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CHAPTER ONE 

INTRODUCTION AND REVIEW OF LITERATURE 

The defining characteristic of longitudinal studies is the repeated observation, 

usually over time, of both an outcome and a set of covariates for a group of randomly 

selected subjects. For a group of n subjects, let m i denote the number of observations on 

the ith subject, and let t ij denote the measurement time for the fh observation on the ith 

subject, i = 1, ... , n and j = 1, ... , m i. The observed outcome for the ith subject at time 

t ij is denoted by l'i j and the corresponding set of ( k + 1) covariates by 

X ij = (X ijO ,Xijl, ... , X ijk ?- The longitudinal observations; (Yij, X i1,tij), i = l , ... , n 

and j = 1, ... , m i, are assumed independent across subjects, while observations on the 

same subject are likely to be correlated in some way. 

Many parametric approaches have been put forth in an effort to model the 

relationship between the outcomes and covariates over the course of a longitudinal study; 

however, the focus here centers on recent developments in non-parametric approaches. 

Many authors ; Hart and Wehrly (1986), Altman (1990), and Hart (1991 ), have considered 

non-parametric estimates of Y strictly as a function oft, without consideration of the 

presence of any covariate effects. In an effort to include covariate effects, Moyeed and 

Diggle (1994) and Zeger and Diggle (1994) studied the following semi-parametric model: 

(1.1) 

Here X ijO = 1 for all i, j; µ(t ) is an arbitrary smooth function oft , f3 = (/30 , . . . , f3k? is a 

vector of unknown constants, and Ei ( t ) is a mean zero stochastic process. This model 

allows for covariate effects to be included together with a time varying intercept term, yet 

this may be too restrictive for some settings. 



A useful generalization of ( I .1) is the following: 

(1.2) 

where f-i(t) is a mean zero stochastic process independent of X i(t ), 

/3( t) = ((30 ( t), /31 ( t) , ... , f3k ( t)) T , and f3z ( t) is a real-valued, smooth function oft for 

l = 0, ... , k. Fixing X i jO = 1, Vi, j, allows for the time varying intercept term that 

appears in (1.1); however, (1.2) also allows for the possibility of any of the model 

coefficients varying over time. It should be noted that (1.2) is probably still best 

described as semi-parametric, for even though f3(t) is defined non-parametrically, there is 

a specific structure imposed on the relationship between Y and X. As Wu, Chiang, and 

Hoover ( 1998) point out, a purely non-parametric approach, i.e. modelling Y as a smooth 

function of (X(t) , t) , suffers from two major problems: the dimensionality of the 

problem becomes quite high as the number of covariates or the number of observation 

points increases, and it is potentially difficult to interpret. 

Model (1.2) is actually a special case of both a broader class of varying 

coefficient models studied by Hastie and Tibshirani (1993), and a class of models 

investigated by Ramsay and Dalzell (1991) known as functional linear models. In its own 

right, (1.2) has been investigated by Fan and Zhang (1998), Brumback and Rice (1998), 

and Hoover, Rice, Wu, and Yang (1998). The investigation by Hoover et al. includes 

estimates of /3( t) based on smoothing splines, locally weighted polynomials, and kernel 

estimates. 

The kernel estimation technique put forth in Hoover et al. is based on a locally-

~ T 
weighted least squares criterion. The estimator of /3( t ), /3( t) = ( b0 ( t ), b1 ( t) , ... , bk ( t )) , 

is chosen to minimize: 

2 



(1.3) 

n 

where N = Lmi is the total number of observations, K () is a Borel measurable kernel 
i=l 

function, and h is a positive bandwidth. Defining for each subject a vector of outcomes 

~ = (Yi1, ... , ~m;) T, a design matrix 

and a kernel matrix 

(1.3) can be rewritten as: 

lN(t , h) = t ( ~ -Xi,Lj(t )) T K i(t , h) (~ - X i,B(t )). 
i= l 

(1.4) 

It is then straightforward to show that the unique minimizer of (1.4) is given by 

3 



'!J(t , h) = ( tx; K ,(t , h)x,)-1 
( tx; K ,(t , h)Y;) ( 1.5) 

n 

provided I:X; K i ( t , h )Xi is invertible. It should be noted that, in order to produce an 
i= l 

estimate of /3( t ) over some interval I , ( 1.5) is computed for several t E I. 

Of particular importance in obtaining estimates given by ( 1.5) is the choice of a 

suitable bandwidth. It is widely known in general kernel smoothing that increasing 

bandwidth increases the bias of the estimator, while decreasing the bandwidth increases 

the variance of the estimator. A difficulty even more basic than compromising between 

bias and variance is the need for a method to select a bandwidth in a manner that is 

feasible and practical. Intuitively, bandwidth selection should be most dependent on the 

behavior of the function to be estimated and the magnitude of the variability of the 

random error term. Since neither of these is known in advance, data driven bandwidth 

selection procedures are generally required. The method most frequently used, and that is 

chosen by Hoover, Rice, Wu, and Yang (1998) and Wu, Chiang, and Hoover (1998), 

attempts to minimize average predictive squared error (APSE) via a pseudo cross-

validation technique. 

If~; is a new observation at cx;j' tf) , then 

To generate a cross-validation sample for which APSE can be measured, subjects in the 

study are left out one at a time. Let '/3(-i) be the estimate given by (1.5) leaving out all 

observations on the ith subject. The cross-validation APSE criterion for bandwidth 

selection is given by 

4 



1 n m; ( ( ") ) 2 
cv(h) = N LL ~j - xi~ -i (ti j ) . 

i= l j = l 

The cross-validation bandwidth, hcv , is defined to be the value of h that minimizes 

CV(h). It is of interest to note that, in practice, hcv generally provides under-smoothed 

estimates. It is also worth noting that (1.5) depends on a single smoothing parameter 

irrespective of the number of coefficient functions to be estimated, which is a potentially 

significant problem if different coefficient functions require different degrees of 

smoothing. 

The ability to make inferences based on estimates of f3(t) is highly desirable. 

Essentially, we would like to be able to discern whether fluctuations in a particular 

coefficient function appear to be beyond simple random error and indicative of a 

significant time effect. Wu, Chiang, and Hoover (1998) derived the asymptotic 

distribution of estimators given by (1 .5) and developed a method for generating 

conservative confidence regions for an arbitrary linear combination of the coefficient 

functions . The method of construction for these confidence regions is based on an 

adaptation of a Bonferroni style method developed by Knafl, Sacks, and Ylvisaker 

(1985). 

The method of Wu et al. is as follows: for a known vector of k + 1 real constants, 

A = (a0 , a 1, ... , ak)T, a confidence region for A T f3(t) on t E [a, b] is constructed by 

choosing a grid of g points { 6 , 6, ... , ,9 } such that a = 6, b = , 9 , and , j + l - ,j = 'Y for 

j = 1, ... , g - 1. For each point , j in the grid, l(, j ) and u(,j ) are chosen to satisfy 

(1.6) 

5 



thus satisfying 

Typically, the choices for l (~j) and u(~j) are given by 

where D ( t) is the asymptotic covariance matrix for '/3( t). 
To bridge the gaps between grid points, fort E [~j, ~j+il define zOl(t) to be the 

linear interpolation of l (~j) and l(~j+i): 

Defining uO) ( t) and ( AT /3)(1) ( t) similarly, it follows directly from (1. 7) that 

Shifting the interval from (AT f3)0l(t) to AT f3(t) is done based on one of the fo llowing 

smoothness conditions: 

6 



(ii) SUPtE[a,bJI AT,B" (t )I s; C2 

where c1 and c2 are known constants. 

If condition ( i) is satisfied, it follows that 

I T ( T ) (!) I C1 A ,B(t ) - A ,B (t ) s; 1 (~j+ l - t )( t - ~j), Vt E [~j, ~j+iJ 

and 

lim P [zO l(t ) - Ci (~j+l - t )(t - ~j) s; AT ,B(t ) s; u(')( t ) - Ci (~j+l - t)( t - ~j), 
n--+ oo "( "( 

\/ t E [~j , ~j+ i l and j = 1, ... , g] 2': 1 - a (1.8) 

Similarly, if condition ( ii) is satisfied, it follows that 

lim P [z(')(t) - c21 (~j+l - t )(t - ~j) s; A T ,B(t) s; uOl(t ) - c21 (~j+l - t )( t - ~j), 
n--+oo 

\/ t E [~j, ~H 1] and j = 1, ... , g] 2': 1 - a (1.9) 

The aforementioned procedure has some significant limitations common to 

Bonferroni style techniques. Bonferroni intervals, especially when many are required, 

tend to be quite conservative in practice, which is certainly a serious issue in this context 

given the requirement of choosing an "appropriately sized" grid of points for this 

procedure. To keep the procedure minimally conservative, as small a grid as possible 

would be desired; however, from (1.8) [or (1.9)] it is clear that smaller grid sizes produce 

"unsmooth" bands. In order to produce smooth bands, which is quite desirable with 

respect to our desire to produce smooth estimates of ,B(t ), a large grid is required. Hence 

the procedure would be based on a large number of intervals of the form of ( 1.6), 

7 



accentuating the conservative nature of the procedure. As evidence of this, Wu et al. 

( 1998) includes a Monte Carlo study of their procedure in which the coverage 

probabilities for nominal 95% bands are estimated to be near 1. 

The objective of this thesis is to develop a procedure for constructing confidence 

bands based on estimates of the form of (1.5) that are less conservative and more efficient 

than those put forth by Wu et al. (1998). The method of construction is based on 

overlaying the non-parametric estimate (1.5) with a parametric function, deriving the 

distribution of the estimated parameters in the overlaid function (based on the asymptotic 

distribution of (1 .5)), and building confidence regions using a method developed by 

Naiman (1986). A simulation study will be performed in order to assess the relative 

performance of the proposed method against that of Wu et al. In addition, investigations 

will also focus on the potential use of the overlaid function as an additional smooth, 

which may overcome some of the difficulties associated with bandwidth selection. 

8 



CHAPTER TWO 

ASYMPTOTIC DISTRIBUTION OF KERNEL ESTIMATOR 

As was previously mentioned, kernel estimates of /3 ( t) over an interval are 

constructed via a set of the pointwise estimates given in equation (1.5). This seemingly 

trivial fact is actually a major contributor to the difficulties faced by the Bonferroni 

method discussed in chapter one; essentially, the dimension of the problem is quite large. 

In order to lower the dimension of the problem while still preserving the nature of the 

kernel estimate, a parametric function will be fit to the set of pointwise kernel estimates 

for each coefficient function . In this discussion, a polynomial will serve as the parametric 

function and will be fit using generalized least squares (GLS) techniques. The details of 

the fitting process are taken up in the next chapter; however, here it is important to note 

that using GLS will require some knowledge of the joint distribution of the kernel 

estimates given in (1.5). What follows is a summary of the results due to Wu, Chiang, 

and Hoover (1998) pertaining to the asymptotic distribution of estimates of the form of 

(1.5) . 

To begin, for the random error term in (1.2) define 

and 

Pc(to) = limE[E(to + b)E(to) ]. 
6--+0 

The definitions of a 2(t0 ) and pE(t0 ) may seem redundant; however, the two quantities 

need not be equal. A common example of where this inequality would arise is a case 

where the entire error process, E(t) , contains a stationary error process together with 

9 



measurement errors that are independent at different time points. Here pE(t0 ) would 

capture the variance of the stationary error process while a 2(t0) describes the variance of 

the entire error term. 

and 

Next, with regard to the covariates in (1.2), define for l , r = 0, 1, ... , k 

110,(to) 
7711 (to) 

77kI (to) 

170k (to) I 
771 k (to) 

17kk(to) 

Also, with respect to assumptions a) and b) of Wu et al. (1998, p. 1391) define 

6 n 
>. = N- s Lm;. 

i= l 

Further, for the chosen kernel function, the following parameters are needed: 

Finally, if the distribution of measurement times has density f(t ), define 

3 k 

b1 ( to, h) = hJ L {µ1 (K) [/3Jto)( rJ/c (to) ! ( to) + 'fltc (to) f ' (to)) + ! /3t ( to) 'fltc ( to) f (to)]} 
c=O 

10 



and 

Then, for grid of time points s = ( s1 , s2 , ... , Sq) T, Wu et al. ( 1998) showed that 

(N h) ! (,a( s, h) - /3( s)) ----+ Ng(k+I)(B( s , h) , D * ( s , h)) in distribution as n ----+ oo. 

Here, the bias term B(s, h) = [B (s1, h) , ... , B(s9 , h)]T where 

The covariance structure, D *(s , h), is defined by the following: 

* - [D*(s1 , S1, h) ... D *(s1, Sg, h) 1 
D (s, h) - ... . .. 

D *(s9 ,s1 , h) .. . D *(s9 ,s9 ,h) 

where 

and 

Dok(s~1.'. S92 , h) 1 · 
Dkk(Sgp Sg2, h) 

I I 



To fit parametric estimates to the kernel estimates and to build confidence bands 

for each coefficient function , the joint distribution of (~i( s , h) - /31 ( s)) will 

be extracted for l = 0, 1, ... , k, where ~1(s , h) = [~1(s1, h) , ·· ·,~1(sg, h)r and 

/31 ( S) = [/31 ( si), .. . , /31 ( Sg) r To achieve this, define 

and 

for l = 0, 1, ... , k. It follows that (~i(s, h) - f31 (s )) -+ Ng ( B u/s , h), D fo( s , h)) 

for l = 0, 1, ... , k. 
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CHAPTER THREE 

METHOD OF CONFIDENCE BAND CONSTRUCTION 

In order to develop an alternative to the methods proposed by Wu, Chiang, and 

Hoover (1998) as shown in (1.8) and (1.9), we will fit a parametric estimate to the non-

parametric estimate given by (1.5). Specifically, to construct confidence regions for 

j30(t), /31 (t), ... , f3k(t) over some interval[a, b], begin by selecting a grid of time points 

s = (s1, s2, ... , sq?, such that s1 = a, s2 = b, and S j+l - Sj = 6 for all j = 1, ... , q - 1. 

After constructing the estimator 'iJ( s , h) and correcting for bias (ifrequired) via a suitable 

estimate of B (s , h), a polynomial will be fit to 'i)1(s , h) = ( ~1(s1), . . . , ~ 1(sq) ) T for 

l = 0, 1, ... , k. If a polynomial of degree dz is to be fit to 'i)z(s , h), define 

1 S1 S2 
1 

ii 
1 

Bz= 1 S2 S2 
2 

ii 
2 

1 Sq S2 
q sd' q 

Then define the polynomial overlay as 

~ (t) ~ ~ t ~ td' Pz = aw + 011 + ... + azd, (3 .1) 

where 

T ( T ~ *-1 ) -1 T ~ * -1 ~ 
az = (&zo, &11, ... , &zd,) = S 1 D(l ) (s ,h)S z S 1 D(l) (s , h)/31(s , h) (3.2) 
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and f\~i(s, h) is a suitable estimate of D (l)( s, h). It follows from standard GLS theory 

that a1 has an asymptotic normal distribution whose covariance structure can be 

estimated by 

(3 .3) 

To build confidence bands based on this polynomial overlay, an adaptation of the 

technique set forth by Naiman (1986) will be utilized. Naiman considers a regression 

scenario where 

and 

k 

E[Y] = Lajfj{x), a = (a1, a2, ... , ak? 
j = l 

f (x) = (fi(x), ... , ! k(x ))T 

defines a function from an interval to Rk that is continuous, bounded away from the 

origin, and is piecewise differentiable with f1 11 f '(x) ll 2dx finite. For an estimator of a , 

a rv N(a , 0'21::) and p T P = :E, Naiman considers construction of bands of the form 

aTJ (x) ± c · s · p(x ) for x E I (3.4) 

14 



where p(x) = IIP f (x) II ands is the usual estimate of J . In order to choose an 

appropriate c, Naiman demonstrates that a lower bound for the coverage probability of 

(3.4) is given by 

1- {~min{F.- ? [2((ctt2 - l) ] x A(,)+ f'. _ [ ((ctt2 - l )] 1}f· (t) dt (3.5) lo k -.2 k - 2 7r k 1,1 k - 1 ' T 

where f r denotes the density of a random variable T such that kT2 ('-.) Fv,k (v being the 

degrees of freedom associated with s) and A ( 1) = f1 I I, ' ( x) 11 dx for 

, (x) = IIP f(x) 11 - 1 P f( x) . 

If we assume E ( t) in ( 1.2) does not contain measurement errors and is stationary, 

wehaveJ2(to) = pE(to), J 2(to) = J 2\/t, andpf( t1,t2) = J 2p(t1 , t2)wherep(t1,t2) 

is the correlation between E(ti) and E(t2). This allows J 2 to be factored out of the 

covariance structure given in (3 .3). Then (3.2), assuming correction for the bias of the 

kernel estimate has been made, satisfies the distributional requirements on a 

asymptotically. Also, fort E [a, b] with a > 0, the standard polynomial basis clearly 

satisfies the conditions on f( x) . Hence, Naiman's technique will be employed to 

construct confidence bands for f31(t ), l = 0, 1, ... , k, based on the polynomial estimates 

given by (3.1) and the estimated asymptotic covariance structure in (3.3). In particular, 

for some estimate cJ2 of J 2 and for l = 0, .. , k, (u2) - 1Vi is taken as :E for this adaptation 

ofNaiman's procedure and g1(t) = (1, t , t2, ... , td1? filling the role off. 

The parameter v in Naiman's procedure refers to the degrees of freedom 

associated with the variance estimate. Very little is known about the properties of 

variance estimates for the varying coefficient model; hence, a conservative estimate will 

be made. Although observations on an individual subject are correlated, it is clear that 

we will have a minimum of n total degrees of freedom, from which we will subtract the 

number of parameters required to fit the model. So for each coefficient function, the 

15 



k 

appropriate critical value, c1, is computed from (3 .5) using v = n - 'i:, (dt + 1). Then the 
l=O 

confidence band 

is constructed with Pt(t) = IIPigz(t) II where PzT Pi = (&2 ) - 1Vi. 

In order to complete the procedure, estimates of the parameters in B( s , h) and 

D *(s, h) need to be determined. Wu et al. (1998) provide estimators for several of the 

parameters. To estimate the density for the distribution of measurement times, f ( t), a 

standard kernel density estimate is proposed 

](to) = (Nh)- 1f fKC0 ~ti1 ). 

i= l j = l 

An estimate of 'T/Zr ( t0 ) is given by 

Hence, we may estimate ExxT(to) by 

rJo, (to) 
rJ11 (to) 

rJok (to) I 
rj I k (to) 

rJkk (to) 

Derivative estimates will be constructed by a secant approximation. For example, 

forourgridoftimepointss = (s 1,s2 , ... ,s9)\anestimateof /3/(s v)forv = 2, ... , g - 1 

is given by 
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...-... I/ ...-.... / 

Other required derivative estimates, /31 (sv ), f (sv) and r;fr(sv), are all defined in a 

similar fashion. 

Under the assumption of a stationary error process, the estimator for 0'2 provided 

by Wu et al. simplifies to 

n m ; 

~ 2 1 '""" '""" ~ 2 
O'wu = N 6 6 Eij 

i = l j = l 

whereEij = l'ij - X{fJ(t ij ), j = 1, ... , m i and i = 1, ... , n. This estimator has the 

unfortunate property of generally underestimating the value of 0'2 . A somewhat more 

conservative estimate can be devised by first considering subjects separately. An estimate 

of 0'2 from an individual subject's time series would typically take the form 

Since the variance is the same for each subject, we arrive at our final estimate by using 

the above estimator pooled across subjects 

This estimator generally provides a slight overestimate of the actual variance and will be 

employed in the simulations discussed in later chapters. 
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Finally, an estimate of p( t 1 , t 2 ) is required. For this, a variogram ( see Diggle, 

Liang, and Zeger (1998)) approach will be utilized. The variogram is defined as 

v(u) = !E[{Y(t) - Y(t - u)} 2], u > 0 

for a stochastic process Y ( t). If Y ( t) is a stationary process, the variogram is related to 

the correlation function by 

v(u) = a 2 [1 - p(u)] 

An estimate of the variogram can be computed from squared differences between 

residuals 

and their corresponding time differences 

If the observation times are relatively regular, there should be multiple observations for 

several values of u . Then, for a value of u present in the sample, v ( u) is taken to be the 

average of the v ijk at that particular u. Values of v(u) can be estimated by interpolation 

or smoothing for values of unot present in the sample. Hence, our estimate for p(t1 , t2 ) 

is given, for u = Jt1 - t2 l, by 

~( ) _ l _ v(u) PU - &2 · 
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CHAPTER FOUR 

SIMULATION STUDY 

To investigate the viability of the proposed procedure for finite samples, several 

simulation studies are undertaken. Estimated coverage probabilities and average bands 

are displayed for both the proposed method and the Bonferroni method of Wu, Chiang, 

and Hoover ( 1998) in order to facilitate comparison between the two . 

4.1 Simulation case one 

This case closely follows the simulation presented by Wu et al. In this study, the 

covariate X = (1, X1 , X2 , X 3? is taken as time independent; which, even though the 

model allows covariates to be functions of time, is very common to applications 

discussed in the current literature. Here X 1 and X 2 are each Bernoulli random variables 

with p = 0.5 and X 3 rv N(O , l) with X1, X2 , and X 3 mutually independent. The 

covariate functions are defined as follows: 

/Jo (t) = 15 + 20 sin( ~~ ) 

/32 ( t ) = 2 - 3 cos ( (t)55 )1r ) {33( t ) = - 5 + (30- t )3 
5000 . 

The random error term, E(t) , is taken as a mean O Gaussian process, independent of X , 

with 

if i1=i2 
if i1 -/= i2. 

Finally, time points are constructed so that the initial measurement time, t i1 for 

i = 1, ... , n , is a random variable uniformly distributed on (0, 1). Remaining 
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measurement times are determined from the initial measurement time by 

t ij = t i1 + (j - 1), j = 2, ... , 30, with each of these having a 60% probability of being 

m1ssmg. 

After generating the random components to suit the above criteria for n = 200 

subjects, observations are generated by substituting those results and the chosen 

coefficient functions into model (1.2). Both the Bonferroni method and the method 

proposed in this paper are used to construct bands at a nominal confidence level of 95%. 

In each case, the degrees for the polynomial fits were chosen to be d0 = 5, d1 = 2, 

d2 = 5, d3 = 3. While the choices for d1 and d3 are obvious, the choices for d0 and d2 

are made by considering the maximum value of the remainder in various Taylor 

expansions. In the sense of choosing the smallest degree for the polynomial that also 

gives a reasonable amount of error in approximating the actual function, these choices are 

optimal. Obviously, choices of polynomial fits made in this fashion would be difficult to 

implement in practice. Later simulation studies will attempt to investigate problems that 

could potentially arise from this. 

The procedure is performed for several different values of the bandwidth, h, using 

the standard Gaussian kernel. Bandwidths were selected to be near the typical value of 

hcv, which is approximately 1.0 in this case. Both methods use a grid of 90 points, 

constructed by dividing each unit interval in (0, 30) into thirds. Average bands and 

estimated coverage probabilities are based on 500 replications of the procedure, giving a 

maximum standard error of 0.0097 for the estimated coverage probabilities. 

Table 4.1 shows that the proposed method is conservative with respect to the 

nominal confidence level of 95%, but is less conservative than the Bonferroni method. 

The average bands, shown in figures 4.1 .1-4.1.20, clearly show that the proposed method 

has a substantial advantage in indicating the true precision of the estimates of the 

coefficient functions. This would indicate a substantial advantage for the proposed 

method in drawing inferences on the true nature of the relationship between the covariate 
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effect and time. A later study will attempt to illustrate this advantage more concretely. 

(Note: The legend that accompanies figure 4.1.1 applies to all figures in 4.1-4.6) 

Table 4.1 Estimated coverage probabilities on t E [1, 29] for case 1 

h Method f3o /31 /32 /33 
0.6 Proposed 0.968 0.978 0.966 0.970 

Bonferroni 1.000 1.000 1.000 1.000 

0.8 Proposed 0.976 0.972 0.980 0.990 
Bonferroni 1.000 1.000 1.000 1.000 

1.0 Proposed 0.976 0.988 0.972 0.982 
Bonferroni 1.000 1.000 1.000 1.000 

1.2 Proposed 0.994 0.982 0.982 0.984 
Bonferroni 1.000 1.000 1.000 1.000 

1.4 Proposed 0.986 0.986 0.962 0.986 
Bonferroni 1.000 1.000 1.000 1.000 
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Figure 4.1.1 Average Bonferroni and proposed bands for (30 (t ), h = 0.6, case 1 
- - - - - -Bonferroni --Proposed Actual 

35 

30 

25 

20 

15 

1 0 -·-+-+ ........ ~L....r+++--H-++--r--r+-H-.. -,---1--+-:-•-H-H---"--,-,-t---h-• 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ v v ~ ~ ~ v ~ ~ 
Time 

Figure 4.1.2 Average Bonferroni and proposed bands for (31 ( t ), h = 0.6, case 1 
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Figure 4.1.3 Average Bonferroni and proposed bands for /32(t), h = 0.6, case 1 
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Figure 4.1.4 Average Bonferroni and proposed bands for f33(t), h = 0.6, case 1 
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Figure 4.1.S Average Bonferroni and proposed bands for f30 (t) , h = 0.8, case 1 
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Figure 4.1.6 Average Bonferroni and proposed bands for /31 ( t), h = 0. 8, case I 
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Figure 4.1.7 Average Bonferroni and proposed bands for /32(t) , h = 0.8, case 1 
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Figure 4.1.8 Average Bonferroni and proposed bands for f33(t) , h = 0.8, case 1 
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Figure 4.1.9 Average Bonferroni and proposed bands for f30 (t ), h = 1.0, case I 
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Figure 4.1.10 Average Bonferroni and proposed bands for {31 (t ), h = 1.0, case 1 
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Figure 4.1.11 Average Bonferroni and proposed bands for /32 (t), h = 1.0, case 1 
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Figure 4.1.12 Average Bonferroni and proposed bands for f33(t), h = 1.0, case 1 
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Figure 4.1.13 Average Bonferroni and proposed bands for j30(t ), h = 1.2, case 1 
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Figure 4.1.14 Average Bonferroni and proposed bands for j31(t), h = 1.2, case 1 
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Figure 4.1.15 Average Bonferroni and proposed bands for f32(t ), h = 1.2, case I 
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Figure 4.1.16 Average Bonferroni and proposed bands for f33(t ), h = 1.2, case I 
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Figure 4.1.17 Average Bonferroni and proposed bands for f30 (t ), h = 1.4, case 1 
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Figure 4.1.18 Average Bonferroni and proposed bands for {31 ( t ), h = 1.4, case 1 
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Figure 4.1.19 Average Bonferroni and proposed bands for (32(t ), h 1.4, case 1 
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Figure 4.1.20 Average Bonferroni and proposed bands for (33 ( t ), h 1.4, case 1 

0 1---f~ --~~- ·--+--I· -!-++-I__.__._~ H j + -t-1 --t t + -t I f - t t I t -1 I t -l--t +--+-++·+ I ·H-+--1 H--H- t-t- t-++-1· 1 + -+-"1-t - + .j. I 

-1 

-2 

-3 -

-4 

-5 

-6 

-7 ---- ----------------------------

Time 

31 



4.2 Simulation case two 

This simulation case is precisely the same as case one, except the number of 

subjects in the study was halved; hence, n = 100 for this simulation study. Once again, 

the proposed method appears to be conservative, but far less so than the Bonferroni 

method of Wu et al. Also, as can be seen from comparing figures 4.1.1-4.1.20 and 

figures 4.2.1-4.2.20, the width of the bands increases for this decrease in sample size, 

which is what one would expect. Yet the proposed method maintains its advantage in 

producing substantially narrower bands, which is especially clear in banding /31 (t) (see 

figures 4.2, 4.6, 4.10, 4.14, 4.18). If one is interested in deciding if {31(t) is truly time 

dependent, the Bonferroni bands for /31 ( t) provide no conclusive evidence of that fact 

since time invariant functions (i.e. horizontal lines) would included among the 

possibilites defined by those bands. However, the bands constructed by the proposed 

method give strong evidence that {31 ( t) is, in fact, time dependent. Further examples of 

this type of inference are taken up in section 4.6. 

Table 4.2 Estimated coverage probabilities on t E [1, 29] for case 2 

h Method /3o /31 /32 /33 
0.6 Proposed 0.962 0.962 0.954 0.972 

Bonferroni 1.000 0.998 1.000 1.000 

0.8 Proposed 0.968 0.972 0.962 0.970 
Bonferroni 1.000 1.000 1.000 1.000 

1.0 Proposed 0.972 0.978 0.974 0.972 
Bonferroni 1.000 1.000 1.000 1.000 

1.2 Proposed 0.982 0.982 0.980 0.978 
Bonferroni 1.000 1.000 1.000 1.000 

1.4 Proposed 0.988 0.986 0.972 0.982 
Bonferroni 1.000 1.000 1.000 1.000 
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Figure 4.2.1 Average Bonferroni and proposed bands for f30 (t), h = 0.6, case 2 
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Figure 4.2.2 Average Bonferroni and proposed bands for /31 ( t), h = 0.6, case 2 
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Figure 4.2.3 Average Bonferroni and proposed bands for {32 ( t ), h = 0.6, case 2 
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Figure 4.2.4 Average Bonferroni and proposed bands for f33(t ), h = 0.6 , case 2 
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Figure 4.2.5 Average Bonferroni and proposed bands for j30 (t), h = 0.8, case 2 
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Figure 4.2.6 Average Bonferroni and proposed bands for /31(t), h = 0.8, case 2 
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Figure 4.2.7 Average Bonferroni and proposed bands for f32(t), h = 0.8, case 2 
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Figure 4.2.8 Average Bonferroni and proposed bands for f33(t), h = 0.8, case 2 

3 T ............................................................................................................................................................................................................... .. ...... .............................................................. •·•••··••··•··••·•••··••••••••••••··•••···•························· ···········································. 

0 +-• --t- f-+ •+++--t-- 1 t-+ T....._--l----: t--f-l t ! . I 

~- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 ~ ~ 
-1 

-2 -·. 

-3 

-4 

-5 

-6 

-7 

-8 ~·-···············-························ ······························································································································································································································································ --------·· - - ... ; 

Time 

36 



Figure 4.2.9 Average Bonferroni and proposed bands for j30 (t), h = 1.0, case 2 
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Figure 4.2.10 Average Bonferroni and proposed bands for j31(t) , h = 1.0, case 2 
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Figure 4.2.11 Average Bonferroni and proposed bands for /32 ( t ), h 1.0, case 2 
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Figure 4.2.12 Average Bonferroni and proposed bands for /33 ( t ), h = 1.0, case 2 
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Figure 4.2.13 Average Bonferroni and proposed bands for (30 ( t ), h = 1.2, case 2 
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Figure 4.2.14 Average Bonferroni and proposed bands for (31 (t), h = 1.2, case 2 
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Figure 4.2.15 Average Bonferroni and proposed bands for {32(t), h = 1.2, case 2 
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Figure 4.2.16 Average Bonferroni and proposed bands fo r {33(t), h = 1.2, case 2 
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Figure 4.2.17 Average Bonferroni and proposed bands for {30 ( t) , h = 1.4, case 2 
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Figure 4.2.18 Average Bonferroni and proposed bands for f31(t), h = 1.4, case 2 
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Figure 4.2.19 Average Bonferroni and proposed bands for (32(t ), h = 1.4, case 2 

8 r············· ··········································· ······················································································· ··········· ····· ·· ····· ··· ····························· 

6 

4 

! t ' t ·t ! ' T t . . + !""'"-l i + t . t I • t - ' + -- I ' 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

-2 

Time 

Figure 4.2.20 Average Bonferroni and proposed bands for (33 ( t ), h = 1.4, case 2 
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4.3 Simulation case three 

This simulation case is also derived from case one; however, the number of 

subjects in the study was halved, as in case two, son = 100. Also, the distribution of the 

error term is altered so that 

if i1 = i2 

if i 1 -:f i2 

Essentially, this alteration of the error term causes the intra-subject correlation to increase 

for a given separation of observations, and an increase in intra-subject correlation 

generally requires additional smoothing. From table 4.3 , one can see that the proposed 

procedure may not be conservative when minimal smoothing is done; however, it is also 

important to note that the results are still reasonable with respect to the nominal 95% rate. 

For more substantial amounts of smoothing, the proposed method appears to again be 

conservative, and again far less so than the Bonferroni method of Wu et al. And, as in 

previous cases, the proposed method maintains its advantage in producing substantially 

narrower bands. Again, this appears to be especially clear in banding {31 ( t ). 

Table 4.3 Estimated coverage probabilities on t E [1, 29] for case 3 

h Method /Jo /31 /32 /33 
0.6 Proposed 0.946 0.968 0.956 0.946 

Bonferroni 0.998 0.998 0.994 0.998 

0.8 Proposed 0.964 0.958 0.968 0.972 
Bonferroni 1.000 1.000 1.000 0.998 

1.0 Proposed 0.962 0.954 0.966 0.962 
Bonferroni 0.998 1.000 1.000 1.000 

1.2 Proposed 0.964 0.970 0.976 0.962 
Bonferroni 1.000 1.000 0.998 1.000 

1.4 Proposed 0.984 0.964 0.964 0.974 
Bonferroni 1.000 1.000 1.000 1.000 
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Figure 4.3.1 Average Bonferroni and proposed bands for f30 (t ), h = 0.6, case 3 
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Figure 4.3.2 Average Bonferroni and proposed bands for /31 ( t ) , h = 0.6, case 3 
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Figure 4.3.3 Average Bonferroni and proposed bands for /32 (t), h = 0.6, case 3 
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Figure 4.3.4 Average Bonferroni and proposed bands for f33 (t ), h = 0.6, case 3 
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Figure 4.3.5 Average Bonferroni and proposed bands for f3o(t), h = 0.8, case 3 
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Figure 4.3.6 Average Bonferroni and proposed bands for /31 ( t), h = 0. 8, case 3 
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Figure 4.3.7 Average Bonferroni and proposed bands for f32(t ), h = 0.8, case 3 
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Figure 4.3.8 Average Bonferroni and proposed bands for f33(t), h = 0.8, case 3 
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Figure 4.3.9 Average Bonferroni and proposed bands for {30 (t ), h = 1.0, case 3 
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Figure 4.3.10 Average Bonferroni and proposed bands for {31(t), h = 1.0, case 3 
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Figure 4.3.11 Average Bonferroni and proposed bands for f32(t), h = 1.0, case 3 
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Figure 4.3.12 Average Bonferroni and proposed bands for f33(t), h = 1.0, case 3 
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Figure 4.3.13 Average Bonferroni and proposed bands for f30(t ), h = 1.2, case 3 
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Figure 4.3.14 Average Bonferroni and proposed bands for /31 ( t ), h = 1.2, case 3 
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Figure 4.3.15 Average Bonferroni and proposed bands for /32 (t ), h 1.2, case 3 
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Figure 4.3.16 Average Bonferroni and proposed bands for /33 ( t ), h 1.2, case 3 
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Figure 4.3.17 Average Bonferroni and proposed bands for (30 ( t) , h = 1.4, case 3 
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Figure 4.3.18 Average Bonferroni and proposed bands for (31(t) , h = 1.4, case 3 

7 

6 . 

5 

4 

3 

2 

• +- • r ! I I l t • • t j t l • t ~ 1-1- • t -\- • • ,-~ -l , r , ' ' ' +• 1 f' I. ' T_J' • • j •-1.-l l 

· 1 

·2 . L ........... ................................... . 

Time 

52 



Figure 4.3.19 Average Bonferroni and proposed bands for (32 ( t), h = 1.4, case 3 
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Figure 4.3.20 Average Bonferroni and proposed bands for (33 ( t), h = 1.4, case 3 
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4.4 Simulation case four 

In this simulation, an effort was made to study the effects of choosing polynomial 

fits of a greater degree than necessary. The scenario is precisely the same as that of case 

two except that the degrees chosen for the polynomial fits for /30 ( t) , /31 ( t), /32 ( t), /33 ( t ) 

are 7, 4, 7 and 5, respectively. Comparing these results with those of section 4.2, one can 

see that the proposed method appears to be slightly more conservative in this case and 

produces slightly wider bands on average under these conditions. Essentially, fitting the 

higher degree polynomials "wastes" degrees of freedom, i.e. extra parameters are fit 

without benefit. Yet, the proposed procedure still maintains its overall superiority in 

comparison to the Bonferroni method. 

Table 4.4 Estimated coverage probabilities on t E [1, 29] for case 4 

h Method f3o /31 /32 /33 
0.6 Proposed 0.978 0.982 0.976 0.970 

Bonferroni 1.000 1.000 0.998 0.998 

1.0 Proposed 0.982 0.966 0.980 0.978 
Bonferroni 1.000 1.000 1.000 1.000 

1.4 Proposed 0.996 0.986 0.988 0.982 
Bonferroni 1.000 1.000 1.000 1.000 
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Figure 4.4.1 Average Bonferroni and proposed bands for f30 (t ), h = 0.6, case 4 

35 

30 

25 

20 

15 

10 ~-t-•-----+--r"+-"--+-'-++--'-+--+--~-~+-~~-~- --+----~-+---,-·-----------~·-~-~--~---------~---~-----~' 

' ~ ~ ~ ~ ~ \ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 ~ ~ 

Time 

Figure 4.4.2 Average Bonferroni and proposed bands for f31 (t ), h = 0.6, case 4 
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Figure 4.4.3 Average Bonferroni and proposed bands for /h (t ), h = 0.6, case 4 
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Figure 4.4.4 Average Bonferroni and proposed bands for (33(t), h = 0.6, case 4 
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Figure 4.4.5 Average Bonferroni and proposed bands for f30 (t ), h = 1.0, case 4 

35 

25 

20 

15 

10 '-+-t-t-H-,-h--t---,-f-r-+-Y-+++t-1-t---+----+--+-----+----r-t---,-t~+---'-+-r-H-++--~-+-~~~-"---'~r--~~--------' 

' ~ ~ ~ ~ Q ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ v v ~ ~ ~ 1 ~ ~ 

Time 

Figure 4.4.6 Average Bonferroni and proposed bands for f31(t ), h = 1.0, case 4 
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Figure 4.4.7 Average Bonferroni and proposed bands for j32(t ), h = 1.0, case 4 
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Figure 4.4.8 Average Bonferroni and proposed bands for j33(t), h = 1.0, case 4 
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Figure 4.4.9 Average Bonferroni and proposed bands for /30 ( t ), h = 1.4, case 4 
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Figure 4.4.10 Average Bonferroni and proposed bands for /31(t) , h = 1.4, case 4 
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Figure 4.4.11 Average Bonferroni and proposed bands for (32(t), h = 1.4, case 4 
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Figure 4.4.12 Average Bonferroni and proposed bands for (33(t), h = 1.4, case 4 
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4.5 Simulation case five 

This simulation is also an effort to study the effects of choosing polynomial fits of 

a greater degree than necessary. The scenario is precisely the same as that of case three 

except that the degrees chosen for the polynomial fits for (30 (t), (31 (t), (32 (t), (33 (t ) are 7, 

4, 7 and 5, respectively. Comparing these results with those of section 4.3, one can see 

that the proposed method appears to be slightly more conservative in this case and 

produces slightly wider bands on average under these conditions. Again, fitting the 

higher degree polynomials "wastes" degrees of freedom, i.e. extra parameters are fit 

without benefit. However, the result is far from disasterous, the proposed method still 

outperforms the Bonferroni technique of Wu, et al. (1998). 

Table 4.5 Estimated coverage probabilities on t E [1, 29] for case 5 

h Method f3o /31 /32 {33 
0.6 Proposed 0.966 0.954 0.970 0.974 

Bonferroni 0.998 1.000 1.000 1.000 

1.0 Proposed 0.980 0.964 0.976 0.970 
Bonferroni 1.000 1.000 1.000 1.000 

1.4 Proposed 0.988 0.976 0.988 0.970 
Bonferroni 1.000 1.000 1.000 1.000 
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Figure 4.5.1 Average Bonferroni and proposed bands for f30 (t ), h = 0.6, case 5 
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Figure 4.5.2 Average Bonferroni and proposed bands for f31(t ), h = 0.6, case 5 
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Figure 4.5.3 Average Bonferroni and proposed bands for (32 (t ), h = 0.6, case 5 
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Figure 4.5.4 Average Bonferroni and proposed bands for (33 ( t ), h = 0. 6, case 5 
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Figure 4.5.5 Average Bonferroni and proposed bands for f30 (t), h = 1.0, case 5 
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Figure 4.5.6 Average Bonferroni and proposed bands for /31 ( t), h = 1.0, case 5 
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Figure 4.5.7 Average Bonferroni and proposed bands for /32 (t ), h = 1.0, case 5 
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Figure 4.5.8 Average Bonferroni and proposed bands for f33(t), h = 1.0, case 5 
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Figure 4.5.9 Average Bonferroni and proposed bands for f30 (t ), h = 1.4, case 5 
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Figure 4.5.10 Average Bonferroni and proposed bands for /31 ( t ), h = 1.4, case 5 
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Figure 4.5.11 Average Bonferroni and proposed bands for f32(t ), h = 1.4, case 5 
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Figure 4.5.12 Average Bonferroni and proposed bands for f33(t) , h = 1.4, case 5 
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4.6 Simulation case six 

This simulation is an effort to make a full illustration of the advantage of the 

proposed procedure. The scenario follows case one except for the number of subjects, 

here n = 150, and the coefficient functions . Here the coefficent functions are 

f3o( t ) = 15 + 20 sin( ~~ ) 

/32 ( t) = 2 + i sin ( i~ ) 
/31 ( t ) = 4 - e -915 )2 

133 ( t ) = eo ost, 

and the degrees fit are 5, 2, 5 and 2 respectively. So, the intercept function is the same, 

while the remaining coefficient functions possess somewhat more subtle behavior than 

those in the previous cases. The end result, viewing figures 4.6.2-4.6.4 and 4.6.6-4.6.8, is 

that the bands produced by the procedure of Wu et al. (1998) allow for the possibility of 

each of /31, /32 and /33 to be time invariant, which they clearly are not. However, the 

proposed procedure is able to capture at least some of the nature of the relationship 

between the covariate effects and time, clearly indicating the advantage of being able to 

build tighter, less conservative bands. 

Table 4.6 Estimated coverage probabilities on t E [1, 29] for case 6 

h Method f3o /31 /32 /33 
1.6 Proposed 0.986 0.978 0.990 0.984 

Bonferroni 1.000 1.000 1.000 1.000 

2.0 Proposed 0.982 0.982 0.994 0.990 
Bonferroni 0.996 1.000 1.000 1.000 
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Figure 4.6.1 Average Bonferroni and proposed bands for f30 (t), h = 1.6, case 6 
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Figure 4.6.2 Average Bonferroni and proposed bands for /31 (t), h = 1.6, case 6 
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Figure 4.6.3 Average Bonferroni and proposed bands for f32(t ), h = 1.6, case 6 
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Figure 4.6.4 Average Bonferroni and proposed bands for {33 ( t) , h = 1. 6, case 6 
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Figure 4.6.5 Average Bonferroni and proposed bands for (30 (t), h = 2.0, case 6 
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Figure 4.6.6 Average Bonferroni and proposed bands for (31 ( t ), h = 2.0, case 6 
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Figure 4.6.7 Average Bonferroni and proposed bands for f32(t ), h = 2.0, case 6 

5 

4 

3 

2 

0 I . I • '·I I f •• I . j ! t ' I l T • I I f • ·I . . . I ·I I ! ' I t f • ~ I . . •, .! t t i I- j L - ' - -l-•----1 •- · ·- i 11 · ;..,··i 

-1 

Time 

Figure 4.6.8 Average Bonferroni and proposed bands for f33(t), h = 2.0, case 6 
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4. 7 Degree selection 

For a scenario exactly like the case six simulation study, here individual estimates 

of the varying coefficient model are considered in an effort to study degree selection. In 

the following figures, the actual function, the kernel estimate and the polynomial fit for 

the degree defined in 4.6 are shown. Figures 4.7.1-4.7.4 are based on an estimate 

produced using the cross-validated (CV) bandwidth, approximately 1.17 in this case. As 

one can see the CV bandwidth leads to under-smoothed estimates for most of the 

coefficient functions, making it difficult, and also undesirable, to produce a polynomial 

overlays preserving their nature. 

Figure 4.7.1 Kernel and polynomial estimate for (30 (t) based on CV bandwidth 

35 

30 

25 

20 

. • · 

,. ,. , . 
,· .-' 

,· .•· 

,· ,. ,. 

.,/ 
/ 

./ ·· 
. ,:Y 
~ 

/

._:.:Y 
. 

.. 

Time 

73 

.,r _,,,-.•· 

... ~.~-...-·----- ..-·~ 

~ 
~~ 



Figure 4.7.2 Kernel and polynomial estimate for {3 1 (t) based on CV bandwidth 
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Figure 4.7.3 Kernel and polynomial estimate for f32(t) based on CV bandwidth 
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Figure 4.7.4 Kernel and polynomial estimate for f33(t) based on CV bandwidth 
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Even for twice the CV bandwidth, undersmoothness may still be a problem. And, 

as was noted in chapter one, since the kernel estimates only allow for one smoothing 

parameter, there may often be situations where proper smoothing cannot be obtained for 

all coefficient functions. This leaves a bit of a quandry when trying to make degree 

selections for the polynomial overlay. Judging by figures 4.7.1-4.7.8, a good rule of 

thumb for selection of polynomial overlays would be: If there appears to be a need for 

more smoothing, then there probably is. In practice, making an attempt to smooth out the 

remaining disturbances in the kernel estimates based on the CV bandwidth for /31 and /32 

(figures 4.7.2 and 4.7.3) would seem reasonable; however, the disturbances in the kernel 

estimate of /33 are much greater. Here one might over-parameterize the polynomial 

overlay in an effort to preserve something of the first "bump" (figure 4.7.4) in the kernel 

estimate. We have seen in simulation cases four and five that this over-parameterization 
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is undesirable but not disasterous. In the end, it would seem prudent to do a fair amount 

of smoothing with the kernel estimate (maybe as much as 200% of the CV bandwidth) 

and use the polynomial overlay in an effort to smooth out any remaining suspicious 

behavior. 

Figure 4.7.5 Kernel and polynomial estimate for f30 (t), 200% of CV bandwidth 
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Figure 4.7.6 Kernel and polynomial estimate for /31 (t), 200% of CV bandwidth 
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Figure 4. 7. 7 Kernel and polynomial estimate for {32 ( t), 200% of CV bandwidth 
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Figure 4.7.8 Kernel and polynomial estimate for f33(t), 200% of CV bandwidth 
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CHAPTER FIVE 

CONCLUDING REMARKS 

The method of constructing confidence bands, as set forth in chapter three, for the 

coefficient functions of a varying coefficient model appears to be superior to the method 

of Wu, Chiang and Hoover (1998) for a variety of situations. In all scenarios undertaken 

in chapter four, the proposed method is less conservative than the method of Wu et al. 

which allows for greater ability in discerning the true nature of the coefficient functions. 

It is important to note that several avenues of development may allow for 

improvement to the proposed procedure, both in terms of practical and technical criteria. 

Investigation into the explicit properties of the variance estimate may allow for a more 

accurate assessment of the degrees of freedom available for the banding procedure. It 

would also be beneficial to devise an adaptation of the current method to situations where 

errors were non-stationary. Also, development of criteria and automatic selection 

procedures for choosing the degree of the polynomial fit would be desirable. 
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APPENDIX 

SIMULATION CODE 

What appears here is an example of the FORTRAN 90 code used to generate the 

simulation results seen in chapter four (this particular example is from simulation case 

six). As per FORTRAN 90 convention, the exclamation point(!) indicates the beginning 

of a commment line and the ampersand(&) indicates the continuation of a line of code 

over more than one line of text. It is important to note that, although not used for this 

particular example and with the relevant lines set as inactive comment lines, the program 

includes the code for choosing the cross-validation bandwidth. 

Program Simulation 

Use MSIMSL 

Implicit None 
!Counter definitions 

Integer : : i,j ,k,l,r,g,g l ,g2,differ,status,status3 ,piv ,power,irule 
Integer : : funcnumb,iteration,icode 
Common I fcnindex I funcnumb 

!Coverage indicators and probabilities 
Integer : : coverO, coverl , cover2, cover3 
Integer : : covertotO, covertot 1, covertot2, covertot3 
Integer:: coverOb, coverl b, cover2b, cover3b 
Integer: : covertotOb, covertotlb, covertot2b, covertot3b 
Integer : : boncoverO, boncoverl, boncover2, boncover3 
Integer : : boncovertotO, boncovertot 1, boncovertot2, boncovertot3 
Double Precision : : mycovprobO, mycovprob 1, mycovprob2, mycovprob3 
Double Precision : : mycovprobOb, mycovprob 1 b, mycovprob2b, mycovprob3 b 
Double Precision : : boncovprobO, boncovprob 1, boncovprob2, boncovprob3 
Double Precision : : actual 

!Number of covariate functions in the model 
Integer, Parameter : : covariates=4 

!Number of time points where measurements are taken and subjects 
Integer, Parameter :: measurements=30 
Integer, Parameter : : subjects= 150 
Double Precision, Parameter:: pi=3.14159265359 

!Grid and iteration definitions 
Integer, Parameter : : scale=3 , repititions=500 
Integer, Parameter : : endgrid=scale*measurements 

! Coefficient functions 
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Double Precision:: BETAO, BETAl, BETA2, BETA3 
!Other required functions 

Double Precision, External : : CVCRIT, NGAMPR, GAM, COVPROB, NAIMARG 
!Variables used to generate errors 

Double Precision, Allocatable, Dimension(:):: errors !i.i.d. standard normal 
errors 
Double Precision, Allocatable, Dimension(:):: err !Errors for chosen structure 
Double Precision:: variance=4 !Variance of error 
Double Precision, Allocatable, Dimension(: ,:):: covblock !Covariance of error structure 
Double Precision, Allocatable, Dimension(:,:) :: p,pblock !Factor of covariance 

!Matrix with columns corresponding to covariate values for each subject 
Double Precision, Dimension( covariates,subjects) : : x= 1 

!Holders for randomly generated covariates 
Integer, Dimension(subjects) :: value 
Double Precision,Dimension(subjects) : : value2 

!Design matrix for each subject 
Double Precision, Dimension(measurements,covariates,subjects) :: design=O 

!Function Estimates 
Double Precision, Dimension(measurements,subjects,covariates) :: est=O 
Double Precision, Dimension( scale* measurements,covariates) 
::b=O,bprime,bdblprime,bias 

!Variables used to generate measurement times 
Double Precision, Dimension(measurements+l,subjects) :: t=O 

!Missing data indicators 
Double Precision misses(measurements) 

!Number of observations per subject 
Integer, Dimension(subjects) :: m=measurements 

! Simulated observations 
Double Precision, Dimension(measurements,subjects) : : y=O 
Common I observations I m, t, design, y 

!Computational variables and parameter estimates 
Double Precision, Dimension(measurements,subjects) :: res 
Double Precision, Dimension(subjects,measurements,measurements) :: v 
Integer, Dimension(subjects,measurements,measurements) :: u 
Double Precision, Dimension(measurements-1) : : vario, corr 
Double Precision, Dimension( covariates, covariates, scale* measurements) : : etahat 
Double Precision, Dimension( covariates, covariates) : : tempcovxcov, etahatinv, 
etahatinv2 
Double Precision, Dimension& 
&( covariates,covariates,scale* measurements,scale*measurements) : : D, Dstr 
Double Precision, Dimension( scale* measurements,scale* measurements,covariates )& 
& : : varcov, varcovinv 
Double Precision, Dimension( covariates) : : cap lambda 
Common I arclength I caplambda 
Integer : : df 
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Common I degfree I df 
Double Precision, Dimension(scale*measurements) :: s, that, fprime 
Double Precision, Dimension(scale*measurements,covariates) : : myupper, my lower 
Double Precision, Dimension(scale*measurements,covariates) : : bonupper, bonlower 
Double Precision, Dimension(scale*measurements,covariates) : : myuppertot, mylowertot 
Double Precision, Dimension(scale*measurements,covariates) : : bonuppertot, 
bonlowertot 
Double Precision, Dimension(scale*measurements,covariates) : : avgupper, av glower 
Double Precision, Dimension(scale*measurements,covariates) : : & 
&avgbonupper,avgbonlower 
Double Precision, Allocatable, Dimension(: ,:):: xmat 
Double Precision, Dimension( covariates, covariates) : : amat, ainv 
Double Precision, Dimension( covariates) : : bmat 
Double Precision, Dimension(! 0, 1 O,covariates) : : covmat, faccov 
Common I factmat I faccov 
Double Precision, Dimension( 1 O,covariates) : : estcoef 
Integer, Dimension(covariates) :: degree 
Common I powers I degree 
Integer : : total 
Integer : : position, count, dist 
Double Precision : : bonalpha, prcentile, zscore, bonerr 
Double Precision:: hcv, totss, totobssq, sumsq, vartot,mu2,low,high,tol,sum 
Double Precision: : sigsq, lambda, hnaught, densitysum, arg, kem, kemsum,total2 
Double Precision : : lower,upper,errabs,errrel,errest,biastemp,biastot 
Double Precision : : beg,finish,aberr ,relerr,estimate, temperr ,std err ,errterm 
Integer : : maxf 
Double Precision, Dimension( covariates): :critval 
Double Precision, Allocatable, Dimension(:) : : tempmat2, tempmat3 , basis, tempvec 
Double Precision, Allocatable, Dimension(: ,:) :: tempmat, tempcovmat, tempmat4 

! Initialize 
myuppertot=O 
mylowertot=O 
bonuppertot=O 
bonlowertot=O 
covertotO=O 
covertot l =O 
covertot2=0 
covertot3=0 
covertotOb=O 
covertot l b=O 
covertot2b=O 
covertot3 b=O 
boncovertotO=O 
boncovertot 1 =O 
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boncovertot2=0 
boncovertot3=0 
iteration= 1 

Do While (iteration < repititions+ 1) 

x= l 
design=O 
est=O 
b=O 
t=O 
y=O 
m=measurements 
vario=O 
corr=O 
etahat=O 
etahatinv=O 
etahatinv2=0 
tempcovxcov=O 
D=O 
Dstr=O 
varcov=O 
varcovinv=O 
caplambda=O 
fhat=O 
fprime=O 
myupper=O 
mylower=O 
bonupper=O 
bonlower=O 
amat=O 
ainv=O 
bmat=O 
covmat=O 
faccov=O 
estcoef=O 
df=O 
bonerr=O 
sigsq=O 
lambda=O 
hnaught=O 
critval=O 

! ! ! ! !Begin generation of data!!!!!!!!!!!!!! 
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Call RNSET (0) 
! Sets seed to system clock 

!Generate random binary covariates 
Do k=2, covariates- I 

Call RNBIN(subjects, 1, .5, value) 
x(k, 1 :subjects)=value 
End Do 

! Generate normal covariates 
Call DRNNOA(subjects, value2) 

x( covariates, 1 : subjects)=. 5 * val ue2 

!Time point generation 
Do i= 1, subjects 

t(l ,i)=DRNUNF() 
Do j= 1, measurements 

!Generate initial time points 

tG ,i)=t(l ,i)+G-1) 
End Do 

!Generate remaining "scheduled" time points 

End Do 

!Generate random "missing indicators" 
Do i=l, subjects 

Call DRNUN(measurements, misses) 
Do j=measurements, 2, -1 

If (missesG) < .6) Then 
m(i)=m(i)-1 
Do k=j, measurements 

t(k,i)=t(k+ 1,i) 
End Do 

End If 
End Do 

End Do 

!Compute total number of observations 
total=O 
Do i= l , subjects 

total =total +m( i) 
End Do 

!Build errors 
Allocate (errors(total), STAT=status) 

Call DRNNOA(total, errors) 
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!Update number of observations 

!Remove missing observations 

!Allocate space for i.i.d. errors 

!Generate i.i.d std. normal errors 



!Allocate space for factored covariance str. 
Allocate (p(total,total), STAT=status3) 

position=O 
Do i=l , subjects 

Allocate ( covblock(m(i),m(i) ),pblock(m(i),m(i))) 
covblock=O.O 
pblock=O.O 
Do j= l , m(i) 

Do k= l , m(i) 
covblockU ,k)=variance*DEXP(-1.0*DABS(tU,i)-t(k,i))) 
End Do 

End Do 
Call DCHFAC (m(i), covblock, m(i), 100*DMACH(4), piv, pblock, m(i)) 
p(position+ 1 :position+m(i),position+ 1 :position+m(i))=pblock(l :m(i), 1 :m(i)) 
position=position+m(i) 
Deallocate ( covblock,pblock) 

End Do 

Allocate ( err( total)) !Allocate space for actual errors 

!Compute errors from factorization and i.i .d errors 
Call DMURRV (total, total , p, total, total , errors, 2, total, err) 
Deallocate(p) 

!Build simulated observations 
position=O 
Do i=l , subjects 

Do j= l , m(i) 

YU ,i)=BETAO(tU ,i))+BETAI (tU ,i))*x(2 ,i)+BET A2(tU ,i))*x(3 ,i)+BET A3(tU ,i))*x( 4,i)+& 
err(position+j) 

End Do 
position=position+m(i) 

End Do 
! ! ! ! !End of data generation!!!!!!! 

!Build design matricies for each subject 
Do i= l , subjects 

Do j= l , m(i) 
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End Do 

designU ,: ,i)=x( :,i) 
End Do 

!Choose cross-validation bandwidth 
!low=0.75EO 
!high=2.05EO 
!tol=l.OE-1 
!Call DUVMGS(CVCRIT,low,high,tol,hcv) 
!Write(* ,*) hcv 

hcv=l .6 

!Degrees for polynomial fits 
degree( I )=5 
degree(2)=2 
degree(3)=5 
degree( 4 )=2 

!Build Estimates at Design Points 
Do i=l ,subjects 

Do j= l ,m(i) 
Call BUILDA(subjects, covariates, measurements, m, design, tQ,i) , t, hcv, amat) 
Call BUILDB(subjects, covariates, measurements, m, design, tQ ,i) , t, hcv, y, 

bmat) 
Call DLINRG(covariates, amat, covariates, ainv, covariates) 
estQ,i,:)=MATMUL(ainv, bmat) 
End Do 

End Do 

!Build Residuals 
res=O 
Do i= l , subjects 

Do j= l , m(i) 
resU,i)=yQ,i)-DOT_PRODUCT(x(:,i), estQ ,i,:)) 
End Do 

End Do 

! Variance Estimate 
totss=O 
totobssq=O 
Do i= l , subjects 

sumsq=DOT _PRODUCT(res(l :m(i),i),res(l :m(i),i)) 
totss=totss+sumsq 
totobssq=totobssq+m(i)**2 
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End Do 
sigsq=totss/( l .O*(total-subjects)) 
total2= l .O*total 
lambda=totobssq*(total2* *(-1.2)) 
hnaught=hcv*(total2**(.2)) 

!Estimate coefficient functions 
Do g= 1,endgrid 

amat=O 
bmat=O 
ainv=O 
s(g)=(l .O*g)/(l .O*scale) 
Call BUILDA(subjects, covariates, measurements, m, design, s(g), t, hcv, amat) 
Call BUILDB(subjects, covariates, measurements, m, design, s(g), t, hcv, y, bmat) 
Call DLINRG(covariates, amat, covariates, ainv, covariates) 
b(g,: )= MA TMUL( ainv, bmat) 
!Estimate observation time density 
densi tysum =O 
Do i= I ,subjects 

Do j= l,m(i) 
arg=( s(g)-tU ,i) )/hcv 
kern=(l .O/DSQRT(2*pi))*DEXP(-.5*(arg* *2)) 
densitysum=densitysum+kern 

End Do 
End Do 
fhat(g)=( 1 /(D BLE( total)* hcv)) * densitysum 

End Do 

!Estimate derivative 
Do k= I ,covariates 

Do g=2,endgrid-1 
bprime(g,k)=(b(g+ 1,k)-b(g-1 ,k))/(s(g+ 1 )-s(g-1 )) 

End Do 
End Do 

!Estimate second derivative 
Do k= I ,covariates 

Do g=3,endgrid-2 
bdblprime(g,k)=(bprime(g+ 1,k)-bprime(g-1 ,k))/(s(g+ 1 )-s(g-1 )) 

End Do 
End Do 

!Estimate derivative of time point density 
Do g=2,endgrid-1 

fprime(g)=(fhat(g+ 1 )-fhat(g-1 ))/(s(g+ 1 )-s(g-1 )) 
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End Do 

v=O 
u=O 

!Build correlation function estimate 
Do i= 1, subjects 

Do j= l , m(i)-1 
Do l=j+ 1, m(i) 

v(i,j ,l)=.5 *(resU ,i)-res(l,i) )* *2 
u(i,j ,l)=NINT(t(l,i)-tU ,i)) 

End Do 
End Do 

End Do 

Do differ= 1, measurements- I 
vartot=O 
count=O 
Do i=l ,subjects 

Doj= l , m(i)-1 
Do l=j+ 1, m(i) 

If (u(i,j ,l)==differ) Then 
vartot=vartot+v(i,j ,1) 
count=count+ 1 

End If 
End Do 

End Do 
End Do 
If (count==O) Then 

count= l 
vartot=O 

End If 
vario( differ)=vartot/(1.0*count) 
corr( differ)= 1.0-(vario( differ)/sigsq) 

End Do 

!Estimate covariance structure for kernel estimate 
mu2=0.5*(1 .0/DSQRT(pi)) 
Do g= l ,endgrid 

Do l= I ,covariates 
Do r=l,covariates 

sum=O 
Do i= l ,subjects 

kernsum=O 
Do j= l ,m(i) 

arg=(s(g)-tU ,i))/hcv 
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kern=(l .O/DSQRT(2 *pi))*DEXP(-.5*(arg* *2)) 
kernsum=kernsum+kern 

End Do !j 
sum=sum+x(l,i)*x(r,i)*kernsum 

End Do !i 
etahat(l,r,g)=( 1.0/(fhat(g)* DBLE(total)*hcv) )* sum 
etahat( r ,l ,g)=etahat(l ,r ,g) 

D(l,r,g,g)=(etahat(l,r,g))*(fhat(g)*mu2+1ambda*hnaught*(fhat(g)**2)) 
D( r ,l,g,g)= D(l,r ,g,g) 

End Do !r 
End Do !l 
Call DLINDS(covariates, etahat(: ,:,g), covariates, etahatinv, covariates) 
tempcovxcov=MATMUL(etahatinv,D(: ,:,g,g)) 
tempcovxcov=MA TMUL( tempcovxcov ,etahatinv) 
Dstr( :, :,g,g)=( 1.0/(fhat(g)* *2))*tempcovxcov 

End Do !g 

Do g 1 = 1,endgrid 
Do g2=g 1 + l ,endgrid 

dist=NINT( s(g2)-s(g 1)) 
Do l= 1, covariates 

Do r=l, covariates 
D(l,r,gl ,g2)=corr( dist)*lambda*hnaught* & 
&( ( etahat(l,r,g 1 )+etahat(l,r,g2))/2)*fhat(g 1 )*fhat(g2) 
D(r,l,gl ,g2)=D(l,r,g l ,g2) 

End Do !r 
End Do !l 
Call DLINDS(covariates, etahat(: ,:,gl), covariates, etahatinv, covariates) 
Call DLINDS(covariates, etahat(: ,:,g2), covariates, etahatinv2, covariates) 
tempcovxcov= MA TMUL( etahatinv ,D(:,: ,g l ,g2)) 
tempcovxcov= MA TMUL( tempcovxcov ,etahatinv2) 
Dstr( :,:,gl ,g2)=( 1.0/(fhat(gl )*fhat(g2)))*tempcovxcov 
tempcovxcov=MATMUL(etahatinv2,D(: ,:,gl ,g2)) 
tempcovxcov=MATMUL(tempcovxcov, etahatinv) 
Dstr(: ,:,g2,gl )=(1.0/(fhat(g 1 )*fhat(g2)))*tempcovxcov 

End Do !g2 
End Do !g l 

!Extract var-covariance matrix for kernel estmates 
Do k= 1,covariates 

Do g 1 = 1,endgrid 
Do g2=g l ,endgrid 

varcov(gl ,g2,k)=Dstr(k,k,gl ,g2)/(1.0*total *hcv) 
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varcov(g2,g 1,k)=varcov(g 1,g2,k) 
End Do 

End Do 
Call DLINRG(endgrid,varcov(l :endgrid, 1 :endgrid,k),endgrid,& 
&varcovinv( 1 :end grid, 1 :endgrid,k),endgrid) 

End Do 

!Estimate bias 

Do k= I ,covariates 
Do g=3,endgrid-2 

biastot=O 
Do l = I ,covariates 

biastemp=etahat(k,l,g)*(bprime(g,l)*fprime(g)+0.5 *bdblprime(g,l)*fhat(g)) 
biastot=biastot+biastemp 
End Do 
bias(g,l)=biastot*(hnaught* *(1.5))/(DSQRT(l .O*total *hcv)) 

End Do 
End Do 

b=b-bias 

!Build parametric fits 
Do k= 1, covariates 

Allocate (xmat( endgrid,degree(k)+ 1)) 
Do g=3,endgrid-2 

Do power= 1,degree(k)+ 1 
xmat(g,power)=s(g)* *(power-]) 

End Do 
End Do 
Allocate(tempmat( endgrid-4,degree(k)+ 1 ),& 
&tempmat2( endgrid-4 ), tempmat3( degree(k )+ 1 ),& 
&tempcovmat( degree(k)+ 1,degree(k)+ 1 )) 
Allocate(tempmat4( degree(k)+ 1,endgrid-4)) 
tempmat=MATMUL(varcovinv(3:endgrid-2,3 :endgrid-2,k),xmat(3:endgrid-2,:)) 
tempmat4=TRANSPOSE(xmat(3 :endgrid-2,:)) 
tempcovmat= MA TMUL( tempmat4 ,temp mat) 
tempmat2=MATMUL(varcovinv(3:endgrid-2,3 :endgrid-2,k),b(3:endgrid-2,k)) 
tempmat3= MA TMUL( tempmat4, tempmat2) 
Call ERSET(0,0,0) 
Call DLINDS( degree(k)+ 1,tempcovmat,degree(k)+ l ,& 
&covmat( 1 :degree(k)+ 1, 1 :degree(k)+ l ,k) ,degree(k)+ 1) 
icode=IERCD() 
If (icode .EQ. 2) Then 
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Write(*,*) 'Error' 
Deallocate( tempmat, tempmat2, tempmat3, tern pcovmat, tern pmat4 ,xmat) 
Goto 100 

End IF 

estcoef(l :degree(k)+ l ,k)=MATMUL( covmat(l :degree(k)+ I , I :degree(k)+ l ,k),tempmat3) 
Deallocate( tempmat, tern pmat2, tempmat3 , tempcovmat, tempmat 4 ,xmat) 

End Do 

!Factor covariance structure of polynomial coefficient 
Do k= l ,covariates 

Call DCHF AC ( degree(k)+ l ,covmat(l :degree(k)+ 1, 1 :degree(k)+ l ,k),& 
&degree(k)+ 1, .00001 *DMACH( 4),& 
& piv, faccov(l :degree(k)+ 1, 1 :degree(k)+ l ,k), degree(k)+ 1) 

End Do 

Call ERSET(O, 1, 1) 

! Compute lambdas 
lower=l.O 
upper=29.0 
errabs=O.01 
emel=0.01 
irule=2 
Do funcnumb= l ,covariates 

Call DQDAG(NGAMPR,lower,upper,errabs,errrel,irule,& 
&caplambda(funcnumb),errest) 

End Do 

df = subjects - ( degree( 1 )+degree(2)+degree(3 )+degree( 4 )+covariates) 
!Find critical values 

Do funcnumb=l ,covariates 
beg = 0.5 
finish = 10.0 
aberr = 0.0 
relerr = 0.01 
maxf = 100 
Call DZBREN(COVPROB,aberr,relerr,beg,finish,maxf) 
critval(funcnumb )=finish 

End Do 

!Build proposed bands and set up averages 
Do funcnumb= I ,covariates 
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Allocate(basis( degree(funcnumb )+ 1 )) 
Allocate(tempvec( degree(funcnumb )+ 1 )) 
Do g=scale,endgrid-scale 

Do power= I ,degree( funcnumb )+ 1 
basis(power)=s(g)* *(power-I) 

End Do 
estimate=DOT PRODUCT & 
&(estcoef(l :degree(funcnumb)+ 1,funcnumb ),basis) 
tempvec=MA TMUL& 
&(faccov(l :degree(funcnumb )+ 1, 1 :degree(funcnumb)+ 1,funcnumb ),basis) 
temperr=DOT_PRODUCT(tempvec,tempvec) 
std err= D SQRT ( tern perr) 
errterm=critval(funcnumb )*DSQR T( sigsq)* std err 
myupper(g,funcnumb )=estimate+errterm 
mylower(g,funcnumb )=estimate-errterm 

End do 
Deallocate(basis, tempvec) 

End Do 

! Build Bonferroni bands 
bonalpha=.025/(1.0*( endgrid-2 *scale+ 1 )) 
prcentile=l .0-bonalpha 
zscore=DNORIN(prcentile) 
Do funcnumb= I ,covariates 

Do g=scale,endgrid-scale 
bonerr=(l .O*total *hcv)* *(-1) 
bonerr=zscore*DSQ R T(bonerr* sigsq * Dstr( funcnumb,funcnumb,g,g)) 
bonupper(g,funcnumb )=b(g,funcnumb )+bonerr 
bonlower(g,funcnumb )=b(g,funcnumb )-bonerr 

End Do 
End Do 

coverO= l 
coverl =1 
cover2=1 
cover3= 1 
boncoverO= 1 
boncover 1 = 1 
boncover2=1 
boncover3= 1 

! Check coverage 
Do g=scale,endgrid-scale 

actual=BETAO(s(g)) 
If ((actual>myupper(g, 1 )) .OR. (actual<mylower(g, 1 ))) Then 
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coverO=O 
End IF 
If ( ( actual>bonupper(g, 1)) . 0 R. ( actual <bonlower(g, 1))) Then 

boncoverO=O 
End IF 

actual=BETAl (s(g)) 
If ((actual>myupper(g,2)) .OR. (actual<mylower(g,2))) Then 

coverl =O 
End IF 
If ((actual>bonupper(g,2)) .OR. (actual<bonlower(g,2))) Then 

boncover 1 =O 
End IF 

actual=BETA2(s(g)) 
If ((actual>myupper(g,3)) .OR. (actual<mylower(g,3))) Then 

cover2=0 
End IF 
If ((actual>bonupper(g,3)) .OR. (actual<bonlower(g,3))) Then 

boncover2=0 
End IF 

actual=BETA3(s(g)) 
If ((actual>myupper(g,4)) .OR. (actual<mylower(g,4))) Then 

cover3=0 
End IF 
If ( ( actual>bonupper(g,4)) . OR. ( actual <bonlower(g,4))) Then 

boncover3=0 
End IF 

End Do 

coverOb= l 
coverlb= l 
cover2b= l 
cover3b= l 
Do g=2*scale,endgrid-2*scale 

actual=BET AO(s(g)) 
If ((actual>myupper(g, 1 )) .OR. (actual<mylower(g, 1 ))) Then 

coverOb=O 
End IF 

actual=BET A 1 (s(g)) 
If ((actual>myupper(g,2)) .OR. (actual<mylower(g,2))) Then 

coverl b=O 
End IF 
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actual=BET A2(s(g)) 
If ((actual>myupper(g,3)) .OR. (actual<mylower(g,3))) Then 

cover2b=O 
End IF 

actual=BET A3(s(g)) 
If ((actual>myupper(g,4)) .OR. (actual<mylower(g,4))) Then 

cover3b=O 
End IF 

End Do 

covertotO=covertotO+coverO 
covertot I =covertot I +cover I 
covertot2=covertot2+cover2 
covertot3 =covertot3 +cover 3 

covertotOb=covertotOb+coverOb 
covertotl b=covertotl b+coverl b 
covertot2b=covertot2b+cover2b 
covertot3 b=covertot3 b+cover3 b 

boncovertotO=boncovertotO+boncoverO 
boncovertotl =boncovertotl +boncoverl 
boncovertot2=boncovertot2+boncover2 
boncovertot3=boncovertot3+boncover3 

myuppertot=myuppertot+myupper 
mylowertot=mylowertot+mylower 
bonuppertot=bonuppertot+bonupper 
bonlowertot=bonlowertot+bonlower 

Write (* , *) iteration 

iteration=iteration+ 1 

100 Deallocate ( errors,err) 

End Do !iteration 

!Compute coverage probability 
mycovprobO=DBLE(covertotO)/DBLE(repititions) 
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mycovprob 1 =DBLE( covertot 1 )/DBLE(repititions) 
mycovprob2=DBLE(covertot2)/DBLE(repititions) 
mycovprob3=DBLE(covertot3)/DBLE(repititions) 

mycovprobOb=DBLE( covertotOb )/DBLE(repititions) 
mycovprobl b=DBLE(covertotl b )/DBLE(repititions) 
mycovprob2b=DBLE( covertot2b )/DBLE(repititions) 
mycovprob3b=DBLE(covertot3b)/DBLE(repititions) 

boncovprobO=DBLE(boncovertotO)/DBLE(repititions) 
boncovprob 1 = DBLE(boncovertot 1 )/D BLE( repititions) 
boncovprob2=DBLE(boncovertot2)/DBLE(repititions) 
boncovprob3=DBLE(boncovertot3)/DBLE(repititions) 

!Compute average bands 
avgupper=(l .0/DBLE(repititions))*myuppertot 
avglower=( 1.0/DBLE(repititions ))*mylowertot 

avgbonupper=( 1. 0/D BLE( repititions) )* bonuppertot 
avgbonlower=( 1. 0/D BLE( repititions) )* bonlowertot 

!Write results 
Open(l , FILE='test.dat',STATUS='replace') 
Do g=scale,endgrid-scale 

actual=BET AO(s(g)) 
Write (1 , 10) 

s(g),avgbonlower(g, 1 ),avglower(g, 1 ),actual,avgupper(g, 1 ),avgbonupper(g, 1) 
10 Format(F8.4,F8.4,F8.4,F8.4,F8.4,F8.4) 

End Do 
Close(l) 

Open(2, FILE='test2.dat',STATUS='replace') 
Do g=scale,endgrid-scale 

actual=BETAl (s(g)) 
Write (2, 11) 

s(g),avgbonlower(g,2),avglower(g,2),actual,avgupper(g,2),avgbonupper(g,2) 
11 Format(F8.4,F8.4,F8.4,F8.4,F8.4,F8.4) 

End Do 
Close(2) 

Open(3 , FILE='test3 .dat',ST A TUS='replace') 
Do g=scale,endgrid-scale 

actual=BETA2(s(g)) 
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Write (3, 12) 
s(g),avgbonlower(g,3 ),avglower(g,3 ),actual,avgupper(g,3 ),avgbonupper(g,3) 

12 Format(F8.4,F8.4,F8.4,F8.4,F8.4,F8.4) 
End Do 
Close(3) 

Open( 4, FILE='test4.dat',ST A TUS='replace') 
Do g=scale,endgrid-scale 

actual=BET A3(s(g)) 
Write ( 4, 13) 

s(g),avgbonlower(g,4 ),avglower(g,4 ),actual,avgupper(g,4 ),avgbonupper(g,4) 
13 Format(F8.4,F8.4,F8.4,F8.4,F8.4,F8.4) 

End Do 
Close(4) 

Open(5, FILE='test5.dat',STATUS='replace') 
Write (5, 14) mycovprob0,mycovprobl ,mycovprob2,mycovprob3 
Write ( 5, 14) mycovprobOb,mycovprob 1 b,mycovprob2b,mycovprob3 b 
Write (5 , 14) boncovprob0,boncovprobl,boncovprob2,boncovprob3 
14 Format(F8.4,F8.4,F8.4,F8.4) 

Close(5) 

End Program 

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Subroutines and functions!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! Coefficient functions 

Double Precision Function BETAO(s) 
Implicit None 
Double Precision, Intent(IN) : : s 
Double Precision, Parameter:: pi=3.14159265359 
BET AO = 15.0 + 20.0*DSIN(s*pi/60.0) 

End Function 

Double Precision Function BET A 1 ( s) 
Implicit None 
Double Precision, Intent(IN) : : s 
BET Al = 4.0 - ((s - 15.0)/9.0)**2 

End Function 

Double Precision Function BETA2(s) 
Implicit None 
Double Precision, Intent(IN) : : s 
Double Precision, Parameter : : pi=3. 141 59265359 
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BETA2 = 2.0 + 1.25*DSIN(s*pi/15.0) 
End Function 

Double Precision Function BETA3(s) 
Implicit None 
Double Precision, Intent(IN) : : s 
BETA3 = DEXP(O.OS*s) 

End Function 
!End of coefficient functions 

!Derivative of Naiman's gamma 
Double Precision Function NGAMPR(x2) 

Implicit None 
Double Precision, Intent(IN) : : x2 
Integer : : funcnumb 
Common I fcnindex I funcnumb 
Integer, Dimension( 4) : : degree 
Common I powers I degree 
Integer d, korder 
Common I location I d 
Double Precision:: bgstep,tol,temp 
Double Precision, Allocatable, Dimension(:) : : gamderiv 
Double Precision, External : : GAM 
Double Precision DDERIV 

Allocate(gamderiv( degree( funcnumb )+ 1)) 
korder= l 
bgstep=0.1 
tol=0.05 
Do d= I ,degree( funcnumb )+ 1 

gamderiv(d)=DDERIV(GAM,korder,x2,bgstep,tol) 
End Do 
temp=DOT _PRODUCT(gamderiv,gamderiv) 
NGAMPR=DSQRT(temp) 
Deallocate(gamderi v) 

End Function 

!Naiman's gamma 
Double Precision Function GAM(x2) 

Implicit None 
Double Precision, Intent(IN) : : x2 
Integer : : funcnumb 
Common I fcnindex I funcnumb 
Integer, Dimension( 4) : : degree 
Common I powers I degree 
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Double Precision, Dimension( 10, I 0,4) : : faccov 
Common I factmat I faccov 
Integer d,deg 
Common / location I d 
Double Precision, Allocatable, Dimension(:) : : tempgam, basis 
Double Precision tempdot,tempnorm 

Allocate(basis( degree(funcnumb )+ I ),tempgam( degree(funcnumb )+ 1 )) 
Do deg= l ,degree(funcnumb )+ l 

basis( deg)=x2* *(deg-I) 
End Do 
tempgam=MA TMUL& 
&(faccov(l :degree(funcnumb )+ 1,1 :degree(funcnumb)+ 1,funcnumb ),basis) 
tempdot= DOT_ PRODUCT( tempgam, tempgam) 
tempnorm=DSQRT(tempdot) 
tempgam=(l .0/tempnorm)*tempgam 
GAM=tempgam(d) 
Deallocate(basis,tempgam) 

End Function 

!Compute Naiman's integral 
Double Precision Function COVPROB(c) 

Implicit None 
Double Precision, Intent (IN) : : c 
Double Precision, External : : NAIMARG 
Double Precision : : low,high,errab,relerr,cover,esterr 
Common I critical I high 
Integer : : rule 
rule=2 
low=O.O 
high= l .0/c 
errab=0.01 
relerr=O.O I 
Call DQDAG(NAIMARG,low,high,errab,relerr,rule,cover,esterr) 
COVPROB=.05-cover 

End Function 

!Argument in Naiman's integral 
Double Precision Function NAIMARG(x3) 

Implicit None 
Integer, Parameter : : covariates=4 
Double Precision, Parameter:: pi=3.14159265359 
Double Precision, Intent(IN) : : x3 
Double Precision : : high, c 
Common I critical I high 
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Integer : : df 
Common I degfree I df 
Integer : : funcnumb 
Common I fcnindex I funcnumb 
Integer, Dimension( 4) : : degree 
Common I powers I degree 
Double Precision, Dimension( covariates) : : cap lambda 
Common I arclength I caplambda 
Double Precision:: templ ,temp2,temp3 ,temp4,suml,const 
Double Precision:: tempa,tempb,tempc,tempd,tempe,tempf 
Double Precision:: totl,tot2,DGAMMA,DFDF 
c=l.0/high 
temp 1 =2.0*(( c*x3)* *(-2)-1.0)/DBLE( degree(funcnumb )+ 1-2.0) 
temp2=DFDF(temp l ,& 
&DBLE( degree(funcnumb )+ l-2),DBLE(2.0))*caplambda(funcnumb )/pi 
temp3=((c*x3)**(-2)-1.0)/DBLE(degree(funcnumb )+ 1-1 .0) 
temp4=DFDF(temp3,DBLE(degree(funcnumb)+ 1-1),DBLE(l .O)) 
sum 1 =temp3 +temp4 
If (suml > 1.0) Then 

const= l.O 
Else 

const=suml 
End If 

tempa= D LOG(DGAMMA(D BLE( df+degree( funcnumb )+ 1 )/2. 0)) 
tempb=DLOG(DGAMMA(DBLE(df)/2.0)) 
tempc=DLOG(DGAMMA(DBLE(degree(funcnumb)+ l)/2.0)) 
tempd=(DBLE(df)/2.0)*DLOG(DBLE(df)) 
tempe=DBLE( df-1 )*DLOG(x3) 
tempf=-(DBLE( df+degree(funcnumb )+ 1 )/2.0)*DLOG( l .O+DBLE( df)*(x3 * *2)) 
tot 1 =tempa-tempb-tempc+tempd+tempe+tempf+DLOG(D BLE(2. 0)) 
tot2=DEXP(totl) 
NAIMARG=const*tot2 

End Function 

! Cross-validation criteria 
Double Precision Function CVCRIT(h) 

Implicit None 
Double Precision, Intent(IN) : : h 
Integer, Parameter :: covariates=4, subjects= l50, measurements=30 
Integer, Dimension(subjects) : : m 
Double Precision, Dimension(measurements+ I ,subjects) : : t 
Double Precision, Dimension(measurements,covariates,subjects) :: design 
Double Precision, Dimension(measurements,subjects) :: y 
Common I observations I m, t, design, y 
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Double Precision, Allocatable, Dimension(: ,:):: kermatrix, jmat 
Double Precision, Dimension( covariates, I) : : sum l ,tempsum I ,temp l ,temp2 
Double Precision: : tempx,res,temp3 ,DBLINF 
Double Precision, Dimension(covariates,covariates) :: amat, a_noti_inv 
Integer i,j,k 
temp3=0 
Do i=l, subjects 

Do j= l, m(i) 
suml =O 
Do k= l , subjects 
Allocate (kermatrix (m(k),m(k)), jmat (covariates, m(k))) 
Call KERNBUILD(m(k), tU ,i), measurements, t(: ,k) , h, kermatrix) 
Call DMXTYF(m(k), covariates, design(l :m(k),:,k), m(k), m(k),& 

& m(k), kermatrix, m(k), covariates, m(k), jmat, covariates) 
tempsuml =O 
Call DMRRRR( covariates, m(k), jmat, covariates, m(k), I ,& 

& y(l:m(k),k), m(k), covariates, I , tempsuml , covariates) 
sum I =sum I + temps um I 
Deallocate (kermatrix, jmat) 

End Do !k 
Allocate (kermatrix (m(i),m(i)), jmat (covariates, m(i))) 
jmat=O 
templ=O 
temp2=0 
Call KERNBUILD(m(i), tU ,i), measurements, t(: ,i), h, kermatrix) 
Call DMXTYF(m(i), covariates, design(l :m(i),:,i), m(i), m(i),& 

& m(i),kermatrix, m(i), covariates, m(i), jmat, covariates) 
Call DMRRRR( covariates, m(i), jmat, covariates, m(i), 1,& 

& y(l:m(i),i), m(i), covariates, 1, templ , covariates) 
temp2=sum I-temp I 

Call BUILDA(subjects, covariates, measurements, m, design,& 
& tU ,i), t, h, amat) 

Call BUILDINV(tU,i), h,covariates,m(i),amat,design(l :m(i),:,i),& 
& t(l :m(i),i) , a_noti_inv) 

tempx= D BLINF( covariates, covariates, a_ noti _ inv, covariates,& 
& designU,:,i), temp2) 

res=(yU ,i)-tempx)* *2 
temp3=temp3+res 
Deallocate (kermatrix, jmat) 

End Do !j 
End Do !i 
CVCRIT=temp3 

End Function 
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!Kernel matrix builder 
Subroutine KERNBUILD(a, time, measurements, mespts, h, kernel) 

Implicit None 
Integer : : i 
Integer, Intent(IN) : : a, measurements ! a is the dimension of kernel matrix 
Double Precision, Intent(IN) : : time, h !time=current time point 
Double Precision, Dimension(measurements+ 1) :: mespts 
Double Precision, Dimension(a,a), Intent(OUT) : : kernel !kernel mat. 
Double Precision : : argmt, c 
Double Precision:: pi=3.14159265359 
kernel=O 
Do i= l , a 

argmt=( time-mespts(i) )/h 
c=l .O/SQRT(2*pi) 
kernel(i,i)=c*DEXP(-.5 *( argmt* *2)) 

End Do 
End Subroutine 

! Matrix A as defined by Hoover 
Subroutine BUILDA(subjects, covariates, measurements, m, design, time, t, h, amat) 

Implicit None 
Integer:: i 
Integer, Intent(IN) : : subjects, covariates, measurements 
Integer, Dimension(subjects), Intent(IN) : : m 
Double Precision, Dimension(measurements,covariates,subjects),& 

&Intent(IN) : : design 
Double Precision, Intent(IN) : : time, h 
Double Precision, Dimension( measurements+ 1,subj ects ), Intent(IN) : : t 
Double Precision, Dimension( covariates,covariates ), Intent(OUT) : : amat 
Double Precision, Allocatable, Dimension(: ,:) :: temp, kernel 
Double Precision, Dimension( covariates,covariates) : : temp2 

amat=O 
temp2=0 
Do i= l , subjects 

kernel,& 

covariates) 

Allocate (kernel(m(i),m(i))) 
Allocate ( temp( covariates,m(i))) 
Call KERNBUILD(m(i), time, measurements, t(: ,i), h, kernel) 
Call DMXTYF(m(i),covariates,design(l :m(i),:,i), m(i), m(i), m(i), 

& m(i), covariates, m(i), temp, covariates) 
Call DMRRRR( covariates, m(i), temp, covariates, m(i),covariates,& 

& design(! :m(i),:,i), m(i), covariates, covariates, temp2, 

amat=amat+temp2 
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Deall ocate(kernel) 
Deallocate(temp) 

End Do 
End Subroutine 

Subroutine BUILDB(subjects, covariates, measurements, m, design, time, t, h, y, bmat) 
Implicit None 
Integer : : i, index 
Integer, Intent(IN) : : subjects, covariates, measurements 
Integer, Dimension(subjects), Intent(IN) :: m 
Double Precision, Dimension(measurements,covariates,subjects ),& 

& Intent(IN) : : design 
Double Precision, Intent(IN) : : time, h 
Double Precision, Dimension( measurements+ 1,subj ects ), Intent(IN) : : t 
Double Precision, Dimension(measurements,subjects ), Intent(IN) : : y 
Double Precision, Dimension(covariates), Intent(OUT) :: bmat 
Double Precision, Allocatable, Dimension(: ,:) : : temp, kernel 
Double Precision, Dimension( covariates) : : temp2 
index= l 
bmat=O 
temp2=0 
Do i= l , subjects 

Allocate (kernel(m(i),m(i))) 
Allocate ( temp( covariates,m(i))) 

kernel,& 

index,& 

Call KERNBUILD(m(i), time, measurements, t(: ,i), h, kernel) 
Call DMXTYF(m(i),covariates,design(l :m(i),:,i), m(i), m(i), m(i), 

& m(i), covariates, m(i), temp, covariates) 
Call DMURRV(covariates,m(i), temp, covariates, m(i), y(l :m(i),i), 

& covariates, temp2) 
bmat=bmat+temp2 
Deall ocate(kernel) 
Deal I ocate( tern p) 

End Do 
End Subroutine 

!Build inverse of A 
! ! !Call as BUILDINV(tU,i), h, covariates, m(i), amat, design(l :m(i),:,i), 

t(l :m(i),i), 
! ! !a_noti_inv) 

Subroutine BUILDINV(time, h, covariates, m, amat, subjmat, subjtimes, a_noti_inv) 
Implicit None 
Double Precision, Intent(IN) : : time, h 
Integer, Intent(IN) : :covariates, m 
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Double Precision, Dimension( covariates,covariates ), Intent(IN) : : amat 
Double Precision, Dimension(m, covariates), lntent(IN) : : subj mat 
Double Precision, Dimension(m), Intent(IN) : : subj times 
Double Precision, Dimension( covariates,covariates), Intent(OUT) : : a_ noti_inv 
Double Precision, Dimension(m,m) : : kernel 
Double Precision, Dimension(covariates, m) :: temp 
Double Precision, Dimension(covariates, covariates):: temp2, temp3 

Call KERNBUILD(m, time, m, subjtimes, h, kernel) 
Call D MXTYF( m,covariates,subj mat,m,m,m,kernel ,m,& 

&covariates,m, temp,covariates) 
Call DMRRRR(covariates, m, temp, covariates, m, covariates, subjmat, m,& 

& covariates, covariates, temp2, covariates) 
temp3 = amat - temp2 
Call DLINRG(covariates, temp3, covariates, a_noti_inv, covariates) 

End Subroutine 
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