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Chapter I 

The Fundamental Idea of LARC 

1.1 Introduction 

We are interested in systems whose mathematical description can be written as: 

i = f (x, t) + g(x, t)u 

y=Cx 

where the vector f(x,t)E 9tn, matrix g(x,t)E 9tnxm. Both f(x,t) and g(x,t) are 

possibly time-varying, nonlinear, and uncertain. We describe f(x,t) and g(x,t) as 

"uncertain" rather than "unknown" because we assume that some knowledge of these 

1 

objects is available. In most of our discussions, the control u is restricted to be linear in x 

for simplicity, although nonlinear controllers may give better results as shown in Chapter 

V. The vector x = [x1 x2 ••• xn f E 9tn is the state vector,· CE 9tqxn is the output matrix, 

y E 9tq is the output vector, and u(x) E 9tm is the control vector. The state xis assumed 

to be available for feedback. We restrict thatf(x,t), g(x,t), and u(x) are such that i is 

piecewise continuous in t, and is locally Lipschitz in the operating region of interest in 

9tn Vt~ 0. In general, it is most desirable that the system of interest be globally 

uniformly asymptotically stable. However, control problems for some physically simple 

systems such as underactuated systems (systems in which m < q) are surprisingly difficult 

to solve in a systematic fashion (Slotine, and Li, 1991). It has been our experience that 

this statement is true. In particular, we find that it can be very difficult to guarantee global 



2 

stability for underactuated systems using standard Lyapunov-based nonlinear control 

techniques such as sliding-mode control (Utkin, 1992), (Itkis, 1976), (Slotine, and Li, 

1991), (Khalil, 1996), or adaptive control (Narendra, and Annaswamy, 1989), (Sastry, 

and Bodson, 1989), (Slotine, and Li, 1991), (Khalil, 1996). This is because it is not clear 

how to obtain an attractive sliding surface (for sliding-mode control), or to find an 

adaptive law guaranteeing the negative definiteness a Lyapunov function (for adaptive 

control). The backstepping technique is a systematic Lyapunov-based controller design 

technique that can be employed to guarantee global stability. However, its applications 

are limited to strict-feedback nonlinear systems (Khalil, 1996), and it appears that a very 

limited number of physical systems falls into this category. In addition to these 

Lyapunov-based techniques, feedback linearization is a well-known differential

geometry-based technique (Isidori, 1989), (Nijmeijer, and Schaft, 1990), (Vidyasagar, 

1993). When applying this technique, we find that there are numerous physically simple 

systems that are not feedback linearizable. In addition, it can be very difficult obtain a set 

of appropriate transformations for practical physical systems, and it is not clear if such 

transformations remain valid in the presence of uncertainties. Faced with these 

difficulties, many researchers explore intelligent control techniques such as fuzzy logic, 

and incorporate human reasoning and decision making with analytical tools such as 

Lyapunov stability to construct stabilizing controllers (Wang, 1997), (Wang, 1994), 

(Yin, and Lee, 1995). In these references, we observe that global stability can be 

guaranteed only for simple systems. By embedding human reasoning and decision 

making into a fuzzy logic controller, it is possible to stabilize locally a fairly complex 

underactuated nonlinear system, such as the double-inverted-pendulum system (Misawa, 
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Arrington, and Ledgerwood, 1995). Using linearization, local stability of the closed-loop 

system can be examined. However, it has been our experience that the process of 

embedding human knowledge into a fuzzy rule base can be very tedious. In addition, it 

usually is very time-consuming to re-embed the knowledge when physical parameters of 

the system are changed. We find that it can be very difficult to handle robustness issues 

because of complex nonlinearities in the controller. 

Assuming that global stability using existing nonlinear control techniques cannot be 

guaranteed in a reasonable amount of time, it may be sufficient that the system be locally 

uniformly asymptotically stable about the equilibrium point at the origin. When local 

stabilization is acceptable, a typical approach is to approximate the nonlinear system 

about the origin using a linearized model. A linear controller is then designed to stabilize 

the linearized model, since this implies local stability for the corresponding nonlinear 

system. Based on this approach, considerable works in control theory have been directed 

toward performance and robustness of linear systems under linear controllers. It has been 

our experience that considerably less attention is directed toward the associated problem 

of attractive regions of nonlinear systems under linear controllers. In our opinion, a large 

attractive region is an important property associated with local stability. Indeed, our 

objective is to design u(x) such that the nonlinear system is locally uniformly 

asymptotically stable about the origin with a reasonably large attractive region. In our 

discussions, we define an attractive region as a set of initial conditions from which 

trajectories converge to the origin. We assume the equilibrium point at the origin because 



we can move a nonzero equilibrium point to the origin by changing variables. The 

equilibrium point at the origin is our "operating point", unless otherwise stated. 

4 

While linear controllers have been widely accepted for local stabilization, some 

researchers employ nonlinear controllers for the same purpose. For time-invariant 

problems with a set of constant operating points containing the origin, a possibility for 

local stabilization is to employ pseudolinearization (Reboulet, and Champetier, 1984) to 

linearize the nonlinear model using nonlinear transformations, such that the resulting 

linearized model in the transformed coordinate is the same about all operating points. 

This is desirable because it allows one to design a single linear control law in the 

transformed coordinate that is applicable for all operating points. However, it is not clear 

from the formulation how this can produce a reasonably large attractive region about a 

particular operating, or equilibrium, point. In addition, this reference does not discuss 

how to handle uncertainties when performing the transformation. For time-invariant 

problems with a continuum of constant operating points, such as stabilizing an inverted 

pendulum on a cart without controlling the cart position, extended linearization 

(Baumann, and Rugh, 1986) can be employed for local stabilization. Using this 

technique, one can employ a special choice of nonlinear control such that the linearized 

model of the nonlinear closed-loop system is stable and is the same for all operating 

points. In this reference, extended linearization is applied to the afore-mentioned cart

and-pole problem, and it is shown by means of simulations that the resulting attractive 

region is fairly large, but without showing how appropriate design parameters could be 

chosen to produce such results and how to handle modeling uncertainties. In addition, it 



is not clear from the formulation how such linearization can produce a reasonably large 

attractive region for the nonlinear system. We note that when the cart position is not a 

controlled variable and no uncertainty is present in the model, it is not difficult to 

implement global stabilization of the pole angle (Slotine and Li, 1991). We do not 

consider techniques for moving from one operating point to another, such as gain 

scheduling, because we want to focus on obtaining a reasonably large attractive region 

about the equilibrium at the origin. We now discuss applications of linear controllers in 

the following situations: 

Situation 1 

5 

In this situation, the linearized model about the origin of the system of interest is 

available and is time-invariant, but reliable uncertainty specifications are unavailable. In 

our discussion, a linear time-invariant model is called a "linearized model" if and only if 

it accurately represents the system of interest in sufficiently small regions about the 

origin, and stability of such linearized model implies local stability of the nonlinear 

system of interest. Assuming that the linearized model is locally state controllable or 

stabilizable, it is well known that a linear state-feedback controller can stabilize the 

corresponding nonlinear system in a sufficiently small neighborhood about an 

equilibrium point. Note that an uncertain nonlinear model can have a "certain" linearized 

model about an equilibrium point. To see this, consider the uncertain nonlinear model 

i 1 = sin(x1) + ax{ + u , where a E 91+ is uncertain and the origin is the equilibrium point 

of interest. The linearized model about the origin is given by i 1 = x1 + u. We see that 

there is no uncertainty in the linearized model. 
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Given a linearized model without uncertainty specifications, it seems reasonable that we 

admit standard linear system theory or optimal control theory (Kwakemaak, and Sivan, 

1972), (Kailath, 1980), (Zhou, 1996), (Skogestad, and Postlenthwaite, 1996), (Ogata, 

1997), (Burl, 1999) for local stabilization. Using these approaches, some linear 

uncertainty specifications or linear stability margins are assumed for the linearized 

model, and a linear controller is designed to meet such specifications or margins. This 

may be achieved by relocating the eigenvalues of the linearized model, by optimizing a 

performance index subjected to the linearized model, or by shaping frequency-domain 

plots of the linearized model. A primary objective of such a linear controller is to provide 

good response characteristics while maintaining reasonable relative stability for the 

linearized model. However, the relationships between these properties and the size of the 

attractive region of the correspondin~ nonlinear system are not obvious. Indeed, such a 

linear controller guarantees only the existence, but not the size, of an attractive region 

about the equilibrium point of the nonlinear system. Indeed, it appears from numerous 

examples that a linear controller can perform effectively and robustly for a linearized 

model while yielding a small attractive region for the corresponding nonlinear system. 

Although it may happen that a linear state-feedback controller yields a reasonably large 

attractive region for the nonlinear system, the above techniques do not suggest in general 

how design parameters should be chosen to produce such a desirable result. It has been 

our experience that this usually comes at the expense of considerable trial-and-error. 

Situation 2 

In this situation, the linearized model may or may not be available. However, a 
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"nominal" linear time-invariant model and the associated uncertainty specifications are 

available. In our discussions, a "nominal model" is different from a linearized model in 

the sense that it may not represent the nonlinear model accurately in sufficiently small 

regions about the origin, and stability of a nominal model may not imply local stability of 

the nonlinear system. In most cases, we employ the linearized model as a nominal model. 

This is because the linearized model provides accurate information about behaviors of the 

nonlinear system in sufficiently small regions about the origin, while behaviors in larger 

regions about the origin may be drawn from the uncertainty specifications. However, the 

linearized model is not necessarily an appropriate nominal model, because the nonlinear 

model may be poorly cast and the corresponding Hnearized model may be associated with 

some undesirable.characteristics of uncertainties. To see what we mean by a "nominal 

model", consider the following representation of the system of interest: 

i = Anx + Bn u(x) + [f(x,t)-Anx + g(x,t)u(x)-Bnu(x)] 

= Anx + Bn u(x) + f~(x,t, u(x)) 

=Anx+fn(x,t) 

f~ (x, (, u(x)) = [f(x, t)-Anx + g(x, t)u(x)- Bnu(x)], and fn (x, t) = f~ (x, t, u(x)) lu=-Kx. 

The uncertain vector fn(x,t) lumps together all the nonlinearities, uncertainties, and 

modeling errors perturbing the nominal linear model i = Anx + Bn u(x), and we may 

now consider the system as a nominal linear model subjected to time-varying nonlinear 

uncertain perturbations. The subscript "n" denotes the available "nominal" model. This 

notation is the same as that for the order or dimension "n" of the system, but the intended 

meaning of "n" will be clear from the context. 
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Several researchers have examined stability of nonlinear systems x = Anx + fQ (x, t) 

h A d · ·f· · fi llfQ(x,t)II · Th b. · · ·f. d w en n an uncertamty spec11cat1ons or llxll · are gtven. e o ~ect1ve 1s to m 

a bound on l~nl~i tJII for which the nonlinear system remains stable for all possible 

fQ(x,t) obeying this bound. One of the first papers addressing this problem was by Patal 

et al (Patel, Toda, and Sridhar, 1977). This paper proposes that an LQR 

u(x) = uLQR (x) = - K LQRx be designed first to stabilize the linear "nominal" model 

x = Anx + Bn u(x), and to obtain An without examining fQ (x, t) in the design process. 

Once such LQR is obtained, an allowable bound on l~nl~i')II for stability of the 

nonlinear system is computed from a theorem developed therein. Using this theorem, 

Patel et al showed robustness of an LQR in the presence of time-varying nonlinear 

uncertainties. However, they neither demonstrated why an LQR should be chosen for this 

purpose, nor proposed a guideline for how design parameters for the LQR should be 

chosen to produce a reasonably large uncertainty bound. The formulation of uncertainty 

bound in this paper does not exploit whatever structure of fQ(x,t) may be available. 

However, fQ(x,t) is assumed to be both structured, and time-invariant (i.e., 

fQ(x,t) = fQ(x) =Ex, EE 9tnxn) in an example therein. In 1985, Vedavalli (Vedavalli, 

1985) showed that a known structure of uncertainties could be employed to reduce 

conservatism of the uncertainty bound in (Patel, Toda, and Sridhar, 1977). Indeed, he 

proposed a less conservative bound for structured uncertainties fQ (x) =Ex. Since then, 

less conservative bounds for structured, unstructured, linear, nonlinear, time-invariant, 

and time-varying uncertainties have been proposed in several research works when An is 



given (Zhou, and Khargonekar, 1987), (Gao, and Antsaklis, 1993), (Chen, and Han, 

1994), (Olas, 1994), (Olas, and Ahmadkhanlou, 1994), (Kim, 1995), (Lee et al, 1996). 

These research works focus on system analysis rather than on controller design. They do 

not suggest if a particular linear controller may have certain advantages over others. 

9 

It has been pointed out by Chen and Chen (Chen, and Chen, 1990), (Chen, and Chen, 

1991) that applications of several existing robust control design techniques ((Chen, 

1987), (Chen, and Leitmann, 1987), and references quoted therein) for linear systems 

with time-varying nonlinear uncertain perturbations are restrictive because they rely on 

assumptions such as the matching condition, which can be difficult to satisfy in practice. 

In addition, they pointed out that techniques that employ a necessary and sufficient 

condition for quadratic stabilization (Barmish, 1985) can be difficult to apply (Barmish, 

1985) or to be conservative (Khargonekar, 1990). Our investigations agree with theirs. 

Using a two-level optimization scheme, Chen and Chen propose a linear controller design 

technique when the structure of the uncertain vector f,g (x, t) is available. By means of 

examples, they showed that the resulting technique is applicable to several practical 

systems. When this optimization-based technique is applied to common examples 

employed in the existing research works, the results are considerably less conservative. 

Indeed, these are the least conservative we have found in the literature for those 

examples. 

Our discussions progress from time-invariant Single-Input Multiple-Output (SIMO) 

systems to time-varying Multiple-Input Multiple-Output (MIMO) systems. The reader is 
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cautioned that properties, structures. and restrictions of the systems of interest are 

different from chapter to chapter. However, we impose that x is piecewise continuous in 

t, and is locally Lipschitz in the operating region of interest in 9tn "i/t 2::: 0 throughout our 

discussions. This is to guarantee existence and uniqueness of the solution of the 

differential equation of motion when applying Lyapunov stability (Khalil, 1996). We 

begin our discussions by considering SIMO time-invariant systems: 

x = f (x) + g(x)u(x) 

y=Cx 

where f (x) E 9tn , g(x) E 9in, and u(x) E 9i. 

1.2 Fundamental Idea of LARC 

(1.1) 

The fundamental idea of LARC is to employ a quadratic Lyapunov function to obtain a 

reasonably large attractive region for local stabilization of the nonlinear systems. We 

consider the available exact linearized model of (1.1) about the origin: 

x =Ax+Bu(x) (1.2) 

Suppose that (1.2) is state controllable, and that we apply a linear state feedback control: 

u(x) =-Kx (1.3) 

where K = [k1 k2 ... kn] is a matrix of constants that locates all the eigenvalues of 

A = [ A - BK] E 9tnxn in the LHP. We employ ( 1.3) throughout our discussions unless 

otherwise stated. The linearized model under (1.3) is given by: 

x = [A - BK]x = Ax (1.4) 
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For A , we assign a positive-definite strictly-increasing quadratic Lyapunov function: 

where Pis a symmetric positive definite matrix satisfying the Lyapunov equation: 

where Q is a symmetric positive definite matrix to be specified. For convenience, we 

select Q =I. Then P, which we sometimes call "the original P", may be obtained by 

solution of (1.6). Substituting this solution for Pin (1.5) and differentiating the result 

with respect to time along the trajectories of the nonlinear system in ( 1.1) yield: 

V (x) = xTPf(x) + xTPg(x) u(x) 

= F(x) + G(x)u(x) 

(1.5) 

(1.6) 

(1.7) 

where F(x) = xTPf(x) and G(x) = xTPg(x) are nonlinear scalar functions of state x, 

and F(O) = G(O) = 0. 

In what follows, we denote the 2-norm of x by llxll, the transpose of x by xT , the 

boundary of a region s by 0~, abbreviate "region about the origin" with "region", 

"hyperplane" with "plane" unless otherwise stated, and define the following regions: 

(1.8) 

BL= {x I V(x) < O}u{O} (1.9) 

Since V(x) is a quadratic positive definite function, 13c shrinks in all its dimensions as C 

decreases. This implies that we can force max(llxll) , Vx E 13c to be as small as we like by 

choosing a sufficiently small C. In fact, we propose to select C =CL such that 13c is 
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contained in BL, whose existence is guaranteed by Lyapunov stability if u(x) stabilizes 

(1.2). We now define: 

(1.10) 

By definition (1.10), we see that BeL and BL have at least one point in common at their 

boundaries. Such a point is called a "common boundary point", and is denoted by Pi 

E 9tn, i = 1,2, .... By definition (1.10), we see that BeL is radially large if and only if BL 

is radially large. We note that trajectories originating in Be e=e for sufficiently large C 8 . , B 

may or may not converge to the origin if Bt c:: Bc,e=eB, C8 E 9t+. Indeed, the two 

situations in which x0 E Be,c=eL cBL and x1 E BL c Be,e=eB can be illustrated in Fig. 

1.1. Given that V(x) Ix*'>< 0 iri BL with V(O) = 0, we are guaranteed only the 

convergence of the trajectory originating in Bc,c=eL c BL. Fig 1.1 illustrates possible 

convergence and divergence from xo and X1 respectively. Note that the trajectory from 

x1 can escape from BL although the trajectory travels such that Lyapunov function V(x) 

decreases in BL. This is because there are some portions of Be, e=eB that do not belong 

We call BeL a "Lyapunov Attractive Region" (LAR). By the Lyapunov stability, the 

existence, uniqueness, and convergence of trajectories originating in BeL is guaranteed. 

Our fundamental idea is to find a quadratic Lyapunov function and a controller that yield 

a reasonably large BcL . By the sufficiency of Lyapunov stability, we know that the 
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attractive region must contain ~cL . Because of this fundamental idea, we call our 

technique Lyapunov Attractive Region Control (LARC). When such ~cL is radially 

unbounded and global stabilization is possible with Q = I , this stabilization is known as 

"quadratic stabilization" (Barrnish, 1985). 

Xz 

... 
.1' .. .. .. .. 

Fig. 1.1 Convergence and Divergence of Trajectories 

Originating from Xo E ~ C,C=CL c BL and from X1 E BL C ~ C,C=Cs 

Remark: 0 < CL < C8 

1.3 Theorems 

In this section, we investigate how the quadratic Lyapunov function (1.5) can be chosen 

to satisfy a necessary condition for obtaining a large ~ CL with system nonlinearities. In 

our discussions, we assume that the following "basic conditions" are satisfied: 
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Cl) A in (1.2) is strictly unstable. 

Remark: From our experience, it is possible to develop LARC without 

imposing Cl. However, we find that imposing this can simplify 

greatly several key analyses without loss of generality. Indeed, if 

Ai(A)::;; 0 Vi, we write [A -BKu] = Au such that Au is unstable 

by using pole placement. This is always possible if C2 is satisfied. 

Then substitute Au + BKu for A in (1.2). Now, let u(x) = -K5x to 

obtain: 

i =[Au +BKu]x-BK 5x 

=Aux-:- B[Ks - Ku ]x 

=Aux-BKx 

further analysis, we regard Au as A. The matrix Kisto be generated 
' ' 

using our procedure. 

C2) [A, B] in (1.2) is controllable or stabilizable where controllability and 

stabilizability are defined according to (Zhou et al, 1996) with B cf:. 0. 

C3) u(x) = -Kx where K is determined such that A= [A - BK] is stable. If A is 

stable, the true linear gain matrix is given by Ks = K - Ku. 

C4) The symmetric positive definite matrix Pis determined from the Lyapunov 

equation -Q =![PA+ ATP], where QE 9inxn is a symmetric positive definite 
2 

matrix. 
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Lemma 1.1 (Relationship between S0 L=o and R[FL<OJv{o}) 

If the basic conditions Cl-C4 are satisfied then: 

FL (x) = xTPAx, and P and Q are symmetric positive definite matrices. 

Proof 

Consider the time derivative of the quadratic Lyapunov function (1.5) along the 

trajectories of the linearized model (1.2) under a linear control u(x) in (1.3): 

l\ (x) = xTPAx + xTPBu(x) 

= FL (x) + GL (x)u(x) 
(1.11) 

FL (x) denotes that they are defined with respect to.the linearized model. Notice that 

GL (x) is a linear function of x implying that S0 L =O exists and is a plane inn-space. By 

Lyapunov stability, the existence of the stabilizing linear gain matrix K guarantees the 

existence of a symmetric positive definite matrix P such that VL (x) is globally negative 

definite. The coexistence of the plane S0L=o and the globally negative definite function 

VL (x) implies that: 

1) The region R[FL <OJv{O} exists. 

This completes the proof. 
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Since (1.2) approximates (1.1) about the origin, it can be drawn directly from Lemma 1.1 

that for the nonlinear systems (for which we drop subscripts "L"), Sa=o c R[F<OJu{Ol in 

sufficiently small regions about the origin when Cl - C4 are satisfied. We claim that the 

"largest possible LAR" corresponding to a solution P of the Lyapunov equation is the 

region: 

13cs ={xlO~V(x)<Cs, [G(x)=O]==}[F(x)<O]} (1.12) 

where Cs E 9t+ is the largest possible number such that both of the conditions in (1.12) 

are satisfied. For a given P, 13cs can be obtained by increasing C in (1.8) from CL in 

(1.10) until the boundary of 13c first touches a point where G = 0 and F = 0 at C =Cs, 

where Cs~ CL >0. We denote the region 13c,c=Cs by 13cs and such a point by Xcs;, 

i = 1, 2, .... By the definition of Xcs;, it is necessary that V (xcs;) = 0 Vi . fu addition, 

Xcs; cf. 0 because the boundary of 13cL does not contain 0, The latter follows directly 

from (1.10) by noting the existence of BL is guaranteed if A is stable, Xcsi E 0 8L, and 

0~ 0 8L. To show the existence of 13cs such that 13cL c 13cs, it is sufficient to show that 

the interior of 13cL does not contain Xcsi Vi. Indeed, we know from (1.10) that 

f3cL c BL. Accordingly, it is necessary that V(x) lxaco< 0 if xis contained in the interior 

of 13c . Because V(xc . ) = 0 Vi, it follows that Xe . are not contained in the interior of 
L ~ ·~ 

13cL Vi. We see from (1.7) and (1.12) that: 

1) The existence of Xcs;, i = 1, 2, ... limits the dimensions of f3cs. 

2) We can force V(x) to be negative definite in 13cs by manipulating u(x). 
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Because our fundamental idea is to obtain a large BeL, it is desirable that Bes be as large 

as possible because Bes is the largest possible BeL that can be obtained by manipulating 

u(x). This implies that the matrix Pin the quadratic Lyapunov function (1.5) should 

chosen such that Xes; is as far from the origin as possible. A possible approach to do this 

is to exploit specific structures and nonlinearities in the functions F(x) and G(x). 

However, we do not follow this approach because: 

1) We realize that the characteristics of S F=O and SG=o in many physical systems are 

extremely difficult to analyze to find such P. Accordingly, reasonable 

simplifications are needed to make the problem tractable. 

2) We desire that the applicabihty of the resulting scheme is not limited by specific 

structures of the systems other than (1.1). 

To explore how to construct such P for the quadratic Lyapunov function, we now 

consider some important characteristics of GL (x) and of FL (x) in the following 

theorems: 

Theorem 1.1 (Characteristics of Eigenvalues of M) 

If the basic conditions Cl-C4 are satisfied then the symmetric matrix: 

(1.13) 

has only real eigenvalues, with exactly one positive eigenvalue and n -1 negative 

eigenvalues. 
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Proof 

We begin by referring to the Lyapunov stability theorem and state without proof that the 

existence of such Pin Theorem 1.1 is guaranteed when Cl - C4 are satisfied. Now we 

differentiate the quadratic Lyapunov function (1.5) along the trajectories of the linearized 

model (1.2): 

Vi (x) = .!.cxT ATPx + xTPAx + BTPxu(x) + xTPBu(x)] 
2 . 

= .!.xT[PA +[PA( ]x + xTPBu(x) 
2 

= xTMx + xTPBu(x) 

= Fi (x) + Gi (x)u(x) 

(1.14) 

where M =~[PA+ [PA(], Fi(x) = xTMx, and Gi(x) = xTPB. Note for (1.14) that M 

is symmetric because :E: + ET is symmetric for all :E: E 9tn><n, and xTPB = BTPx because 

Pis symmetric and xTPB E 9t. Since Mis a real symmetric matrix, it has a set of n real 

eigenvalues "-M and a set of the corresponding n real orthogonal eigenvectors VM, where 

"-M ={AM1, ... ,AMn} and VM ={vM1, ... ,vMn} respectively(Haganetal, 1996). Without 

loss of generality, we assume that v Mi are normalized such that v~i v Mi = 1, 

i = 1,2, ... , n. It is clear that we can employ this set of orthonormal eigenvectors as a 

basis set for generating 9tn . 

Notice that C2 and C3 imply the existence of u(x) such that Vi (x) is globally negative 

definite. By Lemma 1.1, this guarantees that Fi (x) < 0 on S0 L=o = {x I Gi (x) = O} and 

on Su=O = {x I u(x) = O} except at the origin where Fi(O) = Gi(O) = u(O) = 0. By Cl, 
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(Proof of Theorem 1.1 (Cont.)) 

FL(x) = xrMx must be positive at some x that does not belong to S0 L=O and Su=O 

except at the origin. Next, we consider S0 L=o. Since P and Bare constant matrices, we 

see that the surface S0 L = 0 exists and is a plane. Expanding the equation GL (x) = 0, 

we obtain ~ homogeneous linear equation: 

GL(x) = 0 

= c\x1 + CzXz + ... + cnxn 
=CX 

where ci, i = 1,2, ... , n are real constants and C = [c1 c2 ••. cJ. We see that the 

(1.15) 

surface S0L=o = {x I GL (x) = O} is the set of all solutions of the linear equation (1.15) inn 

unknowns and thus a subspace of 9tn. From basic linear algebra (Curtis, 1984), (Roman, 

1992), we have: 

Theorem 1 .. 1.1 

The dimension of the solution space of a system of homogeneous linear equations in n 

unknowns is n-r where r is the rank of the coefficient matrix. 

Accordingly, the dimension of the solution space of (1.15) is n-1, because the 

dimension of C is 1 x n , such that rank(C) = 1 . Since the dimension of a subspace of 

solution vectors is defined as the number of linearly independent vectors in a basis set 

generating the subspace, we have that the number of linearly independent vectors that 

generates the subspace defined by: 

(1.16) 
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(Proof of Theorem 1.1 (Cont.)) 

is n-1. Depending on the point we want to discuss, we alternatively denote the set 

{x I GL (x) = O} by SGL=o or by SGL=o when we want to consider it as a subspace or as a 

surface, respectively. 

Since VL (x) is globally negative definite, it must be true that FL (x) = xTMx < 0 on 

Su=o where x t= 0. In addition, it is immediate from (1.14) that FL(x) > 0 for some 

x !t: Su=O because A is unstable. Since FL (x) is quadratic, the fact that FL (x) changes 

signs implies that the real symmetric matrix M has at least one positive eigenvalue, and at 

least one negative eigenvalue. Now, assume for the moment that M has more than one 

positive eigenvalue, and arrange the set of eigenvalues and eigenvectors of M as 

J..M = P-Mi,AMz•· .. ,AMj,· .. ,A.Mn} and VM = {vMI• vM2 , ... , vMj,· .. , vMn} such that AMI, 

AMz, ... , AMj are positive. Arranging in this fashion, we have that j < n because we have 

shown that M has at least one negative eigenvalue. Now, we apply the linear 

transformation: 

(1.17) 

where z E 9\n , and 

(1.18) 

Accordingly, 

(1.19) 

where MT = T~MTM. Using this reduction to principal axes (Ortega, 1990), we have 

that MT is a diagonal matrix whose diagonal entries are the eigenvalues A Mi , i = 1, ... , n 
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(ProofofTheorem 1.1 (Cont.)) 

of J\tl. Expanding the right-hand side of (1.19) yields: 

(1.20) 

Since zi is along vMi i = 1, ... , n, and AM1 , AM2 , ... , AMJ are positive, it follows that: 

0 = { x Ix = z1 v Ml + z2 v Mz ... + z J v MJ, where z1, z2 , •.. , z 1 E 9t} 

E {x IFL(x) = xTMx > O} U {O} = R[FpOJu{O} 
(1.21) 

where 0 is a subspace generated by the basis set { vM1 , vM2 , ... , v~ }. The subspace 

0 has dimension}, and FL (x) > 0 for all x belonging to this subspace except at the 

origin where FL (0) = 0. From basic linear algebra (Curtis, 1984), (Roman, 1992), we 

have: 

Theorem 1.1.2 

Let Wand Z be finitely generated subspaces of a vector space V' . Then W n Z and 

W + Z are finitely generated subspaces, and we have: 

dim(W + Z) + dim(W n Z) = dim(W) + dim(Z) (1.22) 

where W + Z = { w + z I w E W, z E Z} . 

Applying this theorem to our problem, we let W = S0 L=o and Z = 0. We have that: 

Fl) dim(W+Z) is at most n because x E 9tn Vx. 

A 

F2) dim(W) = n -I because the rank of C in (1.15) is one. 

F3) dim(Z) = j > 1 because we assume that M has more than one positive eigenvalue. 
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F4) dim(W n Z) = dim({O}) = 0 because FL(x) < 0 on S 0 L=o except at the origin 

where FL (0) = GL (0) = 0. 

It follows from F2 and F3 that dim(W} + dim(Z) > n. Since dim(W+Z) is at most n, it 

follows from (1.22) that dim(W n Z) ~ 1. But this cannot be true by F4. This 

contradiction implies that M has exactly one positive eigenvalue. By our arrangement, 

this positive eigenvalue is AMI. This completes the first part of the proof. 
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From the fact that M has exactly one positive eigenvalue, it may not be obvious that the 

remaining n-l eigenvalues of M are all negative. However, the following analysis shows 

that this is true. We recall now that and there are n -l linearly independent vectors 

spanning S0 L=o. Since VL (x) is negative definite; S0 L=O must be contained in 

{x I FL(x) = x7 Mx < O} u{O} = R[FL<OJu{O}. This is true if and only if R[FL<OJu{O} 

contains at least n-1 linearly independent vectors because these are needed to span S0 L =O • 

Since we know now that AMI> 0, it follows that R[FL<OJu{O} does not contain vM1 • If M 

has at least one zero eigenvalue A.Mk in {11.M2 , ..• ,11.Mk , ... , 11.MJ then R[FL<OJu{O} does not 

contain two linearly independent vectors vM1 and vMk. This implies that R[FL <OJu{O} can 

contain at most n-2 linearly independent vectors because R[FL<OJu{O} c 9tn. We see that 

this contradicts the known fact that R[FL <OJu{O} contains at least n-1 linearly independent 

vectors spanning S0L=O. Accordingly, no eigenvalue of M can be zero and we then 

conclude that the remaining eigenvalues AM2, ... , A.Mn are all negative. This completes 

the proof of Theorem 1.1. 
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We consider next the concept of symmetry of a surface about an axis. Our following 

discussion can be found in (Curtis, 1984), (Roman, 1992) respectively. Let us begin by 

using a two dimensional example to recall the concept. Assuming that we have a parabola 

f (x, y) = y - x 2 = 0. A simple means to describe the symmetry of the parabola about the 

y axis is to assert that the right half of the parabola exactly coincides with the left half 

when the x-y plane is folded along the y axis. However, it is clear that this simple means 

works well only in two-dimensional cases. To be more precise, we observe that such 

plane folding can be algebraically described as a linear transformation which sends the 

point (x, y) to (-x, y) such that both (x, y) and (-x, y) are on the parabola. Inn-

dimensional space, this implies that the symmetry of a surface f (x1 , ... , xi-J, xi, xi+l' 

... , xn) = 0 about the Xi-axis can be asserted if and only if f (-x1 , ••• ,-xi-J, xi, - xi+I' 

... ,-xn) = 0. This leads us to: 

Theorem 1.2 (Symmetry of S FL =O about Eigenvectors of M) 

The surface S FL=o is symmetric about the axes along the eigenvectors vM1 , ... , vMn of M. 

In addition, S FL =O is symmetric about the plane spanned by v MZ , •.. , v Mn . 

Proof 

We first diagonalize Musing the linear transformation x = TMz, where TM is given by 

( 1.18). From the proof of Theorem 1.1, the surface S FL =O can be described in the 

transformed basis by: 
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(1.20) 

It is clear that if the vector z1 = [z1 ... zi-I zi zi+I ... znY satisfies (1.20) then so does 

the vector z2 = [- z 1 ... - zi-I zi - zi+1 ... - znY for i = 1, ... , n, and it follows that the 

surface FLr (z) = 0 is symmetric about the zi axis. By construction of 

the transformation matrix T, the Zt axis in the basis {vM1, ... , vMn} points in the direction 

of VMi in the original basis for i = 1, ... , n because { v MI , ... , v Mn } is used as the basis for 

the reduction to principal axes. Accordingly, we conclude that the surface S FL=o is 

symmetric about the axes along the eigenvectors vM1 , ... , vMn in the original basis. This 

completes the first part of the proof. 

We now consider a vector in the plane spanned by the set {vM2 , ... , vMn} for which 

A.Mi < 0 1 = 2, 3, ... , n . A vector in 9\n belongs to this plane if and only if the first 

component of this vector is zero in the principal basis of M. For convenience, we denote 

a vector in this plane by z{vMz, ... ,vMn} = [O z2 .. . zJT. Now consider a vector 

zE SFL=o denoted by z = zFi=O,I = [z1 z2 ... zJT. We see that the symmetry of SFL=o 

about the plane spanned by {vM2 , ... , vMn} can be asserted if z = [- z1 z2 ... zJT also 

belongs to SFL=o. Indeed, examining (1.20) shows that if zFL=O,I belong SFL=o then so is 

z = [-z1 z2 ... znY denoted by zFL=o,z. This completes the proof of Theorem 1.2. 

We now state the symmetry property of S FL =O about the plane spanned by { v Mz , .•. , v Mn} 

using geometry. From (1.20), we see that FL (x) lx=TMz < 0 at every point z = z{vM 2 , ... ,vMn} 



= [O z2 . . . Zn Y on this plane because A.Mi < 0 , i = 2, 3, ... , n except at the origin 

where FL (0) = 0. Starting at a point z = zfvMz , ... , vMn}, it follows from (1.20) that 

FL (x) lx=TMz increases from a negative value as the first component of zfvMz, ... ,vMn} 

increases from zero because A.Ml > 0. In addition, we know by inspecting (1.20) that 

there exists a sufficiently large value of z1 for this first component such that 
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FL (x) lx=TMz = 0 at a new point z = [z1 z2 ... Zn Y denoted by z Fi=O,l. It follows that the 

vector zFL=0,1-zfvMz, ... ,vMn} =[z1 0 ... oY denoted by zA1 isorthogonaltotheplane 

spanned by {vM2, ... , vMn} because [z~i][z{vMz, ... ,vMn}] = 0. Geometrically, the vector 

zA1 emanates orthogonally from the plane spanned by {vM2, ... , vMn}, and terminates at 

Now, consider the situation when we start from z = zfvMz, ... ,vMn}, but the first component 

of z{vMz,. .. ,vMnl decreases from zero. By examining (1.20), we see that FL(x) lx=TMz= 0 

exactly atthe point z = [- z1 z2 ... znY denoted by zFL=o,z. In the same fashion, we 

have that z FL =O,z - z{vMz, ... ,vMn} = [- z1 0 . . . 0 Y denoted by z AZ is orthogonal to the 

plane spanned by {vM2, ... , vMn} because z~2zfvMz, ... ,vMn} = 0. Geometrically, the vector 

z 82 emanates orthogonally from the plane spanned by {vM2, ... , vMn} in the direction 

opposite to that of z Al , and terminates at z = z FL =O,z E S Fi=o. Notice that the lengths of 

the orthogonal vectors z Al and z AZ are the same. It is because of this property that we 

assert the symmetry of SFi=O about the plane spanned by {vM2, ... , vMn}. 
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1.4 Effects of Nonlinearities on LAR 

Because of the nonlinearities in the original equation of motion (1.1), the deviations of 

S G=O from SOL =O , and of SF =O from S FL =O is to be expected except at the origin. In this 

section, we consider the situation when S F=O approaches S0 =0 and intersects S0 =0 at 

Xcs; i = 1,2, ... where G(xc5) = F(xcs;) = 0, although SFL=o does not intersect S0 L=o. 

The existence of Xcs; implies that J3cs (defined in (1.12)) is not radially unbounded and 

makes it impossible to guarantee global stability using the current quadratic Lyapunov 

function, which depends only on the matrix P. For the nonlinear systems (1.1), we desire 

that J3cL be large. But since J3cL c J3cs , it is necessary that J3cs be l,arge. Because of 

this, it is necessary that such intersection Xcs; are far from the origin Vi to obtain a large 

Proposition 1.1 (Eigenvector Condition) 

Intuitively, we know that if Pis chosen such that S0 L=O runs close to a particular portion 

of SFL=o, then small deviations of S0 =0 from S0 L=o and of SF=O from SFL=O can result 

in an intersection Xcs; between S0 =0 and S F=O. For this proposition 1.1, we restrict 

ourselves to two dimensional systems. For a two-dimensional system, this situation can 

be illustrated in Fig. 1.2, which is drawn according to Lemma 1.1, Theorem 1.1, and 

Theorem 1.2. We note for Fig. 1.2 (a) and (b) the following representations: 

1) F(x) = 0 on the two bold solid curves denoted by S F=O,l and S F=o, 2 • 



2) FL (x) = 0 on the two thin solid lines denoted by S FL=o,1 and S FL=o, 2 • 

3) G(x) = 0 on the bold dashed curve denoted by SG=o. 

4) GL(x) = 0 on the thin dashed line denoted by SGL=o. 

(a) 

x2 x2 

(b) 

Fig. 1.2 Effects of Pon the Location of Xcs; 

Symbol: <> = intersection point between SG=O and S F=O 2 

(a) SGL=o runs close to S FL=o,z and far from S FL=o,1, locating the 

intersection between S F=O and SG=O undesirably close to the origin. 

(b) S GL =O runs midway between the lines S FL =O,I and S FL =O,z , locating the 

intersection point between S F=O and SG=O reasonably far from the origin. 
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XJ 

S FL=O,I 

SF=OI 

We denote the matrix P corresponding to Fig. 1.2 (a) and (b) by Pa and Pb respectively. 

In Fig. 1.2 (a), Pa is a poor choice because it locates SGL=O close to S FL=o,z but far from 

By Theorem 1.1 and 1.2, this symmetry axis is exactly along the eigenvector vM2 

corresponding to a negative eigenvalue AMz. Assuming that the respective surfaces in 
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Fig. 1.2 (a) and (b) have the same degrees of deviations resulting from nonlinearities, the 

orientation of surfaces in Fig. 1.2 (b) should locate Xcsi farther from the origin than that 

resulting from the orientation of surfaces in Fig. 1.2 (a). Noticing this, we propose: 

Proposition 1.1 (Eigenvector Condition) 

We propose to choose P such that SFL=o is symmetric about SGL=o and 

SGL=O c R[FL<OJu{O}· This is equivalent to choosing P such that {vM2, vM3, ... , vMn} 

spans SGL=o, where A.Mt > 0 > AM2 :?: •.. :?: A.Mn. When n = 2, this amounts to choosing P 

such that v M2 spans S G L =O . 

In short, our particular choice of Pis heuristic. However, the heuristic choice of P that 

centers S GL =O between S FL =O,I and SF L =O, 2 seems to be reasonable. Under this particular 

orientation, we know by continuity that small deviations due to nonlinearities will not 

place the intersection point Xcs; arbitrarily close to the origin, and Xcs; are increasingly 

far from the origin as the degree of deviation decreases. Because of this, it seems 

reasonable to say that this particular choice of P = Pb locates Xcs; "reasonably far" from 

the origin and force Pcs to be "reasonably large". By locating Xcs; "reasonably far" from 

the origin, we refer to the illustration in Fig. 1.2 from which it is conceivable that 

II Xcs; II """7 00 as the degree of nonlinearities becomes smaller but need not be zero. 
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Proposition 1.2 (Eigenvalue Ratio) 

In addition to choosing P such that SFL=o is symmetry about S 0 L=o as in Proposition 1.1, 

we want to choose P such that S FL =O is as far from the plane spanned by { v M 2 , ••• , v Mn } 

as possible. This is because if the objective in Proposition 1.1 can be satisfied, then this 

plane is the same as S aL =O and thus we desire that S FL =O be as far from this plane as 

possible. In this section, we show that this new requirement can be accomplished by 

forcing the eigenvalue ratio to be small. The eigenvalue ratio is defined as: 

· max(X;.,li) 
P: = ,~·· ~----1 
AM - (1- ) max 11.Mi 

(1.23) 

where x;.,Ii are positive eigenvalues of M, "'Mi are the negative eigenvalues of M such 

that vMi spans S0 L=o when the eigenvector conditi_on is satisfied. Recall from Theorem 

1.1 that no eigenvalue of M can be zero, and all the corresponding n eigenvectors are 

orthonormal. Suppose the eigenvalues of M are arranged as A.Ml > 0 > AM2 ~ ... ~"'Mn, 

we have i = 1 because A.Ml is the only positive eigenvalue of M, and j = 2, ... , n 

because A.Mi< 0 such that vMi spans S0L=O when the eigenvector condition is satisfied. 

Accordingly, r;..,M = -A.Ml I AM2 . Given a linearized model, we notice that M depends 

only on P. 

We now investigate how the eigenvalue ratio r;..,M affects the relative orientation between 

S FL=o and S0 L=o when the eigenvector condition is satisfied. Consider the expression for 

FL (x) = 0 in the principal-axes coordinate: 
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(1.20) 

where the zi - axis is along vMi, i = 1,2, .. . ,n. For convenience, we arrange the 

eigenvalues of M for SIMO systems as: 

A.Ml > Q > 11.Mz ~ · · · ~ A.Mn (1.24) 

where A.Ml = max(A°~i) , 11.Mz = max(A°Mj) , and rAM =IA.Ml / 11.Mz r= -A.Ml / 11.Mz . Now, 

consider a point in the z1 - z2 plane spanned by { v Ml, v MZ} . We denote this point by 

z{vMl,vMzl = [z1 z2 0 ... Of E 9tn. Given a value of z2 for z{vM1,vMzl, we know by 

inspection that there exists a value of z1 such that (1.20) is satisfied and 

z{vMi,vMzl ES FL=o. Such z{vMi,vMzl then belongs to the intersection of the z1 - z 2 plane 

and S FL =O, and we denote this point by zf;;;~. vMz} = [z1 z2 0 ... of . 

At a given point zf;:i~.VMzl, we see from (1.20) that if 11.Ml is small relative to AMz then 

z1 must be large relative to z2 and vice versa. In a two~dimensional system (n = 2), the 

effects of large and small rJ..M can be illustrated in Fig. 1.3. In Fig. 1.3, the z1 - axis is 

spanned by vM1 , the z2 - axis by vM2 , and the symbols o represents the point 

zf;=~.vMz} located at the distance lz21 along the z 2 - axis. The ratio rAM corresponding 

to Fig. 1.3 (a) is larger than that corresponding to Fig. 1.3 (b). Indeed, we must have that 

FL (x) lx=TMz = 0 at the point zf;=~· vMzl, and thus (1.20) implies that the distance lz1 lb in 

Fig. 1.3 (b) must be greater than the distance lz1 la in Fig. 1.3 (a). Because of this, the 

surface S FL =O in Fig. 1.3 (b) runs farther from the z 2 - axis than it does in Fig. 1.3 (a). 
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In Fig. 1.3 (a), SFL=o runs close to S 0 L=O and thus we see that Xcs; can be close to the 

origin in the presence of small deviations of S F=O from S FL =O and of Sa=o from S 0 L =O. 

It can be shown by examples that the undesirable situations in Fig. 1.2 (a) and Fig. 1.3 (a) 

can occur at the same time when an inappropriate P is chosen to construct the quadratic 

Lyapunov function. Proposition 1.2 is now given: 

(a) 

S FL=0,2 

(b) 

Fig. 1.3 Effects of Eigenvalue Ratio to the Relative Orientation 
between S FL=o and S 0 L=o when the Eigenvector Condition is Satisfied 

Symbol: o = points on S FL =O locating at the same distance lz2 I along v MZ 

Remarks: 1) jz1lb > jz11a 

2) Pa is such that rA M is large, forcing S GL =O to run close to SF L =O • 

3) Pb is such that rAM is small, forcing S 0 L=O to run far from SFL=o. 

Proposition 1.2 (Eigenvalue ratio) 

From a set of P matrices satisfying the eigenvector condition in Proposition 1.1, we 
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propose to choose a particular P matrix such that the eigenvalue ratio rAM defined in 

(1.23) is small to force S h=O away from S0 L=o while maintaining the symmetry of 

In addition to the previous graphical approach, the role of eigenvalue ratio can be seen 

using a geometrical approach. To see this when n = 2 , we note that a oiven z{FL =0 } is 
t,£ VM1,VM2 

far from the space spanned by v MZ if the "angle" 8 between zF{ L =O v } and the 
. VM1, M2 

projection of z{FvL=o v } onto the space spanned by vM2 is large. A vector in the space 
Ml, M2 

spanned by vM2 is along the z2 - axis and is denoted by z{vM2}. Geometrically, the 

cosine of this angle is given by: 

(1.25) 

orthonormal basis. 

Since we desire that 8 be large; we want cos(S) to be small. Given a value of z2 , we see 

from (1.25) that this can be accomplished by forcing z1 to be large. From (1.20) this is 

possible if and only if rAM is small and we see that the conclusions from the 

previous graphical approach and this geometrical approach are the same. In an n-

dimensional system, applying the same argument for points on the plane formed by v Ml 
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and~vector vMJ' }=2,3,4, ... ,n showsthattheanglebetween zf;,=~.vMJ} and z{vMJ} is 

minimum when j = 2 because of the arrangement of the eigenvalues of Min (1.24). 

For the following discussions, we note that because of the orthogonality of the 

eigenvectors of M and because the zi - axis is along v Mi , i = 1, 2, ... , n : 

1) The projection of a vector z1FvL=O v v } = [z1 z2 Ml, Mz, ... , Mn 

onto the plane spanned by { v MZ, ... , v Mn } is denoted by: 

2) A vector belonging to the intersection of S FL =O and the plane spanned by 

{ v Ml, v MZ } is denoted by: 

Zz O ... Of 

where z[;~~,vMz} is such that (1.20) is satisfied. 

3) The projection of zF{vL =O v } = [z1 z2 0 . . . Of onto the plane spanned by 
Ml, M2 

{ v MZ, ... , v Mn } is the vector: 

z{ } = ZF{ L =O }I = [O Zz O . . . of 
VM2 VMl, VM2 ZJ =0 

For all points z1FvL =O v } belonging to SF =O , we claim that the angle between 
Ml,vMz, ... , Mn L 

zF1 L =O } and the plane spanned by { v MZ, ... , v Mn} is minimum when 
VMl 'VMZ ' ... , VMn 

z1FL=0 v } = z1FvL =0 v } . To show this, it is sufficient to show that the angle 
VMl,vMz, ... , Mn Ml, M2 
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Fi=O between a vector z{V11.- v v l = [z1 ·,ul, Mz, ... , Mn z2 . . • Zn ( and its projection 

z{vMz, ... , vMn} = [O z2 • • . Zn ( onto this plane is minimum when z3 = z4 = ... = 

the proof of Theorem 1.3 and it follows from this result that we can get the idea of how 

close S FL =O is to the plane spanned by { v MZ, ... , v Mn } by examining the angle 8 

z2 0 . . . Of and its projection onto the plane spanned by 

{VMz•···, VMn}. We denote such projection by Z{vMz} = [0 . z2· 0 ... OJT. This is 

because such result indicates that 8 is the infimum (greatest lower bound) of the angles 

between all vectors belonging to S h=O and the corresponding projections onto the plane 

spanned by { v MZ, .•. , v Mn} . Note that the angle between z{FvL =0 v } and the plane 
Ml, M2 

spanned by { v MZ, •.. , v Mn} is the angle between zF{vL =O v } and its projection onto this 
Ml, M2 

plane denoted by zfvMzl. We have shown previously using (1.20), Fig. 1.3 and (1.25) that 

the size of this angle is governed by the eigenvalue ratio r;.., M = - A.Mt I AMz , where the 

eigenvalues of Mare arranged as in (1.24). It is then desirable to choose P such that r;..,M 

is small because a small r;..,M corresponds to a large 8, which implies that S FL=o is "far" 

from the plane spanned by { v MZ, ... , v Mn } . 

Theorem 1.3 (Implication of Eigenvalue Ratio) 

Let the set of n orthonormal eigenvectors { v Mt, v MZ, ... , v Mn} be employed for 

generating 9tn . If the basic conditions Cl - C4 be satisfied, then the angle 8 between a 
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vector z{FL=O l = [z1 z2 ... znf E SFL=O and its projection z{vMz, ... ,vMnl VMI, VM2 , ... , VMn 

= [O z2 z3 . • . Zn f onto the plane spanned by { v MZ, ... , v Mn } is the smallest when 

Z3 = Z4 = ... = Zn = 0 or when: 

FL=O FL=O [ z = z = z {vM1,vM2, .. ,,VMnl {VMl,VMn} I Zz O ... Of 

where the eigenvalues of M are arranged such that AMI > 0 > AMz 2:: ... 2:: AMn and 

Proof 

Th · · f FL=O [ e proJect1on o z{v v v l = z1 Ml, Mz, ... , Mn z2 . . . Zn f E S FL =O onto the plane spanned 

by { v MZ, ... , v Mn } is the vector: 

z = [O z {vMz, ... ,VMnl 2 

Note that we do not consider the case in which z1 = 0 . Indeed, we see from the equation 

for S h=O given in (1.20) that if z1 = 0, then (1.20) is satisfied only at the origin because 

AM1 > 0 > AMz 2:: •.• ~ AMn . Since Theorem 1.3 does not apply at the origin, this special 

case is irrelevant. Our original problem is to find zF{vL =O v v l such that the angle Ml, Mz, ... , Mn 

between zF1 L =O l and z{vMz vMn l is minimized over all possible vM1,vMz, ... ,vMn , ... , 

zF{vL=o v v l i= 0. From basic geometry, the cosine of the angle 8 between 
Ml, Mz, ... , Mn 

zF1L=0 l and the corresponding projection z{vMz, ... ,vM" l is given by: VMl,vMz, ... ,VMn " 



(Proof of Theorem 1.3 (Cont.)) 

[zFL=O f z 
(8) {VM},VM2, .. ,,VMn} {VM2, ... ,VMn} cos = .,,.---=~c=....-..c.c.=--,,-------

11 [zFL=o f JJllz II {VM},VM2, .. ,,VMn} {VM2, ... ,VMnl 

2 2 2 
=---;=======Z=2=+==Z=3=+,·=·=·+==zn========== 

/2 2 2/2 2 2 
-..J Z1 + Z2 +··.+Zn -..J Z2 + Z3 +.·.+Zn 

I 2 2 2 
-..J Z2 + Z3 + · .. + Zn 

I 2 2 2 
-..J Z1 + Z2 + ... +Zn 
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(1.26) 

Notice that 1 > cos(8) > 0, and z[;:i~.vM2 , ... ,vMnl i= 0 must obey (1.23) and (1.24). Since 

the numerator and denominator in (1.26) are greater than zero, we know from basic 

trigonometry that O < 8 < (n I 2). In this range, we have that cos(8) monotonically 

increases as 8 decreases. Accordingly, the original problem can be cast as an 

optimization problem for which the objective is to find zF{vL=o v v l i= 0 that 
Ml, M2,···, Mn 

maximizes the right-hand side of (1.26), with constraints given by (1.20) and by Theorem 

1.1: 

(1.27) 

Since the numerator and the denominator of the objective function are positive, squaring 

the objective function does not change the solution. For simplicity, we now convert 

(1.27) to: 

2 2 2 
M . . . ] _ ] 2 _ Z2 + Z3 + · · · + Zn 

ax1ID1ze . 2 - 1 - 2 2 2 
Z1 + Z2 + ... +Zn 

Subjected to: 1) AM1zf + AM2z~ + ... + "'MnZ~ = 0 

: 2) "'Ml > 0 >AM2 ~A,M3 ~ ... ~A.Mn 

(1.28) 
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(Proof of Theorem 1.3 (Cont.)) 

where the range of the objective function J 2 is O < J 2 < 1 because O < 11 < 1. This is 

equivalent to: 

2 

Minimize : J 3 = J:;_1 = 2 2 z 1 2 + 1 
Zz + Z3 + ... +Zn 

Subjected to : 1) "-Mizf + "-MzzJ + ... + "-MnZ~ = 0 (1.29) 

: 2) "-Ml> 0 >AMz 2AM3 2 ··· 2"-Mn 

where the range of the objective function 1 3 is 1 < J 3 < oo . To find the solution 

zFL=0 = [z z2 . .. znf :;t: 0 for(l.29), we consider the following {VMI, VMz, ... , VMn} 1 

arguments: 

1) The component z1 corresponding to the solution vector is nonzero. Otherwise, 

z1 = 0 and all the constraints in (1.29) are satisfied simultaneously only at the 

origin. This leads to a contradiction since we omit the origin and we require that 

all constraints be satisfied. 

2) The set { z2, z3, ... , Zn} corresponding to the solution vector contains at least one 

nonzero element. Otherwise, all the constraints in (1.29) are satisfied 

simultaneously only at the origin. Since we omit the origin, { z2, z3, ... , Zn} must 

contain at least one nonzero element. 

3) The constraints in (1.29) implies that: 

0 > "-M2(zi + z~ + ... + z~) 2 "-M2zl + "-M3Z~ + ... + "-MnZ~ = -AM1zf 

0 2 2 2 < "-M2zJ +AM3Z~ + ... +AMnz~ -AM1zf < Z2 +Z3 + ... +zn - --~~ 
"-Mz "-M2 
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(Proof of Theorem 1.3 (Cont.)) 

. 3 4 A d. 1 2 2 2 . . -" . h z = , , .. . ,n. ccor mg y, z2 + z3 + ... +Zn 1s maximum 1or a given z1 w en 

zi = 0 , i = 3, 4, ... , n . 

It follows from the arguments in 1 - 3 that l 3 in (1.29) is minimum when: 

zFL=O = [z {vM1,vMz, ... ,vMnl I 

At the solution z{FL = 0 l , the minimum of the obiective function 13 in (1.29) is given VMJ,VMZ J 

by: 

(1.30) 

To find the minimum of 1 3 , we substitute zf;~~.vMzl = [z1 Z1 0 . . . Of into the 

first constraint in (1.29) to produce: 

This is the same as: 

(1.31) 

where we recall that AMI > 0 and AMz < 0. Notice that we can always find a value of z1 

fo~ every set of {AMI, AMz, z2 } where AMI > 0 and AMz < 0 such that (1.31) is 

satisfied. Now, we substitute - AMzZ~ for zf in (1.30). This produces the minimum 
AMI 

values for l 3 :. 

(1.32 a) 

This solution corresponds to the maximum value of l 2 and 11 : 
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(Proof of Theorem 1.3 (Cont.)) 

(1.32 b) 

(1.32 c) 

This completes the proof of Theorem 1.3. 

Recall that we want to choose P such that the eigenvalue ratio rAM =-AMII AMz is 

small. By inspecting (1.32), a small rA.M corresponds to a large J 3 , to a small J 2 , and to 

a small J 1 . Since J 1 = cos( 8) , a small J 1 implies that the angle between a vector 

belonging to S Fi=O and its projection onto S0 i=O is large by Theorem 1.3. In views of 

Proposition 1.1 and 1.2, we want to find P such that S Fi=O is symmetric about S0 i=o and 

rAM is small because this forces a possible intersection point Xcsi between S F=O and 

S0 =0 "reasonably far" from the origin. 

For all mathematical descriptions (1.1) having the same linearized model, choosing 

P = Pb to orient S 0 L =O and SF L =O as in Fig. 1.2 (b) and Fig. 1.3 (b) does not necessarily 

yield the largest J3cs over all possible choices of P because: 

1) Specific nonlinearities have not been taken into account. 

2) Mathematical optimization has not been employed to search for the optimal P that 

yields the largest J3cs. 



In Proposition I.I and 1.2, we have obtained two desired relative orientations between 

SaL =O and S FL =O. Because of continuity, we see that these orientations locate Xesi 
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reasonably far from the origin and thus yield a reasonably large Bes. This is necessary 

for obtaining a large BeL because BeL c Bes. In Proposition I.I (eigenvector condition), 

we restrict ourselves to systems with n = 2, while we consider the general case when n is 

an arbitrary positive integer in Proposition 1.2 (eigenvalue ratio). This is because the 

general case of the former requires deeper analysis in Chapter II. In further 

developments: 

1) We need to find a mathematical condition corresponding to the desired relative 

orientation between SaL =O and S FL =O in Proposition 1.1 for n-dimensional 

systems. 

2) We need a condition that guarantees the existence or nonexistence of P that yields 

such relative orientation. 

3) If such P exists, a method for obtaining Pis required. 

4) A controller construction aiming to obtain a large LAR is required. 

Items 1, 2 and 3 are addressed in Chapter II while item 4 is discussed in Chapter II 

without robustness issues, and in Chapter III with robustness issues. Next, we give a 

simple example to illustrate various mathematical objects we have discussed. At this 

point, we do not employ an underactuated system such as a double-inverted-pendulum 

system or a cart-and-pole system as an example because handling such a system using a 

LARC requires later results in our developments. 
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Example 1.1 (An Artificial System) 

Consider the following second-order artificial system by: 

[ x1 ] = [10x2 + 10x1 + 10sin(.x1 )2 sin( x2) - xf J + [ 0 Ju 
x2 5xf +sin(x2) cos(x2)+1.5 (E 1.1.1) 

x = f (x) + g(x)u 

The outputs of the system (E 1.1.1 a) are the state variables x1 and x2, and the input is the 

control u(x). When u(x) = 0, the system has two unstable equilibrium points 

x01 = [O of, and x02 = [0.1886 -0.1788V. We constrain our interest to x01 , the 

origin. The linearized model about the origin is given by: 

[ ~1]=[10 10][x1J+[o]u 
x2 0 1 x2 2.5 (E 1.1.2) 

x=Ax+Bu 

To stabilize the system (E 1.1.1) locally about the origin, the following linear control is 

applied: 

u(x) = -[60 2o]x = -Kx (E 1.1.3) 

This places the two eigenvalues of the matrix A= [A-BK] at A12 = -19.5 ± j25.095 

in the LHP. This linear control is chosen primarily to stabilize the nonlinear system 

locally; there are infinitely many other possibilities. We now employ A to find P using 

(1.6) in which we set Q = I for convenience. This produces: 

[
0.3289 0.0253] 

p = p(El.l.4) = 0.0253 0.0154 

From (1.6), this yields the quadratic Lyapunov function: 

(E 1.1.4) 

(E 1.1.5) 
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The function F(x) and G(x) corresponding to P(El.1.4) are given by: 

F(x) = xTP(ELl.4/(x) 

= (0.3289x1+0.0253x2 )(10x2+10x1+10sin2 (x1)sin(x2 )- xf) 

+ (0.0253x1 + 0.0154x2 )(5xf + sin(x2 )) 

(E 1.1.6) 

G(x) = xTP(El.1.4)g(x) 
(E 1.1.7) 

= (0.0253x1+0.0154x2 )(cos(x2 ) + 1.5) 

The linear approximations of F(x) and G(x) corresponding to the linearized model (E-

1.1.2) are given by: 

1 T T . T yl3.2890 1.7835] 
FL (x) = 2 x [P(El.1.4)A + [P(ELL4)A] ]x = x Mx = x l 1.7835 0.2680 x (E 1.1.8) 

(E l.L9) 

where M = . The relevant surf aces, the regions 13c , BL, and their two [
3.2890 1.7835] 
l ,,7835 0.2680 L 

common boundary points corresponding to the linear control u(x) in (E 1.1.3) are shown 

in Fig. El.LL Note for Fig. El.I.I that: 

1) S F=O is represented by two thin solid curves, namely S F=o,1, and S F=o, 2 • 

2) Sa=o is represented by a thick solid straight line. 

3) BL is the region with diagonal solid lines, and 0 8L is represented by two thick 

dashed curves, namely O BL, 1' and O 8L,2 . 

4) 13c is the elliptical region with diagonal dotted lines, whose boundary is 0,, . 
L PQ 

5) The symbol o denotes an intersection between 0,, and O 8 , which is a 
PCL L 

common boundary point. 
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In Fig. El.I.I, we see that the surfaces Sa=o and SF=O do not intersect in the x1 -x2 

plane except at the origin. Thus the boundary of BeL does not contain an intersection 

point between Sa=o and S F=O. We now proceed to find Bes (defined in (1.12)) 

corresponding to P(E1.1.4). This can be determined by finding first the intersection Xes; 

i = 1, 2, ... then expand Be from C =CL until the boundary of Be first reaches Xes; at 

C =Cs. We do this in Fig. El.1.2 for which we note that: 

P1: common boundary 
point of BeL and BL 

'~---
Fig. El.I.I Region BeL and BL for (E 1.1.1) under Linear Control in (E 1.1.3) 

1) S F=O is represented by two thin solid curves namely S F=o,1, and S F=o,2 . 
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2) Sh=O is represented by two thin dash curves namely SFL=O,l and SFL=o,z. The 

surface SF=o,z overlaps SFL=o,z and we see only SF=O 2 in the figure. 

1) SG=o is represented by a thick solid curve. 

2) SGL=O is represented by a thick dash curve. The line SG=0 overlaps SaL=O and we 

see only Sa=o in the figure; 

3) The symbol O represents the point Xcsi at which S F=OJ intersects SG=o (i.e., 

F(xc ) = G(xc ) = 0 ). In the figure, this point is on OA = Sv-s 5 . 
Sl Sl · · PCs - · 

Graphically, we see from Fig. El.1.2 which is a zoom-out version of Fig. El.1.1 that the 

ellipse ~cs is the largest possible LAR corresponding to P(El.1.4) because SG=0 intersects 

S F=O,l at Xcsi on the boundary of this ellipse. Notice that ~cL in Fig. El.1.1 resulting 

from the linear control (E 1.1.3) is significantly smaller than the corresponding ~cs in 

Fig. El.1.2. Under P(EI.1.4), the eigenvalues and eigenvector of Mare given by: 

"'Ml =4.1156, VMl = [-0.9073 -0.4205Y (E 1.1.10 a) 

AMz = -0.5587, VMz = [0.4205 -0.9073Y (E 1.1.10 b) 

The surface SGL=o is the line cxGL=O, where c E 9t and xGL=O = [0.5195 -0.8544(. 

According to Theorem 1.2, v MZ is the symmetry axis of S FL =O such that FL (x) lxatO < 0 

along VMz. We see from (E 1.1.10) that SaL=o is not spanned by vM2 . Indeed, SaL=o is 

spanned by the unit vector xGL=o and it can be shown that the angle between xGL=o and 

VMz is 0.1123 radian. The eigenvalue ratio is r;,_M = 7.3668. 



SG=O' SGL=O --

(overlap) 

Xc51 : intersection point 

between Sa=o and S F=O 

' .. ~ 

-20 

' ' ' ' ' 

-10 

X2 

S F=o,2 , Sh =o,z (overlap) 

Fig. El.1.2 13cs or the Largest LAR Corresponding to P(El.1.4) 

when SaL=o is not on the Symmetry Axis of S FL=o 

Remarks: 1) Some portions of S F=O and of Sa=o overlap S FL=o and SaL=o 

2) FL(x) lx,,0<0 on SaL=O 

Now, let us find 13cs corresponding to: 
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[
0.6446 0.0728] 

p = p(E 1.1.lO) ;::: 0.0728 0.0354 (E 1.1.10) 

Note that P(EI.l.lO) is obtained from (2.12) with p = 225 using later results in our 

development for which details will be presented in Chapter II. We substitute P(EI.l.IO) for 
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P(E1.1.4) in (E 1.1.6), (E 1.1.7), (E 1.1.8), and (E 1.1.9) to obtain a new set of functions 

F(x), FL (x), G(x), and GL (x): 

F(x) = xTP(E1.1.1ol(x) 

= (0.6446x1+0.0728x2)(10x2+10x1+10sin2(x1)sin(x2)- xf) 

+ (0.0728x1 + 0.0354x2 )(5xf + sin(x2)) 

(E 1.1.12) 

1 T T T y[6.4461 3.6233] 
FL(x)=2x [P(ELI.lo)A+[P(El.1.IO)A] ]x=x Mx=x 3.6233 0.7631 x (El.1.13) 

G(x) = xTP(E1.1.1o)g(x) 
(E 1.1.14) 

= (0.0728x1+0.0354x2)(cos(x2) + 1.5) 

(E 1.1.15) 

where M = . To find graphically the largest possible LAR f3c [
6.4461 3.6233] 

3.6233 0.7631 s 

corresponding to P(ELI.IO), we plot the new surfaces S F=O, S FL=o, Sa=0, and SGi=O 

corresponding to P(ELl.lO) in Fig. El.1.3 using the same notations and symbols as for 

figures El.1.1, and El.1.2. Note from figures El.1.2, and El.1.3 that f3cs corresponding 

to P(E1.1.4) is significantly smaller than that corresponding to P(El.1.IO). The boundary of 

f3c corresponding to P(EI 1 IO) is approximately Sv_27 where V = _!_ xTP x . Under 
S · · - 2 (El.1.10) 

P (E 1.1.1o), the eigenvalues and eigenvectors of M are given by: 

AMI = 8.2092, VMI = [0.8992 0.4376Y (E 1.1.16 a) 

AM2 = -1, VM2 = [-0.4376 0.8992Y (E 1.1.16 b) 

Using (E 1.1.15), it can be shown that the surface SGi=O is the line cxGi=O and 

FL(x) < 0 along this line, where c E 9\ and x 0 L=O = [0.43755 -0.89920F. 



S F=0,1 -------~ 

SG=O' SGL=O --"" 

(overlap) 

S FL =0 I ----x 
, ' 

Xc51 : intersection point 

between SG=O and S F=O 

s F=0,2 

' ' ' 

-20 
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Fig. El.1.3 f3cs or the Largest LAR Corresponding to P(El.l.IO) when SGL=o is on the 

Symmetry Axis of S FL=O with r"'M = 8.2092 

Remarks: 1) Some portions of SF=O and of SG=O overlap SFL=o and SGL=o 

respectively. 

2) Fi (x) lx;to< 0 on SGL=O 

Now, we see that SGL=o is spanned by the eigenvector vM2 in (E 1.1.16 b), and vM2 is 

the same as xGL =O • Since we know from Theorem 1.2 that S FL =O is symmetric about 

vM2 , it follows that S FL=o is symmetric about SGL=o .. The eigenvalue ratio is 

r"'M = 8.2092. For this particular problem, the eigenvalue ratio corresponding to P(El.l.IO) 

is approximately 11.4% larger than that corresponding to PcE 1.1.4) but because SGL =O is 
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exactly on the plane spanned by vM2 , we see that Xcsi corresponding to P(El.1.IO) is 

farther from the origin than that corresponding to P<E 1.1.4). This forces ~Cs corresponding 

to P(El.l.IO) to be larger than that corresponding to P(El.1.4). 

To see how a large eigenvalue ratio can affect ~cs when the eigenvector condition is 

satisfied, we examine ~cs corresponding to: 

[
4.3990 2.6830] 

p = p(El.1.1?) = 2.6830 2.1917 

Note that P(El.1.1?) is obtained from (2.12) with p = 1 using later results in our 

(E 1.1.17) 

development for which details will be presented in Chapter II. We substitute P(El.1.1?) for 

P(El.1.4) in (E 1.1.6), (E 1.1.7), (E 1.1.8), and (E 1.1.9) to obtain a new set of functions 

F(x), FL (x), G(x), and GL (x): 

F(x) = xTP(E1.1.nl(x) 

= (4.3990x1+2.6830x2 )(10x2+10x1+10sin2 (x1)sin(x2 )- xf) 

+(2.6830x1 +2.1917x2 )(5xf +sin(x2 )) 

(E 1.1.18) 

1 T T T T[43.9900 36.7515] 
FL(x) = 2x [P(El.l.17)A + [P(El.l.17)A] ]x = x Mx = x 36.7515 29.0217 x (E 1.1.19) 

G(x) = xTP(El.l.l?)g(x) 
(E 1.1.20) 

= (2.6830x1+2.1917x2 )(cos(x2 ) + 1.5) 

(E 1.1.21) 

where M = . To find graphically the largest possible LAR ~c [
43.9900 36.7515] 

36.7515 29.0217 s 



corresponding to PCEI.1.1?), we plot the new surfaces S F=O, S FL=o, SG=0, and SGL=o 

corresponding to PcEI.1.1?) in Fig. El.1.4 using the same notations and symbols as for 

the previous figures. Note from figures El.1.3, and El.1.4 that f3c5 corresponding 

to P(El.l.IO) is significantly larger than that corresponding to P(EI.1.1?). The boundary of 

f3c5 corresponding to P(EI.1.1?) is approximately Sv=6.5 where V = ~ xTP(EI.l.l?)x. 

SG=O' SGL=O ----.~ 

(overlap) 

-2 

-4 

,,,.-- Xc51 : intersection point 

between SG=O and SF=O 

' ' ' ' ' 

4 

' ' ' ' 
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Fig. El.1.4 f3c5 or the Largest LAR Corresponding to P(El.1.1?) when SGL=o is on the 

Symmetry Axis of S FL=O with r"'-M = 74.0117 

Remarks: 1) Some portions of S F=O and of SG=o overlap S Fi=O and SGL=o 

respectively. 2) FL(x) lx*o< 0 on SGL=O 



Under P(EJ.1.1?), the eigenvalues and eigenvectors of Mare given by: 

AMI= 74.0117, VMI = [0.7745 0.6326Y 

AM2 = -1, VM2 = [-0.6326 0.7745Y 
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(E 1.1.22 a) 

(E 1.1.22 b) 

Using (E 1.1.21), it can be shown that the surface SGL=o is the line cxGL=o and 

FL(x) < 0 along this line, where cE 9t and XcL=o = [-0.6326 0.7745Y. Now, we see 

that ScL=o is spanned by the eigenvector vM2 in (E 1.1.22 b), and vM2 is the same as 

XcL =O . Since we know from Theorem 12 that S FL =O is symmetric about v MZ , it follows 

that S FL =O is symmetric about S GL =O . The eigenvalue ratio is r"M = 74.0117 . For this 

particular problem, the eigenvalue ratio corresponding to P(El.1.lO) is approximately 

900% larger than that corresponding to P(EJ.1.1?), although both P(EI.1.lO) and P(EJ.1.1?) 

satisfy the eigenvector condition. Notice that S F=O intersects Sc=o much closer to the 

origin under P(EJ.1.1?) than it does under P(EI.l.IO). Accordingly, f3cs corresponding to 

P(EJ.1.1?) is significantly smaller than that corresponding to P(EJ.l.IO). 

1.5 Summary 

1) There are numerous physical nonlinear systems whose mathematical descriptions 

present structural and algebraic difficulties when designing a globally stabilizing 

controller for. Examples are underactuated systems such as double-inverted

pendulum systems (Misawa, Arrington, and Ledgerwood 1995), (Walker et al, 

1991), and cart-and-pole systems (Wang, 1994), (Ogata, 1997), (Slotine, and Li, 
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1991). For such systems, we often admit locally stabilizing controllers designed 

by applying linear system theory to suitable linearized models. Theoretically, we 

expect the linear controller to stabilize the nonlinear system in a region where the 

linear approximation is valid. However, we generally do not examine the size of 

this region when designing a linear controller. After such design, simulations are 

employ to numerically estimate the resultant attractive region. 

2) A major drawback of a linear controller designed by applying linear system 

theory to a linearized model is that the attractive region of the corresponding 

nonlinear system can be unsatisfactorily small. It is known that a linear controller 

can be designed either by relocating the eigenvalues of the linearized model or by 

optimizing a performance index, although their relationships to the attractive 

region of the corresponding nonlinear system are not obvious. The fundamental 

idea of LARC is to employ a quadratic Lyapunov function and a linear controller 

to guarantee local stability with a reasonably large LAR. Since Lyapunov stability 

guarantees that an attractive region must contain a LAR, LARC indirectly 

produces a reasonably large attractive region. 

3) By definition, a LAR does not contain the intersection between the surfaces Sa=o 

and S F=O denoted by Xcs;, i = 1, 2, .... Accordingly, a necessary condition for a 

large LAR is that either Xcs; does not exist or that II Xcs; II is large 'ef i. Since the 

surfaces Sa=o and S F=O depend on the equation of motion and P, we can only 



search for a special choice of P that removes or expels Xcs; from the origin. A 

possible approach for obtaining such P is to exploit specific nonlinearities and 

structures of F(x) and G(x). However, 

3.1) We realize that the characteristics of F(x) and G(x) in many physical 

systems are extremely difficult to analyze for such purpose, and thus 

reasonable simplifications are needed to make the problem tractable. 

3.2) Depending solely on specific nonlinearities and structures of F(x) and 

G(x) can limit the applicability of the resulting scheme. 
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Accordingly, we primarily formulate LARC based on the characteristics of S0 L =O 

and S FL =O • This is because there are infinitely many F(x) and G(x) that can be 

approximated by FL (x) and GL (x) in operating regions about the origin. In 

addition, this simplifies the problem because FL (x) and GL (x) are obtained from 

a linearized model. We will orient S0 L =O and S FL =O such that the location of a 

possible Xcs; is reasonably far from the origin in the presence of nonlinearities. 

4) In the presence of possibly complex nonlinearities in (1.1), we orient S0 L=o on 

the symmetry plane of S FL =O such that FL (x) lxtco< 0 on S0 L =O, and r;i.,M is small. 

Geometrically, it is conceivable from Fig. 1.2 that this relative orientation locates 

Xcs; "reasonably far" from the origin in the sense that II Xcs; II~ 00 as the degree 

of nonlinearities becomes smaller but need not be zero. Notice that the effects of 
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nonlinearities have been handled implicitly by such choice of relative orientation. 

However, this may not remove Xcs; or maximize II Xcs; JI when possible, because 

specific nonlinearities and structures of F(x) and of G(x) have not been included 

in the formulation, and optimization has not been employed. 
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Chapter II 

Eigenvector Condition and Controller Generation 

2.1 Introduction 

We have pointed out in Chapter I that a linear controller designed primarily for stabilizing 

a linearized model may yield a small attractive region for the corresponding nonlinear 

model. We apply Lyapunov stability in Chapter I to show that a large attractive region 

could be obtained by forcing the corresponding LAR to be large. By our definition, we see 

that a LAR (denoted by BeL) depends on P and u(x). To obtain a large LAR, it is 

necessary to locate every intersection point between S F=O and SG=O (denoted by Xes;) far 

from the origin to obtain a large Bes. We know by inspection that Xes; and Bes depend 

on P and the equation of motion (1.1). Since the equation of motion is given, we can alter 

only P to produce the desired results. We introduced in Proposition 1.1 the "eigenvector 

condition" for systems with n = 2, which is a particular relative orientation of Sh =O and 

SGL=o that locates Xes; reasonably far from the origin and produces a reasonably large 

Bes . However, the existence and choice of P yielding such relative orientation in 

arbitrary n-space was not clear. 

In this chapter: 

1) We formulate the generalized version of the eigenvector condition for representing 

such particular relative orientation of S FL=o and SGL=o inn-space. 



2) We establish conditions for the existence or nonexistence of P that satisfies the 

eigenvector condition. 

3) We address computational methods for obtaining P to satisfy the eigenvector 

condition, provided that such P exists. 
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4) We generate a linear control uIARc(x) for obtaining a reasonably large LAR when 

the eigenvector condition can be satisfied. 

For these purposes, the basic conditions Cl - C4 given in Section 1.3 will be recalled 

frequently. 

2.2 Mathematical Description of Eigenvector Condition 

According to the two dimensional case discussed in Proposition 1.1, we want to locate 

S 0 L =O on the symmetry plane of S FL =O so that small deviations of S F=O from S FL =O and 

of S0 =0 from S0 L=O do not put possible intersections Xcs; between S F=O and S0 =0 close 

to the origin. At the same time, we require that S0 L=o c R[FL<OJu{O} for stability of the 

linearized model as pointed out in Lemma 1.1. Notice that S0 L=o in a two-dimensional 

system is a line. Accordingly, we can satisfy these requirements in a two-dimensional 

system by locating S0 L=o on the line along the eigenvector vM2 corresponding to the 

negative eigenvalue AMz of M because z2 VMz c R[F£<OJu{OJ \/z2 E 9l. We now want to 

find a precise mathematical condition that is equivalent to such relative orientation in n

space. To do this, we draw from the proofs of Theorem 1.1 and 1.2 that: 
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1) FL ( x) is a quadratic function and the surface S FL =O is symmetric about the n real 

orthonormal eigenvectors v Ml, ... , v Mn of the symmetric matrix M. 

2) The matrix M has exactly one positive eigenvalue AMI and n-1 negative 

eigenvalues AM2 , ... ,A.Mn. 

3) S0 L=o is a plane of dimension n-1 and we must have that S0 L=O c R[FL<OJu{O} for 

stability of the linearized model. 

According to these results, we can orient S0 L =O such that S FL =O is symmetric about 

S0 L=o and S0 L=o c RrFL<OJu{O} by locating the eigenvectors vM2 , ... ,vMn corresponding to 

the negative eigenvalues AM2 , ... ,A.Mn on S0 L=o. In other words, we want to find P such 

that {vM2, ... ,vMn} isabasissetforgenerating S0 L=o· Since S0 L=o isaplaneof 

dimension n-1 and all the eigenvectors of M are orthogonal, this condition can be satisfied 

by choosing P such that the normal vector of S0 L=o or V(GL(x)) = [PB] points in the 

direction of the eigenvector VMI corresponding to the only positive eigenvalue AMI of M. 

This latter condition is more convenient to apply to SIMO systems than the former 

because it involves only two vectors, namely V(GL(x)) and VMI· Accordingly, the term 

"eigenvector condition" is associated with the latter condition in this chapter unless 

otherwise stated. 
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2.2 Theorems 

To find P that satisfies the eigenvector condition, we examine properties of the functions 

FL (x) and GL (x) further in the following theorems: 

Theorem 2.1 (Relationship between Eigenvectors of Mand N) 

If the basic conditions Cl - C4 in Chapter I are satisfied with Q = cl where c E 9t+ , then 

the sets of eigenvectors of N = _!_[[PB]K + KT[PBf] and of M =_![PA+ ATP] are the 
2 2 

same. 

Proof 

It is clear that the existence of the symmetric positive definite matrix P satisfying the 

Lyapunov equation is guaranteed by Lyapunov stability if Cl - C4 are satisfied. Now, let 

Q in C4 be cl where c E 9t+ and consider the Lyapunov matrix equation: 

- Q = -cl = _!_ [PA + [PA f] 
2 

= _!_ [PCA -DK]+ [A - DK{ P] 
2 

=_![PA+ ATP]-_!_[[PB]K + Kr[PBf] 
2 2 

=M-N 

1 1 1 
where N=-[[PB]K+Kr[PBf ]=-[PBK+[PBKf] and M=-[PA+ArP] 

2 2 2 

=[PA+ [PAf] are symmetric because E + ET is symmetric for all EE 9tnxn. 

(2.1) 
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Since Mis real symmetric, it has n real eigenvalues A.Mi and n real orthonormal 

eigenvectors vMi, i = 1, ... , n (Hagan et al, 1996). Now recall the linear transformation 

matrix TM from (1.18): 

(1.18) 

We premultiply and postmultiply every term in (2.1) by TM.1 and TM respectively to 

produce: 

(2.2) 

Since MvMi = AMivMi, i = I, ... ,n, we obtain: 

(2.3) 

where AME 9\nxn is a diagonal matrix whose diagonal elements are A.Mi, i = I, ... ,n. 

Since - cTM1ITM =-cl, (2.2) can be rewritten as: 

- cl= AM - TM.1NTM 

TiiNTM =cl+ AM 
(2.4) 

From the right-hand side of (2.4), we see that TM1NTM = AN is diagonal. This shows that 

N can be diagonalized by using the eigenvectors vMi, i = 1, ... , n of M. Accordingly, we 

see that N and M have the same set of eigenvectors and the diagonal elements of AN are 

the eigenvalues of N. This completes the proof. 

Theorem 2.2 (Properties of Eigensystem of N) 

If the basic conditions Cl - C4 are satisfied then the matrix N = .![[PB]K + KT[PBf] 
2 

has the following properties: 
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Pl) N has exactly one positive eigenvalue. 

P2) N has at most one negative eigenvalue. 

Remark: The remaining eigenvalues of N other than those in Pl and P2 are 

all zeros. 

P3) The eigenvector corresponding to the positive eigenvalue in 1) bisects the angle 

between the vector [PB] and the vector KT . 

Remark: We say that a vector v "bisects" the vectors [PB] and KT if 

P4) If the negative eigenvalue in P2 exists, then the corresponding eigenvector bisects 

the angle between the vector [PB] and the vector -KT. 

Proof 

The existence of the symmetric positive definite matrix P satisfying the Lyapunov 

equation is guaranteed by Lyapunov stability if Cl - C4 are satisfied. We now substitute 

- Kx for u(x) in (1.14) to produce: 

VL(x) = _!_xT[P[A-BK]+ [A-BK{P]x 
2 

= _!_xT[PA + ATP]x-_!_xT[P[BK] + [BK{ P]x (2.5) 
2 2 

= xTMx-xTNx 

1 1 1 
where N =-[P[BK]+[BKf P] =-[[PB]K +KT[PBf] and M =-[PA+ ATP] 

2 2 2 

=[PA+ [PA{] are symmetric because E + ET is symmetric for all EE 9\nxn. Now 

rewrite: 



xTNx = _!_ xT [P[BK] + [BK{ P] x 
2 
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= xT[PB]Kx (2.6) 

= gNI (x)gN2 (x) 

consider the following possibilities: 

In this case, it is clear that xTNx is zero in the plane xTPB = Kx = 0 and is 

positive along the vector VgN1 (x)=PB = cVgN2(x) = cKT. This implies that our 

theorem is satisfied with N = NT has only one positive eigenvalue A.NI 

corresponding to the eigenvector vN1 =PB= KT, and has n-1 zero eigenvalues 

corresponding to n-1 eigenvectors of N spanning the solution space of the linear 

equation xTPB = Kx = 0. 

If K is chosen such that A= [A -BK] is stable, then it is impossible that PB= 

- cKT, c E 9t+. Otherwise, we have that xTNx = -cxT [PB][PBf x =:;; 0 and 

VL (x) = xTMx - xTNx cannot be negative definite. This is because we know from 

Theorem 1.1 that M has exactly one positive eigenvalue implying that 

:3x : xTMx > 0. If xTNx =:;; 0, then it is clear that VL (x) > 0 when xTMx > 0 

contradicting the known fact that there exists a quadratic Lyapunov function for 

every stable linear system. 
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c) PB :t aK r , a E 9\ 

In this case, PB and K 7 are linearly independent. When n = 2, we change the 

basis by using the linear transformation z = [z1 z2f = TNx defined by 

For higher-order systems, we find additional n-2 linear equations zi = gNi (x), i = 

3, ... , n such that {V gN1 (x), V gN2 (x), ... , V gNn (x)} are linearly independent to 

complete the linear transformation. The existence of this set of n linearly 

independent vectors is guaranteed because this is the definition of 9\n . This 

produces: 

Under the transformation z = TNx, we have: 

x7 Nx = x7 [PB]Kx 

= IIPBll 11 K7 II Z1Z2 
T 0 0.5 0 ... 0 Z1 Z1 

Z2 0.5 0 0 ... 0 Z2 

=IIPBIIIIK7 II Z3 0 0 0 ... 0 Z3 
.. 

·. 0 

Zn 0 0 0 ... 0 Zn 

= IIPBII II K7 II z7 Nfz 

0 0.5 0 ... 0 

0.5 0 0 ... 0 

where N f = 0 0 0 · · · 0 . Because of the special structure of N f , direct 

: · .. 0 

0 0 0 ... 0 

computations show that: 

(2.8) 



ANfl = 0.5,VNfl = [l 1 0 0 ··· Of 

AN-2 = -0.5 v = [1 -1 0 0 · · · O]T 
T ' Nf2 

1 - 0 0 v - [0 0 1 0 · · · O]T /\,Nf3 - . ' Nf3 -

A.Nfn= 0.0,vNfn=[O OOO···lf 

where ANf i and v Nf i, i = 1, ... , n are the eigenvalues and eigenvectors of N f 
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(2.9) 

respectively. Unlike similarity transformations, the linear transformation z = TNx 

does not preserve the eigenvalues of N in general because the eigenvalues of N f 

are as given in (2.9) for all N. However, this linear transformation shows that the 

quadratic function xTNx increases along v N-i and decreases along v N-z. This 
T T 

implies that the real symmetric matrix N has one positive eigenvalue associated 

with an eigenvector pointing in the direction of v N-i , and has one negative 
T 

eigenvalue associated with an eigenvector pointing in the direction of v N-z. In the 
T 

transformed basis, v NfI = [1 1 0 0 · · · of implies that v NfI bisects the angle 

between the z1 - axis and the z2 - axis. Accordingly, we have that the 

eigenvector of N corresponding to the only positive eigenvalue of N bisects the 

angle between the vectors [PB] and KT in the original basis because the z1 - axis 

is along the vector [PB], and the z2 - axis is along the vector KT in the original 

basis. In the same fashion, we have that the eigenvector of N corresponding to the 

only negative eigenvalue of N bisects the angle between the vectors PB and - KT 

in the original basis. 
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Combining the results in cases a), b), and c), we conclude that Pl, P2, P3, and P4 in 

Theorem 2.2 hold. This completes the proof. 

Lemma 2.1 (Relationship between v MI and v NI) 

If the basic conditions Cl - C4 are satisfied with Q = cl where c E 91.+ , then the direction 

of the eigenvector vM1 corresponding to the only positive eigenvalue AMI of M 

(Theorem 1.1) and the direction of the eigenvector vN1 corresponding to the only positive 

eigenvector AN1 of N (Theorem 2.2) are the same. 

Proof 

For convenience, we now expand (2.4): 

-1 0 0 AMI -A,Nl 0 0 

0 -1 0 0 AMz -ANz 0 
C = (2.10) 

0 0 

0 0 0 -1 0 0 0 A.Mn -A,Nn 

where cE 91.+. We recall from Theorem 1.1 that M has exactly one positive eigenvalue 

and n-1 negative eigenvalues, and from Theorem 2.2 that Nhas exactly one positive 

eigenvalue and at most one negative eigenvalue. Since c E 91.+, we see from (2.10) that: 

(2.11) 

where i = 1, ... , n. Accordingly, this inequality is satisfied at an index j E {1, ... , n} where 

AMJ is the only positive eigenvalue of M if and only if A.NJ > 0. This shows the position 
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matching between the only positive eigenvalue of Mand the only positive eigenvalue of 

Nin the principal basis of M. To summarize, we list the known facts: 

1) M has only one positive eigenvalue AMj. 

Remark: In Theorem 1.1, j is assumed to be 1 for convenience. 

2) Mand N share the same set of eigenvectors (Theorem 2.1). 

3) N has only one positive eigenvalue ANj (Theorem 2.2). 

4) (2.10) is in diagonal form. 

Accordingly, the position matching of AMj and ANj in (2.10) implies that both vMj and 

vNj are the eigenvectors corresponding to AMj and to ANj. Without loss of generality, we 

let j = 1 to be consistent with the notation employed in Theorem 1.1. Because 

eigenvectors can be different by scalar multiples, Lemma 2.1 follows and the proof is 

completed. 

Lemma 2.2 (Symmetry of [PB] and KT about vM1 ) 

If the basic conditions Cl - C4 are satisfied with Q = cl where c E 9t+, then the 

eigenvector vM1 corresponding to the only positive eigenvalue AMI of M bisects the 

angle between the vector [PB] and the vector KT. 

Proof 

By Lemma 2.1, we know that the directions of the eigenvectors vM1 and vNI are the 

same. Applying P3 in Theorem 2.2, we see that vM1 bisects the angle between the vector 
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[PB] and the vector KT . This completes the proof. 

2.3 Generating P to Satisfying the Eigenvector Condition 

In this section, we apply Lemma 2.2 to construct a theorem that provides an equation for 

generating P to satisfy the eigenvector condition. It turns out fortunately that such P is the 

solution of a steady-state Riccati equation for which several solving methods are 

available. This finding implies a necessary and sufficient condition for the existence of 

such P. 

Theorem 2.3 (Generating P to Satisfy the Eigenvector Condition) 

The symmetric positive definite matrix P satisfying the eigenvector condition is the 

unique symmetric positive definite solution of the steady state Riccati equation: 

0 = -2Q- [PA+ ATP]+ 2pPBBTP 

=-cl-M+N 

where Q=cl, M=_!_[PA+ATP], N=_!_[[PB]K+KT[PB{JI T ,and 
2 2 K =p[PBJ 

(2.12) 

p and c E 9t+. The existence of such Pis guaranteed provided that [A, B] is controllable 

or stabilizable. 

Proof 

We rearrange (2.5): 

Vz. (x) = xrMx - xrNx 

= xrMx - xr [PB]Kx 

= FL (x) + GL (x)u(x) 

(2.13) 
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where FL (x) = xTMx, GL (x) = xTPB, and u(x) = -Kx. From the sufficiency in Lemma 

2.2, we know that VMI bisects the angle between KT and V(GL(x)) = [PB] provided that 

we choose Q =cl. Accordingly, setting 

KT =p[PB] (2.14) 

where p E 9t+ forces vM1 to point in the direction of [PB] and the eigenvector condition 

is satisfied automatically with the directions of KT, [PB], and vM1 being the same. To 

see the consequence of this setting, we reproduce (2.1): 

in (2.1) produces: 

- Q = -cl= .!_ [PA + [PA f] 
2 

=.!_[PA+ ATP-[PB]K-KT[PB]T] 
2 

=M-N 

-2Q = -2cl= PA +ATP-p[PB][PBf -p[PB][PBf 

Rearranging the last equation yields: 

0 == -2cl-[PA +ATP]+ 2pPBBTP 

=-cl-M+N 

(2.1) 

(2.12) 

It is clear that (2.12) is a steady-state Riccati equation, whose general form is usually 

discussed extensively in optimal controlliterature. A standard topic in this subject is the 

condition for which the solution matrix P of the Riccati equation is symmetric positive 

definite and is unique. To find such condition for our particular setup, we refer to 

Theorem 13.7 and Corollary 13.8 in (Zhou et al, 1996), v.1hile we note that other 
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references such as (Kwakemaak, and Sivan, 1972) can be employed for the same purpose 

but with a different approach. Our setup has the following special properties: 

1) The matrix Q can be written as Q = cr c where C = Fc1 and rank(C) = n 

2) rank 

C 

CA 

CAn-I 

= n because rank(C) = n. 

3) The matrix [PBBTP + Q] is positive definite. Indeed, 

xT [PBBTP + Q]x = xT [PBBTP]x + xT Qx 

= IIB T Pxr + IIFc 1xii2 

Since rank( FcI) = n , it follows that l!Fc1xll2 = 0 only at the origin. Combining 

this with the fact that IIBTPxii2 ~ 0, we see that xr[PBBTP + Q]x is a positive 

definite function and thus [PBBTP + Q] is positive definite. 

Using the above properties, it can be drawn from (Zhou et al, 1996) that the existence of 

the unique symmetric positive definite solution P of the Riccati equation (2.12) is 

guaranteed provided that [A, B] is controllable or stabilizable. This completes the proof. 

A Remark on the Formulation of LARC 

We observe that another investigator might have begun a study of this problem by starting 

with the general LQR formulation and the Riccati equation asking "Can Q be selected 

such that SGL=o bisects SFL=o and SGL=o c RfFL<OJu{O}? ", because the investigator might 

have seen intuitively that this would provide a basis for a large LAR. In such case, the 

investigator would have eventually found that Q = cl, c E 9t+ was a proper choice, and 
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might then claim that this was simply another special case of the LQR problem. However, 

in addition to such intuition being highly unlikely and the corresponding proof being not 

obvious, in order to obtain a large LAR, one should also achieve a large angle between the 

bisecting S GL =O and S FL =O . We have shown in Chapter I that this requires a small 

eigenvalue ratio, which is not addressed by simply solving an LOR problem. 

2.4 Controller Generation 

In this section, we are interested in generating a LARC when uncertainties are not 

considered explicitly. The fundamental idea of LARC is to force V(x) to be negative 

definite in radially large regions about the origin. We see that this cannot be accomplished 

at intersection points between S F=O and Sa=o, and between S F=O and Su=O. When the 

relative orientations of these surfaces are poor, these intersection points can occur 

arbitrarily close to the origin, and result in an arbitrarily small LAR in the presence of 

small nonlinearities. Accordingly, we employ the concepts of eigenvector condition 

(Proposition 1.1) and eigenvalue ratio (Proposition 1.2) to locate these points "reasonably 

far" from the origin. By locating Xcs; "reasonably far" from the origin, we refer to the 

illustration in Fig. 1.2 (b) from which we see that II Xcs; II~ oo as the degree of 

nonlinearities becomes smaller but need not be zero. 

Theorem 2.3 shows that a choice of P that satisfies the eigenvector condition is the unique 

symmetric positive definite solution of the Riccati equation (2.12). This Riccati equation 

is obtained from Lemma 2.2 by substituting a special choice of linear gain 
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p[PB{ = pBTP for K in the Lyapunov equation. However, there are infinitely many 

possible values for p E 9t+ and thus we have infinitely many corresponding P matrices 

satisfying the eigenvector condition. To choose an appropriate choice of P, we consider 

the eigenvalue ratios corresponding to these P matrices. According to Proposition 1.2, we 

want to choose P that yields a small eigenvalue ratio. Such a choice of P is our 

"appropriate'' choice for the quadratic Lyapunov function in the sense of eigenvector 

condition (Proposition 1.1) and eigenvalue ratio (Proposition 1.2). 

After we find an appropriate quadratic Lyapunov function, it remains to choose u(x) such 

that the resulting LAR is reasonably large. To obtain a choice of u(x) = Kx for this 

purpose, we reexamine a local approximation of V(x) about the origin: 

VL (x) = xTMx - xTNx 

= xTMx - xT [PB]Kx 

= FL (x) + GL (x)u(x) 

where Pis obtained from Theorem 2.3 to satisfy the eigenvector condition. Now, we 

(2.13) 

recall from the definition of eigenvector condition that S FL =O is symmetric about SaL =O 

such that SaL=o c R[FL<OJu{O}. By examining (2.13), it is reasonable that we orient Su=O 

and SaL =O in the same fashion such that S FL =O is symmetric about Su=O , and 

Su=O c R[FL<OJu{O}. This particular relative orientation follows from the same reasoning 

we employ to establish the eigenvector condition. Indeed, if Su=O is close to a particular 

portion of S FL =O then the deviations of S F=O from S FL =O may locate an intersection 

between Su=o and S F=O arbitrarily close to the origin. At such an intersection, it is clear 



that we cannot force V to be negative because u = F = 0 and the resulting LAR is then 

small. We see that such linear control corresponds to the linear gain matrix 

K = p[PBf = pBrP employed in the Riccati equation to solve for P. Corresponding to 

such linear gain matrix is the linear control: 
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u(x) = -Kx = -pBrPx (2.15) 

where p E 9t+, and K = pBTP. Since we set Q = cl in Theorem 2.3, the existence of 

such P guarantees that A= [A-BK] is stable, and V(x) is locally negative definite by 

Lyapunov stability. It turns out that theorem 2'.3 not only gives P that satisfies the 

eigenvector condition when Q = cl , c E 9t+ but it also implies that such P can be 

generated from other particular choices of Q t:. cl , This leads to our generalized version 

of u(x) denoted by uIARc(x). The formulation is given in Lemma 2.3. 

Lemma 2.3 (The General Form of LARC) 

If the linear gain matrix K = pB Tp is constructed from the solution P of the Riccati 

equation in Theorem 2.3 with Q = cl , and p and c E 9t+ then the linear gain matrix: 

(2.16 a) 

where 11 ~ 1, satisfies the Riccati equation in Theorem 2.3 with P obtained previously and 

Q t:. cl being a symmetric positive definite matrix. Furthermore, the linearized model is 

guaranteed to be stable under the linear control: 

(2.16 b) 
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Proof 

Recall that the Lyapunov equation is given by: 

- Q =_!_[PA+ ATP]-_!_ [[PB]K + KT [PB]7' ]] 
2 2 

=M-N 

where M =_!_[PA+ A Tp] and N = _!_ [[PB]K +KT [PBf ] . We substitute Yl p [PB] for 
2 2 

KT in the above Lyapunov equation to produce: 

Q=-M+riN 

= -M+ N + (ri-l)N 

=cl+ (ri-1) N 

(2.17) 

where we note from (2.12) that N =NI T = pPBBTP and cl= -M + N. Since 
K =p[PBJ 

ri ~ 1, N = NT and N is positive semidefinite, it appears from (2.17) that Q is symmetric 

positive definite and Qi= cl. By Lyapunov stability, the existence of such Q guarantees 

stability of the linearized model. This completes the proof. 

By inspecting the proof of Lemma 2.3, we see that LARC guarantees stability of the 

linearized model for any arbitrarily large ri E 91+ . This implies that we can increase ri 

and energize the linear system as strongly as we like while maintaining stability. Of 

course, this statement assumes that every component in the linear control system is 

sufficiently strong for such inputs. When the model is assumed to be exact or when 

uncertainty specifications are unavailable, we employ the eigenvalue-ratio plot 

(Proposition 1.2) to determine an appropriate value for p while fixing ri = 1 for 

simplicity. Generally, we want to find a value of p that generates a LARC with the 

smallest eigenvalue ratio for the reasons given in Proposition 1.2. In Chapter III, the role 
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of 11 will be developed and a mathematical procedure for selecting numerical values for 

p and 11 to produce a certain LAR will be given. 

We now introduce Procedure 1 for generating a LARC: 

Step 1 

Step 2 

Step 3 

Generate an array containing increasingly large values of p E 9t+. For each 

value of p, solve the Riccati equation (2.12) using Q = cl le=! to obtain the 

corresponding P. Compute and record the eigenvalue ratios rAM 

corresponding to every P and plot rAM versus p. Typically, our array of p 

is 0.0001, 0.001, 0.01, ... , 100, 1000, 10000. However, an appropriate 

range and step size depend of the system at hands. The key is to capture a 

portion of the plot where the slope changes significantly. In all of our 

examples, we find that 1-3 trial-and-error are sufficient to find such 

portion. When such portion is captured, replot it using a linear scale for p . 

Select a value of p that corresponds to a small r/1,M from a "flat" portion of 

the plot. At such points, r/1,M does not change significantly when p 

changes. 

For a value of p selected in Step 2, we find the corresponding LARC using 

(2.16). Then verify that sufficient control energy is available to implement 

the controller by considering the resulting linear gain matrix and the 

required operating region. If not, reconsider the eigenvalue-ratio plot and 
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choose a new value for p. Normally, a larger value of p results in a larger 

K LARC and a greater demand of control energy. Assuming that we have 

sufficient control energy, having a very large K LARC does not always 

produce satisfactory results. To see this, consider an ideal situation in 

which B can approximate g(x) with small errors in operating regions about 

the origin. In this ideal situation, a very large K LARC can forces 

G(x)uLARc(x) to be positively large in such regions, and we see from 

(2.13) that this can result in a small LAR. 

In all of our examples, Step 1 - Step 3 are sufficient to generate a LAR with a reasonably 

large attractive region. Note that numerical simulations are not required for these steps. 

However, we find that incorporating numerical simulations to tune the parameter p can 

lead to larger attractive regions. In the next section, we give a simple tuning procedure 

using numerical simulations. 

2.5 Controller Tuning 

The fundamental idea of LARC is to force V(x) to be negative definite in radially large 

regions about the origin and obtain a large LAR. Using the concepts of eigenvector 

condition and eigenvalue ratio, it is reasonable to expect that LARC yields reasonably 

large attractive regions. However, we do not expect a LARC to yield an optimally large 

attractive region because explicit nonlinearities and optimization has not been included 

into the formulation of LARC. 
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The objective of this section is to give a guideline for tuning LARC to obtain a larger 

attractive region. This guideline is straightforward, but may not be the most efficient in 

general. In addition, we note that the required amount of computations increases rapidly 

with the order of the system, such that the availability of computing resources must be 

considered. However, we find in all of our examples that this tuning guideline leads to 

satisfactory results in a timely fashion, provided that the initial choice of LARC is 

generated by using Procedure 1 given in the previous section. Each problem takes less 

than 30 minutes using a PC with a 450 MHz AMD K6-III CPU and 64 MB PC-100 

SDRAM running MATLAB IV under Windows 98 SE. This $600 computer is called "our 

computer" for convenience. 

From linear optimal control theory, we know by inspection that the Riccati equation (2.12) 

corresponds to the quadratic performance index: 

J = f: (xTQx+u(x)Ru(x))dt 

. 1 
= f 00 (2cxTix + -u2 (x)) dt 

0 2p 

(2.18) 

where p, c E 9t+ ,. Q = 2d and R = 2~ [1]. In addition, we recognize that the linear 

optimal control that minimize J is given by: 

--1 T T 
u(x) = uLQR(x) = -R B Px = -2pB Px (2.19) 

This shows that the surfaces SuLQR=o and SuLARc=O are the same and are given by 

{x IBTPx = O}. When the performance index (2.18) is employed to generate uLQR(x), 

the following striking relationship is observed from (2.16) and (2.19): 
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(2.20) 

Because of the relationship between LQR and LARC in (2.20), we note that for SIMO 

linear systems: 

1) It can be inferred that if the response characteristics resulting from LOR are 

acceptable then so are those resulting from LARC with TJ = 2 . 

2) Robustness properties of LARC can be drawn directly from those of LOR. 

However, we emphasize that LARC is primarily formulated for nonlinear systems. 

Although it is possible to apply a LARC to a linear system, this may not offer advantages 

over existing techniques because the available solutions of linear differential equations 

have not been incorporated into the formulation ofLARC. 

We know from optimization theory that minimizing the performance index J in (2.18) 

and c1J should produce the same solution \:I c1 E 9t+. This implies that uLQR (x) in 

(2.19) depends on the ratio of c and 1/ p. Since uLQR(x) = ~uIARc(x), it follows that 
TJ 

uIARC (x) depends on the ratio of c and 1 Ip when TJ is fixed. In this case, it is sufficient 

to fix c = 1 and alter p to produce different uIARC (x). We now give the following 

heuristic guideline for tuning the value of p aiming for large attractive regions. 

Step 1 For the initial selection of p determined from the procedure in the previous 

section, we employ numerical simulations to estimate the corresponding 

attractive region for the nonlinear system, and record boundary points of 

such attractive region. We understand that the attractive region in this 

section is estimated numerically but we simply call it an attractive region 
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for convenience. Initial conditions for simulations may be distributed 

evenly in the required operating region about the origin for simplicity. 

Step 2 For a new value of p determined from the procedure given in the previous 

section, start numerical simulations at initial conditions just outside the 

numerically estimated attractive region recorded in Step 1. If the new 

uIARc(x) yields convergence from these initial conditions, verify 

convergence from initial conditions near the origin. Otherwise, change p 

in the opposite direction and restart Step 2. This is terminated when we are 

satisfied with the resulting attractive region, or when the computation time 

reaches a limit, or when we find from the record that the attractive region is 

not getting larger by tuning p . 

Continuing with Step 3, we may tune the direction of the gain matrix if a larger attractive 

region is required. It turns out that direction tuning can be conducted conveniently if we 

write the controller found from Step 1 - 2 in the normalized form: 

B7P 
uIARC (x) = -pllPBII IIPBjl x 

= -pllPBII K IARCX 

= -pllPBll[ki kn]x 

(2.23) 



Step 3 
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(optional) Perturb the direction of KLRc by increasing~ component k1, 

j E {1, ... , n} by a small value, normalize the perturbed K LRc using the 2-

norm, and run simulations at initial conditions just outside the previous 

attractive region. If the simulations show convergence, restart Step 3. If the 

trajectories diverge, restore k J, change the indexj, and restart Step 3. All 

components of KLRc are perturbed in the same fashion, and all 

perturbation must be "feasible" or 11.i(A-pllPBjjKLARc) < 0 Vi for local 

stability. 

We now present examples where the generation of uuRc(x) and the selection of p are 

discussed. For simplicity, we fix the direction of K LARC and fix Tl = 1 although tuning 

the direction of K LARc and the value for Tl can produce better results. Under these 

restrictions, the only one design parameter is p for every n-dimensional system. Clearly, 

this facilitates controller design for high-order systems. It is not our intention to convince 

the readers that an attractive region resulting from LARC is the largest when compared to 

those resulting from other techniques. We want to show that a LARC can be generated 

systematically using the concepts of eigenvector condition and of eigenvalue ratio, and 

can produce reasonably large attractive regions in a timely fashion. Notice that LARC 

ultimately generates a set of constant linear gain matrices, which is obviously a subset of 

all possible linear gain matrices generatable by using pole placement. 
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The strength of LARC comes from the formulation of eigenvector condition (Proposition 

1.1) and the eigenvalue ratio (Proposition 1.2) in which effects of nonlinearities have been 

incorporated implicitly to choose a quadratic Lyapunov function that allows us to obtain a 

reasonably large LAR. Note that it is not obvious how the formulations of existing linear 

control techniques such as optimal controls and pole placement are related to attractive 

regions of the nonlinear systems (1.1). In addition, it is not clear how several parameters 

for such controls should be selected to produce a reasonably large attractive region. 

Accordingly, we present several possibilities for those schemes. The reader is cautioned 

that the results presented in these examples are generally not the best possible from their 

respective schemes. 

Example 2.1 (An Artificial System) 

The nonlinear system is reproduced from (E 1.1.1): 

[ i 1 J = [10x2 + 10x1 + 10sin(x1) 2 sin(x2 )- x{ J + [ 0 Ju 
i 2 5xl + sin( x2 ) cos( x2 ) + 1.5 (E 2.1.1) 

X=f(x)+gu 

The corresponding linearized model about the origin is reproduced from (E 1.1.2): 

[ ~I J = [10 lOJ[Xl J + [ 0 Ju 
x2 0 1 x2 2.5 (E 2.1.2) 

x = Ax+Bu 

In the followings, we apply pole placement, LQR, and LARC to generate linear controls 

for local stabilization of (E 2.1.1) and compare the dimensions of the resulting attractive 

regions. For each technique, we employ several sets of parameters to generate the 

corresponding controllers. The results are summarized below: 



a) Linear Controls Resulting from Pole Placement 

We apply pole placement to locate the eigenvalues of A= [A -BK pp] at several 

locations in the LHP for local stabilization. The subscript PP stands for pole placement. 

Some specific possibilities are presented below: 

al) The linear control: 
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u(x) = Upp(X) = -[60 2o]x = -KppX (E 2.1.3) 

is applied to the nonlinear system (E 2.1.1) to places the two eigenvalues of the matrix 

A=[A-BKpp] at A1, 2 =-19.5±j25.095 intheLHP. 

a2) The linear control: 

u(x) = Upp(X) = -[51.9986 12.4023]x = -KppX (E 2.1.4) 

is applied to the nonlinear system (E 2.1.1) to places the two eigenvalues of the matrix 

A=[A-BKpp] at A1,2 =-lO±j30 intheLHP. 

a3) The linear control: 

u(x) = Upp(x) = -[100 24.S]x = -KppX (E 2.1.5) 

is applied to the nonlinear system (E 2.1.1) to places the two eigenvalues of the matrix 

A= [A-BKpp] at A1 2 = -30± j30 in the LHP. 

b) Linear Controls Resulting from LQR 

We apply LQR to minimize several performance indexes with respect to the linearized 

model (E 2.1.2). Some specific possibilities are presented below: 

bl) TheLQR: 

u(x) = uLQR(x) = -[71.4724 33.1405]x = -KLQRx (E 2.1.6) 
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is applied to the nonlinear system (E 2.1.1) to minimize the performance index: 

(E 2.1.7) 

This LQR locates the eigenvalues of A = [ A - BK LQR] at A1 = -17. 9715 and 

A 2 = -53.8797 in the LHP. 

b2) TheLQR: 

u(x) = ULQR(x) = -[79.1464 40.8145]x = -KLQRX (E 2.1.8) 

is applied to the nonlinear system (E 2.1.1) to minimize the performance index: 

f 00 T[0.5 OJ 2 J = 0 [x O 1 x + O.OOluLQR(x)]dt (E 2.1.9) 

This LQR locates the eigenvalues of A = [A - BK LQR] at A1 = -12.2976, and 

A 2 = - 78.7386 in the LHP. 

b3) TheLQR: 

u(x) = ULQR(x) = -[85.7899 41.4668]x = -KLQRX (E 2.1.10) 

is applied to the nonlinear system (E 2.1.1) to minimize the performance index: 

(E 2.1.11) 

This LQR locates the eigenvalues of A = [ A - BK LQR] at A1 = -14.2599, and 

A 2 = -78.4071 in the LHP. 

c) Linear Controls Resulting from LARC 

To generate our LARC, we follow the guidelines given in Section 2.4. The plot of 

eigenvalue ratio r;i..M versus p in Fig. E2.1.1 is generated from our PC in approximately 2 
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seconds. Note that because we employ Q = I , the negative eigenvalue of M is at -1 and it 

follows that r"'M = AM1 . From Fig. E2.1. l, we see that the eigenvalue ratio decreases 

when p increases but the decreasing of the eigenvalue ratio becomes small for large 

values of p . We construct and examine our LARC at p = 2000, 3000, and 4000 because 

the eigenvalue ratios corresponding to these values of p are small and because the 

eigenvalue ratio does not decrease significantly for larger values of p . 

Using the tuning guideline in Section 2.4, we start from p = 2000 and increase p to 3000 

and 4000: 

15.--~~~--.-~~~~-.-~~~~.--~~~--, 

10 _____ [ .................................................................................. . 

TAM 

! 
I 

5 -----j-----
1 0'--~~~--'-~~~~_._~~~~ ............. --~~--' 

0 1000 2000 
p 

3000 4000 

Fig. E2.1.1 A Plot of Eigenvalue Ratio Versus p 
Symbol: o = points where we construct and examine the corresponding LARC 

cl) The LARC: 

u(x) = uLARc(x) = -[112.7540 49.7081]x = -KLARCx (E 2.1.12) 
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is applied to the nonlinear system (E 2.1.1) to satisfy the eigenvector condition with 

p = 2000. This LARC locates the eigenvalues of A= [A-BKuRc] at A1 = -16.3686, 

and A2 = -96.9017 in the LHP. 

c2) The LARC: 

u(x) = ULARc(X) = -[137.0262 59.7663]x = -KLARCX (E 2.1.13) 

is applied to the nonlinear system (E 2.1.1) to satisfy the eigenvector condition with 

p = 3000. This LARC locates the eigenvalues of A= [A -BKLARc] at A1 = -15.8390, 

and A2 = -122.5767 in the LHP. 

c3) The LARC: 

u(x) = ULARc(X) = -[157.4870 68.2440]x = -KLARCX (E 2.1.14) 

is applied to the nonlinear system (E 2.1.1) to satisfy the eigenvector condition with 

p=4000. ThisLARClocatestheeigenvaluesof A=[A-BKLARcl at A1 =-·15.5573, 

and A2 = -144.0527 in the LHP. 

By means of numerical simulations, we found that the linear controls Upp(x) in a3), 

uLQR(x) in b3), and uLARc(x) in c3) produce the largest attractive regions for their 

respective schemes. The resulting attractive regions are shown in Table E2.1.l. By 

inspection, the largest numerically estimated attractive region corresponds to uuRc(x) in 

c3). We now investigate the validity of theorems in Chapter 1 and 2 while showing in 

details the construction of uuRc(x) in c3). To generate a LAR controller with p = 4000 

and c = 1, we solve the Riccati equation: 

0 = -2cl-PA-ATP+ 2pPBBTP (E 2.1.14) 
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Table E2. l.1 
Legends: 

This yields: 

Attractive Regions of the Artificial System under Different Controls 
= convergence under LARC c3), IZl = convergence under LQR b3) 

[SJ= convergence under pole placement a3), D = divergence 
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p = [0.5201 0.0157] 
0.0157 0.0068 

(E 2.1.15) 

The corresponding LARC is: 

uIARc(x) = - pBTPx 

= - [157.4870 68.2440]x 

=-KIARCX 

(E 2.1.12) 



where KuRc = [157.4870 68.2440]. We compute further: 

M=-[P +AP]= 1 A r [5.2005 2.6869] 
2 2.6869 0.1643 

[
0.9176 - 0.3976] 

vM = [vM1 I VM2] = 
0.3976 0.9176 

where vMi E 9tn, llvMill = 1, i = 1, 2. 

1 T . T [6.2005 2.6869] 
N = 2[[PB]KIARc + KuRc[PB] ] = 2.6869 1.1643 

l.N = [}"Nl AN2] = [7.3648 0.0000] 

[
0.9176 -0.39761 

V = V V - -v 
N - [ Nl I N21 - 0.3976 0.9176 J - M 

[PB] = [0.0394 0.0171)7 

- [PB] r 
[PB]= IIPBII = [0.9176 0.3976] 

KiA,,c = ii!l:ii =[0.9176 03976]' 

We notice the following properties of Mand N predicted by our theorems: 

1) M has exactly one positive eigenvalue AMI. 
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(E 2.1.16 a) 

(E 2.1.16 b) 

(E 2.1.16 c) 

(E 2.1.17 a) 

(E 2.1.17 b) 

(E 2.1.17 c) 

(E 2.1.18 a) 

(E 2.1.18 b) 

(E 2.1.19) 

2) N has exactly one positive eigenvalue AN1 and has no negative eigenvalue. 

3) M and N share the same set of eigenvectors. 
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5) The eigenvector vN1 corresponding to the only positive eigenvalue A.Ni bisects the 

angle between the vector [PB] and K iARc . Indeed: 

6) The directions of the vectors [PB] and KiARc are the same. Indeed: 

- -T 
[PB] =KLARc 

These imply that the directions of VGL(x) = [PB] and of vM1 are the same and the 

eigenvector condition is satisfied. 
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Example 2.2 (A Double-Inverted-Pendulum System with Lower-Joint Control) 

We consider in this example the problem of stabilizing about their upright positions both 

links of a double-inverted-pendulum system using torque control at the lower joint only. 

This forth-order system is a nonlinear underactuated system, whose the number of inputs 

(one) is less than the number of outputs (two). No global stabilizing controller for this 

system has been reported in the literature. Difficulty in designing a controller for this 

system arises not only because of the nonlinearities, but also because the system has only 

one input available to stabilize two outputs. This system appears in (Walker et al· 1991) 

using feedback linearization and in (Misawa, Arrington, and Ledgerwood, 1995) using a 

LQR controller. In this example, we examine the numerically estimated attractive regions 

resulting from our LARC and from the LQR in (Misawa, Arrington, and Ledgerwood, 

1995). 

Figure E2.2. l illustrates the elements of this example, and numerical values for 

parameters are given in Table E2.2. l. 

upright 
position 

J ~fyg 

Fig. E2.2.l A Double Inverted Pendulum System (Misawa et al, 1995) 
Remark: Control torque u is applied to joint 1 only. 
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The equations of motion are: 

(E 2.2.1 a) 

where the matrices in (E 2.2.1 a) are: 

Hm = [] 0 + / 1 + m1l1
2 + m2I.; m2Li_l2 cos(x1 - x2 )] 

m2Li_l2 cos(x1 - x2 ) m2lf + / 2 

(E 2.2.1 b) 

(E 2.2.1 c) 

Physical Parameters Nomenclatures Estimated Values Units 
mass m1 0.132 kg 

m2 0.088 
total length L1 0.2032 m 

L2 0.2540 
distance to center of 11 0:1574 m 
gravity form pivot lz 0.1109 

damping coefficient C1 0.00118 N.m.s 
C2 0.00056 

inertia !1 0.00362 kg.ml 
[z 0.00114 
Jo 0.00006 

Table E2.2.1 Nomenclatures of Physical Parameters and the 
Corresponding Numerical Values of the Double Inverted Pendulum (Misawa et al, 1995) 

The equation of motion for this system can be written in the form: 

x = f (x) + g(x)u (E 2.2.2 a) 

where: 

(E 2.2.2 b) 



f(x) = 

X3 

X4 

{
(sin(x1 -x2 )xJ +0.2824x3 -0.2824x4 +48.2776sin(x2 ))cos(x1 -x2 )} 

+0.9833x3 +1.1206sin(x1 -x2 )x]-0.3165x4 -214.3082sin(x1) 

-5.9809+cos2 (x1 -x2 ) 

{
(-0.8774~3 -sin(x1 -;2 )x; +0.2824x4 +191.2383sin(x1)~cos(x1 -x2 )} 

-5.3371sm(x1 -x2 )x3 -1.5071x3 +1.5071x4 -257.6614sm(x2 ) 

- 5.9809 + COS2 (X1-X2) 
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(E 2.2.2 c) 

g(x) = 

0 

0 
-565.1008 

- 5.9809 + COS 2 (X1 - X2) 

504.2688 cos(x1-x2 ) 

-5.9809 + cos2 (x1 - x2 ) 

For the singular point at the origin, the linearized model of (E 2.2.2) is given by: 

0 0 1 0 0 

0 0 0 1 0 
x= x+ u 

43.0258 -9.6925 -0.2541 0.1202 113.4531 

-38.3942 51.7297 0.4787 -0.3593 -101.2401 

=Ax+Bu 

(E 2.2.2 d) 

(E 2.2.3) 

It can be shown that (E 2.2.3) is unstable and is controllable. In the followings, we employ 

LARC and LQR from (Misawa et al, 1995) for local stabilization of (E 2.2.1) and 

compare the dimensions of the resulting attractive regions. Information regarding these 

linear controls is summarized below: 

a) Linear Control Resulting from LQR (Misawa et al, 1995) 

The LQR from (Misawa et al, 1995) is given by: 

u(x)=uiQR(x)=-[-0.0001 -3.74 -0.32 -0.56]x=-KiQRx (E 2.2.4) 
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This LQR locates the eigenvalues of A= [A -BKLQR] at A1,2 = -5.7977 ± jl0.1203, 

),, 3 = -1.7890, and A4 = -7.6184 in the LHP. The performance index corresponding to 

(E 2.2.4) is not given in the literature. 

b) Linear Controls Resulting from LARC 

To generate our LARC, we follow the guidelines given in Section 2.4. The plot of 

eigenvalue ratio rAM versus p in Fig. E2.2.2 is generated from our PC in approximately 2 

seconds. Note that because we employ Q =I, all the negative eigenvalues of Mare -1 

and it follows that rAM = AMI . 

4000 .................................................................. T ........................................................................................................................................ . 

3000 .................................................................... , ........................................................................................................................................ . 

I 
! 

2000 --------------------+------------- ··-·············•···································································· 
! 

1000 ................................................................. 1.. ....................................................................................................................................... . 
i ---r 

o~~~~~~~~~~~~~~~~~~~ 

0 -0.05 0.1 0.15 
p 

Fig. E2.2.2 A Plot of Eigenvalue Ratio Versus p 
Symbol: o = points where we construct and examine the corresponding LARC 

From Fig. E2.2.2, we see that the eigenvalue ratio decreases when p increases but the 

decreasing of the eigenvalue ratio becomes small for large values of p . We construct and 



examine our LARC at p = 0.05 and 0.1 because the eigenvalue ratios corresponding to 

these values of p are small and because the eigenvalue ratio does not decrease 

significantly for larger values of p. Using the tuning guideline in Section 2.4, we start 

from p = 0.05 and increase p to 0.1: 

bl) The LARC: 

90 

u(x) = UuRc<x) = -[-0.1036 -5.2008 -0.3618 -0.8021]x = -KLARCX (E 2.2.5) 

is applied to the nonlinear system (E 2.2.1) to satisfy the eigenvector condition with 

p = 0.05. This LARC locates the eigenvalues of A= [A-BKuRc] at 

A1,2 =-4.1511±j2.9316, A3 =-29.3605,and A4 =-3.1120 intheLHP. 

b2) The LARC: 

u(x) = UuRc<x) = -[-0.1791 -6.9628 -0.4884 -1.0809]x = -KLARCX (E 2.2.6) 

is applied to the nonlinear system (E 2.2.1) to satisfy the eigenvector condition with 

p = 0.1 . This LARC locates the eigenvalues of A = [ A - BK LARC] at 

A1,2 = -4.6045 ± j2.5161, A3 = -43.1314, and 11.4 = -2.2981 in the LHP. 

System responses under the LQR and the LARC in (E 2.2.6) are given in Fig. E2.2.3. 

Notice that responses under the LARC are slower than those under the LQR but the LQR 

yields divergence when the system is launched from x(O) = [0.25 0.25 0.1 O.lf. 

Now, we employ numerical simulations to estimate the attractive regions resulting from 

the LQR in (E 2.2.4), and the LAR controllers in (E 2.2.5) and (E 2.2.6). In these 

simulations, we assume that convergence had occurred if llx(t)II < 0.01 for 40 ::5: t ::5: 50, 

while divergence had occurred if 3t illx(t)II > 2000. It turns out that the attractive region 
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resulting from the LARC in (E 2.2.6) is the largest while that from the LQR in (E 2.2.4) is 

the smallest. Attractive regions of the system under the LQR and the LARC in (E 2.2.6) 

are given in Tables E2.2.2 and E2.2.3. From these tables, we notice that the dimension of 

the attractive region resulting from uLARc(x) is not considerably larger than that from 

uLQR(x). However, when considering the principle behind LARC and how quickly we 

can generate a LAR controller, it is reasonable to employ LARC for local stabilization. In 

the next chapters, LARC will be extended to obtain better results. 
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Fig. E2.2.3 (a) Responses of the Double-Inverted-Pendulum System under uuRcCx) and 

ULQR(x) with x(O) = [-0.2 0.2 -0.1 -0.lf 

Now, we demonstrate the validity of theorems in Chapter 1 and 2 while showing in details 

the construction of uuRcCx) in bl) with p = 0.05 and c = 1. The selected LARC in b2) 
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having p = 0.1 and c = 1 can be generated in the same fashion. We solve the Riccati 

equation: 

_ : x1 (t) (rad) 

.... : x2 (t) (rad) 

0 = -2cl-PA-ATP + 2pPBBTP (E 2.2.7) 

,__.:.-__ ...,___ Xi (f)"LQR 
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I I I I I I 
I I I I I I 

1 

I I I I I I 

- - 1 --r------~------,-------r------r------
1 I "{ I 

I I I X1(f~ULARC : 

-----•------~-------~------1-------
1 I I I 

0.8 

0.6 
I I I I 
I I I I I 

0.4 - - -.- - t - - - - - - ~ - - - - - - :- - - - - - -:- - - - - - -~ - - - - - -
I I I X (t) I I 

__ -:- _ : / - __ : - _ _ 2 : ULARC __ -:- _____ -: _____ _ 
I I ~ 1... I I I I 
1
1 I I ... ', I I I I 

I I I ' .... _ I I ' I I 

0 J, - -I-,- - T - - - - - 'i - .- - - ---=.;--;:i.:-:.:-:..=-:.=-=-~~--,----, 
\\ I I I I I I 
\\·I I I I I I I 
\ ,1 I I I I I I 

-~~ --~------•------~-------~------1-------
.. ..-, I I ~ I I 
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Fig. E2.2.3 (b) Responses of the Double-Inverted-Pendulum System under uuRc(x) and 

uLQR(x) with x(O) = [0.25 0.25 0.1 0.1)7 

This yields: 

3.8822 9.7644 1.2414 1.4116 

9.7644 92.9231 10.0839 12.3278 
P= 

1.2414 10.0839 1.2109 1.4285 

1.4116 12.3278 1.4285 1.7592 

The corresponding LARC is: 

uuRc(x) = -pBTPx 

=-[-0.1036 -5.2008 -0.3618 -0.8021]x 

=-KLARCX 

(E 2.2.8) 

(E 2.2.6) 
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where KLARC = [-0.1036 -5.2008 -0.3618 -0.8021]. We compute further: 

-0.7855 10.7717 0.7493 1.6613 

M=_!_[PA+ATP]= 10.7717 539.9765 37.6301 83.4325 
2 0.7493 37.6301 1.6175 5.8035 

1.6613 83.4325 5.8035 11.8674 

(E 2.2.9 a) 

"-M = [AMI /I.M2 /I.M3 /I.M4] = [555.6759 -1.0000 -1.0000 -1.0000] (E 2.2.9 b) 

0.0196 -0.9026 -0.3052 -0.0812 

0.9858 0.0276 0.1254 -0.1646 
VM = [vMl VM2 VM3 VM4J = 

0.0686 -0.4117 0.2820 0.4299 
(E 2.2.9 c) 

0.1520 0.1230 -0.9009 0.8840 

where VM; E 91n, jjvMill = l,i = 1, ... ,4. 

0.2145 10.7717 0.7493 1.6613 

1 . T T 10.7717 540.9765 37.6301 83.4325 
N = -[[PB]KLARC + KLARc[PB] ] = 

0.7493 37.6301 2.6175 5.8035 2 

1.6613 83.4325 5.8035 12.8674 

(E 2.2.10 a) 

"-N = [AN! /1.Nz /I.NJ /I.N4] = [556.6759 0.0000 0.0000 0.0000] (E 2.2.10 b) 

0.0196 -0.9026 -0.3052 -0.0812 

0.9858 0.0276 0.1254 -0.1646 
VN = [VNI VN2 VN3 VN4] = 

0.0686 -0.4117 0.2820 0.4299 
=VM 

0.1520 0.1230 -0.9009 0.8840 

(E 2.2.10 c) 

[PB]= [-2.0711 -104.0170 -7.2354 -16.0421f (E2.2.11 a) 

-- [PB] T 
[PB]= IIPBII = [-0.0196 -0.9858 -0.0686 -0.1520] = VMI = VNI (E 2.2.11 b) 
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-r KiARc r 
KLARC = II r II= [-0.0196 -0.9858 -0.0686 -0.1520] 

KLARC 
(E 2.2.12) 

We notice the following properties ofM and N predicted by our theorems: 

1) M has exactly one positive eigenvalue A.MI. 

2) N has exactly one positive eigenvalue A.Ni and has no negative eigenvalue. 

3) M and N share the same set of eigenvectors. 

5) The eigenvector v NI corresponding to the only positive eigenvalue A.Ni bisects the 

angle between the vector [PB] and K iARc . Indeed: 

-- -r -- -r 
VN1,[PB]=VN1· KLARC =[PB].KLARC =1 

6) The directions· of the vectors [PB] and K iARc are the same. Indeed: 

-- -r 
[PB] =KLARC 

These imply that the directions of VGi(x) = [PB] and of vM1 are the same and the 

eigenvector condition is satisfied. 



2 

.325 

0.3 

x1 1.2751 x1 1 ~ ~ I I ~ I I 

0.25 

.225 

Table E2.2.2 Simulation Results of the Double Inverted Pendulum System in Regions farther from the Origin ( x1 > 0, x2 > 0) 
Remark: Attractive regions do not differ significantly in smaller regions about the origin. 

Legends: SI = LQR and LARC systems converge, FllJ = LARC system converge, D = All systems diverge \0 
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Table E2.2.3 Simulation Results of the Double Inverted Pendulum System in Regions farther from the Origin, ( x1 < 0, x2 > 0) 
Remark: Attractive regions do not differ significantly in smaller regions about the origin. 

Legends: 1B = LQR and LARC systems converge, ftjj = LARC system converge, 1B = All systems diverge \D 
0\ 
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Example 2.3 (A Cart-and-Pole System with Force Control on Cart) 

We now consider a cart-and-pole system in which we use force control on the cart to 

stabilize the pendulum about its upright position and stabilize the cart about a reference 

position, which is set to zero. This system has one input and two outputs as in the double-

inverted-pendulum system, but with less mathematical complexity. Although the system 

is considered in many works (Baumann, and Rugh, 1986), (Slotine, and Li, 1991), 

(Wang, 1994), (Ogata, 1997), we have found no controller that guarantees global 

stabilization for this system. Accordingly, it is common that a linear state feedback 

control designed by using a linearized model is employed for local stabilization. 

m 

gravity g 

u (force) 
M 

Fig. E2.3.l A Cart-and-Pole System (Slotine, and Li, 1991), (Ogata, 1997) 
Remark: M = 2 kg, m = 0.1 kg, l = 0.5 m, and g = 9.81 kg.mJ2 
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The nonlinear equations of motion for this system are given by (Slotine, and Li, 1991): 

(M +m)x1 +mlx2 cosx2 -ml.x; sinx2 = U 

m.xl COS Xz + m[.x2 - mg sin Xz :::= 0 

We may present the previous equation of motion in our standard form as: 

where: 

f(x) = 

x = f (x) + g(x)u 

X3 

X4 

ml sin(x2 )x; -mg sin(x2 )cos(x2 ) 

(M+sin2 (x2 )m) 

(m + M)g sin(x2 ) cos(x2 )msin(x2 )x; 

(M+sin2 (x2 )m)l (M+sin2 (x2 )m) 

g(x) = 

0 

1 
1 

M+sin2 (x2 )m 
cos(x2 ) 

(M+sin2 (x2 )m)l 

(E 2.3.1) 

(E 2.3.2 a) 

(E 2.3.2 b) 

(E 2.3.2 c) 

(E 2.3.2 d) 

Linearizing the (E 2.3.2) about the origin using the physical parameters M = 2 kg, m = 0.1 

kg, l = 0.5 m, and g = 9.81 kg.m.s·2 produces the linearized model in (Ogata, 1997): 

±1 0 0 1 0 0 

Xz 0 0 0 1 0 
= x+ u 

.X3 0 -0.4905 0 0 0.5 (E 2.3.3) 

.X4 0 20.6010 0 0 -1 

=Ax+Bu 

It can be shown that (E 2.3.3) is unstable and is controllable. In the literature, we find that 

(Ogata, 1997) employs pole placement to generate a linear state feedback control for 



local stabilization of this system. Accordingly, we compare the dimension of the 

attractive regions resulting from this linear control to that resulting from LARC. 

Information regarding these linear controls is summarized below: 

a) Linear Control Resulting from Pole Placement (Ogata, 1997) 
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Reference (Ogata, 1997) employs a linear control based on pole placement for stabilizing 

this system. This is given by: 

u(x) = Upp(x) = -[-163.0989 -298.1504 -73.3945 -60.6972]x = -KppX 

(E2.3.4) 

This linear control locates the eigenvalues of A = [A - BK PP] at A1 = -10, A2 = -10, 

and A3,4 = -2 ± j2-fi in the LHP. 

b) Linear Controls Resulting from LARC 

To generate our LARC, we follow the guidelines given in Section 2.4. The plot of 

eigenvalue ratio r"'M versus p in Fig. E2.3.2 is generated from our PC in approximately 

2 seconds. Note that because we employ Q =I, all the negative eigenvalues of M are-1 

and it follows that r"'M = AM1 . From Fig. E2.3.2, we see that the eigenvalue ratio 

decreases when p increases but the decreasing of the eigenvalue ratio becomes small for 

large values of p. We construct and examine our LARC at p = 300 and 500 because the 

eigenvalue ratios corresponding to these values of p are small and because the 

eigenvalue ratio does not decrease significantly for larger values of p. Using the tuning 

· guideline in Section 2.4, we start from p = 300 and increase p to 500: 
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Fig. E2.3.2 A Plot of Eigenvalue Ratio Versus p 

600 

Symbol: a = points where we construct and examine .the corresponding LARC 

bl) The LARC: 

u(x) = uuRcCx) = -[-17.3205 -143.6917 - 27.7674 - 36.4676]x = -KIARcx 

100 

(E 2.3.5) 

is applied to the nonlinear system (E 2.3.1) to satisfy the eigenvector condition with 

p = 300. This LARC locates the eigenvalues of A = [A - BK IARC] at A1 = -16.6600 

A2 = -0.9139, and A3 4 = -2.5050 ± j2.2101 in the LHP. 

b2) The LARC: 

u(x)=uuRc(x)=-[-22.3607 -180.0604 -35.6916 -46.0217]x=-KuRcX 

(E 2.3.6) 
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is applied to the nonlinear system (E 2.3.1) to satisfy the eigenvector condition with 

p = 500. This LARC locates the eigenvalues of A = [ A - BK LARC] at 11.1 = -22.1829, 

11.2 = -0.9304, and 11.3,4 = -2.5312 ± j2.0544 in the LHP. 

By inspecting the locations of the poles of the linearized model under uLARc(x) in (E-

2.3.5), (E 2.3.6), and Upp(x) in (E 2.3.4) (Ogata, 1997), we expect that the system 

responses under the LAR controllers are slower than those under Upp(x) near the origin. 

In Fig. E2.3.2, we simulate the system under uLARc(x) in (E 2.3.6) and under Upp(x) in 

(E 2.3.4). We notice from Fig. E2.3.2 (a) for which the system is launched from 

x(O) = [0.1 0.1 0.1 O.If that the responses under uLAnc(x) are slower than those 

under Upp(x), but with smaller overshoot. In Fig. E2.3.2 (b), the system is launched from 

x(O) = [l 0.5 0 of. From this initial condition, we see that Upp(x) forces the system 

to response quickly and yields divergence, while uLARc(x) does not force the system to 

response as quick but the trajectory eventually converges to the origin. 

We employ numerical simulations to estimate the attractive regions resulting from the 

pole placement controller in (E 2.3.4), and from the LAR controllers in (E 2.3.5) and (E 

2.3.6). In these simulations, we assume that convergence had occurred if !ix(t)\\ < 0.01 for 

40 ~ t ~ 50, while divergence h?~d occurred if :3t l\\x(t)\\ > 2000. It turns out that the 

attractive region resulting from uLARc(x) in (E 2.3.6) is largest while that underupp(x) is 

the smallest. The attractive regions resulting from uLARc(x) in (E 2.3.6) and Upp(x) are 
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given in Tables E2.3.1 and E2.3.2. From these tables, we notice that the dimension of the 

attractive region resulting from uuRc(x) is significantly larger than that from upp(x). 

Based on these investigations, we trade off in this example fast responses near the origin 

against a larger attractive region. This situation is common in control systems design, in 

which a trade-off of conflicting goals is used. 
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Fig. E2.3.2 (a) Responses of the Cart-and-Pole System under uLARc(x) and Upp(x) 

with x(O) = [0.1 0.1 0.1 0.1 f 

Now, we demonstrate the validity of theorems in Chapter 1 and 2 while showing in 

details the construction of uuRc(x) in (E 2.3.5). To generate a LAR controller with 

p = 500 and c = 1, we solve the Riccati equation: 

0 =-2cl-PA-ATP+2pPBBTP (E 2.3.7) 

This yields: 



2 

P= 

3.1924 4.1163 1.5478 0.8186 

4.1163 20.4904 5.7517 3.2360 

1.5478 5.7517 2.0509 1.0969 

0.8186 3.2360 1.0969 0.6405 

I 

,-----.-: X1(t)upp 
I I 

~--------+--------~-------~--------
1 I I I 

I I I r, XI (t)uLARC: : 

---~- --~--f--------~-------~--------
1 I I I 
I I 
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0 '~,- - - - -~ -- - - - - - -~- - - - - - - -1-------.-...-----------

\ i -x-1 i X (t) i 
1 , 1 , 2 ULARC, 

1 \ J I I I 
- -17~ - - - -:- - - - - - - - : - - - - - - - - : - - - - - - - - - - - - - - -

~-----: X2(t)upp : 
I I 
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(E 2.3.8) 

Fig. E2.3.2 (b) Responses of the Cart-and-Pole System under uLARc(x) and Upp(x) 

with x(O) = [1 0.5 0 Of 

The corresponding LARC is: 

uLARc(x) = -pBTPx: 

=-[-22.3607 -180.0604 -35.6916 -46.0217]x (E 2.3.9) 

= -KLARCX 

where K LARC = [- 22.3607 -180.0604 - 35.6916 -46.0217]. We compute further: 

0 8.0525 1.5962 2.0582 

1 T 8.0525 63.8435 12.8533 16.5734 
Ms-[PA+A P]= 

1.5962 12.8533 1.5478 3.2852 
(E 2.3.10 a) 

2 

2.0582 16.5734 3.2852 3.2360 
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AM= [AMI AM2 AM3 AM4] = [71.6272 -1.0000 -1.0000 -1.0000] (E 2.3.10 b) 

0.1173 0.6359 0.6492 -0.4170 

0.9449 -0.0370 0.1229 -0.1216 
VM = [vMl VM2 VM3 VM4]= 

0.1873 0.5209 -0.7089 -0.2435 
(E2.3.10c) 

0.2415 -0.5682 -0.2465 0.8672 

where vMi E mn, !Iv Mill= 1, i = 1, ... ,4. 

1.0000 8.0525 1.5962 2.0582 

1 T T 8.0525 64.8435 12.8533 16.5734 
N = - [[PB]K LARC + K LARc[PB] ] = 

1.5962 12.8533 2.5478 3.2852 2 

2.0582 16.5734 3.2852 4.2360 

(E 2.3.11 a) 

AN = [ANI AN2 AN3 AN4] = [72.6272 0.0000 0.0000 0.0000] (E 2.3.11 b) 

0.1173 0.6359 0.6492 -0.4170 

0.9449 -0.0370 0.1229 -0.1216 
VN = [vNI VN2 VN3 VN4]= 

0.1873 0.5209 -0.7089 -0.2435 
=VM 

0.2415 --0.5682 -0.2465 0.8672 

(E 2.3.11 c) 

[PB]= [-0.0447 -0.3601 -0.0714 -0.0920f (E 2.3.12 a) 

-- [PB] T 
[PB]=IIPBll=[-0.1173 -0.9449 -0.1873 -0.2415] =VM1=VN1 (E2.3.12b) 

-r _ KiARC _ . · T 
KLARc=II T 

11
-(-0.1173 -0.9449 -0.1873 -0.2415] 

KLARC 
(E 2.3.13) 

We notice the following properties ofM and N predicted by our theorems: 

1) M has exactly one positive eigenvalue AMI . 
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2) N has exactly one positive eigenvalue '"'NI and has no negative eigenvalue. 

3) M and N share the same set of eigenvectors. 

5) The eigenvector vNI corresponding to the only positive eigenvalue A.NI bisects 

the angle between the vector [PB] and K iARc . Indeed: 

6) The directions of the vectors [PB] and K iARc are the same. Indeed: 

- .-r 
[PB] =KuRc 

These imply that the directions of VGr(x) = [PB] and of vMI are the same and the 

eigenvector condition is satisfied. 
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Table E2.3. l Simulation Results of the Cart-and-Pole System in Regions farther from the Origin ( x1 > 0, x2 > 0) 
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Example 2.4 (A Double-Inverted-Pendulum System with Upper-Joint Control) 

We reconsider the double-inverted-pendulum system (Misawa, Arrington, and 

Ledgerwood, 1995) employed in Example 2.2. Now, we want to stabilize about their 

upright positions both links of the double-inverted- pendulum system using torque 

control at the upper joint only. The nonlinear model is obtained by substituting [O u f 

for [u Of in (E 2.2.1 a), with Hm, H 8 , He, all state variables, and all physical 

parameters being the same those in Example 2.2. The corresponding nonlinear model is 

given by: 

where: 

f(x) = 

x = f (x) + g(x)u 

X3 

X4 l0.9833x3 +l.1206si~(x1 -x2 )x; :0.3165x4 -2.14.3082sin(x1)) 

+ cos(x1 - x2 )sm(x1 - x2 )x3 + 0.2824cos(x1 - x2 )x3 

-0.2824cos(x1 - x2 )x4 + 48.2776cos(x1 - x2 )sin(x2 ) 

- 5.9809 + cos(x1 - x2 ) 2 

{ 
-0.8774cos(x1 -x2 )x3 -cos(x1 -x2 )sin(x1 -x2 )x; t 

+ 0.2824cos(x1 - x2 )x4 + 191.2383cos(x1 -x2 )sin(x1) 

-5.3371sin(x1 -x2 )x;-I.5071x3 +l.5071x4 -257.6614sin(x2 ) 

-5.9809 + cos(x1 -x2 ) 2 

g(x) = 

0 

0 
504.2688cos(x1 - x2 ) 

-5.9809+cos(x1 -x2 ) 2 

-2691.3251 

-5.9809 + cos(x1 - x2 )2 

(E 2.4.1 a) 

(E 2.4.1 b) 

(E 2.4.1 c) 
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Linearizing (E 2.4.1) about the equilibrium point at the origin yields: 

0 0 1 0 0 

0 0 0 1 0 x= x+ u 
(E 2.4.2) 43.0258 -9.6925 -0.2541 0.1202 -101.2401 

-38.3942 51.7297 0.4787 -0.3593 540.3270 

=Ax+Bu 

It can be shown that (E 2.4.2) is unstable and is controllable. We have not found a 

reference that proposes a stabilizing controller for this system. Assuming that local 

stabilization is acceptable, we may employ techniques forlinear systems such as pole 

placement, LQR, or LARC for this purpose. We now examine some specific possibilities: 

a) Linear Controls Resulting from Pole Placement 

The linear control: 

u(x) = Upp(x) = -[-89.2977 -8.9947 -9.9560 -l.6574]x = -KppX (E 2.4.3) 

is applied to the nonlinear system (E 2.4.1) to places the eigenvalues of the matrix 

A= [A -BK pp] at J.. 1 2 = -4 ± j4,/3, 11,3 = -50, and J.. 4 = -55 in the LHP. 

b) Linear Controls Resulting from LQR 

The linear control: 

u(x) = ULQR(x) = -[ -114.0530 -1.3217 -18.8336 -2.0673]x = -KLQRX (E 2.4.4) 

is applied to the nonlinear system (E 2.1.1) to minimize the performance index: 

] = f; [XTIX + 0.5UiQR (x)] dt (E 2.4.5) 

This LQR locates the eigenvalues of A= [A-BKLQR] at J.. 1,2 = -5.91 ± j0.5423, 

A 3 = -1.0021 and A 4 = -777.4888 in the LHP. 
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c) Linear Controls Resulting from LARC 

To generate our LARC, we follow the guidelines given in Section 2.4. The plot of 

eigenvalue ratio r"'M versus p in Fig. E2.4.l is generated from our PC in approximately 

2 seconds. Note that because we employ Q =I, all the negative eigenvalues of Mare -1 

and it follows that r"'!VJ =AMI. From Fig. E2.4.1, we see that the eigenvalue ratio 

decreases when p increases but the decreasing of the eigenvalue ratio becomes small for 

large values of p. We construct and examine ou~LARC at p = 2.0 because the 

eigenvalue ratio corresponding to this value of p. is small and because the eigenvalue 

ratio does not decrease significantly for larger values of p . For this example, we examine 

only one value p because it appears from the previous examples that a larger value of p 

of does not produce significantly different results. 

7800~~~~~~~~~~~~~~~ 

7600 ---1-1-~--r 
7 400 - ............. ·········-···--!····························--··- !·-············-·······-·--·······! ···············-·········-·-···-··! ····-·-··-····--·············· 

:::: __ ___l __ _l_j_ __ _l ______ _ 
6800 ---+--+-+---+-
6600 ·······---·-···················· :-········---··--···············)···· I I 

I I 
6400~~~~~~~~~~~~~~~ 

0 2 4 6 8 10 
p 

Fig. E2.4.l A Plot of Eigenvalue Ratio Versus p 
Symbol: o = points where we construct and examine the corresponding LARC 
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The corresponding LARC is given by: 

u(x) = UuRcCx) = -[-113.5510 -1.3672 -18.7574 -2.0644]x = -KLARCX (E 2.4.6) 

This LARC locates the eigenvalues of A= [A-BKuRc] at 11.1,2 = -5.8906 + j0.5772, 

11.3 = -1.0482 and 11.4 = -771.3419 in the LHP. 

We first notice that K LQR is approximately the same as K LARC , suggesting a strong 

possibility that the attractive regions corresponding to uLQR(x) and to uuRcCx) should 

be approximately the same. Given a linear model, it is our experience that the situation in 

which K LQR being approximately the same as K LARC when the quadratic performance 

index is arbitrarily chosen does not occur in general. Table E2.4.1 and E2.4.2 show 

simulation results from 1250 initial conditions. Convergence and divergence are defined 

as those in Example 2.2. The attractive region corresponding to LQR is larger than that 

corresponding to LARC. However, the difference is very small. Indeed, the number of 

" 

initial conditions from which trajectories converge under LQR is 963 while that under 

LARC is 961. The attractive region corresponding to pole-placement is significantly 

smaller than those under LQR and LARC. Motivated by this result, we examine further if 

a larger attractive region can be obtained using a particular choice ofLQR. We select 

additional 25 quadratic performance indices obtained by perturbing various parameters in 

the performance index in (E 2.4.5), and find that the attractive regions corresponding to a 

few LQ regulators are larger than that corresponding to the LAR controller. However, the 

differences are very small, ranging from 1-3 initial conditions, while the attractive 

regions from most of the LQ controllers are significantly smaller than that from LARC. 
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2.6 Summary 

1) The "eigenvector condition", which is a generalization inn-space of the relative 

orientation between S FL =O and SaL =O introduced in Section 1.4 has been 

established. Satisfying this eigenvector condition guarantees the symmetry of 

2) Several properties of the functions FL (x) and GL (x) in the expression for VL (x) 

have been discovered in this chapter. These properties imply that we can satisfy 

the eigenvector condition by applying a particular choice of linear control denoted 

by uIARc(x) to the system. By substituting uIARc(x) into the expression for 

VL (x), we find that the P matrix that satisfies the eigenvector condition is the 

solution of a Riccati equation. Accordingly, the existence of such Pis guaranteed 

provided that the conditions Cl - C4 in Chapter I are satisfied. We do not 

formulate our algorithm to solve the Riccati equation for such P because several 

algorithms are available for this task. 

3) A striking result is that the eigenvector condition suggests a particular set of the 

quadratic performance indexes for generating LQR. Indeed, the relationship 

between LQR and LARC is given by uLQR(x) = 3..uIARc(x) when uLQR(x) is 
Tl 

generated from such quadratic performance indexes. However, uLQR(x) does not 

satisfy the eigenvector condition in general. 
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4) In contrast to existing linear control techniques such as pole placement and LQR, 

we point out that LARC has only two design parameters p and Y) to be selected. 

For simplicity in this introductory section, we fix Y) = 1. We point out a 

geometrical interpretation of p using the concept of eigenvalue ratio and illustrate 

how this parameter affects the size of a LAR. Finally, we show by means of 

examples how to select an appropriate value for p from the eigenvalue ratio plot 

such that LAR controllers can be generated using an inexpensive PC in a timely 

fashion. It appears from these examples that our LAR controllers yield reasonably 

large attractive regions when compared to those resulting from existing 

techniques, although we impose the restriction that Y) = 1 . 
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Chapter III 

RobustLARC 

3.1 Introduction 

In Chapter II, we establish a procedure for generating a LAR controller for SIMO time-

invariant nonlinear systems (1.1) when the exact linearized model is available. In this 

chapter, we will extend key results from the previous chapter to establish a procedure for 

generating LAR controllers for SIMO time-varying systems when the models are inexact 

to complete our discussion on SIMO nonlinear systems. The procedures given in this 

chapter can be applied to SIMO time-invariant systems in the previous chapters as well. 

In this chapter, the system of interest is described by: 

x = f(x,t) + g(x,t)u(x) 

where the vectors f(x,t)E 9tn and g(x,t)E 9tn are uncertain, and u(x) = -KxE 9t. 

These are such that x is piecewise continuous in t, and is locally Lipschitz in the . 

operating region of interest in 9tn 'ef t ~ 0. Recall from Chapter I that the above state 

equations can be rewritten as: 

x = Anx + Bn u(x) + [f(x,t)-Anx + g(x,t)u(x)-Bnu(x)] 

= Anx + Bn u(x) + fL(x,t,u(x)) 

= Anx+fQ(x,t) 

(3.1) 

(3.2) 

fL(x,t,u(x)) = [f(x,t)-Anx + g(x,t)u(x)-Bnu(x)]E 9tn, fQ(x,t) = fL(x,t,u(x)) lu=-Kx. 



117 

To be able to employ results developed in Chapter I and II in this chapter, it is necessary 

that we rewrite the nonlinear model such that An is unstable, and [An B n] is controllable 

or stabilizable. In addition to this, we desire that the nominal model x = Anx + Bn u(x) be 

chosen in a certain fashion to be able to generate a robust LARC effectively using 

techniques that will be developed in this chapter. Example 3.6 illustrates a guideline for 

choosing an appropriate nominal model, which need not be the linearized model about the 

origin. 

3.2 Stability of Time-Invariant Linear Systems Under Time-Varying 

Uncertainties 

In this chapter, the available "nominal" nonlinear model is given by: 

x = fn (x, t) + gn (x, t)u(x) 

where fn(x,t) and gn(x,t)E 9\n. By linearizing (3.3) about the origin, we obtain the 

"nominal" time-invariant linear model: 

(3.3) 

(3.4) 

where the linear control u(x) = -Kx is such that An = [An - BnKJ is stable. In other 

words, we replace A and Bin the previous chapters by An and Bn respectively. By this 

replacement, we assume in our discussions that the basic conditions Cl-C4 in Section 1.3 

are satisfied. It is well known (Slotine, and Li, 1991), (Vidyasagar, 1993) that the 

following conditions guarantee that (3.4) approximates (3.3) about the origin uniformly in 

t: 
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(3.5) 

In other words, stability about the origin of (3.4) implies that (3.3) is locally uniformly 

asymptotically stable when (3.5) is satisfied. In this chapter, we abbreviate "uniformly 

asymptotically stable" by "stable" unless otherwise stated. The context will indicate 

whether we are interested in the global version or the local version at the moment. Under 

the conditions in (3.5), the LARC developed in the previous chapters stabilizes (3.3), 

provided that it stabilizes (3.4). This is because when (3.5) is satisfied, (3.4) is a valid 

approximation of (3.3) about the origin. 

3.3 Uncertainty Specifications 

We exploit information about uncertainties for stability analysis and for controller 

generation. In each application, uncertainties are classified into two categories by the 

available uncertainty specifications: 

Structured Uncerlainty Specifications for Stability Analysis 

For stability analysis, the uncertain vector fn (x, t) is "structured" if it can be written as: 

r 

fn(x,t) = L,[h/x,t)Ejx] 
j=1 

(3.6) 
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where h /x, t) E [hlJ, hid] E 9l are uncertain functions, hlJ < hui, and E i E 9\nxn j = 1, 2, 

... , r. In this case, (3.2) can be written as: 

r 

x = Anx + L,[h/x,t)E1x] 
j=I 

(3.7) 

The form of structured uncertainty (3.6) is adopted from (Zhou, and Khargonekar, 1987). 

In addition to the structure in (3.6), we need to know hlJ (a lower bound of hi (x, t) ), huJ 

(an upper bound of h /x, t) ), and E i j = 1, ... , r for stability analysis. 

Unstructured Uncertainty Specifications for Stability Analysis 

When the only available uncertainty specification is a bound on /lf"i~t/1, we say that the 

uncertainty is "unstructured". In this case, the system is described by (3.2). 

Structured Uncertainty Specifications for Controller Generation 

The structured uncertainty specifications for controller generation are obtained by 

rewriting (3.6) to include the linear state feedback gain matrix explicitly. Indeed, we 

r 

substitute -Kx for u(x), and L,[h/x,t)E1x] for f.Q(x,t) in (3.2)toproduce: 
j=l 

Because An, [BnK], and E i belong to 9\nxn, it appears from (3.8) that the term 

r 

(3.8) 

L,[h/x,t)E) represents uncertainties in An and [BnK]. Accordingly, we can describe 
j=I 

the dynamics of the uncertain system by: 
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x=[An-BnK+ f[h/x,t)E)]x 
;=I 

[ 
'A rs l 

= [An+ ~[h:n(x,t)E:n]]+[-BnK+ t,[h:n(x,t)Et]] X (3.9) 

= [[An + L1An (x, t)] + [-[B11 + L1Bn (x, t)]K] ]x 

where 

1) 

2) 

3) 

4) 
JAn 

L1An (x, t) = L)h:n (x, t)E:n] 
ct=! 

rsn 

5) - ~n (x,t)K = L[h:11 (x,t)Eg11 ] 

P=I 

r rAn rsn 

6) L[h/x,t)E)= L[h:n(x,t)E:n]+ L[h:n(x,t)Egn] 
J=l a=l P=I 

Note that the uncertain matrix - [L1B 11 (x, t)]K depends on K while the uncertain matrix 

L1An (x, t) does not. We assume for simplicity that the uncertainties in Kare negligible. 

This is a valid assumption, because we can usually construct an amplifier with a precise 

gain. We see from (3.2) and (3.9) that: 

(3.10) 

L1Bn (x, t) = g(x, t)- Bn (3.11) 

where the (i, j) elements of Mn (x, t) and of L1B n (x, t) are zero if there is no uncertainty 

in such elements. The information on the elements of L1An(x,t) and L1Bn(x,t) are 
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structured uncertainty specifications for controller generation. Note that writing 

rAn 

AAn (x,t)x as L, [htn (x, t)E:n ]x is obvious because AAn (x, t),E:n E ':Rnxn. We note 
a=l 

that: 

rBn 
AB 11 (x, t) = L, [h:11 (x, t)Ern ]x 

P=l 

where EtBn E ':Rnxm. Using this notation, we write: 

rBn rBn 
- [AB11 (x, t)]Kx = L, [h:n (x, t)[-Er11 K]]x = L, [h:n (x, t)Efn ]x 

P=l P=l 

Unstructured Uncertainty Specifications for Controller Generation 

When the uncertainties are unstructured, we have that: 

fQ(x,t) = [f(x,t)-A 11x] + [g(x,t)-B 11 ]u(x) lu=-Kx 
= Af(x,t) + Ag(x,t)u(x) 

where Af(x, t) = f(x, t)-A 11 x and Ag(x,t) = g(x, t)- B 11 • The specifications for 

i!Af(x,t)II 
unstructured uncertainties are bounds on llxll and IIAg(x,t)II denoted by 

(3.12) 

(3.13) 

(3.14) 

(
IIAf(x,t)IIJ · 

max llxll and max(i!Ag(x, t)II) respectively. We can employ these specifications 

llrQcx,t)II 
to bound · 

llxll · 
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llf Q (x, t)II _ II Af (x, t) + Ag(x, t) u lu=-Kx II 
llxll - llxll 

< IIAf(x,t)II IIAg(x,t)II JI I II 
- llxll + llxll u u=-Kx 

(3.15) 

IJAf ( x, t )II 
s; llxll + II Ag( x, t) 11 IIKII 

We assume for simplicity that the uncertainties in Kare negligible. This is a valid 

assumption because we can usually construct an amplifier with a precise gain. 

3.4 Theorems 

In this section, we state three fundamental theorems. We will employ them for both 

stability analysis and controller generation. Most of the results in this section are based on 

continuity of eigenvalues of symmetric matrices. Accordingly, we state a symmetric 

perturbation theorem based on the Courant-Fischer min-max representation (Ortega, 

1990): 

Theorem 3.1 (Continuity of Eigenvalues of Symmetric Matrices) 

Let A and A+E in ':Rnxn be symmetric with eigenvalues A1 2 ... 2 A11 and µ1 2 ... 2 µ 11 

respectively. Then: 

(3.16) 

where i = 1, ... , n. 
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A proof for Theorem 3.1 can be found in (Ortega, 1990). In words, Theorem 3.1 says that 

small changes in elements of a symmetric matrix A causes correspondingly small changes 

in the eigenvalues of A. Next, we state a theorem that allows us to obtain structured 

uncertainty bounds for stability of (3.7) in an operating region about the origin. 

Theorem 3.2 (Structured Uncertainty Bound) 

Let An be a stable matrix and r be a region in state space where the bounded 

uncertainties can be described by (3.6). The time derivative of the quadratic Lyapunov 

function (1.5) along trajectories of the structured uncertain nonlinear system (3.7) is 

negative definite in r if: 

(3.17a) 

AmaxCZ)<O (3.17b) 

where Amax (E) is the maximum eigenvalue of EE 9tn, and E denotes <I>, Z . Matrices 

<I> and Z are computed by applying the following equations in order: 

(3.18 a) 

where Q, and P are n x n symmetric positive definite matrices. The existence of such Q 

and Pis guaranteed by Lyapunov stability because An is stable. 

r 

A1 =An+ L,huE1 
j=l 

where the subscript "l" denotes "lower bound". 

(3.18 b) 

(3.18 c) 
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where <I> is a symmetric matrix because [PA1 f = Af P due to the symmetry of P. 

(3.18 d) 

(3.18 e) 

of n orthonormal eigenvectors of 'Pi, the superscript "D" denotes that 'Pf is diagonal, 

and the subscriptj denotes that 'Pf is associated with E i. 

'Pl?· o+ = 'Pl? I 
J J ['Pf (i,i)<O]~['Pf (i,i)=O] 

(3.18 t) 

where the subscript on the RHS of (3.18 t) means that we obtain the diagonal matrix 

'Pf'o+ from the diagonal matrix 'Pf by setting all negative diagonal elements of 'Pf to 

zero, and 'Pf (i,i) denotes the (i; i) element of 'Pf. The superscript "O+" is employed 

with the superscript "D" to designate that 'Pf- 0+ is diagonal, and is either positive 

semidefinite or positive definite. This is because a diagonal element of the diagonal matrix 

'Pf' o+ is either zero or positive, because of the operation in (3.18 t). 

(3.18 g) 

In 'P /+ , the superscript "D" is not employed with "O+" and we designate that 'P J+ is 

positive semidefinite or is positive definite but need not be diagonal. Finally, 

r 

z =<I>+ ~)(huj - hu )'P~+] (3.18 h) 
j=l 
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Proof 

Our nonlinear system with structured uncertainty is given by (3.7) and is reproduced for 

convenience: 

r 

x = Anx + L,[hi(x,t)E jx] 
j=l 

Now, we write for j = 1, 2, ... , r: 

where 

hi(x,t) = hu + h/x,t)-hu 

= hu + l /x, t) 

l/x,t) ei: h/x,t)-hli 

Since hi (x, t) E [hu, huj] E 9t, it follows from (3.20) that l i (x) E [O, huj - hu] where 

hui -hu >0 Vj. Substituting hu +l/x) for h/x,t) in (3.7) yields: 

r 

r r 

x = Anx + L, hljE ix+ L,l/x, t)E ix 
j=l j=l 

r r 
=[An+ L,hljE)x+ L,l/x,t)Eix 

j=l . j=l 

r 

= A1x + I,t /x, t)E ix 
j=l 

(3.7) 

(3.19) 

(3.20) 

(3.21) 

where A 1 =An+ L,huE i. Because An is stable, we know by Lyapunov stability the 
j=l 

existence of symmetric positive definite matrices Q and P satisfying the Lyapunov 

equation (3.18 a). To examine effects of structured uncertainties, consider the time 

derivative of the quadratic Lyapunov function (1.5) along trajectories of the structured 

uncertain nonlinear system (3.21): 
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(Proof of Theorem 3.2 (Cont.)) 

V(x,t) = .!xr[PA1 + A;P]x +.! tz/x,t)xT[PEj +E}P]x 
2 2 j=l 

1 1 r 
(3.22) 

= -XT <l>x +-rf j(X,t)XT'P jX 
2 2 j=l 

where Q is specified and Pis determined from (3.18 a), <I> is given by (3.18 c), and 'P j 

by (3.18 d). Since V(x,t) = .!xr <l>x when lj(x,t) = 0 Vj, a necessary condition for 
2 

V(x,t) to be negative definite is thli!-t <I> be negative definite. Note that because <I>= <l>T, 

a sufficient condition guaranteeing that <I> is negative definite is given by (3.17 a) 

(Orgeta, 1990). To examine <I>, we notice from (3 .18 b) that A 1 lhu=O \ij = An . 

j = 1, ... , r, i = 1, ... , n because An is stable. Now, we substitute the given numerical 

values for hlj , j = 1, ... , r into (3 .18 b) and compute the corresponding A 1 • Then employ 

the resulting A1 to obtain <I> using (3.18 c), and examine the negative definiteness of <I> 

using (3.17 a). 

To guarantee that V(x,t) is negative definite in the region r where the structured 

uncertainties are valid, we need to examine the quadratic terms xT'P jx in (3.22) Vj. We 

assume the general case in which 'P j is not diagonal. Since 'P j = [PE j + E}P], it follows 

that 'P} = [E}PT + PTE j] = [E}P + PE j] = 'P j and we conclude that 'P j = 'P} Vj . 
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(Proof of Theorem 3.2 (Cont.)) 

Accordingly, 'Pi has a set of n orthonormal eigenvectors { v Ij ('Pi) . . . v nj ('Pi)} 

(Hagan et al, 1996). We now reduce xT'P ix to the principal axes by using the linear 

transformation: 

xT'Pix = zT[T~1 'PiT'1'1]z 

= zT'PJ?z 
1 

(3.23) 

(3.24) 

we now obtain the diagonal matrix 'Pf' o+ from the diagonal matrix 'Pf by setting all 

negative diagonal elements of 'Pf to zeros Vj. Accordingly, we have that: 

Now, we change the basis back to the original using (3.23): 

zT ['Pf' o+ ]z = xT [T;~ f ['Pf' o+ ][T;~ ]x 

= xTT . ['PI?, o+ ]TT x 
'1'1 1 '1'1 

= xT'P?+x > 0 
1 -

where y?+ = T ['PJ?,O+]TT We note in addition that· 
1 '1'1 1 '1'1· . 

'P~+ = ['P~f 
1 1 

(3.25) 

(3.26) 

(3.27) 

(3.28 a) 

(3.28 b) 
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(Proof of Theorem 3.2 (Cont.)) 

To see that (3.28 a) is valid, we observe that [T~. ][T'I'.] = I by (3.23). We need to show 
J J 

further that [T'I'. ][T~.] = I. Ass~e that [T'I'. ][T~.] ct I, it follows that 
J J J J 

[T~. ][T'I'. ][T~.] -::t [T~.] => l[T~.] -::t [T~ .J => [T~.] -::t [T~.] . A contradiction arises 
J J J J J J J J 

and we conclude that [T'P j ][Tt] =I. To see that (3.28 b) is valid, we transpose both 

sides of (3.28 b) to obtain ['1'1?+f = [T'I'. ['l'D1. • o+]T~. f = T'I'. ['l'D1. ,o+f T~. 
. J J J .1 

= 'E ['1'1?· O+ ]TT = 'I'~+ 
'I'j J 'I'j J • 

Because (huj - hlj) ~ l i (x) > 0, it follows from (3.26) and (3.27) that: 

Applying the inequality (3.29) to (3.22) yields the key result: 

· 1 T 1 ~ T 1 T . 1 ~ T O+ 
V(x,t)=-x <I>x+- Lili(x,t)x 'l'jx~-x <I>x+- Li((huj-hlj)[x 'Pix]) 

2 2 j=l 2 2 j=l 
(3.30) 

Since <I>= <I>T and 'Pf = ['I'~+ f, it follows from (3.30) that the following conditions 

guarantees that V (x, t) is negative definite in regions where the structured uncertain 

specifications hold: 

r 

where Z == <I> + L ( ( huj - hlj) 'I'~+ , and i = 1, 2, ... , n . This completes the proof of 
j=l 

Theorem 3.2. 

(3.17a) 

(3.17 b) 



129 

We note for Theorem 3.2 that: 

r 

1) (3.17 b) implies (3.17 a) because L((huj -hlj)'P'.f) is either symmetric 
j=l 

positive semidefinite or symmetric positive definite. The condition (3.17 a) is 

given explicitly because it can be checked easily and failure to satisfy (3.17 a) 

implies that (3 .17 b) can never be satisfied. 

2) Theorem 3.2 can handle both symmetric and asymmetric uncertainties, where the 

uncertainties in h /x) are "symmetric" when h /x) E [hlj, huj] and hlj = -huj. 

1) If we can decrease ( hui - hu) , then ( huj - hlj) j # i can often be increased. 

2) Substituting a relationship among the upper bounds huj j = 1, ... r into (3 .17 b) 

can often reduce conservatism of the resulting allowable uncertainty bounds. 

These observations will be illustrated in Example 3.1 and 3.2. In Corollary 3.1, we point 

out a special case in which the structured uncertainty is single-term: 

Corollary 3.1 (Single-Term Structured Uncertainty Bound) 

If the structured uncertainty in (3.7) is single-term (r = 1) or: 

fg (x, t) = h(x, t)Ex (3.31) 

where h(x, t) E [h1, hu] E 9t, and EE 9tn><n then the time derivative of the quadratic 

Lyapunov function (1.5) along trajectories of the structured uncertain system (3.7) is 

negative definite in region r where the uncertainty specifications are valid if: 

(3.32 a) 

(3.32 b) 
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where <I>= <l>T is determined from (3.18 c) using: 

(3.33 a) 

(3.33 b) 

Proof 

The necessity of (3.32 a) follows directly from the proof of Theorem 3.1. Now we draw 

from (3.30) that for this single-term structured uncertainty: 

· 1 T 1 T V(x,t)=-x <l>x+-l(x,t)x 'Px 
2 2 

= ·~ xT <l>x + ~ l(x,t)w(x) 

(3.34) 

where l(x,t) E [O, hu -hz] is nonnegative, and w(x) = xT'Px. We assume that 'P = 'PT 

has at least one positive eigenvalue. Otherwise, l(x)xT'Px ~ 0 and (3.32 a) implies 

(3.32 b), guaranteeing that V(x,t) is negative definite in r. Consider the regions 

Rw-5.0 = {x lw(x) ~ O} and Rw>O = {x lw(x) > O}. We see that: 

1) Rw-5.0 n Rw>O = 0 because w(x) is a function and thus must have a single value at 

a given point. 

2) r c Rw-5.o u Rw>o = 9tn because w(x) is defined Vx. 

We now examine V(x,t) in Rw-5,0 and in Rw>O: 

1) For a given point in Rw<o, we see that V(x,t) = .!..xr <l>x + .!_z(x,t)w(x) is negative 
- 2 2 

definite provided that (3.32 a) is satisfied. This is because l(x)w(x) ~ 0 in Rw-5.0, 

and (3.32 a) implies that xT <l>x is globally negative definite. 
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2) For a given point in Rw>O, we see that l(x)w(x) ~ (hu - h1 )w(x). This is because 

hu - h1 > l(x, t) ~ 0 and w(x) == xT'Px > 0 in Rw>O. Accordingly, we see that in 

· 1 1 1 1 
V(x,t) = -xT <l>x +-l(x,t)xT'Px ~ -xT <l>x +-(hu -h1 )xT'Px 

2 2 2 2 
(3.35) 

Thus, satisfying (3.32 b) guarantees that V (x, t) is negative definite in Rw>O. Since 

V (x, t) is negative definite in Rw5'0 when (3.32 a) is satisfied, it follows that satisfying 

both (3.32 a) and (3.32 b) guarantees that V(x,t) is negative definite in Rw5'0 and in 

Rw>O. This implies that V(x,t) is negative definite in r and completes the proof. 

For single-term Structured uncertainties, we note that (3.32 b) does not imply (3.32 a) 

because the quadratic function (hu -h1 )xT'Px may be negative at infinitely many points. 

Accordingly, both (3.32 a) and (3.32 b) must be satisfied to guarantee stability of (3.7) 

under the single-term structured uncertainty. The bound obtained for single-term 

structured uncertainties using Corollary 3.1 is equally or less conservative than that from 

Theorem 3.1 becaus·e: 

We now show that our bounds for quadratic functions employed in Theorem 3.2 are 

equally or less conservative than those derived from the spectral-norm: 



Lemma 3.1 (Reduced Conservatism of Structured Uncertainty Bounds) 

The following inequality holds for all 'I' j = 'I'~ E 9tnxn : 

xT'P .x < xT'P~+x < xTIIT ·llx 1 - J - 1 

where 'I' j is determined from (3.18 d), 'I'~+ from (3.18 f) and xT'P~+x ~ 0. 

proof 

Since 'I' j = 'I'~ E 9tnxn, we have that (Lancaster, 1969): 

11 T jll = _max (A\'2('1'~'1' )) = _max (A\12 ('1'~)) = _max (IAi('P) I) 
i=l, ... ,n i=l, ... ,n i=I, ... ,n 

where I Ai ('I' j) I denotes the absolute value of Ai ('P j). Accordingly, we have: 
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(3.37) 

(3.38) 

(3.39) 

Now, recall the steps in the proof of Theorem 3.1. In the proof, we reduce xT'P jx to the 

principal axes using the linear transformation x = T'I'. z in (3.23), and proceed from (3.24) 
J 

to (3.26). For convenience, we reproduce (3.26) from the proof of Theorem 3.1: 

(3.26) 

where 'Pf is a diagonal matrix whose n diagonal elements are Ai ('I' j), i = 1, ... , n, and 

'Pf' o+ is a diagonal matrix obtained from (3.18 f) by replacing all negative elements 

along the diagonal of 'Pf by zeros. Accordingly, all the nonzero diagonal elements of the 

diagonal matrix 'Pf' o+ are positive eigenvalues of 'I' j. We denote these positive 

eigenvalues of 'I' j by A; ('I' j) for some i E {1, 2, ... , n} . Now, we change the basis of 
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zT ['Pf' o+ ]z in (3.26) back to the original basis to produces (3.27). We recall from the 

proof of Theorem 3.2 that: 

(3.27) 

(3.40) 

This completes the first part of the proof. Now, we substitute T,,. z for x in (3.39) to 
. J 

produce: 

xTll'P jllx = (_~ax I \('P) l)[xT x] 
1-l, ... ,n 

= ( max JAi('P) J)[zT[T~. ][T,,. ]z] 
i=l, ... ,n · 1 1 

= (max JA/'Pj) J)[zTlz] 
1=1, ... ,n 

(3.41) 

=zTdiag[_max JA/'P)J, ... , _max J\('Pj)J ]z 
z=l, ... ,n z=l, ... ,n 

From (3.31) and the construction of 'Pf' 0+, we see that: 

xr ll'P j II x = zT diag [ .~ax J Ai ('P j) J, ... , _max J Ai ('P j) J ] z ~ zr['Pf · o+ ]z (3.42) 
z-1, ... ,n i=l, ... ,n 

Since zr['Pf'o+]z = xr'Pfx, we have shown that: 

This completes the proof. 

To compare the bounds resulting from Theorem 3.2 to the existing ones, we now employ 

two common examples employed in several references. Example 3.1 is given as a review 

of Theorem 3.2 while we proceed quickly in Example 3.2. 
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Example 3.1 (A Second-Order Uncertain System) 

We consider a system drawn from (Vedavalli, 1985), (Vedavalli, and Liang, 1986), (Zhou, 

and Khargonekar, 1987): 

(E 3.1.1) 

where x = [ x1 x2 ]' , A, = [-, 3 -0
2 J is a stable matrix, E = [-o 1 ~ J. the uncertain 

function h(x) E [h1, hu] E 9{, and h1 < hu. We see that the uncertainty is single-term and 

thus we may apply either Corollary 3.1 or Theorem 3.2. However, it can be shown that 

these produce the same conclusions for this particular example. Since Theorem 3.2 is 

more complicated to apply, we illustrate this in detail. 

It can be shown that the eigenvalues of An are A1 = -2 and A2 = -1 indicating stability 

of the nominal linear model x = Anx. Because An is stable, we know by Lyapunov 

stability the existence of symmetric positive definite matrices Q and P satisfying the 

Lyapunov equation (3.18 a). For this example, we choose Q = I for simplicity. This 

produces: 

p =[0.5 0.5] 
0.5 2.5 

(E 3.1.2) 

In practice, we usually know h1 and hu when the model is constructed. In this example, 

we assume that the objective is to find h1 and hu such that the system is globally stable for 

any h(x) E [h1, hu]. Clearly, we desire that hu - h1 is as large as possible. Now, we write: 

h(x) = h1 + h(x) - h1 

= h1 + l(x) 
(E 3.1.3) 
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where 

l(x) = h(x)- h1 E 3.1.4) 

Since h(x) E [h1, hu], it follows from (E 3.1.4) that l(x) E [O, hu - h,]. Substituting 

h1 + l(x) for h(x) in (E 3.1.1) yields: 

x = Anx + h1Ex + l(x)Ex 

-[-/ -02} + h,[-01 ~}+l(x)Ex (E 3.1.5) 

= A1x + l(x)Ex 

where we employ (3.18 b): 

(E 3.1.6) 

To examine effects of uncertainties, consider the time derivative of the quadratic 

Lyapunov function along trajectories of the uncertain system (E 3.1.5): 

· 1 T - -T 1 T T 
V(x) =-x [PA 1 + A1 P]x +-l(x)x [PE+ E P]x 

2 2 
1 T 1 T =-x <I>x+-l(x)x 'Px 
2 2 

(E 3.1.7) 

where Q = I and Pis given by (E 3.1.2), <I>= [PA1 + Af P] by (3.18 c), and 

'P = [PE+ ETP] by (3.18 d). Since V(x) = .!.xT <I>x when l(x) = 0, a necessary condition 
2 

for V (x) to be negative definite is that <I> be negative definite as in (3.17 a). To examine 

this, we notice from (E 3.1.6) that A 1 l1zt=o= An and it follows from the Lyapunov 

equation (3.18 a) that 1../cfl lhi=o) < 0 i = 1, 2. Thus, we gradually vary h1 from zero and 

examine the sign of Amax (<I>) to find the largest magnitude of the allowable lower bound 

of the structured uncertainty for which <I> remains negative definite. In this example, we 
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decrease h1 from zero to negative values although the opposite is possible. This is because 

we want to compare our result to those from the references in which h1 is negative. Under 

the particular pair of Q = I and Pin (E 3.1.2), we have that \(A1 Lz<hz:o:;o) < 0 Vi and: 

(E 3.1.8) 

where c- = c - E, c + = c + E, c E 9\, and EE 9\+ is infinitesimally small. This shows that 

<I> is negative definite under such pair of Q and P when O ~ h1 > -2. Next, we want to 

find the largest value for hu such that (3.17 b) is satisfied. We employ (3.18 d) to obtain: 

'I'= [-1 OJ 
. 0 1 

(E 3.1.9) 

The matrix 'I' is diagonal but this cannot be expected in general. To illustrate the step 

involving (3.18 e) in Theorem 3.2, we execute a reduction to principal axes although this 

is not required for this particular problem. Since 'I' = 'PT , 'I' has a set of n orthonormal 

eigenvectors { v 1 ('I') . . . v n ('I')} (Hagan et al, 1996). In this example, n = 2 and we 

reduce xr'l'x to the principal axes by using the linear transformation: 

(E 3.1.10) 

where Tip =[v1('1') v2 ('1')], vi('l')=[O lf and v 2 ('1')=[1 · Of.Accordingly, 

xr'l'x = zT [T~'l'Tip ]z 

= zT'l'Dz 

where. 'I'D is determined from (3.18 e): 

(E 3.1.11) 
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TD= T~TT'I' 

= diag[A1 (T) . . . An (T)] (E 3.1.12) 

~[~ ~1] 
Applying (3.18 f), we now obtain the diagonal matrix TD,o+ from the diagonal matrix 

TD by setting negative diagonal elements of TD to zero: 

Accordingly, we have that: 

Now, we change the basis to the original using (E 3.1.10): 

where 

zT [TD, o+ ]z = xT [T.,1 { [TD, o+ ][T.,1 ]x 

= xTT'l'[TD,o+]T~x 

= xTTo+x 

T -1 -TT 
'I' - 'I' 

Because (hu -h1) ~ l(x) > 0, it follows from (E 3.1.14) and (E 3.1.15) that: 

Applying the inequality in (E 3.1.17) to (E 3.1.7) yields the key result: 

(E 3.1.13) 

(E 3.1.14 a) 

(E 3.1.14 b) 

(E 3.1.15) 

(E 3.1.16 a) 

(E 3.1.16 b) 

(E 3.1.17) 
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Now we recall from the proof of Theorem 3.2 that <I>= <l>T and w0+ = ['11"0+{. It follows 

from (E 3.1.18) that the following conditions guarantees that V(x) is negative definite: 

(3.17a) 

(3.17 b) 

where i = 1, 2. To find the upper bound hu of h(x), we determine the largest value of 

( hu - h1) I + E 9t+ such that (3 .17 b) holds. For convenience, we let 
h1=-2 

(hu-hz)I +=cE9t+ andinvoke(3.17b): 
hz=-2 

(E 3.1.19) 

For this example with the particular choices of Q and P, both <I> and '1'0+ are diagonal. 

Thus, it is clear that (E 3.1.19) holds when O < c < 4. Since (3.17 a) holds when 

-2 < h1 ~ 0 and (3.17 b) holds when O < c = (hu -h1) I + < 4-, it follows that V(x) is 
h[=-2 

globally negative definite when: 

h(x) E (-2, 2) (E 3.1.20) 

where we choose h1 = -2+ and hu = r. The bourid (E 3.1.20) is the same as that from 

(Zhou, and Khargonekar, 1987), which is the largest bound we found in the literature for 

this particular problem. In general, we need to tune the initial Q to demonstrate a large 

allowable uncertainty bound. However, this example is a special case where the simple 

initial choice of Q = I works well. It can be shown numerically that an inappropriate 

choice of Q can lead to a very conservative allowable uncertainty bound. Note that when 

the uncertain function h(x) is fixed at extreme values, we have: 
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1) When h(x) = -1.9999, the eigenvalues of [An - l.9999E] are 

A1,2 = -0.5 ± JI .9365 . 

2) When h(x) = 1.9999, the eigenvalues of [An+ l.9999E] are at A1 = -4.9999 and 

A2 = -0.00002. 

Given a set of uncertainty specifications, trading off among these specifications may be 

possible. In this particular example, decreasing the upper bound hu yields a less 

conservative lower bound h1 • Indeed, it can be shown by using Corollary 3.1 that the 

system is stable when h(x) E [ - 2.6, 1.1] using Q = . These uncertainty [ 40 -9] 
-9 9 

specifications and this choice of Q produce max(A(Z)) = -0.415 < 0 and 

Amax (<I>)= -0.9243 < 0, implying that hu can be greater than 1.1 and/or h1 can be less 

than -2.6. However, we do not pursue this further because the present result is sufficient 

to demonstrate the trade off between the allowable upper bound and the allowable lower 

bound. For this choice of Q and these new uncertainty specification, we note that 

Theorem 3.2 cannot be employed to demonstrate stability of the system because (3.17) is 

not satisfied. The shows that the bound resulting from Corollary 3.1 is less conservative 

than that resulting from Theorem 3 .2 as pointed out at after the proof of Corollary 3 .1. 

When the uncertain function h(x) is fixed at the new extreme values, we have: 

1) When h(x) = -2.6, the eigenvalues of [An -2.6E] are A1,2 = -0.2 ± }2.1354. 

3) When h(x) = 1.1, the eigenvalues of [An+ 1.lE] are A1 = -3.8673 and 

A2 = -0.2327 . 
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Example 3.2 (A Third-Order Uncertain System) 

Consider the uncertain system from (Zhou, and Khargonekar, 1987), (Lee et al, 1996), 

(Olas, and Ahmadkhanlou, 1994): 

r-2 
0 

-11 r~(x) 0 ~(x)l 
x= 0 -3 0 x+ 0 h2 (x) 0 X 

-1 -1 4 h1 (x) h2 (x) h1(x) 

r-2 
0 

-11 rl 0 11 ro 
0 ~} = 0 -3 ~ X + h1 (x) ~ 0 0 X + h2 (x) 0 1 (E 3.2.1) 

-1 -1 0 1 0 1 
2 

= Anx+ })hj(x)Ejx] 
j=l 

r
-2 . 0 _ 1

1 
. r 1 

where An = 0 - 3 0 is a stable matrix~. E 1 = 0 

-1 -1 4 1 

0 11 ro O 01 0 0 , and E 2 = 0 1 0 . 

0 1 0 1 0 

The objective is to find the upper bounds huJ and lower bounds h1j of h j (x), j = 1, 2 for 

which the system remains stable. Because this example originally appears in (Zhou, and 

Khargonekar, 1987), we follow (Zhou, and Khargonekar, 1987) to restrict that h1j are 

negative and huj are positive although this is not required for Theorem 3.2. According to 

this reference, stability of (E 3.2.1) is guaranteed if one of the following conditions are 

satisfied: 

h[ (x) + hi(x) < 0.8158 (E 3.2.2 a) 

0.60521 hi (x)I + 0.35121 h2 (x)I < 1 (E 3.2.2 b) 

(E 3.2.2 c) 

By direct computation, it can be shown that (E 3.2.2) does not include the case in which: 

(E 3.2.3 a) 
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h2 (x) E [-6 * 105 , 2.99] (E 3.2.3 b) 

where the bounds in (E 3.2.3) are obtained by using the univariate optimization technique, 

which will be discussed in detail when we generate LAR controllers for uncertain 

nonlinear systems. Note that Theorem 3.2 accepts both symmetric and asymmetric 

uncertainties. Uncertainties in h 1 (x) E [hu, huJ] are called "symmetric" if - hu = huJ, and 

"asymmetric" otherwise. Using Theorem 3.2, we want to show that (E 3.2.1) is stable 

'ef h 1 (x) satisfying (E 3.2.3). To show this, we choose: 

[
0.2511 0.0175 0.0784] 

Q = 0.0175 2.2850 * 106 0.0093 

0.0784 0.0093 0.5202 

(E 3.2.4) 

This choice of Q is obtained by using the univariate optimization technique. Starting from 

Q = 0.1 1 0.1 , the univariate technique takes less than 1 minute on our computer to [ 
1 0.1 0.1] 

0.1 0.1 1 . 

produce (E 3.2.4). The initial value for Q was arbitrarily selected. Other choices of initial 

value may or may not produce the same result. We now follow the procedure listed in 

Theorem 3.2: 

1) Following (3.18 a), we obtain: 

[ 
0.1350 

P= 0.0145 

-0.0188 

0.0145 

7.6167 *105 

-0.0187 

-0.0188] 
-0.0187 

0.1348 

(E 3.2.5) 



2) Following (3.18 b), we obtain: 

A,J-02 ~3 ~11-3*105'~ ~ ~1-6*10sl~ ~ ~01 

l-1 -1 4 l1 0 1 0 1 

--l- 3000002 0 - 30000011 
-600003 

- 300001 - 600001 - 300004 

3) Following (3.18 c), we obtain: 

[
- 6.9685 * 104 

<I>= 3.8437 * 103 

- 6.9623 * 104 

3.8437 * 103 

-9.1400* 1011 

-6.8404* 104 

~ 6.9623 * 104 ] 

- 6.8404 * 104 

- 6.9562 * 104 
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(E 3.2.6) 

(E 3.2.7) 

Note that (3.18 a) is satisfied because the eigenvalues of <I> are A1 = -0.585, 

A2 = -1.3925*105 , and A3 = -9.1400*1011 . Since <I>= <l>T E 9tnxn, this implies 

that <I> is negative definite. 

4) Following (3.18 d), we obtain: 

[ 
0.2323 

'1'1 = -4.1678*10-3 

0.2321 

5) Following (3.18 e), we obtain: 

-4.1678 * 10-3 

0 -4.1678 * 10-3 

0.2321 ] 

- 4.1678 * 10-3 

- 4.3223 * 10-3 

1.5233*106 

0.1161 

0.2319 

l

-0.7074 0.7067 

T'l'1 = 0.0127 0.0347 

-0.7067 -0.7067 

-0.01561 
0.9993 

0.0335 

(E 3.2.8 a) 

(E 3.2.8 b) 

(E 3.2.9 a) 



r
0.9993 

T'l' 2 = 0 

0.0372 

~1 -0.~372J 

0 0.9993 

'Pf = diag[0.4642 0 -7.493 * 10-51 

'Pf = diag[O 1.5233 * 106 -1 * 10-81 

6) Following (3.18 f), we obtain: 

'Pf ,0+ = diag[0.4642 0 01 

7) Following (3.18 g), we obtain: 

[ 
0.2323 

'Pt= -4.1690*10-3 

0.2321 

[ 
1.2264 * 10-11 

'I' f = - 4.3223 * 10-3 

- 3.294 * 10-10 

8) Following (3.18 h), we obtain: 

2 . 

-4.1690 * 10-3 

7.4824*10-5 

-4.1653 * 10-3 

- 4.3223 * 10-3 

1.5233*106 

0.1161 

0.2321 l 
-4.1653 * 10-3 

0.2319 

- 3.294 * 10-101 
0.1161 

8.847 *10-9 

-0.4049 
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(E 3.2.9 b) 

(E 3.2.9 c) 

(E 3.2.9 d) 

(E 3.2.10 a) 

(E 3.2.10 b) 

(E 3.2.11 a) 

(E 3.2.11 b) 

[
- 9 2578 * 10-2 

Z =<I>+~ [(huj - hu )'P?+] = -0.4049 -1.5211 * 104 1.0745 (E 3.2.12 a) 
0.2351 l 

J=l 0.2351 1.0745 -0.6064 

It can be shown that the eigenvalues of Z are A1 = -1.2499 * 10-3 , A2 = -0.6976, and 

.11, 3 = -1.5211 * 104 showing that (3.17 b) is satisfied. Since (3.11 a) and (3.11 b) are 

satisfied, we conclude that the system is stable when the uncertain functions hi (x) are 

within the bounds given in (E 3.2.3) Vj. Now, we notice that 
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Amax (Z) = -1.2499 * 10-3 < 0 . This suggests that the allowable uncertainty bound can be 

greater than (E 3.2.3). Indeed, reapplying the same procedure shows that the lower bounds 

of h J (x), j = 1, 2 can be expanded beyond - 3 * 105 and - 6 * 105 respectively. However, 

we omit this because the present results are sufficient to demonstrate the effectiveness of 

Theorem 3.2. When h1 (x) and h2 (x) are fixed at their extreme values, we have: 

1) When h1 (x) = -3 * 105 and h2{x) = -6 * 105 , the eigenvalues of 

[A - 3 * 105 E - 6 * 105 E ] are t.. = -2 t.. = -6 * 105 and t.. = -6 * 105 
n 1 2 I , 2 ,· 3 · 

2) When hi(x) = 1.74 and h2 (x) = 2.99, the eigenvalues of [An +l.74E1 +2.99E2 ] 

are t..1 = -1.5974 * 10-2 , t.. 2 = -1 * 10-2 , and t.. 3 = -2.5040. 

3) When h1 (x) = -3 * 105 and h2 (x) = 2.99 , the eigenvalues of 

- 5 5 
[An -3* 10 E1 + 2.99E2 ] are t..1 = -2, t.. 2 = -0.01, and t..3 = -6*10 . 

4) When h1 (x) = 1.74 and h2 (x) = -6 * 105 , the eigenvalues of 

- 5 5 [An+ l.74E1 -6 * 10 E 2 ] are t..1 = -2.5040, t.. 2 = -0.016, and t..3 = -6* 10 . 

Figure E3.2J compares our allowable uncertainty bounds to those from (Zhou, and 

Khargonekar, 1987) = (ZK), (Lee et al, 1996) = (L), (Olas, and Ahmadkhanlou, 1994) = 

(QA). We see from Fig. E3.2.l that our upper bounds are approximately the same as those 

in the references. However, the lower bounds in these references are significantly smaller 

than ours. 
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h2 (x) 

--------- 2.9985 

2.99 

- 2.85 

h1 (x) 

(ZK) 

(L) 

(OA) 

Tum. 
3.2 

-31.4 -1.75 1.74 1.7486 1.75 

Fig. E3.2.l Area of Allowable Uncertainties Resulting from 
(ZK), (L), (OA), and Theorem 3.2 (not to scale) 

Legends: Cl= (ZK), &::I= (L), ~ = (OA), ill= Theorem 3.2 

While the "areas" of allowable uncertainties resulting from Theorem 3.2 and (Olas, and 

Ahmadkhanlou, 1994) are larger than those from (Zhou, and Khargonekar, 1987) and 

(Lee et al, 1996), the formers require considerably more computations than the latters. 

The amount of computation required for computing the bounds in Theorem 3.2 and in 

(Olas, and Ahmadkhanlou, 1994) depends significantly on the order of the system (n) and 

the number of uncertainty matrices (r). This will be discussed when we give an algorithm 

for generating a LARC in the presence of uncertainties. 

When the structure of the uncertain vector fn (x, t) is unknown and the only known 

uncertainty specification is a bound on IJl'a ti OIi , Theorem 3.2 is inapplicable and the 
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uncertainty is called unstructured. In this case, we adopt a theorem from (Kim, 1995) as 

Theorem 3.3 for such unstructured uncertainties. This theorem is the latest we have found 

in the literature for this subject. By means of common examples, the author (Kim, 1995) 

shows that the resulting allowable bound is less conservative than those in (Patel, Toda, 

and Sridhar, 1977) and (Chen, and Han, 1994). 

Theorem 3.3 (Unstructured Uncertainty Bound) 

The system: 

(3.2) 

is stable if: 

ilfQ(x,t)!I <µ=')..}!~ (2EQ-E2PP) 
IJx!I - mm 

(3.43) 

where the symmetric positive definite matrices P and Q satisfy the Lyapunov equation 

- 2Q = PAn + A~P with An being a stable matrix and: 

(3.44 a) 

(3.44 b) 

where Q- 112 = [Q112 r 1 , Q112Q112 = Q, (Jmax (Q-112P) is the maximum singular value of 

[Q-112P]. The proof of Theorem 3.3 can be found in (Kim, 1995). The time derivative of 

the quadratic Lyapunov function (1.5) along trajectories of (3.2) is given by: 

(3.45) 
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The function V(x,t) is guaranteed to be negative definite in a region r where (3.43) is 

satisfied. Given a triplet of An, P and Q, we search over the interval of E given in (3.44-

a) to find max(µ)= µmax in (3.44 c) because this is the least conservative allowable 

uncertainty bound on llfnl~i°II that guarantees the negative definiteness of Y(x,t) in r. 

We now apply Theorem 3.3 to Example 3.1 and 3.2, and compare the resulting allowable 

uncertainty bounds to those resulting from Theorem 3.2. 

Example 3.1 (Cont.) 

If the structure of the uncertainty in Example 3 .1 is unknown, then we represent the 

system by (3.2): 

(3.2) 

where A.=[-/ -02] is a stable matrix. The objective is to find a large allowable bound 

on l~11!tll such that the time derivative of the quadratic Lyapunov function along 

trajectories of (3.2) i.s globally negative definite to establish global stability. It appears in 

(Kim, 1995) that: 

Applying (3.18 a), we obtain: 

Applying (3.44 a), we obtain: 

p = [1.6000 2.5000] 
2.5000 8.7000 

(E 3.1.18) 

(E 3.1.19) 
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2 
2 -1/2 = Emax = 0.1183 

crmax(Q P) 
(E 3.1.20) 

Now, we employ (3.44 c) and plot µ as a function of E in Fig. E3.1.1. It can be shown 

that the maximum value ofµ and the corresponding E are given by: 

µmax = 0.5351 (E 3.1.21 a) 

Eµ = 0.0753 
max 

(E 3.1.21 b) 

For stability of (3.2), we must have that: 

( llrn(x)JIJ < -
max JJxJJ . . - µmax - 0.5351 (E 3.1.22) 

Indeed, we can employ the univariate optimization technique presented in Section 3.6 to 

obtain µmax = 0.5401 ·using: 

µ 

= [3.4633 2.1302] 
Q 2.1302 6.6823 

o.s.--~~.--~~.--~~.--~~.--~~.--~---. 
µmax ~ 0.5351 

o.s i i I I I 

0.1 

o..__~~..__~--'L--~~L--~~L--~~..__~___._. 

0 0.02 0.04 0.06 
E 

0.08 0.1 0.12 

Fig. E3.1.1 Uncertainty Bound µ for Stability as a Function of E 

(E 3.1.23) 
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To compare the resulting bound in (E 3.1.22) with that when the uncertainty is structured, 

we examine: 

fQ (x) = h(x)Ex (E 3.1.24 a) 

( jjfQ(x)jjJ- (jjh(x)Exjj J- (11Exjj J- _ -
max jjxjj -max jjxjj - hu max M -hujjEjj- 2.8284 > µmax (E 3.1.24 b) 

According to (E 3.1.22) and (E 3.1.24 b) we see that when the structure of uncertainty is 

known, the uncertainty bound is significantly larger than that when the structure of the 

uncertainty is unknown. 

Example 3.2 (Cont.) 

If the structure of the uncertainty in Example 3.2 is unknown, then we represent the 

system by (3.2). The original paper in which this example appears (Zhou, and 

Khargonekar, 1987) does not consider unstructured uncertainties. In addition, the 

reference from which Theorem 3.3 is drawn (Kim, 1995) does not employ this example, 

and does not propose a technique to find Q for obtaining a large allowable uncertainty 

bound. Accordingly, we find Q for this problem at this point by using trial-and-error. We 

start by using Q = I, find the corresponding µmax and tune the diagonal elements of Q 

accordingly. For simplicity, we restrict Q to be diagonal, although this does not 

necessarily yield the best result. The largest µmax we can find under this restriction 

corresponds to: 

(E 3.2.13) 
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Applying (3.12 a), we obtain: 

r 
0.5714 0.0378 

P = 0.0378 0.6654 

-0.1429 -0.0462 

-0.14291 
-0.0462 

0.2857 

(E 3.2.14) 

Applying (3.44 a), we obtain: 

2 
2 _112 = Emax = 4.8372 

crmax[Q P] 
(E 3.2.15) 

Now, we employ (3.44 c) and plotµ as a function of E in Fig. E3.2.2. It can be shown 

that the maximum value ofµ and the corresponding E are given by: 

µmax = 1.5679 (E 3.2.16 a) 

Eµ = 2.4427 
max 

(E 3.2.16 b) 

Note that a very similar result can be obtained using a different choice for Q. Indeed, we 

can employ the univariate optimization to obtain µmax = 1.5680 with: 

r
0.9135 0.0960 0.08861 

Q = 0.0960 0.9797 0.0951 

0.0886 0.0951 1.0829 

(E 3.2.17) 

To compare the resulting bound with that when the uncertainty is structured, we examine: 

2 

fg(x) = L[h1(x)E1x] 
}=l 

(E 3.2.18 a) 

According to (E 3.1.16 a) and (E 3.2.18), we see that when the structure of uncertainty is 

known, the resulting uncertainty bound is significantly larger than that when the structure 

of the uncertainty is unknown. This conclusion is the same as that for Example 3.1. 
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1.6~~~~~~~~~~~~~~~~~~~ 
! 

1 
·: =-·=-t=~~~t=_:::l:~~~~:=I=:=~ 

I ! µmak = 1.56791 
µ 

0.4 

0.2 

o.__~~--'~~~--'-~~~--'-~~~_,_~~--'--' 

0 1 2 3 4 5 
E 

Fig. E3.2.2 Uncertainty Bound µ for Stability as a Function of E 

3.5 Controller Selection 

A stabilizing linear controller can be generated by substituting the given uncertainty 

specifications into Theorem 3.2 (for structured uncertainties) and into Theorem 3.3 (for 

unstructured uncertainties), and solve for a set of {K, Q, P} that satisfies relevant 

theorems. We desire that {K, Q, P} is such that the relevant theorem is satisfied in a 

radially large region about the origin because this produces a large LAR. It would be ideal 

if we could solve for such {K, Q, P} algebraically. However, we do not expect this to 

happen when we deal with practical problems because of the nonlinearities involved. In 

this research work, we propose to solve for such {K, Q, P} using numerical optimization. 

We find that at least two existing optimization techniques (Fox, 1971), (Olas, 1994), 

(Olas, and Ahmadkhanlou, 1994) can be employed to find a stabilizing controller. 
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However, the amount of comput~tion required for these optimization techniques grows 

significantly as the order of the system increases. When the uncertainties are structured, 

considerably more computations are required as the number of uncertain terms (r) 

increases. Accordingly, it is crucial that we start the optimization routine from a 

"reasonably good" initial value. By "reasonably good", we mean that the initial value is· 

such that the allowable uncertainty bound is large or is at a local maximum with respect to 

Theorem 3.2 and 3.3 in a feasible domain. 

By generating a set of LAR controllers for the nominal linear model (3 .4 ), we obtain the 

corresponding set of initial values for such optimization. Then we select from this set a 

"reasonably good" initial value based on Theorem 3.2 (for structured uncertainties), 

Theorem 3.3 (for unstructured uncertainties), and the available control energy. We employ 

such an initial value for the optimization because it satisfies the eigenvector condition. To 

see why this is desirable, we rewrite (3.2) as: 

(3.2) 

It can be shown that the time derivative of the quadratic Lyapunov function (1.5) along 

trajectories of (3.2) is: 

· 1 rf. r] T ( ) T V(x,t) =-x LPAn +[PAn] x+x PfL x,t,uIARc(x) +x PBnuIARc(x) 
2 
T · T ( ) T =X Mnx+x PfLx,t,uIARc(x)+x PBnuIARc(x) 

= FLr/x) + FL (x, t, uuRc(x)) + GLn (x)uIARc(x) 

= Fil (x, t, uIARC (x)) + GLn (x)uIARC (x) 

where Mn= ..!..[PAn +[PAnf], FL(x,t,uuRc(x)) = xTPfL(x,t,uIARc(x)), 
2 

(3.45) 

FLn(x) = xrMnx, GLn(x) = xrPBn, and Fil (x,t,uIARc(x)) = FLn (x) + FL(x,t,uuRc(x)). 
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We define SFLn=O ={xlFLn(x)=O}, SaLn=O ={xlGLn(x)=O},and SF!:i=O ={xlFl:i(x,t, 

u(x)) = O}. From the expression for uLARc(x) in (2.16), we note that SaLn=O = SuLARc=O. 

We recall from Lemma 2.3 that the matrix P corresponding to a LAR controller is such 

that the eigenvector condition is satisfied and it follows from the definition of the 

eigenvector condition that SFLn=O is symmetric about SaLn=O such that SaLn=o c 

R[FLn<OJu{O}. From the expression for V(x,t), we see that SFLn=O is the same as SF!:i=o 

when there is no uncertainty (f:E (x,t, u(x)) = 0). In this situation, it follows from the 

definition of the eigenvector condition that S F!:i=O is symmetric about SaLn=O such that 

SaLn=O c R[F!:!<OJu{O}. Because of the uncertain vector f:E(x,t,u(x)), SF!:i=O deviates from 

S FLn=o and can be time-varying. However, Theorem 3.2 and 3.3 implies that S F!:i=O does 

not intersects SaLn=O when f:E(x,t,u(x)) is sufficiently small Vt. Indeed, if SF!:i=o 

intersects SaLn =O at a particular t, then V (x, t) is not globally uniformly negative definite. 

This leads to a contradiction because we know from Theorem 3.2 and 3.3 that V(x,t) is 

globally uniformly negative definite under sufficiently small uncertainties. Since SaLn =O 

is fixed in the state space for all possible uncertainties and t, this implies that S F!:i=o is in a 

small neighborhood about S FLn=O for sufficiently small uncertainties Vt. We emphasize 

that the deviations of S F!:i=O from S FLn=O can occur arbitrarily close to the origin because 

of the uncertainties. 

Next, we illustrate graphically in Fig. 3.1 how these deviations can affect the dimension of 

the LAR when the eigenvector condition is both dissatisfied and not satisfied. In this 

illustration, we employ the following representations: 
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1) 0 = the intersection point between the surfaces ScLn = O and SFt, =O corresponding 

to the exact nonlinear model (3.2) 

2) -- = the surface SFLn =O, which is the same as SFt, =O when fr(x,t,u(x)) = 0 . 

3) = the surface S Ft, =O 

5) - - = the surf ace Sc _0 Ln -

5) = regions of uncertainties. 

VM 101.M 1> 0) 
11 11 

S FL11 =0,I S FL,, =0,1 

(a) (b) 

Fig. 3.1 Effects of Nonlinear Uncertainties on the Possible Intersection between S GLn =O 

and SFt, =O when the Eigenvector Condition is not Satisfied (a) and is Satisfied (b) 

a) ScLn =O runs close to S FLn =o,2 and far from S FLn =O,i , locating the intersection 

between SFt, =O and ScLn =O (denoted by O) undesirably close to the origin. 

b) ScLn =O runs midway between the lines S FLn =O,I and S FLn=o,2 

When the eigenvector condition is not satisfied, Scu,=O may be located close to a 

particular portion of S FL,, =o. Accordingly, small deviations of S Ft, =O from S Fw =O can 
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result in an intersection between ScLn=o and S F8 =o corresponding to the exact nonlinear 

model arbitrarily close to the origin. At such intersection point, V (x, t) = 0 for all possible 

choices of u(x) including u(x) = uuRc(x). Since it is necessary that V(x,t) luo< 0 in a 

LAR, it follows that such small deviations can lead to an arbitrarily small LAR when the 

eigenvector condition is dissatisfied. This situation is illustrated in Fig. 3 .1 ( a). 

In Fig. 3.1 (b), the eigenvector condition is satisfied and S FLn=o is symmetric about ScLn=o. 

Accordingly, ScLn=o does not run close to a particular portion of S FLn=o. When the 

uncertainties are sufficiently small, we have seen that S F8 =O is in a small neighborhood 

about S FLn=o and thus S F8 =o does not intersect ScLn=o. In this situation, 

ScLn=O c R[Fll<OJu{Ol and the expression for V (x, t) in (3.45) implies that we can force the 

LAR to be as large as we like by manipulating uuRc(x). When the eigenvalue ratio r'A 
. Mn 

corresponding to the time derivative of the Lyapunov function along the nominal linear 

model (3.4) is large, the additional adverse effects are straightforward from Proposition 

1.2 and the above discussions. These arguments are the same as those given in Section 1.4 

·except that the possible adverse effects resulting from uncertainties are now added to 

those resulting from nonlinearities. 

Remark: A special case of the situation discussed previously occurs when the nominal 

linear model x = Anx + Bn u(x) is exactly the linearized model about the origin of the 

exact time-varying nonlinear system x = f (x, t) + g(x, t)u(x), implying that 
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lim su = 0 and lim sup = 0. Under these ( {llf(x,t)-AnxliJJ { (''g(x,t)-BniiJJ 
llxll~0 t~O llxjj llxll~ t~O llxll 

d. · llfn(x,t)II · 1· "bl · ff. · I II · b h · · d · con 1tions, llxll 1s neg 1g1 e m su 1c1ent y sma reg10ns a out t e ongm, an 1t 

follows from Theorem 3.3 that the nonlinear system is locally uniformly asymptotically 

stable when K is such that An = [An -BnK] is stable. In addition, it can be drawn from 

the previous argument that S FLn =O = S FL =O and the deviations of S F!).=O from these 

surfaces are negligible in sufficiently small region about the origin. In this special case, 

we see that LARC in Chapter I and II can be employed to stabilize the system 

x = f (x, t) + g(x, t)u(x) such that the origin is locally uniformly asymptotically stable 

with a reasonably large attractive region by regarding An as A, and Bn as B. Note that 

h llfn(x,t)II · 1· "bl · ff" ·. .I II · b h · · d w en llxll 1s not neg 1g1 e m su 1cient y sma regions a out t e ongm, we nee 

· " · b llfn(x,t)II · · b·1· · LARC Th" · di d · h m1ormat1on a out . llxll to generate a sta 1 1zmg . 1s 1s scusse m t e next 

section. 

3.6 Controller Generation 

Given (3.2) with specifications for uncertainties, we want to determine for stabilization of 

(3.2) the solution K = KLARC, Q, and P such that V(x,t) is negative definite in an 

operating region 0 about the origin where such specifications are valid. We restrict our 

LARC to be linear for simplicity, although this does not necessarily produce the best 

result. Note that: 
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1) We say that the controller "meets" the given uncertainty specifications in the 

region 0 when V (x, t) is negative definite in the same region. Clearly, we desire 

that the uncertainties are met in a radially large region about the origin. 

2) We need not write P explicitly in the solution, because K = KLARC and Q implies 

P. 

A choice of Qin Theorem 3.2 and 3.3 do not affect physical properties of the system 

because Q does not represent any components in a physical system. However, it turns out 

that some particular choices of Q can be employed to demonstrate that uncertainty 

specifications are met under a particular linear controller using Theorem 3.2 and 3.3. Note 

that Theorem 3.2 and 3.3 .demonstrate global stability by showing that the time derivative 

of the quadratic Lyapunov function along system trajectories is globally negative definite 

and the LAR is radially unbounded for sufficiently small uncertainties. However, we need 

not restrict the applications of Theorem 3.2 and 3.3 to the case in which a LAR is radially 

unbounded. As we have seen from Chapters I and II, we desire only that a LAR be 

radially large when local stabilization is acceptable. We emphasize that the LARC 

developed in the previous chapters is primarily for systems that can be approximated in e 

by linear time-invariant models. In this chapter, such LARC is integrated with Theorem 

3.2 and 3.3 to remove such restriction. Procedures for generating a LARC in the presence 

of uncertainties using Theorem 3.2 and 3.3 are now given: 



158 

Systems with Structured Uncertainties 

To generate a LAR controller for the system (3.2) with structured uncertainties, we find 

under the given structured uncertain specifications a particular pair of K LARC and Q such 

that in an operating region e about the origin: 

(3.46) 

where the uncertainty specifications and the relevant notations are given in the section 

"Structured Uncertainty Specifications for Controller Generations". The procedure begins 

by choosing a region { (p, 11) I O < p 1 ~ p ~ p u , 1 ~ 11 ·~ llu } and compute K = K LARC and Q 

at points distributed evenly in this region using (2:12) and (2.16). Knowing K = KLARC 

and Q at these points, we plot Amax (Z(KLARC (p, 11), Q(p, 11))) = Amax (Z(p, 11)) versus p 

and 11 using Theorem 3.2. If Amax (Z) < 0 at any point in this region, K LARC 

corresponding to such point meets the uncertainty specifications and we terminate the 

procedure. Otherwise, we obtain from this plot a coordinate (p; 11) corresponding to a 

small value of Amax ( Z) and we employ this (p, 11) to obtain {K LARC, Q} as the initial 

value for the next optimization routine. Generally, selecting such (p, 11) is possible 

because we can visualize clearly a plot in three dimensions. 

Starting from the feasible initial value {K LARc, Q} determined previously, we want to find 

a particular pair of K LARC and Q such that 11. max ( Z(K LARC , Q)) < 0 under the given 

uncertainty specifications. This problem can be cast as a constrained optimization problem 

in which the objective is to minimize Amax (Z(KLARc,Q)) and the constraints are 



Re(A;(An -BnKLARc))<O Vi, Q=QT and Amin(Q)>O. Thelatterisrequiredto 

guarantee that the quadratic Lyapunov function is negative definite. We call a point 

satisfying these constraints a "feasible" point, and denote a solution for K LARC by 
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KaLARC where the subscript "OLARC" designates that the LAR gain matrix is obtained 

by using optimization. In this phase of the procedure, K LARC and Q are to be updated by 

an optimization routine, not by (2.12) and (2.16). We emphasize that the feasible initial 

value {K LARC, Q} for the optimization selected previously from the plot of Amax (Z(p, ri)) 

is reasonably good. This is in the sense that such an initial value corresponds to a small 

value of Amax (Z) in a certain set of {K LARC, Q} satisfying the eigenvector condition. 

For simplicity, we employ the "univariate" optimization technique (Fox, 1971) to find a 

solution {KLARc,Q} such that Amax(Z(KLARc,Q)) < 0 while we understand that other 

techniques may produce better results. Using the univariate technique, we perturb one, 

variable in the objective function at a time and update the solution {K LARC, Q} if such 

perturbation decreases Amax (Z). The procedure is terminated when the decrement in 

Amax (Z) is less than a prescribed value after all variables in the objective function are 

perturbed. In general, the solution can be as close to a local minimum as we like but it is 

likely not the minimum because this approach does not include a mechanism to compute 

the gradient. Except for pathological cases, this seems to be acceptable for our purpose 

because we need not obtain a true minimum. Indeed, it is sufficient to admit any solution 

such that Amax (Z) < 0. Of course, obtaining the solution {K LARC, Q} that meets the given 

uncertainty specifications may not be possible for some strong specifications. 
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We emphasize that the univariate technique is not the only possible technique for this 

optimization problem. Indeed, we have seen in Example 3.3 that the results obtained from 

the gradient-based technique in (Olas, 1994) and (Olas, and Ahmadkhanlou 1994) are 

satisfactory. Given a fixed linear gain matrix K such that Re(Ai (An -BnK)) < 0 \Ji, this 

technique requires us to compute eigenvalues of CA = 2r matrices of dimension n x n to 

update Q, where r is the number of uncertainty matrices E j and is bounded by 

1::; r::; dim(An) + dim(Bn) = (n 2 + mn). For the univariate technique, we know by 

inspecting Theorem 3.2 that we need to compute the eigenvalues and eigenvectors of 'I' j, 

j = 1, 2, ... ,rand the eigenvalues of Z to see if a change in an element of Q decreases 

Amax (Z). Since Amax (Z) may decrease when we decrease or increase an element of Q, 

and Q = QT contains 1 + 2 + ... + n = _!_ n(n + 1) different elements, it follows that we 
2 

need to compute Amax (Z) at least once and at most n(n + 1) times to update the solution 

for Q. Thus, we are required to compute eigenvalues of at most CA = (r + l)n(n + 1) 

matrices of dimension n x n to update Q. When r is small, the technique in (Olas, 1994) 

and (Olas, and Ahmadkhanlou, 1994) generally requires less computation than the 

univariate technique. However, the former requires more computation than the latter does 

when r is large. 

For these optimization techniques, it is clear that the required computation grows very 

rapidly as the order of the system n and the number of uncertainty matrices r increase. 

Accordingly, it is crucial for a high dimensional system with a large number of 

uncertainty matrices that the initial value be reasonably good. In our case, we obtain this 
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initial value from the plot generated previously using (2.12), (2.16) and Theorem 3.2. 

Procedure 2 is now given (Procedure 1 was given in Chapter II): 

Step 1 

Step 2 

Choose a region { (p, rt) I O < p 1 ~ p ~ p u, 1 ~ Tl ~ Tiu} and compute K = K LARC 

and Q at points distributed evenly in this region using (2.12) and (2.16). Then 

plot Amax (Z(p, rt)) versus p and Tl in three dimensions using Theorem 3.2 and 

the given structured uncertainty specifications, and find a region of (p, ri) 

where Amax (Z(p, rt)) is small or is negative from such plot. For each of our 

example problems to follow, less than 3 minutes were required to accomplish 

this. 

If we find from the plot in Step 1 that Amax (Z(p, rt))< 0 at a particular (p, rt), 

then the matrix K LARC corresponding to such (p, rt) meets the uncertainty 

specifications and we terminate the procedure. In this case, we usually select 

{KLARc,Q} corresponding to the minimum of Amax(Z(p, rt)) in the plots as our 

solution although we can accept any solutions such that Amax (Z(p, rt))< 0. If 

the minimum of Amax (Z(p, rt)) in the plot is positive, we obtain from this plot 

an initial value {K LARC, Q} such that the corresponding Amax (Z(p, rt)) is small 

for the optimization in Step 3. 

When the available control energy is limited, it is preferable to start the 

optimization from an initial value in which K LARC is small. This usually forces 

us to admit an initial value {K LARC, Q} corresponding to a larger 
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"-max (Z(p, 11)). In this case, we select the initial value from a "flat" portion of 

the plot where decreasing (p, 11) does not increase "-max (Z(p, 11)) significantly. 

Step 3 · Starting from the feasible initial value in Step 2, we employ an optimization 

technique to search for {K IARC, Q} such that "-max (Z(K IARC, Q)) < 0. There 

are several applicable optimization techniques but we employ the 

straightforward "univariate" technique (Fox, 1971) for simplicity. We regard 

the elements of K IARC and Q as our variables in the objective function 

"-max (Z(KuRc, Q)). Then we perturb these variables one at a time and 

examine the corresponding "-max (Z(KuRc, Q)). Our perturbations must be 

such that {K IARC, Q} remains feasible. If the objective function decreases, we 

continue to perturb this variable in the same direction. Otherwise, we reverse 

the direction of the perturbation and repeat the above sequences. When the 

decrement in "-max (Z(K IARC, Q)) is less than a prescribed value, we perturb a 

new variable and repeat the above sequences. These nested loops terminate 

when computation time is expired or when the decrement in 

"-max (Z(K IARC, Q)) is less than a prescribed value after all the variables are 

perturbed in this fashion. All the "prescribed" values and the perturbations are 

determined by using heuristics. In the examples herein, we set these to be 

between 0.5% - 1 % of the previous values. 
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Systems with Unstructured Uncertainties 

To generate a LAR controller for the system (3.2) with unstructured uncertainties, we find 

under the given unstructured uncertainty specifications a particular pair of K LARC and Q 

such that in an operating region 8 about the origin: 

[ 
jjAf (x, t)jj J 

max jjxjj + IIK LARC II max(jjAg(x, t)jj) ~ µmax (3.47) 

where the uncertainty specifications and the relevant notations are given in the section 

"Unstructured Uncertainty Specifications for Controller Generations". Given a known pair 

of unstructured uncertainty specifications max[ IIA~~[ t}II J and max(IIAg( x, t )Ill , it follows 

from (3.47) that we want to find KLARC such that: 

_ (11Af(x,t)11J . 
8 = max . llxll + IIK LARcll max(jl Ag(x, t) II) - µmax ~ 0 (3.48) 

Note that defining 8 as in (3.48) allows us to obtain the corresponding optimization 

algorithm from that for structured uncertainties quickly. To see this, notice that the 

problem statement for structured uncertainties in (3 .46) is similar to that for unstructured 

uncertainties in (3.48). We now introduce a procedure for generating a LARC under 

unstructured uncertainties. Except that we employ Theorem 3.3 instead of Theorem 3.2, 

this procedure is the same as Procedure 2 given previously. This procedure begins by 

choosing a region { (p, 11) I O < p 1 ~ p ~ p u, 1 ~ 11 ~ llu } and compute K = K LARC and Q at 

points distributed evenly in this region using (2.12) and (2.16). Knowing K = KLARc and 

Q at these points, we plot 8(KLARc(P, 11), Q(p, 11)) = 8(p, 11) versus p and 11 using 

Theorem 3.3 and (3.48). If 8(p, 11) ~ 0 at any point in this region, K LARC corresponding to 
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such point meets the uncertainty specifications and we terminate the procedure. 

Otherwise, we obtain from this plot a coordinate (p, 11) corresponding to a small value of 

8(p, 11) and we employ this (p, 11) to obtain {K IARC, Q} as the initial value for the next 

optimization routine. Generally, selecting such (p, 11) is possible because we can visualize 

clearly a plot in three dimensions. 

Starting from the feasible initial value {KuRc,Q} determined previously, we want to find 

a particular pair of K IARC and Q such that 8(K IARC, Q) < 0 under the given uncertainty 

specifications. This problem can be cast as a constrained optimization problem in which 

the objective is to minimize 8(K IARC, Q) and the constraints are 

Re(A/An -BnKIARc )) < 0 Vi, Q = QT and Amin (Q) > 0. The latter is required to 

guarantee that the quadratic Lyapunov function is negative definite. We call a point 

satisfying these constraints a "feasible" point, and denote a solution for K IARC by 

KouRc where the subscript "OLARC" designates that the LAR gain matrix is obtained 

by using optimization. In this phase of the procedure, K IARC and Q are to be updated by 

an optimization routine, but not by (2.12) and (2.16). We emphasize that the feasible 

initial value {K IARC, Q} for the optimization selected previously from the plot of 8(p, 11) 

is reasonably good. This is in the sense that such an initial value corresponds to a small 

value of 8 in a certain set of {K IARC, Q} satisfying the eigenvector condition. 

By inspecting Theorem 3.3, it is clear that the required computation grows very rapidly as 

the order of the system n increases. Accordingly, it is crucial for a high dimensional 
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system that the initial value be reasonably good. In our case, we obtain this initial value by 

using (2.12), (2.16) and Theorem 3.3. Procedure 3 is now given: 

Step 1 Choose a region { (p, 11) IO< p1 ~ p ~ Pu,1 ~ 11 ~ 11u} and compute K = KIARC 

and Q at points distributed evenly in this region using (2.12) and (2.16). Then 

plot 8(p, 11) versus p and 11 in three dimensions using Theorem 3.3 and the 

given unstructured uncertainty specifications. The objective of this step is to 

find a region of (p, 11) where 8(p, 11) is small or is negative. Although it is not 

clear where this region is when we start this step, the shape of the first plot will 

guide us to a better selection of this region for the second plot and so on. In the 

examples herein, the time required for this is approximately the same as that 

when the uncertainties are structured. 

Step 2 If we find from the plot in Step 1 that 8(p, 11) ~ 0 at a particular (p, 11) , then 

the matrix K IARC corresponding to such (p, 11) meets the uncertainty 

specifications and we terminate the procedure. In this case, we usually select 

{KJARc,Q} corresponding to the minimum of 8(p, 11) in the plot as our 

solution, although we can accept any solutions such that 8(p, 11) ~ 0. If the 

minimum of 8(p, 11) in the plot is positive, we obtain from this plot an initial 

value {K IARC, Q} such that the corresponding 8(p, 11) is small for the 

optimization in Step 3. 
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When the available control energy is limited, it is preferable to start the 

optimization from an initial value in which KI.ARC is small. This usually forces 

us to admit an initial value {KuRc,Q} corresponding to a larger 8(p, ll). In 

this case, we select the initial value from a "flat" portion of the plot where 

decreasing (p, ll) does not increase 8(p, ll) significantly. 

Starting from the feasible initial value in Step 2, we employ an optimization 

technique to search for {KI.ARC, Q} such that 8(K I.ARC, Q) ~ 0 . There are 

several applicable optimization techniques but we employ the straightforward 

"univariate" technique (Fox, 1971) for simpl!city. We regard the elements of Q 

and K as our variables in the objective function 8(K I.ARC, Q) . Then we perturb 

these variables one at a time and examine the corresponding 8(K I.ARC, Q) . Our 

perturbations must be such that {KI.ARC, Q} remains feasible. If the objective 

function decreases, we continue to perturb this variable in the same direction. 

Otherwise, we reverse the direction of the perturbation and repeat the above 

sequences. When the decrement in 8(K I.ARC, Q) is less than a prescribed 

value, we perturb a new variable and repeat the above sequences. These nested 

loops terminate when computation time is expired or when the decrement in 

8(K I.ARC, Q) is less than a prescribed value after all the variables are perturbed 

in this fashion. All the "prescribed" values and the perturbations are 

determined by using heuristics. In examples herein, we set these to be between 

0.5% - 1 % of the previous values. 
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Example 3.3 (The Double-Inverted-Pendulum System with Lower-Joint Control) 

In this example, we draw the double-inverted-pendulum system from Example 2.2 to 

demonstrate how to generate a LARC in the presence of structured uncertainties. 

Nonlinearities are treated as "pseudo" structured uncertainties entering the nominal 

linearized model. Additional structured uncertainties can be augmented to these pseudo 

uncertainties as in (3.7), and we can apply the same procedure to generate LAR 

controllers for such systems. Recall from Example 2.2 the equation of motion of the 

system is: 

where: 

f(x) = 

x = f (x) + g(x) u 

X3 

X4 

(E 2.2.2 a) 

(E 2.2.2 b) 

{
(sin(x1 -x2 )xJ + 0.2824x3 -0.2824x4 + 48.2776sin(x2 ))cos(x1 -x2 )} 

+ 0.9833x3 + l.1206sin(x1 - x2 )x; -0.3165x4 ~ 214.3082sin(x1) 

-5.9809 + cos2 (x1 - x2 ) 

{
(-0.8774x3 - sin(x1 - x2)x; + 0.2824x4 + 191.2383sin(x1 ))cos(x1 - x2 )} 

-5.3371sin(x1 - x2 )xJ -l.5071x3 + l.5071x4 -257.6614sin(x2 ) 

g(x) = 

0 

0 
-565.1008 

-5.9809 + COS 2 (xl - X2) 

504.2688 cos(x1-x2 ) 

-5.9809 + COS2 (X1 - X2) 

(E 2.2.2 c) 

(E 2.2.2 d) 
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For the singular point at the origin of this system, the linearized model of (E 2.2.2) is 

given by: 

0 0 1 0 0 

0 0 0 1 0 x= x+ u 
43.0258 -9.6925 -0.2541 0.1202 113.4531 (E 2.2.3) 

-38.3942 51.7297 0.4787 -0.3593 -101.2401 

=Anx+Bnu 

By inspecting (E 2.2.2), we see that the system cannot be described globally by (3.9). 

However, it appears that (3.9) can approximate (E 2.2.2) better than (E 2.2.3) in a 

region about the origin because (3.9) represents a family of infinitely many models 

including (E 2.2.3). We then employ (3.9) to generate a LARC for (E 2.2.2). To obtain 

reasonable structured uncertainty specifications for (3.9), we notice that the nominal 

linearized model (E 2.2.3) does not include the effects of the following nonlinear terms in 

(E 2.2.2 c): 

1) ( ) _ sin(x1 - x2 )cos(x1 - x2 )xJ 
w1 x = 2 in the third component of f(x) 

-5.9809 + cos (x1 - x2 ) 

2) 
l.1206sin(x -x )x2 . . 

w2 (x) = 1 
2 

2 4 m the third component of f(x) 
- 5.9809 + cos (x1 - x2 ) 

3) ( ) _ - sin(x1 - x2 )cos(x1 - x2 )x; 
w3 x = 2 in the forth component of f (x) 

-5.9809+cos (x1 -x2 ) 

4) 
-5.3371sin(x - x )x2 . 

w4 (x) = ; 2 3 m the forth component of f(x) 
-5.9809+cos (x1 -x2 ) 

This is because linearizing them about the origin produces zeros. It is possible to consider 

other nonlinear terms but we omit these because wi (x), i = 1, 2, 3, 4 are sufficient for 
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demonstrating how to generate a LARC. We are interested in w/x) because we know 

from numerical simulations in Example 2.2 that when trajectories converge, x3 (joint 

velocity of the lower link) and x4 (joint velocity of the upper link) are relatively large 

when compared to x1 (joint angle of the lower link) and to x2 (joint angle of the upper 

link). Assuming that this is true for the system under our LARC, we see that neglecting 

wi (x), i = 1, 2, 3, 4 can lead to significant modeling error. Based on this assumption, we 

now assume a crude operating region in which we desire convergence: 

(E 3.3.1) 

where we note that ~ = 0.0785 = 4.5° . After we obtain the LARC and perform numerical 
40 

simulations, we shall see that this assumption is valid. Now, we write wi(x), i = 1,2,3,4 

as structured uncertainties: 

1) For w1 (x), we obtain: 

0 0 0 0 0 X1 

0 _ sin(x1 - x2 )cos(x1 - x2 )x3 0 0 0 0 Xz 

w1(x) -5.9809 + cos2 (x1 - x2 ) 0 0 1 0 X3 (E 3.3.2 a) 

0 0 0 0 0 X4 

= h{"' (x)Et7'x 

_!_sin(~) cos(~) 
A A A,i A,i 2 20 20 where h1 n (x) E [h1t, huI ], hll = = -0.0154, 

- 5.9809 + cos2 ( ~) 
20 

_!_sin(-~ )cos(-~) 
0 0 0 0 

0 0 0 0 hjn = 2 20 20 = 0.0154, and Efn = E1 = 
2 1t 0 0 1 0 

-5.9809 + cos (--) 
20 0 0 0 0 
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2) For w2 (x), we obtain: 

0 0 0 0 0 XI 

0 l.1206sin(x1 - x2 )x4 0 0 0 0 X2 
= 

w2 (x) -5.9809 + COS2 (X1 - X2) 0 0 0 1 X3 (E 3.3.2 b) 

0 0 0 0 0 X4 

= hfn (x)Etn X 

.!.1.1206sin( ~) 
where hfn (x)E [hi~n, h~ ], h1~n = 2 20 7t = -0.0175, and 

- 5 .9809 + COS2 (-) 
20 

.!. l .1206sin(-~) 
0 0 0 0 

0 0 0 0 hAn _ 2 20 = 0.0175, and Etn = E2 = u2 - 7t 0 0 0 1 -5.9809 + cos2(--) 
· 20 0 0 0 0 

3) For wix) , we obtain: 

0 0 0 0 0 X1 

0 -sin(x1 - x2 )cos(x1 - x2 )x4 0 0 0 0 X2 

0 - 5.9809 + cos2(x1 - x2 ) 0 0 0 0 X3 (E 3.3.2 c) 
w3(x) 0 0 0 1 X4 

= ~An (x)Efnx 

1 . 7t 7t 
- - sm(--) cos(--) 

where hfn (x) E [h11n, h~ ], h/f = 2 ZO 20 = -0.0154, 
2 7t - 5.9809 + cos (--) 

20 

_ _!_sin(~) cos(~) 
0 0 0 0 

0 0 0 0 ht:f = 2 20 20 = 0.0154, and Efn = E3 = 
-5.9809 + COS2 ( ~) 

0 0 0 0 
20 0 0 0 1 
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4) For w4 (x), we obtain: 

0 0 0 0 0 X1 

0 _ -5.3371sin(x1 - x2 )x3 0 0 0 0 X2 

0 - 5.9809 + cos2cx1 - x 2 ) 0 0 0 0 X3 (E 3.3.2 d) 

w4 (x) 0 0 1 0 X4 

= htn (x)Etnx 

_ _l5.3371sin(-~) 
h1} 1 = 2 20 = -0.0834, 

-5.9809 + cos2 (-~) 
20 

- _l 0.0834sin( ~) 
0 0 0 0 

0 0 0 0 hAn - 2 20 A 
u4 -

-5.9809 + cos2(~) 

= 0.0834, and E4n = E4 = 
0 0 0 0 

20 0 0 1 0 

Note that wi (x), i = 1, 2, 3, 4 are treated as uncertainties entering An : 

4 

[L\An(x)]x = L,[h:n (x)Ein ]x (E 3.3.3) 
a=l 

To generate a LARC, we want to include the nonlinearities in g(x) into our considerations. 

This is because while it is reasonable to employ B n in the nominal linearized model to 

approximate g(x) in e, [g(x)-B]KLARc = [L\Bn (x)]KLARcx may be large in e because 

of the possibility that the resulting K LARC may be large. To include this possibility into 

our controller generation, we augment [L\Bn (x)]K LARcx to the nominal linearized model 

as additional structured uncertainties entering Bn. We recall from (3.11): 
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2 

0 

0 
-565.1008 

113.4531 = L,[h:n (x,t)Et8n]x (E 3.3.4) 
-5.9809+cos2 (x1 -x2 ) 

504.2688cos;x1 - x2 ) + lOl.2401 
-5.9809+cos (x1 -x2 ) 

E~8n = [O O O If . It follows that: 

where 

1) 

2) 

3) 

4) 

5) 

6) 

7) 

8) 

0 0 

0 0 
- [Min (x)]Kx = hfn (x,t) 

-K 
+ hfn (x,t) 

0 

0 -K 

-565.1008 
hfin = -113.4531 = -0.5547 

- 5.9809 + COS2 ( ~) 
20 

h!n = -565.1008 -113.4531=0 
-5.9809 + cos2 (0) 

hz~n = 504.2688cos (0) + lOl.2401 = 0 , 
- 5.9809 + cos2(0) . 

7t 
504.2688 cos(-) 

B 20 huf = + 101.2401 = 1.7353 
- 5.9809 + COS 2 ( ~) 

20 

~=1 

2 

x = L,[h:n (x)E:n ]x (E 3.3.5) 
~=1 
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Using the uncertainty specifications obtained previously, we approximate (E 2.2.2) in 8 

by: 

x~[[A 0 + !rht"(x)Ei•]]+[-B0 K+ ![1\('"(x)Etll} 

=[[An +~An(x)]+[-[B 11 +~Bn(x)]K]]x 

(E 3.3.6) 

where ~An (x) and - ~B 11 (x)K are given by (E 3.3.3) and (E 3.3.5) respectively. Note 

that (E 3.3.6) does not represent (E 2.2.2) exactly in 8 but we expect that it approximates 

(E 2.2.2) better than (E 2.2.3) does in the same region because of the augmented nonlinear 

structured pseudo-uncertainties. We emphasize that h;n (x), a= 1, 2, 3, 4 and h:n (x), 

~ = 1, 2 need not be the corresponding functions given previously. Rather, they can be any 

functions that obey the corresponding bounds [h11n, htan] and [h1~n, h:;]. Accordingly, 

we see that (E 3.3.6) includes not only the pseudo-uncertainties, but also any uncertainties 

obeying such bounds. To generate a LARC for (E 3.3.6), we follow the procedure given in 

Section 3.5. Using (2.12), (2.16), and Theorem 3.2, we plot Amax (Z) versus p E 9t+ and 

T] ~ 1, and determine the minimum of Amax (Z) in this plot. We realize that the values of 

p and T] corresponding to this minimum may produce a LARC that requires a large 

amount of control energy but we assume in this example that we are not limited by this 

factor. When the availability of control energy is limited, we usually want to choose small 

values of p and T] that correspond to a small value of Amax (Z) from such plot because 

small values of p and T] usually produce a small K LARC • This will be illustrated in 

Example 3.4. 
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Because we do not know where the minimum of Amax (Z) is, we first generate the plot in 

a large region of 0.001::;; p::;; 100 and 1::;; rJ::;; 100 using large grids as shown in Fig 

E3.3.l. From Fig. E3.3.l, we find that Amax (Z) has a local minimum when p and rJ are 

small. Accordingly, we reduce the plotting domain to 0.001::;; p::;; 0.1 and 1::;; ri::;; 2.5, and 

plot Amax (Z) versus p and rJ as in Fig. E3.3.2. From Fig. E3.3.2, we find that 

min(Amax (Z)) = 0.7220 occurs at (p, YJ) = (p *, rJ *) = (0.031, 1.65). The plot of Amax (Z) 

versus ri when p == p* = 0.031 is given in Fig. E3.3.3. Using our computer, the 

computation time is less than 1 minute. 

6 

4 

Amax.CZ) 
2 ............ -............... . 

0 
100 

minimum point 

0 0 

~ 
l 
! 

100 

Fig. E3.3.1 A Plot of Amax (Z) versus p E [0.001, 100] and rJ E [l, 100] 
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400 ............................ --·········--.,'',,.······························-······1, ······• 
,·-........................ . 

! 

............. 
. ............. . 

I 
2.5 

0 1 

Fig. E3.3.2 A Plot of Amax (Z) versus p E [0.001, 0.1] and TJ E [1, 2.5] 

5~~~~~~~~~~~~~~~~ 

4 --_J_ -------
3 _______ _i _______ ----+--

! * i 
' (TJ ,Amax (Z)) = (1.65,0.722) 

2 -····-···············----·--··················--········l····················-·······-·--································---1-································································· 

1 ------- -+-- __ [_ 

o~~~~~~~~~~~~~~~ 

1 1.5 2 2.5 
Tl 

Fig. E3.3.3 A Plot of Amax (Z) versus T) E [l, 2.5] when p = p * = 0.031 
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The minimum point Amax (Z) = 0.7220 corresponds to the following matrices: 

KLARC = [-0.1141 -7.1286 -0.4935 -1.0932] (E 3.3.7) 

1.1002 6.2628 0.4335 0.9604 

6.2628 392.3790 27.0938 60.0187 
Q= 

0.4335 27.0938 2.8756 4.1549 

0.9604 60.0187 4.1549 10.2040 

4.5672 11.4836 1.4703 1.6697 

11.4836 101.9292 10.9763 13.6770 
p = p(E3.3.9) = 1.4703 10.9763 1.3090 1.5622 

1.6697 13.6770 1.5622 1.9617 

0 0 1 

0 0 0 

0 

1 
An= [An -BnKLARC] = 

· 55.9675. 799.0742 55.7340 124.1461 

-49.9.428 -669.9749 -49.4824 -111.0340 

(E 3.3.8) 

(E 3.3.9) 

(E 3.3.10) 

where the eigenvalues of An are at 11.1 = -43.3035, 11. 2,3 = -5.0925 ± j 2.1912, and 

11.4 = -1.8116 in the LHP. Because Amax (Z) > 0, the time derivative of the quadratic 

Lyapunov function V(x) = ~ xTP(E 3.3_9)x along trajectories of(E 3.3.6) is not 

negative definite in 0. Accordingly, we continue with the simple univariate optimization 

technique to search for KuRc that meets the structured uncertainty specifications. We 

start the univariate technique with the initial value for KuRc and Q taken from (E 3.3.7) 

and (E 3.3.8) respectively. In less than 10 seconds on our computer, the univariate 

technique gives a linear gain matrix K LARC and Q such that 11.max (Z) < 0, implying that 

the uncertainty specifications are met under such K LARC and Q. However, we continue to 

run the optimization algorithm to decrease 11.max (Z) further. The algorithm does not 
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produce better results after it runs for approximately 2 minutes on our computer. At this 

point, we obtain: 

Amax (Z) = -1.7797 

The corresponding matrices are given by: 

KLARc=KoLARc=[-0.0804 -8.6189 -0.5572 -1.1748] 

1.6119 13.1838 1.2758 1.7495 

13.1838 332.1778 30.3678 49.3434 
Q= 

1.2758 30.3678 4.7783 4.6135 

1.7495 49.3434 4.6135 9.1941 

4.6236 12.4067 1.4066 1.6109 

12.4067 157.1118 17.1767 20.6637 
p = p(E3.3.14) = 

1.4066 17.1767 2.0826 2.4550 

1.6109 20.6637 2.4550 2.9956 

0 0 1 

0 0 0 

0 

1 
An = [An - BnKOLARC] = 

52.1474 968.1484 62.9620 133.4049 

-46.5339 -820.8486 -55.9323 -119.2962 

(E 3.3.11) 

(E 3.3.12) 

(E 3.3.13) 

(E 3.3.14) 

(E 3.3.15) 

where the eigenvalues of An are A1 =-39.7642, A2 = -11.8991, A3 = -3.1758, and 

A4 = -1.4951 in the LHP. Because Amax (Z) < 0, it follows that the region about the 

origin in which the time derivative of the quadratic Lyapunov function V = ~ xTP(E33 .14)x 

along trajectories of (E 3.3.6) is negative definite contains 8. When Amax (Z) = o-, we 

know from the fundamental idea of LARC that the corresponding LAR is the largest 13c 

that can be contained in 8. For this particular example, Amax (Z) < o-. Accordingly, the 

corresponding LAR is larger than the largest 13c that can be contained in e. Note that the 

initial value is extremely important for obtaining a solution of the optimization problem. 
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Indeed, our univariate optimization cannot find a solution KoLARC that meets the given 

uncertainty specifications when we employ the same initial value KuRc in (E 3.3.7) but 

replace the initial value Qin (E 3.3.8) by the feasible matrix: 

1 0.1 0.1 0.1 

0.1 1 0.1 0.1 
Q= 

0.1 0.1 1 0.1 

0.1 0.1 0.1 1 

To estimate the attractive regions corresponding to KuRc (E 3.3.7) and to KoLARC (E-

3.3.12), we employ numerical simulations. We define convergence and divergence to be 

the same as those in Example 2.2. These attractive regions are displayed in Table E3.3.l 

and E3.3.2 with the attractive region corresponding to KLQR (Misawa, Arrington, and 

Ledgerwood, 1995) in Example 2.2. From these tables, it appears that the attractive region 

corresponding to KoLARC is the largest while the attractive region corresponding to 

K LARC is larger than that corresponding to K LQR • From the tables, we see that the 

attractive regions corresponding to KoLARC is larger than E> . Since a LAR must be 

contained in E>, this agrees with a known fact that the attractive region must contain every 

LAR. We do not present the application of the unstructured uncertainty bound from 

Theorem 3.3 in this example because the resulting allowable bound is very conservative. 

This result agrees with those in Example 3.1 and 3.2. 

Using the matrices resulting from the univariate technique, we now illustrate the 

application of Theorem 3.2. Note that internal computing precision is 16 decimal digits 

but we display only 4 decimal digits for conveniences: 



1) Following (3.18 b), we obtain: 

6 

A1 =An+ LhuEJ 
j=I 

4 2 

= An - BnK + L [h:,Z (x)Ein ]x + L [ht (x)E~ ]x 
cx=l ~=1 

0 0 1 0 

0 0 0 1 
= 

52.1028 963.3675 62.6375 132.7357 

-46.5339 -820.8486 -56.0157 -119.3116 

2) Following (3.18 c), we obtain: 

-3.3493 -33.8584 -3.2352 -4.5745 

-33.8584 -828.5962 -77.9894 -122.2360 
<I>= 

-3.2352 -77.9894 -11.3176 -11.7048 

-4.5745 -122.2360 -11.7048 -21.7660 

The eigenvalues of <I> are A1 = -855.4701, A2 = -4.0113, A3 = -3.6898, and 
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(E 3.3.16) 

(E 3.3.17) 

A4 = -1.8579. So we have "-max (<I>)= -1.8579 and the condition in (3.17 a) is satisfied. 

3) Following (3.18 d), we obtain: 

0 0 1.4066 0 

0 0 17.1767 0 
'l'i = 

1.4066 17.1767 4.1653 2.4550 
(E 3.3.18 a) 

0 0 2.4550 0 

0 0 0 1.4066 

0 0 0 17.1767 
'l'z = 

0 0 0 2.0826 
(E 3.3.18 b) 

1.4066 17.1767 2.0826 4.9099 

0 0 0 1.6109 

0 0 0 20.6637 
'1'3 = 

0 0 0 2.4550 
(E 3.3.18 c) 

1.6109 20.6637 2.4550 5.9912 
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0 0 1.6109 0 

0 0 20.6637 0 
'I\= 

1.6109 20.6637 4.9099 2.9956 
(E 3.3.18 d) 

0 0 2.9956 0 

0.2262 13.5043 0.9512 1.8498 

13.5043 296.0890 27.5210 41.3384 
'l's= 

0.9512 27.5210 2.3209 3.8146 
(E 3.3.18 e) 

1.8498 41.3384 3.8146 5.7682 

0.2590 15.5457 1.0950 2.1334 

15.5457 356.1974 32.6730 50.0945 
'1'6 = 

1.0950 32.6730 2.7358 4.5532 
(E 3.3.18 f) 

2.1334 50.0945 4.5532 7.0385 

4) Following (3.18 e), we obtain: 

-0.9967 0.0536 0.0604 0.0000 

0.0800 0.6550 0.7380 -0.1415 
T.,1 = 

0.0000 0.7479 -0.6638 0.0000 
(E 3.3.19 a) 

0.0114 0.0936 0.1055 0.9899 

-0.9967 0.0531 -0.0612 0.0000 

0.0804 0.6488 -0.7470 -0.1204 
T.,2 = 

0.0098 0.0787 -0.0906 0.9927 
(E 3.3.19 b) 

0.0000 0.7550 0.6557 0.0000 

-0.9970 0.0506 -0.0583 0.0000 

0.0766 0.6484 -0.7482 -0.1180 
T.,3 =. 

0.0091 0.0770 -0.0889 0.9930 
(E 3.3.19 c) 

0.0000 0.7557 0.6550 0.0000 

-0.9970 0.0511 0.0575 0.0000 

0.0761 0.6558 0.7372 -0.1435 
T.,4 = 

0.0000 0.7471 -0.6647 0.0000 
(E 3.3.19 d) 

0.0110 0.0951 0.1069 0.9897 
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0.0448 0.7860 0.6160 0.1613 

0.9852 -0.1002 0.0504 -0.1077 
T'l's = 

0.0914 0.6073 -0.7851 -0.3155 
(E 3.3.19 e) 

0.1375 0.0581 -0.0396 0.9289 

0.0429 0.7809 -0.5095 0.0337 

0.9853 -0.1018 0.0221 0.1265 
T'l'6 = 

0.0903 0.6104 0.7208 0.1148 
(E 3.3.19 f) 

0.1386 0.0848 -0.4694 -0.9847 

'Pf = diag [O 19.6150 -15.4497 O] (E 3.3.20 a) 

'Pf = diag [O 19.9873 -15.0774 O] (E 3.3.20 b) 

'Pf = diag [O 24.0808 -18.0896 O] (E 3.3.20 c) 

'Pf = diag [O 23.5402 -18.6302 O] (E 3.3.20 d) 

'Pf = diag [305.0279 -0.6236 0 O] (E 3.3.20 e) 

'Pr = diag [366.9107 -0.6800 0 O] (E 3.3.20 f) 

5) Following (3.18 f), we obtain: 

'l'f-0+ = diag [O 19.6150 0 O] (E 3.3.21 a) 

'l'f·0+ = diag [O 19.9873 0 O] (E 3.3.21 b) 

'Pf ,o+ = diag [O 24.0808 0 O] (E 3.3.21 c) 

'l'f·0+ = diag [O 23.5402 0 O] (E 3.3.21 d) 

'l'f,0+ = diag [305.0279 0 0 O] (E 3.3.21 e) 

'l'r·o+ = diag [366.9107 0 0 O] (E 3.3.21 f) 

6) Following (3.18 g), we obtain: 

0.0564 0.6890 0.7868 0.0985 

tpO+ -
0.6890 8.4142 9.6086 1.2026 

I -
0.7868 9.6086 10.9725 1.3733 

(E 3.3.22 a) 

0.0985 1.2026 1.3733 0.1719 
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0.0564 0.6890 0.0835 0.8018 

'l'O+ - 0.6890 8.4142 1.0202 9.7910 
2 -

0.0835 1.0202 0.1237 1.1871 
(E 3.3.22 b) 

0.8018 9.7910 1.1871 11.3930 

0.0615 0.7894 0.0938 0.9199 

wo+ - 0.7894 10.1254 1.2030 11.7997 
3 -

0.0938 1.2030 0.1429 1.4019 
(E 3.3.22 c) 

0.9199 11.7997 1.4019 13.7510 

0.0615 0.7894 0.8992 0.1144 

'l'o+ - 0.7894 10.1254 11.5348 1.4679 
4 -

0.8992 11.5348 13.1405 1.6722 
(E 3.3.22 d) 

0.1144 1.4679 1.6722 0.2128 

0.6114 13.4552 1.2489 1.8783 

'l'O+ - 13.4552 296.0953 27.4830 41.3347 
5 -

1.2489 27.4830 2.5509 3.8366 
(E 3.3.22 e) 

1.8783 41.3347 3.8366 5.7703 

0.6737 15.4916 1.4191 2.1784 

'l'o+ - 15.4916 356.2044 32.6307 50.0886 
6 -

1.4191 32.6307 2.9892 4.5885 
(E 3.3.22 f) 

2.1784 50.0886 4.5885 7.0433 

7) Following (3.18 h), we obtain: 

-1.8251 0.6891 0.1002 0.3261 
6 0.6891 -43.6762 -3.8277 -11.4009 

z =<I>+ L, [(huj - hu )'11?] = 
0.1002 -3.8277 -2.1770 -1.2084 

(E 3.3.23) 
}=1 

0.3261 -11.4009 -1.2084 -5.4798 

It can be shown that the eigenvalues of Z are A1 = -47.1905, A2 = -2.4052, 

A3 = -1.7827 , and A4 = -1.7797 . Accordingly, we have that Amax (Z) = -1.7797 < 0 and 

(3.17 b) is satisfied. 
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Example 3.4 (A Fighter Aircraft) 

In this example, we consider the problem of stabilizing the longitudinal short period 

mode of a fighter aircraft about two operating points (Schmitendorf, 1988), (Chen, and 

Chen, 1991). We assume that the available control energy is limited and thus we require 

that every element of our linear state-feedback gain matrix be small. The dynamics at 

mach = 0.5 and altitude = 5000 feet, and at mach = 0.9 and altitude = 35,000 feet are 

given by (E 3.4.1 a) and (E 3.4.1 b) respectively: 

(E 3.4.1 a) 

(E 3.4.1 b) 

where x = [x1 x2 x3 f, x1 = normal acceleration, x2 = pitch rate, x3 = elevator 

angle,u=elevatorcontrol, An= 0.1734 -0.7549 -11.1 is unstable, l-0.8251 17.76 90.245J 

r-0.1645 

Mc =l 0.0i14 

-0.35 

-0.0963 

0 

0 0 -250 

5.9051 r-91.441 . r-6.341 
-~29J" B0 =l 2~0 rnd LIBc = l ~ J 

In (Schmitendorf, 1988), the system is modeled as: 

r-0.1645 

where E;"' = l ~ 
-0.35 

0 

0 

5.905J l O 0 
0 , Et = 0.0914 - 0.0963 

0 0 0 

(E 3.4.2 a) 

(E 3.4.2 b) 

(E 3.4.2 c) 
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, -6.341 
Ef"" = l ~ J' hi"" (x, t) E [-1, 1], hz"' (x,t) E [-1, 1], and "18" (x,t) E [-1, l]. When the 

system is modeled as (E3 .4.2), we see that the uncertainties in An are assumed to enter 

each row of An proportionally. The solution from (Schmitendorf, 1988) is: 

K[Sch] = [0.593 1.8965 - 0.642] (E 3.4.3) 

Reference (Chen, and Chen, 1991) refers to (Schmitendorf, 1988) and reports the 

stabilizing solution gain matrix: 

K[CC] = [0.2556 0.3595 0.1370] (E 3.4.4) 

We say that K[CCJ is "smaller" than K[SchJ because each element of K[cci is smaller 

than the respective one in K[schJ. In this particular example, K[CCJ is preferable because 

the control energy is limited. Our objective is to show that our LARC can handle more 

general and stronger uncertainties with a smaller gain matrix. We now cast the problem 

in a more general form, allowing the uncertainties to enter An independently. In this 

case, the dynamics of the uncertain system are: 

6 

X =[An+ L,[h:n (x,t)E~ ]]x-[Bn + hfn (x,t)Et8n]Kx 
a=l (E 3.4.5) 
6 

=[An+ L,[h:,Z (x,t)E~ ]]x + [-BnK + hfn (x,t)Efn]x 
a=l 

where Et" = r ~ 0 01 ro 1 01 ro O 11 ro 0 0 , E~ = 0 0 0 , Efn = 0 0 0 , E:,Z = 1 

0 0 0 0 0 0 0 0 0 

0 01 0 0 , 

0 0 

r
O O 01 rO O 01 rll r-K1 Et= ~ ~ ~ , E:,Z = ~ ~ ~ , Et8n = ~ , Efn = : , h/n (x,t)E [-0.1645, 
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,0.1645], hfn (x,t)E [-0.35,0.35], hfn (x,t)E [-5.905,5.905], htn(x,t)E [-0.0914, 

, 0.0914], ht,i (x, t) E [-0.0963, 0.0963], ht' (x, t) E [-0.29, 0.29], and hi8n (x, t) E [-6.34 

,6.34]. 

To generate a LARC for this uncertain system, we start the "second" procedure by 

generating a three-dimension plot of Amax (Z) versus p and Tl , and determine from this 

plot if there exists a particular (p, T)) such that Amax (Z) < 0. A plot of Amax (Z) in a 

region of p and Tl is shown in Fig. E3.4.1, from which we see that the minimum of 

Amax (Z) is nonnegative. We emphasize that the sign of Amax (Z) for large values of p 

and Tl need not be examined because these correspond to large gain matrices. 

0 
0.2 

0 1 

2 

Fig. E3.4.l A Plot of Amax(Z) versus pE [0.0001,0.2] and T)E [1,2] 
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Because the minimum of Amax (Z) in Fig. E3.4.1 is nonnegative, we enter the second 

phase of the procedure in which optimization is employed to find a gain matrix that meets 

the given uncertainty specifications. To find an initial value for such optimization, we 

normally select from this plot (p, YJ) at which Amax (Z) is small because we want to 

minimize Amax (Z). Fig. E3.4.1 shows that Amax (Z) is small when (p, ri) is large. 

However, direct computations show that a large (p, ri) corresponds to a large K LARC . 

Since the solution K LARC for this problem is required to be small, we need to trade a 

larger Amax (Z) for a smaller (p, YJ). Now, we notice from Fig. E3.4.1 that Amax (Z) 

decreases sharply in regions where p and Y) are small. This suggests that we examine the 

plot in such regions to do the trade-off. Using our computer, it takes approximately 5 

seconds to produce the plot of Amax (Z) shown in Fig. E3.4.2 and Fig. E3.4.3. 

(p*, ri*, Amax(Z)) = (0.002,2,11.9933)-----

(p, Y], Amax (Z)) = (0.0015, 1.4,14.4718) 

150 

100 

50 

0 
2 

........ 

p 

....... f············· 
······· 

... t··· 

I 

0 1 

2 
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Fig. E3.4.2 A Plot of Amax (Z) versus p E [0.0001, 0.002] and 11 E [1, 2] 

26~~~-,-,~~~~ . .---~~--.-~~~---,-~~---, 

lc11, Amax (Z)) = (1.4,1~.4718) 
24 ................................... / ............................. !. ···+!··················································································· 

.... f ......................................... f .......................................... :······ ................................. \,.···· ................................ . 
I = = 

18 ·········.················· ...................... ! .......................................... , ....................................... . 

..... ; .......................................... ; ....................................... . 

14~~~~~~~~~~~~~~~~~~~ 

1 1.2 1.4 1.6 1.8 2 

Fig. E3.4.3 A Plot of Amax (Z) versus 11 E [l, 2] when p = 0.0015 

The minimum value of Amax (Z) = 11.9933 in Fig. E3.4.2 is at (p*, 11*) = (0.002,2). We 

examine Fig. E3.4.2 and find that a portion of the plot is flat. In this flat portion, reducing 

the values of p and 11 does not increase the value of Amax (Z) significantly. Accordingly, 

we select from this flat portion (p, 11) = (0.0015, 1.4) corresponding to 

Amax (Z) = 14.4718 and employ this (p, 11) to generate {KuRc, Q} as an initial value for 

our optimization routine. Other points in this flat portion having small Amax (Z) can be 

selected for this purpose as well. To investigate effects of different initial values, we start 

our optimization routine from the initial values corresponding to (p*, 11 *) = (0.002, 2) and 
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to (p, 11) = (0.0015,1.4). Using Lemma 2.3, the initial value {KLARC 1, Q} corresponding 

to (p *, 11 '') = (0.002, 2) is given by: 

KLARC,1 = [-0.0817 -0.4451 -0.0055] 

ll.8342 4.5452 0.05591 
Q = 4.5452 25.7659 0.3046 

0.0559 0.3046 1.0037 

In the same fashion, the initial value {KuRc, 2 , Q} corresponding to 

(p, 11) = (0.0015, 1.4) is given by: 

K LARC 2 = [-0.0500 - 0.2886 - 0.0030] 

ll .3398 1.9624 0.02041 
Q = 1.9624 12.3335 0.1177 

0.0204 0.1177 1.0012 

(E 3.4.6 a) 

(E 3.4.6 b) 

(E 3.4.7 a) 

(E 3.4.7 b) 

Notice that the gain matrix corresponding to (p*, 11 *) = (0.002,2) is relatively larger than 

that corresponding to (p, 11) = (0.0015, 1.4). Applying the univariate optimization to 

Theorem 3.2, it takes our PC approximately 1 minute to find a solution corresponding to 

the initial value in (E 3.4.6): 

KoLARC 1 = [-0.0825 -0.4451 -0.0055] 

l0.2336 0.6211 0.03961 

Q = 0.6211 4.0120 0.241. 0 

0.0396 0.2410 0.9833 

(E 3.4.8 a) 

(E 3.4.8 b) 

The solution KoLARC,I in (E 3.4.8) corresponds to "-max (Z) = -0.0101. In the same 

fashion, it takes our PC approximately 1 minute to find a solution corresponding to the 

initial value in (E 3.4.7). This solution is given by: 



KoLARc 2 = [-0.0715 -0.2886 -0.0030] 

r
0.1209 0.2316 0.00901 

Q = 0.2316 0.9881 0.0188 

0.0090 0.0188 0.5874 
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(E 3.4.9 a) 

(E 3.4.9 b) 

The solution KoLARC 2 in (E 3.4.9) corresponds to Amax (Z) = -0.0108. Notice that the 

solution KoLARc,2 is smaller than K[6si in (E 3.4.3), K[6oi in (E 3.4.4), and KoLARc,1 

(E 3.4.8 a). We see from this particular example that a small initial gain matrix can lead 

to a small solution gain matrix. 

For this particular example, we want to show further that our "second" procedure can 

generate a LARC to meet increased uncertainty specifications with a small state-feedback 

gain matrix. For this purpose, we assume that the variations in h{;n (x, t) , a = 1, 2, ... , 6 

and h1
8 n (x,t) increase by 25 %. We now have: 

htn (x,t)E l.25[-0.1645,0.1645], hfn (x,t)E l.25[-0.35,0.35], ... , 

htn (x, t) E 1.25(-0.29,0.29], and h1
8 n (x, t) E l.25[-6.34, 6.34] 

(E 3.4.10) 

We reapply the second procedure by plotting Amax (Z) versus p and l1 according to the 

increased structured uncertainty specifications. The plot is given in Fig. E3.4.4. It is clear 

that the minimum of Amax (Z) in this plot is greater than zero and thus we employ 

optimization to find a small gain matrix that meets the increased specifications. In the 

same fashion, we see that this plot has a flat portion, and we select from this portion a 

point at which p, 11, and Amax (Z) are small to generate an initial value for the optimization 
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routine. We select from this portion the same coordinate (P,'Yl) = (0.0015,1.4), which 

now corresponds to Amax (Z) = 18.7552. 

(p, 'Yl, Amax (Z)) = (0.0015,1.4,18.7552) 

150 

100 

Amax(Z) 

50 

0 
2 

2 

X 10-3 
p 1 

Fig. E3.4.4 A Plot of Amax (Z) versus p E [0.0001, 0.002] and ri E [1, 2] 

We have seen that (p, ri) = (0.0015,1.4) corresponds to the initial value {KuRc 2 ,Q} in 

(E 3.4.7). Using this initial value, we apply the univariate optimization to Theorem 3.2 

and obtain the solution: 

KoIARc, 3 = [-0.0939 - 0.4451 - 0.0055] 

r
0.2623 0.5707 0.0327] 

Q = 0.5707 2.2043 0.1089 

0.0327 0.1089 1.1397 

This solution corresponds to Amax (Z) = -0.0101 and a computation time of 

(E 3.4.11 a) 

(E 3.4.11 b) 

approximately 1 minute. Continue running the optimization routine yields the minimum 

value of Amax CZ)= -0.1403, which corresponds to: 
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KoLARc 4 = [-0.1635 -0.5303 -0.4297] (E 3.4.12 a) 

[
0.3498 0.5817 0.0399] 

Q = 0.5817 1.6964 0.0043 

0.0399 0.0043 0.9250 

(E 3.4.12 b) 

The total computation time is approximately 2 minutes. Since we require that the linear 

gain matrix be small, we select the solution KaLARc,3 in (E 3.4.11 a) for the increased 

uncertainties. Because the gain matrices KouRc 3 and KoLARc 4 are such that 
' ' 

Amax (Z) < 0, we know that they can stabilize the system when the uncertainties are 

increased by more than 25 %. We do not pursue this further because it appears that the 

present results are satisfactory. 
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Example 3.5 (The Cart-and-Pole System with Force Control on Cart) 

In this example, we generate a robust LARC for stabilizing the cart-and-pole system in 

Example 2.2 about the origin. We treat nonlinearities as "pseudo" structured uncertainties 

entering the nominal linearized model as in Example 3.3. Additional structured 

uncertainties can be augmented to these pseudo uncertainties as in (3.7), and we can 

apply the same procedure to generate LAR controllers for such systems. Recall the 

equation of motion of the system from (E 2.3.2): 

where: 

f(x) = 

x = f (x) + g(x)u 

X3 

X4 

ml sin(x2 ).x; - mg sin(x2 )cos(x2 ) 

(M+sin 2 (x2 )m) 

(m + M)g sin(x2 ) cos(x2 )msin(x2 )x; 

(M+sin2 (x2 )m)l (M+sin2(x2 )m) 

g(x) = 

0 

1 
1 

M+sin2 (x2 )m 
cos(x2 ) 

(M+sin2 (x2 )m)l 

(E 2.3.2 a) 

(E 2.3.2 b) 

(E 2.3.2 c) 

(E 2.3.2 d) 

Linearizing the (E 2.3.2) about the origin using the physical parameters M = 2 kg, m = 0.1 

kg, l = 0.5 m, and g = 9.81 kg.mJ2 produces the linearized model in (Ogata, 1997): 



195 

X1 0 0 1 0 0 

X2 0 0 0 1 0 
= x+ u 

X3 0 -0.4905 0 0 0.5 (E 2.3.3) 

.X4 0 20.6010 0 0 -1 

= Anx+Bnu 

By inspecting (E 2.2.2), we see that the system cannot be described globally by (3.9). 

However, it appears that (3.9) can approximate (E 2.3.2) better than (E 2.3.3) in a 

region about the origin because (3.9) represents a family of infinitely many models 

including (E 2.3.3). We then employ (3.9) to generate a LARC for (E 2.3.2). To obtain 

reasonable structured uncertainty specifications for (3.9), we notice that the nominal 

linearized model (E 2.2.3) does not include the effects of the following nonlinear terms in 

(E 2.3.2 c): 

1) ( ) ml sin(x2 )x; 
w1 x = in the third component of f (x) 

(M+sin2 (x2 )m) 

2) ( ) _ cos(x2)msin(x2 )x; 
w2 x - - in the forth component of f(x) 

(M+sin2(x2 )m) 

This is because linearizing them about the origin produces zeros. We are interested in 

wi (x), i = 1, 2 because we know from numerical simulations in Example 2.3 that when 

trajectories converge, x4 (joint velocity of the pole) is relatively large when compared to 

x2 (joint angle of the pole). Assuming that this is true for the system under our LARC, 

we see that neglecting w/x), i = 1, 2 can lead to significant modeling error. Based on this 

assumption, we now assume a crude operating region in which we desire convergence: 

8 = {x II x21 < 0.5, and I x41 < 1.5} (E 3.5.1) 
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After we obtain the LARC and perform numerical simulations, we shall see that this 

assumption is valid. Now, we write wi (x), i = 1, 2 as structured uncertainties: 

1) For w1 (x), we obtain: 

0 0 0 0 0 X1 

0 ml sin(x2 )x4 0 0 0 0 X2 
= 

w1(X) (M+sin2(x2 )m) 0 0 0 1 X3 (E 3.5.2 a) 

0 0 0 0 0 X4 

= h(n (x)Efnx 

where hA11 (x)E [hA11 , hA11 ], hAn = mlsin(-0.5)x4 =-0.01778, 
1 11 ul 11 (M + sin 2(-0.5)m) 

0 0 0 0 

hAn = ml sin(-0.5)x4 = 0.01778' and EAn = E = 0 0 0 0 

ul (M+sin 2 (-0.5)m) 1 1 0 0 0 1 

0 0 0 0 

2) For w2 (x), we obtain: 

0 0 0 0 0 X1 

0 cos(x2 )msin(x2 )x4 0 0 0 0 X2 
= -

0 (M+sin2 (x2 )m) 0 0 0 0 X3 (E 3.5.2 b) 

w2 (x) 0 0 0 1 X4 

= hf11 (x)Ef11 x 

h h A,i ( ) [hAn hAn] hAn = _ cos(0.5)msin(0.5)x4 = _0 0312 d 
W ere 2 X E 12 , u2 , 12 . 2 . , an 

(M+sm (0.5)m) 

0 0 0 0 

hAn = _ cos(-0.5)msin(-0.5)x4 = 0_0312 , and EA11 = E = 0 0 0 0 

u2 (M+sin 2 (-0.5)m) 2 2 0 0 0 0 

0 0 0 1 
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Note that w/x), i = 1,2 are treated as uncertainties entering An: 

2 

[M/x)]x = L[h:,i (x)E:n ]x (E 3.5.3) 
a=l 

To generate a LARC, we want to include the nonlinearities in g(x) into our 

considerations. This is because while it is reasonable to employ Bn in the nominal 

linearized model to approximate g(x) in 0, [g(x)- B]K LARC = [~Bn (x)]K LARcX may be 

large in 0 because of the possibility that the resulting K LARC may be large. To include 

this possibility into our controller generation, we augment [~n (x)]KLARcX to the 

nominal linearized model as additional structured uncertainties entering Bn. We recall 

from (3.11): 

0 

1 
2· 

l -0.5 
M+sin 2 (x2 )m 

= L[h:ncx,t)Et8n]x (E 3.5.4) 

cos(x2 ) 1 - + 
(M+sin2(x2 )m)l 

~=l 

where hi8n (x, t) = ~Bn (x)(3, 1), hfn (x, t) = ~n (x)( 4, 1), Efn = [O O 1 Of, and 

Efn = [O O O lf. It follows that: 

- [~Bn (x)]Kx = 

where 

0 

0 
~n(x,t) -K 

0 

0 

0 
+ hfn (x,t) 

0 

-K 

2 

x = L [h:n (x)Egn ]x (E 3.5.5) 
~=l 



3) 

4) 

5) 

6) 

7) 

8) 

h1~n = ! -0.5 = -0.0057 
M+sin (0.5)m 

h:in = l - 0.5 = 0 
M+sin 2 (0)m 

hBn _ _ cos(O) 1 _ 0 
12 - + -

(M+sin2 (0)m)Z 

h:2 = - cos(0.5) . + 1 = 0.1324 
(M+sin2 (0.5)m)Z 
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Using the uncertainty specifications obtained previously, we approximate (E 2.3.2) in 0 

by: 

2 2 

X = [An + L [htn (x)E:n ]]x + [-BnK + L [Jitn (x)Egn ]]x 
u=l P=l (E 3.5.6) 

=[[An+ Mn(x)] + [-[Bn + LIBn(x)]K] ]x 

where Mn (x) and - 8Bn (x)K are given by (E 3.5.3) and (E 3.5.5) respectively. Note 

that (E 3.5.6) does not represent (E 2.3.2) exactly in 0 but we expect that it approximates 

(E 2.3.2) better than (E 2.3.3) does in the same region because of the augmented 

nonlinear structured pseudo-uncertainties. We emphasize that h:,i (x), a= 1, 2 and 

htn (x), (3 = 1, 2 need not be the corresponding functions given previously. Rather, they 

can be any functions that obey the corresponding bounds [h1~, h::;] and [h1~n, hie]. 

Accordingly, we see that (E 3.5.6) includes not only the pseudo-uncertainties, but also 

any uncertainties obeying such bounds. To generate a LARC for (E 3.5.6), we follow the 
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procedure given in Section 3.5. Using (2.12), (2.16), and Theorem 3.2, we plot Amax (Z) 

versus p E 9t+ and r) ~ 1, and determine the minimum of Amax (Z) in this plot. We realize 

that the values of p and r) corresponding to this minimum may produce a LARC that 

requires a large amount of control energy but we assume in this example that we are not 

limited by this factor. 

Because we do not know where the minimum of Amax (Z) is, we first generate the plot in 

a large region of 0.2 ~ p ~ 100 and 1 ~ r) ~ 100 using large grids as shown in Fig E3.5.1. 

From Fig. E3.5.1, we find that Amax (Z) has a local minimum when p and r) are small. 

Accordingly, we reduce the plotting domain to 0.2 ~ p ~ 3 and 1.35 ~ r) ~ 4, and plot 

Amax (Z) versus p and r) as in Fig. E3.5.2. From Fig. E3.5.2, we find that 

min(Amax (Z)) = -0.4803 occurs at (p, r)) = (p *, r) *) = (1.95, 1.8). The plot of Amax (Z) 

versus r) when p = p * = 1.95 is given in Fig. E3.5.3. Using our computer, the 

computation time is less than 1 minute. Since min(Amax (Z)) < 0, no optimization is 

called to generate a LARC. Using p * and r) *, we solve the Riccati equation (2.12) for P 

and generate LARC according to (2.16). This produces: 

KLARC = [-2.5136 -57.4749 -5.1254 -13.0073] (E 3.5.7) 
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11 

Fig. E3.5.3 A Plot of Amax (Z) versus 11 E [l, 6] when p = p * = 1.95 

1.8000 18.2927 1.6313 4.1399 

18.2927 419.2795 37.3006 94.6621 
Q= 

1.6313 37.3006 4.3263 8.4416 

4.1399 94.6621 8.4416 22.4233 

4.0782 10.3497 3.1579 2.2951 

10.3497 119.5777 18.8090 25.7791 
p = p(E3.S.9) = 3.1579 18.8090 5.3843 4.1524 

2.2951 25.7791 4.1524 5.7820 

0 0 1 

0 0 0 

0 

1 
An= [An -BnKIARC] = 

1.2568 28.2469 2.5627 6.5037 

-2.5136 -' 36.8739 -5.1254 -13.0073 
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(E 3.5.8) 

(E 3.5.9) 

(E 3.5.10) 

where the eigenvalues of An are at A1 = -5.4495, A2 3 = -1.9466 ± j 0.5630, and 

A4 = -1.1020 in the LHP. Because Amax (Z) > 0, it follows from Theorem 3.2 that the 



time derivative of the quadratic Lyapunov function V(x) = ~xTP(EJ.s.9)x along 

trajectories of (E 3.5.6) is negative definite in 0. In addition, the corresponding LAR 

contains the largest 13 c that can be contained in 0 . 
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To estimate the attractive regions corresponding to K LARC (with uncertainty 

specifications), we employ numerical simulations. The corresponding attractive region is 

displayed in Table E3.5.1 and E3.5.2 with those corresponding to Kpp (Ogata, 1997) 

and to KuRc (without uncertainty spec~fications) in Example 2.3. In the same fashion as 

in previous examples, we assume that a trajectory converges to the origin if llx(t)II < 0.01 

for 40 :s; t :s; 50, and diverges from the origin if 3t such that llx(t)II > 2000. From these 

tables, it appears that the attractive region corresponding to K LARC (with uncertainty 

specifications) and to K LARC (without uncertainty specifications) are approximately the 

same while the attractive region corresponding to K PP is significantly smaller. From 

these tables, we see that the attractive regions corresponding to K LARc (with uncertainty 

specifications) is larger than 0 . Since a LAR must be contained in 0, .this agrees with a 

known fact that the attractive region must contain every LAR. We do not present the 

application of the unstructured uncertainty bound from Theorem 3 .3 in this example 

because the resulting allowable bound is very conservative. This result agrees with those 

in Example 3 .1 and 3 .2. 
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Table E3 .5. l Simulation Results of the Cart-and-Pole System in Regions farther from the Origin ( x1 > 0, x2 > 0) 

Legends: 11 = Pole placement and LARC (with and without uncertainty specifications) converge, 
riJtJ = LARC (with and without uncertainty specifications) converge, lli!l = LARC (with uncertainty specifications) converges 

nII = LARC (without uncertainty specifications) converges, D = All systems diverge N 
0 
u) 
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Table E3.5.2 Simulation Results of the Cart-and-Pole System in Regions farther from the Origin ( x1 < 0, x2 > 0) 

Legends: i:l = Pole placement and LARC (with and without uncertainty specifications) converge, 
Wlil = LARC (with and without uncertainty specifications) converge, II= LARC (with uncertainty specifications) converges 

UII = LARC (without uncertainty specifications) converges, 0 = All systems diverge N 
0 
.j:::.. 
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Example 3.6 (Choosing an Appropriate Nominal Model) 

Given a nominal linear time-invariant model and the associated structured uncertainty 

specifications, it appears from the previous common examples that we can generate a 

LARC systematically to obtain satisfactorily large attractive regions when compared to 

those in the literature. In each of those examples, the linearized model about the origin is 

employed as the nominal model for simplicity, but this need not be the best choice. While 

it is true that properties of a system should not change because of different 

representations, we note that Theorem 3.2 is based on the sufficiency of the Lyapunov 

stability, and thus we do not expect it to yield the same result for all possible 

representations. Indeed, some representations allow us to find a stabilizing LAR 

controller using Theorem 3.2 very easily, while others do not. A nominal model that 

forces us to employ special treatments to obtain a stabilizing LAR controller is said to be 

"poor". When a.sufficiently poor nominal is employed, we may not be able to find a 

stabilizing controller using Theorem 3.2, although one may exist. Indeed, we illustrate in 

this example effects of a poor nominal model. The nonlinear system of interest is now 

represented as a nominal model subjected to time-varying nonlinear structured 

uncertainties: 

2 

x=Anx+Bnu+ I/h/x,t)Ej)x 
j=l 

= Anx + Bnu +fg(X,t) 

2 

(E 3.6.1 a) 

where x = [x1 x2 f, and fg(x,t) = 1/m(x,t) fm(x,t)Y = L(h/x,t)Ei)x. The 
j=l 

nominal model x = Anx + Bnu and the associated uncertainty specifications are 

given by: 
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A"=[~ ~JB"=[:J 
E1 = [ ~ a E2 = [ ~ ~] (E 3.6.1 b) 

/ii (x, t) E [-41.5, - 38.5] = [h11 , hurl 

h2(x,t)E [0,-1] = [h12, hu2] 

Note that the nominal model in (E 3.6.1) is not a linearized model. Otherwise, we must be 

have lim [sup[l~"ilitliJJ = 0 for some (x, t) because this is the definition of a 
jjxjj~O t<".0 X 

linearized model (Vidyasagar, 1993). Clearly, this is not true for (E 3.6.1). To find a 

simple guideline for choosing a nominal model, we examine the proof of Theorem 3.2. 

To apply Theorem 3.2, K must be such that An = [A 11 -BnK] is stable because this 

represents dynamics of the nominal model. In addition, we desire that Amax (Z) < 0 to 

assure the negative definiteness of the Lyapunov time derivative in the region where 

uncertainty specifications are valid. By examining (3.18 h), Amax (Z) < 0 if and only if 

the symmetric matrix <I> E 9tnxn is negative definite, because the symmetric matrix 

r 

~)(huJ - h1)'P~+] E 9\nxn is either positive definite or positive semidefinite by 
j=I 

construction. From (3.18 c), the conditions that <I> is negative definite and Pis positive 

definite can be satisfied simultaneously if and only if A1 is stable, because (3.18 c) is a 
r 

Lyapunov equation. Now, we recall from (3.18 b) that A1 =An+ L,hlJE 1 . It follows 
j=I 

from Theorem 3.1 that A1 is stable if the hlJ are sufficiently small Vj, because K is such 
r 

that An is stable. Notice that that we cannot reduce effects of L, [(huJ - hlJ )'P~+] on 
j=I 

Amax (Z) by recasting the model such that (huJ - hlJ) > 0 are smaller Vj. However, we 

can recast the model such that magnitudes of hlJ are smaller Vj to suppress the effect of 

r 

L, h11E 1 on A 1 • Indeed, we can decrease the magnitude of h11 by recasting the model as: 
j=I 
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2 

x=Anx+Bnu+ L(h/x,t)Ej)x 
J=l (E 3.6.2 a) 

=Anx+B 11 u+fn(x,t) 

where the nominal model x = Anx + B 11 u and the associated uncertainty specifications in 

(E 3.6.2 a) are determined from: 

A = [44 - 40 OJ = [4 0] B = [1] 
11 0 1 01' 11 1 

E, = [ ~ ~l E, = [ ~ ~ l 
h1 (x, t) E [-41.5 + 40, - 38.5 + 40] = [-1.5, 1.5] = [h11 , huiJ 

h2 (x,t)E [-l,O]=[h12 , huz] 

(E 3.6.2 b) 

The new representation is obtained by subtracting 40x1 from the first state equation 

.x1 = 44x1 + u, and adding 40x1 to the first uncertain component f m (x, t) = h1 (x, t)x1 • 

We now employ Theorem 3.2 to find a LAR stabilizing controller. The plots of Amax (Z) 

versus p and YI corresponding to the representations in (E 3.6.1) and (E 3.6.2) are given 

in Fig. E3.6.l and E3.6.2 respectively. The plotting data in Fig. E3.6.1 show that there is 

no coordinate (p, YI) such that Amax (Z) < 0. Moreover, extending the plotting domain 

produces the same result that we see from Fig. E 3.6.1, namely that the plot is flat for 

large values of p and YI. This is in contrast to Fig. E3.6.2, in which there are many 

coordinates (p, YI) such that Amax (Z) < 0. 
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Fig. E3.6.1 A Plot of Amax (Z) versus p E [1, 96] and 11 E [1, 20] 

Using the Representation in (E 3.6.1) 
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Remark: 1) There is no (p, 11) such that Amax (Z) < 0. 

2) The plot is flat for large values of p and 11 · 

.... r··· ............ . 
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Fig. E3.6.2 A Plot of Amax (Z) versus p E [1, 96] and 11 E [1, 20] 
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For the representation in (E 3.6.2), we arbitrarily select (p, 11) = (50,10) in Fig. E3.6.2 to 

obtain Amax (Z) = -0.1227. This corresponds to: 

KLARC = [278.1184 -137.5878] (E 3.6.3) 

= [140.2298 -68.8783J 
Q - 68.8783 35.0747 

(E 3.6.4) 

We note that it may be possible to find other coordinates to produce other gain matrices 

whose absolute value of each element is smaller than the respective ones in (E 3.6.3). 

However, we do not pursue this because the present result is sufficient to demonstrate 

effects of a "poor" nominal model. Note that the nominal model in (E 3.6.1) is very poor. 

Indeed, our optimization routine cannot find a solution { K, Q} to meet the uncertainty 

specifications in (E 3.6.1), although we start the routine from initial values corresponding 

to small values of Amax (Z) in Fig. E3.6.1. The criteria for choosing an appropriate 

nominal model presented in this example can be applied in the situation in which a 

linearized model is given as well. We emphasize that an unnecessarily poor nominal 

model may not allow us to employ Theorem 3.2 to generate a stabilizing LAR controller, 

although one may exist. Now, suppose that the nominal model x = Anx + Bnu and the 

associated uncertainty specifications are determined from: 

A = [44 - 41.5 OJ = [2.5 OJ B = [lJ 
n 0-1 1 -1 1 ' n 1 

E1 :[~ ~l E2 :[~ ~J 
hi_ (x,t)E [-41.5 + 41.5,-38.5 + 41.5] = [O, 3] = [h11 , hud 

h2 (x,t) E [-1 + 1,0 + l] = [0, 1] = [h12 , hu2 ] 

(E 3.6.5) 
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The new representation in (E 3.6.5) is obtained by subtracting 41.5x1 from the first state 

equation i 1 = 44x1 + u, subtracting x1 from the second state equation i 1 = x2 + u, 

adding 41.5x1 to the first uncertain component f m (x, t) = h1 (x, t)x1 , and adding x1 to 

the second uncertain component f m (x, t) = h2 (x, t)x1 • Using Theorem 3.2, we plot 

Amax (Z) versus p and 11 in Fig. E3.6.3 to find a stabilizing LARC for the representation 

in (E 3.6.5). According to the plotting data, there are many coordinates (p, 11) such that 

Amax (Z) < 0. One such coordinate is the coordinate (p, 11) = (50, 10) employed earlier for 

the representation in (E 3.6.2). Because the model has been recast, we now have 

Amax (Z) = -0.0657 and: 

KIARC = [280.7107 -75.9225] (E 3.6.6) 

= [ 142.8373 - 75.9225] 
Q - 75.9-225 41.6397 

(E 3.6.7) 

(p, 11, Amax (Z)) = (50, 10, - 0.0657) ----. 

20 ..... -·· 

20 

0 O 

Fig. E3.6.3 A Plot of Amax (Z) versus p E [1, 96] and 11 E [1, 20] 
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Notice that Amax (Z) corresponding to (E 3.6.2) is less than that corresponding to (E 

3.6.5) under the same coordinate (p, 11)::,;: (50, 10), although the magnitudes of hu j = 1, 2 

in (E 3.6.5) are zero. This suggests that it is unnecessary to choose a nominal model such 

that the magnitudes of h1j are zero \fj, and it is sufficient that these are small. We do not 

examine how an appropriate nominal model should be chosen when the uncertainties are 

unstructured. This is because it has been our experience that unstructured uncertainty 

boun,ds are too conservative to be employed in actual practice. 
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3.7 Summary 

1) In this chapter, we state explicitly in Theorems 3.2 and 3.3 two numerical bounds 

h . i· - f . 11rQcx,t)II h h . 
on t e uncertam non mear unction llxll t at guarantee t e negative 

definiteness of V (x, t) in operating regions about the origin where such bounds 

are obeyed. We desire that V(x,t) is negative definite in a radially large region 

about the origin because this implies a large LAR. 

2) In the first portion of this chapter, we propose a new structured uncertainty bound 

and draw an unstructured uncertainty bound from the literature for analyzing 

(3.2). Our focus is at the former because we find from our preliminary studies that 

unstructured uncertainty bounds usually produce conservative results. For system 

analysis, we apply our structured uncertainty bound to common examples 

employed in the literature. It appears that our allowable uncertainty bound is 

equally or less conservative than the existing ones. For controller generation, the 

concept of eigenvector condition is combined with our structured uncertainty 

bound and an optimization technique. It appears that when the initial value for the 

optimization is generated from the eigenvector condition and our structured 

uncertainty bound, a simple optimization technique is sufficient to produce robust 

LAR controllers. The allowable uncertainty bounds resulting from our procedure 

are less conservative than those in (Chen, and Chen, 1991), which are the least 

conservative results for the common examples we draw from the literature. In 
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addition, results from such common examples show that our LAR linear gain 

matrices are smaller than the corresponding ones from (Chen, and Chen, 1991). 

3) We emphasize that the optimization phase is not always needed when generating 

our robust LARC. It is employed only when needed to ensure that computing 

resources and time are not consumed unnecessarily. When such an optimization is 

needed, our Procedures 2 and 3 indicate this and provide a plot for determining 

reasonably good initial values for the optimization. By means of examples, it 

appears that these initial values result in fast convergence to solutions, with 

appropriate choices for initial values. However, convergence does not occur if 

inappropriate initial values are employed. 

4) Theorem 3.2 and 3.3 can be employed to guarantee global stability of (3.2) when 

llrn <x, t)II 
~..,,..-:-:~ is sufficiently small 

llxll . . · 
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Chapter IV 

LARC for MIMO Systems 

4.1 Linearized Model Case 

Our primary objective in this chapter is to obtain a MIMO version of LARC developed in 

Chapter II. The available mathematical description is assumed to be: 

x = f (x) + g(x)u(x) (4.1) 

where the vector f (x) E 9tn , and matrix g(x) E 9tnxm can be uncertain. In our discussions, 

f(x), g(x), and the control u(x) = -Kx E 9tm are such that x is locally Lipschitz in the 

operating region of interest in 9tn \:;/ t ~ 0. We assume that the linearized model of ( 4.1) 

exists about the origin and is given by: 

x =Ax+Bu(x) (4.2) 

where A E 9tnxn, and BE 9tnxm are known, and [A B] is controllable or stabilizable. An 

uncertain nonlinear system having a known linearized model can be found in Section 1.1. 

The gain matrix K is such that A= [A -BK] is stable .. In the Chapter I and II, we 

explore several key properties of the functions Fi (x) = xTPAx and Gi (x) = xTPB . 

Using these properties, we establish the concepts of eigenvector condition, eigenvalue 

ratio, and formulate LARC for SIMO systems when the linearized model is available. In 

this chapter, these known properties will be extended to formulate LARC for MIMO 

systems. We shall see that some theorems for SIMO systems can be applied to MIMO 
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systems immediately while some require slight changes. Indeed, the formulation of 

LARC for MIMO systems is straightforward from that for SIMO systems. 

Eigenvector Condition 

Most of our notations in this section are derived from those in Chapter I, and II. In this 

chapter, we provide statements and recall mathematical objects from the previous 

chapters, with the understanding that we replace g(x) E ':Rn , BE ':Rn , 

G(x) = xTPg(x) E 9\, GL (x) = xTPB E 9\, and u(x) E 9\ in the previous chapters by 

respectively. 

It is well-known that Lyapunov stability is applicable to MIMO systems as well as SIMO 

systems. Thus, the fundamental idea of LARC presented in Section 1.2 applies to MIMO 

systems. Now, consider the time derivative of the quadratic Lyapunov function (1.5) 

along trajectories of the nonlinear system ( 4.1 ): 

V (x) = xTPf(x) + xTPg(x) u(x) 

=F(x) + G(x)u(x) 
(4.3) 

According to the fundamental idea of LAR, we desire that the region BL defined in (1.6) 

be radially large to obtain a large LAR. The existence of BL about the origin is 

guaranteed because K stabilizes the linear model (4.2). From the definitions of Xcs; in 

section 1.3, we see that the dimensions of BL and LAR are limited by the existence of 

Xcs;. At Xcs;, we have that F(xcs;) = 0 and G(xcs;) = 0. It is clear from (4.3) that the 
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control u(x) cannot force V(x) to be negative at Xcsi so we require that Xcsi be 

removed or be as far from the origin as possible. To accomplish this, we consider first a 

MIMO version of Lemma 1.1 

Lemma 4.1 (Relationship between SGi=O and R[Fi<OJu{o}) 

If the basic conditions Cl-C4 in Lemma 1.1 are satisfied then: 

G L (x) = xTPB E 9t1Xm , and P and Q are symmetric positive definite matrices. 

Proof 

Consider the time derivative of the quadratic Lyapunov function (1.5) along the 

trajectories of the linearized model (4.2) under a linear control u(x): 

Vi (x) = xTPAx + xTPBu(x) 

= Fi(x) + Gi(x)u(x) 
(4.4) 

where G L (x) = xTPB E 9tlxm , and Fi (x) = xTPAx E 9t; The subscript "L" in Vi (x), 

G L (x) and Fi (x) denotes that they are defined with respect to the linearized model. 

Notice that the system of linear equations G L (x) = xTPB = 0 can be written as: 

(4.5) 

From basic linear algebra, the dimension of the solution space of (4.5) is: 

(4.6) 
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where r = rank(BTP) and SaL=O is the solution space of (4.5). Depending on the point 

we want to discuss, we alternatively denote the set {x I GL(x) = O} by Sai=o orby 

SaL=o when: we want to consider it as a subspace or as a surface, respectively. Given a 

nonzero B, we have that 1:::; r:::; n and thus O:::; y:::; (n -1). ByLyapunov stability, the 

existence of the stabilizing linear gain matrix K implies the existence of a symmetric .· 

positive definite matrix P such that ,7i'(x) is globally negative definite. The coexistence 

of the SaL=o and the globally negative definite function VL (x) implies that: 

1) The region R[FL <OJu{O} exists. 

When rank(PB) = n, we have that y =0. In this case, SaL=o = {O} and Lemma 4.1 is.· 

trivially satisfied. This completes the proof. 

From Lemma 4.1, we see that SaL=o in MIM:O systems is analogous to S0 L=o in SIMO· 

systems exc~pt that. 0:::; dim(SaL=o):::; (n-i) while dim(SGL=o) = (n -1). Referring to 

the discussions given in Chapter I for SIMO systems, it is conceivable for MIMO 

systems that Xcs; can be located reasonably far from the origin by locating Sa L =O on the 

symmetry plane of Sh =O such that FL (x) lx;,o < 0 on Sa L =O. This relative orientation is 

the eigenvector condition for MIMO systems. 

By examining the proof of Theorem 1.2, we see that this theorem does not restrict the 

dimension of B. Accordingly, it is immediate that the symmetry axes of S FL=o for MIMO 
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systems are then orthonormal eigenvectors of M =_!_[PA+ ATP]. Because of this and 
2 

because xTMx = FL (x), the eigenvector condition for MIMO systems is satisfied if 

SG L =O is spanned by y eigenvectors of M such that the corresponding y eigenvalues of 

Mare negative. Lemma 4.1 guarantees that M has at least y negative eigenvalues 

because SGL=O c RlFL<OJu{Ol. The following questions are immediate from the definition 

of eigenvector conditions: 

1) Under what condition can the eigenvector condition for MIMO systems be.· 

satisfied by a particular choice of P? 

2) Suppose the eigenvector condition can be satisfied by a particular choice of.P, 

how can we obtain such P? 

It turns out that the existence of P satisfying the eigenvector condition for MIMO systems 

is guaranteed when [A, B] is controllable or stabilizable, and such Pis the unique 

symmetric positive definite solution of a Riccati equation. In addition, it gives rise to the 

~ontrol law u IARC ( ~) = -flpB T Px where fl ~ 1 and p E 9t+ . These are the same results 

we obtained for SIMO systems. 

Theorem 4.1 (Generating P to satisfy the Eigenvector Condition) 

The symmetric positive definite matrix P generated from Theorem 2.3 satisfies the· 

eigenvector condition for MIMO systems 

Proof 

Recall the Riccati equation in Theorem 2.3: 



(Proof of Theorem 4.1 (Cont.)) 

0 = -2Q-[PA + A 7P] + 2pPBB7P 

=-cl-M+ N 
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(4.7) 

Q = cl . We emphasize that now B E 9tnxm . Because Theorem 2.3 does not restrict the 

dimension of B, the existence of the symmetric positive definite solution P of the Riccati 

equation (4.7) is guaranteed when [A, B] is controllable or stabilizable. By 

Lyapunov stability, the existence of such P guarantees that A= [A -BK] I 7 is 
. K =p[PB] 

stable. It remains to show that such P satisfies the eigenvector condition. 
. . 

Now, we notice that the function GL(x)u(x) in (4.4) with u(x) = -Kx = -pB7 Px· is: 

(4.9) 

that: 

l) The real symmetric matrix N has a set of n orthonormal eigenvectors 

2) · 7- - -7 
For z = 1, 2, ... n, A.Ni ~ 0 because x Nx ~ 0 and N = N . 

3) A basis for generating SGL=o contains y = (n - r) linearly independent vectors. 

Indeed, we know from Lemma 4.1 that O ~ dim(SGL=o) = y ~ (n-1), where 

n ~ r = rank(PB) ~ 1 for a nonzero B. 
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(Proof of Theorem 4.1 (Cont.)) 

Now, we notice from (4.9) that when KT= p[PB]: ... 

(4.10) 

Because O =::; dim(SGL=o) = y =::; (n -1) and because then eigenvectors of N are 

orthonormal, we know that a basis of SGi=o is a set of y orthonormal eigenvectors of N. 

For convenience, we arrange the vectors in this basis as {vN(r+l)' vN(r+z), ... , vNn} = VNy 

and denote the set of the corresponding eigenvalues by "-Ny = {11,N(r+t), "-N(r+Z), .:.,11.Nn} . 

For each of the basis vector, it follows from (4.10) that: 

(4.11) 

for i = (r + 1), (r + 2), ... , n. This implies that "-Ni = 0 for i = (r + 1), (r + 2), ... , n, and we 

have shown that N has at least y zero eigenvalues. Now, we claim that N has exactly y 

zero eigenvalues. Indeed, if N has more than y zero eigenvalues then xTNx = 0 along 

the corresponding orthonormal eigenvectors, implying that there are more than y linearly 

independent vectors belonging to SG L =O . This is a contradiction because we know that . 

dim(SGL=o) = y. Thus, N has exactly y zero eigenvalues. The remaining r eigenvalues 

of N are positive because xTNx ~ 0 . 

By examining the proof of Theorem 2.1, we see that this theorem applies to MIMO 

systems immediately. Accordingly, we know that the matrices Mand N in (4.7) share 

the same set of orthonormal eigenvectors when Q =cl. Using these results, we can 

reduce (4.7) to the principal axes of M: 
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(Proof of Theorem 4.1 (Cont.)) 

-cl=AM-AN 

_ MNu . [A - 0] (4.12 a) 

where 

= 0 AMNI 

AMNl = diag[AM(r+l) - AN(r+l) AM(r+2) - AN(r+2) · · · A.Mn '-1\.Nn] 

= diag[AM(r+l) AM(r+2) · · · A.Mn] 

(4.12 b) 

(4.12 c) 

(4.12 d) 

(4.12 e) 

By inspecting (4.12), we see that A.Mi = -c < 0 because A.Ni = 0, i = r + 1, r + 2, ... , n. 

Accordingly, xrNx = 0 on the space spanned by {vMi}, i = r+ 1, r+ 2, ... ,n. Since 

that A.Mi < 0. This shows that the eigenvector condition is satisfied by the solution P of 

the Riccati equation (4.7) and completes the proof. 

To conclude this section, we have shown that the eigenvector condition for MIMO 

systems can be satisfied by the unique symmetric positive definite solution P of the 

Riccati equation (4.7). Notice that the set {AM1 ,AM2, ... ,AM,.} contains at least one 

positive number because A is unstable, but it may or may not contain a negative number. 

Note in addition that when the eigenvector condition is satisfied, we can draw from 

Theorem 4.1 that: 
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1) AMi > AMJ \/ i E { 1, 2, ... , r} and \/ j E { r + 1, r + 2, ... , n} . 

2) 0 > AM(r+l) = AM(r+2) = · · · = A,Mn = -c · 

These statements are immediate from (4.12). For convenience, we denoted the maximum 

positive eigenvalue of M by AMI . 

Eigenvalue Ratio 

When the eigenvector condition is satisfied, we recall fromProposition 1.2 and from 

Chapter II that the eigenvalue-ratio plot allows us to select a value for p to generate P 

from the Riccati equation (2.12) such that the "angle" between s FL =0 and s GL =0 is large, 

and Xcsi is reasonably far from the origin. Using such p and the corresponding P, in 

Chapter II we generate quickly LAR controllers using (2.16). We see from examples in 

Chapter II that such LAR controllers yield satisfactorily large attractive regions when 

compared to those resulting from pole placement and from LQR. 
l ' 

For MIMO systems, we employ the eigenvalue-ratio plot to generate LAR controllers in a 

similar fashion. The only major difference is the definition of eigenvalue ratio. This will 

be drawn from Theorem 4.2, which is a straightforward extension of Theorem 1.3. All the 

notations employed in Theorem 4.2 are immediate from those in Proposition 1.2 and in 

Theorem 1.3. 
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Theorem 4.2 (Implication of Eigenvalue Ratio) 

Let the set of n orthonormal eigenvectors { v Ml, ... , v Mr, v M(r+ I), ... , v Mn} of . 

M =_!_[PA+ ATP] be employed for generating 9tn. If the basic conditions Cl- C4 are 
2 

satisfied, then the angle 8 between a vector [z1 z 2 ... Zn f = z{FvL =O v v } E S FL=o MI, M2,···, Mn 

and its projection [O ... 0 Zr+I ... Zn f = z{vM(r+I),YM(r+Z), ... ,vMn} onto the plane spanned 

by.{vM(r+I),VM(r+2),···,VMn} is the smallest when z2 = ... =zr =zr+Z = ... =zn =0 Or 

when: 

ZF{L=O } = [zI O ·. ... 0 Zr+I VMI, VM2,···· VMn 
0 0]Y = FL=O . . . z{VMI,VM(r+I)} 

where the eigenvalues of Mare arranged as .AMI 2:: ... 2:: A.Mr > AM(r+I) 2:: ... 2:: A.Mn, 

AMI > 0' 0 > AM(r+I) 2:: ... 2:: A.Mn and z{FvL=O v .. v } =t= 0. · . MI, Mz, ... , Mn 

Proof·. 

The projection of zf;~~.vMz, ... ,vMn} =[zI z2 ... znf E SFL=O onto the plane spanned 

by {vM(r+I)' VM(r+z),···, vMn} is the vector: 

Note that we do not consider the cases in which zI = z2 = ... = Zr = 0. To see this, 

consider the expression for FL (x) = xTMx = 0 in the principal-axes coordinate: 

where the zi -axis is along vMi' i =1,2, ... ,n and TM= [vMI I vM2 1---1 vMn]. We see 

that if zI = z2 = ... =Zr = 0 then (4.11) is satisfied only at the origin because 



224 

(Proof of Theorem 4.2 (Cont.)) 

0 > AM(r+I) ::::: ... ::::: A.Mn. Since Theorem 4.2 does not apply at the origin, this special case 

is irrelevant. Our original problem is to find z 1FvL =O v v l such that the angle· between 
· Ml, M2,···, Mn · 

z[;;.,~,vM2, ... ,vMnl and the corresponding projection z{vM(r+I),VM(r+2), ... ,vMnl is minimized 

over all possible zF1!:,.:0 v v l -::f:. 0. From basic geometry, the cosine of the angle 8 
·1ul, M2, ... , Mn 

between z[;;.,~,vM2, ... ,vMnl and z{vM(r+I),vM(r+2), ... ,vMnl is given by: 

[zFL=O f z 
(8) {VMI, vM2, ... , VMn} {VM(r+I), VM(r+2), ... , VMn} cos = ---------,,--------~---,,. 

II 
[z FL =O ]T 11 llz II {VMI, VM2, .. -,VMn} {VM(r+l),VM(r+2), ... , VMn} 

2 2 2 
Zr+I + Zr+2 + · · · + Zn 

/2 2 .2 2 2/2 2 2 
V Z1 + Z2 +"·+Zr + Zr+l +"·+Zn V Zr+l + Zr+2 +"·+Zn 

I 2 2 2 
V Zr+l + Zr+2 + · · · + Zn 

/2 2 ·.· 2. 2 2 
V Z1 + Z2 + ... + Zr + Zr+l + ... + Zn 

(4.12) 

Notice from (4.12) that for MIMO systems, cos(8) can be zero at infinitely many points 

. . 

other than the origin because AMI, AM2 , ... , A.Mr need not be all-positive. Example of such 

· . T ~ T 
pomts are [z1 Z2 .. . Zr-l Zr Zr+I . .. Zn] = [c O ... 0 CV 1/\,Mrl O ... O] 

where c E 9t, A.Ml > 0, and A.Mr < 0. Because zF{vL=o v v l -::f:. 0, the denominator in Ml, M2, ... , Mn 

(4.12) is greater than zero, while we see that the numerator in (4.12) is nonnegative. 

Theseimplies that Os; cos(8) < 1 and O < 8 s; (nl 2). In this range, we have that cos(8) 

monotonically increases as 8 decreases. Accordingly, the original problem can be cast as 

an optimization problem for which the objective is to find zF{vL=o v v l -::f:. 0 that Ml, M2, ... , Mn 

maximizes the right-hand side of (4.12), with constraints given by (4.11) and by Theorem 

4.1: 
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. . ~ z;+r + z;+2 + ... + z; 
Maxmuze: l = --;:============= 

I /2 2 2 2 2 
. . V Zr + Z2 + ... + Zr + Zr+I + ... + Zn 

Subjected to: 1) AM1zf + ... + /\,Mrz; + /\,M(r+I)zfr+I) + ... + 11,Mnz; = 0 

: 2) AMI ;;::: · · · ;;::: /\,Mr > AM(r+l) ;;::: · · · ;;::: /\,Mn 

: 3) 0 > AM(r+l) ;;::: · · · ;;::: /\,Mn 

: 4) AMI> 0 

We notice that the numerator and the denominator of the objective function are 
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(4.13) 

nonnegative. Accordingly; squaring the objective function does not change the solution .. 

For simplicity, we now convert (4.13) to: 

2 2 2 
M . · · ··l :_ 12 - Zr+I + Zr+2 +···+Zn 

axumze. 2- i- 2 2 2 2 2 
(Zr + Z2 +···+Zr)+ (Zr+I +···+Zn) 

Subjected to: 1) AM1zf + ... + /\,Mrz; + /\,M(r+I)zfr+I) + ... + 11,Mnz; = 0 

: 2) AMI ;;::: · · · ;;::: /\,Mr > AM(r+l) ;;::: · · · ;;::: /\,Mn 

: 3) 0 > AM(r+l) ;;::: · · · ;;::: /\,Mn 

: 4) AMI> 0 

where the range of the objective function is O :::; l 2 < 1. This is equivalent to: . 

2 2 2 
M .'. · · . 1 · _ 1 -1 _ Zr + Z2 +···+Zr l 

mumze. 3- 2 - 2 2 2+ 
Zr+I + Zr+2 +···+Zn 

Sb d ) 1 2 1 2 1 2 1 2· 
U ~ecte to: 1 · /\Ml Zr + ... + I\MrZr + I\M(r+I)Z(r+I) + ... +/\Mn Zn = 0 

: 2) AMI ;;::: · · · ;;::: /\,Mr > AM(r+l) ;;::: · · · ;;::: /\,Mn 

: 3) 0 > AM(r+l) ;;::: · · · ;;::: /\,Mn 

: 4) AMI> 0 

(4.14) 

(4.15) 

where the range of the objective function is now 1 < l 3 :::; oo . We emphasize that the signs 

of A Mi, i = 2, 3, ... , r need not be the same. To find the solution z{FvL =O """ v } 
MI, ·,u2,···, Mn 

= [z1 ... Zr Zr+I ... Zn f =t O for ( 4.15), we consider the following arguments: 
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(Proof of Theorem 4.2 (Cont.)) 

1) The set {zI, z2, ... , Zr} corresponding to the solution vector contains at least one 

nonzero element zi such that A.Mi > 0. Otherwise, the first constraint in (4.15) is 

satisfied only at the origin, or the first constraint and the third constraint cannot be 

satisfied at the same time. This leads to a contradiction since we omit the origin· 

and we require that all constraints be satisfied. 

2) The set { Zr+I • Zr+z, ... , Zn} corresponding to the solution vector contains at least .. 

one nonzero element. Otherwise we see from the objective function in (4.15) that 

the objective function is at the maximum of infinity. Since we seek a minimum; it 

follows that { Zr+I, z,.+2 , ... , Zn} must contain at least one nonzero element. 

3) The constraints in (4.15) implies that: 

AMI (zf + · · · + z;) ~ AM1zf + ... + A.Mrz; = -(AM(r+l)z;+I + ... + AMnz;) > 0 

2 . 2 > AM1zf + ... + A,Mrz; - - (AM(r+l)z;+l + ... + A,Mnz;) 0 
Z1 + ... +Zr - . . - > 

AMI AMI . 

where - (AM(r+I)z;+1 + ... + A.Mnz;) > 0 because of the third constraint in (4.15). 

N . h 2 2 AMizf + ... +A.Mrz; h O . 2 3 oticetatzI+, .. +zr= .. · wenzi.= ,z=, , ... ,r. AID .. 

Accordingly, zf + ... + z; is minimum for a given {Zr+I • ... ,Zn} when zi = 0, 

i = 2,3, ... , r. 

4) The constraints in (4.15) implies that: 
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where the inequalities are reversed because AM(r+l) < 0. Notice that 

2 2 AM(r+l)z;+l + · · · + "'MnZ~ . 
Z,.+1 + ... +Zn = . when zi = 0, z = r + 2, r + 3, ... , n . 

AM(r+l) 

Accordingly, z;+1 + ... + z~ is maximum for a given {z1, ... , z,.} when zi = 0, 

i = r + 2, r + 3, ... , n . 

It follows from the arguments in 1 - 4 that the solutionof (4.15) is given by: 

0 . . . 0 Z,.+1 0 . O]T = FL =0 . • ... z 
{VMl,VM(r+l)} 

At the solution zF{;=0 v l, the minimum of the objective function in (4.15) is given 
Ml, M(r+l) 

by: 

(4.16) 

To find the minimum of J 3 , we substitute z{F;=0 v 1 into the first constraint in (4.15) 
Ml, M(r+l) 

to produce: 

AM1zl + AM(r+l)zf,.+l) = 0 

z; = AM(r+l)zf,.+1) > 0 

A.Ml 

(4.17) 

where we recall that AM1 > 0 and AM(r+l) < 0. Notice that we can always find a value of 

z 1 for every set of { AM1, AM(r+l), Z,-+1 } where AM1 > 0 and AM(r+l) < 0 such that the 

A z 
f . · · · f" d N b · M(r+l)Z(r+l) c 2 · (4 16) Th" 1rst constramt 1s sat1s 1e . ow, we su st1tute - 1or z1 m . . 1s 

A.Ml 

produces the minimum values for J 3 : 
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(4.18 a) 

"-Ml - "-M(r+l) 
where we note that > 1 because "-Mt > 0 and AM(r+l) < 0. This solution 

A.Ml 

corresponds to the maximum value of l 2 and l 1 : 

(4.18 b) 

(4.18 c) 

This completes the proof df Theorem 4.2. 

We recall from (1.23) that the eigenvalue ratio is defined as: 

·. _ max(A"~li) 
r11. = 

M max(Xivri) 
(1.23) 

where 11.°~i are positive eigenvalues of M, XMi are the negative eigenvalues of M such 

that vMi spans SGL=o when the eigenvector condition is satisfied. Using the arrangement 

of eigenvalues of M in ( 4.15), we have that i = 1 and j = r + 1, r + 2, ... , n . Thus, the 

eigenvalue ratio for MIMO systems is given by r11.M = AMI 

AM(r+l) 
= A.Ml B ---. y 

AM(r+I) 

inspecting (4.18), a small r11.M corresponds to a large l 3 , to a small l 2 , and to a small 

11 . Since 11 = cos(S), a small 11 implies that the angle between a vector belonging to 

SFL=o and its projection onto SGL=O is large by Theorem 4.2. By satisfying the 

eigenvector condition with a small r11.M , we not only locate S Fi=o symmetrically about 
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SG L =O, but also force S FL =O away from SG L =O. In view of Proposition 1.1 and 1.2, this 

implies that a possible intersection point Xcsi between S F=O and SG=O is located 

"reasonably far" from the origin. 

Generating LARC Using a Linearized Model 

In this section, we are interested in generating a LARC for ( 4.1) when the linearized 

model about the origin is known. The fundamental idea of LARC is to force V(x) to be 

negative definite in radially large regions about the origin. We see that this cannot be 

accomplished at intersection points between S F=O and SG=O , and between S F=O and 

Su=O. When the relative orientations of these surfaces are poor, these intersection points 

can occur arbitrarily close t'b the origin, and result in an arbitrarily small LAR in the 

presence of small nonlinearities. Now, we reexamine a local approximation of V(x) 

about the origin: 

VL(x) = xTPAx + xTPBu(x) 

= FL (x) + G L (x)u(x) 

where Pis obtained from Theorem 4.1 to satisfy the eigenvector condition. Now, we 

(4.4) 

recall from the definition of eigenvector condition that S FL=o is symmetric about SGL=o 

such that SGL=o c RCFL<OJu{Ol. By examining (4.4), it is reasonable that we orient Su=O 

and SG L =O in the same fashion such that Sh =O is symmetric about Su=O, and 

Su=O c R[FL<OJv{Ol. This particular relative orientation follows from the same reasoning 

we employ to establish the eigenvector condition. Indeed, if Su=O is close to a particular 



230 

portion of S FL=o then the deviations of S F=O from S FL =O may locate an intersection 

between Su=O and S F=O arbitrarily close to the origin. At such an intersection, it is clear 

that we cannot force V to be negative because u = 0 and F = 0, and the resulting LAR 

is then small. We see that such linear control corresponds to the linear gain matrix 

K = p[PBf = pBTP employed in the Riccati equation (4.7) to solve for P. 

Corresponding to such linear gain matrix is the linear control: 

(4.19) 

where p E 91+ . These results are the same as those obtained in Chapter II for SIMO 

systems. 

To obtain the general form of LARC for MIMO systems, we examine the proof of 

Lemma 2.3 in which the general from of LARC for SIMO systems is derived. We see 

that Lemma 2.3 does not assume a specific dimension for B. Accordingly, the general 

form of LARC for MIMO systems is in:1mediate from Lemma 2.3: 

(4.20) 

where Pis the solµtion of the Riccati equation in Theorem 4.1 and: 
. . . 

(4.21) 

In addition, it is immediate from the proof of Lemma 2.3 that the linearized model ( 4.2) 

is stable under (420) V p E 91+ and 112=: 1. In this section, we fix Tl= 1 for simplicity and 

thus we need only to select p . To select an appropriate value for p, we construct the 

eigenvalue-ratio plot using the definition of eigenvalue ratio for MIMO systems given in 

Section 4.4. Generally, We select from this plot a value of p that yields a small 
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eigenvalue ratio because this forces S FL=o away from SGL=O. However, such a value of 

p may correspond to a large K IARC . If the control energy is limited, we may be forced to · 

select a larger eigenvalue ratio to obtain a smaller K IARC . The tuning procedure · 

proposed in section 2.5 for SIMO systems is applicable to MIMO systems immediately. 

Now, We point out the relationship between LQR and LARC for MIMO systems, which 

turns out to be the same as that discovered in Chapter II. From linear optimal control 

theory, we know by inspection that the Riccati equation (4.7) corresponds to the 

quadratic performance index: 

(4.22) 

where p, c E 9t+ , Q = 2d and R = J_ I . In addition, we recognize that the linear 
2p ' 

optimal control that minimizes J is given by: 

(4.23) 

We observe the same relationship between uLQR(x) and UuRc(x) pointed out in· 

Chapter II: 

(4.24) 

Because of the relationship between LQR and LARC in ( 4.24 ), we note that for MIMO 

linear systems: 

1) It can be inferred that if the response characteristics resulting from LOR are 

acceptable then so are those resulting from LARC with 11 = 2 . 
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2) Robustness properties of LARC can be drawn directly from those of LOR. 

However, we emphasize that LARC is primarily formulated for nonlinear systems. 

Although it is possible to apply a LARC to a linear system, this may not offer advantages 

over existing techniques because the available solutions of linear differential equations 

have not been incorporated into the formulation of LARC. 

4.2 Nominal Model Case 

In the remainder of this chapter, we obtain a MIMO version of the robust LARC 

developed in Chapter ill. The system of interest is described by: 

x = f(x,t) + g(x,t)u(x) (4.25) 

where the vectors f(x,t)E 9tn and g(x,t)E 9tnxm are uncertain, and u(x) = -KxE 9tm. 

These are such that x is piecewise continuous in t, and is locaHy Lipschitz in the 

operating region of interest in 9tn Vt 2:: 0 . Recall from Chapter I that the above state 

equations can be rewritten as: 

x = Anx +Bn u(x) + [f(x,t)-Anx + g(x,t)u(x)-Bnu(x)] 

= Anx+Bn u(x)+f~(x,t,u(x)) 

= Anx + fn(x,t) 

(4.26) 

where the elements of (4.26) are immediate from Section 3.1. The corresponding nominal 

model is: 

(4.27) 
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Uncertainty Specifications 

Uncertainty specifications of MIMO systems are classified in the same fashion as those 

for SIMO systems: 

1) Structured uncertainty specifications for stability analysis 

2) Unstructured uncertainty specifications for stability analysis 

3) Structured uncertainty specifications for controller generation 

4) Unstructured uncertainty specifications for controller generation 

For stability analysis of MIMO systems, we say that the uncertain vector fn (x, t) are 

"structured" if it can be written as: 

fn (x, t) = [f(x, t) - Anx] + [g(x, t) - Bn ]u(x) lu=-Kx 
r 

= L[h/x,t)Ejx] 
j=l 

(4.28) 

where h /x, t) E [hu, huj] E 9t, hu < huj , and E j E 9tn><n j = 1, 2, ... , r. The availability of 

the uncertainty specifications hu (a lower bound of h j (x, t) ), huj (an upper bound of 

h j (x, t) ), and E j j = 1, ... , r is assumed. The uncertain vector fn (x, t) are 

"unstructured" if the only known information '.s a bound on l~al~tll _ We see that the 

MIMO "structured" and "unstructured" uncertainty specifications for stability analysis 

are the same as those for SIMO systems. Indeed, all the uncertainty specifications for 

MIMO systems are the same as those for SIMO systems given in Section 3.3. 
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Controller Selection and Generation 

Using the MIMO uncertainty specifications, we notice that Theorem 3.2 and 3.3 apply to 

MIMO systems as well as to SIMO systems because these theorems do not restrict the 

dimension of B. Because of this result, it follows that: 

1) The reasoning for applying LARC to MIMO systems is the same as that for 

applying LARC to SIMO systems. This is given in section "Controller Selection" 

of Chapter III. 

2) The controller generation procedures for SIMO systems can be applied forMIMO 

systems immediately. These procedures are given in section "Controller 

Generation" of Chapter III. 

It is straightforward from the remark given at the end of Section 3.5 that the procedure 

for generating a LARC for the time-invariant system (4:1) can be applied to (4.25), 

provided that the linearized model about the origin of (4.25) is given by (4.2) with known 

A and B. Next, we give an example showing how to generate a robust LARC using the 

controller generation procedure for structured uncertain systems. 

Example4.1 (A Helicopter) 

In this example, we want to stabilize, a helicopter in a vertical plane for a range of air 

speed from 60 knots to 170 knots (Schmitendorf, 1988), (Chen, and Chen, 1991). The 

dynamics of the helicopter is given by: 

(E 4.1.1) 
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-0.0366 0.0271 0.0188 -0.4555 0.4422 0.1761 

0.0482 -1.01 0.0024 -4.0208 0.0447 -7.5922 
where An= 

0.1002 0.2855 -0.707 1.3229 
'Bn = 

-5.52 4.99 
' X1 = 

0 0 1 0 0 0 

horizontal velocity, x 2 = vertical velocity, x3 = pitch rate, x4 = pitch angle, u1 = 

collective pitch control, and u2 = longitudinal cyclic pitch control. The nominal model 

x = Anx + Bnu is subjected to time-varying structured uncertainties. Significant 

uncertainties are at the elements (3,2) and (3,4) of An, and at the element (2,1) of Bn. 

The structured uncertainty specifications are given by: 

2 

~An (x, t) = L,[h:n (x)E:11 ]x (E 4.1.2 a) 
u=l 

(E 4.1.2 b) 

0 0 0 0 0 0 0 0 00 

where Ef11 = 
0 0 0 0 

EAn -
0 0 0 0 E'iiBn - 1 0 

, ht11 (x,t)E [-0.2192 
0 1 0 0 ' 2 - 0 0 0 1 ' I - 0 0 

0 0 0 0 0 0 0 0 0 0 

, 0.2192] , hfn (x,t) E [-1.2031, 1.2031], a~d hi8n (x,t) E [-2.0673, 2.0673]. To generate a 

LARC for this uncertain system, we start Procedure 2 by generating a three-dimension 

plot of "-max (Z) versus p and 11. Using our computer, it takes approximately 5 seconds to 

produce the plot shown in Fig. E4. l .1 and Fig. E4. l .2. 

According to this plot, there are infinitely many pairs of (p, 11) for which "-max (Z) < 0. 

By Theorem 3.2, such a pair of (p, 11) can be employed to generate a LARC to meet the 

given uncertainty specifications. At this point, we assume that sufficient control energy is 
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available and we may choose (p, YJ) corresponding to the minimum of Amax (Z) in Fig. 

E4.1.1 to gain the largest stability margin. In Fig. E4.1.1, the minimum value of 

Amax (Z) = -0.2672 is at (p *, Y] *) = (0.06, 1.6). This corresponds to: 

K -[ 0.3448 - 0.0113 - 0.3888 - 0.5856] 
LARC - -0.0401 -0.2724 0.1715 0.4940 

(E 4.1.3 a) 

(p*, Y] *, Amax (Z)) = (0.06, 1.6, - 0.2672) -----, 

3 

2 

1 

0.2 
2 

p 
1 

Fig. E4.1.1 A Plot of Amax (Z) versus p E [0.02, 0.2] and Y] E [1, 2] 
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···················!· .. ······ .............................. ; ....................................... . 

Amax (Z) 0.5 ........ , .. , ..... .. 

I i 

-o.s~--~-~~-~~-~~-~ 
1 1.2 1.4 1.6 1.8 2 

YI 
Fig. E4. l .2 A Plot of ""max (Z) versus YI E [l, 2] when p = p* = 0.06 

1.4706 0.0275 - 0.5504 - 0.8659 

0.0275 1.2903 - 0.1654 - 0.4998 
Q= 

-0.5504 -0.1654 1.7054 1.2204 
(E 4.1.3 b) 

- 0;8659 - 0.4998 1.2204 3.2927 

where the eigenvalues of An = [An -BKIARC] are given by A1 = -0.3922, 

A2,3 = -0.8597 ± jl.0525, and A4 = -4.8231 in the LHP. 

When the available control energy is limited, it is possible to find a pair of (p, YI) from 

Fig. E4.l.1 that generates a LARC to meet the given uncertainty specifications with a 

smaller gain matrix. Indeed, we may zoom in Fig. E4. l .1 and find a pair of (p, YI) that is 

smaller than (0.06, 1.6) such that the corresponding Amax (Z) < 0. The plot of Amax (Z) 

versus YI E [1.2, 2] when p = 0.0150 is given in Fig E4.l.3. From Fig. E4.l.3, it is 
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sufficient to choose Tl= 1.6 with p = 0.0150 because these correspond to 

Amax (Z) = -0.0055 < 0. The gain matrix corresponding to (p, ri) = (0.0150, 1.6) is given 

by: 

[ 0.1560 -0.0030 -0.2370 -0.3895] 
KLARC = -0.0342 -0.0994 0.1475 0.3598 

(E 4.1.4 a) 

1.3983 0.0456 -0.6563 -1.1411 

0.0456 1.1546 -0.2179 -0.5403 
Q= 

-0.6563 -0.2179 2.2177 2.2716 
(E 4.1.4 b) 

-1.1411 -0.5403 2.2716 5.3928 

where the eigenvalues of An = [An -BnKLARC] are given by A1 = -0.2540, 

A23 = -0.6432 ± j0.9739, and A4 = -3.0660 in the LHP. Note that it may be possible to 

select other values for p and Tl to generate a LARC such that the uncertainty 

specifications are met, and every element in the resulting gain matrix is smaller than the 

respective one in (E 4.1.4 a). However, we~ do not pursue this further because the present . 

steps are sufficient to demonstrate how to select an appropriate coordinate of (p, ri) from 

the plot of Amax (Z) versus p and Tl. 
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3~--~---~,---~--~ 

2.5 ................................................. l ..................................................... 1 .................................................... 1 ................................................ .. 

2 .............................................. J ................................................... j .................................................... t... ............................................. . 
I (11,11.Jax (Z)) = (I.6i-o.oo55) 

Amax (Z) 

1.5 ............................................... y ................................................ , .................................................... 1 ................................................. . 

1 ................................................. , ............................................... ) .................................................. J ............................................... .. 
o. 5 .............................................. ..I. ............................................... J .................................................. L ............................................. . 

: : : 

0 --- --1------------- i)--.==-~'--~==1 
-o.5~--~---~---~--~ 

1.2 1.4 1.6 1.8 2 

YJ 

Fig. E4.l.3 A Plot of Amax (Z) versus YJ E [1.2, 2] when p = 0.0150 

To compare our results with tho.sein the literature, we now give the stabilizing gain 

ml\l.trices from (Schmitendorf, 1988) and (Chen, and Chen, 1991) for the giv~n 

un9ertainty specifications. The stabilizing gain matrix from (Schmitendorf, 1988) is: 

[
-1.0181 0.2674 1.1123 1.7966 ] 

K[Sch] = - 0.9531 0.8428 -0.1412 -0.7419 
(E 4.1.5) 

The eigenvalues of An = [An -BnK[Sch]] are given by A1,2 = -1.0202 ± 0.1826, 

A. 3 = -2.4804, and A.4 = -9.9443. The stabilizing gain matrix from (Chen, and Chen, 

1991) is: 

K _ -[-0.1640 0.2699 0.4511 0.4308 ] 
[CC] - 0.0364 0.1692 -0.1066 -0.4519 

(E 4.1.6) 

The eigenvalues of An = [An -BnK[cci] are given by A1,2 = -0.4180 ± j0.2700, and 

11. 3,4 = -2.2343 ± jl.0195. Notice that most of the elements in our stabilizing gain matrix 
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(E 4.1.4 a) are smaller than the respective ones in (E 4.1.5) (Schmitendorf, 1988) and (E 

4.1.6) (Chen, and Chen, 1991). However, we know that the responses of the nominal 

system corresponding to the linear state-feedback gain matrix (E 4.1.4 a) are slower than 

those corresponding to (Schmitendorf, 1988) and (Chen, and Chen, 1991) because of the 

nominal closed-looop pole at A1 = -0.2540. In practice, we may want to have a 

reasonable stability margin to account for neglected uncertainties in other elements of 

A 11 and B 11 • Accordingly, the controller in (E 4.1.3 a) may be preferable to (E 4.1.4 a) 

because Amax (Z) corresponding to (E 4.1.3 a) is less than that corresponding to (E 4.1.4 

a). Note that optimization is not needed for these original "weak" uncertainty 

specifications. 

Now, we assume that the uncertainties in ht11 (x,t), hf11 (x,t), and hi811 (x,t) increases 

by 72.5%, 72.5%, and72% respectively. In other words, the variations of ht11 (x,t), 

hf11 (x, t) , and h1B11 (x, t) are now given by: 

ht11 (x,t)E l.725[-0.2192,0.2192] 

h t11 (x,t)E l.725[-1.2031,1.2031] 

h{11 (x,t)E l.72[-2.0673,2.0673] 

To generate a LARC for these "increased" uncertainty specifications, we reapply 

(E 4.1.7) 

Procedure 2. Fig. E4.1.4 shows the plot of "'max ( Z) versus p and Y) . The minimum of 

Amax (Z) = 1.2680 in Fig E4. l.4 is at (p *, ri*) = (0.54, 1) . Since the minimum of Amax (Z) 

is positive, optimization is now needed. Before we start our optimization, we examine 

Fig. E4.l.4 and observe that a small value of Amax (Z) = 1.3546 occurs at (p, ri) = 
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(0.2, 1.275). Accordingly, we expect that this point corresponds to a reasonably good 

initial value in addition to that corresponding to the minimum of Amax (Z(p *, 11 *)) = 

1.2680. Relatively, p is 63% smaller than p * while 11 1s 28% larger than 11 *. This 

suggests that elements of K LARC corresponding to (p, 11) may be smaller than the 

respective ones in that corresponding to (p *, 11 *) . Indeed, {K LARC, Q} corresponding to 

(p *, 11 *) = (0.54, 1) is given by: 

K -[ 0.6911 -Q.0490 - 0.6813 - 0.9745] 
LARC,l - . -0.0277 -0.6418 0.1702 0.4887 

(E 4.1.8 a) 

Q =14x4 (E 4.1.8 b) 

The LARC gain matrix and Q corresponding to (p, 11) = (0.2,1.275) is given by: 

. [ 0.5250 -0.0320 -0.5383 -0.7673] K - (E 4.1.9 a) 
LARC,Z - - 0.0371 -0.4615 0.1684 0.5083 

1.2343 0.0003 -0.2444 -0.3567 

0.0003 1.1810 -0.0512 -0.1777 
(E4.L9 b) Q= 

-0.2444 -0.0512 1.2691 0.4218 

-0.3567 --' 0.1777 0.4218 1.7165 

Notice that most of the elements in K LARc,z are smaller than the respective ones in 

KLARc,i · Starting from the initial value {KLARc, Q} in (E4.1.8) corresponding to 

(p *, 11 *) = (0.54, 1), the simple univariate optimization technique runs approximately 1 

minute on our PC to find a LARC that meets the increased uncertainty specifications: 

[ 
0.1119 -0.0814 -1.0233 -0.9239] 

KoLARC,l = -0.0513 -1.4803 0.1504 0.8280 
(E 4.1.10 a) 



7.3811 0.8808 

0.8808 10.4920 
Q= 

6.0303 2.3856 

0.0009 -0.1883 

(p*, l'l *, Amax (Z)) = (0.54, 1, 1.2680) 

3 

2.5 

Amax(Z) 2 

1.5 

1 
0.8 

p 
0.2 1 
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6.0303 0.0009 

2.3856 -0.1883 

15.2885 8.0140 
(E 4.1.10 b) 

8.0140 13.0632 

1.6 

Fig. E4.1.4 A Plot of Amax (Z) versus p E [0.2, 0.8] and ri E [1, 1.6] 

The solution in (E 4.1.10) corresponds to Amax (Z) = -8.8989 * 10·3 . The eigenvalues of 

An = [An -BnKOLARC iJ are given by A1 = -0.1107, A2 = -1.5828, A3 = -2.2188, and 

· A4 = -15.2718. When starting from the initial value in (E 4.1.9) corresponding to 

(p, ri) = (0.2, 1.275), it takes approximately 1 minute to find the solution: 

K -[ 0.4604 -0.0310 -0.9121 -1.1086] 
OLARC,Z - -0.0378 -0.5740 0.1841 0.8699 

(E 4.1.11 a) 
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0.9627 0.0066 -0.0247 -0.4258 

0.0066 0.1734 -0.1309 -0.1777 
Q= 

-0.0247 ~0.1309 0.4298 0.4303 
(E 4.1.11 b) 

-0.4258 -0.1777 0.4303 0.7415 

This solution corresponds to Amax (Z) = -1.6585 * 10-3 . The eigenvalues of 

An = [An -BnKOIARc,2 ] are given by A1 = -0.3304, A2,3 = -1.5465 ± j0.6234, and 

A4 = -8.7442. For this particular problem and the particular two initial values in (E-

4.1.8) and (E 4.1.9), we notice that: 

1) A solution can be obtained to meet a given set of uncertainty specifications, 

although the initial value does not correspond to the minimum value of Amax (Z) 

in the three dimensional plot of Amax (Z) versus p and T]. 

2) When starting the optimization, most of the elements in the initial gain matrix 

corresponding to (p *, T] *) = (0.54, 1) are larger than the respective elements in that 

corresponding to (p, T]) = (0.2, 1.275) . However, most of the elements in the 
\ 

solution gain matrix corresponding to (p*, ri*) = (0.54, 1) are smaller than the 

respective elements in that corresponding to (p, ri) = (0.2, 1.275). 

3) We find no controller in the literature that meets the increased uncertainty 

specifications in (E 4.1.7). 

When a set of strong uncertainty specifications are given, we emphasize that a reasonably 

good initial value is needed for the optimization algorithm to converge to a solution. 

Indeed, the same optimization algorithm cannot find a solution when the initial value 

{ Q, K IARC} is generated from (p, T]) = (1, 2) . Starting from this initial value, the 

algorithm cannot find { Q, K IARd such that Amax (Z) < 4.2407 * 10-2 . 
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4.7 Summary 

We have obtained a MIMO version of LARC by extending results we obtained for SIMO 

systems. It turns out that the equations, theorems, and procedures employed to generate 

LARC for SIMO systems can be extended to generate LARC for MIMO systems in a 

straightforward fashion. 
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ChapterV 

Preliminary Investigations of Nonlinear LAR Controllers 

5.1 Introduction 

In this chapter, we give suggestions and recommendations for enhancing the ability of 

LARC developed in the previous chapters. Using the concept of LAR, our primarily 

objective in this chapter is to enlarge the LAR resulting from linear LAR controllers 

when stabilizing the time-invariant nonlinear systems (4.1) about the equilibrium point at 

the origin. Preliminary studies show that extending LARC according to our suggestions 

and recommendations can yield promising results when the availability of a perfect 

model is assumed. However, it is emphasized that the results in this chapter are 

preliminary and thus further investigations are required. These include parameter 

selections and robustness issues. 

5.2 The Basic Idea of Nonlinear LAR Control 

We propose the use of nonlinear controls to enhance the ability of LARC developed in 

the previous chapters. Indeed, in the previous chapters LARC was restricted to be linear 

because this simplifies analysis of stability and of key properties of the control systems. 

Using this simplification, we obtained in the previous chapters some building blocks on 

which our ongoing research is developed. When an exact model is available, it turns out 

that these building blocks allow us to obtain satisfactory results in a straightforward 
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fashion. We investigate now how a nonlinear auxiliary control could for MIMO systems 

be used to augment the linear control uLARc(x) in previous chapter, to enlarge the LAR 

resulting from uLARc(x), which is called "the original LAR". We denote by ua(x)E ':Rm 

a smooth auxiliary control for enlarging the original LAR. The auxiliary control ua (x) is 

an augmentation of the linear control uLARc(x), such that our "total" LARC uTLARc(x) 

can be written as: 

(5.1) 

where the subscript "T" stands for "total" and ua (0) = 0 . In our preliminary studies, the 

system is described by (4.1): 

x = f (x) + g(x)u(x) (4.1) 

where th~ vectors f(x) E ':Rn, g(:x) E ':Rnxm and we set u(x) = UrLARc(x). These are such 

that x is locallyLipschitz in the operating region of interest. We assume that (4.1) is a 

perfect description of the MIMO system of interest. The objective remains to stabilize 

(4.1) such that the equilibrium point at the origin is at least locally asymptotically stable 

with a reasonably large attractive region. When u(x) is set to uTLARc(x), the time 

derivative of the quadratic Lyapunov function (1.5) along trajectories of the nonlinear 

system (4.1) is given by: 

. T . T 
Vy (x) = x Pf (x) + x Pg (x)uTLARC (x) 

= F(x) + G(x)uLARC (x) + G(x)ua (x) 

= V(x) + .Q(x) 

(5.2) 

where V(x) = F(x) + G(x)uLARc(x), and .Q(x) = G(x)ua (x) are smooth because of the 

smoothness and continuity of the equation of motion and of UrLARC (x). These functions 
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vanish at the origin because F(O) = 0 and G(O) = 0. Because of these, VT (x) is smooth, 

is continuous and is vanishing at the origin'. We now define the following regions: 

(5.3) 

(5.4} 

In addition, we recall from Chapter I that: 

f3c = { x I O ~ V (x) < C, CE 9t+ } (1.8) 

(1.9) 

(1.10) 

It is emphasized that: 

1) f3cT shrinks in all its dimensions as CT decreases because V(x) is a quadratic 

positive definite function. 

2) The definitions (5.3) and (5.4) guarantee that f3cT and BT have at least one 

·· common boundary point. 

We now state the main theorem of this chapter: 

Theorem 5.1 (Expansion of a LAR) 

If the intersections of the boundaries of BL and f3c or the "common boundary points" of 
' L 

BL and f3cL, denoted by Pi, i =l,2, ... are contained in TI0 then the smooth auxiliary 

control ua (x) enlarges the original LAR with an additional region contained in 

TI = (Il0 u Il1) provided that ua (x) satisfies: 



where 

Proof 

.Q(pi) = G(pi) Ua (pi).< 0 Vi } 

VT(x)=V(x)+~(x)<O VxE {BL -0} 

VT(O) = 0 

TI 0 = {x I G(x) i= 0 and F(x) is arbitrary } 

TI 1 = {x I G(x) = 0, F(x) < 0} u {O} 
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(5.5) 

(5.6 a) 

(5.6 b) 

Since .Q(x) = G(x)ua (x), the s-q1ooth auxiliary control ua (x) can satisfy (5.5) if and 

only if G(pJ t= 0. By definition (1.18), we are guaranteed that BeL is contained in BL 

such that the set of common boundary points of Be L and BL contains at least one point. 

This can be illustrated graphically in Fig. 5.1. Fig. 5.1 (a) shows an artificial surface of 

V (x) for a two dimensional system and Fig. 5.1 (b) shows level curves of V (x) and the 

corresponding V (x) . In Fig. 5 .1 (b ), the boundary of BL is shown as O BL while the 

boundaries of Be at C = cz, Ct, and ct are shown as OA _ , OA _ , and 
PC,C=CL PC,C-CL 

0~ . + respectively. The number of common boundary points of Be and BL is 
C,C=CL 

assumed to be four in this illustration. 

If Pi E TI0 Vi, we have that G(pi) t= 0 by the definition of TI 0 in (5.6 a). This allows us 

to choose ua(x) such that .Q(pJ = G(pJua(PJ < 0 Vi. We see from (5.2) that when 

(5.5) is satisfied: 

1) VT(x) < 0 in the BL except at the origin where VT(O) = V(O) = 0. 
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(Proof of Theorem 5.1 (Cont.)) 

2) VT (pi) < V(pi) = 0 Vi. This can be drawn from (5.2), knowing that V (pi) = 0 by -

the definition of Pi, G(pi) -::f. 0, and G(pi )ua (pi)< 0 by the choice of ua (x). 

100 

80 

60 

40 

20 

0 

Fig. 5.1 (a) Artificial Surface of V(x1, x2 ) 

Now, we consider VT (x} in a neighborhood Ui about the common boundary point Pi 

i=l,2, .... Thisneighborhoodisdefinedas Ui ={xlllx-pill<cd where Ei isa 

sufficiently small positive number. Recall that when (5.5) is satisfied, we have for Ui 

i = 1, 2, ... that VT (pi)< 0. In this case, it follows from the continuity of VT (x) that 

VT (x) < 0 Vx E Ui . In other words, by the continuity of VT (x), there exists a number 

Ei > 0, no matter how small, corresponding to a neighborhood Ui about Pi such that 

VT(x)<O foreverypoint xEUi (Buck, 1987). AmagnifiedviewofFig.5.1 (b)inthe 

second quadrant provided in Fig. 5.2 is a graphical illustration for this argument. 



(Proof of Theorem 5.1 (Cont.)) 

-3 

0 Pc,c=cL 
(V(x) = CL) 

Xz 
3 

0 

~,· 

-3 

3 

(V(x)= Cl) 

Fig. 5.1 (b) Conceptual Regions f3cL and BL Corresponding to Fig. 5.1 (a) 

Symbol: o = common boundary points of f3cL and BL 

Remark: 0 <CL< CL< Cl 

Because Vr(x)<O in BL andin Ui including Pi i=l,2, ... ,weseethat Br contains 

BL and Pi, which are not on the boundary of Br. Accordingly, f3cL and Br have no 

common boundary point and Br contains f3cL because f3cL c BL c Br. We then 
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expand f3c,c=~L in every direction by increasing C beyond CL. The .expansion occurs in 

every direction because V(x) is a quadratic positive definite function. We denote by Cr 

the value of C > CL when the boundary of f3c first intersects the boundary of Br, and by 

f3cr the region f3c,c=cr. The existence of such f3c,C=Cr>CL is guaranteed because: 
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(Proof o.fTheorem 5.1 (Cont.)) 

2) BeL and By have no common boundary point. 

Since V(x) is a quadratic positive definite function and CT> CL> 0, we conclude that 

· BeL c BeT and the boundaries of BeL and BeT do not intersect. Thus the original LAR 

can be enlarged by the auxiliary control ua (x) satisfying (5.5). This completes the proof. 

•••• ••• . . . 
possible boundary . . . 
of BT . 

1----'-..-.C~ 

•• •• •• 
··········· ..... 

•• 
··········· •• ··················· 

• 
• • • • • . . . . 

• • 
•. E1 -----,c. 

•• •• •• • • • • . 
• . . . . 
• • • • • • • •• •• •• 

········· 
-2.5 -2 

• • • . /. . , . . 

-1.5 

, .........••• 
••• •• 

-1 -0.5 

•• • • • • • • • • • • • • 
2.5 

1.5 

0 

X 2 

.5 

Fig. 5.2 Magnified View of Fig. 5.1 (b) Showing BeL'BeT ,BL, and BT 

Symbol: 0 s = boundaries of s, where s = BeL, Bey, and BL 



It is clear that (5.5) suggests infinitely many possible choices for ua (x). An obvious 

possibility is given in Corollary 5.1: 

Corollary 5.1 (A Choice of Auxiliary Control) 

The conditions in (5.5) are satisfied if: 

ua(x) = -y(x)GT (x) = -y(x)gT (x)Px = -Ka(x)x 

where y(x)gT (x)Px = Ka (x) E ':Rmxn, y(x) > 0, and Pis obtained by using LARC 
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(5.7) 

developed in the previous chapters because we desire that Pi are reasonably far from the 

origin Vi. 

Under the choice of auxiliary control (5.7), the resultant nonlinear control is given by: 

(5.8) 

where KnARC = [K IARC + Ka (x)] when no optimization is employed to find the linear 

state-feedback gain matrix for LARC, and KTIARC = [KoLARc + Ka (x)] otherwise. 

Notice that: 

1) KTIARC is a nonlinear gain matrix obtained.by weighting the linear gain matrix 

K LARC or KouRc against the nonlinear auxiliary gain matrix Ka (x). 

2) In this ongoing stage, we restrict that y(x) be a constant y c E 9t+ for simplicity. 

Under this restriction, a technique for selecting an appropriate value for y c is 

clearly required and is a subject of our current investigations. At the moment, we 
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choose a small y c to begin with, employ numerical simulations to estimate the 

resulting attractive region, and tune y c accordingly. 

Example 5.1 (The Doubk-Inverted-Pendulum System with Lower-Joint Control) 

In this example, we employ the double-inverted-pendulum system (Misawa, Arrington, 

and Ledgerwood, 1995) to determine if the auxiliary nonlinear control ua (x) can enlarge 

the attractive region resulting from the linear control uLARC (x). To do this, we invoke 

from (E 3.3.12) in Ex~ple 3.3 the linear gain matrix KaLARC to produce: 

ULARC(x)=[-0.0804 -8.6189 -0.5572 -1.1748]x 

= -KOLARCX 
(E 5.1.1) 

where KaLARC = [-0.0804 -8.6189 -0.5572 -1.1748]. This linearLARC 

corresponds to Pin (E 3.3.14). For convenience, we reproduce: 

4.6236 12.4067 1.4066 1.6109 

12.4067 157.1118 17.1767 20.6637 
P= (E 3.3.14) 

1.4066 17.1767 2.0826 2.4550 

1.6109 20.6637 2.4550 2.9956 

We take frorri (5.7) in Corollary 5.1, the auxiliary nonlinear control: 

where y(x)g(xlP = Ka (x), and we set y(x) = y c E 9t+ for simplicity. We recall from 

Example 2.2 that: 



0 

0 
-565.1008 
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g(x) = 
-5.9809 + COS2 (X1 - Xz) 

504.2688 cos(x1-x2 ) 

(E 2.2.2 d) 

-5.9809+cos2 (x1 -x2 ) 

The total nonlinear control is then given by: 

(E 5.1.2) 

where KnARc = KaLARc + Y cg(x{ P · 

Now, we want to select an appropriate value for y c. Since we have not completed a 

procedure for this, heuristics are employed to tune y c . Following the suggestion given 

after Corollary 5 .1, we start our tuning process from a small value of .Y c . Setting 

y c = 0.001, numerical simulations show that the_ nonlinear auxiliary control can eplarg~ 

the attractive region resulting from the linear LARC in (E 5.1.1). Increasing Ye to 0.002 

and to 0.003 produces increasingly better results. Next, we skip intermediate values and 

set y c = 0.01. The attractive region corresponding to y c = 0.01 is smaller than that 

corresponding to y c = 0.003. We do not pursue the optimal value for y c and accept 

y c = 0.003 because the present results are sufficient to demonstrate the benefit of the 

nonlinear auxiliary control ua (x). Fig. E5.l.1 (a) and (b) shows system responses under 

uLQR (x) (Misawa, Arrington, and Ledgerwood, 1995) and uTLARC (x) when the system is. 

launched from two initial conditions. Notice that the responses under uLQR (x) are faster 

than those under uTLARc (x), but uLQR (x) is not able to force the trajectory to converge to 
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the origin when the initial condition is large. Simulation results in Table E5.1.1 and Table 

E5.1.2 compare the attractive region resulting from uLQR(x) (Misawa, Arrington, and 

Ledgerwood, 1995) to that resulting from uTLARc(x) in (E 5.1.2) with Ye= 0.003. Notice 

that the latter is significantly larger than the former. In these tables, we define 1) 

converge to the origin= \lx(t)jj < 0.01 for 40::::; t::::; 50, and 2) diverge from the origin= 

3t such that llx(t)jj > 2000. 

_: X1 (t)(rad) 

.... : x2 (t)(rad) 

0.3~~~~~~~~~---.--~~~~~~~~~ 

,---- x1Kt)uTLARC 

·············r················· 

················t" 

~- '1(t)u ' 
·················•····················"'""'8.. ················t································· 

Q rt~~>,,·_,. ---Xz(t)u 1 RC 

-O. 1 -'\ r····· x··-t ! 
i 2( )U1QR 

-0.2'---~~~-'-~~~~-'-~~~----''--~~~--' 
0 1 2 3 4 

t (sec) 

Fig. E5.l.l (a) Responses of the Double-Inverted-Pendulum System under uTLARc(x) 

and uLQR(x) with x(O) = [-0.2 0.2 -0.1 -O.lf 
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1 f-...... f ... i ................ . 

_: x1 (t) (rad) 
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0.8 ....•. / ... , .. , .................................... , .... . 
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.......................................... _ ....................................................................... . 

.... : x2 (t) (rad) 

0.2 {···· 

-0.2 ··.\}~;~====···········!-·····················+· 
' Xz (t) 
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-0.4 · · 
0 1 2 3 4 
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Fig. E5.1. l (b) Responses of the Double-Inverted-Pendulum System under uTLARC (x) 

and uLQR(x) with x(O) = [0.25 0.25 0.1 O.lf 
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Example 5.2 (The Cart-and-Pole System with Force Control on Cart) 

In this example, we employ the cart-and-pole system in Example 2.3 to determine if the 

auxiliary nonlinear control u0 (x) can enlarge the attractive region resulting from the 

linear control uIARc(x). To do this, we invoke from (E 3.5.7) in Example 3.5 the linear 

gain matrix KuRc to produce: 

UIARc(X) = [-2.5136 -57.4749 -5.1254 -13.0073]x 

= -KIARcx 

where KuRc = [-2.5136 -57.4749 -5.1254 -13.0073]. This linear LARC 

corresponds to Pin (E 3.5.9). For convenience, we reproduce: 

4.0782 10.3497 3.1579 2.2951 

10.3497 119.5777 18.8090 25.7791 
P= 

3.1579 18.8090 5.3843 4.1524 

2.2951 25.7791 4.1524 5.7820 

We take from (5.7) in Corollary 5.1, the auxiliary nonlinear control: 

(E 5.2.1) 

(E 3.5.9) 

where y(x)g(x)7P = K 0 (x), and we set y(x) = y c e 9t+ for simplicity. We recall from 

Example 2.3 that: 

g(x) = 

0 

1 
1 

M+sin2(x2 )m 
cos(x2 ) 

(E 2.3.2 d) 

where M = 2 kg, m = 0.1 kg, l = 0.5 m, and g = 9.81 kg.m.s-2• The total nonlinear control 

is then given by: 



uTIARc(x) = -[KuRc +ycg(x?P]x = -KTIARcx 

where KruRc = KuRc +ycg(x?P. 
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(E 5.2.2) 

Now, we want to select an appropriate value for y c . Since we have not completed a 

procedure for this, heuristics are employed to tune y c . Following the suggestion given 

after Corollary 5.1, we start our tuning process from a small value of y c. Setting with 

y c = 0.001, numerical simulations show that the attractive regions corresponding to 

uuRc (x) and uTIARC (x) are approximately the same, implying that effects of larger 

values of· y c are to be examined. We increase y c gradually and observe some 

enlargement in attractiye region. When y c = 1.25, numerical simulations show clearly 

that the attractive region corresponding to uTIARc(x) is larger than that corresponding 

to u IARC ( x) . We terminate the tuning procedure and accept y c = 1.25 because the present 

results are sufficient to demonstrate the benefit of the nonlinear auxiliary control ua (x). 

Simulation results in Table E5.2.1 and Table E5.2.2 compare the attractive regions 

resulting from Upp(x) (Ogata, 1997), from uIARc(x) (without uncertainty specifications),. 

from uuRc(x) (with uncertainty specifications), and from UrIARc(x) (with y c = 1.25 ). 

Notice that the latter is the largest. In these tables, we define 1) converge to the origin= 

llx(t)II < 0.01 for 40 ~ t ~ 50, 2) diverge from the origin= :lt such that llx(t)II > 2000, and 

denote "uncertainty specifications" by "UCSPs". 
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Table E5.2.1 Simulation Results of the Cart and Pole System in Regions farther from the Origin ( x1 > 0, x2 > 0) 
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5.3 Summary 

1) In this section, we suggest that nonlinear controls be incorporated to the linear 

LARC developed in the previous chapters to enlarge the original LAR under the 

assumption that the available model is perfect. Indeed, we propose that a 

nonlinear auxiliary control be augmented to the linear LARC, and we denote this· 

augmentation by TLARC. 

2) Based on the idea in 1, we present our preliminary studies and Theorem 5.1, 

which leads to many forms of auxiliary controls that can be employed to enlarge 

the original LAR. We point out a simple auxiliary control for this purpose in 

Corollary 5.1. Using this auxiliary control, we require a technique for choosing an 

appropriate value for the parameter y c . This parameter weights the contribution 

of the linear LARC and that of the auxiliary control. A procedure for selecting an 

appropriate y c is a subject of our current studies. At the moment, we select y c 

heuristically. We initially choose a small y c, employ numerical simulations to 

estimate the corresponding attractive region, and tune y c accordingly. 

3) Using the double-inverted-pendulum system (Misawa, Arrington, and 

Ledgerwood, 1995) with the optimized linear LARC obtained in Example 3.3 and 

the cart-and-pole system (Ogata, 1997) with the unoptimized linear LARC 

obtained in Example 3.5, we examine how the auxiliary control in Corollary 5.1 

can enhance the ability of the linear LAR controllers. Numerical simulations show 



that the attractive regions corresponding to TLARC are larger than those 

corresponding to the linear LAR controllers, and are significantly larger than 

those corresponding to LQR (Misawa, Arrington, and Ledgerwood, 1995) and 

pole placement (Ogata, 1997). The tuning process for y c takes less than 5 

minutes to complete in each of the two examples. 
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Chapter VI 

Conclusions and Recommendations .· 

6.1 Conclusions 

There are numerous physical nonlinear systems whose mathematical descriptions present 

structural and algebraic difficulties when designing a globally stabilizing controller. For 

such systems, we often admit locally stabilizing controllers designed by applying linear 

system theory to suitable linearized models. Theoretically, we expect the linear controller 

to stabilize the nonlinear system in a region where the linear approximation is valid. 

However, it is traditional that we do not examine the extent of this region when designing 

a linear controller. After such design, simulations are employed to numerically estimate 

the resultant attractive region. A major drawback of a linear controller designed in this 

fashion is that the attractive region of the corresponding nonlinear system can be 

unsatisfactorily small. It is known that a linear controller can be designed either by 

relocating the eigenvalues of the linearized model, by optimizing a performance index 

subjected to the linearized model, or by shaping frequency-domain plots of the linearized 

model. However, their relationships to the attractive region of the corresponding 

nonlinear system are not obvious. Thus, it is not clear how several design parameters for 

the corresponding techniques should be chosen to obtain reasonably large attractive 

regions. 

Using the concepts of eigenvector condition and eigenvalue ratio, systematic procedures 

for generating LAR controllers with and without uncertainty specifications are proposed. 
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In the formulations of these procedures, effects of nonlinearities and of uncertainties on 

LAR are handled implicitly using geometry. Given a linearized model about the origin, a 

LAR controller can be generated in a timely fashion using an eigenvalue-ratio plot. The 

resulting attractive region is reasonably large when compared to existing techniques such 

as pole placement and LQR. For uncertain systems with uncertainty specifications, our 

procedures typically call for an optimization routine. In this case, we provide a tool for 

determining reasonably good initial values for the optimization. Starting from these initial 

values, it appears that a simple optimization ''routine is sufficient to produce fast 

convergence to a stabilizing LAR controller, which cannot be reached from inappropriate 

initial values. When LARC is applied to common examples found in the literature for 

local stabilization, the attractiveregions resulting from LARC are larger than those 

resulting from pole placement and LQR. For global stabilization, LARC produces the 

least conservative allowable uncertainty bounds when compared to those in the common 

examples. Because the available information. and specific properties of the system of 

interest imposed in various chapters are different, several types of stability are discussed. 

The reader is cautioned about the applicability of LARC in these situations. 

6.2 Recommendations for Future Work 

1) Because of the promising results in Chapter V, it is recommended that the 

nonlinear LARC be investigated further. Extending the results in Chapter V to 

handle time-varying cases is straightforward. However, it may not be obvious 

how such results can be extended to select systematically parameters for the 
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auxiliary control, and to handle robustness issues while maintaining applicability 

of the scheme for complex high-order nonlinear systems. 

2) The results obtained in various chapters suggest strongly the profound effects of a 

"reasonably good" Lyapunov function. Accordingly, it seems reasonable that 

LARC be improved by finding a new class of Lyapunov functions that can be of 

advantageous over the current quadratic Lyapunov function in the sense of LAR. 

3) When dealing with uncertain systems, we proposed a technique for selecting 

reasonably good initial values for optimizations. Starting from such initial values, 

it was found in all relevant examples that the simple univariate optimization 

technique could be employed to obtain stabilizing LAR controllers in a timely 

fashion. Note that the univariate optimization technique was primarily employed 

for simplicity, and thus we do not expect it to be the most efficient in general. Itis 

encouraged that an optimization technique be developed to speed up convergence 

to the solution of LARC. 

4) In the formulation of LARC, it is desirable that Xcsi be located far from the 

origin to obtain a reasonably large LAR. While this formulation is valid, we 

notice that it incorporates strongly effects of the location of Xcsi, but not effects 

of relative location of Xcsi with respect to the resulting LAR. It is recommended 

that the latter be investigated in details, and be incorporated into the formulation. 
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5) We suggest that a LAR observer be developed. Using results developed in the 

previous chapters, it rnay be possible to formulate such an observer in a 

straightforward fashion. Properties of a LAR output-feedback controller should 

then be investigated. 
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Appendix I 

Step-by-Step Procedure for Generating LARC 

Using a Linearized Model about the Origin 

The system of interest is given by: 

x = f (x, t) + g(x, t)u (A 1) 

where x, f(x,t), g(x,t)E ':Rn, and the control u is restricted to be a vector-valued 

function of x for simplicity. The objective is to design u(x) E ':Rm such that the origin of 

(A 1) is locally uniformly asymptotically stable with a reasonably large attractive region. 

In this section, we assume the knowledge that the linearized model about the origin of (A 

1) exists and is given by: 

x =Ax+Bu(x) (A2) 

where A E 9\nxn , BE ':Rnxm . This is equivalent to knowing that: 

. ( i. llf(x,t)-Axl!JJ hm SU =0 
llxll~0 t~O llxll . 

. ·( (ljg(x,t)-B!iJJ hm sup =0 
llxll~O t~O . !lxll , 

(A 3) 

In addition, A and Bare known with [A,B] being controllable or stabilizable. These are 

all information required for generating LARC using the "first" procedure. The first 

procedure is primarily formulated for the case in which A is unstable but it is also 

applicable when A is stable. For the latter case, we rewrite (2) as suggested in Section 
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1.3. For simplicity, the control is restricted to be linear such that u(x) = -Kx E 9tm, 

KE 9tmxn in the following procedure: 

Step 1 Construct an array containing increasingly large numerical values of p. 

Remark: Typically, our array of p is 0.0001, 0.001, 0.01, ... , 100, 1000, 

10000. However, an appropriate range and step size depend of the 

system at hands. The key is to capture a portion of the eigenvalue-

ratio plot (introduced in Step 2) where the slope changes 

significantly. When such portion is captured, replot it using a linear 

scale for p. 

For each value of p , we execute the following substeps: 

1) Solve the steady-state Riccati equation: 

0 = -2Q-[PA +ATP]+2pPBBTP = -1-M+N (A4) 

2) Find then eigenvalues of Mand compute the eigenvalue ratio rAM. The 

expression for rAM given in (1.23) can be reduced to: 

A .., _ Ml 
''A -

M AM(r+l) 
= (A 5) 

where AMI ~ ... ~ AMr > AM(r+J) ~ ... ~ AMn and r = rank(PB). By 

examining the proof of Theorem 4.1 and the statements thereafter, it 



should appear that AMI > 0 > AM(r+I) = ... = A.Mn = -1 and thus 

Example Suppose we are given that: 

A= 

, -0.0366 0.0271 0.0188 -0.4555 

0.0482 -1.0100 0.0024 - 4.0208 

0.1002 

0 

0.2855 - 0.7070 1.3229 

0 1 0 

' B= 

0.4422 0.1761 

3.0447 -7.5922 

- 5.5200 4.9900 

0 0 

and p = 0.01. We obtain: 

8.2875 - 0.0200 - 0.7288 - 3.3907 

- 0.0200 0.9573 0.5717 - 0.4832 
P= 

-0.7288 0.5717 2.6766 3.4784 

- 3.3907 -0.4832 3.4784 10.5036 

-0.3773 0.0704 -1.1987 -2.1047 

0.0704 - 0.8042 - 0.35.93 - 0.8472 
M= 

-1.1987 -0.3593 1.5737 4.7768 

-2.1047 -0.8472 4.7768 8.0889 

0.6227 0.0704 -1.1987 -2.1047 

0.0704 0.1958 -0.3593 -0.8472 
N= 

-1.1987 -0.3593 2.5737 . 4.7768 

-2.1047 -0.8472 4.7768 9.0889 

rank(PB) = 2 

-0.2047 0.6223 -0.1645 0.7374 

- 0.0758 - 0.6597 - 0.6355 0.3939 
TM= 

0.4567 -0.3286 0.6233 0.5431 

0.8625 0.2637 - 0.4249 - 0.0779 

AM = T~MTM = diag [11.1921 -0.7109 -1 -1] 
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AN= T~NTM = diag[12.1921 0.2891 0 O] 

rAM = 111.19211 = - 11.1921 = 11.1921 = AM1 
-1 -1 

Step 2 Using the data obtained in Step 1, plot rAM versus p. Then select a few 

values of p from a "flat" portion of the plot at which the corresponding values 

of rAM are small. At such points, rAM does not change significantly when p 

changes. For each selected value of p , we find the corresponding LARC 

usmg: 

(A 6) 

where KuRc = rtPBTP. Selecting an appropriate value for p is best 

illustrated by examples. See Example 2.2, 2.3, and 2.4. 

Step 3 Verify that sufficient control energy is available to implement the controller 

by considering the resulting linear gain matrix and the required operating 

region. If not, reconsider the eigenvalue-ratio plot and choose a new value for 

p. Normally, a larger value of p results in a larger KuRc and a greater 

demand of control energy. Now, examine the attractive regions corresponding 

to the selected values of p in Step 2 using numerical simulations. Then select 

a controller that best suit design objectives and constraints. In our examples, 

selecting 2 values of p according to the guideline in Step 2 results in an LAR 
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controller that yields a satisfactorily large attractive region when compared to 

those resulting from conventional linear control techniques. 

This step is optional. The parameter 11 may now be tuned by means of 

numerical simulations. When this is completed, the direction of K LARC may 

be tuned by writing: 

BTP 
uLARc(x) = -pl!PBII IIPBII x 

= -PIIPBII K LARCX 

= -PIIPBII [ ki · · · kn ]x 

(A 7) 

- -T · · -T 
k11 ] = KLARC. Now, perturb the d1rect10n of KLARC by 

increasing 9: component k j , j E {l, ... , n} by a small value, normalize the 

perturbed K iARc using the 2-norm, and run simulations at initial conditions 

just outside the attractive region recorded in Step 3. If the simulations show 

convergence, restart Step 4. If the trajectories diverge, restore k j, change the 

indexj, and restart Step 4. All components of KiARc are perturbed in the 

same fashion, and all perturbation must be "feasible" or 

Ai ( A - PIIPBII KuRc) < 0 \Ji for local stability. 
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Appendix II 

Step-by-Step Procedure for Generating LARC 

Using a Nominal Model and Uncertainty Specifications 

In this Appendix II, the system of interest is the same as that in Appendix I. The 

difference is that the availability of the linearized model about the origin of (A 1) is not 

required. We rewrite the nonlinear system (A l)as: 

x = Anx + Bn u(x) + [f(x,t)-Anx + g(x,t)u(x)-Bnu(x)] 

=Anx+Bn u(x)+fi(X,t,u(x)) 
(A 8) 

where the subscript "n" denotes the available "nominal" model, An E 9\nxn, Bn E 9\nxm, 

u(x) =-KxE 9\m, fi(X,t,u(x)) = [f(x,t)-Anx+g(x,t)u(x)-Bnu(x)]E 9\n. Itis 

required that An be unstable, and [An, Bn] be controllable or stabilizable. If An is 

stable, we rewrite An as suggested in Section 1.3. The uncertain vector fi (x, t, u(x)) 

lumps together all the nonlinearities, uncertainties, and modeling errors entering the 

nominal time-invariant linear system x = Anx + Bn u(x). It is desirable to choose An 

and Bn such that llfi (x, t, u(x))II !llxll is small. Provided we can write (A 8) such that 

llfi (x, t, u(x))II !llxll is sufficiently small, the objective can be achieved using the 

procedures in this section without knowing the linearized model of (A 2). Applications of 

these procedures require that uncertainty specifications are available. 
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A 2.1 Systems with Structured Uncertainty Specifications 

Consider the situation when it is known in the operating region of interest that: 

'"An 

~An (x, t) = f (x, t) - Anx = L, [h:n (x, t)E:n ]x (A 9) 
a=l 

rs 

~Bn (x, t) = g(x, t) - Bn = f [h:11 (x, t)Efn ]x 
P=I 

(A 10) 

where h;n (x, t) E [h1~ 1 , h6J] E 9t, h:n (x, t) E [h1i11 , h~;] E 9t are uncertain functions, 

h An hAn hSn hSn EA11 mnxn ES11 mnxm 1 < < X d 1 < < X 
la < ua , IP < up , a E .;,i , p E .;,i ' - rAn - n n , an - rsn - n m . 

The known uncertainty specifications are h1~n (a lower bound of h:11 (x,t) ), ht;: (an 

upper bound of h:11 (x, t) ), h1i11 (a lower bound of h:11 (x, t) ), h~; (an upper bound of 

h:11 (x,t) ), E:11 , and E:11 • In this case, we suggest the following steps to generate an 

LARC: 

Step 1 Cast the uncertain vector in the standard form in the operating region of 

interest. Using the notations defined previously, we write: 

rs rs 

-[~B11 (x,t)]Kx = f [h:11 (x,t)[-Ef11K]]x = t[h:11 (x,t)E:11 ]x 
P=I P=I 

where E:11 = [-Etsn K] E 9\11x11 , and 1 :::; . rs11 :::; n x m . Thus, we can cast the 

uncertain vector in the standard from in the operating region as: 

~ ~ r 

f L (x, t, u(x)) lu=-Kx = L, [h:11 (x, t)E:11 ]x + L, [h:11 (x, t)Egn ]x = L, [h j (x, t)E j ]x 
a=l P=I j=I 

where E 1. E 9tnxn , and r = rA + rs . 
n n 
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Construct the matrix Zin Theorem3.2. To do this, we follow the following 

substeps: 

1) -2Q = PAn + A~P, where P,Q E 9tnxn are symmetric positive definite, 

r 

2) Az i:An + LhuEj 
j=I 

- -T 
3) <I>= PA1 + A1 P, where <I> is a symmetric matrix because 

[PA 1 f = AjP due to the symmetry of P. 

is the set of n orthonormal eigenvectors of 'I' j , and the superscript "D" 

denotes "diagonal". 

6) 'Pf' o+ = 'Pf I D D , where the subscript ['Pf (i, i) < O] ~ 
['I' j (i,i)<O]~['I' j (i,i)=O] 

['Pf (i, i) = O] means that we obtain the diagonal matrix 'I'f·o+ from the 

diagonal matrix 'Pf by setting all negative diagonal elements of 'Pf to 

zero, and 'Pf (i, i) denotes the (i, i) element of 'Pf. When the superscript 

"O+" is employed with the superscript "D", we designate that the diagonal 

matrix '1'f' 0+ has no negative element and is positive semidefinite or is 

positive definite. 
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designate that 'Pr is positive semidefinite or is positive definite but need 

not be diagonal. 

r 

8) z =<I>+ L [Chuj - hu )'¥~+ J 
j=I 

Step 3 Solve for {K, Q, P} such that in the operating region of interest: 

Amax (Z(K, Q, P)) < 0 (A 11) 

For some simple systems, finding a solution analytically may be possible but 

we do not expect this in general. A more practical approach is to solve for a 

solution {K, Q, P} for (A 11) using a numerical optimization technique. Since 

{K, Q} implies P, we usually abbreviate {K, Q, P} by {K, Q}. The following 

substeps are suggested to finda solution for (A 11): 

1) Obtain reasonably good initial values { K, Q} for the optimization such 

that the corresponding Amax{Z(K, Q, P)) is small by using LARC. To do 

this, we choose a region { (p, 11) IO< p 1 ~ p ~ p u, 1 ~ 11 ~ llu} and compute 

K = K LARC and Q at points distributed evenly in this region. For each p , 

we set Q = I and obtain P by solving 

(A 12) 

Using p and P, construct for each 11: 

(A 13) 



284 

Using p, 11 and P, obtain Q by solving: 

0 = -2Q-[PAn + A~P] + 2p11PBnB~P (A 14) 

Using {KLARc,Q} determined for each (p, 11), we plot Amax (Z(p, 11)) 

versus p and 11 in three dimensions, and find a region of (p, 11) where 

Amax (Z(p, 11)) is small or is negative from such plot. Depending on the 

context, we alternately write Amax (Z(p, 11)) or Amax (Z(K LARC, Q)) 

because (p, 11) implies {K LARC, Q} in our setup. 

If we find from the plot that Amax (Z(p, 11)) < 0 at a particular (p, 11), then 

the matrix K LARC corresponding to such (p, 11) meets the uncertainty 

specifications and we terminate the procedure. In this case, we usually 

select {KLARc,Q} corresponding to the minimum of Amax(Z(p, 11)) in the 

plots as our solution although we can accept any solutions such that 

Amax (Z(p, 11)) < 0. If the minimum of Amax (Z(p, 11)) in the plot is positive, 

we obtain from this plot an initial value {K LARC, Q} such that the 

corresponding A~x (Z(p, 11)) is small for the optimization. When the 

available control energy is limited, it is preferable to start the optimization 

from an initial value in which K LARC is small. This usually forces us to 

admit an initial value {K LARC, Q} corresponding to a larger Amax (Z(p, 11)). 

In this case, we select the initial value from a "flat" portion of the plot 

where Amax (Z(p, 11)) is small. This is best illustrated by examples. See 

Example 3.3, 3.4, 3.5, and 4.1. 
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2) Starting from the feasible initial value determined previously, we employ 

an optimization technique to search for {K LARC, Q} such that 

Amax (Z(K LARC, Q)) < 0. There are several applicable optimization 

techniques but we employ the straightforward "univariate" technique 

(Fox, 1971) for simplicity although other techniques may produce better 

results. We regard the elements of KLARC and Q as our variables in the 

objective function Amax (Z(K LARC, Q)). Then we perturb these variables 

one at a time and examine the corresponding Amax (Z(K LARC, Q)) . Our 

perturbations must be such that {K LARC, Q} remains feasible. If the 

objective function decreases, we continue to perturb this variable in the 

same direction. Otherwise, we reverse the direction of the perturbation and 

repeat the above sequences. When the decrement in Amax ( Z(K LARC, Q)) is 

less than a prescribed value, we perturb a new variable and repeat the 

above sequences. These nested loops terminate when computation time is 

expired or when the decrement in Amax (Z(K LARC, Q)) is less than a 

prescribed value after all the variables are perturbed in this fashion. All the 

"prescribed" values and the perturbations are determined by using 

heuristics. In our codes, we set these to be between 0.5% - 1 % of the 

previous values. The procedure terminates successfully when (A15) is 

satisfied and unsuccessfully otherwise. For the former case, the 

corresponding gain matrix is denoted by KoLARC . 
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A 2.2 Systems with Unstructured Uncertainty Specifications 

Now, the structure of the uncertain vector is unavailable or is inapplicable but bounds 

IIAf (x, t)II 
on llxll and IIAg(x, t)II are known in the operating of interest, where 

t.\f(x,t) = f(x,t) -Anx and t.\g(x,t) = g(x,t)-Bn. We denote these bounds by 

ma{ 11~~1 t~I) and. max( IIAJi(x, t~I) respectively. In this Case, we suggest the following 

steps to generate an LARC: 

Step 1 From Theorem 3.3, we construct: 

(A 15) 

where P and Qare symmetric positive definite satisfying the Lyapunov 

equation -2Q = PAn + A~P, An= [An -BnK] is stable, and 

(A 16) 

where crmax (Q-112P) is the maximum singular value of [Q-112P], and 

Step 2 Solve for {K, Q, P} such that in the operating region of interest: 

( 
IIAf ( X, t)II ) 

max llxll + IIKII max(IIAg(x, t)II) ~ µmax (A 17) 

For some simple systems, finding a solution analytically may be possible but 

we do not expect this in general. A more practical approach is to solve for a 

solution {K, Q, P} for (A 17) using a numerical optimization technique. Now, 

define: 
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_ (11Af(x,t)11J 
8 = max llxll + IIK IARcll max(II Ag(x, t) II) - µmax (A 18) 

Thus a set {K, Q, P} is a solution of (A 18) if 8(K,Q,P):::; 0. Since {K, Q} 

implies P, we usually abbreviate {K, Q, P} by {K, Q}. The following 

substeps are suggested to find a solution for (A 17): 

1) Obtain reasonably good initial values { K, Q} for the optimization such 

that the corresponding 8(K, Q) is small by using LARC. To do this, we 

choose a region { (p, 11) I O < p 1 :::; p ::; p u, 1 :::; 11 ::; llu } and compute 

K = K LARC and Q at points distributed evenly in this region. For each p , 

we set Q = I and obtain P by solving 

(A 19) 

Using p and P, construct for each 11: 

(A20) 

Using p , 11 and P, obtain Q by solving: 

(A 21) 

Using {K LARC, Q} determined for each (p, 11) , we plot 8(p, 11) versus p 

and 11 in three dimensions, and find a region of (p, 11) where 8(p, 11) is 

small or is negative from such plot. Depending on the context, we 

alternately write 8(p, 11) or 8(K LARC, Q) because (p, 11) implies 

{K LARC, Q} in our setup. 
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If we find from the plot that o(p, YJ) ::::; 0 at a particular (p, YJ) , then the 

matrix K LARC corresponding to such (p, YJ) meets the uncertainty 

specifications and we terminate the procedure. In this case, we usually 

select {K LARC, Q} corresponding to the minimum of 8(p, ri) in the plots as 

our solution although we can accept any solutions such that 8(p, YJ) ::::; 0. If 

the minimum of 8(p, YJ) in the plot is positive, we obtain from this plot an 

initial value {K LARC, Q} such that the corresponding 8(p, YJ) is small for 

the optimization. When the available control energy is limited, it is 

preferable to start the optimization from an initial value in which K LARC 

is small. This usually forces us to admit an initial value {KLARc,Q} 

corresponding to a larger 8(p, ri). In this case, we select the initial value 

from a "flat" portion of the plot where 8(p, YJ) is small. This is the same as 

the selection of Amax (Z(p, ri)) illustrated in Example 3.3, 3.4, 3.5, and 4.1. 

2) Starting from the feasible initial value determined previously, we employ 

an optimization technique to search for {K LARC, Q} such that 

8(K LARC, Q) < 0 . There are several applicable optimization techniques 

but we employ the straightforward "univariate" technique (Fox, 1971) for 

simplicity although other techniques may produce better results. We 

regard the elements of K LARC and Q as our variables in the objective 

function 8(K LARC, Q) . Then we perturb these variables one at a time and 
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examine the corresponding 8(K LARC, Q) . Our perturbations must be such 

that {K LARC, Q} remains feasible. If the objective function decreases, we 

continue to perturb this variable in the same direction. Otherwise, we 

reverse the direction of the perturbation and repeat the above sequences. 

When the decrement in 8(K LARC, Q) is less than a prescribed value, we 

perturb a new variable and repeat the above sequences. These nested loops 

terminate when computation time is expired or when the decrement in 

8(K LARC, Q) is less than a prescribed value after all the variables are 

perturbed in this fashion. All the "prescribed" values and the perturbations 

are determined by using heuristics. In our codes, we set these to be 

between 0.5% - 1 % of the previous values. The procedure terminates 

successfully when (A 17) is satisfied and unsuccessfully otherwise. For 

the former case, the corresponding gain matrix is denoted by KoLARC. 
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Now, the system of interest is given by: 

x = f (x) + g(x)u (A22) 

where x, f(x), g(x) E 9tn. We substitute for u the "total" LARC: 

UTIARC (x) = UIARC (x) + ua (x) (A23) 

where uIARC (x) is generated by using a procedure in Appendix I or II. The objective is 

to generate an auxiliary control ua (x) to augmentuuRc(x) such that the corresponding 

LAR is enlarged from that corresponding to uIARC (x) when f(x) and g(x) are known 

exactly. We suggest the following steps to generate ua (x): 

Step 1 Select a choice for ua (x) . It has been pointed out in Chapter V that there are 

infinitely many choices of ua (x) satisfying (5.5), and thus can be employed 

to achieve the objective. A possibility is given by: 

ua (x) = -y(x)gT (x)Px = -Ka (x)x (A 24). 

where y(x)gT (x)Px = Ka (x) E 9tmxn, y(x) > 0, and P corresponds to 

uuRc(x). The choice of ua (x) in (A 24) is selected for simplicity although 

other choices may produce better results. Under the choice of auxiliary control 

(5.7), the resultant nonlinear control is given by: 

(A25) 
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where KTLARC = [KIARC + K/x)] when no optimization is employed to find 

the linear state-feedback gain matrix for uuRc(x), and KTIARC = [KouRc + 

Ka (x)] otherwise. 

Tune parameters for ua (x). When ua (x) is given by (A 24), the only 

parameter is y(x). For simplicity, we restrict that y(x) be a positive constant 

denoted by y c . Because a tool for selecting an appropriate value for y c has 

not been established, we tune y c using heuristic. We begin by choosing a 

small positive value for y c = y c[l] .Typically, we set y c[l] = 0.001. Then 

employ numerical simulations to estimate the attractive region corresponding 

to uTIARc(x) IYc=Yc[ll and compare this with that corresponding 

tou7IARc(x) ly=o= UrIARc(x). We accept Ye= yc(l] if the attractive region 

corresponding to urIARc(x) IYc=Yc[lJ is larger than or equal to that 

corresponding to UuRc(x). The process is to be repeated until the 

computation time is expired or the attractive region corresponding to 

UrIARc(x) lrc=rc[il is smaller than thatcorresponding to uTIARc(x) lrc=rc[i-IJ · .. 

In these case, we select y c = y c [i -1] for generating ua (x). 
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