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Chapter 1 

Introduction 

The study of quantization and finite precision effects in control has been motivated by the high 

accuracy requirements of modern systems. Despite the fact that the resolution of a data converter 

is improved by a factor of two when one more bit is used, commercial converters often have less 

than 14 bits. If one of such devices is used at the input and output of a digital controller, a limit 

cycle is likely to arise. The amplitude of quantization-induced limit cycles is reduced when the 

quantization step size is reduced. Therefore, a limitation on the number of bits in a data converter 

may result in a limit cycle whose amplitude is too large for a given performance requirement. In 

fact, an arbitrary state feedback gain which stabilizes the nominal system may result in a limit 

cycle, or the state trajectories may converge to an equilibrium point different than the origin. In the 

case of linear systems, it is possible to design feedback controllers which do not induce limit cycles, 

regardless of the quantization step size. In this research work, feedback controllers are derived such 

that the system remains stable, despite the presence of input and output quantizers. This is done 

for systems with either full state feedback, or with only output feedback and dynamic compensation. 

The system under study, in its more general form, is shown in Figure I.I. A quantizer outputs a 

nonlinear function of its input. This function has, in addition, an infinite number of discontinuities, 

which creates difficulties in any analysis technique requiring differentiation. In this work, attention 

is centered on discrete time linear time-invariant (LTI) systems with quantized feedback. More 

precisely, the following closed-loop configurations are studied: 

{
x(k + 1) = Ax(k) + Bu(k) 

u = -Q(Fx(k)) 

1 

(1.1) 



and 

~---------------------~ 

LTI System 

~---------------------~ 

Digital 

Controller 

Figure 1.1: System configuration under study 

{
x(k + 1) = Ax(k) + Bu(k) 

u = -Q(FQ(x(k))) 
(1.2) 

where Q(.) denotes the quantization operator whose graph is shown in Figure 1.2. The quantization 

step size is denoted by q. The equations corresponding to the output feedback configurations are 

given in Chapter 4. The system in Eq.( 1.1) corresponds to the practical case where only a digital­

to-analog (D / A) converter is used, or, more realistically, when its resolution is much lower than 

that of the analog-to-digital converter (A/D). The system in Eq.( 1.2) has more relevance in a 

practical context. It represents the common situation of a control computation based on quantized 

measurements which is quantized when it leaves the digital environment of the control computer 

and enters the plant. The number of bits of both input and output data converters is assumed to 

be equal. 

Mathematically, the scalar and vector quantization functions are defined below: 

Definition 1.1. The scalar quantization function is a mapping Q : JR;.--+ JR;. with rule of correspon­

dence 

Q(y) = jq 

2 



Q(y) 

3q • 0 

2q • 0 

q • 0 

SL 3q 5q 

0 • 2 2 2 y 

0 • 
• 

Figure 1.2: The scalar quantization operator 

where j is an integer satisfying 

(2j-I)q (2j+I)q 
2 "5:_y< 2 ,j~l 

(2j - I)q (2j + I)q 
2 < y "5_ 2 'j "5_ -I 

The number q E JR+ is the quantization step size. 

Definition 1.2. The vector quantization function is a mapping Q : IE.n ---+ IE.n with rule of corre­

spondence 

Q(x) l, where 

As explained in Sections 1.1 and 1.2, the approach taken in this work is to utilize the well­

established theory of Absolute Stability in the analysis. In this regard, the material of this work is 

presented for the first time, to the author's knowledge. This approach departs from the mainstream 

analysis technique which replaces the quantizer by a pass-through and an additive noise, or quan­

tization error, which is bounded by J in absolute value. The motivation for the use of Absolute 

Stability is that the scalar quantizer is a sector nonlinearity, and that some manipulations can be 

3 



performed in the case of vector quantization (i.e.,when the state measurement is quantized) in order 

to analyze the system in terms of sectors. 

1.1 Review of the Literature 

The general topic of finite precision effects in control systems has received considerable attention. It 

is found that three broad problems predominate in the literature. Each problem has been approached 

by a different method. The next subsections are a brief overview, by no means exhaustive, of the 

representative works. 

1.1.1 Optimal realizations of finite precision controllers 

Control algorithms for mass-market devices such as automotive engines are often embedded in a 

digital signal processor, or DSP. Cost and size limitations often result in devices that must operate 

with a limited number of bits. It is known that the propagation of numerical errors due to finite 

precision arithmetic is sensitive to the state-space realization chosen for the controller. Therefore, 

the problem is to find state-space representations which minimize error accumulation. In particular, 

the optimal realization is sought. Works in this area are often associated with the names of Li and 

Gevers ( (23], (24]), Istepanian ( (19]), Collins (33] and others. In (19], a method for finding the 

optimal finite precision realization using numerical optimization is given. The method provides a 

realization that requires the minimum number of bits and gives the maximum stability bound. In [23] 

the optimal finite precision realization of an observer-controller combination is sought. The paper's 

main contribution is the derivation of an expression to calculate the sensitivity of the numerical errors 

with respect to the realization of a given transfer function. With this tool, the set of state-space 

realizations minimizing the sensitivity is computed. The paper by Chen et. al. [8] obtains results for 

the particular case of PID control. 

Role of the delta operator 

The delta operator is defined from the conventional forward-shift operator z as 

where 6. is an arbitrary positive number. For example 

8x(k) = x(k + 1) - x(k) 
6. 

4 



x )>-----t• .. WI---+) Q(x) 

~l~+eil«<q,__/2-

x )>---~- > Q(x)=x+e 

Figure 1.3: The additive model 

When a transfer function for the controller is given, it may be written in terms of the delta operator, 

resulting in a set of coefficients different than the ones in the conventional z operator transfer 

function. Therefore, state space realizations are different. The works by [24], [27] and [33], among 

others, either claim or analyze the superiority of the delta operator parameterization. Arguably, a 

shortcoming of this family of approaches is that it lacks guarantees of stability, that is, the question 

of whether the optimal realization is stable is typically not addressed, under the rationale that it is 

sufficient to keep the errors small. 

1.1.2 Statistical analysis and limit cycles in digital filters 

The quantization error is always bounded in absolute value by one half of the quantization step size. 

This has motivated many researchers to replace quantization by an additive noise model, shown in 

Figure 1.3. This model has lead to a number of papers that address the existence of limit cycles 

in digital filters; for instance, Leclerc and Bauer [21] introduce a computer-aided test for existence 

of limit cycles; and Bose [5] analyzes the stability of second-order digital filters, providing stability 

regions for the filter coefficients. Several researchers have also focused on the spectral properties of 

the quantization noise. Based on this, controllers that are insensitive to noise in such spectrum can 

be designed. An example of this approach is the paper by Liu and Skelton [25], in which a design 

method is provided for LQG control, taking into account data converter quantization and roundoff 

error from the control computer. The paper, however does not guarantee that the designed gains 

will be stable. In Section 2.5 of this work it is shown how can a nominal LQR gain destabilize 

a system. In the seminal work by Widrow et.al (36], the quantizer is analyzed in depth in terms 

of its statistical properties. The probability distribution function (pdf) of the quantizer output is 
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seen as a sampling of the input pdf. The characteristic function1 of the output is used to derive 

reconstruction theorems with a surprising resemblance to the sampling reconstruction theorem due 

to Shannon. These theorems establish that if the characteristic function of the input is in some 

sense "bandlimited", then statistical properties of the output can be derived from those of the 

input, including the pdf and moments. 

1.1.3 Exact approaches: Nonlinear systems analysis 

In these approaches, quantization is analyzed in a deterministic setting, often arriving at stability 

conditions applicable to various kinds of control structures. Nonlinear analysis is used to arrive 

at such conditions, which are exact. Unlike the previous two, this kind of treatment has not been 

followed by many researchers. One of such approaches was published by Brockett and Liberzon [6]. 

In this paper, only quantized measurements are considered. The control signal is post-multiplied 

by a time-varying coefficient to make up for quantizer imperfections. The paper by Delchamps [12] 

is of great importance in the context of the present research work. It shows that open-loop unsta­

ble systems cannot be asymptotically stabilized in general when the measurements are quantized. 

However, it shows that, in certain cases, it is possible to bring the state arbitrarily close to zero and 

remain there indefinitely. A problem closely related to the subject of the present work is determining 

when a difference equation of the form 

y(k) = Q[a1y(k - 1)] + Q[a2y(k - 2)] + .. + Q[any(k - n)] 

is BIBO stable. This problem is analyzed by Bauer and Leclerc in [3]. The results are in terms of 

the sum of the absolute values of coefficients ai. This resembles the stability condition in the present 

work, which depends on the 1-norm of the feedback gain. 

1.1.4 Consulted material on Absolute Stability 

In this work, the theory of Absolute Stability is extensively used. This theory is well-documented 

for continuous time systems, and is part of standard textbooks on nonlinear control. For discrete 

time, however, there is less material available. This has motivated simple extensions to existing 

results. The background theory required has been extracted mainly from two papers by Hitz and 

B.D.O Anderson ( [17], [2]), and the textbooks by Hsu and Meyer [18] and Aizermann [l]. 
1 The characteristic function of a random variable is the Fourier transform of the pdf. 
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1.2 Objectives, Scope and Methodology 

The objectives of this work are to obtain a simple stability tests for discrete time systems of the 

form of Eqs. (1.l)and (1.2), and also for systems with output feedback and dynamic compensation. 

It is expected that the tests developed are useful only positively. That is, if a system passes the test, 

then it will be stable, but not necessarily viceversa. This is due to the fact that Absolute Stability 

typically provides only sufficient conditions. It is also a goal to characterize the equilibrium points 

of quantized control systems, in order to increase understanding of the subject. The methodology 

followed is constructive, starting from simple cases and building results progressively. Standard 

material has been placed at the appendix, while proofs of the contributed lemmas and theorems are 

in the chapters, with the exception of certain derivations which are sent to the appendix to avoid 

disrupting the logical flow. 

1.2.1 Limitations 

The following are general assumptions that pertain to the work as a whole. Particular assumptions 

are stated with the corresponding lemmas and theorems. 

• The open-loop system is of single input and asymptotically stable, except in Section 2.4, where 

unstable systems are allowed. 

• Control computations occur at infinite precision, or at a much higher precision than the reso­

lution of the data converters. 

• Both, input and output quantizers have the same quantization step size. 

• Analysis is limited to regulation about the origin. 

1.3 Contributions 

To the best of the author's knowledge, this is the first time the problem of quantized feedback is 

addressed with the tools of Absolute Stability. The most relevant contributions are now listed: 

1.3.1 Quantized Feedback with Precise State Measurememts (QI) 

• Complete characterization of equilibria, including singular cases and criterion for uniqueness 

of equilibrium. Results for continuous and discrete systems. 
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• For continuous QI systems, proof of existence of a solution in the sense of Filippov. 

• Stability of continuous QI systems. Chattering control for unstable systems. 

• Stability of discrete QI systems: Parameterization of stabilizing gains. 

1.3.2 Quantized Feedback and State Measurements ( QIQM) 

• Graphical method for equilibrium finding. 

• Multiplicative perturbation theorem. 

• Stability criterion for QIQM systems. 

• Stabilization by gain scaling. 

• Example of bifurcations in QIQM systems. 

1.3.3 Quantized Feedback with Precise Output Measurement (QIO) 

• Characterization of equilibria by reduction to QI case. 

• Stability problem: Reduction to QI case. 

• Relationship with output quantization case (IQO). 

1.3.4 Quantized Input and Output Measurement (QIQO) 

• Equilibrium problem: Sufficient condition for uniqueness of equilibrium and iterative method 

of solution. 

• Stability analysis by multiplicative perturbation, discrete positive real, and small gain methods. 

Perhaps the most important contribution of this work is the analysis of systems with quantized feed­

back based on quantized state measurements (QIQM). The result is a stability criterion restricting 

the location of the polar diagram of a system transfer function. The polar diagram must stay to the 

right of a vertical line located at a point which depends on the I-norm of the feedback gain. The 

polar diagram itself depends on such norm. Due to this fact, the criterion is at this point, useful 

only for analysis; or for design by iterative process. 
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Chapter 2 

Quantized Feedback with Precise 

State Measurements ( QI) 

2.1 Characterization of Equilibrium Points 

2.1.1 Equilibrium analysis: Continuous time 

For the analysis consider the following LTI system under quantized state feedback: 

{
± = Ax+Bu 

u = -Q(Fx) 
(2.1) 

where Q(.) denotes the quantization operator. Existence of a solution to the above equations is 

guaranteed if a concept of solution of differential equations with discontinous right hand sides is 

used. In particular, the concept of solution introduced by Filippov is used in the appendix to show 

existence in this case. Assume A is nonsingular. Then the equilibrium points of the closed loop 

system are solutions of 

(2.2) 

One solution method is to use fixed-point iteration. 
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Example 2.1. Take q = 1 and 

A [ ~~ ~2] 
B [~] 

F = [ 1 1.8 ] 

Starting the iteration Xk+l = A-1 BQ(Fxk) with x0 = [5, 5f gives an equilibrium point at x = 

[-1.5, 1.25]. 

The disadvantages of this method of solution are the lack of guaranteed convergence and the 

need for an initial guess. The method does not tell the number of equilibrium points or how to 

avoid multiple equilibrium points. This motivates the search for an analytical, closed-form solution 

of Eq.( 2.2). 

2.1.2 Solution to scalar case 

As a starting point to constructing the solution, the following equation is studied 

X = kQ(x) (2.3) 

where k is a constant, xis a scalar, and the quantization step is q. Graphically, solving the equation 

amounts to finding the intersections of Q(x) with the line y = i;x. Figure 2.1 shows the construction 

of the solution. 

It is clear that a nonzero solution exists only when 0.5 ::; k < 1.5. The solutions are just the 

pre-images of multiples of the quantization level through the straight line, that is 

Xi = ikq , i = 0, ±1, ±2 ... (2.4) 

Number of solutions 

The number of solutions is obtained by the geometrical condition that the intersection point must 

be within q/2 from the center of the horizontal segments which comprise Q(.). That is, 

so 
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Q(x) 

3q 

k - 1 -2 
k=k 

••----,o 

- k - g_ 
-2 

X 

Figure 2.1: Solution to scalar quantization equation 

More precisely, the solutions are given by Xi = ikq, where i is an integer such that: 

< 

< 

1 
-21-k---1- 1 , when k < l 

1 
--- , when k > l 
2lk- ll 

(2.5) 

If k = l, the number of solutions is infinite, as seen graphically and from the above formula. Note 

. that the number of solutions is independent of q. 

Now consider the slightly more general scalar equation 

x = kQ(ax) (2.6) 

where k, a -::f. 0. Changing the variables to x' = ax results in the equation 

I 

=k = Q(x') 

which reduces to the earlier case. Nonzero solutions exist when 0.5 :S ak < 1.5. The solutions are 

of the form 

Xi = ikq , i = 0, ±1, ±2 ... (2.7) 
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and the range of index i is given by 

< 

< 

1 
---- , when ak < I 
2lak - II 

1 
----,----------, , when ak > I 
2lak - II 

Note that the solutions given in Eq.( 2.7) are independent of a. 

2.1.3 Solution for the vector case 

(2.8) 

With the previous solution for the scalar case, the solution to the vector equation is straightforward. 

Consider the equation 

x = GQ(Fx) (2.9) 

with x E Rn, G-::/- 0 a n-by-1 vector, and F-::/- 0 a 1-by-n vector. Note that Q(Fx) is a scalar. Write 

out the components: 

Suppose, without loss of generality, that 91 -::/- 0. If this were not true, any nonzero 9j can be 

used to construct the solution. All the components of the solution can be written in terms of the 

first one: 

9· 
Xj = ....1..x1 , j = 2, 3, ... n 

91 

Substituting into the equation for x1 gives 

FG 
X1 = 91 Q(-x1) 

91 

which is a scalar equation of the form studied above. The condition for existence of nonzero solutions 

is 0.5 :S FG < 1.5. The solutions are given by x1i = i91 q, for i = 0, ±1, ±2.... The remaining 

components are obtained as 

The range of index i is given by 

< 

< 

1 
---- , when FG < I 
2jFG - II 

1 
---- , when FG > I 
2jFG - II 

12 
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Example 2.2. Consider the same A, B, and F values as in Example 2.1, along with q = 1. A-BF 

is Hurwitz, however F A- 1 B = 0. 75, which violates the conditions for a single equilibrium point. 

Using the developed solution we have that FG = F A- 1 B < 1, therefore Iii :S 2. This means that 

there are 4 equilibrium points other than the origin. The points are: (=r=l.5q, ±1.25q), (=r=3q, ±2.5q). 

2.1.4 Equilibrium analysis: Discrete time 

Consider the following LTI discrete time system under quantized state feedback: 

{
x(k + 1) = Ax(k) + Bu(k) 

u(k) = -Q(Fx(k)) 
(2.11) 

Existence of a unique solution sequence is guaranteed, since all computations involved in calculating 

x(k + 1) from x(k) are single-valued and well-defined, therefore the iteration can be continued 

indefinitely starting from any initial condition. Suppose A - I is nonsingular. The equilibrium 

points are solutions to the vector equation 

x = (A - I)-1 BQ(Fx) (2.12) 

The analysis used for the continuous time case applies replacing A by A - I. Note that the non­

singularity requirement on A - I means that A must not have eigenvalues at 1. 

2.1.5 Equilibrium analysis of singular systems 

Definition 2.1. A LTI system is singular if its set of equilibrium points is not enumerable. 

Lemma 2.1. The continuous time system 2.1 is singular if and only if A has at least one zero 

eigenvalue. Also, the discrete system 2.11 is singular if and only if A has at least one unity eigen­

value. 

Proof. Sufficiency, continuous time: Since the system matrix A is singular, equilibrium equation 2.2 

has to be written in the form: 

Ax= BQ(Fx) (2.13) 

First, apply elementary row operations to matrix A, performing the same changes in the correspond­

ing rows of B. The row operations realize the process know as Gaussian elimination, which puts the 

matrix in echelon form. The quantity Q(Fx) is scalar, therefore it will remain unchanged by the 

13 



operations. Since A is singular, the process will reveal a number of zero rows, leaving the equation 

in the form 

(2.14) 

This implies that Q(Fx) = 0. Substituting this back into Eq.( 2.13) shows that the solutions must 

satisfy 

{
Ax=O 

-J < Fx < J 
(2.15) 

Therefore, when A is singular, the set of solutions is dense, and lies at the intersection of the null 

space of A with the set of points for which Fx is rounded to zero. Mathematically, x is a solution if 

x E span(null(A)) and IFxl < ~ 

Necessity: Suppose A is does not have a zero eigenvalue. Then the calculation of the number of 

equilibrium points given in 2.10 applies, and therefore the set of equilibrium points is enumerable, 

and possibly infinite. (In fact, index i provides a one-to-one mapping between the elements of 

equilibrium set and a countable set, the integers). 

For the discrete time, the eigenvalues of A- I are those of A minus one. Therefore A- I is singular 

whenever A has an eigenvalue at one. The reasoning for continuous time applies if A is replaced by 

A-I. • 
Example 2.3. Consider a continuous system with singular A 

F [21] 

(2.16) 

The null space of A is of dimension 1 and is spanned by the vector [-2 l]. A parameterization of 

the equilibrium solutions is given by 

X = 'Y[-2 lf 
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with -1/6 < "/ < 1/6. Now consider a discrete system with singular A - I 

A 

B 

F 
1 

[- 1] 
2 

(2.17) 

The null space of A - I is of dimension 1 and is spanned by the vector [-1 1]. A parameterization 

of the equilibrium solutions is given by 

X = "f[-1 lf 

with -1 < "/ < 1. Figure 2.2 shows the equilibrium line and some trajectories of the continuous 

time example. Similarly, Figure 2.3 illustrates the discrete time case. Note that discretization in 

time results in the state not achieving values in null(A- I) for all initial conditions.In this example, 

none of the initial conditions simulated results in a trajectory intersecting null(A - I) 

2.1.6 Conditions for uniqueness of equilibrium 

The above findings can be summarized in the following lemmas: 

Lemma 2.2. The origin is the unique equilibrium point of continuous time system 2.1 if and only 

if A is nonsingular and F A-1 B 2". 1.5 or F A- 1 B < 0.5. 

Lemma 2.3. The origin is the unique equilibrium point of discrete time system 2.11 if and only if 

1 is not an eigenvalue of A and F(A - I)-1 B 2". 1.5 or F(A - J)-1 B < 0.5. 

The necessity of the nonsingularity condition on A or A - I is a restatement of Lemma 2.1. 

2.2 Absolute Stability Analysis for Continuous Hurwitz Plants 

In this section, it is shown how the theory of Absolute Stability can be directly applied to the problem 

at hand. The theory assumes that the system of differential equations has a solution. Existence 

of a solution to Eq. (2.1) is shown in the appendix for the definition of solution introduced by 

Filippov [13]. However, it is unclear if Filippov's concept of solution is compatible with the results 
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of Absolute Stability. In this work, it will be assumed that Eq. (2.1) has a solution that satisfies the 

requirements of the theory. Determining whether Filippov's -or other- solution definitions satisfy 

the requirements of Absolute Stability is out of the scope of this work. If a' feedback gain F is given, 

the Popov frequency domain criterion can be applied to determine if a Hurwitz plant remains stable 

under quantized state feedback. Absolute Stability is a convenient method in the case of control 

quantization, because the nonlinearity is of the sector type. The Popov condition, circle criterion, 

and other Absolute Stability theories provide sufficient conditions for global asymptotic stability 

(G.A.S.) based on the sector bounds, regardless of the variation exhibited by the nonlinearity within 

the sector. Time-varying nonlinearity is allowed. 

2.2.1 Continuous time analysis using the Popov condition 

The following are formal definitions of sector nonlinearity and absolute stability. 

Definition 2.2. Let a class of functions be defined by 

A function¢ is said to be of the sector type with sector bounds K1 < K2 if¢ E S(K1 , K2). If equality 

is allowed in either side, we use the notations¢ E S[K1,K2),¢ E S(K1,K2l, and¢ E S[K1,K2] 

Definition 2.3. The system 

x = Ax+Bu 

y = Cx (2.18) 

u = -N(y) 

is absolutely stable in the sector [K1, K2] if the origin is G.A.S. for all NE S[K1, K2]. 

The frequency domain condition first given by V.M. Popov applies for Hurwitz plants. For 

convenience and flow, the Popov theorem is reproduced below ( [1]) 

Theorem 1 (Popov). System 2.18 with A Hurwitz is absolutely stable in the sector [O, K 2] if there 

exist a finite real number r such that the following inequality is satisfied for all w 2': 0 

1 
Re[(l + rwj)C(jwI - A)- 1 BJ+ K

2 
> 0 for all w 2': 0 
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0 
G(s) 

Figure 2.4: Stability of quantized system as a Lure problem 

The system under study can be written as 

x = Ax+Bu 

y=Fx 

u = -Q(y) 

The following transfer function can be defined 

G(s) = F(sl - A)-1 B 

y 

(2.19) 

and the closed loop system can be represented in the form of the Lure problem of absolute stability, 

as seen in Figure 2.4. The quantization nonlinearity Q is such that Q E S[O, 2], as can be seen 

graphically from Figure 1.2. Therefore the Popov theorem can be applied with K2 = 2 and C = F. 

Example 2.4. Consider the same A and B as in Example 2.1, but take F = [1, 1.5]. It can be 

verified that the Popov condition holds for a = 0, implying G.A.S. for a quantization as coarse 

as desired. If we take F = [1, 1.8], it can be verified that Popov's condition does not hold for 

any nonnegative a, however this alone does not imply that the origin is not G.A.S., since Popov's 

condition is only sufficient. Note that for the first case we have FA- 1 B = 0.375, implying that the 

origin is the only equilibrium point, a necessary condition for G.A.S. In the second case, however, 

four nonzero equilibrium points were found earlier, making it impossible for the origin to be G.A.S. 

Popov's condition can be used a posteriori, in order to check the suitability of a given F. It can 

be verified (at least by numerical counterexample) that uniqueness of equilibrium does not imply 

Popov condition. Therefore, for design purposes, it is desirable to parameterize all gains satisfying 

Popov criterion. This will be done in the next sections for discrete time systems. 
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2.3 Absolute Stability Analysis for Discrete Plants 

The concept of discrete positive realness (DPR) is used in the derivation of absolute stability con­

ditions. The theory introduced by Hitz and B.D.O. Anderson is presented at the appendix for 

completeness. To facilitate the discussion, two stability lemmas are stated below. The lemmas have 

been specialized to the SISO case. Let a LTI SISO discrete time system be described by 

{
x(k + 1) = Ax(k) + Bu(k) 

u(k) = -cp(Cx(k)) 
(2.20) 

Let A have eigenvalues inside the open unit circle and ¢ E S(O, K). Define the transfer matrix 

1 
W(z) = = + C(zI -A)-1 B 

K 

Theorem 2 (Discrete Popov Criterion). If W(z) is discrete positive real, then the system 2.20 

is globally stable about the origin. W(z) is DPR if 

Theorem 3 (Anderson). If there exist a real symmetric positive definite matrix P and real ma­

trices L and U, such that 

(2.21) 

then the system 2.20 is globally stable about the origin. 

Note that the dimensions of P are n-by-n, and L and U are of dimensions n-by-r and r-by-1 

respectively, with r being any positive integer. 

2.3.1 Frequency domain condition for stability of QI systems 

Inclusion of interval ends 

Theorem 2 yields asymptotic stability when cp E (0, K). In the case of quantization, the nonlinearity 

belongs to a closed sector, namely Q E [O, 2]. Inclusion of the upper bound is handled by choosing 

K > 2 to test or design a gain F. If the system is open-loop stable, zero can be included. This 

requires a detailed proof, which is postponed until Section 3.8, where it is carried out for the more 

general case of measurement quantization. The following Lemma gives a tool to analyze and design 

feedback gains: 
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Lemma 2.4. Let G(z) = F(zl -A)-1 B be the transfer function of the discrete system with quantized 

feedback, Eq. ( 2.11). The system is globally asymptotically stable about the origin if the graph of 

G(eiw) lies to the right of a vertical line at z = -1/2 in the complex plane. 

2.3.2 Matrix Condition for Stability - Parameterization of stabilizing 

gains 

In the case of quantized state feedback, the matrix equations of Eq.( B.4) must be used with C = F 

and K > 2. A gain F may not be found for some choices of Lin Eq.( B.4). The limitation stems 

from the third equation, which can be rewritten as 

For F to exist for a given L it is necessary and sufficient that f 2: BT PB. A scaling procedure can 

be used to characterize the set of gains in terms of three parameters: L, a vector V, and a scalar 

/3. Multiply the first equation in Eq.( B.4) by a real positive number "Y· Then, if Pis a solution of 

the first equation using L, 1P will be a solution using -.nL. Now, noting that BT PB > 0, find the 

allowable range of "'( from the last equation: 

Moreover, choose "Y as follows: 

2 
rv<-----

1 - KBTPB 

where /3 E]O, 1]. The procedure for computing a gain Fis 

l. Choose an n-by-r matrix L cf. 0, with any r, and solve for P from the discrete Lyapunov 

equation 

2. Choose f3 E]O, 1] and compute 

3. Choose an arbitrary r-by-1 vector U such that 

11u11~ = 2 - 2131 
K K 

4. Compute F from the middle equation, using -.nL, 1P and V. 
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Varying (3 in JO, 1] and Vin the sphere of radius 

p= J~ _ 2~7 

should sweep all solutions for a given L. Therefore L and (3, and V parameterize the space of 

solutions for F. 

Example 2.5. Consider a discrete time system with 

For simplicity, taker= I. Choose a starting L = [l, 2jT. The discrete Lyapunov equation is solved 

using the Matlab command dlyap(A',L*L') yielding 

p [ 3.6247 4.2765 l 
4.2765 5.9951 

This gives 2/ (K BT PB) = 0.224. This means 7 E]O, 0.224[. Since r = l, V is a scalar and is directly 

computed from the third of Eq.( B.4). Finally, a value of F is computed for each 7 using V, ,,,fyL 

and 7 P from the middle equation. These calculations have been programmed in Matlab and the 

result is shown in Figure 2.5. Note that as (3 ---+ l, the stability limit is approached 

Parameterization is exhaustive for r 2'. n 

In the previous example, n = 2 and r = I. One question that arises is whether the parameterization 

is onto the set of solutions regardless of r. The answer to this question is negative. This can be 

understood with the aid of the well-known inequality 

rank(AB) S min { rank(A), rank(B)} 

applied to this problem. To that effect, note that the range of values achieved by P increases with 

rank(LLT). Since rank(£) S min(n, r), the above inequality gives 

rank(LLT) S min {n, r} 

It follows that the parameterization is exhaustive for r 2'. n. 

21 



Variation of Polar Plot for~ E JO, 1 [ 
1.5r--------.---------,-----,-----,-----~---~ 

0.5 

-0.5 

-1 

I 

I 
I -1/K2 

-1.5'--------'------'------'-------1.-----'-------' 
-1 -0.5 0 1.5 2 

Figure 2.5: Variation of polar plot by parameter changes 

2.4 Unstable Systems: Solution using Chattering Control 

When the system under quantized feedback is open loop unstable, stabilization is not achievable [12]. 

This is readily seen by considering the following region of the state space 

n = { x I JFxl < ! } 
In this region, Q(Fx) = 0, therefore the system evolves in open loop, with dynamics :i; = Ax. When 

A contains unstable poles, the trajectories will move away from the origin, eventually reaching the 

boundary of n where attractiveness is recovered. The interplay of attractive and repulsive forces 

leads to a limit cycle. A simulation of the unstable system 

shows the presence of a limit cycle. Note that A - BF has stable eigenvalues at -1 and -2, and 

that FG = -0.5, indicating that the origin is the only equilibrium point. This example shows that 
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N(y) 

q 

3{ y 

Figure 2.6: Modified nonlinear operator 

uniqueness of equilibrium point does not imply G.A.S. when A is not Hurwitz. 

2.4.1 Stabilization using local switching 

One way to circumvent the problem of zero control in n is to modify the computed control law in 

the following way: 

{
Fx 

Uc= sgn(Fx)q 

Note that the effective control signal is 

when IFxl 2:: f 

when IFxl < ! 

u = Q(uc) = -N(y) 

where y = Fx and the new nonlinear operator N(y) is shown in Figure 2.6. 

2.4.2 Absolute Stability Analysis 

(2.22) 

Consider that is in general not A not Hurwitz, and write the system using the new nonlinear operator 

as follows 

:i; = Ax+Bu 

y=Fx 

u = -N(y) 
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Figure 2.7: Pole shifting for stability analysis of quantized system as a Lure problem 

It is assumed that a solution to Eq. (2.23) exists. The appendix shows that a solution in the sense 

of Filippov exists; however, as stated earlier, it will be assume that such solution is compatible with 

the standard results of Absolute Stability. Note that the nonlinearity NE S[¥, oo). Defining the 

transfer function as before, i.e., 

G(s) = F(sl - A)-1 B 

the system can put in the form of the Lure problem provided we apply a fictitious feedback to 

compensate for A not being Hurwitz, in a procedure known as "pole shifting" [18]. The problem set 

up is shown in Figure 2.7. In state space form, G'(s) can be represented as 

or 

which leads to the representation 

x =Ax+ Bu 

u = v-aFx 

y=Fx 

{
x = (A - aBF)x + Ev 

y=Fx 

G'(s) = F(sl - (A- aBF)-1 )B 

24 
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Pole shifting and sector rotation 

In order to keep the system unchanged after the application of pole-shifting feedback, the nonlinearity 

must be modified to become N'(y) = N(y) - ay, as illustrated in Figure 2.7. The sector bounds of 

N' are obtained below. N satisfies 

2 N(y) 
-<--<oo 
3 y 

subtracting a both sides: 

2 N(y) - ay 
--a< <oo 
3 y 

Therefore N' E srn - a, oo). The theory is directly applied when K1 = j - a 2:: 0 and a is such 

that G' ( s) is Hurwitz. Assuming such an a exists, it will suffice to obtain a gain F such that G' ( s) 

is absolutely stable in rn - a, oo]. In order to simplify the problem, at the expense of restricting 

the allowable gains F to a set smaller than the set of all solutions, G' ( s) may be required to be 

absolutely stable in [O, oo]. Graphically, the Nyquist diagram of G'(s) must belong to the closed 

right half of the complex plane, or the phase shift must be within ±90 degrees at all frecuencies. 

This requirement is in· fact that G' ( s) be strictly positive real, or SPR for some a ::; j. For a 

definition of positive realness, refer to the appendix. The well-known lemma discovered by Kalman 

and Yakubovich [32] can be employed. This result provides a relationship between the output and 

input matrices of a stable system such that the transfer function is SPR. 

Lemma 2.5 (Kalman-Yakubovich). Let the LT! system 

{
x = Ax+Bu 

y=Cx 

(2.25) 

be Hurwitz and controllable. Then, the transfer function 

H(s) = C(sl - A)-1 B 

is strictly positive real if and only if there exist symmetric positive-definite matrices P and Q such 

that 

The above result is applied to the state space representation of G'(s) given in Eq.(2.24). The 

Lyapunov equation becomes 
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Choosing F = BT P makes G' ( s) SPR. Substituting into the Lyapunov equation, we obtain the 

following algebraic Riccati equation in P: 

ATP +PA- P(2aBBT)P + Q = 0 (2.26) 

This equation is readily solvable using Matlab. Note that a solution P automatically stabilizes 

A - aBF = A - aBBT P because we are actually solving a Lyapunov equation, so the Hurwitz 

condition is satisfied for G' ( s) and it is legal to apply the circle criterion. Note that a negative a 

may not be used for a solution to the Riccati equation to exist. However, the condition a ~ 2/3 is 

not too restrictive because F may be chosen large enough to stabilize G' ( s). 

Example 2.6. Consider the unstable and controllable LTI system with 

2 3 4 

A 1 1 0 

-2 3 5 

0 

B 0 

2 

(2.27) 

Here the eigenvalues of A are 1 and 3.5 ± l.658j. Choosing Q = I and O <a= 0.5 < 2/3 yields 

P= 

16.0354 21.4283 6.4161 

53.3461 12.4 718 

8.1934 

and F = BTP = [12.8323 24.9437 16.3868]. 

The practical limitation of the above method is that, for unstable systems, the control law is of 

the switching type near the origin, which creates chatter. 

2.5 Optimality issues: Failure of nominal LQR 

The absolute stability properties of the linear quadratic regulator have been studied by several 

researchers ([10, 7]). In particular, the discrete linear quadratic regulator tolerates a gain reduction 

of 50 percent when arbitrary weights Q and R are used. This rules out the use of nominal LQR in 

quantized control, due to the fact that the quantization nonlinearity belongs to the sector [O, 2]. 
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Example 2.7. Consider again the system in Example 2.5. First take the following weights: 

Q [ 9.1 0.8 l > O 
0.8 0.1 

R = l 

The resulting gain is F = [-0.271914 - 0.111429]. For this gain, F(A - I) 1 B = 0.60438, so there 

are several equilibrium points other than the origin. This gain violates the Popov condition. Now 

take 

Q [ 
9.1 

-0.653939 

R = l 

· -0.653939 l 
>0 

9.1 

The resulting gain is F = [0.412387 0.318871]. In this case, F(A - I)-1 B = -1.8758, so the origin 

is the only equilibrium point. However, this gain violates the -1/K boundary. Simulation shows 

that a limit cycle arises. 

2.5.1 Open problem: The true optimum gain 

Results that restrict matrices Q and R for the LQR design to be absolutely stable in a given sector 

are available [22] . This can be directly applied to quantization, taking K = 2. However, especially 

for coarse quantization, the true optimum constant feedback gain may differ from the one obtained 

with nominal LQR. The optimal control sequence, not necessarily constant gain feedback, can be 

obtained numerically using mathematical programming [29]. The problem of analytically finding 

the best static gain is still an open challenge. 
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Chapter 3 

Quantized Input and State 

Measurements ( QIQM) 

3.1 Problem Statement 

In Chapter 2 the situation where only the controller output is quantized is analyzed. The discrete 

time case has practical relevance if it is assumed that the analog-to-digital converter employed to 

introduce signals to the control computer has a quantization step size that is small relative to the 

ones used for measurement. Finite quantization at both plant input and output is a situation often 

encountered in practice. In this chapter, attention is focused in an important class of feedback 

controllers, i.e., linear full state feedback. For reasons of practical relevance, the analysis is limited 

to sampled linear plants which can be effectively treated as discrete-time systems, as customary. It 

is assumed that each state is measured through a sampling device followed by a quantizer, keeping 

with the general assumptions stated in Chapter 1, and then multiplied by the feedback gain F at 

a much higher numerical precision than the quantization step size of the input and output data 

converters. The calculated control -FQ(x) is quantized at the output of the control computer and 

applied to the plant's input hold device. Thus, the control input to the plant is, effectively 

u(k) = -Q(FQ(x)) (3.1) 

This process is illustrated in Figure 3.1. Problems such as multiplicity of equilibria and instability 

-in the form of limit cycles or otherwise- appearing with a single quantizer are much aggravated 

with measurement quantization. Simulations indicate that some of the non-steady responses are 

also non-periodic, suggesting chaotic behavior [12]. Existence and uniqueness of a solution sequence 
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0 
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,.,~~--

Figure 3.1: Problem set-up for QIQM systems 

for each initial condition is guaranteed. This can be readily recognized by noting that the control 

signal (3.1) is a single-valued function, which together with the system matrices A and B uniquely 

determine the next value of the state. The goals of this chapter are to obtain a method for verifying 

if the origin is the only equilibrium point, and to derive a simple criterion that can be used to analyze 

the stability of a discrete LTI system with quantized measurements and quantized state feedback 

control. Unlike the QI case, where the sector condition sufficed, the analysis of the QIQM system 

requires an in-depth examination of the quantization nonlinearities. 

3.2 Equilibrium Analysis of QIQM Systems 

The complexity introduced by the nested quantization operators prevents one from obtaining a 

closed-form solution or criterion for single equilibrium, as done in Section 2.1.3. In this section, a 

graphical construction is described that can be used to predict the number of equilibrium points 

when a feedback gain F is known in advance. If (A - I) is nonsingular, the equilibrium equation 
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has the form 

x = (A - I)-1 BQ(FQ(x)) (3.2) 

It is possible to obtain a sufficient criterion for the absence of nontrivial solutions for a scalar version 

of Eq. (3.2) 1 , but the results do not carry over to the general vector case. To derive a graphical 

solution method, call Q = (A - n-1 B and write out the components of a solution vector X as 

Noting that the outer quantization is scalar-valued, all components of the solution can be written in 

terms of the first one, assuming, without loss of generality, that the first component of G is nonzero. 

If this were not true, any nonzero component of G may be used. 

Substituting into the equation for x1 gives 

(3.3) 

Graphically, the solutions for the first component are found by intersecting the irregular staircase­

shaped function with the straight line passing through the origin with slope 1 / g1 . Such method is 

readily applied to any set of matrices A, B, F and quantization step size q. The Matlab program 

qiqm-equil listed at the appendix performs the necessary computations and displays both graphs. 

Example 3.1. Consider the following randomly-generated system matrices 

A 

0.6822 0.1509 
08600 I 

0.3028 0.6979 0.8537 

0.5417 0.3784 0.5936 

0.8462 

B 0.5252 

0.2026 

F [ 0.6721 0.8381 0.0196 ] 

Assume q = 0.8. The first element of G = (A-I)- 1 Bis used in constructing the solution. Figure 3.2 

shows the graphical construction used to find the first component of the solutions, according to 

1 See Section 4.3.1 
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Multiple equilibria in QIQM system 
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Figure 3.2: Multiple equilibria in QIQM system 

Eq. (3.3). The complete solutions can be found using the values obtained graphically. Five non-

trivial solutions are found, namely, 

X1 [ 0.2299 0.8719 0.7192 ] 

X2 [ 0.4598 1.7439 1.4384 ] 

X3 [ 0.6896 2.6154 2.1574 ] 

X4 [ 0.9195 3.4874 2.8766 ] 

X5 = [ 1.1494 4.3593 3.5958 ] 

Now consider another set of randomly-generated matrices: 

0.9501 0.4860 0.4565 

A 0.2311 0.8913 0.0185 

0.6068 0.7621 0.8214 

0.4447 

B 0.6154 

0.7919 

F [ 0.9218 0.7382 0.1763 ] 
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Zero equilibrium in QJQM system 
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Figure 3.3: Zero equilibrium in QIQM system 

9 10 

Consider q = 1. The first element of G = (A- I)-1 B is used in constructing the solution. Figure 3.3 

shows that there is no non-trivial solution for the first component of the state vector, therefore the 

origin is the only equilibrium state. 

3.3 Stability Analysis- Construction of Equivalent System 

In the case where only a control quantizer is present, the quantizer represents a scalar sector­

bounded nonlinearity which takes the linear system's defined output y = Fx as its input. In the 

present QIQM case, such a system output cannot be defined directly, due to the fact that the overall 

nonlinear operation takes the state as its input and outputs a scalar. This is denoted in Figure 3.1 as 

a mapping rp from the state space IR.n to the real line. The established results of Absolute Stability 

do not apply in this case. Since it is desired to exploit the results of this theory to the solution of 

the problem, the original system must be put in a form that contains a scalar sector nonlinearity, 

and an appropriate output must be defined on the linear part of the system. A perfect equivalence, 

however, is not possible to obtain if the nonlinearity is a function only of the system's defined output. 

A special theorem will be required to allow for a nonlinearity which multiplies the defined output 

by a bounded function of the state, henceforth called "multiplier". 
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3.3.1 Multiplier definition 

The state equations of the original QIQM system, denoted ~o are 

~o: {x(k + 1) = Ax(k) + Bu(k) 

u(k) = -Q(FQ(x(k))) 

Define the linear system L1 = (A, B, F, d) by Eq. 3.5 

Li : {x(k + 1) = Ax(k) + Bu'(k) 

y(k) = Fx(k) + du'(k) 

(3.4) 

(3.5) 

for some real number d. It is desired that L1 have the same control input as ~o, and, at the same 

time, u' ( k) be defined in terms of the output of L1 . The following lemma provides a way to achieve 

this. 

Lemma 3.1. There exists a mapping a : IR.n -+ IR., called multiplier, such that 

u'(k) = -Q[a(x(k))y(k)] = u(k) 'vk 

that is, 

Q[a(x(k))(Fx(k) - dQ(FQ(x(k)))] = Q[FQ(x(k))] 

The proof of this lemma is done by specifying a particular function a(x(k)), and is presented 

in Section 3.7. Denote by ~ 1 the closed-loop system that results from applying the feedback u = 

-Q(a(x(k))y(k)) to system L 1 . It will become clear that there exists a unique solution to system ~ 1 

for any initial condition when the explicit formula for the multiplier is presented. The significance 

of Lemma 3.1 is that the input u(k) in system ~ 1 can be seen as the quantization of the perturbed 

scalar output y(k), where the perturbation factor is the scalar a(x(k)). If a were constant, the 

results of Absolute Stability could be applied directly to the linear portion L 1 , taking into account 

the sector to which the composition of a and the quantization nonlinearity would belong. Note that 

the Lyapunov stability of system ~ 1 implies that of ~ 0 , since the state vectors are the same for 

both systems at all times. It is shown in Theorem 4 that even when a(x(k)) is not constant, but 

bounded and nonnegative, the stability of ~ 1 -and therefore of ~ 0 - can still be derived from a sector 

condition on the linear portion L1 . Figure 3.4 illustrates the structure of ~ 1 , and Figure 3.5 shows 

the system cast in a form similar to the Lure problem. 
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Xk+i = Axk + Buk 

Yk = Fxk + duk 
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Figure 3.5: Almost a Lure problem 
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Figure 3.6: Logical dependencies for the derivation of the stability criterion 

3.4 Overview of the Method 

The derivation of the sufficient condition for stability of a QIQM system requires a number of results, 

some of which have been obtained previously. Several of the required results are derived here for the 

first time, to the author's knowledge. The key result required to derive the final stability condition 

is Theorem 4, which in· turn requires an extension of Hitz and Anderson's (17] theorem on stability 

of DPR systems. This extension constitutes Lemma 3.2. Also, the application of Theorem 4 to the 

problem of QIQM requires existence, boundedness and non-negativity of the multiplier a(x(k)). For 

the sake of clarity, a diagram with the logical dependencies involved is shown in Figure 3.6. 
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3.5 Stability of DPR Systems with Direct Transmission Term 

This section is based on the original work by Hitz and B .D .0. Anderson [17]. In the cited paper, 

the main stability theorem is shown for transfer matrices without direct transmission term, i.e., 

without "D" term. An extension of the result for such cases is introduced in this work in the form 

of Lemma 3.2. 

Lemma 3.2. Let a discrete time system be represented by Eq.( 3.5) Let N(y) be a scalar nonlinear 

function such that NE S(O, k). If the transfer function 

1 
H(z) = C(zI -A)- 1 B + D + = 

K 

is DPR, then the closed-loop system obtained by applying the feedback 

u(k) = -N(y) 

is globally stable about the origin. 

Proof. By hypothesis, there exist matrices P,L and W satisfying the conditions in Eq.( B.2). Con­

sider the Lyapunov function V(x(k)) = xT(k)Px(k). The change of this function along the system 

equations is 

.6.V(x(k)) = V(x(k + 1)) - V(x(k)) = [xT AT - BT N(y)]P[Ax - BN(y)] - xT Px 

Performing operations and incorporating the matrix equations, D cancels out and the following 

expression is obtained 

.6.V(x(k)) = -[LTx -WN(y)f[LTx - WN(y)] - 2N(y)[y - N(y)] 
K 

The first term is negative semidefinite. The second term can be examined as follows. If N(y) > 0 

then y > 0. Since NE S(O, K), 

y - N(y) > o 
K 

and the second term is negative. If N(y) < 0, it can be seen that the second term is also negative. 

If N(y) = 0, the second term is zero. Therefore the change in .6.V(x(k)) is negative semidefinite 

and the closed loop system is globally stable about the origin. If N(y) = 0 only when y = 0 and the 

linear part is zero-state observable, asymptotic stability is obtained. Otherwise, more information 

about the nonlinearity is required in order to establish asymptotic stability. • 
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3.6 Absolute Stability with Multiplicative Perturbation of 

the Sector 

In this section it will be shown that if the linear part of the closed loop system is absolutely stable 

in a sector that is large enough, then it will remain stable when the linear output y is multiplied by 

a bounded and nonnegative function of the state. This relates to the equivalent system presented in 

Section 3.3. 

Theorem 4. Let L1 be a discrete time system represented by the equations 

{
x(k + 1) = Ax(k) + Bu(k) 

y(k) = Cx(k) + Du(k) 

(3.6) 

Let a : ]Rn --+ JR be a mapping such that ::I a finite satisfying O :=; a(x) < a for all x E ]Rn. Let 

N : JR --+ JR be a sector nonlinearity N E S[O, n]. Then if the transfer matrix 

1 
H(z) = F(zI -A)- 1 B + D + = 

K 

is DPR, and an < K, the closed-loop system formed by applying the feedback 

u(k) = -N[a(x(k))y(k)] 

is stable in the large. 

Proof. By hypothesis, H(z) is DPR.Then by Lemma B.2, there exists a real symmetric positive 

definite matrix P and real matrices L and W such that 

F-WTLT 

2D+ 2 -BTPB 
K 

Consider the quadratic Lyapunov function V(x(k)) = xT (k)Px(k). The change of the function along 

the the equations of the closed-loop system is, dropping index k from the notation: 

~V(x(k)) = V(x(k + 1)) - V(x(k)) = [xT AT - BT N(a(x)y))]P[Ax - BN(a(x)y)] - xTPx 

Performing operations and incorporating the matrix equations, D cancels out and the following 

expression is obtained 

~ V(x(k)) = -[LT x - W N(a(x)y)f [LT x - W N(a(x)y)] - 2N(a(x)y)[y - N(a(x)y)] (3.7) 
K 
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The first term is clearly negative semidefinite. The second term can be examined as follows. If 

a(x)y > 0 then by the sector condition on N and the sector inclusion inequality of the hypothesis 

it follows that 

0 :S N(a(x)y) :S na(x)y :Snay< Ky 

This implies 

N(a(x)y) 0 y- > 
K 

so the term is negative or zero. If a(x)y < 0 the above chain of inequalities is reversed, yielding 

N(a(x)y) 0 y- < 
K 

Thus, the second term is negative semidefinite, being zero if N = 0 or y = 0, thus Lyapunov stability 

follows. In order to prove asymptotic stability, further assumptions on the local behavior of N and 

system observability might be required. • 

3. 7 Multiplier Boundedness and Positivity 

System equivalence and Theorem 4 can be used to analyze the original problem if a suitable multiplier 

a(x(k)) can be found. In this section, a formula for such multiplier is provided, along with the 

derivation of its lowest upper bound, a. The functional form of the multiplier is simple, though the 

derivation of the lowest upper bound is involved and requires some results and developements from 

Number Theory. Part of the material of this section constitutes the proof of Lemma 3.1, postponed 

until now. 

3. 7.1 A formula for the multiplier 

A few definitions are needed before the formula is introduced. 

Definition 3.1. A quantization node is an n-by-1 vector z such that Zi = Jiq, for i = 1, 2, .. n and 

some integers Ji· When q = 1, z is an element of zn 

Definition 3.2. The quantization region around node z is defined as the set 

Definition 3.3. Define 3 as the set 

3 = {XE IB.n I IFQ(x)J < ! } 
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3 is the set where the computed control is rounded to zero when passed through the D / A 

converter. Clearly, no C 3. Denote F0 the set of x which satisfy Fx = 0. Define the set A as 

Set A is also a subset of 3. 

Definition 3.4. Define a(x(k)) for all x(k) as 

{ 
Q(FQ(x(k))) 

a(x(k)) = Fx(k) - dQ(FQ(x(k))) 

0 , if x EA 

' if X (/_ A 
(3.8) 

It will be shown in the next sections that it is possible to choose d such that the denominator in 

the formula is zero only when x E A. Since A C 3, the numerator will also be zero. Thus, an arbitrary 

value can be assigned to a and still maintain the identity of Lemma 3.1. In fact, if dis a suitable 

value and x (/_ A, the denominator cancels the input y(k) = Fx(k) + du(k) = Fx(k) -dQ(FQ(x(k))) 

and substitution of a(x(k)) in Lemma 3.1 results in an identity, since Q(Q(v)) = Q(v) for any v. If 

x EA then also x E 3, therefore Fx = 0, and -dQ(FQ(x(k))) = 0, so the numerator, denominator 

and control u(x) are all zero. Since the denominator is the defined output y(k) = Fx(k) + du(k), 

the identity of Lemma 3.1 is satisfied regardless of the value chosen for a(x) when x EA. 

3.7.2 Multiplier behavior around node zero 

Figure 3.7 shows a two-dimensional2 depiction of the quantization region around the origin node. 

Inside n0 the numerator of a(x(k)) is zero, and its denominator is nonzero except for points that 

also satisfy Fx = 0. Therefore a(x(k)) = 0 in n0 . The multiplier is continuous in n0 . 

3.7.3 Existence of a suitable d 

Now consider the quantization region around node z -=!=- 0. In this region, FQ(x) = Fz. It is 

desired to show that it is possible to choose d such that Fx -=I=- dQ(Fz). Figure 3.8 is of great aid in 

understanding the problem. The set 

F 2 = { X E Iffi.n I Fx = Fz} 

is represented by the contour line passing through the node. The contour line corresponding to the 

quantized value of Fz has not been drawn, but could lie inside or outside the quantization region. 

2 Two-dimensional diagrams are intended to aid the mathematical developments, which'are valid in any dimension. 
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2 

no = { x J Q ( x) = 0} 

Figure 3.7: Quantization region around node 0 

supFx = Fz + JJJFJJ1 
EOz 

Slz={xlQ(x)=z} 

Fd = {x J Fx = dQ(Fz)} 

Figure 3.8: Quantization region around node z 
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The contour line corresponding to the value dQ(Fz) is shown in the figure. To avoid a solution to 

Fx = dQ(Fz), it is necessary and sufficient that this line not intersect Dz. In fact, suppose that there 

is a non empty intersection. Then, for points on the contour line we would have Fx = dQ(FQ(x)). 

Conversely, suppose the line is outside Dz. Then for a point of Dz the value of Fx will differ from 

dQ(Fz) since contour lines of different values do not have points in common for a linear function Fx. 

Figure 3.8 also shows the contour lines with limiting values inside Dz. As shown in the appendix, 

the limiting values of Fx inside Dz are 

q 
inf Fx =Fz- -2 11Fll1 

xEflz 

sup Fx =Fz + !IIFll1 
xEflz 

Also derived in the appendix is a definition of distance between contour lines and the following 

formula for the distance 812 between contour lines of values c1 and c2 : 

Let~ be the distance between the contour line of value Fz and the line of value dQ(Fz). Let 8 be 

the distance between the lin€ F z and either extreme line, of values F z ± ! I IFI I 1, Then it is required 

that~> 8. Using the above formulas, this reduces to 

IFz - dQ(Fz)I > !IIFll1 (3.9) 

This condition must be satisfied only for z such that IFzl 2::: f In fact, when IFzl < !, the 

numerator of a(x(k)) is zero. The denominator becomes just Fx, which is zero only when x E A. 

In this case, a(x(k)) attains its definition value of zero. The left-hand side of inequality 3.9 is now a 

function of a scalar variable, namely Fz. Figure 3.9 is a graph of the variation of such function when 

Fz is varied. Assuming a negatived, the minimum value attained by the function for IFzl 2::: ! is 

l(Fz)minl = -dq+! and occurs at IFzl = !, The minimum must be greater than !IIFll1, Therefore, 

the following condition can be stated 

Condition 1. The multiplier a(x(k)) in Eq.( 3.8) is well-defined if 
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Fz 

Fz 

Figure 3.9: The choice of a suitable d 

3. 7 .4 Limiting values of the multiplier inside a quantization region 

In order to obtain the absolute least upper bound on a(x(k)) over the state space, the supremum 

of the multiplier within a quantization region Dz is first sought. That is, it is desired to calculate 

sup a(x) 
xEO, 

Within a quantization region Dz with z -:f. 0 the formula for a(x(k)) becomes, dropping index k from 

the notation: 

Q(Fz) 
a(x) = Fx - dQ(Fz) (3.10) 

Since z is constant within Dz, a is a function of the scalar quantity Fx. The function has a 

singularity at Fx = dQ(Fz), but it is clear that such value of Fx does not occur inside Dz, if d 

is chosen following Condition 1. At either side of the singularity, the function a(x) is monotonic. 

Therefore the extreme values of the multiplier occur at the ends of the interval centered at Fz with 

radius 8 = JIIFlh- This is shown in Figure 3.10, where Fz > 0 and d < 0 have been assumed. The 

quantity of interest is the supremum of a(x) within the quantization region around node z. Before 

the value of the supremum is stated, it is convenient to show that a(x) is nonnegative ford which 
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Variation of a in the open quantization region Q2 
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Figure 3.10: Variation of multiplier within a quantization region 

also satisfies Condition 1. 

10 

Lemma 3.3. Supposed is chosen such that d < !(1- IIFll1). Then a(x) 2'.'. 0 for all x E ]Rn. 

Proof. It is already known that if d < ! (1 - I !Fl 11 ) then the variation of a( x) within a quantization 

region is monotonic. Also, the denominator of a(x) is constant within nz. 

Case i): Fz 2'.'. f 
Since a(x) varies monotonically and the denominator is constant within nz, the limiting values of 

a(x) are obtained by evaluating it at the ends of the interval which define nz. That is, Fx = 

Fz ± fllFll1 need to be considered. First, take the plus sign. The denominator is 

q 
denmax = Fz + -IIFll1 - dQ(Fz) 2 . 

The following stems from Condition 1: 

Q(Fz) 
-dQ(Fz) > --2 -(1- IIFll1) 

Combining the twq previous inequalities gives 

Q(Fz) Q(Fz) q 
denmax > Fz- - 2 - + (-2 - + 2)11Fll1 
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which is nonnegative, since 2Fz > Q(Fz) > 0 for Fz > f Now take the minus sign. The 

denominator is 

q 
denmin = Fz - 2J[FJJ1 - dQ(Fz) 

Following the same steps, it is obtained that 

den . > Fz - Q(Fz) + ( Q(Fz) - g_)JJFJJ min 2 2 2 1 

which is nonnegative, since 2Fz 2:: Q(Fz) 2:: q for Fz 2:: f Therefore, both the numerator is 

nonnegative and the denominator is positive, resulting in a nonnegative a(x). 

Case ii): Fz ~ -! 

Similarly, first take the plus sign. The denominator is 

q 
denmax = Fz + 2J[FJJ1 - dQ(Fz) 

Again using Condition 1 gives: 

Q(Fz) Q(Fz) q 
denmax < Fz - - 2- + (-2- + 2)JJFJJ1 

which is nonpositive, since 2Fz ~ Q(Fz) ~ -q for Fz ~ -f Now take the minus sign. The 

denominator is 

q 
denmin = Fz - 2J[FJJ1 - dQ(Fz) 

Following the same steps, it is obtained that 

Q(Fz) Q(Fz) q 
denmin < Fz- - 2- + (-2- - 2)JJFJJ1 

which is nonpositive, since 2Fz ~ Q(Fz) ~ -q for Fz ~ -f Therefore, both the numerator is 

nonpositive and the denominator is negative, resulting in a nonnegative a(x). 

Case iii): Suppose-! < Fz < ~ 

In this case a(x) = 0. It is thus proved that Condition 1 not only guarantees boundedness of a(x), 

but also that it is never negative. The multiplier can now be interpreted as a bounded variation 

which keeps a sector in the first and third quadrants. • 
A direct consequence of Lemma 3.3 is that the extreme values of a are the same for all pairs of 

values Fz1 , Fz2 outside Do such that Fz1 = -Fz2 . Then, the upcoming search for the absolute 

least upper bound is performed only over positive Fz. Now, the supremum of a over a quantization 

region is summarized in the following Lemma: 
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Lemma 3.4. If d is chosen to satisfy d < !(I - IIFlli), then the supremum of the set of values 

attained by the multiplier o:(x) for x Enz is given by 

Q(Fz) 
:iJ:. o:(x) = (Fz - !IIFll1) - dQ(Fz) 

(3.11) 

3.7.5 The supremum of the multiplier over the state space 

In this section the final result required for the application of Theorem 4 is provided. The following 

quantity is sought: 

sup sup o:(x) 
Z xErlz 

or 

Q(Fz) a = sup -----'----'-----
z (Fz - !IIFlli) - dQ(Fz) 

The supremum within nz is a function of the scalar variable Fz. Figure 3.11 shows a graph of the 

numerator Q(Fz), the denominator Fz- !IIFll1 -dQ(Fz), and the ratio a as a function of Fz. The 

numerator is zero for IFzl < !, Then, the maximum must be sought for IFzl ~ !; moreover, only 

Fz ~ & needs to be considered, in view of the consequence of Lemma 3.3. As seen in Figure 3.11, 

the ratio decreases as Fz is increased. Therefore, the absolute supremum, or maximum, occurs for 

Fz = !, if such a z exists. 

3.7.6 Number-theoretical issues 

The set of quantization nodes together with the operations of addition and multiplication constitutes 

a mathematical entity known as a group. When the gain F belongs to the set of quantization nodes, 

the operation h = Fz is closed in this set. This means that the value Fz = & is never attained. In 

particular, when q = l and the elements of F are integers, the closest positive value attained is 1. 

When the gain has arbitrary components, it constitutes a difficult problem to determine which is 

the attained value which is larger or equal than and is the closest to !, This problem is illustrated 

in Figure 3.12. 

It is desired to find the node for which the contour line approaches the value ! as much as possible 

from above. Mathematically, define the set 

(3.12) 
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Figure 3.12: Finding a contour line approaching Fz = ! from above. 
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where Zq is the set of all quantization nodes. The quantity of interest is, in the general case, 

Fq = inf F 

When this quantity is known, the multiplier bound is expressed as 

- Q(Fq) 
a= Fq - dQ(Fq) - !JJFJJ 1 

3.7.7 Calculation of the infimum 

The problem is equivalent to computing a function 

f(F) = inf { FzJz E zn, Fz 2'. ~} 

since F = qf(F). Consider the set 

Gp= {FzJz E zn, Fz 2'. O} 

The following statement holds: (16, 4] 

(3.13) 

(3.14) 

Proposition 3.1. If F cannot be decomposed as F = (JFQ, where (J is a real number and FQ is a 

vector in (Qt, then inf Gp = 0 and Gp is dense. Therefore there exists a z for which Fz is arbitrarily 

close to ! . On the contrary, if F can be written as F = (J FQ, where (J is a real number and FQ is a 

vector in Qt, then inf Gp = c > 0 and Gp is the set of all positive integer multiples of c. 

Note that if F cannot be decomposed as rational vector multiplied by a real scalar, the sought 

infimum Fq will equal % . In the opposite case, one needs to find the smallest multiple of c which is 

greater than or equal to !- The infimum in this case could also be %, being actually a minimum. A 

sufficient condition for F not being the product of a rational vector and a real scalar is that F has 

irrational elements which are not all integer multiples of each other. Clearly, only F vectors with 

rational elements are of interest in an engineering application. For example, the finite number of bits 

used in digital computers automatically involves rational stored quantities. Therefore, a standing 

assumption on F is that it is a vector of (Qn. Therefore, attention is focused on how to find the 

infimum of Gp for such case. For this purpose, an elementary result from the theory of Diophantine 

equations is now presented. 

Diophantine equations 

The equation with integer coefficients a, b and v 

(3.15) 
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where integer solutions for z1 and z2 are sought, is called a linear Diophantine equation. Equations 

with more than two variables or of higher degree are still collectively known as Diophantine, being 

the equation in Fermat's last theorem a notable example. It can be shown [28] that Eq. 3.15 has a 

solution if and only if the greatest common divisor of a and bis a divisor of v, that is, if gcd(a, b)jv. 

This can be generalized to the following 

Proposition 3.2. The Diophantine equation 

n 

LaiZi = v 
i=l 

has a solution for z in Z if and only if gcd(ai, a2, ... an)lv. 

(3.16) 

Finding the infimum of Gp -in this case a minimum- corresponds to finding the smallest positive 

value attained by the quantity Fz over all vectors z of Qt. The following lemma is required 

Lemma 3.5. Let F constant and z be vectors of zn. The smallest positive value attained by Fz 

when z is varied over zn is given by the greatest common divisor of the absolute values of the 

components of F. 

Proof. Suppose, without loss of generality, that all components of F are nonnegative. Then, 

by Proposition 3.16, a vector z such that Fz = v exists for a given integer v if and only of 

gcd(F1 , F2 , .... Fn)- If v = 0 there is a trivial solution, however v is not positive. The integer 

v must be increased until a solution to the Diophantine equation is found. This happens when 

v = gcd(F1 , F2 , .... Fn), giving a quotient of one. If some components of Fare negative, one just 

needs to change the sign of the corresponding components of z which attained the minimum when 

F had nonnegative components. • 
To account for F having rational components, a common denominator must be factored out. Let 

the components of F be represented in fractional form as 

p- ni 
i - di 

where ni and di are integers, with di =/- 0 for i = 1, 2, .. n. The quantity F can be expressed as 

where 1cm denotes the least common multiple. The vector components are now integer, therefore 

Lemma 3.5 applies. The minimum positive value attained by Fz is now readily expressed as 
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Lemma 3.6. The supremum of the multiplier o:(x) over the state space is given by 

- Q(Fq) 
0: = Fq - dQ(Fq) - !IIFll1 

where Fq = ceil(fc)qc and 

ceil(x) is the integer nearest to x which is greater or equal to x. 

Proof. The expression for a in terms of Fq was derived in Section 3.7.6. The expression for Fq is a 

direct consequence of the previous calculations. In fact, the minimum positive element of Gp is c. 

This element needs to be multiplied by the least positive integer k such that kc ~ ! . This can be 

computed using the "ceiling" function cif the Lemma. • 
An algorithm has been implemented in the Matlab program infval listed at the appendix. The 

algorithm takes an arbitrary vector F and quantization stepsize, and returns the value of Fq. The 

number of decimals in F must be limited, for the conversion to rational fractions can create large 

denominators which cause overflows when computing their least common multiple. 

Example 3.2. TakeF= [0.3243, -0.2120, 9.1245]. ArationalrepresentationisF= [/15t7 , - 2
5l0 , 2JJ9

2 ]. 

The least common multiple of the denominators is 22970250 (note the large magnitude for just four 

decimals and three F components). Therefore F can be written as 

F = 229; 0250 [7449250, -4869693, 209592000] 

The greatest common divisor of the absolute values of the integer components is 1. Then c = 229!0250 . 

The integer number by which c has to be multiplied in order for the product to be greater or equal 

than ! is given by k = ceil( ic) = 11485125. Multiplying k by c results in a value of 0.5, to a precision 

of 16 digits. Thefore the value of Fq is simply 

. 1 q 
Fq = q X ceil( - ) X C = -

2c 2 

Now consider F = [6.25 - 12.5]. A rational representation is F = [21, - 225 ]. The least common 

multiple of the denominators is 4. F can be written as 

1 
F = 4[25, -50] 

The greatest common divisor of the absolute values of the integer components is 25. Then c = 245 • 

The integer number by which c has to be multiplied for the product to be greate~ than ! is 1. The 
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value of Fq is in this case 2!q. Note that if it is desired to find the value of z at which Fz equals 

Fq, one has to solve a Diophantine equation. In this example, the equation 

yield the values of z1 and z2 which produce c. Multiplying those values by q gives Fq. The expression 

z1 = l + 2z2 generates all integer solutions. 

3.7.8 Summary 

The multiplier a(x) is given in Eq.( 3.8). If d < !(l - IIFll1), then a(x(k)) is well-defined and 

satisfies Lemma 3.1. Moreover, a(x) satisfies 

where 

- Q(Fg) 
a= Fq - dQ(Fq) - !IIFll1 

3.8 Stability Theorem for QIQM systems 

In this section, the objective set for the present work is accomplished. A theorem is proposed, along 

with its proof. An numerical example is also provided. 

Theorem 5. Let a LTI discrete time system under quantized feedback with quantized state measure­

ments (QIQM) be described by the equations 

{
x(k + 1) = Ax(k) + Bu(k) 

u(k) = -Q(FQ(x(k))) 

Suppose A has eigenvalues inside the open unit circle. Define the transfer function 

G(z) = F(zI - A)-1 B 

Then, the closed-loop system is globally asymptotically stable about the origin if 

inf Re { G(ejw)} > c 
wEIR 

where 

I IF I I 1 { q } Fq l 
c = -4- Q(Fq) + l - 2Q(Fq) - 4 
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Proof. First put the system in the equivalent form 

x(k + 1) = Ax(k) + Bu(k) 

y(k) = Fx(k) + du(k) 

u(k) = -Q(a(x(k))y(k)) 

(3.19) 

where a(x(k)) is the multiplier defined in Eq.( 3.8). By Lemma 3.1, the control signal is effectively 

u(k) = -Q(FQ(x)), therefore the state of this system is identical to that of the original system. 

Suppose one of the allowed values of dis used in the equivalent system. Then a(x) is nonnegative and 

upper-bounded by a discussed in Section 3.7.5. In order to prove Lyapunov stability, Theorem 4 is 

invoked. In this context, the quantizer is the nonlinear function N of the Theorem, with N E S[O, 2], 

that is, n = 2. Global stability is obtained if the transfer function 

1 
H(z) = F(zI -A)-1 B + d + = 

K 

is DPR, with 2a < K, that is, if 

for all frequencies w. The maximum sector allowed by the linear system is given by the bound 

- 1 
Kcrit = d . f R {G( . )} - -1n e eJw 

The critical sector bound must be greater than an = 2a. Enforcement of this condition and 

substitution of the bound 

- Q(Fq) 
a= Fq - dQ(Fq) - JIIFll1 

results in the inequality 

d> ql!Flli -2infRe{G(eiw)}-FqQ(F.) 
2Q(Fq) 2 q 

The inequality of Condition 1 must also be considered, as well as the requirement that the critical 

sector Kcrit be positive. This last requirement is automatically satisfied, since 3 • 

inf Re { G(eiw)} ~ 0 
wER. 

The following is obtained 

3This will be the case for any plant with D=O. 
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The inequality of the Theorem follows directly from the above. Note that enforcing the above 

inequality guarantees that ad exists such that a(x) is well-defined, nonnegative, and bounded by a. 

However d dissapears naturally from the formulation, as it is just an artifact in the construction of 

the stability result. The above inequality can be rewritten to take the form of the inequality of the 

theorem. In order to prove asymptotic stability, steps beyond the proof of Theorem 4 are required. 

The second term of Eq.( 3.7) has to be zero for .6.V(x) to be zero. The proof of Theorem 4 shows 

that the second term is zero only if N(a(x)y) = 0 or y = 0. When eithe~ equality is satisfied, the 

first term is reduced to -LLTx, which must also be zero for .6.V(x) to be zero. Note also that in 

our case 

N(a(x)y) = Q(FQ(x)) 

Suppose y = 0. This means 

y = Fx - dQ(FQ(x)) = 0 

but, from Section 3.7.3, this only happens in A c !10 defined in Section 3.7.1, where Q(x) = 0. 

These findings lead to a description of the set where .6. V(x) = 0: 

R = {x I .6.V(x) = o} = [{x I IFQ(x)I < !} u {x I Q(x) = o}] nnull(LLT) (3.20) 

Clearly, the intersection is contained in the left set i.e., the one that is written as the union of 

two sets. Then only one of the sets participating in the intersection needs to be considered. No 

information is available about LLT, therefore the left set is taken. The shape of this set is illustrated 

for a two-dimensional example in Figure 3.13. To complete the proof of asymptotic stability, the 

discrete version of LaSalle's Invariance Principle [20] is invoked. The principle states that if the 

difference in the Lyapunov function is negative or zero in a bounded set n, and zero only in a set R, 

the trajectories will converge to M, the largest invariant set contained in R. The relevant sets for this 

case will now be identified. Let n be an arbitrary bounded region of the state space. For instance 

define n by the set of points x such that V(x) < l, for some positive l. The change in the Lyapunov 

function is negative or zero in this set, that is .6.V(x) ~ 0 inn. From the above reasonings, the set 

R corresponds to Eq.( 3.20). The largest invariant set M ~ R is R itself, therefore the trajectories 

must stay within R. Note that the dynamic equation of the system .inside R is simply 

Ax(k + 1) = Ax(k) 

Since A does not have an eigenvalue equal to one, the trajectories must converge asymptotically 

to the origin. It is concluded that all trajectories starting in n converge asymptotically to the 
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The set R and LaSalle's Invariance Principle 
1.5.------.----~---~~---~----~---~ 

Q: Arbitrarily large Domain of Attractio y-~ 
R={xlt.. V(x)=O} 

( 
0.5 

-0.5 

-1 

M : Largest Invariant Set in R 

-1.5~---~----~---~----~----~---~ 
-1.5 -1 -0.5 0.5 1.5 

Figure 3.13: The various sets in LaSalle's Invariance Principle 

origin. Since the argument is valid for n bounded, but arbitrarily large, global asymptotic stability 

is proven. • 
A Matlab program called qiqm-check which automates the stability test is listed at the appendix. 

3.9 Numerical Example 

To illustrate the concepts developed in this chapter, consider again the system of Example 2.5. A 

has eigenvalues inside the unit circle, therefore the stability criterion of Theorem 5 applies. A series 

of simulations were performed with 11 nominally stabilizing gains. The simulation diagram is shown 

in Figure 3.14. The sampling time was set to 0.1, but this quantity is irrelevant for stability analysis 

of the discrete-time system. Initial conditions were set to a large value, since stabilizing gains are 

small and it is desired to have nonzero control for relevant simulations. The initial condition is 

x0 = [50.45 40.55]. Table 3.1 summarizes the results of the simulations. From the data in the table, 

it is verified that satisfaction of the criterion implies stability. The study is also useful to gain insight 

about how conservative the criterion could be. Of a total of 7 occurrences where the criterion was not 

satisfied, the system converged to the origin in 2. However, there is no guarantee that the system will 

be asymptotically stable for all initial conditions. In fact, reversing the sign of the initial condition 
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X 

To Workspace3 

Unit Delay 

Manual Switch 

Manual Switch 1 

u A 

To Workspace4 

Figure 3.14: Simulink diagram for simulation study 

Gain Criterion Satisfied Asymptotic Convergence to Zero 

[0.4 OJ No No 

[O 0.4J No Yes 

[0.4 0.4J No Yes 

[-0.1-0.lJ No No 

[-0.1 OJ Yes Yes 

[-0.1 O.lJ Yes Yes 

[O -0.lJ No No 

[O O.lJ Yes Yes 

[0.1 -0.lJ No No 

[0.1 OJ Yes Yes 

[0.1 O.lJ Yes Yes 

Table 3.1: Summary of simulation results 
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on x2 results in a limit cycle when any of the two gains for which the theorem was inconclusive but 

were apparently stable for the original initial condition. Also, with the first gain in the table a limit 

cycle is obtained. If the initial condition is changed to x0 = (10 - 40], asymptotic convergence is 

obtained. This example suggests that the stability test may not necessarily be conservative. Also, 

the equilibrium test developed in Section 3.2 can be used to reduce uncertainty, for if the test shows 

multiple equilibria, global asymptotic stability is ruled out. Figure 3.15 shows four typical behaviors 

found in systems with quantization, three of which correspond to the system in example. The fourth 

behavior was obtained by simulating the a marginally stable system found in Franklin, Powell and 

Workman, (15] page 729. The system matrices and gain used are 

A [ 1.000 5.3316 l 
0 0.9993 

n [ ::~:: l 
F = [ 10.2851 147.9711 ] 

The sampling rate used in the simulation was T = 6.6 x 10-6 • A non-periodic permanent chatter is 

observed in one of the states, while the other undergoes a limit cycle. 

3.10 Synthesis Issues 

The stability test developed in the previous section, although sufficient, provides a means to analyze 

a system with a given feedback gain. The dual problem of finding gains which stabilize the QIQM 

system is harder, and only one method is considered here. Performance is not addressed. The 

method, however, is exhaustive; that is, all gains that satisfy the stability test are spanned by the 

introduced scaling. In future research, the space of nominally stabilizing gains along with scaling 

factors can be searched for a combination that optimizes a performance criterion. The key idea 

is to recognize that any nominally stabilizing gain will ultimately pass the test when scaled by a 

constant factor, since the system is open-loop stable. That is, as the scaling factor approaches zero, 

the system approaches its open-loop properties, including stability. 

3.10.1 Scaling Procedure 

Recall that the stability criterion is given by Eq. (3.18). Let F0 be an arbitrary nominally stabilizing 

gain. Consider that the scaled gain F = u F0 is actually used. The extremal point in the Nyquist 
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Figure 3.15: Qualitative responses in QIQM systems 
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diagram is scaled linearly with u, in fact 

inf Re { (uFo)(Iejw - A)-1 )B} = u inf Re { F0 (Iejw - A)- 1 )B} 
wER wER 

(3.21) 

The stability limit s however, is scaled differently. To see this, consider the case when Fq = f 
Following the results of Section 3. 7.6, it is seen that the expression for the stability limit is simplified. 

In this case, it becomes 

ullFoll1 1 s=~-~ 
2 2 

(3.22) 

The graphs of the scaled extremal point and the stability limit against the scaling factor u for any 

fixed F0 are straight lines. The lines have, in general, different slopes and intercepts. This implies 

the existence of a crossover point with abcissa O"c that divides the u axis into to open intervals. The 

set of scaling factors which generate a stable gain is one of these intervals. In the general case of 

Fq, the scaling is not linear, however the existence of a crossover point is understood, and the same 

method applies. 

3.10.2 An expression for the critical scaling factor 

The critical scaling factor is the point where the scaled gain is in the stability boundary. It can be 

found by solving the equation 

The solution is 

1 

1 
2 

O"c. == -----------------
IIFoll1 - 2infwER Re{Fo(Jejw -A)-1)B} 

(3.23) 

Note that if it is found that u c = 1, this indicates that the original gain is in the stability boundary. 

In order to render a gain stable by scaling, O"c needs to be found. This can be done by evaluating 

another scaling factor or by explicit plotting. A major disadvantage of the scaling approach is that 

the critical scaling factor may be very far from one, implying that any performance objective that 

was intended to be met with the original nominal gain will be lost. Therefore another direction for 

the gain must be tried. A Matlab program called scale-F that automates the method is listed at 

the appendix and is used in the next example. 

Example 3.3. Take the second order system of Example 2.5. Figure 3.16 shows the results of 

running scale-F with Fo = (0.4, OJ, which was shown earlier not to pass the stability test. The line 

passing through the origin is the locus of the extremal point of the Nyquist diagram as the scaling 
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Figure 3.16: Scaling procedure in QIQM systems 

factor is varied. The jagged line is the stability limit computed exactly using the theory presented 

earlier. The other straight line is the stability limit obtained assuming Fq = J. The critical scaling 

computed with the simplified stability limit is 0.5. The true critical scaling is roughly 0.62. The 

initial gain needs to be multiplied by a number between O and 0.62 to satisfy the stability test. Now 

consider Fo = [0.1, 0.1]. This gain was earlier shown to satisfy the stability test. Figure 3.17 shows 

that the critical scaling factor is 1.66. Therefore the original gain can be either reduced, or increased 

by a factor less than 1.66. 

3.10.3 Bifurcations and Catastrophe in QIQM Systems 

If the resolution is high enough, one can see that the stability limit plot has discontinuities, i.e., 

vertical segments. This implies that there could be a drastic change in system behavior if one 

of such discontinuities is in the neighborhood of the critical scaling factor, as it happens in the 

previous example with F = [0.4, OJ. A bifurcation diagram where the parameter is the scaling 

factor is depicted in Figure 3.18. The vertical axis represents the values of state x1 when enough 

time has been allowed for the trajectories to set into either a equilibrium value or a limit cycle. At 

a = 0.624 there is an abrupt change in the behavior of the system, commonly known as catastrophe. 

More bifurcations can be observed, where the amplitude of the limit cycle is suddenly increased. 
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Figure 3.17: Scaling procedure in QIQM systems 

Note that the stability limit obtained experimentally, i.e., the first bifurcation point, corresponds to a 

scaling factor of 0.624. This is in excellent agreement with the stability theorem, which gives a value 

of 0.620 for the critical factor. The program that illustrates these concepts is called bifurc-quant 

and is listed at the appendix. 

3.10.4 Unsolvability Issues 

The problem of synthesizing a gain which not only satisfies the stability criterion, but also perfor­

mance requirements could be better approached if a closed-form expression were available for 

inf Re{F(Jeiw -A)-1)B} 
wER 

When the infimum is actually a minimum, this calculation involves the differentiation of a rational 

function with respect to w and then finding the roots of a polynomial. Because of the "unsolvability 

of the quintic" limitation, a formula for the minimum point is not possible to obtain for arbitrary 

order systems. For systems between 2nd and 4th order, the formula is so complicated that it also 

prevents a direct algebraic treatment. 
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Figure 3.18: Bifurcations in QIQM Systems 
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Chapter 4 

Quantized Input and Output 

Measurement (QIQO) 

4.1 Problem Statement 

The problem of evaluating the equilibrium points and stability of SISO systems with output feedback 

under quantization is analyzed in this chapter. In Section 4.2, the case where significant quantization 

is found only at system input is analyzed (QIO case). In Section 4.3, quantization of both, input 

and output is considered (QIQO) case. Section 4.4 offers remarks about the case where only an 

output measurement quantizer is present (IQO case). It is shown how this case reduces to problems 

already studied in other sections. While the QIO case can be directly analyzed using Absolute 

Stability, the technique has to be substantially modified in the QIQO case, and still provides with a 

stability condition which is unacceptably conservative. The multiplicative perturbation method used 

in Chapter 3 for QIQM systems is also considered. Although a MIMO version of the multiplicative 

perturbation theorem of Section 3.6 is proven, the method has not been applied due to difficulties in 

finding bounded and nonnegative multipliers. This motivates the consideration of another method; 

namely, the Small Gain Theorem. This method yields a simpler and less conservative stability test, 

and allows to show that the controller can "cooperate" with the plant in fighting quantization by 

means of keeping the loop gain sufficiently small. The equilibrium equations for QIQO systems have 

not been explicitly solved; however, a sufficient condition for the origin to be the only equilibrium 

point is provided, along with an iterative algorithm that canfind all solutions numerically. 
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0 -* G(z) ~ f-------+ H(z) 
-

Figure 4.1: QIO System Setting 

4.2 Quantized Input with Precise Output Measurement ( QIO) 

4.2.1 System Definition and Assumptions 

Consider the system configuration depicted in Figure 4.1. Let G(z) and H(z) represent the SISO 

transfer functions of plant and controller, respectively. A standing assumption will be that the plant 

is strictly proper, that is the "D" term of a state space realization is zero. The controller transfer 

function, however, is only required to be proper. The reason for this assumption is that the existence 

of a unique solution to the difference equations in the feedback configuration is not guaranteed when 

both plant and controller are not strictly proper. A choice has to be made as to which transfer 

function is allowed to have a nonzero "D". Most physical systems are strictly proper, and for added 

flexibility in designing the controller, H(z) is the one allowed to be proper, and G(z) is required to 

be strictly proper. 
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4.2.2 Equilibrium Problem in QIO Systems 

Let a minimal state space realization for the plant be G(z) = (Ap,Bp,Cp,O), and consider also 

H(z) = (Ac, Be, Cc, De)- The equations that describe the closed-loop system are: 

Xc(k + 1) = Acxc(k) + BcYp(k) 

Yp(k) = Cpxp(k) 
(4.1) 

Note that existence of a unique solution is guaranteed, since all computations are single-valued 

and there are no algebraic constraints. Suppose that neither Ap or Ac have eigenvalues at z = l. 

Denote by Ip and le the identity matrices with sizes equal to the orders of the plant and controller, 

respectively. Denote by Xp and Xe the equilibrium states of plant and controller. The equilibrium 

equations can be written as 

{:P =-(Ip - A::-1 B.p~(Ccxc + DcCpxp) 

Xe - (Jc - Ac) BcCpXp 

Substituting the second equation into the first one above gives 

Multiplying by Gp on both sides and recognizing the well-known matrix formula for a transfer 

function yields the following quantization equation: 

Yp = -G(l)Q[H(l)yp] (4.2) 

This equation has the form of Eq. (2.6) studied earlier. Nothe that if zero is the only solution to 

Eq. (4.2) then zero is the only solution for Ye, since 

Moreover, if zero is the only solution for the outputs, it is readily seen that the controller and plant 

states also admit only trivial solution. Therefore, using the results of Section 2.1.2, a condition for 

the origin to be the only equilibrium point can be derived considering Eq. (4.2) only. The condition 

is summarized in the following 

Lemma 4.1. The origin is the only equilibrium point of system (4.1} if arid only if Ap and Ac do 

not have eigenvalues at 1 and G(l)H(l) ::; -1.5 or G(l)H(l) > -0.5. 
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H(z) G(z) 

Figure 4.2: Rearrangement of QIO System 

Note that for nontrivial equilibria to exist, the DC gain of the loop is required to be negative. 

This implies that the loop is effectively of positive feedback, suggesting that only unstable systems 

might have nontrivial equilibria. 

4.2.3 Stability of QIO systems 

Reduction to QI case 

The closed-loop system can be rearranged as shown in Figure 4.2, since the scalar quantization 

operator is an odd function. The system representation in Eq. (4.1) can be written in a convenient 

fashion by realizing the cascade connection of H(z) and G(z): 

(4.3) 
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0 - rf G(z) rf -

H(z) 

Figure 4.3: QIQO System Setting 

It is now clear that this system can be viewed as having quantized state feedback with precise state 

measurements (QI), a case studied in Chapter 2. In fact, the above system can be rewritten by 

defining an augmented state x(k) = [xp(k) xc(k)f: 

{
x(k + 1) = Ax(k) + Bu(k) 

u(k) = -Q(Fx(k)) 

where the feedback gain is F = [DcCp I Gel, and the augmented system matrix definitions are 

also obvious. Note that the equilibrium problem may also be approached from this state space 

representation. This can be seen by recognizing that F(A - J)-1 B equals -G(l)H(l). 

4.3 Quantized Input and Output Measurement (QIQO) 

The case of compensated systems with quantization at plant input and output has a high practical 

relevance. The system configuration is shown in Figure 4.3. Although it would be desirable to 

obtain an exact equilibrium point characterization and a stability test along the lines of the previous 

work, it will be seen that those tasks prove difficult. The equilibrium analysis will be reduced to 

a simpler system of equations involving rounding. The equations may be solved numerically by an 

iterative procedure. A useful result is still possible to obtain, in the form of a sufficient condition for 

the absence of nonzero equilibria. With regards to stability, the discrete positive real approach used 

throughout this Thesis needs to be modified to allow for a nondiagonal matrix of sector nonlinearities 

present in the feedback path of a MIMO system. This method yields a stability condition which 
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is needlessly restrictive. The multiplicative perturbation method of Chapter 3 used QIQM systems 

is also considered, but the method has not been applied due to difficulties in finding bounded and 

nonnegative multipliers. This motivates the consideration of the Small Gain Theorem as a simpler 

and alternative method, which yields less conservative results. 

4.3.1 Equilibrium Analysis of QIQO Systems 

The assumptions that G(z) must be strictly proper and H(z) proper still hold in these developments. 

Let a minimal state space realization for the plant be G(z) = (Ap, Bp, Gp, 0), and consider also 

H(z) = (Ac, Be, Cc, De)- The equations that describe the closed-loop system are: 

xp(k +I)= Apxp(k) - BpQ(yc(k)) 

Xc(k + 1) = Acxc(k) + BcQ(yp(k)) 

Yp(k) = Cpxp(k) 

(4.4) 

Note that existence of a unique solution is guaranteed, since all computations are single-valued 

and there are no algebraic constraints. Suppose that neither AP or Ac have eigenvalues at z = l. 

Denote by Ip and Ic the identity matrices with sizes equal to the orders of the plant and controller, 

respectively. Denote by Xp and Xe the equilibrium states of plant and controller. The equilibrium 

equations can be written as 

{
~P :-(Ip - A::-1 BpQ [~cxc + DcQ(Cpxp)] 

Xe - (Jc -Ac) BcQ(Cpxp) 

Substituting the second equation into the first one above gives 

Multiplying by Gp on both sides and recognizing the well-known matrix formula for a transfer 

function yields the following quantization equation: 

Yp = -G(I)Q[H(l)Q(yp)] (4.5) 

This equation, unlike Eq. (2.6) studied before, contains nested quantization, which introduces un­

expected complexity in the solution. In the following developments, a prototype scalar equation is 

studied. 
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The nested quantization equation 

Consider the equation 

X = gQ(jQ(x)) (4.6) 

where xis the unknown, all quantities are real and f g-::/- 0. 

Proposition 4.1. If Jg< 0 then x = 0 is the only solution to Eq. (4.6). 

Proof. Suppose x 0 -::/- 0 is a solution with f g < 0. Then 

Xo ( - = Q JQ(xa)) 
g 

therefore 

x2 X --f = -Q(JQ(x)) > 0 
g g 

Since Q(f Q(x)) has the same sign as f Q(x) and, moreover, the same sign as fx, if follows that 

that is 

X 
-xf > 0 
g 

x2L > o 
g 

from which the contradiction that f /g and thus Jg are positive arises. 

Proposition 4.2. If x is a solution to Eq. (4.6), then -x is also a solution. 

• 

This follows directly from the odd character of the quantization operator. Because of this fact, it 

is only necessary to look for positive solutions to the quantization equation. Also, only the case 

f > 0, g > 0 needs to be considered. In fact, suppose f < 0 and g < 0. Define y = -x and write 

the equation as 

y = -gQ((-f)Q(y)) 

It is then sufficient to look for positive solutions to the above quantization equation with f' = - f > 0 

and g' = -g > 0. 
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Reduction to a system of equations with rounding 

Let q > 0 be the quantization stepsize and x be a positive solution to Eq. (4.6). Then the following 

must hold: 

Q(x) 

X 

g 

qi 

jq 

for some positive integers i and j. From Eq. ( 4. 7) write 

Write Eq. ( 4.6) as 

This occurs if and only if 

. q < . q qi-- x<qi+-
2 - 2 

~ = Q(fqi) 
g 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

Divide Eq. ( 4.9) by g > 0 and use Eq. ( 4.8). Similarly, use Eq. ( 4.8) in Eq. ( 4.10) to obtain the 

following system of inequalities, where q has cancelled out: 

(4.11) 

Any pair of integers i ~ 1 and j ~ 1 satisfying the above system will generate a solution. Multiplying 

the first inequality in the above system by g > 0 shows that it is equivalent to a system of equations: 

{
round(fi) = j 

round(gj) = i 
(4.12) 

The striking symmetry in the equations is deceiving, since a general, closed-form solution seems 

impossible to obtain, as it will be seen next. The system of inequalities in Eq. (4.11) has a solution 

if several conditions are met. First, the intersection of the intervals specified for j must be non­

empty. Second, the intersection must contain at least an integer. This second condition can satisfied 

only if one of the intervals contains itself an integer. Those conditions need also to be stated when 

the inequalities are written as intervals for i. The only tractable condition is the first one, for there 

is no general test to determine if an interval contains an integer. That is, if a < b are interval 

ends, numerical computation is required to decide if the interval contains an integer. A sufficient 
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condition, however, is that the interval length be greater than one. The approach in the present 

work will be to obtain a sufficient condition for the absence of nonzero solutions and to establish a 

numerical algorithm to find all solutions. 

Sufficient condition for the absence of nonzero solutions 

The j intervals in the inequalities of Eq. ( 4.11) have non-empty intersection over the real numbers if 

{

i 1 1· · 1 d -+-> i-- an 2 2g 2' 

Ji+ 1 > i. - .l 
2 - g 2g 

Only i ~ 1 needs to be considered. First suppose f > I/ g. Then the inequalities become 

1 1 .l+l 
-2g-2 <i< ~ 
j-1 - j-1 

g g 

The left term is negative, and therefore less than one, so the inequalities reduce to 

.l + 1 
l<i<~ 

- j-1 
g 

Now suppose f < I/ g. Similarly, the inequalities reduce to 

.l + 1 
1 < i < 2g 2 
---(J-1) 

g 

The inequalities in Eq. (4.11) need to be rewritten as intervals for i: 

{

j l<· j+l 1 - 2f - i < 1 2f 

· 1 · · 1 9J - 2 < i :S 9J + 2 

(4.13) 

(4.14) 

(4.15) 

The above system has exactly the same form as Eq. (4.11) if f and g are exchanged and i and jare 

exchanged. Taking advantage of this symmetry, the following inequalities can be written directly: 

.l + 1 
1 :S j < ~' when g > I/ f 

g-y 
(4.16) 

and 

.l + 1 
1 :S j ::::; _2

(:- ; ) , when g < I/ f ( 4.17) 

Now let k denote the number of solutions to Eq. (4.6). It is clear that inequalities Eq. (4.13, 4.14, 

4.16, 4.17) provide bounds fork. That is, 

{
k<min{4, t\!} ,whenf>l/g 

g-y f-g 

. { ,b+! t+! } k :S mm -(g-y), -(f-f,) , when f < 1/g 

which can be compactly expressed in the following 
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Lemma 4.2. Let k be the number of positive solutions to Eq. (4.6). Then 

{
k < fg1_ 1 [1 + min(f,g)] 

k S. 1_:fg [1 + min(!, g)] 

, when f > 1/g 

, when f < 1/g 

( 4.18) 

Note that when f = l / g, it can be shown that it is necessary that f > -1 for a nontrivial solution 

to exist. Since it is assumed that f > 0 and the conditions developed are only necessary, there could 

be any number of nontrivial solutions, ranging from zero to infinity. 

The main purpose of the above calculations is to derive a sufficient condition for zero to be the only 

solution. This can be done by requiring that k, i.e., the number of nontrivial solutions, be less than 

one. Upon doing this, the following lemma can be stated: 

Lemma 4.3. Zero is the only solution of Eq. (4.6) if f g 2:: ~ + minf,9l or f g < ~ - minyg). 

Application to equilibrium of QIQO systems 

The above results can be applied to analyze multiplicity of equilibria in QIQO systems by taking 

f = H(l) and g = -G(l). The following lemma summarizes the findings: 

Lemma 4.4. The origin is the only equilibrium point of the QIQO system of Eq. (4.19) if 

-G(l)H(l) 2:: ; + min(H(l~, -G(l)) 

or 

-G(l)H(l) < ! _ min(H(l), G(l)) 
2 2 

Example 4.1. Consider the following strictly proper and proper transfer functions for plant and 

controller, respectively: 

1 
G(z) =--­

z - 0.5 

H(z) = z-0.6 
z - 0.1 

Consider a quantization stepsize of q = l. Although unnecessary for the equilibrium analysis, it can 

be verified that the closed-loop system is nominally stable. This fact, however, facilitates a simulation 

that shows the system outputs indeed converging to the nonzero equilibrium values predicted by the 

theory. Noting that f = H(l) = ! and g = -G(l) = 2, the case f < 1/ g holds. Then, using the 

second of Eq. (4.18) gives a bound for the number of positive solutions: 

1 . 
k S. - 1- [1 + mm(f, g)] = 13 

1- g 
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Therefore, up to 13 positive equilibrium points for the plant and controller outputs are possible. The 

actual solutions have to be found by numerically iterating Eq. ( 4.12) for 13 iterations. The Matlab 

program solve-qiqo listed at the appendix automates these tasks. The program output is 

>> sols=solve_qiqo(4/9,2,13) 

sols 

2 4 6 8 

The returned values are those of i for which there is positive solution to Eq. ( 4.12). The corresponding 

values of j can be found through the same equations, and are j = 1, 2, 3, 4. According to Eq. ( 4.8), 

the equilibrium values of the plant output are just 

Yp = gjq = 2j 

The equilibrium values of the controller output are 

Figure 4.4 shows system outputs converging to the equilibrium value (yp, Ye) = (2, 8/9), which is 

predicted by the above equations. Note that, given state space realizations for plant and controller, 

it is also possible to calculate the equilibrium values of the whole states. 

4.3.2 Stability Analysis of QIQO Systems 

In this section, it will be assumed that both, plant and controllers are asymptotically stable. This as­

sumption stands in addition to the properness requirements considered earlier. Three methods have 

been considered to analyze the stability of QIQO systems. First, an equivalent system consisting 

of a purely linear MIMO system with decoupled nonlinearities in the feedback path was considered. 

The nonlinearities are quantizers multiplicatively perturbed by functions of the state. This is to be 

done in the spirit of the method used for QIQM systems in Chapter 3. The method fails because 

of the difficulty in finding bounded and nonnegative multipliers. However, the generalization of the 

multiplicative perturbation theorem of Section 3.6 holds. The method is described in Section 4.3.2, 

and the MIMO multiplicative perturbation theorem is given in the appendix. The second method 
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Nonzero Equilibria in QIQO System 
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Figure 4.4: Nonzero equilibrium in QIQO System 

6 

attempts to generalize the Absolute Stability theory for MIMO systems with output-crossing non­

linearities. This is done by requiring that certain MIMO transfer function be DPR. The method 

does result in a stability criterion; however its conservativeness is unacceptable. The method is 

described in Section 4.3.2. The third method is much simpler and gives better results. It directly 

uses the Small Gain theorem, formulated for discrete systems. The required definitions and results 

of lp stability theory are given in Section 4.3.2, along with the application to the QIQO case and a 

numerical example. 

Multiplicative Perturbation Method 

This method attempts to generalize the techniques and results used for QIQM systems in Chapter 3. 

Let ~o denote a state space realization of the original QIQO system: 

~o: (4.19) 
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Define the MIMO linear system L1 by 

[ 
Xp(k + I) 1 r-~PJ_o_1 [ Xp(k) 1 + [ B_p I 01 r u~(k) 1 
Xe(k + I) ~ Xe(k) ~ u~(k) 

[ y~(k) l = r~1 [ Xp(k) l + r~1 [ u~(k) l 
y~(k) ~ Xe(k) ~ u~(k) 

for some real numbers dp and de. If suitable multipliers ap and ae could be found such that 

u~(k) = -Q [ap(xp(k),xe(k))y~(k)] = -Q(ye(k)) = up(k) 

u~(k) = -Q [ae(xp(k), Xc(k))y~(k)] = Q(yp(k)) = Ue(k) 

( 4.20) 

(4.21) 

( 4.22) 

( 4.23) 

then closing the loop on L1 with controls u~ and u~ would achieve two desired objectives: denote by 

~ 1 the closed loop; then, ~o and ~ 1 will have the same values of state at all instants, and therefore 

their internal stability will be equivalent. With equal importance, L1 would be a linear system with 

decoupled nonlinearities in the feedback path, which are multiplicatively perturbed by a function 

of the state. The required results regarding stability of DPR MIMO systems with "D" term and 

the multiplicative perturbation theorem hold, and are presented at the appendix. The method falls 

short of being applicable because appropriate multipliers cannot be found. In fact, consider the 

candidate definitions, dropping index k from the notation: 

(4.24) 

( 4.25) 

The multipliers are functions of two variables, therefore their boundedness and nonnegativity cannot 

be established if the variables are considered to vary independently. The variations of Yp and Ye 

are actually coupled through the system equations, which makes the determination of existence of 

suitable dp and dp a very difficult task. This motivates the search for another approach. 

DPR Method 

The method consists in viewing the closed loop as a two-input, two-output linear system with sector 

nonlinearities in the feedback path, as it is done is standard Absolute Stability. Traditional methods 

cannot be applied, however, since the plant outputs cross when entering the nonlinearities, resulting 
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Figure 4.5: QIQO Problem in MIMO Form 

in a non-diagonal matrix of nonlinearities at the feedback path. Figure 4.5 shows the problem from 

this point of view. The method requires certain transfer function to be DPR, but it removes the 

notion of nonlinearities belonging to specific sectors. Instead, it asks for a special algebraic property 

that must be satisfied by the combination of nonlinearities. Rather than stating results followed 

by their proofs, a constructive approach will be followed to facilitate understanding. Let G(z) and 

H(z) be the plant and controller transfer functions of a QIQO system, respectively, with G(z) strictly 

proper and H(z) proper. The condition sought is that the system be globally asymptotically stable 

if certain transfer function is DPR. A choice of DPR transfer function that resembles the standard 

theory is the following 

M (z) = [-G-O(z_) -+---0 -] + F 
H(z) 

( 4.26) 

The role of the diagonal matrix containing the sector bounds is taken by F in this case, which is 

only required to be symmetric. The question is, what conditions must F satisfy in order for the 

system to be G.A.S. when M(z) is DPR. In order to determine this, suppose that M(z) is indeed 

DPR and use the Lyapunov approach employed throughout this work. The system can be written 
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in MIMO form as follows: 

l Xp(k + 1) l = [~] l Xp(k) j + l~l l up(k) j 
Xc(k + 1) -;-1 · Z Xc(k) ~ Uc(k) 

(4.27) 

l Yp(k) 1 [~1 l Xp(k) 1 l O_I 0-1 [ Up(k) 1 
Yc(k) ~ Xc(k) + ~ Uc(k) 

Let A, B, C and D denote the MIMO system matrices in obvious correspondence with the above 

equations and let x = [xp xcf be the augmented state. The original QIQO system is reproduced 

by the above equations if the following controls are used: 

u(k) = -<l>(x(k)) = [ up(k) l [-Q(yc(k)) l 
Uc(k) Q(yp(k)) 

(4.28) 

Since M(z) is DPR, there exist matrices P,L and W which satisfy Lemma B.2, that is 

D+DT +2F-BTPB (4.29) 

Choosing the Lyapunov function V(x(k)) = xT(k)Px(k) and finding its change along system tra­

jectories results in the cancellation of D and the following expression: 

Being the first term negative semidefinite, it is desired to find conditions on matrix F such that 

the second term is also negative semidefinite. This reduces to analyzing the properties of the 

nonlinearity, in this case the quantizer. To simplify the analysis, it is supposed that F = diag(j1 , h). 

Moreover, it will be seen later that off-diagonal terms in F do not increase the generality or reduce 

the conservativeness of the method. The expression inside brackets in the second term is expanded 

as 

Defining 

( 4.30) 
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it is seen that "if! has to be negative semidefinite to obtain global stability. The shape of the faceted 

function "if! is shown in Figure 4.6. It is shown in the appendix that this occurs if and only if 

Ji < -1/2 and h < -1/2, and moreover, "if! = 0 only for Q(yp) = Q(yc) = 0. This last fact 

helps in proving asymptotic stability, for it implies that both controls are zero and each stable 

transfer function must decay asypmtotically to zero. A rigurous proof requires the discrete version 

of LaSalle's theorem, as it was done for QIQM systems. Therefore, the closed loop system is G.A.S. 

if M(z) is DPR, with F diagonal such that /ii < -!- Since M(z) is itself diagonal, the requirement 

is imposed on each transfer function. While it is possible to find a H(z) which is DPR by a margin 

of more than 1/2, this never happens for strictly proper plants, since 

for a strictly proper G. The result suggests that no strictly proper plant can pass the stability 

test and that the controller cannot influence the plant's ability to resist quantization-induced limit 

cycles. The results are thus unusable. Allowing a more general F will again result in a matrix of 

the form F + FT in the definition of "if!, which is again symmetric. The off-diagonal terms only add 

complication, for the DPR condition is still applied to the diagonal elements of M(z). Thus, more 

restrictions are added to those already introduced by a diagonal F matrix. A possible alternative is 

to require that a different transfer function be DPR, but this would create difficulties when trying 
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to apply the matrix conditions for DPR given in Lemma B.2. 

Small Gain Approach 

The Small Gain theorem, commonly known in its continuous-time formulation also holds in difference 

systems. The result formalizes the intuitive concept that the overall gain in a closed loop must be 

less than one for system outputs to converge asymptotically to zero. This can be verified in a 

straightforward manner for static systems (i.e., gains coupled in a negative feedback loop). In order 

to formulate the teorem for dynamic systems, certain definitions are required. In what follows, only 

the basic definitions and results will be given. For further details, refer to [35]. 

Definitions and Results 

Denote by S the space of sequences Xi for i 2'.: 0. Define the set 

Note that, unlike the corresponding case of continuous-time signals, there is no need to define an 

"extended" set composed of sequences whose truncations at i = I are in lp for all J 2'.: 0. This is 

due to the fact that all sequences of Shave that property. In other words, there is no "finite escape 

time". Therefore, the set S acts as an extension of lp. Define the norms 

Definition 4.1. A mapping R : S -+ S is said to be lp-stable if Rx E lp for all x E lp, Also, R 

lp-stable with finite gain and zero bias if R is lp-stable and :3 'Y < oo such that 

In the context of the present work, the mapping R is a discrete transfer function. 

Theorem 6 (Small Gain). Consider the system in Figure 4. 7. Suppose that G1 and G2 are causal 

and lp-stable with finite gains "(1 and "(2. Then Y1 E lp and Y2 E lp if 'Yi "(2 < 1 and 'lj;1 E lp and 

'i/J2 E lp, 

Application to QIQO Systems 

In order to apply the Small Gain theorem to systems with quantization, it is necessary to combine 

the quantizer and transfer function to form a single operator and show that the combination is lp 

77 



'¢1 YI 

Figure 4.7: Setting for Small Gain Theorem 

stable if the transfer function is itself stable. Also, it is necessary to compute the finite gain of the 

combination. Suppose G(z) is a proper transfer function with all poles inside the unit circle. Then 

G(z) is lp-stable with finite gain and zero bias, since [11] 

The most common p-norms of a transfer function are given below in terms of the impulse response 

sequence 9i: 

00 

IIGll1 Ll9il 
i=O 

00 

IIGll2 Ll9il2 
i=O 

IIGlloo supi l9il 

Therefore, the lp gain of G(z) is simply its lp norm. The quantizer is also lp stable. In fact consider 

an input sequence Xi E lp, with norm llxllp· The worst-case scenario occurs when xis the sequence 

of transition points, that is 

X = { .... - 3q/2, -q/2, q/2, 3q/2 .... } 

In this case, the output sequence is twice the input, and it is straightforward to verify that its norm 

is 2J Jxl IP for any p. Therefore 

so the lp gain of a quantizer is 2. Now consider the combination of quantizer and transfer function 

depicted in Figure 4.8. The overall lp gain is less or equal to the product of the individual ones. In 

fact: 
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Figure 4.8: Combined Quantizer-Transfer Operator 

p IIGIIP IIHIIP Loop Gain 

1 2 1.55 3.1 

2 1.15 1.12 1.29 

00 2 1.45 2.9 

Table 4.1: lp Gains in QIQO system 

Therefore the combined operator is lp-stable with zero bias and finite gain 'Yp = 2IIGIIP· Application 

of the Small-Gain theorem is straighforward and results in the following 

Lemma 4.5. The QIQO system of Eq. (4.19) is globally asymptotically stable about the origin if 

The proof follows directly from the above considerations by combining the plant and controller with 

their input quantizers and noting that ¢ 1 = ¢ 2 = 0 E lp for regulation about the origin. The choice 

of p is done in a case by case basis, using the value that gives less conservative results. 

Example 4.2. Consider the transfer functions of Example 4.1. Table 4.1 shows the values of the · 

gains for different values of p. As seen in the table, the loop gain is higher than t. The Small 

Gain Theorem is only sufficient, and conservative because it is a worst-case approach. However, it 

is known from Example 4.1 that this system has multiple equilibrium points, and therefore cannot 

be G.A.S. about the origin. In order for the system to satisfy the Small Gain theorem, the gain of 

the loop must be reduced to be less than 0.25. Taking the less conservative case of p = 2, a factor 

of 0.25/1.29 = 0.19 must be introduced in the system. Including the factor in the plant, the new 

transfer function is 

G'(z) = -0.19 
z-0.5 
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Figure 4.9: Simulation cif QIQO System 
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The equilibrium analysis can be carried out again with f = H(l) = f and g = -G(l) = 0.38, 

where the case f < l/g holds. Then, using the second of Eq. (4.18) gives a bound for the number 

of positive solutions: 

k '.5: 1 _\9 [1 + min(f,g)] = 1.66 

Therefore at most one nonzero solution can happen. To find the actual solutions the Matlab program 

solve-qiqo is executed with one iteration: 

>> solve_qiqo(f,g,1) 

ans= 

[] 

This shows that the origin is the only equilibrium point. A simulation, illustrated in Figures 4.9 

and 4.10 confirms the results. 

4.4 A Note on Plants with only Output Quantization (IQO) 

Results have been obtained for the QIQO and QIO cases. It is now shown that the analysis of 

systems with only measurement quantization reduces to the QIO case. 
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Figure 4.10: Asymptotic Convergence of QIQO System 

4.4.1 Equilibrium Problem 

The controller transfer function and the quantizer can be moved around the loop and placed at the 

plant input, since the quantizer is an odd function. This is depicted in Figure 4.11. The equilibrium 

problem reduces to a QIO case with the roles of G and H exchanged. Note that the QIO condition 

for uniqueness of equilibrium is symmetric with respect to G and H. 

4.4.2 Stability Problem 

The closed-loop an be represented in state-space form as 

Yp(k) = [Gp I OJ [ Xp(k) l 
Xc(k) J 

Uc(k) = -Q(yp(k)) 
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0 
~ ~ H(z) ----+ G(z) 

-

Figure 4.11: Reduction of IQO System to QIO Case 

Therefore it reduces to the QIO case, which in turn reduced to the QIQM case, as described in 

Section 4.2.3. 
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Chapter 5 

Conclusions and Topics for Future 

Research 

5.1 Conclusions 

Absolute Stability proves useful for analysis and design of systems with quantized feedback. The 

stability of full-state quantized feedback is straightforward to analyze when the states are precisely 

measured (QI systems). The concept of discrete positive-realness (DPR) is closely connected to the 

Absolute Stability analysis of discrete-time systems. In summary, a system with a sector-bounded 

nonlinearity on the feedback path is stable if an associated transfer function is DPR. For the design 

problem in QI systems, a parameterization of all gains which render the associated transfer function 

DPR was obtained. Using such parameterization, stable gains can be generated by choice of one 

matrix, one scalar which varies in [O, 1], and one vector parameter of fixed norm. For open-loop 

unstable systems, it is known that stabilization by state feedback is impossible due to the existence 

of a finite region of zero control surrounding the origin. A chattering solution to the problem is 

introduced by modifying the feedback law. The new feedback law effectively behaves as a relay in 

the neighborhood of the origin. For this case, the gains can be obtained from the solution of an 

algebraic Riccati equation. This solution lacks practical relevance due to its reliance on an infinitely 

fast switching of the control signal, similar to the one in mathematical sliding mode control. 

The problem of quantized state feedback based on quantized measurements is much harder. The 

equilibrium equations cannot be solved in closed form. However, a graphical method that gives all 

solutions is developed, and is applicable to systems of any order. A constructive process is followed in 
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order to arrive at a stability criterion. The criterion provides a sufficient condition for a system with 

a given feedback gain and quantization step size to be globally asymptotically stable. The stability 

criterion resembles the well-known Circle Criterion, but with a bound on the location of the polar 

plot which depends on the gain itself. More exactly, it depends on the 1-norm of the feedback gain. 

Since the location of the polar plot also depends on the gain, a practical design procedure may 

need to be iterative. It is shown that any nominally stabilizing gain can be scaled down until the 

system passes the stability test. However, this cannot be taken as a final design procedure, since any 

benefits attained by a nominal design will be lost after scaling of the gain. The parametric behavior 

of the system when the gain is scaled displays bifurcations. The sudden transition from asymptotic 

convergence to limit cycle, and from one limit cycle amplitude to another when the scaling factor 

is changed is evidenced by an example. Usage of the QIQM stability theorem is simple and direct, 

and is not necessarily conservative. An example shows that the critical scaling factor predicted 

by the theorem and the one obtained by simulation are in excellent agreement. A method for the 

computation of the least upper bound of t he multiplier has been completely specified and borrows 

concepts from Number Theory, in particular Diophantine equations. This bound is necessary to 

complete the stability evaluation of a given system using the theorem. 

Systems with output feedback and quantization are analyzed in different ways, depending on 

whether quantization is present at the plant input, output or both. Systems with quantization only 

at plant input (QIO) reduce to the QI case in terms of equilibrium and stability analysis. Similarly, 

systems with quantization only at plant output (IQO) reduce to the QI case. Thus, a complete 

characterization of equiliria is possible, and the stability treatment is as general as the one given for 

the QI case. 

Systems with quantization at both, plant input and output (QIQO) are more difficult to analyze. 

The equilibrium equations cannot be solved explicitly, but are reduced to a simpler system of 2 

equations with rounding. A bound for the number of nontrivial solutions has been obtained, which, 

in turn, is used to provide a sufficient condition for the origin to be the only equilibrium point. The 

stability problem in QIQO systems was approached from three different angles. A multiplicative 

perturbation method analogous to the one used in QIQM systems fails due to difficulties in finding 

adequate multipliers. However, the MIMO version of the multiplicative perturbation theorem holds, 

and is proven in the appendix. A DPR method was attempted by realizing the closed-loop as a 2-

input, 2-output system with sector nonlinearities in the feedback path. Since the outputs cross at the 

nonlinearities, the standard theories are not applicable. Removing the notion of sector and requiring 

more general properties of the feedback nonlinearities resulted in a very conservative criterion. The 
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last method considered was the Small Gain Theorem, which gives less conservative results and is 

simple to apply. 

Several Matlab programs have been written to automate the tasks performed in the various 

equilibrium and stability tests. 

The author believes that the results obtained are a first step in developing a fairly general set of 

tools for the analysis of design of control systems with quantization. 

5.2 Topics for Future Research 

5.2.1 Systems with Quantization in the State Measurements 

The closed-loop system 

{
x(k + 1) =Ax+ Bu 

u(k) = -FQ(x) 

has not been studied in this work. It is anticipated that the equilibrium problem does not pose 

difficulties. The stability problem, however, requires a more careful examination. Here, as in the 

QIQM case, the nonlinearity is many-to-one, therefore the standard Absolute Stability does not 

apply. 

5.2.2 Design for Performance in QIQM Systems 

A possible way to include performance constraints in QIQM systems is to study the relationship 

between the matrix conditions for DPR and the Riccati equations that arise in linear quadratic 

control. One known difficulty is that the problem is implicit, for the sector bound to be included 

in the matrix conditions depends on the feedback gain, more specifically, on its 1-norm. A search 

method may need to be considered. 

5.2.3 Galois Field Theory and Number-Theoretical Transforms 

Richalet ([30],[31]), Melikov [26], Vidal [34] and other researchers have explored the applicability 

of Galois field theory- in particular by defining number-theoretical transforms- to the analysis of 

discrete-time systems where the variables belong to a finite field and the operations of sum and 

multiplication take special definitions. For instance, in [30], an operational calculus is constructed 

for sequences that take binary values and difference equations whose sums and multiplications are 
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those of Boolean algebra. A generalization of this calculus and the definition of the Laplace-Galois 

transform is presnted in [31], where the sequences take values in a more general Galois field. The 

starting point in defining a transform is to show how a sequence and a rational function with co­

efficients in the field can be put in one-to-one correspondence. Some familiar properties of the 

Z-transform, such as the conversion between powers of z and delays and the final and initial value 

theorem hold for the number-theoretical transform. Number-theoretical transforms defined for se­

quences and systems over finite fields is a natural setting for studying systems with quantization 

and over/underflow. In fact, contrary to the assumption that internal control computations hap­

pen at infinite precision and only the inputs and outputs are quantized, digital signal processors 

operate ultimately with elements of a finite set of integer numbers. Also, the common experience 

of a positive overflow quantity showing up as a negative underflow is reproduced by the addition 

and multiplication operations over a finite field. For example, in Boolean algebra, one has that 

1 + 1 = 0, which is interpreted as an overflow quantity showing up as the least element of the finite 

field. Application of these concepts to the analysis of digital control systems would require to model 

quantization and overflow in intermediate calculations. If a discrete system is modeled to include 

overflowing operations and quantization of intermediate results, the number-theoretical transform 

can be directly applied and yield, for example, the solution sequence when the input and the initial 

conditions are known. Note that in the finite field of definition, and using the appropriate concepts 

of sum and multiplication, systems having quantization and overflow appear as "linear". 
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Appendix A 

Filippov Solutions of 

Continuous-Time QI Systems: 

Existence and Uniqueness 

A.1 Preliminary Results 

Some definitions and results from [13] and [14] are now presented. Let f(t,x 1 ,x2 , .. xn) be a vector 

function f : nn+i -+ nn+1 . Consider the system of equations 

dx 
dt = J(t, x) (A.1) 

Definition A.I. A vector function x(t) defined on the interval (t1 , t 2 ) is called a solution to Eq. (A.1) 

if: 

• x(t) is absolutely continuous 

• For every neighborhood N 0 of x(t) with radius 6, the vector d~~t) belongs to the smallest convex 

closed set of values achieved by f ( t, x'), where x' varies over all of N 0 except a set of measure 

zero (i.e., the points of N 0 where f is discontinuous or undefined). 

Definition A.2 ([9]). The function Y: X-+ n, with X <;;; n is said to be summable if 

sup L IY(t)I < oo 
AE.F(X) tEA 

where F(X) denotes the set of all finite subsets of X. Observe that any bounded function is 

summable in the set where it is bounded. 
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Condition 2 (B in [13]). The system of equations Eq. (A.1} is said to satisfy Condition B in 

a region Q of nn if f (x) is defined almost everywhere in Q 1 , is measurable, and for any closed 

bounded region D ~ Q there exists a summable function B(t) such that almost everywhere in D the 

following bound holds 

llf(t, x)ll2 :5 B(t) 

Definition A.3. A solution to Eq. { A.1) is said to be unique from the right in a region G if for any 

point (t0 ,x0 ) E G there is no other solution in G fort~ t 0 satisfying the initial condition x(t0 ) = x 0 • 

Theorem 7 (Theorem 4 in [13]). Let the right hand side of Eq. (A.1} be measurable in a region 

G and satisfy Condition B. Then for arbitrary initial conditions x(t0 ) = a, where (t 0 , a) E G, a 

solution to Eq. (A.1} exists satisfying the initial conditions, and defined on the interval [t 0 -d, t 0 +d] 

where d is such that the ( n + 1) dimensional "cylinder" 

I ta±d I 
jt - t 0 j ::S;, Ix - aj '.5 }ta B(t)dt 

is situated entirely inside G. 

Lemma A.1 (Corollary of Theorem 10 in [13]). A right-unique solution of Eq. {A.1} exists if 

i} Condition Bis satisfied and, ii} for almost all (t,x) and (t,z) where llx - zll < E, the following 

holds for some K constant and any E > 0: 

(x - zf (f(t, x) - f(t, z)) '.5 Kllx - zll~ 

A.2 Existence and Uniqueness of Solutions of Continuous­

Time QI Systems 

A.2.1 Proof of Existence 

Showing that a solution exists consists in identifying the right hand side f and showing that it 

satisfies Condition B. The system of differential equations is written as 

dx -
dt = Ax - BQ(Fx) = f (x) 

where Q denotes either the quantizer or the modified nonlinear operator N defined in Section (2.4), 

which have similar properties, as far the above results are concerned. Condition B is satisfied by 

1i.e., in all of Q except a subset of Q of measure zero. 
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f(x). In fact, N and Qare defined in all nn. Also, let D ~ nn be a closed bounded region. Then 

there exists m ~ 0 such that llxll 2 ::; m for all x in D. Using the induced 2-norm of A and the 

triangle inequality it follows that 

Note that 

IQ(Fx)I = IFx + 1'1 

with 11'1 ::; ! . Also, by Holder's inequality, 

Therefore it follows that 

The function B(t) is actually constant, and therefore summable. The measurability assumption is 

verified by the fact that f(x) is integrable. 

A.2.2 Considerations of Uniqueness 

The inequality of Lemma (A.l) is now examined. Substituting the expression for fin the left-hand 

side and expanding: 

(x - zf (f(x) - f(z)) = (x - zf A(x - z) - (x - zf B(Q(Fx) - Q(Fz)) 

l(x - zf All(x - z)I - (x - zf B(Fx + ')'1 - Fz - ')'2) < 

ll(x - z)ll~(IIAll2 - IIBFll2) + l(x - z)TBlq < 

ll(x - z)ll~(IIAll2 - IIBFll2) + ll(x - z)ll2IIBll2q 

Therefore the following inequality needs to be satisfied 

for some constant K, with llx - zll < L Clearly, the above inequality cannot be satisfied since it 

contains a term linear in ll(x - z)ll 2. Therefore more than one solution may exist for a given initial 

condition. 
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Appendix B 

Discrete Positive-Real Transfer 

Functions and Discrete Popov's 

Criterion 

B.1 Positive-Real Transfer Matrices 

The background theory presented in this appendix is entirely based on B.D.O. Anderson's papers 

[17],[2]. Theorem 8 is extended in Section 3.5 to allow for systems with a direct transmission term 

D. Let a continuous-time LTI system be represented by the state equations 

{
x =Ax+Bu 

y = Cx+Du 

The transfer matrix 

G(s) = C(sI -A)-1 B + D 

is said to be positive-real (p.r.) if it satisfies the following conditions: 

• The elements of G(s) are analytic in Re(s) > 0 

• G(s) + G*(s) 2:: 0 in Re(s) > 0 

The above conditions are equivalent to the following three conditions together: 

• G(s) has simple poles on the imaginary axis 
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• For any pole of G(s) with zero real part, the residue matrix is positive semidefinite Hermitian 

• G(jw) + GT (-jw) 2: 0 for all w ER for which jw is not a pole of G(s) 

Furthermore, the following lemma provides a necessary and sufficient condition for a transfer matrix 

to be p.r.: 

Lemma B .1. A square trans! er matrix G ( s) with elements analytic in Re( s) > 0, simple poles on 

the imaginary axis and finite G ( oo) is· positive real if, and only if, there exists a real symmetric 

positive definite matrix P and real matrices L and W such that 

(B.l) 

Note that the analycity requirement on G forbids RHP poles, but allows a pole at the origin. 

B.2 Discrete Positive-Real Transfer Matrices 

Let a discrete-time LTI system be represented by the state equations 

The transfer matrix 

{
x(k) = Ax(k) + Buk 

y = Cx(k) + Du(k) 

G(z) = C(zI - A)-1 B + D 

is said to be discrete positive-real (d.p.r.) if it satisfies the following conditions: 

• The elements of G(z) are analytic in izl > 1 

• G(z) + G*(z) 2: 0 in lzl > 1 

The above conditions are equivalent to the following three conditions together: 

• G(z) has simple poles on the unit circle 

• For any pole z0 of G(z) on the unit circle, the matrix Q 

Hermitian, where K is the residue matrix of G(z) at z = z0 . 
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0 
G(z) 

y 

phi(y) 

Figure B.l: Discrete Lure problem 

• G(eiw) + GT(e-iw) 2'. O for all w ER for which eiw is not a pole of G(z) 

As in the continuous case, a lemma providing a necessary and sufficient condition for a transfer 

matrix to be d.p.r. is given: 

Lemma B.2. The square transfer matrix G(z) with no poles in lzl > 1 and simple poles unit circle 

is positive real if, and only if, there exists a real symmetric positive definite matrix P and real 

matrices L and W such that 

B.3 

-LLT 

C-WTLT 

D+DT -BTPB 

Discrete Popov's Criterion 

(B.2) 

Consider a discrete version of the Lure problem, represented in Figure B.l The system can be 

described by the following equations 

x(k + 1) = Ax(k) + Bu(k) 

y(k) = Cx(k) 

u(k) = -cp(y(k)) 

The transfer function of the linear part of the system is 

G(z) = C(zI - A)-1 B 

(B.3) 

For the remaining presentation, let us restrict the attention to the SISO case. Also, note that the 

theory presented is applicable when A has no poles on or outside the unit circle, and when G(z) 
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contains no zero-pole cancellations. Let the nonlinear function ¢(.) be of the "sector" type, that is, 

restricted to belong to the first and third quadrants. The nonlinearity can be time-varying, but it 

is such that ¢ E [O, k). Mathematically this is stated as 

0:::; ¢(y)y < J(y2 

The following theorem provides a sufficient condition for the closed-loop system to be globally 

uniformly stable or uniformly asymptotically in the large (UASIL): 

Theorem 8. Define H(z) = C(zI -A)-1 B + J<· Then, if H(z) is discrete positive real, the system 

in Eq.( B.3) is uniformly stable in the large. If the sector nonlinearity is in addition time-invariant, 

¢(y) = 0 only for y = 0 and the system is observable, UASIL is obtained. 

The DPR property of H(z) can be tested by 

. 1 
Re{G(e1w)} + I( 2: 0, \/w ER 

Graphically, the polar plot of G(z) must lie to the right of a vertical line that passes through 

(-1/ J(,0), resembling the well-known Circle Criterion. 

B.3.1 Discrete Strict Positive-Realness 

The familiar concept of SPR transfer functions has a discrete counterpart, called DSPR. 

A square transfer matrix G(z) is called discrete strictly positive-real if G(z) is asymptotically stable 

and 

In the SISO case, this reduces to [10] 

Re(G(ejw)) > 0, \/w ER 

Graphically, the polar plot of G(z) must lie in the right half of the complex plane, without touching 

the imaginary axis. 

B.3.2 Matrix conditions for Discrete Positive Realness 

Theorem 8 states that if the transfer function H(z) is DPR, the closed loop system is stable. 

The constant 'J< plays the role of matrix D in the realization (A, B, C, D) of G(z) of Lemma B.2. 

Therefore, the matrix equations given earlier in ( B.2) provide sufficient conditions for stability of 
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the closed loop system. The closed-loop system is UASIL if ¢(.) is time-invariant and there exist 

matrices P = pT > 0, L and W such that 

(B.4) 
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Appendix C 

Derivation of the Distance between 

Contour Lines 

Let the sets S1 and S2 be defined by 

S1 {XE Rn I Fx = C1} 

S2 { X E nn I Fx = C2} 

Define the distance between contour lines by 

~ = min llx2 - x1ll2 
x2ES2 

for some x1 E S1 

Although not formally proved here, it is clear that the distance is independent of x1 for any pair of 

contour sets, since they are hyperplanes. Multiply the definition of~ by IIFll 2 on both sides. Then, 

where x; is the element of S2 for which the minimum is achieved. Now, by Holder's inequality: 

that is, 

If we take 
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then 

It follows that 
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Appendix D 

Derivation of the Extremal Values 

of Fx in Oz 

The problem is to determine 

F-: = sup Fx 
xErlz 

and 

where 

Dz= {x E Rn I Q(x) = z} 

The components of x in D satisfy the fundamental quantization inequality 

q q 
z· - - < x· < z· + -i 2 i i 2 

where, depending on the sign of Zi, some of the inequality signs might allow equality. Since a 

supremum is sought, it is not necessary to make distinctions. Since Fx is a linear function of x, the 

extreme values occur at the boundary of Dz. In fact, to maximize Fx we choose Xi = Zi + ! when 

Ji 2 0 and Xi = Zi - ! when Ji < 0. That is, the maximizing x is 

xT = Zi + ~sgn(fi) 

Now, 

n 

F-: = L Ji(Zi + sgn(fi)~) 
i=l 
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using the definition of 1-norm: 

n 

IIFll1 = L lfil 
i=l 

and the identity 

lal = a sgn(a) 

it follows that 

Similar arguments lead to the formula for the infimum: 
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Appendix E 

Stability of DPR MIMO Systems 

with Direct Transmission Term 

The following is a generalization of Lemma 3.2 for square MIMO systems. Let a discrete time system 

be represented by the state equations 

x(k + 1) 

y(k) 

Ax(k) + Bu(k) 

Cx(k) + Du(k) 

(E.1) 

(E.2) 

Here x(k), y(k) and u(k) are n, m and m-dimensional column vectors, respectively; and matrices 

A,B ,C and D = DT have appropriate dimensions. Let the control vector be defined by 

-<1"11(Y1(k)) 

-<1"12 (Y2 (k)) 

u(k) = (E.3) 

where the nonlinear functions satisfy 

<11i E S(O, ki), i = 1, 2 .. m (E.4) 

Define the m-by-m matrix K as 
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Lemma E.1. The discrete system described by Eq. (E.2) with D = DT is globally stable about the 

origin when the controls {E. 3) are applied if the transfer function 

J(z) = C(zI - A)-1 B + D + K-1 

is discrete positive real. 

Proof. Consider the Lyapunov function 

V(k) = xT(k)Px(k) 

Following a procedure similar to the proof of Lemma 3.2, D cancels out and the change of the 

Lyapunov function along system trajectories is found to be 

where <I> = -u. The first term is clearly negative semidefinite. Negative semidefiniteness of the 

second term follows directly from the sector conditions (E.4). Therefore the change in V(k) is 

negative semidefinite and the closed loop is globally stable about the origin. Asymptotic stability 

requires further assumptions on the behavior of the nonlinearity. • 
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Appendix F 

Multiplicative Perturbation 

Theorem for DPR MIMO Systems 

Theorem 9. Let a discrete system be represented by Eq. (E.2} with D = DT. Let ai : 'RP -+ n 
for i = l, 2, .. m be mappings such that :3 ai finite satisfying O ::S; ai(x) < a"i for all x E nn. Let 

M : n -+ n be sector nonlinearities M E S[O, ni]. Let the m-by-m matrix K be defined as 

Then if the transfer matrix 

J(z) = C(zl - A)-1 B + D + K-1 

is DPR, and aini < ki, al this for i = l, 2, .. m, then the closed-loop system formed by applying the· 

feedback 

u1(k) = -N1[a1 (x(k))Y1 (k)] 

u2(k) = -N2[a2 (x(k))Y2(k)] 

(F.l) 

(F.2) 

Um(k) -Nm[ am (x(k) )Ym (k)] 

is stable in the large. 

Proof. By hypothesis, J(z) is DPR.Then by Lemma B.2, there exists a real symmetric positive 
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definite matrix P and real matrices L and W such that 

Consider the quadratic Lyapunov function V(x(k)) = xT(k)Px(k). The change of the function along 

the the equations of the closed-loop system is, dropping index k from the notation: 

LiV(x(k)) = V(x(k + 1)) - V(x(k)) = [xT AT - BT N(a(x)y))]P[Ax - BN(a(x)y)] - xTPx 

where N(a(x)y) is the column vector with components M(aiyi), Performing operations and incor­

porating the matrix equations, D cancels out and the following expression is obtained 

LiV(x(k)) = -[LT x - W N(a(x)y)f[LT x - W N(a(x)y)] - 2[NT(a(x)y)y -NT(a(x)y)K-1N(a(x)y)] 

(F.3) 

The first term is clearly negative semidefinite. The second term can be examined as follows. If 

ai(x)yi > 0 then by the sector condition on M and the sector inclusion inequality of the hypothesis 

it follows that 

This implies 

(F.4) 

The second term is thus negative semidefinite, since 

m 

NT(a(x)y)y-NT(a(x)y)K- 1N(a(x)y) = LN(ai(x)yi)Yi -N2 (ai(x)yi)k-; 1 

i=l 

and each term of the sum is negative semidefinite, from Eq. (F.4). If a(x)y < 0 the above chain of 

inequalities is reversed, so the second term is negative semidefinite, being zero if N = 0 or y = 0, 

thus Lyapunov stability follows. In order to prove asymptotic stability, further assumptions on the 

local behavior of N and system observability might be required. • 
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Appendix G 

Negative Semidefinite Conditions 

for W 

Let 

Divide the Yp Ye plane into square quantization regions. Within a quantization region, Wis linear, so 

the supremum of its values occurs at the boundaries of the region. Consider a generic quantization 

region centered at (iq,jq), where q is the quantization stepsize and i, j are integers. Then 

1) Suppose i, j =/- 0 

Then the supremum occurs for Ye = jq + q/2 and Yp = iq - q/2. Substituting: 

1 ,T, (. ") f ( •2 i ) f ( •2 j) q2 'I' max i, J = 2 i + 2 + 1 J + 2 

Clearly, the above function is negative semidefinite for Ji < 0 and h < 0, being zero only when 

i = j = 0. 

2) Suppose i = 0, j =I- 0 

Then w(i,j) = Jij2q2 - jqyp, and the supremum occurs at Yp = -q/2. Substituting: 

For this to be negative for all integers j =f. 0, with Ji < 0 it is required that Ji < -1/2. This also 

guarantees tha~ w is not zero in those regions. 
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3) Suppose j = 0, i -::/= 0 

Then w(i,j) = hi2q2 + jqyc, and the supremum occurs at Ye= q/2. Substituting: 

1 - . ·2 i 
q2 Wmax(i) = hi + 2 

For this to be negative for all integers i -::/= 0, with h < 0 it is required that h < -1/2. This also 

guarantees that lJ! is not zero in those regions. 

4) Suppose i = j = 0 

This is the only case for which the function is zero when ii < -1/2 and h < -1/2. 

Summarizing, lJ! is negative semidefinite for ii < -1/2 and h < -1/2, being zero only when 

IYcl < q/2 and IYPI < q/2. 
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Appendix H 

Matlab Programs 

H.1 GCD of vector components 

%vgcd.m 

%This calculates the G.C.D. of a vector 

function num=vgcd(F) 

num=F(1); 

for i=1:max(size(F)), 

num=gcd(num,F(i)); 

end; 

H.2 LCM of vector components 

%vlcm.m 

%This calculates the l.c.m. of a vector 

function num=vlcm(F) 

num=F(1); 

for i=1:max(size(F)), 

num=lcm(num,F(i)); 

end; 
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H.3 Infirnurn for multiplier bound calculation 

%infval.m 

%Calculates Fq, the infimum of the set 

% 

% 

% 

Gamma(F)={Fzlz in Z_q-n and Fz>=q/2} 

%given vector F and quantization stepsize q. 

%Calls vgcd (greatest common divisor of vector elements) and vlcm 

%(least common multiple of vector components) 

%Hanz Richter, Fall 2001 

function Fq=infval(F,q); 

%Limit the precision of F to a few decimals 

%to prevent overflow problems when calculating the least 

%common multiple of the denominator of the fractional 

%representation of the elements of F. 

decimals=4; 

F=round(F*10-decimals)/10-decimals; 

%Convert F to the form: real*integer_vector 

[num,den]=rat(F); 

sigm=1/vlcm(den); %real and positive(rat sticks the sign 

%in the numerator) 

Fint=abs(num)*vlcm(den)./den; %integer_vector 

alph=sigm*vgcd(Fint); 
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n=ceil(0.5/alph); 

Fq=q*n*alph; 

H.4 QIQM stability check 

%qiqm_check.m 

%Tests is a given discrete-time system passes the sufficient 

%condition for global asymptotic stability when the loop is 

%closed using quantized input and state measurements. 

%Syntax: m=qiqm_check(A,B,F,q) 

%A,B are state space matrices (A must have eigenvalues in unit circle) 

%Fis the state feedback gain, to be used in the control law 

%u=-Q(FQ(x)), where Q is the quantization operator with step size q. 

%The stability margin (distance between min(Re(G(e-jw)) and the 

%qiqm stability limit) is returned in m. 

%If invoked without left hand argument, the command plots the 

%Nyquist diagram and stability limit. 

%Hanz Richter, 2001 

function [m]=qiqm_check(A,B,F,q) 

if max(abs(eig(A-B*F)))>=1 

disp('Closed-loop system is not nominally stable'); 

end; 

[re,im]=dnyquist(A,B,F,0,1); 

minpoint=min(re); 

Fq=infval(F,q); 

limit=0.25*norm(F,1)*(q/quant(Fq,q)+1)-Fq/(2*quant(Fq,q))-0.25; 
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if nargout==1 

m=minpoint-limit; 

if m>O 

disp('Test passed. Closed loop system globally asymptotically stable'); 

else 

disp('Test failed. Closed loop system may not be globally asymptotically stable'); 

end; 

else 

maxim=max(abs(im)); %for plot scaling 

plot(re,im, 'b' ,re,-im, 'b'); 

hold on; 

plot([limit limit], [-maxim maxim] ,'r--'); 

xlabel('Re(G(e-jw))'); 

ylabel('Im(G(e-jw))'); 

hold off 

end; 

H.5 QIQM equilibrium check 

%qiqm_equil. m 

%Performs a graphical test for multiplicity of equilibrium points 

%in systems with input and state measurement quantization. 

%Syntax: qiqm_equil(A,B,F,q,X) 

%A,B are discrete system matrices, Fis the state feedback gain used 

%in the control law u=-Q(F(Q(x)), where Q is the quantization operator 

%with stepsize q. 

%Xis the horizontal range used for plotting in the format 

%[Xstart:Xstep:Xend] 

%The index of the G=(A-r)-{-1} used in the solution is returned in 

%base_index. This can be used to find all solutions to the vector 

%equation. 

%Hanz Richter, 2001 
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function [base_index]=qiqm_equil(A,B,F,q,X) 

n=max(size(A)); 

if det(A-eye(n))==O 

disp('A-I is singular. Equilibrium set is dense'); 

else 

G=inv(A-eye(n))*B; 

%choose the first nonzero element of G 

base_g=G(l); 

i=l; 

while (base_g==O) & (i<=n-1) 

i=i+l; 

base_g=G(i); 

end; 

base_index=i; 

for i=l:max(size(X)), 

staircase(i)=quant(F*quant(X(i)*G/base_g,q),q); 

end; 

plot(X,staircase,X,X/base_g,'r'); 

xlabel ( 'x' ) ; 

ylabel('Quantization function and x/g_l') 

end; 

H.6 Gain scaling in QIQM 

%scale_F.m 

%This function helps in synthesizing stable gains for QIQM 
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%Syntax: sigmac=scale_f(A,B,Fo,q) 

%A,B are discrete system matrices. Fo is the initial gain, which must be 

%nominally stabilizing. q is the quantization stepsize. The critical scaling 

%factor is returned in sigmac. This is done assuming Fq=q/2. 

%If the function is invoked without left-hand argument, the loci of the 

%minimum of the real part of the Nyquist plot and the actual stability limit 

%(using the full expression for Fq computed by infval) are plotted. 

%Hanz Richter, August 22 2001 

function sigmac = scale_F(A,B,Fo,q) 

%Check validity of initial gain: 

if max(abs(eig(A-B*Fo)))>=1 

disp('Initial gain not nominally stabilizing') 

elseif nargout==1 

[re,im]=dnyquist(A,B,Fo,0,1); 

%Compute critical scaling 

sigmac=1/(norm(Fo,1)-2*min(re)); 

else 

[re,im]=dnyquist(A,B,Fo,0,1); 

%Compute critical factor for plot scaling purposes 

sigmac=1/(norm(Fo,1)-2*min(re)); 

%Show up to 200 percent of the critical 

sigmas=[0.01:0.01:sigmac*2]; 

%Line corresponding to Fq=q/2: 

linei=sigmas*norm(Fo,1)/2-1/2; 

%Curve corresponding to actual Fq: 

for i=1:max(size(sigmas)), 

inf=infval(sigmas(i)*Fo,q); 

line2(i)=.25*norm(sigmas(i)*Fo,1)*(q/quant(inf,q)+1)-0.5*inf/quant(inf,q)-0.25; 

end; 

%Plot: 
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plot(sigmas,sigmas*min(re),'b',sigmas,line1,'k' ,sigmas,line2,'r'); 

xlabel ('Scaling factor \sigma'); 

ylabel('Nyquist minimum and stability limit') 

title('Gain scaling plot'); 

legend( 'Nyquist minimum', 'Stab. lim. (Fq=q/2)', 'Stab. lim(True Fq) ') 

end; 

H. 7 QIQM Example - Stability 

%endlich.m 

%Sampling rate 

T=0.1; 

%Hurwitz controllable system: 

A=[-1/2 -1/4;1 3/4J; 

B=[1;2J; 

%Set of nominally stabilizing gains 

Fset={[0.4 OJ, [O 0.4J, [0.4 0.4J, [-0.1 -0.1J, [-0.1 OJ, [-0.1 0.1J, [O -0.1J, [O 0.1J, 

[O. 1 -0 .1J , [O. 1 OJ , [O. 1 0. 1]}; 

Fq={0.8 0.8 0.8 0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5}; 

fori=1:11, 

i 

F=Fset{i}; 

limit(i)=0.25*norm(F,1)*(1/round(Fq{i})+1)-Fq{i}/(2*round(Fq{i}))-0.25; 

subplot(2,1,1) 

plot([limit(i) limit(i)J, [-1 1J ,'r--'); 
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hold on 

dnyquist(A,B,F,0,1); 

hold on 

pause 

%RUN SIMULATIONS HERE 

subplot(2,1,2); 

stairs(t,x(:,1)); 

hold on 

stairs(t,x(:,2)); 

hold off 

clear x 

clear t 

pause 

end; 

****************************************************************************** 

*****************CHAOTIC RESPONSE EXAMPLE************************************* 

%chaos.m 

%A chaotic sytem 

%HD model from Franklin, Powell & Workman, p. 729, 1992. 

A=[1 5.3316;0 0.9993]; 

B=[0.0133;0.0050]; 

T=66e-5; 

p=[-1000*0.7+1000*sqrt(1-0.49)*j -1000*0.7-1000*sqrt(1-0.49)*j]; 

zp=exp(p*T); 

F=place(A,B,zp); 
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abs(eig(A-B*F)) 

H.8 Bifurcations in QIQM 

%bifurc_quant .m 

%This plots a bifurcation diagram for a QIQM system 

% x(k+1)=Ax(k)-BQ(FQ(x)) 

%Hanz Richter, 2001 

A=[-1/2 -1/4;1 3/4]; 

B=[1;2]; 

F=[0.4 OJ; 

q=1; 

plotiter=20; 

skipiter=20; 

for sigma=0.5:0.001:1.2, 

x=[40;50]; 

for k=1:skipiter, 

x=A*x-B*quant(sigma*F*quant(x,q),q); 

end; 

for k=1:plotiter, 

x=A*x-B*quant(sigma*F*quant(x,q),q); 

plot(sigma,x(1),'*','markersize',5); 

hold on; 

end; 

end; 

H.9 Equilibrium finding in QIQO 

%solve_qiqo 

%This function solves the system of scalar quantization equations 
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% 

% 

% 

% 

round(fi)=j 

round(gj)=i 

%for j,i>=1 and f,g>O. The theoretical maximum number of solutions 

%must be provided and is used as a search stop criterion. 

%Syntax: 

%[sols]=solve_qiqo(f,g,N) 

%A vector with the solutions for i is returned in sols. 

%Hanz Richter, 2001 

function [sols]=solve_qiqo(f,g,N) 

sols=[]; 

k=O; 

if (f<=O I g<=O) 

disp('Please rewrite the equation to have positive constants'); 

else 

for i=1:N, 

if round(g*round(f*i))==i 

k=k+1; 

sols(k)=i; 

end; 

end; 

end; 
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