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CHAPTER ONE 

INTRODUCTION 

1.1 Importance of Variable and Model Selection in Economics 

Economics is a science that tries to explain and describe the characteristics and 

behavior of an economy (Spencer, 1971 ). In recent experience, certain Asian economies 

suffered significant contractions (especially Indonesian economy of 1999): What 

explains the decline in economic activity? Why did the recession in the U.S. during the 

1920s and 30s become so severe? These examples deal with the whole economy (like a 

country), but economics also attempts to explain behavior and characteristics of smaller 

groups and for individuals. For example, many factors can be considered in analyzing 

city unemployment rates and economic theory is surely useful in narrowing the 

appropriate variable for consideration. For an individual, product demands, saving rates, 

earnings, and other outcomes of utility maximization are also explained by economic 

theory. But the problem is how to empirically estimate important models generated by 

economic theory which in turn help us to explain important features of human behavior. 

In fact, there are many models that try to explain special relationships between 

different economic variables, such as the famous Philip's curve which states that there is 

an inverse relationship between the unemployment rate and changes in the money wage. 

That is, the higher the unemployment rate, the lower the inflation rate (Dornbusch and 

Fischer, 1994, p. 215). Klein (1950) constructed an empirical model of the U.S. 
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Macroeconomy using several equations, the parameters of which are estimated 

simultaneously. He includes equations for consumption, investment, private wages, 

equilibrium demand, private profits and capital stocks, all of which are jointly determined 

within the system. Other exogenous variables are included in the model, like government 

non-wage spending, indirect business taxes, net export, and a time trend (Green, 1993, 

pp. 582). These are two well-known examples of empirical economic models. 

A model consists of a near representation of the system under study and is used to 

help us interpret, predict and make decisions. So building a model to explain economic 

phenomena has become very important in the discipline of economics. A model is 

defined as a formal or informal framework of analysis that seeks to abstract from the 

complexities of the real world those characteristics of an economic system which are 

crucial for an understanding of the behavior and the institutional and technical 

relationships which underlie that system. The intention is to facilitate the explanation of 

economic phenomena and to generate economic forecasts (Perce, 1992, p. 281). 

So a main goal of economic model building is to explain the phenomena relating 

to the economy, and is a primary concern of economists. Before building an empirical 

model, it is critical to determine the variables that will be included. For example, correct 

specification of the Philips curve depends on expectations; there are many potential 

variables that affect expectations and economic theory is particularly vague on what these 

might be. The empirical researcher is left to use his of her own judgment in how to 

model this important feature of the model. If the variables we select are correct or 

appropriate, then we are more likely to end up with a model that can be useful for policy 

analysis and prediction. If a model includes irrelevant variables or omits important ones, 
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then we end up with a poor model which is imprecise at best and misleading at worst. 

So, selecting appropriate variables is a critical step in building a good model in 

economics. 

After selecting variables, there are still many possible combinations for those 

variables. Each combination could be deemed a model, but because a poor model will 

make the inferences based on the data unreliable (Burnham & Anderson, 1998), we need 

to be cautious when we use the model to explain the economic phenomena, especially if 

policy decisions are being made based on their outcome. 

1.2 The Traditional Approach 

Several criteria are used in variable and model selection problems. The R2 

criteria and adjusted R2 are two of the most popular criteria used. These criteria measure 

the proportion of total variance accounted for by the linear influence of the explanatory 

variables (Judge, Griffths, Hill, Lutkepohl, & Lee, 1985, p. 862). The main disadvantage 

for the R2 criteria is that it can always be made larger by adding variables to the model. 

Neither R2 or adjusted R2 account for the statistical loss which is associated with using 

an incorrect model. 

Other classical approaches are Mallow's Cp, Amemiya's PC, Akaike Information 

Criterion (AIC) and the Bayesian Information Criteria (BIC). Most of the traditional 

model selection rules penalize the addition of regressors while rewarding corresponding 

the improvement in model fit. The winner is the model that represents the best result of 

this tradeoff under the defined norm. 

Each procedure of these model selection rules, with the exception of adjusted R

square, is drawn up under a specific norm. For instance, the Cp, considers the 
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conditional mean square predictive error, uses an estimator of the unknown parameters, 

and selects the model having the smallest risk (which is, selecting model that minimizing 

Cp ). The main drawback for the Cp criteria is that if the number of explanatory variables 

is too large then the prediction e1Tor will become large (Judge et al., 1985). Ameniya 

(1980) developed a method, the PC criterion, based on the mean squared predictive error 

that considers the loss associated with choosing the incorrect model. 

The various information criteria for model selection seek to balance the accuracy 

of the estimation and the best approximation to reality (Judge et al., 1985, p. 870). The 

AIC is one of the most widely used information criteria. Simulations have shown that 

AIC tends to choose models that are too large. The final method discussed here is the 

BIC, which was developed by Sawa (1978) and uses so-called pseudo-true parameter 

values to measure the distance between the pseudo-true parameters and the postulated 

parametric model. As opposed to the other classical approaches, BIC works reasonably 

well when the number of including variables is large. There are many well-known 

problems associated with using model selection rules (see Judge et al. 1995, pp 888-889). 

In particular, none of these procedures assures the user that the model that estimates the 

parameters most accurately has been chosen. 

1.3 The Bayesian Approach for Variable and Model Selection 

The Bayesian approach to model selection can be traced back to the 1970s. 

Schwarz (1978) used a Bayesian approach to derive a model selection rule similar to in 

spirit to the ones described above. Schwarz (1978) assumes that the posterior probability 

of a true model is known, and that the prior conditions of the parameters given K 

(number of explanatory variables) is the true model; he then uses with maximum 
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likelihood to determine the variables to include in the design matrix (Judget et al., 1985). 

The Schwarz criteria incorporates prior information into analysis and provides 

motivations for later Bayesian approach of model selection. But the Schwarz criteria do 

not really consider a parameter's prior distribution as a critical element and relies on the 

Bayesian model asympotics. The Bayesian model selection rules used later do not suffer 

from these limitations. 

Mitchell and Beauchmp (1988) have used a Bayesian approach for variable 

selection in regression analysis. Mitchell et al. (1988) assigned prior probability for each 

parameter (including the error term) and used usual regression equations to predict 

responses of dependent variables. For the independent variables, the prior probability of 

each variable is included or not is set as a combination of O or non-zero constant which is 

less than 1. That is, an additional parameter is used to index each coefficient in the 

model. The main problem is that this index parameter does not have any distribution 

associated with it. So we cannot know its properties or its exact relationship with other 

parameters. But this paper provides a good motivation for the later development of the 

Bayesian variable and model selection approach. 

Recent developments have introduced more efficient sampling methodologies into 

this variable selection problem. George & McCulloch (1993, 1995, and 1997) developed 

a method called "stochastic search variable selection" (SSVS) to search for better subsets 

(or models) using a hierarchical mixture regression model. This mixture setting is similar 

to that of Mitchell et al. (1988) who use a spike and slab mixture. Through the 

development of SSVS, George and McCulloch' s main innovation was to give a 

probability distribution to the index parameter, where they referred to a 'latent variable'. 
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This allows us to derive much important information from this particular distribution. 

George et al. (1993, 1995 &1997) also set up the prior distribution (in an objective way) 

for all parameters, the first step of the SSVS. The second step is to use "Gibbs sampling" 

which was developed by Geman and Geman (1984) to obtain the posterior distribution of 

the parameters. This sampling method is one of the Markov Chain Monte Carlo 

(MCMC) simulation techniques. George et al. used Gibbs sampling to generate a 

sequence of the index parameter that converges to the desired posterior distribution 

(according to the theory ofMCMC) and contains the relevant information about the 

variable selected. And, this SSVS searches the promising subsets rather than evaluate the 

entire posterior distribution. That is the main advantage over the traditional Bayesian 

approach. It substantially reduces the time to evaluate the entire posterior distribution, so 

it is more efficient. But the SSVS approach also has one main disadvantage: the prior 

information is not subject to a problem-specified prior. So, an alternative approach by 

Brown, Vannucci and Fearn(1998) will also be considered. For this approach, Brown et 

al. (1998) extend George et al. (1993,1995 and 1997) to multivariate Bayesian variable 

selection and consider different prior settings due to the multivariate nature for the 

problem. This MBVS (Multivariate Bayesian Variable Selection) will be discussed in 

Chapter Two and will be implemented in Chapter Four. 

The other Bayesian variable selection procedure is one developed by Geweke 

( 1994). The main difference between Geweke' s method and that of George et al. 

(1993, 1995 & 1997) is the treatment of prior information. The Geweke procedure 

incorporates a subjective prior which could be based on the expert experience of the 

investigator. Like Mitchell et al. (1988), Geweke sets up a mixture of point mass at 0, 
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but permits truncation of the parameters to a specified interval (truncated normally). So 

even if the considered parameter is rejected by the model selection procedure, it can still 

be given weight in the resulting posterior distribution. Also Geweke uses the Bayes 

factor in the variable selection stage by using it to compute the conditional posterior 

probability to indicate the parameters (detail discussed later). For computation, Gibbs 

sampling is implemented (similar to SSVS). The feature of Geweke's approach is that it 

can compute the subsets' (or model's) posterior probability for all possible subsets. But 

as Geweke states, the degree of collinearity must be considered because it will affect the 

independence of the regressors and the rate of convergence of the Markov chain. 

The above three can be used exclusively for variable selection; another problem is 

that ofto picking an appropriate model from many potential models. George (1995) 

evaluates the posterior probability via the Bayes factors and prior ratios of the model, but 

the prior is not very easy to set up. The Geweke procedure yields the posterior 

distribution of the parameters and the mean of this can easily be used as an estimator of 

the model. Still another possibility is Bayesian Model Averaging (BMA) (Raftery, 

Madigan and Hoeting, 1997; Volinsky, Madigan, Raftery, and Kronmal, 1997; Hoeting, 

Madigan, Raftery and Volinsky, 1998). Like the SSVS and the Geweke's approach, 

BMA also requires the posterior probability for each parameter and proper prior 

information for each. But BMA goes further; after computing the posterior probability of 

the parameters, it combines the likelihood probability and posterior probability (actually 

what is weighted by the posterior probability) to produce a rnodel(s). The main 

advantage of the BMA is that it can account for the uncertainty of the model and the 

interests of the researchers (Raftery et al., 1997). Raftery et al. (1997) and Hoeting et al. 
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(1998) adopt two algorithms for the BMA. The first is Occam's window. This algorithm 

is based on the use of the Bayes factor or posterior odds ratios. If a larger model is 

rejected, then all nested smaller models are also rejected. Of course, we need to set up the 

neighborhood for the rejection (or acceptance) region to make a decision. But Occam's 

window has one disadvantage: the model may become inconclusive. That is, we may not 

be enough evidence to reject it or accept it. So this drawback of Occam's window needs 

to be addressed. 

The second method is the MCMC approach of Madigan and York (1995) and is 

called the MCMC model composition (MC3) methodology. MC3 generates a stochastic 

sequence that translates through (or moves through) the model space. By simulating the 

Markov Chain many times and under certain conditions (or MCMC theorems), the 

average of this sequence will converge to the posterior mean for the models (Raftery et 

al., 1997; Hoeting et al., 1998). This BMA approach can identify proper models from a 

set that contains information about the model selection and can reduce to an even smaller 

set for more efficient computation. This will reduce the time to compute the integration 

of the posterior probability and the marginal likelihood for the model. Also Raftery et al. 

(1997) and Hoeting et al. (1998) argue that BMA has better predictive performance than 

other methods. So for model selection, it is argued that BMA is a good method of 

obtaining a suitable empirical model. Another recent paper which discusses the BMA is 

Raftery and Kronmal (1997). It is similar to the above papers (Hoeting et al. 1998 & 

Raftery et al. 1997) except that they only use the BIC as the indicator for the best model 

associated with the highest posterior probability. 

8 



There are several other papers that discuss or use Bayesian variables and model 

selection. Kuo and Mallick (1994) propose a simple approach to selecting variables 

using an indicator vector that is computed using MCMC. Clyde and Parmigiani (1998) 

use BVS (Bayesian Variable Selection) in medical studies. George and Foster (1997) use 

Empirical Bay~s Criterion (EBC) in BVS and argue that EBC is asymptotically 

consistent. Clyde, Desimone and Parmigiani (1996) apply orthogronalized model mixing 

to the BVS. Smith and Kohn (1996) use BVS in their nonparametric regression model. 

Carlin and Chib (1995), Green (1995), and Dieblot and Robert (1994) emphasize the 

importance ofMCMC in BVS. Richard (1995) discusses the PIC (F) criterion related to 

Bayesian model selection and does some empirical application. Chipman (1996) uses the 

SSVS approach but adds in the dummy variables and assumes the predictors 

(independent variables) have many qualitative levels. Moulton (1991) adopted the 

Bayesian approach to variable selection to determine the price index of radio services. 

But Moulton did not actually use the simulation method to solve the problem, using 

asymptotic approximation to get the posterior odds ratios instead. Another paper is that 

of Adkins, Moomaw, and Tien (1999), who adopt Geweke's approach to apply to urban 

economics and Brown, Yannucci and Fearn (1999) who adopt non-conjugate prior in 

multivariate regression model selection problem. 

Most of the papers above are applications in the biological or medical fields. 

There are very few that apply the BVS or BMS (Bayesian Model Selection) to 

economics. One possible application of interest is the determinants of economic growth. 

There are many potential features that affect economic growth, e.g., labor, capital, 

income, and education (Barro, 1998). 
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Other factors that affect U.S. economic growth may be related to the relative size 

and location of major cities (such as New York, Los Angeles etc.). Jacobs (1984), uses a 

historical approach, to argue for the importance of the cities. Cities can gather more 

capital, industry, and educated workers, which in turn stimulates city growth and that the 

surrounding area (Jacobs, 1984). For the past 20 years, the suburban areas of the major 

cities have grown at a high rate, in contrast to the low growth rate of city centers. 

Steinackers (1998) argues that central areas attract more new firms than other locations, 

but the growth rate of these central areas still plays an important role in the national 

economic growth (Steinackers, 1998). Voith (1998) also argues that for the past 30 

years, cities have affected suburban growth and national growth. 

Although we know cities are critical to the nation, cities posses many 

characteristics that may not contribute to growth. It is important to know which one( s) 

are the primary factors that affect the economic growth. Glaeser, Scheinkman, and 

Shleifer ( 1995) examine the relationship between urban characteristics in 1960 and in 

1990. In this paper, they provide many potential variables to be considered. Barro 

(1998) also suggests variables to consider: GDP, sex, education, politics, inflation rate, 

etc. Among these characteristics, education ( or human capital) is the most often 

discussed. Glaeser, Kallal, Scheinkman, and Schliifer (1992) argue that knowledge 

spillovers affect economic growth. Rauch (1993) states that the effect of human capital is 

to externalize technology development: cities which have more high technology firms 

can offer higher wages to attract more highly educated workers (Rahch, 1993). Simon 

(1996) discusses the impact of human capital on English cities during a 100-year period 
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(1861-1961). Simon (1998) argues that the cities that have higher human capital have 

higher employment growth. 

There are many other variables to consider: (1) The size and scale of the public 

sector, like the government's spending on major construction such as highways, water, 

sewage, and police protection (Glaeser et al., 1995). More public construction should 

stimulate the employment rate and promote the growth of the city; (2) Income 

inequalities. The magnitude of the gap between high incomes and low incomes may 

affect the economic growth of city (Glaeser et al., 1995); (3) The number and size of 

manufacturing firms. These could promote the employment growth (Glaeser et al., 

1995); (4) Race. Taeuber and Taeuber (1965) provide an index to estimate the effect of 

segregation; (5) Other economic indexes. For .example, per-capita income and the 

unemployment rate should be important in the growth of a city (Glaeser et al., 1995); (6) 

Regional effects. During the last 20 years, some regions have grown faster than others. 

These categories and others (such as age and technology) also will be considered. 

There are many ways to measure the growth of cities, including employment 

growth (Simon, 1998) and population growth (Mills, 1990; Glaeser et al., 1995; Simon, 

1996). The population grnwth rate should reflect the city's growth because immigration 

into a city indicates that the future of the city is good and workers have confidence in this 

city. As firms begin new projects and hire more workers, it will stimulate the economy 

of the city. So the growth of the population should be an appropriate indicator for the 

economic growth of the city. 

BVS and BMS will be implemented to select a suitable subset of explanatory 

variables. By incorporating the prior information about likely parameters value 
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associated with these variables, the BVS selects the appropriate variables according to the 

posterior probability, and then implements BMS (such as BMA) to select appropriate 

models(s). After applying the BVS and BMS to the city and MSA growth data sets, the 

results are compared to those obtained using more conventional procedures. 

Chapter Two discusses the methodology ofBVS and BMS. Chapter Three 

discusses the variables and observed units which will be used in this research. In Chapter 

Four BVS and BMS are implemented in the context of city growth models. They are also 

compared to the classical approach. Chapter Five concludes this research and discusses 

the future development ofBVS and BMS. 
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CHAPTER TWO 

METHODOLOGY FOR BAYESIAN VARIABLE AND 

MODEL SELECTION 

2.1 The Bayesian Framework in Regression Analysis 

One of the primary goals of Bayesian analysis is to derive the posterior 

probability associated with parameters of interest. This posterior probability combines 

the prior information ( using the prior probability distribution) with infonnation from the 

data. In other words, the posterior probability is the conditional probability of the 

unobserved quantities of interest which are given in the observed data (Gelman, Carlin, 

Stem and Rubin, 1998). The posterior probability can be written as P(BIY), where B is 

the unknown parameter and Y is the observed data set. According to Bayesian theory, 

the posterior probability can be written as 

P(BIY) = P(B,Y) 
P(B) 

Since P(B,Y) = P(B) • P(B,Y) = P(B) • P(YIB) 
P(B) 

(2.1) becomes P(BIY) = P(B)P(Y]B) 
P(Y) 

Where P(Y) is the prior probability of the data set Y. This prior probability of the 

(2.1) 

(2.2) 

samples, P(Y), is often omitted because it does not depend on the unknown parameter B. 
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So (2.2) becomes 

P(BIY) oc P(B) • P(Y]B) (2.3) 

The P( B) is the prior probability for the parameter B, which must be specified 

before the analysis. The prior information can be objective, depending on the 

information or expert knowledge of the researcher. The prior probability under a 

different approach will be discussed later. Next, the Bayesian approach to regression 

analysis is discussed. 

Assume Y is the observed dependent variable, an n x 1 vector, X is the observed 

independent variable, an n x (k+ 1) matrix, and & is the n x 1 error vector. The basic 

equation is 

Y= X/J+& (2.4) 

where /J is the unknown parameter vector which is (k+ 1) x 1. If expert knowledge or 

useful information is not available, (which happens often), then a noninformative prior 

distribution can be specified. Assume & ; N(O,a- 21),1 is an n x n identity matrix and 

each &; ( i = 1,2,3 · ·· · · ·n) has common variance a-2 • Then the prior distribution for Y 

given /J,a-2 and Xis a normal distribution as follows: 

Y]/J,a- 2 ,X; N(X/J,a-2 I) 

The prior distribution for f3 and In a-2 is noninformative and chosen for 

convenience as (Gelman et al. 1998) 

P(/J, a-2 IX) oc a--2 
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That is, the prior distribution ( or p.d.f.) for /J and a 2 under X is observed to be 

approximated by the inverse of a 2 • The details of informative prior distribution for 

fJ and a 2 will be discussed later. 

After specifying the prior information, the next step for the Bayesian approach is 

to obtain the posterior probability distribution for fJ and a 2 • First we determine the 

posterior probability for /J,conditional on a 2 and Y. Then, the posterior probability for 

a 2 , conditional on Y, is determined. The joint posterior distribution P(/J, a 2 I Y) is 

factored out as 

P(/J, a 2 I Y) = P(/Ji a 2 , Y) P( a 2 I Y) (2.7) 

To obtain (2. 7), the first step is to specify the distribution for ( a 2 I Y ), computing 

its variance and drawing a 2 from the distribution ( a 2 I Y ). After drawing a 2 , then draw 

/J from the distribution of (/Jia2 , Y). Once obtaining P(/Jla2 ,Y) and P(a2 IY), (2.7) is 

easily derived. Obtaining the posterior probability distribution of parameters or other 

statistics of interest is the main objective of the Bayesian framework and simulations 

used to obtain these will be discussed later in this chapter. 

2.2 The Stochastic Search for Variable Selection (SSVS) Approach 

Section 2.1 illustrates the basic Bayesian framework for a normal regression 

model. An important question in regression analysis is, Which variables should be 

included or excluded as regressors? The importance of variable selection has already 

been described in the first chapter, but how does one go about selecting variables in 

Bayesian econometrics? Three Bayesian approaches to solve the variable selection 

problem are discussed below. The first is Stochastic Search Variable Selection (SSVS) 
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derived by George and McCulloch (1993). The main goal of SSVS is to solve the 

classical problem of variable selection, but it differs from the traditional Bayesian 

approach to regression in several respects. The SSVS approach tries to find the more 

promising variables of the entire posterior distribution rather than to evaluate the entire 

posterior distribution, and this reduces the computational burden substantially. The 

search is done by the Markov Chain Monte Carlo (MCMC), which has gained 

widespread use in recent years. The two MCMC methods considered below are the 

Gibbs sampling and the Metropolis-Hastings (M-H) algorithms. The idea of SSVS is to 

use Gibbs (or M-H algorithm) to generate random samples from the posterior 

distribution; from the Gibbs samples, models with higher posterior probability can be 

identified. In the next section, the hierarchical model for SSVS is described. 

2.2.1 The Hierarchical Model for SSVS 

The statistical model used in SSVS is a regular regression model with normal 
mixture: 

which is the same as that used in (2.5) and (2.4). The vector Y is n x 1; Xis n x k, /J is a 

n x k and & is n x 1 vector. This differs from (2.4) and (2.5) only in that the intercept 

term is ignored. 

The VS (variable selection) problem arises because one or more elements of the 

unknown parameter vector /3 are either equal to zero or are small enough to be discarded 

from this model. So we use a latent variable r; = 0 or 1 ( i = 1,2; · · · · K ) to index each 
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parameter. For r i = 1 means /J; has a large coefficient; if r i = 0 then it does not. The 

index parameter r i can be expressed as 

and 

and 

P(/Jilr;) = (1- r ;)N(O, r;) + r;N(O,C;2 r;) 

P(r; = 1) = 1- P(r; = 0) = B; 

r = (ri,Y2, .. ···,rk) 

where r; and C; are hyperparameters. 

(2.8) 

(2.9) 

(2.10) 

The idea is to set r; small so that if r; = 0 then /J; is small enough to be 

considered equal to zero. Or, if r; = 1, then/J; is not zero. The parameter B; is the prior 

probability that /J; is not equal to zero. Because the value of r; is unknown, we need a 

prior mixture to obtain it and this is. expressed as 

P(/J,cr2 ,y) = P(/Jlcr2 ,y)P(a2jy)P(y) 

Using a multivariate normal distribution, the first term in (2.11) becomes 

where Dr is a diagonal normal matrix and Rr is the prior correlation matrix. The 

diagonal matrix Dr is 

(2.11) 

(2.12) 

(2.13) 

where h; = 1 if r; = 0 and bi = C; if r; = 1. So Dr forms the prior covariance matrix, 

which is consistent with (2.8). Here it is assumed that /3 and a are a priori independent 

given r; so that (2.12) can be obtained. The specific selection of Ci, r; and Rr is 

discussed later. 
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For the prior distribution of CJ' 2 , the usual inverse Gamma conjugate prior is used. 

That is, 

P(CJ'2 /y) = InvG(v/2,vAr 12) (2.14) 

which is equivalent to VA r I CJ' 2 ; z~ . The parameter CJ'2 and Ar is considered to be the 

prior estimate of CJ' 2 and v is the prior sample size. One possible choice as a prior value 

of Ar is the LS (least square) estimate of CJ'2 · from the linear regression of X on Y. 

The prior for the latent variable r should reflect the importance of the parameter 

/J, that is whether a particular /3; should be included in the model or not. This type of 

prior information is based on the expert knowledge possessed about those variables. One 

expects that the better the expert knowledge, the better the outcome of the variable 

selection procedure. One simple but useful prior distribution is the independent 

Bernoulli: 

k 

P(r) = I1 B/; (1- B;)<1-rd (2.15) 
;~1 

A special case is P(r) = ~ where each variable has an equal chance of being included 
2 

in the model. We could also put more weight on some variables and less on others using 

P(r) if desired. 

For the above hierarchical set up, the latent variable vector r = (r 1 , r 2 ,. • • • • ·, r k) 

contains the useful information for the variable selection. If r is known then, with 

appropriately chosen r 1 , r 2 ,. • • • .. , r k and C1, C2 ,. ••• .. ,Ck, a proper model could be 

obtained by including the variables ( or X;) for which r; = 1 and excluding variables for 

which r; = 0 . But as stated as above, the expert knowledge required for this choice is 
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not always available. However, the posterior distribution, P(rl Y), may provide useful 

information about variable selection; those r; with higher posterior probability identify 

models that are supported by the data (Y) and the prior information ( r ). Also the 

posterior P(rl Y) updates the prior probability for each of the 2 k possible values of r . 

From (2.2), the basic Bayesian framework, 

P(rlY) = P(r)P(Y]r) which can be approximated as 
P(Y) 

P(rlY) oc P(r) • P(YJr) (2.16) 

which assume P(Y) is a constant. Now the goal is to obtain the posterior distribution 

P(rl Y). In order to accomplish this one must select appropriate values for r;, Ci and 

Rr that can be used in the computation of the hierarchical model. 

2.2.2 Choice of r i, C; and Rr 

From (2.8), the distribution for /3; under r; is a mixture of two normal 

distributions. To incorporate this hierarchical mixture set-up in the variable selection, 

r; and c/ r/ are set to small and large values, respectively. So the N(O, r/) is a 

concentrated distribution and N ( 0, Ci 2 r; 2 ) is a diffuse distribution. Assume 5; is the 

intersection of these two distributions (N(O, r/) and N(O,C/r/) ). The idea is that 

when the data support r; = 1, then X; should probably be included in the model. 

The region where N(O, r/) covers (or larger) N(O,C/r/) corresponds to 

1/JJ::; 5i; and where N(O, c/ r/) covers N(O, r/) corresponds to I/Ji I> Ji. From (2.8), 

ifr; =1,then P(/J;lr;)=N(O,C/r/) andifr; =0,then P(/J;lr;)=N(O,r/). So 
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this suggests that if jpJ:s; 8;, then /J; = 0 and X; may be excluded from the model. 

Since the SSVS approach selects variables based on practical significance not on 

statistical significance, the largest value 8; of /J; for setting /J; = 0 makes no practical 

difference. An easy way to select 8; is to use the ratio of change in Y and X;. Assume 

LiYis the amount changed (which is insignificant) and M; is the amount changed 

(which is significant), then let 8; = LiY IM;. Any /J; smaller than 8; would be too 

insignificant to be included in the model and this choice does not depend on r . 

After the choice of 8;, r; and C; are selected. The choice of r; and C; can make 

P(/J;IY; = 0) = N(O,r/) cover P(/J;IY; = 1) = N(O,C/r/) exactly on the interval 

(-8; .8;). And this can hold if r/ and c/ satisfy 

ln(C/r/ Ir/) = 8 2 

2 / 2 2 1 1 Ir; -1 C; r; 
(2.17) 

Or it can be written as 

lnC/ = 8 _2 

1/ r/ (1-1 I c/) , 

so [ 2 ]1/2 C; -1 
r1= •8· 

21n(c;)• cl I 

(2.18) 

In theory, C; can be chosen arbitrarily. However if the value of C; is too large, 

computational problems arise. George and McCulloch (1993,1995 & 1997) suggest 

choosing a C; which is less than 10,000. 

The final step for setting up the hierarchical model is to choose Rr , the prior 

correlation matrix, conditional on r . If we assume that the components of p are 
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independent under P(/31 r) then Rr could be set as / 11 and this is a very simple choice 

(George et al. 1995). 

The other choice is to use the correlation structure based on the regressor cross 

product matrix ( X;' X; )-1 (George et al. 1993, 1995 & 1997). Now the hierarchical set-up 

is complete; the next step is to use Gibbs sampling to perform the SSVS. 

2.2.3 SSVS by Gibbs Sampling 

From (2.2.2), the goal is to obtain the posterior distribution P(rlY) which 

contains useful information for variable selection; but P(rlY) may not be analytically 

evaluated because of the difficulty of integration. The SSVS does not require 

computation of the entire 2k possible posterior probabilities in P(rlY), but rather, the 

algorithm searches promising subsets of the model space. This is supposed to improve 

computational speed .. 

SSVS uses the Gibbs sampling method to generate a sequence 

I 2 r ,r ,. ········ (2.19) 

which will converge to r ; P(rl Y) . Those r with high posterior probability will appear 

frequently in the samples and thus are easy to identify. In fact, most of the 2 k elements 

of the r are very small indicating that they have a very small probability and thus can be 

discarded. 

SSVS generates the sequence (2.19) to the full conditional distribution 

P(/J, CY, rl Y) and this will generate a complete sequence of parameters 

/J(O) (Y(O) r(O) p<I) CY(!) r (1) ••••••••••.•• 

' ' ' ' ' ' 
(2.20) 
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This sequence converges to P(/3,a,rlY), according to the Markov Chain theorem. The 

initial choice of p<o) and r (O) could be based on the results from least squares or stepwise 

regressions. A conservative starting value for y<0l could be to set r = (1,1,1, · · .. · .. ,1) 

which reflects the belief that all variables be included in the model. Another choice is to 

set y<0) = (0,0, · · · · · ·,O) which is likely to lead to much more parsimonious models. Initial 

values of the parameters, p<0l, a<0>, r (o) , are chosen and subsequent values 

(po), a<1), r <1) ) are obtained using the sequence: 

p<0) into P(/Ji a 2 , r, Y) 

a(O) into P(a2 1/J,r,Y) 

r <0) intoP(r 1/J ,....2 r r ······ r r ...... r Y) i ' V ' J, 2 ' ' i-J, i+ j, ' k ' 
(2.21) 

Because of the hierarchical structure of prior distribution, the conditional 

distribution of a only depends on fJ and Y, and the conditional probability of r; only 

depends on /J and r -i = (r "r 2 ,- - - - --,r ;-i,r;+i,- - - - r k). So (2.21) can be 

obtained as 

p<0) into P(/Ji a 2 , r, Y) 

a<0l intoP(a2 1/J,r,Y) = P(a2 1/J,Y) 

(2.22) 

Subsequent values of /J, a-2 , rare obtained by iterating, substituting the most recent 

values from the sequence into (2.22). 
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Next samples are drawn from these three conditional distributions. The SSVS 

algorithm will be efficient and converge quickly if these conditionals have standard 

distributions. The first step is to draw f3 successively from 

(2.23) 

and r are used. Updating can be easily done in the following way using a Cholesky 

decomposition (Thisted, 1988 and Gelman et al. 1998). From Thisted (1988, pl 18), let 

w = aD;1 which is an 1 X pvector and (X'x + a 2 n;2 ) (assume Rr =In' which is 

independent of r ) can be decomposed as 

(2.23-1) 

So when a new a and n;1 are generated, we substitute the new values into (2.23-1) and 

update the cross product term in (2.23 ). The case with Rr P ( X' X)- 1 is similar but 

requires a QR decomposition for X; updating the algorithm is then the same as (2.23-1). 

Second, draw a 2 from 

2 n + ;i IY -X/312 +v;L 
P(a 2 I/J,r,Y)=P(a 1/3,Y)=InvG( r, r) 

2 2 
(2.24) 

the updated inverse Gamma distribution of (2.14). 

Finally, draw r by sampling each r; successively from the Bernoulli distribution 

with probability _a_ where 
a+b 

a 
P(r; = 11/J,r -i) = -b, 

a+ 
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Using the independence assumption in the Bernoulli prior (2.15), (2.25) can be rewritten 

as 

a 
P(r; = 11/J;) = -b 

a+ 
(2.26) 

As can be seen from (2.26), a is the product of (2.8) and (2.9) when r; = 1, while bis the 

product of (2.8) and (2.9) when r; = 0. Also, each time a new value of r is generated, 

the value of r; (not all, but some) is decided randomly from (2.25). Since r; is the 

indicator for X; being included or excluded from the model, generation of the sequence 

(2.20) is equivalent to performing the stochastic search procedure. This is the main 

objective of SSVS, which is to search for high frequencies (i.e. which model appears 

most) rather than to evaluate the entire posterior probability. 

2.3 The Alternative Approach (MBVS) 

It was mentioned in the first chapter that there is a similar approach to Bayesian 

model selection called .MBVS (Brown et al. (1998). As a multivariate procedure, the 

MBVS is generalized to consider p regressors and q responses (dependent variables). 

Like SSVS, MBVS uses a latent vector to identify two types of regression coefficients: 

those close to O and those not. Brown et al. derive the marginal distribution for this 

binary latent vector and use the MCMC approach (like Gibbs sampling) to draw samples 

form the posterior distribution of the known parameters. This alternative approach can be 

used to select appropriate variables from a large number of regressors by using MCMC, 

and to approximate the posterior distribution of the binary latent vector directly. 
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In the current context the MVBS can be simplified to a univariate case by letting 

q = 1 with response Y = ( I; ) which depends conditionally on p independent variables 

x = (xi,- - --, x P)' . For the responses, I = 1, Yi is assumed to have a mean that is 

17( a 1 + p;x) , where 17(-) is a known continous fuction. The fl I is a p - vector of 

unknown slope parameters and a, is an unknown scale parameter. For n independent 

observations .Y;(q x 1), conditional on x;(P x 1),i = 1,2 - -,n, this is a multivariate 

generalized linear model. The intercept vector, a, is ( q x 1 ), the slope matrix 

B = (/J1 ,- - -,/J q )(p x q) , with covariance matrix, I:. Then the joint prior distribution 

for the a,B and I: can be decomposed as 

1r(a,B,"2:,) = 1r(aj"2:,)1r(Bj"2:,)1r("2:,) 

which assumes independence between a and B . The latent binary vector is denoted as 

y where the j th element of y could be O or 1 (similar to SSVS) and this vector is 

associated with 1r(BII:). Like SSVS, when the j th element is equal to O then the 

j th independent variable can be deleted from the model. So 1r(Bj"2:,) can be elaborated as 

1r(B,yjI:) = 1r(Bj"2:,,y)1r(y) (2.3.1) 

The main goal for this approach is to evaluate the posterior distribution for the 

latent vector y conditional on X and Y, that is, 1r(rl X, Y) . And this could be 

approximated as 

where f(Y]X,a,B,"2:,) is the likelihood function. Next is the model setting for the 

MBVS. 

25 

(2.3.2) 



2.3.1 Model Settings for MBVS 

Assume conditional on a, B,r, "J:,, the standard multivariate regression model is 

Y - la'-XB; N(In,"J:,) (2.3.3) 

with n x q random matrix Y, 1 is an n x 1 vector of 1 s, X is an n x p and B is p x q 

matrix of regression coefficients. The prior distribution for a , given "J:, , is 

a- a~; N(h, I:) (2.3.4) 

And given 2: and r , the prior distribution for B , is 

(2.3.5) 

The prior for 2: is assumed distributed as inverse Wishart distribution which is 

I:; IW(8,Q) (2.3.6) 

where 8 and Q are scale parameters. 

The prior for r is assumed to be the Bernoulli distribution, that is, 

P(r . = 1) = w. and P(r . = O) = 1- w. 
J J J J 

(2.3.7) 

with w_; to be specified by the researcher. 

For the Hr, one could use the assumption of George et al. (1993) 

(2.3.8) 

where Dr is a diagnoal matrix and Rr is a correalation matrix. The jth element of D~ is 

taken to be v0j where r i = 0 and v1j where r i = 1. A special case is often considered 

where Rr=I, the identity matrix, with B0=0, a zero matrix. With this prior setting, r .i = 0 

indicates that the jth row of B has zero variance and when r i = 1 indicates that the 
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jth row has non-zero variance. For this setting, the prior distribution of Bis a matrix 

where each column has a singular Pr dimensional distribution, so the prior distribution for 

Bbecomes 

(2.3.9) 

Hence, B<r) selects row of B that have r J = 1 . 

The hyperparameter h of the prior distribution of a can be set to a large value 

which makes a 0 irrelevant. The hyperparameter Q of the prior distribution of 2: , is given 

a simple form, kl q , after scaling of the dependent variables. For weak prior information, 

set 8 = 3 when E(:2:) =QI (8 -2) = Q. So 8 = 3 is the smallest value for the expectation 

of L exists which is also convenient for us. The next step is to derive the posterior 

distribution for n-(rl X, Y). 

2.3.2 The Posterior Distribution 

The p.d.f. of Y is 

fr(YJa,B,L) = c(n,q)l:2:lexp[-l_tr((Y-- la'-XB)L-1(Y- la'-XB)'))] 
2 

2.3.10) 

where c(n,q) is a constant. Now assume the columns of Y andX have been centered by 

subtracting their columns mean. That is 

Y1 = 0, l = 1,2,--: - -,q 

Xj = O,j = 1,2,---,p (2.3.11) 

The joint p.d.f. of (a,B) given 2:,y, is 

(2.3.12) 

27 



and 

(2.3.13) 

After integrating over (a,B) given Land r, and integrating B given Land r, the 

posterior distribution of r is approximated as 

1r(rlX,Y) p g(r) = (IH)IK))-q/21Qrl-(n+o+q-1)12 1r(r) (2.3.14) 

where 

Qr= Q+C-M°K;1M 
(2.3.15) 

= Q+Y'Y-Y0 XK;1x'y 

and 

(2.3.16) 

(2.3.17) 

(2.3.18) 

for B0 = 0. The computation for.the posterior distribution can be derived directly from 

the equation once the hyperparameters ( Hr , Q and 5) have been specified. 

2.3.3 Prior Settings and Updating 

The prior distribution for this approach requires B,L,r and the Bernoulli 

distribution 1r(r) . The prior distribution for B given r depends on Hr . Letting 

Rr = I will simplify the process. One alternative automatic prior when v 0i = 0 is 

(2.3.19) 
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which implies that the subset X<rl of columns of X chosen to correspond to ri = 1 is of 

full rank. 

Now consider both cases when v0i > 0 as well as v0i = 0. The first part of the 

equation (2.3.14) can be written as 

= 1x·x1 (2.3.20) 

where 

is an (n + p) x p matrix. And, 

is an (n + p) x q matrix. So Qr from equation becomes Q plus 

Y Y-Y X(X X)- 1 X Y (2.3.21) 

and this is the residual sum of square matrix from the least squares of Y on X . The 

computation will simplified further if Xis reduced to the (n + p) x pr matrix X <r), 

which is the special form of X (when selecting the ri = 1 columns). The 

QR-decomposition of (X<rl,Y) is given examples in Seber (1984) with updating 

algorithms qrinsert and qrdelete used to add or delete columns to the reduced 
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(n + p) x Pr matrix. After these simplification with automatic prior of Her) ,the relevant 

part of Qr becomes 

(2.3.22) 

and the required quantities for the equation can be obtained by regressing Yon X(r). For 

IHcr)K(r)I of the equation, will be simplified to (c + l)Pr. This fast algorithm allows one 

to update the quantities of the posterior distribution more efficiently. Next, the MCMC 

method used to carry out the computations is discussed. 

2.3.4. Computations Using MCMC 

Although one can analyze the posterior distribution directly by equation, the right 

hand side of the equation would require the computation of all possible 2 P subsets of the 

vector r. Using current microcomputing power, this becomes infeasible when the 

independent variables are more than 20. By using the MCMC sampling method, the 

higher marginal probabilities of r 1 can be identified and promising models will be 

selected. 

The simple Gibbs sampling algorithm will be implemented by generating random 

samples from the conditional distribution 

r-lr_-,Y,x .i=l,2---,p, 
.I .I 

(2.3.23) 

where r _1 = (r i,Y 2 ,- - -,r J-1>YJ+1,- - r P). Then, as in SSVS, the random samples 

will be drawn from the conditional Bernoulli distribution with probability 

B1 I (B.i + 1) where 

30 



(2.3.24) 

MBVS avoids the computation of the conditional posterior distribution for every 

parameter. It becomes an appropriate approach when the computational burden of SSVS 

is too great. For this reason, MVBS is used chapter four in lieu of SSVS in order to 

ascertain how it compares to traditional model selection procedures. 

2.4 Geweke's Approach 

Geweke (1994) proposes a subjective prior approach to solve the variable 

selection problem. As in the usual regression set-up, 

Y= Xj3+s (2.27) 

where Y is an n x 1 vector containing the dependent variables and X is an n x k matrix 

of independent variables. Geweke assumes that k • out of k parameters have nonzero 

coefficients with prior probability 1, and there is a positive probability that the remaining 

k - k * variables have coefficients equal to zero. Along with (2.27), Geweke also assumes 

the prior distributions (for parameters) are all mutually independent, but this assumption 

may be weakened under special conditions. The other assumption is that the prior 

distribution of each coefficient is a mixture of normal or truncated normal distribution 

and discrete mass at 0. Under these assumptions, the prior distribution can be formulated 

as follows. 

For prior probability P; ,/Ji = 0, but conditional on /Ji -:f::. 0 the prior distribution 

for /Ji is a truncated normal distribution in interval (;!,i, vi) which is TN(2; ,v;) (/3;, ri 2 ) 

and the joint prior distribution for /Ji can be written as: 
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[{,a.-p.)] ( ) 
EXP ~i} 1 

• J(;,,;,v;) /J; (2.28) 

where P(/J;) is the prior p.d.f. of /J;; h(x) = 0 if x < 0 and h(x) = 1 if x > O; !Jx) = 1 if 

x Es and 1_.(x) = 0 if x ~ s. <I>() is the c.d.f. of the standard normal distribution; 

0<-r; <oo; -oo<A; 5'.v; <oo. Thepriordistributionforais 

(2.29) 

So from (2.28), we can see that this is a combination of two distributions, one of 

which has mass at O and the other has a truncated normal distribution. Geweke argues 

that with this prior set-up, it is easy to eliminate the objective prior about the coefficient 

and it is also easy to compute. 

Again, the computational procedure implemented here is Gibbs sampling with 

complete blocking. It proceeds as follows. Draw each /J;, i = 1, · · · ·, k, from its 

conditional distribution (conditional on /J1 (I::/= i) and a), and then draw a from its 

conditional distribution (conditional on /J). The algorithm to obtain the conditional 

distribution is as follows: 

1. Use the ordinary least square to obtain f3 = ( X' X)-1 X' Y, then get the residual _, 

(2.30) 

the conditional distribution of p 1 follows from 

32 



2. Compute the estimate of the omitted coefficient 

and the precision is 

n n 

b = LX;;Z; ILXii2 
i=l i=l 

ti 

w2 = a2 I "'V X z L. I/ 

(2.30) and (2.31) are just the usual form of least square for /3 and a. 

3. The kernel for likelihood function l(/3,a) is 

EX1-t(z,- !9"f !2a'] ~ EXP[-tz)!2a'] 

conditional on f3 J * 0 and /Jj = 0, (2.33) will become 

EXP[-t z/ I 2 a'] condition on f3 j ~ O 
and 

EXP[-t(z,-p}2a']• 
(2;ir t1 12 Ti [<1>(vJ - /Ji )t TJ - <1>(,1.i - /31 )t TJ } 1 • 
EXP[-(B J - /Ji f 12r~]I(:i1,vif3 i)condition on /3 i * 0 

insert (2.31) and (2.32) into (2.35); it becomes 

EXP[- t(z,-bX"f !2a']EXP[-{f3,-b f l2W'- ~j- /3) /2,J]• 
(2;ir t1 12 T :t[<I>(v.i- /JJ/ rJ-[<1>(;i1 - /3 Ji r1} 11(:i1,v)f3J 

4. Compute the weight on Wand f3 . 
-} 

2 = cw-2 + r.i-2)-1 0"1 

fl 2 (W-2b -2 /3 )-1 .=a1 +r . 
J J -} 
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(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 



(2.37) is the pool estimate weighted by Wand ri, where (2.38) is the weighted 

average for J3 j and b (weighted by w-2 and r j -2 ). 

For truncated normal distribution, insert (2.37) and (2.38) into (2.36), and it will 

become 

EXP[- t,(z;-bX,f 12a' JEXP[-(o,- P) l2a2 ]• 

EXP[-(b 2 I 2W 2 + /3~ - /31 I 2af )]• (2JZ" t 12 • (2.39) 

5. Integrate (2.39) over f3_; to remove the conditional on /3; = 0 or /3i -:t- 0. Then 

(2.39) will become 

EXP[-t,(z;-bx,f 12a']EXP~(bnw' + P'. 12,;- p'.f 2a? )]. 

(aif rJ• [[ q{ Vj :;J }-©( 21 :;) )] •[ ~ 2, ;Jf_j )-©( VJ ~Jf_J) Jr (2.40) 

6. Compute the conditional Bayes factor, favor of f3_; -:t- 0 against /3i = 0 by taking 

the ratio of equation (2.33) and (2.40). 
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Thus BF= 

(2.41) 

7. Compute the conditional posterior probability for /J.i = 0 by using Bayes factor 

P. 
P . - -.I 

J -

P.i +(1-P)•BF 
(2.42) 

(2.42) is the ratio of prior probability of /J.i = 0 by using the weighted average of 

two prior probabilities (/J.i * 0 and /Jj = 0 ), where weighted by the Bayes factor. When 

the Bayes factor approaches one, P.i = P 1 , the evidence strongly supports the hypothesis 

that /]1 * 0 . But as BF approaches zero, P 1 = 1 , which supports the hypothesis that 

/J. = 0 . 
.I 

8. After computing (2.42), decide whether /J.i = 0 or /Jj * 0. The decision is made 

by drawing a random value, µ from a uniform distribution on [O, 1]. If P; < µ, then 

/J.i * 0 and draw fJ1 from the truncated normal distribution TNp.J,vJ/fJ.i,a~). If 

P 1 ;:::: µ, then pick fJ1 = Oand exclude X 1 from the model. 
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9. The posterior distribution under /J.i for ais 

[ y_a2 + (Y - X/J)' (Y - X/J)] / 0"2 ; X~v+n) (2.43) 

The above nine steps are Geweke' s algorithms to compute the posterior 

probability. Gibbs sampling is carried out in the usual way. First, set the initial value 

for p<0l = (/J\0l, p~0>,. ·. ·. ·. ·. ·, · ·, /Ji0l) and a. The starting value could be the least 

square estimator or from stepwise regression, or drawn from their prior distribution. 

Second, draw fJ from its respective conditional posterior distribution (from the 

TNC 2;,v;/P.i,aD ifit is truncated); draw a 2 from (2.43). The objective for this is to 

determine the posterior probability for 2 k-k • models. The conditional posterior 

probability of P_; = 0, (2.42) can be an indicator for this Gibbs sampling when it 

proceeds. After each iteration, record P 1 regarding fJ 1 = 0 or record (1- P .i) regarding 

fJ 1 * 0 . And the posterior probability for fJ 1 = 0 can be the proportion of the Gibbs 

samples for which the coefficient is set equal to zero (that is, P 1 > µ in step 8). 

But as Geweke (1994) argues, the degree of collinearity among independent 

variables has a serious effect on the convergence of Gibbs samplers. So assessing the 

severity of collinearity among independent variables is recommended. The higher the 

degree of collinearity, the more iterations needed to assure convergence of the Gibbs 

sampler. 

2.5 The Bayesian Model Averaging Approach (BMA) 

The last Bayesian approach of model selection considered is Bayesian Model 

Averaging (BMA). Like all Bayesian procedures, BMA combines information prior 
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information with that from the data and the model to form the posterior probability of the 

model. It can be expressed as: 

K 

P(JID) = IPUIMk,D)P(MklD) 
k;J 

where I is the quantity of interest, D is the data set and Mk is the k th model 

( k = 1,2,3; · · · · · ·, K ). The posterior probability for model Mk is given by (Raftery, 

Madigan and Hoeting, 1998) 

where 

P(MklD) = :(DIMk)P(Mk) 

IP(DIM,)P(M,) 
l=l 

(2.44) 

(2.45) 

(2.46) 

is the marginal likelihood function of Mk , () k is the vector of parameters of the model, 

likelihood function, and P(Mk) is the prior probability for model Mk. 

From (2.44), we can see BMA averages over the interest, I, under data and models 

using the conditional model probabilities as weights. It utilizes the information in a 

special way that accounts for the uncertainties associated with the models. The method 

to carry out BMA is adopted from Hoeting (1994), Raftery et al.(1997) and Hoeting et 

al.(1998). 

The critical points to evaluate (2.44) are: 

(1) Possible large number of terms in (2.44) 

(2) Prior selection of P( Mk), the model prior probability 

(3) Integrals involved in (2.46) 

37 



The methods considered to solve (1) and (3) will be Occam's window (Madigan 

& Raftery, 1994) and MC 3 composition (Madigan & York, 1995). Next we set up the 

framework of BMA. 

2.51 Framework for BMA 

The model considered here is the ordinary linear regression model (2.4) which has 

form Y= X/J+& 

where Y, X, fJ and & have been defined previously in (2.4). 

The differences from the two previous approaches are that, BMA argues that the 

prior distribution needs to reflect the uncertainties about the parameters and assumes a 

reasonable prior constraint. By using the standard Normal-Gamma conjugate 

prior, fJ and a 2 are assuming as: 

(2.47) 

VA. 'Y2 
' A, V 

V,A, (K + 1) x (K + 1) matrix V and (K + 1) x 1 vector µ needs to be chosen. 

Assume each /Ji in fJ is independent of the others and center the distribution of fJ 

around 0. Set µ = (/J~ ,0,0,- · · · ··,O) where /J~ is the sample mean of dependent variable. 

The covariance matrix of /J, V(/J) is the covariance matrix which is 
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si 

v(/3)= 

m2s-:-2 
'-V i+l 

(2.48) 

Where S; is the sample variance of Y, S/ is the sample variance of X;, i = 1,2,3,- · · · .. , K, 

and <D needs to be chosen. This prior covariance matrix for J3 is chosen to reflect the 

increasing precision for each /3; as the variance of X; increases and will not be affected 

by the change of Y and X. 

If the model has dummy variables (in this research, I will have several regional 

dummy variables), the prior variance of /3 = (/3n ,/3;2 ,- · · · .. ,/3;d) is set as 

a 2 <D 2 ( _!_ X; 'X; )-1 , where X; is the n x d matrix for dummy variables and each dummy 
n 

variable is centered around its sample mean. This prior set-up is related to the special 

prior called g prior from Zellner (1986). 

Next select parameters ;i, v and <D, for which some criteria need to be defined. 

Assuming all variables are standardized as N (0, 1 ), we define the following criteria: 

1) P( a 2 ~ 1) is the large , that means consistent variance is less than 1 

2) P( a 2 ) , prior probability for a 2 , is flat over ( a ,I) for reasonable small 

a. This conflicts with 1 ), but assures that P( a 2 ) distributed over ( a , 1 ). 
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3) P(/31,/32,. · · · · · ·,/Jk), prior probability of P(/J), is reasonably flat over unit 

hypercube [-1,1 f . 
These three criteria are defined so the selection of A, v and <I> can be consistent 

with the prior settings. Then, maximize P(a2 s 1) subject to (Hoeting, 1994) 

I) P(/31 = 0,/32 = 0, ...... .. ,/Jk = 0) s M1 
P(/3 = 1 /3 = 1 ........ /3 = 1) I , 2 , , k 

smce 

Again, following Hoeting(1994), (2.47) and (2.48) implies: 

P(a2)oc (a 2t(vt 2+I) EXP[-v,1,/2a2] 

P(/Jja2)oc (a2t 12 EXP[2: 2~ 2 /JJJ J 

Inserting (2.51) into (2.50) yields 

So (2.49) can be formed as 

P(/31 = 0,/32 = 0,- - - - -,/3 k = 0) _ P(/3 = 0) 

P(/3 = 1,/32 = 1,- - - - -,/Jk = 1) P(/3 = 1) 
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(2.49) 

(2.50) 

(2.51) 



[

_1 •0+ AV]-(•;k) 
_ 2<1>2 2 
- 1 AV 

-•k+~ 
2a2 2 

=(1+-k )•;k =Mi 
<I>2 AV 

II) Let P(a-2 )be reasonably flat over (a,1) for some small a 

so 

Max P(a-2 ) -
a:50-2,,1 < M 

P(a-2 = a) - z 

and 

Let S = a-2 where r = 1 / Sis the precision and r ; x~ I A" from (2.4 7), so 

P(S) = s-cviz+i) • EXP[-vA I 2S] 

this will be maximized when S = MLE, where MLE = vA I (2 + v). 

So (2.54) and (2.55) becomes 
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(2.53) 

(2.54) 

(2.55) 

(2.56) 



Also 

The reasonable range for v and ;i suggested by Hoeting (1994) is 

and 

a 
2(--)2 :::; V:::; 00 

2-a 

(2.57) 

This range is consistent with the assumption that P( a-2 ) is flat over [ a,l] and 

variables are standardized to be N (0, 1 ). 

So under different combinations of a, M1, M 2, and subject to (2.53), (2.54) and 

(2.55), P(a-2 ~ 1) can be maximized because different k will obtain different <I> and 

MaxP(a- 2 ~ 1). 

2.5.2 Computation of BMA 

Here we consider two methods to carry out BMA. The first is the Occam's 

window algorithm from Madigan and Raftery (1994). It involves two principles: 

First, if a model cannot predict the data better than other models, this model 

should no longer be considered. The model not belonging to set 

(2.58) 

should not be considered. From (2.58), this is just a posterior odds ratio for the model. 

Model Mk should be excluded since it cannot predict better than other models having 

higher posterior probability supported by data. This is also similar to George (1995), 
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who uses the posterior odds ratio to approximate the Bayes factor. The constant C is 

chosen by an appeal to Occam's razor, which excludes models that receive less support 

from data than submodels (that is, a smaller model nested within the larger model). The 

set containing 

(2.59) 

Models should not be included in (2.44). From these two principles of Occam's 

windows, (2.44) can be formed 

L P(II Mk, D)P( Mk I D)P( Mk) 
P(JjD) - _Mk_eA ________ _ 

- LP(MklD)P(Mk) 
(2.60) 

MkeA 

where A contains proper models with A = A' \ B E M . 

The above procedure will reduce the set needed to sum up in (2.44), but this 

procedure still needs to identify models in A . Two steps carry out the identification, and 

the first is by Occam's windows. By the posterior odds ratio for the two models, 

P( M 0 ID) I P( M 1 ID) , where M 0 has fewer independent variables than M 1 • The idea 

shown is if there is strong support for M 0 , then M 1 is excluded; but to reject M 0 , strong 

evidence is needed for the larger model, M 1 • If the posterior odds ratio falls between 

(L, R), then neither model is excluded. To determine the endpoint of the interval, 

Madigan et al. (1994) suggest L = 1 and R = 1/20. The second principle to identify the 

set of potential models is simple: if a model is excluded, then all other models nested 

within it are excluded. These two steps identify the model in A ; the algorithm follows. 

Madigan et al. (1994) provide two algorithms to carry out Occam's windows: the 

up and down algorithms. For the down algorithm, start with one larger model and 
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subtract variables from the model. For the up algorithm, start with a simple model and 

add variables to the model. The order of this execution will have some effect on the final 

set of models. 

Now let A and C be subsets of model space M , where A is the set of acceptable 

models and C is the set of possible models. Begin with A = 0 (null model), and C as 

the set of starting models. Let L and R be the left and right bounds for Occam's 

windows. 

Down Algorithm 

1. Select a model M from C 

2. C~C-MandA~ A+M 

this says subtract M from C and add M into A 

3. Select a submodel M' from M by subtracting one variable from M 

4. Compute the log(posterior odds ratio) = log( P( M' ID) ) 
P(MID) 

5. Iflog(posterior odds ratio)> R, then A~ A-Mand if M' ~ C,C ~ C + M' 

this means if the posterior odds ratio is larger than the right bound of the Occam's 

window, subtract M form A. If the submode! M' does not belong to C then add M' 

into C. 

6. IfL s log(posterior odds ratio) s R, then if M' ~ C,C ~ C + M' 

7. If there are more submodels in M, go back step 3 

8. If C * 0, go back to step 1 

Up Algorithm 

1. Select a model M from C 

2. C~C-MandA ~A+M 
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3. Select a model M" by adding one variable into M, that means M" has one more 

variable than M. 

4. Compute log(posterior odds ratio) = log( P( Ml D) ) 
P(M"ID) 

5. If log(posterior odds ratio) < L then A ~ A - Mand if M" Ii!: C, C ~ C + M" 

6. IfL ::;; log(posterior odds ratio)::;; R, then if M" Ii!: C,C ~ C + M" 

7. If there are more larger models of M, go back to step 3 

8. If C -::f:. 0 , go back to step 1 

When these algorithm stops, A should contain the potential acceptable models. 

Finally exclude models which belong to (2.59), and exclude model Mk such that 

Max,P(M,ID) > C 
P(MklD) 

(2.61) 

where C can be chosen as R (Hoeting, 1994), and A contains the acceptable models to 

be averaged in (2.44). As Hoeting (1994) and Raftery et al. (1997) argue, the number of 

terms in (2.44) will typically be reduced to fewer than 25 models, and may be as few as 1 

or 2. This makes the computation more efficient and less time-consuming. 

The second method to carry out the BMA is via the Markov Chain Monte Carlo 

method, called MC3 composition derived by Madigan et al. (1995). The MC 3 method 

evaluates (or approximates) (2.44) directly instead of indirectly using Occam's window. 

The MC 3 method generates a stochastic sequence that moves through the model space. 

Let the model space, which contains possible models, be M. Then construct a Markov 

Chain {M(t) = 1,2, · ·· · ·} with the state space M and equilibrium distribution P( M; ID) . 

Now generate ( or simulate) this Markov Chain for which t = 1,2,3, · · · · · ·, T; then under 
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the regularity condition of Markov Chain theory, for function C( M;) defined on M, the 

average 

C = _!_ ± C(M(t)) 
T i=I 

(2.62) 

is a simulation-consistent estimate of E(C( M)) (Smith & Robert, 1993). In this 

research, letting E( C( M)) = P(II M, D) simplifies computations. 

To construct this Markov Chain, it is necessary to define a neighborhood about 

M, Nbd(M). Nbd(M) contains the set of models with one or fewer models than M. 

Define a transition matrix p with p( M --+ M') for all M' ~ Nbd ( M) and p( M --+ M') = 

constant for all M' ~ Nbd(M). If the chain is currently in state M, draw M' from 

p(M--+ M'). This is then accepted with probability 

[ P(M'ID)] 
min 1, P{MJD) (2.63) (Hoeting, 1994) 

or stay in M. Raftery et al. (1994) and George (1995) consider using Bayes factor to 

approximate P(M'ID) Madigan et al. (1994) adopt MC 3 in their discrete graphical 
P(MID) 

model. 

Three of above four methods (MBVS, Geweke and BMA) are used in this 

research. The Bayesian variable and model selection approach is used to determine 

appropriate subsets of variables to be used in models of city and metropolitan area growth 

rates. The outcome of these procedures is compared to those obtained using classical 

variable ( or model) selection techniques. 
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CHAPTER THREE 

GROWTH IN CITIES: URBAN ECONOMICS PERSPECTIVES 

The goal of this research is to investigate the sources of city growth using the 

Bayesian approaches developed in Chapter Two. In economics, many factors must be 

considered before making any decisions based on models for which uncertainty exists 

about their exact specification. The question is how do we to select the appropriate 

models and variables to explain the situation we face? This problem will become more 

important for economists and decision-makers as the statisticians collect information on 

more economic variables. 

One interesting topic in urban economics is how to explain the growth of cities. 

Do the cities have any influence on the region or even more on the nation? Jacobs (1984, 

p. 106) states that the capital that cities generate reaches to remote regions. Jacobs (1969 

& 1984) also argues that major cities all over the world can extend their influence by 

exports to in other ways. Historically, she finds that cities have large effect on the 

national economy. 

Major cities in the U.S. should make some contributions to the national economy 

as well as to those of other countries. Some cities, like Dallas, Seattle, and Phoenix, have 

grown very rapidly during the last twenty years and become the major capital 

contributors for their respective regions (or even more, for the U.S.). Why have these 

cities grown so fast while others have not? What are the major stimulants of the growth 
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of cities? Given the large number of possible determinants of city growth, how can we 

select the appropriate factors that explain it? Models and variable selection methods 

using the classical approach or the Bayesian approach may solve these questions. 

The motivation for applying variables and model selection to urban economics 

came from a paper by Glaeserm, Scheinkman, and Schleifer (GSS, 1995). In this paper, 

the authors examined the relationship between many urban characteristics and urban 

growth between 1960 and 1990. GSS find that some characteristics do have a 

relationship to urban growth, such as human capital, race, and unemployment rates. GSS 

explain the relationship between those urban characteristics and urban growth in many 

aspects, for example city growth against manufacturing, unemployment, education, race, 

government expenditure, region, and income distribution. The authors present many, 

sometimes conflicting results. One goal of this dissertation is to resolve some of these 

conflicts using Bayesian analysis. GSS find that some variables (the urban 

characteristics) are important factors to urban growth but some are not. And this is the 

motivation for my research, I intend to implement the BVS and BMS into this situation. 

Using BVS and BMS methods, a statistically coherent means of determining which 

variables to include or which model(s) to use can be obtained and can explain the 

relationship between urban growth and various urban characteristics more appropriately. 

Next I will discuss the variables that will be considered in this application. 

3.1 Population 

The population for U.S. cities has changed rapidly during the last twenty years, 

especially as cities have been dispersed to suburban areas. Using population growth as 

the dependent variable (as measurement for the urban economic growth), GSS try to 
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explain the relationship between growth rate and many city characteristics. Positive 

population growth may indicate that this city attracted more labor, or more firms, or had 

better living conditions for workers. This kind of city will attract more people, and these 

stimulate growth. Within the U.S., labor mobility is affected most by the opportunistic 

workers have. As labor moves in (or immigrates), productivity should increase and the 

city grows faster. Although labor immigrates to urban areas, the central parts of cities 

grow more slowly than suburban areas. Mills and Lubuele (1997) argue that labor tends 

to emigrate from central city to suburban areas, because of social problems of the inner

city residents. Voith (1998) also examines the relationship between city and suburban 

growth and argues with that city growth has an effect on suburban growth. Voith' s 

finding contrasts with that of many economists who think that suburban growth is 

independent of central city growth. Voith also used population growth as a measure of 

economic growth (along with employment and income growth). As Mills et al. (1997) 

pointed out that workers move from the central city to suburban areas because of 

transportation costs, poor living environment, racial problems and poverty. Mieszkowski 

and Mills (1993) also list possible reasons for resident immigration to suburban areas. 

These factors reduce the city population but increase the suburban population. As in 

GSS, I will also consider the population of the Standard Metropolitan Statistical Area 

(SMSA), or Metropolitan Statistical Area (MSA) as a dependent variable. Using two 

measurements I will try to reveal which urban characteristics best explain economic 

growth. The next section discusses the urban characteristics that will be considered as 

independent variables in my research. 
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3.2 Education 

According to research in urban growth, human capital is one of the most 

important factors. Lucas (1988) argues that human capital can have an important effect 

on productivity. Workers who have more experience or knowledge will generate an 

external effect, or knowledge spillover, to other workers. This spillover effect stimulates 

worker productivity and also city growth. Simon (1996) uses data from English cities to 

show that the cities with higher human capital and information grow faster than the cities 

that have less human capital and information. Rauch (1993) argues that the average level 

of human capital affects productivity indirectly through the effect of sharing ideas for 

technological innovation. Simon (1998) believes that cities with a high concentration of 

highly educated workers should become more productive and attract more people. 

Simmon also finds a positive relationship between human capital and MSA growth from 

· 1940 to 1986. Glaeser, Kallal, Scheinkrnan, and Schleifer (1992) use data set from 170 

cities in the U.S. to confirm the knowledge spillover effect on urban employment growth. 

There is widespread agreement about the importance of human capital on urban 

growth. To measure human capital, several variables will be considered: 

1. Median years of school, which is the average number of years people attend 

school. This measurement is used by GSS and Rauch (1993) for their 

analyses. And this is the most commonly used measurement of the human 

capital. 

2. Percentage of population over 25 years old who have 12-15 years in school. 

This is the percentage of the population that has received a high school 

degree. Large numbers indicate higher levels of human capital. 
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3. Percentage of the population over 25 years old who have 16 years or more in 

school. This is the percentage of the population who has a college or higher 

degree. 

Larger values of the three variables are expected to have positive effects on urban 

growth. 

3.3 Social Characteristics 

The social structure of city needs to be considered as a factor in determining 

economic growth. The social characteristics considered will be race, income inequality, 

and population age. First, I will discuss the race. Nonwhite residents in a city, especially 

blacks residents are usually in the lower social and income classes in a city. The 

stereotype for inner city, blacks is low income, low education, and low labor skills. 

These three images for blacks reflect the current black residents living in inner cities and 

are considered to be the main reasons preventing them from moving to a better suburban 

areas (South and Crowder, 1997). South et al. (1997) also find that for inner city 

residents, the probability that white residents move to a better suburban area is higher 

than for the black residents. This result comes from research which indicates that cities 

having large proportions oflow income, and poorly educated blacks tend to grow more 

slowly. The same may also be true for other minority residents (like Hispanic, and 

Asian), who engage in low skilled jobs and earn less than most white residents in the city. 

One potential variable in model of city growth, therefore is the percentage of non-white 

population as an explanatory variable to see it really has a negative effect on city growth. 

Based on previous research, the coefficient is expected to be O or negative. 
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Another issue regarding race is the segregation problem in cities. Although many 

cities in the U.S. are racially integrated (many ethnic groups living together), several of 

them such as New York, Chicago, and Los Angeles still have segregated areas with very 

little racial diversity. This segregation has many causes and also may have disadvantages 

(Kempen & Ozuekren, 1998): 

1. The group that has been segregated may not have the information required to 

get a better job. 

2. Children living in a segregated ( or ethnic concentration) area will have less 

chance to receive a good education, especially if they do not speak English 

well. 

3. The negative image of segregation will slow the immigration to the city. 

4. Residents who live in the segregated area do not have equaled access to 

quality social care. This makes the living quality in this area even worse. 

The disadvantages of segregation are easy to understand. In this research, I will 

include this segregation into the analysis to see if it has a negative effect on city growth. 

The measurement for segregation is adopted from Taeuber and Taeuber (1965) and is 

called the "segregation index." This segregation index measures how integrated the city 

is, based on race. If this index is equal to 1, it means this city has only nonwhite ( or 

white) in some areas of the city. If the index is equal to zero, it means this city is 

perfectly integrated (nonwhite and white residents living together). The other two 

researches regarding the segregation are Culter and Glaeser (1997) and Culter and Vigdor 

(1999) which provide good analysis and segregation index (which I will adapt in Chapter 

Four). 
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The income distribution in a city is also an important indicator of the economy. If 

the difference between high income and low-income residents is too large, then it may 

have some effect (negative or positive) on city growth. This difference probably will 

make more social problems ( especially crime) and slow the city growth. The variables I 

will use are the following: 

1. Percentage of population with income less than $3,000 a year. (The low 

income class in the city) 

2. Percentage of population with income more than $25,000 a year. (The high 

income class in the city) 

3. Per capita money income. This is the total income of the city divided by the 

population of the city. 

These three income-related variables are expected to have some effect on city 

growth, either positive or negative. 

The last variable in this social category is the age of the population. For some 

cities in the U.S. (or other countries), young people move to other cities and leave an 

older population in the city. Does this reduce the productivity of the city? That is the 

reason I have included this variable (the aging population) into this research. These is not 

much research related this variable to city growth, and not many researchers take it 

seriously. So I will take the aging population into account, and try to explain its 

relationship to city growth. The measurement I will use is the percentage of population 

who is over 65 years old. As the percentage of older people increases, is it good or bad 

for city growth? This will be discussed in the next chapter. 
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3.4 Unemployment and Manufacturing Sector 

High unemployment within a city is a serious problem because unemployed 

workers represent an opportunity cost for the city (McDonald, 1997). This opportunity 

cost of production may cause the city to grow at a lower rate in the long run. GSS (1995) 

found that the initial unemployment rate reduces economic growth for both city and 

SMSA. The unemployment rate reduces city growth because of these two effects (GSS, 

1995): 

1. Workers move to other areas because the high unemployment rate causes 

business cycle shock; this reduce population growth substantially. 

2. Unemployed workers may have skills and professional training, but cannot 

join in the labor force to stimulate the city growth. 

So higher unemployment rates are predicted to slow city growth. 

For the production side, the industry sector also plays an important role in urban 

economics, especially the manufacturing, which employs the largest proportion of 

workers in urban areas during the last few decades (Mills and Hamilton, 1994). Although 

other sectors are growing faster then manufacturing sector grows slower; the importance 

of the manufacturing sector cannot be ignored. In Detroit for example, the automobile 

industry employs a large proportion of the labor force. In Pittsburgh, the steel industry is 

the largest employer; many examples follow. Manufacturing is generally thought to 

induce large multiple effects in the economy, the reason is 

First, the manufacturing (automobile, steel, etc.) firms locate in a city (where the 

firms think they have advantages), then firms employ workers locally (or from other 

areas) and stimulate the employment rate for this area. Next, firms grow at a fast rate and 
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continue employing workers; this expansion attracts more labor moving to this city, 

which causes the city population to increase. So this consequence for the manufacturing 

sector should stimulate city growth. But GSS 's empirical evidence indicates that as 

employment rate of the manufacturing sector increases, city growth rates diminish (e.g. 

as measured by population growth, manufacturing employment, SMSA population 

growth and city income growth). Basically, too many manufacturing firms located in one 

city cause many problems, like pollution, traffic congestion, and social problems. These 

problems make the quality of life worse and slow immigration into the city, finally 

reducing the city growth (this reason is probably one of many reasons for the 

manufacturing firms to slow the city growth). I will use the proportion of employment 

rate in the manufacturing sector (the labor force in the manufacturing sector) in the city 

as the measurement, and try to interpret its implication in the empirical studies. 

3.5 Geographical Factor 

During the last twenty years, many new cities have grown faster than the old 

cities and they (the new cities) are located in some particular region that have many 

advantages over other cities, such as a good quality of life, transportation cost is low, and 

many employment opportunities. As these new cities become more attractive to labor 

(low skilled or highly skilled), workers start to immigrate to those new cities and this 

makes these new cities grow very fast. But those cities without as many advantages as 

fast-growing new cities start to decline. Krugman (1991) argues that this happens because 

manufacturing becomes concentrated in a few regions but leaves other regions 

undeveloped. Due to the economics of scale, manufacturing firms will only locate in 

cities which have the following advantages: the demand for the product is large and the 
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transportation cost for the product is relatively low (Krugman, 1991). This advantage can 

be confirmed historically, as society spends a large proportion of income on 

nonagricultural goods; the region with a large population will attract more producers. 

Then they will mass-produce and economics of scale are formed, because the 

transportation cost (like railroad and airlines) is lower and the demand in the local market 

is high. This process will continue and force the traditional agricultural population to 

concentrate at some region (like the central U.S. states) (Krugman, 1991). 

So the main argument for Krugman is that there is a diverging trend by region in 

the national economy. Some cities grow faster than some undeveloped cities in the 

nation. Krugman (1991) also develops a two-region model with two types of production: 

agriculture and manufacturing goods. Krugman found that the region with the lower 

transportation cost and the higher manufacturing share (large economics of scale), will 

attract more manufacturing firms, which will make this region grow faster than the other 

region. 

Barro and Sala-Martin (1992) provide a different argument. Using 48 U.S. states 

and 98 countries as data, they found there is evidence for convergence. This means that 

poor states ( or countries) grow faster than rich states (countries) in terms of per capita 

personal income. Barro et al. (1992) used a neoclassical model set-up to do the empirical 

studies, and found the economics tend to grow faster in per capita terms when they are far 

below the steady-state position (which is clear for the 48 U.S. states from 1840 to 1988) 

(Barro et al., 1992). But the main difference for Barro's measurement is the population 

growth. So the region effect needs to be specified in the empirical part of this research. 

Despite the divergence or convergence point of view (Krugman and Barro et al.), the 
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geography factor is an important factor in economic growth and this is the reason I will 

include a geographical factor into this research. The classification for each city will be 

based on Tauber (1965), and I will consist of regional dummy variables. I expect there to 

be regional difference in economic growth. 

3.6 Government 

There are many arguments about the government's role in city growth. 

Steinacker (1998) argues that the force of economic restructuring and de-industrialization 

are major concerns for local government. But many of the factors cannot be controlled 

by local government; some non-metropolitan areas need to be considered also. Bradbury, 

Downs, and Small (1982) argue that policy intervention could stop the decline of 

American cities, which implies that the local government needs good policies to break the 

negative feedback cycle of city decline. For Bradbury et al. (1982), policies can correct 

the local market failure only through appropriate adjustment. So only "good" policies are 

good for urban growth. This (consequences of policies) reflects the importance of 

government, because government is the executor for policy and take responsibility for it. 

How does government affects the city growth and by what channel? The channels I will 

consider are those of GSS, which are the government expenditure in various categories 

and government revenue, as follows: 

1. Education: Government ( either state or local) has spent the largest share of its 

budget on education during the last 30 years, although the budget share has 

declined in recent years. The main reason for this decline is that the school

age population is mainly spent on higher education (college and universities); 

which trains highly skilled labor for cities, and this source has constituted the 
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main resource of human capital. Human capital, as described previously, is 

one of the most important sources of urban growth. So as the percentage of 

expenditure on education increases, it should have an impact on urban growth. 

2. Transportation: the transportation system of a city is very important; not only 

does it provide the access for residents to the city, it also contributes to 

provide the quality of life for the city. The main transportation system in 

cities is the highway system, which is financed either locally or at the state 

level. Voith (1993) argues that the value of highway accessibility (to the city 

center) parallels the economic performance of the city. Voith (1993) also 

argues this accessibility makes the inner city grow fast, and benefits the 

surrounding suburban area. So the main argument for Voith is that the 

suburban areas and the inner city cannot be isolated; in fact they need to co

exist and will benefit each other. 

The link between these two areas is the highway system, which not only 

provides accessibility to each area, but also stimulates growth for both areas. 

So the importance of the transportation system is clear. The role of 

government is to build a good transportation system for a city, and this can be 

executed through the transportation system budget. So I use the percentage of 

expenditure for highways as a measurement, and see whether it has an effect 

or not. 

3. Public Safety: This category has become a major concern in cities recently, 

especially in inner cities. The crime problem associated with the inner city 

can reduce growth substantially and make the quality of life worse. Mills et 
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al. (1997) argued that the crime problem is serious in the U.S. and the 

government needs to focus on it. Trillions of dollars have been spent to fight 

crime, like drugs, but the effect is not good. The main reason is that policy 

has not been designed well or administered well, so policy change may 

improve the situation (Mills et al., 1997). Although good policy is needed, the 

budget for public safety protection still provides a good measurement. 

4. Health Care: Cities with better medical facilities and health care should attract 

more labor; hence they are good for city growth. The city government can 

provide quality health care via building more modern medical facilities (like 

hospitals), which can provide services for city residents. So the government 

expenditure health care (hospitals) should reflect how important the 

government deem this area. 

5. Sanitation: Water and sewer service are among the most important elements 

for a good living environment. Water is the most important factor for human 

health and whether it is clean or not will affect health directly, the same as the 

sewer an garbage disposal; proper disposal could prevent epidemics and 

possible environmental pollution. So the government should consider that this 

will be very important in the future, and increase the budget for the sanitation 

service because it is very important to increase the quality of living for city 

residents. 

6. Government Revenue: This is the fund that the government raises to finance 

its operation. The sources I will consider are the following: tax, 
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intergovernmental transfers, debt, and general revenue of the local 

government. 

General revenue is the total amount of funds collected or raised by the local 

government. It comes from many sources; taxes (income tax, property tax, sales tax, and 

corporate income tax), utility revenues, other miscellaneous charges and revenue from 

other levels of government (state or federal). As the city grows, there should be many 

sources ofrevenue moving in, which gives the local (city) government more funds to put 

in the public sector (such as building more convenient transportation systems and 

preventing air and water pollution). This (increasing of revenue) will have a positive 

effect on the city growth and benefit the surrounding area. So I expect fast growth in 

cities to be associated with high revenues. 

The main source of revenue for local government if from various taxes collected 

from residents; sales tax, property tax and corporate tax. Property tax ( especially real 

estate tax) is the main tax source for local governments, contributing nearly 40% of local 

revenue, but it has decreased during recent years. The source I will use is the percentage 

of government revenue from tax, which includes all taxes collected by the government. 

This is the main financial resource for the government (approximately 50% from Table 2) 

to collect and should have effect on city growth, either positive or negatively. 

Intergovernmental transfer to finance local government has become more 

important in recent years. The main reason is that the state (or federal) government 

thinks the city with a growing population needs more funds to operate. It can be 

confirmed that the city is deemed by state and federal government as an important area to 

develop. As a city grows faster, intergovernmental grants from the state have become the 
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largest source of funds for local governments in the U.S. (McDonald, 1997). This is why 

I will consider it as a factor that affects the city growth. 

The last candidate I will consider is the debt raised by government. Debt is a way 

for governments to raise funds by borrowing from either corporation or residents. The 

return may be as interest, share of government-operated business, or another form. If the 

resident or corporation thinks the city has a higher growth potential, they may be willing 

to help ( or finance) local government by buying bonds which helps the government to 

expand. But whether it is positively correlated with city growth or not is an empirical 

matter and will be investigated in the next chapter. 

The data used to analyze include two city files: one is the central city data referred 

as CITY (77 cities), and the other is the MSA data referred as MSA (75 MSA). CITY 

contains 23 variables while MSA contains 21 variables. There are some differences 

between these two data sets (some data are available for the CITY but not for MSA), 

which will be described in Appendix A in detail. The segregation index (measured by the 

dissimilarity index) is not available for all 77 cities in the CITY and 75 cities in the MSA. 

Only 63 cities and MSA have a dissimilarity index available. I use the segregation index 

in the social category which is in Appendix B. The cities that do not have this particular 

index are listed in Appendix A. 
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CHAPTER FOUR 

MODELANDVARIABLE SELECTION APPLICATION 

IN URBAN ECONOMICS 

In this chapter, I implement a classical and Bayesian approach to the model and 

variable selection problem. First I use the usual regression analysis to examine the 

relationship between the economic growth and each city's characteristics. As in GSS, I 

divide the data into different categories, for example, growth and education or 

employment, growth and government factors, etc. After these categories have been 

analyzed, I put all city characteristics into the analysis to analyze their relationship to 

measure of city growth. Then I implement the classical approach for variable or model 

selection to see what the classical approach explains. In next stage, the Bayesian 

approach is implemented. These are the three approaches discuss in Chapter Two and all 

the selection results are listed in Appendix B (Table of the Analysis). For all the 

variables used under GSS's category (from Table 4 to Table 10), are listed in Appendix 

A. 

4.1 Prior Setting for Bayesian Approaches 

Before implementing the Bayesian approach, I will briefly describe the prior 

setting for each of the three methods implemented in this dissertation. For the BMA, the 

prior for the parameters is set as N ( m, cr2 V) where m is set as ( h0 ,0,0 - - - 0) , h0 is the 
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sample mean of dependent variable (Y), and Vis set as (2.48). And VA I a-2 ; x~ where 

v = 4.00, A = 0.25 and <D = 3 is set as the default value in Matlab program for the 

hyperparameters. For Geweke's approach, prior probability that each variable appear in 

the model is set as 0.5 and prior precision is set as (2.29) which is referred to Adkins et 

al.(1999) for detail. For the MBVS, r is set as 01xk where no variables are included 

before sampling; o = 3 as stated in Brown et al. (1998) and w = 0.5 as Geweke's prior 

Bernoulli probability to include variables. Other settings for the prior are described in 

Chapter Two. For Geweke's approach, the P.M.P. means posterior marginal probability 

(the posterior probability that the coefficient== 0) for convenience. And M.P.P. refers the 

model posterior probability for these three methods for convenience. 

4.2 The Regression Analysis for City.Growth 

In this section a traditional regression analysis is conducted to gain a basic 

understanding of the relationships under study. Two data sets are used: First is referred 

to as the central city data set (CITY) and second as the MSA data set (MSA). The 

dependent variable for the CITY and MSA data sets is the population growth of the 

central city and the MSA. From the summary statistics in Table 1 and Table 2 one can 

see that the mean population growth for the MSA (0.406) is higher than that for the 

central city (0.115). This supports one general fact: The MSA population has been 

increasing during the last twenty years, because of the increasing population in the 

suburban area. For education, the MSA has a higher percentage of both high school and 

college graduates (57.42% to 54.57% and 12.10% to 12.05%) compared to the central 

city (CITY). Also the MSA has a lower unemployment rate than the central city, which 

is 4.33% for the MSA and 4.77% for the CITY. The central city also has a higher 
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percentage of both non-white population and aging population (which I define as 

percentage of the population that is more than 65 years old) than the MSA. This suggests 

another fact: the labor force is moving toward the suburban areas rather than to the 

central city. This may explain why the MSA population growth is higher than that in the 

central city and could be one of the factors used to explain the differences between the 

MSA and the CITY. Next, the relationship between the population growth (which is used 

to measure the economic growth) and a variety of city characteristics is analyzed as in 

GSS Tables 4 to 10. In addition, I will also analyze city growth using all city 

characteristics, which were not examined in the GSS study. 

4.3 City Growth and Manufacturing (GSS Table 4) 

First, I use the traditional approaches, like R2 , AIC, BIC and SBC to select 

models. From Table 3 in Appendix B, the model that has the lowest AIC and BIC 

selected models includes Lpop70, Lpc70, Mfgs70, South, Central and NEast. Central 

and NEast are in all six models that are selected. The similar results for the MSA data; 

the model includes Lpop70, Central and NEast. Again, Central and NEast are in all six 

models that are selected; in addition Lpop70 is in every model. So from the traditional 

approach (according to AIC and BIC) results, Central and NEast are the most selected 

variables, and Lpop70 also appears to be important. 
' 

Second is the BMA approach, which uses the MCMC method to obtain results. 

From Table 5 (for the CITY), the model that has the highest posterior probability 

includes South, NEast, Lpc70 and Lpop70. For this BMA procedure (for both city and 

MSA), I drew 10,000 Gibbs samples (the burn in samples are set as 10% of the total 

samples for the BMA) with 7 independent variables. For the MSA, from Table 6, the 
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model that has the highest posterior probability includes South and NEast. From BMA, 

South is the most selected variable for both CITY and MSA. It also has the lowest 

posterior t-probability (0.0004 for CITY, 0.08 for MSA.) of the variables for the CITY 

and MSA. The posterior t-probability, like the usual t-probability, is the probability the 

coefficient which is equal to zero based on the posterior t-statistics. Lpc70 has a lower 

posterior t-probability (0.009 for CITY, 0.15 for MSA) than Lpop70 for both CITY and 

MSA. Central is the least selected variable for these categories, which has a higher 

posterior t-probability than other variables (0.883 for CITY, 0.845 for the MSA). So in 

the BMA approach, the models selected include the variables that have the lower 

posterior t-probabilities (in most cases) and exclude the variables that have a higher 

posterior t-probability. 

Third is Gweke's approach, which uses the subjective prior (the prior probability 

for each variable to be included is set as 0.5) and also us~s MCMC to carry out the 

computation. For this, the number of Gibbs samples drawn is 10,000 and the first 2000 

samples are discarded for the burn-in. From Table 7, the model that has the highest 

posterior probability(= 0.4950) includes South, Central, NEast, Lpc70 and Lpop70 for 

the CITY. For the MSA (Table 8), the model that has the highest posterior probability(= 

0.2383) includes Central, NEast, Mfgs70 and Lpc70. Central, NEast, Mfgs70 and Lpc70 

are the most selected variables. For this category,. Geweke' s approach selects the same 

variables (including Central, NEast, Mfgs70 and Lpc70) which has a higher posterior 

probability. 

Fourth is the MVBS approach, which is similar to the SVSS approach. It has 

different prior setting but is easy to implement. For this MBVS approach, 10,000 Gibbs 
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samples are drawn (with 10% samples for bum in) and prior settings are as stated in 4.2. 

The model (Table 9) for the CITY that has the highest posterior probability (= 0.1095) 

includes Central, NEast, and Mfgs70. For the MSA (Table 10), the model (posterior 

probability= 0.0689) includes Central and NEast. The most frequently selected variables 

for the CITY are Mfgs70, Central and NEast. Lpc70 is selected in several models but not 

more than the three variables stated above. The most selected variables for MSA are 

Central, NEast and Lpop70. 

From the results above see that, different approaches produce different models 

due to different prior settings ( except AIC and BIC), the geographical factors are the 

most selected variables in this category, same as in GSS which measured in term oft

statistics ( city growth and manufacturing). The employment percentage in manufacturing 

is not critical for the MSA but is probably critical for the CITY. This result is similar to 

GSS for CITY but not for the MSA, which GSS states as an important variable. 

4.4 City Growth and Unemployment (GSS Table 5) 

This section explores the relationship between city growth and unemployment. 

For the traditional approach (Table 11), the model that has the lowest AIC and BIC 

includes Lpop70, Mfgs70, South, Central and NEast for the CITY (AIC = -206.328 and 

BIC = -203.082). For the MSA (Table 12), the model includes Lpop70, Central and 

NEast (AIC = -182.767 and BIC = -180.179). All five models for the CITY select South, 

Central, NEast and Mfgs70. Unemployment is only selected in two CITY models, and 

less often than the geographical factors. All five models select Lpop70 and Central and 

four models select NEast for the MSA. Unemployment is only selected by one model, 

which also includes Lpop70, Central, and NEast. The results of the traditional approach 
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show that the geographical variable is the most important factor in this category but 

unemployment is not. 

For BMA, from Table 13 of the CITY, the model that has highest posterior 

probability includes South, Mfgs70, Lpc70, and Lpop70 (posterior probability = 

0.15161). South and Lpc70 are selected by all six models in Table 13 with posterior t

probability 0.000421 and 0.015511, respectively. Also the other frequently selected 

variables for the city is Lpop70 (posterior t-probability = 0.020856) which is selected by 

five models in Table 13. Unemployment is only selected by one models in Table 20, 

with a posterior t-probability = 0.707. For the MSA, the modelthat has the highest 

posterior probability includes South, Lur70, Lpc70, and Lpop70 (posterior t-probability = 

0.06416). Central is selected by four models in Table 14, with posterior t-probability 

0.092417. Lur70 (posterior t-probability = 0.7070) is selected by three models in Table 

14, which contrasts with the results from Table 13, where Lur70 is only selected by one 

model. As for the MSA, Lpc70 is also selected by three models in Table 14 with a 

posterior t-probability of 0.093092. The above results that the geographical variables 

may still be major factors to consider in this category. Unemployment is important for 

the MSA but probably not important for the city. 

For Geweke's approach of the CITY (Table 15), the model that has the highest 

posterior probability contains South, Central, NEast, Mfgs70, Lpc70, and Lpop70 with 

posterior probability 0.3287. South, Central, NEast, Mfgs70, and Lpc70 are selected by 

all four models in Table 15. Unemployment enters in two models in Table 15, the same 

as Lpop70. In Table 15, one model selects all seven variables in this category to explain 

the relationship between unemployment and city growth. Although this model has lower 
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posterior probability (0.148) compared to the other models, it still can provide a good 

explanation for the city growth. For the MSA, the model with the highest posterior 

probability contains Central, NEst, Mfgs70, and Lpc70 with a posterior probability of 

0.140. Central, NEast, and Lpc70 are selected by all five models in Table 16. 

Unemployment is selected by one model in Table 16, less than the CITY. But the 

posterior marginal probability of Lur70 is 0.6919 for CITY and is 0.6055 for MSA 

(which are closed). This posterior marginal probability states that Lur70 should not be 

selected frequently (69.19% for CITY and 60.55% for MSA) and the result is acceptable 

(is selected by two models for CITY and selected by one model for MSA). But with the 

flexiablity of Geweke' s approach, we can force a higher prior probability that Lur70 

enters the model if desired. For the MSA, no models contain all seven variables as in the 

Table 15. The region variables are still important and Mfgs70 enters three models (in 

Table 15, Mfgs70 enter all models). 

For the MBVS (Table 17 and Table 18), 10,000 Gibbs samples were drawn and 

the CITY model with the highest posterior probability selects Central, NEast, and Lpc70 

(with probability 0.0716), which is the second most selected model of MSA. Central and 

NEast are the most selected variables (enter all five models in Table 17). Unemployment 

is included in two of the four models in Table 17, which is similar to the Geweke's 

estimates. For the MSA data (Table 18), the model with the highest posterior probability 

selected Central and NEast (with probability 0.0389). The models selected are similar to 

those in Table 17 for the CITY, but posterior probability of each is much smaller. All six 

models selected Central and NEast in Table 18, same as Table 17. Unemployment enters 
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into two models (posterior probability= 0.0336 and 0.0329, respectively) in Table 18, 

same as Table 17. 

From the above method, the region dummy variables are still important factors to 

consider (same as in GSS). The demographic variable (initial population, Lpop70) is also 

selected frequently (also same as GSS). The initial economic index (initial per-capita 

money income) is another important variable in the model. GSS concludes that 

unemployment is an important variable, but it is not selected frequently in this category 

by any of the Bayesian methods. 

4.5 City Growth and Education (GSS Table 6) 

Many researches find that education is an important factor affecting economic 

growth. This section discusses the relationship between city growth and education 

variables. From Table 19 of the CITY, the model that has the lowest AIC and BIC 

contains Central, NEast, and High70 (AIC = -217.8 and BIC = -214.7). Central, NEast, 

and High70 appear in the top five models (Table 19), while Col170 only enters into one 

model (with Lpc70, Central, and Neast). For the MSA (Table 20), the model having the 

lowest AIC and BIC has Central, NEast, Mfgs70 and Lpmed70 (AIC = -183.2 and BIC = 

-180.1 ). Central enters all five models in Table 20, which is the same as Table 19 of the 

city. NEast and Lpmed70 have been selected in four models in Table 20. Lpmed70, 

weighted by the population of 1970 with Medsy70, has also been selected in four models 

but is highly correlated with Medsy70. So, one should be cautious in using it in the same 

model as Medsy70. 

For the BMA, from Table 21 of the CITY, the model that has the highest posterior 

probability selects South, NEast, Col170, Mfgs70, Lpop70 and Lpmed70 (with posterior 
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probability= 0.0327). South (with posterior t-probability = 0.002405), Lpop70 (with 

posterior t-probability = 0.000098) and Lpmed70 (with posterior t-probability = 0.1484) 

are selected by all six models in Table 21. Coll70, the indicator for a higher human 

capital level, is selected in five models with posterior t-probability of 0.19033. The other 

indicator for human capital, Medsy70, with a very high posterior t-probability of 0.9751, 

is not selected by any model in Table 21. Unemployment is selected in one model but 

with high posterior t-probability of 0.752. For the MSA, from Table 22, the model that 

has the highest posterior probability selects High 70, Lur70, Mfgs70 and Lpmed70 

(posterior probability= 0.13499). High70 is selected in all five models in Table 22 with 

posterior t-probability = 0.0323. Lur70 is selected by three five models with posterior t

probability = 0.2337, which is lower than in CITY. Coll70 has a low posterior t

probability in CITY than in MSA. High70 has low posterior t-probability in the MSA 

data, but has a high posterior t-probability for CITY. 

For Geweke's approach, from Table 23 of the CITY, the model (posterior 

probability = 0.1000) that has the highest posterior probability has Central, NEast, 

High70, Lpc70, and Lpop70. Central, NEast, High70 (P.M.P. = 0.0000), and Lpc70 

(P.M.P. = 0.1855) enter all seven models in Table 23. Coll70 (P.M.P. = 0.7941) has not 

entered any model and Medsy70 (P.M.P. = 0.4836), enters into three models. For the 

MSA, from Table 24, the model (posterior probability= 0.0491) with the highest 

posterior probability has Central, NEast, Medsy70 (P.M.P. = 0.2849), Lpc70 (P.M.P. = 

0.253), and Lpop70. Central and NEast are selected by all seven models in Table 24. 

Four models in Table 24 select Lur70 (P.M.P. = 0.5611) and six models select Lpc70. 

The P.M.P. (which referred as posterior marginal probability that coefficient= 0, or the 
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probability that variables should be omitted) for the education variables are as follows: 

For CITY, High70 = 0.0000, Coll70 = 0.7941, and Medsy70 = 0.4836. For MSA, High70 

= 0.7335, Coll70 = 0.8224, and Medsy70 = 0.2849. 

For MBVS, from Table 25 of the CITY, the model has the highest posterior 

probability(= 0.0607) selects Central, NEast and Medsy70. All five models in Table 25 

select Central and NEast. No education variables are selected in Table 25, which contrast 

with previous two Bayesian methods. From Table 26, the model that contains Central 

and NEast has the highest posterior probability (= 0.0243). All six models in Table 26 

select Central and five models select NEast. No model selects education variables in 

Table 26 (same as Table 25) and Lur70 is selected by two models. Adkins et al. (1999) 

find that the results proceeded by Geweke's procedure is relatively sensitive to the 

chosen prior information and conclude that good results depends on choosing a 'good' 

pnor. 

From the three Bayesian approaches, the region variables ( especially Central and 

NEast) are still imp011ant variables to consider. The several education variables, like 

Medsy70, Coll 70, or High 70, are also imp011ant due to the different methods of selecting 

variables, but they are not as important as region variables (which is very similar to the 

results of GSS). Unemployment enters several models and these models could give a 

good explanation about its relationship with education and city growth. 

4.6 City Growth and Inequality (GSS Table 8) 

This section analyzes the relationship between income inequality and city growth. 

From Table 35 of the CITY, the model that contains Central, NEast, Lpop70, Lpc70, 

Mfgs70, Incle70 and Lmedic70 has the lowest AIC (= -223.8) and BIC (= -219.3). 
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Central, Lpop70, Mfgs70 and Incle70 are selected by all models in Table 35. For the 

MSA, from Table 36, the model that contains Central, Lpop70 and NEast has the lowest 

AIC (= -182,8) and BIC (= -180.2). All six models in Table 36 select central and 

Lpop70, which is the same as Table 35. No model in Table 36 selects Incle70, in contrast 

to Table 35. 

For BMA, from Table 37, the model (P.M.P = 0.0999) with South, Mfgs70, 

Medsy70, Incle70, Lpop70, Edle70, and Lmedic70 has the highest posterior probability. 

South (posterior t-probability = 0.0542), Mfgs70 (posterior t-probability = 0.0150), 

Edle70 (posterior t-probability = 0.000016) and Lmedic70 (posterior t-probability = 

0.000666) enter every model in Table 37. Incle70, one important factor when 

considering income inequality, has entered five models with posterior t-probability = 

0.0817. For the MSA, from Table 38, the model with South, NEast, Incle70 has highest 

the posterior probability(= 0.03693). NEast (posterior t-probability = 0.036) are selected 

by all six models. Lur70 (posterior t-probability = 0.7540) and Incle70 (posterior t

probability = 0.2627) are selected by four models in Table 38. The results from Table 38, 

although not as fully expected as those from Table 37 (Edle70 is not selected in Table 

38), are acceptable. Incle70 and Lur70 (without Edle70) are in the same model to explain 

the relationship between inequality and MSA growth that is expected. 

For Geweke's approach (Table 39), the model that contains Central, NEast, 

Medsy70, Incle70, and Lpop70 has the highest posterior probability(= 0.581). Central 

(P.M.P. = 0.0000), NEast (P.M.P = 0.0000), Medsy70 (P.M.P. = 0.0000), and Incle70 

(P.M.P. = 0.0000) are selected in ten models in Table 39 (the P.M.P. is consistent with 

the model selection result). Lur70 (P.M.P. = 0.4652) and Coll70 (P.M.P. = 0.8190) are 
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selected in one model in Table 39. This result from the CITY provides a good 

explanation between inequality (with Incle70 and Edle70 (P.M.P. =0.3098) entering in 

the model that has the high posterior probability) and CITY growth, which is as we 

expect. Medsy70 is also important in this category to help explain the relationship 

between inequality and city growth. For MSA (Table 40), the model that has the highest 

posterior probability(= 0.044) selects Central (P.M.P. = 0.0254), NEast (P.M.P. = 

0.2209), Medsy70 (P.M.P. = 0.1850), Lur70 (P.M.P. = 0.5281), Lpc70 (P.M.P. = 0.3423), 

and Lpop70 (P.M.P. = 0.2569). Central, NEast, and Lpc70 are selected by all seven 

models in Table 40. No model in Table 40 selects the inequality variables (Incle70 

(P.M.P. = 0.7951) and Incla70 (P.M.P. = 0.7320)). This result is quite different from that 

of Table 39, in which the inequality variables (Incle70) is selected by all models. But 

four models in Table 40 select the education variable (Medsy70, P.M.P. = 0.1850). 

For MBVS, Table 41 for the CITY, the model that contains Central, NEast, and 

Medsy70 has the highest posterior probability (0.0249). All models select Medsy70 and 

Central, four models in Table 41 select NEast. No model selects the inequality variables 

and two models select Lur70. For the MSA (Table 42), the model with Central and NEast 

has the highest posterior probability(= 0.023). All models select central and NEast, two 

models in Table 42 select Lur70 and Lpc70. 

From the results of the Bayesian approaches, the inequality variables are quite 

important (for BMA and Geweke, but not for MBVS) in explaining city growth. This is 

consistent with many studies: the higher the proportion of low-income and low-educated 

population, the slower the city grows. For MSA growth, the regional variables are still 

the major factors to consider than the inequality variables; the inequality variables are 
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much less likely to be important MSA growth. The inequality variables are not important 

in GSS (except for Edle70 in CITY), but unemployment and regional variables (same as 

the Bayesian) are. The Bayesian approach, is more flexible because it allows more 

variables to explain the relationships between city growth and inequality. 

4. 7 City Growth and Social Characteristics (GSS Table 9) 

For this section, some observations must omitted from the sample since not all 77 

cities have a segregation index (which is measured by a dissimilarity index) available. 

Only 63 cities and MSAs have an available segregation index to use in this section. In 

addition to GSS Table 9, I add Age70 into this section, in order to see whether an aging 

population can explain the city growth. 

From Table 43, the model that has the lowest AIC (= -261.3) and BIC (= -255.2) 

contains South, Central, NEast, Mfgs70, Age70, and Lpop70. South, Central, NEast, 

Age70, Mfgs70, and Lpop70 are selected in all five models in Table 43. Seg70 is only 

selected by one model and the weighted segregation (Weseg70) is selected by three 

models in Table 43. For the MSA (Table 44), the model that contains Central, NEast, 

Nonw70, Mfgs70, Medsy70, Lpc70, and Lpop70 has the lowest AIC (= -159.6) and BIC 

(= -154.4). All models in Table 44 select Nonw70, Mfgs70, Medsy70, Lpc70 and 

Lpop70. Seg70 and Weseg70 do not enter into any model in Table 16, which is not as 

expected. But Nonw70 enters into all models for the MSA and Age70 enters into all 

models in Table 44, as expected. 

For the BMA of this category, 30,000 Gibbs samples are drawn and 3,000 

samples are discarded. From Table 45, the model that has South, Central, NEast, Lpc70, 

Seg70, and Weseg70 has the highest posterior probability(= 0.04063). South (posterior 
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t-probability = 0.000), Central (posterior t-probability = 0.006986), Lpc70 (posterior t

probability = 0.000089), Seg70 (posterior t-probability = 0.045675), Lpop70 (posterior t

probability = 0.0000), and Weseg70 (posterior t-probability = 0.006563) are selected by 

all six models in Table 45. Age70 and Nonw70 are selected in two models but with high 

posterior t-probability. For the MSA (Table 46), the model that has South, NEast, 

Mfgs70, Age70, and Weseg70 has the highest posterior probability(= 0.08722). South 

(posterior t-probability = 0.13184), NEast (posterior t-probability = 0.003592), Mfgs70 

(posterior t-probability = 0.158796), and Age70 (posterior t-probability = 0.027105) are 

selected by all models in Table 46. In contrast to Table 45, Seg70 and Nonw70 do not 

enter into any model but Age70 is selected by all models in Table 46. Weseg70 

(posterior t-probability = 0.833786) is selected in two models in Table 46 and Lur70 

(posterior t-probability = 0. 725178) is selected in three models in Table 46. 

From Table 47, the model that has the highest posterior probability(= 0.1050) 

selects South (P.M.P. = 0.0868), Central (P.M.P. = 0.0000), NEast (P.M.P. = 0.0003), 

Age70 (P.M.P. = 0.0000), Mfgs70 (P.M.P. = 0.3320), Medsy70 (P.M.P. = 0.0000), Lpc70 

(P.M.P. = 0.2106), Seg70 (P.M.P. = 0.4222), Lpop70 (P.M.P. = 0.4124), and Weseg70 

(P.M.P. = 0.0873). All models in Table 47 select South, Central, NEast, Age70, 

Medsy70, Lpc70, and Weseg70. Seg70 (in five models) and Weseg70 (in all models) are 

selected frequently as expected. But Nonw70 (P.M.P. = 0.8093) is not selected in any 

model, which I did not expect. Now from Table 48 (for the MSA), the model that has the 

highest posterior probability(= 0.026) selects Central (P.M.P = 0.1878), NEast (P.M.P. = 

0.2937), Medsy70 (P.M.P. = 0.2479), Mfgs70 (P.M.P. = 0.1031), Lpc70 (P.M.P. = 

0.3334), and Lpop70 (P.M.P. = 0.5475). Central, NEast, Medsy70, and Mfgs70 are 

75 



selected by all models in Table 48. Seg70 (P.M.P. = 0.6223) is selected in one model 

(less than in Table 47) and Weseg70 (P.M.P. = 0.8218) is not selected by any model in 

Table 48. Age70 (P.M.P. = 0.8090) is not selected by any model in Table 48, which in 

contrast with Table 47, where it is selected by all models. 

From Table 49, the four models that have the same highest posterior probability 

(= 0.0117) selects Central, NEast, Medsy70, Lpc70, and Seg70. Central and Medsy70 

are selected by all models in Table 49. Seg70 has entered into three models in Table 49 

but no model selects Weseg70. No model select Age70 and Nonw70, not as I expected 

(also different from BMA and Geweke). From Table 50, the two models that have the 

highest posterior probability(= 0.0089) select Cental, Lpc70, and Lpop70. Central is the 

most selected variable in Table 50, being selected by all models. Seg70 is selected by 

three models in Table 50 but no model selects Weseg70. Like Table 49, Age70 and 

Nonw70 are not selected in any model. 

For this category, various models select the social variables (Seg70, Age70 and 

Nonw70) to explain city growth. These results confirm many studies that show that these 

social variables have been associated with low city growth for many years, in particular 

the non-white population and segregation, which have been considered by many social 

scientists as the major factors for low central city growth. In this research, I add a 

variable to measure an aging population into this category and find that various models 

select it with high a posterior probability. This result confirms my hypothesis that 

younger people moving to suburban areas, and that an increasing the aging population 

leads to slower growth in the central city. This aging population could also combine with 

other social variables (segregation and non-white population) to make the central city 
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even worse. For GSS (they did not put all social variables in the MSA), the social 

variables are not so important as in Bayesian method. This may result from the Bayesian 

approaches' ( especially for BMA and Geweke) flexiblity to include important variables 

in the models. 

For Table 70, it illustrates the coefficient estimates for three procedures. For 

GSS, it is the least square estimate. For Geweke's, it is the posterior mean of coefficients 

and for BMA, it is the posterior estimates of the coefficients. As we can see from Table 

71, the coefficient estimates for regional variables are all negative for three procedures. 

For unemployment rate, it is negative for GSS but is positive for Geweke and BMA 

(although is not so significant). For% of nonwhite, are all negative for three procedures, 

but not so significant for three procedures. The segregation index, is negative for GSS 

(not significant) and BMA (is significant), but is positive for Geweke's. The weighted 

segregation index (weighted by multiplying% of nonwhite), is positive for GSS (not 

significant) but is negative for both Geweke's and BMA (is significant). But there are 

some difference between GSS and two Bayesian procedures. For GSS, the initial year is 

1960 but for two Bayesian procedures, the initial year is 1970. For consistent with the 

data set I used, Table 70 also includes the GSS analysis which the initial year is 1970. 

The coefficients from Geweke tend to be smaller in magnitude; this occurs because the 

posterior distributions have significant mass at zero. The MBVS excludes variables more 

often and the shrinkage of the model averages to zero tends to be greater. 

4.8 City Growth and Government (GSS Table 10) 

For this section, we are examining the government sector. There are differences 

between the CITY and the MSA for this category due to the available government 
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information (which will explain in Appendix A). That means that different variables are 

used in the CITY and the MSA to do the analysis. In Table 51, the model that has the 

lowest AIC (= -217.3) and BIC (= -212.0) selects NEast, Central, Medsy70, Mfgs70, 

Expo 70, and Ldebt70. For the government variables, only Expo70 and Ldebt70 are 

selected in four models. Central, Medsy70 and Lpop70 are selected by all five models in 

Table 51. From Table 52, the model that has the lowest AIC (= -190.8) and BIC (= -

185.2) selects Central, NEast, Lur70, Mfgs70, Lgvpc70, Pctax70, Exedu70, Lpc70, and 

Lpop70. Central, Neast, Lur70, Lgvpc70, and Lpop70 are selected by all models in 

Table 52. Pctax70, another government variable, is selected by two models. 

From Table 53, 30,000 Gibbs samples are drawn (with 3,000 samples are 

discarded) and the model has the highest posterior probability(= 0.01504) selects South, 

NEast, Mfgs70, Medsy70, Igr70, Exhwy70, Lpc70, and Lpop70. South (posterior t

probability = 0.247308), NEast (posterior t-probability = 0.006613), Mfgs70 (posterior t

probability = 0.705308), Exhwy70 (posterior t-probability = 0.180879), Lpc70 (posterior 

t-probability = 0.000248), and Lpop70 (posterior t-probability = 0.123979) are all 

selected by all four models in Table 53. Other government variables are selected 

including Igr70 (selected by three models with posterior t-probability 0.668821) and 

Lpcex70 (selected by one model with posterior t-probability 0.798257). For the MSA 

(Table 54), the model that has the highest posterior probability(= 0.01568) selects 

Central, NEast, Medsy70, Mfgs70, Igr70, Pctax70, Lpcex70, and Exhwy70. NEast 

(posterior t-probability = 0.084475), Mfgs70 (posterior t-probability = 0.135017), Igr70 

(posterior t-probability = 0.153024) and Exhwy70 (posterior t-probability = 0.015273) 

have been entered into all 8 models in Table 34. Other government variables are selected 
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includes Pctax70 (selected by five models with posterior t-probability 0.685314) and 

Lpcex70 (selected by two models with posterior t-probability 0.770924). 

From Table 55 (30,000 Gibbs samples are drawn with 6,000 samples are 

discarded), the model that has the highest posterior probability(= 0.012) selects South 

(P.M.P. = 0.3295), Central (P.M.P. = 0.0000), NEast (P.M.P. = 0.0133), Mfgs70 (P.M.P. 

= 0.0672) Medsy70 (P.M.P. = 0.0000), Lpcex70 (P.M.P. = 0.4925), and Ldebt70 (P.M.P. 

= 0.1014). All models in Table 55 select South, Central, NEast, Mfgs70, Medsy70, and 

Ldebt70. Other government variable selected includes Lgvpc70 (P.M.P. = 0.5490) and 

Expo70 (P.M.P. = 0.5408). But Exhwy70 (P.M.P. = 0.7945) is not selected in any model, 

which contrasts with the results of the BMA. These selected government variables 

should provide a useful explanation for city growth. From Table 56, the model that has 

the highest posterior probability(= 0.022) includes Central (P.M.P. = 0.0134), NEast 

(P.M.P. = 0.1938), Mfgs70 (P.M.P. = 0.3455), Lpcex70 (P.M.P. = 0.1859), Lpc70 

(P.M.P. = 0.2761) and Lpop70 (P.M.P. = 0.1352). Central, NEast, Lpcex70, and Lpop70 

are selected by all models in Table 56. For government variables, Lpcex70 (selected by 

all models) and Lgvpc70 (is selected by one model with P.M.P. = 0.6477) are selected by 

various models. But as the same as Table 55, Exhwy70 (P.M.P. = 0.8971) is not selected 

by any model. 

From Table 57 (30,000 Gibbs samples are drawn with 3,000 samples are 

discarded), the model has the highest posterior probability(= 0.0221) selects Central, 

NEast, and Mfgs70. For Table 57, no government variables are selected which is 

contrast to previous two Bayesian approaches. As we can see, MBVS selects a smaller 

model when explanatory variables are larger. From Table 58, the model that has the 

79 



highest posterior probability(= 0.004) select Central and NEast. Lgvpc70 is selected by 

two models in Table 58 and is the only government variable being selected. For this 

category, the CITY and the MSA have 15 explanatory variables, which is a larger number 

than the previous category. Those models selected by MBVS have fewer variables than 

the other variable selection methods. This will be confirmed when we put all variables 

into the analysis. 

For this category, various models select government variables but many 

government variables have not been selected. Exhwy70 should be one important variable 

since the construction of highways is a major project for any city. When the highway is 

built, it will bring more business into this area and more labor will move in because the 

transportation improves. Other government variables, like Igr70 and Ldebt70, represent 

main financial resources for the local government. When the local government uses these 

funds efficiently (like building more public schools and improving living quality); it 

should have a positive effect on the city's economy. For GSS, the government variables 

are not important, which will not be selected because the t-statistics is very small. For 

Bayesian approaches, although not every government variables are selected, still includes 

various government variables ( especially for BMA and Geweke) to explain their 

relationship with city growth. 

4.9 City Growth and All Variables (Without Segregation) 

In the last part of this Chapter, all of the variables are included into the analysis to 

see which variables are selected. For the Bayesian approaches, for each method (for the 

CITY and the MSA) we draw 50,000 Gibbs samples (with some samples will be 

discarded for burn in) because the number of explanatory variables is relatively large (23 
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for the CITY, 22 for the MSA). In this section we will not consider segregation, in order 

to maximize the size of the available samples. 

From Table 59, the model that has the lowest AIC (= -294.7) and BIC (= -283.2) 

selects South, Central, NEast, Age70, Nonw70, Lgvpc70, Igr70, Lpcex70, Exhwy70, 

Ldebt70, Lpc70, and Lmedic70. All five models in Table 59 select South, Central, 

NEast, Age70, Nonw70, Lgvpc70, and Lpcex70. But the education variables are not 

selected in any model, which is not as expected. From Table 60, the model that with the 

lowest AIC (= -191.2) and BIC (= -185.5) selects Central, NEast, Lur70, Mfgs70, 

Lgvpc70, Pctax70, and Lpop70. All models in Table 60 select Central, NEast, Lur70, 

Lgvpc70, and Lpop70. Education and inequality variables are not selected by one model, 

but government variables ( Lgvpc70, Pctax70 and Exedu70) are selected by various 

models .. 

From Table 61, the model that with the highest probability(= 0.0204) selects 

South, Central, NEast, Coll70, Age70, Nonw70, Lur70, Medsy70, Incla70, Igr70, 

Expo70, Ldebt70, and Lpop70. South (posterior t-probability = 0.096241), Central 

(posterior t-probability = 0.988209), NEast (posterior t-probability = 0.000), Coll70 

(posterior t-probability = 0.000001), Age70 (posterior t-probability = 0.270972), Nonw70 

(posterior t-probability = 0.210380), Lur70 (posterior t-probability = 0.233337), Medsy70 

(posterior t-probability = 0.000037), Incla70 (posterior t-probability = 0.000213), 

Ldebt70 (posterior t-probability = 0.086741) and Lpop70 (posterior t-probability = 

0.842216) are selected by all six models. This BMA approach, selects variables from 

every category and provides good models for us to analyze. The six models selected by 

BMA cover region (South, Central and Neast), education (Coll 70, Medsy70), social 
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(Age70, Nonw70), inequality (Incla70), government (Lgvpc70, Igr70, Lpcex70, Expo70, 

and Ldebt70) and initial variables (Lpop70, Lur70, and Lpc70). These variables cover all 

categories and enable us to explain the relationship between each category and city 

growth (Table 62 is the MSA part). 

For Table 62, the model that with the highest posterior probability(= 0.020) 

selects South (P.M.P. = 0.1349), Central (P.M.P. = 0.0001), NEast (P.M.P. = 0.0895), 

High70 (P.M.P. = 0.1563), Age70 (P.M.P. = 0.0000), Nonw70 (P.M.P. = 0.0000), 

Lgvpc70 (P.M.P. = 0.2448), Lpcex70 (P.M.P. = 0.0289), Ldebt70 (P.M.P. = 0.0835), 

Lpc70 (P.M.P. = 0.3279), and Edle70 (P.M.P. = 0.1588). The 20 models in Table 62 all 

select South, Central, NEast, Age70, Nonw70, Lpcex70, Ldebt70 and Edle70. Geweke's 

approach also selects from each category, as the BMA, but provide another good 

perspective for the analysis. It includes region, education, inequality, social, government 

and initial variables, which also provides a good model to analysis. From Table 63, the 

model that has the highest posterior probability (0.002) selects Central (P.M.P. = 0.2170), 

NEast (P.M.P. = 0.2889), Medsy70 (P.M.P. = 0.3041), Lur70 (P.M.P. = 0.5220), Incle70 

(P.M.P. = 0.5740), Lpcex70 (P.M.P. = 0.2094), Exedu70 (P.M.P. = 0.6786), Nonw70 

(P.M.P. = 0.5739) and Lpop70 (P.M.P. = 0.3231). For the MSA, Table 63 also covers 

most categories with inequality (P.M.P. for Incle70 and Incla70 are 0.5740 and 0.6908, 

respectively); probably this category is not the main concern for the MSA area, compared 

with other categories. For this MSA analysis, government expenses become important 

(they are important for the CITY) so the models select those variables frequently. The 

posterior marginal probability (P.M.P.) for these five Tables (Table 61-65) will attach in 

Appendix B for further reference (Table 66 and 67). 
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From Table 64, the model that with the highest posterior probability (0.0036) 

selects Central and Medsy70. No inequality and government variables are selected in 

Table 64. MBVS selects very few variables for each model, as can be seen from Table 57 

and Table 58. Also this result does not cover every category, as the previous two 

Bayesian approaches did. As we see from the last section (government category), the 

observation that MBVS selects few variables when the explanatory variables are larger is 

confirmed in Table 64. Now, turning to Table 65, the model that has the highest 

posterior probability (0.0143) selects Central and NEast and no model contains more than 

four variables. From Table 65, many models contain one variable and the other models 

contain two or three variables. So MBVS becomes very conservative when the 

explanatory variables become larger with conservative prior settings. 

The correlation coefficients of the P .M.P. among the three Bayesian procedures is 

in Table 68 (for CITY, all variables which come from Table 66) and Table 69 (for MSA, 

all variables which come from Table 67). From Table 68 and Table 69, the correlation 

between Geweke and MBVS is considered as high(= 0.52806 and 0.73422, respectively). 

This can be interpreted to mean that the relative rankings produced by the two procedures 

are considerably consistent. BMA is not highly correlated with these two procedures, 

which is not as I expect. 

The Geweke procedure, with the priors used in this study, tend to select models 

with many more variables than the MBVS. This is, at least in part, due to the selected 

hyperparmeters. Decreasing <5 in MBVS is likely to yield larger models. The high 

correlation among the P.M.P. of these two models suggests they may in fact yield similar 

results. 
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From an overall standpoint, the variables selected for the CITY and MSA data 

sets differ quite a bit. This may indicate that the underlying economic processes differ 

for the two. In the end, the Bayesian procedures are more flexible since they can 

systematically use expert knowledge that is available to the user. The largest 

disadvantage comes from computational complexity and possible uncertainty over the 

selected priors. 
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CHAPTER FIVE 

CONCLUSION AND FUTURE EXTENSION 

In this dissertation, I used several Bayesian variables and model selection 

methods to explore an issue in urban economics. Compared to those traditional methods 

(AIC or BIC), the Bayesian methodology is very flexible for researchers to implement. 

The biggest advantage for the Bayesian methodology is that it allows using prior 

information on those variables based on the researcher's expert knowledge. Using this 

unique prior knowledge, the variables after selection can provide more information about 

the relationship between variables. The usual caveat applies: The better prior information 

leads to better overall results in Bayesian analysis. In this final chapter, I will discuss 

several issues regarding the variable selection problem and possible future improvements 

in variable selection. The biggest disadvantage is the computational complexity of the 

procedures, which will surely discourage many from using any of the Bayesian 

procedures considered. This can be expected to improve as commercial software 

becomes available and as computational speeds increase. 

5.1 Prior Setting for Bayesian Variable Selection 

For these three Bayesian variable selection methods, I implemented easily 

specified prior information (mostly in uniform prior form) for the parameters because my 

purpose is to see how these methods work with the economic data. But these prior forms 
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may not reflect the best available information about the effects of these variables. This 

prior setting remains one of the most difficult parts of using the Bayesian approach 

because these settings have large effects on the final selection of the model. Using 

subjective prior forms may be a solution because it assumes the researcher has exact 

knowledge about the variables and parameters. But this subjective prior form relies on 

the past experience of a researcher who has worked with those variables and parameters. 

So before choosing a Bayesian prior for the parameters of a model, one should avoid 

oneself of what ever expert knowledge there is. This expertise in prior settings is not 

expected to eliminate bias (which is probably impossible) but it should reduce the bias 

and result in more reliable model selection. 

5.2 Posterior Distribution 

The posterior distribution is another important part because we need to draw 

samples from the posterior distribution to compute the posterior probability. It is always 

difficult to ascertain the exact posterior distribution for the parameters that we are 

interested in. However, recent advance in computational Bayesian analysis has given us 

means to approximate these with reasonable accuracy. 

5.3 MCMC Algorithm 

In this dissertation, the MCMC algorithm I implement is Gibbs sampling because 

it is easy to implement and understand. But there are other, more efficient MCMC 

algorithm we should consider; e.g., the Metropolis-Hastings algorithm. The Metropolis

Hastings algorithm is more suitable than Gibbs sampling if the generating parameters do 

not have a standard distribution but we can assume they have a known kernel of density 
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(Monfort & Dijk, 1996). This algorithm should provide us another good alternative 

algorithm in this variable selection problem because George et al. (1997) already 

implemented it in the Bayesian variable selection problem. 

If the data set is very large and the collinearity is high among the explanatory 

variables, the number of iterations needs to be larger in order to achieve the numerical 

accuracy ( Geweke, 1994 ). Assured of convergence, the posterior estimates will be more 

consistent. So these two problems need be considered when we implement the Bayesian 

approaches to solve the variable selection problem. 

5.4 Software 

The software programs I used to carry out these three Bayesian approaches are 

Gauss (1995) and Matlab (1999). They are adapted from the website (except for Gauss, 

which is adapted from Adkins etal. 1999) and revised for this dissertation. The website 

for BMA is www.spatial-econometrics.com and for MBVS is 

stat.tamu.edu/-mvannucci/webpages/codes.html. They are capable of carrying out many 

Bayesian computations and are easy to use.· Other software can also carry out these 

Bayesian computations, like BUGS (Bayesian Using Gibbs Sampling), 0-Matrix or C++. 

BUGS and 0-Matrix (the light version) are free and could be downloaded from the 

internet. C++ is a special (but powerful) computer language and, although more 

knowledge is necessary to use it, it should perform well also. 

5.5 Future Extension and Summary 

This dissertation tries to reveal the problem of variable and model selection in 

economics. Compare the results with GSS, the Bayesian methods are accounting more 
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variables into the models which we expect. For these three Bayesian approaches, BMA 

and Geweke's approach seem to be more reasonable to the MBVS since the empirical 

results from Chapter 4 suggest. But with more flexible prior setting, MBVS should 

perform reasonable well as the other two approaches in the future. 

The variable selection problem has been gaining more attention during the last 20 

years and many methods have become available for us to implement. As information 

becomes easier to get, we will have larger data sets and many variables to analyze. So 

the variable selection problem will become more important, not only for the researchers 

but also for corporate decision-makers. As this trend grows, researchers will need to 

cope with many tasks in order to solve more advanced problems. For example, the 

posterior estimates ( E (/3; I M1 ) ) for each parameter under different models and the 

posterior standard deviation estimates. When these two estimates are obtained, we can 

construct the posterior confidence inference and make inferences about the parameters. 

This will be a major task for the Bayesian variable selection approaches in the near 

future. Also new developments for the software to carry out the complex Bayesian 

computation is also desired since the existing software is not so efficient (because they 

take a long time to compute). Finally, we need to be more cautious about the danger 

(such as misleading decisions, inconsistencies etc.) that these Bayesian approaches will 

cause, as George (2000) states "Our enthusiasm for the development of promising new 

procedures must be carefully tempered with cautious warnings of their potential pitfalls". 
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Appendix A 

Description of Variables 

The following variables are obtained from County and City Data Book (1972&1994), 
City of the U.S website (www.policy.rutgers.edu/cupr/sonc.htm), Government information 
share website (www.kerr.orst.edu) and MSA segregation index is from Cutler, Glaser and 
Vigdor segregation index website (www.pubpol.duke.edu/-jvigdor/segregation/index/htm). For 
the city file, it has 77 cities. For MSA file, it has 75 cities because two are combined as 
one MSA (Los Angeles-Long Beach and Minneplois-St. Paul). The variables are index 
by 70 as they are observations from 1970. The central city file will call as CITY and the 
MSA as described in Chapter Four. 

For the CITY data set, it includes: 

Lpop70: The log of city and MSA population for 1970 which from County and City Data 
Book. 

Region: The region which is defined by Taeuber et al (1965), divided into four region: 
South, Central, NEast ( North East) and West. 

Education: This category has three variables: High70 (the percentage of population of 
1970 whose age are over 25 with 12+ years of education), Coll70 (have 16+ years of 
education) and Medsy70 (median school years for population 25 years or over). 

Age70: This is the percentage of population who is over 65 years old. 

Mfgs70: The percentage of workers working in manufacturing industries. 

Nonw70: The percentage of population, which is not white. 

Lur70: log of unemployment rate. 

Incle70 and Incla70: The percentage of population who has income less than 
$3000(Incle70) and more than $25000(Incla70). 

Lgvpc70: Log of per-capital government revenue 

Igr70: inter-government revenue 

Lpcex70: Log of per-capital government expenditure 

Exhwy70, Expo70 and Exss70: Percentage of government expenditure spends on 
highway, police protection and sanitation service, respectively. 

Ldebt70: Log of debt that government is outstanding. 
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Lpc70: log of the per-capita money income. 
Seg70: Segregation index for city and MSA, which is defined as Taeuber et al (1965). 

Lpmed70: Medsy70 weighted by multiplying Lpop70. 

Weseg70: Seg70 weighted by multiplying Nonw70. 

Edie 70: Percentage of population has 5 or less years in education 

Lmedic70 : Log of per-capita median money income 

For the MSA data set, it includes: 

Lpop70: log of population of MSA of 1970 

Region: Same as CITY, has South, Central, and NEast. 

Education: Same as CITY, has High70, Coll70, and Medsy70 ofMSA 

Age70: Same as CITY, percentage of people 65 or older of MSA 

Mfgs70: Same as CITY, percentage of workers working in manufacturing industries of 
MSA 

Nonw70: Same as CITY, percentage of population which is not white ofMSA 

Lur70: Same as CITY, log of unemployment rate ofMSA 

Incle70 and Incla70: Defined the same as CITY, percentage of population who has 
income less than $3,000 and more than $25,000 ofMSA 

Lgvpc70: log of govenunent total revenue of MSA 

Igr70: inter-government revenue of MSA 

Lpcex70: log of per-capita government expenditure ofMSA 

Exhwy70, Exedu70, and Exheal70: percentage of government expenditure spends on 
highway, education, and health care ofMSA. 

Pctax70: percentage of government revenue from tax of MSA 

Seg70: segregation index for MSA, defined the same as CITY 

Weseg70: Seg70 weighted by multiplying Lpop70 

Lpc70: log of per-capita money income ofMSA 
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The following are 14 cities do not have dissimilarity index available: 
I .Anchorage, AK 
2.Hartford, CT 
3.Wilimington, DE 
4.Boise, ID 
5.Kansas City, KS 
6.Portland, ME 
7 .Billings, MT 
8.Manchester, NH 
9.Fargo, ND 
1 O.Columbia, SC 
11.Sioux Falls, SD 
12.Burlington, VT 
13.Charleston, WA 
14.Cheyenne, WY 

The following are 12 MSAs do not have dissimilarity index available: 
I .Anchorage, AK 
2.Santa Ana, CA 
3.Boise, ID 
4.Kansas City, KS 
5 .Portland, ME 
6.Billings, MT 
7.Manchester, NH 
8.Fargo, ND 
9.Sioux Falls, SD 
IO.Burlington, VT 
11.Virginia Beach, VA 
12.Cheyenne, WY 

List of variables over which the selection exercises are conducted. The GSS (1995) table 
number and generic name for the variable set is given for each. 

I.Table 4 (manufacturing): 
Lpop70, Lpc70, Mfgs70, South, Central and NEast. 

2.Table 5 (unemployment): 
Lpop70, Lpc70, Mfgs70, Lur70, South, Central and NEast. 

3.Table 6 (education): 
Lpop70, Lpc70, Mfgs70, Lur70, High70, Coll70, Medsy70, Lpmed70, South, Central, 
and NEast. 

4.Table 8 (inequality): 
Lpop70, Lpc70, Mfgs70, Lur70, High70, Medsy70, Incle70, Incla70, Edle70, Lmedic70, 
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South, Central and NEast. 

5. Table 9 (social characteristics): 
Lpop70, Lpc70, Age70, Nonw70, Lur70, Mfgs70, Medsy70, Seg70, Weseg70, South, 
Central, and NEast. 

6. Table 10 (Government expenditure and revenue): 
Lpop70, Lpc70, Medsy70, Lur70, Mfgs70, Lgvpc70, Igr70, Lpcex70, Exhwy70, Expo70, 
Exss70, Exedu70, Exheal70, Ldebt70, Pctax70, South, Central, and NEast. 
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Appendix B: Table for the Analysis 

Table 1 
Mean and Standard Deviation for CITY Variables 

Variables Mean Std. dev. Minimum Maximum 

Population growth 0.115 0.341 -0.449 1.549 
South 0.312 0.466 0.000 1.000 
Central 0.259 0.441 0.000 1.000 
NEast 0.182 0.388 0.000 1.000 
High70 54.575 10.201 33.100 76.100 
Coll70 12.047 3.643 4.400 20.700 
Age70 10.334 2.675 2.000 15.000 
Mfgs 70 19.339 8 .. 598 3.400 37.500 
Nonw70 20.356 16.054 0.300 72.100 
Lur70 1.522 0.277 0.956 2.116 
Medsy70 11.878 0.753 9.600 12.800 
Incle70 10.117 2.872 1.600 19.000 
Incla70 4.678 2.438 1.700 18.000 
Lgvpc70 5.046 0.857 1.872 6.732 
Igr70 20.864 11.732 3.200 53.900 
Lpcex70 5.020 0.605 4.111 6.746 
Exhway70 10.863 5.841 1.100 28.800 
Expo70 21.547 7.328 5.700 41.200 
Exss70 11.358 6.130 2.300 26.800 
Ldebt70 4.658 1.358 1.569 9.070 
Lpc70 8.097 0.130 7.792 8.508 
Edle70 5.290 2.731 1.400 15.300 
Lmedic70 9.146 0.120 8.782 9.500 
Lpop70 1.743 0.178 1.243 2.194 

100 



Table lA 
Proportions of Coefficient Variance Associated with Each Characteristic Root 

(For CITY) 
CONDITIONAL 

Eigenvalue INDEX INTERCEP SOUTH CENTRAL NEAST HIGH70 COLL70 

19.67866 1.00000 0.0000 0.0001 0.0001 0.0001 0.0000 0.0000 
1.23483 3.99203 0.0000 0.0092 0.0059 0.0742 0.0000 0.0001 
1.13155 4.17023 0.0000 0.0330 0.0707 0.0003 0.0000 0.0000 
0.52917 6.09818 0.0000 0.0092 0.0605 0.0045 0.0001 0.0028 
0.33710 7.64049 0.0000 0.0224 0.0045 0.0603 0.0000 0.0006 
0.22965 9.25683 0.0000 0.0573 0.0081 0. 0067 0.0000 0.0002 
0.19014 10.17325 0.0000 0.0758 0.1519 0.1467 0.0000 0.0028 
0.14175 11. 78267 0.0000 0.0094 0.0037 0.0001 0.0001 0.0032 
0.12925 12.33898 0.0000 0.0069 0.0000 0. 0254 0.0000 0.0064 
0.10525 13.67356 0.0000 0.0001 0.0225 0.0088 0.0001 0.0066 
0.07828 15.85521 0.0000 0.0168 0.0525 0.0057 0.0000 0.0012 
0.06479 17.42812 0.0000 0.0041 0.0063 0. 0097 0.0001 0.0145 
0.04755 20.34258 0.0000 0.0406 0. 054 6 0.0582 0.0000 0.0062 
0.03957 22.29987 0.0000 0.0001 0.0370 0.0050 0.0002 0.0512 
0.02181 30.03833 0.0000 0.0053 0.0018 0.0069 0.0001 0.3631 
0.01495 36.28292 0.0001 0. 0138 0.0200 0.0566 0.0045 0.0947 
0. 01100 42.29431 0.0000 0.0014 0.0416 0.0751 0.0031 0.0144 
0.00875 47.43519 0.0000 0.4435 0.1937 0.1057 0.0003 0.0001 
0.00298 81.20746 0.0000 0.0001 0.0062 0.0127 0.0308 0.1059 
0.00176 105.63411 0.0001 0.0003 0.0017 0. 07 91 0.1406 0.0669 
0.00084 152.31981 0.0030 0.1179 0.1171 0.0302 0.3087 0.0889 
0.00030 254.49262 0.0043 0.0094 0.0000 0.0025 0.3045 0.0002 
0.00003 746.83947 0 .1317 0.0187 0.0824 0.1023 0.1649 0.1523 
8.59239E-6 1513 0.8608 0.1046 0. 0572 0.1235 0.0418 0.0176 

AGE70 MFGS70 NONW70 LUR70 MEDSY70 INCLE70 INCLA70 LGVPC70 IGR70 

0.0001 0.0001 0.0002 0.0000 0.0000 0.0000 0.0001 0.0000 0.0003 
0.0001 0.0004 0.0020 0.0000 0.0000 0.0000 0.0002 0.0000 0.0043 
0.0001 0.0005 0.0022 0.0000 0.0000 0.0001 0.0005 0.0000 0.0007 
0.0000 0.0036 0.0428 0.0002 0.0000 0.0003 0.0051 0.0000 0.0001 
0.0008 0.0070 0.0685 0.0000 0.0000 0.0004 0.0541 0.0000 0.0276 
0.0000 0.0000 0.0522 0.0001 0.0000 0.0002 0.0096 0.0006 0.2306 
0.0005 0. 0067 0.0070 0.0043 0.0000 0.0003 0.0476 0.0001 0.0435 
0.0001 0.0059 0.0401 0.0010 0.0000 0.0002 0.0103 0.0019 0.1232 
0.0036 0.0435 0.0612 0.0015 0.0000 0.0001 0.0704 0.0001 0.0906 
0.0128 0.0706 0.0170 0.0022 0.0000 0.0186 0.0707 0.0002 0.0259 
0.0049 0.0859 0 .1152 0.0000 0.0000 0.0005 0.0295 0.0000 0.0486 
0.0384 0.0006 0.0208 0.0000 0.0000 0. 0116 0.2228 0.0019 0.1614 
0.0320 0.0690 0.0082 0.0036 0.0000 0.0050 0.0001 0.0012 0.0282 
0.2374 0.1255 0.0002 0. 0118 0.0000 0. 0011 0.0043 0.0000 0.0086 
0 .1100 0.0544 0.0095 0.1001 0.0000 0.0095 0.0001 0.0307 0.0273 
0.0026 0. 0017 0.0310 0.2516 0.0017 0.0690 0.0027 0.0003 0.0212 
0.0608 0.0056 0.0095 0.0001 0.0006 0.0805 0.0100 0.5060 0. 0011 
0.1364 0.0417 0.1368 0.5250 0.0000 0. 4271 0.0135 0.0884 0. 0016 
0.0000 0.0093 0.0506 0.0155 0.0039 0.0044 0.0000 0.0139 0.0019 

AGE70 MFGS70 NONW70 LUR70 MEDSY70 INCLE70 INCLA70 LGVPC IGR70 

0.0627 0.0407 0.2538 0.0142 0.0020 0.0054 0.0281 0.3086 0.0523 
0.0025 0.2660 0.0099 0.0002 0.0028 0. 0172 0. 0117 0. 02 68 0.0224 
0.0009 0.0029 0.0046 0.0465 0.8760 0.0049 0.1570 0.0027 0. 0014 
0.0492 0.0244 0. 0017 0.0068 0.1052 0.0310 0.2048 0.0054 0. 0011 
0.2444 0.1340 0.0549 0.0152 0.0077 0.3126 0.0468 0. 0111 0.0762 

101 



LPCEX70 EXHWAY70 EXP070 EXSS70 LDEBT70 LPC70 LPOP70 EDLE70 LMEDIC70 

0.0000 0.0002 0.0001 0.0002 0.0000 0.0000 0.0000 0.0001 0.0000 
0.0000 0.0035 0.0004 0.0064 0.0000 0.0000 0.0000 0.0001 0.0000 
0.0000 0.0015 0.0000 0.0001 0.0000 0.0000 0.0000 0. 0016 0.0000 
0.0000 0.0178 0.0003 0.0005 0.0003 0.0000 0.0000 0.0062 0.0000 
0.0000 0.0029 0.0020 0.0187 0.0002 0.0000 0.0000 0.0010 0.0000 
0.0000 0.0145 0.0185 0.0204 0.0005 0.0000 0.0000 0.0048 0.0000 
0.0000 0.0191 0.0132 0.0032 0.0001 0.0000 0.0001 0.0080 0.0000 
0.0001 0.3035 0.0067 0. 0611 0.0034 0.0000 0.0004 0.0000 0.0000 
0.0000 0.0004 0.0003 0.3375 0.0002 0.0000 0.0002 0.0046 0.0000 
0.0001 0.0202 0.0015 0.1639 0.0051 0.0000 0.0009 0.0002 0.0000 
0.0000 0.0230 0.0051 0.0004 0.0002 0.0000 0.0001 0.2582 0.0000 
0.0001 0. 0967 0.0217 0.1163 0.0167 0.0000 0.0037 0.0180 0.0000 
0.0001 0.0525 0.4328 0. 0711 0.0059 0.0000 0.0022 0.0091 0.0000 
0.0000 0.1007 0.0051 0.0068 0.0305 0.0000 0.0041 0.0076 0.0000 
0.0015 0.0555 0.0561 0.0455 0.0019 0.0000 0.0002 0.0836 0.0000 
0.0072 0 .1136 0.0003 0.0015 0.0509 0.0002 0.0005 0.0622 0.0001 
0.0003 0.0257 0.0357 0.0088 0.0151 0.0000 0.0349 0.0158 0.0000 
0.0000 0.0524 0.0025 0 .0027 0.0386 0.0000 0.0002 0.0433 0.0000 
0.0502 0.0012 0.0060 0.0517 0. 5577 0.0000 0.6255 0.0258 0.0000 
0.3494 0.0507 0.0767 0.0280 0.2062 0.0006 0.2626 0.0884 0.0001 
0.5022 0.0162 0.3084 0.0144 0.0270 0.0080 0.0200 0.1265 0.0020 
0.0019 0.0063 0.0048 0.0005 0.0158 0.0015 0.0004 0.0010 0.0031 
0.0145 0.0000 0.0007 0.0052 0.0234 0.8833 0.0440 0.1980 0.0260 
0.0723 0.0218 0.0011 0.0350 0.0003 0.1064 0.0000 0.0359 0.9688 
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Table 2 
Mean and Standard Deviation for the MSA Variables 

Variables Mean Std. dev. Minimum Maximum 

Population growth 0.406 0.333 -0.126 1.612 
South 0.320 0.470 0.000 1.000 
Central 0.240 0.430 0.000 1.000 
NEast 0.173 0.381 0.000 1.000 
Medsy70 12.062 0.374 10.780 12.600 
High70 57.420 7.309 40.090 75.900 
Coll70 12.098 2.953 7.620 23.400 
Lur70 1.425 0.279 0.963 2.110 
Mgfs70 21.707 9.496 3.100 42.680 
Incle70 8.821 2.819 4.400 16.340 
Incla70 4.788 1.893 1.400 11.700 
Lgvpc70 5.190 1.183 2.741 7.999 
Igr70 34.532 13.993 13.390 119.010 
Pctax70 49.958 10.913 14.400 76.090 
Lpcex70 6.545 0.747 4.304 8.115 
Exedu70 51.144 7.498 34.700 81.520 
Exhway70 7.823 3.711 1.600 23.800 
Exheal70 5.006 4.498 0.100 34.030 
Lpc70 13.437 1.132 10.940 16.264 
Age70 8.707 2.356 1.400 20.300 
Nonw70 12.573 10.041 0.300 58.630 
Lpop70 13.437 1.132 10.940 16.264 
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Table2A 
Proportions of Coefficient Variance Associated with Each Characteristic Root 

(ForMSA) 
CONDITIONAL 

Eigenvalue INDEX INTERCEP LPOP70 SOUTH CENTRAL NEAST MEDSY70 

17,97163 1. 00000 0.0000 0.0000 0.0001 0.0002 0.0001 0.0000 
1.18978 3.88652 0.0000 0.0000 0.0525 0.0402 0.0302 0.0000 
1. 02318 4.19101 0.0000 0.0000 0.0000 0.1010 0.1254 0.0000 
0.44361 6.36492 0.0000 0.0000 0.0273 0.0036 0. 0013 0.0000 
0.37467 6.92576 0.0000 0.0000 0. 0116 0.1237 0.0491 0.0000 
0.30193 7. 71502 0.0000 0.0000 0. 0726 0.0173 0.0424 0.0000 
0.18018 9.98705 0.0000 0.0000 0.0868 0.0625 0. 0135 0.0000 
0.12987 11. 76366 0.0000 0.0000 0.0521 0.0046 0.0001 0.0000 
0 .12112 12.18117 0.0000 0.0000 0. 0296 0. 0072 0.0001 0.0000 
0.10744 12.93335 0.0000 0.0000 0.0137 0.1975 0.2109 0.0000 
0.05526 18.03417 0.0000 0.0000 0.0037 0. 0041 0.0065 0.0000 
0.02966 24.61424 0.0000 0.0000 0.0330 0.0865 0.1745 0.0000 
0.02093 29. 30629 0.0000 0.0012 0.0046 0.0000 0.0309 0.0000 
0.01652 32.98338 0.0000 0.0002 0.0497 0.0431 0.0017 0.0000 
0.01337 36.66013 0.0000 0.0000 0.0019 0.0001 0.0082 0.0000 
0.00956 43.35576 0.0001 0.0004 0.4333 0.2239 0.1602 0.0000 
0.00457 62.70277 0.0009 0.0035 0.0032 0.0002 0.0059 0.0014 
0.00401 66.95691 0.0003 0.0193 0.0434 0.0138 0.0005 0.0021 
0.00183 99.22846 0.0066 0.0831 0.0538 0.0043 0.0595 0. 0013 
0.00049 190.75306 0. 0134 0.8791 0.0000 0.0348 0.0018 0.0089 
0.00033 232.35226 0.0609 0. 0119 0.0266 0.0142 0.0507 0.1175 
0.00006 526. 71878 0.9178 0.0012 0.0002 0.0173 0.0262 0.8686 

HIGH70 COLL70 LUR70 MFGS70 INCLE70 INCLA70 LGVPC70 IGR70 PCTAX70 

0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0002 0.0000 
0.0000 0.0000 0.0000 0.0005 0.0005 0.0003 0.0000 0.0002 0.0002 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0004 0.0000 
0.0000 0.0000 0.0001 0.0002 0.0006 0.0010 0.0000 0.0058 0.0006 
0.0002 0.0028 0.0019 0.0102 0.0002 0.0009 0.0000 0.0002 0.0005 
0.0000 0.0016 0.0003 0.0065 0.0002 0. 0110 0.0001 0.0001 0.0000 
0.0000 0.0022 0.0001 0.0002 0.0002 0.0182 0.0006 0.0050 0.0001 
0.0000 0.0023 0.0021 0.0009 0.0187 0.0444 0.0001 0.0720 0.0029 
0.0000 0.0056 0.0017 0.0054 0.0062 0.0278 0.0002 0.4017 0.0057 
0.0001 0.0083 0.0040 0.2056 0.0070 0.0000 0.0022 0.0036 0.0003 
0.0007 0.0160 0.0001 0.0609 0.0040 0.0641 0.0081 0. 0165 0.0053 
0.0000 0.0883 0.2182 0.0039 0.0169 0.0319 0.0000 0.1832 0.0357 
0.0001 0.0488 0.0152 0.0209 0.0005 0.2763 0.0550 0.0525 0.0419 
0.0008 0.2860 0.0001 0.3030 0.2301 0.0136 0.0018 0.0028 0 .1155 
0.0032 0.0122 0.0026 0.0088 0 .1164 0.0039 0.0041 0.1251 0.5803 
0.0006 0.2256 0.4473 0.0184 0.2354 0.3944 0.0001 0.1119 0.0464 
0.0373 0.0263 0.0686 0.1997 0.0152 0.0007 0.1067 0.0118 0.0182 
0.0638 0.1912 0.1525 0.0009 0.0158 0.0781 0.0399 0.0005 0. 0130 
0.2755 0.0346 0.0006 0.0594 0.1388 0.0057 0.1224 0.0025 0.0000 
0.0810 0.0005 0.0239 0.0620 0.0816 0.0000 0.6090 0.0028 0.0046 
0.1097 0. 0013 0.0176 0.0324 0.0940 0.0023 0.0031 0.0002 0. 0969 
0. 4271 0.0465 0.0430 0.0002 0.0176 0.0251 0.0467 0.0007 0.0317 
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LPCEX70 EXEDU70 EXHWY70 EXHEAL70 LPC70 AGE70 NONW70 

0.0000 0.0000 0.0002 0.0005 0.0000 0.0001 0.0003 
0.0000 0.0000 0.0004 0.0116 0.0000 0.0000 0. 0071 
0.0000 0.0000 0.0002 0.0003 0.0000 0.0000 0. 0011 
0.0000 0.0000 0.0166 0.3941 0.0000 0.0000 0.0231 
0.0000 0.0001 0.0014 0.0548 0.0000 0.0000 0.1403 
0.0000 0.0002 0. 0112 0.0157 0.0000 0.0038 0.2683 
0.0001 0.0001 0.2796 0.0958 0.0000 0.0002 0.0374 
0.0000 0.0000 0.1461 0. 0011 0.0000 0.0429 0.0177 
0.0000 0.0009 0.0029 0.0884 0.0000 0.0006 0.0003 
0.0001 0.0004 0.0075 0.0648 0.0000 0.0009 0.0046 
0.0000 0.0351 0.0705 0.0032 0.0000 0.1201 0.0104 
0.0001 0.0000 0.0023 0.0073 0.0000 0.1434 0. 0072 
0.0219 0.0086 0.0216 0.0046 0.0001 0.1772 0.0182 
0.0287 0. 0132 0.0052 0.0015 0.0002 0.0004 0.0287 
0.0037 0.0434 0.0066 0.1499 0.0004 0.3705 0.0746 
0.0126 0 .1148 0. 0041 0.0031 0.0004 0.0449 0.1385 
0.1045 0.6193 0.2514 0. 0140 0.0045 0.0265 0.0033 
0.4034 0.0126 0.0866 0.0003 0.0015 0.0215 0.0000 
0.0196 0.0593 0.0778 0.0200 0.0437 0.0003 0. 0511 
0.2774 0.0484 0.0002 0.0506 0.1693 0.0042 0.1373 
0.0104 0.0069 0.0045 0. 0182 0. 6739 0.0213 0.0073 
0.1174 0. 03.68 0.0031 0.0001 0.1060 0.0212 0.0231 
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Table 3 
CITY Population Growth and Manufacturing 

Variables included R2 Adjusted R2 AIC BIC SBC 

Lpop70,Mfgs70,South, 
Central and NEast 0.489 0.453 -206.328 -203.203 -192.265 

Mf gs70, South, Central, 
NEast 0.472 0.442 -205.811 -203.218 -194.092 

Lpop70,LPc70,Central, 
NEast ,Mfgs70 0.465 0.435 -203.913 -200.344 -188.850 

Lpop70,Mfgs70,South, 
Central ,NEast,Lpc70 0.491 0.450 -204.662 -201.282 -188.255 

LPc70,Mfgs70,South, 
Central, NEast 0.472 0.435 -203.811 -201.097 -189.748 

Table 3A 
Proportion of Coefficient Variance Associated with Each Characteristic Root 

(For CITY, CITY growth and manufacturing) 
CONDITIONAL 

Eigenvalue INDEX INTERCEP SOUTH CENTRAL NEAST MFGS70 LPC70 LPOP70 
4.67533 1.00000 0.0000 0.0050 0.0056 0.0045 0.0043 0.0000 0.0010 
1. 01731 2.14378 0.0000 0.2090 0.0699 0.0817 0. 0014 0.0000 0.0000 
1. 00007 2.16218 0.0000 0.0007 0.1724 0.2485 0.0000 0.0000 0.0000 
0.19536 4.89208 0.0001 0. 5613 0.5265 0. 4131 0.0006 0.0001 0.0090 
0.09453 7.03274 0.0001 0. 0071 0.1730 0.1531 0.8424 0.0001 0.0024 
0.01732 16.42964 0.0015 0.0037 0.0069 0.0173 0.0807 0. 0013 0.8936 
0.00008 231.56760 0.9983 0. 2132 0.0458 0.0819 0.0706 0.9985 0.0941 
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Table 4 
MSA Population Growth and Manufacturing 

Variables included R2 Adjusted R 2 AIC BIC SBC 

Lpop70,Central,NEast 0.283 0.253 -182.767 -180.269 -173.497 

Lpop70,Mfgs70,Central, 
NEast 0.300 0.260 -182.541 -179.670 -170.954 

Lpop70,Mfgs70,Central 0.274 0.243 -181.835 -179.456 -172.565 

Lpop70,Mgfs70,Lpc70, 
Central 0.292 0.251 -181.698 -178.966 -170.110 

Lpop70,Lpc70,Mfgs70, 
Central,NEast 0.306 0.255 -181.278 -178.132 -167.375 

Table 4A 
Proportion of Coefficient Variance Associated with Each Characteristic Root 

(For MSA, MSA growth and manufacturing) 
CONDITIONAL 

Eigenvalue INDEX INTERCEP SOUTH CENTRAL NEAST MFGS70 LPC70 LPOP70 

4.68399 1.00000 0.0000 0.0061 0.0055 0.0044 0.0042 0.0000 0.0002 
1. 01350 2.14980 0.0000 0. 2172 0.0287 0.1618 0. 0011 0.0000 0.0000 
1.00003 2.16422 0.0000 0.0205 0.2500 0.1573 0.0000 0.0000 0.0000 
0.21234 4.69671 0.0003 0.6112 0.4543 0.3295 0.0083 0.0003 0.0019 
0.08614 7.37416 0.0003 0.0818 0.2563 0.2992 0.8999 0.0003 0. 0011 
0.00368 35.65559 0.0292 0.0018 0.0001 0.0122 0.0865 0.0221 0.9842 
0.00032 121.22002 0.9702 0.0613 0.0051 0.0355 0.0000 0.9773 0.0125 
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Table 5 
CITY Population Growth and Manufacturing (BMA) 

Variables included Model posterior probability 
South,NEast,Lpc70,Lpop70 0.233 

South,Mfgs70,Lpc70,Lpop70 0.213 

South,Lpc70 0.062 

South,Lpop70 0.056 

South,NEast 0.047 

South,Mfgs70 0.046 

South, Central 0.045 

Dependent variable: city population growth form 1970 to 1990 
v = 4.000,J = 0.250 and rjJ = 3.000 

Posterior t-probability: South=0.0003, Central=0.8833, NEast=0.5023, Mfgs70=0.4887,Lpc70=0.0092, 
Lpop70=0.0113 

Table 6 
MSA population growth and manufacturing (BMA) 

Variables Model posterior probability 
South,NEast 0.102 

NEast,Lpc70,Lpop70 0.090 

South,Lpc70 0.068 

South,Mfgs70 0.062 

NEast,Lpc70 0.054 

South,Lpop70 0.050 
Posterior t-probability: South=0.0809, Central=0.8456, NEast=0.1452, Mfgs70=0.7493,Lpc70=0. l 570, 
Lpop70=0.4993 
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Table 7 
CITY Population Growth and Manufacturing (Geweke's) 

Variables Model posterior probability 
South,Central,NEast,Mfgs70,Lpc70,Lpop70 0.495 

South,Central,NEast,Mfgs70,Lpc70 0.319 

Central,NEast,Lpc70 ,Lpop70 0.094 

Central,NEast,Mfgs70 ,L pc 70 0. 090 
P.M.P. of variables: South=0.1851, Central=0.0001, NEast=0.0000, Mfgs70=0.0007, Lpc70=0.0000, 
Lpop70=0.4096 

Table 8 
MSA Population Growth and Manufacturing (Geweke's) 

Variables 

Central,NEast,Mfgs70,Lpc70 

Central,NEast,Mfgs70,L pc70 

Model posterior probability 

0.238 

0.182 

Central,Lpc70,Lpop70 0.164 
P.M.P of variables: South=0.7256, Central=0.0206, NEast=0.1846, Mfgs70=0.2605, Lpc70=0.0000 
Lpop70=0.371 l 

Table 9 
CITY Population Growth and Manufacturing (MBVS) 

Variables Model posterior probability 
Central,NEast,Mfgs70 0.109 

Central,NEast,Mfgs70,Lpc70 0.109 

South, Central,NEast,Mfgs70 0.066 

South, Central,NEast,Mfgs70,L pc 7 0 0.065 

Central,Mfgs70 0.054 

Central,Mfgs70,Lpc70 0.054 
P.M.P. of variables: South=0.6479, Central=0.3238, NEast=0.3450, Mfgs70=0.0810, Lpc70=0.5006, 
Lpop70=0.8353 
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Tables 10 
MSA Population Growth and Manufacturing (MBVS) 

Variables Model posterior probability 
Central,NEast 0.069 

Central,NEast,Lpop70 0.068 

Central,NEast,Lpc70,Lpop70 0.068 

Central,NEast,Lpc70 0.067 

Central,Lpop70 0.060 

Central,Lpc70,Lpop70 0.060 
P.M.P. of variables: South=0.5810, Central=0.2392, NEast=0.4520, Mfgs70=0.9881, Lpc70=0.5024, 
Lpop70=0.4374 

Table 11 
CITY Population Growth and Unemployment 

Variables included R2 AdjustedR 2 AIC BIC SBC 

Lur70,Mfgs70,South 
Central,NEast 0.475 0.438 -204.523 -201.575 -190.456 

Lpop70,South,Central, 
NEast,Lur70,Mfgs70 0.492 0.447 -204.836 -201.279 -188.429 

Mfgs7 0, South, Central, 
NEast 0.472 0.442 -205.811 -203.119 -194.092 

Lpop70,Mfgs70,South, 
Central,NEast 0.489 0.453 -206.328 -203.082 -192.265 

Lpop70,LPc70,Mfgs70 
South,Central,NEast 0.491 0.450 -204.662 -201.139 -188.255 
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Table 12 
MSA Population Growth and Unemployment 

Variables included R2 Adjusted R2 AIC BIC SBC 

Lpop70,Central,Neast 0.283 0.253 -182.767 -180.179 -173.497 

Lpop70,Mfgs70,Central, 
NEast 0.300 0.260 -182.541 -179.685 -170.954 

Lpop70,Mfgs70,Central 0.274 0.243 -181.835 -179.451 -172.565 

L pop70,L ur70, Central, 
NEast 0.293 0.252 -181.779 -178.029 -170.191 

Lpop70,Lpc70,Central, 
NEast 0.292 0.251 -181.698 -178.959 -170.110 

Table 13 
CITY Population Growth and Unemployment (BMA) 

Variables included Model posterior probability 

South,Mfgs70,Lpc70, 0.151 

South,Mfgs70,Lur70,Lpc70,Lpop70 0.139 

South,Central,Mfgs70,Lpc70,Lpop70 0.081 

South,NEast,Mfgs70,Lpc70,Lpop70 0.072 

South,Central,NEast,Mfgs70,Lpc70,Lpop70 0.060 

South,Lpc70 0.040 
Posterior t-probability: South=0.0004, Central=0.7778, NEast=O. 7085, Mfgs70=0.3138, Lur70=0.7070, 
Lpc70=0.0155, Lpop70=0.0208 
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Table 14 
MSA Population Growth and Unemployment (BMA) 

Variables Model posterior probability 
South,Lur70,Lpc70.Lpop70 0.064 

Central,Lpc70,Lpop70 0.062 

Central,Lur70, 0.050 

South,Central,Mfgs70,Lpc70,Lpop70 0.047 

South,Central,Lur70 0.047 

Posterior t-probability: South=0.7487, Central=0.0924, NEast=0.8019, Lur70=0.1668, Mfgs70=0.8475, 
Lpc70=0.093 l, Lpop70=0.3225 

Table 15 
CITY Population Growth and Unemployment (Geweke's) 

Variables Model posterior probability 

South,Central,NEast,Mfgs70,Lpc70,Lpop70 0.328 

South, Central,NEast,Mfgs70,Lpc70 0 .231 

South,Central,NEast,Mfgs70,Lur70,Lpc70,Lpop70 0.148 

South,Central,NEast,Mfgs70,Lur70,Lpc70 0.099 
P.M.P. of variables: South=0.1905, Central=0.0001, NEast=0.0002, Mfgs70=0.0020, Lur70=0.6919, 
Lpc70=0.0000, Lpop70=0.4084 

Table 16 
MSA Population Growth and Unemployment (Geweke's) 

Variables Model posterior probability 
Central,NEast,Mfgs70,Lpc70 0.140 

Central,NEast,Mfgs70,Lpc70,Lpop70 0.130 

Central,NEast,Lur70,Mfgs70,Lpc70 0.097 

Central,NEast,Lpc70,Lpop70 0.090 
P.M.P. of variables: South=0.7310, Central=0.0228, NEast=0.1779, Lur70=0.6055, Mfgs70=0.222 l, 
Lpc70=0.0000, Lpop70=0.4540 
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Table 17 
CITY Population Growth and Unemployment (MBVS) 

Variables Model posterior probability 

Central, NEast,Lpc70 0.071 

Central,NEast 0.071 

Central,NEast,Lur70,Lpc70 0.060 

Central,NEast,L ur70 0.060 

South,Central,NEast,Lpc70 0.040 
P.M.P. of variables: South=0.6418, Central=0.1536, NEast=0.1854, Mfgs70=0.7857, Lur70=0.5361, 
Lpc70=0.4982, Lpop70=0.6902 

Table 18 
MSA Population Growth and Unemployment (MBVS) 

Variables Model posterior probability 
Central, NEast 0.039 

Central,NEast,L pc70 0.038 

Central,NEast,L ur70 0.033 

Central,NEast,L ur7 0 ,L pc 7 0 0.033 

Central,NEast,L pop70 0.032 

Central,NEast,Lpc70,Lpop70 0.032 
P.M.P. of variables: South=0.5820, Central=0.2588, NEast=0.4581, Lur70=0.5385, Mfgs70=0.9895, 
Lpc70=0.5028, Lpop70=0.4808 

113 



Table 19 
CITY Population Growth and Education 

Variables included R2 Adjusted R2 AIC BIC SBC 

High70,Central,NEast 0.536 0.517 -217.800 -214.700 -208.400 

Lmedsy70,High70, 
Central,NEast 0.540 0.514 -216.400 -213.100 -204.700 

Lpop70,High70, 
Central,NEast 0.540 0.514 -216.400 -213.000 -204.700 

LPc70,High 70, 
Central,NEast 0.542 0.514 -216.900 -213.500 -205.200 

High70,Coll70, 
Central,NEast 0.539 0.513 -216.300 -212.900 -204.500 

Table 20 
MSA Population Growth and Education 

Variables included R2 Adjusted R2 AIC BIC SBC 

Mfgs70,Lpmed70, 
Central,NEast 0.305 0.266 -183.200 -180.100 -171.600 

Lpc70,Mfgs70,Lpmed70, 
Central,NEast 0.325 0.277 -183.300 -179.800 -169.400 

L pop 70, Central,NEast 0.283 0.253 -182.800 -180.300 -173.500 

Lpc70,Lpmed70,Central, 
NEast 0.301 0.261 -182.700 -179.800 -171.100 

Mfgs70,Lpmed70, 
Central 0.282 0.252 -182.700 -180.200 -173 .400 
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Table 21 
CITY population growth and education (BMA) 

Variables included Model posterior probability 

South,NEast,Coll70,Mfgs70,Lpop70,Lpmed70 0.033 

South,Central,NEast,Coll70,Mfgs70,Lpop70,Lpmed70 0.032 

South,Coll70,Mfgs70,Lpop70,Lpmed70 0.019 

South,Central,Coll70,Mfgs70,Lpop70,Lpmed70 0.016 

South,Central,NEast,Coll70,Lur70,Lpop70,Lpmed70 0.016 

South,Central,NEast,Lpop70,Lpmed70 0.015 
Posterior t-probability: South=0.0024, Central=0.8333, NEast==0.4884, High70=0.7904,Co1170==0. l 903, 
Mfgs70=0.4755, Lur70=0.7520, Medsy70==0.9751, Lpc70=0.7329, Lpop70=0.0001, Lpmed70=0.1484 

Table 22 
MSA population growth and education (BMA) 

Variables Model posterior probability 
High70,Lur70,Mfgs70,Lpmed70 0.135 

NEast,High70,Lur70,Mfgs70,Lpmed70 0.048 

South,High70,Lur70,Mfgs70 0.024 

South,High70,Mfgs70 0.015 

High70,Mfgs70 0.015 

Posterior t-probability: South=0.8047, Central==0.8309, NEast=0.9893, Medsy70=0.7973, Hgih70=0.0428, 
Coll70=0.8354, Lur70==0.4072, Mfgs70=0.2336, Lpc70=0.9569, Lpmed70==0. l 039, Lpop70=0.9352 
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Table 23 
CITY Population and Education (Geweke's) 

Variables Model posterior probability 
Central,NEast,High70,Lpc70,Lpop70 0.100 

Central,NEast,High70,Medsy70,Lpc70 0.073 

Central,NEast,High70,Medsy70,Lpc70,Lpop70 0.069 

Central,NEast,High70,Lpc70 0.059 

Central,NEast,High70,Lur70,Lpc70,Lpop70 0.053 

Central,NEast,High70,Lpc70,Lpop70 0.049 

Central,NEast,High70,Lur70,Medsy70,Lpc70 0.045 

P.M.P. of variables: South=0.6822, Central=0.0000, NEast=0.0073, High70=0.0000, Coll70=0.7941, 
Mfgs70=0.7547, Lur70=0.5969, Medsy70=0.4836, Lpc70=0.1855, Lpop70=0.4681 

Table 24 
MSA Population Growth and Education (Geweke's) 

Variables Model posterior probability 
Central,NEast,Medsy70,Lpc70,Lpop70 0.049 

Central,NEast,Medsy70,Lur70,Lpc70,Lpop70 0.041 

Central,NEast,Medsy70,Lur70,Mfgs70,Lpc70,Lpop70 0.039 

Central,NEast,Medsy70,Mfgs70,Lpc70,Lpop70 0.037 

Central,NEast,Mfgs70,Lpc70 0.025 

Central,NEast,Lur70,Mf gs70,L pc70 0.024 

Central,NEast,Medsy70,Lpop70 0.021 
P.M.P. of variables: South=0.6921, Central=0.0226, NEast=0.1716, Medsy70=0.2849, High70=0.7335, 
Coll70=0.8224, Lur70=0.5314, Mfgs70=0.3629, Lpc70=0.2530, Lpop70=0.2902 
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Table 25 
CITY Population Growth and Education (MBVS) 

Variables Model posterior probability 
Central,NEast,Lur70 0.061 

Central,NEast,L pc 70 0.050 

Central,NEast,Lur70,Lpc70 0.040 

South,Central,NEast,Lur70 0.029 

South,Central,NEast,Lpc70 0.026 
P.M.P. of variables: South=0.6319, Central=0.2145, NEast=0.3075, High70=0.8720, Coll70=0.8834, 
Mfgs70=0.9999, Lur70=0.4713, Medsy70=0.6523, Lpc70=0.4362, Lpop70=0.7411, Lpmed70=0.9623 

Table 26 
MSA population growth and education (MBVS) 

Variables Model posterior probability 
Central,NEast 0.024 

Central,NEast,Lpc70 0.024 

Central,NEast,Lur7 0 0.021 

Central,NEast,Lur70,Lpc70 0.020 

Central,NEast,Medsy70 0.015 

Central 0.015 
P.M.P. of variables: South=0.5795, Central=0.3130, NEast=0.4797, Medsy70=0.5493, High70=0.9986, 
Col170=0.9858, Lur70=0.5387, Mfgs70=0.9925, Lpc70=0.5039, Lpop70=0.5809 
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Table 27 
CITY Population Growth, Education and Income 

Variables included R2 Adjusted R2 AIC BIC SBC 
Lpop70,Mfgs70, 
Nonw70,Medic70 
Central,NEast 0.602 0.568 -223.600 -219.700 -207.200 

Lpop70,N onw70, 
Medic70,Central 
NEast 0.590 0.561 -223.300 -220.100 -209.200 

Lpop70,Pc70,Mfgs70, 
Nonw70,Medic70, 
Central,NEast 0.609 0.569 -223.000 -218.500 -204.200 

Lpop70,Pc70,Nonw70 
Medic70,Central, 
NEast 0.595 0.560 -222.300 -218.700 -205.900 

Mfgs70,Nonw70, 
Medic70,Central, 
NEast 0.584 0.554 -222.200 -219.100 -208.100 
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Table 28 
CITY Population Growth and Education with Race 

Variables included R2 Adjuted R2 AIC BIC SBC 

Mfgs70,N onw70,South 
Central,NEas 0.564 0.534 -218.600 - 215.100 -204.600 

Mfgs70,Nonw70,Central, 
NEast 0.544 0.504 -217.200 -214.400 -205.500 

Lpc70,Mfgs70,Nonw70, 
Central,NEast 0.554 0.528 -216.900 -213.700 -202.900 

Medsy70,Mfgs70, 
Nonw70,Central, 
NEast 0.558 0.527 -217.500 -214.200 -203.400 

Medsy70,Mfgs70,Nonw70, 
Central,NEast 0.571 0.517 -217.800 -213.800 -201.400 

Table 29 
CITY Population Growth and Education with Race (BMA) 

Variables included 
South,Central,Lur70,Medsy70,Lpc70 
Lpop70,Lmedic70 

South,Central,Mfgs70,Nonw70,Medsy70,Lpc70, 
Lpop70,Lmedic70 

South,Central,Nonw70,Medsy70,Lpc70,Lpop70, 
Lmedic70 

South,Nonw70,Lur70,Medsy70,Lpc70,Lpop70, 
Lmedic70 

South,Central,NEast,Mfgs70,Nonw70,Medsy70, 
Lpc70,Lpop70,Lmedic70 

Central,Nonw70,Lur70,Medsy70,Lpc70,Lpop70, 
Lmedic70 

Model posterior probability 
0.361 

0.071 

0.066 

0.055 

0.049 

0.046 

Posterior t-probability: South=0.0131, Central=0.0080, NEast=0.9640, Mfgs70=0.9744, Nonw70=0.4477, 
Lur70=0.4525, Medsy70=0.0026, Lpc70=0.9866, Lpop70=0.0000, Lmedic70=0.0087 
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Table 30 
MSA Population Growth and Education with Race (BMA) 

Variables Model posterior probability 
South,NEast,Mfgs70,Lpc70 0.057 

South,Central,NEast,Lur70,Mfgs70 0.052 

South,NEast,Lur70,Nonw70 0.048 

South,Central,NEast,Lur70,Nonw70, 0.043 

South,Central,NEast,Mfgs70 0.025 

Central,NEast,Lur70,Nonw70,Lpop70 0.022 
Posterior t-probability: South=0.4831, Cenral=0.8000, NEast=0.0165, Medsy70=0.7724, Lur70=0.4302, 
Mfgs70=0.2480, Lpc70=0.7630, Nonw70=0.2553, Lpop70=0.7889 

Table 31 
CITY Population Growth and Education with Race (Geweke's) 

Variables Model posterior probability 

South,Central,NEast,Nonw70,Medsy70,Lpop70 0.086 

South,Central,NEast,Nonw70,Medsy70,Lpc70,Lpop70 0.079 

South,Central,NEast,Nonw70,Lur70,Medsy70,Lpop70 0.073 

South,Central,NEast,Nonw70,Mesdsy70,Lpc70 0.060 

South,Central,NEast,Nonw70,Lur70,Medsy70,Lpc70,Lpop70 0.052 

South, Central,NEast,Nonw70,Medsy70 0.049 

P.M.P. of variables: South=0.4267, Central=0.0000, NEast=0.0012, Mfgs70=0.0042, Nonw70=0.0005, 
Lur70=0.668 l, Medsy70=0. l 852, Lpc70=0.5033, Lpop70=0. 7671, Lmedic70=0.5135 
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Table 32 
MSA Population Growth and Education with Race (Geweke's) 

Variables Model posterior probability 
Central,NEast,Medsy70,Lpc70,Lpop70 0.043 

Central,NEast,Medsy70,Lur70,Lpc70,Lpop70 0.042 

Central,NEast,Medsy70,Mfgs70,Lpc70,Lpop70 0.042 

Central,NEast,Medsy70,Lur70,Mfgs70,Lpc70,Lpop70 0.040 

Central,NEast,Mfgs70,Lpc70 0.025 

Central,NEast,Medsy70,Lpop70 0.022 
P.M.P. of variables: South=0.6789, Central=0.0214, NEast=0.1662, Medsy70=0.3 l 15, Lur70=0.5329, 
Mfgs70=0.3833, Lpc70=0.2063, Nonw70=0.6853, Lpop70=0.3623 

Table 33 
CITY Population Growth and Education with Race (MBVS) 

Variables Model posterior probability 
Central,NEast,L ur7 0 0.081 

Central,NEast,Lpc70 0.069 

Central,NEast,L ur7 O,L pc 70 0.055 

South,Central,NEast,Lur70 0.039 

South,Central,NEast,Lpc70 0.037 

Central,NEast,Medsy70,Lpc70 0.033 
P.M.P. of variables: South=0.6344, Central=0.1799, NEast=0.2458, Mfgs70=0.9997, Nonw70=0.9933, 
Lur70=0.4488, Medsy70=0.6069, Lpc70=0.4204, Lpop70=0.7242, Lpmdic70=0.9897 
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Table 34 
MSA Population Growth and Rducation with Race (MBVS) 

Variables Model posterior probability 
Central,NEast 0.023 

Central,NEast 0.022 

Central,NEast,Lur7 0 0.020 

Central,NEast,Lur70,Lpc70 0.019 

Central,NEast,L pop 70 0.016 

Central,NEast,Lpc70,Lpop70 0.016 
P.M.P. of variables: South=0.5786, Central=0.2985, NEast=0.4761, Mfgs70=0.9918, Nonw70=0.9993, 
Lur70=0.5387, Medsy70=0.5938, Lpc70=0.5035, Lpop70=0.5236 

Table 35 
CITY Population Growth and Inequality 

Variables included 
Lpop70,Lpc70,Mfgs70, 
Incle70,Lmedic70, 
Central,NEast 

Lpop70,Mfgs70,Incle70, 
South,Central 

Lpop70,Mfgs70,Incle70, 
Edle70,Lmedic70,Central, 

0.613 

0.588 

NEast 0.610 

Lpop70,Mfgs70,Incle70, 
Edle70,Central,NEast 0.601 

Lpop70,Mfgs70,Lpc70, 
Incle70,Edle70,Lmedic70, 
Central,NEast 0.62 

Adjusted R 2 AIC BIC SBC 

0.573 -223.800 -219.300 -205.100 

0.567 -222.900 -219.900 -208.900 

0.571 -223.100 -218.800 -204.400 

0.561 -223.400 -219.700 -207.000 

0.578 -223.700 -218.400 -202.600 
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Table 36 
MSA Population Growth and Inequality 

Variables included R2 Adjusted R2 AIC BIC SBC 
Lpop70,Central,NEast 0.283 0.253 -182.800 -180.200 -173.500 

Lpop70,Mfgs70,Central, 
NEast 0.300 0.260 -182.500 -179.600 -171.000 

Lpop70,Mfgs70,Central 0.274 0.243 -181.800 -179.400 -172.600 

Lpop70,Lur70,Central, 
NEast 0.293 0.252 -181.800 -179.000 -170.200 

Lpop70,Lur70,Mfgs70, 
Medsy70,Central,NEast 0.311 0.261 -181.300 -178.500 -167.900 

Table 37 
CITY Population Growth and Inequality (BMA) 

Variables included Model posterior probability 
South,Mfgs70,Incle70, 
Lpop70,Edle70,Lmedic70 0.100 

South,Mfgs70,Incle70,Incla70,Lpop70, 
Edle70,Medic70 0.050 

South,NEast,Mfgs70,Medsy70,Incle70, 
Lpop70,Edle70,Medic70 0.047 

South,Mfgs70,Lur70,Medsy70,Incle70,Lpc70, 
Lpop70,Edle70,Lmedic70 0.026 

South,NEast,Mfgs70,Medsy70,Lpop70, 
Edle70,Lmedic70 0.019 

South,Mfgs70,Medsy70,Incle70,Incla70,Lpop70, 
Edle70,Lmedic70 0.019 

Posterior t-probability: South=0.0542, Central=0.7979, NEast=0.6767, Mfgs70=0.0150, 
Lur70=0.9581, Medsy70=0.3896, Incle70=0.0817, Inlca70=0.6583, Lpc70=0.3913,Lpop70=0.8104, 
Edle70=0.0000, Lmedic70=0.0006 
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Table 38 
MSA Population Growth and Inequality (BMA) 

Variables Model posterior probability 
South,NEast,Incle70 0.037 

NEast,Incle70 0.036 

NEast,Lur70,Lpc70 0.028 

NEast,Lur70,Incle70 0.026 

South,NEast,Lur70,Lpc70 0.017 

South,NEast,Lur70,Incle70 0.015 
Posterior t-probability: South=0.7372, Central=0.8629, NEast=0.0360, Medsy70=0.9111, Lur70=0.7540, 
Mfgs70=0.7061, Incle70=0.2627, Incla70=0.8237, Lpc70=0.2480, Lpop70=0.7241 

Table 39 
CITY Population Growth and Inequality (Geweke's) 

Variables Model posterior probability 

Central,NEast,Medsy70,Incle70,Lpop70 0.581 

Central,NEast,Medsy70,Incle70 0.082 

Central,NEast,Medsy70,Incle70,Edle70,Lpop70 0.068 

Central,NEast,Lur70,Medsy70,Incle70,Lpop70 0.066 

Central,NEast,Medsy70,Incle70,Lpc70,Lpop70 0.038 

South,Central,NEast,Medsy70,Incle70,Lpop70 0.019 

Central,NEast,Medsy70,Incle70,Incla70,Lpop70 0.016 

Central,NEast,Medsy70,Incle70,Lmedic70,Lpop70 0.015 

Central,NEast,Medsy70,Incle70,Lpop70 0.014 

Central,NEast, Coll 70,Medsy70,Incle70,L pop 70 0.013 
P.M.P. of variables: South=0.7580, Central=0.0000, NEast=0.0000, Coll70=0.8190, Mfgs70=0.1475, 
Lur70=0.4652, Medsy70=0.0000, Incle70=0.0000, Incla70=0.8975, Lpc70=0.6344, Edle70=0.3098, 
Lmedic70=0.5273, Lpop70=0.0790 
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Table 40 
MSA [opulation Growth and Inequality (Geweke's) 

Variables Model posterior probability 
Central,NEast,Medsy70,Lur70,Lpc70,Lpop70 0.044 

Cemal,NEast,Medsy70,Lur70,Mfgs70,Lpc70,Lpop70 0.044 

Central,NEast,Medsy70,Lpc70,Lpop70 0.039 

Central,NEast,Medsy70,Mfgs70,Lpc70,Lpop70 0.034 

Cemal,NEast,Mfgs70,Lpc70 0.022 

Central,NEast,Mfgs70,Lpc70,Lpop70 0.021 

Central,NEast,Lpc70,Lpop70 0.020 
P.M.P. of variables: South=0.7165, Central=0.0254, NEast=0.2209, Medsy70=0.1850, Lur70=0.5281, 
Mfgs70=0.3688, lncle70=0.7951, lncla70=0.7320, Lpc70=0.3423, Lpop70=0.2569 

Table 41 
CITY Population Growth and Inequality (MBVS) 

Variables Model posterior probability 
Central,NEast,Medsy70 0.025 

Central,NEast,Medsy70,Lmedic70 0.025 

Central,NEast,Medsy70,Lpc70 0.025 

Central,NEast,Medsy70,Lpc70,Lmedic70 0.024 

Central,Medsy70 0.023 

Central,Medsy70,Lmedic70 0.023 

Central,Medsy70,Lpc70 0.022 
P.M.P. of variables: South=0.6288, Central=0.2356, NEast=0.4813, Coll70=0.9779, Mfgs70=0.9999, 
Lur70=0.5277, Medsy70=0.0879, Incle70=0.9693, Incla70=0.9780, Lpc70=0.5012, Lpop70=0.8504, 
Lmedic70=0.5000 
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Table 42 
MSA Population Growth and Inequality (MBVS) 

Variables Model posterior probability 
Central,NEast 0.023 

Central,NEast,L pc 7 0 0.022 

Central,,NEast,Lur70 0.020 

Central,NEast,Lur70,Lpc70 0.019 

Central,NEast,Medsy70 0.015 

Central 0.022 
P.M.P. of variables: South=0.5811, Central=0.3145, NEast=0.4812, Medsy70=0.5936, Lur70=0.5390, 
Mfgs70=0.9932, Inlcle70=0.9751, Incla70=0.9585, Lpc70=0.5037, Lpop70=0.5859 

Table 43 
CITY Population Growth and Social Characteristics 

Variables included 
Lpop70,Mfgs70,Age70, 
South, Central,NEast, 
Seg70, Weseg70 

Lpop70,Mfgs70,Age70, 
Nonw70,South,Central, 
NEast 

Lpop70,Mfgs70,Age70, 
Weseg70,South,Central, 
NEast 

Lpop70,Mfgs70,Age70, 
Nonw70,Lur70,South, 
Central,NEast 

Lpop70,Mfgs70,Age70, 
Nonw70,Weseg70,South, 

0.875 

0.871 

0.870 

0.874 

Central,NEast 0.872 

Adjusted R 2 AIC BIC SBC 

0.857 -261.300 -255.200 -242.000 

0.854 -261.100 -256.100 -244.000 

0.853 -260.500 -255.700 -243.400 

0.856 -260.800 -254.800 -241.500 

0.853 -259.800 -254.200 -240.600 
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Table 44 
MSA Population Growth and Social Characteristics 

Variables included R2 Adjusted R2 AIC BIC SBC 
Lpop70,Lpc70,Nonw70, 
Mfgs70,Medsy70, 
Central, NEast 0.480 0.413 -159.600 -154.400 -142.400 

Lpop70,Lpc70,Nonw70, 
Lur70,Mfgs70,Medsy70 0.444 0.385 -157.500 -153.700 -142.500 

Lpop70,Lpc70,Nonw70, 
Mfgs70,Medsy70, 
Central 0.451 0.392 -158.200 -154.300 -143.200 

Lpop70,Lpc70, Nonw70, 
Mfgs70,Medsy70 0.433 0.383 -158.100 -154.900 -145.300 

Lpop70,Lpc70,Nonw70, 
Mfgs70,Medsy70,South 
Central,NEast 0.484 0.408 -158.100 -152.400 -138.800 

Table 45 
CITY Population and Social Characteristics (BMA) 

Variables included 
South, Central,NEast,Lpc70,Lpop70,Seg70, Weseg70 

South, Central,NEast,L pc 70,Lpop 70,Seg70, Weseg70 

South,Central,Lpc70,Lpop70,Seg70,Weseg70 

South,Central,NEast,Age70,Nonw70,Lpc70,Lpop70, 
Seg70,Weseg70 

South,Central,Mfgs70,Lpc7 O,L pop70,Seg70, Weseg70 

South,Central,Age70,Lur70,Lpc70,Lpop70,Seg70, 

Model posterior probability 
0.040 

0.039 

0.023 

0.020 

0.019 

Weseg70 0.019 
For Table 24, only has 63 cities because the segregation index is not available for all 77 cities. 
Posterior t-probability: South=0.0000, Central=0.0069, NEast=0.7457, Age70=0.9838,Mfgs70=0.6653, 
Nonw70=0.8157, Lur70=0.6446, Medsy70=0.8908, Lpc70=0.0001, Seg70=0.0456, Lpop70=0.0000, 
Weseg70=0.0065 
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Table 46 
MSA Population Growth and Social Characteristics (BMA) 

Variables Model posterior probability 
South,NEast,Mfgs70,Age70, Weseg70 0.008 

South,NEast,Lur70,Mfgs7 O,Age 70, Weseg70 0.008 

South,NEast,Mfgs70,Age70,Lpop70 0.007 

South,NEast,Lur70,Mfgs70,Age70,Lpop70 0.006 

South,Central,NEast,Lur70,Mfgs70,Age70,Lpop70 0.001 
Posterior t-probability: South=0.1318, Central=0.9235, NEast=0.0036, Medsy70=0.6819, Lur70=0.7251, 
Mfgs70=0.1587, Lpc70=0.8816, Age70=0.0271, Nonw70=0.9878, Seg70=0.9221, Lpop70=0.4811, 
Weseg70=0.8338 

Table 47 
CITY Population Growth and Social Characteristics (Geweke's) 

Variables Model posterior probability 
South,Central,NEast,Age70,Mfgs70,Medsy70,Lpc70, 
Lpop70,Seg70,Weseg70 0.105 

South,Central,NEast,Age70,Medsy70,Lpc70,Seg70,Weseg70 0.067 

South,Central,NEast,Age70,Mfgs70,Medsy70,Lpc70, Weseg70 0.060 

South,Central,NEast,Age70,Mfgs70,Lur70,Medsy70,Lpc70, 
Lpop70,Seg70, Weseg70 0.054 

South,Central,NEast,Age70,Medsy70,Lpc70,Lpop70,Weseg70 0.046 

South,Central,NEast,Age70,Medsy70,Lpc70,Lpop70,Seg70, Weseg70 0.041 

South,Central, NEast,Age70,Mfgs70,Lur70,Medsy70,Lpc70,Seg70, 
Weseg70 0.039 

South,Central,NEast,Age70,Mfgs70,Medsy70,Lpc70,Lpop70,Weseg70 0.030 

South,Central,NEast,Age70,Mfgs70,Lur70,Medsy70,Lpc70, Weseg70 0 .027 
For this table, only 63 cities have dissimilarity index which is used to measure the segregation index 

between white and nonwhite population. 
P.M.P. of variables: South=0.0868, Central=0.0000, NEast=0.0003, Age70=0.0000, Mfgs70=0.3320 
Nonw70=0.8093, Lur70=0.6321, Medsy70=0.0000, Lpc70=0.2106, Lpop70=0.4124, Seg70=0.4222, 
Weseg70=0.0873 
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Table 48 
MSA Population Growth and Social Characteristics (Geweke's) 

Variables Model posterior probability 
Central,NEast,Medsy70,Mfgs70,Lpc70,Lpop70 0.026 
Central,NEast,Medsy70,Lpc70,Lpop70 0.015 
Central,NEast,Medsy70,Mfgs70,Lpc70,Lpop70,Seg70 0.012 
Central,NEast,Mfgs70,Lpc70 0.011 
South,Central,NEast,Medsy70,Mfgs70,Lpc70,Lpop70 0.011 
Central,NEast,Medsy70,Mfgs70,Lpc70 0.010 
Central,NEast,Medsy70,Mfgs70,Lpop70 0.009 
Central,NEast,Medsy70,Mfgs70,Lpc70,Nonw70,Lpop70 0.008 
Central,NEast,Medsy70,Mfgs70 0.008 

P.M.P. of variables: South=0.4854, Central=0.1878, NEast=0.2937, Medsy70=0.2479, Lur70=0.5958, 
Mfgs70=0.1031, Lpc70=0.3334, Age70=0.8090, Nonw70=0.6780, Lpop70=0.5475, Seg70=0.6223, 
Weseg70=0.8218 

Table 49 
CITY Population and Social Characteristics (MBVS) 

Variables Model posterior probability 
Central,NEast,Medsy70,Lpc70 0.012 

Central,NEast,Medsy70,Lpc70,Seg70 0.012 

Central,NEast,Medsy70 0.012 

Central,NEast,Medsy70,Seg70 0.012 

Central,Medsy70 ,L pc7 0 0.010 

Central,Medsy70,Lpc70,Seg70 0.010 

Central,Medsy7 0 0.010 

For this table, only use 63 cities to analyze which have available segregation index. 
P.M.P. of variables: South=0.6087, Central=0.3284, NEast=0.4959, Age70=0.6556, Mfgs70=0.9992, 
Nonw70=0.9996, Lur70=0.5337, Medsy70=0.2875, Lpc70=0.4999, Seg70=0.5003, Lpop70=0.6376, 
Weseg70=0.9971 
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Table 50 
MSA Population Growth and Social Characteristics (MBVS) 

Variables Model posterior probability 
Central,Lpop 7 0 0.009 

Central,Lpc70,Lpop70 0.009 

Central,Lpop70,Seg70 0.008 

Central,Lpc70,Lpop70,Seg70 0.008 

Central,Lur70,Lpop70 0.008 

Central,Lur70,Lpc70,Lpop70 0.008 

Central,NEast,Lpop 70 0.007 

Central,NEast,Lpc70,Lpop70 0.007 

Central,Lur70,Lpop70,Seg70 0.007 
P.M.P. of variables: South=0.6057, Central=0.4320, NEast=0.5184, Medsy70=0.5920, Lw-70=0.5325, 
Mfgs70=0.9934, Lpc70=0.5007, Age70=0.9736, Nonw70=0.9997, Lpop70=0.4115, Seg70=0.5090, 
Weseg70=0.9978 · 

Table 51 
CITY Population Growth and Government 

Variables included 
Lpop70,Medsy70,Mfgs70, 
Expo 70 ,Ldebt70, Central, 
NEast 

Lpop70,Medsy70,Mfgs70, 
Expo70,South,Central, 
NEast 

Lpop70,Medsy70,Expo70, 
Ldebt70, Central,NEast 

Lpop70,Medsy70,Mfgs70, 
Ldebt70, Central,NEast 

Lpop70,Medsy70,Expo70, 
Ldebt70,South,Central, 
NEast 

0.579 

0.586 

0.563 

0.562 

0.569 

Adjusted R 2 AIC BIC SBC 

0.494 -217.300 -212.000-198.500 

0.486 -216.500 -210.500-195.400 

0.484 -216.400 -212.200-200.000 

0.476 -216.200 -212.000-199.800 

0.473 -215.500 -210.700-196.800 
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Table 52 
MSA Population Growth and Government 

Variables included R2 Adjusted R2 AIC BIC SBC 
CentrL,NEast,Lur70, 
Lgvpc70,Pctax70, 
Exedu70,Lpc70,Lpop70 0.436 0.368 -190.800 -185.200 -170.000 

Lpop70,Lur70, 
Lgvpc70,Pctax70, 0.421 0.361 -190.800 -186.100 -172.300 
Exedu70, Central,NEast 

Lpop70,Lur70,L vpc70, 
Pctax70,Exedu70,South, 0.429 0.361 -190.000 -184.600 -169.100 
Central, NEast 

Lpop70,Lur70,Lgvpc70, 
Lpc70, Exedu70,Central, 0.414 0.353 -189.900 -185.400 -171.400 
NE a st 

Lpop70,Lur70,Lgvpc70, 
Exedu70,Pctax70,Exhea70, 
Central,NEast 0.426 0.357 -189.500 . ~184.200 -168.600 

Table 53 
CITY Population Growth and Government (BMA) 

Variables 
South,NEast,Mfgs70,Medsy70,Igr70, 
Exhwy70,Lpc70,Lpop70 

South,NEast,Mfgs70,Lur70,Medsy70,Igr70,Lpcex70, 
Exhwy70,Lpc70,Lpop70 

South,NEast,Mfgs70,Lur70,Igr70,Exhwy70, 
Lpc70,Lpop70 

South,NEast,Mfgs70,Exhwy70,Lpc70,Lpop70 

Model posterior probability 

0.015 

0.012 

0.011 

0.010 
Posterior t-probability: South=0.2473, Central=0.8578, NEast=0.0066, Mfgs70=0.7053, Lur70=0.8272, 
Medsy70=0.8353, Lgvpc70=0.8567, Igr70=0.6688, Lpcex70=0.7982, Exhwy70=0.1808, 
Expo70=0.9565, Exss70=0.8400, Ldebt70=0.9724, Lpc70=0.0002, Lpop70=0.1239 
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Table 54 
MSA Population Growth and Government (BMA) 

Variables 
Central,NEast,Medsy70,Mfgs70,Igr70,Pctax70, 
Lpcex70,Exhwy70 

Central,NEast,Mfgs70,Igr70,Pctax70,Lpcex70, 
Exhwy70 

Central,NEast,Medsy70,Mfgs70,Igr70,Pctax70, 
Exhwy70 

Central,NEast,Mfgs70,Igr70,Exhwy70 

South,NEast,Medsy70,Mfgs70,Igr70,Pctax70, 
Lpcex70,Exhwy70 

Central,NEast,Mf gs70,Igr70,Pctax70,Exhwy70 

NEast,Mfgs70,Igr70,Exhwy70 

NEast,Medsy70,Mfgs70,Igr70,Pctax70,Lpcex70, 

Model posterior probability 

0.015 

0.014 

0.013 

0.013 

0.012 

0.012 

0.012 

Exhwy70 0.011 
Posterior t-probability: South=0.7348, Central=0.5604, NEast=0.0844, Medsy70=0.6101, Lur70=0.9600, 
Mfgs70=0.1350, Lgvpc70=0.8439, Igr70=0.1530, Pctax70=0.6853, Lpcex70=0.7709, Exedu70=0.9048, 
Exhwy70=0.0152, Exheal70=0.9657, Lpc70=0.6802, Lpop70=0.9598 
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Table 55 
CITY Population and Government (Geweke's) 

Variables Model posterior probability 

South,Central,NEast,Mfgs70,Medsy70,Lpcex70,Ldebt70 0.012 

South,Central,NEast,Mfgs70,Medsy70,Ldebt70,Lpc70 0.011 

South,Central,NEast,Mfgs70,Medsy70,Ldebt70 0.010 

South,Central,NEast,Mfgs70,Medsy70,Lpcex70,Expo70,Ldebt70,Lpc70, 0.010 
Lpop70 

South,Central,NEast,Mfgs70,Medsy70,Lgvpc70,Lpcex70,Expo70,Ldebt70, 0.009 
Lpop70 

South,Central,NEast,Mfgs70,Medsy70,Ldebt70,Lpop70 0.009 

South,Central,NEast,Mfgs70,Medsy70,Lgvpc70,Ldebt70 0.009 

South,Central,NEast,Mfgs70,Mesdsy70,Ldebt70,Lpc70 0.009 

South,Central,NEast,Mfgs70,Medsy70,Lpcex70,Ldebt70,Lpc70 0.009 

South,Central,NEast,Mfgs70,Mesdsy70,Lgvpc70,Ldebt70,Lpc70 0.008 

South,Central,NEast,Mfgs70,Medsy70,Lpcex70,Expo70,Ldebt70,Lpop70 0.008 

South,Central,NEast,Mfgs70,Medsy70,Lgvpc70,Lpcex70,Expo70,Ldebt70 0.008 
Lpc70,Lpop70 

P.M.P. of variables: South=0.3295, Central=0.0000, NEast=0.0133, Mfgs70=0.0672, Lur70=0.6082, 
Medsy70=0.0000, Lgvpc70=0.5490, Igr70=0.9125, Lpcex70=0.4925, Exhwy70=0.7945, Expo70=0.5408, 
Exss70=0.9010, Ldebt70=0.1014, Lpc70=0.5284, Lpop70=0.5050 
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Table 56 
MSA Population and Government (Geweke's) 

Variables Model posterior probability 
Central,NEast,Mfgs70,Lpcex70,Lpc70,Lpop70 0.022 
Central,NEast,Medsy70,Mfgs70,Lpcex70,Lpc70,Lpop70 0.019 
Central,NEast,Medsy70,Lpcex70,Lpc70,Lpop70 0.018 
Central,NEast,Medsy70,Lpcex70,Lpc70,Lpop70 0.015 
Central,NEast,Medsy70,Mfgs70,Lpcex70,Lpop70 0.012 
Central,NEast,Medsy70,L ur70,Mfgs70,L pcex70,Lpop 70 0.012 
Central,NEast,Medsy70,Lur70,Lpcex70,Lpc70,Lpop70 0.011 
Central,NEast,Medsy70,Lpcex70,Lpop70 0.010 
Central,NEast,Medsy70,Lur70,Mfgs70,Lpcex70,Lpc70,Lpop70 0.010 
Central,NEast,Lgvpc70,Lpcex70,Lpc70,Lpop70 0.009 
Central,NEast,Lpcex70,Lpc70,Lpop70 0.009 
Central,Mfgs70,Lpcex70,Lpc70,Lpop70 0.008 
P.M.P. of variables: South=0.7342, Central=0.0134, NEast=0.1938, Medsy70=0.2777, Lur70=0.5645, 
Mfgs70=0.3455, Lgvpc70=0.6477, lgr70=0.9307, Pctax70=0.8625, Lpcex70=0.1859, Exedu70=0.7600, 
Exhwy70=0.8971, Exheal70=0.8570, Lpc70=0.2761, Lpop70=0.1352 

Table 57 
CITY Population Growth and Government (MBVS) 

Variables Model posterior probability 
Central,NEast,Mfgs70 0.022 

Central,NEast,Mfgs70,Lpc70 0.022 

Central,Mfgs70 0.021 

Central,Mfgs70,Lpc70 0.021 

Central,NEast,Lur70,Mfgs70 0.019 

Central,NEast,Lur70,Mfgs70,Lpc70 0.019 

Central,Lur70,Mfgs70 0.018 

Central,Lur70,Mfgs70,Lpc70 0.018 

South, Central,NEast,Mfgs70 0.012 

South,Central,NEast,Mfgs70 0.011 
P.M.P. of variables: South=0.6323, Central=0.2614, NEast=0.5050, Mfgs70=1.0000, Lur70=0.5287, 
Medsy70=0.1450, Lgvpc70=0. 7807, Igr70=0.9999, Lpcex70=0.6893,Exhwy70=0.9974, Expo70=0.9993, 
Exss70=0.9987, Ldebt70=0.8402, Lpc70=0.5012, Lpop70=0.8454 
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Table 58 
MSA Population Growth and Government (MBVS) 

Variables Model posterior probability 
Central,NEast 0.004 

Central 0.003 

Central,NEast,Medsy70 0.002 

Central,NEast,Lpc70 0.002 

South, Central,NEast, 0.002 

South, Central 0.002 

Central,Medsy70 0.002 

Central,NEast,Lgvpc70 0.002 

Central,Lpc70 0.002 

Central,Lgvpc70 0.002 
P.M.P. of variables: South=0.5886, Central=0.3739, NEast=0.5062, Medsy70=0.5957, Lur70=0.9488, 
Mfgs70=0.9832, Lgvpc70=0.6255, Igr70=0.9999, Pctax70=0.9980, Lpcex70=0.9141, Exedu70=0.9864, 
Exhwy70=0.9992, Exheal70=0.9993, Lpc70=0.6131, Lpop70=0.9135 
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Table 59 
CITY Population Growth and all Variables 

Variables included Adjutsed R2 AIC BIC SBC 

South, Central,NEast, 
Age70,Nonw70,Lgvpc70, 
Igr70,Lpcex70,Exhwy70, 0.865 0.804 -294.700 -283.200 -264.200 
Ldebt70,Lpc70,Lmedic70 

South, Central,NEast, 
Age70,Nonw70,Lgvpc70, 
lgr70,Lpcex70,Exhwy70 0.860 0.805 -293.800 -284.200 -265.700 
Lpc70,Lmedic70 

South, Central,NEast, 
Age70,Mfgs70,Nonw70, 
Lgvpc70,lgr70,Lpcex70, 0.864 0.805 -294.200 -282.900 -263.700 
Exhwy70,Lpc70,Lmedic70 

South, Central,NEast, 
Age70,Mfgs70,Nonw70, 
Incla70,Lgvpc70,Lpcex70 0.859 0.805 -293.500 -284.000 -265.400 
Ldebt70,Edle70 

South, Central,NEast, 
Age70,Nonw70,Lgvpc70, 
Igr70,Lpcex70,Exhwy70, 0.859 0.804 -293.400 -284.000 -265.300 
Lmedic70 
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Table 60 
MSA Population Growth and all Variables 

Variables included R 2 

Central,NEast,Lur70, 
Lgvpc70,Pctax70,Lpop70 0.424 

Central,NEast,L ur7 0, 
Mfgs70,Lgvpc70, 
Lpop70 

Central,NEast,Lur70, 
Mfgs70,Lgvpc70,Pctax70, 

0.408 

Exedu70,Lpop70 0.438 

Central,NEast,Lur70, 
Lgvcp70,Pctax70,Exedu70, 
Lpop70 0.436 

Central,NEast,Lur70, 
Mfgs70,Lgvpc70, 
Lpc70,Lpop70 

Central,NEast,Lur70, 
Lgvpc70,Pctax70, 
Exedu70,Lpop70 

0.421 

0.421 

Adjusted R 2 

0.364 

0.356 

0.370 

0.368 

0.361 

0.361 
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AIC BIC SBC 

-191.200 -185.500 -172.700 

-191.200 -184.600 -175.000 

-191.000 -184.400 -170.100 

-190.800 -184.200 -170.000 

-190.800 -185.300 -172.300 

-190.800 -185.300 -172.300 



Table 61 
CITY Population Growth and all Variables (BMA) 

Variables Model posterior probability 
South,Central,NEast,Coll70,Age70,Nonw70,Lur70, 
Medsy70,Incla70,Igr70,Expo70,Ldebt70,Lpop70 0.020 

South,Central,NEast,Coll70,Age70,Nonw70, 
Lur70,Medsy70,Incla70,Lgvpc70,Igr70,Expo70, 
Ldebt70,Lpop70 0.017 

South,Central,NEast,Coll70,Age70,Nonw70,Lur70, 
Medsy70,Incla70,Lgvpc70,Expo70,Ldebt70,Lpop70 0.011 

South,Central,NEast,Coll70,Age70,Mfgs70,Nonw70, 
Nonw70,Lur70,Medsy70,Incla70,Igr70,Expo70, 
Ldebt70,Lpop70 0.011 

South,Central,NEast,Coll70,Age70,Mfgs70,Nonw70, 
Lur70,Medsy70,Incla70,Lgvpc70,Igr70,Ldebt70,Lpop70 0.010 

South,Central,NEast,Co1170,Age70,Nonw70,Lur70,Medsy70, 
Incla70,Lgvpc70,Igr70,Ldebt70,Lpop70 0.010 

South,Central,NEast,Coll70,Age70,Mfgs70,Nonw70,Lur70, 
Medsy70,Incla70,Igr70,Ldebt70,Lpop70 0.010 
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Table 62 
CITY Population Growth and all Variables (Geweke's) 

Variables Model posterior probability 
South,Central,NEast,High70,Age70,Nonw70,Lgvpc70,Lpcex70,Ldebt70, 0.020 
Lpc70,Edle70 
South,Central,NEast,High70,Age70,Nonw70,Lgvpc70,Ldebt70, 0.018 
Lpc70,Edle70,Lpop70 
South,Central,NEast,High70,Age70,Nonw70,Medsy70,Lgvpc70,Lpcex70, 0.014 
Ldebt70,Lpc70,Edle70 
South,Central,NEast,High70,Age70,Nonw70,Lur70,Lgvpc70,Lpcex70, 0.010 
Ldebt70,Lpc70,Edle70 
South, Central,NEast,High 70,Age70,N onw70,Medsy70,lncla 70,Lgvpc 70, 0.010 
Lpcex70,Ldebt70,Lpc70,Edle70,Lpop70 
South,Central,NEast,High70,Age70,Nonw70,Lgvpc70,Lpcex70,Ldebt70, 0.009 
Lpc70,Edle70, 
South,Central,NEast,High70,Age70,Nonw70,Igr70,Lpcex70,Ldebt70 0.009 
Lpc70,Edle70 
South,Central,NEast,High70,Age70,Lur70,Medsy70,Lgvpc70,Lpcex70, 0.009 
Ldebt70,Lpc70,Edle70,Lpop70 
South,Central,NEast,High70,Age70,Nonw70,Lgvpc70,lgr70,Lpcex70, 0.008 
Ldebt70,Lpc70,Edle70,Lpop70 
South,Central,NEast,High70,Age70,Nonw70,Lpcex70, Ldebt70, 0.007 
Lpc70,Edle70,Lpop70 
South,Central,NEast,High70,Age70,Nonw70,Medsy70,Lgvpc70,Igr70, 0.007 
Lpcex70,Ldebt70,Lpc70,Edle70 
South,Central,NEast,High70,Age70,Nonw70,Lgvpc70,Lpcex70, 0.006 
Ldebt70,Edle70 
South,Central,NEast,High70,Age70,Nonw70,Lur70,Medsy70,Lgvpc70, 0.006 
Lpcex70,Ldebt70,Lpc70,Edle70 
South,Central,NEast,High70,Age70,Nonw70,Lgvpc70,Lpcex70,Ldebt70, 0.006 
Edle70,Lpop70 
South,Cenral,NEast,High70,Age70,Nonw70,Lgvpc70,Lpcex70,Ldebt70, 0.005 
Lpc70,Edle70 
South,Central,NEast,High70,Age70,Nonw70,Medsy70,Lgvpc70,Lpcex70, 0.005 
Ldebt70,Lpc70,Edle70,Lpop70 
South,Central,NEast,Hgih70,Age70,Nonw70,Lgvpc70,Lpcex70,Ldebt70 0.005 
Lpc70,Edle70,Lpop70 
South,Central,NEast,High70,Age70,Nonw70,Lur70,Lgvpc70,lgr70, 0.005 
Lpcex70,Ldebt70,Lpc70,Edle70,Lpop70 
South,Central,NEast,High70,Age70,Nonw70,Lur70,Medsy70,Lgvpc70, 0.004 
Lpcex70,Ldebt70,Lpc70,Edle70,Lpop70 
South,Central,High70,Age70,Nonw70,Medsy70,Lgvpc70,Lpcex70, 0.004 
Ldebt70,Edle70,Lpop70 
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Table 63 
MSA Population Growth and all Variables (Geweke's) 

Variables Model posterior probability 
Central,NEast,Medsy70,Lur70,Incle70,Lpcex70,Exedu70,Nonw70,Lpop70 0.002 

Central,NEast,Medsy70,Lpcex70,Lpop70 0.002 

Central,NEast,Medsy70,Lur70,Mfgs70,Incle70,Lpcex70,Lpop70 0.001 

Central,NEast,Medsy70,Lur70,Lpcex70,Lpop70 0.001 

Central,NEast,Medsy70,Lur70,Mfgs70,Lpcex70,Lpop70 0.001 

Central,NEast,Medsy70,Mfgs70,Lpcex70,Lpop70 0.001 

Central,NEast,Medsy70 ,Lur70,Mfgs70,Lgvpc 70,Lpcex7 O,Lpop 7 0 0.001 

Central,NEast,Medsy70,Incle70,Lpcex70,Exedu70,Lpc70,Nonw70,Lpop70 0.001 

Central,NEast,Medsy70,High 70,Lur70,Mfgs70 ,L pcex70,N onw70 0.001 

Central,NEast,Medsy70,L ur70,Incle 7 O,Lgvpc 70,L pcex70,Exedu70, 0.001 
Lpc70,Age70,Nonw70,Lpop70 

Central,NEast,Medsy70,Mfgs70,Lpcex70,Lpc70,Lpop70 0.001 

Central,NEast,Mfgs70,Lpcex70,Lpc70,Lpop70 0.001 

Central,NEast,High70,Lur70,Lpcex70,Exedu70,Lpc70,Age70,Nonw70 0.001 

Central,NEast,Medsy70,Lur70,Lpop70 0.001 

Central,NEast,Medsy70,Mfgs70,Lpop70 0.001 

Central,NEast,Medsy70,Lgvpc70,Lpcex70,Lpc70,Lpop70 0.001 

Central,NEast,Medsy70,Lgvpc70,Lpcex70,Lpc70,Lpop70 0.001 

Central,NEast,Medsy70,Lgvpc70,Lpcex70,Lpop70 0.001 
For this table, including all variables except the segregation index. 
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Table 64 
CITY Population Growth and all Variables (MBVS) 

Variables Model posterior probability 
Central,Medsy70 0.003 

Central,Medsy70,Lmedic70 0.003 

Central,Medsy70,Lpc70 0.003 

Central,Medsy70,Lpc70,Lmedic70 0.003 

Age70 0.003 

Age70,Lpc70 0.003 

Age70,Lmedic70 0.003 

Age70,Lpc70,Lmedic70 0.003 

Central,NEast,Medsy70 0.003 

Central,NEast,Medsy70,Lmedic70 0.003 

Central,NEast,Medsy70,Lpc70 0.003 

Central,NEast,Medsy70,Lpc70 0.003 

Central,Lur70,Meddsy70 0.003 

Central,Lur70,Medsy70,Lmedic70 0.003 

Central,Lur70,Medsy70,Lpc70 0.003 

Central,Lur70,Medsy70,Lpc70,Lmedic70 · 0.003 

Age70,Lur70 0.003 

Age70,Lur70,Lmedic70 0.003 

Age70,Lur70,Lpc70, 0.003 

Age70,Lur70,Lpc70,Lmedic70 0.003 
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Table 65 
MSA Population Growth and all Variables (MBVS) 

Variables Model posterior probability 
Central,NEast 0.014 

Central,NEast,L pc 70 0.014 

Central 0.013 

Central,Lpc70 0.013 

Central,NEast,Lur70 0.012 

Central,NEast,Lur70,Lpc70 0.012 

Central,Lur70 0.011 

Central,Lur7 O,Lpc70 0.011 

Null model 0.010 

Lpc70 0.009 

Central,NEast,Medsy70 0.009 

Central,NEast,Medsy70,Lpc70 0.009 

Central,Medsy70 0.008 

Central,Medsy70,Lpc70 0.008 

NEast 0.008 
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Table 66 
Posterior Marginal Probability of Three Bayesian Methods 

(For CITY, all Variables) 

Variable BMA 1 Geweke 2 MBVS 
South 0.096 0.135 0.638 
Central 0.988 0.000 0.446 
NEast 0.000 0.089 0.556 
High70 0.832 0.156 0.996 
Coll70 0.000 0.786 0.991 
Age70 0.271 0.000 0.410 
Mfgs70 0.882 0.948 1.000 
Nonw70 0.210 0.000 1.000 
Lur70 0.233 0.610 0.530 
Medsy70 0.000 0.563 0.504 
Incle70 0.953 0.801 0.986 
Incla70 0.000 0.746 0.988 
Lgvpc70 0.743 0.245 0.786 
Igr70 0.514 0.922 1.000 
Lpcex70 0.941 0.029 0.716 
Exhwy70 0.932 0.914 0.999 
Expo70 0.373 0.895 1.000 
Exss70 0.948 0.890 0.999 
Ldebt70 0.086 0.083 0.855 
Lpc70 0.991 0.328 0.501 
Lpop70 0.842 0.585 0.158 
Edle70 0.878 0.159 0.986 
Lmedic70 0.885 0.430 0.500 

1: For BMA, is the posterior t-probability. As the usual t-probability, the small it is, 
the higher probability this variable is in the model. 
2: For Geweke, is the posterior marginal probability that coefficient equal to zero or 
the posterior probability that this variable is not in the model. 
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Table 67 
Posterior Marginal Probability of Three Bayesian Methods 

(For MSA, all Variables) 

Variable BMA Geweke MBVS 

South 0.672 0.710 0.602 
Central 0.714 0.021 0.431 
NEast 0.967 0.289 0.532 
Medsy70 0.393 0.304 0.596 
High70 0.127 0.707 0.999 
Coll70 0.966 0.779 0.989 
Lur70 0.734 0.522 0.543 
Mfgs70 0.554 0.468 0.997 
Incle70 0.997 0.574 0.980 
Incla70 0.191 0.691 0.965 
Lgvpc70 0.870 0.628 0.852 
lgr70 0.034 0.927 · 1.000 
Pctax70 0.462 0.836 1.000 
Lpcex70 0.863 0.209 0.807 
Exedu70 0.935 0.678 0.999 
Exhwy70 0.325 0.892 0.994 
Exheal70 0.341 0.863 0.997 
Lpc70 0.012 0.356 0.501 
Age70 0.982 0.703 0.979 
Nonw70 0.943 0.574 1.000 
Lpop70 0.997 0.323 0.717 
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Table 68 
Correlation Coefficients for Three Bayesian Methods (CITY, all Variables) 

(Correlation Coefficients of P.M.P. of Three Bayesian Methods) 

Pearson Correlation Coefficients I Prob > IRI under Ho: Rho=O IN = 23 

B G M 

B 1.00000 0.09794 0.00908 
0.0 0.6566 0.9672 

G 0.09794 1.00000 0.52806 
0.6566 0.0 0.0096 

M 0.00908 0.52806 1.00000 
0.9672 0.0096 0.0 

Table 69 
Correlation Coefficients for three Bayesian methods (MSA, all variables) 

(Correlation coefficients of P.M.P. of three Bayesian methods) 

Pearson Correlation Coefficients I Prob> IRI under Ho: Rho=O IN= 21 

B G M 

B 1.00000 -0.29672 -0.05205 
0.0 0.4274 0.8227 

G -0.29672 1.00000 0.73422 
0.1915 0.0 0.0002 

M -0.05205 0.73422 1.00000 
0.8227 0.0002 0.0 
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Table 70 
Coefficient Estimates of Various Techniques for Social Characteristics 

(GSS Table 9, For CITY) 

Variable GSS 1 GSS 2 Geweke 3 BMA 4 

Log (initial population) -0.043 -0.009 -0.016 -0.293 

Initial per capital income -0.159 -0.740 0.073 -0.012 

Initial % nonwhite -0.048 -0.006 -0.001 -0.044 

Initial unemployment rate -0.039 -0.175 0.000 0.118 

Initial manufacturing share -0.429 -0.001 -0.002 0.016 

Initial median years of schooling 0.060 0.169 0.064 -0.000 

Initial segregation index -0.006 -0.319 0.081 -0.101 

Initial segregation * 
initial % nonwhite 0.529 0.003 -0.009 -0.174 

South -0.296 -0.208 -0.087 -0.059 

Central -0.482 -0.486 -0.311 -0.006 

NEast -0.478 -0.378 -0.214 -0.000 

Initial aging population -0.053 -0.002 

1. The GSS's original analysis, the initial year is 1960 
2. To be consistent with the data set used in this dissertation, which the initial year is 1970 
3. The posterior mean of variables, the initial year is 1970 
4. The initial year is 1970 
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