.9. 

Gaussian: weight =  exp(−0.5 ∗ (vdist/bw)^2) Equation 5.9  

 Where vdist stands for the distance matrix between the spatial units and bw stands for 

the bandwidth.  

2. Because we find the most appropriate bandwidth, it does not matter which value to 

choose as the initial value. 

3. Create the basic geographical weighted model based on the initial bandwidth. 

4. Improve the GWR model by changing the bandwidth value. To find the best 

bandwidth value, we calculate the Akaike's Information Criterion (AIC). AIC is 

generally calculated using Equation 5.10: 
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𝐴𝐼𝐶 =  −2(𝑙𝑜𝑔 − 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) +  2𝐾 Equation 5.10  

Where, K stands for the number of model parameters (the number of variables in the model 

plus the intercept). Also, log-likelihood is a measure of model fit. The lower the AIC value, the 

better the fit. It is usually obtained from statistical output. 

5.6 Results and Discussion of Spatial Prediction Model 

5.6.1.  Visualization of the distribution of the crime data over the Los Angeles 

city  

First, we visualize the distribution of the crime data over the Los Angeles city. As can be 

seen in the Figure 5.2, there is a pattern in the distribution of the crime over the region of study.

 

Figure 5.2. Distribution of the crime over the Los Angeles census tracts. (produced by author) 

Note: Darker colors show higher crime rate 

Now, before creating the crime prediction model we plot the choropleth of the covariates. 

As can be seen in Figure 5.2, almost all the covariates show a sort of pattern like the crime rate. 

So, we decide to create the prediction model using all the covariates.  
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Figure 5.3. Visualization of the patterns in each predictor/covariate over the LA Census Tracts. 

Note: Darker colors show higher value for the corresponding variable (produced by author).  

5.6.2.  Results and discussion of fitting OLS linear regression 

Based on the preliminary visulization of the covariates and the response variable, we 

decided to create the regression model with all the covariates. So, as shown in Table 5.1, we 

have built the prediction model based on all the covariates and then try to eliminate the 

covariates which are not statistically significant in predicting the crime rate. 

Table 5.1. Results of fitting the spatial linear regression model. 

 Predictors R2 Adjusted 

R2 

P-value 

Model 1 pointpatNew$tot_pop+pointpatNew$white+pointpat

New$black+pointpatNew$native+pointpatNew$asian

+pointpatNew$nohisl+pointpatNew$hislat+pointpat

New$male+pointpatNew$female+pointpatNew$male

_under17+pointpatNew$male18to39+pointpatNew$

male_over40+pointpatNew$female_under17+pointpa

tNew$female18to39 +pointpatNew$female_over40 

0.477 

 

0.409 

 

2.4e-08 

 

Model 2 All the variable in Model 1 except: 

pointpatNew$hislat; pointpatNew$female; 

pointpatNew$male_over40; 

pointpatNew$female_over40 

0.477 

 

0.409 

 

2.4e-08 
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 Predictors R2 Adjusted 

R2 

P-value 

Model 3 All the variable in Model 2 except: 

pointpatNew$female_under17; pointpatNew$native 

0.468 0.413 

 

5.2e-09 

 

Model 4 All the variable in Model 3 except: 

pointpatNew$male_under17; pointpatNew$white 

0.389 0.341 

 

1.4e-07 

 

We built a spatial linear regression model using all the attributes as predictors. Then, we 

conducted a F-statistic test and calculated the R-squared and the adjusted R-squared. We 

omitted the insignificant predictors from the model to make it as simple and accurate as    

possible. As shown in  Table 5.1, the Model 3 is the simplest accurate model. Based on the 

Model 3 we plotted the choropleth of its residuals as described in Step 2.1. As shown in Figure 

5.4. Since it is difficult to tell if there is spatial autocorrelation in these residuals by eye, as 

described in Step 2.2., we need to measure it before going further. For this purpose, we 

conducted the Moran’s I test as described in Step 2.3. 

Figure 5.4. Residual pattern of the linear Model 3. (Produced by author) 
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In order to calculate the Moran’s I value, we use K nearest neighbors for spatial weights. 

The function returns a matrix with the indices of points belonging to the set of the k nearest 

neighbors of each other, where K represents the number of neighbors to each county. So, we 

try different K values to find the best K value which leads to the least p_value which indicates 

significant spatial autocorrelation. Table 5.2 shows the results of the Moran’s I test through K 

nearest neighbors’ method. 

Table 5.2. Results of Moran’s I test using K nearest neighbors’ method. 

 Number of neighbors Moran’s I statistic P-value 

Moran’s I test 1 K =1 0.10443135  0.1541  

Moran’s I test 2 K=2 0.140642300 0.0398 

Moran’s I test 3 K=3 0.17069461 0.005961 

Moran’s I test 3 K=4 0.125052476 0.01586 

As shown in Table 5.2, we have a significant (but small) positive spatial autocorrelation in 

the residuals from the global regression model. So, we have some justification for fitting a 

GWR model. 

5.6.3.  Result and discussion of fitting the GWR model 

We build a geographical weighted regression model using the Gaussian kernel and a 

bandwidth of 50km as the initial point. Then, using Equation 5.9 and Equation 5.10, we 

calculate the AIC value for different bandwidth values. As shown in Figure 5.5, the bandwidth 

value of 9.14171 has the highest AIC value of 1141.18. So, we set the bandwidth value and 

create the GWR model based on that.  
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Figure 5.5. The AIC values for different bandwidths 

Now, using the best bandwidth value of 9.14171, we build the GWR model.  

5.6.4.  Results and discussion of comparison between OLS and GWR models. 

To see if fitting GWR model improves the previously found results of OLS model and if 

there a justification to fit this more complex model, we calculate the F-statistics, R-squared and 

Adjusted R-Squared for both OLS and GWR models.  

Table 5.3. Comparison between OLS and GWR models. 

 Predictors R2 Adjusted R2 P-value 

OLS Model pointpatNew$Count_~pointpatNew$tot_pop+pointp

atNew$white+pointpatNew$black+pointpatNew$as

ian+pointpatNew$nohisl+pointpatNew$male+point

patNew$male_under17+pointpatNew$male18to39+

pointpatNew$female18to39 

0.4679 0.4128 

 

5.154e-09 

 

GWR 

Model 

pointpatNew$Count_~pointpatNew$tot_pop+pointp

atNew$white+pointpatNew$black+pointpatNew$as

ian+pointpatNew$nohisl+pointpatNew$male+point

patNew$male_under17+pointpatNew$male18to39+

pointpatNew$female18to39 

0.8066492 0.6860462 5.154e-09 
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Based on the comparison results which are summarized in Table 5.3, we find huge 

improvement in the created model, and we conclude that it is justified to use the more complex 

GWR model. 

5.6.5.  Results and discussion of Clark-Evans R statistics analysis 

We use the Clark-Evans R statistic as the ratio of the observed mean nearest neighbor 

distance to that expected for a Poisson point process of the same intensity.  Using Clark-Evans 

R statistic, we find for which point pattern should R be greater than 1 (less clustered)? Less 

than 1 (more clustered)? About 1 (not clustered)? The R value for a two-sided Clark-Evans test 

with no edge correction equals 0.90323 with low significance (p-value = 0.06826). We 

implemented the Donnelly correction and Monte Carlo test based on 999 simulations of CSR 

and the R value became 0.86401, with the significance of p-value = 0.014.  

Based on the mean nearest neighbor distance and Clark-Evans test, R value is less than 1 

but not so much. So, we implemented G, F and K statistics tests calculating the Monte Carlo 

envelopes for the point pattern which the results are shown in Figure 5.6. 

5.6.6.  Results and discussion of G, F, and K statistics analysis 

Based on the results shown in Figure 5.6, since G curve is above expected line, G values 

are higher than expected and so the crime data over the spatial units is clustered. Also, since F 

curve is below expected line, random points are further from events and so the crime data over 

the spatial units is clustered. In addition, K function is also showing that the crime data over 

the spatial units is clustered. 
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Figure 5.6. Results of G, F and K statistics tests. 

5.7 On Verification and Validation – Empirical Structural and 

Performance Validation 

Empirical structural validation involves accepting the appropriateness of the example 

problems used to verify the performance of the framework and the method. The spatial 

surrogate models are first tested using an example problem in Chapter 5. In the studied example 

problem, the possibility of integration of spatial statistics with surrogate modeling is considered. 

Using the framework and method, crime rate in Los Angeles city is predicted using socio-
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demographic and geographical data of the census blocks of the city. The example thus is 

appropriate to demonstrate the utility of the framework and method as it involves spatial 

features, and it is a computationally expensive problem that needs systematic problem 

formulation and uncertainty and complexity management to design the entire system. The 

example is appropriate as the example supports in demonstrating the utility of method and 

framework in carrying out spatial prediction. The example is further improved and expanded 

to the comprehensive problem on two-echelon, green supply chain design in Chapter 8. Using 

the comprehensive example problem in Chapter 8, the utility of the framework and the method 

is tested for the supply chain demand prediction. In Chapter 5, Gap 5, which is on integrating 

surrogate models and spatial statistics is posed after a critical evaluation of the literature. To 

address this gap, Research Question 5 is posed as “what is the appropriate SM to use when the data 

includes spatial variables as predictors?”. Then to answer this question, we hypothesized that 

through replacing the design of experiments with the geographically weighted correlation analysis, we 

find the surrogate model which is useable with spatial variables. By testing this hypothesis through 

creation of spatial surrogate models and testing it on crime detection problem in Los Angeles city, we 

achieved the key outcome of using the spatial statistics and particularly the concept of the 

geographically weighted regression in surrogate modeling to build spatial surrogate models. 

5.8 Closing Remarks on Predicting Crime Rate using Spatial Surrogate 

Models 

Our contribution is important at three perspectives: computation, criminology, and law 

enforcement. From a computational perspective, we demonstrate the feasibility of using GWR 
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model for spatial‐demographic data. It also allows for evaluation of a wide range of additional 

statistics of empirical relevance such as mean nearest neighbor distance, G, F, and K functions 

for point pattern analysis. From a criminological perspective, our results relative to the impact 

of socio‐economic covariates on crime rate largely support prevailing conjectures in the 

literature. Moreover, they give us enough reason to not accept the ‘random distribution’ 

hypothesis of the crimes and enable us to use global geographically weighted regression model. 

This implies that there are clusters in the crime rate in Los Angeles city and we showed these 

clusters. Last but not least, the computation of OLS as well as GWR models enable us to predict 

future crime rate and prevent the spatial diffusion of the crimes by focusing on high crime rate 

areas. In combination with the forecast statistics we believe that our model can play a helpful 

role in the effective allocation of rare law enforcement resources, in line with but more detailed 

than in the pioneering results of (Cohen and Gorr, 2005; Cohen et al., 2007). 
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CHAPTER 6 CREATING MATHEMATICS FOR BUILDING 

ENSEMBLE OF SURROGATE MODELS 

In this chapter, Hypothesis 2, which is using a weighted average of individual surrogate models 

and minimum overall cross validation error, we can build such ensemble of surrogate models 

which are relatively less computationally complex and more accurate, is tested using a hot rod 

rolling test problem. In this example problem, two proposed methods are tested: first, a 

framework to classify and select the surrogate models based on time, size and accuracy criteria; 

second, a method to build an ensemble of surrogates (EoS), which is both accurate and less 

computationally intensive. The surrogate models are chosen and combined systematically 

using well-established theoretical and empirical models and simulation experiments (finite-

element based). Using the proposed framework and method, the integrated surrogate model 

selection and ensemble creation process is carried out in an integrated approach. The example 

thus is appropriate to demonstrate the utility of the framework and method as it involves 

complex information flow across manufacturing stages that needs approximation through 

surrogate modeling and the simulation data is sparse. The contribution offered in this chapter 

is to propose a method based on cross-validation. to find an EoS which is created by the least 

possible number of data points. The resulting ensemble surrogate has higher accuracy than each 

individual surrogate and is less computationally intensive. To achieve this ensemble surrogate, 

we compare it with individual surrogate models based on computation time, size, and desired 

accuracy. For this purpose, we use root mean square error (RMSE) as the accuracy measure, 

time of simulation as the computation performance measure, and the number of data points as 
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the dimension measure. In summary, we find that (1) it is effective to use cross-validation to 

study the impact of the size of the sample data set; (2) the highest accuracy with least required 

data and less computation time is achievable using the right number of samples; and (3) an 

example of surrogates is relatively insensitive to the size of the sample data or number of data 

points. 

Summary of Building Ensemble of Surrogate Models 

In engineering design, surrogate models are often used instead of costly computer simulations. 

Typically, a single surrogate model is selected based on previous experience. We observe, 

based on an analysis of the published literature, that fitting an ensemble of surrogates based on 

cross-validation errors is more accurate but requires more computational time.  In this chapter, 

we propose a method to build an ensemble of surrogates that is both accurate and less 

computationally expensive. In the proposed method, the ensemble of surrogates is a weighted 

average surrogate of response surface models, Kriging, and radial basis functions based on 

overall cross validation error. We demonstrate that created ensemble of surrogates is accurate 

than individual surrogates even when fewer data points are used, so, computationally efficient 

with relatively insensitive predictions. We demonstrate the use of an ensemble of surrogates 

using hot rod rolling as an example. Finally, we include a rule-based template which can be 

used for other problems with similar requirements, e.g., the computational time, required 

accuracy, and the size of the data.  

Glossary of Mathematics of Building Ensemble of Surrogate Models 

CFD  Computational Fluid Dynamics  
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DOE  Design of Experiments  

EA  Evolutionary Algorithms 

GSME  Generalized Mean Square Error 

NSGA-II Non-dominated Sorting Genetic Algorithm II 

POF  Pareto Optimal Front 

PRESS  Predicted Residual Error Sum of Squares  

PSO  Particle Swarm Optimization  

RBF  Radial Basis Function 

RMSE  Root Mean Square Error 

RSM  Response Surface Models 

SE  Squared Error   

WAS  Weighted Average Surrogate 

EoS   Ensemble of Surrogates

6.1 Frame of Reference on Building Ensemble of Surrogate Models 

Computer simulations are commonly used to replace experiments with physical models. Often 

these simulations are computationally expensive. However, many model-based engineering 

design problems require numerous simulations to reach an acceptable solution. This can be 

computationally prohibitive. 

Often a single surrogate model – or metamodel – is used to replace a detailed simulation 

in design problems which require repeated calculations. This surrogate is obtained using 

information derived from the physical model. Many types of surrogate models have been 
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proposed.  Here, we demonstrate the advantages of computing ensemble of surrogates from a 

single set of data and then averaging these surrogates to make use of the good features of each 

type of surrogate. We term these assemblies of surrogates, ensembles of surrogates. The 

ensemble of surrogates is built using the weighted average of different individual surrogates. 

These weights can be calculated randomly or in a systematic way. For instance, (Viana and 

Haftka, 2008) use a systematic weighted average surrogate (WAS) to utilize the advantage of 

n surrogates to cancel the errors in estimation by appropriate weight selection in the linear mix 

of the models. They use an ensemble of metamodels to minimize the RMSE in surrogate 

modeling. They discuss using the lowest predicted residual error sum of squares (PRESS) 

solution or just an average surrogate when an individual surrogate is required. They also 

propose the optimization of the integrated square error (SE) as an approach to calculate the 

weights of the WAS. They found that it is worthwhile to create a broad set of various surrogates 

and after that apply PRESS as the selection criterion.  

Cross-validation is utilized broadly to allocate the weights to individual surrogates in 

building an ensemble of surrogates in a systematic way. (Viana et al., 2009) use cross validation 

to approximate the necessary safety border for a particular favorite conservativeness degree 

(safe approximations percentage). They also check how well they can reduce the loss of 

accuracy caused by a conservative estimator13 by choosing among alternative surrogate models. 

They show that cross-validation enables to choose the best conservative surrogate model with 

the lowest accuracy loss. Also, they found that it is efficient in determining safety is effective 

 
13 The estimator is the predicted residual error sum of squares (PRESS) and obtained by dividing the N data 

points into k subsets in cross-validation process. It is estimated by using a subset of points in building the surrogate 
and computing the errors at these left out points. Then, this process is replicated with various sets of left-out points 
to obtain PRESS which is statistically significant. 
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for selecting the safety edge. Also, Viana and coauthors compare using the lowest PRESS with 

a weighted surrogate when an individual surrogate is required.  

They propose optimizing the incorporated squared error (SE) as an approach to calculate 

the weights of the WAS model. They find that it is better to create a big set of various surrogate 

models and choose the best based on the PRESS and that the error of cross-validation provides 

a great approximation of the RMSE if enough data points are used. However, in high 

dimensions, the advantages of using the cross-validation error and weighted surrogates are 

decreased considerably. Also, (Goel et al., 2007) create a systematic heuristic process for 

computation of the weights as the PRESS weighted average surrogate (PWS). Using a 

combination of neural networks, (Bishop, 1995) create a systematic weighted average surrogate 

gained by estimating the covariance between surrogates from residuals at test or training 

datasets. Following Bishop’s method, (Acar and Rais-Rohani, 2009) develop another approach 

to optimizing the mean square (MS) error.  

As shown in Table 6.1, we critically evaluate the surrogate modeling literature based on 

the type of research, the number of the combined surrogates, weight assignment process, and 

comparison criteria. 

Table 6.1. Critical evaluation of the ensemble of surrogates’ literature. 

                                     Features 

 

Paper 

Type of 

research 

(Theoretical/ 

Experimental) 

Number 

of 

combined 

surrogates 

Method of specifying 

weights for the ensemble 

surrogates 

(systematic/random) 

Criteria used to 

compare the methods 

(time/size/accuracy) 

Accuracy Time Size 

(Mack et al., 2005) Experimental 3 Random *   

(Samad et al., 2006) Theoretical 4 Random *   

(Samad et al., 2006) Experimental 3 Random *   

(Goel et al., 2007)  Theoretical 3 Systematic *   

(Lim et al., 2007) Theoretical 4 Random *   

(Samad et al., 2007) Experimental 3 Systematic14 *   

(Viana and Haftka, 2008) Theoretical 4 Systematic15 *   

(Viana et al., 2009) Theoretical 4 Systematic16 *   

(Bhat et al., 2010) Experimental 4 Random *   
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                                     Features 

 

Paper 

Type of 

research 

(Theoretical/ 

Experimental) 

Number 

of 

combined 

surrogates 

Method of specifying 

weights for the ensemble 

surrogates 

(systematic/random) 

Criteria used to 

compare the methods 

(time/size/accuracy) 

Accuracy Time Size 

(Viana et al., 2010a) Theoretical 4 Systematic *   

(Arias-Montano et al., 2012a) Theoretical 5 Systematic *   

(Basudhar, 2012) Theoretical 5 Random *   

(Viana et al., 2013) Theoretical 10 Systematic *   

(Villanueva et al., 2013) Theoretical 4 Systematic *   

(Chaudhuri and Haftka, 2014) Theoretical 4 Systematic *   

(Chaudhuri and Haftka, 2014) Experimental 4 Systematic *   

(Acar, 2015) Theoretical 4 Systematic *   

(Adhav et al., 2015) Experimental 3 Systematic *   

(Badhurshah and Samad, 2015) Theoretical 2 Systematic *   

(Chaudhuri et al., 2015) Theoretical 2 Systematic *   

(Liu et al., 2015) Theoretical 24 Systematic *   

(Babaei and Pan, 2016) Experimental 9 Systematic *   

(Alizadeh et al., 2016b) Experimental 4 Systematic *   

(Bellary et al., 2016) Experimental 2 Systematic *   

(Beynaghi et al., 2016) Theoretical 4 Systematic *   

(Bhattacharjee et al., 2016) Experimental 4 Random *   

(Qiu et al., 2016) Experimental 4 Random *   

(Shankar Bhattacharjee et al., 

2016) 

Experimental 7 Random 
* 

  

(Shi et al., 2016) Theoretical 4 Systematic *   

(Kaleibari et al., 2016) Theoretical 4 Systematic *   

(Wang et al., 2016) Theoretical 4 Systematic *   

(Bellary and Samad, 2017) Theoretical 3 Systematic *   

(Habib et al., 2017) Theoretical 5 Systematic *   

(Bhattacharjee et al., 2018) Theoretical 4 Systematic *   

(Zamani Sabzi et al., 2018) Theoretical 4 Systematic *   

(Ezhilsabareesh et al., 2018) Experimental 6 Systematic *   

(Lv et al., 2018) Theoretical 5 Systematic *   

(Song et al., 2018) Theoretical 4 Systematic *   

(Viana and Haftka, 2008) Theoretical 10 Systematic *   

(Song et al., 2018) Theoretical 3 Systematic *   

(Yin et al., 2018) Theoretical 3 Systematic *   

Experimental ensembles of surrogates calculated from a single set of data points can be 

used to overcome the weaknesses of every single type of surrogate. For instance, (Song et al., 

2018) study the efficiency of using an ensemble of surrogates in improving accuracy and the 

robustness for several problems. Robustness is the ability of the model to have low fluctuation 

in accuracy in different situations (e.g., with low and high amount of data).  They use an 

integrated ensemble surrogate model to: (i) filter out the individual models with low 

performance and retain the higher-performing ones using cross-validation errors; (ii) calculate 

the appropriate weighting for each surrogate model included in the ensemble based on the 

reference model and the approximated mean square error (MSE). (Xu and Zeger, 2001) use an 
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ensemble of surrogates and introduce two independent processes to highlight their advantages 

instead of individual surrogates. On the other hand, (Zhou et al., 2018b) study the drawbacks 

of compound and ensemble surrogates and their inadequacy based on quasi-concavity. (Samad 

et al., 2006) analyze the use of an ensemble of surrogates and performance approximation 

simultaneously.  

Ensembles of surrogates are often used in the surrogate-assisted design. For instance, 

(Viana et al., 2013) utilizes an ensemble of surrogate modeling approach when adding more 

than one point in each optimization iteration. Existing global optimization algorithms may be 

revised to find multiple alternative designs, however, parallel computation is the key to 

increasing optimization efficiency (Chaudhuri and Haftka, 2014; Villanueva et al., 2013). 

(Bhattacharjee et al., 2018) implement an ensemble of surrogates assisted multiple-objective 

optimization for engineering design problems which are computationally costly. Also, 

(Chaudhuri and Haftka, 2014) use an ensemble of surrogates to compute Pareto optimal fronts 

(POFs). An ensemble of surrogates is utilized to decrease uncertainty in searching for an 

optimal point (Adhav et al., 2015). (Liu et al., 2015) utilize an ensemble of surrogates with a 

genetic algorithm (GA). (Badhurshah and Samad, 2015) find that using an ensemble of 

surrogate assisted optimization methods and computational fluid dynamics analysis, the 

optimality, efficiency of the optimization process, and the robustness of the optimum solutions 

can be improved. (Wang et al., 2016) use an ensemble of surrogates for global optimization to 

enhance the convergence ratio of an uncertainty predictor. (Samad et al., 2006) evaluate the 

performances of ensembles of surrogates in a turbomachinery blade-shape optimization. They 

use RSM, Kriging, RBNN and weighted average models to test shape optimization. They find 

that using an ensemble of surrogates through weighted averaged surrogates provides more 

robust estimation than single ones. 
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Some authors analyze the fidelity of the estimation functions modeling in surrogate-based 

optimization in engineering design. (Bellary and Samad, 2017) address this issue using the 

ensemble of surrogates to suggest estimations from alternate modeling schemes. Also, (Habib 

et al., 2017) use an ensemble of surrogates assisted optimization method and evaluate it at 

various levels of fidelity. (Yin et al., 2018) propose assembling an ensemble of surrogates by 

dividing the design space into several subspaces such that each is allocated a collection of 

optimized weights. (Acar, 2015) argues for giving greater importance to maximum error 

(MAXE) than root mean square error (RMSE) by assigning weights of the individual surrogates 

in the ensemble of surrogates. In this chapter, weights for the surrogate models in the ensemble 

of surrogates are selected to minimize the root mean square cross validation error (RMSE-CV) 

in a hope to minimize the original RMSE. Additionally, some studies are specifically focused 

on the ensemble of surrogates of just one type of metamodel. For instance, (Shi et al., 2016) 

introduce a combination of RBFs to determine the weights by solving a quadratic programming 

(QP) subproblem. The results show that an ensemble of multiple RBFs can remarkably enhance 

the modeling efficacy compared to single RBF models.  

Many authors show the use of the ensemble of surrogates in evolutionary algorithms. (Lim 

et al., 2007) study the search efficiency of various surrogate modeling methods and the 

ensemble of surrogates in a memetic surrogate-based technique. (Bellary et al., 2016) use 

ensemble of surrogates integrated into a genetic algorithm (GA) to acquire POFs. They realize 

that the WAS ensemble of surrogates has better performance for both the goals than a single 

metamodel. Ensemble of surrogates and Non-dominated Sorting Genetic Algorithm II (NSGA-

II) is used to optimize a simultaneous structure control design strategy (Bhat et al., 2010). They 

found that by introducing a new weighting approach as a frequency-dependent function it is 

possible to minimize closed-loop measures for optimal performance by searching over the 

design space encompassing the open-loop dynamic and controller variables while keeping 
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constraints. (Arias-Montano et al., 2012b) use ensembles of surrogates combined with an 

evolutionary method to obtain the benefit of their advantages for solving expensive multiple 

objective optimization problems.  

(Bhattacharjee et al., 2016) introduce a multiobjective evolutionary algorithm embedded 

with different surrogates which are spatially distributed. They use a nondominated sorting 

genetic algorithm as the underlying optimizer. They extract the best features of different 

strategies and show that the multiple surrogates assisted multiobjective optimization with local 

surrogates with improved pre-selection offers better performance than individual surrogates.  

The same group, in another study, compares ensembles of surrogates in surrogate assisted 

multi-objective optimization algorithm (SAMO) with NSGA-II. They find that SAMO 

consistently outperforms NSGA-II (Bhattacharjee et al., 2016). (Lv et al., 2018) use an 

integrated framework of an ensemble of surrogates in particle swarm optimization (PSO), 

which includes inside and outside optimization loops. In the outside optimization loop, a PSO 

algorithm is used for both the sampling and the optimization approaches. In the inside 

optimization loop, an ensemble of surrogates assisted parallel optimization approach is 

implemented. They show that their framework can converge to a good solution for non-convex, 

multimodal and low-dimensional problems. use it to find the best location for speed bump 

installation using experimental design methodology. (Ezhilsabareesh et al., 2018) use an 

ensemble of surrogates-based multi-objective optimization approach using RMS, Kriging, 

RBNN, and NSGA-II. They find that among the surrogates, RSM delivers lower PRESS and 

has the best PRESS for all of the objectives. They also find that RMS produces the lowest RMS 

error after evaluation by NSGA-II. 

In summary, building an ensemble of surrogates results in higher accuracy in many cases 

but it is more computationally intensive than using individual surrogates. In this chapter, we 
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address this gap in the published literature on creating a less computationally intensive 

ensemble of surrogates. Ensembles of surrogates and cross-validation as shown in Table 6.2, 

two types of studies have been done, namely, experimental, and theoretical. Also, four 

surrogates are often combined to build an ensemble of surrogates. Additionally, the weight 

assignment process has changed from a random to a systematic procedure. Finally, almost all 

studies use the only accuracy as the criteria for comparing the performance of the ensemble of 

surrogates with each individual surrogate model. However, more appropriate comparison 

criteria are computational time, size and accuracy and an understanding of a method for making 

trade-offs among these attributes (Alizadeh et al., 2020a). A qualitative description of the trade-

offs among these three criteria is shown in (Alizadeh et al., 2020a). 

Table 6.2. Trade-offs among three criteria. 

Situation Detail trade-off 

If computational time is 

fixed 

The larger the size (complexity) of the problem, the lower 

the accuracy 

If the problem size is fixed The higher the accuracy, the greater the computational 

time 

If the desired accuracy is 

fixed 

The larger the size (complexity) of the problem, the 

greater the computational time 

The computational time represents the sum of the program running time which is used to 

construct the surrogate model and the simulation time used for sampling. So, in this work, the 

time is 𝑇 = 𝑇𝑝𝑟𝑜𝑔𝑟𝑎𝑚 + 𝑇𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛. Also, here the problem size is defined as the amount of 

the sample data required, and the desired accuracy is evaluated by the deviation of the predicted 

response of the surrogates from the response of the simulation. The interactions among the 

three criteria are shown in Figure 6.1. 
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Figure 6.1. Triangle showing the relationships among three design criteria (Alizadeh et al., 

2020a).

6.2 Predicting the Microstructure of the Final Rod in a Hot Rod Rolling 

Problem 

To test our hypothesis that an ensemble of surrogates is more accurate than those 

determined using individual RSM, Kriging, RBF surrogates, we choose a hot rod rolling 

problem as an example. In this example problem, our interest is to accurately predict the 

microstructure of the final rod product using surrogate models such that the formation of 

banded microstructure (microstructure with alternate layers of ferrite and pearlite occurring 

due to the presence of microsegregates, thereby affecting the mechanical properties) can be 

managed. The accuracy of the surrogate modeling process is hence important to properly 
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estimate the final microstructure produced. As shown in Figure 6.2, in the hot rod rolling 

process problem that we are addressing, a billet of square cross-section having an initial 

austenitic microstructure is rolled using rollers and further cooled at run-out table to change 

the shape, microstructure and mechanical properties of the rod.  

 

Figure 6.2. Hot rod rolling process (Alizadeh et al., 2019).

In this problem, we are only considering the phase transformation of austenite to the two 

phases, ferrite and pearlite. We assume in this problem that the phase transformation of 

austenite to ferrite and pearlite occurs only during the cooling stage after hot rolling. Two types 

of ferrite phases, namely, Allotriomorphic ferrite and Widmanstatten ferrite are considered in 

this problem. A slow cooling rate favors the formation of banded ferrite/pearlite microstructure 

as there is enough time for carbon diffusion and ferrite (allotriomorphic ferrite mostly) 

nucleation. Suppressing banding is possible via fasting cooling rate, but the elimination of 

microsegregates, the source for banding, is not possible. In addition to the cooling rate, the 

initial austenite grain size, percentages of carbon and manganese are important variables in the 

phase transformation process. For example, a small austenite grain size facilitates the phase 

transformation to ferrite. A small austenite grain size supports the increase of grain boundary 

area per volume available for nucleation resulting in more allotriomorphic ferrite nuclei and 

smaller ferrite grain sizes. This occurs at regions of low manganese concentrations. The rest of 

austenite transforms to pearlite phase. A high austenite grain size; however, results in an 

increase in Widmanstatten ferrite. A banded microstructure of ferrite and pearlite formed due 

to the presence of microsegregates is shown in Figure 6.3.  
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Figure 6.3. An example of a banded microstructure in 1020 steel consisting of ferrite (light) 

and pearlite (dark) (Jägle, 2007). 

In prior studies, authors report the effects of banded microstructures on the mechanical 

properties of final products, see (Korda et al., 2006; Krauss, 2003; Spitzig, 1983; Tomita, 

1995). Hence, it is critical to properly predict the microstructure after phase transformation to 

manage the banded microstructure such that the mechanical properties of the product can be 

controlled. The ferrite-pearlite banded microstructure is primarily caused due to 

microsegregates in the form of alloying elements of manganese, Sulphur, etc., that are 

embedded into the steel during the solidification process after casting. The initial austenite 

grain size, cooling rate, carbon concentration, and manganese concentration are selected in this 

study based on literature review as the major factors influencing the final microstructure phase 

formed after rolling and cooling. The program STRUCTURE developed by Jones and 

Bhadeshia is used as the simulation program to predict the microstructure phases (Jones and 
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Bhadeshia, 2017). The other input fixed parameters for the simulation program like the 

austenite-ferrite interfacial energy, activation energy for atomic transfer, aspect ratio for 

nucleation of ferrite, fraction of effective boundary sites, total volume fractions of inclusions, 

nucleation factor for pearlite and aspect ratios of growing allotriomorphic ferrite, 

Widmanstatten ferrite and pearlite are selected and defined based on the values reported by 

(Jägle, 2007). The control factors thus considered in this work are described in Table 6.3. The 

output of the simulation includes volume fractions of pearlite, and two types of ferrites, namely, 

allotriomorphic ferrite and Widmanstätten ferrite for the different values of each of the four 

input variables. Therefore, the simulation addressed in this problem involves four input 

variables and three output variables. 

A fractional factorial design of experiments to generate response data sets is carried out by 

Nellippallil and co-authors (Nellippallil et al., 2018) using the simulation program, 

STRUCTURE developed by Jones and Bhadeshia (Jones and Bhadeshia, 1997). Polynomial 

response surface models are fit for each of the responses.  

 

Table 6.3. The design variables 

Design Variable Definition 

Manganese 

concentration after 

rolling (Mn) 

(Jones and Bhadeshia, 1997) point out that manganese is an austenite 

stabilizing agent. Therefore, transformation to ferrite occurs at low 

manganese regions. Due to this, the high manganese region gets enriched 

with carbon leading to the formation of pearlite. 

Final Austenite grain 

size after rolling 

(AGS) 

This parameter has an inbuilt effect on grain boundary area per unit volume 

and thus on nucleation itself. Because of this effect, and the simultaneous 

phase transformations, the average grain size (neglecting the length scale) 

have a major bearing on final microstructure. 

Cooling rate Banding is usually suppressed by high cooling rates. Lower cooling rates 

favor carbon diffusion leading to the development of banded 

microstructure. 

Carbon content The carbon content changes the physical properties of commercially 

available steel and hence determine which component is formed first during 

the initial stages of cooling 
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Nellippallil and co-authors explain how different values of the four input variables, cooling 

rate, carbon concentration, manganese concentration, and austenite grain size, affect the final 

microstructural phases (pearlite, allotriomorphic ferrite, and Widmanstätten ferrite) based on 

the polynomial response surface model developed  (Nellippallil et al., 2018). Nellippallil and 

co-authors verify the model predictions by comparing them with experimentally measured data 

reported by Bodnar and Hensen (Bodnar and Hansen, 1994). We use the fractional factorial 

design of experiments data set by Nellippallil and co-authors in this work. In Figure 6.4, we 

show the comparison of polynomial response surface model predictions by Nellippallil and co-

authors (Nellippallil et al., 2018) with the phase fractions reported in the literature by Bodnar 

and Hensen (Bodnar and Hansen, 1994). We observe from Figure 6.4 that the model 

predictions lie in the vicinity of the straight line depicting the measured values. 

 

Figure 6.4. Comparison of polynomial response surface model predictions (Nellippallil et al., 

2018). 
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6.3 Method for Selecting the Surrogate Model Based on Time, Size, and 

Accuracy 

As shown in , the procedure consists of several steps. The first step is to find some criteria 

to choose the most appropriate surrogate model. Based on a comprehensive critical literature 

review, a balanced triangle of three important characteristics of the experiment (accuracy, size 

and time) are presented in Figure 6.1 (Alizadeh et al., 2020a). The second step is to build 

surrogate models, including RSM, Kriging, RBF and an ensemble of them. In this step, we 

compare the performance of these models for the Hot Rod Rolling problem. In the third step, 

the outcome of the second step is summarized in a sort of database to be used in the future.  

6.3.1.  Surrogate modeling process 

The method for selecting the surrogate model based on time, size and accuracy are 

illustrated in . After identifying the problem in Section 6.2, the next step is to generate  

Figure 6.5. Method for selecting the surrogate model based on time, size, and accuracy. 

 

Model 

Exercising 
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sampling data. The design of experiments (DOE) is used to obtain the sampling data over the 

desired range of input variables. In the second step, cross-validation (CV) is used to divide the 

design data into ‘training data’ and ‘testing data’. The ‘training data’ is used to develop 

different surrogate models, and the ‘testing data’ is used as unknown data to estimate the 

performance of different surrogate models. 

Next, different surrogate modeling methods are used to fit the training design data 

generated and develop a predictive model (in Section 6.3). Finally, the surrogates are evaluated 

using the root mean square error (RMSE) of the response deviation between the prediction data 

and the test data (in Section 6.4). 

 

Figure 6.6. The experimental procedure. 
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6.3.2.  Design of experiments and cross-validation  

In this work, we use the data generated by (Nellippallil et al., 2018) using a fractional 

factorial design (Montgomery, 2017) to organize the experiments. Considering the trade-off 

between the cost of evaluation of the original simulation and the increase of fidelity associated 

with the increasing number of sampling data, three levels including the upper, lower and middle 

points of the range in each factor are selected to manage the sampling process. The factors and 

factor levels are shown in Table 6.4.  

Table 6.4. Factors and factor levels for DOE 

Level CR K/min AGS 𝜇𝑚 [C] % [Mn] % 

1 11 30 0.18 0.7 

2 55 55 0.24 1.1 

3 100 100 0.3 1.5 

Now, in order to estimate the performance of the predictive model, K-fold cross-validation 

is used. 𝐾 − 1 equally sized randomly selected subsamples are used as training data and the 

remaining single subsample is retained to test the model. The training process for each fold is 

repeated K-1 times, with each subsample being used exactly once as test data. Thus, all 

observations are fully used for both training and testing. We repeat the whole cross validation 

process ten times, and the result is the average value of 10 runs of cross-validation. In this way, 

the impact of noise can be minimized. The next step is to use the training data to construct 

surrogates, in this case, RSM, KRG, RBF, and an ensemble of surrogates and use the testing 

data for evaluation.  

6.3.3.  Function fitting using different surrogate models 

Several function approximation techniques are used as surrogates. (Shyy et al., 2001) used 

RSM and RBF to rocket engine design and compare the prediction of alternative models. It 

turns out surrogate models have good performance in prediction work. (Zerpa et al., 2005) 
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integrate RSM, KRG, and RBF as an ensemble of the surrogate model and apply it into an 

alkaline-surfactant-polymer flooding processes. (Bellucci and Bauer Jr, 2017) use RSM, KRG, 

and RBF to make robust parameter design. So, in this work, we choose RSM, KRG, RBF, 

which are commonly used in the previous chapters, and their combination as an ensemble of 

surrogate models to develop different prediction models.  

6.3.4.  Fitting a response surface model to the dataset 

The response surface method (RSM) is also known as the polynomial regression method 

which has the simplest of parameters (that is, coefficients in a polynomial function) and is 

calculated using least squares regression (Razavi et al., 2012). In this work, we use a second-

order polynomial function as the surrogate model. 

If 𝒙 is an independent vector of factors, 𝒚 is the vector of responses, the impact of 𝒙 on 𝒚 

and their relationship can be illustrated as follows:  

𝒚̂(𝒙) =  𝛼0 +∑𝛼𝑖𝑥𝑖 +∑𝛼𝑖𝑖𝑥𝑖
2

𝑛

𝑖=1

𝑛

𝑖=1

+∑∑𝛼𝑖𝑖𝑥𝑖
𝑖<𝑗

𝑥𝑗 
Equation 6.1

  

 where 𝛼 represents the coefficients of the polynomial function and 𝑛 is the number of 

independent factors.  

6.3.5.  Fitting a Kriging model to the dataset 

Kriging is a type of interpolating technique which is a polynomial model of an input vector 

of factors 𝒙, 𝑓(𝒙), and localized deviation of 𝒙, 𝑔(𝒙), as follows: 

𝑦̂(𝒙)= 𝑓(𝒙) + 𝑔(𝒙) Equation 6.2

  

 𝑓(𝒙) is the polynomial term, which is a global function over the entire input space (Razavi 

et al., 2012). Usually, 𝑓(𝒙) is a constant number or a linear polynomial function. And 𝑔(𝒙) is 
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a localized deviation function or can be called the basic function. In this article, the focus is on 

one type of Kriging called Ordinary Kriging (Kleijnen, 2017), 

𝑦̂(𝒙)= 𝜇 + 𝑔(𝒙) Equation 6.3

  

  where 𝜇 is an unknown constant, which represents the simulation output averaged over 

the experimental area and 𝑔(𝒙) is a zero-mean stochastic process. 

6.3.6.  Fitting a radial basis function model to the dataset  

The radial basis function (RBF) technique is based on a mathematical function and its value 

is calculated based on the distance the between origin and each point (Montgomery, 2017). 

𝑟𝑖,𝑗 = 𝑟(𝒙𝒊, 𝒙𝒋) = ‖𝒙𝒊 − 𝒙𝒋‖ Equation 6.4

  

 Where 𝑟𝑖,𝑗  denotes the Euclidean distance between two different sample points. Radial 

functions are employed to connect the distance 𝑟 with the outputs, then the integration of these 

functions is used to estimate complicated mathematical functions. These functions are then 

used in constructing the surrogate models: 

𝑦̂(𝒙𝒏𝒆𝒘) =∑𝑟𝑖𝑄(‖𝒙𝒏𝒆𝒘 − 𝒙𝒊‖)

𝑀

𝑖=1

 

Equation 6.5

  

The surrogate function ŷ(𝒙𝒏𝒆𝒘) are an integration of M radial basis functions and each of 

them is linked to a distinct 𝑥𝑖 and has a weight of 𝑟𝑖 (Mirjalili, 2019). In this work, the Gaussian 

function is selected as the radial basis function. 
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6.3.7.  Creating an ensemble of surrogate models using different surrogate 

models 

We use the weighted average model proposed by (Goel et al., 2007) to create the ensemble 

of surrogates. As we just use three individual surrogate models, the predicted response of the 

ensemble of surrogate model is: 

ŷ
𝐸𝑜𝑆

= ∑𝑤𝑖ŷ𝑖

𝑁𝑆𝑀

𝑖

= w𝑅𝑆𝑀ŷ
𝑅𝑆𝑀

+ w𝐾𝑅𝐺ŷ
𝐾𝑅𝐺

+ w𝑅𝐵𝐹ŷ
𝑅𝐵𝐹

 

Equation 6.6

  

 where 𝑤𝑖 is the weight of each individual surrogate and ŷ𝑖 is the predicted response of the 

𝑖𝑡ℎ individual surrogate. For the selection of weights, a strategy which is based on generalized 

mean square cross-validation error (GMS error) is proposed in (Goel et al., 2007). 

𝑤𝑖
∗ = (𝐸𝑖 + 𝛼𝐸𝑎𝑣𝑔)

𝛽
,  𝑤𝑖 = 𝑤𝑖

∗/∑ 𝑤𝑖
∗

𝑖 𝐸𝑎𝑣𝑔 = ∑ 𝐸𝑖/𝑁𝑆𝑀
𝑁𝑆𝑀
𝑖  Equation 6.7

  

 Where 𝐸𝑖 denotes the GMS error, 𝑁𝑆𝑀 is the number of sample points, and two constraints, 

𝛼, 𝛽 are chosen to be 𝛼 = 0.05 and 𝛽 = −1 respectively (Samad et al., 2006). 

6.3.8.  Prediction metric: root mean square error 

In evaluating the process, the actual objective function value for the testing data is known 

and regarded as the target value. This value is then used to calculate the error at all testing 

points. The root means square error (RMSE) is used as the prediction metric to assess the 

accuracy of each prediction model generated by different surrogates. The definition of RMSE 

is: 
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𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦𝑖̂)2
𝑁𝑡𝑒𝑠𝑡
𝑖=1

𝑁𝑡𝑒𝑠𝑡
⁄  

Equation 6.8

  

 Where 𝑁𝑡𝑒𝑠𝑡 represents the number of testing points, 𝑦𝑖 and 𝑦𝑖̂ are the actual response and 

the predicted value of the response from a surrogate. The lower the RMSE, the greater the 

accuracy of the surrogate model, and vice versa. 

6.4 Results and Discussion on Hot Rod Rolling Problem 

6.4.1.  Comparison between ensembles of surrogates and individual surrogates  

Appendix D contains the sample points for the three objectives, allotriomorphic ferrite 

(Y1), Widmanstätten ferrite (Y2) and pearlite (Y3). In order to generate test data to validate 

the performance of these surrogate models, we repeat a 9-fold cross-validation process 10 

times. In each run, all data sets are randomly partitioned into 9 subsamples (groups). Of the 9 

subsamples, one subsample is used as the testing data set and the remaining eight subsamples 

are used to train the model. Through 9 repetitions, all observations are involved in training and 

testing. Three outputs are allotriomorphic ferrite (Y1), Widmanstätten ferrite (Y2) and pearlite 

(Y3) of steel. In two upper plots of Figure 6.7, we indicate the RMSE for the prediction of 

output Y1 (allotriomorphic ferrite) and output Y2 (Widmanstätten ferrite) respectively. In the 

two lower plots of Figure 6.7, we represent the RMSE of output Y3 (pearlite). The difference 

is that in the left one we show the errors of four surrogates, in the right one we show the 

expanded version for the ensemble of surrogates, Kriging, and response surface models. The 

experimental results for three outputs from the hot rod rolling problem with response surface 

method (RSM), Kriging (KRG) and radial basis function (RBF) and an ensemble of surrogates 

(EoS) are shown in Figure 6.7.
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Figure 6.7. RMSE in the prediction of surrogates in 10 runs. 

The result shows that RBF gives the highest RMS error for all three objectives, especially 

for output Y3 (Pearlite), the error of the RBF is almost five times larger than other three 

surrogates, which means RBF has the lowest accuracy in predicting all three objectives. Also, 

the difference between the ensemble of surrogates, Kriging, and RSM is minimal, but the 

ensemble of surrogates shows subtle advantages in accuracy. As for the quantitative validation 

of the surrogates, a statistical analysis of RMS errors of surrogate predictions for ten runs in 

the design space is shown in  

Table 6.5. EoS has the best accuracy except for Y2 (Widmanstätten ferrite), and RBF is the 

least accurate. For Y2, EoS has the second-highest accuracy, which is second to RSM and the 

difference between these two is very small ((0.0478 − 0.0447)/0.0478 ≈ 6.5%). 

This indicates that an ensemble of surrogates has the most appropriate performance for the 

hot rod rolling problem because of its accuracy and relatively insensitive predictions to the 

number of data points for all three objectives and therefore ensembles of surrogates are more 

robust.  



 

189 
 

Table 6.5. Statistical analysis of RMSE value by various surrogates in 10 runs. 

 RMS errors produced by the surrogates 

Surrogate 

F1 

Allotriomorphic ferrite 

F2 

Widmanstätten ferrite 

F3 

Pearlite 

EoS 3.68E-02 4.78E-02 1.62E-02 

KRG 4.55E-02 6.35E-02 1.95E-02 

RBF 8.86E-02 1.55E-01 2.31E-01 

RSM 5.27E-02 4.47E-02 1.83E-02 

6.4.2.  Trade-offs among accuracy, size and time  

To find a relationship among the size, accuracy, and computation time of surrogates for the 

hot rod rolling problem, we change the size of the problem in terms of the number of training 

data which are used to train the prediction model. As the sample data has 27 points and the K-

fold cross-validation (CV) is used to generate the training data, we increase training data by 

the way of decreasing the fold value. The relationship between the fold number and the test 

data can be expressed as a function: 

𝑁𝑡𝑒𝑠𝑡 = 27 −
27

𝑁𝑓𝑜𝑙𝑑⁄  Equation 6.9

  

 Where 𝑁𝑡𝑒𝑠𝑡 is the number of test data, 𝑁𝑓𝑜𝑙𝑑 is the fold number. Thus, when the fold value 

decreases from 9 folds to 2 folds, the training data is reduced from 24 to 14. In order to make 

a fair comparison between four different surrogates, the model training process is organized 

with the same training data. The comparison between these four surrogates in three outputs of 

the hot rod rolling problem is shown in Figure 6.8.
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Figure 6.8. RMS errors in the prediction of surrogates with different folds of data from 9 to 2. 

Note: with the upper two plots in Figure 6.8, we indicate the RMS errors of predicting Y1 

(allotriomorphic ferrite) and output Y2 (Widmanstätten ferrite). With the lower two plots of 

Figure 6.8, we represent the RMS errors of output Y3 (pearlite). The difference is that with the 

left one we show the errors of four surrogate and with the right one we only show three (expect 

RBF).  

From Figure 6.4, for each surrogate model, the RMS error gradually increases as the 

amount of training data decreases, therefore accuracy has a negative correlation with the 

number of samples used in the training data, and this trend is in line with our intuition. In 

addition, it is interesting that the error curves of each surrogate all have a smooth change from 

the 9-fold to 4-fold training data but abruptly increase at the 3- and 2-fold data, especially the 

RSM and RBF. That is because, with small numbers of training data (2 and 3-fold), surrogate 

models are more prone to have low fidelity compared to the associated physical problem. As 

for the comparison between these four surrogates, EoS, KRG and RMS have relatively lower 

RMS error and higher accuracy than RBF for all folds. EoS and KRG generally show very 

robust behavior, and RSM also shows a robust behavior until 2 and 3-fold data are used, where 

there is a sharp surge in error and the RSM's accuracy goes down immediately. 
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Table 6.6. Program run time to compute values for four surrogates from 9 to2-fold training data 

for output Y1. 

 Program run time for different surrogate models (s) 

No. of 

folds 

EoS KRG RSM RBF 

9 115.5 114.2 0.21 0.098 

8 102.3 101.3 0.158 0.072 

7 86.21 84.12 0.132 0.06 

6 67.01 65.76 0.116 0.059 

5 46.69 45.29 0.092 0.051 

4 44.21 40.31 0.082 0.039 

3 36.49 35.21 0.072 0.031 

2 23.69 21.56 0.027 0.022 

 

The program run time is the computational time required by Python codes in a Lenovo 

computer i7-4720HQ 8G 128G SSD+1T GTX960M.  

As can be seen in Figure 6.6, RBF has the lowest program run time among the four 

surrogates. However, from a practical perspective, the time should include not only the 

program run time which is consumed to construct the surrogate model but also the simulation 

time used for sampling. So, in this work, the time is defined as follows. 

𝑇 = 𝑇𝑝𝑚 + 𝑇𝑠𝑚 Equation 6.10  

 Where, 𝑇𝑝𝑚 is the program run time and 𝑇𝑠𝑚 is the simulation time.  

In the hot rod rolling problem, the average sampling time for generating each data point in 

the simulation is about 3.5 hours (12600s), which is at least 2 orders of magnitude larger than 
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the program run time (the longest one is about 150s) for all four surrogates. So, the program 

run time can be ignored in Equation 6.10, and the time we mention in the following discussion 

is the equivalent of the sampling time, as shown in the following. 

𝑇 ≈ 𝑇𝑠𝑎𝑚𝑝𝑙𝑒 = 3.5ℎ × 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 Equation 6.11  

Where the 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 is the number of sample points. Therefore, the time is proportional to 

the number of sample points. In order to generate selection rules, a detailed comparison of 

results among the different surrogate models for each output is shown in the following three 

sections. 

6.4.3.  Results for output Y1 (allotriomorphic ferrite)  

The RMS errors, namely, the accuracy, for each surrogate for different numbers of design 

data from 9 folds to 2 folds are shown in Figure 6.8. Ensembles of surrogates have relatively 

lower RMS errors and therefore higher accuracy than three individual surrogates for the 9, 8, 

7, 6, 5- and 4-fold data. In addition, ensembles of surrogates in 2 and 3-fold data have almost 

equal accuracy (The difference is about 0.001.) and 2 and 3-fold Kriging have much higher 

accuracy than RSM and RBF. Both Kriging and an ensemble of surrogates have higher 

accuracy than RBF in all k-fold cross-validation methods. Also, they have higher accuracy 

even when we use 2-fold cross validation for them and 9-fold cross validation for RBF. So, 

RBF is not a good choice regarding the accuracy and size measures. 

In Table 6.7, we the lowest values of error for each number of folds in bold. We show that 

the RMS error gradually decreases with decreasing training data for each surrogate, which 

means that the accuracy is negatively correlated with the amount of training data, and this trend 

is in-line with our intuition. 
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Table 6.7. RMS errors generated by four different surrogates from 9-2 fold training data for 

output Y1. 

 RMS errors for different surrogate models 

No. of folds EoS KRG RSM RBF 

9 3.52E-02 4.65E-02 4.91E-02 8.63E-02 

8 3.96E-02 4.99E-02 6.16E-02 9.41E-02 

7 4.14E-02 5.01E-02 6.17E-02 9.15E-02 

6 4.05E-02 4.88E-02 6.22E-02 9.41E-02 

5 4.62E-02 5.18E-02 6.66E-02 9.71E-02 

4 4.36E-02 5.12E-02 7.77E-02 9.78E-02 

3 5.50E-02 5.46E-02 9.74E-02 1.64E-01 

2 6.86E-02 6.70E-02 1.62E-01 1.87E-01 

In addition, an ensemble of surrogates has much greater accuracy than the other three 

individual surrogates trained for 9-fold data even when we use 8, 7, 6, 5, and 4-folds instead of 

9-fold data. So, an ensemble of surrogates gives the most accurate predictions and needs the 

lowest time to obtain the prediction for Allotriomorphic Ferrite when we use -9 to 4-fold 

training data. Also, RBF is not a good choice because time, accuracy, and size measures for 9-

fold cross validation for RBF is not greater than the 2-fold cross validation for the ensembles 

of surrogates and Kriging. As for the comparison between RSM and EoS, EoS has greater 

accuracy than RSM in -4 to 9-fold cross-validation. When we use 3-fold data to train the 

ensemble of surrogates, we obtain higher accuracy than when we use 9-fold of data to train 

RSM. Also, we obtain higher accuracy by using -5 to 8-fold of RSM rather than using 2-fold 

of data to train the EoS, while RSMs trained with 2 to 4-fold of data have lower accuracy than 

EoS trained with 2-fold data. Based on this analysis, some recommendations for time and size 

of the dataset along with the accuracy of Output 1 (Y1) can be developed. If we consider the 
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ensemble of surrogates individually, by using 2-fold instead of 9-fold, accuracy increases about  

0.07−0.035

0.07
= 50%. On the other hand, by using 2-fold instead of 9-fold, we need ((27-27/2=13) 

*3.5=45.5) hours instead of 27*3.5=94.5 hours, and so, there are a savings of 35 hours. As for 

the comparison between ensembles of surrogates and individual surrogates, ensembles of 

surrogates are the recommended because of their higher accuracy and low time-consumption 

for 4 to 9 folds (19-24) training data, whereas RBF is always the worst choice.  

6.4.4.  Results for output Y2 (Widmanstätten ferrite) 

For Widmanstätten ferrite, the ensemble of surrogates has relatively lower RMS errors, and 

so, higher accuracy than Kriging, and RBF even when we use 9, 8, 7, 6, 5, 4, 3 and 2 folds of 

the data. Although RSM has a relatively higher accuracy for 9, 8, 7, 6, and 5 folds of data, 

again it has lower accuracy in 2 and 3 folds in comparison to the ensemble of surrogates.  RBF 

also again has relatively low accuracy in comparison to other surrogate modeling methods. 

Kriging also has relatively less accuracy for 5 to 9 folds. RSM and has only greater accuracy 

than RSM in 2 to 4 folds. Interestingly, RSM with fewer data points, including 5, 6, 7, and 8 

folds has better accuracy than 9-fold Kriging. From the analysis in Table 6.10, some 

recommendations considering time and size of the dataset along with the accuracy for 

Widmanstätten Ferrite (Y2) are developed. Entries in bold show the lowest values of error for 

each number of folds. If we consider the ensemble of surrogates by itself, by using 2-fold 

instead of 9-fold, accuracy increases about 
0.08−0.035

0.08
= 0.43%. On the other hand, by using 2-

fold instead of 9-fold data, we need 45.5 hours instead of 94.5 hours, and so, we can save 35 

hours. Also, to compare ensembles of surrogates with other single surrogates, by using a 4-fold 

EoS we need 70.87 hours instead of 94.5 hours when we choose to use 9-fold RSM, and so, 

we can save 23.63 hours (23.63 hours faster surrogate) and have  
0.055−0.04

0.055
= 27%  less 

accuracy. 
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Table 6.8. RMS errors generated by four different surrogates from 9-2 fold train data for 

output Y2. 

 RMS errors of different surrogate models 

No. of folds EoS KRG RSM RBF 

9 4.59E-02 6.38E-02 4.26E-02 1.51E-01 

8 5.07E-02 6.23E-02 5.07E-02 1.54E-01 

7 5.22E-02 6.34E-02 5.13E-02 1.54E-01 

6 5.72E-02 6.90E-02 5.45E-02 1.54E-01 

5 5.95E-02 7.03E-02 5.60E-02 1.70E-01 

4 5.91E-02 5.99E-02 6.66E-02 1.65E-01 

3 6.66E-02 6.67E-02 9.11E-02 1.68E-01 

2 7.92E-02 8.42E-02 1.71E-01 2.03E-01 

6.4.1.  Results for output Y3 (pearlite) 

As shown in the summary of the results is given in Table 6.8. The highlighted values denote 

to the lowest RMS error obtained from the corresponding surrogate model. As illustrated in 

Table 6.10, for the first response variable, Y1 (Allotriomorphic Ferrite), in 4-9 folds of data, 

an ensemble of surrogates (EoS) has lower RMSE than individual surrogates and only for 2 

and 3 folds of data, Kriging has lower RMSE than others. Also, for the second response 

variable, Y2 (Widmanstätten Ferrite), in 2-4 folds of data, EoS has lower RMSE than other 

surrogates. Finally, for the third response variable, Y3 (Pearlite), in 4-9 folds 9, there is a slight 

difference between the accuracy of EoS, KRG, and RSM except for 2 and 3-fold RSM which 

has much lower accuracy. On the other hand, there is a huge gap among these three surrogates 

and RBF, which has very low accuracy and can hardly be compared with others. If we consider 

surrogates individually, there is almost no difference among using 4, 5, 6, 8, 9 folds of KRG 

and EoS. Therefore, it is possible to save 23.63 hours by using 4-fold Kriging or and an 
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ensemble of surrogates instead of 9-fold Kriging or and an ensemble of surrogates. Also, for 

RSM, there is a very slight difference between using 4-fold instead of 9-fold. While using 3-

fold RSM, the accuracy reduces 
0.035−0.03

0.035
= 14%, but the process is much faster. In other 

words, by using 3-fold instead of 9-fold, 63 hours instead of 94.5 hours are needed, which can 

save 31.5 hours. It also means that we can use only 9 data points instead of 27 data points which 

saves 67% of the simulation time which we need to spend to generate the simulation data. 

Table 6.9. RMS errors generated by four different surrogates from 9-2 fold train data for output 

Y3. 

No. 

of 

folds 

RMS errors of 

different surrogate 

models 

RMS errors of 

different 

surrogate models 

RMS errors of 

different 

surrogate models 

RMS errors of 

different surrogate 

models 

KRG KRG KRG KRG 

9 EoS KRG RSM RBF 

8 1.75E-02 2.05E-02 1.75E-02 2.19E-01 

7 1.66E-02 2.02E-02 2.00E-02 2.37E-01 

6 1.74E-02 1.94E-02 1.95E-02 2.31E-01 

5 1.81E-02 2.14E-02 1.78E-02 2.33E-01 

4 1.95E-02 2.13E-02 2.06E-02 2.38E-01 

3 2.04E-02 2.12E-02 2.39E-02 2.35E-01 

2 2.57E-02 2.31E-02 3.68E-02 2.73E-01 

 

The summary of the results is given in Table 10. The highlighted values denote to the lowest 

RMS error obtained from the corresponding surrogate model. As illustrated in Table 6.10, for 

the first response variable, Y1 (Allotriomorphic Ferrite), in 4-9 folds of data, an ensemble of 
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surrogates (EoS) has lower RMSE than individual surrogates and only for 2 and 3 folds of data, 

Kriging has lower RMSE than others. Also, for the second response variable, Y2 

(Widmanstätten Ferrite), in 2-4 folds of data, EoS has lower RMSE than other surrogates. 

Finally, for the third response variable, Y3 (Pearlite), in 4-9 folds of data, EoS has lower RMSE 

than other surrogates. the third response variable, Y3 (Pearlite), in 4-9 folds of data, EoS has 

lower RMSE than other surrogates. 

Table 6.10. RMS errors generated by four surrogates from 9-2 fold training data for output 

Y1, Y2, and Y3. 

RMS errors for different surrogate models 

 Y1 (Allotriomorphic Ferrite) Y2 (Widmanstätten Ferrite) Y3 (Pearlite) 

N
o

. 
o

f 
fo

ld
s 

EoS KRG RSM RBF EoS KRG RSM RBF EoS KRG RSM RBF 

9 

3.52E-

02 

4.65E-

02 

4.91E-

02 

8.63

E-02 

4.59

E-02 

6.38

E-02 

4.26

E-02 

1.51

E-01 

1.75

E-02 

2.05

E-02 

1.75

E-02 

2.19

E-01 

8 

3.96E-

02 

4.99E-

02 

6.16E-

02 

9.41

E-02 

5.07

E-02 

6.23

E-02 

5.07

E-02 

1.54

E-01 

1.66

E-02 

2.02

E-02 

2.00

E-02 

2.37

E-01 

7 

4.14E-

02 

5.01E-

02 

6.17E-

02 

9.15

E-02 

5.22

E-02 

6.34

E-02 

5.13

E-02 

1.54

E-01 

1.74

E-02 

1.94

E-02 

1.95

E-02 

2.31

E-01 

6 

4.05E-

02 

4.88E-

02 

6.22E-

02 

9.41

E-02 

5.72

E-02 

6.90

E-02 

5.45

E-02 

1.54

E-01 

1.81

E-02 

2.14

E-02 

1.78

E-02 

2.33

E-01 

5 

4.62E-

02 

5.18E-

02 

6.66E-

02 

9.71

E-02 

5.95

E-02 

7.03

E-02 

5.60

E-02 

1.70

E-01 

1.95

E-02 

2.13

E-02 

2.06

E-02 

2.38

E-01 

4 

4.36E-

02 

5.12E-

02 

7.77E-

02 

9.78

E-02 

5.91

E-02 

5.99

E-02 

6.66

E-02 

1.65

E-01 

2.04

E-02 

2.12

E-02 

2.39

E-02 

2.35

E-01 

3 

5.50E-

02 

5.46E-

02 

9.74E-

02 

1.64

E-01 

6.66

E-02 

6.67

E-02 

9.11

E-02 

1.68

E-01 

2.57

E-02 

2.31

E-02 

3.68

E-02 

2.73

E-01 
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RMS errors for different surrogate models 
 Y1 (Allotriomorphic Ferrite) Y2 (Widmanstätten Ferrite) Y3 (Pearlite) 

2 

6.86E-

02 

6.70E-

02 

1.62E-

01 

1.87

E-01 

7.92

E-02 

8.42

E-02 

1.71

E-01 

2.03

E-01 

3.52

E-02 

2.66

E-02 

9.39

E-02 

3.18

E-01 

 

In comparison to some other studies such as Viana and coauthors (2013), Chaudhuri 

and Haftka (2014), Badhurshah and Samad (2015) and Bhattacharjee and coauthors (2018) in 

ensemble surrogates related issues there is a big difference in the method. Authors in these 

chapters applied multiple surrogate methods for multiobjective optimization, while in this 

chapter, we used an ensemble of surrogates for prediction. Also, Goel and coauthors (2007) 

and Bishop (1995) creates a weighted average surrogate by estimating the covariance between 

surrogates from residuals at test or training datasets and using the PRESS weighted average 

surrogate, while we create the weights based on cross-validation errors. Basudhar (2012), 

Viana and coauthors (2013), Bhattacharjee and coauthors (2016) and Ezhilsabareesh and 

coauthors (2018) used an ensemble of surrogates in a relatively high number of data while we 

use an ensemble of surrogates in small data size. 

In addition, the ensembles created by Chaudhuri and Haftka (2014), Wang and 

coauthors (2016), Bhattacharjee and coauthors (2018), Lv and coauthors (2018), Song and 

coauthors (2018), and Yin and coauthors (2018) are more time consuming than each individual 

surrogate they used to create the ensemble. Whereas we create ensembles which are less time 

consuming than individual surrogates and have less inconsistency. In order to give specific 

guidance for surrogate selection, a rule-based template is given in Table 6.11.  
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Table 6.11. Specific guidance for the selection of surrogate models for output Y1 

(Allotriomorphic Ferrite) 
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RMSE<0.03 EoS None None 

0.03≤RMSE<0.05 EoS 

Time<12 None 

12≤Time<24 None 

24≤Time<36 None 

36≤Time<48 None 

48≤Time<60 None 

60≤Time<72 None 

72≤Time<84 5to 8 fold EoS 

84≤Time 9 fold EoS 

0.05≤RMSE<0.07 

EoS, KRG, 

RSM 

Time<12 None 

12≤Time<24 None 

24≤Time<36 None 

36≤Time<48 2 fold EoS and 2 fold KRG 

48≤Time<60 None 

60≤Time<72 3 to 4 folds EoS and 3 to 4 fold KRG 

72≤Time<84 

5 to 8 folds EoS, 5 to 8 folds KRG and 5 to 9 fold 

RSM 

84≤Time 9 fold EoS, 9 fold KRG and 9 fold RSM 

0.07≤RMSE<0.09 RSM, RBF 

Time<12 None 

12≤Time<24 None 

24≤Time<36 None 

36≤Time<48 None 

48≤Time<60 None 

60≤Time<72 4 fold RSM 

72≤Time<84 None 
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84≤Time 9 fold RBF 

0.09≤RMSE<0.11 RSM, RBF 

Time<12 None 

12≤Time<24 None 

24≤Time<36 None 

36≤Time<48 None 

48≤Time<60 None 

60≤Time<72 3 fold RSM and 4 fold RBF 

72≤Time<84 5-8 folds RBF 

84≤Time None 

0.11≤RMSE RSM, RBF 

Time<12 None 

12≤Time<24 None 

24≤Time<36 None 

36≤Time<48 2 fold RBF and 2 fold RSM 

48≤Time<60 None 

60≤Time<72 3 fold  RBF 

72≤Time<84 None 

84≤Time None 

  

For the hot rod rolling problem, three tables as decision trees corresponding to the three 

outputs are developed to manage the selection among the four types of surrogates. As we have 

three characteristics for the problem, accuracy, size and time, and time is directly proportional 

to size, the selection of appropriate surrogates can be based on accuracy and size. In this work, 

accuracy is used as the criterion for the first selection and size is the criterion for the second 

selection. Specific guidance for the selection of surrogate models for output Y1 is shown in 

Table 6.11 as an example. There is no surrogate model which gives us RMSE<0.03, while EoS 
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can be used if accuracy 0.03≤RMSE<0.05 is needed and here, EoS is the choice based on the 

first selection criteria (RMSE). Also, for the second selection criteria (time), 5-8 folds can be 

chosen when we need to spend no more than 84 seconds to run the code for the surrogate model. 

6.5 On Verification and Validation 

6.5.1.  Empirical structural validation 

Empirical structural validation involves accepting the appropriateness of the example 

problems used to verify the performance of the framework and the method. The example 

problem used in Chapter 6 is a hot rolling process chain. Using the hot rod rolling example 

problem in Chapter 6, the utility of the ensemble of surrogate creation framework and the 

method is tested for the enhancement in accuracy, speed, and computational complexity 

management. A discussion on the specific problem (hot rolling process chain) is carried out in 

detail. A literature review on hot rod rolling process is carried out. In addition to the validation 

of design methods, the chapter is also crucial from the standpoint of the major theme addressed 

in this dissertation. In this chapter, we discuss the validation of the proposed systematic method 

of ensemble of surrogate model creation. 

6.5.2.  Empirical performance validation  

Empirical performance validation consists of accepting the usefulness of the outcome with 

respect to the initial purpose and accepting that the achieved usefulness is related to applying 

the framework and method. The utility of the proposed method is demonstrated by carrying out 

the ensemble of surrogate modeling in Chapter 6. In Chapter 6, the design architecture in terms 

of Gap 2, “creating ensemble of surrogates (EOS) which are more accurate than individual 

surrogates” is identified and described in detail after a critical evaluation of the literature. 
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To address this gap, Research Question 2, which is “What is the mathematics to create EOS 

that are more accurate than individual surrogate models?” developed in Chapter 6 of the 

dissertation. To answer the Research Question 2, Hypothesis 2, “Using a weighted average of 

individual surrogate models and minimum overall cross validation error, we can build such EOS” 

is posed. In this chapter, the industry inspired problem of focus in this dissertation is addressed. 

The key outcome of this chapter is a method to build an EOS that is both accurate and relatively 

less computationally expensive. 

6.6 Closing Remarks on Building Ensemble of Surrogate Models 

Based on the published literature, creating an ensemble of surrogates using cross-validation 

errors results is higher accurate but it is more computationally intensive than using individual 

surrogates. Our contribution in this chapter is to propose a method to build an ensemble of 

surrogates that is both accurate and less computationally expensive.  The novelty in this chapter is 

to propose a method based on cross validation to find an ensemble of surrogates which is created 

by the least possible number of data points. The resulting ensemble surrogate has higher accuracy 

than each individual surrogate and is less computationally intensive. To achieve this ensemble 

surrogate, we compare it with individual surrogate models based on computation time, size and 

desired accuracy. For this purpose, we use RMSE as the accuracy measure, time of simulation as 

the computation performance measure, and the number of data points as the dimension measure. 

In Summary, we find that (1) it is effective to use cross-validation to study the impact of the size 

of the sample data set; (2) the highest accuracy with least required data and less computation time 

is achievable using the right number of samples; (3) an example of surrogates is relatively 

insensitive to the size of the sample data or number of data points. We create rule-based guidance 

for selection of surrogate models for one of the response variables in Table 6.11. Creating rule-
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based templates for each response variable and putting them together into a knowledge-based 

platform and ontology is possible future research. As another possible research direction, these 

knowledge-based platforms and ontology can be used in automating the surrogate modeling 

process. 

This chapter is based on several assumptions (1) hot rod rolling process is a single independent 

engineering process (2) we are able to create a surrogate model for hot rod rolling considering it 

as an independent engineering process. Removing these assumptions and considering the casting 

and reheating as preprocesses along with cooling and forging as post processes is another possible 

future research direction that we can take. Furthermore, we create rule-based guidance for selection 

of surrogate models for one of the response variables in Table 11. Creating rule-based templates 

for each and every response variable and putting them together into a knowledge-based platform 

and ontology is possible future research. As another possible research direction, these knowledge-

based platforms and ontology can be used in automating the surrogate modeling process. 
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CHAPTER 7 CREATING AN AUTOMATIC MULTI-LEVEL 

SURROGATE MODEL SELECTION PROCESS  

As shown in Figure 7.1, in this chapter, the foundations for the Gap 3 and automating the 

process of surrogate modeling is laid out.  

Figure 7.1. Relationship of research efforts with the temporal surrogate models and connection 

between chapters of the dissertation. 

The relationship of these research efforts reviewed in this chapter with the constructs of the 

systematic approach developed in this dissertation is highlighted in Figure 7.1. in Section 7.1, a 

critical evaluation of the literature on surrogate model selection process is provided. While in 

Section 7.1.1, the manual comparison based surrogate model selection is described, the 

evolutionary algorithm based surrogate model selection is described in Section 7.1.2. Then, in 

Section 7.2, the multi-layer surrogate models’ selection process proposed in this dissertation is 

described and performance measures are explained. In Section 7.3 the details of the proposed 

framework are provided followed by the verification of the proposed framework in Section 7.4. 

Then, the obtained results of demonstrating the utility of the proposed framework on several 
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examples are shown in Section 7.5. verification and validation of the chapter and closing remarks 

are finally provided in Sections 7.6 and 7.7, respectively.  

Furthermore, the bigger picture of surrogate modeling automation problem and how it can be 

done in smaller operational levels are described. Details about how to create reusable templates 

and how to replicate and reuse them in a knowledge-based platform called cloud-based design 

system (CBDS) is provided. Then, step by step process of automating surrogate modeling process 

through a multi-level surrogate model selection and design process. A literature review on 

automated statistical modeling process through machine learning is carried out. Traditional manual 

selection approaches are very time-consuming and cannot be generalized.  

To address these challenges, an evolutionary algorithm (EA)-based approaches are proposed 

and studied. However, they lack interpretability and are computationally expensive. To address 

these gaps, we create a rule-based method for an automatic surrogate model selection called 

AutoSM. The drastic increase in the selection pace by pre-screening of surrogate model types 

based on selection rule extraction is the scientific contribution of our proposed method. First, an 

interpretable decision tree is built to map four critical features, including problem scale, noise, size 

of sample and nonlinearity, to the types of surrogate model and select the promising surrogate 

model; then, a genetic algorithm (GA) is used to find the appropriate hyper-parameters for each 

selected surrogate model.  

The AutoSM is tested with three theoretical problems and two engineering problems, including 

a hot rod rolling and a blowpipe design problem. According to the empirical results, using the 

proposed AutoSM, we can find the promising surrogate model and associated hyper-parameter in 

9 times less than other automatic selection approaches such as concurrent surrogate model 

selection (COSMOS) while maintaining the same accuracy and robustness in surrogate model 
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selection. Besides, the proposed AutoSM, unlike previous EA-based automatic surrogate model 

selection methods, is not a black box and is interpretable. In addition to the validation of design 

method for automated surrogate model selection, the chapter is also crucial from the standpoint of 

the major theme addressed in this dissertation. In this chapter, we discuss the validation of the 

proposed systematic method of surrogate modeling automation. 

Surrogate models have been widely used in engineering design because of their capability to 

approximate computationally complex engineering systems. In practice, the choice of surrogate 

models is extremely important since there are many types of surrogate models, and they also have 

different hyper-parameters. Traditional manual selection approaches are very time-consuming and 

cannot be generalized. To address these challenges, an evolutionary algorithm (EA)-based 

approaches are proposed and studied. However, they lack interpretability and are computationally 

expensive. To address these gaps, we create a rule-based method for an automatic surrogate model 

selection called AutoSM.  

The drastic increase in the selection pace by pre-screening of surrogate model types based on 

selection rule extraction is the scientific contribution of our proposed method. First, an 

interpretable decision tree is built to map four critical features, including problem scale, noise, size 

of sample and nonlinearity, to the types of surrogate model and select the promising surrogate 

model; then, a genetic algorithm (GA) is used to find the appropriate hyper-parameters for each 

selected surrogate model. The AutoSM is tested with three theoretical problems and two 

engineering problems, including a hot rod rolling and a blowpipe design problem.  

According to the empirical results, using the proposed AutoSM, we can find the promising 

surrogate model and associated hyper-parameter in 9 times less than other automatic selection 

approaches such as concurrent surrogate model selection (COSMOS) while maintaining the same 
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accuracy and robustness in surrogate model selection. Besides, the proposed AutoSM, unlike 

previous EA-based automatic surrogate model selection methods, is not a black box and is 

interpretable. 

Glossary 

CART Classification and regression tree 

CFD Computational Fluid Dynamics 

COSMOS Concurrent Surrogate Model Selection 

DoE Design of Experiments 

EA Evolutionary Algorithm 

EGO Efficient Global Optimization 

GA Genetic Algorithm 

KRG Kriging 

MARS Multivariate Adaptive Regression Splines 

MSPSO Multiple Surrogates based Particle Swarm Optimization 

NSGA-II Non-Dominated Sorting Genetic Algorithm II 

PRM Polynomial Regression Method 

PSO Particle Swarm Optimization 

RBF Radial Basis Function 

RSM Response Surface Models 

7.1 Frame of Reference of Surrogate Model Selection Process  

Surrogate models, also so-called metamodels, models of models, or response surface models 

(according to the context and research society), are statistical models that are used to replace 

computationally costly simulations and a rigorous technique to obtain empirical models from 
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physical experiments (Alizadeh et al., 2020a). They are considered as data-driven or predictive 

models that are created based on the design of (physical or numerical) experiments (DOE) (Qian 

et al., 2006). They are extensively used in engineering design as estimations of the analysis codes 

and simulations, which are less expensive to run, and produce understanding between inputs as 

design variables (vector X) and responses (vector Y).  

For instance, in an engineering design problem to find the optimal air foil shape for an aircraft 

wing, an engineer simulates the airflow around the wing for different shape variables (such as 

length, curvature, and material). For many real-world problems, however, a single simulation can 

take many minutes, hours, or even days to complete. As a result, routine tasks such as design 

optimization, design space exploration, sensitivity analysis, and what-if analysis become 

impossible since they require thousands or even millions of simulation evaluations. One way of 

alleviating this burden is by constructing approximation models, known as surrogate models, 

response surface models, metamodels, or emulators, that mimic the behavior of the simulation 

model as closely as possible while being computationally cheap(er) to evaluate. In the aircraft 

wing design problem, different shape variables are the inputs (shown by xi) for the surrogate 

model. 

Also, each characteristic of the final produced wing, such as weight, strength, stiffness, 

bending, strain, and elasticity, are the response variables (yj) which we want to measure. However, 

they are easily directly measured, or the cost of physical experiment is high, or the simulation time 

is too long and computationally expensive. Thus, let the original relationship between the set of 

input variables X and the collection of response variables Y is Y = f(X), the surrogate model of 

this relationship would be Ŷ = h(X) and Y = Ŷ + Ɛ, such that ɛ denotes both the measurement and 
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estimation errors. The surrogate modeling process is to implement DOE to find an efficient set of 

computer simulations and use regression modeling to build an estimation of the simulation. 

Afterward, the resulted estimations substitute the current simulation code. Surrogate models 

bring values of (i) realizing how input (X) and output (Y) variables are related; (ii) facilitating the 

process of combining simulation codes from different fields; (iii) providing a rapid computational 

method for design space exploration and optimization by building estimating based on costly 

simulations (Simpson et al., 2001). Surrogate models are essential in engineering design, 

nourishing a growing demand for fast and reliable models. However, the selection of surrogate 

models is always limited by the lack of prior knowledge (Mehmani et al., 2018), and existing 

surrogate model selection approaches are typically based on manual comparison and intuitive 

selection. Since the number of the existing types of the surrogate model has increased dramatically, 

manual comparison approaches become inefficient and unreasonable. Therefore, automated 

surrogate model selection methods have been proposed.  

Most of the automated surrogate model selections are following Evolutionary Algorithms 

(EA). For example, the Genetic Algorithm (GA) is one of the most common EA, which is used to 

calculate the hyper-parameters and indirectly determine the choice of the optimization surrogate 

model type (Gorissen et al., 2010; Mehmani et al., 2018). Also, the extension of the genetic 

algorithm, such as the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) is used to solve 

the multi-objective hyper-parameter optimization and the development of the surrogate model in 

(Couckuyt et al., 2011; Di Francescomarino et al., 2018; Passos and Luersen, 2018). Another 

example is the particle swarm optimization (PSO) algorithm, which is used in hyperparameter 

optimization (Gorissen et al., 2010; Toal et al., 2011). All existing automated surrogate model 

selection methods combine the selection process with various EA to automate the selection 
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process. The advantage of EA is its ability to handle a massive number of variables and high-

dimensional problems. However, due to the complexity of the surrogate model selection problem 

and the trial-and-error mechanism of the evolutionary algorithm, the speed is still not satisfactory, 

which is the disadvantage of EAs.  

To fill these gaps, an automated surrogate model selection method called AutoSM is developed 

in this chapter. The core idea behind AutoSM is to add knowledge of surrogate model selection to 

the process of automatic surrogate model selection. A set of selection rules created by the 

interpretable classification and regression tree (CART) method can pre-screen surrogate models 

and reduce the number of candidate surrogate model types. The knowledge of the surrogate model 

selection is always implicit and difficult to obtain; as such, the interpretable CART method enables 

us to extract the selection knowledge from benchmark problems (Gómez-Chova et al., 2003). 

Naturally, the CART model is composed of a series of “if-then” rules, which can be easily 

extracted and applied to the surrogate model selection process (Dandge and Chakraborty, 2020). 

In this chapter, these rules map four critical features of engineering problems, including problem 

scale, noise, size of the sample, and nonlinearity, to the types of surrogate models, which can filter 

out a large number of surrogate models and significantly reduce the candidates for surrogate 

models. After that, the Genetic Algorithm as an optimization algorithm is used to optimize the 

hyper-parameters and complete the entire surrogate model selection process. The performance of 

AutoSM is validated by its use for three theoretical problems and two practical design problems.  

The scientific contribution of this chapter is automating the process of surrogate model 

selection. Also, embedding all four data characteristics of problem size, simulation time, non-

linearity, and the number of samples in the proposed approach is another scientific contribution 

that enables the model to be as general as possible. Besides generality, interpretability is another 
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salient feature of the proposed approach, which together would allow designers to trace the 

surrogate model selection process and apply their domain knowledge wherever needed very 

quickly. This is another scientific contribution of the proposed approach, AutoSM. The last but 

not least scientific contribution is considering robustness in addition to the accuracy, which adds 

flexibility to the pre-surrogate selection process, where the designer models the design problem. 

In other words, the robustness or insensitivity of the selected surrogate model enables the designer 

to model the design problem in a more flexible, generic, and even less accurate manner. 

The remainder of the chapter is organized as follows. First, the related work to the manual 

comparison based and EA-based surrogate model selection methods are presented in Section 7.2. 

Then, an introduction to the surrogate model selection problem is presented in Section 7.3, and an 

automated surrogate model selection method (AutoSM) is introduced in Section 7.4. In Section 

7.5, the surrogate model pool and problem statements that contain different theoretical and 

application problems are given. The validation of the proposed approach, AutoSM, is shown in 

Section 7.6. Finally, we provide in Section 7.7 some closing remarks. 

7.1.1.  Manual comparison based surrogate model selection 

Designing complex engineered systems often involving exploring the entire design space. This 

process needs constant running of simulations, which are computationally expensive. To decrease 

the computational expense of these simulations, the surrogate modeling process is created to 

approximate them; however, choosing the appropriate surrogate model itself is typically nontrivial. 

Surrogate model selection is often completed through a manual comparison for different 

engineering problems.  

To facilitate an efficient understanding of different surrogate model structures and their 

suitable application characteristics, many review papers have been written. Simpson et al. suggest 
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that a designer’s goal is usually to arrive at improved or robust solutions. Based on these goals, 

they generate recommendations for applying different techniques in given situations (Simpson et 

al., 2001). Wang et al. review and create an overview of surrogate modeling (metamodeling) 

techniques and their application in engineering design optimization (Wang and Shan, 2006). 

Razavi et al. review and categorize research efforts on surrogate modeling and applications, 

especially research conducted in the area of water resources, present a surrogate analysis 

framework (Razavi et al., 2012). Alizadeh et al. review more than 200 papers on surrogate 

modeling to classify the surrogate model selection process based on three main criteria, time, size, 

and accuracy. They also provide a qualitative relationship between the trade-offs among these 

three criteria (Alizadeh et al., 2020a).  

More research is focused on using or developing new surrogate models to solve specific 

engineering problems or benchmark functions. Fitz et al. propose a surrogate model for cyber-

physical systems to adequately explain cyber-physical systems and map them into the industry 

foundation classes (Fitz et al., 2019). Torabi et al. consider an aluminum blade in the process of 

forging and propose a surrogate response surface method (RSM) integrated with NSGA-II to 

optimize the performance of the forging process (Torabi et al., 2017). Denkena et al. create a new 

technique for material identification in Computer Numerical Control (CNC) (Denkena et al., 

2018). Wang et al. find the Gaussian process as the best surrogate model construction method of 

the six candidate surrogate models for the Hartman function (Wang et al., 2014). Li et al. propose 

a two-level multi-surrogate assisted optimization (TMAO) to decompose high dimensional 

problems and obtain stable and accurate results for small or medium-sized problems (Li et al., 

2016b). Lelièvre et al. develop a method called the active learning reliability method, which is a 
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combination of Kriging (KRG) and Monte Carlo simulations, to deal with small failure 

probabilities and time-consuming models (Lelièvre et al., 2018).  

Another approach to study the surrogate model selection process is to identify general rules. 

For example, Williams and Cremaschi conduct several known benchmarks using eight surrogate 

models to find a suitable surrogate model based on merely the features of the benchmark dataset 

(Williams and Cremaschi, 2019). However, they do not consider the problem scale, the type of 

simulation (random or deterministic), as well as the demands (accuracy and robustness). To test 

the effectiveness of various approaches for different classes of problems, Jin et al. select fourteen 

test problems and classify them based on three representative features of engineering design 

problems: 1. Problem scale (the number of input variables), 2. Nonlinearity (low or high), and 3. 

Noisy or smooth (Jin et al., 2001). Garbo and German proposed an approach to supervising the 

sampling phase with a surrogate model built from the available training set to make its behavior 

reliable for the selected SM formulation (Garbo and German, 2019). Zhou et al. build a multi-

fidelity metamodeling framework to automate the process of collecting the fidelity knowledge as 

prior-knowledge for the metamodeling process (Zhou et al., 2016). Then, the same group created 

an active learning surrogate modeling method by consecutively deriving the knowledge from 

variable-fidelity models (Zhou et al., 2017). Mehmani et al. present a multi-level surrogate 

selection process using metrics like the median predictive estimation of model fidelity, maximum 

and median error on four benchmark functions, and three real-world problems (Mehmani et al., 

2018).  

Some other studies studied different scenarios generated by surrogate models (Alizadeh et al., 

2016b; Alizadeh et al., 2020c; Sadaghiani et al., 2014) models. These papers consider the features 

of the benchmark dataset; however, they do not use dependable measures of model robustness, 
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and we add in this chapter. The ontology-based method is the way to use the derived rules to 

automate the design process (Bock et al., 2010; Gehlert and Esswein, 2007; Zaletelj et al., 2018; 

Zhou et al., 2017). To create an ontology, we need prior rule-based knowledge to create 

knowledge-based reusable templates. To generate these knowledge-based templates, automatic 

selection methods are required to create the necessary rules. An evolutionary algorithm is one way 

to automate the surrogate model selection, which is explained in the next section.  

7.1.2.  Evolutionary algorithm based surrogate model selection 

Yu et al. compare the quality indices to select the most promising model in the surrogate-

assisted evolutionary algorithm. They also investigated the compatibility among accuracy and 

ranking refinement approaches (Yu et al., 2019). Gorissen et al. propose an automated two-step 

surrogate model selection process. Genetic algorithms (GAs) are used to calculate the hyper-

parameters, whose values indirectly determine the choice of the optimization model type. 

Mehmani et al. propose an automated surrogate model selection framework called concurrent 

surrogate model selection (COSMOS), which involves a genetic algorithm in the performance of 

the optimal choice (Mehmani et al., 2018). A Non-Dominated Sorting Genetic Algorithm-II 

(NSGA-II) is used to solve the multi-objective hyper-parameter optimization and automate the 

surrogate model development in (Di Francescomarino et al., 2018). Couckuyt et al. extend the 

well-known efficient global optimization (EGO) method with an automatic surrogate model type 

selection framework that can dynamically select the best model type depending on the available 

data (Couckuyt et al., 2011).  

Nguyen et al. propose multiple surrogates based particle swarm optimization (MSPSO) 

framework (Lv et al., 2019). Cicirelli et al. create a smart, automated surrogate model framework 

to converge two different perspectives, including functional design specifications and data 
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structures (Cicirelli et al., 2017). Díaz-Manríquez et al. present an evolutionary algorithm to 

automate the surrogate modeling process and compare the efficiency of these surrogate models 

using accuracy and precision measures (Díaz-Manríquez et al., 2017). Based on this critical 

evaluation of the literature, a summary of surrogate model selection literature is shown in  

Table 7.1. 

Table 7.1. Critical evaluation of the literature and gap identification. 

                           

Features                                              

 

Paper 

Characteristic of Data Demands Automation level 

Problem 

scale 

Simulation 

type 

Non-

linearity 

No. of 

samples 

Accurac

y 

Robust Manual Automated 

Simpson et al., 

2001 (Simpson et 

al., 2001) 

√ deterministic   √ √ √  

Jin et al., 2001 

(Jin et al., 2001) 

√ deterministic √  √  √  

Razavi et al., 

2012 (Razavi et 

al., 2012) 

√ random  √ √  √  

Wang and Shan, 

2006 (Wang and 

Shan, 2006) 

√ random  √ √  √  

Gorissen et al., 

2009 (Gorissen et 

al., 2010) 

 deterministic   √   √ 
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Features                                              

 

Paper 

Characteristic of Data Demands Automation level 

Problem 

scale 

Simulation 

type 

Non-

linearity 

No. of 

samples 

Accurac

y 

Robust Manual Automated 

Wang et al., 2014 

(Wang et al., 

2014) 

 random  √ √ √ √  

Lelievre et al., 

2018 (Lelièvre et 

al., 2018) 

√ random   √ √ √  

Shafiei et al., 

2016 (Shafiei 

Kaleibari et al., 

2016) 

√ random   √  √  

Lv et al., 2019 

(Lv et al., 2019) 

 random √  √   √ 

Simpson et al., 

2008 (Alizadeh et 

al., 2016c) 

√ random  √ √  √  

Couckuyt et al., 

2011(Simpson et 

al., 2008) 

 deterministic  √ √  √  

Wang et al., 2014 

(Couckuyt et al., 

2011) 

√ deterministic   √   √ 

Di 

Francescomarino 

et al., 2018 (Di 

√ random   √ √  √ 
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Features                                              

 

Paper 

Characteristic of Data Demands Automation level 

Problem 

scale 

Simulation 

type 

Non-

linearity 

No. of 

samples 

Accurac

y 

Robust Manual Automated 

Francescomarino 

et al., 2018) 

Viana and 

Haftka, 2008 

(Viana and 

Haftka, 2008) 

√ deterministic  √ √  √  

Cicirelli et al., 

2017 (Cicirelli et 

al., 2017) 

√ deterministic   √   √ 

Viana et al., 2009 

(Viana et al., 

2009) 

√ deterministic  √ √  √  

Viana et al., 2018 

(Viana et al., 

2018) 

√ random  √ √  √  

Williams and 

Cremaschi, 2019 

(Williams and 

Cremaschi, 2019)  

 random √ √ √  √  

Yu et al., 2019 

(Yu et al., 2019) 

√ random √ √ √  √  

Zhou et al., 2017 

(Zhou et al., 

2017) 

   √ √  √  
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Features                                              

 

Paper 

Characteristic of Data Demands Automation level 

Problem 

scale 

Simulation 

type 

Non-

linearity 

No. of 

samples 

Accurac

y 

Robust Manual Automated 

Mehmani et al., 

2018 (Mehmani 

et al., 2018) 

 random √ √  √  √ 

Diaz-Manriquez 

et al., 2017 

(Díaz-Manríquez 

et al., 2017) 

 deteministic  √  √ √  

Singaravel et al., 

2019 (Singaravel 

et al., 2019) 

 random √ √ √   √ 

Wang et al., 2018 

(Wang et al., 

2018) 

 random √ √  √ √  

Fitz et al., 2019 

(Fitz et al., 2019) 

 random √ √ √  √  

Our work √ both √ √ √ √  √ 

Notably, there is a lack of a comprehensive surrogate model selection tool to fully consider 

the features of the data and requirements for engineering problems. Also, due to the gigantic trial-

and-error iterations of evolutionary algorithms, all existing EA-based selection methods are 

computationally expensive. To address this gap, we create a rapid, automatic, interpretable 

surrogate selection method, which includes all the requirements of the features listed in  

Table 7.1. Therefore, an interpretable, automated surrogate model selection approach based 

on the criteria of problem size, simulation time, non-linearity, and the number of samples is needed, 

which aims at optimizing the robustness and accuracy of the chosen surrogate model. 
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7.2 Surrogate Model Selection Problem 

To address the surrogate model selection problem, with each selection approach, we must 

answer two critical questions: (1) what must be done in the surrogate model selection process and 

(2) how to determine the best choice. The corresponding answers are provided by the structure of 

surrogate model selection (Section 7.3.1) and performance metrics (Section 7.3.2). 

7.2.1.  Three-layer structure of surrogate model selection 

For a complete description of the surrogate model selection process, we refer to (Mehmani et 

al., 2018) and present a three-layer model selection structure. An illustration of the surrogate model 

selection structure is shown in Figure 7.22, which contains three components as follows: 

i) Surrogate types: for example, KRG, radial basis function (RBF), RSM, and 

multivariate adaptive regression splines (MARS); 

ii) Optional types: such as the covariance functions of KRG; for example, the Linear, 

Gaussian and Power covariance functions;  

iii) Hyper-parameters for each optional type: for example, the correlation function 

parameter 𝜃 of the Gaussian covariance function of KRG. (More detail can and be 

found in Table 7.2) 
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Figure 7.2. Three-layer structure of the surrogate model selection process. 

 

Generally, the selection of the surrogate type and optional type relies on the optimization result 

of hyper-parameters, so the surrogate and optional type are always combined to make the 

comparison. An illustration of the application of the three-layer surrogate model selection structure 

is presented in Figure 7.2. In layer one and layer 2, surrogate types and their corresponding optional 

types are listed and directly compared, after the individual hyper-parameter optimization of each 

surrogate-optional type in layer 3. Evolutionary algorithms associated with typical evaluation 

functions are always used to optimize the hyper-parameter. The optimal hyperparameter is 
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developed through a large number of ‘trial and error’ iteration. Finally, satisfied surrogate-optional 

𝑆 − 𝑂 types and their optimal hyper-parameters (HP_optimal) are developed. It can be concluded 

that the surrogate model selection approach has to solve two key problems: 1. Surrogate type and 

optional type selection; 2. Surrogate model hyper-parameters selection (optimization). By the way, 

our major innovation happens at Layer 1 and Layer 2, which generates a selector to pre-screen 

surrogate models to speed up the selection of surrogate model. 

7.2.2.  Metrics for performance measures   

Accuracy and robustness are regarded as the most critical requirements for suitable surrogate 

models in the engineering design; as such, two metrics are proposed to measure the accuracy and 

robustness in this work. Accuracy is a description of the systematic error, a measure of the 

difference between the predicted value of the model and the actual value (Khoshelham, 2011). R-

squared (R2) is a systemic error measure, which tells how good the best fit line is from the baseline 

model. So, it is the percentage number whose value is between 0 and 1. As such, comparing with 

other accuracy metrics, R2 has the advantage of the property that its scale is intuitive. It ranges 

from 0 to 1, with 0 indicating that the proposed model does not improve prediction over the mean 

model, and 1 indicating perfect prediction. Therefore, we choose R^2 to measure the accuracy of 

our work. 

R2=1-∑(y
i
-y

î
)

2

Ntest

i=1

∑(y
i
-y

i̅
)

2

Ntest

i=1

⁄  

Equation 7.1

  

 where 𝑦𝑖 is the observed values, and 𝑦𝑖̅ denotes the mean of the observed values. 𝑁𝑡𝑒𝑠𝑡 is the 

number of testing data. 
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Robustness is the characteristic of a surrogate model to remain unaffected by small variations 

in parameters (Wieland and Wallenburg, 2012). Robustness for the surrogate model describes its 

anti-interference ability. In other words, if the surrogate model can keep its prediction accuracy 

for different problems, it has good robustness. Therefore, based on the calculation of R^2 for 

accuracy, we further produce the calculation of the robustness. 

rb=∑(Ri
2-R̅

2
)

2
M

i=1

M⁄  

Equation 7.2

  

  Where rb stands for the robustness, 𝑅𝑖
2 represents the R-squared value of the surrogate model 

in 𝑖𝑡ℎ benchmark problem, and 𝑅̅2 is the average 𝑅2 value of all conditions. 𝑀 denotes the number 

of different benchmark problems. The closer 𝑟𝑏 to 0, the more robust the surrogate model is. 

7.3 AUTOSM Framework 

The model type selection and model parameter selection are carried out by the surrogate model 

selection method. The primary work of this chapter is to generate a selector to pre-screen surrogate 

models and reduce the number of candidate surrogate model types. We extract four parameters to 

give a unified standard description to all engineering problems: then, building the mapping relation 

between these four parameters with the best metamodels and their options. As such, relying on the 

mapping relation, several candidates (good) surrogate-optional types can be provided based on the 

mapping relation. More details, shown in Figure 7.3, the AutoSM is composed of two phases. In 

the offline phase, the selector, which mapping the four features with best surrogate model types, 

is trained. The training process involves three operators: the 'Feature Extractor' (Section 4.1), the 

'Surrogate model evaluator' (Section 7.4.2) are used to generate the training data, and the 'Model 

type selector' (Section 7.4.3) is used to develop the surrogate model type selector and selection 
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knowledge.  Then in the online phase, the first step is the 'feature extract' for the new problem. 

With the specific value of those four features, they are entered into the selector to predict the 

candidate surrogate-optional types. By the way, the selector filters out many surrogate models and 

significantly reduces the number of candidate surrogate model types. Then, as the model types 

have been confirmed, their hyper-parameters also need to be identified since they also have a 

significant impact on the performance of surrogate models. GA is implemented as the hyper-

parameter calculator, and its implementation can be found in a Matlab toolbox.  

http://www.sumo.intec.ugent.be/. After identifying the surrogate-optional types and hyper-

parameters, the promising model types can be finally confirmed through the performance 

comparison between those candidate model types. 

 

Figure 7.3. AutoSM framework consists of two phases, the offline phase is used for the selector 

generation, and an online phase is used for the new data surrogate model type prediction 

7.3.1.  Feature extractor 

To have a unified standard to describe different datasets, we evaluate a set of meta-features for 

each benchmark dataset 𝑫. We define meta-features as common features in all the engineering 

http://www.sumo.intec.ugent.be/
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problems. Different from mathematical problems, engineering problems have their meta-features, 

and their datasets should also reflect their meta-features. The selected meta-features are listed as 

follows: 

1) Problem scale 

Problem scale denotes the input variable dimension or the number of variables. Since AutoSM 

is to be used for engineering problems whose input variable dimensions are not large, we set the 

‘Dimension’ as a categorical value from 1 to 10. 

2) Size of sample 

The size of the sample for a particular problem, 'Size’, is determined by Experimental Design 

(DoE), and it is also associated with the Dimension’. 

3) Deterministic VS random simulation (Noise) 

A deterministic simulation is a computer experiment, where the samples are generated without 

any noise, while the random simulation includes uncertainty and is closer to physical experiments 

(Wang and Shan, 2006). ‘Noise’ is a Boolean data. In our study, the noise behavior is artificially 

created by using local variations of the benchmark functions. 

4) The nonlinearity of the performance behavior 

The linearity of the performance behavior can be expressed as the power value of the Pearson 

correlation coefficient when using first or second-order polynomial models (Jin et al., 2001). The 

equation of Linearity and Nonlinearity can be expressed as follows: 
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Linearity=(
cov(Y1,Y2)

√D(Y1)√D(Y2)
)

2

 
Equation 7.3

  

 Linearity=1- (
cov(Y1,Y2)

√D(Y1)√D(Y2)
)

2

 
Equation 7.4

  

 where 𝑌1 and 𝑌2 denote predicted and real response, respectively. 𝑐𝑜𝑣(𝑌1,  𝑌2) represents the 

covariance of 𝑌1 and 𝑌2, while 𝐷(𝑌1) and 𝐷(𝑌2) are the variances of 𝑌1 and 𝑌2, respectively. Since 

the first-order polynomial model is the most suitable model for highly linear benchmark functions, 

we fit it to each benchmark function and calculate the nonlinearity value for them. ‘Nonlinearity’ 

is used as a continuous numerical description of the complexity of the problem. The closer 

‘Nonlinearity’ to 1, the more complex the problem is.  

7.3.2.  Surrogate model evaluator 

To train the model type selector, we need to find the promising surrogate model types (labeled 

as 𝐴∗) for each benchmark data, the promising surrogate model types are the selected types type 

in the first and second layers of the three-layer surrogate model selection structure. Then the 

extracted meta-features and developed label (𝐴∗) can be integrated and used as the training data to 

develop the model selector; finally, the selector can be used to predict the promising surrogate 

model types for the new data through its generalization. We choose the COSMOS method from 

(Mehmani et al., 2018) to find the promising surrogate model types for benchmark data. 

7.3.3.  Model type selector 

All benchmark datasets can be described as meta-features (𝒎𝒇), and their corresponding 

surrogate model types are labeled as (𝑨). As such, we use a mapping model 𝑔(∙) to identify the 

relation between meta-features and promising surrogate-optional types (𝑨). The mathematical 

definitions of model type selector are defined in Equation 7.5 to Equation 7.7. 
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S={(mf1, A1),…,(mfm, Am)}              Equation 7.5

  

 Strain={(mf1, A1),…,(mfp-1, Ap-1)}   Equation 7.6

  

 Svalid={(mfp, Ap),…,(mfm, Am)}       Equation 7.7

  

 Let 𝑆 be the new dataset split into  𝑆𝑡𝑟𝑎𝑖𝑛 and  𝑆𝑣𝑎𝑙𝑖𝑑. For 𝑖 = 1,2…𝑚, let 𝒎𝒇𝒊 ∈ ℝ
𝒅 denote 

a feature vector, 𝐴𝑖 ∈ 𝑨 is the corresponding model type. So, the prediction output achieved on 

𝒎𝒇𝒑, … ,𝒎𝒇𝒎  is represented by 𝐴̂𝑝, … , 𝐴̂𝑚  when 𝑆𝑡𝑟𝑎𝑖𝑛  is used for training. In our work, 

Classification and Regression Tree (CART) is selected as the mapping function 𝑔(∙).  

Naturally, the interpretable CART model is composed of a series of “if-then” rules, which can 

be easily extracted and applied to the surrogate model selection process. Based on these rules, 

many surrogate model types can be filtered out, which can greatly speed up the surrogate model 

selection. The selection of candidate surrogate model types for a new dataset 𝐷𝑛𝑒𝑤 is explained as 

in eq.8. 

                                           Dnew→mf
*
→g(mf

*)→Â      Equation 7.8 

where 𝑚𝑓∗  and 𝐴̂  are the meta-feature and predicted surrogate-optional types of the new 

dataset 𝐷𝑛𝑒𝑤. First, meta-features of 𝐷𝑛𝑒𝑤 are extracted and labeled as 𝑚𝑓∗; then, the decision tree 

algorithm 𝑔(𝑚𝑓∗) is used to identify candidate surrogate-optional types 𝐴̂, which filters out a 

significant number of surrogate model types. 
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7.4 Verification of AUTOSM 

7.4.1.  Surrogate model pool 

The surrogate model pool considered for selection in the version of AutoSM presented here 

follows the composition that includes four surrogate models i) RSM, ii) KRG, iii) RBF, iv) MARS. 

The surrogate-optional types and their corresponding hyper-parameters are listed in Table 7.2. 

Also, brief descriptions of the working principle of each surrogate model are provided in Appendix 

A. The program of this work is based on several Python-based implements called 

LinearRegression, pyKriging, RBF, Earth, respectively. 

Table 7.2. Surrogate-optional types and their corresponding hyper-parameters in the surrogate 

model pool 

Surrogate-Optional Type  

Surrogate Type(S) Optional Type(O) Hyper-Parameters (HP) 

RSM Order=2   

 Order=3  

 Order=4  

 Order=5  

 Order=6  

KRG Linear:       𝑚𝑎𝑥(1 − 𝜃𝑟, 1) correlation function parameter 𝜃 

 Power:       𝜃𝑟 correlation function parameter 𝜃 

 Gaussian:     𝑒(𝜃𝑟)
2
 correlation function parameter 𝜃 

 Exponential:    𝑒−𝜃𝑟 correlation function parameter 𝜃 

 

Spherical: 
        
1 − 3𝜑

2
+ 2𝜑3;  𝜑 =

𝑚𝑎𝑥(1 − 𝜃𝑟, 1) 

correlation function parameter 𝜃 
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Surrogate-Optional Type  

Surrogate Type(S) Optional Type(O) Hyper-Parameters (HP) 

RBF Multiquadric: (1

(
1

𝑟𝜎
)
2
+ 1

⁄ )

1

2

 

shape parameter 𝜎 

 Cubic: 𝑟3 — 

 

Inverse: 1

√(
1

𝑟𝜎
)
2
+ 1

⁄
 

shape parameter 𝜎 

 Linear: 𝑟 — 

 Thinplate: 𝑟2 log(𝑟) — 

MARS Max_Interaction=2 — 

 Max_Interaction=3 — 

 Max_Interaction=4 — 

7.4.2.  Theoretical problems 

There are three theoretical benchmark functions used in our AutoSM framework: 1) Perm function 

(Mehmani et al., 2018), 2) the Dixon and Price function (Wang et al., 2014), and 3) Beale function 

(Wang et al., 2014). These functions have been widely used for determining the most accurate 

surrogate model in other related research. The detail of these functions is given in Appendix B. To 

test the performance of AutoSM, we select different sample sizes of data from each theoretical 

problem to increase the size of the test database. For validation purposes, we create a broad set of 

additional test datasets for these problems and identify their corresponding best surrogate-optional 

type as listed in Table 7.3. Since the test data is obtained by sampling from the deterministic 

functions, the meta-feature ‘Noise’ is set to zero here. 
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Table 7.3. Meta-features and the corresponding best surrogate optional type for theoretical 

problems 

Function 

Name 

Mete-features Best Surrogate-

Optional Type Nonlinearity Dimension Size Noise 

Perm500 0.85 10 500 0 MARS_3 

Perm40 0.99 10 40 0 RSM_3 

Perm280 0.85 10 280 0 RSM_6 

Perm160 0.90 10 160 0 RSM_4 

Perm1000 0.82 10 1000 0 MARS_2 

DixonPrice80 0.17 5 80 0 KRG_gaussian 

DixonPrice500 0.11 5 500 0 RSM_4 

DixonPrice400 0.12 5 400 0 RSM_4 

DixonPrice300 0.12 5 300 0 RSM_4 

DixonPrice200 0.13 5 200 0 RSM_4 

DixonPrice20 0.72 5 20 0 RBF_multiquadric 

Beala90 0.51 2 90 0 MARS_3 

Beala70 0.60 2 70 0 MARS_2 

Beala50 0.45 2 50 0 RBF_cubic 

Beala30 0.58 2 30 0 MARS_2 

Beala120 0.39 2 120 0 RSM_3 

Beala10 0.47 2 10 0 RBF_inverse 

We demonstrate the distribution of the test data in Figure 7.4, and it is evident that the test data 

covers most of the design space. So, the diversity of our test data is sufficient to validate the 

performance of AutoSM.  
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Figure 7.4. Distribution of the test data generated from theoretical problems 

We demonstrate the distribution of the test data in Figure 7.4, and it is evident that the test data 

covers most of the design space. So, the diversity of our test data is sufficient to validate the 

performance of AutoSM.  

7.4.3.  Test problems used to demonstrate the utility of the proposed framework 

Hot rod rolling and blowpipe design are two engineering problems that we have thoroughly 

studied. For the hot rod rolling problem, a simulation program (STRUCTURE developed by (Jones 

and Bhadeshia, 1997)) is used to study the structural performance of the final product. In order to 

optimize the construction of blowpipe to improve its reliability, time-consuming computational 
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fluid dynamics (CFD) simulations (Fluent) is used to identify the stress and plastic strain 

distribution of different blowpipe design case. Both of these two problems need computationally 

expensive simulations, which often take more than 24 hours for a single design case. Using 

surrogate models, the computational complexity of these problems is manageable. As such, the 

hot rod rolling, and blowpipe design problems are selected as our application problems to test the 

practicality and effectiveness of AutoSM. 

Hot rod rolling 

As shown in Figure 7.5, a hot rod rolling process to create a rod from a lab of steel. This is an 

intermediate process in the creation of an automotive steel gear. In this deformation process, the 

steel, which initially is in the austenite phase is converted to ferrite during slow cooling. On the 

other hand, in fast cooling, austenite is transformed to ferrite and from ferrite to pearlite. Also, to 

determine the final phase, there are three crucial process variables, which are the percentages of 

carbon and manganese in the alloy, the cooling rate, and the initial austenite grain size. For 

instance, low carbon percentage and small austenite grain size facilitate the phase transformation 

to ferrite. Also, the percentage of manganese causes an undesirable banded microstructure (Jägle, 

2007). A banded microstructure results in fractures during any processing phase following hot rod 

rolling, so it is critical to avoid it. Therefore, we need to be able to predict the outcome of the hot 

rod rolling process precisely. These variables are defined in Figure 7.5. The output variables of the 

hot rod rolling process are pearlite, and two types of ferrite, namely allotriomorphic ferrite and 

Widmanstätten ferrite based on different values of each of four input variables. Therefore, the 

process has four input variables and three output variables (Alizadeh et al., 2019).  
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Figure 7.5. Hot rod rolling process 

Nellippallil et al. in (Nellippallil et al., 2018), using the simulation program, STRUCTURE 

developed by (Jones and Bhadeshia, 1997) use a full factorial design of experiments to generate a 

data set and study how different values of four input variables, cooling rate, carbon concentration, 

manganese concentration, and austenite grain size, affect the final product which can be three 

phases (pearlite, allotriomorphic ferrite, and Widmanstätten ferrite). Nellipallil et al. 's work are 

verified by comparing the simulation predictions with experimentally measured data reported by 

(Bodnar and Hansen, 1994).  
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Table 7.4. Design variables and their definition of hot rod rolling design 

Design Variable Definition 

Manganese 

concentration 

after rolling 

(Mn) 

Jones et al. (Jones and Bhadeshia, 1997) point out that manganese is an 

austenite stabilizing agent, meaning the banded transformation is low in 

the regions where manganese concentration is high. In essence, this leads 

to an accumulation of carbon, which leads to the formation of pearlite.  

Final Austenite 

grain size after 

rolling (AGS) 

This parameter has an inbuilt effect on grain boundary area per unit volume 

and thus on nucleation itself. Because of this effect, and the simultaneous 

phase transformations, the average grain size (neglecting the length scale) 

has a significant bearing on the final microstructure. 

Cooling rate High cooling rates usually suppress banding. Lower cooling rates favor 

carbon diffusion leading to the development of banded microstructure. 

Carbon content The carbon content changes the physical properties of commercially 

available steel and hence determines which component is formed first during 

the initial stages of cooling 

Blowpipe design 

In the steelmaking industry, blowpipes are widely used as transfer devices to ensure a constant 

supply of hot air to the blast furnace, where it connects the bustle pipe to the furnace tuyeres. In 

order to optimize the construction of blowpipe to improve its reliability, computational fluid 

dynamics (CFD) was used to identify areas with high stress and plastic strain corresponding to 

different input conditions. However, to develop a satisfactory construction, a large number of 
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simulation experiments are required, which is very time-consuming and expensive. Typically, 

surrogate models are useful for dealing with such a problem. 

a. 

 

 
b. 

c. 

Figure 7.6. The geometry of elbow (a.), blowpipe (b.) and blowpipe system(c.) (Cui et al., 2018). 
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In Figure 7.6, we show the three-dimensional model of the blowpipe system. A complete 

blowpipe system consists of two components: elbow and blowpipe, as shown in Figure 7.6 (c.). 

The hot blast air passes from the inlet and moves from the elbow to blowpipe. In the whole process, 

the blowpipe is critically affected by two aspects: i) Hot Blast Temperature (°F), the hot and high-

speed airflow which leads to a continuous high-temperature and high-pressure environment; ii) 

The components, including thermal (thickness (in.)) and length (in. from the bell)) and refractory 

(thickness (in.) and material position (in.)). The output responses are stress (psi) and temperature 

distributions (°F) in a blowpipe system, which can also be expressed as the stress and temperature 

at each location in the blowpipe. In Table 7.5, we show the meta-features and the best type of these 

two application problems. Since the test data is obtained from industrial problems, the meta-feature 

‘Noise’ is set to 1 here. 

Table 7.5. Meta-features and the corresponding best surrogate optional type for hot rod rolling 

and blowpipe design problems 

Function Name 

Mete-features 

Best Surrogate-Optional Type 

Nonlinearity Dimension Size Noise 

HRR_Y1 0.0298 4 20 1 KRG_gaussian 

HRR_Y2 0.0915 4 20 1 KRG_gaussian 

HRR_Y3 0.0104 4 20 1 KRG_power 

Blowpipe_Y1 0.0992 5 334 1 RSM_6 

Blowpipe_Y2 0.6744 5 209 1 KRG_power 

Blowpipe_Y3 0.7296 5 209 1 KRG_power 

 



 

236 
 

7.5 Results and Discussion on Creating an Automatic Multi-Level 

Surrogate Model Selection Process  

The entire experimental system for validating the accuracy and robustness of the proposed 

AutoSM is shown in Figure 7.7. Four different surrogate models with the entire 18 surrogate-

optional types are employed. Two parts of the database, Training Data (from 10 benchmark 

functions) and Test Data (from 3 theoretical and two application problems), are developed to train, 

validate and test our selection model (shown in Appendix C). From Figure 7.7, there are two ways 

to calculate the accuracy of our selection model (CART): i) Using K-fold cross-validation to 

validate the accuracy by the validation data generated from 10 training benchmark functions; ii) 

Using test data. 

 

Figure 7.7. Experimental system for validating the accuracy and robustness of the selection 

model. 

The average predicted accuracy for each benchmark function obtained by the AutoSM 

framework is listed in Table 7.6. The entire predicted accuracy of our selection model is the 

average value of all benchmarks (about 62%). More specifically, the selection model is most 
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accurate in predicting T5, T2, and HM6 benchmark functions, especially for T5 and T2 (about 

95%). 

Table 7.6. Average predicted accuracy for benchmark functions. 

 Benchmark functions 

T5 T4 T3 T2 T1 HM6 HM3 GP CB BH 

Predicted Accuracy 

(%) 

89.47 42.11 57.89 94.74 63.16 89.47 63.16 42.11 52.63 63.16 

The recommended candidate surrogate-optional types (CSOTs) obtained by AutoSM for 

theoretical and application problems, and the label (Best Type) of each problem, are listed in Table 

7.7. If the ‘Best Type’ is one of the three Candidate Surrogate Optional Types (CSOTs), it is 

deemed to be an accurate prediction (set to 1 in the table), otherwise set to 0. From Table 7.7, the 

validation accuracy can be easily calculated, about 
18

23
≈ 78%, where the validation accuracy of 

the application and theoretical problems are 
5

6
≈ 83% and 

13

17
≈ 76%, respectively.  

Table 7.7. The set of promising surrogate models (if the Best Type is one of the three CSOTs, 

bold the corresponding item) 

Problem Promising Surrogate Models Accurate 

prediction 

Best Type 

Candidate Surrogate_Optional 

Types (CSOTs) 

Application  

Problems 

HRR_Y1 KRG_gaussian 

['RSM_2', 'RSM_4', 

'KRG_gaussian'] 

1 

HRR_Y2 KRG_gaussian 

['RSM_2', 'RSM_3', 

'KRG_gaussian'] 

1 
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Problem Promising Surrogate Models Accurate 

prediction 

Best Type 

Candidate Surrogate_Optional 

Types (CSOTs) 

HRR_Y3 KRG_power 

['RSM_2', 'RSM_4', 

'KRG_gaussian'] 

0 

Blowpipe_Y1 RSM_6 ['RSM_4', 'RSM_5', 'RSM_6'] 1 

Blowpipe_Y2 KRG_power 

['RBF_multiquadric', 'RSM_6', 

'KRG_power'] 

1 

Blowpipe_Y3 KRG_power 

['RBF_multiquadric', 'RSM_6', 

'KRG_power'] 

1 

Theoretical  

Problems 

Perm500 MARS_3 

['RBF_multiquadric', 'RSM_6', 

'KRG_power'] 

0 

Perm40 RSM_3 ['RSM_3', 'RSM_4', 'RSM_5'] 1 

Perm280 RSM_6 

['RBF_cubic', 'RSM_6', 

'KRG_gaussian'] 

1 

Perm160 RSM_4 ['RSM_3', 'RSM_4', 'RSM_5'] 1 

Perm1000 MARS_2 

['RBF_multiquadric', 

'RBF_cubic', 'KRG_power'] 

0 

DixonPrice80 KRG_gaussian 

['RSM_4', 'RSM_6', 

'KRG_gaussian'] 

1 

DixonPrice500 RSM_4 ['RSM_4', 'RSM_5', 'RSM_9'] 1 

DixonPrice400 RSM_4 ['RSM_4', 'RSM_5', 'RSM_7'] 1 

DixonPrice300 RSM_4 ['RSM_4', 'RSM_5', 'RSM_8'] 1 

DixonPrice200 RSM_4 ['RSM_4', 'RSM_5', 'RSM_6'] 1 
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Problem Promising Surrogate Models Accurate 

prediction 

Best Type 

Candidate Surrogate_Optional 

Types (CSOTs) 

DixonPrice20 RBF_multiquadric 

['RBF_multiquadric', 

'RBF_cubic', 'KRG_gaussian'] 

1 

Beala90 MARS_3 

['RBF_cubic', 'MARS_2', 

'MARS_3'] 

1 

Beala70 MARS_2 

['RBF_multiquadric', 

'RBF_cubic', 'KRG_gaussian'] 

0 

Beala50 RBF_cubic 

['RBF_multiquadric', 'MARS_3', 

'MARS_4'] 

0 

Beala30 RBF_cubic 

['RBF_multiquadric', 

'RBF_cubic', 'KRG_gaussian'] 

1 

Beala120 RSM_3 

['RBF_cubic', 'MARS_2', 

'RSM_3'] 

1 

Beala10 RBF_inverse 

['RBF_inverse', 'MARS_2', 

'KRG_power'] 

1 

 

To further validate the performance of the proposed AutoSM, the results are compared with 

comparable studies to confirm their consistency, as shown in Table 7.8. We bold all consistent 

results, and it can be found that their results are highly consistent. For the Hot Rod Rolling 

problem, the predicted surrogate-optional type yielded by AutoSM matches the ‘Best Type’ well. 
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Table 7.8. Comparisons between our work and other studies in surrogate model prediction 

Problems Other studies Our work 

Perm RBF_linear, RBF_multiquadric 

(Mehmani et al., 2018) 

 KRG, RBF [4] 

 RBF_multiquadric, RSM_6, 

KRG_power 

Hartmann-3 RBF_multiquadric, KRG_Gaussian 

(Mehmani et al., 2018), 

MARS (Wang et al., 2014) 

MAR_4, KRG_power, 

RBF_multiquadric 

Dixon and Price RBF (Liu et al., 2016)  RSM_4, RSM_6, KRG_gaussian 

Beala  RBF, MARS (Jin et al., 2001) RBF_multiquadric, RSM_6, 

KRG_power 

From Figure 7.8, almost all predicted accuracy of HRR is higher than 80%. Even for the 

mispredicted types in the HRR_Y3 problem, the accuracy of surrogate-optional type: 

KRG_gaussian is more significant than 0.98. It indicates the predicted type can achieve excellent 

performance, even though it is not on the recommendation list. In the Blowpipe design problem, 

the predicted surrogate-optional types perfectly match the ‘Best Type’. From Figure 7.9, all 

estimated surrogate optional types have high accuracy in the Blowpipe_Y1 problem, and the same 

surrogate-optional type (KRG-power) provides all the best solutions for both Blowpipe_Y2 and 

Blowpipe_Y3 problems. 

From the pie chart Figure 7.10, there are many choices for the best surrogate type, and their 

frequency does not differ much. Based on this finding, we further emphasize that there is no 

universally dominant surrogate-optional type, which is suitable for all different situations.  
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Figure 7.8. Predicted accuracy of hot rod rolling problem 

 

Figure 7.9. Predicted accuracy of the blowpipe design problem 
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Figure 7.10. Frequency of best surrogate-optional types (Left figure) and predicted surrogate-

optional types from AutoSM across 5 test problems (Right figure) 

Based on the ten benchmark functions and 5 test problems, we find that there is a negative 

correlation between 'Nonlinearity’ and ‘Predicted Accuracy’. As shown in Figure 7.11, the fitted 

curve (solid black line), which is generated to reveal the relation between nonlinearity and 

accuracy, has a monotonically decreasing trend. To ensure the prediction of this decreasing trend, 

we give a 95% confidence band in the gray shade for each predicted point, which is generated to 

reveal the relation between nonlinearity and accuracy. Based on the fitted curve in Figure 7.11, we 

also show that there is a negative correlation between ‘Nonlinearity’ and ‘Predicted Accuracy’. 

More specifically, when the nonlinearity is low (≤ 0.5), the model has fewer judgment errors 

55

167
≈ 33 %; however, as the nonlinearity is high (> 0.5), the frequency of judgment errors 

significantly increases to 
26

56
≈ 54%. The program run time is the computational time required by 

Python codes in a Lenovo computer i7-4720HQ 8G 128G SSD+1T GTX960M. Three test 

functions are used for the comparison of the surrogate model selection between our proposed 

AutoSM and the COSMOS method proposed by (Mehmani et al., 2018). As shown in Table 7.109, 

the running time of our suggested surrogate model type prediction is about nine times less than the 

COSMOS method. 
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Figure 7.11. A statistical histogram of the relation between nonlinearity and accuracy. 

As shown in Table 7.109, the running time of our suggested surrogate model type prediction 

is about nine times less than the COSMOS method. Concerning the predicted surrogate model type 

in Table 7.10, the average predicted accuracy of AutoSM of all applications and theoretical 

problems is 78%, which is way above the average. More specifically, the AutoSM has high 

accuracy in predicting low-nonlinearity problems (>90%). Overall, the proposed AutoSM can 

significantly reduce the time for the surrogate model selection while maintaining good prediction 

accuracy.  
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Table 7.9. The surrogate model type prediction running time of COSMOS and AutoSM. 

Function Name 

Running time 

COSMOS 

(Second) 

AutoSM 

(Second) 

COSMOS/AutoSM  

(Degree) 

Perm1000 96421s 10120s 9.53  

DixonPrice80 12370s 1720s 7.19  

Beala120 10230s 1427s 7.17  

Average time 39673.67s 4422.3 s 8.97  

We believe that the robustness of each surrogate model represents the intrinsic properties of 

the model itself, and it is independent of the application scenario and test functions. As such, we 

just use the result of 10 benchmark functions to identify the robustness of each surrogate-optional 

type. As shown in Table 7.10, we find that KRG has the largest robustness value, which represents 

that it is susceptible to different problems. The average robustness of RSM and RBF are close and 

very small, except for the linear type of RBF and the order 2 type of RSM. 

Table 7.10. Robustness of surrogate model with surrogate types and surrogate optional types 

Surrogate Model 

Robustness 

Surrogate_Optional Type Surrogate Type 

RSM_6 0.1048 

0.1183 

RSM_5 0.0940 

RSM_4 0.0881 

RSM_3 0.0827 

RSM_2 0.2220 

RBF_thin_plate 0.0845 

0.1239 

RBF_multiquadric 0.1075 
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Surrogate Model 

Robustness 

Surrogate_Optional Type Surrogate Type 

RBF_linear 0.2075 

RBF_inverse 0.1414 

RBF_cubic 0.0788 

MARS_4 0.2596 

0.3972 MARS_3 0.3565 

MARS_2 0.5753 

KRG_spherical 0.5174 

0.5790 

KRG_power 0.2283 

KRG_linear 0.3876 

KRG_gaussian 0.1648 

KRG_exponential 1.5971 

As shown in Figure 7.12, we further illustrate the combined performance of each surrogate-

optional type in terms of average accuracy and robustness. In the model selection work, there are 

many trade-offs between accuracy and robustness. However, some surrogate optional types 

maintain a high degree of robustness and accuracy, for example, RBF-cubic type, RBF-

multiquadric type, and RSM-4 type. The significance of this work is that even in the absence of 

prior knowledge, AutoSM can be used to recommend some surrogate models with good accuracy 

and robustness. Based on the training data generated from 10 benchmark functions, a simplified 

tree structure is illustrated in Figure 7.13. 
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Figure 7.12. Average of accuracy and robustness of each surrogate-optional type 

 

Figure 7.13. Categorization of surrogate-optional types based on accuracy for multi-label CART 
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Although this tree structure is not a complete classification of the surrogate-optional types of 

each category, the number of selected type candidates has already been reduced from 18 to 2 or 3. 

from Figure 7.13., the extracted selection rules are the combination of the intervals of these four 

features instead of their specific values. For example, as shown by the marked part in this figure, 

the selection rule is shown as follows: 

‘𝑰𝑭 𝐍𝐨𝐧𝐥𝐢𝐧𝐞𝐚𝐫𝐢𝐭𝐲 ≤ 𝟎. 𝟎𝟕𝟕 & 𝐍𝐨𝐢𝐬𝐞 ≤ 𝟎. 𝟖𝟓𝟒 & 𝐃𝐢𝐦𝐞𝐧𝐬𝐢𝐨𝐧 ≤ 𝟒. 𝟑𝟔𝟏:  

𝐓𝐇𝐄𝐍 𝐊𝐑𝐆_𝐠𝐚𝐮𝐬𝐬𝐢𝐚𝐧,𝐑𝐒𝐌_𝟐,𝐑𝐒𝐌_𝟑’. 

These rules exist in the well-trained selector CART, and once we use the selector, it 

automatically outputs the recommend surrogate-model types. For the number of rules, it is 

depended on the training process and the depth setting of CART. In our work, we set the max 

depth to 6, and the number of rules is more than 50. Besides, generating multiple types of output 

is beneficial to improve the robustness of our AutoSM. With this interpretable illustration of 

proposed AutoSM, serialization rules of surrogate model selection can be easily obtained. 

7.6 On Verification and Validation Creating an Automatic Multi-Level 

Surrogate Model Selection Process  

7.6.1.  Theoretical Structural Validation 

Theoretical structural validation refers to accepting the validity of automatic surrogate model 

selection and accepting the internal consistency of the way the putting together all three steps of 

surrogate model selection, including surrogate type, function type and hyperparameter tuning. 

Theoretical structural validation involves systematically identifying the scope of the automatic 

surrogate model selection, reviewing relevant literature and identifying the research gaps that is 

existing, identifying the strengths and limitations of the surrogate model selection process used 

based on literature review, determining the gaps and approaches that can be leveraged for SM 
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selection, reviewing literature on the advantages, disadvantages and accepted domains of 

application, and checking the internal consistency of the constructs both individually and when 

integrated. 

In Chapter 3, surrogate modeling literature is reviewed in detail. A detailed comparison of 

manual and automated SM selection is then carried out in Section 7.2.1. Then, the evolutionary 

algorithm based surrogate model selection is critically evaluated in Section 7.2.2. Then, the 

proposed three-layer structure of surrogate model selection is discussed in Section 7.3.1 followed 

by the introduction of AUTOSM framework in Section 7.4. Gap 1 in this dissertation, which is on 

Classifying the surrogate models based on common selection criteria. To address this gap, we 

framed the Research Question 1, which is “what are the main classes of the design of experiment 

(DOE) methods, surrogate modelling methods and model-fitting methods? “. To address this 

research question, we hypothesized that surrogate modeling methods can be classified based on 

the problem size, computational time, and accuracy. By doing this project and completing Chapter 

3 of the dissertation, we achieved the key outcome of a framework to provide guidance for 

researchers and practitioners to choose the most appropriate surrogate model based on incomplete 

information about an engineering design problem. 

7.7 Closing Remarks on Creating an Automatic Multi-Level Surrogate 

Model Selection Process  

The implementation of surrogate modeling techniques has become a substantive practice in 

engineering due to the expensive computation of current simulation codes, and how to select the 

appropriate surrogate model becomes a critical problem blocking the entire model constructing 

process. In this work, we propose a knowledge involved selection method, called AutoSM, to 

tackle the surrogate model selection problem. Compared to previous model selection approaches, 
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our AutoSM has two primary advantages: i) developing an interpretable decision tree model 

(CART) to generate the selection knowledge and reduce the number of surrogate model 

candidates, which increase the surrogate model selection speed dramatically; ii) having more 

comprehensive considerations of engineering scenarios by involving more complete features of 

engineering problems. 

We mapped the difference of problems into the difference of datasets using a set of features. 

So, we summarize four typical features for ten benchmark functions. By using instantiations as 

training data, CART is implemented to build the relationship between problem features and 

appropriate surrogate-optional types. In this way, the initial candidate model types are reduced 

from a ‘pool’ to a ‘cup’, and the selected speed is significantly improved. 

Three theoretical problems and two practical design problems, including a Hot Rod Rolling 

Process problem and a Blowpipe design problem, are employed to test the performance of 

AutoSM. Based on the results, using the proposed AutoSM method, we decrease the running time 

for each benchmark function by about 90% while maintaining the level of accuracy and robustness, 

which is a huge improvement. We also illustrate that the predicted accuracy of AutoSM is reached 

nearly 78% for all test problems. For the Blowpipe design problem, the anticipated results of 

AutoSM have an accuracy approaching 100%. Besides, RBF-cubic, RBF-multiquadric, and RSM-

4 show good prediction accuracy and robustness on almost all of the test problems. As such, these 

three surrogate models can be the first choice for surrogate models used in engineering design. 

Finally, because of the interpretable ability of CART, a visualized selection rule tree is created to 

decrease the required time on training and to select models on the evolutionary algorithm-based 

model selection process. Using this rule-based tree, we also provide an idea for solving the model 

selection problem rapidly.  
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CHAPTER 8 DESIGNING EVOLVING CPS SYSTEMS 

TRANSITIONING FROM PUSH TO PULL LOW CARBON 

ECONOMY  

(Comprehensive Problem) 

In this chapter, a comprehensive problem is formulated to demonstrate the utility of the 

partitioning-approximation-coordination design architecture. The Hypothesis 1 is tested in this 

chapter. An evolving cyber-physical-social system transitioning from a push to a low carbon pull 

economy is modeled to verify and validate the proposed partitioning-approximation-coordination 

design architecture. A multi-echelon, multi-channel, multi-commodity supply chain (SC) problem 

is modeled and designed from a climate change mitigation perspective. Research questions 1, 2, 

and 4 are addressed in this chapter and Hypothesis 1 is validated. 

8.1 Frame of Reference on Green Supply Chain Design 

Global warming, resulting from the use of fossil fuels, threatens the environment. Energy 

efficiency is one of the most important ways to reduce this threat (Alizadeh et al., 2016a; Alizadeh 

et al., 2016c; Alizadeh et al., 2015a). Moreover, increasing demand for energy, coupled with a 

restricted supply in world markets, results in an increased price for energy. This general 

development, as well as dynamics in price setting, generates uncertainties for organization 

schemes with respect to accurately calculated energy costs  (Alizadeh et al., 2016b).  The situation 

becomes even more complex since proper improvements in energy efficiency may be achieved by 

an approach that considers multiple activities and the energy consumption system. Fossil fuel 

combustion causes global warming by releasing CO2 and other greenhouse gases (GHGs) to the 

atmosphere (IPCC and Team, 2014). As shown in Figure 8.1, transportation accounted for 29% 

and electricity generation accounted for 28% of GHG emissions in the United States in 2019 [7]. 
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Among transportation based GHG emissions, the gasoline consumption by personal vehicle 

owners has the largest portion, at 81.9%. 

Transportation and electricity use of a retailer's supply chain network (like Walmart) are the 

main factors in determining its performance, which makes the supply chain network an interesting 

case in terms of GHG emission reduction (Jin et al., 2014). The fuel efficiency of the vehicles, the 

amount of load that they carry, the traveling distance, the capacity of the facilities primarily 

controls the GHG emission in a supply chain network (Benjaafar et al., 2012). 

 

Figure 8.1. Total emissions in 2019 = 6,457 million metric tons of CO2 equivalent (data source is 

(EPA, 2019) and figure is drawn by authors). 

The literature on green supply chain (GSC) network designs covers a broad range of topics, 

including facility location problems, location assignments, and vehicle routing problems. The goal 

of the supply chain (SC) network design problem is to find less operation cost (including variable 

production cost, transportation, and constant operating cost of facilities) (Cachon, 2014). 

Nevertheless, the goal of GSC network design is to identify the facility locations, facilities, and 

distributing resources to achieve less total cost of operation and GHG emissions (Altmann, 2015; 
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Brandenburg et al., 2014; Kuo et al., 2018; Osmani and Zhang, 2014; Seuring and Müller, 2008; 

Shaw et al., 2016). Overall GHG emission of the SC is identified by considering transportation 

and storage processes. 

Transportation-based GHG emissions are calculated from the fuel usage of vehicles multiplied 

by a conversion factor, and storage-based emission caused at facilities is calculated from the 

electricity usage of facilities multiplied by a conversion factor (Pishvaee et al., 2012; Soysal et al., 

2014; Zakeri et al., 2015). Thus, a conventional SC network design based on only operating cost 

is restructured into a network design based on GHG emissions. Various proposals to decrease 

GHG emissions (for example, carbon tax and carbon credits) have been combined with traditional 

SC constraints (for example, demand, capacity, supply, and storage balance constraints). Likewise, 

the objective function has also been changed into a combination of operation and emission costs 

(Choudhary et al., 2015; Colicchia et al., 2016; Garg et al., 2015).  

In addition, (Nouira et al., 2016) studied the effect of emission-sensitive demand over the 

facility location problem. The emission reduction problem has also been combined into a closed-

loop SC network design and reverse logistics  (Das and Rao Posinasetti, 2015; Gao and Ryan, 

2014; Garg et al., 2015; Kannan et al., 2012; Mohajeri and Fallah, 2016; Tao et al., 2015).  A green 

SC network design is a decision-making problem which is mostly modeled by a mixed-integer 

linear programming method. 

One class of vehicle routing problems that has been extensively studied is the Traveling 

Salesman Problem (TSP) Assuming a network of n stores, the TSP is to find the shortest path 

between the n points, starting and ending at the same store. Many studies have been conducted on 

heuristics and algorithms for the TSP (Applegate et al., 2003; Bektas, 2006; Bertsimas, 1992; Bock 

and Klamroth, 2019; Braekers et al., 2016; Bramel and Simchi-Levi, 1997; Carter and Ragsdale, 
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2006; Chatterjee et al., 1996; De Koster et al., 2007; Durbin and Willshaw, 1987; Fischetti et al., 

1997; Helsgaun, 2000; Jaillet, 1988; Laporte, 1992; Laporte and Osman, 1995; Lawler, 1985; 

Padberg and Rinaldi, 1991; Potvin, 1996). The TSP is used in some SC designs for routing the 

trucks, starting at a warehouse, visiting each store, and returning to the warehouse. 

Other vehicle routing problems have been studied, focusing on how a group of vehicles should 

be used to deliver to a group of points in a region in order to minimize the total distance travelled 

(for example, Daganzo (Daganzo, 1984), Dantzig and Ramser (Dantzig and Ramser, 1959), 

Haimovich and Rinnooy Kan (Haimovich and Rinnooy Kan, 1985) and (Bektaş et al., 2016; 

Bertazzi and Secomandi, 2018; Braekers et al., 2016; Campelo et al., 2019; Chiang et al., 2019; 

Defryn and Sörensen, 2017; Erdoğan, 2017; Govindan et al., 2019; Kalayci and Kaya, 2016; Koç 

et al., 2016; Li et al., 2019; Neves-Moreira et al., 2019; Niu et al., 2018; Reyes et al., 2017; Ruiz 

et al., 2019; Salavati-Khoshghalb et al., 2019; Soleimani et al., 2018; Uchoa et al., 2017; Vincent 

et al., 2017; Wei et al., 2018; Xiao and Konak, 2017)).  

These studies are further expanded by research which consists of inventory control and vehicle 

route planning (for example, Gallego and Simchi-Levi (Gallego and Simchi-Levi, 1990), Burns 

and co-authors (Barnes and Langworthy, 2003), Federgruen and Zipkin (Federgruen and Zipkin, 

1984) and (Bouma and Teunter, 2016; Chitsaz et al., 2016; Crama et al., 2018; Fokkema et al., 

2020; Jafarian et al., 2019; Mirzapour Al-e-hashem et al., 2017; Soysal et al., 2019)). The main 

distinctions between TSP and this GSC design are (i) the retailer can select the stores’ locations 

and (ii) the retailer is responsible for the customers’ traveling expenses (for example, the “last 

mile” of the SC is not neglected (Jiang et al., 2019; Kitjacharoenchai et al., 2019; Wang, 2019; 

Zhou et al., 2018a)).  
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Concentrating on just the customers’ traveling costs, the problem is equivalent to the famous 

k-median problem (also called p-median, the location-allocation problem and the multi-source 

Weber problem). In general, the goal is to partition a network (typically a complete graph of all 

points in the network) into k partitions, such that the distance between each point and its partition 

center is minimized (Figure 2). In Figure 2, circles are nodes, and squares are the partition centers. 

Line segments indicate the distance between a node and its partition center, and partitions are 

colored. In the context of SC’s, the goal is to identify k locations as the stores to minimize the 

overall traveling charge from the demand locations (customers) to the closest store.  

The k-median problem is usually investigated in its discrete form (for example, a limited 

number of potential demand and store locations (Kuzmenko and Uryasev, 2019)). However, there 

are studies on the continuous k-median problem, which is the SC design problem where the 

retailer’s traveling and space charges are neglected (Xavier and Xavier, 2019). Research on the k-

median problem has concentrated on good solution processes instead of building the solution. For 

more detailed information on the k-median problem refer to Daskin (Daskin, 2011). Extensive 

solution algorithms have been studied by Brimberg and co-authors (Brimberg et al., 2000) for the 

discrete k-median problem, and Fekete and co-authors (Fekete et al., 2005) studied the continuous 

form of the problem.  

Since the k-median problem creates clusters, it is used to solve the facility location problem. 

In previous literature, a dual approach of the k-median problem and TSP to determine facility 

locations has been considered.  Cachon (Cachon, 2014) studied this integrated problem, modeling 

vehicle routing as a k-median problem and truck routing as a TSP. 
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Figure 8.2. A network partitioned using the k-median algorithm.  

 

Figure 8.3. A two-echelon k-median network (left), and a two-echelon k-median and TSP 

network (right). 

We consider a two-echelon network, consisting of two instances of the k-median problem: one 

to model customers driving from their homes to a store, and another to model trucks driving from 

a warehouse to a store. In both cases, the problems are solved simultaneously—that is, the cars 

and trucks are routed simultaneously, and determine the location of the stores. In Figure 8.3, the 

difference between our model (left), and Cachon’s (right) is shown. The triangle in Figure 8.3. is 
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the second level partition center. For a SC, circles are customers, squares are stores, and the triangle 

is a warehouse. 

In a GSC network design, the goal is to find the SC network architecture and the capacity of 

the facilities in a way which the overall SC cost and GHG emission is low at the same time 

(Altmann, 2015; Purohit et al., 2016; Qi et al., 2017). There is extensive research on the 

relationship between GHG emissions and operational decisions. Haddadsisakht and Ryan study a 

SC network design in which the company can choose from a group of transportation modes under 

uncertain carbon tax and stochastic demands that change in their replenishment lead time, amount 

of emission and delivery charge (Haddadsisakht and Ryan, 2018).  

Benjaafar and co-authors (Benjaafar et al., 2012) investigate a single-location model where 

inventory planning decisions affect SC inventory charges, GHG emissions, and back-order charges 

which comprise an average constant quantity per unit kept in inventory; a constant quantity per 

unit sold; and a constant quantity per delivery. In our model, store locations are not pre-determined 

and will be located as part of the solution. Also, dissimilar to Haddadsisakht and Ryan 

(Haddadsisakht and Ryan, 2018), the retailer in our model has a single mode of transportation and 

the main focus is on distances travelled rather than lead time. Unlike (Benjaafar et al., 2012), our 

proposed model does not contain constant GHG emissions per unit sold, and the GHG emissions 

per delivery is not constant (it depends on the number and location of the stores).  

Similar to (Haddadsisakht and Ryan, 2018), in our proposed model, incurring an explicit cost 

for GHG emissions is not likely to considerably cut GHG emissions unless the cost is unreasonably 

high. In a similar way,  Chen and co-authors (Chen et al., 2013) study a model where a retailer and 

customers charge traveling and GHG emission charges based on distances. They also assess the 

charge minimizing the number of stores. However, they use a dissimilar spatial geometry, in which 
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stores, and customers are placed on the border of a circle. They find that restricting a retailer’s 

GHG emissions might result in an increase in overall GHG emissions, since it may result in higher 

customer GHG emissions. These sections show the effectiveness of various methods of providing 

incentives to cut GHG emissions (for instance via carbon taxes or different restrictions). We 

conduct a sensitivity analysis to further investigate this issue. 

Some authors study a SC in which companies can invest in GHG emissions reduction (Zhou 

et al., 2018c). They consider the amount of inventory, store locations, and replenishment paths. 

That is, they investigate how various models for allotting GHG emissions to different operations 

affect the quantity of investment in GHG emission cuts. Some scholars also investigate carbon tax 

regulations and find that poorly selected regulations may lead self-interested companies to choices 

which increase total GHG emissions (Jakhar, 2015; Keskin and Plambeck, 2011; Kök et al., 2018; 

Plambeck, 2012). Zhu and co-authors (Zhu et al., 2016) analyze the upstream architecture of the 

SC, keeping the downstream architecture, the location, and the number of stores constant. There 

is extensive literature on facility location problems (see Daskin 1995 and Snyder and Shen 2011) 

in which the authors usually concentrate on the constant charge of opening facilities and the 

transportation charge of serving the customers from facilities which are open (Daskin, 2011; 

Snyder and Shen, 2011). Govindan and co-authors (Govindan et al., 2017) review extensive 

literature which comprises inventory charges in the facility location problem: for instance, Correia 

and Melo (Correia and Melo, 2016), Cui and co-authors (Cui et al., 2010), and Klose and Drexl 

(Klose and Drexl, 2005). A critical observation from these studies is that there is a trade-off 

between economies of scale in inventory and location, where fewer and larger warehouses are 

more inventory effective. However, that method raises transportation charges as the warehouses 

are more distant from consumers. This is the same famous trade-off concerning economies of scale 
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and inventory. This trade-off also exists in our model with retail stores. Therefore, if there are more 

stores, they are less inventory efficient since they meet less demand.  They also have a single level 

of transportation in the SC (between warehouses and stores) while this model reflects the 

interaction between two transportation stages of the SC (inbound to stores and to customers’ 

houses). Most importantly, they do not concentrate on the ramifications of failing to reflect crucial 

charges inside the SC (as in the impact of neglecting GHG emissions charges). 

 Among these distinctions, assumptions regarding the mode of transportation are a critical issue 

in making the problem more realistic. For example, in many studies, including Cachon (Cachon, 

2014), the assumptions are: (1) the supplier trucks use the traveling salesman problem, which is 

not always appropriate; (2) a specific predefined distribution of demand such as uniform or normal 

distributions for the demand (Cachon, 2014). So, as shown in Table 1, two methodological 

contributions of ours are to remove these two assumptions. The first contribution is to remove the 

reliance on the TSP, as used in previous studies including Cachon (Cachon, 2014). Instead, we 

consider a SC based on the k-median problem. This is more appropriate for large retailers, such as 

Walmart, that utilize high-load truck resupply strategies and cross-docking. Moreover, while the 

total path distance (that is, the distance to go from the warehouse to every store and back) is 

minimized in the TSP, this does not make for a desirable supply chain design—consider the case 

in which the first store in the tour requires three truckloads of goods. Then, it would be optimal to 

send the three trucks, then have them return directly to the warehouse, instead of visiting every 

other store. However, the TSP would have them do the later. As such, we consider the vehicle 

routing problem to be a k-median problem, where the supplier truck starts from the warehouse, 

delivering the goods to the stores based on their capacity and demands, and then comes back to 

the warehouse.  
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Additionally, some authors assume that the supply chain is a hierarchical multi-echelon system 

(Altmann, 2015; Osmani and Zhang, 2014) while we considered it as a two-echelon network-based 

problem. The second contribution is to remove the second assumption in the literature by designing 

the supply network based on population density data, which has a non-uniform distribution. A 

green supply chain which has the features highlighted in gray in Table 8.1 is closer to how large 

retailers like Walmart operate. In this section, we focus on the downstream supply chain, which 

consists of inbound replenishments to facilities, the facilities themselves, and the portion between 

the retail facilities and customers' homes. As the number of facilities grows, a dense network is 

created, facilities become smaller, and customers find themselves closer to a facility, so they do 

not need to travel long distances for shopping. 

The capacity of retail facilities is of interest to city planners. One of the challenges is that large 

retail facilities result in a car culture, which makes customers travel longer distances than what 

they would travel if smaller facilities existed nearer their homes (Fry and Owen, 2013; Glaeser, 

2013; Shoup, 2017). Since traveling distance by customers results in additional emissions, 

environmental experts have been suggesting larger facilities (Cachon, 2014). The challenge of 

retail facility capacity is also related to a retailer’s long-term planning. First, a retailer’s store size 

impacts its attractiveness to customers.  

If we assume all other features the same, a customer prefers the convenience of a close store 

rather than a far store. For instance, (Pancras et al., 2012) finds customers act in such a way that 

the cost of one traveling mile is $0.60 for a fast food supply chain. Second, the problem of capacity 

is also vital to suppliers with emission reduction goals. For instance, Walmart has promised that it 

mitigates one billion m3 tons of GHG emissions from its SC network by 2030 (Walmart, 2018b). 
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These drops can happen from the retailer network it directly manages (for example, falls in its fuel 

use) that are often called scope 1 GHG emissions. 

Table 8.1. Summary of the critical evaluation of the literature on GSC design problem. 
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(Pishvaee et al., 2012) * * *   * *  

(Osmani and Zhang, 2014) * * *  *   * 

(Altmann, 2015) * * *  *  *  

(Shaw et al., 2016) * * *   *  * 

(Kuo et al., 2018) *  *   * *  

(Soysal et al., 2014)  * *   *  * 

(Zakeri et al., 2015) *  *  *   * 

(Choudhary et al., 2015) * * *   * *  

(Garg et al., 2015) *  *   * *  

(Colicchia et al., 2016)  * *   * *  

(Kannan et al., 2012)  * *   * *  

(Mohajeri and Fallah, 2016)  * *  *   * 

(Gao and Ryan, 2014)  * *   *  * 

(Garg et al., 2015) * * *   * *  
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 Inventory 

management  

Truck Routing Design Demand 

Distribution 

(Cachon, 2014) * * *   * *  

Our work * *  *  *  * 

On the other hand, decreases can descend further into the retailer network (for instance, 

decreases in its customer fuel use), which is a share of scope 3 GHG emissions. Even though it is 

possibly too expensive to change the entire store's capacity to obtain emission mitigation goals in 

the short-run, the capacity and position of facilities is considerably changed through a long-run 

period of five or more years. For instance, from 2006 to 2010, Walmart reduced the number of 

discount facilities in the US by one-third (1,209 to 803), and increased bigger supercenters by 60% 

(1,713 to 2,747) whereas also growing its small store setup, Neighborhood Marketplaces, by about 

60% (100 to 158) (Cachon, 2014). 

The remainder of the section is as follows: in Section 8.3, we explain the generic modeling 

process of a green supply chain. In Section 8.4, we introduce and explain our approach that we use 

for designing the GSC. In Section 8.5, we discuss the results of an extensive sensitivity analysis, 

and finally, we end with the closing remarks in Section 8.6. 

8.2 Modeling the Green Supply Chain Problem as a Two-Echelon Supply 

Chain 

8.2.1.  Modeling decision interactions 

In this section, we explain how the retail store density problem is related to the downstream 

supply chain. The requirements for solving the problem include the number, location, size of the 

suppliers and stores, the number and schedule of the deliveries, and the shape of the area. Also, 
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research questions worthy of investigating and hypothesis to the test these research questions is 

discussed in this section.  

The retail store density problem is stated as: "given a set of customers spread non-uniformly 

across some region, determine how many stores should a retailer have in the region, and where 

should those stores be, in order to minimize the store's operating costs." 

Our SC is modeled as a two-echelon network, in which goods flow from a single, central 

warehouse to stores, then from the stores to customers. Trucks transport the goods from the 

warehouse to the stores, and cars from the stores to the customers. Neither locations nor the number 

of facilities are known ahead of time. Both vehicle routing problems (cars and trucks) are modeled 

as k-median problems. 

In our SC, a retailer’s operating cost consists of three components: stores, trucks, and cars. We 

assume that while demand is non-uniform across a region, it is uniform across customers, that is, 

while customers may be grouped in various neighborhoods, each customer purchases the same 

amount of goods from a store over a given period. Of course, if a retailer only needs to minimize 

the cost of operating their stores, the retailer should simply open only one store. However, 

embedded in the store's operating cost is the customer's cost: because customers are willing to pay 

more to enjoy the convenience of going to a closer store, retailers compensate consumers for 

driving long distances by having lower prices at larger stores (Grewal et al., 2012).  

Small stores in densely populated areas charge more because consumers are willing to pay 

higher prices for the convenience of a closer store. Meanwhile, large stores charge less, 

compensating customer for the longer distance they drive to get to the store. As such, the retailer 

has costs: (1) the truck cost, which is the cost of a truck driving from a warehouse to the store; (2) 

the car cost, which is the cost of a car driving from the customer's home to the store and the retailer 



 

263 
 

reimburses the customer for; (3) the inventory cost, which is the cost of having a store large enough 

to fulfil all of the customer's needs. 

We use a single warehouse in our model, which can be extended to a multi-warehouse model. 

In our model, each store has a truck that connects directly to it from the warehouse. Each period, 

the store is resupplied by this truck, perhaps many times (or by many trucks at once – the two are 

equivalent). We assume that a retailer can stockpile goods, and thus if a store does not need enough 

products to fill a truck in full, they can fill a truck in one period, stockpile the goods, then use it 

from the stockpile in the next period. In this way, we model the truck-resupply problem as a k-

median problem, in contrast with previous literature, which modeled the truck-resupply problem 

as an instance of the Traveling Salesman Problem (Cachon, 2014). 

The customer connections are also a k-median problem, which allows us to model the Retail 

Store Density Problem entirely as a partitioning problem. Given a set of customer locations, we 

wish to partition the set into a number, k, of subsets such that the operating cost is minimized. k is 

not known ahead of time and must be determined. We also wish to determine the locations of the 

facilities that each subset of customers connects to. 

The inventory cost is interesting for several reasons. Regarding the retail space, if it is 

proportional to the quantity of inventory kept, a new inventory model is required. In this situation, 

the optimum policy of selecting inventory quantity is not known and probably intricate. Heuristic 

strategies have been proposed (Cachon, 2001; Gürbüz et al., 2007), but their findings do not 

suggest closed-form approximations of inventory levels. Therefore, we propose two different 

modeling mechanisms. The first is linear: for each customer that connects to a store, a store needs 

additional space proportional to the amount of goods that a customer purchases per period. This 

has the advantage of being very easily modeled, as we see in the next section. However, this is not 
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very realistic – in general, the inventory cost does not scale linearly with each customer added; the 

cost of the 1000th customer connecting to a store is less than the cost of the 100th connecting. One 

approach to deal with this non-linearity is to use piecewise cost functions, as we see in the next 

section. 

Related to the Retail Store Density Problem and the k-median problem is the capacitated 

Facility Location Problem (FLP). It is stated informally as: "given a set of facilities with costs to 

open each one, and a set of customers with costs to connect to each facility, determine the subset 

of facilities to open such that all customers are connected to one open facility." We propose a 

modification to the FLP, in which the partial cost of an additional truck delivering goods to a 

facility due to a customer connecting is included in the cost for that customer, meaning that the 

total customer connect cost is cc + dct / qt where d is the demand or amount of goods (in kg) that 

a customer purchases in a given period and qt is the capacity of the truck. 

8.2.2.  Problem formulation of green supply chain design as a retail store density 

problem and a linear program 

We formulate the Retail Store Density Problem as a linear program. Let 𝑓𝑗 refer to the cost of 

opening a store 𝑗, 𝑐𝑖𝑗 refer to the cost of a customer 𝑖  connecting to store 𝑗, 𝑥𝑖𝑗 be a binary variable 

tracking if customer 𝑖 connects to store 𝑗 and 𝑦𝑗 be a binary variable tracking if store 𝑗 is open. 

Then, the objective function is: 

Minimize: 

∑𝑐𝑖𝑗𝑥𝑖𝑗 +∑𝑓𝑗𝑦𝑗
𝑗𝑖,𝑗

 
Equation 8.1

  

 Subject to: 
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∀𝑖 ∶ ∑𝑐𝑖𝑗 = 1

𝑗

 
Equation 8.2

  

  

∀𝑖, ∀𝑗 ∶ 𝑦𝑗 − 𝑥𝑖𝑗 ≥ 0 Equation 8.3

  

∀𝑖, ∀𝑗 ∶ 𝑥𝑖𝑗 ∈ {0,1} Equation 8.4

  

∀𝑗 ∶ 𝑦𝑗 ∈ {0,1} Equation 8.5

  

In Equation 8.2, it is shown that every customer must be connected to exactly one store. 

Equation 8.3 implies that no customer is connected to a store that is closed. Equation 8.4 and 

Equation 8.5 constrain 𝑥 and 𝑦 to be binary. 

 This objective function works well when the inventory cost linearly scales with the number of 

customers connected to a store because the customer connects cost can simply include the partial 

inventory cost for that customer. However, when the inventory cost does not scale linearly, we add 

the inventory cost to the open cost for a store (𝑓𝑗) and add an additional constraint that each store 

must have fewer customers than some maximum capacity 𝑞𝑓: 

∀𝑗 ∶ ∑𝑥𝑖𝑗
𝑖

< 𝑞𝑓 
Equation 8.6

  

 In this way, we introduce a piecewise, non-linear inventory cost. With this constraint, each 

store has a set size (𝑞𝑓), and there is some set amount of store sizes and the maximum number of 

customers that can connect to a store of that size. However, this constraint comes at the cost of 
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computational complexity: if we wish to add just additional possible store sizes, each candidate 

store location must be modeled as a collocated candidate location with the additional constraint: 

∀𝑙 ∶ ∑𝑥𝑙∗𝑘 ≤ 1

𝑘

 
Equation 8.7

  

 Where 𝑙 replaces 𝑗 as the store location index and 𝑘 represents an index in the range of 1 to 

the number of locations. For instance, if we wish to offer three possible store sizes for 12 possible 

store locations, our model treats this as 36 possible store locations, with the constraint that 

collocated stores cannot be simultaneously open (the above constraint). 

 We generate the costs for the objective function via the following cost functions. The cost of 

a customer 𝑖 connecting to a particular store 𝑗 is the cost of a customer driving to a store plus the 

partial cost of the truck driving to the store. The cost of the customer driving to the store is: 

𝑑𝑖𝑗(𝑣𝑐 + 𝑓𝑐(𝑝𝑓 + 𝑒𝑐𝑝𝑒)) Equation 8.8

  

  Where 𝑑𝑖𝑗 is the distance from the customer to the store, 𝑣𝑐 is the non-fuel variable cost for 

the car to travel per unit of distance ($/km), 𝑓𝑐 is the amount of fuel required per unit of distance 

(L/km), 𝑝𝑓 is the price of fuel per unit of fuel ($/L), 𝑒𝑐 is the amount of emissions due to the car 

per unit of fuel (kg-CO2 / L), and 𝑝𝑒 is the price of emissions ($/kg-CO2). 

The cost of the truck driving to the store from the warehouse per customer, is: 
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𝑞𝑐𝑑𝑗
𝑣𝑡 + 𝑓𝑡(𝑝𝑓 + 𝑒𝑡𝑝𝑒)

𝑞𝑡
 

Equation 8.9

  

 Where 𝑑𝑗 is the distance from the warehouse to the store, 𝑞𝑡 is the amount of goods (in kg) 

carried by the truck, and 𝑞𝑐 is the amount of goods purchased by each customer. The remainder of 

the variables are as described above, applied to the truck.  

Therefore, 𝑐𝑖𝑗 (the cost of a customer connecting to a store) is: 

𝑐𝑖𝑗 = 𝑑𝑖𝑗(𝑣𝑐 + 𝑓𝑐(𝑝𝑓 + 𝑒𝑐𝑝𝑒)) + 𝑞𝑐
𝑑𝑗(𝑣𝑡 + 𝑓𝑡(𝑝𝑓 + 𝑒𝑡𝑝𝑒)

𝑞𝑡
 

Equation 8.10  

 where 𝑞𝑐 is the amount of goods (in kg), which a customer purchases in a given period (that 

is, the demand). The cost, 𝑓𝑗, of a store 𝑗  opening, is the cost of the building plus the cost to heat 

and cool the building: 

𝑓𝑗 = 𝑐𝑚𝑎𝑥𝑞𝑐
𝑣𝑠 + 𝑓𝑠(𝑝𝑓 + 𝑒𝑠𝑝𝑒)

𝑞𝑠
 

Equation 8.11

  

 Where 𝑣𝑠. is the variable cost of the store per unit of space required (for instance, rent), 𝑓𝑠 is 

the fuel required to heat or cool the store per unit of space, 𝑝𝑓 is the price of fuel per unit, 𝑒𝑠 is the 

amount of emissions generated by the store per unit of fuel, 𝑝𝑒 is the price of energy, and 𝑞𝑠 is the 

number of units stored per unit of space, 𝑐𝑚𝑎𝑥 is the maximum number of customers that can 

connect to a given store, and 𝑞𝑐 is the amount of goods that a customer purchases in a given period. 
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8.2.3.  Solving the designed green supply chain and the retail store density problem  

The schematic of the proposed GSC network design model is shown in Figure 8.4 (reproduced 

from above), with circles representing customers, squares representing stores, and the central 

triangle representing the warehouse. Line segments show connections, and partitions are colored. 

The schematic of the proposed method is shown in Figure 8.4. We model the network of 

customers and facilities using R. The customer's location comes from population density data: each 

customer is located at some point on an x-y grid. We later discuss choosing the store locations, for 

now, assume we have some candidate store locations on an x-y grid. Then, we can calculate the 

distance between each customer and store to create a maximally dense distance graph, which we 

store as an array. From this, we can calculate the car and truck costs for each customer connecting 

to each store. 

Figure 8.4. The proposed GSC network design model. 

Recall that each candidate store location is represented as several candidate facilities, each with 

a different maximum size and opening cost, with the constraint that no two facilities at a single 

location are open simultaneously. As such, we have three arrays: (1) connect, an array containing 
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the cost of each customer to connect to the store, for each pair of customer and candidate store 

location. This is useful to retain as a two-dimension array, because we may wish to index by both 

the customer and the store. Additionally, it is useful to store the cost of the customer connecting 

to each candidate store at some location in computer’s memory, although their connection cost is 

the same for each store size. As such, connect has size 𝑖 ∗ (𝑗 ∗ 𝑘), where 𝑖  is the number of 

customers, 𝑗 is the number of store locations, and 𝑘 is the number of store sizes. (2) open in an 

array containing the cost to open each store. In practice, this can differ for each candidate store, 

because there may be different costs (such as the price of electricity or the cost to lease or purchase 

a store) for each location. We do not model such scenarios and consider the price to open a store 

of a given size to be uniform. However, we still include the price to open each candidate store in 

the open array for later use. As such, open has size 𝑗 ∗ 𝑘  (3). The array size, containing the 

maximum number of customers that can connect to a candidate store has size 𝑗.  After generating 

these arrays, we use Python and IBM's CPLEX to create the linear program (Equation 8.1 to 

Equation 8.5) and add the variables and constraints with a 1:1 mapping between the generated 

arrays and the linear program. Therefore, we can store each variable regardless of the redundancy. 

Then, we run the linear program, which outputs which facilities are open and which customers 

connect to them. Using this and the cost matrices, we can determine the total system cost. 

Before considering the results, however, we shall now return to the question of selecting 

candidate store locations. Visualize the locations of the customers as points on an x-y plane. Then, 

we draw lines upon this plane and select the center of each grid as a candidate store location. If we 

draw these lines close together, say, every 50 meters, then we have a large number of candidate 

store locations, which dramatically increases the computational and space complexity. However, 

if we draw the lines very far apart, say, ever 5000 meters, then we have a small number of candidate 



 

270 
 

store locations, and potentially limit the solutions by excluding the possibility of a large number 

of small facilities. We choose to draw lines every 500 meters. In addition, we aggregate our 

population data into 50-meter by 50-meter squares, again selecting the center of each square as the 

location and assigning each location to be the number of customers in the area.  

After generating this aggregated data, we compute a matrix containing the distance between 

each customer and each candidate store location. From this, we can compute the arrays, as 

described above, but with one permutation: we treat each aggregated customer location (the center 

of the 50-meter by 50-meter square) as a single customer, then, after the various costs have been 

computed, we multiply the connect cost by the number of customers in a region. This permutation 

also requires an additional array, customers, which has size 𝑖  and represents the number of 

customers in a given aggregated area. This new array is required because we need to check that a 

store is not connected to too many customers (6). As such, we must modify the constraint to 

account for the fact that the variable 𝑐𝑖𝑗 may actually represent several customers: 

∀𝑗 ∶ ∑𝑥𝑖𝑗 ∗ 𝑠𝑖
𝑖

< 𝑞𝑓 
Equation 8.12

  

 Where 𝑠𝑖 represents the number of customers in an aggregated area 𝑖. In summary, we take 

population data, aggregate it so that we have lower resolution to decrease the computational and 

space complexity, then compute the various costs for customers to drive to facilities, trucks to 

drive to facilities, and the facilities to open. Then, we run the following linear program: 

Minimize: 

∑𝑐𝑖𝑗𝑥𝑖𝑗 +∑𝑓𝑗𝑦𝑗
𝑗𝑖,𝑗

 
Equation 8.13

  

 Subject to: 



 

271 
 

∀𝑖, ∀𝑗 ∶ 𝑦𝑗 − 𝑥𝑖𝑗 ≥ 0 Equation 8.14  

∀𝑖, ∀𝑗 ∶ 𝑥𝑖𝑗 ∈ {0,1} Equation 8.15  

∀𝑗 ∶ 𝑦𝑗 ∈ {0,1} Equation 8.16  

∀𝑗 ∶ ∑𝑥𝑖𝑗
𝑖

< 𝑞𝑓 
Equation 8.17  

∀𝑓 ∶ ∑𝑦{(𝑗 % 𝑙𝑒𝑛𝑔𝑡ℎ(𝑓))∗𝑓} ≤ 1

𝑓

 
Equation 8.18  

 

∀𝑗 ∶ ∑𝑥𝑖𝑗 ∗ 𝑠𝑖
𝑖

< 𝑞𝑓 
Equation 8.19

  

After running this program, we analyze the resulting partitioned network. 

8.2.4.  Results of solving the designed green supply chain and the retail store density 

problem 

We used the same parameter estimations as Cachon (Cachon, 2014)uses, in order to compare 

our results. These parameters are summarized in Table 8.2 and Table 8.3. 

Table 8.2. Parameter estimations 

 Cars Trucks Stores 

𝑣 0.0804 0.4840 4.09 

𝑓 0.1110 0.3920 - 

𝑝𝑓 0.980 1.050 0.44 

𝑒 2.325 2.669 2.43 

𝑞 18 20000 141 
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The car’s q value is the demand for the system is the amount that a customer purchases in a 

period. The store’s q value is the ‘packing efficiency’, in units’ kilograms of products per square 

meter. The period for this system is one week, that is, customers are assumed to shop at the store 

once a week, trucks resupply the store once a week, and store costs are the cost for one week of 

operation. These parameters are then applied to the cost functions defined above (8, 9, 11), with a 

distance of 1 km for the cars and trucks and a period of 1 week for the stores. 

Table 8.3. Cost functions applied to parameter estimations 

 Car ($/ 

km) 

Truck  

($/km -

customer) 

Small  

Store ($/ customer-

period) 

Medium  

Store ($ / customer-

period) 

Large  

Store ($/ 

customer-

period) 

Operating 2.1e-02 1.6e-03 1.77 8.89e-1 7.48e-1 

Emissions 2.87e-05 1.89e-06 9.46e-4 4.75e-4 4.00e-4 

To calculate the parameters in Table 8.3, all stores are assumed to be at max capacity, and 

prices emissions at $1 / ton CO2. For input, we used a high-precision population density map of 

Puerto Rico, which provides population density at a resolution of 30 meters by 30 meters. Data is 

stored as a 3-tuple of the x-y coordinates of each location and the number of people living at that 

location [116]. We analyzed two subsets of this data. The first contains the entire island, which 

has an area of 9,104 km2 (170 km by 60 km), and a population of 3,994,259 people. The second 

contains the city of San Juan, Puerto Rico’s largest city and capital. We considered both the city 

and the surrounding area, sub-setting a region with an area of roughly 2,500 km and a population 

of 2,199,923. These two regions are seen in Figure 8.5. 
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We subset this data into roughly 1,000 customer nodes and 300 store nodes, in order to keep 

the complexity low enough for the problem to be solvable in a reasonable period of time. For the 

whole island scenario, there are 1155 customer nodes with area 1155 km2 and 554 store nodes with 

area 20.36 km2. For the San Juan simulation, there are 1017 customer nodes with area 2.26 km2 

and 279 store nodes with area 9.0552 km2. These nodes are then used to calculate cost matrices, 

which form the input for the integer program as described in (13-20). This was solved using IBM’s 

CPLEX. Simulations were run on a high-end desktop computer, with up to 5 hours allotted for 

each run. Each simulation ended after either running for 5 hours or achieving 1% optimality. All 

simulations reached 3% optimality, so values can generally be considered accurate to ±3%. 

We consider two baseline scenarios: operating cost minimization and emissions minimization. 

We ran the above linear program over the two data sets, and found that, in the whole-island 

scenario, 𝑛𝑜 = 134  and 𝑛𝑒 = 260 , indicating that the emission-minimizing system has many 

more, smaller stores that are closer to customers (𝑛𝑜 represents the number of stores in operating 

cost minimizing system and 𝑛𝑒 represents the number of emission minimizing system). This result 

is in line with the result of earlier research, notably Cachon (Cachon, 2014), in that the emission 

minimizing system has more stores than the operating cost minimizing system. Plotting the x-y 

locations of customers as circles with the color denoting the store they connect to, and stores as 

squares with sizes according to their capacity yields  

 

. Distances are in kilometers, and customers are scaled according to the number of people at 

the node. The central warehouse is not shown. The size of the stores is shown in three categories 

of small, medium and large. 
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Figure 8.5. Municipalities of Puerto Rico (Wikiland, 2020) . 

 

 

 

 

 

 

 

 

 

Figure 8.6. Locations of customers (circles) and the stores (squares) that they connect to, in the 

emission minimizing system and operating cost minimizing systems. Distances are in kilometers 

(Williams et al., 2020). 

The fact that, in our model, 𝑛𝑜 < 𝑛𝑒 (the emissions minimizing system has more stores than 

the operating-cost minimizing system), largely confirms the results of Cachon (Cachon, 2014) and 

others. The emissions-minimizing system likely has more stores because the cost of a customer 

driving to a store is so high. It far offsets any emissions or cost increases from additional stores 
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opening and trucks driving to them. This result is likely due to three factors: (1) trucks can carry 

goods for many customers, but their emissions and cost are much less than that of the customers, 

per kilometer (by a factor of 2). (2) No matter which store the customer connects to, trucks are 

required to supply the store, so that cost is somewhat fixed, making the cost that the customer 

incurs more variable. (3) Larger stores are more space-efficient than smaller stores and require less 

heating and cooling per unit of capacity. However, the difference between a small store and a large 

store is small compared to the cost of the distance that a customer drives. A customer driving an 

extra forty kilometers offsets the difference between a small and medium store in the operating 

model, and in the emissions model, just sixteen extra kilometers offsets the difference. This 

difference likely accounts for the different store layouts (the different number and arrangement of 

stores) in the operating-cost minimizing and emissions-minimizing models. We consider two 

forms of analysis: penalty bound and gap reduction. The emissions or operating penalty bound is 

the amount that emissions (or operating costs) increases when it is not the cost being minimized. 

In other words, the penalty bound is the amount of possible reduction, expressed as a percentage 

of the minimum cost. Then, the emission penalty: 

𝑃𝑒 =
𝐶𝑒(𝑜) − 𝐶𝑒(𝑒)

𝐶𝑒(𝑒)
 

Equation 8.20 

Where 𝑃𝑒 stands for the emission penalty, 𝐶𝑒(𝑜) and 𝐶𝑒(𝑒) represent the emissions cost 𝐶𝑒 

of an operating-cost minimizing system 𝑜  and the emissions cost of an emission minimizing 

system 𝑒, respectively. Similarly, the operating penalty is: 

𝑃𝑜 =
𝐶𝑜(𝑒) − 𝐶𝑜(o)

𝐶𝑜(𝑜)
 

Equation 8.21
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 For the baseline, whole island scenario, 𝑃𝑒 = 7.35%, and 𝑃𝑜 = 7.29% . In the San Juan 

scenario, 𝑃𝑒 = 5.55% and 𝑃𝑜 = 7.84% These results are striking and differ significantly from 

Cachon’s (Cachon, 2014) estimated 0.3% for both values. This result is because of the change in 

the network topology – Cachon  (Cachon, 2014) suggests that his model has a similar ratio of the 

total cost of cars and trucks, so the network is somewhat balanced between emissions and operating 

costs. That is to say, because a retailer in Cachon’s model (Cachon, 2014) wishes to minimize the 

distance cars have to travel and trucks have to travel, and they want to minimize these distances 

roughly equally (a kilometer in one is about equal to a kilometer the other), the system that 

minimizes emissions is similar to the system that minimizes operating costs. Another reason for 

this difference comes from the motivation for using the k-median algorithm – under the TSP, a 

truck may deposit all of its goods at the first store, then travel to all the other stores while empty 

before returning to the warehouse, wasting resources and driving up the truck cost. Therefore, if a 

retailer is of a sufficient size such that it requires more than one truck every period, then trucks 

travel less distance if they go directly to the store and back. Since 𝑞𝑡 = 20000, 𝑞𝑐 = 18, 1111 

customers need to connect to a store in order to require an entire truck. For the whole-island and 

San Juan scenarios every store meets this criterion, in both the emission and operating cost models.  

As an aside, this result (that there are more stores in the emission minimizing scenario) is due 

to the higher cost of car transportation than truck (Table 8.3). However, in both scenarios, the cost 

of cars dominates, and so the penalty is relatively small, driven by the relative cost of cars and 

trucks. The gap reduction is considered the amount that any "hybrid" system reduces the emissions 

or operating cost relative to the total amount of reduction that can occur. Consider the emissions 

gap reduction, under three scenarios: operating cost minimization, emission minimization, and a 

hybrid of operating costs and some price of carbon. Then, the emission minimizing system should 
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have the least emissions, and the hybrid model should have the second least. We hypothesize that 

the operating cost minimizing system has the largest emissions, because the cost of those emissions 

is not built into the objective function, and so they cannot be minimized. The emissions gap 

reduction 𝐺𝑒 of a hybrid system ℎ is, therefore: 

𝐺𝑒(ℎ) =  
𝐶𝑒(𝑜) − 𝐶𝑒(ℎ)

𝐶𝑒(𝑜) − 𝐶𝑒(𝑒)
 

Equation 8.22

  

  Similarly, the operating cost gap reduction 𝐺𝑜is: 

𝐺𝑜(ℎ) =  
𝐶𝑜(𝑒) − 𝐶𝑜(ℎ)

𝐶𝑜(𝑒) − 𝐶𝑜(𝑜)
 

Equation 8.23

  

 Considering a carbon tax of $100 / metric ton of CO2 (Eisaman et al., 2018),  in the whole-

island baseline scenario of our model, the maximum possible reduction in emissions is 7.35%. 

𝐺𝑒(ℎ100) = 21.08%, indicating that a carbon tax of $100 / metric ton of CO2 achieves 21% of 

the total emissions reduction possible, or a 1.54% reduction. Given that $100 / metric ton a rather 

high price, this indicates that a carbon tax is relatively ineffective in encouraging a greener supply 

chain. In the San Juan scenario, this gets even worse - 𝐺𝑒(ℎ100) = −6.18%, indicating that the 

added carbon tax actually resulted in increased emissions. Table 8.4 summarizes the values of 𝐺𝑒 

and 𝐺𝑜 for the San Juan and whole island scenarios. 

All values are percentages, so 𝐺𝑜 > 100 means that the operating cost was lower in the carbon 

tax scenario than in the operating-cost minimizing scenario. In the San Juan scenario, this result is 

interesting, and counter intuitive. These results are due to the limits of the region—in the whole 

island scenario, the effects of each change to the scenario are easier to see, because it’s a larger 

area. 
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Table 8.4. Carbon tax gap reduction.  

 Whole Island San Juan 

Carbon Tax G^o G^e G^o G^e 

50 95.49 5.73 106.57 -6.18 

100 96.40 21.08 104.15 -10.13 

500 91.39 53.32 107.09 41.80 

In the San Juan scenario, the relatively small region, combined with the fact that CPLEX may 

not find the optimal solutions (due to the time and complexity limitations), results in a decrease in 

precision.  However, the San Juan scenario is useful, because it indicates what may happen in 

smaller regions, like cities—that is, even if a carbon tax were effective on large supply chains, if 

it does not work in smaller regions, then it is not effective at reducing emissions. The San Juan 

scenario shows that our model indicates it is even harder to drive down emissions in smaller 

regions, like cities. This is because retailers may only consider city-level changes to their supply 

chain, and likely do not have a single warehouse for a very large region. Considering the San Juan 

scenario addresses this concern, because the limits of different scenarios is shown in a smaller 

region. In the gap reduction measurement, small changes in values are over-emphasized, and for 

this reason, the operating cost and emission values for San Juan example are shown in Table 8.5. 

The difference between the base operating cost scenario and the hybrid scenarios is very small 

(<3%) and attributed to not reaching the optimal solution and the limited solution space within the 

confined region. To further demonstrate this, consider in Figure 8.7, which graphs of San Juan and 

minimizing emissions, operating cost, and the hybrid (carbon tax) scenarios are shown. Distances 

are in kilometers, and circles (customers) are scaled according to the number of people at the node. 

The central warehouse is not shown.  
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Table 8.5. Operating cost and emission values. 

 Whole Island San Juan 

Scenario C^o C^e C^o C^e 

Operating Cost ($) 9973481 9612 4025020 3563 

Carbon Tax $50/ton 𝐶𝑂2 10006236 9575 4004306 3575 

Carbon Tax $100/ton 𝐶𝑂2 9999607 9473 4011917 3582 

Carbon Tax $500/ton 𝐶𝑂2 10036084 9261 4002663 3485 

Monetized Emission ($) 10700667 8954 4340453 3376 

Figure 8.7. San Juan operating cost, carbon tax, and emission minimizing scenarios. 
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The size of the stores is shown by the size of the squares in three categories of small, medium 

and large. Finally, we consider eleven possible scenarios and compared the effect they have on the 

baseline, as shown in Table 8.6. To facilitate the comparison with previous studies, the same 

parameter estimates as Cachon (Cachon, 2014) are used.  

In Table 8.6, values are averaged from the two scenarios. Costs are measured relative to the 

baseline. Negative values indicate increases and are underlined for emphasis. Doubled Gas Prices 

doubles the cost of fuel for cars and trucks.  

Table 8.6. Different scenarios 

 Operating Cost Emission 

Name Reduction Pe Reduction Po 

Baseline - 6.45 - 7.57 

Doubled Car fuel efficiency 14.02 2.03 29.05 2.29 

Doubled Truck fuel efficiency 0.32 7.20 0.34 7.51 

Doubled Car, truck efficiency 14.50 2.40 29.31 3.23 

Doubled Fuel Prices -22.60 2.19 0.00 2.77 

Low electricity emissions 0.00 19.80 27.99 20.22 

High electricity emissions 0.00 1.59 -20.48 2.43 

High rent cost -44.12 16.27 0.00 22.55 

Low electricity emissions, high rent -44.12 39.16 27.99 41.89 

High store fuel usage -7.51 0.69 -56.59 -0.36 

High store fuel usage, high rent -5.17 2.38 -56.59 3.97 

The sensitivity analysis conducted using these scenarios, demonstrates that our model is 

resilient to even large changes in the input parameters. This implies that a supply chain is built 
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under either an operating-cost minimizing, or emission-minimizing strategy is similar to a supply 

chain under a different set of input parameters. This resilience is expected, both from previous 

research and from the opposing costs of customer’s cars and retailer’s trucks and stores. Cachon 

(Cachon, 2014) found a similar gap reduction for many of these scenarios. In the baseline, scenario, 

the penalty for choosing one scenario over another is somewhat small (~7%), and so a system that 

minimizes the operating cost ends up looking similar to a system that minimizes emissions. This 

is because the largest cost, under both systems, is the cars (Table 8.2). The difference between the 

two models is then due to the exact balance point between the customer’s and the retailer’s costs. 

Four scenarios in Table 8.6 have identical performance to the baseline. For instance, the high 

store fuel cost scenario increases emissions, while the high rent scenario cost does not. This is due 

to the fact that the operating cost / emissions reduction is measured relative to the respective 

minimizing scenario – in the high rent, operating-cost minimizing scenario, the emissions are 

increased over the emissions in the baseline, emission minimizing scenario (that is, 𝑃ℎ𝑖𝑔ℎ 𝑟𝑒𝑛𝑡
𝑒 >

𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑒 ). However, because the rent does not contribute to GHG emissions, it is not considered 

by the emission minimizing scenario, resulting in the high rent, emission minimizing scenario 

being the same as the baseline emission minimizing scenario. This is the same for the doubled gas 

price scenario. The converse holds for low and high store electricity emissions–the operating cost 

does not change, although the emissions do.  

Note in the doubled gas prices scenario, the penalty (𝑃𝑒 , 𝑃𝑜) is more than halved, indicating 

that the operating-cost minimizing system is approaching the emission minimizing system, so 

while the operating cost has increased, the emissions of the system have decreased. In this case, 

doubling the gas prices is actually more effective than a carbon tax of $100 / metric ton CO2, 

which has 𝑃𝑒 = 5.80 (note that these are directly compared because they are relative to the same 
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baseline). This is because doubling the gas price increases the cost of both trucks and cars (but, 

importantly, not the cost of opening more stores), and increases the cost of cars more than the cost 

of trucks (it increases the car operating cost by 57% and the truck operating cost by 46%). 

Therefore, the operating-cost minimizing system have more overall stores, which in turn means 

fewer overall emissions. 

In six scenarios in Table 8.6, either operating cost or the emissions of the system (underlined) 

are increased. In the case of high store electricity emissions, high rent cost, and high store fuel cost 

(operating cost), this is expected. The high store fuel cost, emission minimizing scenario, however, 

is interesting. In this case, the operating cost rose only mildly (7.51%), but the emissions increased 

by 57%. This, again, shows the impact of non-fuel costs—only a small portion of the store’s 

operating cost controls the emissions of the store. Increasing the store’s fuel consumption (which 

models a store with inefficient heating and cooling system) barely raises the operating cost, but 

drastically increases the emissions. 

Based on the results, the best way to decrease the system’s emissions is to double the fuel 

efficiency of cars. Cachon (Cachon, 2014) concluded that doubling the fuel efficiency of trucks 

would have the most significant effect, however, this is likely due to a different topology. In his 

model, a change to the truck's fuel efficiency could propagate down and make a simulation with a 

higher number of stores more feasible, but in our model, this effect is somewhat limited by the 

already low cost of trucks. Moreover, Cachon’s (Cachon, 2014) recommendation are based on the 

emissions gap reduction per system – that is, in a system with doubled truck fuel efficiency, a 

carbon tax is more effective in reaching the minimum emissions for that system. However, 

according to our results, even the best-case scenario for doubled truck fuel efficiency is much 

worse than that of doubled car fuel efficiency, making it a less viable option. Another viable 
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scenario is doubling gas prices, which would have a similar effect to doubling car fuel efficiency 

in the operating cost minimizing scenario, however, it has no effect on the emission minimizing 

scenario. Therefore, while it is effective in creating a greener system, other scenarios (like doubling 

the car or truck fuel efficiency or low retailer electricity emissions) lead to overall less emissions 

even though the overall emissions penalty may be higher.  In other words, doubling the price of 

fuel encourages a supply chain design that is closer to a greener supply chain (that is, it has more 

stores), while other scenarios change the amount of emissions of the system while not necessarily 

changing the supply change design – in the operating cost minimizing system. 

8.2.5.   Take aways of solving the designed green supply chain and the retail store 

density problem  

At the beginning of this section, the importance of considering emission reduction goals in 

design to cope with global warming is reinforced. Also, it is argued that to design a GSC that emits 

much less GHG emissions than classic SCs, policies should incentivize increasing energy 

efficiency. Based on a critical evaluation of the literature, using TSP for vehicle routing and store 

location, single transportation mode, hierarchical SC design, fixed-location store location, classic 

vehicle routing using pre-defined demand distributions are found as the main gaps in designing a 

GSC. Accordingly, removing the unreal assumption of the Traveling Salesman Problem (TSP) – 

starting and ending at the same location – we use an alternative k-median based SC network 

partitioning, considering various candidates for the locations of the facilities and using actual 

demand-based vehicle routing instead of predefined distribution-based models. These are the main 

contributions that we make by our proposed design approach. 

Our findings confirm the results of previous literature including Cachon (Cachon, 2014) that 

the emission minimizing supply chain has more stores than the operating cost minimizing supply 
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chain, and that the penalty bound between the two is roughly equal. However, it is found that the 

penalty bound is much larger than estimates in the previous studies. Additionally, while others 

conclude that doubling the fuel efficiency of trucks is the most effective in creating a greener 

system, we find that doubling car fuel efficiency lowers emissions far more than doubling truck 

fuel efficiency, and that doubling the cost of fuel decreases the penalty bound more than doubling 

truck fuel efficiency. Based on this result, it is demonstrated that doubling the cost of fuel creates 

a more robust system that is closer in design to the green supply chain, while doubling car fuel 

efficiency creates a greener system overall.  

We also confirm the results of Cachon that a carbon tax is not effective in creating a greener 

system. We find that a carbon tax is much less effective than Cachon, creating minimal differences 

at reasonable tax amounts ($100 / metric ton). While in the abstract, an increase in the cost of 

emissions should drive emissions down, in cities with a limited set of options for where and how 

to place stores, this does not always happen. This is due to the fact that a carbon tax applies to all 

parts of the system – cars, trucks, and stores – when the cars are the biggest polluter. The carbon 

tax’s increase to the cost of stores and trucks is effectively countering most of the increase to the 

cars, resulting in only a small shift in the overall balance between the three costs, which results in 

only marginally changing the balance between more or less stores. Therefore, a carbon tax is less 

effective than targeted solutions, like doubling the cost of fuel, which leaves stores out, or doubling 

car fuel efficiency, which addresses the root of the problem. 

The proposed design approach is not limited to GSC design. It is easily extended to many 

design problems, including manufacturing, material design, health care, and energy transmission 

and distribution. The same principles in our proposed GSC design approach can be applied in 

selecting the cost-effective material supplier with less GHG emission material supplier, 
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manufacturing operation facility, heath care provider, and energy distributer in these networks. For 

example, in manufacturing, a k-median network partitioning model can be used to assign the 

facility to a group of operations, services and products considering operating costs and GHG 

emission reduction goals. Also, in material design process, the flow of the material can be modeled 

as green material selection problem, to minimize cost and guarantee product performance as well 

as reduce the entire life-cycle impact to the environment via GHG emission reduction. 

8.3 Impact of Asset Management in a Green Supply Chain 

With increasing concerns about global warming caused by greenhouse gasses (GHGs), 

organizations have become more responsible for their operations. According to the U.S. 

Environmental Protection Agency (EPA), companies with a supply chain (SC) generate about 42% 

of GHGs in their transportation (30%) and inventory systems (12%), which makes mitigating 

climate change through a green supply chain (GSC) management a reasonable solution.  

To design a GSC, we model the SC as a customer and store network, with customers driving 

in cars to and from stores and the retailer resupplying the stores from a central warehouse. The 

number and location of stores are determined to find a low-cost and low emission configuration 

for the SC. The key findings are (1) SCs with more small stores generate less emission than ones 

with fewer large stores; (2) when minimizing the operating cost is more important than mitigating 

GHG emissions, fewer large stores are preferred than having more small stores; (3) a SC with two 

warehouses reduces the number of open stores in a large area such as Puerto Rico.  

Our contributions are (1) building a model of a GSC based on population data;(2) modeling a 

GSC in a two-echelon network which can be solved simultaneously using the k-median 

approach;(3) evaluating the effect of multiple warehouses on the overall GHGs emissions; (4) 
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managing the incompleteness and inaccuracy of the data through implementing the compromise 

Decision Support Problem construct to identify satisficing solutions. 

The model mentioned earlier highlights the important parameters that impact the green GHG 

emissions reduction from a SC that describe in this section. We also discuss how this approach 

can be employed for other design problems, including manufacturing and healthcare. 

8.3.1.  Frame of reference on asset management in a green supply chain 

The gradual increase in the overall temperature of the Earth's surface, oceans, and atmosphere 

is called global warming. This is mainly due to human activities such as deforestation, farming, 

and fossil fuel consumption that release carbon dioxide (CO2), methane, and other greenhouse 

gases into the atmosphere. Greenhouse gases have far-ranging environmental and health effects 

besides causing climate change. They result in respiratory illnesses and diseases through air 

pollution.  

Global warming is a huge threat to the environment. Extreme climate, food supply disruptions, 

and increased wildfires are other effects of climate change caused by greenhouse gases. One way 

to mitigate global warming is to use our resources and conduct our activities in different sectors in 

a sustainable fashion. For example, the green supply chain is one way that can 

benefit our environment while helping companies and consumers save money. The supply chain 

has been traditionally labeled as a one‐way, integrated manufacturing process where raw materials 

are transformed into final products, then delivered to customers (Mentzer et al., 2001).  

The largest share of greenhouse gas emissions generate by the transportation sector in the 

supply chain since transportation and electricity use of a retailer's supply chain network are the 

main factors in determining its performance (Afshari et al., 2014; Elhedhli and Merrick, 2012; 
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Fahimnia et al., 2015; Harris et al., 2014; Mohebalizadehgashti et al., 2020; Waltho et al., 2019). 

Thus, the supply chain network is an interesting case in terms of GHG emission reduction. We are 

able to reduce environmental pollution and production cost through a green supply chain (Elhedhli 

and Merrick, 2012; Waltho et al., 2019) , and promotes economic growth, generates a competitive 

advantage in terms of greater customer satisfaction, positive image, reputation, and better export 

of their products in pro-environmental countries (Rehman Khan, 2018). 

Companies of all sizes work in global industrial networks and global supply chains. They 

influence the environment due to their large supply chain and supplementary processes like 

transportation and packaging. Sustainability is vital for companies and enterprises to investigate 

their global supply chains through three spheres of sustainability (Environmental, Social, 

Economic). Impact on the environment deals with Environmental sustainability, while economic 

sustainability implies financial stability. Social sustainability deals with health and safety for 

people (Bhingea et al., 2015). 

A range of topics has been discussed in the literature regarding green supply chain network 

design. A comprehensive review (105 articles) on green supply chain network design between 

2010 and mid-2017 is presented in (Waltho et al., 2019). Models and methods that explicitly 

include carbon emissions and environmental policies are described in this reference. The adoption 

and impact of carbon policies on supply chain network design are also discussed there. Regarding 

suppliers with emission reduction goals, the problem of capacity is also vital. For instance, 

Walmart has promised to mitigate one billion metric tons of GHG emissions from its SC network 

by 2030 (Walmart, 2018a). These drops can happen from the retailer network and are often called 

Scope 1 GHG emissions. 
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Another example of the topic discussed in the literature is the capacity of stores. As discussed 

in (Williams et al., 2020), the capacity of retail facilities is of interest to city planners, and it is 

associated with several challenges such as car culture. Car culture is a society or way of life 

characterized by excessive use of motor vehicles. In the case of retail stores, developing larger 

stores located far from each other forces the customers to travel longer distances, resulting in more 

emissions. However, there are many other factors that retailers may consider locating their stores 

correctly. Such factors, for example, include their long-term plan or the sizes of competing stores 

in the same area. If all the retailer's stores' features are the same, except the size, a customer prefers 

the accessibility of a close store rather than a far one (Williams et al., 2020). 

Our main goal in this section is designing GSC to identify the store locations and distribute 

resources to achieve less total cost of operation and GHG emissions (Williams et al., 2020). As 

mentioned earlier, transportation is playing one of the leading roles in the green supply chain. 

Hence, the location and number of the stores are essential keys in a green supply chain. Likewise, 

we should think about the replenishment truck as well. One class of vehicle routing problems 

studied extensively is the Traveling Salesman Problem (TSP). In TSP, it is assumed to route the 

trucks, start at a warehouse, visit each store, and return to the warehouse.  

We consider k-median instead of TSP. In general, the goal is to partition a network (typically 

a complete graph of all points in the network) into k partitions. The distance between each point 

and its partition center is minimized. The main distinctions between TSP and k-median design are 

(i) the retailer can select the stores' locations and (ii) the retailer is responsible for the customers' 

travel expenses (for example, the "last mile" of the SC is not neglected) (Williams et al., 2020). 

In (Williams et al., 2020) and the present work, the store locations are not pre-determined and 

are located as part of the solution. The retailer in our model has a single mode of transportation, 
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and the main focus is on distances traveled rather than lead time. Our main focus is on the 

downstream supply chain consisting of inbound replenishments to facilities, the facilities 

themselves, and the portion between the retail facilities and customers' homes. As the number of 

facilities grows, a dense network is created, facilities become smaller, and customers find 

themselves closer to a store; thus, they do not need to travel long distances for shopping (Williams 

et al., 2020). 

Regarding the literature review, we noticed it is important for companies to investigate 

sustainability in their supply chain through three spheres of sustainability (Environmental, Social, 

Economic) to compete in the market that is possible through the green supply chain. There are 

various factors and methods to design the GSC, that we review some of them. In this section, we 

design a GSC to identify the store locations and distribute resources to achieve less GHG emissions 

and operational cost. This helps companies to manage their resources, reduce their environmental 

footprint and understand influential decision factors and asset management's impact on GHG 

emissions reduction.  

In our model, the supply chain is modeled as a two-echelon network, in which goods flow from 

a single, central warehouse to stores, then from the stores to customers. Trucks transport the goods 

from the warehouse to the stores and cars from the stores to the customers. Neither locations and 

nor the number of facilities is pre-determined. Both vehicle routing problems (cars and trucks) are 

modeled as k-median problems. In the model, a retailer's operating cost consists of three 

components: cost of stores, trucks, and cars. The truck cost is the cost of a truck driving from a 

warehouse to the store. The car cost is the cost of a car driving from the customer's home to the 

store and returning home. The inventory cost is the cost of having a store large enough to fulfil all 
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customer's needs, the building's cost, and the heating and cooling cost of the building (in order to 

consider buildings GHG emission from the heating and cooling) 

As mentioned earlier, the warehouse is centrally located. Therefore, for a large region such as 

Puerto Rico, the area is divided into two parts, and a central warehouse is considered in each part. 

Hence, each store is still connected to one warehouse and has a truck connecting directly to it from 

the warehouse. However, since distances between some stores and the warehouses are reduced, 

those may affect the cost of replenishment trucks and the cost of connecting customers to stores. 

All customers are assumed to drive cars, and multi-modal travel (such as public transportation 

or walking) is not considered. The approach considered in this section is the same as the one 

presented in (Williams and Cremaschi, 2019). However, there are two main differences: (1) We 

formulate the problem as a compromise Decision Support Problem (cDSP) instead of using 

optimization and solve it with MATLAB; (2) We also consider the study region as two parts and 

assign two warehouses in the centre of each part instead of assuming a single warehouse in the 

middle of the whole region. 

The remainder of the section is as follows: In Section 8.9 and 8.10, we clarify how and why 

we initiate our GSC design in cDSP. In Section 8.11, we discuss the results of a sensitivity analysis. 

In Section 8.12, we show the verification and validation of our work, and finally, we end with the 

closing remarks in Section 8.13. 

8.3.2.  Method used for asset management in a green supply chain 

The decision support problem 

In system theory, the components of a system may result in organized complexity. However, 

knowledge of the components alone may not be sufficient to predict the system's behavior. On the 
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other hand, computational complexities can arise from random and statistical variability of the 

components and the subsystems and systems they form. Thus, managing complexity and 

uncertainty are both essential to gain enough system knowledge (Smith et al., 2015). To model our 

GSC, we are using the compromise decision support problem(cDSP) construct. The requirements 

for the cDSP are identifying a set of solutions that are relatively insensitive to uncertainties. In 

cDSP, we are not looking for peak, optimum, or global solutions. We are looking for flat and 

relatively insensitive solutions to perturbations and to uncertain keys to things that we cannot 

control. Decision Support Problem (DSP) construct is based on the philosophy that design is 

fundamentally decision-making and model-based process (Smith et al., 2015). 

In reflecting on the compromise DSP, parallels with the "demands" and "wishes" of Pahl and 

Beitz (Pahl, 2007) can be drawn. The demands are met by the satisfaction of the DSP constraints 

and bounds, and the goals represent the wishes. Thus, the feasible design space can be defined by 

constraints and bounds. The feasible and aspiration spaces together form the solution space (Smith 

et al., 2015). 

Proposed word problem for asset management in a green supply chain 

In the cDSP, the keywords "Given," "Find," "Satisfy," and "Minimize" are used in the form of 

the word formulation (Smith et al., 2015). The word formulations of our cDSP are as follows:  

Given 

• The number of customers. The number of store locations. The number of the store sizes. 

• Cost of each customer to connect to a store for each pair of customer and candidate store 

location (Cij). (Is the cost of a customer driving to a store plus the truck's partial cost-driving 

from the warehouse to the store. It has considered the distance from the customer to the store 
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also store to the warehouse, the non-fuel variable cost for the car and truck to travel per unit of 

distance, the amount of fuel required per unit of distance, price of fuel per unit of fuel, amount 

of emissions due to the car and truck per unit of fuel (kg-CO2 / L), price of emissions ($/kg-

CO2). 

• The cost to open each store regarding the size (fj). (Is the cost, of a store 𝑗 opening, including 

the building's cost plus the cost to heat and cool the building.) 

• The maximum number of customers that can connect to the candidate store with size j (sj). 

Assumptions for the decision support problem for asset management in a GSC 

• We assume that customer shopping, truck replenishment, and store cost operations happen once 

a week. 

• Prices emission at $1/ton CO2. All customers are assumed to drive cars directly from their 

house to the stores and back. Note that we do not model additional complexity due to road 

networks. All stores are at max capacity. 

• Each store must connect to a single warehouse. The warehouse is centrally located in the 

region. 

• For comparing our results of one warehouse versus two warehouses, we divide the region into 

two different parts., east and west, and execute our program two times with our data and 

consider one central warehouse in each region. We then combine our results for both parts 

(number of customers, number of candidate stores, number and size of open stores). Note that 

we do not consider two different warehouses at the same time in the region. 

Find 

Independent System Variables: (they describe the attributes of an artifact). 
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• xij is a binary tracking variable if costumer i connecting to store j. 

• yj is a binary tracking variable if store j is open. 

 The Deviation Variables: (they indicate the extent to which the goals are achieved). 

• d1
- is underachievement of the system goal with minimized GHG emissions. 

•  d1
+ is an overachievement of the system goal with minimized GHG emissions. 

       Where d1
+. d1

- = 0 and   d1
+ and d1

- >=0 

•  𝑑𝑙
− is the lowest number of customers are connected to the store l-1 than the maximum capacity 

of that store.  

• 𝑑𝑙
+  is the highest number of customers are connected to the store l-1 than the maximum 

capacity of that store.  

       Where 𝑑𝑙
−.  𝑑𝑙

+ = 0 and  𝑑𝑙
− 𝑎𝑛𝑑 𝑑𝑙

+>= 0 

Parameters 

K       Set of indices used for store sizes. 

𝑐𝑖𝑗       Cost of customer 𝑖 connecting to store 𝑗. 

𝑓𝑗
𝑘      Cost of opening store 𝑗 of size 𝑘. 

𝑞𝑗
𝑘       The capacity of store 𝑗 of size 𝑘. 

𝑥𝑖𝑗       Binary variable indicating if customer 𝑖 is connected to store 𝑗. 

𝑦𝑗
𝑘       Binary variable indicating if store 𝑗 of size 𝑘 is open. 

𝑠𝑖         Represents the number of customers in an aggregated area 𝑖. 
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LB        Lower bound of our system. 

UB        Upper bound of our system 

J          Total numbers of candidate stores in the region under consideration. 

l           Refers to the number of the system goal. Its boundary is between 1 to J +1. 

di
- and di

+ Deviation Variables indicate the extent to which the goals are achieved. 

Satisfy 

 System Constraints: (Must be satisfied for the solution to be feasible.  

• Every customer must be connected to exactly one store. 

• No customer is connected to a store that is closed. 

• Each candidate store location must be modeled as a collocated candidate location with the 

additional constraint. 

 System Goal: (Must achieve a specified target value as much as possible. 

• It is desirable to achieve zero GHG emissions when we consider the green supply chain. 

• The number of customers who could connect to a store is limited, so the store's size and 

customers' size are important. 

Bounds on the System Variables 

• LB → The system variables should not be less than a specified value that is, our lower bound. 

The "LB" is shown in equations (6) and (7) 

• UB → The system variables should not exceed a specified upper limit that is, upper bound. 

The "UB" is shown in equations (6) and (7) 
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Minimize Deviation Function 

Minimize the system goal's overachievement with minimized GHG emissions and minimizing 

the highest number of customers who exceed the maximum capacity of store j.  

Proposed Design Approach 

We formulate the Retail Store Density Problem as a cDSP method. Let k refer to the set of 

indices used for store sizes, 𝑓𝑗
𝑘 refers to the cost of opening store 𝑗 of size 𝑘, 𝑐𝑖𝑗 refers to the cost 

of a customer 𝑖  connecting to store 𝑗, 𝑥𝑖𝑗 is a binary variable tracking whether customer 𝑖 connects 

to store 𝑗 and 𝑦𝑗
𝑘 is a binary variable indicating whether store 𝑗 of size 𝑘 is open, 𝑠𝑖 represents the 

number of customers in an aggregated area 𝑖, 𝑞𝑗
𝑘 refer to the capacity of store 𝑗 of size 𝑘 ( In our 

problem, 𝑞𝑘 , is the same for all 𝑗) and 𝑑𝑙
− and 𝑑𝑙

+ refer to deviation variables that indicate the 

extent to which the goals are achieved. The proposed approach employed here is shown in Figure 

8.8. As we mentioned earlier, we need to satisfy the system constraints to make the solution 

feasible. The system goals must achieve a specified target value as much as possible and the upper 

and lower bounds on the system variables and deviation variables.  

We formulate the Retail Store Density Problem as a cDSP method. Let k refer to the set of 

indices used for store sizes, 𝑓𝑗
𝑘 refers to the cost of opening store 𝑗 of size 𝑘, 𝑐𝑖𝑗 refers to the cost 

of a customer 𝑖  connecting to store 𝑗, 𝑥𝑖𝑗 is a binary variable tracking whether customer 𝑖 connects 

to store 𝑗 and 𝑦𝑗
𝑘 is a binary variable indicating whether store 𝑗 of size 𝑘 is open, 𝑠𝑖 represents the 

number of customers in an aggregated area 𝑖, 𝑞𝑗
𝑘 refer to the capacity of store 𝑗 of size 𝑘 ( In our 

problem, 𝑞𝑘 , is the same for all 𝑗) and 𝑑𝑙
− and 𝑑𝑙

+ refer to deviation variables that indicate the 

extent to which the goals are achieved. 
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Figure 8.8. Solution method. 

Equation 8.24 is considered to show that every customer must be connected to exactly one 

store. Equation 8.25 implies that no customer is connected to a store that is closed. Equation 8.26 

implies that each candidate store location must be modeled as a collocated candidate location with 

the additional constraint (in each specific area, we should have just one size store determined by 

the number of customers aggregated in the area). 

System Constraints 

∀𝑖 ∶ ∑𝑥𝑖𝑗 = 1

𝑗

 
Equation 8.24

  

∀𝑖, ∀𝑗 ∶ 𝑦𝑗 − 𝑥𝑖𝑗 ≥ 0 Equation 8.25

  

 ∑ ∑ 𝑦𝑘∗𝑗𝑗 ≤ 1𝑘  Equation 8.26
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System goals 

∑ 𝑐𝑖𝑗𝑥𝑖𝑗 +𝑖,𝑗  ∑ 𝑓𝑗𝑦𝑗𝑗 + d1
- - d1

+ = 0 
Equation 8.27 

 where     d1
- . d1

+ =0       

∀𝑗 :∑𝑥𝑖𝑗 ∗ 𝑠𝑖
𝑖

+ 𝑑𝑙
−− 𝑑𝑙

+ = 𝑞𝑓 

where      𝑑𝑙
−.  𝑑𝑙

+ = 0  

Equation 8.28

  

  

In Equation 8.27, d1
- indicates underachievement of the system goal with minimized GHG 

emissions and d1
+ indicates overachievement of the system goal with minimized GHG emissions. 

Equation 8.28 implies that each store must have fewer customers than some maximum capacity 

𝑞𝑓 where 𝑠𝑖 represents the number of customers in an aggregated area 𝑖, 𝑑𝑙
− (l refers to the number 

of our system goal) represents the lower number of customers are connected to the store j (j = l-1) 

than the maximum capacity of the store, and 𝑑𝑙
+ represents the higher number of customers are 

connected to store j (j=l-1) than the maximum capacity of the store. 

Bounds: 

∀𝑖,  ∀𝑗 : 𝑥𝑖𝑗 ∈ {0,1} → LB: 𝑥𝒊𝒋 ≥ 0      UB: 𝑥𝑖𝑗 ≤ 1 Equation 8.29 

∀𝑗 : 𝑦𝑗 ∈ {0,1} →  LB: yj  ≥ 0 UB: yj ≤1 Equation 8.30 

d1− ≥ 0        d1+≥ 0     𝑑𝑙
−  ≥ 0    𝑑𝑙

+  ≥ 0  Equation 8.31 

where    𝑑1− . 𝑑1+ =  0            𝑑𝑙
−.  𝑑𝑙

+ = 0  Equation 8.32 

Equation 8.29 and Equation 8.30 constrain 𝑥 and 𝑦 to be binary and Equation 8.31 indicates 

that deviation variables should be positive and, at least one of the variables in each goal function 

is zero, which is ensured by Equation 8.32. 
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Minimize: 

The compromise DSP's objective is to minimize a function that is expressed using only the 

deviation variables. This function is known as the deviation function. The deviation function is a 

representation of the deviation between the feasible solution space and the aspiration space. By 

minimizing this deviation function, the most robust regions of the solution space can be achieved. 

The range of the deviation variables depends on the goals themselves. However, the level of 

importance linked with achieving each goal varies for a designer. Hence, the goals are assigned 

weights, wi, to affect a solution based on a designer's preference. These weights are usually 

normalized so that the sum is one. The general form of the deviation function, form system goals, 

in the Archimedean form, is as follows (Mistree et al., 1992): 

Z (d-, d+) = Σ (wi
- di

- + wi
+di

+) 

 i=1,..., M    and   ∑ 𝑤𝑖 = 1
𝑚
𝑖=1  

Equation 8.33

  

 Here M is the number of the system goals. Regarding Equation 8.27 and Equation 8.28, we 

have J+1 number of system goals (J represents the total number of candidate stores in the region 

under consideration). l represents the number of our system goals. Hence dl
-
 and d1

+ are the 

deviation variables of system goal l. We define our deviation function as follows: 

Z (d-, d+) = Σ (wl
- dl

- + wl
+dl

+)         

  l=1,..., J+1    and   ∑ 𝑤𝑙 = 1𝑙
𝑖=1  

Equation 8.34

  

 The weights, w1, w2, ..., wl, reflect the level of desire to achieve each of the goals. 

8.3.3.  Proposed mathematical model to solve asset management problem in a GSC 

The same GSC network design model proposed in (Williams et al., 2020) is employed in this 

section and shown in Figure 8.9. Orange line segments show connections between stores and a 
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single central warehouse. The blue circle represents the first echelon, and the red rectangle signifies 

the second echelon. Thus, three arrays can result from the GSC network, including connect, open, 

size. (1) connect array: this array contains each customer's cost to connect to a store.  

For each pair of customer and candidate store locations, connect array has the size of 𝑖 ∗ (𝑗 ∗

𝑘), where i is the number of customers, j is the number of store locations, and k is the number of 

store sizes. (2) open array: this array expresses the cost to open each store. In practice, this can 

differ for each candidate store because there may be different costs for each location. We do not 

model such scenarios and consider the price to open a store of a given size to be uniform. 

Figure 8.9. A two-echelon k-median network 
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Our input data is demand across population density in Puerto Rico. High-resolution (30 m x 

30 m) population density data is available at ( https://ciesin.columbia.edu/ data/hrsl/). Our data 

includes the cost of customer i connecting to store j (𝑐𝑖𝑗), the opening cost of each store (𝑓𝑗), the 

number of customers in an aggregated area (𝑠𝑖), and the capacity of the store regarding the size. 

After generating this aggregated data, we compute a requisite matrix to run the cDSP described 

earlier. Then we analyze the resulting partitioned network. 

8.3.4.  Results and discussion on the solution of asset management problem in a 

GSC 

One week is considered as the system's operation cycle. This means that the period of 

calculation is for one week. In this period, customers are assumed to shop at the store once; trucks 

resupply the store once. As an input, we use a high-precision population density map of Puerto 

Rico, which provides population density at a resolution of 30 meters by 30 meters. Three different 

scenarios for the system are considered and analysed to evaluate the sensitivity of the results. The 

first case contains the entire island with one warehouse in the middle of the region. The second 

one is all Puerto Rico, with two warehouses on the east and west sides of the region. The third 

scenario is for the whole island by evaluating the different locations for the single warehouse.  We 

considered each region's longitude and latitude and use the R program to determine the desired 

specific area's data sets. The following longitude and latitude are used for the analyses here: 

a) Puerto Rico (whole island) longitude and latitude:  

from (-67.95867, -64.68755) to (17.67003,18.51725) 

b) Westside of Puerto Rico longitude and latitude: from (-67.95867, -66.5) to 

(17.67003,18.51725) 

https://ciesin.columbia.edu/%20data/hrsl/


 

301 
 

c) East side of Puerto Rico longitude and latitude: from (-66.5, - 64.68755) to 

(17.67003,18.51725) 

d) San Juan longitude and latitude: from (-66.11, - 66.20) to (18.305639,18.460065) 

There are 1155 customer nodes and 990 candidate stores (330 candidate nodes) in three 

different sizes, small, medium, and large, for the whole island scenario with one warehouse. To 

calculate the whole island with two warehouses, the island is divided into two sections: west and 

east (with the latitude as mentioned earlier and longitude for each side). The program is run with 

data regarding each part and considering the single central warehouse in each region ( 

Figure 8.10) and then combined the results for both sections. Simulations for the whole island 

with one warehouse were run on a high-end desktop computer, with up to 7 hours allocated for 

each run. The location of the warehouse (the black triangle) considered for the whole of Puerto 

Rico is shown in Figure 8.11. 

Figure 8.10. Candidate stores and warehouse in Puerto Rico. 

Three different definitions are used to describe the results: 

• A total number of candidates store locations: They are represented with plus signs in  

• Figure 8.10, Figure 8.12, and Figure 8.13. 

• Close stores cannot meet the system's demands and wishes regarding the constructs and 

objective function. 
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• Open stores are the stores that meet our requirements and satisfy our demand and wishes. They 

are represented with blue, red, and green in Figure 8.11 and 8.14 regarding their size. 

Figure 8.11. Open stores and warehouse in Puerto Rico. 

The candidate store locations for this area are also presented on the same map (the plus signs). 

As can be seen, a uniform distance is employed between the candidate stores to simplify the model. 

Thus, in some cases, the stores are not exactly located inside the region due to this assumption. 

The model results for the whole island are shown in Figure 8.11. Three colors (blue, green, red) 

and sizes (small, medium, and large circles) are used to distinguish between the store sizes. As can 

be seen, the population and the warehouse distance are the main factors impacting the results. 

Thus, the large stores are mainly located near places with a high population, in this case near San 

Juan, the largest city on the map. 
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A few large stores can also be observed at locations near the map boundary with an average 

population and a large distance from the warehouse. Having large stores that are far from 

warehouse cause to reduce the truck's travel between these stores and warehouse to replenish the 

store more often and affects to reduce the truck's emission. Overall, the largest number of stores 

are small ones. Thus, for this case, it can be concluded that constructing small size stores is more 

beneficial considering the greenhouse gas emission as the deciding factor. More distributed small 

stores significantly reduce the travel distance of the customers to the store. As mentioned before, 

transportation plays an important role in increasing greenhouse gases. 

  

 Figure 8.12. Candidate stores and warehouse on the east side of Puerto Rico. 

 

The same analysis is repeated by dividing the region into two sections (east and west sides) 

and considering a separate warehouse in each region to show the sensitivity of the results to the 

location and number of warehouses. We show in Figure 8.12 and Figure 8.13 the computational 

domains considered for the region's east and west, respectively. The stores' location (the plus signs) 

and warehouse (the black triangles) are also shown in these figures. 
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Figure 8.13. Candidate stores and warehouse in the west side of Puerto Rico 

The total number of customer nodes on the east and west sides are 628 and 502, respectively. 

The total number of candidate stores in each region is 182 (east) and 149 (west). These numbers 

are slightly changed from the original case due to the fractals from the geographic information 

system (GIS) (Goodchild, 2011). There is some way to deal with this difficulty, like Fractal 

dimensions. This mathematical model expresses the idea that a line may be somewhere between 

one and two dimensional, with a fractal dimension of, say, 1.2 or 1.5 (fractal=fraction + 

dimensional). However, we avoid this complexity and accept small errors. In Figure 8.14, the case 

with two warehouses located on the east and west sides of Puerto Rico is shown. The arrangement 

of stores (locations and sizes) is different when two warehouses are considered in the whole region. 

For example, the total number of large stores on the west side is reduced to zero.  
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Figure 8.14. Open stores and warehouse on the east side of Puerto Rico. 

As a general statement, the model tendency is toward reducing the number of large stores when the number of 

warehouses is increased. For scenario d, San Juan scenario, Puerto Rico's largest city, and capital, we consider 25 

different customer nodes and 27 candidate stores (nine candidate location stores with three different store sizes, 

including large and small in each location). We have seven open stores, which include five large sizes and two small 

stores. Since San Juan is a crowded city, most of the open stores are large. The variations of results for the 

cases (b and c) considered earlier with one or two warehouses are shown in Figure 8.16 and Figure 

8.17. The percentage of open stores with changing the number of warehouses has been shown in 

Figure 8.16, and the total number of open stores has been shown in Figure 8.17.  
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Figure 8.15. Open stores and warehouse on the west side of Puerto Rico. 

  

 Figure 8.16. Percentage of open stores with changing the number of warehouses in Puerto 

Rico. 

The following information can be derived from these figures. According to Figure 8.16, many 

small stores have fewer emissions than fewer, larger stores, confirming the base paper's results. 

58.00%

32.00%

10%

66%

28%

6%

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00%

SMALL 
SIZE 

MEDIUM 
SIZE 

LARGE 
SIZE 

Percentage of Open Stores with Two different scenario in Puerto Rico 

Two Warehouses One Warehouse



 

307 
 

The model is sensitive to the number of warehouses considered in each region. When two 

warehouses are considered, fewer stores are open versus the previous results for one warehouse. 

This has been shown in Figure 8.17. As can be seen in Figure 8.16, with two warehouses, the 

majority of the open stores are small. Hence, regarding the result of having two warehouses in two 

different parts of the region, the operating cost and the emission cost of the system would be 

smaller (as we already considered the emission of buildings and warehouses in our system). 

 

Figure 8.17. Total percentage of open stores in Puerto Rico with one warehouse vs. two 

warehouses. 

When different weight factors are employed in the system goals (the desire to achieve a goal), 

the result is different. In  

, we show the number and size of open stores on the east side of Puerto Rico when we desire 

to achieve the second system goal (operating cost-minimizing) shown in Equation 8.28.    
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We have fewer large size stores open when the goal is to minimize the operating cost. In Figure 

8.15 for the east has represented the results when the desire is more toward the first system goal 

(emission minimizing) presented in Equation 8.27. We have more small size stores open when we 

consider emission minimization. As can be seen in this figure, the results of Williams et al. 

(Williams et al., 2020) and others (Cachon, 2014) are confirmed. Figure 8.18 concludea that the 

emission-minimizing system likely has more small stores in comparison with the operating cost-

minimizing case, which has fewer large stores because operating cost increases from additional 

stores opening and trucks driving to them. 

 

 

Figure 8.18. Open stores in the east side of Puerto Rico with considering more desire to the 

second system goal. 
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8.3.5.  Verification and validation on the solution of asset management problem in 

a GSC 

For verification and validation of the proposed model, the deviation variables are investigated 

to understand their limits. The number of goals for each scenario is shown in Table 8.7. While the 

number of goals in scenarios A, B, and C is a large number, the San Juan scenario is considered 

for this analysis as it has fewer deviation variables, and it is easier to see and describe the deviation 

parameters for this case. However, this method uses for all scenarios. For San Juan's scenario, we 

consider 25 different customer nodes and 27 candidate stores. Thus, there are 28 goals according 

to equations (4) and (5). Different weight factors for the system goals are defined (considering 

Equation (10)), and the behavior of deviation variables are investigated each time. Various 

considered weight factors are shown in Table 8.7. 

 

Figure 8.19. The value of deviation variables with W1=1/2 and other W=1/54. 
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Table 8.7. Different scenarios. 

Scenario Number of 

customer nodes 

Number of candidate 

store 

Number of 

goals 

A (whole island) 1155 990 991 

B (Westside of Puerto Rico) 502 447 448 

C (Eastside of Puerto Rico) 628 546 547 

D (San Juan) 25 27 28 

 

Figure 8.19 for all goals are between zero and one for the cases considered. This confirms the 

program converges and the desired solution is determined. 

Table 8.8. Different weight factors 

Each 

scenario 

Considered weight factors for first 

system goal (Equation 4) 

Considered weight factors for the rest of 

the system goals (Equation 5) 

a 1/28 1/28 

b 1/4 1/36 

c 1/2 1/54 

d 2/3 1/81 

 

As a result, we select scenario C, presented in  

Figure 8.19. To build confidence in the results that are presented in this section, a convergence 

plot of the average deviation for the San Juan scenario is shown in Figure 8.13. We track the 

deviation of the goals at each iteration with the convergence plot. 
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As we see, the average deviations are reduced to about 6.6 E-4 after ~ 9 iterations. It means 

the program finds the correct solution, and no additional iterations are needed. 

 Figure 8.20. Deviation plotted against iteration. 

8.3.6.  Take aways of solving the asset management problem in a GSC 

Global warming due to greenhouse emissions presents a severe threat to life on Earth, and the 

planet is warming to a degree beyond what many species can handle. Thus, reducing greenhouse 

gas emissions from different sectors should be considered for immediate action for government 

and private entities. According to an EPA (Environmental Protection Agency) report, three-

quarters of greenhouse gas emissions from many industries are associated with their supply chains 

(EPA, 2010). Thus, reducing these gases from the supply chains is important for leading companies 

such as Walmart. These leading companies are also actively seeking ways to drive down emissions 

beyond their operations (EPA, 2010).  
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Green supply chain is valuable in sustainability for people(social), planet(environment) and profit 

(economic). In this section, we consider the effect of transportation on the green supply chain. In 

other words, this section is designed to help companies manage their resources to reduce their 

environmental footprint and understand influential decision factors and asset management's impact 

on GHG emissions reduction. It helps them to consider which kind of business model would be 

more effective. 

Our model is developed based on the cDSP construct and is implemented in the MATLAB 

software. The model is employed to investigate the location and size of stores, considering 

population density. We consider three different scenarios to implement our model: 

1) The whole island of Puerto Rico with one single warehouse (to consider the entire) 

2) The city of San Juan (to consider the smaller area with a high population) 

3) The whole island as two different parts, west and east parts, with one central warehouse in each 

region. 

For reducing greenhouse gas emissions more smaller stores are more effective than fewer large 

stores. Hence, we need to have more smaller stores when we consider the cost of customers driving 

to the stores as car emissions are more influential to GHG emissions than the replenishment trucks 

and the emission from buildings. Thus, we justify that in the business model, under the standpoint 

of cost-efficiency in terms of labor, they have not considered the cost of customer driving to the 

big stores, which needs to contemplate in terms of GHG emissions. 

Based on our results, this helps companies even consider changing their business model to the 

online business that eliminates the requirement of cars driving to the stores and back. In this case, 
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trucks can effectively deliver goods to large numbers of customers; thus, companies can reduce 

greenhouse gas emissions while reducing operating costs.  

Considering the model presented here, different analyses can be performed to fully understand 

all the parameters impacting greenhouse gas emissions from a supply chain. One example is 

finding a single warehouse's best location regarding different factors such as population density, 

land availability, or distance to the main port, or considering multiple warehouses. 

Opening multiple warehouses provide the opportunity to decrease the number of stores and 

connect the customers directly to the warehouses via online shopping channels. Subsequently, new 

business models evolve based on online shopping and its associated low carbon, pull economy. 

However, the number, size, and location of the warehouses need to be identified based on cost and 

emission factors to achieve the low-carbon configuration.  

Moreover, there is an opportunity to investigate the challenges and differences between 

internet-based online shopping, which is a pull economy, and machine learning-based 

recommender systems, which cause push economy. A one-week operation limit is also 

implemented here that can be changed. For example, a customer can travel several times to a store 

in a week. 

Finally, the proposed method here is not limited to GSC design. The concept can widely be 

extended to other domains such as manufacturing, material design, health care, and energy 

transmission and distribution. For example, material suppliers, healthcare providers, and energy 

distributors can be identified as cost-effective and generate less greenhouse gas emissions. Thus, 

further research along these lines looks promising. 
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8.4 Design A Bi-Level Programming Model for Two Channels in A Three-

Echelon Supply Chain 

   We design a bi-level model where the upper level is to design the supply chain, including 

identifying the layout, the number of warehouses and stores, while the lower level is to identify 

the tour in online shopping. We use approximation (surrogate modeling) in the partitioning-

coordination framework and making it partitioning-approximation-coordination framework, we 

propose an approach using surrogate approximation-based model where we manage the 

computational complexity by iteratively approximating the delivery tour function. This function is 

also called the lower-level function (the delivery tour for the delivery van in online shopping – 

Figure 8.21). 

 

Figure 8.21. Difference between the distance customer travels in in-person shopping and the 

distance delivery van travels in online shopping (the delivery tour). 

As shown in Figure 8.21, we propose a framework to design a multi-channel supply network, 

that includes in-store shopping or Brick and Mortar, and two types of online shopping, namely, 

Bricks and Clicks where customer orders online and picks up from the store and Pure Players 
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where only the retailer delivers. The proposed network is also multi-echelon as we model 

warehouses, stores, and customers. Also, because the demand is uncertain, we used spatial, socio-

demographic, and economic factors to predict the demand as shown in the ZIGZAG lines in the 

picture. The resulting mixed-integer programming model is solved to minimize the cost and carbon 

emission together by monetizing carbon emissions (Greenness). 

 

Figure 8.22. Framework for multi-echelon, multi-commodity, multi-channel, supply chain design 

with climate change mitigation perspective. 

8.4.1.  Mathematical model for multi-channel (online and traditional shopping), 

multi-echelon (warehouse, store, and customer) green supply chain 

The mathematical model for multi-channel and multi-echelon green supply chain must have 

two parts: (1) the part which includes the design of the supply chain; (2) the part which includes 

identifying the tour in online shopping channel, which each delivery van (home delivery van 

which travels between stores and customers in online shopping channel) should travel in order to 

make all the deliveries. 
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1. Part (1): supply chain design part 

𝒎𝒊𝒏 

       (∑∑𝑪𝟏𝒌
𝒘

𝒌

𝒁𝒌
𝒘

𝒘

+∑∑𝑪𝟐𝒋
𝒔

𝒋

𝒀𝒋
𝒔

𝒔

)

+  (∑∑𝑪𝟑𝒌𝑷𝒌𝒋
𝒌𝒋

+  ∑∑𝑪𝟒𝒋𝑷𝒋𝒊
𝒊𝒋

)

+ (∑∑𝑪𝟓𝒌𝒋
𝑷𝒌𝒋

𝑪𝑻
(𝟐𝒅𝒌𝒋)

𝒋

 

𝒌

)

+ 𝜶(∑∑𝑪𝟔𝒋𝒊
𝑷𝒋𝒊

𝑪𝑪
(𝟐𝒅𝒋𝒊)

𝒊

 

𝒋

)

+ 𝜷( ∑ ∑ ∑𝑪𝒍𝒎𝑹𝒍𝒎𝒏(𝒅𝒍𝒎)

𝒏∈𝑵𝒎∈(𝑰∪𝑱)𝒍∈(𝑰∪𝑱)

) 

Equation 8.35

  

 

The objective function includes five parts. In the first part the opening cost is covered while 

the operating cost is covered in the second part. The third part includes transportation cost 

between the warehouse and store. The fourth part includes the transportation cost between store 

and customer in the traditional shopping while the transportation cost between store and customer 

in the online shopping is modeled in the fifth part. 

Note that 

𝐶5𝑘𝑗 =  𝐶5𝑘𝑗
𝑓𝑚
+  𝐺𝐼1 ∗  𝐶1 ; 𝐶6𝑗𝑖 =  𝐶6𝑗𝑖

𝑓𝑚
+  𝐺𝐼2 ∗  𝐶2 ; 𝐶𝑙𝑚 = 𝐶𝑙𝑚

𝑓𝑚
+ 𝐺𝐼3  ∗ 𝐶3   

𝐶5𝑘𝑗
𝑓𝑚
, 𝐶6𝑗𝑖

𝑓𝑚
 and 𝐶𝑙𝑚

𝑓𝑚
 are the costs of fuel and maintenance of the retailer truck, customer car and  

delivery van  



 

317 
 

𝐶1 , 𝐶2 ,  𝑎𝑛𝑑 𝐶3 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑐𝑜𝑠𝑡𝑠 𝑜𝑓 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑝𝑒𝑟 1 𝑡𝑜𝑛𝑒 𝑜𝑓 𝐶𝑂2  𝑓𝑜𝑟 𝑡𝑟𝑢𝑐𝑘 (𝑤ℎ𝑖𝑐ℎ 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑠 𝑔𝑜𝑜𝑑𝑠  

𝑓𝑟𝑜𝑚 𝑎 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 𝑡𝑜 𝑎 𝑠𝑡𝑜𝑟𝑒), customer cars (in in-person shopping) and van (delivery van 

which delivers goods from stores to customers)  

𝐺𝐼1 ,  𝐺𝐼2 , 𝑎𝑛𝑑 𝐺𝐼3 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡𝑠 𝑜𝑓 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡ℎ𝑎𝑡 𝑡𝑟𝑢𝑐𝑘, 𝑐𝑎𝑟 𝑎𝑛𝑑 𝑣𝑎𝑛 𝑐𝑟𝑒𝑎𝑡𝑒𝑠 

(𝑡𝑜𝑛𝑒 𝑜𝑓 𝐶𝑂2 ) 

𝐿𝑒𝑡 𝐺 = (𝑁, 𝐸) be an undirected graph, where 𝑁 = {1,…𝑛} = 𝐼 ∪ 𝐽 is the set of nodes and 

E is he set of edges. 𝐶𝑖𝑗 = 𝐶𝑗𝑖   for all 𝑖, 𝑗 𝜖 𝑁. C satisfies the triangle inequality if and only if 

𝐶𝑙𝑚 + 𝐶𝑚ℎ ≥ 𝐶𝑙ℎ for all l, m, h 𝜖 N. 

𝐶𝑖𝑗 is nonnegative and each customer has nonnegative demand. 

𝑋𝑗𝑖
𝑠 ≤  𝑌𝑗

𝑠 , ∀𝑗, 𝑖, 𝑠 Equation 8.36  

 Store j is connected to customer i if store j with size s is open 

∑𝑌𝑗
𝑠

𝑠

 ≤  1, ∀𝑗 Equation 8.37

  

 only one size of Store j is allowed to be open 

𝑉𝑘𝑗 ≤  𝑍𝑘
𝑤 , ∀𝑗, 𝑤  Equation 8.38

  

 Warehouse k is connected to Store j if Warehouse k with size w is open 

∑𝑍𝑘
𝑤

𝑤

 ≤  1  Equation 8.39

  

 only one size of Warehouse k is allowed to be open 
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∑ ∑ 𝑉𝑘𝑗
𝑤𝑠

𝑠𝑤  ≤  ∑ 𝑍𝑘
𝑤

𝑤   Equation 8.40

  

 only one size of the store and one size of the warehouse is allowed to be open 

∑∑𝑉𝑘𝑗
𝑤𝑠

𝑘𝑤

 =   𝑌𝑗
𝑠 , ∀𝑗, 𝑠 Equation 8.41

  

 If Store j with size s is open, it must be connected to only one warehouse 

𝑃𝑘𝑗  ≤  𝑃𝑘𝑗
𝑚𝑎𝑥 .  ∑∑𝑉𝑘𝑗

𝑤𝑠

𝑠𝑤

, ∀𝑘, 𝑗 Equation 8.42

  

 flow capacity constraint to make sure that a flow of product from warehouse w to store j can 

take place only if the 

𝑃𝑗𝑖  ≤  𝑃𝑗𝑖
𝑚𝑎𝑥.∑𝑋𝑗𝑖

𝑠

𝑠

, ∀𝑗, 𝑖 Equation 8.43

  

 flow capacity constraint to make sure that a flow of product from store s to customer zone i 

can take place only if the corresponding connection exists 

𝑃𝑘𝑗  ≥  𝑃𝑘𝑗
𝑚𝑖𝑛.  ∑∑𝑉𝑘𝑗

𝑤𝑠

𝑠𝑤

, ∀𝑘, 𝑗 Equation 8.44

  

 minimum flow required for establishing the link k and j 

𝑃𝑗𝑖  ≥  𝑃𝑗𝑖
𝑚𝑖𝑛.  ∑𝑋𝑗𝑖

𝑠

𝑠

, ∀𝑖, 𝑗 Equation 8.45

  

 minimum flow required for establishing the link I and j 

∑𝑃𝑘𝑗
𝑘

=  ∑𝑃𝑗𝑖
𝑖

, ∀𝑗 Equation 8.46

  

 Flow balance constraint (inflow = outflow) 
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∑𝑃𝑗𝑖
𝑗

=  𝐷𝑖 , ∀𝑖 Equation 8.47

  

 Flow balance constraint (inflow = outflow), also demand constraint 

∑∑𝑋𝑗𝑖
𝑠

𝑗𝑠

=  1 , ∀𝑖 Equation 8.48

  

 each customer can only connect to one store 

∑∑∑𝑉𝑘𝑗
𝑤𝑠

𝑠𝑤𝑘

=  1, ∀𝑗  Equation 8.49

  

 each store can only be supplied by one warehouse 

∑∑𝐷𝑗
𝑠∑𝑉𝑘𝑗

𝑤𝑠

𝑤𝑠𝑗

≤∑𝑆𝑃𝑘
𝑤

𝑤

𝑍𝑘
𝑤, ∀𝑘 

Equation 8.50

  

 supply of the warehouse must be adequate to meet the demand of the stores (warehouse 

capacity constraint) 

∑∑𝑋𝑗𝑖
𝑠  

𝑠𝑗

𝐷𝑖  𝑃𝑃𝑖 ≤ 𝑌𝑗
𝑠𝑆𝑃𝑗

𝑠, ∀𝑗 Equation 8.51

  

 capacity of the store must be adequate to meet the demand of the customers (store capacity 

constraint) 

𝑍𝑘
𝑤,  𝑌𝑗

𝑠 ,   𝑉𝑘𝑗,  𝑋𝑗𝑖  ∈ {0, 1}, ∀𝑗, 𝑠, 𝑘, 𝑖  Equation 8.52

  

 𝑃𝑗𝑖 ,  𝑃𝑘𝑗 ≥ 0,       ∀𝑗, 𝑘, 𝑖 Equation 8.53

  

 all continuous variables must be non-negative 
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∑𝐶𝑉𝑛
𝑛∈𝑁

𝑈𝑗𝑛
𝑠  ≤ 𝑆𝑃𝑗

𝑠𝑌𝑗
𝑠 , ∀𝑗, 𝑠 Equation 8.54

  

 The entire load for all the delivery vans operating on Store j must be less than the capacity 

of Store j 

𝑈𝑗𝑛 
𝑠  ≤  𝑌𝑗

𝑠 , ∀𝑗, 𝑠, 𝑛 ∈ 𝑁 Equation 8.55

  

 Van n can be assigned to a route originating from Store j of size S only if that store is open 

∑∑𝑈𝑗𝑛
𝑠

𝑗𝑠

≤  1, ∀𝑛 
Equation 8.56

  

 each van can be assigned to at most one store. 

 

2. Part (2): Identifying the tour in online shopping 

In this part we identify the 𝑑𝑙𝑚𝑛
𝑡𝑜𝑢𝑟 after designing the supply chain, then, we solve the supply 

chain design part again with the new value for the 𝑑𝑙𝑚𝑛
𝑡𝑜𝑢𝑟. This is an iterative process and 𝑑𝑙𝑚𝑛

𝑡𝑜𝑢𝑟 is 

the coupling variable between the two parts. 

𝑀𝑖𝑛( ∑ ∑ ∑𝐶𝑙𝑚𝑑𝑙𝑚 𝑅𝑙𝑚𝑛
𝑛∈𝑁𝑚∈(𝐼∪𝐽)𝑙∈(𝐼∪𝐽)

) 

Equation 8.57

  

 Lower-level function; minimizes the sum of the distance related routing costs 

Subject to 
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∑ ∑ 𝑅𝑙𝑚𝑛 = 1

𝑙∈(𝐼𝑈𝐽)

∈ (𝐼𝑈𝐽)

𝑛∈𝑁

 
Equation 8.58

  

 every customer must be on exactly one route 

∑ ∑ 𝑅𝑙𝑚𝑛𝑚∈(𝐼𝑈𝐽)𝑙∈(𝐼𝑈𝐽)  ≤  𝐶𝑉𝑛 ∑ 𝑈𝑗𝑛
𝑠

𝑗∈𝐽 ,        𝑛 ∈ 𝑁   Equation 8.59

  

 the capacity of delivery van for customer homes for the chosen route 

∑ 𝑅𝑙𝑚𝑛
𝑙∈(𝐼𝑈𝐽)

 = 𝑈𝑚𝑛
𝑠  𝑎𝑛𝑑 ∑ 𝑅𝑚𝑙𝑛

𝑙∈(𝐼𝑈𝐽)

, ∀𝑠,  𝑛,  𝑚 ∈ (𝐼𝑈𝐽)  Equation 8.60

  

flow consideration constraints: 

if delivery van n is assigned to a route originating from store m of size s, then, at least 

one link goes into store m, and one levees store m (the van which enters to a node should 

leave that node) 

 ∑ ∑ ∑ 𝑅𝑙𝑚𝑛𝑛∈𝑁𝑚∈𝑠𝑡𝑙∈𝑠𝑡 ≤ |𝑠𝑡| − 1,             𝑠𝑡 = {2,3, … ,  (𝑖 + 𝑗)} Equation 

8.61  

 Subtour elimination constraint 

Parameters 

𝐶1𝑘
𝑤 fixed cost of opening warehouse k with size w 

𝐶2𝑗
𝑠 fixed cost of opening store j with size s 

𝐶3𝑘  operational cost of handling product in warehouse k  
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𝐶4𝑗  operational cost of handling product in store j 

𝐶5𝑘𝑗 Transportation and emission cost of sending product 

from warehouse k to store j 

𝐶6𝑗𝑖  Transportation and emission cost of customer i to buy 

product from store j  

𝐶𝑙𝑚 Transportation and emission cost of delivering 

product from store j to customer i 

𝑑𝑙𝑚 Distance between node l and node m (where l and m 

can be both stores and customers) 

𝑃𝑘𝑗
𝑚𝑎𝑥 maximum allowable flow on arc kj 

𝑃𝑗𝑖
𝑚𝑎𝑥 maximum allowable flow on arc ji 

𝑃𝑘𝑗
𝑚𝑖𝑛 minimum required flow on arc kj 

𝑃𝑗𝑖
𝑚𝑖𝑛 minimum required flow on arc ji 

𝐷𝑖 demand of customer i 

𝐷𝑗
𝑠 demand of store j with size s 

𝑆𝑃𝑘
𝑤 supply capacity of warehouse k of size w 
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𝑆𝑃𝑗
𝑠 supply capacity of store j of size s 

𝑑𝑘𝑗 distance between warehouse k and store j 

𝑑𝑗𝑖  distance between store j and customer i 

𝑃𝑃𝑖 Population of customer zone i 

𝐶𝑇 Capacity of truck resupplying stores from warehouses 

𝐶𝐶 Capacity of customer cars 

𝐶𝑉𝒏 Capacity of delivery van n delivering to customers 

from stores 

𝛼 Share of in-person shopping market 

𝛽 Share of online shopping market 

Decision Variables 

𝑌𝑗
𝑠 = {

1
0

 
𝑠𝑡𝑜𝑟𝑒 𝑗 𝑠𝑖𝑧𝑒 𝑠 𝑖𝑠 𝑜𝑝𝑒𝑛

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑍𝑘
𝑤 = {

1
0

 
𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 𝑘 𝑠𝑖𝑧𝑒 𝑤 𝑖𝑠 𝑜𝑝𝑒𝑛

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑋𝑗𝑖
𝑠 = {

1
0

 
𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑖 𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑠𝑡𝑜𝑟𝑒 𝑗

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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𝑉𝑘𝑗
𝑤𝑠 = {

1
0

 
𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑖 𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑠𝑡𝑜𝑟𝑒 𝑗

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑈𝑗𝑛
𝑠 = {

1
0

 
𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑠 𝑓𝑜𝑟 𝑠𝑡𝑜𝑟𝑒 𝑗 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑠

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑅𝑙𝑚𝑛 = {
1
0

 
𝑁𝑜𝑑𝑒 𝑙 𝑝𝑟𝑜𝑐𝑒𝑒𝑑𝑠 𝑁𝑜𝑑𝑒 𝑚 𝑜𝑛 𝑎 𝑟𝑜𝑢𝑡𝑒 𝑢𝑠𝑖𝑛𝑔 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑛

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑃𝑘𝑗 Flow between k and j 

𝑃𝑗𝑖 Flow between j and i 

The lower-level function is approximated by a surrogate model to reduce the two level task to 

one. My approach is to metamodeling the lower-level function and solving a number of auxiliary 

single level problems to obtain the solution for the bilevel problem. A feasible solution to the 

bilevel problem is a vector of upper and lower-level variables, such that, the vector satisfies all the 

constraints in the problem, and the lower-level variables (here the delivery tour distance) are the 

most appropriate values to the lower level problem for the given upper level variables (here all the 

distance and emission variables for both in-person and online shopping cases) as parameters. 

8.4.2.  Surrogate modeling to approximate the lower-level objective function 

In this section, the idea for approximating the lower-level objective function is discussed. 

Considering the following bilevel problem in Definition 1, we define Lower-Level Value Function 

as Definition 2. Then we approximate the ϕ-mapping using Kriging and solve the reduced bilevel 

problem in Definition 2 using a standard single level algorithm. The process is carried out 

iteratively to converge toward the bilevel solution. This mapping relates the upper-level variables 
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with the corresponding objective function value of the lower-level problem. The method discussed 

in this section creates a meta-model of the value function mapping using Kriging approximations. 

Table 8.9. Two definitions for the mapping function 

Definition 1: for the upper level objective 

function 𝐹: ℝ𝑛 ∗ ℝ𝑚 → ℝ  and lower level 

objective function 𝑓: ℝ𝑛 ∗ ℝ𝑚 → ℝ , the 

bilevel problem is given by  

     
𝑀𝑖𝑛 
𝑥, 𝑦

𝐹(𝑥, 𝑦)
 

 

Subject to 

    𝑦 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛{𝑓(𝑥, 𝑦): 𝑔𝑗(𝑥, 𝑦) ≤ 0, 𝑗

= 1,… , 𝐽} 

 

   𝐺𝑘(𝑥, 𝑦) ≤ 0, 𝑘 = 1,… , 𝐾,  

Where 𝐺𝑘: ℝ
𝑛 ∗ ℝ𝑚 → ℝ, 𝑘 = 1,… , 𝐾 

denotes the upper level constraints, and 𝑔𝑘: ℝ
𝑛 ∗

ℝ𝑚 → ℝ, 𝑗 = 1,… , 𝐽  represents the lower level 

constraints, respectively. Variables 𝑥 and 𝑦 are 𝑛 

and 𝑚 dimensional vectors, respectively. 

 

Definition 2: let 𝜑: ℝ𝑛 ∗ ℝ𝑚 → ℝ  be the 

lower level value function mapping, 

𝜑(𝑥) =  
𝑚𝑖𝑛
𝑦
{𝑓(𝑥, 𝑦): 𝑔𝑗(𝑥, 𝑦) ≤ 0, 𝑗

= 1,… , 𝐽} 

 

Represents the minimum lower level 

function value corresponding to any upper 

level decision vector. This is called as the 

lower level value function or the 𝜑-mapping. 

The bilevel problem can be expressed as 

follows in terms of the 𝜑-mapping:  

     
𝑀𝑖𝑛 
𝑥, 𝑦

𝐹(𝑥, 𝑦)
 

 

Subject to 

    𝑓(𝑥, 𝑦) ≤ 𝜑(𝑥)  

    𝑔𝑗(𝑥, 𝑦) ≤ 0, 𝑗 = 1,… , 𝐽  

   𝐺𝑘(𝑥, 𝑦) ≤ 0, 𝑘 = 1,… , 𝐾  
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8.4.3.  Surrogate-based approximation algorithm (partitioning – approximation - 

coordination framework) 

Assuming the dimensions of the upper-level variables be n and the lower level be m. 

1) generate random sample S of size p = 10n within the relaxed feasible region Φ of the bilevel 

problem. This is achieved by solving the following problem p times with random starting points. 

Let say that an algorithm A is used to solve the problem. Since the objective functions a fixed 

number, the algorithm terminates when a feasible solution is found. 

𝑀𝑖𝑛 
𝑥, 𝑦

0
 

Equation 8.62  

  

 Subject to 

𝐺𝑘(𝑥, 𝑦) ≤ 0, 𝑘 = 1,… , 𝐾 Equation 8.63

  

 𝑔𝑗(𝑥, 𝑦) ≤ 0, 𝑗 = 1,… , 𝐽 Equation 8.64

  

 𝑥(𝑖): 𝑖 ∈  {1, … , 𝑝} Equation 8.65

  

2) solve the lower-level problem for each point in the sample 𝑥(1), … , 𝑥(𝑝) using algorithm A 

and record the most appropriate point in the sample with the minimum upper-level function values 

𝐹(𝑖) 𝑎𝑛𝑑 𝑓(𝑖): 𝑖 ∈  {1, … , 𝑝}. Initialize iteration counter 𝑐 ←  𝑐 + 1. Find the most appropriate 

point in the sample with the minimum upper-level function and denote it as 𝐹𝑐 . 

Now that the feasible solutions are acquired, the solution of the upper level’s problem can be 

calculated. Therefore, we are now able to do the following: 
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▪ Find p samples from the feasible solution space of the relaxed problem 

▪ Find the solution of lower level for each sample p and find the corresponding upper 

level objective value in the sample and the upper level objective value which is the first 

solution of the bi-level problem 

To accomplish this step, we follow the following process: 

▪ find the Euclidean distance between all customers and stores 

▪ find the tour distance solution for each feasible solution from the shared feasible region 

(for both level problems) 

▪ read the feasible solutions and select each store and its connected customers in each 

solution 

▪ find the stores and customers’ IDs for the current feasible solution 

▪ build a list of coordination of nodes which are stores and customers that are connected 

in the current feasible solution 

▪ calculate the Euclidean distance of connected stores and customers 

▪ calculate the minimum tour distance for each set of connected store and customers  

▪ calculate the sum of the tour distances for all the feasible solutions 

▪ calculate F for each feasible solution (Decision 1 to Decision 32) 

3) Compute the covariance matrix for the sample S and denote it by ∑𝑐. Update 𝑐 ←  𝑐 + 1. 

Output: ∑𝑐. (The process of calculating the covariance matrix is explained in Appendices E 

and F) 
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4) estimate 𝜑̂(𝑥) (the approximated mapping from the sample S containing p points), and 𝑠̂(𝑥) 

(the approximation of the standard deviation of 𝜑(𝑥)), and solve the following auxiliary problem 

to identify a new point 𝑥𝑝+1 and it to sample population S. 

𝑀𝑖𝑛 
𝑥, 𝑦

𝐹(𝑥, 𝑦)
 

Equation 8.66

  

 Subject to 

𝑓(𝑥, 𝑦) ≤ 𝜑̂(𝑥) + 3𝑠̂(𝑥) Equation 8.67  

Subject to 

𝑔𝑗(𝑥, 𝑦) ≤ 0, 𝑗 = 1,… , 𝐽 Equation 8.68  

      𝐺𝑘(𝑥, 𝑦) ≤ 0, 𝑘 = 1,… , 𝐾     Equation 8.69 

 where H is the hypothesis space of functions, then one can identify an approximate model 𝜑̂ ∈
𝐻 that minimizes the empirical error on the sample (Equation 8.70); 𝐿:ℝ ∗ ℝ →  ℝ denotes the 

prediction error. The prediction error is commonly computed by assuming a quadratic loss function 

like follows: 

𝜑(𝑥(𝑖)) = 𝜇 + 𝜖(𝑥(𝑖))   𝑖 = 1,… , 𝑛 Equation 8.70

  

 Where 𝜇 is the mean of the stochastic process and 𝜖(𝑥(𝑖)) is a normally distributed random 

error with mean 0 and variance 𝜎2. 

5) Solve the lower level problem for this point using algorithm 𝐴 to obtain 𝑓𝑝+1 and compute 

𝐹𝑝+1. 

6) create additional random sample of n points (drawn from a normal random distribution with 

covariance 0.1*∑𝑐) with mean 𝑥𝑝+1 and solve lower level problem for each point. Add these 



 

329 
 

additional sample points to S after computing the corresponding upper and lower level objective 

function values. 

7) update  𝑝 ←  𝑝 + 1 + 𝑛. 

8) for the current iteration find the point in the sample of p points with the minimum upper 

level function value and denote it as 𝐹𝑐 . 

9) terminate, if the improvement over multiple iteration is small, otherwise go to Step 3. 

To accomplish Steps 3 and 4, we need to create a surrogate model to replace the mapping 

function (coordination function) between the lower level and upper level of the multi-channel 

supply chain. The regression model that we had created before in Figure 4 was not accurate and 

the reason for that is the nonlinear nature of the design points and the conceptual problem with 

regression which is the assumption of independent errors. This assumption is false when modeling 

a deterministic computer code, which is the case in our problem. Because the code is deterministic, 

any lack of fit is entirely modeling error (incomplete set of regression terms), not measurement 

error or noise. This means that the error terms are really collections of left-out terms in x, so that 

we may write 𝜖(i) as 𝜖(x(i)). Moreover, if y(x) is continuous, then 𝜖(x) is also continuous, because 

it is the difference between y(x) and the continuous regression terms. It follows that, if x(i) and x(j) 

are two points that are close together, then the errors 𝜖(x(i)) and 𝜖(x(j)) should also be close. In short, 

it makes no sense to assume that 𝜖(x(i)) and 𝜖(x(j)) are independent. Instead, it is more reasonable 

to assume that these error terms are related or ‘correlated’, and that this correlation is high when 

x(i) and x(j) are close and low when the points are far apart. 

Therefore, instead of any regression model, we should use Kriging model. However, there is a 

problem with Kriging model which is not providing us with a function that we can replace the 
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lower level problem in the multi-channel supply chain design to approximate the lower level and 

turn it into a one level problem and solve it. To tackle this problem, we are proposing the following 

tasks to come up with a function for the Kriging model. This is also very helpful for design 

engineers as coming up with a function for the Kriging is a big challenge in engineering design. 

As we do not assume that the errors are independent, but rather assume, as indicated above, 

that the correlation between errors is related to the distance between the corresponding points. We 

do not use the Euclidean distance, however, since this distance weights all the variables equally. 

Rather, we use the special weighted distance formula shown below: 

d(x(i), x(j))  = ∑𝜃ℎ

𝑘

ℎ=1

 |x(i) − x(j)|
𝑝ℎ
 (θℎ  ≥  0,  pℎ  ∈  [1, 2]). 

Equation 8.71

  

Using this distance function, the correlation between the errors at x(i) and x(j) is 

Corr[ϵ(x(i)), ϵ(x(j))]  = exp [−𝑑( x(i), x(j))]. Equation 8.72

  

The correlation function defined in (Equation 8.71) and (Equation 8.72) has all the intuitive 

properties one would like it to have. In particular, when the distance between x(i) and x(j) is small, 

the correlation is near one. Similarly, when the distance between the points is large, the correlation 

approaches zero. The parameter 𝜃ℎ in the distance formula (Equation 8.71) can be interpreted as 

measuring the importance or ‘activity’ of the variable 𝑥ℎ. To see this, note that saying ‘variable h 

is active’ means that even small values of |𝑥ℎ
(𝑖)

− 𝑥ℎ
(𝑗)

| may lead to large differences in the function 

values at 𝑥ℎ
(𝑖)

 and 𝑥ℎ
(𝑗)

. Thinking in statistical terms, this means that even small values of |𝑥ℎ
(𝑖)

− 

𝑥ℎ
(𝑗)

| should imply a low correlation between the errors 𝜖(x(i)) and 𝜖(x(j)). Looking at Equation 8.71 
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and Equation 8.72, we see that, if θh is very large, then it is indeed true that small values of |𝑥ℎ
(𝑖)

− 

𝑥ℎ
(𝑗)

| translate to large ‘distances’ and hence low correlation. The exponent 𝑝ℎ is related to the 

smoothness of the function in coordinate direction h, with 𝑝ℎ  = 2 corresponding to smooth 

functions and values near 1 corresponding to less smoothness. 

It turns out that modeling the correlation in this way is so powerful that we can afford to 

dispense with the regression terms, replacing them with a simple constant term. This gives us the 

model we use in the stochastic process approach:  

y(x(i))  =  µ +  ϵ(x(i)) (i =  1, . . . , n)  Equation 8.73

  

where µ is the mean of the stochastic process, 𝜖(x(i)) is Normal (0, σ2), and, as just discussed, 

the correlation between errors is not zero but rather is given by Equation 8.71 and Equation 8.72. 

The estimates of the parameters µ and σ2 have little direct interpretation, as they must be combined 

with the estimates of the correlation parameters (the θh’s and ph’s) in order to make predictions. 

This model is called a ‘stochastic process model’ because the error term 𝜖(x) is a stochastic 

process, that is, it is a set of correlated random variables indexed by space (here, the k-dimensional 

space of x). 

The model has 2k + 2 parameters: µ, σ2, θ1,... ,θk, and p1,... ,pk. We estimate these parameters 

by choosing them to maximize the likelihood of the sample. Let y = (y(1) ,... ,y(n))' denote the n-

vector of observed function values, R denote the n×n matrix whose (i, j ) entry is Corr[𝜖(x(i)), 𝜖(x(j))] 

(see eq. 2), and 1 denote an n-vector of ones. Then the likelihood function is: 
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1

(2𝜋)𝑛/2(𝜎2)𝑛/2|𝑅|1/2
exp [−

(𝑦 − 1𝜇)′𝑅−1(𝑦 − 1𝜇)

2𝜎2
]  

Equation 8.74

  

 The dependence on the parameters 𝜃ℎ and 𝑝ℎ for h = 1,... ,k is via the correlation matrix R. 

Given the correlation parameters 𝜃ℎ and 𝑝ℎ for h = 1,... ,k, we can solve for the values of µ and σ2 

that maximize the likelihood function in closed form: 

𝜇̂ =
1′𝑅−1𝑦

1′𝑅−11
 

Equation 8.75  

 And 

𝜎̂2 =
(𝑦 − 1𝜇̂)′𝑅−1(𝑦 − 1𝜇̂)

𝑛
 

Equation 8.76

  

 Substituting Equation 8.75 and Equation 8.76 into the likelihood function, we get the so-called 

‘concentrated likelihood function’, which depends only upon the parameters 𝜃ℎ and 𝑝ℎ for h = 

1,... ,k. This is the function that we maximize in practice to give us the estimates 𝜃ℎ and 𝑝̂ℎ, and 

hence an estimate of the correlation matrix R. We then use Formulas Equation 8.75 and Equation 

8.76 to get the estimates 𝜇̂ and 𝜎̂2. Formally, let r denote the n-vector of correlations between the 

error term at 𝑥∗ and the error terms at the previously sampled points. That is, element i of r is 𝑟𝑖(𝑥
∗) 

≡ Corr[𝜖(𝑥∗), 𝜖(𝑥(𝑖))], computed using the formula for the correlation function in Equation 8.71 and 

Equation 8.72. It then turns out that the most appropriate linear unbiased predictor of y(𝑥∗) is 

𝑦̂(𝑥∗) = 𝜇̂ + 𝑟′𝑅−1(𝑦 − 1𝜇̂) Equation 8.77

  

 



 

333 
 

On the right-hand side of Equation 8.77, the first term, 𝜇̂, is the result of simply plugging 𝑥∗ 

into the regression equation, and the second term represents the adjustment to this prediction based 

on the correlation of 𝜖(𝑥∗) with the error terms at the sampled points. Note that if there is no 

correlation (r = 0), then we just predict 𝑦̂(𝑥∗) = 𝜇̂. We wanted to estimate the 𝜑(𝑥) function which 

is the mapping function between the lower and upper level coordinating these two levels using 

maximum likelihood method as follows: 

𝜑̂(𝑥) = 
𝑎𝑟𝑔𝑚𝑖𝑛
𝑢 ∈ 𝐻

 ∑ 𝐿(𝑥(𝑖), 𝑓(𝑖))𝑖∈𝐼  Equation 8.78

  

 On this statistical process, the maximum likelihood estimation is utilized to identify the 

Kriging parameters. The general form of the model is given as follows: 

𝑍(𝑥(𝑖))  =  𝜇 +  𝜖(𝑥(𝑖))      i =  1, … , n. Equation 8.79

  

Here, 𝑍(𝑥(𝑖)) can be interpreted as a response obtained at 𝑥(𝑖), 𝜇 is the term that represents the 

overall surface mean, and 𝜖(𝑥(𝑖)) represents the autocorrelation error with 0 mean and 𝜎2 variance. 

The model assumes that the correlation between two points decrease as the distance between them 

increases. The correlation between any two points is given as follows: 

𝐶[𝜖(𝑥(𝑖)), 𝜖(𝑥(𝑗))] =  𝑒−𝑑(𝑥
(𝑖),   𝑥(𝑗)) Equation 8.80

  

 Where 𝑑(𝑥(𝑖),   𝑥(𝑗) = ∑ 𝜃ℎ
𝑘
ℎ=1  |x(i) − x(j)|

𝑝ℎ
 (θℎ  ≥  0,  pℎ  ∈  [1, 2]).  Represents the 

weighted distance between the two points  𝑥(𝑖) and 𝑥(𝑗)). The parameters 𝜇, 𝜎, 𝜃 and p can be 

estimated by maximizing the likelihood over the sample. 
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Having the parameters estimated, the Kriging function can be estimated as follow: 

𝑦̂(𝑥∗) = 𝜇̂ + 𝑟′𝑅−1(𝑦 − 1𝜇̂) 

8.4.4.  Results and discussion on solving the comprehensive problem of two 

channels in a three-echelon supply chain design problem  

To demonstrate the Utility of the framework, we used Puerto Rico with 57 customer zones, and 

7 candidate locations for stores (Total cost of the designed green supply chain is calculated 

considering $100/ton 𝐶𝑂2). 

1) generate random sample S of size p = 10n within the relaxed feasible region Φ of the 

bilevel problem. 

We wrote the Python code for the bi-level program where the upper level is the supply chain 

design model, and the lower level is the tour distance determination model for the delivery van in 

the online shopping. Then, we identified the feasible solution space of the bi-level problem by 

relaxing the objective functions of the upper and lower level and solving the relaxed problem for 

p times. We found p feasible solutions with random starting points as sample S. The first sample 

of the feasible solutions for the bi-level problem is shown in Figure 8.23.  

We show here which store is connected to which open store. Please note that we just wanted 

to show a schematic outcome and we could not plot the whole outcome here as this is not the final 

result and we plot the final results in proper figures and visualizations. 𝑥(1), … , 𝑥(𝑝)  using 

algorithm A and record the most appropriate point in the sample with the minimum upper-level 

function values 𝐹(𝑖) 𝑎𝑛𝑑 𝑓(𝑖): 𝑖 ∈  {1, … , 𝑝}. Initialize iteration counter 𝑐 ←  𝑐 + 1. Find the most 

appropriate point in the sample with the minimum upper-level function and denote it as 𝐹𝑐 . 
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Figure 8.23. Feasible solution for the bi-level problem 

For each solution from S, we solved the lower-level problem, which is the tour finding problem 

and identified the solution for each sample points in the sample pool of S. In Figure 8.23, we show 

the tours and corresponding values for the sample points. Please note that each decision in the 

figure stands for all the open stores in that decision (design) with its corresponding customers and 

accordingly several tours in each decision (design). Again, since this is not the final results, we 

just took a screen shot from the Python output to show several tours and their corresponding costs. 

Also, the sequence of the customers is show in the figure which in the final results are visualized 

on Puerto Rico’s map with customers sequence in the tours. 

In Figure 8.24, we show the final tour for each decision (design), where the values are the total 

tour distance in each design. Also, we plotted a mapping for the first sample (32 datapoints or 

designs). As you see the mapping is not explaining the tour identification function appropriately. 

Therefore, we try other mappings and iteratively improve the quality of the mapping. 
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Figure 8.24. Tour distance in online shopping for each sample point and the corresponding 

cost of each tour. 

These solutions are feasible for the upper level, and we solve the upper level in coordination 

with the lower-level solutions as the next step. This is the solution of the bi-level problem 

(traditional, in-store shopping and online shopping together) for the first sample set of points and 

the first iteration. We wrote a code to automate this process and explore the solution space and add 

new sample points to the pool of samples. 
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Figure 8.25. Final tour for each decision (design) and mapping for the first sample (32 

datapoints or designs). 

Now that the feasible solutions are acquired, the solution of the upper level’s problem can be 

calculated. Therefore, we are now able to do the following: 

Find p samples from the feasible solution space of the relaxed problem 

Find the solution of lower level for each sample p and find the corresponding upper-level 

objective value in the sample and the upper-level objective value which is the first solution of the 

bi-level problem. The results are shown in Table 8.10. 
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 Table 8.10. Solution for the upper-level function 

0 1 2 3 4 5 6 7 8 9 10 

0.0 9688.7 9688.7 9688.7 9688.7 9688.7 9688.7 9688.7 9688.7 9688.7 9688.7 

11 12 13 14 15 16 17 18 19 20 21 

9688.7 9688.7 9688.7 9688.7 9688.7 9688.7 16216.6 16216.6 3741.1 3741.1 4918.1 

22 23 24 25 26 27 28 29 30 31 32 

4914.4 4469.6 4469.6 12864.6 12864.6 4787.3 4787.3 4612.3 4612.3 5039.3 5039.3 

 

2) Calculating covariance matrix of the 32 random solutions (each denoted by d1 (solution1) 

and d2 (solution 2)) 

 

Figure 8.26. Results of calculating covariance matrix of the 32 random solutions. 

3) Formulating variance and mean value and build the likelihood function 
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𝜇̂ =
1′𝑅−1𝑦

1′𝑅−11
 

Equation 8.81  

𝜎̂2 =
(𝑦 − 1𝜇̂)′𝑅−1(𝑦 − 1𝜇̂)

𝑛
 

Equation 8.82  

In Figure 8.27, we show the module that we created to calculate the covariance matrix, the 

inverse of the covariance matrix, 𝜇̂ and 𝜎̂2. Calculating these components enables me to estimate 

the parameters of the likelihood function. This allows me to create a function for the Kriging 

method. 

 

Figure 8.27. The module for calculating the 𝜇̂ and 𝜎̂2 and the likelihood function. 

In Figure 8.28, we show the results of calculating the likelihood function parameters. 

1

(2𝜋)𝑛/2(𝜎2)𝑛/2|𝑅|1/2
exp [−

(𝑦 − 1𝜇)′𝑅−1(𝑦 − 1𝜇)

2𝜎2
]  

Equation 8.83
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Figure 8.28. Results of calculating the likelihood function parameters. 

 Now, that we have the likelihood function, we are able to formulate the bi-level model into a 

single level model by the following formulation: 

𝑀𝑖𝑛 
𝑥, 𝑦

𝐹(𝑥, 𝑦) 

Subject to 

𝐹(𝑥, 𝑦) ≤ 𝜑̂(𝑥) + 3 𝑠̂(𝑥) Equation 8.84

  

 𝐺𝑘(𝑥, 𝑦) ≤ 0, 𝑘 = 1,… , 𝐾 Equation 8.85

  

 𝑔𝑗(𝑥, 𝑦) ≤ 0, 𝑗 = 1,… , 𝐽 Equation 8.86

  

 Where 𝑠̂(𝑥) is calculated as following: 

4) Estimating the likelihood function parameters and the mean and variance as well as the 

𝑠  2: 

𝑆2(𝑋∗) = 𝜎2 [1 − 𝑟′𝑅−1𝑟 +
(1 − 1′𝑅−1𝑟)2

1′𝑅−11
] 

Equation 8.87

  

The result of calculating the 𝑠  2(𝑥) is shown in Figure 8.29. 
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Figure 8.29. Results of calculating 𝑆2(x). 

Now, the single level model results are achievable as shown in Figure 8.30. 

 

Figure 8.30. Results for the bi-level model which is transferred to a single level model. 

6) create additional random sample of n points (drawn from a normal random distribution with 

covariance 0.1*∑𝑐) with mean 𝑥𝑝+1 and solve lower-level problem for each point. Add these 

additional sample points to S after computing the corresponding upper and lower-level objective 

function values. 
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Now, we have the 𝜑̂(𝑥) function and we can add a new sample point to the pool of samples 

and calculate its corresponding solution and update the most appropriate lower and upper level 

solutions. 

Choose another 32 samples within 0.1 covariance and run the all the previous steps to find the 

most promising lower and upper level solution. This process is continued until the values of the 

lower and upper levels do not change. The current set of solutions, including 32 random sample 

solutions and the solution obtained by the Kriging model built based on the random sample 

solution are shown in Figure 8.31. The lowest value of the upper level functions belongs to the 

Solution 19 with the value of F= 3741.08 as it is shown in Figure 8.32. 

Value of f(x,y), lower 

level, tour finding 

problem 

Value of F(x,y), 

upper level, supply 

chain design problem  

 
 

 

Figure 8.31. Results for the lower level and upper-level objective function using the first set of 

sample solutions and the Kriging solution. 
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Figure 8.32. The lowest value of upper-level objective function among the first 33 solutions. 

7) update  𝑝 ←  𝑝 + 1 + 𝑛.  

Figure 8.33. The results for the second 32 samples for the tour finding (value of f(x,y), the 

lower-level problem).  

The change in the lowest solution for upper level (F) is significant and equal to:  F(13) – F(62)= 

3741.08-2127.09= 1613.99 which indicates an almost 40% reduction. We still need to keep taking 

the samples from normal distribution with mean of the current lowest solution and 0.1*covariance 

of the current 62 solution because the change in the problem solution F is higher than 5% which 

we have set as the stopping criteria. 
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Value of f(x,y), 

lower level, tour 

finding problem 

Value of F(x,y), 

upper level, supply 

chain design 

problem 

 

 
 

Figure 8.34.Value of f(x,y), the lower level prolem and F(x,y), the upper level prolem and the 

updated lowest solution for upper level (F) for the second 32 samples.  

The change in the lowest solution for upper level (F) is not significant and equal to:  F(62)-

F(92)= 2127.09-2069.36= 57.73 which is about to 2% change in the previous solution. Since we 

considered a threshold of 5% change, we stop here. 

8.4.5.  Scenario analysis on different percentages of online shoppers in a two-

channel, three-echelon supply chain 

Now that the solutions for the bi-level program can be achieved, we can conduct different 

scenario analysis based on different percentages of the in-store and online shoppers for calculating 
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the difference in expected carbon emissions between in-store shopping and e-commerce-based 

online retailing involving last mile delivery to customers’ homes to quantify which channel has 

the least harmful impact on the environment. The goal here is to answer the questions of “Is online 

shopping greener than the traditional shopping? Under which conditions (uncertain)?” and we 

hypothesize that online shopping is greener if the delivery truck travels a short distance. For 

example, as shown in Figure 15, if the percentage of online shoppers increases the overall GHG 

emission of the supply chain is expected to be increased. 

 

Figure 8.35. the hypothetical different between different percentages of online shoppers. 
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Scenario 1: 𝜶 = 0.8, 𝜷 = 0.2, more in-store shopping (Assumption: 80% of transportation cost 

is related to customers who buy in store. In fact, 80% of the customers buy in store or in other 

words, percentage of online shoppers is 80%.) 

Total Cost = 6.54e+04 

 

 

Scenario 2: 𝜶 = 0.2, 𝜷 = 0.8, more online shopping 

Total Cost = 84.62e+04 
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Scenario 3: 𝜶 = 0.55, 𝜷 = 0.45, a tad more traditional shopping 

Total Cost = 5.87e+04 

 

Figure 8.36. Difference scenarios based on different percentages of the online shoppers. 

 

 Figure 8.37. Total cost of the supply chain based on percentage of online shoppers. 
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Online shopping does not appear to be cleaner than in-store shopping, so my hypothesis is not 

proven to be right. As the percentage of the online shoppers increases, the total cost including the 

greenhouse gasses emissions decreases. However, as soon as it reaches around 40%-50%, the cost 

of the system design increases. This might be mainly due to the increase in customer travel distance. 

8.4.6.  Verification and validation of solving the comprehensive problem of two 

channels in a three-echelon supply chain design problem  

Theoretical structural validation 

Theoretical structural validation refers to accepting the validity of two portions of the 

dissertation, including the (i) surrogate modeling and (ii) partitioning-coordination and accepting 

the internal consistency of the way these two portions are put together for partitioning-

approximation-coordination framework. Theoretical structural validation involves systematically 

identifying the scope of the framework’s application, reviewing relevant literature and identifying 

the research gaps that is existing, identifying the strengths and limitations of the surrogate-based 

mathematical modeling used based on literature review, determining the approaches that can be 

leveraged for developing the partitioning-approximation-coordination framework, reviewing 

literature on the advantages, disadvantages and accepted domains of application, and checking the 

internal consistency of the constructs (Portions i and ii of the dissertation) both individually and 

when integrated into the framework.  

The internal consistency of the individual constructs is checked by a critical review of the 

literature. The verification and validation of Research Question 6, which is “What is the 

mathematics to partition, approximate and coordinate a complex multi-channel and multi-echelon 

supply chain design problem?” is carried out in detail in Sections 8.14 to 8.19. The readers are 

referred to this section for more details. To answer this question, we hypothesized that using a bi-
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level partitioning approach, we can model two different channels (online and in-store shopping), then we 

can use a surrogate model to map the solutions of the lower-level into the upper-level. The key outcome 

that we obtained by doing this research project and completing Chapter 8 is creating a method for 

calculating the difference in expected carbon emissions between in-store shopping versus e-commerce-

based online retailing involving last mile delivery to customers’ homes to quantify which channel has the 

least harmful impact on the environment. 

8.4.7.  Take aways on solving the comprehensive problem of two channels in a three-

echelon supply chain design problem 

In this chapter we determine the sizes and facility locations of stores in an area of customers 

to reduce overall supply chain cost and greenhouse gas emission simultaneously such that total 

supplier’s restocking expenses, the supplier’s space expenses, and the customers’ transportation 

expenses are minimized. These expenses include variable operating fees, such as gas and rent and 

electricity for supplier spaces. These expenses also represent the fuel and electricity cost as indirect 

expenses related to GHG emissions, but it is possible that, in this model, the full prices of GHGs 

are not included. 

Store restocking is carried out by trucks going back and forth from the central warehouse to 

each store instead of requiring the trucks to use a traveling salesman pattern.  Using the traveling 

salesman, trucks which empty their loads in the delivery to the first store are still required to travel 

to all stores and produce unnecessary emissions.  This we argue, is not as realistic as a model in 

which trucks travel back and forth between specific stores and the warehouse.  In this chapter, 

truck resupply is modelled with a k-median problem and is superimposed on the customer 

distribution which is also a k-median problem; thus, sustainable supply chain store distribution 

becomes a bi-level problem.  Further, instead of assuming that demand is uniform in the region 
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under consideration, we base demand on the population distribution, using the examples of Puerto 

Rico and its capital city, San Juan. 

Two contrasting scenarios are considered for supply chain density design: (1) minimizing 

operating costs without regard to GHG emissions; and (2) GHG emission minimization, regardless 

of operating charges. Some cases are insensitive to which scenario is chosen; when the charges for 

supplier space are low, or if the electricity used by the supplier is produced with high GHGs or if 

the supplier’s gas consumption is high, GHG emissions are near minimum if operating costs are 

minimized, and operating costs are near minimum although emissions are minimized. This occurs 

when all the sources of emissions have similar GHG emissions relative to operating charges. For 

example, in our model, although supplier trucks can carry a lot more product than customer cars, 

the GHGs for every unit of distance to variable operating costs for every unit of distance is 

approximately equal for cars and trucks. 

There are also circumstances when the ratios of the GHG emissions to the operating charges 

are different. If the supplier is in a region with more expensive rental rates and consumes 

comparatively environmentally friendlier electricity, the ratio of the associated GHGs to operating 

charges for floor space varies substantially from the ratio for cars (perhaps as much as 0.13 

kilograms carbon dioxide per dollar versus 1.36 kilograms carbon dioxide per dollar). In this 

situation, a supply chain which minimizes emission costs has a condensed network of tiny stores 

to obtain the advantage of the supplier’s environmentally friendly electricity compared to the 

customers’ pollutant vehicles, while a supply chain which minimizes operating costs has a sparse 

network to obtain the advantage of the inventory effectiveness of big stores. A supply chain which 

reduces GHGs is denser than one which reduces operating charges for about 7-fold. Moreover, 
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minimizing operating charges rises GHGs by approximately 70%, whereas minimizing the GHGs 

causes an equal penalty for the operating charges. 

Using the bi-level program created for the multi-echelon, multi-channel green supply chain 

design in a push-pull economy, we enable retailers like Walmart to: 

▪  Adapt post Covid-19 market and build green supply chains 

▪  Design a new business model transitioning from a push economy to an on-line based pull 

economy.  

▪  Predict the online and in-store demand 

▪  Show which retail channels: traditional or online shopping is greener and under which 

conditions. 

▪  identify the number, size, and location of the stores and warehouses in a supply chain to 

achieve a green and low-cost configuration. 

This proposed design method is not limited to GSC design. It is easily extended to other supply 

chain designs including those in manufacturing, material design, healthcare, and energy 

transmission and distribution. 
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CHAPTER 9 CLOSING REMARKS, I STATEMENT AND WAY 

FORWARD, I STATEMENT 

In Chapter 9, the dissertation is summarized, and the intellectual contributions are critically 

reviewed. The advantages and limitations of the methods, metrics, and constructs are discussed. 

For theoretical performance validation, it is argued that these constructs are valid beyond the 

example problems selected for empirical validation. Finally, avenues for future research and 

broader applications of the fundamental ideas in this dissertation are discussed. 

9.1 Problem and Assumptions 

In this dissertation, the problem that have been dealing with is  

• To manage complexity using surrogate modeling (SM), which are predictive models and 

partitioning 

• To deal with feature-based, time-based, and spatial data in SM 

• To partition complex design problems to smaller parts and then put them together 

After a critical evaluation of the literature, several gaps are identified in the literature and 

described as follows: 

• There is a gap in SM pool of knowledge in creating ensemble of SM when the data is limited 

• There is a gap in automating the SM selection process without removing the human 

intelligence 

• Temporal and spatial SM needs to be studied more 

• Partitioning, approximation, and coordination can be integrated for complexity management 

without losing the nature of the problem 
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To address these gaps, two main technical approaches are utilized as surrogate modeling and 

partitioning. In terms of surrogate modeling, ensemble of SM as weighted combinational surrogate 

models, multi-layer SM selection approach to automatically choosing the appropriate surrogate 

model, time series analysis, and spatial statistics are used. Moreover, in terms of partitioning, k-

means partitioning, bi-level programming, and surrogate-based approximation as solution 

approach are used. 

In order to verify and validate the created models, a hot rod rolling problem, a blow pipe 

problem, a dam network design problem, a crime rate prediction problem and a supply chain design 

problem are modeled and implemented. 

There are several potential contributions as a result of completion of this dissertation as follows: 

With respect to new knowledge 

• Mathematics for multi-level SM selection and ensemble of SM  

• Mathematics for partitioning-approximation-coordination of complex design 

problems 

With respect to functionality and Utility 

• Enabled SM selection easier and faster than existent selection methods by creating 

a systematic and organized automated selection process 

• Enabled prediction with sparse data by ensemble of SM  

• Enabled dealing with temporal and spatial data in SM 

• Enabled complexity management in a supply chain network by partitioning the 

network, approximating the solutions of the partitions, and coordinating them 
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9.2 Contributions 

In Figure 9.1, the dissertation outline and the work accomplished during this PhD is 

summarized. 
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Figure 9.1. The dissertation outline and the work accomplished during this PhD. 

 

Chapter 1 

- Motivation 

- Importance of the problem in reality 

- Research questions and hypothesis 

- Solution approaches 

- Validation approach 

- Theoretical structural validation 

Gap 1 - Classifying the surrogate models based on common 

selection criteria 

(Alizadeh, R., Allen, J. K., and Mistree, F. (2020). Managing 

computational complexity using surrogate models: a critical 

review.” Research in Engineering Design, 31(3), 275-298.)   

 

Chapter 2 

Chapter 3 

Gap 2 - Creating EOS which are more accurate than 

individual surrogates 

(Alizadeh, R., Jia, L., Nellippallil, A. B., Wang, G., Hao, 

J., Allen, J. K., & Mistree, F. (2019). “Ensemble of 

surrogates and cross-validation for rapid and accurate 

predictions using small data sets.” AI EDAM, 33(4), 

484-501.) 

 

Chapter 5 Chapter 4 

Chapter 6 

Gap 5 – Integrating Surrogate Models and Spatial 

Statistics  

(To be submitted to Spatial Statistics journal) 

 

Gap 4 – Integrating SM and 

time series  

(Accepted to the IDETC 2022) 

 

Gap 3 – Creating a systematic way for model 

selection 

(Jia, L., Alizadeh, R., Hao, J., Wang, G., Allen, J. K., 

Mistree, F. (2020). “A rule-based method for automated 

surrogate model selection.” Advanced Engineering 

Informatics, 45, 101123.) 

 

Chapter 7 

Chapter 8 

Gap 6 – Partitioning, approximation and Coordination 

(multi-echelon supply chain design) 

(Williams, J., Alizadeh, R., Allen, J., Mistree, F., (2020) 

“Using network partitioning to design a green supply 

chain.” IDETC Paper Number DETC2020-22644.) 

(Hajihashemi, S, Alizadeh, R., Allen, J.K. and Mistree, F., 

(2021), “Impact of Asset Management in a Green Supply 

Chain,” IDETC Paper Number DETC2021-70826.) 

 

Using network 

partitioning to manage 

the computational 

complexity 

 Approximation of 

reality using surrogate 

modeling  

Finding appropriate 

criteria for surrogate 

model selection  

 

 

Motivation and problem 

identification 

Closure 

Gap 1 - Classifying the surrogate models based on common 

selection criteria 
(Alizadeh, R., Allen, J. K., and Mistree, F. (2020). Managing 

computational complexity using surrogate models: a critical 

review.” Research in Engineering Design, 31(3), 275-298.)   
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As shown in Figure 9.2, Work 1 is accomplished through creating a framework to provide 

guidance for researchers and practitioners to choose the most appropriate surrogate model based 

on incomplete information about an engineering design problem. A visual description of this 

framework is shown in Figure 9.2. 

 

Figure 9.2. A visual description of the framework to provide guidance for researchers and 

practitioners to choose the most appropriate surrogate model.  

The framework shown in Figure 9.2, is a graphical representation of the key outcome of 

addressing Gap 1, which is on classifying the surrogate models based on common selection 

criteria. To achieve this outcome and address the gap, the following research question is posed 

“What are the main classes of the design of experiment (DOE) methods, surrogate modelling 

methods and model-fitting methods?”. The hypothesis is that Surrogate modelling methods can be 

classified based on the problem size, computational time, and accuracy. This hypothesis is tested 

and proved to be correct, and the outcome is published in (Alizadeh et al., 2020a). 
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Work 2 in Figure 9.3, which is the content of Chapter 6, is accomplished through creating an 

approach to build an ensemble of surrogates (EOS) which is more accurate than individual 

surrogates. In Chapter 6 the key outcome of Work 2 is articulated in answering the question of 

“What is the mathematics to create EOS that are more accurate than individual surrogate models?”. 

Through this work it is hypothesized that using a weighted average of individual surrogate models 

and minimum overall cross validation error such EOS can be built. The hypothesis is proved to be 

correct through testing the proposed approach on a hot rod rolling problem as the EOS is relatively 

computationally inexpensive and faster than the individual surrogates. In Chapter 7 of this 

dissertation, the research question of “What is the mathematics to increase the interpretability and 

manage the computational expense?” is answered through testing the “using an interpretable 

decision tree to map problem scale, noise, size of sample and nonlinearity to the types of SM and 

select the promising SM and function type; then, using a genetic algorithm to find the appropriate 

hyper-parameters for each selected SM”.  This is Work 3 in Figure 9.3, which is resulted in drastic 

increase in the selection pace by pre-screening of surrogate model types based on selection rule 

extraction and published in (Jia et al., 2020). A graphical representation of the approach proposed 

in Work 3 is shown in Figure 9.3.  

In Chapter 4, Gap 4 is addressed which is on integrating the surrogate models and time series 

analysis. To address this gap, the research question of “What is the appropriate SM to use when 

the data includes time-dependent variables as predictors?” is answered. It is hypothesis that 

through replacing the design of experiments with the time lags analysis, we find the SM which is 

useable in temporal variables. These SMs are better than classic time series analysis methods like 

ARIMA, MARIMA and ARIMAX. Also, EOS are better than individual SM in temporal 

variables.” 
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Figure 9.3. A visual representation of the proposed approach for AutoSM selection in Chapter 7. 

 

The hypothesis is tested through employing temporal-based SM on an example of water 

network design and dam inflow water prediction. Based on the results, time series integrated SM 

are relatively less computational expensive and more rapid compared to classic time series analysis 

models. The key outcome of addressing Gaps 4, is enabling to dealing with temporal data by 

incorporating time series (lag analysis) with SM. Temporal data can be used in SM using different 

time lags. 

 In Chapter 5, addressing Gap 5 on integrating surrogate models and spatial statistics is 

discussed. To address this gap, a research question of “what is the appropriate SM to use when the 

data includes spatial variables as predictors?” is posed and it is hypothesized that by replacing the 

design of experiments with the geographically weighted correlation analysis, the surrogate model 
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which is useable with spatial variables can be found. The key outcome of addressing this gap is 

enabling the use of spatial statistics and particularly the concept of the geographically weighted 

regression in surrogate modeling, to create spatial surrogate models. 

Gap 6, which is on partitioning, approximation, and coordination of complex engineering 

design problems to manage the computational complexity. This gap is dealt with through Works 

6 and 7 and answering the research question of “What is the mathematics to partition, approximate 

and coordinate a complex multi-channel and multi-echelon supply chain design problem?”.  

The hypothesis is that using a bi-level partitioning approach, the two different channels (online 

and in-store shopping) can be modeled, then a surrogate model can be used to map the solutions 

of the lower-level into the upper-level. A partitioning-approximation-coordination framework is 

proposed to deal with the computational complexity and uncertainty of engineering design 

problems.  

To verify and validate the proposed partitioning-approximation-coordination framework, a 

multi-echelon, multi-channel green supply chain problem is designed and tested. Since this 

problem is a comprehensive problem to verify the both approximation (surrogate modeling portion 

of this dissertation) and partitioning-coordination (second portion of this dissertation), it is divided 

into two parts: (i) two-level partitioning to design a green supply chain (two-echelon supply chain 

design), where a mixed-integer programming is used to design the supply network and a k-means 

method used to partition and coordinate the network. (ii) partitioning, approximation, and 

coordination to manage complexity to design the multi-echelon portion of the problem as well as 

multi-channel portion of the supply chain design, where two channels including online and in-

store shopping are modelled. 
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 The key outcomes of accomplishing these two works are creating a framework to partition-

approximate-coordinate complex design problems and a method for calculating the difference in 

expected carbon emissions between in-store shopping versus e-commerce-based online retailing 

involving last mile delivery to customers’ homes to quantify which channel has the least harmful 

impact on the environment. 

9.3 I Statement 

In this chapter, I plan to determine if the objectives planned for the dissertation are addressed. 

I plan to carry out a self-reflection of what have been achieved in past chapters and identify 

enabling technologies that requires advancement to further develop the vision of managing 

computational complexity and uncertainty in engineering design.  

In this chapter, the I summarize some of the key concepts that form the basis of evolving cyber-

physical social systems transitioning from push to pull low carbon economy. Finally, my vision 

for research in systems-based design architecture is addressed from the context of an evolving 

cyber-physical social systems transitioning from push to pull low carbon economy. I have taken 

away important lessons as following: 

• Identify domains that are foundational to advance the vision of managing computational 

complexity and uncertainty in engineering design  

• Opportunities for improving the current tools, frameworks, and algorithms for multi-echelon, 

multi-channel, green supply chain design under uncertainty  

• Possible future directions for systems-based design that intersects with the emerging trends 

in the field of evolving cyber-physical-social systems 



 

360 
 

• Identification of gaps and future vision in evolving cyber-physical-social systems 

transitioning from a push economy to a low carbon pull economy 

• Developments needed in academic curriculum to address evolving cyber-physical-social 

systems in an online, internet-based pull economy in a socially responsible, low carbon 

economy 

• Advances needed in industrial scale to address requirements to cope with evolving cyber-

physical-social systems in an online, internet-based pull economy in a socially responsible, 

low carbon economy 

During my chapters 1 to 8, I realized that supply networks and other network-based systems 

are more vulnerable to uncertainties due to their decentralized natures. Therefore, uncertainty 

management is critical to preserving acceptable performance. Besides, network-based systems are 

complex, and modeling them is computationally expensive.  

Thus, complexity management is essential to model and develop innovative solutions to 

improve the performance of these networks. I worked on both uncertainty management and 

complexity management in complex network design problems to provide the answers to the 

following research question: 

• “What is the mathematics to build prediction models that are more accurate, rapid, less 

computationally expensive under conditions of multi-dimensional sparse data?” where I 

practiced data analytics in production systems and created a mathematical approach to build 

an ensemble of predictive models (called surrogate models) to deal with sparse data in a rapid 

and accurate way. I also used time series analysis and spatial statistics in my predictions. 
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• “What is the mathematics to automatically select the best predictive model for a given 

prediction problem?” where I created a rule-based, multilevel, automatic surrogate model 

selection approach for automated machine learning (AutoML). The drastic increase in the 

selection pace by pre-screening of surrogate model types based on selection rule extraction 

is the scientific contribution of the proposed method. 

• “What is the mathematics to partition a complex network problem, then approximate the 

problem, and coordinate the solutions of partitions to obtain the solution of the whole 

problem?” 

Summing up, my dissertation falls in the realms of data science and analytics and operations 

research and is on managing complexity and uncertainty in complex network design considering 

environmental sustainability; in applications including but not limited to CPS systems including 

healthcare supply chains, energy systems, healthcare systems design and analytics, transportation 

networks, complex systems science and modeling and smart manufacturing, in a low carbon 

economy. Based on my Ph.D. research, my vision is to design, evaluate, predict, and manage 

evolving network-based, resilient, and sustainable CPS systems. To fulfil this vision, I plan to 

focus on automating the modeling, model evaluation, and model selection/combination processes 

by using data-driven approximation algorithms for capturing different dimensions of an evolving 

CPS system. 

9.4 Research Thrusts and Applications 

Building on my dissertation, in my early career (2022-2026), I plan to seek answers to the key 

challenges anchored in two Research Thrusts: RT1 and RT2. Each RT is an extension of my 

doctoral research and comprises several research foci as shown in Figure 9.4. 
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Figure 9.4. Research thrusts. 

9.4.1.  RT 1. What is the mathematics underlying automating the data-driven 

modeling and approximation models?  

This research thrust has four main foci as follows: 

1. The first focus is on creating rule-based computational frameworks, knowledge-based 

platforms, and ontologies to manage the knowledge resulting from the modeling, simulation, 

and approximation process and automate the selection of the best data-driven model based 
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on modeling time, desired accuracy, and data dimension criteria. I laid out the foundation for 

this focus in (Alizadeh et al., 2020a).  

2. The second focus is on improving and integrating decision models leveraging new 

technologies such as the Internet of Things (IoT), cloud computing, and deep learning to 

support managing system complexities and dealing with the evolution of the systems. The 

evolution of the systems happens due to the emergent properties, which are one of the origins 

of uncertainty when using the most appropriate data-driven models manage the evolution of 

such uncertainty.  

3. The third focus is on building statistical models to replace computationally expensive 

simulation models using different features, including time, geographical locations, textual, 

visual, and other unlabeled features. I laid out the foundation of this focus in (Alizadeh et al., 

2020a; Jia et al., 2020). 

4. The fourth focus is on creating mathematics to build a combination of models in two different 

situations where: 

(i) We are dealing with sparse data; here, I am looking at adaptive sampling methods, 

including methods based on cross-validation errors. This focus aims to build more 

accurate and less computationally expensive models. I laid out the foundation for this 

focus in (Alizadeh et al., 2019). 

(ii) The data is abundant, and we deal with big-data analytics; here, I am looking at building 

models for big data analytics and large-scale data mining such as deep learning. I laid the 

foundations of this focus in (Alizadeh et al., 2020a; Jia et al., 2020). 

The fifth focus is on curating synthetic data when the data is limited and sparse and generating 

and collecting the data are non-trivial. Generating and collecting data in engineering design is 
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computationally expensive. Also demand for access to data, especially data collected using public 

funds, is ever growing. At the same time, concerns about the disclosure of the identities of and 

sensitive information about the respondents providing the data are making the data collectors limit 

the access to data. Furthermore, building and testing machine learning models requires access to 

large and diverse data. However, finding usable datasets without running into privacy issues is 

cumbersome. This objective in this focus is to create techniques for generating synthetic data—

fake data generated from real data—so we can perform secondary analysis to do research, 

understand customer behaviors, develop new products, or generate new revenue. Synthetic data 

sets, generated to emulate certain key information found in the actual data and provide the ability 

to draw valid statistical inferences, are an attractive framework to afford widespread access to data 

for analysis while mitigating privacy and confidentiality concerns. This helps data scientists to 

learn how synthetic data generation provides a way to make such data broadly available for 

secondary purposes while addressing many privacy concerns. This also helps analysts to learn the 

principles and steps for generating synthetic data from real datasets. Also, business leaders see 

how synthetic data can help accelerate time to a product or solution.  

In this research thrust, I follow: 

▪ the steps for generating synthetic data using multivariate normal distributions; 

▪ methods for distribution fitting covering different goodness-of-fit metrics;  

▪ how to replicate the simple structure of original data;  

▪ an approach for modeling data structure to consider complex relationships; 

▪ multiple approaches and metrics you can use to assess data utility;  

▪ how analysis performed on real data can be replicated with synthetic data;  

▪ privacy implications of synthetic data and methods to assess identity disclosure 
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9.4.2.  RT 2. What is the mathematics to capture the dimensions of an evolving CPS 

system and the dynamics among them? 

The objective in Research Thrust 2 (RT2) is to manage complexity and uncertainty using the 

approximation-partitioning-coordination framework. For example, a green supply network can be 

partitioned into partitions that are supplied by a distribution center and coordinated using a mixed-

integer, bi-level optimization model, where the first level is to design the best topology for the 

chains (partitioning the region of supply into smaller regions to be supplied by one distribution 

center) and the second level is to find the best route for the delivery vans in online shopping. Then, 

to manage the computational complexity of the bi-level model, the lower level can be 

approximated through a surrogate model. Also, in many complex CPS system studies, 

geographical correlations of the components are overlooked. However, spatial correlations have 

an implicit but critical impact on the system components' behavior and the systems' evolution. The 

foundations of this focus have been laid out in (Hajihashemi et al., 2021; Williams et al., 2020). 

9.4.3.  RT 3. Data-driven, mathematical modeling for energy economics and climate 

policy in complex energy systems 

The third research thrust is on data-driven mathematical modeling for complex CPS networks, 

including but not limited to energy networks, healthcare networks, supply networks, and 

production networks. I plan to use Input-Output models and Data Envelopment Analysis (DEA) 

to evaluate the performance of CPS networks. I laid the foundations to conduct this sort of research 

in (Alizadeh et al., 2020b; Gharizadeh Beiragh et al., 2020; Kaleibari et al., 2016). I also plan to 

use multi-criteria decision-making models to identify, classify and rank the interdependencies 

among decision-making criteria to prioritize and allocate the resources to the most critical 

operation in supply network operations, healthcare logistics, and supply chain, and energy 

networks. The foundations of this focus have been laid out in (Alizadeh et al., 2020d). Besides, I 
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aim to use data-driven models to simulate and predict the greenhouse gas emission and 

environmental recourses consumption in different projects and provide policymakers with 

recommendations and managerial insights to take critical strategies to achieve sustainable 

development goals. In (Gharizadeh Beiragh et al., 2020; Soltanisehat et al., 2020; Zamani Sabzi et 

al., 2018), the foundations of these predictive models in the form of time series analysis and mixed-

integer optimization models have been laid out. Furthermore, besides using short-term prediction 

to manage typical uncertainties, I use scenario-based planning to deal with disruptions and deep 

uncertainties. I have created models for this type of foresight in (Alizadeh et al., 2016b; Alizadeh 

et al., 2020c). 

9.4.4.  RT 4. Blockchain applications in healthcare, energy, supply chain and other 

CPS systems 

Blockchain can be used to build a peer-to-peer, secure, and smart transaction system. As a 

horizontal technology that has changed several fields of industry, blockchain has tremendous 

potential to transform healthcare systems as well. 

Besides the benefits of blockchain for healthcare systems, blockchain has shortcomings in 

terms of security and scalability, which opens future research directions. Combining blockchain 

with artificial intelligence and cloud computing is one of the most interesting and probably 

demanding directions for solving issues with blockchain decentralization which I am planning to 

explore. Besides, there are opportunities for a number of use cases ranging from emerging peer-

to-peer (P2P) energy trading and Internet of Things (IoT) applications, to decentralized 

marketplaces, electric vehicle charging and e-mobility in a low carbon pull economy that I 

explore.  

https://www.sciencedirect.com/topics/engineering/energy-trading
https://www.sciencedirect.com/topics/engineering/internet-of-things
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9.4.5.  RT 5. Social aspect of the cyber-physical-social systems 

In this dissertation, the foundation of investigating a cyber-physical system was laid out. 

However, the social dimension which is very important and influential in designing the cyber and 

physical aspects was not studied. Therefore, the social aspect will be studied as a future research 

thrust. In Figure 9.5, the elements of Socio-Cyber-Physical (SCP) Systems are introduced, where 

human stakeholders play a prominent role. Here, technological aspects of the systems are 

developed such that they support the involved human stakeholders in a sustainable way. 

 

 

 

 

 

 

 

 

Figure 9.5. Components of a socio-cyber-physical system. 

Global production networks and hence linked Socio-Cyber-Physical Systems involve the 

interaction of individual decision-makers from different contexts, acting in interdependent 

organizations. The competitiveness of the resulting production network depends on the capability 

to bridge technical differences as well as the introduced context-dependent behavioral differences 

between human stakeholders. Here, managing existing social idiosyncrasies of linked SCP is 

critical for sustainable, accountable, and competitive production networks. Figure 9.6 shows a 

network of linked SCP, where each system involves local human stakeholders. 
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Figure 9.6. Linked socio-cyber-physical systems forming a production network.    

The transformation of production networks into networks of Socio-Cyber-Physical Systems 

requires a comprehensive design approach. This approach comprises findings of the research 

stream dedicated to technical aspects of CPS as well as a new stream of research for the 

implications of context-dependent behavioral aspects of human stakeholders.  

This stream needs to develop models, measures and tools for aspects related to the embedding 

of human stakeholders with different individual, organizational and contextual backgrounds 

(Frazzon, 2009; Scholz-Reiter et al., 2010a; Scholz-Reiter et al., 2010b). 

9.4.6.  RT 6. Environmental sustainability in the cyber-physical-social systems 

The last decades have also seen a marked increase in the interest of the political and academic 

world and public opinion regarding the sustainability of human activity. In this context, the 

sustainable impact of business activity can be positively influenced by the green energy usage, 

green production and supply chain if included in a life-cycle oriented strategy. As shown in Figure 

9.7, embedding the environmental sustainability can be through the supply chain and logistics 
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process (transportation and material handling), transportation (different modes of transportation in 

logistics and supply chains, including renewable and sustainable energies and fuels – for example, 

electric vehicles, biodiesel, drones’ delivery, air taxies, etc.), manufacturing (using automation, 

clean energies in the process and carbon capture and storage technologies), production systems, 

material handling within the inventories, warehouses, distribution centres and stores.  

Besides, energy production systems, transmission, and distribution process are major areas of 

GHG emission and managing these stages is an ongoing, unsolved, and broad area of research. I 

laid out the foundation of this research thrust in (Alizadeh et al., 2020b; Alizadeh et al., 2016a; 

Alizadeh et al., 2016b; Alizadeh et al., 2020c; Alizadeh et al., 2016c; Alizadeh et al., 2015a; 

Alizadeh et al., 2014; Alizadeh et al., 2015b; Alizadeh and Soltanisehat, 2020; Alizadeh et al., 

2020d; Beiragh et al., 2020; Gharizadeh Beiragh et al., 2020; Kaleibari et al., 2016; Shafiei 

Kaleibari et al., 2016; Soltanisehat et al., 2020; Soltanisehat et al., 2018; Zamani Sabzi et al., 2018). 

9.4.1.  RT 7. Green supply chain as a cyber-physical-social system using digital threads 

In this research thrust, I answer the following questions: (i) how can seamless visibility across 

the supply chain enable informed decision making? (ii) how can prescriptive decisions enable 

supply chain planners to navigate through unforeseen and exceptional scenarios? 

Besides, as shown in  

Figure 9.8, I build digital threads to deal with the unexpected events that can affect the supply chain. 
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Figure 9.7. Some social aspects of cyber-physical-social system. 

  

Figure 9.8. Unexpected events affecting the supply chain.  
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In Figure 9.9, the impact of unexpected events on supply chain (SC) is shown in detail. Also, 

it is shown that the digital thread is a way to oversee and supervise the supply chain by sensing the 

system through sensors, monitoring the changes, and collecting data over time, analyze and 

simulate the possible scenarios, and acting before a disruption occurs. 

 

Figure 9.9. Impact of unexpected events on SC and how digital thread monitors them. 

 This process is shown in Figure 9.10. 

Figure 9.10. How digital thread works. 

In the sense step, using digital thread the demand can be sensed and a proactive service risk 

alert can be set via simulated supply chain. In view step, labelled data, images, temporal, and 

spatial data as well as alerts and indicators are monitored and what if scenarios are investigated. 

Digital 
Thread  
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In step Analyze and simulate, different scenarios are conducted and analyzed to reallocate 

inventory across product lines, recommend target and safety stock, plan the production process, 

select the alternative suppliers, optimize the real time route, investigate the alternative fleet options 

and other what if scenarios. Finally, in the fourth step, trigger order creation for high demand 

product, component quality alert orchestration, and production planning execution are performed. 

Through using digital threads in supply chains, several goals and performance enhancement can 

be achieved as shown in Figure 9.11. 

 

Figure 9.11. The benefits of using digital threads in supply chains. 

As shown in Figure 9.12, there are two main phases in the evolution of the digital threads in 

supply chains, including linear supply chain and network ecosystem while there are four analytical 

approaches, including descriptive, predictive, prescriptive, and autonomous. In the descriptive 

approach, functional E2E ecosystem visibility and synchronous collaboration, clear reporting and 

analytics, and balance cost optimization, risk, mitigation, and growth are the foci. In the predictive 

approach, the foci are integrated E2E visibility with cross-functional real-time dashboards, 

synchronized parameter setting and optimization, early warning system with clearly defined alerts, 
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and respond to global shocks and shifting customer demands. In the prescriptive approach, the aim 

is to design flexible, cost effective and resilient supply chain ecosystems, prescriptive 

recommendations based on AI, scenario capabilities spanning the entire supply chain, and 

integrated optimization tools to optimize key supply chain parameters in real time. 

 

 

Figure 9.12. The evolution of digital threads in supply chains. 

Finally, in the autonomous approach, the objective is to self healing master data and planning 

parameters, digital twin orchestration of supply chain with continuous planning, and enterprise 

level digital twin. 

9.5 Overall Theme of my Research based on my PhD 

The overall theme of my research is projecetd in Figure 9.13. Based on the foundations 

that I have laid out in my dissertation and the papers i have published, i am planning to work 

on my NSF research proposal on designing, evaluating, predicting, and managing evolving 

cyber- physical-social systems in low-carbon pull-push economy. 
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Figure 9.13. Future work based on my PhD. 
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Appendices 

Appendix A. Surrogate Models (Section 7.4.1) 

1. Response Surface Method 

Response surface method (RSM), which is also known as polynomial regression method 

(PRM), has the simplest type of parameters (that is coefficients in a polynomial function). It is 

objectively calculated through the least square regression method (Razavi et al., 2012). In most of 

RSM problems, the limited pre-knowledge about the relationship between response variables and 

factors severely control the widespread use of model and its performance. Hence, how to select 

the order of RSM becomes worthy to investigate challenge. So, in this dissertation, the order of 

RSM is considered as the optional parameter, named ‘Order’. If we presume 𝒙 as an independent 

vector of factors, 𝒚 is the vector of response, the notation follows through subsequent surrogates. 

The impact of 𝒙 on 𝒚 and their relationship can be illustrated as follows:  

𝒚̂(𝒙) =  𝒘𝑇𝑽(𝒙|𝑂𝑟𝑑𝑒𝑟) (A.1) 

where 𝒘 is the coefficient vector of the polynomial function. ‘Order’ represents the max 

number of interacting factors, 𝑽(𝒙|𝑂𝑟𝑑𝑒𝑟) denotes a vector of interacting factors corresponding 

to different orders. For example, when order=1, 𝑽(𝒙|𝑂𝑟𝑑𝑒𝑟 = 1) = [1, 𝑥1, 𝑥2… , 𝑥𝑑]
𝑻. d is the 

number of input factors; when order =2,  

𝑽(𝒙|𝑂𝑟𝑑𝑒𝑟 = 2) = [1, 𝑥1, 𝑥2… , 𝑥𝑑, 𝑥1𝑥1, 𝑥1𝑥2, … , 𝑥1𝑥𝑑 , 𝑥2𝑥2… , 𝑥2𝑥𝑛… , 𝑥𝑛𝑥𝑛]
𝑻   (A.2) 

In this section, we select ‘Order=2,3,4,5,6’ RSM as part of our candidate surrogate models. 

2. Kriging 

Kriging is an interpolating technique, which consists of a polynomial model of an input vector 

of factors 𝒙, 𝑓(𝒙), and localized deviation of 𝒙, 𝑅(𝒙), as follows: 
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  𝑦̂(𝒙)= 𝑓(𝒙)+𝑅(𝒙)    (A.3) 

𝑓(𝒙) is the polynomial term, which is a global function over the entire input space (Razavi et 

al., 2012). Normally, 𝑓(𝒙) is set as a constant number or a linear polynomial function and 𝑅(𝒙) is 

a localized deviation function. In this article, our focus is on one type of Kriging, Ordinary 

Kriging, in which it is assumed that,  

  𝑦̂(𝒙)= 𝜇 + 𝑅(𝒙)     (A.4) 

where 𝜇 is an unknown constant value, which represents the simulation output averaged over 

the ‘experimental area. 𝑅(𝒙) is a zero-mean stochastic process with known covariance function, 

C𝑖𝑗 = C(𝐱𝑖, 𝐱𝑗) = Cov[ 𝑅(𝐱𝑖), 𝑅(𝐱𝑗) ] = 𝜎
2𝑅𝑖𝑗   (A.5) 

𝑅𝑖𝑗 is the correlation function with the 𝑖𝑡ℎ and 𝑗𝑡ℎ data point. 𝜎2 denotes the variance of this 

stochastic process. In addition, the hyper-parameter, 𝜃 of each correlation function is determined 

by solving the nonlinear hyper-parameter optimization problem. 

3. Radial Basis Function  

This technique is a mathematical function and which accepts real values and its value 

calculated based on the distance the origin and each point (Montgomery, 2017). Also, the distance 

between the center point and each point can be used as an alternative as shown in eq. (A.6).  

𝑟𝑖,𝑗 = 𝑟(𝒙𝒊, 𝒙𝒋) = ‖𝒙𝒊 − 𝒙𝒋‖   (A.6) 

Where 𝑟𝑖,𝑗 denotes the Euclidean distance between two different point in the samples. Besides, 

some radial functions are employed to connect the distance 𝒘 = [𝑤1, 𝑤2…𝑤𝑀] with the outputs, 

then the integration of these functions is used to estimating the complicated mathematical 

functions. We can use these functions in constructing the surrogate models like eq. (A.7). 
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ŷ(xnew) = ∑ riQ(‖xnew − xi‖)
M
i=1     (A.7) 

where the surrogate function ŷ(𝒙𝒏𝒆𝒘) stands for an integration of radial basis functions and 

each of them is linked to a basis function 𝑄(‖𝒙𝒏𝒆𝒘 − 𝒙𝒊‖) and has a weight of 𝑤𝑖 (Broomhead and 

Lowe, 1988).  

4. Multivariate Adaptive Regression Splines 

This section presents a brief introduction of the MARS surrogate model, the detailed technique 

is described by (Friedman, 1991). MARS is a nonparametric approach based on partitioning data 

sets into separate segments, and adaptively selecting a set of basic functions to approximate these 

segments through a forward/backward recursive approach. A MARS model is supposed to describe 

with eq. (A.8). 

𝑦̂(𝒙)=𝑎0 + ∑  𝑎𝑚𝐵𝑚(𝒙)
𝑀
𝑚=1   (A.8) 

where 𝒂 = 𝑎0, 𝑎1, … , 𝑎𝑀  denote the constant coefficients, estimated using the least-squared 

method. Each 𝐵𝑚(𝒙) is a BF, which can be represented by eq. (A.9). 

𝐵𝑚(𝒙) = ∏ [𝑠𝑘,𝑚(𝑥𝑣(𝑘,𝑚) − 𝑡𝑘,𝑚)]+
𝑞𝐾𝑚

𝑘=1    (A.9) 

Here 𝐾𝑚 is the number of factors in the 𝑚𝑡ℎ basis function, 𝑠𝑘,𝑚 = ±1, 𝑥𝑣(𝑘,𝑚) denotes the 

𝑣𝑡ℎ variable, 𝑡𝑘,𝑚 is the knot value corresponding to the 𝑣𝑡ℎ variable, which is regarded as the 

interface points between each subsample piece. The subscript ‘+’ and superscript ‘𝑞’ represent the 

function as a truncated power function, of power is ‘𝑞’. 

Piecewise linear function follows an exact form 𝑚𝑎 𝑥(0, 𝑥 − 𝑡) 𝑜𝑟 max (0, 𝑡 − 𝑥) , so the 

spline function [𝑠𝑘,𝑚(𝑥𝑣(𝑘,𝑚) − 𝑡𝑘,𝑚)]+
𝑞

 can be expressed as 
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[𝑠𝑘,𝑚(𝑥𝑣(𝑘,𝑚) − 𝑡𝑘,𝑚)]+
=

{
 
 

 
 𝑚𝑎𝑥(0, 𝑥𝑣(𝑘,𝑚) − 𝑡𝑘,𝑚) = {

𝑥 − 𝑡,   𝑖𝑓 𝑥 ≥ 𝑡 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝒐𝒓

𝑚𝑎𝑥(0, 𝑡𝑘,𝑚 − 𝑥𝑣(𝑘,𝑚)) = {
𝑡 − 𝑥,   𝑖𝑓 𝑡 ≥ 𝑥 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (A.10) 

Also, the basic functions, formally, can be a single spline function, or the product of two or 

more spline functions associated with different variables. The number of interacting spline 

functions is determined artificially and is called ‘Max_Interaction’. 

Appendix B. Theoretical problems (Section 7.4.2) 

We introduced the selected benchmark functions to use in this chapter in Chapter 7. 

1. Function of Perm  

𝑓(𝒙) = ∑

 

{∑ (𝑗𝑘 + 0.5)2 [(
𝑥𝑗

𝑗
)
𝑘

− 1]𝑘
𝑗=1 }

2
𝑛
𝑘=1   (B.1) 

𝑤ℎ𝑒𝑟𝑒 𝑥𝑗𝜖[−𝑛, 𝑛], 𝑖 = 1,… , 𝑛, 𝑛 = 10 

2. Dixon and Price function: 

𝑓(𝒙) = (𝑥1 − 1)
2 + ∑ 𝑖(𝑥𝑖

2 − 𝑥𝑖−1)
2𝑛

𝑖=2    (B.2) 

𝑤ℎ𝑒𝑟𝑒 𝑥𝑖𝜖[−10,10], 𝑖 = 1,… , 𝑛, 𝑛 = 5 

3. Beale function  

𝑓(𝒙) = (1.5 − 𝑥1 + 𝑥1𝑥2)
2 + (2.25 − 𝑥1 + 𝑥1𝑥2

2)2 + (2.625 − 𝑥1 + 𝑥1𝑥2
3)2 (B.3) 

𝑤ℎ𝑒𝑟𝑒 𝑥1, 𝑥2𝜖[−4.5,4.5] 
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Appendix C. Benchmark Functions and DoE (Section 7.5) 

We introduced the selected benchmark functions to use in this dissertation in Chapter 7.  

1. Benchmark Functions 

We present results based on 10 instances of the design of experiments for all the problems. 1-

4 benchmark functions are referred from (Mehmani et al., 2018), 5-9 benchmark functions are 

referred from (Jin et al., 2001). 

2. Brain-Hoo function (BH) 

𝑦(𝒙) =  (𝑥2 −
5.1𝑥1

2

4𝜋2
⁄ +

5𝑥1
𝜋⁄ − 6)

2

+ 10(1 − 1 8𝜋⁄ ) cos 𝑥1 + 10   (C.1) 

𝑥1 ∈ [−5,10], 𝑥2[0,15] 

3. Camelback function (CB) 

𝑦(𝒙) =  (4 − 2.1𝑥1
2 +

𝑥1
4

3
⁄ )

2

+ 𝑥1𝑥2 + (−4 + 4𝑥2
2)𝑥2

2  (C.2) 

𝑥1 ∈ [−3,3], 𝑥2[−2,2] 

4. Goldstein-Price function (GP) 

𝑦(𝒙) = [1 + (𝑥1 + 𝑥2 + 1)
2 × (19 − 4𝑥1 + 3𝑥1

2 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥2
2)]  × [30 +

(2𝑥1 − 3𝑥2)
2] × (18 − 32𝑥1 + 12𝑥1

2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2
2)   (C.3) 

𝑥1 ∈ [−2,2], 𝑥2[−2,2] 

5. Hartman function (H) 

𝑦(𝒙) = −∑ 𝑐𝑖
𝑚
𝑖=1 𝑒𝑥𝑝 {−∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)

2𝑛
𝑗=1 }   (C.4) 
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𝑥𝑖 ∈ [−1,1] 

Two specific instances are selected relies on the number of design variables. The value of ‘m’ 

is pre-set to 4.   

5.1. Hartman 3 (HM3) 

This instance has three variables, and the exact value of parameters are given by (Chen and 

Wang, 2013), as shown in Table C.1. 

Table C.1. Parameters in Hartman function with three variables 

# 𝑎𝑖𝑗 𝑐𝑖 𝑝𝑖𝑗 

1 3.0 10.0 30.0 1.0 0.3689 0.1170 0.2673 

2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470 

3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547 

4 0.1 10.0 35.0 3.2 0.03815 0.5743 0.8828 

  

5.2.Hartman 6 (HM6) 

This instance has six variables, and the choice of parameters is given in (Chen and Wang, 

2013). 

Table C.2. Parameters in Hartman function with three variables 

# 𝑎𝑖𝑗 𝑐𝑖 𝑝𝑖𝑗 

1 10.0 3.0 17.0 3.5 1.7 8.0 1.0 0.1312 0.1696 0.5529 0.0124 0.8283 0.5886 

2 0.05 10.0 17.0 0.1 8.0 14.0 1.2 0.2329 0.4135 0.4135 0.3736 0.1004 0.9991 

3 3.0 3.5 1.7 10.0 17.0 8.0 3.0 0.2348 0.1451 0.1451 0.2883 0.3047 0.6650 
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4 17.0 8.0 0.05 10.0 0.1 14.0 3.2 0.4047 0.8828 0.8828 0.5741 0.1091 0.0382 

 

1. T1 

𝑦(𝒙) = (𝑥1 − 1)
2 + (𝑥1 − 𝑥2)

2 + (𝑥2 − 𝑥3)
2  𝑥𝑖 ∈ [−3,3]           (C.5) 

2. T2 

𝑦(𝒙) = 𝑥1
2 + 𝑥2

2 + 𝑥1𝑥2 − 14𝑥1 − 16𝑥2 + (𝑥3 − 10)
2 + 4(𝑥4 − 5)

2 𝑥𝑖 ∈ [0,15]  (C.6) 

 

3. T3 

𝑦(𝒙) = ∑ {(ln(𝑥𝑖 − 2))
2 + (ln(10 − 𝑥𝑖))

2} − ∏ 𝑥𝑖
25

𝑖=1
5
𝑖=1 , 𝑥𝑖 ∈ [2.1,9.9]    (C.7) 

 

4. T4 

𝑦(𝒙) = ∑ {(ln(𝑥𝑖 − 2))
2 + (ln(10 − 𝑥𝑖))

2} − ∏ 𝑥𝑖
210

𝑖=1
10
𝑖=1 , 𝑥𝑖 ∈ [2.1,9.9]    (C.8) 

5. T5 

𝑦(𝒙) = 𝑥1
2 + 𝑥2

2 + 𝑥1𝑥2 − 14𝑥1 − 16𝑥2 + (𝑥3 − 10)
2 + 4(𝑥4 − 5)

2 + (𝑥5 − 3)
2 + 2(𝑥6 −

1)2 + 5𝑥7
2 + 7(𝑥8 − 11)

2 + 2(𝑥9 − 10)
2 + (𝑥10 − 7)

2 + 45     𝑥𝑖 ∈ [0,15]       (C.9) 

6. Benchmark function with noise  

Noise in this work is created from a normal distribution: 𝑛𝑜𝑖𝑠𝑒 ~𝛮(0, σ2). The mean is equal 

to 0 and the variance represented as σ2 is equal to 1/100 of that of the noise-free part of each 

benchmark function.  

7. Design of Experiments 
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We generate an extensive collection of different data sets from different benchmark functions 

using the Design of Experiments (DoE). We build a series of experiments to identify the 

appropriate type of DoE. Usually, the selection of the most appropriate DOE depends on the 

problem and the aim of the experimentation. Since our focus is not on selecting the best DoE, so 

we make our decision on DoE type just based on conventional rules. Latin hypercube method is 

selected because using it we are able to reduce the number of the data and capture more information 

simultaneously (Cavazzuti, 2012). In addition, Kaufman and coauthors (Kaufman et al., 1996) 

propose that 3/4 ∗ (𝑑𝑖𝑚 + 1)(𝑑𝑖𝑚 + 2)  sample points are feasible for a problem with 5-10 

variables, which shows that (𝑑𝑖𝑚 + 1)(𝑑𝑖𝑚 + 2) sample points guarantee the rationality of the 

data to a large extent. As such, the equation that authors use to generate the number of data is 

presumed to be described by 

𝑁 = 𝑚 ∗ (𝑑𝑖𝑚 + 1)(𝑑𝑖𝑚 + 2)   (C.10) 

where 𝑁 denotes the number of samples, 𝑑𝑖𝑚 denotes the number of input variables, 𝑚 is a 

sequence from 1 to 10. Also, the comparison between surrogate models can be realized as 𝑚 

changes from 1 to 10 along with the gradually increased samples. 

Appendix D. Sample data for the hot rod rolling problem (Section 6.4.1)  

Appendix D contains the sample points for the three objectives, allotriomorphic ferrite (Y1), 

Widmanstätten ferrite (Y2) and pearlite (Y3). To generate test data to validate the performance of 

these surrogate models, we repeat a 9-fold cross-validation process 10 times. In each run, all data 

sets are randomly partitioned into 9 subsamples (groups). Of the 9 subsamples, one subsample is 

used as the testing data set and the remaining eight subsamples are used to train the model. Through 

9 repetitions, all observations are involved in training and testing. Three output variables, namely, 

allotriomorphic ferrite (Y1), Widmanstätten ferrite (Y2) and pearlite (Y3) of steel are predicted 
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based on values of five input variables, namely, carbon concentration rate, manganese 

concentration rate, grain size, cooling rate, and final temperature. The prediction results are shown 

in Table D1. 

Table D1. Values for input and output variables 

Input   Output 

Concentrations (%) Grain 

Size 

(μm) 

Cooling 

Rate 

(K/min) 

Final 

Temp 

(K) 

Volume fractions (%) 

Carbon Manganese ALLOTRIOMORPHIC WIDMANSTATTEN PEARLITE 

0.18 0.7 30 11 639.5 0.6921 0.0195 0.2883 

0.24 0.7 55 11 643.2 0.4612 0.1621 0.3761 

0.3 0.7 100 11 643.7 0.2429 0.2705 0.4866 

0.24 0.7 30 55 620.9 0.3453 0.2352 0.4195 

0.3 0.7 55 55 612.3 0.2439 0.2442 0.5113 

0.18 0.7 100 55 624.8 0.2094 0.4899 0.2991 

0.3 0.7 30 100 601.4 0.3163 0.1155 0.5681 

0.18 0.7 55 100 612.4 0.2955 0.3944 0.3101 

0.24 0.7 100 100 598.2 0.1458 0.4292 0.4243 

0.24 1.1 30 11 625.1 0.5684 0.019 0.4126 

0.3 1.1 55 11 626.7 0.3384 0.1439 0.5176 

0.18 1.1 100 11 633.7 0.3132 0.3937 0.2915 

0.3 1.1 30 55 599.3 0.3316 0.0888 0.5976 

0.18 1.1 55 55 608.7 0.3179 0.3714 0.3107 

0.24 1.1 100 55 600.9 0.1016 0.4618 0.4366 

0.18 1.1 30 100 596.9 0.4185 0.2573 0.3242 

0.24 1.1 55 100 587.6 0.2197 0.3122 0.4667 

0.3 1.1 100 100 572.4 0.1042 0.2828 0.613 

0.3 1.5 30 11 615.9 0.4575 0 0.5425 

0.3 1.5 55 11 611.9 0.3085 0.14 0.5515 

0.24 1.5 100 11 614.1 0.2367 0.3321 0.4312 

0.18 1.5 30 55 592.7 0.3148 0.3523 0.3329 

0.24 1.5 55 55 584.7 0.2129 0.3236 0.4618 

0.3 1.5 100 55 572.2 0.1106 0.2527 0.6367 

0.24 1.5 30 100 567.7 0.3197 0.185 0.4953 

0.3 1.5 55 100 556.6 0.1586 0.162 0.6794 

0.18 1.5 100 100 568.2 0.1434 0.4933 0.3102 
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Appendix E. How to Create a Variance-Covariance Matrix 

Suppose X is an n x k matrix holding ordered sets of raw data. For example, matrix X might 

display the scores on k tests for n students. Starting with the raw data of matrix X, you can create 

a variance-covariance matrix to show the variance within each column and the covariance between 

columns. Here's how: 

▪ Transform the raw scores from matrix X into deviation scores for matrix x. 

x = X - 11'X ( 1 / n )           (E.1) 

where 1 is an n x 1 column vector of ones 1' is the transpose of vector 1 

x is an n x k matrix of deviation scores: x11, x12, . . . , xnk 

X is an n x k matrix of raw scores: X11, X12, . . . , Xnk 

▪ Compute x'x, the k x k deviation sums of squares and cross products matrix for x. 

▪ Then, divide each term in the deviation sums of squares and cross product matrix by n to 

create the variance-covariance matrix. That is, 

V = x'x ( 1 / n )                    (E.2) 

Where V is a k * k variance-covariance matrix x' is the transpose of matrix x. x'x is the 

deviation sums of squares and cross product matrix n is the number of scores in each column of 

the original matrix X. 

Example: The table below displays scores on math, English, and art tests for 5 students. 

Student Math English Art 

1 90 60 90 

2 90 90 30 
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3 60 60 60 

4 60 60 90 

5 30 30 30 

Note that data from the table can be represented in matrix A, where each column in the matrix 

shows scores on a test and each row shows scores for a student. 

A  =  

90 60 90 

 

90 90 30 

60 60 60 

60 60 90 

30 30 30 

 

Given the data represented in matrix A, compute the variance of each test and the covariance 

between the tests. 

Solution 

The solution involves a three-step process. 

▪ First, we transform the raw scores in matrix A to deviation scores in matrix a, using the 

transformation formula described below: 

 

 

 

Appendix F. How to Compute Deviation Scores (Section 8.4.3) 
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This lesson explains how to use matrix methods to transform raw scores to deviation scores. 

We show the transformation to deviation scores for vectors and for matrices. 

Deviation Scores: Vectors 

A deviation score is the difference between a raw score and the mean. 

𝒅𝒊 = 𝒙𝒊 - 𝒙̅                         (F.1) 

Where 𝑑𝑖  is the deviation score for the ith observation in a set of observations 

𝑥𝑖  is the raw score for the ith observation in a set of observations 

𝑥̅ is the mean of all the observations in a set of observations 

Often, it is easier to work with deviation scores than with raw scores. Use the following formula 

to transform a vector of n raw scores into a vector of n deviation scores. 

d = x - 1'x1 ( 1'1 )-1 = x - 1'x1 ( 1/n )        (F.2) 

where 1 is an n x 1 column vector of ones 

d is an n x 1 column vector of deviation scores: d1, d2, . . . , dn 

x is an n x 1 column vector of raw scores: x1, x2, . . . , xn 

To show how this works, let's transform the raw scores in vector x to deviation scores in 

vector d. For this example, let x' = [ 1 2 3 ]. 

d   =    x    -    1' 

 

x    1 

 

( 

 

1' 

 

1)-1    

 

d   =     

1 

 2 

3 

 

   -    [ 1 11 ]     

1 

 2 

3 

 

    

1 

 1 

1 

 

   (    [ 1 11 ]     

1 

 1 

1 

 

  )-1   
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d   =     

1 

 2 

3 

 

   -     

2 

 2 

2 

 

   =     

-1 

 0 

1 

 

      

 

 

 

Note that the mean deviation score is zero. 

Deviation Scores: Matrices 

Let X be an r x c matrix holding raw scores; and let x be the corresponding r x c matrix 

holding deviation scores. When transforming raw scores from X into deviation scores for x, we 

often want to compute deviation scores separately within columns, consistent with the equation 

below. 

𝒙𝒓𝒄 = 𝑿𝒓𝒄 - 𝑿𝒄̅̅ ̅           (F.3) 

Where 𝒙𝒓𝒄  is the deviation score from row r and column c of matrix x 

𝑿𝒓𝒄 is the raw score from row r and column c of matrix X 

𝑿𝒄̅̅ ̅ is the mean score, based on all r scores from column c of matrix X. 

To transform the raw scores from matrix X into deviation scores for matrix x, we use this 

matrix equation. 

x = X - 11'X ( 1'1 )-1 = X - 11'X ( 1 / r )       (F.4) 

where 1 is an r x 1 column vector of ones 

x is an r x c matrix of deviation scores: x11, x12, . . . , xrc 

X is an r x c matrix of raw scores: X11, X12, . . . , Xrc 
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Note: Deviation score matrices are often denoted by a lower-case, boldface letter, such as x. 

This can cause confusion, since vectors are also denoted by lower-case, boldface letters; but 

usually the meaning is clear from the context. 

Example: Consider matrix X. 

X   =     

3 5 1 

 

9 1 4 

 

Using matrix methods, create a 2 x 3 vector D, such that the elements of D are deviation scores 

based on elements from X. That is, 

D   =     

3 - X1    5 - X2    1 - X3 

 

9 - X1    1 - X2    4 - X3 

 

where Xc is the mean of elements from column c of matrix X. 

Solution 

To solve this problem, we use the following equation: D = X - 11'X ( 1 / r ). Each step in the 

computation is shown below. 

D   =    X -    1  1' 

 

X 

 

( 1/r )  

D   =     

3 5 1 

 
9 1 4 

 

-  

1 

 
1 

 

 [ 1 1 ]   

3 5 1 

 
9 1 4 

 

 ( 1/r )  
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D   =     

3 5 1 

 
9 1 4 

 

  

- 
 

1 1 

 
1 1 

 

   

3 5 1 

 
9 1 4 

 

 ( 1/2 ) 

D   =     

3 5 1 

 
9 1 4 

 

-  

12 6 5 

 
12 6 5 

 

 ( 1/2 ) 

D   =         

3 5 1 

 
9 1 4 

 

        -    

6 3 2.5 

 
6 3 2.5 

 

D   =     

-3 2 -1.5 

 
3 -2 1.5 

 

Thus, matrix D has the deviation scores, based on raw scores from matrix X. Note that the 

mean and sum of each column in matrix D is zero.
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