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CHAPTERl 

INTRODUCTION 

The complexity of the behavior of a chemical process is multi-dimensional. 

Nonlinear process behavior (statically and/or dynamically), multivariable process 

interactions, and external disturbances are typical characteristics of a chemical process. 

Surprisingly, for decades, such complex processes were controlled, decently, by a simple 

Proportional-Integral-Derivative (PID) controller. The PID controller is a linear 

controller, so it does not "understand" the nonlinearity of the process. The PID controller 

is a single-loop controller, so it is "bad" at handling interactions. The PID controller is a 

feedback controller, so it is slow at responding to external disturbances. Achievement of 

decent PID control on a complex process relies heavily on both successful design of the 

process and clever arrangements of controllers. 

Fortunately, many processes can be very well approximated linearly near the 

nominal operating points, allowing linear control schemes such as PID to be functional. 

But still, there are processes that are too challenging for a PID control scheme. For 

example, when a process is highly nonlinear or interactive, the PID controller can rarely 

do a good job. If there were no other alternatives and the PID control scheme has to be 

used, control performance is sacrificed. 

Made possible by the development of the digital control technology, the concepts 

of process control have undergone a significant change. Availability of inexpensive and 

speedy digital computers provides a platform to develop and implement more complex 

control schemes. Among a vast variety of these advanced ( or modem) control schemes, 



this work focuses on one type of controller whose concepts have been very well accepted 

in both academia and industry - Model Predictive Control (MPC). 

MPC is an optimal-based control scheme. An explicit predictive model (also 

referred to as a "dynamic model" in some literature) is needed to predict future process 

behavior. The prediction model is then used to evaluate and optimize a control-

performance-related objective function to produce the desired control actions. 

Commonly, a MPC strategy consists of three parts, the prediction model, the model 

adjustment, and the constrained optimizer. Figure I shows the general structure of MPC 

in the discrete time domain. 

....................................................................................• id 
- MPC 
yf + u_ y - - Optimizer - PLANT - ' -

yf u1 
t 

Model Constraints I u, yp 
Adjustmen1 1-

j 
0 DP cp 

yf Prediction ._ 
~ 

Model -~ 

Figure I. I General structure of MPC 

An upper case letter in Figure I. I indicates a series of variable values along a 

continuous discrete time scale. It is a vector in the case of a SISO system and a matrix in 

the case of a MIMO system. Subscripts p and f represent past (including present 

values) and future respectively. A lower case letter represents the present value, which is 
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a scalar for a SISO system and a vector for a MIMO system. The letter "u" represents 

Manipulated Variables (MV's), ''y" Controlled Variables (CV's), "d'' disturbances and 

"c" plant parameters. The optimizer of MPC proposes a series of future control actions 

( control sequence), U 1 , so that the objective function, which is chosen to meet certain 

operation objectives (for example, the quadratic error criterion for a future period in the 

case of regulation to a setpoint), is optimized. The optimizer is subject to constraints 

imposed by the plant characteristics (physical limitations of the control and process 

equipment) or plant operating strategies. Only the first control signal of the control 

sequence, U 1 (1), is utilized to manipulate the plant. Since it is the actual input to the 

plant, it is denoted as u in Figure 1.1. At the next control instant, a new optimization 

problem with updated parameters based on currently available plant information is 

formulated and solved. This is called receding strategy and it is the reason for another 

name of MPC, Receding Horizon Predictive Control (RHPC). Available plant 

information, variables YP , UP , DP , and C P are used to adjust the prediction model as 

partial feedback (referred to as model adjustment, residual, or Process Model Mismatch 

(PMM) compensation in this work). 

The advantages of the MPC scheme are obvious. It handles interactions and 

constraints directly, and the structure is very flexible to accommodate most process 

characteristics. Also as obvious are the essential role of the predictive model, as well as 

the computation issue as the optimization is involved. The predictive model is an integral 

part of the optimization algorithm, therefore, model accuracy and simplicity play an 

important role on the capability and performance of the controller. The optimizer, instead 

of optimizing only the next control action, has to optimize a series of future control 
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actions subject to a variety of constraints; therefore the dimension of the optimization 

problem grows very fast as the dimension of the controller grows. Hence the concern of 

the speed of the optimization algorithm rises for online implementation. 

Linear MPC (LMPC) uses a linear predictive model, and therefore leads to a 

Linear Programming (LP) or Linear Quadratic Programming (LQP) method for the 

optimization part. LMPC products such as DMC® and IDCOM® (Qin and Badgwell, 

1997), have been successfully applied and well accepted in industry. MPC has 

established a reputation of reducing costs and saving money in industry since late 1970s 

when the first papers on the applications of DMC® (Cutler & Ramaker, 1979) and 

IDCOM® (Richalet, Rault, Testud & Papon, 1978) to industrial problems were reported. 

This success contributes to the much interest and surging research work in Nonlinear 

MPC (NMPC), a direct extension of LMPC to nonlinear processes, from both academia 

and industry. 

Linear models are very well suited for MPC because they may be solved quickly, 

and the optimization problem may be posed as linear or quadratic programming 

problems, for which robust and reliable software is available. Nonlinear models better 

represent the process characteristics and are therefore expected to produce better control 

performance. However, nonlinear equation processing adds much complexity to the MPC 

scheme. Robust modeling approaches and speed of the optimization algorithm become 

major concerns for practicing NMPC. 

The predictive model plays a critical role in MPC. It expresses the controller's 

"knowledge" of the process. It is also an integral part of the optimization algorithm, and 

therefore influences the formulation and solution of the optimization problem. Since there 
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is no universal method for representing a nonlinear process, a variety of modeling 

methods ranging from first-principles model, semi-empirical model (gray-box model or 

hybrid model), to empirical model (black-box model) have been under research, for better 

representation of the process and for better incorporation into the MPC scheme. 

In our work, an empirical modeling approach, the Neural Network (NN) modeling 

method, is used in a unique way, and is referred to as Grouped-Neural-Network (GNN) 

model. The proposed predictive model, instead of predicting continuously in the future 

time span, only provides the prediction at selected future discrete time instants. What the 

proposed work tries to achieve is to eliminate all the assumptions made on the process 

characteristics while alleviating as much as possible the computational burden on the 

controller due to the complexity of the predictive model. 

This new strategy, incorporating some heuristic choices, is demonstrated to work 

effectively both by simulations and experiments. The experimental setup is a lab-scale 

distillation column. The column is operated with a binary methanol-water system at 

atmospheric pressure. Top and bottom compositions are controlled using reflux flowrate 

and reboiler's heating power as the manipulated variables. Process characteristics 

include nonlinear multivariable interactions, non-ideal thermodynamic behavior, 

significant unintentional disturbances, and operating constraints on both manipulated and 

auxiliary variables. Experiments would demonstrate effectiveness of the controller for 

handling constraint, interactions and nonlinearity of the process. 

This study features experimental results. The process control literature is more 

focused on theoretical development and simulation studies of advanced control strategies, 

but there are few reported references regarding experimental implementation of these 
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techniques. More experimental control research and real process data are needed to 

quantitatively compare the wide variety of advanced control methods developed, to focus 

the theoretical work to solve implementation problems, and to establish credibility within 

the practice community. 
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2.1 Overview 

CHAPTER2 

LITERATURE SURVEY 

Model Predictive Control (MPC) does not designate a specific control strategy. It 

represents a wide range of control methods which make an explicit use of a dynamic 

model (referred to as predictive model or prediction model in MPC) of the process and 

which obtains the control signals by minimizing an objective function, which is often 

related to the control performance. For the scope of this work, the survey is on those 

MPC strategies that are similar to the DMC structure, which have deterministic predictive 

model. The MPC strategies that consider stochastic issues such as the Generalized 

Predictive Control (GPC) (Clarke, Mohtadi & Tuffs, 1987 a,b) are beyond this work's 

scope. 

MPC grew up in the oil and chemical industries, where MPC was found very 

effective and successful in dealing with multivariable constrained problems. In less than 

20 years since the first papers on MPC applications (Richalet, Rault, etc., 1978; Cutler & 

Ramaker, 1979) were published, the MPC technology has grown rapidly. Nowadays, 

MPC has become by far the most popular and successful one in industry among all kinds 

of advanced process control technologies. According to an industrial survey done in 1997 

(Qin & Badgwell), there are over 2,000 applications of MPC covering refining, 

petrochemicals, chemicals, pulp and paper, food processing, automotive, aerospace, etc .. 

Among many reasons for the success of MPC including availability of cost effective 

high performance computer facilities, a key advantage of MPC is that it is particularly 
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attractive to the industrial personnel because the concepts are very intuitive and at the 

same time the tuning is relatively easy. 

Both the success of MPC in industry and issues which arose from practicing MPC 

have been driving theoreticians busy in understanding and providing theoretical insights 

and support to the MPC technology. MPC started from linear system, which is called 

LMPC. In LMPC, a linear predictive model is used to represent the process dynamics, 

and the optimization problem is formed as a Linear Programming (LP) or Linear 

Quadratic Programming (LQP) problem. For LMPC, while there are still many issues 

under research such as the stability analysis of constrained finite horizon systems (Primbs 

& Nevistic, 2000a, 2000b; Bergounioux & Kunisch, 2000; Lee, Kwon, & Choi, 1998), 

issues such as feasibility of the on-line optimization, closed-loop stability and 

performance are largely understood. Two review papers are referred on such theoretical 

issues (Garcia, Prett, & Morari, 1989; Morari & Lee, 1999). The paper by Lundstrom, 

Lee, Morari and Skogestad (1995) discussing the limitations of DMC, the most popular 

MPC strategy in industry, provides deep insights into LMPC. 

While theoreticians were working on theoretical analysis of LMPC, based on 

success of LMPC in industry, practitioners have been exploring applications of nonlinear 

MPC (NMPC), which has a nonlinear predictive model and is a direct and intuitive 

extension of LMPC. The interest, of course, is due to the argument that many real 

processes can not be well represented by a linear model, and it is expected that with a 

nonlinear model, which can better represent the process, better control performance will 

result. 
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Among the so called nonlinear MPC, two general approaches are observed in 

open literature. One is referred by the author as a linearized NMPC. It uses Linear MPC 

(LMPC) techniques, especially the linear optimization technique used in LMPC. 

However, the model can represent nonlinear characteristics of the process. The other one 

is a "thorough" NMPC, nonlinear model is introduced into the MPC structure, the 

optimization problem becomes non-convex, new techniques are needed to deal with the 

problems. 

The most commonly adopted idea behind a variety of linearized NMPC schemes 

is the piecewise linear model (multiple model, multi-model, or multi-mode) approach. 

This approach is usually suitable for a process with moderate nonlinearity. There are 

many processes that operate in a wide range, locally, it can be very well represented by a 

linear model, however, in the whole operating range, one single linear model is not 

representative. In the piecewise model approach, the operating range is divided into 

several regions, each region can be well represented by a linear model. For this approach, 

how to divide the operating range and how to transit between sub-regions are the major 

issues. 

As to so called "thorough" NMPC, the modeling method can be classified to 3 

approaches, the first-principles model, the semi-empirical model, and the empirical 

model. 

The first-principles model is derived from first-principles, i.e., material balance, 

energy balance, momentum balance, together with information on the hydraulic and 

thermodynamic properties of the process. GMC (Lee & Sullivan, 1988) and PMBC 

(Rhinehart and Riggs, 1991) apply such modeling approach. The first-principles model 
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provides insight into the characteristics of the process, and provides additional help to 

process owners by providing deep understanding of the mechanics of the process. 

However, a first-principles model is not always available. The process may be so 

complicated that deriving a first-principles model is either not feasible or very cost 

inefficient. Incorporating the first-principles model into MPC may also encounter 

computation problems. Internal convergence loops may fail to converge. The model may 

be so complicated that it is not convenient to be incorporated into the optimizer of MPC. 

Or, the computation burden of solving the model becomes so heavy as to hinder the 

online implementation of MPC. 

The empirical model, on the other hand, applies available process data ( online 

measurements) to identify the relations between the process variables of interest. The 

empirical model is often called data-oriented modeling technique. The modeling 

approach assumes that the process characteristics are well embedded in the data and can 

be extracted from the data by using a proper technique. Neural Networks (NNs) is one of 

the most popular empirical modeling method (Hussain, 1999). The empirical model 

requires least knowledge of the process mechanics. Comparing to a first-principles 

model, an empirical model usually does not provide information on the mechanics of the 

process, its internal structure and parameters can not be interpreted in terms of physical 

effect or process parameters. Further, the empirical model can only be used to represent 

the process in the operating region that the model has been identified, and has unreliable 

extrapolation capability. For incorporation of an empirical model into MPC, the model 

often poses as a nonlinear constraint for the optimizer. Good examples of MPC using NN 
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modeling technique can be found in papers of Bhat and McA voy (1990), Hernandez and 

Arkun (1992), Temeng, Schnelle, and McAvoy (1995). 

Between the first-principles model and the empirical model is the semi-empirical 

model. This modeling approach attempts to take advantage of both the knowledge of the 

process mechanics and available process data. For example, in a first-principles model, 

there are some parameters whose values are not directly known but can be obtained from 

an empirical modeling method. Or, vise versa, in an empirical model, some parameters 

in the model can be determined by a prior knowledge of the process, such as the order of 

the process, the structure of the model, etc. Strictly saying, most models are by some 

extend a semi-empirical model. For this survey, a modeling method is identified as a 

semi-empirical modeling method when knowledge of the process mechanics is used to 

determine the model structure and values of the parameters in the model structure are 

then found using an empirical modeling method. This approach is in some literature 

called parametric modeling. 

Because nonlinear processes can not be represented by a universal method, which 

modeling approach to use for a nonlinear process is case-oriented. All the above three 

approaches are abundant in the open literature. The review papers by Henson (1998) and 

Rawlings (2000) cover modeling issues for incorporation into MPC. 

Theoretical results for NMMC are by far very limited, as for other nonlinear 

control technologies (Mayne, Rawlings, Rao & Scokaert, 2000 ). Morari & Lee (1999) 

pointed out some ideas in NMPC analysis for future exploration. Nevertheless, a limit of 

theoretical support does not prevent practitioners from exploring the results and 

advantages brought by using a nonlinear model. Henson (1998) provided a review on 
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some issues faced in practicing NMPC, including modeling, optimization, calculation, 

and tuning. After a survey of industrial applications of LMPC in 1997 (Qin & Badgewell, 

1997), a survey of industrial applications ofNMPC appeared in 1998 (Qin & Badgewell, 

1998), indicating the thriving interest in NMPC. 

2.2 Recent Development of NMPC 

In this section, a survey of the recent practice (after 1998) on NMPC is provided. 

Most of the surveyed papers can be classified according to their modeling approach. 

Other issues in MPC are closely related to the modeling approach. Therefore, this survey 

is divided into several parts according to the modeling approach. 

2.2.1 NMPC with First-Principles Model 

Roffel, Betlem and Ruijter (2000) developed a rigorous first principles dynamic 

model for a heat-integrated cryogenic distillation process. However, the first-principles 

model is not directly incorporated into the MPC scheme, instead, the first-principles 

model is used to generate data from which classical linear time series identification is 

used to developed the conventional DMC type LMPC. MPC was shown in their work to 

be very effective in handling the strong interaction of the process. It was also concluded 

that due to the strong interactive nature of the process variables, process changes have to 

be made slowly, since otherwise manipulated variables easily saturate and process output 

targets can not be maintained. 

Muske, Howse, Hansen and Cagliostro (2000) describe the MPC technique which 

also uses a detailed heat transfer model in an industrial steel facility. Batch nonlinear 
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least squares estimation is used to update the predicted temperature profile of the hot 

blast stoves and heat transfer coefficients. These estimated parameters are then used by 

MPC to determine the minimum fuel required for the subsequent regenerative cycle. 

Pickhardt (2000) presents the application of NMPC to the distributed collector 

field of a solar power plant using a first-principles model. The parameters of the model 

are estimated on-line in order to compensate for time-varying effects and modeling 

errors. Experimental results are presented. 

2.2.2 NMPC with Semi-Empirical Model 

Zhu, Henson and Ogunnaike (2000) proposed an approach to combine LMPC and 

NMPC. Some processes can be decomposed into approximately linear subsystems and 

highly nonlinear subsystems. The linear subsystem and nonlinear subsystem interact via 

mass and energy flows. LMPC is applied to the linear subsystems and NMPC is applied 

to the nonlinear subsystems. A simple controller coordination strategy that counteracts 

interaction effects is proposed for the case of one linear subsystem and one nonlinear 

subsystem. A reactor/separator process with recycle is used to compare this hybrid 

method with conventional LMPC and NMPC techniques. 

Norquay, Palazoglu and Romagnoli (1999) found that a Wiener model, consisting 

of a linear dynamic element followed in series by a static nonlinear element, is ideal for 

representing a high-purity distillation column. The Wiener model is relatively simple 

model requiring little more effort in development than a standard linear step response 

model, yet offer superior characterization of systems with highly nonlinear gains. The 

Wiener model may be incorporated into MPC in a unique way that effectively removes 
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the nonlinearity from the control problem, preserving many of the favorable properties of 

LMPC, especially in the analysis of stability. The paper describes the application of 

Wiener MPC (WMPC) to an industrial C2-splitter at the Orica Olefines plant. The same 

idea was also implemented on an experimental pH neutralization apparatus and the 

results was compared with benchmark proportional integral derivative (PID) and LMPC 

strategies considering the effects of output constraints and modeling error (Norquay, 

Palazoglu and Romagnoli, 1999). 

2.2.3 NMPC with Empirical Model 

Kambhampati, Mason and K. Warwick (2000) applied a Radial Basis Function 

Neural Network modeling approach to represent a simulated continuous-stirred tank 

reactor (CSTR). The focus on this paper, however, is to investigate the stability of one­

step ahead predictive controllers based on nonlinear models. The paper showed that, 

under conditions which can be fulfilled by most industrial plants, the closed-loop system 

is robustly stable in the presence of plant uncertainties and input-output constraints. 

There is no requirement that the plant should be open-loop stable and the analysis is valid 

for general forms of nonlinear system representation. 

Zamarrefio and Vega (1999) derived a recurrent neural network model and used in 

NMPC for a simulated sulphitation tank taken from the sugar industry. The neural 

network model is able to represent the system in the state-space form. It thus is able to 

deal with constraints in the system variables as well as highly nonlinear dynamics. 

An extended Kalman filter (EKF)-based NMPC is developed (Ahn, Park & Rhee, 

1999) for the property control of an experimental continuous polymerization reactor with 
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the availability of a first-principles model. The NMPC controls both the conversion and 

the weight-average molecular weight of the polymer product using jacket inlet 

temperature and the feed flow rate. 

Berenguel, Arahal and Camacho (1998) described an industrial application of 

NMPC using neural networks to a solar power plant. The neural network is a feedforward 

(static) neural network in an autoregressive configuration. Modeling issues such as the 

selection of the input variables, the input/output vectors for training, and the neural 

network structure, are discussed. In particular, an algorithm is proposed to obtain the 

number of past values of the measured variables needed to feed the neural network. 

Galvan and Zaldivar (1998) practiced real-time nonlinear inverse and predictive 

control using a recurrent neural network. The controlled process is the heat transfer fluid 

temperature in a pilot chemical reactor. The training of the inverse control system is 

carried out using both generalized and specialized learning, which allows the preparation 

of weights of the controller to act in real-time, and appropriate performances of inverse 

neural controller to be achieved. The predictive control system makes use of a neural 

network to calculate the control action. Thus, the problems related to the high 

computational effort involved in NMPC systems are reduced. 

Daoping and Cauwenberghe (1998) considered modeling error in their approach 

of NMPC using a neural network model. Several on-line corrections of long-range 

predictive outputs and neural-network-based multiple feedback predictive control for 

nonlinear cascade industrial processes are proposed. A variable correction coefficient and 

its design approaches are presented. 
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Balasubramhanya and Doyle (2000) used traveling wave phenomena to develop 

low order models for a multicomponent reactive distillation columns and demonstrated 

the inherent trade off between model accuracy and computational tractability for MPC 

applications. 

Roubos, Mollov, Babuka and Verbruggen (1999) developed a NMPC scheme 

using fuzzy model. The process model is derived from input-output data by means of 

product-space fuzzy clustering. Two methods are also proposed to deal with the nonlinear 

optimization problem. One is to use a branch-and-bound searching method with iterative 

grid-size reduction. The other method is to use LMPC locally. The system that are under 

study is a simulated MIMO liquid level process with two inputs and four outputs. 

Fischer, Nelles and Isermann (1998) also proposed a NMPC scheme based on 

fuzzy model. The process is an industrial-scale cross-flow water/air heat exchanger with 

the temperature under control. A fuzzy model of the process is identified from 

measurement data. Guidelines for the generation of proper excitation signals are given. 

2.2.4 Linearized NMPC 

Ozkan, Kothare and Georgasubstitutingkis (2000) modeled a nonlinear system as 

a set of piecewise linear or affine systems. The paper provides a brief review on such 

systems. Using techniques from the theory of linear matrix inequalities (LMis), a 

multiple model MPC technique is developed, which utilizes a single quadratic Lyapunov 

function and multiple local state-feedback matrices, cast the optimization problem as a 

convex problem involving LMis. Bemporad, Ferrari-Trecate and Morari (2000), 

investigated the observability and controllability of such piecewise affine systems. 
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A piecewise linear model for MPC was also developed by Banerjee and Arkun 

(1998). The plant operates in several distinct operating regimes, linear models were built 

for the individual regimes, and then nonlinear models in between these local models 

(called transition models) were interpolated to match plant dynamics during transitions. 

Piche, Sayyar-Rodsari, Johnson, and Gerules (2000) described a commercial 

version of NMPC by Pavilion Technologies Corporation. An empirical nonlinear model 

is developed using step test data and historical data. The step test data is used to create a 

linear dynamic model, and the historical data is used to build a nonlinear steady-state 

model. The steady-state model is implemented by a neural network. A parsimonious 

nonlinear dynamic model is then created by combining the linear dynamic model and the 

nonlinear steady-state model using an advanced form of gain scheduling. Therefore, their 

NMPC uses LMPC techniques while the process gain varies over the control horizon of 

the MPC algorithm. 

The strategy by Prasad, Irwin, Swidenbank, Hogg (2000) for a constrained, 

nonlinear thermal power plant is to make use of successive linearization and recursive 

state estimation using extended Kalman filtering to obtain a linear state-space model with 

the availability of a physical model for the process. 

A feedback linearization was proposed in NMPC using neural network model 

(Botto and Costa, 1998). The process is modeled with an affine combination of 

multilayer feedforward neural networks, whose structures are suitable to be further 

integrated into feedback linearization schemes with mild assumptions, thus the general 

constrained nonlinear optimization problem can be transformed into a convex 

optimization problem. A simulated highly nonlinear titration process is used for test. 
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CHAPTER3 

GROUPED NEURAL NETWORK MODEL PREDICTIVE CONTROL 

(GNNMPC) 

The novel Nonlinear Model Predictive Control (NMPC) strategy developed in this 

work is called Grouped Neural Network Model Predictive Control (GNNMPC), whose 

novelty lies mainly in its modeling part. The predictive model, the GNN, is a group of 

separately trained Neural Networks (NNs), each predicting process outputs at a specific 

step in the future, given historical input-output data series. This modeling idea is 

introduced to relieve the burden of computation under the MPC structure while 

maintaining decent prediction accuracy for desired control performance. The following 

sections describe the development of the GNN and general issues when incorporating the 

GNN model into the MPC structure. 

3.1. Background - NN Dynamic Model for Control 

NN modeling is a subset of empirical modeling. It has become popular in NMPC 

due to the difficulty of either obtaining a first-principles model or incorporating a first­

principles model into the predictive control scheme (Bequette, 1991; Henson, 1998). In 

contrast to a first-principles model, an empirical model treats the process as a black box 

and fits itself to the input-output data obtained from the process, on the assumption that 

the input-output data can fully, or to a large extent, represent the process's dynamic 

response. Therefore, much less knowledge on the mechanics of the process is needed. As 
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with most empirical models, after training, a NN model usually only requires simple 

algebraic calculations, which makes it more ready for online implementation. 

In general, there are two NN forms commonly used for representation of the 

process dynamics. One is the Feed Forward Neural Network (FFNN) (Werbos, 1990), the 

other is the Recurrent Neural Network (RNN) (Narendra 1990). The FFNN is static in its 

structure -- NN inputs propagate forward layer by layer till the output layer is reached, 

where the NN outputs are obtained. The RNN, on the other hand, is intrinsically dynamic 

-- outputs of all or part of the nodes are fed back as inputs to all or part of the nodes in the 

RNN. 

Representation of FFNN for dynamics is realized by the NARMAX (Nonlinear 

AutoRegressive Moving Average model with eXogenous inputs) model structure 

(Billings and Voon, 1986), which describes process output at the next sampling instant as 

a function of the process's historical input-output series: 

y(k + 1) = f(y(k),y(k-1), .. ,y(k - p),u(k),u(k -1), ... ,u(k-q)) (3.1) 

A variable name with a hat represents output from a model instead of directly available 

values (measured process values). In Equation (3.1), y indicates output(s) of the process 

and u indicates input(s) to the process. The term k is the discrete-time instant counter. 

The value of k = 0 indicates the time instant, 'Now', separating 'Past' and 'Future'. The 

time instant prior to k by a discrete time period of i is depicted as time instant k - i . 

Time instant j discrete time periods in the future is depicted as time instant k + j . The 

series y( k), y( k - I), . . . y( k - p) is a reverse-ordered sequence of process outputs from 

discrete time instant k- p to k. And u(k), u(k- I), ... , u(k - q) is a reverse-ordered 

sequence of process inputs from discrete time instant k - q to k . Based on this structure, 
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An FFNN, is then constructed to have past process input and output series as the inputs to 

the FFNN and the next-step process output(s) as the desired output(s) from the FFNN. 

Given enough well-represented input-output data series, the FFNN is trained to best 

approximate the relationship between its inputs and outputs as embedded in the process's 

input-output data series and mathematically modeled as the structure expressed in 

Equation (3 .1 ). 

By using the model structure as described in Equation (3.1), however, the FFNN 

model can only have prediction one-step ahead. This is insufficient for the MPC scheme, 

because MPC needs a long-range prediction of the process to be able to: 1) determine the 

distance between the desired future trajectory and the estimated future trajectory, 2) avoid 

control moves "now" that would create constraint violations in the "future", and 3) ensure 

control stability. One way to provide long-range prediction using a FFNN is to 'cascade' 

the FFNNs, i.e., to use the prediction of one-step ahead, which is generated by one 

FFNN, as an input to the next FFNN for prediction of two-steps ahead, and so on 

(Werbos, 1990). Therefore, the prediction can stretch to the prediction range as required 

by the control scheme. However, model error of one NN will propagate to the following 

NNs, which will cause degradation of the long-range prediction precision. 

An RNN is trained so that, given an initial state (e.g., the present process outputs) 

and input (e.g., the inputs to the process), the RNN model can produce a best estimation 

of the future sequence of states, i.e., the dynamics, of the process. An example of the 

RNN model based on the NARMAX model structure is to feedback the output from the 

output layer back to the input layer, the NARMAX model structure becomes: 

y(k + 1) = f(y(k),y(k-l), .. ,y(k- p),u(k),u(k-l), ... ,u(k-q)) (3.2) 
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Notice that the plant output, y, is not used as the input of the model, but instead, the 

predicted output, y , is used. RNN actually iterates to evolve a sequence of outputs, 

which approximates the dynamics of the process (Su, McAvoy, & Werbos, 1992). RNN, 

heuristically and shown by many studies, has considerably greater temporal 

representational capabilities than FFNN (Puskorius and Feldkamp, 1994 ). Despite 

considerable contributions and progress in the development, application, and analysis on 

RNN (Delgado,1995; Dimopoulos,1995; Tsoi,1997), practical learning algorithms lack 

for RNN. In the RNN training, the calculation of dynamic derivatives of its outputs with 

respect to its weights is computationally expensive and often prohibitive. Also, the 

gradient-based training algorithm is not only slow but also ineffective at finding a good 

solution for RNN. These are the main reasons of preferring the implementation of FFNN 

in the framework ofNARMAX model to approximate the dynamics of the process. Many 

commercialized reliable training tools for FFNN are available, such as the Neural 

Network Toolbox in the Matlab® package, which is used in this thesis work to obtain the 

predictive model. 

Targeting at keeping the computation both simple and speedy while remaining 

accuracy of the model for the MPC scheme, a long-range prediction model, named 

Grouped Neural Network (GNN) model, is proposed. The GNN comprises a group of 

independently-trained FFNNs, each predicting a process output at a particular time 

instant into the future. The GNN approach retains easy access to reliable and speedy 

training algorithms of FFNN while eliminating the problem of error propagation because 

the GNN model predicts n-steps in the future without the need of "cascading". The 

following section explains how this is realized. 
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3.2 Grouped Neural Network (GNN) for MPC 

Consider a Single-Input-Single-output (SISO) first-order nonlinear system 

described by: y = f(y,u, w,p), where y is the process output, u is the process input, w is 

the load, and p is the vector of the process parameters. The letter ''f' in the equation 

represents a general nonlinear function. For convenience, in the following part, we will 

not differentiate between two different nonlinear functions, rather, all nonlinear functions 

are denoted with the letter ''f'. The Euler form of the discrete time description of the 

system is y(k + 1) = y(k) + Tf(y(k),u(k), w(k),p(k)), where T is the time interval for 

discretization. This equation can be reformulated as y(k + 1) = f(y(k),u(k), w(k),p(k)). 

Assume that both the load disturbance, w, and the process parameters, p, are slowly 

changing variables so that they can be taken as constants within the prediction horizon, 

the system can be simplified as y(k + 1) = f(y(k),u(k)), which is the format of a 

NARMAX model. 

It is easy to get the equation for y(k + 2) as: 

y(k + 2) = f(y(k + l),u(k + 1)) = f(f(y(k),u(k)),u(k + 1)) = f(y(k),u(k),u(k + 1)) 

Similarly, a general equation for y(k + i) is given as: 

y(k + i) = f(y(k),u(k) , ... u(k + i -1)) (3.3) 

Similar results can be easily obtained for higher order system, for q-th order 

system (a process described by a q-th order ordinary differential eqution), we have 

y(k + i) = f(y(k-q), ... y(k),u(k-q), ... u(k),u(k + l), ... u(k + i -1)) (3.4) 

Comparing to the model structure in Equation (3 .1 ), while Equation (3 .1) provides a 

model structure for one-step prediction based on available (past) values of process 

input(s) and output(s), Equation (3.4) provides a model structure that allows multi-step 

22 



direct prediction (long-range prediction) given the information of future process input( s ). 

The model structure as expressed in Equation (3.4) can be conceptually interpreted as: 

y _ future = function(y _past, u _past, u _future) (3.5) 

This model structure assumes that with additional information of future inputs to the 

process, the model can have long-range prediction without cascading NN s. Direct long­

range prediction eliminates error propagation caused by cascading NNs. The use of 

parallel, not cascaded structure accommodates parallel processors for a computational 

speed advantage. Future inputs to the process are known, under the MPC control scheme, 

because the future input series are the decision variables of the optimized function 

( objective function). 

In the common MPC practice, the prediction model produces a series of estimated 

future process outputs at each sampling step in a discrete time scale. This is not 

necessarily needed. The purpose of the predictive model is to provide the dynamics of the 

process for comparison with the desired dynamics. Based on the argument that the 

distance between the desired and predicted trajectories is measured in the Least Mean 

Square (LMS) sense, prediction of process outputs at each step within the prediction 

horizon is not necessary, selected points that can represent the trend of the process 

outputs are enough. This will lead to further relief on computation burden. 

This NN modeling approach for MPC, which applies model structure as expressed 

in Equation (3.5) and predicts only selected points in the future for the usage of the MPC 

optimizer, is referred to as GNN. 

Computation burden can be further decreased. In the common MPC practice, the 

optimizer optimizes the MV s at each future control interval within the control horizon. 

23 



Heuristically, this is also not necessary. MPC uses a receding strategy, which means that 

although the MV s at each future control interval within the control horizon are optimized, 

only the first optimized control signal (the MVs at discrete time k=O) is utilized to 

manipulate the plant. It is believed that skipping some points between the next MV s and 

the MV s at the control horizon will decrease the computation burden of the optimization 

algorithm due to the decrease of the number of its decision variables (the future MV 

series) without sacrificing the control performance. 

CV 
o : Predicted future CVs 

5 10 
Time Interval 

~o 

o : Optimized future MVs 

I 
4 

Time Interval 

Figure 3 .1 Selective predicted CV points and future MV points in GNNMPC 

Figure 3.1 illustrates the idea of selective predicted CV points and future MV 

points (decision variables in the optimization problem) in GNNMPC. "CV" represents 

Controlled Variables (process outputs). "MV" represents Manipulated Variables (process 

inputs). The vertical axes, representing time instant "now", separate the "past" and the 

"future". The predictive model produces estimated values at selected future discrete time 

instants. In the illustration these are at future discrete time intervals 1, 2, 5, and 10, but 

any appropriate prediction points may be chosen. "Appropriate" means that there are 
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enough points, at the right places to be able to "see" the process dynamic behavior, yet no 

more than needed to retain computational ease. Individual NNs are used for each 

prediction. The line connecting these separately obtained predictions represent the 

generally predicted trend of the process behavior (but there is no implication that we 

believe that the process will exactly follow the line). The future input series to the 

process, needed by the NNs, are actually "guesses" provided by the optimizer of the MPC 

at k = 0, as shown by the lower part of the figure. Illustrated here, the "guessed" process 

inputs, i.e., the decision variables for the optimizer, change at future time intervals of 0 

("now") and 4. Circles are values of the decision variables of the optimizer. Inputs are to 

be kept unchanged between the points by choice. 

Note that in the "past", the CV path is shown by "connecting the dots" which 

represent CV values at the time intervals. The "connect the dots" lines are angled to make 

a "saw-tooth" trace. By contrast, the past MV trace shows a square wave pattern. These 

differences indicates that the CV are discrete measurements with values only at the 

sampling points, and that the process inputs are held at the value throughout the time 

interval. Note also that the MV changes at each past interval. Even though the predictive 

models assume MV changes only at selected future points, at each control interval the 

optimizer responds to the latest information, calculates a new future sequence, and the 

new first MV is always implemented, as commonly practiced in MPC. 

Figure 3.2 demonstrates the GNN model structure. In this example, the model 

provides prediction at future steps l=l, 2, 5, 10. In Figure 3.2, 

r = [y(k),y(k-1), ... y(k- p),u(k),u(k-1), ... u(k-q)f, which includes past input and 

output series of the process. Notice that present input and output values are also included. 
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This part is the common input of all the NNs inside the dynamic predictive model (the 

GNN model). For prediction into the future, an additional future input senes, 

U1+ 1 = [u(k + I),u(k + 2), ... u(k + / -1)]( l > 1 ), is needed. 

These NNs are independently trained. This creates the two training benefits of 

elimination of error propagation within the NN model, and a less intensive training 

procedure. 

Prediction Model 

r NNI y(k + 1) 

---~ y(k+2) 

~--· -~ y(k+5) 
~ 

I 1--~ y(k+IO) 
--- !fN10 

............................................. 

Figure 3.2. The GNN model structure 

3.3. Process Model Mismatch (PMM) Compensation in GNNMPC 

As briefly described in Chapter 1 and as illustrated in Figure 1.1, MPC composes 

of three major components: the prediction model which provides long-range estimation 

of the future process behavior; the model adjustment (PMM compensation) part which 

uses online available measurements to adjust the predicted future process behavior as a 

partial feedback; and the constrained optimizer which produce optimal future control 

action series. 

PMM compensation is necessary for the MPC system to provide feedback for 

stability of the control loop and for removal of the steady state offset. DMC®'s (Cutler 
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and Ramaker, 1979) PMM compensation approach, which is simple yet effective, is 

widely accepted and practiced for both LMPC and NMPC. In DMC®, the difference, d , 

between the present output, y , and the prediction of the present output at last discrete 

time instant, y(kjk-1), is calculated and added to all the future prediction values as 

adjustment for the predictive model. This approach assumes that differences observed 

between the process output and the model prediction are due to a step disturbance in the 

output which persists throughout the prediction horizon. This approach can accurately 

model setpoint changes which often enter feedback loops as step disturbances, thus 

provides zero offset for step changes in setpoint. It also approximates slowly varying 

disturbances. Since PMM can appear as slowly varying output disturbances, the DMC® 

approach provides robustness to PMM. 

Unfortunately, directly adoption of the DMC®'s PMM compensation approach in 

the GNNMPC scheme fails to provide zero steady state offset due to the separate training 

approach for each NN of the GNN model. Since the prediction value at a chosen discrete 

time instant is from NN models which are separately trained, a discrepancy between the 

prediction values, the outputs from different NNs exists even when the NNs are given 

identical input data. We state that the NNs are not "consistent", because given the same 

input values (as if the process had been at steady state) the NNs would produce slightly 

different output values. This means that if the process was at steady state with no 

disturbances or input changes, the several NN models would predict slightly different CV 

values. This would cause the controller to take action. If we adopt the common feedback 

practice, the adjusted predictions would still be inconsistent, and control action would 

lead to steady state offset. 
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In accordance with the separately-trained approach, a separate PMM compensation 

approach is proposed. The difference between the measured outputs and the predicted 

outputs for each NN is separately calculated, and used to adjust each prediction output at 

each prediction instant, separately. For the example shown in Figure 3.1, the model 

adjustment procedure is as follows: 

d, = y- y(klk-l), l = 1,2,5,10 (3.6) 

Here, y(klk -l) indicates the process output prediction of time instant k, based on the 

process information available at time instant k - l and MV information available at time 

instant k. Then, the differences are added separately to each prediction output: 

y(k + l) = y(k + l) + d, , l = 1,2,5,10 (3.7) 

to produce the adjusted prediction, y. 

It should be noted that this approach retains the classic and well-accepted MPC 

assumption that the model error is due to additive step disturbances in the output that 

persist throughout the prediction horizon. 

3.4. Objective Function in GNNMPC 

Introduction of the GNN modeling approach does not introduce a constraint on 

formatting the objective function of the MPC's optimizer. As in the general MPC 

scheme, the objective function can be freely chosen to meet a variety of process 

objectives including maximizing profits, minimizing operating costs or energy usage, or 

minimizing deviation of the process output from a reference trajectory. In this work, we 

confine the objective function to be of quadratic error criterion, Equation (3.8) describes 

a most commonly accepted and applied objective function for a SISO system: 
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J = Wcv L(y(k + i I k)- Yref (i)) 2 + WMV L(~u(k +J I k)) 2 

j 

(3.8) 

The objective function consists of two parts, the deviation (distance) of the predicted 

future trajectory from the reference trajectory, and the movements of the future control 

actions as a punitive factor. i and j are elements of the selected future prediction points 

and MV movement points, respectively. For the example illustrated in Figure 3.1, 

i = 1,2,5,10 and j = 0,4. y(k + i I k) is the adjusted predicted value of the process at 

future step i , the value of the reference trajectory at future step i is referred to as Yref (i) . 

~u(k + j I k) is the change of control action, ~u(k + j I k) = u(k + j I k)-u(k + j-11 k). 

The presence of ~u(k + j I k) indicates rate of change limit of the control actions for 

most chemical processes. Wcv and W Mv are weighting factors of CV deviation and MV 

movements. The prediction horizon, P, and the control horizon, M, are inferred by the 

selected prediction points and the future MV movement points: the last prediction point 

and MV movement point indicates the prediction horizon and the control horizon, 

respectively. For the example in Figure 3.1, P=lO and M=4. 

3.5 Summary 

Based on the assumptions that the NARMAX model structure can adequately 

represent the process dynamics, that load disturbances and process parameters are either 

constants or slowly changing, and that a least-square distance criteria is used for 

performance of the controlled variables, the GNN modeling approach is developed for 

incorporation in the MPC control scheme. 
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GNN provides prediction at selected future time instants, instead of a continuous 

consequence of values into the future, which decreases the model structure complexity 

and the training intensiveness. While using FFNN, no NN-cascading is needed for long­

range prediction, prediction is carried out in parallel mode, which accommodates parallel 

processors for computational speed advantage. 
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CHAPTER4 

EXPERIMENTAL SETUP 

The experimental work presented here is carried out on the fully automated 

fractional distillation unit in the Unit Operation Lab of School of Chemical Engineering 

at Oklahoma State University. This chapter describes the experimental setup including 

instrumentation and Data Acquisition and Control (DAC) system. 

4.1 Distillation Unit 

The distillation unit is a Technovate® Model 9079 fractional distillation system 

designed for variety of experimental investigations as they pertain to fractional 

distillation column performance. Figures 4.1 and 4.2 picture the front view and the back 

view of the unit. The front view pictures the six-tray distillation column, the distillate 

condenser, the distillate drum, and the computer for monitoring and control. While the 

column is un-insulated Pyrex glass as shown in the picture, it was insulated for the 

experimental study of this work to widen the operating range. The back view pictures the 

feed tank, the feed and reflux pumps, the flowrate transmitters, the control valves, and the 

SCR (Silicon Rectifier) heating units. Figure 4.3 shows the schematic flow diagram of 

the distillation unit. Components used for the distillation process are methanol (reagent 

grade ACS USP/NF) and water (from municipal utility water pipelines). 

The column consists of 6 sieve trays, each assembled within a 0.13 m. (5 in.) 

long, 0.076 m. (3 in.) I.D. Pyrex glass pipe sections. Each section contains process fitting 

for feed, liquid/vapor sampling, and weir downcomer adjustment. The column when 
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assembled is approximately 0.76 m. (30 in.) in height, bolted to the reboiler at its bottom 

and to the vapor output line at its upper end by means of a bell reducing coupling section 

and a flexible Teflon expansion joint. The sieve trays are 0.0031 m. (1/8 in.) thick with 

36, 0.0038 m. (0.15 in.) holes on each and with weirs and downcomers adjusted for 

0.0063 m. (1/4 in.) ideal liquid holdup on each tray (Actual holdup ranges from zero at 

weeping to 6 in at flooding). 

Figure 4.1 Front view of the distillation unit 
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Figure 4.2 Back view of the distillation unit 

The reboiler is a cylindrically welded, stainless steel tank with a capacity of 

approximately 0.015 m3 (3.86 Gallons). The heating element in the reboiler is a stainless 

steel sheathed-bayonet-type 3-cartridge heating element with explosion-proof electrical 

fittings and is rated at 4.0 KW. Calibration of the heating power for the reboiler is 

described in Appendix A. Liquid level control in the reboiler is obtained by means of a 

float-type control element that actuates a solenoid-operated valve, which transfers excess 

liquid (bottom product in the experiments) from the reboiler, through a double pipe heat 

exchanger (to cool the bottom product), to the bottom (product) tank (a polyproplyne 

container of 5-gallon capacity). 
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The overhead condenser is a Pyrex and stainless steel shell-and-tube type heat 

exchanger which contains the equivalent of 0.14 m2 (1.5 ft2) of spiral heat exchanger 

surface. The spiral condensing tube is 3.34 m. (132 in.) long coiled to a length of 0.46 m. 

(18 in.). The tube has 0.016 m. (5/8 in.) O.D. and 0.00048 m. (0.019 in.) wall. The shell is 

a 0.076 m. (3 in.) diameter, 0.6 m. (23.6 in.) long Pyrex glass tube, and is open to the 

atmosphere at the distillate exit end through a relief valve to keep the column operated at 

atmosphere pressure. 

The reflux drum (distillate receiver) is a 0.076 m. (3 in.) O.D. by 0.304 m. (12 in.) 

high Pyrex glass tube, which is flanged at the top and bottom. Inside the tube is a 

0.0063m. (1/4 in. ) O.D. tube with a length of 0.152 m. (6 in.) to overflow excess 

condensed vapor (top product in the experiments) to the top (product) tank (a 

polyproplyne container of 5-gallon capacity). 

The feed pump is a centrifugal pump driven by a 1/2 horsepower DC motor with 

3450 RPM speed. The reflux pump is a centrifugal pump driven by a 1/3 horsepower DC 

motor with 3450 RPM speed. The feed and reflux supply lines have cartridge type 

immersion preheaters right before they enter the column rated at 0.25 KW. Transfer lines 

are stainless steel tubing of 0.016 m. (5/8 in.) O.D. 

The coolant used for the condenser is the water from the municipal water supply 

pipeline. It is not only used to condense the vapor from the distillation column but also 

used to cool the bottom product through a double pine heat exchanger, as illustrated in 

Figure 4.3. 
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Figure 4.3 Schematic diagram of the distillation process 

4.2 Instrumentation 

The apparatus is equipped with 12 thermocouples connected at strategic points 

throughout the system. These include one in the reboiler (immersed in the liquid), six in 

the column (one for each tray, located about ~ inches over the tray), two on the 

condenser's inlet and outlet lines (cooling water inlet and outlet temperatures), one for 

the distillate line (distillate temperature from the outlet of the condenser), one for the feed 

after the preheater, and one for reflux after its preheater. These thermocouples are of 

chromel-alumel type and each is epoxy-sealed within a stainless steel tube. 

There are seven differential pressure (DP) cells used to signal the feed and reflux 

flow rates, the levels of the top and bottom product tanks (to monitor overflow of the 
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product tanks and to inferentially measure the flow rates of the top and bottom products), 

the cooling water flow rate through the overhead condenser, the liquid level in the reflux 

drum, and the column pressure ( differential pressure between atmosphere and the 

reboiler's vapor space, which indicates the accumulated liquid level of the column. This 

is a good index for flooding/entraining and is used as a constraint in the experimental 

runs). A fractional refractometer is used to provide off-line measurement of the 

composition of the mixture. Calibrations of the DP cells and the refractometer are 

described in Appendix A. 

4.3 Data Acquisition and Control (DAC) System 

The original Technovate® unit had manual controls. To apply computer control, 

the manual controls as shown on the board in Figure 4.1 are bypassed, the back view in 

Figure 4.2 shows some newly installed devices for full automation such as differential 

pressure transmitters, control valves, and SCR heating control units. A Camile® 2200 

DAC system together with a Pentinum® II (with 333 MHz CPU) PC is equipped with the 

distillation process for full automation. 

There are six computer boards in the Camile® 2200 DAC system, five installed 

inside the Camile® 2200 chasis (the black box in Figure 4.1), one (PN566) plugged in the 

host computer. Control board PN 564 performs control action calculation, scheduling 

data collection and transmission. Terminator board PN554 minimizes system noise by 

damping resonant frequencies in the communication bus. Communication board PN565 

communicates with the host PC. Thermocouple board PN525 takes thermocouple input 

signals. Analog input board PN525AI reads standard (4-20mA current in our case) 
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analog input signals. Analog output board PN522 accepts analog output signals (0-20 

mA current in our case) and actuates the control elements (control valves and SCRs). 

Communication board PN566 is plugged inside the host computer to communicate with 

other Camile® boards. The 12 thermocouple input signals, the readings from the 7 DP 

cells are read into the computer through the Camile® DAC system (each signal is filtered 

by a first order moving average filter configurable in the Camile® interface). There are 6 

analog output signals. Three for the feed, reflux and cooling water control valves, and 

three for the feed, reflux, and reboiler SCRs. 

The Camile® 4.0.5 software under Windows® NT® operating system provides 

user-friendly interfaces for monitoring and controlling the process. Although Camile® 

provides a platform to write customized codes for complicated applications, for our work, 

we chose to use a more advanced language, the Matlab® language in the Matlab® 

application to carry out the proposed GNNMPC scheme. Both Camile® and Matlab® run 

in real time within the same PC and communication between the two applications are 

through an intermediate text file. Camile® reads measurement signals from the process, 

provides interface for monitoring the process, and communicates with the Matlab codes. 

The Matlab reads data from the Camile®, makes control decisions, and sends calculation 

results (control decisions) back to the Camile® for its execution. Figure 4.4 shows some 

human machine interfaces created within the Camile® application. 
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Figure 4.4 (b) Camile interface- graphic records of temperatures, drum level, and 
column differential pressure 
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Figure 4.4 (c) Camile interface- graphic records of product compositions, drum level, 
and column differential pressure 

C841 10:33 11:25 1217 13:08 14:01 14:53 15:45 16:37 17:29 Ut21 
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09:41 10:31 11: 1 11 1 . 13:51 14:41 15:31 16: 17:11 18:01 18:51 

Figure 4.4 (d) Camile interface - graphic records of process inputs, feed flowrate, reflux 
flowrate, heating power to the reboiler 

Figure 4.4 Camile® interfaces 
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4.4 GNNMPC System for the Distillation Column 

The GNNMPC control system is a 2*2 MIMO control system. The manipulated 

variables are the reflux mole flowrate, R, and the heating power to the reboiler as 

expressed by percentage of the full power, H. The controlled variables are the mole 

fraction of methanol of the top product, y, which is inferred by temperature on the top 

tray, and the mole fraction of methanol of the bottom product, x, which is inferred by 

temperature in the reboiler. 

The feed molar flowrate, F, is considered as a measured feedforward load 

disturbance. The composition of the feed, z, is offline measurable using the refractometer. 

Temperatures of the feed and reflux, FeedT and RefluxT are measured and controlled by 

PID controllers. z, FeedT, and RefluxT are taken as unknown disturbances for the 

GNNMPC controller. Under normal operations, z, FeedT, and RefluxT are fixed at 0.25 

mole fraction methanol, 35 °c, and 50 °c, respectively. 
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CHAPTERS 

GNNMPC AND THE SIMULATED DISTILLATION 

A tray-to-tray dynamic distillation simulator representing a similar experimental 

setup at Texas Tech University was originally developed by Pandit (1991) . Codes in 

Basic language (Pandit, 1991) and in C language (Ramchandran, 1994; Dutta, 1997) are 

available. The model was revised and recoded in Matlab® (see codes in Appendix C) to 

represent the experimental setup at Oklahoma State University. This simulator was used 

in this work for the following purposes: 

• Facilitate better understanding of the dynamic behavior of the experimental 

distillation process 

• Provide insights into the nature of the interactions between the inputs and the 

outputs 

• Carry out preliminary test on the GNNMPC 

• Facilitate deep investigation of the GNNMPC 

We will describe the modeling method briefly and then discuss implementation of 

the GNNMPC for the simulated distillation process. 

5.1 First-Principles Dynamic Model of Methanol-Water Distillation Column 

Material balance, energy balance, plus thermodynamic and hydraulic properties of 

the components, methanol and water, are used to create the dynamic model of the 

distillation process. Assumptions made by the simulation are: 

(1) The two components, methanol and water, are pure. 

41 



(2) The column is operated under standard pressure (1 atm). Correlations of 

thermodynamic properties are obtained from data under standard pressure. 

(3) The dynamics of the heating element in the reboiler is negligible compared to the 

dynamics of the bottom composition. 

(4) The dynamics of the internal energies on the trays are negligible comparing to the 

dynamics of the composition, therefore, energy balances on each tray are just 

algebraic ( d(M;h;) = 0 in Equation (5.3) below). 
dt 

(5) The condenser is a total condenser. 

(6) Perfect level control in the reflux drum and the reboiler allows a constant 

(volume) holdup in the reflux drum and the reboiler by instantaneously changing 

flowrates of the bottoms product and the liquid distillate product. 

The material and energy balance equations for each equilibrium stage are: 

The overall material balance: 

dM. 
--' =L. I +V. I -L -V. +F dt 1+ /- I I I 

(5.1) 

The component material balance: 

(5.2) 

The energy balance: 

(5.3) 

In Equations (5.1) to (5.3), i represents an equilibrium stage. We start the 

numbering of the equilibrium stage from the reboiler (note that the preferred convention 

of numbering a distillation column starts from the top, this bottom-up convention is 

42 



inherited from the coding/modeling legacy in the previous work), which is an equilibrium 

stage with an efficiency of unity. Then we go up to the bottom tray as stage 2, the top tray 

is numbered as stage 7. So i = 1 - 7 . Li , xi, and h; denote mole flow rate, mole 

composition and enthalpy of the liquid leaving equilibrium stage i (going downwards to 

equilibrium stage i-1). V; ,Yi and Hi denote mole flow rate, composition, and enthalpy 

of the vapor flow leaving equilibrium stage i (going upwards to equilibrium stage i+ 1). 

M; is liquid hold up on stage i. F;, zi denote side-stream's mole flow rate and its mole 

composition entering stage i. For this work, F; and zi are feed mole flowrate F and its 

mole composition z if i equals 4 (feed tray), and it is reflux mole flowrate Rand its mole 

composition x 0 if i equals 7 (top tray). For this binary distillation process, component 

composition refer to the composition of the light component, i.e., methanol. 

Correlations of thermodynamic properties of the methanol-water system such as 

vapor-liquid equilibrium (VLE), enthalpies, densities are given in Appendix B. 

A Murphree vapor-phase efficiency is used to describe the departure from 

equilibrium for calculation of the vapor composition, Yi. The Murphree efficiency on 

each tray (equilibrium stage) is predetermined from equipment manual and operating 

experience. Then, from the definition of the Murphree tray efficiency, 

(5.4) 

the actual vapor composition, Y;, can be calculated, given the ideal vapor composition, 

y;, which is in VLE with the liquid composition X ;, and the composition of the vapor 

from the previous tray, Yi- I • For this work, the Murphree efficiency on each tray was 
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roughly determined according to observations on the bubbling condition on each tray 

during experiments. Good bubbling on the tray ( e.g. Yi" to 2" bubbling liquid) was 

interpreted as good mass transfer and therefore high Murphree efficiency, refer to the 

codes Appendix C. l for the values used for the simulator. 

The hydraulic dynamic response of each tray is modeled using Francis weir 

formula (Luyben, 1990) to relate the liquid holdup to the liquid flowrate leaving the tray. 

The Francis weir formula is given as 

(5.5) 

where QL is liquid flowrate over the weir inft3 Is, lw is the length of the weir inft, and 

h 0 w the height of the liquid over the weir inft. Additionally, 

L =p.QL. 
I I ,I (5.6) 

(5.7) 

where D is the diameter of the column, hw is the height of the overflow weir. 

Combining Equations (5.5) to (5.7), L; and M; in the material and energy balance 

equations (Equation (5.1) to (5.3)) are correlated. 

Given the information of thermodynamic and hydraulic properties and usmg 

Euler's method, the ordinary differential equation (ODE) Set (5.1) to (5.3) can be solved. 

Procedures are: 

Step 1 Initialization. Either initialize all X; to be the feed composition, z , and all L; to be 

the reflux flowrate, R; calculate holdup M; from x; and L; by the Francis weir 

formula; set tray efficiencies, or initialize the column to be at a steady state that is 

already obtained from a previous simulation. 
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Step 2 Get the ideal vapor composition, y;, in VLE with X; from y-x correlation, then 

get Y; by using the definition expression of Murphree's tray efficiency (Equation 

(5.4)). 

Step 3 Get the saturated vapor and liquid phase enthalpies H; and h; from H-y and h-x 

correlations. 

Step 4 Get the vapor flowrate, V; , for the next time increment, from the energy balance 

equation on each tray (Equation (5.3)). 

Step 5 Get total liquid holdup M; and component liquid holdup M;x; for the next time 

increment from total mass balance equation (5.1) and component mass balance 

equation (5.2) using Euler's discretization method. 

Step 6 Update X; by X; = (M;x; IM;) . 

Step 7 Update L; by the Francis weir formula (Equations (5.5) to (5.7)). 

Step 8 Go back to Step 2 if the simulation time is not reached. 

The correlations of the thermodynamic properties of methanol-water system is 

attached in Appendix B. The Matlab® codes of the distillation process is attached in 

Appendix C. In the simulator, the volume of the reboiler is set to be 1.42 liters, instead of 

14.2 liters in the experimental setup to speed up the simulation. 

5.2 Operating Range 

For the simulation, the feed composition is normally at 0.25 mole fraction. The 

feed temperature is 35 °c and the reflux temperature 50 °c. the operating range are listed 

in Table 5.1. 
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5.3 Open-Loop Responses 

Open-loop response investigations were carried out to provide insights into the 

characteristics of the process. Characteristics such as nonlinearity, interaction, deadtime, 

ill-dynamics can raise control difficulties and should be closely investigated and 

identified. 

For a distillation column with medium product purity, the characteristics that 

raise control difficulties are usually the interactions and the nonlinearity over a wide 

operating range. In the following, step responses both in a narrow operating range 

(locally) and in a wide operating range (globally) were carried out for investigation of the 

process's characteristics. 

Table 5 .1 Operating range and nominal point of the simulated distillation process 

RANGE NOMINAL 

Feed flowrate (F) (gmol/hr) 250-310 280 

Reflux flowrate (R) (gmol/hr) 90-150 120 

Heating power (H) (% full power) 45-60 50 

Top product composition (y) (mole fraction of methanol) 0.6-0.95 0.871 2 

Bottom product composition (x) (mole fraction of methanol) 0-0.2 0.0528 

"Local" step responses are carried out around the nominal operating point of the 

simulator ({R,H,F}={l20,50,280}), with positive and negative deviations of the process 

inputs (MVs and LDs) from their nominal values. The responses are shown in Figure 5.1 

to 5.3. Figure 5.1 shows the process response to a change in the reflux mole flowrate, R, 
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(a 10% of both positive ( to 132 gmol/hr) and negative (to 108 gmol/hr) deviation from 

the nominal point) while keeping all other process inputs unchanged. Figure 5.2 shows 

the process response to a change in the heating power, H, (a 10% of both positive ( to 

55%) and negative (to 45%) deviation from the nominal point) while keeping all other 

process inputs unchanged. Figure 5.3 shows the process response to a change in the feed 

mole flowrate, F, (a 10% of both positive (to 308 gmol/hr) and negative (to 252 gmol/hr) 

deviation from the nominal point) while keeping all other process inputs unchanged. 

Table 5.2 (a) lists the steady state deviation of the process outputs, top composition,y and 

bottom composition, x, from their nominal points under deviated process inputs, Table 

5.2(b) presents the local gains calculated from the steady state values in Table 5.2(a). In 

Table 5.2(b), local static gain, is calculated as K; ,o = !; , where "~o" represents the 

steady state change of the process output (y or x), and "M" represents the steady state 

change of the process input (R, H, or F). 

Table 5.2 Steady state analysis in the local open-loop study 

(a) Steady state values of inputs and outputs 

Deviation y (0.871 mt) X (0.053 mt) 

+10% +0.0232 (+2.66%) +0.0299 (+56.6%) 
Reflux flowrate (120 gmol/hr) 

-10% -0.0372 (-4.27%) -0.0221 (-41.9%) 

+10% -0.0686 (-7.87%) -0.0370 (-70.08%) 
Heating power (50% full power) 

-10% +0.0305 (+3.50%) +0.0614 (+ 116.28%) 

+10% +0.0097 (+1.1%) +0.0237 (+44.9%) 
Feed flowrate (280 gmol/hr) 

-10% -0.0193 (-2.2%) -0.0232 (-43.9%) 

47 



(b) Local static gains at {R,H,F}={l20,50, 280} 

Deviation 

+10% l.93e-03 2.49e-03 
Reflux flowrate (120 gmol/hr) 

-10% 
KR ,y KR ,x 

3.1 Oe-03 l.84e-03 
+10% -l.37e-02 -7.40e-03 

Heating power (50% full power) · 
-10% 

KH ,y KH ,x 
-6.lOe-03 -l.23e-02 

+10% 3.46e-04 8.46e-04 
Feed flowrate (280 gmol/hr) 

-10% KF ,y KF ,x 
6.89e-04 8.29e-04 

As seen in Table 5.2 (b), local gams calculated from positive and negative 

deviation are different (as much as about a ratio of 2 for KH ,y and KH ,x ), indicating static 

nonlinearity. 

Graphs in Figure 5.1 to 5.3 show that the process is of first-orderish dynamics, 

with essentially the same response time for the top composition and the bottom 

composition. These graphs also visually show moderate static nonlinearity and slight 

dynamic nonlinearity. If the step responses under the positive and negative input 

deviations are symmetric to the steady state response at the nominal point, the process is 

locally linear. Otherwise, there is either steady state nonlinearity or/and dynamic 

nonlinearity. In Figure 5.1, it is observed that the settling times are about the same. For 

the top composition, the change due to the positive deviation is smaller than the change 

due to the negative deviation, indicating static nonlinearity. This is more obvious from 

the numeric comparison in Table 5.2, which shows that the same amount of change in the 

process input does not lead to the same amount of change in the output. The same 

analyses are done for deviation of the heating power and the feed flowrate. In Figures 5.2 

and 5.3, the settling times are essentially the same, and static nonlinearity is observable 

from the graphs and from numerical values in Table 5.2. 
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(solid line: + 10% change; dash-dot line: -10% change) 
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Figure 5.3 Open-loop response to step change of feed flowrate 
( solid line: + 10% change; dashdot line: -10% change) 
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Next, the "global" characteristics were studied over a wide operating range. 

Figure 5.4 shows the step responses at one comer of the operating range (Region 

1 ), where the feed flowrate and the reflux flowrate are low and the heating power is high. 

Figure 5.5 shows the step responses around the nominal point (Region 2), and Figure 5.6 

shows the step responses at another comer of the operating range (Region 3), where the 

feed flowrate and the reflux flowrate are high and the heating power is low. Region 1 and 

Region 3 can be considered as the two ends of the diagonal line of a cube defined by the 

operating range of the process inputs (the reflux flowrate, the feed flowrate, and the 

heating power), while Region 2 is the middle point on the diagonal line. 

Because the step change is small enough, local gains can be calculated 

numerically from the steady state values of the inputs and output as, K,. 0 = !!:,.o , where 
• !!:,.i 

"!!:,.o" represents the steady state change of the process output, and "!!:,.i " represents the 

steady state change of the process input. As an example, K R,y in Table 5.3 denotes gain 

of the top composition with respect to the reflux flowrate. Further, Bristol's relative gain 

(Seborg, Edgar & Mellichamp, 1989), A , can be calculated from the local gains as: 

1 
.tt= K K 

l- R,x H ,y 

(5.8) 

K K R,y H,x 

for this distillation process. The steady state values, the local gains as well as the relative 

gains are listed in Table 5.3. Also listed is the estimated settling time ( t; ,o ) from 

observation of the step responses. 
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Table 5.3 shows that local gains can change magnitude by a factor of over 5 times 

for the top composition and over 10 times for the bottom composition from one region to 

another region, denoting significant nonlinearity in the wide operating range. The relative 

gain changes from 8.16 in Region 3 to -5.35 in Region 2, indicating not only significant 

interactions of the process but also drastic change of the interaction effects at different 

regions. There is also dynamic nonlinearity as shown by the change of the settling times 

magnitude of as much as 3 times in different operating regions. 

Table 5.3 Steady state analysis in the wide range open-loop study 

Region 1 Region 2 Region 3 
Reflux flowrate 

90 95 90 120 125 120 145 150 145 (gmol/hr) 
Heating power 

58 60 60 50 50 52 45 45 47 
(% full power) 
Feed flowrate 

250 250 250 280 280 280 310 310 310 (gmol/hr) 
Top comp. 

.5267 .5473 .4969 .8712 .8822 .8502 .9243 .9269 .9200 
(mole frac.) 

Bottom comp. 
.0015 .0017 .0007 .0528 .0643 .0342 .2008 .2132 .1778 

(mole frac.) 
________ KR,y _________ _________ 4.12e-03 ________ _ 2.20e-03 5.30e-4 
________ KH,y_ __ _____________ -l.49e-02 _______ _ l .05e-02 -2.14e-3 

----------------------------- ------------------------------
________ KR,x ____ ______________ 4.40e-05 ________ _ 2.32e-03 2.48e-3 
________ KH,x _________ ________ -3.65e-04 _______ _ -9.30e-03 -l.15e-2 

----------------------------- ------------------------------
,1, 1.77 -5.35 8.16 

________ _f R.y ______________________ 20 ____________ _ 30 25 
-------------------- -------- - ------------------------------

________ _t H.y _ _ _ _ _ _ _ _ _ _ ____________ 15 ____________ _ 30 25 
________ _f R,x _ _ _ _ _ _ _ _ _ _ ____________ I _Q ____________ _ 35 25 

--------------------------- -- ------------------------------
10 30 25 
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5.4 GNN Modeling 

For the control system, the MVs are the reflux mole flowrate and the heating 

power to the reboiler, the feed flow rate is taken as a slowly changing measured 

feedforward load disturbance, the feed composition is taken as an unmeasured load 

disturbance. The CV s are the top composition and the bottom composition. Parameters 

chosen for the GNN modeling are shown in Table 5.4. 

Table 5.4 Parameters for GNN modeling 
(sample interval is 2 minutes, numbers are with respect to discrete sample interval) 

5 Past Window Length ( q) 

Prediction Points ( YP) 1,2,3,5,10 

The model structure of each NN in GNN is described as 

Y(k + i) = f(Y(k - q), ... Y(k),U(k - q), ... U(k - l),F(k),U(k), .. .U(k + i -1)), i E YP 

(5.9) 

Where Y is the vector of CV s, U is the vector of MV s, and F is the feed flowrate, the 

feedforward load disturbance. Note that for this distillation process, the feed flowrate is 

taken as a slowly changing measurable disturbance, only the "current" feed flowrate is 

taken as the GNN's input. 

Each NN in the GNN model is a 3 layer FeedForward Neural Network (FFNN) 

with sigmoidal node transfer function. the inputs and outputs are determined by the 

model structure as shown in (5.9). The number of hidden units for each NN, which 
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determine the approximation performance of the NN, is determined by trial-and-error, a 

common practice in NN modeling as will be described in detail later in this section. 

The input-output series that are used to construct the training data set for the GNN 

are obtained by open-loop responses to randomly distributed input series {Rejlux,Heating 

power.Feed}. The magnitudes and frequencies (distribution) of the input series must be 

such designed that the dynamics of the process is sufficiently stimulated and fully 

developed. For this work, the magnitudes of all the process inputs are uniformly 

distributed in the operating range. For the MVs, the time period that one magnitude lasts 

is a random integer that is uniformly distributed between 15 to 60 discrete time intervals 

(30 to 120 minutes). For the feed flowrate (the feedforward disturbance), the time period 

that one magnitude lasts is a random integer that is uniformly distributed between 30 to 

80 discrete time intervals (60 to 160 minutes). The principles in choosing the above 

design parameters are that there are enough points representing sufficiently developed 

dynamics as well as enough points representing steady state values. For the simulated 

distillation process, the response time of the process is about 30 discrete time intervals, 

thus change at time interval 15 would provide dynamic stimulation and change at time 

interval 60 would allow the process to develop enough steady state points. Because the 

feed flowrate is treated as a slowly changing feedforward load disturbance, the change 

frequency is low. The minimum lasting period is set to be about the settling time of the 

process (30 discrete time interval). The generated input-output series is shown in Figure 

5.7, where about 4500 samplings are available. Figure 5.8 is an exploded view of a small 

section of Figure 5.7. 
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As shown in Figures 5.7 and 5.8, both dynamic points and steady state points are 

generated. The values in the input-output series are then scaled (linearly compressed to a 

range of Oto 1 based on the operating range of each variables as defined in Table 5.1) 

and constructed to produce 4396 training patterns (NN's inputs and target outputs) for the 

NN s. Among the patterns, the first 4000 patterns are used as the training set, and the 

remaining 396 patterns compose the testing set. 

The trial-and-error training procedure is as follows, the number of hidden units 

and a maximum training epochs are set, then the NN is trained till the maximum training 

epochs (100 as default in the Matlab toolbox) is reached. The performance (Mean Square 

Error (MSE)) of both the training set and the testing set is recorded. When the two 

criteria that the MSE of both the training set and the testing set is less than 10-3 and that 

the MSE of the testing set is not increasing are met, the training is considered to be of 

good performance and adopted. Otherwise, the number of hidden units is increased (if the 

MSE of the training set is greater than 10-3) or decreased (if the MSE of the testing set 

increases, indicating overfitting of the training patterns) and the training process is 

carried out again. Graphical results of comparing the NN output and the target output are 

also used as guidelines for determining the "goodness" of the NN training. The threshold 

of 10·3 for MSE is a subjective choice based on the justification that 10·3 responses to an 

average relative error of about 3% (the average error is the square root of 10·3, which is 

about 0.03, since the range is Oto 1, this indicates an average relative error of about 3%). 

Training results of the GNN are shown in Table 5.5. Three criteria are used to test 

the training performance. The Root Mean Square Error (RMSE), the Maximum Absolute 

Error (MAE), and the Maximum Relative Error (MRE). Each NN outputs two values, the 
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scaled top composition and the scaled bottom composition at a future moment. RMSE of 

a magnitude of less than 0.02 indicates a mean modeling error of 2%. The values of the 

MAE and MRE do not look good. The MRE for the scaled bottom composition can be as 

high as 99.03% and that for the scaled top composition can be as high as 121.59%. It was 

observed, however, from the time series comparison (as partly shown in Figure 5.9) that 

the MAE (MRE) occurred at points where the initial state change occurred. The trend that 

the NNs learned tracked the process very well. Therefore, it is nevertheless claimed that 

the GNN has good approximating (modeling) performance. 

Table 5.5 Training results of the GNN model 

(RMSE: Root Mean Square Error; MAE: Maximum Absolute Error; MRE: Maximum Relative Error. 

RMSE = _!_ f (.Y; - y;)2 ;MAE= max(I .Y; - Y; l,i = l, ... N); MRE = ma)>'; - Y; l,i = l, ... N) 
Nw ~ ~ 

Where .Y; is the output from the NN, Y; is the target output, and N is the number of patterns) 

NN1 NN2 NN3 NNs 

NN Structure 25-6-2 27-6-2 29-6-2 35-6-2 

RMSE of training set 0.0110 0.0113 0.0118 0.0130 

RMSE of testing set 0.0117 0.0120 0.0128 0.0140 

MAE (training set) 0.1929 0.1918 0.1930 0.1903 
Scaled top --------------------------- -------------- ------------- ------------- --------------

MAE ( testing set) 0.2257 0.2176 0.2192 0.2042 
--------------------------- -------------- -------------- ------------- --------------

composition MRE ( training set) 48.05% 47.20% 46.17% 46.29% 
--------------------------- -------------- -------------- ------------- --------------
MRE (testing set) 80.50% 77.59% 78.15% 76.86% 

Scaled MAE (training set) 0.0598 0.0585 0.0667 0.1136 
-------------------------- - -------------- -------------- ------------- --------------

bottom 
MAE (testing set) 0.0424 0.0408 0.0508 0.0492 

--------------------------- -------------- -------------- ------------- --------------
MRE ( training set) 30.17% 35.16% 47.96% 86.57% 

composition --------------------------- -------------- -------------- ------------- --------------
MRE ( testing set) 15.87% 22.32% 32.62% 54.60% 
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Figure 5.9 compares the NN output with the target output using the testing set for 

Y(k + 3) (scaled top and bottom compositions). The dotted line, which is the output from 

the NN, mostly overlapped with the solid line, the target output for the NN, indicating 

that the NN catches the dynamics well. The deviation plot shows that most NN outputs 

clustered very close to the diagonal line, where the NN output equals the target output, 

also indicating good training results. The lack of data where the scaled bottom 

composition is greater than 0.6 as shown in Figure 5.9 (b) implies that data in the region 

are not available from the generated data. 

Another approach of validating the GNN model is to compare the step response of 

the process with the GNN prediction. To do this, the process was initially at steady state, 

then a step change was made to both MVs (denoted as time instant 'O'), and the GNN 

made its prediction of the step response. The process was then allowed to developed till it 

reached beyond the prediction horizon, the actual step response was then compared to the 

GNN prediction done at time instant 'O'. Figure 5.10 shows the comparison for a step 

response to the step change of the MVs, {R, H}, from {120, 50} to {130, 46}. Table 5.6 

shows the difference between the GNN output and the actual output . Figure 5.11 shows 

the comparison for a step response to the step change of the process inputs, {R,H,F}, 

from {120, 50, 280} to {90, 55, 260}. NN outputs are scaled back to their operating range 

to be compared with the actual process outputs. Table 5.7 shows the difference between 

the GNN output and the actual output. From Table 5.6 and Table 5.7, the maximum 

absolute error of the top composition prediction is 0.0279 mole fraction, which is 7 .97% 

of the top composition's operating range (0.6 to 0.95). The maximum absolute error of 

the bottom composition prediction is 0.0119 mole fraction, which is 5.95% of the bottom 
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composition's operating range (0 to 0.2). Figures 5.10 and 5.11 also show that the GNN 

provides a good representation of the process dynamics, because the predicted behavior is 

relatively close to the actual behavior. 

Table 5.6 Predicted step response versus the actual step response 
{R,H} changes from {120, 50} to {130, 46} 

Future points 1 2 3 5 

Top 
Actual .8908 .8932 .8961 .8995 

composition Prediction .8932 .8951 .8976 .9017 
(mole frac.) 

Error .0024 .0019 .0005 .0022 

Bottom 
Actual .0598 .0676 .0746 .0865 

composition Prediction .0670 .0742 .0804 .0904 
(mole frac.) 

Error .0072 .0066 .0058 .0039 

Table 5.7 Predicted step response versus the actual step response 
{R,H,F} changes from {120, 50, 280} to {90, 55, 260} 

Future points 1 2 3 5 

Top 
Actual .7988 .7696 .7440 .6983 

composition Prediction .7709 .7454 .7252 .6852 
(mole frac.) 

Error -.0279 -.0242 -.0188 -.0131 

Bottom 
Actual .0417 .0312 .0232 .0132 

composition Prediction .0298 .0233 .0161 .0079 
(mole frac.) 

Error -.0119 -.0079 -.0071 -.0053 
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Figure 5.12 demonstrates the lack of "consistency" of the GNN outputs, which 

requires individual NN model corrections. The process is at steady state under {R,H,F}= 

{120,50,280}. The GNN made prediction when there are no changes to the process 

inputs. Prediction from each NN in the GNN, although produces close numbers, these 

numbers are not exactly the same, indicating transient state instead of steady state. This 

discrepancy was the results of the separate training methodology that is used for the GNN 

modeling, and was the motivation for the proposal of a new Process Model Mismatch 

(PMM) compensation strategy as described in Chapter 3. 
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5.5 Process Model Mismatch (PMM) 

The NN modeling method is a data-dependent method, for which a large amount 

of data points are often necessary for the NN to extract the process characteristics 

efficiently. It is often the case that a dynamic simulator of a real process is available for 

deep investigation of the process. Because it is much quicker and more convenient and 

cost efficient to generate data from the simulator, it would be desired that the data used 

for the NN training is obtained from the simulator rather than from the real process. 

However, the simulation model is often a simplified one, and often does not fully 

represent the real process. We call this mismatch between the simulation model and the 

real process modeling error. In the controller simulation results that follow (Section 5.6), 

the simulator which generated training data is intentionally different from the simulator 

which represent the process. The situation where modeling error exists is simulated 

below. The simulated real process has different tray efficiencies and reboiler correlations 

from the simulation model used for the NN training. The mismatch between the NN 

model and the simulated real process is called Process Model Mismatch (PMM). 

Figure 5.13 demonstrates the modeling error in the simulation work. Under the 

same process inputs ({R ,H, F}={l 20, 50, 280)), the model and the real process reached 

significantly different steady state values ( {y, x} of {0.8712, 0.0528} versus {0.8520, 

0.0284}) . When the process inputs made a step change at time instant 60 to {R, H, 

F} ={90, 55, 260) , the amount of the output steady state values are also different ( {y, x} 

of {0.5999, 0.0039} versus {0.5537, 0.0021}). Figure 5.14 and Figure 5.15 show the 

effect of modeling error on the PMM. Exactly the same step response tests as shown in 

Figure 5.10 and Figure 5.11 were taken, with the existence of modeling error. Figure 5.14 
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shows the same tests as done in Figure 5.10, where the process inputs, {R, H, F}, made a 

step change from {120, 50, 280} to {130, 46, 280}. Figure 5.15 shows the same tests as 

done in Figure 5.10, where the process inputs, {R, H, F}, made a step change from {120, 

50, 280} to {90, 55, 260}. It is obvious that with the modeling error, the PMM becomes 

bigger. 
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Figure 5.13 Modeling error 
Solid line is response of the simulated real process, dash-dot line is response of the simulation model 
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5.6 Control Performance of GNNMPC 

GNNMPC is formulated as a nonlinear constrained optimization problem, which 

is solved using the Sequential Quadratic Programming (SQP) technique available in the 

Matlab® optimization toolbox (version 1.5.2). The optimization problem is: 

Min= ~)y(k+i)-ysp) 2 + ~)x(k+i)-xxp)2 +wMvc2>~R(k+ j) 2 + LM/(k+ j) 2 ) 

R1 ,H J ieyp iexp jeRp jeHp 

subject to: 

[y(k + i),x(k + i)] = GNN(y(k-5), ... y(k),x(k-5), ... x(k), ... 

F(k),R(k-5), ... R(k + i -l),H(k-5), ... H(k + i-1)) + [dy(k + i),dx(k + i)] 

[dy(k + i),dx(k + i)] = [y(k),x(k)]- GNN(y(k -5-i), ... y(k-i),x(k-5-i), ... x(k-i), ... 
F(k-i),R(k-5-i),R(k-1),H(k-5-i),H(k-1)) 

M(k+ j)=R(k+ j)-R(k+ j-1) 

Ml ( k + j) = H ( k + j) - H ( k + j -1) 

0 s y(k+ i) s 1 

o s x(k + i) s 1 

0 s R(k + j) s 1 

0 s H(k + j) s 1 (5.10) 

Equation Set (5.10) includes the objective function, the GNN model, the model 

adjustment, and the hard constraints on the MV s, CV s, and MV movements. y and x are 

the predicted top and bottom compositions after adjustment. dy and dx are the 

adjustment for top and bottom compositions, respectively. It should be noted that 

although the same nomenclature such as R, H, F, y, x are used as before to represent the 

process variables, in Equation Set (5.10), these variables are all scaled to their operating 
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range to be numbers that are in the range of O to 1. R.r and H .r are future MV s, i.e., the 

optimized variables. Parameters for the optimization problems are listed in Table 5.8. 

Table 5.8 Tuning parameter for GNNMPC in simulation tests 

0.1 {1,2,3,5,10} {l,2,3,5,10} {0,4} {0,4} 

For this work, wMv, the MV suppression factor, is used as the sole tuning parameter of 

GNNMPC. Though other parameters such as RP or HP are also tuning parameters, they 

are not discussed here. References are available for choosing the prediction and the 

control horizons (Garcia & Morari, 1989; Rawlings &Muske, 1993; Scattolini & Bittanti, 

1990). The Matlab codes for GNNMPC (in the form of the optimization problem as 

shown in Equation Set (5.10)) are presented in Appendix D.1. 

In the following section, the capabilities of GNNMPC of tracking setpoints, 

tuning aggressiveness, rejecting disturbances and handling constraints will be 

demonstrated. 

5.6.1 Setpoint Tracking and Controller Aggressiveness 

Table 5.9 lists the cases studied for the servo mode (setpoint tracking). In all 

cases, the process was initially at closed-loop steady state under GNNMPC with wmv at 

0.1. The MVs were kept at {R, H}={l 14.13, 48. 70}, and the steady state CVs were kept 

at the setpoint {y, x}={0.85, 0.03}. 
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Table 5.9 Setpoint tracking case studies 
(for all cases, the process is initially at closed-loop steady state {y,x}={0.85, 0.03} 

underGNNMPC with Wmv=O.l, {R,H}={114.13,48.70}) 

New setpoint for {y,x} wmv New MV s ( {R,H}) 

Case 1 {0.65, 0.005} 0.1 NIA 

Case 2 {0.65, 0.005} 0.5 {96.40, 53.72} 

Case3 {0.9, 0.08} 0.1 {120.06, 45.21} 

Case4 {0.9,0.08} 0.02 {119.98, 45.19} 

In Case 1 and Case 2, the setpoint, {Ysp•xsp} was changed to {0.65, 0.005} at 20 

minutes. In Case 1, wmv is set to be 0.1. In Case 2, wmv is set to be 0.5. The control 

results are shown in Figure 5.16 for Case 1 and in Figure 5.17 for Case 2. 

Figure 5.16 (Case 1) shows that the GNNMPC system is unstable when wmv 

equals 0.1. Figure 5.17 (Case 2) shows that the GNNMPC system performs well when 

wmv equals 0.5. In Case 1, GNNMPC responds immediately after the setpoint change is 

introduced. The reflux flowrate is pushed to its lower limit, 90 mole/hr and the heating 

power to about 58% full power (near the upper limit of 60% full power), which causes a 

rapid decrease of the top composition and the bottom composition, toward their setpoints. 

The top composition and the bottom composition hit their setpoint within 15 minutes 

comparing to the process's settling time of 60 minutes. Unfortunately, GNNMPC does 

not settle down, instead, both MV s oscillate. The hard constraints on MV s make MV s 
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oscillate between their limits (the lower limit of 90 mole/hr for the reflux flowrate and the 

upper limit of 60% full power for the heating power) and some mediate values. 
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In Case 2, the MVs also took actions immediately when the setpoint changed, 

after a small "excessive action", settled down at values that keep the CVs at its setpoint. 

The reflux flowrate is pushed to about 93 mole/hr and the heating power to about 54.4% 

full power, which is less aggressive than the GNNMPC in Case 1. The MVs do not hit 

constraints but bring the CVs to their new setpoints with 20 minutes (as opposed to 60 

minutes of the process's settling time). Because the only difference of design in Case 1 

and Case 2 is w mv, it can be concluded that w mv equals 0.1 too aggressive while w mv 

equals 0.5 brings good control performance. 

In Case 3 and Case 4, the setpoint, { Ysp,xsp} was changed to {0.90, 0.08} at 20 

minutes. In Case 3, wmv is set to be 0.1. In Case 4, wmv is set to be 0.02. The control 

results are shown in Figure 5.18 for Case 3 and in Figure 5.19 for Case 4. 

In Case 3 (Figure 5.18), GNNMPC responds immediately to the setpoint change, 

pushing the reflux flowrate to about 130 mole/hr and the heating power to its lower limit 

of 45% full power. However, the MVs then are very sluggish to settle down. After the 

settling time of the process ( about 60 minutes) at about 80 minutes, the MV s are still 

slowing moving, and the top composition has not settled at its new setpoint yet. 

In Case 4 (Figure 5.19), with a smaller value of wmv than that in Case 3, the MVs 

settle down at about 80 minutes and the CV s reach its new setpoint at about 70 minutes. 

GNNMPC first pushes the reflux flowrate to about 145 mole/hr and the heating power to 

45% full power. Afterwards, the MV s oscillate with a decreased magnitude till they settle 

down. 
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The setpoint tracking case studies use different setpoint and MV suppression 

factor, w mv. Control performance is sensitive to the value of w mv. Further, the optimal 

value of wmv is not fixed throughout the operating range. While wmv equals 0.5 is a good 

value in Case 2, it would be too sluggish to be used in Case 3. Vice versa, while wmv 

equals 0.1 leads to sluggish control in Case 3, it is so aggressive as to cause instability in 

Case 1. This reflects the nonlinearity of the process. The two new setpoints are chosen to 

be at two opposite operating regions ( {y, x}={0.65, 0.005} requires low reflux flowrate 

and high heating power, and {y,x}={0.9,0.08} requires high reflux flowrate and low 

heating power). Recall Table 5.3 where the nonlinearity of the global operating was 

demonstrated, {0.65,0.005} is near Region 1 in Table 5.3 and {0.9, 0.08} is near Region 

3 in Table 5.3. These two regions have distinctively different static and dynamic 

characteristics. While GNNMPC can understand the nonlinearity and is able to track the 

setpoint in different regions, it requires different suppression factor on w mv to achieve 

good control performance. A discussion on the tuning issue is presented in Appendix E, 

where the comparisons between using move suppression (MV movement is part of the 

objective function as a penalty) and using CV damping (instead of comparing the future 

dynamics to the setpoint, the future dynamics is compared to a tunable first-order 

trajectory from the present state to the setpoint) are provided as a reference for future 

work. 

In the following case studies, we will fix wmv at 0.1 if not otherwise stated. 

5.6.2 Disturbance Rejection 
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Table 5.10 lists the cases studies for the regulatory mode (disturbance rejection). 

Both feedforward load disturbance (the feed flowrate, F) and the unmeasured load 

disturbance (the feed composition, z) are studied. 

Case 5 

Case 6 

Case 7 

Case 8 

Table 5.10 Disturbance rejection case studies 
(for all cases, initially at close-loop steady state {y,x}={0.85, 0.03} 
under GNNMPC with Wmv=O.l, {R,H,F}={l 14.13, 48.70, 280}) 

Disturbances New MV s ( {R,H}) 

Feed flowrate from 280 mole/hr to 300 mole/hr {122.82, 52.12} 

Feed flowrate from 280 mole/hr to 260 mole/hr {106.48, 45.41} 

Feed comp. from 0.25 mole frac. To 0.28 mole frac. {120.16, 52.02} 

Feed comp. from 0.25 mole frac. To o.22 mole frac. {108.72,45.42} 

Figures 5.20 to 5.23 show the GNNMPC performance for Cases 5 to 8, 

respectively. In all cases, disturbances were introduced at 20 minutes, and were rejected 

within the settling time ( 60 minutes). It is observed that the dynamics of Case 5 and Case 

6 as well as the dynamics of Case 7 and Case 8 are almost mirrored with respect to the 

original steady state, indicating the nearly linear characteristics locally. However, even 

though the peak deviation in feedforward disturbance rejection cases (Case 5 and Case 6) 

is smaller than that in the unmeasured disturbance rejection cases (Case 7 and Case 8), 

since the feed composition disturbance causes more deviation as shown in Table 5.11, no 

conclusion can be made that there is improvement of the controller's performance for 
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feedforward performance over that for unmeasured disturbance. This issue will be 

discussed further in Chapter 8. 
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Table 5.11 Effect of disturbances on the process - Open-loop studies of Cases 5 to 8 

Case 5 Case 6 Case7 Case 8 

{y,x}ss {0.864, 0.045} {0.827, 0.017} {0.871, 0.051} {0.816, 0.016} 

{~y.~Ls {0.014, 0.015} {-0.023, -0.013} {0.021, 0.021} {-0.034, -0.014} 

5.6.3 Constraint Handling 

MPC has explicit constraint handling capability by including the constraints in the 

optimization problem as shown in Equation Set (5.10). Equation Set (5.10) includes most 

often encountered constraints in process control problems, constraints on the input and 

output variables. The input constraints can arise due to actuator limitations such as 

saturation and rate-of-change restrictions. The output constraints usually are associated 

with operational limitations such as specifications and safety considerations. Therefore, 

the constraints on the input and output variables are often expressed as simple bounds on 

the variables, which is the case in Equation Set (5.10). These constraints are hard 

constraints in the sense that they can not be violated. The corresponding other kind of 

constraint is called soft constraint, which can be violated but there will be a penalty for 

the violation. Only hard constraints are considered in this work. 

Table 5.12 lists the cases studied for the performance of GNNMPC on handling 

MV constraints. 
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Table 5.12 Constraint handling case studies 

Initial steady state Changes made 
Constraint 

hit 

Case 9 
{R,H,F}={l22.53, 52.05, 300} Setpoint from {0.85 0.03} R=150 
{y,x}={0.85, 0.03} to {0.94,0.09} (upper limit) 

Case 10 
{R,H,F}={l25.3 l, 46.65, 280} Feed flowrate from 280 H=45 
{y,x}={0.9, 0.075} mole/hr to 260 mole/hr (low limit) 

Case 11 
{R,H,F}={13 l.26, 48.25, 280} Feed comp. from 0.25 H=45 
{y,x}={0.9, 0.07} mole frac. to 0.2 mole frac. (low limit) 

In Case 9 (shown in Figure 5.24), when the setpoint is changed to {0.94, 0.09} at 

20 minutes, the reflux flowrate increases and the heating power decreases, both cause the 

CV s to approach their setpoints. However, the heating power soon increases back, 

realizing that the future bottom composition would surpass its setpoint with the 

constrained reflux flowrate. The reflux flowrate is increased all the way to its upper limit 

of 150 mole/hr, trying to reach the setpoint of the top composition. The system reaches a 

static point where deviations of the top composition and the bottom composition are 

"best" balanced as defined by the objective function. If the reflux flowrate is decreased, 

the bottom composition would be closer to its setpoint while the top composition would 

be further away from its setpoint. If the heating power is increased to bring the bottom 

composition closer to its setpoint, it will cause the top composition to deviate more from 

its setpoint. Vise versa, if the heating power is decreased to bring the top composition 

closer to its setpoint, it will cause the bottom composition to increase further and thus 

deviate more from its setpoint. When the setpoint changes back to {0.85, 0.03 }, 

GNNMPC immediately responds and relieves the reflux flowrate form its upper limit 
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constraint, and the CV s track their setpoints within desired time, expectedly there is no 

wind-up. 
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In Case 10 and Case 11, shown in Figure 5.25 and Figure 26 respectively, where 

disturbances (feed flowrate disturbance in Case 10 and feed composition disturbance in 

Case 11) cause the heating power to reach its lower limit of 45% full power, similar 

phenomena happen to that observed in Case 9. The CVs stay at points where the best 

balance between the deviation of the top composition and the deviation of the bottom 

composition is achieved. When the constraint is relieved, GNNMPC is able to respond 

immediately and bring the CVs to their setpoints. 

Table 5.13 describes the case studied for constraint on the rate-of-change of the 

MVs. Note that the constraints are expressed in their physical units (mole flowrate for the 

reflux, R, and percentage of full power for the heating power, H). 

Table 5.13 Constraint on the rate-of-change ofMVs 

Changes made wmv Constraint 

Case 12 Setpoint from {0.85 0.03} to {0.9, 0.08} 0.02 !1R s 6 & Ml s 1.5 

Case 12 is designed to be exactly the same as Case 4 except that constraints on the 

rate-of-change of MVs are enforced such that for each control action (step), the reflux 

flowrate is not allowed to change by more than 6 mole/hr (10% of its range of 60 

mole/hr) and the heating power is not allowed to change by more than 1.5% full power 

(10% of its range of 15% full power) both at the next stop and at steps in the future. The 

control performance is shown in Figure 5.27. 
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Comparing Case 12 to Case 4 as shown in Figure 5.27 and Figure 5.19 

respectively, when the MV movement constraint is enforced (Figure 5.27), the dynamics 

of the MVs have been "smoothed out", which leads to much smoother transient period 

for the CVs. Notice that the MV constraint also leads to less overshoot of the MVs, with 

the peak values of {Reflux, Heating power} at about {135, 45} compared to {145, 45} in 

Figure 5.19. 
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CHAPTER6 

GNNMPC AND THE EXPERIMENTAL DISTILLATION PROCESS 

There is a need for both simulation and experimental testing. Simulations are 

clearer, go faster, and can be used for detailed analysis. But, they don't establish the 

credibility of a real world application, because simulations only express what the 

designer knows. In this chapter, experimental runs are used to confirm and establish 

credibility of the simulation findings. The experimental setup has been described in 

Chapter 4. 

6.1 Operating Range 

The operating range of the experimental distillation process in shown in Table 

6.1. This operating range ensures avoidance of flooding and weeping operating 

conditions. 

Table 6.1 Operating range of the experimental distillation column 

RANGE 

Feed flowrate (gmol/hr) 250-310 

Reflux flowrate(gmol/hr) 90-150 

Heating power(% full power) 40-60 

Top product composition (mole fraction of methanol) 0.6-0.95 

Bottom product composition (mole fraction of methanol) 0-0.2 
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6.2 Open Loop Responses 

The open loop response runs show the response of the system to disturbances 

(intentional and unintentional), the noise and drift levels in the system, the response time 

to the process inputs, and the operating constraint on the system. 

The Step responses of the three cases are shown in Figures 6.1 to 6.3. The process 

starts at steady state, then a step change of the process input is made, the process runs till 

it reaches steady state ( due to the long running time, the bottom composition was not 

fully developed to its steady state when the run was stopped). 

It is obvious from the step responses that the response time of the bottom 

composition is much longer than that of the top composition. It takes about 70 minutes 

for the top composition to settle down while it takes more than 300 minutes for the 

bottom composition to settle down. This response time discrepancy is due to the large 

volume of the reboiler (14.2 L) in comparison to the tray size and the volume of the 

reflux drum (0.535 L). 

As also shown in Figures 6.1 to 6.3, the noise level of the top composition is 

much larger than that of the bottom composition. A detailed look at the upper plot in 

Figure 6.2 is shown in Figure 6.4 to compare the noise level. As shown in Figure 6.4, the 

noise level of the top composition is about 0.012 mole fraction (3.43% of its operating 

range) and that of the bottom composition is about 0.001 (0.5% of its operating range) 

mole fraction. 
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Table 6.2 lists the steady state values in three step response case studies. Due to 

the noise of the process, the steady state values of the CV s shown in Table 6.2 are 

averaged measurements over a period of time when the process is considered to be at 

steady state (for the top compositions, sampled values of the last 60 minutes were 

averaged, for the bottom compositions, sampled values of the last 5 minutes were 

averaged, the sampling rate was 10 seconds). 

It can be noticed that, the same process inputs of { 120, 40} in the start of Case 2 

and the end of Case 3 do not lead to the same steady state process outputs. The difference 

between the top composition of 0.9083 mole fraction in Case 2 and that of 0.9128 mole 

fraction in Case 3 is 0.0045 mole fraction, about 1 % of the top composition's operating 

range. The difference between the bottom composition of 0.1265 mole fraction in Case 2 
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and that of 0.1352 model fraction in Case 3 is 0.0087 mole fraction, about 4.5% of the 

bottom composition's operating range. Since the steady state values are filtered 

(averaged) values, the inconsistency is believed due to the natural disturbances from run 

to run, such as ambient heat loss, feed composition, and atmosphere pressure. Beside this, 

the much larger discrepancy in the bottom composition is because the bottom 

composition in Case 3 has not fully reached steady state when the run was stopped, as 

will be shown in Figure 6.3. 

Table 6.2 Steady state values in step response case studies 
(in all cases, the feed flowrate is 280 gmoVhr) 

Reflux Heating Top comp. Bottom comp. 
(gmol/hr) power(%) (mole frac.) (mole frac.) 

start 90 44 0.8187 0.0061 
Case 1 

end 120 44 0.8929 0.0340 

start 120 40 0.9083 0.1265 
Case 2 

end 90 40 0.8904 0.0510 

start 150 40 0.9254 0.1997 
Case3 

end 120 40 0.9128 0.1352 

The extent of static nonlinearity is not observed in the case studies. In Case 2, a 

30 gmol/hr step change of the reflux flowrate leads to a top composition change of 

0.0179 mole fraction and a bottom composition change of 0.0755 mole fraction. The 

same amount of step change, but in a different operating region of the reflux flowrate in 

Case 3 leads to a top composition change of 0.0126 mole fraction and the bottom 

composition change of 0.0645 mole fraction. The gain only changed by a factor of about 

1.5:1. 
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Investigation on Case 1 and Case 2, however, shows severe interaction of the 

process. In Case 1, when the heating power is at 44% full power, a change of the reflux 

flowrate from 90 gmol/hr to 120 gmol/hr results in an increase of 0.0742 mole fraction of 

the top composition and an increase of 0.0279 mole fraction of the bottom composition. 

In Case 2, the same change of the reflux flowrate from 90 gmol/hr to 120 gmol/hr but 

with a different heating power of 40% full power results in an increase of 0.0179 mole 

fraction of the top composition and an increase of 0.0755 mole fraction of the bottom 

composition. The different amount of change in both the top composition ( differ by about 

3 times) and the bottom composition (differ by about 2 times) is due to different heating 

power, indicating interaction of the process. 

It was observed that severe entraining on the top tray can occur. The top tray 

section was connect to the vapor feed line by a flexible Teflon expansion joint (See the 

photo shown in Figure 4.1 ). At certain operating conditions, the vapor would carry the 

entrained top tray liquid up through the connection joint and into the vapor feed line. In 

this case, the "distillate" material becomes dominated by liquid, not vapor, of the tray. 

Since it appears that the trays above the feed tray flood at about the same time, during 

this flooding/entraining event, liquid from several trays dominates composition. An 

online measurable value was added to monitor this phenomenon. This variable is the 

pressure drop in the column, 11P (the differential pressure between atmosphere and the 

reboiler's vapor space), which was observed sensitive to the entraining phenomenon. 

Figure 6.5 demonstrates the influence of the entraining on the process characteristics. 

Around points number 150, 180, 230, 11P increases rapidly (within several minutes) to a 
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high value (above 5.5 inH20), and the top composition drops drastically (as much as 0.08 

mole fraction) and immediately (within several minutes). 
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6.3 GNN Modeling 

The large discrepancy in the response time of the top and bottom compositions 

(about 70 minutes for the top composition and about 300 minutes for the bottom 

composition) requires further consideration on the GNN structure. Under the MPC 

scheme, the predictive model (dynamic model) must predict into the future far enough, 

otherwise, instability will probably occur (Scattolini & Bittanti, 1990). However, if the 

common practice is accepted that the prediction horizon is chosen to be the longer one of 

those for the top and the bottom compositions, separately, redundant information appears. 

If the bottom transient defines the prediction horizon, then for the top composition 

prediction, a much longer prediction horizon than necessary is used. Then with this 

horizon, to see the top transient, a small sample time would be required, but for the 

bottom composition prediction, the sample interval would be too short and unnecessary 

samples are taken. In tum, the model structure would be much more complicated than 

necessary and thus violates the principles of GNNMPC to minimize computation burden. 

The approach adopted in this work is to predict the top composition and the 

bottom composition separately, with different sample interval and prediction horizon. 

The sample interval for the top composition is 10 minutes, and that for the bottom 

composition is chosen to be 30 minutes. Predictions with respect to sample interval is 

1,2,3,4,5,6,7 for the top composition and 1,3,5,7,10 for the bottom composition, which 

implies that the prediction horizon for the top composition is 70 minutes and that for the 

bottom is composition 300 minutes. 

The length of historical input-output series is selected to be 50 minutes (5 top 

composition sample intervals) for the top composition and 150 minutes ( 5 bottom 
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composition sample intervals) for the bottom composition. The control horizon is with 

respect to a sample interval of 10 minutes. 

Because enough experimental operating data points are available, experimental 

data was used to train the GNN model (See discussions in Chapter 8 on why the 

simulator was not used to generate data for training). The structure of each NN in GNN 

and the training results are shown in Table 6.3. Note that the inputs and outputs of each 

NN are normalized to be in a range of O to 1 using each variables operating range listed in 

Table 6.1. Detailed description of the training procedures can be found in Chapter 5. 

The RMSE is of the magnitude of 10-2 for the normalized top composition and of 

the magnitude of 10-3 for the normalized bottom composition. Comparing to the scaled 

noise level of 0.0343 for the top composition and 0.005 for the bottom composition as 

shown in Figure 6.4, the training results are good using the RMSE indices. However, the 

MAE for the normalized top composition can go as large as 0.2580 (25.80% of its 

operating range). The MAE for the normalized bottom composition is around 0.02 (2% 

of its operating range), which indicates good training performance. The MRE for the 

normalized top and the bottom compositions looks bad, with number over 90% for the 

top composition and over 50% for the bottom composition. However, as will be shown 

by figures, the MAE and MRE often happen at points where transient process starts. In 

general, the model follows the trend of the process well. 
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Table 6.3 Model structure and training results of the GNN 

(RMSE: Root Mean Square Error; MAE: Maximum Absolute Error; MRE: Maximum Relative Error. 

RMSE = J_ f (.Y; - y;)2 ; MAE = max(I .Y; - Y; I, i = l, ... N); MRE = max~ .Y; - Y; ,, i = l, ... N) 
Nw ~ ~ 

Where y; is the output from the NN, y; is the target output, and N is the number of patterns) 

Top Comp. 
Model (training NN1 NN2 NN3 NN4 NNs NN6 NN1 
patterns=7582) 

NN Structure 14-8-1 16-8-1 18-8-1 20-8-1 22-8-1 24-8-1 26-8-1 

RMSE 0.0134 0.0210 0.0305 0.0293 0.0248 0.0307 0.0277 

MAE 0.1439 0.2376 0.2408 0.2181 0.2580 0.2281 0.2341 

MRE 26.17% 89.62% 60.93% 51.73% 92.70% 42.48% 87.98% 

Bottom Comp. 
Model (training NN1 NN3 NNs NN1 NN10 
patterns=2505) 

NN Structure 24-8-1 36-8-1 48-8-1 60-8-1 78-8-1 

RMSE 3.58e-3 3.52e-3 3.19e-3 3.12e-3 5.33e-3 

MAE 0.0232 0.0240 0.0228 0.0233 0.0291 

MRE 17.81% 11.79% 17.18% 12.92% 58.51% 

Figure 6.6 shows part of the training results, the training results for NN5 of the top 

composition and NN5 of the bottom composition (again, because the sample interval for 

the top composition is 10 minutes, NN5 of the top composition predicts 50 minutes ahead. 

Because the sample interval for the bottom composition is 30 minutes, NN5 of the bottom 

composition predicts 150 minutes ahead). The performance of the NN 5 for the top 

composition on 1000 patterns out of the 7582 patterns in the training set are shown in 

Figure 6.6(a). The performance of the NN5 for the bottom composition on 1000 patterns 
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out of the 2505 patterns in the training set are shown in Figure 6.6(b ). Both the time 

series comparison and target value deviation plot show that the NN model outputs are 

close enough to the target outputs and thereby indicates good training performance. It can 

also be seen that the bottom dynamics and changes are almost perfectly tracked 

throughout the entire range, while the dynamics of the top composition is tracked well 

with constant biased periods. 

A NN model was also obtained for the column pressure drop, M , which is used 

as a state variable constraint in the GNNMPC performance studies in Section 6.6. The 

model uses the past M (10 minutes ago), the current M, the current feed flowrate, and 

the next step MV s to predict M 10 minutes into the future. The structure of the NN is 5-

10-1 . The number of the training patterns for M is 8634. Again, all variables are 

normalized linearly into a range of O to 1 within their operating range as listed in Table 

6.1. The range for normalization of M is O to 10 inH20. The performance of the M 

model on 1000 patterns out of the 8634 patterns in the training set are shown in Figure 

6.7, with both time series comparison and target value deviation plot. Though deviation 

can be large from points to points, the NN tracks the dynamics of M very 

well. 
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6.4 "Goodness" of GNN 

Validation of the GNN model for the experimental distillation process was carried 

out by comparing the step response from the experimental run with the predicted step 

response from the GNN model. The three open loop response case studies in Table 6.2 

were used for comparison. 

For all three cases, the process was originally at steady state, the GNN model 

made prediction at the instant when a step change of the inputs was made. The adjusted 

prediction was also calculated according to the PMM obtained when at the original 

steady state. The prediction and the adjusted prediction were then compared with the 
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actual process response. Figures 6.8 to 6.10 show the comparison results. In the figures, 

the top composition was predicted at discrete time interval (with a sampling interval of 10 

minutes) 1, 2, 3, 4, 5, 6, 7. The bottom composition was predicted at discrete time 

interval (with a sampling interval of 30 minutes) 1, 3, 5, 7, 10. Prediction point "O" in the 

figures indicates the time instant when step change of the process input was made. 

For all three cases, it is observed that the adjusted prediction did not sufficiently 

compensate the PMM and bring the GNN output closer to the actual responses. This 

implies that the PMM obtained at steady state could not compensate the PMM during the 

transient period. Values of PMM are plotted in Figure 6.11. It is seen that the magnitude 

of the PMM for the top composition is of 10-3 mole fraction, the same magnitude of the 

noise level for the top composition. Therefore, it is reasonable draw the conclusion that 

the top composition prediction at steady state is good. The PMM for the bottom 

composition is of 10-2 mole fraction, much larger than the noise level (10-3) for the 

bottom composition. This implies that systematic mismatch exists between the GNN 

model and the process. While from Table 6.3, it seems that the bottom composition has a 

better training performance than the top composition, observation here leads to an 

opposite conclusion. This implies that the bottom composition may not have enough 

training patterns to be fully trained (2505 training patterns for the bottom composition in 

comparison to 7582 training patterns for the top composition). 
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As shown in Figure 6.8, for Case 1, the line that connects the predicted points 

obtained from the GNN model shows that the predicted dynamics is very close to that of 

the actual response for both good prediction for the dynamics of both the top composition 

and the bottom composition. 

Figure 6.9 shows the comparison for Case 2, the deviation of prediction points 4 

and 5 for the top composition is about 0.015 mole fraction. Considering that the 

magnitude of steady state change for the top composition is about 0.025 mole fraction 

(from 0.910 mole fraction to 0.885 mole fraction), the prediction points 4 and 5 did not 

represent the real process well. For the bottom composition, while prediction points 1, 3, 

5, 10 are all well modeled, the GNN model provides a negative value for the prediction 

point 7, which is unacceptable. This indicates that the NN for prediction point 7 was not 

trained well in this operating point. 

Figure 6.10 shows the comparison for Case 3, the prediction point 7 of the top 

composition deviate from the actual value by about 0.05 mole fraction, a "bad" 

prediction. The bottom composition prediction essential follows the process dynamics. 

The three step response case studies do not justify a claim of good modeling. 

However, it can be claimed that the model follows the "trend" of the process fairly well. 

6.5 Configuration of GNNMPC 

The GNNMPC is formed as a nonlinear constrained optimization problem, which 

1s solved using the available optimization algorithm in the Matlab® toolbox. The 

optimization problem is: 
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Min= WY L(y(k + i)- Ysp) 2 + wx I<x(k +i)-xxp)2 + 
R1,H1 iEyp iEXp 

wMv (wR LM(k + })2 + wH LD.H(k + J)2 ) 

subject to: 

y(k + i) = GNN(y(k-5), ... y(k),F(k),R(k-5), ... R(k + i -l),H(k-5), ... H(k + i -1)) + 
dy(k + i) 

dy(k + i) = y(k)-

GNN(y(k-5-i), ... y(k-i),F(k-i),R(k-5-i), ... R(k-1),H(k-5-i), ... H(k-1)) 

x(k +i) = GNN(x(k-5), .. x(k),F(k),R(k-5), .. R(k + i -l),H(k-5), .. H(k + i -1)) +dx(k + i) 

dx(k + i) = x(k) -
GNN(x(k - 5 - i), ... x(k - i), F(k - i), R(k - 5 - i), ... R(k -1), H(k - 5 - i), ... H(k -1)) 

M(k + 1) = GNN(M(k-1),M(k), F(k),R(k),H(k)) + d _M(k + 1) 

d _M(k + 1) = !1P(k)-GNN(!1P(k-2),!1P(k-1),F(k-1),R(k - l),H(k-1)) 

M(k + J) = R(k + j)-R(k + J-1) 

D.H(k + j) = H(k + J)-H(k + j -1) 

0 s y(k + i) s 1 

o s x(k + i) s 1 

0 s R(k + j) s 1 

0 s H(k + J) s 1 

/1P(k + 1) S /1P rmx 

(6.1) 

Equation set (6.1) includes all three components in the MPC scheme, the objective 

function for constrained optimization, the predictive model as expressed by the GNN 

model, and the model adjustment part as expressed by the dy(k + i), dx(k + i), and 
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d _ M(k + 1) items. Though using the same nomenclature as before, all variables are 

normalized variables in Equation set ( 6.1 ). 

Table 6.4 Tuning parameters of GNNMPC for the experimental distillation process 
(1: sample interval is IO minutes; 2: sample interval is 30 minutes) 

1.5 1 0.02 1 3.5 {1,2,3,4,5,6,7} {1,3,5,7,10} 

RI 
p 

{0,4} 

HI 
p 

{0,4} 

Selected values of the tuning parameters in Equation set ( 6.1) for the experimental 

runs are listed in Table 6.4. Beyond the MV movement suppression factor wMv, there are 

4 other tuning weights in the objective function, wY, wx, wR, and wH. wY and wx are 

weights for the deviations of the CVs from their setpoints, wR and wH are weights for 

suppressing the MV movements. These weights are added so that mole fraction change of 

the top and the bottom compositions are treated equally important by the optimizer, and 

that the optimizer will not move one MV more that the other. wY and wx are chosen so 

that 1 mole fraction change of the top composition equally important to 1 mole fraction 

change of the bottom composition. Because the range of the top composition is 0.6 to 

0.95 and that of the bottom composition is O to 0.2, the normalized top composition 

change is 1 , and the normalized bottom composition change is 1 . The 
(0.95 - 0.6) (0.2 - 0) 

weighted normalized value should be equal to make the optimizer treat them equally, i.e. 

w 1 = wx 1 , therefore, wY : wx = 1.75. Similar design routine can be 
y (0.95 - 0.6) (0.2 - 0) 

applied to the weights wR and wH for the MVs. It is observed from the open loop 
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dynamics that a change of 10 gmol/hr in the reflux flowrate leads to about the same 

amount of change in the CV s as a change of 1 % full power in heating power. Therefore, 

10 1 
to make the controller treat the MVs equally, we let wR = wH which 

(150-90) (60-40)' 

results in wH : wR = 10: 3. wMv is the MV movement suppression factor, which 

penalized the MV movement for smooth dynamics and adjusting the aggressiveness of 

the controller. y P and x P are the prediction points for the top composition and the 

bottom composition, where predictions from the GNN model are available. RP and HP 

are the future points where the future MV movement are made. RI and H I are the 

optimized future MVs which make change at RP and HP respectively. 

6.6 Control Performance of GNNMPC 

Table 6.5 lists the experimental runs discussed in this section. 

Table 6.5 Experimental demonstration cases for GNNMPC 

Case Control Mode WMV Changes Made 
Number 

From manual mode to auto mode with 
1 Servo 0.1 {Ysp,Xsp} = {0.9, 0.035} 

From manual mode to auto mode with 
2 Servo 0.01 

{Ysp'Xsp} = {0.9, 0.050} 

3 Regulatory 0.02 
{Ysp, xsp} = {0.925, 0.0235}, feed flowrate 

change from 260 gmol/hr to 300 gmol/hr 

4 MV constraint 0.02 
{Ysp,xsp} change from {0.913, 0.045} to 

{0.92, 0.127} and then change back 

5 
State 

0.02 
Maximum column pressure changes from 4.5 

Constraint inH20 to 3 inH20 and then changes back 
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Figure 6.12 shows the GNNMPC performance for setpoint tracking with a 

sluggishly tuned controller. The MV movement suppression factor, w Mv is set to be 0.1, 

C 
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~ 0.75 
0 
0.. 
E 8 0.70 
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Figure 6.12 GNNMPC performance for setpoint tracking with sluggish tuning parameter 
(Case 1) 
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5 times of the nominal value of 0.02. The process was at first under open loop run and 

then transferred to auto mode at 80 minutes, while open loop steady state had not been 

reached. It took the top composition about 100 minutes to first hit its setpoint at about 

180 minutes. And it took the bottom composition about 340 minutes to first hit its 

setpoint at about 520 minutes. Both took longer than their settling times (about 70 

minutes for the top composition and about 300 minutes for the bottom composition). It 

can also be seen that the MV s progressed slowly to the settled values of about 105 mol/hr 

(the reflux flowrate) and 44% full power (the heating power). 

Figure 6.13 shows the GNNMPC performance for setpoint tracking with a 

movement suppression factor of 0.01 (0.5 times of the nominal value of 0.02). The 

process was at first under open loop run at steady state and then transferred to auto mode 

at 67 minutes. It took the top composition about 100 minutes to first hit its setpoint at 

about 1 70 minutes. It took the bottom composition about 70 minutes to first hit its 

setpoint at about 140 minutes, then oscillate with a decreased magnitude of overshoot and 

was about to settle down at its setpoint when the run ended. much shorter than its settling 

time, but overshoot resulted. Comparing to the MV movements in Figure 6.12 (Case 1), 

the MV movements are much more aggressive. This demonstration and comparison 

shows that the MV movement suppression factor is an important tuning parameter of 

GNNMPC, as for other MPC strategies, which determines the aggressiveness of the 

controller. 
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Figure 6.14 shows the GNNMPC's robustness to measured, feedforward load 

disturbance. The process was first at steady state under manual mode. At 100 minutes, 

the GNNMPC was transferred to automatic mode. At about 130 minutes, the feed 

flowrate was changed from 260 gmol/hr to 300 gmol/hr, which led to immediate drop of 

the reflux flowrate to compensate for the effect of load disturbance. Both the top and the 

bottom compositions were successfully regulated at their setpoints with a little deviation 

of the bottom composition from its setpoint at the beginning when the disturbance was 

introduced. 

Figure 6.15 shows an open loop run which demonstrates the impact of the feed 

flowrate on the process. The process was first at steady state with the top composition at 

0.93 mole fraction and the bottom composition at 0.028 mole fraction. The feed flowrate 

was changed from 260 gmol/hr to 300 gmol/hr at 240 minutes, which led to an increase 

of the top composition to 0.95 mole fraction and the bottom composition to 0.06 mole 

fraction when the process settle down. Figure 6.15 shows that the load disturbance has a 

significant effect on the process, and that the control action of Figure 6.14 had a 

significant effect. 
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Figure 6.16 shows the GNNMPC's control performance when MV constraints 

were hit. The process was first open loop under constant process inputs. At about 240 

minutes, when the top composition and the bottom composition are near steady state, The 

control loop is closed under GNNMPC. When the setpoints were changed to {0.92, 

0.127} at about 320 minutes, the controller pushed the reflux flowrate to its upper limit 

(150 gmol/hr) and the heating power near its lower limit (45% for this case) trying to 

drive the CV s to their setpoints. However, within the operating range, the CV s could not 

meet the setpoints. The reflux flowrate stayed at its upper limit (the hard constraint on the 

reflux flowrate). When the setpoints changed back to the original ones ( {0.913, 0.045}) at 

655 minutes, the controller immediately relieved the MVs from their constraints and 

brought the CV s to the setpoints in desired time. 

Figure 6.17 demonstrates successful handling of state variable constraint of 

GNNMPC. The process was at first at closed-loop steady state under GNNMPC. When 

the hard constraint on the column differential pressure, M , was changed from an upper 

limit of 4.5 inH20 to 3 inH20 at 67 minutes, the constraint was hit and the controller 

sacrificed the performance of the CV s to meet the constraint. When the upper limit of the 

M was changed back to 4.5 inH20 at 176 minutes, the controller was relieved from the 

constraint and was able to bring the CV s back to their setpoints. 
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7.1 Summary 

CHAPTER 7 

SUMMARY AND CONCLUSIONS 

In this work, a nonlinear model predictive control strategy based on neural 

network modeling technique which is called GNNMPC was proposed. The intention of 

GNNMPC is to develop a general structure for predictive modeling while relieving as 

much as possible the computational burden due to the model complexity. Effectiveness of 

GNNMPC was demonstrated by both simulations and experiments on a methanol-water 

distillation process. 

Based on a tray-to-tray dynamic model (developed by Pandit (1991) and coded in 

C language by Dutta (1997)), a tray-to-tray dynamic model for the experimental 

methanol-water distillation unit in School of Chemical Engineering at Oklahoma State 

University was developed and coded in Matlab language. 

GNNMPC was then tested using the simulated distillation process. Open-loop 

responses were first studied to investigate the characteristics of the process and determine 

the structure of the model. The process has a local gain change of about 2:1 ratio, and 

when operated in a wide operating range, the gain can change by a ratio of over 10 times 

in different regions, the settling time of the process outputs can change by a factor of 3. 

Index of the process interactions can range from about - 5 in one region to about 8 in 

another region. The Grouped Neural Network (GNN) model was then obtained from pre­

designed random input-output series. Afterwards, GNNMPC was implemented with 

modeling error considered. GNNMPC showed effectiveness in setpoint tracking, 
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disturbance rejection, handling interactions, handling hard constraints on the controller 

outputs, handling hard constraints on the control action movement, and easy tuning. The 

simulation results were presented in Chapter 5. 

To set up the experimental apparatus for testing GNNMPC, the Technovate® 

Model 9079 fractional distillation system was converted to a fully automated system 

using a Camile® 2200 Data Acquisition and Control (DAC) system. For implementing 

GNNMPC, Camile® was configured to interface with the distillation process and the 

operator, Matlab® was configured to carry out all of the GNNMPC calculations. Camile® 

and Matlab® interface by an intermediate text file. 

The structure of GNNMPC was determined from open loop step response testing. 

GNN was then trained from experimental data. With the presence of noise and drift, 

intentional and unintentional disturbances, process model mismatch, and operating 

constraints, five experimental runs shown here demonstrated the effectiveness of 

GNNMPC in tuning, tracking setpoint, rejecting disturbances, handling MV constraint, 

and handling state variable constraint on the experimental apparatus. 

7.2 Conclusions 

A novel modeling approach for general nonlinear MPC structure, called Grouped 

Neural Networks (GNN) model is proposed. The model uses a group of Neural Networks 

(NN) in a parallel structure to provide prediction values of the process outputs at 

subjectively chosen future time intervals within the prediction horizon as representation 

of the future process dynamics. During the implementation of GNNMPC, the number of 

decision variables for the optimization problem, i.e., the future control actions, is 
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significantly decreased by only making future control action change at subjectively 

selected control time intervals within the control horizon. Under this infrastructure, the 

computation burden for the general nonlinear optimization algorithm is decreased by the 

decreased number of future points to be calculated, the algebraic calculation of the 

prediction values, and the decreased number of the decision variables. 

The proposed GNNMPC was demonstrated by both simulations and experiments 

to be capable of controlling a binary methanol-water distillation process, which has such 

control-challenging characteristics as modeling error, severe interactions, static and 

dynamic nonlinearity, measured and unmeasured disturbances, constraints on the process 

inputs as well as the operating conditions. GNNMPC has shown to be very effective in 

setpoint tracking, disturbance rejection, and constraint handling. 
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CHAPTERS 

DISCUSSION AND RECOMMENDATIONS 

This work extensively explored and investigated the effectiveness of GNNMPC in 

simulation tests and demonstrated the effectiveness of GNNMPC on a real-world process 

(the distillation apparatus). Meanwhile, many new areas for further research were opened. 

In this chapter, discussions on some issues pertaining this work are presented, which 

would lead to the author' s opinions on future work that can be done to make the 

investigation of GNNMPC more comprehensive and convincible. 

Nonlinear model predictive control (NMPC) is more a practicing art than a 

science field. While theoretical results are by far very limited for NMPC, practitioners are 

eager to explore it due to the great success of its linear counterpart, linear model 

predictive control (LMPC), a great potential of benefits brought by NMPC, and the 

straight-forward approach of implementing NMPC. GNNMPC, as one of the numerous 

NMPC schemes, was proposed with the intention to relieve the computation complexity 

in a general NMPC scheme. With little theoretical support, heuristics, experiences of 

other practitioners were taken as good reference and extensive simulation tests were used 

to demonstrate its effectiveness as a general NMPC scheme. Experimental tests, as a 

significant step for deep investigation of the control strategy as well as for establishing 

credibility within the practice community, were also carried out. The work done in this 

thesis project built the framework of GNNMPC. 

Some issues in GNNMPC are common issues encountered by the same type of 

NMPC, such as the choice of historical data length, generation of stimulating input 
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signals, optimization of the neural network structure, choice of the predictive horizon, 

control horizon and other tuning parameters, and solving the nonlinear optimization 

problem. Future researchers on GNNMPC are suggested to keep an eye on the advances 

of such issues in the open literature and be ready to take advantage of the advances. 

There are some issues specific with GNNMPC that need further investigation. 

One of the distinguished features of GNNMPC is to predict selected 

discontinuous (in discrete time domain) points, assuming that if well selected, these 

prediction points can well represent the "trend" of the process. The motivation of this 

strategy is to reduce the computation burden for GNNMPC, and it has been shown to 

work effectively throughout this work. However, the process that was studied (the 

distillation process) is a first-orderish process, or so called well-behaved process. While 

typical in manufacturing industry, there are many processes that are ill-behaved, such as a 

reactor with inverse dynamics. In principle, it is believed that as long as the selected 

points can represent the dynamics, GNNMPC should work. For an ill-behaved process, 

some interesting issues may come up that worth investigation. Therefore, it is 

recommended to explore GNNMPC on processes with ill-behaved dynamics. 

GNNMPC uses separately-trained neural networks to get the predictive model, 

therefore, inconsistency of each NN output in GNN exists, which would cause steady 

state offset if the conventional DMC feedback strategy of adding the most current one 

step prediction error to all the future predictions was applied. To deal with this, a 

corresponding PMM adjustment strategy was proposed and shown effective in 

eliminating the steady state offset. The strategy is to compensate PMM of each NN 

separately applying currently and historically available process measurements. While not 
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found troublesome during this work, it might have caused sluggish or even misleading 

feedback in some cases. According to the feedback strategy of GNNMPC, a prediction l 

steps ahead would be adjusted by a value calculated based on the data l steps ago. If the 

process is operated in a distinctively different operating regime at l steps ahead from that 

at l steps ago, this additive strategy may be misleading, especially for a nonlinear process. 

Further, the more into the future predicted, the more delay in its corresponding feedback, 

which might make it more sluggish to disturbances than the conventional feedback 

strategy. This feedback issue is suggested to be investigated by comparing GNNMPC 

with conventional MPC such as DMC. It is also recommended that other strategies, either 

novel ones, or those adapted from literature, be explored and compared to the present 

GNNMPC feedback strategy. A crude idea of the author, as a recommendation to 

improve the feedback strategy of GNNMPC, is to apply the conventional feedback 

strategy (adding the prediction error of one-step-ahead prediction to all the future 

predictions) while handling the discrepancy of outputs from GNN separately. Because the 

discrepancy mainly affects the steady state offset, only steady state outputs from GNN 

are needed to be investigated for designing a proper strategy to compensate the 

discrepancy between the GNN outputs. 

Among all the intentions of developing a dynamic distillation simulator for the 

experimental distillation process as described in Chapter 5, one original intention was to 

use the simulator to get a GNN model for the experimental work. It would have been 

much more time-and-cost-effective to get training data from the simulator rather than 

from the experimental runs. Unfortunately, this approach was not realized. Instead, a 

GNN model obtained from the experimental run data was used. The reason was that the 
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simulator was found not representative of the experimental apparatus. Reasons of the 

modeling error are multiple. The model assumes that the dynamics of the heating element 

in the reboiler is negligible. This assumption can not hold for the experimental apparatus. 

The reboiler has a overflow volume of about 14.2 liters, which is the standard volume of 

the liquid in the reboiler during experiments. The volume is about 25 times of the reflux 

drum's overflow standard volume, and is about the same ratio to the tray size. In such 

case, the time delay of heating in the reboil er can not be neglected. Ambient heat loss and 

the internal reflux was not considered in the simulator while it is significant in the 

experiments. The tray efficiencies that were determined by visual observation were very 

rough, therefore the tray efficiencies used in the simulator can not be expected to be the 

real tray efficiencies. The top and the bottom compositions in the experiment were 

inferred from the temperatures measured in the reboiler and on the top tray using the 

temperature-composition correlations from idea vapor-liquid-equilibrium (VLE) of pure 

methanol-water system at standard pressure (latm). The temperature about 0.25 inch 

above the top tray sensed by a thermocouple was found to deviate nonlinearly with 

significant noise from the temperature that is correlated from the composition offline 

measured by the refractometer. The thermocouple that senses the temperature of the 

liquid in the reboiler is located near the heating element of the reboiler. Since there is 

large volume time for the reboiler, the temperature does not represent the temperature at 

the vapor-liquid-equilibrium (VLE) point. The pressure of the reboiler's vapor, as 

measured by the column pressure, is above atmosphere pressure by several inch water. 

Inaccuracy of the flow rates (feed, reflux, boilup) due to the correlation errors also 

contribute to the modeling error. If the simulator can be modified (based on the present 
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one or using a new modeling approach) to well represent the process, it is recommended 

that the GNNMPC control performance based on the GNN model obtained from 

simulator-generated data. Or, if it is practically difficult to have a simulator that can 

represent the distillation process well, other experimental processes which can be 

simulated well be considered. 

It is recommended that measures be taken to reduce the volume of the reboil er to 

save the experimental running time. Due to the large volume of the reboiler, the settling 

time of the reboil er is about 300 minutes, which made the experimental runs very long. If 

measures can be taken to reduce the liquid volume of the reboiler, the experimental work 

would be more time efficient. Flooding, weeping, and entraining constraint of the column 

also prevent the column from being operated in a wider range to allow significant 

nonlinearity of the process to occur. 

As shown in Chapter 5 by simulation results, the move suppression factor, wMv , 

is an important tuning parameter of GNNMPC and affects the control performance. For 

the distillation process that is both of nonlinearity and interaction, a fixed value of wMv is 

found to be not effective in bringing optimal control performance throughout the 

operating range. Explore the use of an adaptive approach on wMv would be very 

interesting and beneficial work. Previous work on this issue, though mainly pertinent to 

linear MPC (Rani & Unbehauen, 1997; Shridhar & Cooper, 1998; Al-Ghazzawi, Ali, 

Nouh, and Zafiriou, 2001), provide a good starting point for expanding to nonlinear 

MPC tuning. Another alternative is to use CV damping for tuning instead of using move 

suppression tuning approach. A preliminary investigation on the comparison shows 
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certain advantages of using CV damping over move suppression. The investigation 

results are presented in Appendix E. 

The simulation results of disturbance rejection performance as shown in Cases 5 

to 8 in Chapter 5 worth further investigation. Though the controller is shown to be of 

good disturbance rejection performance, it was observed that the controller did no better 

in rejecting the feedforward disturbance (the feed flowrate) than in rejecting the 

unmeasured disturbance (the feed composition). This is contradictory to the experience 

with a linear controller that a feed forward model leads to a much better disturbance 

rejection performance when the model is "good". Note that in the GNN model, only the 

most recent feedforward disturbance is fed into the GNN model. Investigation from 

another angle on this issue as described in Appendix E shows that if CV damping 

approach for tuning GNNMPC is used rather than the MV movement suppression tuning 

approach, this issue seems to disappear. 

It is always desirable that a newly-developed strategy is compared to ad-hoc 

similar strategies. Comparison of GNNMPC with DMC, and even auto-tuned PID, both 

popular and successful in industry, would clarify the significant features of GNNMPC. 
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APPENDIX A 

CALIBRATIONS FOR THE DISTILLATION UNIT 

This section describes calibrations for carrying out experiments on the methanol­

water distillation unit. 

A.1 Heating Power for the Reboiler 

Heating power for the reboiler is a manipulated variable for the GNNMPC 

system, it is also needed in the simulator to obtain the boilup rate -- vapor flowrate from 

the reboiler. The SCR heater control element accepts 4-20mA current signal from 

Camile analog output (A/0) board (which is expressed in its interface as a percentage 

value) and converts it into an on-off time ratio of the electrical heating source. 

Calibration for the reboiler is to correlate between the percentage value from Camile (H) 

and the real power to the reboil er as expressed by percentage of full power ( 1J ), while the 

full power P of the reboiler's heating element 1s measured to be 

205V * 19.8A I Ji= 2.8701kW. 

The calibration was carried out by filling the reboiler with certain amount of pure 

water (14.2 liters in the experiment, at which the reboiler is at its overflow level) and 

heating the water under certain values of H. The equivalent percentage of full power, 1J, 

is calculated from the following energy balance equation: 

where 1J 

p 

17PM = mCp!iT 

Equivalent percentage of full power (%) 

Full power of the heating element (kW) 
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!1t Time period of heating, !1t = t1 -t0 (s) 

m Mass of pure water being heated (kg) 

CP Heat capacity of the pure water (kJ/kg.K) 

tlT Temperature difference corresponding to !1t, tlT = T; - T0 (K) 

Temperature usually is made to change from room temperature to 50 °c, so that C P can 

be taken as a constant ( 4.183 kJ/kg.K) and that evaporation effect is negligible. Equation 

(A. l) is based on the assumption that the heat transfer to the other parts of the reboiler 

(heating element, the insulation, and the reboiler shell) is negligible. 

For this work, the range ofH is 40% to 60%, the calibration result is: 

1J = 1.5525 * H - 2.6871, R 2 = 0.9825 (A.2) 

The calibration showed that when H is greater than 70%, 17 = 100% . 

A.2 Flow Rates 

The feed flowrate and the reflux flowrate are measured through differential 

pressure (DP) cells which are installed on the pipelines to sense the pressure drops across 

the orifices. The DP cells send 4-20 mA signals to Camile®. The calibration procedure is 

to use pure water under room temperature ( about 20 °C) to get the correlation between 

the current signal, i (mA), and the standard volume flowrate, q (ml/sec). The correlation 

is in the structure of q = a(i - i0 f , which means that the flowrate is proportional to a 

certain power of the differential pressure drop across the orifice. In correlation, the 

structure is converted to log10 ( q) = a log10 (i - i0 ) + log10 (a) for convenient and accurate 
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correlating. The correlation determines constants a, b ( = log10 (a) ), and i0 from 

experimental data. 

Table A.1 list calibration results for the feed flowrate and the reflux flow rate. A 

low flowrate region is separately calibrated with more condensed data points and is used 

in the experimental work, because both the feed flowrate and the reflux flowrate fall into 

this low flowrate region in the experimental work. 

Table A.1 Calibration results for feed flowrate and reflux flowrate under the structure 
log10 (q) = alog10 (i - i0 ) +b 

Low Flowrate Region Full Region 
i0 = 4.23 

R2= 0.9962 
i0 = 4.23 

R2= 0.9998 Feed a = 0.4949 a= 0.4973 
b = 0.5207 b = 0.5221 

i0 = 4.235 
R2= 0.9997 

i0 = 4.235 
R2 = 0.9997 Reflux a= 0.5213 a= 0.5123 

b = 0.4546 b = 0.4534 

A DP cell was also installed for sensing the flowrate of the cooling water. For this 

work, it is only needed to ensure that the cooling water is flowing. Therefore, the current 

signal from the DP cell is used directly as the controlled variable instead of being 

converted to a flowrate value. 

For the experimental work, methanol-water mixture flowrates should be the 

online measured variables. The mixture flowrates were obtained by converting the 

equivalent water flowrates to the mixture flowrates by doing a density compensation 

based on the mixture's composition, as described below. 

The relationship between the volume flowrate, q, and the differential pressure, 

M ( as proportional to the differential current signal of the transmitter, i - i0 ), is as 
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M i-i 
q = C1 (-t or q = C2 (--

0 t , where C1 and C2 are constant coefficients, p is the 
p p 

density of the fluid, and a is a constant obtained from calibration as described above. 

Therefore, for the same amount of differential pressure across the orifice, the relationship 

between the volume flowrate of different fluids is as .!L = (~) -a , where the subscript 
% Po 

"O" represents the base fluid (pure water here). Then the mass flowrate, m, can be 

calculated as m = fXJ and can be further converted to mole flowrate, n . The steps for 

obtaining online feed mole flowrate and reflux mole flowrate are as follows: 

Step 1: Convert liquid mole fraction, x 11 , to mass fraction, xm 

xm = wMeOHx,. , where w stands for molecular weight. 
(WMeOHXn + WH 20(1-X,. )) 

Step 2: Get the density of the fluid from the correlation between the mole composition 

and the density as obtained in (B. 7). 

Step 3: Calculate the mass flowrate of the fluid as: m = fXJ = fXJo(~)-a = p1-a p 0 ° % . 
Po 

Step 4: Convert mass flowrate to mole flowrate as: n = mx I wMeoH + m(l- x) I wH20 . 

For the feed, the mole composition is measured offline by the refractometer. For the 

reflux, the mole composition is obtained through the correlation between the measured 

top tray temperature and its corresponding saturated vapor composition as in (B.2). 

A.3 Levels 

Three levels are needed for monitoring purpose, levels for the top (product) tank, 

the bottom (product) tank, and the reflux drum. The top product and the bottom product 
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flow to the top tank and the bottom tank respectively, which are both 5-gallon 

polyproplyne containers in rectangular shape. Levels of the tanks should be monitored for 

overflow alarm. Additionally, flowrates of the top and bottom products can be estimated 

through level change in the tanks. Level of the reflux drum should be monitored so that 

under the normal operating condition, the level will keep at overflow level. Signals are 

sensed by DP cells. 

Since the levels are for monitoring purpose only, composition effect is ignored by 

calibrating levels of the top tank and the reflux drum using pure methanol and level of the 

bottom tank using pure water. 

Level of top tank: Level [inch]=l.0587*dp [mA] - 5.9575, R2 =1 (A.3) 

Level ofbottom tank: Level [inch]=0.8797*dp [mA] - 7.1735, R2 =1 (A.4) 

Level ofreflux drum: Level [inch]=0.8029*dp [mA]-3.3115, R2 =1 (A.5) 

The levels of the top and bottom tanks can be further used to provide a rough 

estimation of the top and bottom product flowrates according to m = pg11h , where m is 

the mass flowrate of the product, p the product density, and 11h the change rate of the 

liquid level. For the operating range of this work, it usually takes about 5 minutes for the 

product to bring observable change to the liquid level in the tank. Therefore, the 

calculated flowrate is the mean flowrate within this time period, further, the level signal 

needs to be filtered to remove the noise. A CUSUM type filter by Rhinehart ("A CUSUM 

Type On-Line Filter", Process Control and Quality, 2, 169-176, 1992) was used. 
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A.4 Column Pressure 

The column pressure refers to the pressure difference between atmosphere and the 

reboiler's vapor space. The signal indicates accumulated liquid level in the distillation 

column and found out to be a good index of flooding/entraining. The pressure (in inH20) 

is calibrated with respect to the current signal from the DP cell as: 

Pressure [inH20] = l.5368*dp [mA] -7.8364, R2 =1 (A.6) 

A.5 Refractometer 

The refractometer measures composition of the methanol-water mixture from 

liquid sample. This offline measurement device is used to measure the composition of the 

feed, and give feedback for online temperature-composition correlations of the top and 

the bottom products. Calibration curve is plotted in Figure A. I. Diamond dots in Figure 

A. I are points that were calibrated. 
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Figure A. I Calibration curve of the refractometer for methanol-water system 
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APPENDIXB 

CORRELATIONS OF THERMODYNAMIC PROPERTIES IN THE 

METHANOL-WATER SYSTEM 

Thermodynamic properties of the methanol-water system under standard pressure 

is available in Ranchandran's thesis (Ramchandran, S. Neural network model-based 

control of distillation columns. PhD Dissertation, Texas Tech University, Lubbock, TX, 

1994). Here the original data points for correlations are listed in tables. Correlations are 

redone in the physical units applied for this work. 

B.1 Vapor-Liquid Equilibrium (VLE) 

The data points are listed in Table B. l and plotted in Figure B.1. y-x, y-T, and x-T 

relationships were correlated. y-x correlation is used in the simulator for VLE calculation. 

y-T relationship is used during experiment to refer top product composition from 

temperature on the top tray, and x-T relationship is used during experiment to refer 

bottom product composition from temperature of the reboiler. 

y-x correlation: 

y = 1 l.2092x5 -33.4747x4 + 37.8756x3 -20.2753x2 + 5.6509x+ 0.00207, 
R2=0.9991 (B.l) 

y-T correlation: 

y = -8.3487T'3 + 18.426T'2 - l 5.927T' + 5.8427, 

R 2=0.9998, T' = T[ C] /100, 65° C s T s 80° C (B.2) 
x-T correlation: 

X = -16.587T'3 + 50.69T' 2 -52.009T' + 17.91, 
R2=0.9998, T' = T[ C] /100, 80° Cs Ts 100° C (B.3) 
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Table B. l VLE for methanol-water system at standard pressure (1 atm) 
(T in °c, x and y are mole fractions of methanol in liquid and vapor phase, respectively) 

T X 

64.5 1.00 

65.0 0.95 

66.0 0.90 

67.6 0.80 

69.3 0.70 

71 .2 0.60 

73.1 0.50 

75.3 0.40 

78.0 0.30 

81.7 0.20 

84.4 0.15 

87.7 0.10 

89.3 0.08 

91.2 0.06 

93.5 0.04 

96.4 0.02 

100.0 0.00 

1 
0.9 

0.8 
0.7 
0.6 

~ 0.5 
0.4 
0.3 
0.2 

0.1 

y 

1.00 
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Figure B.1 VLE plot of the methanol-water system under standard pressure (1 atm) 

148 



B.2 Enthalpy 

Enthalpy data for methanol-water system is shown in Table B.2. H represents 

enthalpy of the vapor phase and h is enthalpy of the liquid phase. 

Table B.2 Enthalpy data for the methanol-water system under standard pressure (1 atm) 

xory H h 
{mf MeOH} (Btu/lbmol) {Btu/lbmol} 

0.00 20720 3240 

0.05 20520 3070 

0.10 20340 2950 

0.15 20160 2850 

0.20 20000 2760 .................................................................................................................................................. -...... . 

0.30 19640 2620 

0.40 19310 2540 
····································································································································································--··········· 

0.50 

0.60 

0.70 

0.8 

0.9 

1.0 

18970 

18650 

18310 

17980 

17680 

17390 

2470 

2410 

2370 

2330 

2290 

2250 

H-ycorrelation:H=-3338.3y+20669.l, R2=0.9993 (B.4) 

h-x correlation: h = -1692.5x3 + 3631. 7 x 2 - 2918.9x + 3218.5 ,R2=0.9987 (B.5) 

In the simulator, the enthalpy correlations are needed to solve the algebraic 

energy balance equations. In the experiment, they are used to calculate the latent heat of 

the reboiler to obtain the boilup rate for monitoring purpose. 

B.3 Density 

Table B.3 lists data points available for saturated mixture ( Psa,) and subcooled 

(50 °C) mixture ( PsJ· 
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Table B.3 Density data for the methanol-water system 

X Psat P sc 
mfMeOH lb/ft3 lb/ft3 

0.00 59.18 61.75 

0.05 58.12 60.37 

0.10 57.07 59.11 

0.15 56.07 57.96 

0.20 55.12 56.9 

0.25 54.24 55.93 ..................................................................................................... -......... , ____ ,,,,,, 

0.30 53.41 55.04 ......................... ...................................... ............................................................................................................... 

0.35 52.65 54.21 

0.40 51 .93 53.45 

0.45 51 .26 52.73 

0.50 50.64 52.07 

0.55 50.07 51 .46 

0.60 49.53 50.89 

0.65 49.03 50.35 

0.70 48.57 49.85 

0.75 48.13 49.39 

0.80 47.73 48.95 

0.85 47.36 48.55 

0.90 47.01 48.17 

0.95 46.69 47.81 

1.00 46.40 47.48 

Saturated mixture correlation: 

Psat =59.215-23.0lx+13.289x2 -3.104x3 ,R2=1.0000 (B.6) 

Subcooled mixture correlation: 

P sc = 61.696-27.477x + 19.492x2 -6.269x3 , R2=1.0000 (B.7) 
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In the simulator, density of the mixture in the liquid phase is needed to calculate 

liquid holdup on each tray. For the experiment, subcooled mixture densities are needed to 

get flowrates of the feed and the reflux. 
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APPENDIXC 

MABLAB CODES FOR THE TRAY-TO-TRAY DYNAMIC MODEL OF THE 

METHANOL-WATER DISTILLATION COLUMN 

Algorithms and procedures for constructing the tray-to-tray dynamic model of the 

distillation column is described in Chapter 5. This section lists the Matlab codes. 

C.1. Initialization 

%function InitDistill.m 
% Initialization of the distillation simulator 
% Define and initialize global variables 
% Note that in the simulator, the units are: 
% flowrate in [lbmol/hr], Heat in [BTU/hr] , Temperature in [Fl 
% Time in [hr], Volume in [ftA3] 

g l obal TimeStep; 
global Stages FeedStage RefluxStage Column Reboiler Drum ; %Column 
Geometry 
global Efficiency; %Process parameter 
global Feed xz FeedT RefluxT Reflux Boilup TY; %Inputs 

global trayT 1 v x y hl hv m xm; %internal states 
global xR xD xB DB; %Distillate and Bottom flowrates and composition 

%------- SIMULATION PARAMETERS 
TimeStep=l.5/3600 ; %hr, If TimeStep is bigger,it will oscillate 
SampleT=30/3600 ; %sampling period in hr 

%------ COLUMN GEOMETRY 
Stages=?; %Equilibrium Stage, reboiler is stage 1 
FeedStage=4; RefluxStage=Stages ; 

%These 2 are stages which have outside feed that need special 
consideration 

Column.weirH_S=0.25; %weir height in stripping stages, 1/4in obtained 
from measurement; 
Column.weirH_R=0.25; %weir height in rectifying stages,1/4in obtained 
from measurement; 
Column.Dia_S=2 . 65; %column diameter in stripping stages, 2.65in 
obtained from measurement; 
Column.Di a_R=2 . 65; %column diameter in rectifying stages,2 . 65in 
obtained from measurement; 

%Column diameter is deemed to be the same as that of the drum, which is 
2.65in from measurement 
Column.weirD_S=0.25; 
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%c i rcular we i r diameter in stripping stages,l/4 in OD; 
Column.weirD_R=0.25; 
%circular weir diameter in rectifying stages , l/4in O.D. ; 
Column.weirL_S=pi*Column.weirD_S; 
Column.weirL_R=pi*Column.weirD_R; 
%NOTE: Feed stage is included in the Rectifying stages 

Reboiler.volurne=l.42e-3*35.3147; %ftA3, 1L=35.3147e- 3; 
%Reboiler volume, 1.42L is 1/10 of the real reboiler volume , which is 
14.2L at overflow level 

Drurn.volurne=0.535e-3*35.3147; 
Drurn.area=pi*2 . 65A2/4-pi*0.41A2/4; %[inchA2] 
Drurn . max_level=6.07; 
Drurn . level=Drum.max_level; %set drum to be full 
%If we check the consistency,Drum.max_ level*Drum . area=Drum.volume *l2A3; 

%------ --
Efficiency=[l 0.2 0.4 0 . 7 0.7 0 . 8 0.8]; 

Reflux=l00/454; TY=SO; 
Feed=280/454; XZ=0.25; FeedT=35*1.8+32; RefluxT=SO*l.8+32; 

%--- -- --- INITIALIZATION 
% 1 and x are the initialized independent variables in solving the Mass 
Balance and Energy Balance PDEs. In our simulator, E . B. is algebric 
equations. 
l=Reflux*ones(Stages,1); x=xz*ones(Stages,1); 
1(1)=0; x(l)=0.1; %---Reboiler 

B=O;xB=x(l); D=O;xD=x(end); xR=xD; 

%-------- - -- INITIALIZE TRAY HOLD UP 
%- ---- - Equilibrium Stages 
[m,xm]=initialize_holdup(x,1); 
%- -- --- Drum, let it be 70% of overflow level 
[amw,density]=get_properties( ' mw_and_ de n s' ,xR, ' Subcool '); 
Drurn.max_mass=Drurn.volurne*density/amw; 
Drurn.m=Drurn . max_mass*0.7; 
Drurn.xm=Drurn . m*xR; 
volurne=Drurn . m*amw/density; 
Drurn.level=(volurne)*l2A3/Drurn.area; %[inch] 

%-- ---- - - Assign memory space to v,y,hl and hv 
v=zeros*ones(Stages,1); y=zeros(Stages,1); 
hl=zeros(Stages,1) ; hv=zeros(Stages,1) ; 

function [m,xm]=initialize_holdup(x,1) 
%Initialize liquid holdup m,xm by correlation of weir dynamics (Francis 
weir correlation) 
global Stages FeedStage Column Reboiler; 
m=zeros(Stages,1); xm=zeros(Stages,1); 
condition=' Sa tL' ; 
%-------- reboiler 
XX=X(l); 
[amw,density]=get_properties(•mw_and_dens •,xx,condition); 
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m(l)=Reboiler.volurne*density/amw; 
%--------stripping stages 
for i=2:FeedStage-1 

XX=X(i); 
[amw,density]=get_properties( ' mw_an d_ d ens',xx,condition); 
lv=l(i)*amw/density; %lv is Q Lin ftA3/hr 
hfow=(lv/(999*Colurnn.weirL_S))A(2/3); %Francis weir correlation 
%hfow=get weir( 'we i r ' , l v,Column. weirD S)/12 ; 
mv=(hfow+Colurnn.weirH_S/12)*pi*(Col~.Dia_SA2)/(4*144) ; 

%liquid holdup in ftA3/hr 
m(i)=mv*density/amw; %liquid holdup in lbmol/hr 

end 
%--------rectifying stages 
for i=FeedStage:Stages 

XX=X(i); 
[amw,density]=get_properties('mw_ a nd_ de n s' ,xx,condition); 
lv=l(i)*amw/density; 
hfow=(lv/(999*Colurnn.weirL_R))A(2/3); %Franci s weir correlation 
%hfow=get wei r ( ' weir', l v,Column.weirD R)/12; 
mv=(hfow+Colurnn.weirH_R/12)*pi*(Col~ . Dia_RA2)/(4*144); 
m(i)=mv*density/amw; 

end 

xm=m . *x; 

C.2 Main Calculation Procedures 

function Distill() 
% Last Updated: 2 000 - 10-25, Modi fi e d from Distill - 0727 
% One step simulation of the Distillation process 
global TimeStep; 
global Stage s FeedStage Ref luxStage Column Reboiler Drum Efficiency; 
%Column Geometry 
global Feed xz FeedT RefluxT Reflux Boilup TY; %Process inputs 
global 1 v x y hl hv m xm; %internal states 
globa l D xD xR; %xD=xR in the simulation 

get_ vapor_phase; 
Energy Ba lance 
get_ holdup; 
update_x_and_ l; 
correlation 
update_ drurn ; 

%1 . -- --- - - GET vapor phase p r ope rt i es,y&v from x a nd 

%2 . -------GET m(holdup) FROM Ma ss Ba l a nce 
%3 . - --- - --UPDATE x&l:x=xm/m; l =Function(m) --wei r 

%4 . ----- --UPDATE xD 

%-- - --------- ----- - -- - -- ------- - ------- - ----- - ------------- - -----------
%* . * . * . * . *. * . * . *. *. * . *. * . *. * . * . * . * . * . * . * . *. * . * . *. * . * . *. * . * . * . * . * . *. *. *. 
%-- --------------- - --- --------- - ---------------------------------------
function get_vapor _phase() 
global Stages Efficiency FeedStage RefluxStage; 
global x y hl hv 1 v; 
g lobal Feed xz FeedT RefluxT Ref l ux Boilup TY; 
g l obal xR; 
y(l)=get_propert i e s( 'vl e ' , x ( l )); 
for i =2: Stages, 

y i deal=get_properties ( 'vle ' , x (i )); 
y(i)=(yideal-y{i-l))*Efficiency(i)+y(i-1); 
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end 
[hl,hv]=get_properties('enthalpy',x,y, 'Normal'); 

v(l)=reboiler( 1 boilup 1 ,TY,x(l)); 
for i=2:Stages-1, 

v(i)=(hl(i+l)*l(i+l)+hv(i-l)*v(i-1)-hl(i)*l(i))/hv(i); 
if i==FeedStage, 

[Feed_enthalpy,tmp]=get_properties('enthalpy',xz, [] ,FeedT); 
v(i)=v(i)+Feed*Feed_enthalpy/hv(i); 

end 
end 
i=Stages; 
[Reflux_enthalpy,tmp]=get_properties('enthalpy',xR, [] ,RefluxT); 
v(i)=(hv(i-l)*v(i-1)-hl(i)*l(i)+Reflux*Reflux_enthalpy)/hv(i); 

%------------- -- - --------------- -- ------------- -------------- ------- -- -
function get_ holdup() 
global TimeStep; 
global Stages Reboiler Drum FeedStage RefluxStage; 
global Reflux xR Feed xz; 
global x y 1 v m xm; 
dm_dt=zeros(Stages,1); dxm_dt=zeros(Stages,1); 
%-------Reboiler , 
[amw,density]=get_properties('mw_ and_dens ',x(l), 'SatL '); 
m(l)=Reboiler.volume*density/amw; %assumpt ion of perfect l evel control 
1(1)=1(2)-v(l); %assume dm_dt=O,reason a ble because Reboiler volume is 
very large 
if 1(1)<0, 1(1)=0; end 
dxm_dt(1)=(1(2)*x(2)-v(l)*y(l)-l(l)*x(l)); 
%--------Equilibrium trays 
for i=2:Stages-1, 

dm_dt(i)=(l(i+l)+v(i-1)-l(i)-v(i)); 
dxm_ dt(i)=(x(i+l)*l(i+l)+y(i-l)*v(i-1)-x(i)*l(i) - y(i)*v(i)); 
if i==FeedStage, 

dm_dt(i)=dm_dt(i)+Feed; dxm_dt(i)=dxm_dt(i)+Feed*xz; 
end 

end 
%------ Top tray 
i =Stages; 

dm_ dt(i) = (v(i - 1)-l(i) - v(i)+Reflux); 
dxm_dt(i) = (y(i - l)*v(i - 1 ) - x(i)*l(i) - y(i)*v(i)+Reflux*xR); 

%INTEGRATE 
m=m+dm_dt*TimeStep; xm=xm+dxm_ dt*TimeStep; 

%------ ---- - ---------- ------------------------------ -------------- -- -- -
function update_ x_and_ l() 
global Stages FeedStage Column; 
global m xm x y 1 v; 
%- -- ----Equilibrium Stages 
x=xm./m; 
for i=l:Stages,x(i)=max(O,min(l,x(i))) ;end 
%- ---------Stripping stages 
for i =2 : FeedStage- 1, 

[amw,densi t y]=get_properties('mw_ and_ dens ',x(i), ' SatL' ); 
how= (4*144 /pi)*m( i )*amw/(density*(Column.Dia_ SA2)) ­

Column.weirH_ S/12.0; 
if how<O,l(i) =O; 
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end 

else 
l(i)=density*Column.weirL_S*999.0*howA1.5/amw; 

end 

%----- - - - --Rectifying stages 
for i=FeedStage:Stages, 

[amw,density]=get_properties( ' mw_ and_ dens ',x(i), 'SatL'); 
how=(4*144/pi)*m(i)*amw/(density*(Column.Dia_RA2))­

Column.weirH_R/12.0; 
if how<O, l(i)=O; 
else 

l(i)=density*Column.weirL_R*999.0*howA1.5/amw; 
end 

end 

%---- - - -- -- - -- --------- - - ---------- --- ----- ----- -------- - --- - ----------
function update_drum() 
g l obal TimeStep; 
global Drum Reflux xR xD D 1 v x y; 
if Drum . max level-Drum.level<0.001 & v(end)-Reflux>O, D=v(end)-Reflux; 
else D=O; 
end 
dm_dt=v(end) - Reflux-D; 
dxm_dt=v(end)*y(end)-Reflux*xR-D*xD; 
Drum.m=Drum . m+dm_dt*TimeStep; 
Drum.xm=Drum.xm+dxm dt*TimeStep; 
xR=max(O,min(l,Drum~xm/Drum.m)); 
xD=xR; 
[amw,density]=get_properties( ' mw_and_ d e ns ' ,xR, 'Subcool'); 
volume=Drum.m*amw/density; 
Drum.level=(volume)*l2A3/Drum.area; %[inch] 
if Drum.level>Drum . max_level, Drum.level=Drum.max level; end 

C.3 Correlations of Thermodynamic Properties 

function varargout=get_properties(name,varargin) 
% Include all Thermo correlations,notice that all the unit are that of 
the simulator 
% Original data and plots from which corr elations obtained are in 
Ramchandran's PhD thesis 
% "Neural Network Model-based Control of Distillation Columns " 
% 

% y =get __ properties ( 'vle ' , x) ; 
% yin [mole fraction] 
% 

% [hl,hv] =get_properties( ' enthalpy' ,x,y, 'Normal ' ); 
% OR [hl,hv] =get properties('enthalpy' , x,y,Subcooled T); 
% hl and hv in [BTU/lbmol] 
% 
% [amw,density] =get_properties( 'mw_and_dens' ,x, ' Normal ' ); 
% OR [amw,density] =get properties('mw and dens',x,Subcooled T); 
% a mw in [lb/lbmol ] , de~sity i n [lb/ft-.:3] ----- --
% 

% trayT=get_properties( ' Tfromx' ,x) ; 
% trayT in [Fl 
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% 
% trayT=get_properties('Tfromy' ,y); 
% trayT in [Fl 

if strcmp(name, 1 vle 1 ), 

x=varargin{l}; y=get_vle(x); 
varargout{l}=y; 

elseif strcmp(name, 'enthalpy'), 
x=varargin{l}; y=varargin{2}; condition=varargin{3}; 
[hl,hv]=get enthalpy(x,y,condition); 
varargout{lT=hl; varargout{2}=hv; 

elseif strcmp(name, •mw and dens'), 
X=Varargin{l}; ConditiOll=Varargin{2}; 
[amw,density]=get mw and dens(x,condition); 
varargout{l}=amw;-varargout{2}=density; 

elseif strcmp(name, 'Tfromx'), 
x=varargin{l}; 
trayT=get Tfromx(x); 
varargoutTl}=trayT; 

elseif strcmp(name, 'Tfromy'), 
y=varargin{l}; 
trayT=get Tfromy(y); 
varargoutTl}=trayT; 

else disp('no correlation for this property'); 
end 

%----- - ---------- - --------- - ------- - --------------------
function yy=get vle(xx) 
if xx>l I xx<O,-error('in VLE correlation, x mole fraction beyond 
0-1'); end 
yy=2.07e-2+5.6509*xx-20.2753*xx.A2+37.8756*xx.A3-
33.4747*xx.A4+11.2092*xx.AS; 
yy=min(ones(size(yy)),yy); 

%----- - -------- --- ---
function [hll,hvv]=get_enthalpy(xx,yy,condition) 
if xx>l I xx<O, error('in ENTHALPY correlation, x mole fraction beyond 
0-1'); end 
if yy>l I yy<O, error('in ENTHALPY correlation, y mole fraction beyond 
0-1'); end 
if isstr(condition), 

if condition=='Normal', 
hll=3218.5-2918.9*xx+3631.7*xx.A2-1692.S*xx.A3; 
hvv=20669.1-3338.3*yy; 

else disp('invalid condition ' ); 
end 

else 
T=condition; %subcoo led liquid 
yy=get_vle(xx); Tsat=get_Tfromx(xx); 

end 

hl_sat=3218.5-2918.9*xx+3631.7*xx.A2-1692.S*xx.A3; 
hll=hl_sat-(19.49*xx+17.98*(1-xx)) .*(Tsat-T); 
hvv=O*ones(size(xx)); 

%--------------------
function [amw,density]=get_mw and dens(xx,condition) 
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if XX>l I xx<O, error('in DENSITY correlation, x mole fraction beyond 
0-1'); end 
amw=18.015+14.027*xx; %Equivalent to: 18*(1 - x)+32*x; 

switch condition, 

case 'SatL' %saturated liquid density 
density=59 . 215-23 . 0l*xx+13.298*xx.A2-3.104*xx.A3; 

case 'SatV' %saturated vapor density????? needs to be checked 
%on the other hand, saturated vapor density seems never used in the 

simulator 
density=3.68e-2+3.02e-2*xx+S.57e-3*xx.A2-2 . 02e-4*xx.A3; 

case 'Subcool ' %liquid density at 120F(50C) 
density=61.696-27.477*xx+19.492*xx.A2-6.269*xx.A3; 

otherwise 
disp('invalid condition'); 

end 

%---------------------
function TT=get Tfromx(xx) 
if XX>l I xx<O,-error(' in Tx correlation, x mole fraction beyond 0-1'); 
end 
TT=210.76-243.45*xx+515.74*xx.A2-547.70*xx.A3+213.33*xx.A4; 

%---------------------
function TT=get Tfromy(yy) 
if yy>l I yy<O,-error('in Ty correlation, y mole fraction beyond 0-1'); 
end 
TT=14.179*yy.A3-39.778*yy.A2-38.363*yy+211.54; 

%-------------------- - ------ --- - - --- -- ----------------------- ---- ---END 
get_properties() 

function output=reboiler(name,TY,varargin) 
% ReboilerDuty=reboiler('duty',TY); 
% boilup=reboiler('boilup' , TY,x); %[lbmol/hr] 
% 
Epower=13850; % Btu/hr, 13850Btu/hr corresponds to 205V*l9 . 8A=4.059kJ/s 
Epower=Epower/1.414; %9795; effective power 
realpercentage=l.5525*TY-2.6871; %RA2=0.9825; percentage=[12.5,70]; 
realpercentage=min(realpercentage,100); 
ReboilerDuty=Epower*(realpercentage/100); 
if strcmp(name, 'duty'), 

output=ReboilerDuty; 
elseif strcmp(name, 'boilup'), 

x=varargin{l}; 
y=get _properties ( 'vle' , x) ; 
[hl,hv]=get_properties('enthalpy',x,y, 'Normal'); 
latentheat=hv-hl; %Btu/lbmol 
output=ReboilerDuty/latentheat; 

else disp('???err-->function reboiler() '); 
end 
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APPENDIXD 

GNNMPC MATLAB CODES 

GNNMPC are solved as a nonlinear constrained optimization problem. The 

Matlab optimization toolbox (version 1.5.2) was used. In the Matlab code, the function 

'constr()' is called to generate optimized decision variables. For GNNMPC, the format of 

the function call is as 'x = constr('obj _fun',x0 , ", ", ", ",pl,p2, ... ) '. Where 'obj_fun' is 

another function to calculated the objective function and the constraint matrix with 

problem-dependent parameters pl, p2, etc. Optimized control actions at each control step 

are used as the initial values (starting point x0 in the parameter list of function 'constr()') 

for the search of the next optimized control actions. The function 'constr()' uses 

Sequential Quadratic Programming technique. Default values of the stopping criteria in 

the Matlab optimization algorithm is used , as listed in Table D.1. When any of the 

stopping criteria is met, the optimization algorithm stops search and returns the current 

values as the optimized values. 

Table D.1 Default stopping criteria of the Matlab optimization algorithm 

Termination tolerance of decision variables 

Termination tolerance of objective function 

Termination criterion on constraint violation 

Maximum number of function evaluations 
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D.1 GNNMPC for Distillation Simulator 

D.1.1 Main Subroutine 
clear a l l; close all; echo off; 
load initNMPC; 

%====================== SETPOINT TRACKING 
runno=l; figno=runno; 
runsp.series=[0.8414;0.0337]; 
runsp.time=[30]; 
runsp.pnts=min(size(runsp.series,2) , length(runsp . time)); 

MPC.MODE='AUTO' ; 
simu_length=90; 
echo off; 
%--------------------------------
starttime=cputime; 
record=[]; rec_funf= []; SPchg=[O;SP]; 
options=foptions; 

mainbody; 

for ii=l:simu_length, % counting in no. of SAMPLE TIME 

if runsp.index<runsp.pnts, 
if ii==runsp.time(runsp.index+l), 

runsp.index=runsp.index+l; 
SP=runsp.series(:,runsp.index); 
SPchg=[SPchg [ii;SP]]; 

end 
end 

if runmv.index<runmv.pnts, 
if ii==runmv.time(runmv.index+l), 

runmv.index=runmv.index+l; 
[Reflux,TY]=chgMV(runmv.series(runmv.index, :)) ; 
SPchg=[SPchg [ii;SP] ] ; 

end 
end 

if runld.index<runld.pnts, 
if ii==runld.time(runld.index+l), 

runld.index=runld.index+l; 
Feed=chgLD(runld.series(runld.index, :)) ; 

end 
end 

[funf,fung,deviation]=obj_fun(decisionVn,net_distill,history,SP); 
rec funf=[rec_funf; [funf deviation]]; 

for simuno=l:floor(SampleT/TimeStep), Distill_plant; end 
online . MVs=[Reflux*454 TY]; %change from lbmol/hr to gmol/hr 
online.LDs=[Feed*454]; 
online.CVs=[y(end) x(l)]; 
record=[record; [online . MVs online.CVs online.LDs]]; 
history=[history(2:end, :) ;record(end, : )] ; 

pmm=pmmadjustment(net_distill,history); 
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%-- -----------CONTROL 
if strcmp(MPC.MODE, 'AUTO'), 

optn=constr( 'obj _ fun' ,decisionVn,options, [], [], [] , ... 
net_distill,history,SP); 

decisionVn=optn; 
mvs=unnorrmnnmx(optn(l:2,1),range(l:2, :)) ; 
[Reflux,TY]=chgMV(mvs'); 

end 

end 

SPchg=[SPchg [simu_length;SPchg(2:3,end)]]; 

%---------------- ----------- END mainbody 
myplotperf; 

D.1 .2 GNNMPC Initialization 

%------------------- INITIALIZATION ---- ------------ ------
clear all; close all; clc; 
load ss4control; %Nominal Point Steady State 
global range; 
MVrange=[90 150; 45 60]; CVrange=[0 . 6 0.95; 0 0.2]; LDrange=[250 310]; 
range=[MVrange;CVrange;LDrange]; 
%----- - -- CONTRUCT MPC PARAMETERS 
global MPC; 
MPC.nurnMVs=2; MPC.numLDs=l; MPC.numCVs=2; %structure of system 
%-- --model information 
MPC.modelFile='net_distill short 0803'; 
MPC.minmax=range; 
MPC.pastWin=5; 
MPC . predPnts=[l 2 3 5 10]; 
MPC.futureWin=MPC.predPnts(end); 
%----control parameters 
MPC.MODE='MANUAL'; 
MPC.deltamvW=0.1; 
MPC.deltacvW=ones(size(MPC.predPnts)); 
MPC.mvChgPnts=[l 4]; 
%-------- - - --- ---- --
SteadyState=[online . MVs online.CVs online.LDs]; 
history=ones(MPC.pastWin+MPC.futureWin+2,l)*SteadyState; 
decisionV=nncopy([Reflux*454;TY] ,1,size(MPC . mvChgPnts,2)); 
decisionVn=norrmnnmx(decisionV,range(l:2, :)) ; 
SP=(online.CVs) '; SPn=norrmnnmx(SP,range(3:4, :)) ; 

global pmmfilter pmm; 
pmm=zeros(2,length(MPC.predPnts)); pmmfilter=pmm; 

%=================================================================== 
runsp.series=[]; runsp.time=[]; runsp.index=O; 

runsp.pnts=min(size(runsp.series,2),length(runsp.time)); 
runmv.series= []; runmv.time=[]; runmv.index=O; 

runmv.pnts=min(size(runmv . series,2),length(runmv.time)); 
runld.series= []; runld.time= []; runld.index=O; 

runld.pnts=min(size(runld.series,2),length(runld.time)); 
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%=================== 
load(MPC.modelFile); 
save initNMPC; 

D.1.3 GNN model 

SIMULATOR SETTINGS END 

function predn=NNDistill(NNs,history,decisionVn) 

g l obal MPC; 
PastWin=MPC.pastWin; pred_pnts=MPC.predPnts; mv_chg_pnts=MPC.mvChgPnts; 
range=MPC . minmax; 

%=========== Normalization before input to the NN 
historyn=nornunnmx(history•,range) '; 

%-------- Convert from decision variables to future CV series====== 
PredH=pred_pnts(end); 
MVs=ones(2,PredH-1); 
if length(mv_chg_pnts)<2, 

MVs=nncopy(decisionVn,1,length(MVs)); 
else 

for i=2:length(mv_chg_pnts), 
for j=mv_chg_pnts{i-1) :mv_chg_pnts(i)-1, 

MVs(:,j)=decisionVn(:,i-1); 
end 

end 
for i=mv_chg_pnts(end) :PredH-1,MVs(:,i)=decisionVn(:,end) ;end 

end 
oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
'o 

% ======= Convert from time series to input for NN models======= 
i ======= and calculate the prediction value ======= 
PastMVsCVs=[]; 
index=size(historyn,1); %pointing to the current time: time instant NOW 
fo r i=PastWin:-1:0, 

PastMVsCVs=[PastMVsCVs;historyn(index- i,1:4) ']; 
end 
CurrentLDs=historyn(index,5) '; 

predn=[]; 
for i=l:length(pred_pnts), 

FutureMVs=[]; 
if pred_pnts(i)>l, 

for j=l:pred_pnts(i)-1,FutureMVs=[FutureMVs;MVs(:,j)] ;end 
end 
NNinputs=[PastMVsCVs;CurrentLDs;FutureMVs]; 

%all in their physical units 
output=sim(NNs{pred_pnts(i)},NNinputs); 
predn=[predn output]; 

end 

D.l.4PMM 

function pmm=pmmadjustment(NNs,history) 
global MPC; 
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PastWin=MPC.pastWin; 
pred_pnts=MPC.predPnts; 
range=MPC.minmax; 
%----Normalization 
historyn=normmnmx(history',range) '; 
pred_values=[]; 
% Calcu late prediction value of NOW from pred __ pnts (i) time step ago 
for 111=1:length(pred_pnts), 

index=size(historyn,1)-pred_pnts(lll); %pointing to the current 
time: time instant NOW 

PastMVsCVs=[]; 
for i=PastWin:-1:0, 

PastMVsCVs=[PastMVsCVs;historyn(index-i,1:4) ']; 
end 
CurrentLDs=historyn(index,5) '; 

FutureMVs=[]; 
if pred_pnts(lll)>l, 

tmp=historyn(index+l:index+pred_pnts(lll)-1,1:2) '; 
for kkk=l:size(tmp,2), 

FutureMVs=[FutureMVs;tmp(:,kkk)]; 
end 

end 

NNinputs=[PastMVsCVs;CurrentLDs;FutureMVs]; 
output=sim(NNs{pred_pnts(lll) },NNinputs); 
pred_values=[pred_values output]; 

end 

onlineCVn=historyn(end,3:4) '*ones(size(pred_pnts)); 
pmm=onlineCVn-pred_values; 

D.1.5. Objective Function 

function [funf,fung,deviation]=obj_fun(decisionVn,NNs,history,SP) 
%Constrained objective function 

% -------------------
global MPC pmm; 
range=MPC.minmax; 
[SP,SPn]=chgSP(SP); 
mvs_now=history(end,1:2) '; 
mvs_now_norm=normmnmx(mvs_now,range(l:2, :)) ; 

% ---- [constraints ] ----
if size(decisionVn,2)<2, 

absdeltaMV=abs(decisionVn-mvs_now_norm); 
else 

oldV=[mvs_now_norm decisionVn(:,1:end-1)]; 
absdeltaMV=abs(decisionVn-oldV); 

end 

tmpl = [decisionVn-1 0-decisionVn]; 
fung=tmpl(l:end); 

%----- [ objective function] ----­
predn=NNDistill(NNs,history,decisionVn); 
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adjust=predn+pmm; 

SPn=SPn*lOO; adjust=adjust*lOO; 
absdeltaMV=absdeltaMV*lOO; 
absMV=abs(decisionVn)*lOO; 

[Rl,Ql]=size(adjust); 
tmpdevCVs=sum(sum((SPn*ones(l,Ql)-adjust) . A2) .*MPC.deltacvW)/(Rl*Ql); 

[R2,Q2]=size(decisionVn); 
tmpdeltaMVs=sum(sum(absdeltaMV.A2))/(R2*Q2); 

deviation=[tmpdevCVs tmpdeltaMVs]; 
funf =lO*(tmpdevCVs + MPC.deltamvW*tmpdeltaMVs); 

D.1 .6. Auxiliary Subroutines 

funct i on [SP,SPn]=chgSP(newSP) 
%[SP,SPn]=chgSP(newSP) 
% newSP(2*1) is setpoints in C 
% SP is in C, SPn is normalized SP using normmnmx() 
%global variable 'range ' is needed 

global range; 
if any(size(newSP)-[2 1]), error(' SP s h o u ld be 2 *1 v ector'); end 
if or(-isempty(find(newSP-range(3:4,1)<0)) ,-isempty(find(newSP­
range(3:4,2)>0))), 

error(' one SP i s out of r a nge '); 
end 
if -(nargout==2),warning( 'chgSP o utpu t i s n o t e qual to 2' ); end 
SP=newSP; 
SPn=normmnmx(SP,range(3:4, :)) ; 

function [Reflux,TY]=chgMV(MVinput) 
% [Reflux , TY]=chgMV([MVINPUT]) ; 
% MVINPUT (l,l)=reflux in gmol/hr, 150-300 
% MVINPUT(l,2)=TY % 45-60 
range=[90 150;45 60]; 

if any(size(MVinput)-[1 2)), error( ' inp u t size s hould b e 1* 2 vector ' ); 
end 
if or(-isempty(find(MVinput-range(:,1) '<-0.001)),-isempty(find(MVinput ­
range(: ,2) '>0.001))), 

end 

disp('MVinput r ange i s'); disp(num2str(range)); 
error('one MVinput is o u t o f r ange' ); 

%i f (MVinput(2)/MVinput(l))<l, error('Boilup less than Reflux , this wont 
work') ; end 
Reflux=MVinput(l)/454; TY=MVinput(2); 

function [Feed,xz,FeedT,RefluxT]=chgLD(LDinput) 
%[Feed,xz , FeedT,RefluxT]=chgLD( [LDINPUT]) 
% LDINPUT is a matrix of size (1 , 1] to [1,4] 
% LDINPUT(l): feed in gmol/hr, 100-500 gmol/hr 
% LDINPUT(2): xz in mole fraction, 0 . 1-0.3 
% LDINPUT(3): FeedT in C, 20-40 C 
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% LDINPUT(3): RefluxT in C, 30-50 C 

range=[250 310;0.1 0.3;20 40;30 50); 
[R,Q]=size(LDinput); 
if (R-1), error('input s hould b e a one row vector'); end 
if -isempty(find(LDinput-range(l:Q,1} '<0)) I -isempty(find(LDinput­
range(l:Q,2) '>0)), 

disp('LDinput range is'); disp(num2str(range)); 
error(' one LDinput is out o f r ange'); 

end 
if -(nargout==Q} ,warning( ' #LDoutput is not equal to #LDinput '); end 
switch length(LDinput), 
case 1, Feed=LDinput(l)/454; 
case 2, Feed=LDinput(l)/454; xz=LDinput(2); 
case 3, Feed=LDinput(l)/454; xz=LDinput(2); FeedT=LDinput(3)*1.8+32; 
case 4, Feed=LDinput(l)/454; xz=LDinput(2); 

FeedT=LDinput(3)*1.8+32; RefluxT=LDinput(4)*1.8+32 ; 
otherwise, error(' too many LD variables '); 
end 

function pn=normmnrnx(p,range) 
% this function is modi f ied from nnet \ premnmx.m 
% p: R*Q matrix 
% range: R*2 matrix; 

if nargin > 2 
error( ' Wron g number of a r gumen ts .'); 

end 

minp=range(:,1); maxp=range(:,2); 
[R,Q]=size(p); 
oneQ = ones(l,Q); 

equal = minp==maxp; 
nequal = -equal; 
if sum(equal) -= 0 

warning(' Some maximums and minimums are equal. Those inputs won ' 't be 
transformed . ' ) ; 

minpO minp . *nequal - l*equal; 
maxpO maxp.*nequal + l*equal; 

e lse 
minpO minp ; 
maxpO maxp; 

end 

pn = (p- minpO*oneQ) ./((maxpO-minpO)*oneQ); 

function p =unnor mmnrnx(pn,ra nge ) 
% this function is modified from nnet\premnmx . m 
% p: R*Q matrix 
% range: R*2 matrix ; 

i f nar g i n > 2 
error(' Wrong number of arguments.' ); 

end 

minp=range(: , 1); maxp =range(:, 2 ); 
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[R,Q]=size(pn); 
oneQ = ones(l,Q); 

equal= minp==maxp; 
nequal = -equal; 
if sum(equal) -= o 

warning('Some maximums and minimums are equal. Those inputs won' ' t be 
transformed. '); 

minpO minp . *nequal - l*equal; 
maxpO maxp.*nequal + l*equal; 

else 
minpO minp; 
maxpO 

end 
maxp; 

p = pn.*((maxpO-minpO)*oneQ)+minpO*oneQ; 

D.2 GNNMPC for Experimental Distillation 

Experimental runs involves communication between the upper-level control 
application, the Matlab code, and the lower-level Data Acquisition and Control (DAC) 
system, the Camile TG 4.05 used for the distillation column. Communication was 
realized by intermediate text files. Camile writes to the text files in certain format, and 
Matlab reads the data in the text files according to certain format, and vice versa. Online 
commands and manipulations were carried out in the Camile interface and were read by 
the Matlab code (the GNNMPC) when needed. Only Matlab codes are listed here. 

D.2.1 Main Subroutine 

%=*=*=*=*=*=*= * =* =*=*=*=*=*=*=*=*=*=* =*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* 
CamileOutputFile='CamileOutput'; MatlabOutputFile= ' MatlabOutput'; 
PredictionFile=' Prediction'; 
READ_FREQ=lO; 

global SP StartNMPC StopMatlab Measurement MPC; 
%----- the abov e are variab les coming from Camile 
global history NNs obj _ func_ name; 
obj_func_name='obj _ fun'; 
model file=' NNs' ; % ' net __ distil l _short __ 0803 ' ; 
load(modelfile); %the ou t put is the global structure v ariable: NNs 
history=[]; Tsample=60; %60 seconds 

%Line 1 from the Camile ' s output file is i nitialized as f ollowing : 
SP=zeros(2,l); StartNMPC=O; StopMatlab=O; 
%Line 2 from the Ca mile 's outpu t f ile is i ni tialized as following: 
MPC.MovePnts=zeros(l,1); MPC.MoveW=MPC.MovePnts; 
MPC.PredPnts.top=l; MPC.PredW.top=MPC.PredPnts.top; 
MPC.PredPnts.bot=l; MPC.PredW.bot=MPC.PredPnts.bot; 
MPC . Wmv=ones(2,1); MPC . Wcv=ones(2,l); 
MPC.PredPnts.P=l; 
MPC . f _mv=0.01 ; 

HISTORY LENGTH=NNs.PastH + NNs.PredH + ... 
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max([NNs.top.Tmodel,NNs.bot.Tmodel,NNs . P.Tmodel])*2; %In minute 
%-- - -----------Get SSHistory and initialize t uning paramet ers ; 
fprintf(l, 'CONSTRUCTING INITIAL HISTORICAL DATA,PLEASE WAIT .. . \ n') i 

steadystate=[] ; 
startss=cputime; 
while (size(steadystate,1)<20), 

if (floor(cputime-startss)>=READ_FREQ), 
startss=cputime; 
if exist(CamileOutputFile, 'fi l e'), 

ReadfromCamile(CamileOutputFile); %get global variables 
end 
steadystate=[steadystate;Measurement]; 

end 
end 
meansteadystate=mean(steadystate); 
fprintf(l, 'CONSTRUCTION ENDS .\n '); 
display(meansteadystate); 
history=nncopy(meansteadystate,HISTORY_ LENGTH,1); 
decisionV=nncopy(Measurement(l:2) ',1,le ngth(MPC . MovePnts)); 
%---- - -------- - ------------

rec=[] ; rec_funf=[]; 
fprintf(l,mfilename); 
fprintf(l,' Reflux---- - - TY-- --ytop--- - ---xbot ----Pressure-- ----Feed 
---- -- - Time - - -- -- \ n '); 
firstPMM=l; f irstControl=l; %for filte r purpose 
deviations=[O O O]; 
startRead=cputime;startTsample=cputime;startTmodel=cputime; 
startTcontrol=cputime; 

while -floor(StopMatlab), 
%=*=*=* =*=*=*=* =*=*=*=*=*=*=*=*=*=*=*=*=*=* =*=* =*=* =*=* =*=*=*=*=*=* == * 

%- ---------- **** ONLINE MEASUREMENT 
if (floor(cputime-startRead)>=READ_FREQ), 

startRead=cputime; 

** ** - ------

if exist(CamileOutputFile, ' file '), 
ReadfromCamile(CamileOutputFile); %get g l obal v a riables 

e nd 
end 

%--- -- - -- - -***** SAMPLE AND RECORD ONLINE MEASUREMENT**** - ------ -­
i f (floor(cputime-startTsample)>=Tsample), %sample every 1 minute 

startTsample=cputime; 
history= [histor y(2:end, :) ; Measurement]; 

end 

%--- - - --- - - - ***** CALCULATE a nd DISPLAY PMM EVERY Tmode l **** ------­
if (floor(cputime- startTmodel)>= 
min([NNs.top.Tmodel,NNs.bot.Tmodel,NNs.Tcontrol])*Tsample), 

startTmodel=cputime; 
aaa.top=NNs.top.PredPnts ; aaa.bot=NNs.bot.PredPnt s; 

aaa. P=NNs . P . PredPnts ; 
[pmm. t op,pmm.bot, pmm. P] =g r oupPmm(history, aaa); 
timenow=clock; 
displ ay_ format = ' %-8. l f %- 8.l f %- 8 . 3f %- 8 . 3f %7 . 2f %10 . 0 f 

--- - -@%2 d:%2d\n' ; 
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end 

fprintf(l,display_format, [Measurement timenow(4:5)]); 
fprintf ( 1, 'pmmtop 1 ) ; 

fprintf(l, '%8.3f',pmm.top) ;fprintf(l, 1 \n 1 ); 

fprintf(l, 'pnunbot '); 
fprintf(l, 1 %8.3f',pmm.bot) ;fprintf(l, '\n'); 
if MPC.MaxPressure>O, 

end 

fprintf(l, 'pmm_ Pressure '); fprintf(l, '%8.3f',pmm.P); 
fprintf ( 1, 1 \n 1 ) ; 

rec=[rec; [timenow(2:5) Measurement]]; 

%----------- ******** CALCULATE OptMV EVERY Tcontrol ******--------­
if (floor(cputime-startTcontrol)>=NNs.Tcontrol*Tsample), 

startTcontrol=cputime; 
if firstControl, 

firstControl=O; 
MV.current=Measurement(l : 2) '; 
MV.old=MV.current; MV.f=MV.current; 
MV.cusum.k=zeros(size(MV.current)); MV.cusum.rou=MV.cusum.k; 
MV.cusum.sum=MV.cusum.k; 

end 
if StartNMPC, 

%check if MPC .PredPnts are all subsets of NNs . PredPnts 
MPC=checkMPC(MPC); %check 1 . if MPC.PredPnts are trained; 2.if 

size of PredPnts and PredW match 
[pmm.top,pmm.bot,pmm.P]=groupPmm(history,MPC.PredPnts); 
[decisionV, options] =constr (obj_func_name, decisionV, ... 

[] , [] , [] , [] , SP, pmm) ; 
[funf,fung,deviations]=feval(obj_func_name,decisionV,SP,pmm); 
rec_funf=[rec_ funf; deviations]; 
MV.current=decisionV(:,1); 
if MPC.mvfilter, 

[MV. f, MV. cusum] =MyFil ter (MPC. fil terManner, MV. current, ... 
MV.old,MV.f,MV.cusum); 

else MV . f=MV . current; 
end 
WritetoCamile(MV.f,MatlabOutputFile); 

else decisionV=nncopy((Measurement(l:2)) ',1,length(MPC.MovePnts)); 
end 

Disp_Output_Modelinfo(decisionV,deviations,StartNMPC,PredictionFile); 
end 

%--------------- *********** UPDATE time counter* *** ****** -----------­
%in case that t he optimizer takes a period of time greater than 
READ_ FREQ a nd Tsample 
i f (c putime- startRead)>=READ_ FREQ, 

startRead=cputime-mod((cputime-startRead) ,READ_ FREQ); 
end 
if (cputime-startTsample)>=Tsample, 

startTsample=cputime-mod((cputime- startTsample) ,Tsample); 
end 
%= * =* =* =* =* =* =* =* =* =* =* =* =* =* =* =* =* =* =*=* =* =* =* =* =* =* =* =* =* =* =* =* =* =* 
e nd 
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D.2.2 GNN model 

function [futureTop,futureBot,varargout] 
=groupModel(history,decisionV,MovePnts,PredPnts) 

%MovePnts(1 ) =0, which is t h e next con trol action 
global NNs; 
%decis ionV=[1 1 0 110 ; 46 46 ] ; decisionV=[120 120 ; 48 48]; 
%MovePnts=MPC .MovePnts;PredPnts=MPC. PredPn ts; 

range=NNs.range; Tcontrol=NNs.Tcontrol; Ttop=NNs.top.Tmodel; 
Tbot=NNs . bot . Tmodel; PredH=NNs . PredH; 

%=========== Normalization before input to t h e NN =========== 
histN=nornunnmx(history',range); %h istN is R*Q, each ROW is a variable 
decisionVn=nornunnmx(decisionV,range(l:2, : )) ; 

%Convert decisionVn to series in basic sample time 
%(1 min . for distillation) 
MVs=decisionVn(:,l)*ones(l,PredH); %MovePnts(l) must be 0 
if length(MovePnts)==2, 

for j=MovePnts(end)*Ttop:PredH, MVs(l,j)=decisionVn(l,end) ;end 
for j=MovePnts(end)*Tbot:PredH, MVs(2,j)=decisionVn(2 , end) ;end 

else 

end 

i f length(MovePnts)>2, 

end 

for i=2:length(MovePnts) - 1, 

e nd 

f o r j=MovePnts(i)*Ttop:MovePn ts( i +l)*Ttop-1 , 
MVs(l,j)=decisionVn(l,i); 

end 
for j=MovePnts( i )*Tbot:MovePnts(i+l)*Tbot-1, 

MVs( 2, j)=decisionVn(2,i); 
end 

f or j =MovePnts(end)*Ttop : PredH,MVs(l,j)=decisionVn(l,end); e n d 
for j=MovePnts(end)*Tbot : PredH,MVs(2,j)=decisionVn(2,end); end 

%===== === calculate NN outputs 
normtop=NN(Tcontrol, [histN(l:2, :) ;hi stN(3, :) ;histN(end, :)] ,MVs,NNs.top, 
PredPnts. top) ; 
futureTop=unnornunnmx(normtop,range(3, :)) ; 
normbot=NN(Tcontrol, [histN(l:2, :) ;histN(4, :) ;histN(end, :)] ,MVs , NNs.bot, 
PredPnts.bot); 
futureBot =unnornunnmx(normbot,range(4, :)) ; 
if nar gout==3, 

normP=NN(Tcontr ol, [h istN(l:2, :) ;histN(S , :) ; 
histN( e nd, :)] , MVs , NNs. P ,Pre dPnt s.P); 

v arargout{l} =unnornunnmx(normP,ra nge (S , :)) ; 
end 

%*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*= 

f unction predn=NN(Tc ontro l , ND ,MVs ,struc , PredPnt s) 
Tmodel=struc.Tmodel ; PW=struc.PastWin; UseAvgMV=struc.UseAvgMV; 
net=str uc.net; 
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FW=PredPnts(end); %PredPnts comes from MPC (Camile) and is a subset of 
NN . PredPnts 

predn=[]; 
index=size(ND,2); %each ROW in ND refers to one variable 
PastMVsCVs=[]; 
if UseAvgMV, 

if PW>O I 

for i=PW:-1:1, %< <<<<<<<<<< 
avgPastMV=mean(ND(l:2,index-i*Tmodel+l:index-i*Tmodel+Tmodel-1) ,2); 
PastMVsCVs=[PastMVsCVs;avgPastMV;ND(3,index-i*Tmodel)] ; 

end 
end 

CurrentLDs=mean(ND(end,index-Tmodel+l:index) ,2); 
else 

if PW>O, 
for i=PW: - 1 : 1, %<<<<<<<<<<<<< 

PastMVsCVs=[PastMVsCVs;ND(l:3,index-i*Tmodel+l)]; 
end 

end 
CurrentLDs=ND(end,index); 

end 

CurrentCVs=ND(3 , index); 

uO=MVs( : ,1); 
for i=l:length(PredPnts), 

FutureMVs=[] ;FutureMVs=uO; 
%if num_ c==l , i.e. PredPnts(i)*Tmodel ==Tcontrol 
num_c=floor(PredPnts(i)*Tmodel/Tcontrol); 
if num_c>l, 

for j=l:num_c-1, 
FutureMVs=[FutureMVs; MVs(: , j*Tcontrol+2)]; 

end 
end 
NNinputs=[PastMVsCVs ; CurrentLDs;CurrentCVs;FutureMVs]; 
output_n=sim(net{PredPnts(i)},NNinputs); 
predn=[predn output_n]; 

end 

D.2.3 PMM 

function [pmmTop , pnunBot,varargout]=groupPmm(history,PredPnts) 
global NNs; 

range=NNs.range; 
historyn=normmnmx(history',range); 

normtop=subpmm(NNs.Tcontrol, [historyn(l:2, : ) ;historyn(3, :) ; . .. 
historyn(end, :)] ,NNs.top,PredPnts.top); 

pmmTop=normtop*(range(3,2)-range(3,1)); 
normbot=subpmm(NNs.Tcontrol, [historyn(l:2, :) ;historyn(4, :) ; 

historyn(end, :)] ,NNs.bot,PredPnts . bot); 
pnunBot=normbot*(range(4,2)-range(4,l)); 
if nargout==3, 

normP=subpmm(NNs.Tcontrol , [historyn(l:2, :) ;historyn(S, :) ; 
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historyn(end, :)] ,NNs . P , PredPnts.P); 
varargout{l}=normP*(range(S , 2)-range(S,1)); 

end 

%* =*=*=*=*=*=*=** =*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*= 
function normpmm=subpmm(Tcontrol,ND,struc,PredPnts) 

%ND represents 'NormData' ,each ROW is one variable 
%Notice that PredPnts comes from MPC(Camile) ,which i s a subset of that 
in NNs. 

%Tcontrol =NNs.Tcontrol; 
ND= [historyn(l:2, :) ;historyn(4, :) ;historyn(end, :) ] 
%struc=NNs.bot; PredPnts =aaa.bot; 

Tmodel=struc . Tmodel; PW=struc.PastWin; 
UseAvgMV=struc.UseAvgMV;net=struc.net; 
FW=PredPnts(end); 

pred_n=[]; 
for kk=l:length(PredPnts), 

index=size(ND,2)-PredPnts(kk)*Tmodel; 
%pointing to the current time: time instant NOW 

if UseAvgMV, 
%===== === === === === ============= ==================================== 

PastMVsCVs=[]; 
if PW>O, 
for i=PW:-1:1, 

%average forward, MVCVs from index-PW*Tmodel to index- l*Tmodel 
avgPastMV=mean(ND(l:2,index-i*Tmodel+l:index-i*Tmodel+Tmodel-1) ,2); 
PastMVsCVs=[PastMVsCVs;avgPastMV;ND(3,index- i*Tmodel)]; 

end 
end 
CurrentLDs=mean(ND(end,index-Tmodel+l:index),2); %ba ckward averaging! 
CurrentCVs=ND(3,index); 
uO=mean(ND(l:2,index+l:index+Tmodel-1) ,2); 
FutureMVs=[]; FutureMVs=uO; 
num_c=floor(PredPnts(kk)*Tmodel/Tcontrol); 
if num_c>l, 
for j=l:num_c-1, 

avgFutureMV=mean(ND(l:2,index+j*Tcontrol+l:index+(j+l)*Tcontrol - 1) ,2); 
FutureMVs=[FutureMVs;avgFutureMV]; 

end 
end 

else %PW<O 
%============= ==================================================== 

PastMVsCVs=[]; 
if PW>O, 

for i=PW:-1:1, 
PastMVsCVs=[PastMVsCVs;ND(l:3,index-i*Tmodel+l)]; 

end 
end 
CurrentLDs=ND(end,index); 
CurrentCVs=ND(3,index); 

u0=ND(l:2,index+2); 
FutureMVs=[] ;FutureMVs=uO; 
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num_c=floor(PredPnts(kk)*Tmodel/Tcontrol); 
if num_c>l, 

end 
end 

for j=l:num_c- 1, 
FutureMVs=[FutureMVs;ND(l:2,index+j*Tcontrol+2)]; 

end 

NNinputs=[PastMVsCVs;CurrentLDs;CurrentCVs;FutureMVs]; 
output=sim(net{PredPnts(kk) },NNinputs); 
pred_n=[pred_n output]; 

end 

normpmm=ND(3,end)-pred_n; 

D.2.4 Objective Function 

function [funf,fung,deviation]=obj_fun(decisionV,SP,pmm) 
%*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*= *=*=*=*=*=*=*=*= 
% PredW now is adaptive according to magnitude of the pmm 
global history NNs MPC; 

adp_wtop=ones(size(MPC.PredW.top)); 
adp_wbot=ones(size(MPC.PredW.bot)); 

range=NNs.range; 
SPn=normmnmx(SP,range(3:4, :)) ; 
[pred.top,pred.bot,pred.P]=groupModel(history,decisionV,MPC.MovePnts,MP 
C.PredPnts); 
F.top=pred.top+pmm.top; F.bot=pred.bot+pmm.bot; F.P=pred.P+pmm.P; 
Fn.top=normmnmx(F.top,range(3, :)) ; Fn.bot=normmnmx(F.bot,range(4, :)) ; 

for i=l:length(adp_wtop), 
if (abs(pmm.top(i)*lOO)>l), adp_wtop(i)=l/(abs(pmm.top(i))*lOO); end 

end 

for i=l:length(adp_wbot), 
if (abs(pmm.bot(i)*lOO)>l), adp_wbot(i)=l/(abs(pmm.bot(i))*lOO); end 

end 

% ---- [ constraints J ---­
decisionVn=normmnmx(decisionV,range(l:2, :)) ; 
%constrMV=[decisionVn-1 ; [0-decisionVn(l, :} ; (45-40)/(60-40)­
decisionVn (2, : ) ] ] ; 
constrMV=[decisionVn-1;0 - decisionVn]; 
%constrP=F.P-MPC.MaxPressure; 
constrP=pred.P-MPC.MaxPressure; %Pressure prediction is not adjusted 
if MPC.MaxPressure>O, 

fung=[constrMV(l : end) constrP]; 
else fung=constrMV(l:end); 
end 

%----- [ objective function] -----
%------- TOP & BOT composition deviation deviations 
dev_top_pcg=(SPn(l)-Fn.top)*lOO; 
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sum_top=MPC.Wcv(l)*sum(MPC.PredW.top.*adp_wtop.*dev_top_pcg.A2)/length( 
Fn. top); 

dev_bot_pcg=(SPn(2)-Fn.bot)*lOO; 
sum_bot=MPC . Wcv(2)*sum(MPC.PredW.bot.*adp_wbot.*dev_bot_pcg.A2)/length( 
Fn.bot); 

%------- MV moves 
mvs_now=history(end,1:2) '; 
[R2,Q2]=size(decisionV); 
if size(decisionV,2)<2, 

deltaMV=abs(decisionV- mvs_now); 
else 

oldMV=[mvs_now decisionV(:,1:end-1)]; 
deltaMV=abs(decisionV-oldMV); 

end 
deltaMV_perc=deltaMV./((range(l:2,2}-range(l : 2,l))*ones(l,Q2})*100; 
tmp=zeros(l,R2); 
for numMV=l:R2, 

tmp(numMV)=MPC.Wmv(numMV)*sum(MPC.MoveW . *deltaMV_perc(numMV, :) .A2); 
end 
moveMVs=sum(tmp)/(R2*Q2}; 
deviation=[sum_top sum_bot moveMVs]; 
funf=(sum_ top + sum_bot + MPC . f _mv*moveMVs); 

D.2.5 Interfaces with Camile 

function ReadfromCamile(FileName) 
% ReadfromCamile(FileName) 
% Read global variables from FileName and delete Filename 

global SP StartNMPC StopMatlab Measurement MPC; 
fid=fopen(FileName, ' rt '); 
while fid<O, fid=fopen(FileName, 'rt'); end; 
linel=fgetl(fid); line2=fgetl(fid) ;line3=fgetl(fid) ;line4=fgetl(fid); 
%linel: [SP_ top , SP_ bot,StartNMPC, StopMatlab] 
%line2: Measurement= [Reflux TY ytop xbot Pressure Feed] 
%line3:tuning para.: [MovePnts MoveW PredPnts PredW Wmv Wcv 
MaxPress ure ] 
%line4: [SuppressionMa nner TrajSpeed pmmfilter mvfilter FilterMa nne r 
Lamda CusumWin CusumThreshold] 

if -ischar(linel) I -ischar(line2) I -ischar(line3) I -ischar(line4) , 
disp( '??? Readings from CamileOutput not correct' ); 
fprintf(l, 1 linel= [%s ] ,line2= [%s ] , line3=[%s] , line4 = [ %s ] \ n • , 

linel,line2,line3,line4); 
return; 

end 
%-- --- -------------- ------------------------------- --- -- LINE 1 
x=sscanf(linel, 1 %£, '); %xis a vector 
SP=x(l:2); StartNMPC=x(3); StopMatlab=x(4); 
%- - ---------------- ------------------ -------------------LINE 2 
x =sscanf(lin e2, 1 %£ , '); 
Measur ement=x '; 
%- ---- - -------- - -- - --- - - -- - - ------ - --- - --- -- --- -- ---- - - - LI NE 3 
vararray=getVariables(line3); 
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i=l; 
MPC . MovePnts=vararray{i}; i=i+l; 
MPC . MoveW=vararray{i}; i=i+l; 
MPC . PredPnts.top=vararray{i}; i=i+l; 
MPC.PredW.top=vararray{i}; i=i+l; 
MPC.PredPnts.bot=vararray{i}; i=i+l; %<<<<<<< <<<<< 
MPC.PredW.bot=vararray{i}; i=i+l; %< <<<<<<< <<<< 
MPC.Wmv(l}=vararray{i}; i=i+l; 
MPC.Wmv(2}=vararray{i}; i=i+l; 
MPC.Wcv(l}=vararray{i}; i=i+l; 
MPC . Wcv(2}=vararray{i}; i=i+l; 
MPC.f mv=vararray{i}; i=i+l; %<<<<<<suppression factor 
MPC.MixPressure=vararray{i}; i=i+l; 
MPC.PredPnts.P=vararray{i}; 
%-- ----------------------------------------- - -------- - --LINE 4 
vararray=getVariables(line4} ; 
i=l; 
MPC.suppressionManner=vararray{i}; i=i+l; 
MPC . trajSpeed=vararray{i}; i=i+l; 
MPC.pmmfilter=vararray{i}; i=i+l; 
MPC.mvfilter=vararray{i}; i=i+l; 
MPC.filterManner=vararray{i}; i=i+l; 
MPC.Lamda=vararray{i}; i=i+l; 
MPC.cusum_win=vararray{i}; i=i+l; 
MPC.cusum_ n=vararray{i}; 
%---------------- ----- ----------- ---- -----
fclose(fid}; 
delete(FileName}; 

%=* =*=*=*=*=*=* =*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* =*=*=*=*=* =*=*=*=*=*=*=* 

function vararray=getVariables(str} 
str=strcat(str, ' , '}; tokens=length(findstr(str, ', ' }}; 
vararray={}; remain=str; 
for i=l:tokens, 

end 

[tok,remain]=strtok(remain, ', ' }; 
i f findstr(tok, '" ['}, %array 

vararray{i}=(sscanf(tok(3:end- 2}, 1 %f 1 }} '; 

else if findstr(tok, '"' }, %string 
vararray{i} =tok( 2 :end- 1}; 

else %number 
vararray{i}=str2num(tok}; 

end 

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
f unc t i on Wri t etoCamile (MVs, f ilename} 
f i d =fopen( f ilename , 'wt '} ; 
if fid==-1,error( 'can not open file' ) ; end 
fprintf(fid, '%1 0 .3f ,%10 . 3f\n ' ,MVs); 
fclose ( fid) ; 

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

f unction Disp_Out put _Mode l i n f o(de c isionV,de v iations , StartNMPC , f ilename ) 
global SP Measurement MPC; 
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global history NNs; 
aaa.top=NNs.top.PredPnts; aaa . bot=NNs.bot.PredPnts; 
aaa.P=NNs.P.PredPnts; 
[pred.top , pred.bot,pred . P]=groupModel(history,decisionV,MPC.MovePnts , aa 
a); 
[pmm.top,pmm.bot,pmm . P]=groupPmm(history,aaa); 
F.top=pred.top+pmm.top; F.bot=pred.bot+pmm.bot; F.P=pred . P+pmm.P; 
timenow=clock; 
fprintf ( 1, ' 

I ) j fprintf(l, • t op_pred 
fprintf(l, 'top_ a d just '); 

' ) ; fprintf(l, 1 bot_pred 
fprintf(l, ' b o t adjust '); 
if StartNMPC, 

@%2d : %2d\n',timenow(4:5)); 
fprintf ( 1, '%8 . 3 f ', pred. top) ; fprintf ( 1, '\n' ) ; 
fprintf(l, ' %8 . 3f ' , F.top) ; fpri ntf(l, 1 \ n \ n' ); 
fprintf(l, '%8.3f' ,pred . bot) ; fprintf(l, 1 \n' ); 
fprintf(l, '%8. 3f',F.bot) ;fprintf(l, 1 \ n \ n ' ); 

fprintf(l, 'OPT_MV ') ;fprintf(l, 1 %6.lf 1 ,decisionV(l , : )) ;fprintf(l, 1 \n 1 ) ; 

fprintf ( 1, ' ' ) ; fprintf ( 1 , ' %6 . l f ' , decisionV ( 2 , : ) ) ; fprintf ( 1, ' \n' ) ; 
fprintf(l, 'deviations '); fprintf(l, '%8.3f ',deviations) ;fprintf(l, 1 \n 1 ); 

end 
fprintf(l , 'pred_ Pressure ' ) ;fprintf(l, '%8.3f ',pred.P) ;fpr intf(l, 1 \ n' ); 
fprintf(l, 1 adjust_ Pressur e 1 ); fprintf(l, ' %8.3 f ' ,F.P); fprintf(l, 1 \ n 1 ); 

fprintf(l, 1 ----- -- --------------- - ----------------------- -- - - \ n \ n ' ); 

fid=fopen(filename, ' wt' ) ; 
if fid==-1, 

warning(strcat(' can not open file', filename)); retur n; end 
% ------------ ----------Line 1 is read in Camile as a String l ine 
fprintf(fid, ' @ %2 d: %2d SP= [%5 . 2f ; %5 . 2f ] %% CV=[%5.2f ; %5 .2 f] %% \n', ... 

t imenow ( 3 : 4 ) , SP ( 1 ) * 10 0 , SP ( 2 ) * 10 0 , ... 
Measurement(3)*100,Measurement(4)*100); 

%-------- -- ---------Line 2&3 : Prediction 
fprintf(fid , '%10.4f , ' ,pred.top(l:end-1)) ; 
fprintf(fid, 1 %10 . 4f\n 1 , pred.top(end)); 
fprintf(fid, '%10.4f , ' ,pred.bot(l:end- 1)); 
fprintf(fid, ' %10. 4 f\n ',pred.bot(end)); 
%-------------- -- - - Line 4&5 : pmm 
fprintf(fid, '%10 .4f, ' ,pmm . top(l : end-1)); 
fprintf(fid , ' %1 0.4f\n' ,pmm.top(end)); 
fprintf(fid, ' %1 0.4f , ' ,pmm . bot(l : end-1 )); 
fprintf(f i d, ' %10 . 4f\n ',pmm.top(end)); 
%------------------Line 6&7 : OptMvs 
i f -St artNMPC, d e cisionV=zeros(size(decisi onV)) ;en d 
for kk=l:2, 

fo r i=l:size(decisionV,2) - 1, fprintf(fid, ' %10.3f, ',decisionV(kk , i)); 
end 

fprintf (f id, 1 %10.3f\ n 1 ,decisionV(kk , end)); 
e n d 
%----- - - - ----- -- ---Line 8: funf 
if StartNMPC ,fprintf (fid, ' %1 0 . 3f \ n ', s um([ l 1 0.01] . *de v iation s)); 
else fprintf(fid, '%10 . 0f\n' ,0); 
end 
%- --------- ---- -- - - Line 9: p redic tionP 
if length(F . P)>l , 
fprintf( fid , '%10 . 4f , ',F.P( l:end- 1 )) ; f p rintf (fi d, ' %1 0.4f\n' , F .P(e nd)); 

else f p rint f (fid, ' %10 .4 f \ n' , F .P); 
end 
%------------ ------Line 10: pnunP 
if length(pmm.P) >l, 
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fprintf(fid, '%10.4f, ',prrun.P(l:end-1)); 
fprintf(fid, '%10.4f\n 1 ,prrun.P(end)); 

else fprintf(fid, '%10.4f\n',prrun.P); 
end 
%- -- - ------ --- - ---- - - - -- -- - ------ - -- ----- ------ - -------- -- - -- - -- ----
fclose (fid); 

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

function MPC=check(MPC) 
global NNs; 
%==== Check if MPC.PredPnts are subsets of NNs . PredPnts, correct if not 
wholeset={}; 
wholeset{l}=NNs.top.PredPnts;wholeset{2}=NNs.bot.PredPnts;wholeset{3}=N 
Ns . P.PredPnts; 
subset={}; 
subset{l}=MPC.PredPnts.top;subset{2}=MPC.PredPnts.bot;subset{3}=MPC.Pre 
dPnts.P; 

for seti=l:3, 
whole=wholeset{seti}; sub=subset{seti}; 
rec=[]; warn=O; 
for leni=l : length(sub), 
if isempty(find(whole==sub(leni))), 

warn=l; 
switch seti, 
case 1, 
fprintf(l,strcat(' ???warning ... !­

PredPnts_ top_ #',nurn2str(sub(leni)))); 
fprintf(l,blanks(2)); fprintf(l, ' was not trained\n'); 

case 2, 
fprintf(l,strcat(' ???warning . .. ! ---

PredPnts_bot # ',nurn2str(sub(leni)))); 
fprintf(l,blanks(2)); fprintf(l, 'was not trained\n'); 

case 3, 
fprintf(l,strcat(' ???warning .. . ! -- ­

PredPnts_ P_ #',nurn2str(sub(leni)))); 
fprintf(l,blanks(2)); fprintf(l, •was not trained\n '); 

end 
else rec=[rec leni]; 
end 

end 
if warn, 
switch seti, 
case 1, 
MPC.PredPnts . top=[]; 
for setii=l:length(rec), 

MPC .PredPnts.top= [MPC.PredPnts.top,sub(rec(seti i ))]; 
end 

case 2, 
MPC.PredPnts.bot=[]; 
for setii=l :length(rec), 

MPC.PredPnts.bot= [MPC.PredPnts.bot,sub(rec(setii))]; 
end 

case 3 , 
MPC.PredPnts.P=[]; 
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for setii=l:length(rec), 
MPC.PredPnts.P=[MPC.PredPnts.P,sub(rec(setii))]; 

end 

end 
end 

end 

%Check if PredW is in the same dimension as PredPnts,if not, correct it 
if length(MPC.PredW.top)>length(MPC.PredPnts.top), 

MPC.PredW.top=MPC.PredW . top(l:length(MPC.PredPnts.top)); 
else MPC.PredW.top=[MPC.PredW.top ones(l, (length(MPC.PredPnts.top) ­
length(MPC.PredW . top)))]; 
end 

if length(MPC.PredW.bot)>length(MPC.PredPnts.bot), 
MPC.PredW.bot=MPC.PredW.bot(l:length(MPC.PredPnts . bot)); 

else MPC.PredW.bot=[MPC . PredW . bot ones(l, (length(MPC . PredPnts . bot)­
length(MPC.PredW . bot)))]; 
end 

%Check future MovePnts 
if MPC . MovePnts(l)-=0, 

fprintf(l, ' ???Warning: futureMV does not have control 
action for NOW, corrected ! \n\n' ); 

MPC . MovePnts(l)=O; 
end 

D.2.6 Auxiliary Subroutines 

f unction [fy,par a] =MyFilter(Manner,y,y_ old,fy_old,par a) 
% SYNTAX: 
% [fy,pa r a] =MyFilter('NONE' , y, [],[],para); 
% [fy , para]=MyFilter('first order ' ,y, [] ,fy_old,para); 
% [fy, cusum] =MyFilter ( 'cusum', y , yold, fy ____ old, cusum) ; 
% global variable MPC is needed 
% 
g lobal MPC; 
switch lower (Manner), 
c a se ' none' , fy=y; 
case 'first order' , 

lamda=MPC.Lamda; 
fy=first_ order(y,fy_old, lamda); 

case ' cusum' , 
win=MPC.cusum_ win ; Threshold=MPC.cusum_n; 
[fy , par a] =cusumfilte r (y,y_ old, f y _ o l d , par a,wi n,Thre shold); 

o t herwise , d i sp(' this f ilter method not available' ); 
end 

%* =* =*=*=* =* =* =* =** =*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* =*=*=*= 
function fy=first_order(y,fy_ old,lamda) 
fy=lamda*y+(l - l amda)* f y_ old; 

%* =* =*=*=* =*=* =*=** =*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* =*=* =* =*=*= 
function [xspc , cusum] =cusumfilter (x , xold , xspc,cusum,win,Threshold) 
cusum.k=cusum.k+l ; 
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cusum.rou=l/(win-l)*(x-xold) .A2+(win-2)/(win-l)*cusum.rou; 
Sigma=sqrt(cusum.rou/2); 
cusum.sum=cusum.sum+(x-xspc); 
for i=l:length(x), 

if abs(cusum.sum(i))>Threshold*Sigma(i), 
xspc(i)=xspc(i)+cusum.sum(i)/cusum.k(i); 
cusum.k(i)=O; cusum.sum(i)=O; 

end 
end 

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

function varargout=UnitConvert(value,fromto,addinfo) 
%flowrateinlbmol=UnitConvert(flowrateinlb, 'lb2lbmol' , x); 
%flowrateinlb=UnitConvert(flowrateinlbmol, 'lbmol2lb' , x); 
%TinF=UnitConvert(TinC, ' C2F'); 
%TinC=UnitConvert (TinF, 'F2C'); 

% 'value ' is the parameter to be conver ted 
% 'fromto' is a string asking for the convert units 
% a ddinfo is addition information needed for certain conversion, 
% e.g . if convert the flowrate of a mixture, then mass fraction is 
needed 

nout=nargout; 

if nargin>2, x=addinfo; end 

if strcmp(fromto, 'lb2lbmol'), 
amw=l8.015*(1-x)+32.043*x; value=value./amw; 

elseif strcmp(fromto, 1 lbmol2lb 1 ), 

value=value.*x*32.043+value.*(l-x)*l8 . 015; 
elseif strcmp(fromto, 'C2F' ), 

value=value*l.8+32; 
elseif strcmp(fromto, 'F2C' ), 

value=(value-32)/1.8; 
else disp(' unit conversion failed! I can not find a match!' ); 
end 

if nout==l , varargout{l} =value; 
else for i=l:nout, varargout{i}=value(i) ;end 
end 
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APPENDIXE 

TUNING OF THE CONTROLLER - CV DAMPING VERSUS MOVE 

SUPPRESSION 

This section describes the preliminary test of companson of two tuning 

approaches of MPC, the CV damping tuning approach and the move suppression tuning 

approach. This preliminary test shows certain advantages of using CV damping over 

move suppress10n. 

E.1 CV Damping and Move Suppression for Tuning MPC 

The CV damping and the move suppression are two common approaches for 

tuning MPC and are both practiced in industry. As summarized in the review paper of 

Qin and Badgwell (1997), some commercial linear MPC products such as DMC (Cutler 

& Ramaker, 1979) apply move suppression to prevent aggressive MV moves, while other 

commercial linear MPC products such as IdCom (Richalet, Rault, Testud, and Papon, 

1979) use CV damping to avoid aggressive MV moves. 

The difference between these two approaches is embodied in the general objective 

function as described in Equation (3.8) (rewritten as Equation (E.1) as follows). For the 

move suppression approach, Yref(i) = Ysp, while the Move suppression factor, Wuv , acts 

as the tuning parameter. For the CV damping approach, Wuv is bypassed by setting it to 

zero while the controller is tuned by adjusting the dynamics of a predefined reference 

trajectory, represented by Yref (i) , which is usually of first-order linear dynamics from the 
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present CV value, y(k), to the setpoint, Ysp. Time constant of the first order dynamics is 

used as the tuning parameter. 

J = Wcv L(y(k + i I k)- Yr~f(i)) 2 + WMV L(~u(k + j I k)) 2 

j 

(E.1) 

No literature was found to compare these two approaches. However, industrial 

practice on linear MPC seems to show no preference or obvious advantages of one 

approach over the other. However, preliminary tests of comparing these two approaches 

for the nonlinear distillation process in this work showed potential advantages of using 

CV damping over using move suppression, as described in the following section. 

E.2 GNNMPC for the Distillation Process Using CV Damping 

E.2.1 The CV Damping Approach 

Simulation results described in Section 5.6.1 show that when using the move suppression 

approach to tune GNNMPC, the controller's performance is sensitive to the suppression 

factor, WMv. WMv has to be adjusted (manually in this work) in different operating 

regions to achieve desired control performance. When the setpoint of the top 

composition, y, and the bottom composition, x, is changed from {y,x}={0.85, 0.03} to 

{y,x}={0.65, 0.005}, a WMv value of 0.1 (Case 1 in Table 5.9) leads to instability while a 

value of 0.5 (Case 2 in Table 5.9) leads to good performance. However, when the 

setpoint is changed from {y,x}={0.85, 0.03} to {y,x}={0.9, 0.08}, a WMv value of 0.1 

(Case 3 in Table 5.9) leads to good performance, implying that a value of 0.5 would lead 

to sluggish control. 
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In the following tests, CV damping is used for both cases of setpoint changes. The 

objective function is: 

subject to: 

[y(k + i),x(k + i)] = GNN(y(k-5), ... y(k),x(k-5), ... x(k), ... 

F(k),R(k-5), ... R(k + i -1),H(k- 5), ... H(k + i -1)) + [dy(k + i),dx(k + i)] 

[dy(k + i),dx(k + i)] = [y(k),x(k)]- GNN(y(k - 5-i), ... y(k-i),x(k- 5-i), ... x(k-i), ... 

F(k-i),R(k-5-i),R(k-1),H(k-5-i),H(k-1)) 

l:lR(k+ j)=R(k+ j)-R(k+ j-1) 

Ml(k+ j)=H(k+ j)-H(k+ j-1) 

0 s y(k + i) s 1 

o s x(k + i) s 1 

0 s R(k + j) s 1 

0 s H(k + j) s 1 (E.2) 

As compared to Equation Set (5.10), where move suppression is used, the only difference 

in CV damping lies in the objective function. The reference trajectories for the top 

composition, y, as represented by Y,e/k + i), and the bottom composition, x, as 

represented by x,e/k + i), are the trajectory of first order linear dynamics starting from 

the present value to the setpoint. The reference trajectories for the top composition and 

the bottom composition are, 

dyref 'y dt+ Yref = Ysp - Yo' Yref,O = Yo (E.3) 
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dxref 
'x--+Xref =Xsp -Xo, Xref,O =Xo 

dt 
(E.4) 

Where r Y and r x are the predetermined tuning parameters, y O and x0 are the present 

value of the top composition and the bottom composition, respectively. 

The solutions for equations (E.3) and (E.4) are: 

Y ref = (y sp - Yo )(1- e r, ) + Yo (E.5) 

(E.6) 

The values at i-th discrete time interval in the future with a sampling time interval of T 

are: 

T 

(E.7) 

T 

X ref ( k + i) = ( X sp - x 0 )(1- ( e r , ) i) + x 0 (E.8) 

T T 

Let AY = e ry , and Ax = e r , . AY and Ax are used in the simulation as the tuning 

parameter, which is between O and 1. The smaller the value of A, the smaller the value of 

r , the faster the reference trajectory to reach the setpoint, thus the more aggressive the 

controller. 

E.2.2 Setpoint Tracking 

The GNNMPC's control performance using CV damping approach for setpoint 

tracking at different operating points are shown in Figures E.1 and E.2. Figure E.1 shows 

the results when the setpoint changes from {y,x}={0.85, 0.03} to {y,x}={0.65, 0.005}. 
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Figure E.2 shows the results when the setpoint changes from {y,x}={0.85, 0.03} to 

{y,x}={0.9, 0.08}. For both cases, AY = 0.7 and Ax = 0.85. 
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Figure E.1 GNNMPC for setpoint tracking 
( {y,x} changes from {0.85, 0.03} to {0.65,0.003}) 
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Figure E.2 GNNMPC for setpoint tracking 
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In both cases, the controller is able to track the setpoint decently. Notice the MVs 

walk around due to the lack of constraint (penalty) on their moves. In addition, 

comparing with the cases studied in Table 5.9, the CV damping tuning approach is not 

sensitive to the operating point (which implies nonlinearity of the process), as the same 

values of the tuning parameters lead to good control performance in both cases. While as 

shown in Figures 5.16 to 5.19, when using move suppression method, the tuning 

parameters must be adjusted to achieve good control performance in these same two 

reg10ns. 

E.2.3 Disturbance Rejection 

The following simulation results compare the disturbance rejection performance 

of GNNMPC for feedforward disturbance (feed flowrate in the case) and unmeasured 

disturbance (feed composition in the case) using the CV damping tuning approach as 

described in Section E.1.1. This investigation was motivated by the observation from the 

simulation results as described in Section 5.6.2 that the controller did no better in 

rejecting the feedforward disturbance than in rejecting the unmeasured disturbance when 

move suppression tuning approach was used, which is contradictory to the experience 

with a linear controller that a feed forward model leads to a much better disturbance 

rejection performance when the model is "good". 

Cases 5 to 7 as described in Table 5.10 are reinvestigated using CV damping 

approach. The simulation results are shown in Figure E.3 to E.7. In all cases, .\ = 0.5 

and lx = 0.7. 
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Figure E.3 GNNMPC for feedforward disturbance rejection 
(feed flowrate changes from 280 mol/hr to 300 mol/hr) 
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Figure E.6 GNNMPC for unmeasured disturbance rejection 
(feed composition changes from 0.25 mole fraction to 0.22 mole fraction) 
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For the feed flowrate disturbance of +/- 20 mol/hr, the maximum amount of 

overshoot for the top composition is about 0.008 mole fraction and that for the bottom 

composition is about 0.002 mole fraction. While for the feed composition disturbance of 

+/- 0.03 mole fraction, the maximum amount of overshoot for the top composition is 

about 0.012 mole fraction and that for the bottom composition is about 0.005 mole 

fraction. This shows better regulatory effect for feedforward disturbance than that for 

unmeasured disturbance. 

E.3 Summary 

This Appendix describes preliminary tests on using the CV damping approach for 

tuning GNNMPC, which shows that using CV damping approach has the potential of 

easier tuning and improved performance for disturbance rejection. Further investigations 

on comparing CV damping with move suppression are recommended for future work. 

190 



RECENT PAPERS 

Ou,J., Rhinehart, R.R. (2001). "Grouped neural network model-predictive control", 
submitted to Control Engineering Practice on April 23, 2001 

Ou,J., Rhinehart, R.R. (2001). "Grouped-neural network model for model predictive 
control", ISA Transactions, in press 

Zhao, F.T., Ou, J., and Du, W. (2000). "Simulation modeling of nuclear steam generator 
water level process - a case study", ISA Transactions, 39(2): 143-152 

Zhao, F.T., Ou, J., and Du, W. (2000). "Pattern-based fuzzy predictive control for a 
chemical process with dead time", Engineering Applications of Artificial Intelligence, 
13(1): 37-45 

Ou, J., Narayanaswamy, G., Rhinehart, R. R. (1998), "External reset feedback for 
generic model control", ISA transactions 37(3): 189-199 

191 



VITA 

Jing Ou 

Candidata for the Degree of 

Doctor of Philosophy 

Thesis: GROUPED NEURAL NETWORK MODEL-PREDICTIVE CONTROL AND 
ITS EXPERIMENT AL DISTILLATION APPLICATION 

Major Field: Chemical Engineering 

Biographical: 

Education: Received Bachelor of Engineering degree in Chemical Engineering and 
Doctoral degree in Control Science and Engineering from Zhejiang 
University, China in June 1992 and March 1997, respectively. Completed the 
requirements for the Doctor of Philosophy degree with a major in Chemical 
Engineering at Oklahoma State University in May 2001 . 

Experience: Employed as a graduate assistant in Zhejiang University from 1992 to 
1997. Employed as a graduate assistant in Oklahoma State University from 
1997 to present. 




