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Chapter I

The Fundamental Idea of LARC

1.1 Introduction

We are interested in systems whose mathematical description can be written as:

x=f(x,1)+g(x,Hu
y=Cx

where the vector f(x,1)€ R", matrix g(x,t)&€ R . Both f(x,7) and g(x,t) are
possibly time-varying, nonlinear, and uncertain. We describe f(x,¢) and g(x,t) as
“uncertain” rather than “unknown” because we assume that some knowledge of these

objects is available. In most of our discussions, the control u is restricted to be linear in x

for simplicity, although nonlinear controllers may give better results as shown in Chapter

V. The vector X =[x, x, ... x,]" € R" is the state vector, C€ R is the output matrix,

y € R? is the output vector, and u(x) € R™ is the control vector. The state X is assumed
to be available for feedback. We restrict thatf(x,¢), g(x,t), and u(x) are such that x is
piecewise continuous in ¢, and is locally Lipschitz in the operating region of interest in

R" Vi >0.In general, it is most desirable that the system of interest be globally
uniformly asymptotically stable. However, control problems for some physically simple
systems such as underactuated systems (systems in which m < g) are surprisingly difficult
to solve in a systematic fashion (Slotine, and Li, 1991). It has been our experience that

this statement is true. In particular, we find that it can be very difficult to guarantee global



stability for underactuated systems using standard Lyapunov-based nonlinear control
techniques such as sliding-mode control (Utkin, 1992), (Itkis, 1976), (Slotine, and Li,
1991), (Khalil, 1996), or adaptive control (Narendra, and Annaswamy, 1989), (Sastry,
and Bodson, 1989), (Slotine, and Li, 1991), (Khalil, 1996). This is because it is not clear
how to obtain an attractive sliding surface (for sliding-mode control), or to find an
adaptive law guaranteeing the negative definiteness a Lyapunov function (for adaptive
control). The backstepping technique is a systematic Lyapunov-based controller design
technique that can be employed to guarantee global stability. However, its applications
are limited to strict-feedback nonlinear systems (Khalil, 1996), and it appears that a very
limited number of physical systems falls into this category. In addition to these
Lyapunov-based techniques, feedback linearization is a well-known differential-
geometry-based technique (Isidori, 1989), (Nijmeijer, and Schaft, 1990), (Vidyasagar,
1993). When applying this technique, we find that there are numerous physically simple
systems that are not feedback linearizable. In addition, it can be very difficult obtain a set
of appropriate transformations for practical physical systems, and it is not clear if such
transformations remain valid in the presence of uncertainties. Faced with these
difficulties, many researchers explore intelligent control techniques such as fuzzy logic,
and incorporate human reasoning and decision making with analytical tools such as
Lyapunov stability to construct stabilizing controllers (Wang, 1997), (Wang, 1994),
(Yin, and Lee, 1995). In these references, we observe that global stability can be
guaranteed only for simple systems. By embedding human reasoning and decision
making into a fuzzy logic controller, it is possible to stabilize locally a fairly complex

underactuated nonlinear system, such as the double-inverted-pendulum system (Misawa,



Arrington, and Ledgerwood, 1995). Using linearization, local stability of the closed-loop
system can be examined. However, it has been our experience that the process of
embedding human knowledge into a fuzzy rule base can be very tedious. In addition, it
usually is very time-consuming to re-embed the knowledge when physical parameters of
the system are changed. We find that it can be very difficult to handle robustness issues

because of complex nonlinearities in the controller.

Assuming that global stability using existing nonlinear control techniques cannot be
guaranteed in a reasonable amount of time, it may be sufficient that the system be locally
uniformly asymptotically stable about the equilibrium point at the origin. When local
stabilization is acceptable, a typic‘al approach is to approximate the nonlinear system
about the origin using a linearized model. A linear controller is then deéigned to stabilize
the linearized model, since this implies local stability for the cori¢sponding nonlinear
system. Based on this approach, considerable works in control theory have been directed
toward performance and robustness of linear systems under linear controllers. It has been
our experience that considerably less attention is directed toward the associated problem
of attractive regions of nonlinear systems under linear controllers. In our opinion, a large
attractive region is an important property associated with local stability. Indeed, our
objective is to design u(x) such that the nonlinear system is locally uniformly
asymptotically stable about the origin with a reasonably large attractive region. In our
discussions, we define an attractive region as a set of initial conditions from which

trajectories converge to the origin. We assume the equilibrium point at the origin because



we can move a nonzero equilibrium point to the origin by changing variables. The

equilibrium point at the origin is our “operating point”, unless otherwise stated.

While linear controllers have been widely accepted for local stabilization, some
researchers employ nonlinear controllers for the same purpose. For time-invariant
problems with a set of constant operating points containing the origin, a possibility for
local stabilization is to employ pseudolinearization (Reboulet, and Champetier, 1984) to
linearize the nonlinear model using nonlinear transformatiohs, such that the resulting

linearized model in the transformed coordinate is the same about all operating points.

This is desirable because it allows one to design a single linear control law in the
transformed coordinate that is applicable for all operating points. However, it is not clear
from the formulation how this can produce a reasonably large attractive region about a
particular operating, or equilibrium, point. In addition, this reference does not discbuss
how to handle uncertainties when performing the transformation. For time-invariant
problems with a continuum of constant operating points, such as stabilizing an inverted
pendulum on a cart without controlling the cart position, extended linearization
(Baumann, and Rugh, 1986) can be émplc;yed for local stabilization. Using this
technique, one can employ a special choice of nonlinear control such that the linearized
model of the nonlinear closed-loop system is stable and is the same for all operating
points. In this reference, extended linearization is applied to the afore-mentioned cart-
and-pole problem, and it is shown by means of simulations that the resulting attractive
region is fairly large, but without showing how appropriate design parameters could be

chosen to produce such results and how to handle modeling uncertainties. In addition, it



is not clear from the formulation how such linearization can produce a reasonably large
attractive region for the nonlinear system. We note that when the cart position is not a
controlled variable and no uncertainty is present in the model, it is not difficult to
implement global stabilization of the pole angle (Slotine and Li, 1991). We do not
consider techniques for moving from one operating point to another, such as gain
scheduling, because we want to focus on obtaining a reasonably large attractive region
about the equilibrium at the ori gin. We now discuss applications of linear controllers in

the following situations:

Situation 1

In this situation, the linearized model about the origin of the system of interest is
available and is time-invariant, but reliable uncertainty specifications are unavailable. In
our discussion, a linear time-invariant model is called a “linearized model” if and only if
it accurately represents the system of interest in sufficiently small regions about the
origin, and stability of such linearized model implies local stability of the nonlinear
system of interest. Assuming that the linearized model is locally state controllable or
stabilizable, it is well known that a linear state-feedback controller can stabilize the
corresponding nonlinear system in a sufficiently small neighborhood about an
equilibrium point. Note that an uncertain nonlinear model can have a “certain” linearized

model about an equilibrium point. To see this, consider the uncertain nonlinear model
%, =sin(x;) +ax? +u, where a€ R* is uncertain and the origin is the equilibrium point
of interest. The linearized model about the origin is given by x; = x; +u . We see that

there is no uncertainty in the linearized model.



Given a linearized model without uncertainty specifications, it seems reasonable that we
admit standard linear system theory or optimal control theory (Kwakemaak, and Sivan,
1972), (Kailath, 1980), (Zhou, 1996), (Skogestad, and Postlenthwaite, 1996), (Ogata,
1997), (Burl, 1999) for local stabilization. Using these approaches, some linear
uncertainty specifications or linear stability margins are assumed for the linearized
model, and a linear controller is designed to meet such specifications or margins. This
may be achieved by relocating the eigenvalues of the linearized model, by optimizing a
performance index subjected to the linearized model, or by shaping frequency-domain
plots of the linearized model. A primary objective of such a linear controller is to provide
good response characteristics while maintaining reasonable relative stability for the
linearized model. However, the relationships between these properties and the size of the
attractive region of the corresponding nonlinear system are not obvious. Indeed, such a
linear controller guarantees only the existence, but not the size, of an attractive region
about the equilibrium point of the nonlinear system. Indeed, it appears from numerous
examples that a linear controller can perform effectively and robustly for a linearized
model while yielding a small attractive region for the corresponding nonlinear system.
Although it may happen that a linear state-feedback controller yields a reasonably large
attractive region for the nonlinear system, the above techniques do not suggest in general
how design parameters should be chosen to produce such a desirable result. It has been

our experience that this usually comes at the expense of considerable trial-and-error.

Situation 2

In this situation, the linearized model may or may not be available. However, a



“nominal” linear time-invariant model and the associated uncertainty specifications are
available. In our discussions, a “nominal model” is different from a linearized model in
the sense that it may not represent the nonlinear model accurately in sufficiently small
regions about the origin, and stability of a nominal model may not imply local stability of
the nonlinear system. In most cases, we employ the linearized model as a nominal model.
This is because the linearized model provides accurate information about behaviors of the
nonlinear system in sufficiently small regions about ‘the origin, while behaviors in larger
regions about the origin may be drawn frorh the uncertainty specifications. However, the
linearized model is not necessarily an appropriate nominal model, because the nonlinear
model may be poorly cast and the cortesponding linearized model may be associated with
some undesirable characteristics of uncertainties. To see what we mean by a “nominal
model”, consider the following representation of the system of interest:

x=Ax+B, wx)+[f(x,7) - A, x+gx Hux)-B,ux)]
=A x+B, u(x) +f5(x,1,u(x))
= A, x+f5(x,7)

where A, € R, B, € R™", u(x) =-Kx, Ke ®™", A, =[A, -B, K]e R™",

fs (x,7,u(x)) = [f(x,1) — A, x + g(x,")u(x) — B, u(x)], and fq(x,#) =5 (X, 7, 0(X)) | o xx -
The uncertain vector fg(x,#) lumps together all the nonlinearities, uncertainties, and
modeling errors perturbing the nominal linear model x = A, x + B, u(x), and we may
now consider the system as a nominal linear model subjected to time-varying nonlinear
uncertain perturbations. The subscript “n” denotes the available “nominal” model. This
notation is the same as that for the order or dimension “»” of the system, but the intended

meaning of “n” will be clear from the context.



Several researchers have examined stability of nonlinear systems % = A x + £, (X,?)

[fo (x.1)]

|
Jfo (x.2)]

a bound on *=—=——= for which the nonlinear system remains stable for all possible

I~

f, (x,t) obeying this bound. One of the first papers addressing this problem was by Patal

when A, and uncertainty specifications for are given. The objective is to find

et al (Patel, Toda, and Sridhar, 1977). This paper proposes that an LQR

u(x) =u 5p(x) = — K ppx be designed first to stabilize the linear “nominal” model

x=A_x+B, u(x), and to obtain A, without examining f,(x,?) in the design process.

fo(x,t
Once such LQR is obtained, an allowable bound on “—QE———)“- for stability of the

[~

nonlinear system is computed from a theorem developed therein. Using this theorem,

Patel et al showed robustness of an LQR in the pfesence of time-varying nonlinear
uncertainties. However, they neither demonstrated why an LQR should be chosen for this
purpose, nor proposed a guideline .for how design parameters for the LQR should be
chosen to produce a reasonably large uncertainty bound. The formulation of uncertainty

bound in this paper does not exploit whatever structure of f, (x,¢) may be available.

However, f,(x,?) is assumed to be both structured, and time-invariant (i.e.,

fo(x,1)= fQ (x) =Ex, E€ R™") in an example therein. In 1985, Vedavalli (Vedavalli,
1985) showed that a known structure of uncertainties could be employed to reduce
conservatism of the uncertainty bound in (Patel, Toda, and Sridhar, 1977). Indeed, he
proposed a less conservative bound for structured uncertainties f, (x) = Ex . Since then,
less conservative bounds for structured, unstructured, linear, nonlinear, time-invariant,

and time-varying uncertainties have been proposed in several research works when A, is



given (Zhou, and Khargonekar, 1987), (Gao, and Antsaklis, 1993), (Chen, and Han,
1994), (Olas, 1994), (Olas, and Ahmadkhanlou, 1994), (Kim, 1995), (Lee et al, 1996).
These research works focus on system analysis rather than on controller design. They do

not suggest if a particular linear controller may have certain advantages over others.

It has been pointed out by Chen and Chen (Chen, and Chen, 1990), (Chen, and Chen,
1991) that applications of several existing robust control design techniques ((Chen,
1987), (Chen, and Leitmann, 1987), and references quoted therein) for linear systems
with time-varying nonlinear uncertain permrbations are restrictive because they rely on
assumptions such as the matching condition, which can be difficult to satisfy in practice.
In addition, they pointed out that techniques that employ a necessary and sufficient
condition for quadratic stabilization (Barmish, 1985) can be difficult to apply (Barmish,
1985) or to be conservative (Khargonekar, 1990). Our investigations agree with theirs.
Using a two-level optimization scheme, Chen and Chen proposé a linear controller design

technique when the structure of the uncertain vector f, (X,?) is available. By means of

examples, they showed that the resulting technique is applicable to several practical
systems. When this optimization-based technique is applied to common examples
employed in the existing research works, the results are considerably less conservative.
Indeed, these are the least conservative we have found in the literature for those

examples.

Our discussions progress from time-invariant Single-Input Multiple-Output (SIMO)

systems to time-varying Multiple-Input Multiple-Output (MIMO) systems. The reader is
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cautioned that properties, structures, and restrictions of the systems of interest are

different from chapter to chapter. However, we impose that X is piecewise continuous in

t, and is locally Lipschitz in the operating region of interest in R" V¢ =0 throughout our

discussions. This is to guarantee existence and uniqueness of the solution of the
differential equation of motion when applying Lyapunov stability (Khalil, 1996). We
begin our discussions by considering SIMO time-invariant systems:

x =f(x) + g(x)u(x)

y = Cx -

where f(x)e R", g(x)e R", and u(x)e R.

1.2 Fundamental Idea of LARC

The fundamental idea of LARC is to employ a quadratic Lyapunov function to obtain a
“ reasonably large attractive region for local stabilization of the nonlinear systems. We
consider the available exact linearized model of (1.1) about the origin:
X = AX + Bu(x) (1.2)
Suppose that (1.2) is state controllable, and that we apply a linear state feedback control:
u(x) =-Kx (1.3)

where K=[k; k&, .. k,] isamatrix of constants that locates all the eigenvalues of

A =[A -BK]e R in the LHP. We employ (1.3) throughout our discussions unless
otherwise stated. The linearized model under (1.3) is given by:

x=[A-BK]x=Ax , (1.4)
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For A, we assign a positive-definite strictly-increasing quadratic Lyapunov function:
1 _r '
V(X)=—2—X Px (1.5)
where P is a symmetric positive definite matrix satisfying the Lyapunov equation:
1o &7
—Q:—2~[PA+A P] (1.6)

where Q is a symmetric positive definite matrix to be specified. For convenience, we
select Q =1I. Then P, which we sometimes call “the original P”’, may be obtained by
solution of (1.6). Substituting this solution for P in (1.5) and differentiating the result

with respect to time along the trajectories of the nonlinear system in (1.1) yield:

V(x) = x" Pf(x) + x Pg(x) u(x)

1.7
= F(x) + G(X)u(x)

where F(x) = xTPf(x) and G(x) = XTPg(x) are nonlinear scalar functions of state x,

and F(0)=G(0)=0.

In what follows, we denote the 2-norm of x by ||x

|, the transpose of x by x” , the
boundary of a region { by O, abbreviate “region about the origin” with “region”,
“hyperplané” with “plane” unless othemise stated, and define the following regions:
Be={x]0<V(X)<C, CeR"} (1.8)
B, ={x|V(x) < 0}u{0} . (1.9)
Since V(x) is a quadratic positive definite function, B, shrinks in all its dimensions as C
decreases. This implies that we can force max(”x”) , Vx & B, to be as small as we like by

choosing a sufficiently small C. In fact, we propose to select C = C, such that B¢ is
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contained in B;, whose existence is guaranteed by Lyapunov stability if u(x) stabilizes

(1.2). We now define:

Be, =1Bc| Be.c—c, S B1s Beesc, @ B, Cp € RY) (1.10)
By definition (1.10), we see that BCL and B, have at least one point in common at their
boundaries. Such a point is called a “common boundary point”, and is denoted by p;
e R", 1 =1,2,.... By definition (1.10), we see that BCL is radially large if and only if B;
is radially large. We note that trajectories originating in f3 c,c=c, for sufficiently large Cp
may or may not converge to the origin if B; Cf¢ c_cp. Cp € R*. Indeed, the two
situations in which X, € B¢ c.c, € B, and x; € B; C B¢ c_¢, can be illustrated in Fig.
1.1. Given that V(x) | ,,<0 in B, with V(0) =0, we are guaranteed only the
convergence of the trajectory originating in Bc,c:cL C B, . Fig 1.1 illustrates possible

convergence and divergence from Xy and x; respectively. Note that the trajectory from

X, can escape from B; although the trajectory travels such that Lyapunov function V (x)

decreases in B; . This is because there are some portions of 3. c=c, that do not belong

to B;.

We call BCL a “Lyapunov Attractive Region” (LAR). By the Lyapunov stability, the
existence, uniqueness, and convergence of trajectories originating in BCL is guaranteed.

Our fundamental idea is to find a quadratic Lyapunov function and a controller that yield

a reasonably large BCL . By the sufficiency of Lyapunov stability, we know that the
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attractive region must contain {3 ; & Because of this fundamental idea, we call our

technique Lyapunov Attractive Region Control (LARC). When such 3, is radially

unbounded and global stabilization is possible with Q =1, this stabilization is known as

“quadratic stabilization” (Barmish, 1985).

Fig. 1.1 Convergence and Divergence of Trajectories
Originating from x, € B¢ ., B, and from x, € B; CB¢ ¢ ¢,

Remark: 0<C, <Cy

1.3 Theorems

In this section, we investigate how the quadratic Lyapunov function (1.5) can be chosen

to satisfy a necessary condition for obtaining a large BCL with system nonlinearities. In

our discussions, we assume that the following “basic conditions” are satisfied:



Cl)

C2)

C3)

C4)
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A in (1.2) is strictly unstable.

Remark:  From our experience, it is possible to develop LARC without
imposing C1. However, we find that imposing this can simplify
greatly several key analyses without loss of generality. Indeed, if
A;(A)<0 Vi, we write [A -BK,]=A, suchthat A, is unstable
by using pole placement. This is always possible if C2 is satisfied.
Then substitute A, + BK, for A in (1.2). Now, let u(x) = -Kx to

obtain:

x=[A, + BK, ]x - BK x
= A,x-B[K; -K,x
=A,x-BKx

where K=K -K,, {A,A; }e R, (KT, K[, K;}eR". In
further analysis, we regard A, as A. The matrix K is to be generated
using our procedure.
[A, B] in (1.2) is controllable or stabilizable where controllability and
stabilizability are defined according to (Zhou et al, 1996) with B #0.
u(x) = —Kx where K is determined such that A =[A —BK] is stablé. IfAis
stable, the true linear gain matrix is given by K, = K -K,,.
The symmetric positive definite matrix P is determined from the Lyapunov
equation —Q = %[PX +ATP], where Qe R™™" is a symmetric positive definite

matrix.



15

Lemma 1.1  (Relationship between S, _, and Rz, g0 0)

If the basic conditions C1-C4 are satisfied then:
Sa, =0 © R, <ojuio)
where Ry, coiuq0) = (X | FL(X) <0} U{0}, S5, ={x|G (x)=0},G (x)= x'PB,

F,(x)= x'PAx, and P and Q are symmetric positive definite matrices.

Proof
Consider the time derivative of the quadratic Lyapunov function (1.5) along the

trajectories of the linearized model (1.2) under a linear controlv u(x) in (1.3):

V, (x) = x' PAX + x" PBu(x)
= F; (x) + G, (X)u(x)

1.11)
where G, (x) = x'PBe R, F(x)= x'PAxe R. The subscript “L” in VL (x), G.(x) and
F; (x) denotes that they are defined with respect to the linearized model. Notice that

G (x) is a linear function of x implying that S; _, exists ahd is a plane in n-space. By
Lyapunov stability, the existence of the stabilizing linear gain matrix K guarantees the
existence of a symmetric positive definite matrix P such that V, (x) is globally negative
definite. The coexistence of the plane S;, _, and the globally negative definite function
VL (x) implies that:

1) The region Rz, <0100} eXists.

2) S61=0 C Rig <cojui0)

This completes the proof.
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Since (1.2) approximates (1.1) about the origin, it can be drawn directly from Lemma 1.1

that for the nonlinear systems (for which we drop subscripts “L”), S5 C Rip o040y 0

sufficiently small regions about the origin when C1 — C4 are satisfied. We claim that the
“largest possible LAR” corresponding to a solution P of the Lyapunov equation is the
region:

Be, ={x|0<V(x)< (s, [G(x) =0]=[F(x)< 0]} (1.12)
where Cg € R* is the largest possible number such that both of the conditions in (1.12)
are satisfied. For a given P, BCS can be obtained by increasing C in (1.8) from C; in
(1.10) until the boundary of B first touches a point where G =0 and F =0 at C =C,
where Cg = C; >0. We denote the region B¢ cc, by B¢, and such a point by xc,
i =1,2,.... By the definition of Xcg, 0 it is necessary that V(XC&_ )=0 Vi.In addition,
X¢, # 0 because the boundary of Bc, does not contain 0. The latter follows directly
from (1.10) by noting the existence of B, is guaranteed if A is stable, X¢g; € O, » and
0¢ Op, . To show the existence of B  such that B, < B, , it is sufficient to show that
the interior of 3¢, does not contain X, Vi.Indeed, we know from (1.10) that
Bc, < By - Accordingly, it is necessary that V(X) o< 0 if x is contained in the interior
of B¢, . Because V(XCSi ) =0 Vi, it follows that x._ are not contained in the interior of
Bc, Vi. We see from (1.7) and (1.12) that:

1) The existence of Xcg i =1,2,... limits the dimensions of BCS .

2) We can force V(x) to be negative definite in BCS by manipulating u(x) .
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Because our fundamental idea is to obtain a large B, , itis desirable that B be as large
as possible because BCS is the largest possible 3 ¢, that can be obtained by manipulating

u(x) . This implies that the matrix P in the quadratic Lyapunov function (1.5) should

chosen such that X is as far from the origin as possible. A possible approach to do this

is to exploit specific structures and nonlinearities in the functions F(x) and G(x).

However, we do not follow this approach because:

1) We realize that the characteristics of Sy_, and S;_, in many physical systems are
extremely difficult to analyze to find such P. Accordingly, reasonable
simplifications are needed to make the problem tractable.

2) We desire that the applicability of the resulting scheme is not limited by specific
structures of the systems other than (1.1).

To explore how to construct such P for the quadratic Lyapunov function, we now

consider some important characteristics of G, (x) and of F, (X)win the following

theorems:

Theorem 1.1 (Characteristics of Eigenvalues of M)

If the basic conditions C1-C4 are satisfied then the symmetric matrix:
ME%[PA+[PA]T] (1.13)

has only real eigenvalues, with exactly one positive eigenvalue and n —1 negative

eigenvalues.
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Proof

We begin by referring to the Lyapunov stability theorem and state without proof that the
existence of such P in Theorem 1.1 is guaranteed when C1 — C4 are satisfied. Now we
differentiate the quadratic Lyapunov function (1.5) along the trajectories of the linearized

model (1.2):

V,(x)= %[XTATPX +x PAX + BTPxu(x) + xT PBu(x)]

- —;«xT [PA +[PAT Jx + x"PBu(x) (1.14)

= x" Mx + x" PBu(x)
= F; (x) + G, (X)u(x)

where M = %[PA +[PAY 1, F,(x)= x’ Mx, and G, (x)= x'PB . Note for (1.14) that M
is symmetric because E+E” is symmetric for all E€ R™", and x" PB = B’ Px because

P is symmetric and x’ PBe R. Since M is a real symmetric matrix, it has a set of 7 real

eigenvalues A,; and a set of the corresponding n real orthogonal eigenvectors Vi, where
Am = {Amroo A b oand Viy = {Vyyp,..., Vo, } respectively (Hagan et al, 1996). Without
loss of generality, we assume that vy, are normalized such that v, vy, =1,

i=1,2,..., n. Itis clear that we can employ this set of orthonormal eigenvectors as a

basis set for generating R" .

Notice that C2 and C3 imply the existence of u(x) such that VL (x) is globally negative
definite. By Lemma 1.1, this guarantees that F; (x) <0 on Sg ., ={x |G, (x) =0} and

on S,_, ={x|u(x) =0} except at the origin where F, (0)=G,(0)=u(0)=0. By Cl,
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(Proof of Theorem 1.1 (Cont.))
F, (x) = x"Mx must be positive at some x that does not belong to S =0 and S,_,
except at the origin. Next, we consider SGL —o- Since P and B are constant matrices, we

see that the surface S;, =0 exists and is a plane. Expanding the equation G, (x) =0,

we obtain a homogeneous linear equation:

G, (x)=0
=C X +CyXy +...+C X, (1.15)
=Cx
where ¢;, i=1,2,..., n are real constants and C= [61 62 6n]. We see that the

surface S; o ={x |G, (x) =0} is the set of all solutions of the linear equation (1.15) inn
unknowns and thus a subspace of R" . From basic linear algebra (Curtis, 1984), (Roman,

1992), we have:

Theorem 1.1.1
The dimension of the solution space of a system of homogeneous linear equations in n

unknowns is n-r where r is the rank of the coefficient matrix.

Accordingly, the dimension of the solution space of (1.15) is n — 1, because the

dimension of C is 1xn , such that rank(é) =1. Since the dimension of a subspace of
solution vectors is defined as the number of linearly independent vectors in a basis set
generating the subspace, we have that the number of linearly independent vectors that
generates the subspace defined by:

SGL=0 ={x|G,(x)=0}= SGL=0 ’ (1.16)
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(Proof of Theorem 1.1 (Cont.))

is n-1. Depending on the point we want to discuss, we alternatively denote the set

{x|GL(x) =0} by S, orby S, ., when we want to consider it as a subspace or as a

surface, respectively.

Since V, (x) is globally negative definite, it must be true that F; (x) =x'Mx <0 on
S,-o where X #0. In addition, it is immediate from (1.14) that F; (x) >0 for some
x¢ S,., because A is unstable. Since F) (x) is quadratic, the fact that F; (x) changes

signs implies that the real symmetric matrix M has at least one positive eigenvalue, and at
least one negative eigenvalue. Now, assume for the moment that M has more than one

positive eigenvalue, and arrange the set of eigenvalues and eigenvectors of M as
Ay = (A Aazse oo Apgo-- > Ama} @0d Vi = { Vg, Viypgseoos Viygjseeos Vg ) SUCh that Ay,
Anizs - }»Mj are positive. Arranging in this fashion, we have that j < n because we have

shown that M has at least one negative eigenvalue. Now, we apply the linear

transformation:
X =Tyz (1.17)
where ze R", and
Ty =[Var | Vama | o | Vam] (1.18)
Accordingly,
Fy (%) lyerype = Fi, @) = 2" TyMTyz =2 M7z (1.19)

where M, = TyyMT,;. Using this reduction to principal axes (Ortega, 1990), we have

that M, is a diagonal matrix whose diagonal entries are the eigenvalues Ay, i=1, ..., n
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(Proof of Theorem 1.1 (Cont.))

of M. Expanding the right-hand side of (1.19) yields:
FL (%) fyenye= Frp 8) = Mzt +Aypazs +.o+ Ay 27 =0 (1.20)
Since z; isalong vyy; i=1,...,n,and Ay, Appy, --.5 Ay are positive, it follows that:

O={x|x=27Vyy + 2,V T Z; V> where zy, 25,..., 2 € R}

. (1.21)
€ {x|F,(x) =x Mx >0} U {0} = Rz .o1 00

where @ is a subspace generated by the basis set { vy, Vi, .5 Vo }- The subspace

® has dimension j, and F; (x) >0 for all x belonging to this subspace except at the
origin where F, (0) = 0. From basic linear algebra (Curtis, 1984), (Roman, 1992), we

have:

Theorem 1.1.2

Let W and Z be finitely generated subspaces of a vector space V. Then W N Z and
W + Z are finitely generated subspaces, and we have:
dmW + Z)+dim(W N Z) =dim(W) + dim(Z) (1.22)

where W+ Z ={w+z|weW,ze Z}.

Applying this theorem to our problem, we let W =S, _;, and Z = ®. We have that:
F1)  dim(W+Z) is at most n because x€ R" Vx.
F2)  dim(W) =n -1 because the rank of C in (1.15) is one.

F3)  dim(Z) =j > 1 because we assume that M has more than one positive eigenvalue.
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(Proof of Theorem 1.1 (Cont.))

F4)  dim(W N Z)=dim({0}) =0 because F;(x)<0 on S, -0 except at the origin
where F;(0)=G,(0)=0.

It follows from F2 and F3 that dim(W) + dim(Z) > n. Since dim(W+Z) is at most n, it

follows from (1.22) that dim(W m Z) > 1. But this cannot be true by F4. This

contradiction implies that M has exactly one positive eigenvalue. By our arrangement,

this positive eigenvalue is A,y . This completes the first part of the proof.

From the fact that M has exactly one positive eigenvalue, it may not be obvious that the
remaining n-1 eigenvalues of M are all negative. However, the following analysis shows
that this is true. We recall now that and there are n—1 linearly independent vectors
spanning Sg, - . Since V, (x) is negative definite,' S, -0 Must be contained in

{x| F(x) =x"Mx <0} U{0} = Rz, g 0, - This is true if and only if Rir, o700
contains at least n-1 linearly independent vectors because these are needed to span Sg, -
Since we know now that Ay, >0, it follows that Rjp, _o)(9; does not contain vy . If M

has at least one zero eigenvalue Anvie 10 {Apga s A Ay, b then Rip o100y does not

i
contain two linearly independent vectors vy, and vy, . This implies that Rz, co;(9) can
contain at most n-2 linearly independent vectors because R, i (0) C R”" . We see that
this contradicts the known fact that Rz o)) cOntains at least n-1 linearly independent
vectors spanning Sg, -, - Accordingly, no eigenvalue of M can be zero and we then

conclude that the remaining eigenvalues Ayg,,..., A are all negative. This completes

Mn

the proof of Theorem 1.1.
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We consider next the concept of symmetry of a surface about an axis. Our following
discussion can be found in (Curtis, 1984), (Roman, 1992) respectively. Let us begin by

using a two dimensional example to recall the concept. Assuming that we have a parabola
f(x,y)=y—-x>=0. A simple means to describe the symmetry of the parabola about the

y axis is to assert that the right half of the parabola exactly coincides with the left half
when the x-y plane is folded along the y axis. However, it is clear that this simple means
works well only in two-dimensional cases. To be more precise, we observe that. such
plane folding can be algebraically described as a linear transformation which sends the

point (x,y) to (—x,y) such that both (x,y) and (—x, y) are on the parabola. In n-
dimensional space, this implies that the symmetry of a surface f (X;,..., X;_1, X;, X1,

.., X, ) = 0 about the x;-axis can be asserted if and only if f(~x;,....—X;_1, %;, — X141,

....—X, ) =0.This leads us to:

Theorem 1.2 (Symmetry of S, _, about Eigenvectors of M)

The surface Sp,_, is symmetric about the axes along the eigenvectors Vyy,..., Vi, of M.

In addition, Sp, _, is symmetric about the plane spanned by Vy, ..., Vi, -

Proof

We first diagonalize M using the linear transformation x = Tyz , where Ty; is given by
(1.18). From the proof of Theorem 1.1, the surface Sy _, can be described in the

transformed basis by:



24

Fy (%) lyery o= Fr, (@) = Azt +Aypzs +.o. ¥ Ay 2o =0 (1.20)

=TMZ_
It is clear that if the vector z, = [z1 cer Zisy G Zigg -e- z,,]T satisfies (1.20) then so does

the vector z, = [~ 2y oeee T %oy T T Zigg e —z,,]T fori=1, ..., n, and it follows that the
surface F;_(z) =0 is symmetric about the z; axis. By construction of

the transformation matrix T, the z; axis in the basis {vyy...., Vp, } points in the direction
of vm; in the original basis fori =1, ..., n because {vyy,..., Vo, } 1s used as the basis for
the reduction to prinéipal axes. Accordingly, we conclude that the surface Sp, _, is

symmetric about the axes along the eigenvectors Vyy,..., Vo, in the original basis. This

completes the first part of the pfoof. :

We now consider a vector in the plane spanned by the set {vp5,..., Vyy, } for which
Avi <0 1=2,3,...,n. A vector in R" belongs to this plane if and only if the first
component of this vector is zero in the principal basis of M. For convenience, we denote
T .
,,,,, Ma) = 0 z, .. z,,] . Now consider a vector
ZE Sp,_ denotedby z=12zp, _; = [zl 2y ... zn]T . We see that the symmetry of Sy, _
about the plane spanned by {Vyy, ..., Vyy,} can be assertedif z=[-z, z, ... z,,]T also

belongs to Sy, _, . Indeed, examining (1.20) shows that if zp _,, belong Sg, _, then sois

z=[- 2 2y .- zn]T denoted by zp, _ , . This completes the proof of Theorem 1.2.

We now state the symmetry property of Sg, _, about the plane spanned by {vyy, ..., Vi, }

using geometry. From (1.20), we see that F; (x) | <0 atevery point z =

x=Tyz
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=0 z .. z,,]T on this plane because Ay, <0, i =2,3,...,n except at the origin

where F;(0)=0. Starting at a point z=2z(, . i, itfollows from (1.20) that

M

F, (x) {FTMZ increases from a negative value as the first component of z(, .,

increases from zero because A, > 0. In addition, we know by inspecting (1.20) that
there exists a sufficiently large value of z; for this first component such that
Fy (X) [y-m,,,= 0 at a new point z = [z z, ... 2, | denoted by z Fy =o0,1 - 1t follows that the

vector Zp, _g 1 =[z, 0 ... 0]" denoted by z,, is orthogonal to the plane

_Z{VM2 ..... VMn )

.....

z,; emanates orthogonally from the plane spanned by {Vvy;,,..., Vo, } - and terminates at

Z=250,€ Sp=0-

Now, consider the situation when we start from z =z, . but the first component

of Z(y, . vy, decreases from zero. By examining (1.20), we see that F; (x) | 0

x=Ty1z =
exactly at the point z = [~ 4 .. zn]T denoted by zp, _ , . In the same fashion, we

have that z, , [~ zz 0 .. 0]" denoted by z A2 1s orthogonal to the

T Z{vmpevMA)

plane spanned by {Vy,,..., Vi, } because zgzz{sz,”_,v = 0. Geometrically, the vector

Mn}

Z,, emanates orthogonally from the plane spanned by {vy;,,..., ¥, } in the direction

opposite to that of z,;, and terminates at z =2z, _,, € Sy, - Notice that the lengths of

the orthogonal vectors z,, and z,, are the same. It is because of this property that we

assert the symmetry of S, _, about the plane spanned by {Vy;,..., Vap, } -
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14 Effects of Nonlinearities on LAR

Because of the nonlinearities in the original equation of motion (1.1), the deviations of

Sg=o from S _, and of Sp_, from Sp _, is to be expected except at the origin. In this
section, we consider the situation when Sy, approaches S;., and intersects S;_, at

X¢, 1=1,2,... where G(x¢, )= F(X¢,,) =0, although Sp, _, does not intersect Sg;, ;.
The existence of x implies that Bcs (defined in (1.12)) is not radially unbounded and

makes it impossible to guarantee global stability using the current quadratic Lyapunov
function, which depends only on the matrix P. For the nonlinear systems (1.1), we desire

that B¢, be large. But since B, <P, . itis necessary that B, be large. Because of

this, it is necessary that such intersection X¢,, are far from the origin Vi to obtain a large

Be, -

Proposition 1.1  (Eigenvector Condition)

Intuitively, we know that if P is chosen such that S; _, runs close to a particular portion
of S, _o, then small deviations of S;_, from S; _, and of Sy_, from‘ S, -o can result
in an intersection X between S;_, and Sp_,. For this proposition 1.1, we restrict

ourselves to two dimensional systems. For a two-dimensional system, this situation can
be illustrated in Fig. 1.2, which is drawn according to Lemma 1.1, Theorem 1.1, and

Theorem 1.2. We note for Fig. 1.2 (a) and (b) the following representations:

1) F(x) =0 on the two bold solid curves denoted by Sp_q; and Sp_,-
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2) F; (x) =0 on the two thin solid lines denoted by Sp, o, and Sg, ¢ ,-
3) G(x) =0 on the bold dashed curve denoted by S_,.
4) G, (x) =0 on the thin dashed line denoted by S =0

x2 X2
Vv (A > 0)

Sr-02

\ ,
S
Se L ‘
v
(2) Sk=02 (b)

\ \_ S S =02

Fig. 1.2 Effects of P on the Location of X

Symbol: < = intersection point between S;_, and Sy_, ,
(@) Sg,—o runscloseto Sy, and far from Sp, _, , locating the
intersection between Sp_, and S,_, undesirably close to the origin.
(b) Sg,-o runs midway between the lines Sg, o, and Sp,_,, locating the

intersection point between Sy_, and S_, reasonably far from the origin.

We denote the matrix P corresponding to Fig. 1.2 (a) and (b) by P, and P, respectively.
In Fig. 1.2 (a), ‘Pa is a poor choice because it locates Sg o close to Sg, _, , but far from
Sp -01- InFig. 1.2 (b), Py, locates S, _, on the symmetry axis of Sp _o, and Sp, ;.
By Theorem 1.1 and 1.2, this symmetry axis is exactly along the eigenvector vy,

corresponding to a negative eigenvalue A,y ,. Assuming that the respective surfaces in



28

Fig. 1.2 (a) and (b) have the same degrees of deviations resulting from nonlinearities, the

orientation of surfaces in Fig. 1.2 (b) should locate x. farther from the origin than that

resulting from the orientation of surfaces in Fig. 1.2 (a). Noticing this, we propose:

Proposition 1.1 (Eigenvector Condition)

We propose to choose P such that Sy, _, is symmetric about S; _, and

861 -0 C Ripy <ojup0y- This is equivalent to choosing P such that {vy,, Vags,--- Vi, }
spans Sg, _o, where Ay >0> Ay, 2.2 Ay, . Whenn =2, this amounts to choosing P

such that vy, spans Sg, .

In short, our particular choice of P is heuristic. However, the heuristic choice of P that
centers Sg,=0 between Sp _o; and S _ , seems to be reasonable. Under this particular
orientation, we know by continuity that small deviations due to nonlinearities will not
place the intersection point X arbitrarily close to the origin, and X¢,, areincreasingly
far from the origin as the degree of deviation decreases. Because of this, it seems
reasohable to say that tﬁis particular choice of P =P, locates x c;; reasonably far” from
the origin and force BCS to be “reasonably large”. By locating X “reasonably far” from
the origin, we refer to the illustration in Fig. 1.2 from which it is conceivable that

“ Xcg; ” —> oo as the degree of nonlinearities becomes smaller but need not be zero.
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Proposition 1.2  (Eigenvalue Ratio)

In addition to choosing P such that Sy, _, is symmetry about Sg, -0 as in Proposition 1.1,
we want to choose P such that Sy _ is as far from the plane spanned by {vyy,,..., Vg, }
as possible. This is because if the objective in Proposition 1.1 can be satisfied, then this
plane is the same as S _, and thus we desire that S, _, be as far from this plane as
possible. In this section, we show that this new requirement can be accomplished by

forcing the eigenvalue ratio to be small. The eigenvalue ratio is defined as:

 Imax(Xyy;)
= |2 ) 1.23
oM max(?»]v[]) ( )

where A}, are positive eigenvalues of M, Ay are the negative eigenvalues of M such
that vyy; spans Sg, _o When the eigenvector condition is satisfied. Recall from Theorem
1.1 that no eigenvalue of M can be zero, and all the corresponding # eigenvectors are
orthonormal. Suppose the eigenvalues of M are arranged as Ay > 0> Ay, = ... 2 Ay,
we have i=1 because A,y is the only positive eigenvalue of M, and j=2,...,n
because Ay; <0 such that vy spans S;, _, when the eigenvector condition is satisfied.
Accordingly, r;\vM =—An / Myz - Given a linearized model, we notice that M depends

only on P.

We now investigate how the eigenvalue ratio #_  affects the relative orientation between
S -0 and Sg, .o when the eigenvector condition is satisfied. Consider the expression for

F; (x) =0 in the principal-axes coordinate:
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2 2 2
Fy (%) byenye= Fr, @) =iz + A2z +oo+ Aypz, =0 (1.20)
where the z; —axis is along vy, i =1,2,...,n. For convenience, we arrange the

eigenvalues of M for SIMO systems as:

Ait > 0> A 2.0 2 Ay, (1.24)
where Ay = max(Ayy), Ay, = max(Ryy), and 7 =|Ayy /Aygy [= —Aa / Agp - Now,
consider a point in the z; — z, plane spanned by {Vy;;,Va }. We denote this point by

Ziyy vy =18 22 0 - 0]" € R". Given a value of z, for Zivyy, we know by

Mz}’

inspection that there exists a value of z; such that (1.20) is satisfied and

Zivpy vasa} € SFp=0-Such z, ., then belongs to the intersection of the z; — z, plane

» VM2

= =z 2, 0..0]".

and S, -9, and we denote this point by z, |~ ,

F1 =0

s e see from (1.20) that if Ay is small relative to Ay, then

At a given point z
z; must be large relative to z, and vice versa. In a two-dimensional system (n = 2), the

effects of large and small . can be illustrated in Fig. 1.3. In Fig. 1.3, the z; —axis is

spanned by vy, , the z, —axis by vy, , and the symbols o represents the point

F1=0

Z () located at the distance lzzl along the z, —axis. Theratio r, corresponding

to Fig. 1.3 (a) is larger than that corresponding to Fig. 1.3 (b). Indeed, we must have that

=0
F(X) |y—gz= 0 at the point z

* riay > @0d thus (1.20) implies that the distance |z, [b in

Fig. 1.3 (b) must be greater than the distance izll in Fig. 1.3 (a). Because of this, the

surface Sy, _oin Fig. 1.3 (b) runs farther from the z, — axis than it does in Fig. 1.3 (a).
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In Fig. 1.3 (a), Sf, o tuns close to S, ., and thus we see that X can be close to the

origin in the presence of small deviations of Sg_, from Sy, _, and of S;_, from Sg .

It can be shown by examples that the undesirable situations in Fig. 1.2 (a) and Fig. 1.3 (a)
can occur at the same time when an inappropriate P is chosen to construct the quadratic

Lyapunov function. Proposition 1.2 is now given:

Vo (zg-axis, Ay > 0)

: AN
Vo (2-axis, Ayg > 0)

|Zl|a

S0
F1=0

F =0
z{VMlavMZ}

{vam1-va2}

S F;=0,1
Varz (A <0)
Vo (Anz <0) \
AN
N\ N l SGL—O
A) SGL=0
v F1=0,2 v SFL=0»2
() (b)

Fig. 1.3 Effects of Eigenvalue Ratio to the Relative Orientation
between S F=0 and SGL:0 when the Eigenvector Condition is Satisfied

Symbol: o = points on §p _, locating at the same distance |z2| along vy,
Remarks: 1) ]zllb >|z1|a
2) P, issuchthat r, is large, forcing Sg; - toruncloseto Sp .

3) P, issuchthat 5 is small, forcing Sg o to run far from Sp .

Proposition 1.2 (Eigenvalue ratio)

From a set of P matrices satisfying the eigenvector condition in Proposition 1.1, we
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propose to choose a particular P matrix such that the eigenvalue ratio r, defined in
(1.23) is small to force Sg,_, away from S _, while maintaining the symmetry of

Sp,-o about S; _q.

In addition to the previous graphical approach, the role of eigenvalue ratio can be seen

using a geometrical approach. To see this when n =2, we note that a given zva;(l) iz}
b 119 »»” F :0
far from the space spanned by vy, if the “angle” 6 between z {VLM1,VM2 , and the

projection of zva:O

v} OO the space spanned by v, is large. A vector in the space

spanned by vy, is along the z, —axis and is denoted by z, ,.Geometrically, the

cosine of this angle is given by:

Fr=0 T .
cos(0) = [Z{VLMLVMz}] Zivma} _ [Zl Zz][o Zz]T _ Zg (1.25)

F=0 - 2. 2[2 2.2
z{VMz}" \/Zl + 2542, \[Zl +2;

z{vnjn,VMz}'H
where z(,,.,, =[0 z,]" because Zivyp) 18 along Vyp,, and {Vyg, Vg, } is an

orthonormal basis.

Since we desire that O be large, we want cos(8) to be small. Given a value of z,, we see
from (1.25) that this can be accomplished by forcing z, to be large. From (1.20) this is
possible if and only if 7, is small and we see that the conclusions from the

previous graphical approach and this geometrical approach are the same. In an n-

dimensional system, applying the same argument for points on the plane formed by vy,



and a vector Vo j=2,3,4,...,n shows that the angle between z

F;=0
{vm1. v

minimum when j =2 because of the arrangement of the eigenvalues of M in (1.24).

For the following discussions, we note that because of the orthogonality of the

eigenvectors of M and because the z; —axis is along vy;, i =1,2,...,n:

1)

2)

3)

For all points z

Fy =0

Fr=
zfL=0

{vM1:YM2: .- YMn

=17
{v™M1-YM2:-»YM~n} {vm1-¥Mm

F1=0

The projection of a vector z (VML YM2s-s VM)

T
=lz 2, o Z,] €ESpH€RT

onto the plane spanned by {vy,,... ,‘an} is denoted by:

Fr =0 T

{YM1-YM2:---YMn} |21=OEz{vM2,...,vM,,} =[0 Ry e Zn]
A vector belonging to the intersection of S F,=o and the plane spanned by
{Va1> Va2 } is denoted by:

F1.=0 — FL=0 _ T
{VM1»VM2,---,VMn]lZ3=Z4=~-~=Zn=0_z{VM1,VM2] [0z 0 ... 0]

where z{F‘f;?,VMZ} is such that (1.20) is satisfied.
The projection of zf};ﬁsz} =[z;, z, 0 ... 01" onto the plane spanned by
{Va---» Vv ) 18 the vector:

Ziyyot = zva;ﬁsz} o 0 z, 0 ... 0"

Fr =0
{YM1,YM2:---s v

M) belonging to S, o, we claim that the angle between
, and the plane spanned by {Vyy,, ..., Vy,} is minimum when

= zft™0 2 To show this, it is sufficient to show that the angle

33

w) and Z(ypy) 18
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F1 =0 _ T : : :
between a vector z VML YM25o V) [z, z, ... z,]° andits projection
_ T . - - . . - _
Zivpgg, oyt =10 Z2 ... Z,]° onto this plane is minimum when z; =z, =...=

Fr.=0 _ . FL=0

— T P .
VALY Mt = Evvng) — L4 %2 O ... 01" . This is shown in

z, =0 or when z

the proof of Theorem 1.3 and it follows from this result that we can get the idea of how
close Sg, _y is to the plane spanned by {Vy,, ..., Vyy, } by examining the angle 0

F1=0

between z ML YM2)

[z, z, 0O ... 01" and its projection onto the plane spanned by

{Vm2,---» Vm, } - We denote such projection by z,, .., = [0 z, 0 ... o .Thisis

because such result indicates that 0 is the infinium_(greatest lower bound) of the angles
between all vectors belonging to S, _, and the corresponding projections onto the plane

F1=0

spanned by {Vyg,, ..., Vum, } - Note that the angle between z Vatl» Y

)) and the plane

: Fr=0 . o )
spanned by {Vy,,...,Vyy, } is the angle between z, 5M1, )} and its projection onto this

M
plane denoted by z,, .,. We have shown previously using (1.20), Fig. 1.3 and (1.25) that
the size of this angle is governed ny the eigenvalue ratio 7, =—Ayy /Ay, » Where the
eigenvalues of M are arranged as in (1.24). It is then desirable to choose P such that B

is small because a small 5, corresponds to a large 8, which implies that Sg, _, is “far”

from the plane spanned by {Vy, ..., Vg, ) -

Theorem 1.3 (Implication of Eigenvalue Ratio)

Let the set of n orthonormal eigenvectors {Vyg, Vapzs ---> Y, DE employed for

generating R" . If the basic conditions C1—C4 be satisfied, then the angle 6 between a



35

Fr=0 _ T ] ..
VECLOT Zyo  wnio vagn) = L41 Z2 oo Z,) € Spo andits projection z(y oy
=[0 z, z; ... z,]° ontothe plane spanned by {Vy,, ...,Vy,} is the smallest when
23 =24 =...=Z, =0 or when:
Fp=0 _  F=0 _ T
Zivm1 VM2 YMA ) T VML YMA) T [z 2 0 ... 0]

where the eigenvalues of M are arranged such that Ay, >0> Ay, ... 2 Ay, and

F1=0
z{VMI,VMZw---’VMn} #0.

Proof
The projection of zfv Ll\;?aVMZ’-wVMn} =[z; 2z ... z,J €S Fy =0 onto the plane spanned
by {Vam2s ---> Y, } 18 the vector:
- T
z{vM2 ..... YMnl} [O Zy 23 ... Zn]

Note that we do not consider the case in which z; =0. Indeed, we see from the equation
for Sg, o given in (1.20) thatif z; =0 , then (1.20) is satisfied only at the origin because

Ami > 0>Ay, 2. 2 Ay, - Since Theorem 1.3 does not apply at the origin, this special

Fr=0

iS i . iginal is to find z
case is irrelevant. Our original problem is to fin. (VML VM 2o VM

" such that the angle

F1=0

between z (YM1,YM2+--+ VM }

and Zivpmz. v} 18 minimized over all possible

F1=0 . ‘ R
ML YM2e oYM} 0. From basic geometry, the cosine of the angle 6 between
F; =0

(VM1.YMa... v, ] 20 the corresponding projection z,, . .. 1s given by:
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(Proof of Theorem 1.3 (Cont.))

Fp =0 T
cos(0) = [Z{VMlvVMZs--wVMn}] Zivma, . vMn)
F1=0 T
” [Z{VMI"’MZw-:VMn}] IHZ{VMz,---,VMn}
_ Azt 126
2 2 2 /2 2 2 (1.26)
\/Z] +Z2 +"'+Zn \/Zz +Z3 +"'+Zn
:J£+é+m+ﬁ
N+ 4.+
Notice that 1> cos(8) >0, and zva;I(:’VMZ o) 7 0 must obey (1.23) and (1.24). Since

the numerator and denominator in (1.26) are greater than zero, we know from basic

trigonometry that 0 < 8 < (/2). In this range, we have that cos(8) monotonically

increases as O decreases. Accordingly, the original problem can be cast as an

F1=0

optimization problem for which the objective is to find L AL YN Y

- # 0 that

maximizes the right-hand side of (1.26), with constraints given by (1.20) and by Theorem

1.1:

2, 2 2
. v JZ'+Z4n”+Z
Maximize: J; = Y=2—=2 .

N2+ 2.+
Subjected to: 1) Apgze +Apgazs +... Apguzo =0 (1.27)
12) A > 0> Ay 2A 2. 2 Ay,

Since the numerator and the denominator of the objective function are positive, squaring

the objective function does not change the solution. For simplicity, we now convert

(1.27) to:

2, 2 2
.. 5 +z5 +...+2
Maximize: J, = J7 = g 32 .

4yt t...t 2,

Subjected to: 1) Aypizt +ApaZs +.. + Apyp 2 =0 (1.28)
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(Proof of Theorem 1.3 (Cont.))
where the range of the objective function J, is 0 < J, <1 because 0< J, <1. This is

equivalent to:

2
Minimize: J; = J3' = 5——3——— +1
5tz +...+z;
Subjected to : 1) Aypzr +Apazs +...+ Aypaze =0 (1.29)

12) Apy > 0>Ann Ay 2 2 Ay,

where the range of the objective function J; is 1< J; <eo. To find the solution

Fp =0 _ T . :

Z o VM v} S 22 e L] # 0 for (1.29), we consider the following
arguments:

1) The component z; corresponding to the solution vector is nonzero. Otherwise,

z; =0 and all the constraints in (1 .29) are satisfied simultaneously only at the
origin. This leads to a contradiction since we omit the ori gin and we require that
all constraints be satisfied.

2) The set {z,, z3,...,2,} corresponding to the solution vector contains at least one
nonzero element. Otherwise, all the constraints in (1.29) are satisfied
simultaneously only at the origin. Since we omit the origin, {z,,2z5,...,2,} must
contain at least one nonzero element.

3) The constraints in (1.29) implies that: |

2, 2 2 2 2 2
0> Avp(z5 + 25 +...+zn)27»M2z§ +AM3Z5 F oo A2 = A

2 2 2 2
A’MZZZ +A’M3Z3 + +A,ann — _lezl

0<z§+z§+...+z§$
Ay oye

AipZs +hyszs +oo+ Ay, 2o
where z2 +z35 +...+ 7> = —M2%2 ~ TM3%5 Mr"n when z; =0,

7\’M2
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(Proof of Theorem 1.3 (Cont.))
i=3,4,...,n. Accordingly, z% + z32 +...+ z;f is maximum for a given z; when
z;=0,i=3,4,...,n.

It follows from the arguments in 1 — 3 that J; in (1.29) is minimum when:

Fp =0

{VMI:VMZw-’VMn]_[Zl z, 0 ... 0] =z

{vm1.-vm2}

At the solution zva;f,VMZ] , the minimum of the objective function J; in (1.29) is given
by:
* 22
J3 = ——12— +1 (1.30)
<2
To find the minimum of J,, we substitute z g;?,VM =l 4 0 .. 0]" into the
first constraint in (1.29) to produce:
Mzt +hpzi =0
This is the same as:
A 2
Z2=-tml (1.31)
Ml

where we recall that Ay >0 and XMZ < 0. Notice that we can always find a value of z,

for every set of { Ay, Amp,2; } Where Ay >0 and Ay, <O such that (1.31) is

o . ApnZa . . ..
satisfied. Now, we substitute — Mm%y o z12 in (1.30). This produces the minimum
M

values for J5:

];‘:_}‘M2+1:M>1 (132 a)
}\'Ml }\'Ml

This solution corresponds to the maximum value of J, and J;:
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(Proof of Theorem 1.3 (Cont.))

0<J, =" M (1.32b)
}"Ml _}"M2

0<J, —\/J = [—"ML__ (1.32¢)
Ml _}"M2

This completes the proof of Theorem 1.3.

Recall that we want to choose P such that the eigenvalue ratio 7, = —Apy /Ay, 18
small. By inspecting (1.32), a small r,, corresponds to a large J 5, toasmall J,, and to

asmall J,. Since J, =cos(0), a small J; implies that the angle between a vector

belonging to Sg, -, and its projection onto S, _, is large by Theorem 1.3. In views of
Proposition 1.1 and 1.2, we want to find P such that Sg, _, is symmetric about S, _, and
ry 18 small because this forces a possible intersection point X, between Sp_, and

S0 “reasonably far” from the origin.

For all mathematical descriptions (1.1) having the same linearized model, choosing

P =P, to orient SGL=0 and S F, =0 88 in Fig. 1.2 (b) and Fig. 1.3 (b) does not necessarily
yield the largest Bcs over all possible choices of P because:

1) Specific nonlinearities have not been taken into account.

2) Mathematical optimization has not been employed to search for the optimal P that

yields the largest B, -
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In Proposition 1.1 and 1.2, we have obtained two desired relative orientations between

Sg,=0 and Sg, _o. Because of continuity, we see that these orientations locate x .
reasonably far from the origin and thus yield a reasonably large Bcs . This is necessary
for obtaining a large BCL because BCL c Bcs . In Proposition 1.1 (eigenvector condition),

we restrict ourselves to systems with n = 2, while we consider the general case when n is
an arbitrary positive integer in Proposition 1.2 (eigenvalue ratio). This is because the
general case of the former requires deeper analysis in Chapter II. In further
developments:

1) We need to find a mathematical condition corresponding to the desired relative

orientation between Sg, - and S, -, in Proposition 1.1 for n-dimensional

systems.
2) We need a condition that guarantees the existence or nonexistence of P that yields
such relative orientation.
3) If such P exists, a method for obtaining P is required.
4) A controller construction aiming to obtain a large LAR is required.
Items 1, 2 and 3 are addressed in Chapter II while item 4 is discussed in Chapter II
without robustness issues, and in Chapter III with robustness issues. Next, we give a
simple example to illustrate various mathematical objects we have discussed. At this
point, we do not employ an underactuated system such as a double-inverted-pendulum
system or a cart-and-pole éystem as an example because handling such a system using a

LARC requires later results in our developments.
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Example 1.1 (An Artificial System)

Consider the following second-order artificial system by:

X | |10x, +10x; +10sin(x,)*sin(x,) — x; s 0
= u
X, 5x} +sin(x,) cos(x,) +1.5 (E1.1.1)
x =f(x)+g(x)u
The outputs of the system (E 1.1.1 a) are the state variables x; and x,, and the input is the

control u(x). When u(x) = 0, the system has two unstable equilibrium points

Xo; =[0 OF, and xy, =[0.1886 —0.1788]" . We constrain our interest to X,;, the

origin. The linearized model about the origin‘ is given by:

x 10 10} x, 0

= + u
K110 1]x| {25 (E1.1.2)
x=Ax+Bu

To stabilize the system (E 1.1.1) locally about the origin, the following linear control is
applied:

u(x)=-[60 20k = -Kx ' (E 1.1.3)

This places the two eigenvalues of the matrix A =[A -BK] at A, =-19.5% j25.095

in the LHP. This linear control is chosen primarily to stabilize the nonlinear system

locally; there are infinitely many other possibilities. We now employ A to find P using

(1.6) in which we set Q =1 for convenience. This produces:

(E1.14)

0.3289 0.0253
P= P(151.1,4) =

0.0253 0.0154

From (1.6), this yields the quadratic Lyapunov function:

1
V() =2x Pgy 1% (B 1.1.5)
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The function F(x) and G(x) corresponding to P, 4 are given by:

F(x) =x"Pg, 4f(X)
= (0.3289x,+0.0253x, )(10x,+10x,+10sin (x, )sin(x, ) — x7) (E 1.1.6)
+(0.0253x, +0.0154x,)(5x7 +sin(x,))

G(x) = XTP(E1.1.4)g(X)
=(0.0253x,+0.0154x, )(cos(x,) +1.5)

E 1.1.7)

The linear approximations of F(x) and G(x) corresponding to the linearized model (E-
1.1.2) are given by:

T[3.2890 1.7835

. |
FL() =X [Pei1pA + [Pe114AT I =x"Mx =x 117835 02680

j|x (E 1.1.8)

G, (x) =X Pg, ; ;B = 0.0632x, +0.0384x, (E1.1.9)

3.2890 1.7835
1.7835 0.2680
common boundary points corresponding to the linear control #(x) in (E 1.1.3) are shown

where M = [ } The relevant surfaces, the regions B, , By, and their two

in Fig. E1.1.1. Note for Fig. E1.1.1 that:

1) Sr_o is represented by two thin solid curves, namely Sy._,;, and Sy._q ;.

2) Ss-o 1s represented by a thick solid straight line.

3) B, is the region with diagonal solid lines, and O is represented by two thick
dashed curves, namely Oy, ;, and Oy, ;.

4) BCL is the elliptical region with diagonal dotted lines, whose boundary is OBcL .

5) The symbol o denotes an intersection between OBcL and Op , whichis a

common boundary point.
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In Fig. El.i.l, we see that the surfaces S;_, and Sy_, do not intersect in the x; —x,
plane except at the origin. Thus the boundary of 3., does not contain an intersection
point between S;_, and Sy_,. We now proceed to find BCs (defined in (1.12))
corresponding to Pgy ;4. This can be determined by finding first the intersection x¢
i =1,2,... then expand B from C = until the boundary of B first reaches X¢,, at

C = Cy. We do this in Fig. E1.1.2 for which we note that:

pP1: common boundary
point of B¢, and By

OﬁCL . -
PL e ;M
/— Sp=01
OBL,2
Be,
S6=0
p2: common boundary
point of B, and B,
SF=0,2

Fig. E1.1.1 Region BCL and By for (E 1.1.1) under Linear Control in (E 1.1.3)

1) Sp_o is represented by two thin solid curves namely Sy_;,and Sy ;-
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2) Sp, =0 18 represented by two thin dash curves namely S F =01 and Sp _o 5. The
surface Sp_o, overlaps Sy _, and we see only Sp_, , in the figure.

1) Ss-o 18 represented by a thick solid curve.

2) Sg,-0 1s represented by a thick dash curve. The line S;;_, overlaps Sg, ., and we
see only S;_, in the figure.

3) The symbol & represents the po_int X¢,, at which Sp_; intersects S, (ie.,
F(X¢,, ) = G(X¢, ) = 0). In the figure, this point is on Oﬁcs =Sy_55-

Graphically, we see from Fig. E1.1.2 which is a zoom-out version of Fig. E1.1.1 that the

ellipse BCS is the largest possible LAR corresponding to Py, 4y because S, intersects
Sp-o,1 at X¢,, on the boundary of this éllipse. Notice that B, in Fig. E1.1.1 resulting
from the linear control (E 1.1.3) is significantly sma}ler than the corresponding BCS in
Fig. E1.1.2. Under P g, 4, the eigenvalues and eigenvector of M are given by:

Ay = 41156, vy =[-0.9073 -0.4205] (E 1.1.10 a)

Az = —0.5587, vy, =[0.4205 —0.9073] (E 1.1.10 b)
The surface S, ., is the line cxg,_o, where c€ R and XGp=0 = [0.5195 —-0.8544]".
According to Theorem 1.2, vy, is the symmetry axis of S _, such that F (x) |,4<0
along vy, . We see from (E 1.1.10) that SGL:O is not spanned by vy, . Indeed, SGL —o 18
spanned by the unit vector X; _, and it can be shown that the angle between x, _, and

Vg 18 0.1123 radian. The eigenvalue ratio is r, =7.3668.



45

Sr-01

Sg=0> Sg -0 —>

(overlap)
SFL:0,1 ————>\\ .f- j - SVZSS :OBCS

X, : intersection point

between S;_ and Sy_,

-20

SF-0,2>SF 0,2 (Overlap)

Fig. E1.1.2 BCS or the Largest LAR Corresponding to Pig; 4,
when Sg _ is not on the Symmetry Axis of Sg, o
Remarks: 1) Some portions of Sg_; and of Sg_, overlap Sg, _, and Sg
2) FL(X)|xz0<0 0n Sg, o

Now, let us find BCs corresponding to:

0.6446 0.0728
(E 1.1.10)

P=P =
E1110 [0,0728 0.0354

Note that P ;| 10, is obtained from (2.12) with p = 225 using later results in our

development for which details will be presented in Chapter II. We substitute P | 14, for
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Pri114) in (E1.1.6),(E1.1.7), (E 1.1.8), and (E 1.1.9) to obtain a new set of functions
F(x), F (x), G(x),and G, (x):

F(x)= XTP(EI.I.IO)f(X)
= (0.6446x,+0.0728x, )(10x,+10x,+10sin(x, )sin(x, ) — x2) (E1.1.12)
+(0.0728x; +0.0354x, )(5x7 +sin(x,))

1 7 T T r| 64461 3.6233
F(x)=—x"[P A +[P, Al x=x"Mx=x x (E1.1.13
L) 2 Fer108 +Ferioal ] [3.6233 0.7631 ( )
G(x)= XTP(El.I_.lO)g(X) (E1.1.14)
= (0.0728x1+0.0354x2)(cos(xz) +1.5)
G, (x)= xTP(El.MO)B =0.1819x, +0.0885x, (E1.1.15)

6.4461 3.6233

where M =
3.6233 0.7631

} . To find graphically the largest possible LAR Bcs
corresponding to Pg; | 19, We plot the new surfaces Sp_, S F =0+ Sg=0>and Sg
corresponding to Pz 1) in Fig. E1.1.3 using the same notations and symbols as for

figures E1.1.1, and E1.1.2. Note from figures E1.1.2, and E1.1.3 that BCS corresponding

to Pig11.4) 18 significantly smaller than that corresponding to Pg ; ¢, - The boundary of

B, corresponding to P, ; 1) is approximately Sy_,; where V= %XTP(ELMO)X. Under
P 1110y, the eigenvalues and eigenvectors of M are given by:
Appy = 8.2092, vy, =[0.8992  0.4376] (E 1.1.16 )
Mz = =1, Vo = [-0.4376  0.8992] (E1.1.16 b)

Using (E 1.1.15), it can be shown that the surface SGL=O is the line CXg, =0 and

F,; (x) <0 along this line, where c€ R and Xgp=0 = [0.43755 ~0.89920] 7.
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Sr=0, TN X,
SG:O’ SGL=0 _X

(overlap)

SF=0,2 SF=0,2

Fig. E1.1.3 BCS or the Largest LAR Corresponding to Pg 150y When S, _, is on the
Symmetry Axis of Sg _, with 5, =8.2092
Remarks: 1) Some portions of Sy_, and of S;_, overlap Sy, _, and Sg,

respectively.
2) Fp(x) <0 on S;

Now, we see that S _, 1s spanned by the eigenvector vy, in (E 1.1.16 b), and vy, is
the same as X, o . Since we know from Theorem 1.2 that S _, is symmetric about

Vg it follows that Sp _, 1s symmetric about S _, . The eigenvalue ratio is

i = 8-2092. For this particular problem, the eigenvalue ratio corresponding to Pg; ; 1,

is approximately 11.4% larger than that corresponding to P, ; 4 but because Sg _, is
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exactly on the plane spanned by vy;,, we see that X corresponding to P, ; 14, is
farther from the origin than that corresponding to P ; 4. This forces BCS corresponding

to Py 1.10) to be larger than that corresponding to P ;4 -

To see how a large eigenvalue ratio can affect cs When the eigenvector condition is

satisfied, we examine Bcs corresponding to:

(E1.1.17)

2.6830 2.1917

4.3990 2.6830
P=Pg 17 =

Note that P, ; ;5 is obtained from (2.12) with p =1 using later results in our
development for which details will be presented in Chapter II. We substitute P, ; 17, for
P14 in (E1.1.6), (E 1.1.7), (E 1.1.8), and (E 1.1.9) to obtain a new set of functions
F(x), F, (x), G(x), and ‘GL(X‘):

F(x)= XTP(E1.1.17)f(X)
= (4.3990x,+2.6830x, )(10x,+10x,+10sin’ (x, )sin(x, ) — x7) (E 1.1.18)
+(2.6830x, +2.1917x, )(5x7 +sin(x,))

, 1, r r [ 43.9900 36.7515
F,(x)= Ex [Pg1119A +[PginAl Ix=x"Mx =x 36.7515 20.0217 x (E1.1.19)
GO =X Pe1img® (E 1.1.20)
= (2.6830x,+2.1917x, )(cos(x,) +1.5)
G, (x) =x"Pg, 1 17,B =6.7075x, +5.4793x, (E 1.1.21)

43.9900 36.7515

where M =
36.7515 29.0217

:I . To find graphically the largest possible LAR Bcs



corresponding to Pg, ; 17, we plot the new surfaces Sp_g, Sp, g, Sg, and Sg,
corresponding to Pg; ; 17y in Fig. E1.1.4 using the same notations and symbols as for
the previous figures. Note from figures E1.1.3, and E1.1.4 that ﬁcs corresponding

to Py 1 10) 18 significantly larger than that corresponding to P, ; ;7. The boundary of

. . . 1 7
ﬁcs corresponding to Pg; 1 17, is approximately Sy_s5 where V =§x P(E 1L X

S6=01 56, =0 —¥

(overlap)

_—— X, : intersection point

between S, and Sy,

Sy—6s5 = OBCS

SF=0,2

Fig. E1.14 B or the Largest LAR Corresponding to Pg, ; 17, When Sg, _, is on the
Symmetry Axis of Sg,_, with r,, =74.0117 |
Remarks: 1) Some portions of Sy_, and of S5, overlap Sg, _, and Sg, -

respectively.  2) Fp(X)|y.0<0 on S5
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Under Py, ; 47, the eigenvalues and eigenvectors of M are given by:
Ay = 74.0117, vy, =[0.7745 0.6326] (E1.1.222)
Mz = =1, Vapp = [=0.6326 0.7745] (E 1.1.22 b)
Using (E 1.1.21), it can be shown that the surface Sg, _, is the line c¢xg ., and
F; (x) <0 along this line, where ce R and XG;=0 = [— 0.6326 O.7745]T . Now, we see
that Sg,_, is spanned by the eigenvector vy, in (E 1.1.22-b), and vy, is the same as
X, = - Since we know from Theorem 1.2 that Sy, _, is symmetric about vy, , it follows
that Sr, o is symmetric about S ., . The eigenvalue ratio is 7, =74.0117. For this
particular problem, the eigenvalue ratio corresponding to P ; 19, is approximately
900% larger than that corresponding to P, ; 17, although both P, ; ;o) and Pg, ; 17
satisfy the eigenvector condition. Notice that Sy_, intersects S;_, much closer to the
origin under P, ;7, than it does under Pg, ; ;o). Accordingly, Bcs corresponding to

P1.1.17) i8 significantly smaller than that corresponding to Pg; ; 1, -

1.5  Summary

1) There are numerous physical nonlinear systems whose mathematical descriptions
present structural and algebraic difficulties when designing a globally stabilizing
controller for. Examples are underactuated systems such as double-inverted-
pendulum systems (Misawa, Arrington, and Ledgerwood 1995), (Walker et al,

1991), and cart-and-pole systems (Wang, 1994), (Ogata, 1997), (Slotine, and Li,
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1991). For such systems, we often admit locally stabilizing controllers designed

by applying linear system theory to suitable linearized models. Theoretically, we

expect the linear controller to stabilize the nonlinear system in a region where the

linear approximation is valid. However, we generally do not examine the size of
this region when designing a linear controller. After such design, simulations are

employ to numerically estimate the resultant attractive region.

A major drawback of a linear controller designed by applyin g linear system
theory to a linearized model is that the attractive region of the corresponding
nonlinear system can be unsatisfactorily small. It is known that a linear controller
can be designed either by relocating the eigenvalues of the linearized model or by
optimizing a performance index, although their relationships to the attractive
region of the corresponding nonlinear system are not obvious. The fundamental
idea of LARC is to employ a quadratic Lyapunov function and a linear controller
to guarantee local stability with a reasonably large LAR. Since Lyapunov stability
guarantees that an attractive region must contain a LAR, LARC indirectly

produces a reasonably large attractive region.

By definition, a LAR does not contain the intersection between the surfaces S;_

and Sj_, denoted by Xcg o i=1, 2, .... Accordingly, a necessary condition for a

large LAR is that either X, does not exist or that ” Xc, ” is large Vi. Since the

surfaces S;-, and S_, depend on the equation of motion and P, we can only
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search for a special choice of P that removes or expels x cg; from the origin. A

possible approach for obtaining such P is to exploit specific nonlinearities and

structures of F(x) and G(x). However,

3.1)  We realize that the characteristics of F(x) and G(x) in many physical
systems are extremely difficult to analyze for such purpose, and thus
reasonable simplifications are needed to make the problem tractable.

3.2) Depending solely on specific nonlinearities and structures of F(x) and

G(x) can limit the applicability of the resulting scheme.

Accordingly, we primarily formulate LARC based on the characteristics of Sg, o
and Sg . This is because there are infinitely many F(x) and G(x) that can be
approximéted by F,(x) and G, (x) in operating regions about the origin. In
addition, this simplifies the problem because F;(x) and G;(x) are obtained from

a linearized model. We will orient S; _, and Sg, _, such that the location of a

possible X is reasonably far from the origin in the presence of nonlinearities.

In the presence of possibly complex nonlinearities in (1.1), we orient Sg _, on
the symmetry plane of Sg, _, such that F (x) ly20<0 on S0 and r,, is small.
Geometrically, it is conceivable from Fig. 1.2 that this relative orientation locates

X, ~reasonably far” from the origin in the sense that ” X¢ ” —> oo as the degree

of nonlinearities becomes smaller but need not be zero. Notice that the effects of
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nonlinearities have been handled implicitly by such choice of relative orientation.
However, this may not remove X Or maximize ” Xcq H when possible, because

specific nonlinearities and structures of F(x) and of G(x) have not been included

in the formulation, and optimization has not been employed.
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Chapter 11

Eigenvector Condition and Controller Generation

2.1 Introduction

We have pointed out in Chapter I that a linear controller designed primarily for stabilizing
a linearized model may yield a small attractive region for the corresponding nonlinear
model. We apply Lyapunov stability in Chapter I to show that a large attractive region
could be obtained by forcing the corresponding LAR to be large. By our definition, we see

that a LAR (denoted by BCL) depends on P and u(x) . To obtain a large LAR, it is
necessary to locate every intersection point between Sy_, and Sg_, (denoted by x. ) far
from the origin to obtain a large B, . We know by inspection that Xc,, and B¢, depend

on P and the equation of motion (1.1). Since the equation of motion is given, we can alter
only P to produce the desired results. We introduced in Proposition 1.1 the “eigenvector

condition” for systems with n = 2, which is a particular relative orientation of Sy _, and
Sg,=o thatlocates X¢ reasonably far from the origin and produces a reasonably large
ﬁcs . However, the existence and choice of P yielding such relative orientation in

arbitrary n-space was not clear.

In this chapter:

1) We formulate the generalized version of the eigenvector condition for representing

such particular relative orientation of S, _, and Sg, _, in n-space.



55

2) We establish conditions for the existence or nonexistence of P that satisfies the
eigenvector condition.

3) We address computational methods for obtaining P to satisfy the eigenvector
condition, provided that such P exists.

4) We generate a linear control u;,,-(x) for obtaining a reasonably large LAR when

the eigenvector condition can be satisfied.
For these purposes, the basic conditions C1 — C4 given in Section 1.3 will be recalled

frequently.

2.2 Mathematical Description of Eigenvector Condition

According to the two dimensional case discussed in Proposition 1.1, we want to locate

Sg,=0 on the symmetry plane of Sg, _, so that small deviations of Sg_, from Sy, _, and
of Sgo from S _, do not put possible intersections X, between Sp_, and S;-, close
to the origin. At the same time, we require that S; _o C Rz, < 0y for stability of the
linearized model as pointed out in Lemma 1.1. Notice that S; _, in a two-dimensional
system is a line. Accordingly, we can satisfy these requirements in a two-dimensional
system by locating S _, on the line along the eigenvector vy, corresponding to the
negative eigenvalue Ay, of M because z,Vy, C Rip <oiu0y V22 € . We now want to

find a precise mathematical condition that is equivalent to such relative orientation in n-

space. To do this, we draw from the proofs of Theorem 1.1 and 1.2 that:

i
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D) Fi (x) is a quadratic function and the surface S _, is symmetric about the 7 real
orthonormal eigenvectors Vy,..., vy, of the symmetric matrix M.

2) The matrix M has exactly one positive eigenvalue A, and n-1 negative
eigenvalues Aypy,-- . Apg, -

3) Sg,=0 18 a plane of dimension #-1 and we must have that S; _o C Rjf, (o) fOT

stability of the linearized model.

According to these results, we can orient S -, such that Sg _, is symmetric about

Sg,=0 and Sg, g C R, o1uq0) by locating the eigenvectors Vyy,,...,Vyy, corresponding to
the negative eigenvalues Ayp,....Ay, 00 Sg 9. In other words, we want to find P’ such
that {vyg,,..., an} is a basis set for generating Sg, . Since S o is a plane of
dimension n-1 and all the :eigenvéctors of M are orthogonal, this condition can be satisfied
by choosing P such that the normal vector of Sy =0 OF V(G, (x)) =[PB] points in the

direction of the eigenvector vy cotresponding to the only positive eigenvalue Ay, of M.
This latter condition is more convenient to apply to SIMO systems than the former
because it involves only two vectors, namely V(G,(x)) and va;. Accordingly, the term
“eigenvector condition” is associated with the latter condition in this chapter unless

otherwise stated.



57

2.2 Theorems

To find P that satisfies the eigenvector condition, we examine properties of the functions

F, (x) and G, (x) further in the following theorems:

Theorem 2.1 (Relationship between Eigenvectors of M and N)

If the basic conditions C1 ~ C4 in Chapter I are satisfied with Q = ¢l where ce R*, then
the sets of eigenvectors of N = %[[PB]K +K7[PB]" ] and of M = %[PA +ATP] are the

same.

Proof
It is clear that the existence of the symmetric positive definite matrix P satisfying the

Lyapunov equation is guaranteed by Lyapunov stability if C1 — C4 are satisfied. Now, let

Qin C4 be cl where c€ R* and consider the Lyapunov matrix equation:

_Qz_clz_;.[pL[PX]T]

I _pie —BKTT
_Z[P[A BK1+[A BK] P] 2.1)

~(PA+ATP)-—([PBIK + K" [PB]")
=M-N

where N = % [[PBIK +K”[PB]" | = %[PBK +[PBK]" ] and M = %[PA +ATP]

=[PA+ [PA]T] are symmetric because E + =T is symmetric for all £€ R™".
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Since M is real symmetric, it has n real eigenvalues A,y and n real orthonormal
eigenvectors vy, i =1,...,n (Hagan et al, 1996). Now recall the linear transformation
matrix Ty from (1.18):
Ty =0Vau | Vo2 |- | V) (1.18)
We premultiply and postmultiply every term in (2.1) by T{,Il and Ty respectively to
produce:
— ¢TITy, = TMTy, - TyINT,, 2.2)
Since Mvyy; = Ay Vo> § =L,...,n, we obtain:
Ty MTy; = Ay (2.3)
where Ay € R™” is a diagonal matrix whose diagonal elements are Ay, i =1,...,7.
Since — ch\"dllTM = —cl, (2.2) can be rewritten as:

—cl = Ay — Tyy NTy,
Ty NTy = cl + Ay

(2.4)
From the right-hand side of (2.4), we see that Ty; NTy; = Ay is diagonal. This shows that
N can be diagonalized by using the eigenvectors vyy;, i =1, ..., n of M. Accordingly, we

see that N and M have the same set of eigenvectors and the diagonal elements of Ay are

the eigenvalues of N. This completes the proof.

Theorem 2.2 (Properties of Eigensystem of N)

If the basic conditions C1 — C4 are satisfied then the matrix N = %[[PB]K + KT[PB]T ]

has the following properties:



P1)

P2)

P3)

P4)

Proof
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N has exactly one positive eigenvalue.

N has at most one negative eigenvalue.

Remark: The remaining eigenvalues of N other than those in P1 and P2 are
all zeros.

The eigenvector corresponding to the positive eigenvalue in 1) bisects the angle

between the vector [PB] and the vector K7 .

Remark: We say that a vector v “bisects” the vectors [PB] and K7 if
cv=[PBI/|PB|+ K" /|K" ||, ce R*.

If the negative eigenvalue in P2 exists, then the corresponding eigenvector bisects

the angle between the vector [PB] and the vector —K” .

The existence of the symmetric positive definite matrix P satisfying the Lyapunov

equation is guaranteed by Lyapunov stability if C1 — C4 are satisfied. We now substitute

—KXx for u(x)in (1.14) to produce:

V, (x) = %xT [PlA - BK]+[A - BK]" P|x
= %XT[PA +ATP)x —%XT[P[BK] +[BK]' P]x (2.5)

=x'Mx — x' Nx

where N = —;—[P[BK] +[BK]'P] = %[[PB]K +KT[PB) ] and M = %[PA +ATP)

=[PA +[PA]"] are symmetric because E+ &’ is symmetric for all &€ R™" . Now

rewrite:
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x'Nx = %xT [P[BK]+[BK]' P]x

=x’ [PB]Kx (2.6)
= &N1 (X)gNz (x)

where gy (X) =x'PBe R, gy, (x)=Kxe R, and [PB] and K” € R". Now, we

consider the following possibilities:

a)

b)

PB=cK', ceR?
In this case, it is clear that x’ Nx is zero in the plane x'PB =Kx =0 and is

positive along the vector Vg, (x)=PB = cVgy,(x) = cK”. This implies that our
theorem is satisfied with N = N7 has only one positive eigenvalue Ay,

corresponding to the eigenvector vy; = PB = K’ , and has n-1 zero eigenvalues
corresponding to n-1 eigenvectors of N spanning the solution space of the linear

equation X’ PB=Kx=0.

PB=-cK’, ce R*

If K is chosen such that A =[A —BK] is stable, then it is impossible that PB =

; cK”, ce R*. Otherwise, We‘have that x"Nx =—cx’ [PB][PB]" x <0 and

VL (x) = x'Mx —x”Nx cannot be negative definite. This is because we know from
Theorem 1.1 that M has exactly one positive eigenvalue implying that

Ix:x'Mx >0.If X' Nx <0, then it is clear that VL (x) >0 when x’Mx >0

contradicting the known fact that there exists a quadratic Lyapunov function for

every stable linear system.
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) PB#aK’', ac R
In this case, PBand K” are linearly independent. When n = 2, we change the
basis by using the linear transformation z = [z, z,]” = Tyx defined by
2= gai(®)/|Vgn (x)| = x"PB/|PB|, and z, = gn, (%) /|Vgn, (®)] = Kx/ KT ||
For higher-order systems, we find additional n-2 linear equations z; = gy; (x), i =
3, ..., nsuch that {Vgy,(x), Vgn, (%), ...,ng (x)} are linearly independent to
complete the linear transformation. The existence of this set of » linearly

independent vectors is guaranteed because this is the definition of R" . This

produces:
Ty = [Ven |V ]| VEn2 0 /| VEn2 ]| V& 00 | Vi 1T 2.7)
Under the transformation z = TyX, we have:

x'Nx = x’ [PB]Kx

= “PB” I K’ I 4%
2170 05007z
21105 0 0---0] 2z, 2.8)
=[PB|||K" [||z;{ | 0 0 0 0]z
| s SR
| Zn 0 00--0jz,]

=[PB| | K" ||z Nz
0 050---0]
05 0 0 -

where Nz =| 0 0 O --- 0. Because of the special structure of N, direct

o O © o O

0 0 0--
computations show that:
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Anpr= 05V, =0 1000
Angz =—05vy , =1 =100 01"
Angz= 00,vy ;=[0 010-- 01" (2.9)

}‘an = O'O’Van =[0 000 - 1]7
where }»NT" and vy, 1=1,....n are the eigenvalues and eigenvectors of N

respectively. Unlike similarity transformations, the linear transformation z = Tyx
does not preserve the eigenvalues of N in general because the eigenvalues of N
are as given in (2.9) for all N. However, this linear transformation shows that the

quadratic function x”Nx increases along v and decreases along v _, . This
T

N7l
implies that the real symmetric matrix N has one positive eigenvalue associated

with an eigenvector pointing in the direction of v and has one negative

N71°
eigenvalue associated with an eigenvector pointing in the direction of v, _, . In the
T

transformed basis, Vel =[1 100 ---0]" implies that Vgl bisects the angle

between the z; —axis and the z, —axis. Accordingly, we have that the
eigenvector of N corresponding to the only positive éigenvalue of N bisects the
angle between the vectors [PB] and K7 inthe original basis because the z; —axis
is along the vector [PB], and the z, —axis is along the vector K7 inthe original
basis. In the same fashion, we have that the eigenvector of N corresponding to the

only negative eigenvalue of N bisects the angle between the vectors PB and — K’

in the original basis.
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Combining the results in cases a), b), and c), we conclude that P1, P2, P3, and P4 in

Theorem 2.2 hold. This completes the proof.

Lemma 2.1 (Relationship between vy and vy;)

If the basic conditions C1 — C4 are satisfied with Q = cI where ce R*, then the direction
of the eigenvector vy, corresponding to the only positive eigenvalue A, of M

(Theorem 1.1) and the direction of the eigenvector vy, corresponding to the only positive

eigenvector Ay; of N (Theorem 2.2) are the same.

Proof

For convenience, we now expand (2.4):

0 -1 0 0 Ay — A

c = . o (2.10)
: : . 0 : : . 0
0 0 0 -1 0 0 0 Ay — A

where ce€ R". We recall from Theorem 1.1 that M has exactly one positive eigenvalue

and n-1 negative eigenvalues, and from Theorem 2.2 that N has exactly one positive
eigenvalue and at most one negative eigenvalue. Since c € R", we see from (2.10) that:

-

!

—Ay; =—c<0 (2.11)
where i =1,...,n. Accordingly, this inequality is satisfied at an index je {1,...,n} where

Ay is the only positive eigenvalue of M if and only if Ayn; > 0. This shows the position
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matching between the only positive eigenvalue of M and the only positive eigenvalue of

N in the principal basis of M. To summarize, we list the known facts:

1) M has only one positive eigenvalue }\.Mj.

Remark: In Theorem 1.1, is assumed to be 1 for convenience.
2) M and N share the same set of eigenvectors (Theorem 2.1).

3) N has only one positive eigenvalue Ay; (Theorem 2.2).

4) (2.10) is in diagonal form.

Accordingly, the position matching of ?»Mj and )\.Nj in (2.10) implies that both vy, and
vy; are the eigenvectors corresponding to }\.Mj and to Ay; . Without loss of generality, we

letj=1to be consistent with the notation employed in Theorem 1.1. Because
eigenvectors can be different by scalar multiples, Lemma 2.1 follows and the proof is

completed.

Lemma 2.2 (Symmetry of [PB] and K7 about Vi)
If the basic conditions C1 — C4 are satisfied with Q = ¢I where ce R”, then the
eigenvector v,y corresponding to the only positive eigenvalue A,y of M bisects the

angle between the vector [PB] and the vector K”.

Proof

By Lemma 2.1, we know that the directions of the eigenvectors v,y and vy, are the

same. Applying P3 in Theorem 2.2, we see that v,4, bisects the angle between the vector
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[PB] and the vector K” . This completes the proof.

2.3  Generating P to Satisfying the Eigenvector Condition

In this section, we apply Lemma 2.2 to construct a theorem that provides an equation for
generating P to satisfy the eigenvector condition. It turns out fortunately that such P is the
solution of a steady-state Riccati equation for which several solving methods are
available. This finding implies a necessary and sufficient condition for the existence of

such P.

Theorem 2.3 (Generating P to Satisfy the Eigenvector Condition)

The symmetric positive definite matrix P satisfying the eigenvector condition is the

unique symmetric positive definite solution of the steady state Riccati equation:

0=-2Q - [PA + A"P]+ 2pPBB’P

T (2.12)
=—cI-M+N

= =.];. T _=_]; T T
where Q=cl, M= 5 [PA +A‘ P],N= 5 [[PBJK + K" [PB] ] IKT=p[PB] ,and

p and c€ R". The existence of such P is guaranteed provided that [A, B] is controllable

or stabilizable.

Proof

We rearrange (2.5):

V, (x) = x" Mx ~ x" Nx
=x'Mx - x’ [PB]Kx (2.13)
=F, (x)+ G, (x)u(x)
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where F; (x) = x'Mx, G (x)= x"PB, and u(x) = —-Kx. From the sufficiency in Lemma
2.2, we know that vy bisects the angle between K and V(G (x)) =[PB] provided that
we choose Q = cl. Accordingly, setting

K’ =p[PB] (2.14)
where pe R forces vy, to point in the direction of [PB] and the eigenvector condition

is satisfied automatically with the directions of K”, [PB], and vy being the same. To

see the consequence of this setting, we reproduce (2.1):

-Q= —cI=—;—[PX+ [PAT']
=%[PA+ATP—[PB]K—KT[PB]T] @.1)

=M-N
where N = %[[PB]K +K’[PB]" ],and M = %[PA +ATP]. Substituting p[PB] for K”

in (2.1) produces:
-2Q =-2cI=PA +A"P-p[PB][PB]” - p[PB][PB]"
Rearranging the last equation yields:

0=-2cI- [PAj ATP1+20PBB'P 2.12)
=—cI-M+N

It is clear that (2.12) is a steady-state Riccati equation, whose general form is usually

discussed extensively in optimal control literature. A standard topic in this subject is the

condition for which the solution matrix P of the Riccati equation is symmetric positive

definite and is unique. To find such condition for our particular setup, we refer to

Theorem 13.7 and Corollary 13.8 in (Zhou et al, 1996), while we note that other
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references such as (Kwakernaak, and Sivan, 1972) can be employed for the same purpose

but with a different approach. Our setup has the following special properties:

1) The matrix Q can be written as Q = C' C where C = Jel and rank(C) =n
C

2) rank C,A =n because rank(C) =n.

'C' A n~1
3) The matrix [PBBTP + Q] is positive definite. Indeed,

x’ [PBBP + Q]x = x’ [PBB” P]x + x” Qx
= [B7e" + Vo]

2 .
Since rank(\/zl) =n, it follows that [Weclx|| =0 only at the origin. Combinin
g

. i
this with the fact that ”BTPx” >0, we see that x' [PBB'P + Q]x is a positive
definite function and thus [PBB”P +> Q] is positive definite.

Using the above properties, it can be drawn from (Zhou et al, 1996) that the existence of
the unique symmetric positive definite solution P of the Riccati equation (2.12) is

guaranteed provided that [A, B] is controllable or stabilizable. This completes the proof.

A Remark on the Formulation of LARC

We observe that another investigator might have begun a study of this problem by starting

with the general LQR formulation and the Riccati equation asking “Can Q be selected
such that Sgy =0 bisects Sp, o and S _o C Rip, <0040y ? 7> because the investigator might
have seen intuitively that this would provide a basis for a large LAR. In such case, the

investigator would have eventually found that Q = cI, ce R* was a proper choice, and
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might then claim that this was simply another special case of the LQR problem. However

in addition to such intuition being highly unlikely and the corresponding proof being not

obvious, in order to obtain a large LAR, one should also achieve a large angle between the

bisecting S¢;, o and Sy, _,. We have shown in Chapter I that this requires a small

eigenvalue ratio, which is not addressed by simply solving an LOR problem.

24 Controller Generation

In this section, we are interested in generaﬁng a LARC when uncertainties are not
considered explicitly. The fundamental idea of LARC is to force V(x) to be negative
definite in radially large regions about the origin. We see that this cannot be accomplished
at intersection points between Sy, and S;_,, and between Sp_, and S,_,. When the
relative orientations of these surfaces are poor, these intersection points can occur
arbitrarily close to the origin, and result in an arbitrarily small LAR in the presence of
small nonlinearities. Accordingly, we employ the concepts of eigenvector condition
(Proposition 1.1) and eigenvalue ratio (Proposition 1.2) to locate these points “reasonably
far” from the origin. By ldcating X¢, reasonably far” from the origin, we refer to the

illustration in Fig. 1.2 (b) from which we see that ” Xcg, ll —> oo as the degree of

nonlinearities becomes smaller but need not be zero.

Theorem 2.3 shows that a choice of P that satisfies the eigenvector condition is the unique
symmetric positive definite solution of the Riccati equation (2.12). This Riccati equation

is obtained from Lemma 2.2 by substituting a special choice of linear gain
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o[PB]" =pB’P for K in the Lyapunov equation. However, there are infinitely many

possible values for p € R* and thus we have infinitely many corresponding P matrices

satisfying the eigenvector condition. To choose an appropriate choice of P, we consider
the eigenvalue ratios corresponding to these P matrices. According to Proposition 1.2, we
want to choose P that yields a small eigenvalue ratio. Such a choice of P is our
“appropriate” choice for the quadratic Lyapunov function in the sense of eigenvector

condition (Proposition 1.1) and eigenvalue ratio (Proposition 1.2).

After we find an appropriate quadratic Lyapunov function, it remains to choose u#(x) such

that the resulting LAR is reasonably large. To obtain a choice of u(x) = Kx for this
purpose, we reexamine a local approximatioh of V(x) about the origin:

V, (x) = x"Mx - x"Nx
=x"Mx - x” [PB]Kx (2.13)
= F, (x) + G (X)u(x)

where P is obtained from Theorem 2.3 to satisfy the eigenvector condition. Now, we

recall from the definition of eigenvector condition that Sp, _, is symmetric about Sg, _,
such that S; _o C Rip, <0040} By examining (2.13), it is reasonable that we orient S,_

and Sg, _, in the same fashion such that Sy, _, is symmetric about S,_,, and

Su=0 € Rip; <0100y - This particular relative orientation follows from the same reasoning
we employ to establish the eigenvector condition. Indeed, if §,_, is close to a particular
portion of Sp, ., then the deviations of Sy_, from S _, may locate an intersection

between S,_, and Sp_, arbitrarily close to the origin. At such an intersection, it is clear
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that we cannot force V to be negative because u = F =0 and the resulting LAR is then

small. We see that such linear control corresponds to the linear gain matrix
K =p[PB}’ =pB’P employed in the Riccati equation to solve for P. Corresponding to
such linear gain matrix is the linear control:

u(x) = -Kx = —pB" Px (2.15)
where pe R*, and K =pB”P. Since we set Q = cI in Theorem 2.3, the existence of
such P guarantees that A =[A —' BK] is stable, and V(x) is locally negative definite by
Lyapunov stability. It turns out that theorem 2.3 not only gives P that satisfies the

eigenvector condition when Q = cI, c€ R" but it also implies that such P can be
generated from other particular choices of Q # cI . This leads to our generalized version

of u(x) denoted by u; g (X). The formulation is given in Lemma 2.3.

Lemma 2.3 (The General Form of LARC)

If the linear gain matrix K = pB”P is constructed from the solution P of the Riccati

equation in Theorem 2.3 with Q=c¢I, and p and ce R" then the linear gain matrix:
K, zc =MPB’P , (2.16 a)

where n 21, satisfies the Riccati equation in Theorem 2.3 with P obtained previously and

Q # cI being a symmetric positive definite matrix. Furthermore, the linearized model is
guaranteed to be stable under the linear control:

Upare (X) = ~K p4pcX : {2.16 b)
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Proof
Recall that the Lyapunov equation is given by:

-Q= %[PA +ATP] —%[[PB]K +KT[PB]" |
=M-N

where M = %[PA +A"P] and N= %[[PB]K +K”[PB]" ]. We substitute np[PB] for

K in the above Lyapunov equation to produce:
Q=-M+nN
=-M+N+(MNM-1)N 2.17)
=cd+(M-DN

where we note from (2.12) that N =N ]KT:MPB] =pPBB’P and cI =-M+N. Since

n>1, N=N’ and N is positive semidefinite, it appears from (2.17) that Q is symmetric
positive definite and Q # cI. By Lyapunov stability, the existence of such Q guarantees

stability of the linearized model. This completes the proof.

By inspecting the proof of Lemma 2.3, we see that LARC guarantees stability of the
linearized model for any arbitrarily large e R”. This implies that we can increase M

and energize the linear system as strongly as we like while maintaining stability. Of

course, this statement assumes that every component in the linear control system is

sufficiently strong for such inputs. When the model is assumed to be exact or when

uncertainty specifications are unavailable, we employ the eigenvalue-ratio plot

(Proposition 1.2) to determine an appropriate value for p while fixing n=1 for

simplicity. Generally, we want to find a value of p that generates a LARC with the

smallest eigenvalue ratio for the reasons given in Proposition 1.2. In Chapter 111, the role
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of 1 will be developed and a mathematical procedure for selecting numerical values for

p and 7 to produce a certain LAR will be given.

We now introduce Procedure 1 for generating a LARC:
Step 1 Generate an array containing increasingly large values of pe€ R". For each
value of p, solve the Riccati equation (2.12) using Q = cI |._; to obtain the

corresponding P. Compute and record the eigenvalue ratios 7,

corresponding to every P and plot hiy Vversus p. Typically, our array of p

is Q.OOOl, 0.001,0.01, ..., 100; 1000, 10000. However, an appropriate
rahge and step size depend of the system at hands. The key is to capture a
portion of the plot where the slope changes significantly. In all of our
examples, we find that 1-3 trial-and-error are sufficient to find such

portion. When such portion is captured, replot it using a linear scale for p .

Step 2 Select a value of p that corresponds to a small 7 from a “flat” portion of
the plot. At such points, 7 does not change significantly when p

changes.

Step 3 For a value of p selected in Step 2, we find the corresponding LARC using
(2.16). Then verify that sufficient control energy is available to implement
the controller by considering the resulting linear gain matrix and the

required operating region. If not, reconsider the eigenvalue-ratio plot and
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choose a new value for p . Normally, a larger value of p results in a larger
K, .rc and a greater demand of control energy. Assuming that we have
sufficient control energy, having a very large Kz~ does not always
produce satisfactory results. To see this, consider an ideal situation in

which B can approximate g(x) with small errors in operating regions about

the origin. In this ideal situation, a very large K, can forces

G(X)u 4p0(X) to be positively large in such regions, and we see from

(2.13) that this can result in a small LAR.

In all of our examples, Step 1 — Step 3 are sufficient to generate a LAR with a reasonably
large atiractive region. Note that numerical simulations are not required for these steps.
However, we find that incorporatiﬂg numerical simulations to tune the parameter p can
lead to larger attractive regions. In the next section, we give a simiple tuning procedure

using numerical simulations.

2.5  Controller Tuning

The fundamental idea of LARC is to force V(x) to be negative definite in radially large

regions about the origin and obtain a large LAR. Using the concepts of eigenvector
condition and eigenvalue ratio, it is reasonable to expect that LARC yields reasonably
large attractive regions. However, we do not expect a LARC to yield an optimally large
attractive region because explicit nonlinearities and optimization has not been included

into the formulation of LARC.
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The objective of this section is to give a guideline for tuning LARC to obtain a larger
attractive region. This guideline is straightforward, but may not be the most efficient in
general. In addition, we note that the required amount of computations increases rapidly
with the order of the system, such that the availability of computing resources must be
considered. However, we find in all of our examples that this tuﬁing guideline leads to
satisfactory results in a ‘timely fashion, provided t_hat the initial choice. of LARC is
generated by using Procedure 1 given in the previous section. Each problem takes less
than 30 minutes using a PC with a 450 MHz AMD K6-HI CPU and 64 MB PC-100
SDRAM running MATLAB IV under Windows 98 SE. This $600 computer is called “our

computer” for convenience.

From linear optimal control theory, we know by inspection that the Riccati equation (2.12)

corresponds to the quadratic performance index:

J= j :(xT‘Gx +u(x)Ru(x)) dt

o 1 (2.18)
= j (2ex"Ix + —u? (x)) dt
0 2p
where p, ce R*, 6 =2cIl and R = ZL[I] . In addition, we recognize that the linear
P
optimal control that minimize J is given by:
u(X) = 1y 5r (x) =—R'B'Px = -2pB” Px (2.19)

This shows that the surfaces S, _, and S

uLoR o are the same and are given by

ULARC
{x |BT'PX =0} . When the performance index (2.18) is employed to generate iy p(X) ,

the following striking relationship is observed from (2.16) and (2.19):
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Uy or (X) = % Urarc (X) = upapc (X) | (2.20)

Because of the relationship between LQR and LARC in (2.20), we note that for SIMO
linear systems:

1) It can be inferred that if the response characteristics resulting from LOR are

acceptable then so are those resulting from LARC with n=2.

2) Robustness properties of LARC can be drawn directly from those of LOR.

However, we emphasize that LARC is primarily formulated for nonlinear systems.
Although it is possible to apply a LARC to a linear system, this may not offer advantages
over existing techniques because the available solutions of linear differential equations

have not been incorporated into the formulation of LARC.

We know from optimization theory that minimizing the perfonnapce index J in (2.18)
and c¢;J should produce the same solution V¢, € R*. This implies that u; 5 (x) in
(2.19) depends on the ratio of c and 1/p. Since u;,(X) = %u rarc (X) , it follows that

u; 4pc (X) depends on the ratio of ¢ and 1/ p when 1 is fixed. In this case, it is sufficient
to fix ¢ =1 and alter p to produce different u;,,-(x). We now give the following
heuristic guideline for tuning the value of p aiming for large attractive regions.

Step 1 For the initial selection of p determined from thé procedure in the previous

section, we employ numerical simulations to estimate the corresponding
attractive region for the nonlinear system, and record boundary points of
such attractive region. We understand that the attractive region in this

section is estimated numerically but we simply call it an attractive region
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for convenience. Initial conditions for simulations may be distributed

evenly in the required operating region about the origin for simplicity.

Step 2 For a new value of p determined from the procedure given in the previous

section, start numerical simulations at initial conditions just outside the
numerically estimated attractive region recorded in Step 1. If the new

U, arc(X) yields convergence from these initial conditions, verify
convergence from initial conditions near the origin. Otherwise, change p

in the opposite direction and restart Step 2. This is terminated when we are
satisfied with the resulting attractive region, or when the computation time
reaches a limit, or when we find from the record that the attractive region is

not getting larger by tuning p .

Continuing with Step 3, we may tune the direction of the gain matrix if a larger attractive
region is required. It turns out that direction tuning can be conducted conveniently if we

write the controller found from Step 1 — 2 in the normalized form: |

B'P

——X

[PB]

= —p|[PB|| K 45X | (2.23)
=—p|PB|[k; .. k,Ix

parc (X) = —~p|[PB|

where ——=[k;, .. k,]1=Kizc-
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Step 3 (optional) Perturb the direction of K{A xc by increasing a component & i

j€{1,...,n} by a small value, normalize the perturbed K7 using the 2-
LARC g

norm, and run simulations at initial conditions just outside the previous

attractive region. If the simulations show convergence, restart Step 3. If the
trajectories diverge, restore k j» change the index j, and restart Step 3. All
components of K .,z are perturbed in the same fashion, and all

perturbation must be “feasible” or A;(A — p"PB"K warc) <0 Vi for local

stability.

We now present examples where the generation of u, ,-(x) and the selection of p are
discussed. For simplicity, we fix the direction of K, ,.-~ and fix n =1 although tuning
the direction of K, .- and the value for n can produce better results. Under these

restrictions, the only one design parameter is p for every n-dimensional system. Clearly,
this facilitates controller design for high-order systems. It is not our intention to convince
the readers that an attractive region resulting from LARC is the largest when compared to

those resulting from other techniques. We want to show that a LARC can be generated

systematically using the concepts of eigenvector condition and of eigenvalue ratio, and

can produce reasonably large attractive regions in a timelyv fashion. Notice that LARC

ultimately generates a set of constant linear gain matrices, which is obviously a subset of

all possible linear gain matrices generatable by using pole placement.
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The strength of LARC comes from the formulation of eigenvector condition (Proposition
1.1) and the eigenvalue ratio (Proposition 1.2) in which effects of nonlinearities have been
incorporated implicitly to choose a quadratic Lyapunov function that allows us to obtain a
reasonably large LAR. Note that it is not obvious how the formulations of existing linear
control techniques such as optimal controls and pole placement are related to attractive
regions of the nonlinear systems (1.1). In addition, it is not clear how several parameters
for such contrbls should be selected to produce a reasonably large attractive region.
Accordingly, we present several possibilities for those schemes. The reader is cautioned
that the results presented in these exainplés are generally not the best possible from their

respective schemes.

Example 2.1 (An Artificial System)

The nonlinear system is reproduced from (E 1.1.1):

l:fclJ_[le2+10x1+10sin(x1)2sin(x2)-x12}+[ 0 }u

i 5x2 +sin(x,) cos(x,) +1.5 (E2.1.1)

x=f(x)+gu

The corresponding linearized model about the origin is reproduced from (E 1.1.2):

X 10 10§ x, 0

= + u
X, 10 1)x,| |25 (E2.1.2)
x=Ax+Bu

In the followings, we apply pole placement, LQR, and LARC to generate linear controls
for local stabilization of (E 2.1.1) and compare the dimensions of the resulting attractive

regions. For each technique, we employ several sets of parameters to generate the

corresponding controllers. The results are summarized below:
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a) Linear Controls Resulting from Pole Placement
We apply pole placement to locate the eigenvalues of A =[A —BK ;] at several

locations in the LHP for local stabilization. The subscript PP stands for pole placement.
Some specific possibilities are presented below:

al)  The linear control:

u(x) = upp(x) =60 20] = K ppx (E 2.1.3)
is applied to the nonlinear system (E 2.1.1) to places the two eigenvalues of the matrix
A=[A-BK,] at A, , =—19.5+ j25.095 in the LHP.
a2) The linear control:

u(X) = upp(x) = —[51.9986 12.4023|x = K ,px (E2.1.4)
is applied to the nonlinear system (E 2.1.1) to places the two eigenvalues of the matrix
A=[A-BK,] at A,, =—-10% j30 in the LHP.
a3)  The linear control:

u(x) =upp(x) = ~[100 248k = -Kppx (E2.1.5)
is applied to the nonlinear system (E 2.1.1) to places the two eigenvalues of the matrix

A=[A-BK,] at A, , =30+ ;30 in the LHP.

b) Linear Controls Resulting from LOR

We apply LQR to minimize several performance indexes with respect to the linearized

model (E 2.1.2). Some specific possibilities are presented below:
bl)  The LQR:

u(X) = uypp(x) = —[71.4724 33.1405) = K p5x (E 2.1.6)
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is applied to the nonlinear system (E 2.1.1) to minimize the performance index:
J=j°°[xT b0 000142 (x)]dt E2.1.7)
o o 05 R .

This LQR locates the eigenvalues of A =[A - BK Lor] at A; =-17.9715 and
A, =-53.8797 in the LHP.

b2)  The LQR:
U(X) = 1y pp (X) = —[79.1464 408145 = -K ; 5px (E2.1.8)

is applied to the nonlinear system (E 2.1.1) to minimize the performance index:
© 7105 0 5
J= j o K| | KH0.001uig (0)]dt (E 2.1.9)

This LQR locates the eigenvalues of A=[A-BK 1or] at Ay =-12.2976, and
A, =—78.7386 in the LHP.

b3)  The LQR:

U(X) = ;o (X) = —[85.7899  41.4668)k = K ; 5z x (E2.1.10)
is applied to the nonlinear system (E 2.1.1) to minimize the performance index:

J= jo“’ [x7 Ix +0.001 12y (x)] dt (E2.1.11)

This LQR locates the eigenvalues of A =[A —BK Lor] at A; =-14.2599, and

A, =—78.4071 in the LHP.

c) Linear Controls Resulting from LARC
To generate our LARC, we follow the guidelines given in Section 2.4. The plot of

eigenvalue ratio »~ versus p in Fig. E2.1.1 is generated from our PC in approximately 2
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seconds. Note that because we employ Q = I, the negative eigenvalue of M is at —1 and it
follows that r, = A,y . From Fig. E2.1.1, we see that the eigenvalue ratio decreases
when p increases but the decreasing of the eigenvalue ratio becomes small for large
values of p. We construct and examine our LARC at p = 2000,3000,and 4000 because
the eigenvalue ratios corresponding to these values of p are small and because the
eigenvalue ratio does not decrease significantly for larger values of p .

Using the tuning guideline in Section 2.4, we start from p = 2000 and increase p to 3000

and 4000:

15
10
. K
0 —0 Q
5
0 |
0 1000 2000 3000 4000
P

Fig. E2.1.1 A Plot of Eigenvalue Ratio Versus p
Symbol: o =points where we construct and examine the corresponding LARC

cl)  The LARC:

U(X) = 1y gpe(X) = —[112.7540  49.7081)x = -K, ;50X (E2.1.12)
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is applied to the nonlinear system (E 2.1.1) to satisfy the eigenvector condition with
p = 2000 . This LARC locates the eigenvalues of A =[A —~BK -] at A, = —16.3686,
and A, =-96.9017 in the LHP.
c2) TheLARC:

u(X) = Uy 4p0(X) = —[137.0262  59.7663)x = K, ,p-X (E 2.1.13)
is applied to the nonlinear system (E 2.1.1) to satisfy the eigenvector condition with
p =3000. This LARC locates the eigenvalues of A =[A ~BK,z-] at A, =—-15.8390,
and A, =-122.5767 in the LHP.
c3) TheLARC:

u(X) = g0 (X) = —[157.4870  68.2440f = —K | 450X (E 2.1.14)
is applied to the nonlinear system (E 2.1.1) to satisfy the eigenvector condition with
p =4000. This LARC locates the eigenvalues of A =[A —BK ] at A, =-15.5573,

and A, =—144.0527 in the LHP.

By means of numerical simulations, we found that the linear controls upp(x) in a3),

Uz or (X) in'b3), and u; 4 (X) in c3) produce the largest attractive regions for their
respective schemes. The resulting attractive regions are shown in Table E2.1.1. By
inspection, the largest numerically estimated attractive region corresponds to u; 4~ (X) in

c3). We now investigate the validity of theorems in Chapter 1 and 2 while showing in

details the construction of u; 4z (X) in ¢3). To generate a LAR controller with p = 4000

and ¢ =1, we solve the Riccati equation:

0=—2cI-PA-A"P+2pPBB’P (E 2.1.14)
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100

x;_ 0

-100 |

Table E2.1.1 Attractive Regions of the Artificial System under Different Controls
Legends: M= convergence under LARC ¢3), @ = convergence under LQR 53)
= convergence under pole placement a3), [J = divergence

This yields:
0.5201 0.0157
= (E2.1.15)
0.0157 0.0068
The corresponding LARC is:
=—[157.4870 68.2440]x E21.12)

=-KarcX
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where K, z- =[157.4870 68.2440]. We compute further:

1 T 5.2005 2.6869
M=—[PA+A'P]= (E2.1.16 a)
2 2.6869 0.1643
A=Ay Ay, ]1=[6.3648 —1.0000] (E2.1.16 b)
[ | | 0.9176 -0.3976 E2.1.16 0)
va =1V v = 1.
M=t b Tl To3976 09176 ‘
where vy, € R", v =1, i=1, 2.
1 T - 6.2005 2.6869
N =—[[PB]JK +K PB]' |= E2.1.17
7 B ware + RiarcPBI- {2.6869 L1643| 2
Ay =[AN; An]1=[7.3648 0.0000] (E2.1.17b)
[ | | 0.9176 -0.3976‘! (E21.170)
vy =[v Vol = = 117 ¢
NN N7 03976 09176 | M
[PB] =[0.0394 0.0171]" (E2.1.18 a)
[PB] = [PB] _ [0.9176 0.3976]" (E2.1.18 b)
PB]
Kl izc = Kiame 0.9176 0.3976]" E2.1.19
1arc =77 7- L0 3976] (E2.1.19)
K Eare | |
We notice the following properties of M and N predicted by our theorems:
1) M has exactly one positive eigenvalue Ay, .
2) N has exactly one positive eigenvalue Ay, and has no negative eigenvalue.
3) M and N share the same set of eigenvectors.

4) le = VNI .
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5) The eigenvector vy, corresponding to the only positive eigenvalue Ay, bisects the
angle between the vector [PB] and K], . Indeed:
Var-[PB]= vy Kiare = [PBLK 4pc =1
6) The directions of the vectors [PB] and K. are the same. Indeed:
[PB] ZKZARC
These imply that the directions of VG, (x) = [PB] and of v,y are the same and the

eigenvector condition is satisfied.
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Example 2.2 (A Double-Inverted-Pendulum System with Lower-Joint Control)

We consider in this example the problem of stabilizing about their upright positions both
links of a double-inverted-pendulum system using torque control at the lower joint only.
This forth-order system is a nonlinear underactuated system, whose the number of inputs
(one) is less than the number of outputs (two).‘ No global stabilizing controller for this
system has been repoﬁed in the literature. Difficulty in designing a controller for this
system arises not only because‘ of the nonlinearities, but also because the system has only
one input available to stabilize two outputs. This system appears in (Walker et al 1991)
using feedback linearization and in (Misawa, Arrington, and Ledgerwood, 1995) using a
LQR controller. In this example, we examine the numerically estimated attractive regions
resulting from our LARC and from the LQR in (Misawa, Arrington, and Ledgerwood,

1995).

Figure E2.2.1 illustrates the elements of this example, and numerical values for

parameters are given in Table E2.2.1.

upright
position

gravity g

Fig. E2.2.1 A Double Inverted Pendulum System (Misawa et al, 1995)
Remark: Control torque u is applied to joint 1 only.
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The equations of motion are:

X X U
H,  |+H,|. |+H,= (E22.1a)
X, X, 0

where the matrices in (E 2.2.1 a) are:

H - Jo+ I +milf +myLi myLil, Czs(xl — %) (E2.2.1b)
m, Lyl cos(x; — x;) myly +1,
—g(m,l, +m, L, )sin(x
H, - glmdy +myLy)sin(x) (E22.1¢)
- m,gl, sin(x,)
HC _ | CI. +C, myxy Ll sin(x; ~ x,) = G, (E2.2.1d)
—myx Lyl sin(x; — x,) — C, G

Physical Parameters | Nomenclatures | Estimated Values | Units
mass mj 0.132 kg
my 0.088
total length L; 0.2032 m
Ly 0.2540
distance to center of 5 0.1574 m
gravity form pivot I 0.1109
damping coefficient C,; 0.00118 N.m.s
C; 0.00056
inertia I 0.00362 kg.m”
I 0.00114
Jo 0.00006

Table E2.2.1 Nomenclatures of Physical Parameters and the
Corresponding Numerical Values of the Double Inverted Pendulum (Misawa et al, 1995)

The equation of motion for this system can be written in the form:
x =f(x)+g(x)u (E2.2.2 a)

where:

x=[x, x, % x]1 =[x x, % i1 (E2.2.2b)
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X3
X4
(sin(x; — xz)x32 +0.2824 x5 —0.2824x, +48.2776sin(x, ))cos(x; — x, )
L 0.9833x, +1.1206sin(x; — x,)x; —0.3165x, —214.3082sin(x,) }
~5.9809 +cos” (x, — x,)
(~0.8774x; —sin(x, — xz)xﬁ +0.2824x, +191.2383sin(x, ))cos(x, — x,)
{— 5.3371sin(x, — x,)x3 —1.5071x; +1.5071x, — 257.6614sin(x, ) }
—5.9809 + cos® (x,-x,)

f(x) =

(E2.2.2¢)
_ 0 -
0 .
—565.1008
g(x)= (E2.2.24d)

—5.9809 +cos?(x; — x,)
504.2688 cos(x;-x,)

| —5.9809 +cos” (x; — x,) |

For the singular point at the origin, the linearized model of (E 2.2.2) is given by:

0 0 1 0 0
0 0 0 1 0
| 43.0258 —-9.6925 —0.2541 0.1202 T 13431 [ @223)
-38.3942 51.7297 0.4787 -0.3593 -101.2401
= Ax+Bu

It can be shown that (E 2.2.3) is unstable and is controllable. In the followings, we employ
LARC and LQR from (Misawa et al, 1995) for local stabilization of (E 2;2.1) and
compare the dimensions of the resulting attractive regions. Information regarding these
linear controls is summarized below:

a) Linear Control Resulting from LOR (Misawa et al, 1995)

The LQR from (Misawa et al, 1995) is given by:

W(X) =y pp (X) =—[-0.0001 ~3.74 -032 -0.56]x=-K,pex (E22.4)
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This LQR locates the eigenvalues of A =[A — BK ;] at A, , =-5.7977 £ j10.1203,

A, =-1.7890, and A, =—7.6184 in the LHP. The performance index corresponding to

(E 2.2.4) is not given in the literature.

b) Linear Controls Resulting from LARC

To generate our LARC, we follow the guidelines given in Section 2.4. The plot of

eigenvalue ratio r ~ versus p in Fig. E2.2.2 is generated from our PC in approximately 2

seconds. Note that because we employ Q =1, all the negative eigenvalues of M are —}

and it follows that 5 =Ay;.

5000

4000

3000

M
2000 \\
1000
S— —0-

0 0.05 0 0.1 0.15

7,

Fig. E2.2.2 A Plot of Eigenvalue Ratio Versus p
Symbol: o =points where we construct and examine the corresponding LARC

From Fig. E2.2.2, we see that the eigenvalue ratio decreases when p increases but the

decreasing of the eigenvalue ratio becomes small for large values of p. We construct and
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examine our LARC at p =0.05 and 0.1 because the eigenvalue ratios corresponding to
these values of p are small and because the eigenvalue ratio does not decrease
significantly for larger values of p . Using the tuning guideline in Section 2.4, we start

from p =0.05 and increase p to 0.1:

bl)  The LARC:
U(X) =ty 4o (X) = =[-0.1036 —5.2008 -0.3618 —0.8021)x =-K, .-x (E22.5)
is applied to the nonlinear system (E 2.2.1) to satisty the eigenvector condition with
p =0.05. This LARC locates the eigenvalues of A =[A —BK, ] at
Ay =—4.1511% j2.9316, Ay =-29.3605, and A, =-3.1120 in the LHP.
b2) The LARC:
u(X) = 1 pe(X) = =[-0.1791 —6.9628 —0.4884 —1.0809]x =-K, zex (E 2.2.6)
is applied to the nonlinear system (E 2.2.1) to satisfy the eigenvector condition with
p =0.1. This LARC locates the eigenvalues of A =[A —BK, -] at

M = —4.6045% j2.5161, Ay = —43.1314, and A, = ~2.2981 in the LHP.

System responses under the LQR and the LARC in (E 2.2.6) are given in Fig. E2.2.3.

Notice that responses under the LARC are slower than those under the LQR but the LQR

yields divergence when the system is launched from x(0) =[0.25 0.25 0.1 0.1}".

Now, we employ numerical simulations to estimate the attractive regions resulting from

the LQR in (E 2.2.4), and the LAR controllers in (E 2.2.5) and (E 2.2.6). In these

simulations, we assume that convergence had occurred if [x(¢)| < 0.01 for 40 <r <50,

while divergence had occurred if 3¢ Inx(t)” > 2000 . It turns out that the attractive region
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resulting from the LARC in (E 2.2.6) is the largest while that from the LQR in (E 2.2.4) is
the smallest. Attractive regions of the system under the LQR and the LARC in (E 2.2.6)

are given in Tables E2.2.2 and E2.2.3. From these tables, we notice that the dimension of
the attractive region resulting from u; ,z~(X) is not considerably larger than that from
upor (x) . However, when considering the principle behind LARC and how quickly we

can generate a LAR controller, it is reasonable to employ LARC for local stabilization. In

the next chapters, LARC will be extended to obtain better results.

0.3

0.1

__ix () (rad)
e 2 Xy (1) (rad) oLk

JEERS VRSO PGS PSS G PUUS N U UG U

e R ikttt

w - - - -
N PR
(6;]

t (sec)

Fig. E2.2.3 (a) Responses of the Double-Inverted-Pendulum System under u; 45~ (x) and
uor(X) with x(0)=[-0.2 02 -0.1 -0.1]"

Now, we demonstrate the validity of theorems in Chapter 1 and 2 while showing in details

the construction of u; 5~ (x) in 1) with p =0.05 and ¢ =1. The selected LARC in 52)
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having p =0.1 and ¢ =1 can be generated in the same fashion. We solve the Riccati

equation:
0=-2cI-PA-A"P+2pPBB’P (E2.2.7)
__tx(t)(rad)
e 1 X5 () (rad)
T T X2 (tbu E i
_0.4 i 1 L Lor 3 I
0 0.5 1 1.5 2 2.5 3
t (sec)

Fig. E2.2.3 (b) Responses of the Double-Inverted-Pendulum System under u; 4~ (x) and
uror(x) with x(0)=[025 0.25 0.1 0.11"

This yields:

3.8822 9.7644 1.2414 1.4116
9.7644 92.9231 10.0839 12.3278
T11.2414 100839 12109 14285
1.4116 123278 1.4285 1.7592

(E 2.2.8)

The corresponding LARC is:

Uparc(X) = —pB Px
=-[-0.1036 -5.2008 -0.3618 -0.8021} (E 2.2.6)

=-KreX
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where K - =[-0.1036 —5.2008 —-0.3618 —0.8021]. We compute further:

~0.7855 10.7717 0.7493 1.6613

1 , 107717 539.9765 37.6301 83.4325

—[PA+ATP]=

2 0.7493  37.6301 1.6175 5.8035
1.6613  83.4325 5.8035 11.8674

M = (E2.2.9 a)

M= Ay A Awa]=[555.6759 —1.0000 —1.0000 —1.0000] (E2.2.9b)

0.0196 —-0.9026 —0.3052 —0.0812

: 0.9858 0.0276 0.1254 —0.1646 2290

= v A\’ = LI C
VM ELWYM Yva Vs Yl =g aeec 04117 02820 0.4299

0.1520 0.1230 -0.9009 0.8840

where vy, € R”, vyl =Li=1, ... 4.

0.2145 10.7717 0.7493 1.6613
10.7717 540.9765 37.6301 83.4325
0.7493 37.6301 2.6175 5.8035
1.6613  83.4325 5.8035 12.8674

1
N = [[PBIK ¢ +KLsc[PBI' 1=

(E2.2.10a)

An=[Ani Anz Ans Ang]=[556.6759 0.0000 0.0000 0.0000] (E2.2.10b)

0.0196 -0.9026 -0.3052 -0.0812
0.9858 0.0276  0.1254 -0.1646|

vwENG Ve Vs Vwal=l o acee 04117 02820 04200 |T M
0.1520 0.1230 —0.9009 0.8840

(E2.2.10¢)
[PB]= [-2.0711 —-104.0170 —7.2354 -16.0421 (E22.11a)

[PB]= ﬁ = [-0.0196 —0.9858 —0.0686 —0.1520]" =v,y =vn; (E2:2.11D)
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T
KL v = H—K%C—H =[-0.0196 —0.9858 —0.0686 —-0.1520]" (E22.12)
LARC

We notice the following properties of M and N predicted by our theorems:

1)
2)
3)
4)

5)

6)

M has exactly one positive eigenvalue A,y .

N has exactly one positive eigenvalue Ay; and has no negative eigenvalue.

M and N share the same set of eigenvectors.

Vmi = VN1 -

The eigenvector vy, corresponding to the only positive eigenvalue Ay; bisects the
angle between the vector [PB] and K? .. Indeed:

Var-[PBl = vy Kiype = [PBL.K 4z =1
The directions of the vectors [PB] and K .. are the same. Indeed:

[PB] =K/ e

These imply that the directions of VG (x) =[PB] and of vy, are the same and the

eigenvector condition is satisfied.
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Table E2.2.2 Simulation Results of the Double Inverted Pendulum System in Regions farther from the Origin (x,> 0, x,> 0)

Remark: Attractive regions do not differ significantly in smaller regions about the origin.
Legends: B =LQR and LARC systems converge, Z = LARC system converge, [J= All systems diverge

€6



0.45 | 425 | (;.jt | 375 | 0.35
20.5]-25] 0 10.25]0.5]-0.5]-25] 0 ]0.25] 0. 05]-05]-25] 0 10.25]0.5-0.5]-25] 0 025 0.5
0.5 W / TH %
55U v o o
-0.45 0 W 20 74
%255 W 7 7
0257 20 Y, 7
-425 0o W/ v/ 70 70
ozﬁ 7 7 7
05 -/ 2707 W Y, W,
02577 7 I 7
x|-40|x | 0 P g/ 20 L
0.25 7 7 7
0.5
0.5 007 77 W 0
0257 7 // U 7
-375 W % 7 7 G UG
0.25 W 7 7
0.5
0.5 Y777 4% % 700 2
0257 W, 70 70 .
-0.35 0 W W 0 G
0.25 W ; 7 72
0.5 v 7 7

Table E2.2.3 Simulation Results of the Double Inverted Pendulum System in Regions farther from the Origin, (x, <0, x,>0)

Legends:

Remark: Attractive regions do not differ significantly in smaller regions about the origin.
= LARC system converge, L= All systems diverge

B =LQR and LARC systems converge,

96
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Example 2.3 (A Cart-and-Pole System with Force Control on Cart)

We now consider a cart-and-pole system in which we use force control on the cart to
stabilize the pendulum about its upright position and stabilize the cart about a reference
position, which is set to zero. This system has one input and two outputs as in the double-
inverted-pendulum system, but with less mathematical complexity. Although the system
is considered in many works (Baumann, and Rugh, 1986), (Slotine, and Li, 1991),
(Wang, 1994), (Ogata, 1997), we have found no controller that guarantees global
stabilization for this system. Accordingly, it is common that a linear state feedback

control designed by using a linearized model is employed for local stabilization.

gravity g

u (force)
L

M

@) Q) -

X1
o

Fig. E2.3.1 A Cart-and-Pole System (Slotine, and Li, 1991), (Ogata, 1997)
Remark: M=2kg,m=0.1kg,[=0.5m, and g =9.81 )’cg.m..s*'2
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The nonlinear equations of motion for this system are given by (Slotine, and Li, 1991):

. . .2 .
(M +m)X; + mlx, cosx, —mix; sinx, =u

8 (E2.3.1)
mX; coS x, + mix, —mgsinx, =0
We may present the previous equation of motion in our standard form as:
x =f(x)+g(x)u (E23.2a)
where:
x=[x, x, x x] =[x x, x x,] (E23.2b)
_ . -
X4
£(x) = ml sin(x, )xi ’—.m;g sin(x, ) cos(x,) (E2320)
(M+sin” (x,))m)
(m+M)gsin(x,) cos(x,)m sin(xz)xi
| (M+sin®(x,)m)l (M+sin®(x,)m)
- 0 -
1
S E232d
g = i sin”(x,)m (E23.2d)
3 cos(x,)
| (M+sin® (x)m)] |

Linearizing the (E 2.3.2) about the origin using the physical parameters M = 2 kg, m = 0.1

kg,1=0.5m, and g = 9.81 kg.m.s”* produces the linearized model in (Ogata, 1997):

| [0 0 1 0 0
% | |0 0 0 1 0

= X + U
%] |0 —04905 0 0 0.5 (E2.3.3)
% | |0 20.6010 0 O -1

=Ax+Bu
It can be shown that (E 2.3.3) is unstable and is controllable. In the literature, we find that

(Ogata, 1997) employs pole placement to generate a linear state feedback control for
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local stabilization of this system. Accordingly, we compare the dimension of the
attractive regions resulting from this linear control to that resulting from LARC.

Information regarding these linear controls is summarized below:

a) Linear Control Resulting from Pole Placement (Ogata, 1997)
Reference (Ogata, 1997) employs a linear control based on pole placement for stabilizing
this system. This is given by:
u(X) = upp(X) = —[~163.0989 —298.1504 —73.3945 —60.6972]x =K ,px
(E2.3.4)

This linear control locates the eigenvalues of A =[A —BK 1 at A, =10, A, =-10,

and &, , =2+ j24/3 in the LHP.

b) Linear Controls Resulting from LARC

To generate our LARC, we follow the guidelines given in Section 2.4. The plot of
eigenvalue ratio »_  versus p in Fig. E2.3.2 is generated from our PC in approximately
2 seconds. Note that because we employ Q =1, all the negative eigenvalues of M are —1
and it follows that r_ = Ay . From Fig. E2.3.2, we see that the eigenvalue ratio
decreases when p increases but the decreasing of the eigenvalue ratio becomes small for
large values of p. We construct and examine our LARC at p =300 and 500 because the
eigenvalue ratios corresponding to these values of p are small and because the
eigenvalue ratio does not decrease significantly for larger values of p . Using the tuning

guideline in Section 2.4, we start from p = 300 and increase p to 500:
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Fig. E2.3.2 A Plot of Eigenvalue Ratio Versus p
Symbol: o =points where we construct and examine the corresponding LARC

M
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)

bl)  The LARC:
1(X) = 1t 4z (X) = —[~17.3205 —143.6917 —27.7674 —36.4676]x = —K  ,z0X

(E2.3.5)

is applied to the nonlinear system (E 2.3.1) to satisfy the eigenvector condition with

p =300. This LARC locates the eigenvalues of A =[A —BK, -] at A, = —16.6600
A, =-0.9139, and A, , = -2.5050 £ j2.2101 in the LHP.
b2)  The LARC:

U(X) =, o0 (X) = —[- 22.3607 —180.0604 —35.6916 —46.0217]x =K ,p-X

(E 2.3.6)
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is applied to the nonlinear system (E 2.3.1) to satisfy the eigenvector condition with
p =500. This LARC locates the eigenvalues of A =[A —BK -] at A, =—22.1829,

Ay =—0.9304, and A, = —2.5312 £ j2.0544 in the LHP.

By inspecting the locations of the poles of the linearized model under u; 4~ (X) in (E-
2.3.5), (E2.3.6), and upp(x) in (E 2.3.4) (Ogata, 1997), we expect that the system
responses under the LAR controllers are slower than those under u,,(x) near the origin.

In Fig. E2.3.2, we simulate the system under u; z-(x) in (E 2.3.6) and under u,,(x) in

(E 2.3.4). We notice from Fig. E2.3.2 (a) for which the system is launched from
x(0)=[0.1 0.1 0.1 0.1} that the responses under u; 4rc(X) are slower than those
under upp(X), but with smaller overshoot. In Fig. E2.3.2 (b), the system is launched from
x(0)=[1 0.5 0 0]".From this initial condition, we see that upp(x) forces the system

to response quickly and yields divergence, while u; 4z-(x) does not force the system to

response as quick but the trajectory eventually converges to the origin.

We employ numerical simulations to estimate the attractive regions resulting from the

pole placement controller in (E 2.3.4), and‘from the LAR controllers in (E 2.3.5) and (E
2.3.6). In these simulations, we assume that convérgence had occurred if "x(t)“ <0.01 for
40 < r <50, while divergence h2d occurred if 3r |[x(r)| > 2000 . It turns out that the
attractive region resulting from u; 45 (x) in (E 2.3.6) is largest while that under up(x) is

the smallest. The attractive regions resulting from u; 45~ (x) in (E 2.3.6) and upp(x) are
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given in Tables E2.3.1 and E2.3.2. From these tables, we notice that the dimension of the
attractive region resulting from u; 4. (X) is significantly larger than that from u,,(x).

Based on these investigations, we trade off in this example fast responses near the origin
against a larger attractive region. This situation is common in control systems design, in

which a trade-off of conflicting goals is used.

0.3

! PN z
1O |
e
: = X1 (D ypp E
x,(#) (m) g4 ] 42} S S I —
x(t) (rad) | ! | ! |
O - \’: : E E
N L Xy (0),, ! |
0.1 |i----2C e S A R
:1;,4 E Ex2(t)uppi E
-0.2 ' : X X :
0 2 4 6 8 10
t (sec)

Fig. E2.3.2 (a) Responses of the Cart-and-Pole System under u; ARC(X) and upp(X)
with x(0)=[0.1 0.1 0.1 0.1]"

Now, we demonstrate the validity of theorems in Chapter 1 and 2 while showing in
details the construction of u; - (x) in (E 2.3.5). To generate a LAR controller with
p =500 and ¢ =1, we solve the Riccati equation:

0=-2cI-PA-ATP+2pPBB’P (E2.3.7)

This yields:
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3.1924 4.1163 1.5478 0.8186
41163 204904 57517 3.2360

P= (E2.3.8)
1.5478 5.7517 2.0509 1.0969

0.8186 3.2360 1.0969 0.6405

e 7
™ X1 (1)1 |
E i x2 (t)upp E E .
_2 1 ) I L
0 1 2 3 4 5
t (sec)

Fig. E2.3.2 (b) Responses of the Cart-and-Pole System under u; 5~ (X) and upp(x)
with x(0)=[1 05 0 0}

The corresponding LARC is:

Urare(X) = —pB’ Px
=—[-22.3607 -180.0604 -35.6916 -46.0217]x  (E2.3.9)

= -K  4rcX

whére K, e =[-22.3607 -180.0604 -35.6916 - 46.0217). We compute further:

0  8.0525 15962 2.0582
1 -~ 180525 63.8435 12.8533 16.5734

M =—[PA + ATP]= (E2.3.10 a)
2 1.5962 12.8533 1.5478 3.2852

2.0582 16.5734 3.2852 3.2360
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My =g Az A Amel=[71.6272 =1.0000 —1.0000 —1.0000] (E2.3.10b)

0.1173  0.6359  0.6492 —0.4170
0.9449 —0.0370 0.1229 -0.1216
VM=l VM Vus Vmal=ge0n 05000 —0.7089 - 02435
02415 —0.5682 —02465 0.8672

(E2.3.10¢)

where vy, € R”, IVM,.” =1i=1, ..4.

1.0000 8.0525 1.5962 2.0582
8.0525 64.8435 12.8533 16.5734
1.5962 12.8533 2.5478 3.2852
2.0582 16.5734 3.2852 4.2360

1
N = [[PBIK yszc + K irc[PB]" 1=

(E2.3.11 a)

An=ni e A Ang]=[72.6272 0.0000 0.0000 0.0000] (E2.3.11b)

0.1173  0.6359 0.6492 -0.4170
0.9449 -0.0370 0.1229 -0.1216]|

WwEN Ve Ve el =g a0 05000 07080 —02435|7 M
02415 —-0.5682 —02465 0.8672

(E23.11¢)
[PB]= [-0.0447 -03601 —-0.0714 -0.0920]  (E23.12a)

[PB]

IPB| [-0.1173 -0.9449 —0.1873 -0.2415]" =vy, = vy, (E23.12b)

[PB]=

R, = SoLiKC =[-0.1173 -0.9449 -0.1873 -0.2415" (E23.13)

We notice the following properties of M and N predicted by our theorems:

D) M has exactly one positive eigenvalue Ay, .



2)
3)
4)

S)

6)
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N has exactly one positive eigenvalue Ay, and has no negative eigenvalue.
M and N share the same set of eigenvectors.

Ym1 = Vni-

The eigenvector vy, corresponding to the only positive eigenvalue Ay, bisects
the angle between the vector [PB] and K7 . Indeed:

Var-[PB]= vy Kipe =[PBIK pc =
The directions of the vectors [PB] and K] ;. are the same. Indeed:

[FE] = K{ARC

These imply that the directions of VG (x) = [PB] and of v, are the same and the

eigenvector condition is satisfied.
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Table E2.3.1 Simulation Results of the Cart-and-Pole System in Regions farther from the Origin (x,> 0, x,>0)
Remark: Attractive regions do not differ significantly in smaller regions about the origin.
Legends: B = Pole placement and LARC systems converge, & = LARC system converge, [J= All systems diverge
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Table E2.3.2 Simulation Results of the Cart-and-Pole System in Regions farther from the Origin (x,<0, x,>0)

Remark: Attractive regions do not differ significantly in smaller regions about the origin.
Legends: B = Pole placement and LARC systems converge, @ = LARC system converge, L1= All systems diverge
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Example 2.4 (A Double-Inverted-Pendulum System with Upper-Joint Control)

We reconsider the double-inverted-pendulum system (Misawa, Arrington, and
Ledgerwood, 1995) employed in Example 2.2. Now, we want to stabilize about their

upright positions both links of the double-inverted- pendulum system using torque
control at the upper joint only. The nonlinear model is obtained by substituting [0 u]"
for [u O]T in(E2.2.1a),with H,,, H > H. , all state variables, and all physical

parameters being the same those in Example 2.2. The corresponding nonlinear model is

given by:
x =f(x)+g(x)u (E24.1a)
where:
- N -
X4

0.9833x; +1.1206sin(x; — x, )x; —0.3165x, — 214.3082sin(x,)
+ cos(x; — x,)sin(x; — x, )x32 +0.2824cos(x; — x,) x4

—0.2824cos(x; — x,)x, +48.2776c0s(x; — x,)sin(x,)
f(x)= > (E2.4.1b)
—5.9809 + cos(x, — x,)

—0.8774c0s(x; — X,) X5 —cos(x; — Xx,)sin(x; — X, ) X2
+0.2824cos(x; ~ x,)x, +191.2383cos(x; — x,)sin(x,)
~5.3371sin(x, — x,)x3 —1.5071x; +1.5071x, —257.6614sin(x,)
~5.9809 +cos(x, ~ x,)° |

0

0
504.2688cos(x, — x,)

~5.9809 + cos(x; — x,)*
—2691.3251

| ~5.9809 + cos(x; — x,)” |

g(x) = (E2.4.1¢)
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Linearizing (E 2.4.1) about the equilibrium point at the origin yields:

0 0 1 0 0
0 0 0 1 0
43.0258 -9.6925 -0.2541 0.1202 X 101.2401 N (E2.4.2)
-38.3942 51.7297 04787 —0.3593 540.3270
=Ax+Bu

It can be shown that (E 2.4.2) is unstable and is controllable. We have not found a
reference that proposes a stabilizing controller for this system. Assuming that local
stabilization is acceptable, we may employ techniques for linear systems such as pole

placement, LQR, or LARC for this purpose. We now examine some specific possibilities:

a) Linear Controls Resulting from Pole Placement

The linear control: -
U(X) = upp(X) = —[-89.2977 ~8.9947 -9.9560 — 1.6574]x = -Kppx (E24.3)
is applied to the nonlinear system (E 2.4.1) to places the eigenvalues of the matrix

A=[A-BKp,] at A, , =—4 j44/3, 1, =-50,and A, =55 in the LHP.

b) Linear Controls Resulting from LOR
The linear control:

u(X) =uppp(x) =—[ -114.0530 —1.3217 ~18.8336 —2.0673]x=-K x (E24.4)
is applied to the nonlinear system (E 2.1.1) to minimize the performance index:

J =[x Ix +0.5u] op ()] dt (E 2.4.5)
This LQR locates the eigenvalues of A =[A — BKz] at A, =-5.91% j0.5423,

A5 =-1.0021 and A , =—777.4888 in the LHP.
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c) Linear Controls Resulting from LARC

To generate our LARC, we follow the guidelines given in Section 2.4. The plot of
eigenvalue ratio By Yersus p in Fig. E2.4.1 is generated from our PC in approximately
2 seconds. Note that because we employ Q =1, all the negative eigenvalues of M are —1

and it follows that 7 = Ay . From Fig. E2.4.1, we see that the eigenvalue ratio

decreases when p increases but the decreasing of the eigenvalue ratio becomes small for
large values of p. We construct and examine our LARC at p = 2.0 because the
eigenvalue ratio corresponding to this value of p.is small and because the eigenvalue
ratio does not decrease significantly for larger values of p . For this example, we examine
only one value p because it appears from the previous examples that a larger value of p

of does not produce significantly different results.

7800

7600

7400}

7200

7000
6800 k(
6600 Yo

6400
0

2 4 6 8 10
P

Fig. E2.4.1 A Plot of Eigenvalue Ratio Versus p
Symbol: o =points where we construct and examine the corresponding LARC
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The corresponding LARC is given by:

u(X) = i oo (X) = —[~113.5510 ~1.3672 —18.7574 —2.0644}x =K, pox (E2.4.6)
This LARC locates the eigenvalues of A =[A —BK -] at Ao =-5.8906+ j0.5772,

A3 =-1.0482 and A, =-771.3419 inthe LHP.

We first notice that K, is approximately the same as K -, suggesting a strong

possibility that the attractive regions corresponding to #;,,(x) and to u;z-(x) should
be approximately the same. Given a linear model, it is our experience that the situation in
which K, being approximately the same as Kz~ when the quadratic performance

index is arbitrarily chosen does not occur in general. Table E2.4.1 and E2.4.2 show
simulation results from 1250 initial conditions. Convergence and divergence are defined
as those in Example 2.2. The attractive region corresponding to LQR is larger than that
corresponding to LARC. However, the difference is very small. Indeed, the number of
initial conditions from which trajectorieé converge under LQR is 963 while that under
LARC is 961. The attractive region corresponding to pole-placement is significantly
srﬁaller than those under LQR and LARC. Motivated by this result, we examine further if
a larger attractive region can be obtained using a particular choice of LQR. We select
additional 25 quadratic performance indices obtained by perturbing various parameters in
the performance index in (E 2.4.5), and find that the attractive regions corresponding to a
few LQ regulators are larger than that corresponding to the LAR controller. However, the
differences are very small, ranging from 1-3 initial conditions, while the attractive

regions from most of the LQ controllers are significantly smaller than that from LARC.
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B = LQR system converges, [ = All systems diverge
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Summary

The “eigenvector condition”, which is a generalization in n-space of the relative

orientation between Sp, _, and S; ., introduced in Section 1.4 has been

established. Satisfying this eigenvector condition guarantees the symmetry of

Sp, -0 about Si _ in n-space.

Several properties of the functions F, (x) and G, (x) in the expression for VL (x)
have been discovered in this chapter. These properties imply that we can satisfy
the eigenvector condition by applying a particular choice of linear control denoted

by u;4zc(X) to the system. By substituting u#, 45~ (xX) into the expression for

VL (x), we find that the P matrix that satisfies the eigenvector condition is the

solution of a Riccati equation. Accordingly, the existence of such P is guaranteed
provided that the conditions C1 — C4 in Chapter I are satisfied. We do not
formulate our algorithm to solve the Riccati equation for such P because several

algorithms are available for this task.

A striking result is that the eigenvector condiﬁon suggests a particular set of the
quadratic performance indexes for generating LQR. Indeed, the relationship
between LQR and LARC is given by u; o (x) = %uMRC (x) when u; e (x) is
generated from such quadratic performance indexes. However, u;,;(x) does not

satisfy the eigenvector condition in general.
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In contrast to existing linear control techniques such as pole placement and LQR,
we point out that LARC has only two design parameters p and 1 to be selected.
For simplicity in this introductory seetion, we fix N=1. We point out a
geometrical interpretation of p using the concept of eigenvalue ratio and illustrate
how this parameter affects the size of a LAR. Finally, we show by means of
examples how to select an appropriate value for p from the eigenvalue ratio plot
such that LAR controllers can be generated using an inexpensive PC in a timely
fashion. It appears from these examplles that our LAR cohtrollers yield reasonably
large attréctive r'egions‘when compared to those resulting from existing

techniques, although we impose the restriction that n=1.
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Chapter 111

Robust LARC

3.1 Introduction

In Chapter II, we establish a procedure for generating a LAR controller for SIMO time-
invariant nonlvinear systems (1.1) when the exact linearized model is available. In this
chapter, we will extend key results from the previous chapter to establish a procedure for
generating LAR controllers for SIMO time-varying systems when the models are inexact
to complete our discussion on SIMO nonlinear systems. The procedures given in this

chapter can be applied to SIMO time-invariant systems in the previous chapters as well.

In this chapter, the system of interest is described by:

x =f(x,1) + g(x,)u(x) | (3.1
where the Vectoré f(x,1) e‘ R" and g(x,1)e R” are uncertain, and u(x) =-Kxe R.
These are such that x is piecewise continuous in #, and is locally Lipschitz in the

operating region of interest in R” V7> 0. Recall from Chapter I that the above state

equations can be rewritten as:

Il

x=A,x+B, u(x)+[f(x1)— A x+gx Hu(x) B, u(x)]
A x+B, u(x)+f5(x,t,u(x)) (3.2)

= an +1,(x,1)

where A € R, B, e R", A, =[A, —B,K]le R™ is a stable matrix,

fs(x,t,u(x)) =[f(x,1) — A x +g(x,Hu(x) - B ux)]e R*, fo(x,1) =f5(X,1,u(X)) | -k« -
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To be able to employ results developed in Chapter I and II in this chapter, it is necessary

that we rewrite the nonlinear model such that A, is unstable, and [A, B, ] is controllable
or stabilizable. In addition to this, we desire that the nominal model x = A x+ B, u(x) be

chosen in a certain fashion to be able to generate a robust LARC effectively using
techniques that will be developed in this chapter. Example 3.6 illustrates a guideline for
’choosing an appropriate nominal model, which need not be the linearized model about the

origin.

3.2  Stability of Time-Invariant Linear Systems Under Time-Varying

Uncertainties

In this chapter, the available “nominal” nonlfnear model is given by:
| x=f, (x,0)+g, X Du(x) (3.3)
where f,(x,7) and g,(x,7) € ":R”. By linearizing (3.3) about the origin, we obtain the
“nominal” time-invariant linear model:
x=A,x+B, u(x) | (3.4)
where the linear control u(x) = —KXx is such that Kn =[A, —B,K] is stable. In other
words, we replace A and B in the previous chapters by A, and B, respectivély. By this

replacement, we assume in our discussions that the basic conditions C1-C4 in Section 1.3
are satisfied. It is well known (Slotine, and Li, 1991), (Vidyasagar, 1993) that the
following conditions guarantee that (3.4) approximates (3.3) about the origin uniformly in

I
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lim|{ su ”f"(x’z)—A”X” =0
iy sp =

i lg, (x,)-B,|
m| sup +——————
s e BT

In other words, stability about the origin of (3.4) irhplies that (3.3) is locally uniformly

(3.5)
0

i

asymptotically stable when (3.5) is satisfied. In this chapter, we abbreviate “uniformly

asymptotically stable” by “stable” unless otherwise stated. The context will indicate

whether we are interested in the global version or the local version at the moment. Under
the conditions in (3.5), the LARC developed in the previous chapters stabilizes (3.3),
provided that it stabilizes (3.4). This is because when (3.5) is satisfied, (3.4) is a valid

approximation of (3.3) about the origin.

3.3  Uncertainty Specifications

We exploit information about uncertainties for stability analysis and for controller
generation. In each application, uncertainties are classified into two categories by the

available uncertainty specifications:

Structured Uncertainty Specifications for Stability Analysis

For stability analysis, the uncertain vector f,(x,?) is “structured” if it can be written as:

r

fo(x,0)= Y [h;(x,)E x] | (3.6)

=
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where h(x,t)€ [hy, h,;]€ R are uncertain functions, h; <h,;,and E; € R™" j=1,2,

uj w

..., r. In this case, (3.2) can be written as:

X :Knx+§r:[hj(x,t)ij] 3.7)

j=1
The form of structured uncertainty (3.6) is adopted from (Zhou, and Khargonekar, 1987).

In addition to the structure in (3.6), we need to know h,j (a lower bound of & i (x,1)), huj

(an upper bound of %;(x,#)), and E; j=1,...,r for stability analysis.

Unstructured Uncertainty Specifications for Stability Analysis

o (1)

I~

uncertainty is “unstructured”. In this case, the system is described by (3.2).

When the only available uncertainty specification is a bound on , we say that the

Structured Uncertainty Specifications for Controller Generation

The structured uncertainty specifications for controller generation are obtained by

rewriting (3.6) to include the linear state feedback gain matrix explicitly. Indeed, we

substitute — Kx for u(x), and Z[hj (X,t)ij] for £, (x,¢) in (3.2) to produce:
A

k=|A, ~B,K+ 3 hx0E,]|x (3.8)

Jj=1

Because A, [B,K],and E; belong to ™, it appears from (3.8) that the term

n?

Z[h 7 (x,1)E ;] represents uncertainties in A, and [B,K]. Accordingly, we can describe
j=1

the dynamics of the uncertain system by:
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X=|A, —B”K+i[hj(x,t)Ej] X
L j=1
i TA, B,
=[A, + X [he" (x.DE" 11+ [-B, K+ Y [h" (x,0E;" 1] [x (3.9)
i a=1 B=1

=[[A, +AA, (x,0)]+[-[B, + AB, (x,0)]K] [

r:rAn+an,lSrAnSan ,lSan <n

hi(x,0) =hy(x,1), E; =Egn e R™", j=12,..r,

ho(x,0)=hy(x,0), E. =E2" e R™ | j=r, +Lr, +2,...
J B J B Ay Ay

-
AAL(x,0) = Y [ (x,NE ]

a=1
I'Bn
~ OB, (x,0K = ) [hg" (x,NE}"]
p=1

r t, B
N h(x,0E ;] = ﬁ[hfﬂ (% OE 1+ 3 [ (x, DB
a=1 p=1

j=1

Note that the uncertain matrix —[AB,,(x,#)]K depends on K while the uncertain matrix

AA ,(x,t) does not. We assume for simplicity that the uncertainties in K are negligible.

This is a valid assumption, because we can usually construct an amplifier with a precise

gain. We see from (3.2) and (3.9) that:

[AA, (x,1)]x : f(x,n)—A,x

AB,(x,t) =g(x,t)—B,

(3.10)

(3.11)

where the (7, j) elements of AA , (x,¢) and of AB,(x,?) are zero if there is no uncertainty

in such elements. The information on the elements of AA ,(x,f) and AB,(x,?) are
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structured uncertainty specifications for controller generation. Note that writing

TA,
AA, (x,1)X as Z[h:" (x,t)E(f” ]x is obvious because AA, (x,t),Eé” e R™". We note
a=1
that:
an
AB, (x,1) = Y [hg" (x,DE; ™ Ix | (3.12)
=1
where EAB” R"™™ . Using this notation, we write:

B,
~[AB, (x.)|Kx = E[h (x, O[-E""KIIx = ) [h" (x,1)Eg" Ix (3.13)
p=1 p=1

where Eg” = [-EﬁB"K]E R

Unstructured Uncertainty Specifications for Controller Generation

When the uncertainties are unstructured, we have that:

fo(x,0) = [£(x,) — A, x]+[g(x,1) =B, Ju(x) |,_kx

(3.14)
= Af(x,1) + Ag (X, )u(x)

where Af(x,7) =f(x,f)— A, x and Ag(x,?) = g(x,t) — B, . The specifications for

unstructured uncertainties are bounds on ” ” ” )“ and ||Ag(x t)“ denoted by
a N maxdlagcs ively. W loy th ificati
”x" an max(“ g(x,t)") respectively. We can emp‘oy ese specifications
[fa (x.2)]

to bound

]
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[fo(x.0)] _ [ Af(x,1) + Ag(x. D)1 |, ks |

] [~
aten]  Jaseo) - (3.15)
X I
Af(x,
< m—lgl’—t—)ﬂ +[ Ag(x, 0 | K]

We assume for simplicity that the uncertainties in K are negligible. This is a valid

assumption because we can usually construct an amplifier with a precise gain.

34 Theorems

In this section, we state three fundamental theorems. We will employ them for both
stability analysis and controller generation. Most of the results in this section are based on
continuity of eigenvalues of symmetric matrices. Accordingly, we state a symmetric
perturbation theorem based on the Courant-Fischer min-max representation (Ortega,

1990):

Theorem 3.1 (Continuity of Eigenvalues of Symmetric Matrices)

Let A and A+E in R™" be symmetric with eigenvalues A; >...2A, and g, =>...>

respectively. Then:
D -l <|E| (3.16)

wherei=1, ...,n
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A proof for Theorem 3.1 can be found in (Ortega, 1990). In words, Theorem 3.1 says that
small changes in elements of a symmetric matrix A causes correspondingly small changes
in the eigenvalues of A. Next, we state a theorem that allows us to obtain structured

uncertainty bounds for stability of (3.7) in an operating region about the origin.

Theorem 3.2 (Structured Uncertainty Bound)

Let A, be a stable matrix and I" be a region in state space where the bounded

uncertainties can be described by (3.6). The time derivative of the quadratic Lyapunov
function (1.5) along trajectories of the structured uncertain nonlinear system (3.7) is
negative definite in I' if:

Ay (@) <0 (3.17 a)

Xax (Z) <0 (3.17b)

where A, (E) is the maximum eigenvalue of E€ R", and E denotes ®, Z . Matrices
® and Z are computed by applying the following equations in order:

~2Q=PA_ +A’P (3.18 a)
where Q, and P are nxn symmetric positive definite matrices. The existence of such Q

and P is guaranteed by Lyapunov stability because A, is stable.
A=A, + Y hE, (3.18 b)
=1
where the subscript “I” denotes “lower bound”.

®=PA, +A[P (3.18 ¢)
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where ® is a symmetric matrix because [PA;]" = ATP due to the symmetry of P.

= Tpy_ wT
¥, =[PE; +E{P]=¥] (3.18d)
¥; =Ty ¥,Ty, =diag[A;;(¥)) ... A,(¥))] (3.18¢)
where ij =[VU(‘I“j).l o | Vi CF DI T;jT‘I,,j =L, {v;;(¥;) ... v, (¥;)} istheset

of n orthonormal eigenvectors of ¥, the superscript “D” denotes that ‘I’? is diagonal,
and the subscript j denotes that ‘I’? is associated with E;.

b AR 4 (3.18 )

J I['1‘?(:',:')<01—>['1"j3(i,i)=0]
where the subsc‘ript on the RHS of (3.18 f) means that we obtain the diagonal matrix

‘I’? % from the diagonal matrix ‘I’? by setting all negative diagonal elements of ‘I’? to
zero, and ¥? (i,i) denotes the (i, i) element of ¥ . The superscript “0+” is employed
with the superscript “D” to des‘ignate that ‘I’? *0* is diagonal, and is either positive
semidefinite or positive definite. This is because a diagonal element of the diagonal matrix
‘I’? 'O is either zero or positive, because of the operation in (3.18 f).

PO = [T\;,i, IS ]T@j = T.I,j[‘I’?’O’“]T‘,T,j (3.18 g)

In ¥ ", the superscript “D” is not employed with “0+” and we designate that ¥ s

positive semidefinite or is positive definite but need not be diagonal. Finally,

Zscp+§r:[(huj-h,j)\1'3+] (3.18 h)

J=t
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Proof
Our nonlinear system with structured uncertainty is given by (3.7) and is reproduced for

convenience:

X =Knx+2[hj(x,t)ij] (3.7

=
Now, we write forj=1,2, ..., r:

hy(%,1) =y + by (x,1)— By

(3.19)
= hy +lj(x,t)

where
Li(x,1) = hi(x,1)—hy (3.20)
Since h;(x,t)€ [hy, h,l€ R, it follows from (3.20) that [ ;(x)e [0, h,; —hy;] where

h,; —h; >0 Vj . Substituting hy; +1;(x) for h;(x,1) in (3.7) yields:

x=A,x+ Y nE x+ Y L(x1)Ex

j=1 j=1
=[A, + Y hE;1x+ Y I,(x,)E x (3.21)
j=1 j=1

=Ax+ Y L;(xEx

j=1

, .

where A, = A, + Zhle ;- Because A, is stable, we know by Lyapunov stability the
j=1

existence of symmetric positive definite matrices Q and P satisfying the Lyapunov

equation (3.18 a). To examine effects of structured uncertainties, consider the time

derivative of the quadratic Lyapunov function (1.5) along trajectories of the structured

uncertain nonlinear system (3.21):
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(Proof of Theorem 3.2 (Cont.))

Vix,1)= %xT [PA, + A/ PIx + %21 ;. Dx"[PE; + E[Plx
r = (3.22)
= %XT(DX+%EIJ.(X, t)xT‘I’jx

= »
where Q is specified and P is determined from (3.18 a), @ is given by (3.18 ¢), and ¥ j
by (3.18 d). Since V(x,1)= —;—XT(DX when [;(x,1) =0 Vj, a necessary condition for
V(x,1) to be negative definite is that @ be negative definite. Note that because ® = @7,
a sufficient condition guaranteeing that @ is negative definite is given by (3.17 a)
(Orgeta, 1990). To examine @, we notice from (3.18 b) that A, Ih,]:o v = A,.
Accordingly, ® |, ov;=[PA, + ATP]=-2Q and it follows that A;(® lnj=0v) <O,
j= 1,...,'r, i=1,...,n because Kn‘ is stable. Now, we substitute the given numerical

values for hy;, j=1,...,r into (3.18 b) and compute the corresponding A, . Then employ

the resulting K, to obtain @ using (3.18 ¢), and examine the negative definiteness of @

using (3.17 a).

To guarantee that V(x,) is negative definite in the region I where the structured

uncertainties are valid, we need to examine the quadratic terms x’ ¥ ;X in(3.22) Vj. We
assume the general case in which ¥, is not diagonal. Since ¥; =[PE; + E?P], it follows

that ¥7 = [ESP" + P'E;]=[E[P+PE;] =¥, and we conclude that ¥, =¥ Vj.
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(Proof of Theorem 3.2 (Cont.))
Accordingly, ¥; has a set of n orthonormal eigenvectors {v,;(¥;) ... v, (¥ )}
(Hagan et al, 1996). We now reduce x ¥ ;X to the principal axes by using the linear
transformation:

x=Ty z=[v;(¥)) [ vy, (¥ ... | v,y ()2 (3.23)

where Ty, =[v,;(¥;) | vo; (¥ ) |- | v,;(¥;)]. Accordingly,

T TpT
X ¥Yx=z[Te ¥ Ty |z

g Fi I (3.24)
EzT‘I‘?z

where ¥} =Ty ¥ Ty, =diag[h;;(¥;) A, j(\I‘ 3 oo Ay (¥ ). Applying (3.18 ),
we now obtain the diagonal matrix ‘I‘? *0% from the diagonal matrix ‘I‘? by setting all
negative diagonal elements of ‘I‘? to zeros Vj. Accordingly, we have that:
2 [PY or Iz >0 , (3.25)
27 [‘I‘?’0+ Jz = zT‘I‘?z = xT‘I‘jx ) (3.26)

Now, we change the basis back to the original using (3.23):

2" [¥] "z =x" [Ty I [P " [Ty, Ix
=x" Ty [¥7 " 1Ty X (3.27)

=x"¥x20
where W) = Ty, [p2 % ]T.;j . We note in addition that:

Ty, =Ty, (3.28 a)

vor =[wor) (3.28 b)
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(Proof of Theorem 3.2 (Cont.))
To see that (3.28 a) is valid, we observe that [T.lT,j ][T‘,,j] =1 by (3.23). We need to show
further that [T\,,j ][T;j] =1. Assume that [T.,,j ][T.,T,j] #1, it follows that
[TqT‘j][T'yj][ng] # [Tij]=> I[T\;j] # [TqT,j] = [T.,T,j] # [T.,T,j] . A contradiction arises
and we conclude that [T.,,j ][T‘,T,j] =1I.To see th>at (3.28 b) is valid, we transpose both
sides of (3.28 b) to obtain [¥;']" =[Ty [¥7" 0 ITy, 1" =Ty [¥] "1 Ty,

=Ty, [P]" Ty, = L 1

Because (h,; —hy) 21;(x) >0, it follows from (3.26) and (3.27) that:
Lx,Ox"¥ x]<1;(x,0)[x" P x] < (b, - h)[x" ¥I'x] Vx (3.29)

Applying the inequality (3.29) to (3.22) yields the key result:

Vix,1) = %XT(DX+%ZI S DX x < %qu)H%Z((hW. -h)IX"¥'x])  (3.30)

Jj=1 j=1
Since ® = ®" and ¥Y" =[¥5"]", it follows from (3.30) that the following conditions

guarantees that V (x,7) is negative definite in regions where the structured uncertain

specifications hold:

Ay (@) <0 (3.17 a)
Ao (Z)<0 (3.17b)

where Z =® + 2((huj - h,j)‘I‘O-Jr ,and i =1,2,...,n. This completes the proof of
j=1

Theorem 3.2.
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We note for Theorem 3.2 that:

1) (3.17 b) implies (3.17 a) because 2((huj —hy, )‘I’(}+) is either symmetric

j=1

positive semidefinite or symmetric positive definite. The condition (3.17 a) is
given explicitly because it can be checked easily and failure to satisfy (3.17 a)
implies that (3.17 b) can never be satisfied.

2) Theorem 3.2 can handle both symmetric and asymrmetric uncertainties, where the

uncertainties in 7;(x) are “symmetric” when £;(x) € (h;, h,;] and by =—h,;.
1) If we can decrease (h,; —hy;), then (h,; —hy;) j+#1i can often be increased.

2) Substituting a relationship among the upper bounds 4,; j=1,...r into (3.17 b)

can often reduce conservatism of the resulting allowable uncertainty bounds.
These observations will be illustrated in Example 3.1 and 3.2. In Corollary 3.1, we point

out a special case in which the structured uncertainty is single-term:

Corollary 3.1 (Single-Term Structured Uncertainty Bound)
If the structured uncertainty in (3.7) is single-term (» = 1) or:

fo (x,1) = h(x,1)Ex (3.31)
where h(x,t)€ [, h,]€ R, and E€ R™ then the time derivative of the quadratic

Lyapunov function (1.5) along trajectories of the structured uncertain system (3.7) is
negative definite in region I" where the uncertainty specifications are valid if:

Ay (@) <0 (3.32a)

A (@ + (R, — )W) <0 (3.32b)
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where @ = ®” is determined from (3.18 c) using:
A=A, +hE (3.33 a)

¥ =[PE+E'P]=%T (3.33b)

Proof
The necessity of (3.32 a) follows directly from the proof of Theorem 3.1. Now we draw

from (3.30) that for this single-term structured uncertainty:

Vi(x,t)= L ox+ —1-l(x,t)xT‘I‘x
f | f (3.34)

T
=—x Ox+—-I(xX,)w(x
5 -3 (x, Hw(x)

where [(x,¢) € [0, h, — h;] is nonnegative, and w(x) = x! ¥x . We assume that ¥ = 7

has at least one posiﬁve eigenvalue. Otherwise, [(x)x’ ¥x <0 and (3.32 a) implies

(3.32 b), guaranteeing that V (x,7) is negati\}e definite in I". Consider the regions

R, ={x|w(x) <0} and R, = {x|w(x) >0} . We see that:

1) R, NR,.o = because W(x) is a function and thus must have a single value at
a given point.

2) 'CR, UR,., =R" because w(x) is defined Vx.

We now examine V(x,t) in R, o, andin R,
1) For a given point in R, ., , we see that V(x,t) = %XT(DX +%l(x, Hw(x) is negative
definite provided that (3.32 a) is satisfied. This is because I(x)w(x) <0 in R, ,,

and (3.32 a) implies that x” ®x is globally negative definite.
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2) For a given point in R, we see that [(x)w(x) <(h, — h;)w(x). This is because
h, —h >1(x,1)>0 and w(x)=x"¥x >0 in R,_,. Accordingly, we see that in
Rw>0 :
; I 7 1 T l 7 1 T
Vix,t)= EX Ox + El(x,t)x Px < EX Ox + E(h” - h))x" Px (3.35)
Thus, satisfying (3.32 b) guarantees that V(x,7) is negative definite in R, . Since
V(x,t) is negative definite in R, when (3.32 a) 1s satisfied, it follows that satisfying

both (3.32 a) and (3.32 b) guarantees that V(x,t) is negative definite in R, and in

R, - This implies that V(x,1) is negative definite in I' and completes the proof.

For single-term structured uncertainties, we note that (3.32 b) does not imply (3.32 a)

because the quadratic function (h, — & )x” ¥x may be negative at infinitely many points.

Accordingly, both (3.32 a) and (3.32 b) must be satisfied to guarantee stability of (3.7)
under the single-term structured uncertainty. The bound obtained for single-term
structured uncertainties using Corollary 3.1 is equally or less conservative than that from

Theorem 3.1 because:
V(x)= %XT(I)X+%Z(X)XT‘I’X < %xﬂpx +~;~(hu —h)x" Px S%(hu ~m)x"¥"x (3.36)

We now show that our bounds for quadratic functions employed in Theorem 3.2 are

equally or less conservative than those derived from the spectral-norm:
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Lemma 3.1 (Reduced Conservatism of Structured Uncertainty Bounds)

The following inequality holds for all '¥; = ¥} € R™:
XT‘I’jx < xT‘I"j)-+x < XTH‘I’j”x (3.37)

where ¥ is determined from (3.18 d), W}* from (3.18 f) and x"¥%"x >0.

proof

Since ¥; = ‘I’f e R, we have that (Lancaster, 1969):

[, = max (5 (¥ ) = max () (¥5)) =

=1,...,n 1,...n

ax (|4, (¥)) (338

=1,..,n
where |A; (‘¥ ;)| denotes the absolute value of A, (¥ ;). Accordingly, we have:

lel‘I’ j”x = (,-Sﬁ?’fnl A (P, )()[xTx] (3.39)
Now, recall the steps in the proof of Theorem 3.1. In the proof, we reduce x’ ¥ ;X to the
principal axes using the linear transformation x = T\rj z in (3.23), and proceed from (3.24)
to (3.26). For convenience, we reproduce (3.26) from the proof of Theorem 3.1:

2 [P7 %2> 2" PPz =x"¥ x (3.26)
where ‘I’? is a diagonal matrix whose n diagonal elements are ki(‘l’j) ,i=1,...,n, and
‘I’? * 0% is a diagonal matrix obtained from (3.18 f) by replacing all negative elements
along the diagonal of ‘I’? by zeros. Accordingly, all the nonzero diagonal elements of the

diagonal matrix ‘I’? 0% are positive eigenvalues of ¥ ;- We denote these positive

eigenvalues of W, by A} (¥ ;) for some i€ {1,2,...,n}. Now, we change the basis of
g J i J
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z' [‘I’? 0 Jz in (3.26) back to the original basis to produces (3.27). We recall from the
proof of Theorem 3.2 that:
2 [Pz =x"PYx20 (3.27)
where ¥ " =Ty [¥]" |Ty . Substituting x"¥7"x for 2" [¥]"* ]z in (3.26) yields:
X W >x"W x (3.40)
This completes the first part of the proof. Now, we substitute T\,,jz for x in (3.39) to

produce:

XT“‘I’].NX = (iinax |2, (F)) Dx"x]

1,..,n

=(max [A,(F) DIz’ [Ty 1Ty, 12]

(3401
=(.£111ax [A(F)) DIz"1z]
:sziag[Erllax A CED] max |A (P 1z
From (3.31) and the construction of ‘I”]? 0% we see that:
XTH‘I’,~|}X = sziag[igllaxn A CED L s max A ()| ]22 2 [P?% e (3.42)

Since zT[‘I’?’ o+ lz = XT‘P;HX, we have shown that:
XT‘I’].X < XT‘I’(])-+X < XTllTj”X

This completes the proof.

To compare the bounds resulting from Theorem 3.2 to the existing ones, we now employ
two common examples employed in several references. Example 3.1 is given as a review

of Theorem 3.2 while we proceed quickly in Example 3.2.
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Example 3.1 (A Second-Order Uncertain System)

We consider a system drawn from (Vedavalli, 1985), (Vedavalli, and Liang, 1986), (Zhou,

and Khargonekar, 1987):
x=A x+h(x)Ex (E3.1.1)

-3 =21 ] -1 1
is a stable matrix, E = , the uncertain
1 0 0 O

where x =[x, x,]", A, ={
function A(x)e [k, h,]e R, and h; < h,. We see that the uncertainty is single-term and

thus we may apply either Corollary 3.1 or Theorem 3.2. However, it can be shown that

these produce the same conclusions for this particular example. Since Theorem 3.2 is

more complicated to apply, we illustrate this in detail.

It can be shown that the eigenvalues of A, are A; = -2 and A, = -1 indicating stability

of the nominal linear model X = A x. Because A, is stable, we know by Lyapunov

stability the existence of symmetric positive definite matrices Q and P satisfying the
Lyapunov equation (3.18 a). For this example, we choose Q =1 for simplicity. This

produces:

0.5 05
P= (E3.1.2)
05 2.5

In practice, we usually know h; and h, when the model is constructed. In this example,

we assume that the objective is to find %, and A, such that the system is globally stable for

any h(x)€ [k, h,]. Clearly, we desire that &, — A; is as large as possible. Now, we write:

h(X)=h +h(x) -~

) (E3.13)
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where
I(x)=h(x)—h E3.1.4)
Since h(x)€ [h;, h,], it follows from (E 3.1.4) that [(x)€ [0, h, — h;]. Substituting
h, +1(x) for A(x) in (E 3.1.1) yields:

x = A, x+hEx +[(x)Ex

-3 -2 -1 1
= | 0 X+ hy 0 Ox+l(x)Ex (E3.1.5)
= A x +I(x)Ex
where we employ (3.18 b):
- -3 -2 -1 1
A=A, +hE= + h ‘ (E3.1.6)
[ 0 0

To examine effects of uncertainties, consider the time derivative of the quadratic

Lyapunov function along trajectories of the uncertain system (E 3.1.5):

V(x)= 1xT[PK, +A]Px +lz(x)xT[PE+ E'P)x
f : 2 (E3.1.7)
=—x"dx+=I(x)x’ Px
2 2

where Q=1 and P is given by (E 3.1.2), ® =[PA, + A] P] by (3.18 ¢), and

¥ = [PE + E'P] by (3.18 d). Since V(x)= %XT(DX when [(x) =0, a necessary condition
for V(x) to be negative definite is that ® be negative definite as in (3.17 a). To examine
this, we notice from (E 3.1.6) that A, |, o= A, and it follows from the Lyapunov
equation (3.18 a) that A, (® lhlzo) <0 i=1,2.Thus, we gradually vary A, from zero and

examine the sign of A, (@) to find the largest magnitude of the allowable lower bound

max

of the structured uncertainty for which @ remains negative definite. In this example, we
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decrease h, from zero to negative values although the opposite is possible. This is because
we want to compare our result to those from the references in which #; is negative. Under

the particular pair of Q =1 and P in (E 3.1.2), we have that A, (A, lo<y<0) <0 Vi and:

Q| 2+:{0_ 0} (E3.1.8)

hy =~

0 -4
where ¢  =c—¢, c" =c+¢, ce R,and €€ R is infinitesimally small. This shows that
® is negative definite under such pair of Q and P when 0 = A, > -2 . Next, we want to

find the largest value for A, such that (3.17 b) is' satisfied. We employ (3.18 d) to obtain:

po| 1O (E3.1.9
S0 1 1:9)

The matrix ¥ is diagonal but this cannot be expected in general. To illustrate the step

involving (3.18 e) in Theorem 3.2, we execute a reduction to principal axes although this

is not required for this particular problem. Since ¥ = ¥' , ¥ has a set of n orthonormal

eigenvectors {v,(¥) ... vn(‘P)} (Hagan et al, 1996). In this example, n = 2 and we

reduce x’ Px to the principal axes by using the linear transformation:
01
x=Tyz=[v(¥) v,(V)z= L l O}Z (E 3.1.10)

where Ty =[v,(¥) v,(¥)], v;(¥)=[0 11" and v,(P)=[1 01" . Accordingly,

x"Wx = 2" [T, WTy )z

(E3.1.11)
=z'vPz

where ¥? is determined from (3.18 e):
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¥ =T ¥T,
=diag[A,(¥) ... A, (V)] (E3.1.12)

o 5

Applying (3.18 f), we now obtain the diagonal matrix W2 from the diagonal matrix

¥P by setting negative diagonal elements of ¥” to zero:

10
D, 0+ D
oY = E3.1.
b 4 ,['PD(i,i)<0]_>[~yD(i,i):o] L) 0} (E3.1.13)

Accordingly, we have that:
z PP 1z2>0 (E3.1.14 a)
2 [PP "z > 2" WPz = x"Wx (E 3.1.14 b)
Now, we change the basis to the original using (E 3.1.10):

ZT [TD’ 0+ ]Z — XT [T‘;l ]T [lPD’ 0+ ][T‘]_!l ]X

=x Ty [PP " ITyx (E 3.1.15)
=x"P"x
where
O+ D, 0+ T 0 0
P =Ty (YO Iy = X (E3.1.16 a)
Ty =Te (E3.1.16 b)

Because (h, —h;) = 1(x) >0, it follows from (E 3.1.14) and (E 3.1.15) that:

I(x)[x"Px] < I(x)[x" P *'x] <[h, —h1[x"P*x] Vx (E 3.1.17)
Applying the inequality in (E 3.1.17) to (E 3.1.7) yields the key result:

V(x)= %XT(DX+%Z(X)[XT‘PX] < %XT®X+%[hu —h1[x"P%x] vx (E3.1.18)
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Now we recall from the proof of Theorem 3.2 that ® = ®" and ¥ =[¥°"]" . It follows
from (E 3.1.18) that the following conditions guarantees that V (x) is negative definite:

L (@) <0 (3.17 a)

L (®+(h, ~h)¥") <0 (3.17 b)

where i =1,2. To find the upper bound A, of h(x), we determine the largest value of

(h

u

~hy) |] +€ R™ such that (3.17 b) holds. For convenience, we let
hy =—

(h, —h) Ihl:_2+ =c€e R" and invoke (3.17 b):

AZHO 0 }{0 OD<o (E 3.1.19)
0 —4' 0 1

For this example with the particular choices of Q and P, both ® and ¥** are diagonal.

Thus, it is clear that (E 3.1.19) holds when 0 < ¢ < 4. Since (3.17 a) holds when

—2<h; £0 and (3.17 b) holds when 0< ¢ =(h, —h;) [h S+ < 4~ , it follows that V (x) is
=

globally negative definite when:

nx)e (-2, 2) (E 3.1.20)
where we choose #; =—2" and h, =27 . The bound (E 3.1.20) is the same as that from

(Zhou, and Khargonekar, 1987), which is the largest bound we found in the literature for
this particular problem. In general, we need to tune the initial Q to demonstrate a large
allowable uncertainty bound. However, this example is a special case where the simple
initial choice of Q =1 works well. It can be shown numerically that an inappropriate
choice of Q can lead to a very conservative allowable uncertainty bound. Note that when

the uncertain function A(x) is fixed at extreme values, we have:
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1 When A(x) =—-1.9999, the eigenvalues of [Xn —1.9999E] are
A, =-0.51% j1.9365.

2) When A(x) =1.9999 | the eigenvalues of [Xn +1.9999E] are at A; =-4.9999 and

A, = —0.00002 .

Given a set of uncertainty specifications, trading off ameng these specifications may be

possible. In this particular example, decreasing the upper bound h, yields aless

conservative lower bound #; . Indeed, it can be shown by using Corollary 3.1 that the

40 -9

system is stable when A(x)e [—-2.6, 1.1] using Q :{ 9 o } These uncertainty

specifications and this choice of Q produce max(A(Z)) =-0.415<0 and

A oy (@) = —0.9243 < 0, implying that A, can be greater than 1.1 and/or £, can be less
than -2.6. However, we do not pursue this further because the present result is sufficient
to demonstrate the trade off between the allowable upper bound and the allowable lower
bound. For this choice of Q and these new uncertainty specification, we note that
Theorem 3.2 cannot be employed to demonstrate stability of the system because (3.17) is
not satisfied. The shows that the bound resulting from Corollary 3.1 is less conservative
than that resulting from Theorem 3.2 as pointed out at after the proof of Corollary 3.1.

When the uncertain function A(X) is fixed at the new extreme values, we have:
1) When h(x) = —2.6 , the eigenvalues of [A, —2.6E] are Ay, =021 j2.1354.
3) When h(x) =1.1, the eigenvalues of [Kn +1.1E] are A, =-3.8673 and

A, =—0.2327 .
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Example 3.2 (A Third-Order Uncertain System)
Consider the uncertain system from (Zhou, and Khargonekar, 1987), (Lee et al, 1996),
(Olas, and Ahmadkhanlou, 1994):

-2 0 -—1] rhx) 0  ~h(x)
x={ 0 -3 0x+| 0O h&hkx 0 K
-1 -1 4] h(x) h,(x) h(x)

-2 0 -—1] 1 01 000
=0 -3 0x+hx)0 0 Ox+h,X)|0 1 O (E3.2.1)
-1 -1 4| 1 0 1 010

2
= A, x+ Y [1;(X)E x]

j=1
-2 0 -1 | 1 01 000

where A, =| 0 -3 0 | isastable matrix, E,=|0 0 0|,and E,=|0 1 0.

-1 -1 4 | 1 01 010

The objective is to find the upper bounds %,; and lower bounds A4 of h;(x), j=1, 2 for

which the system remains stable. Because this example originally appears in (Zhou, and

Khargonekar, 1987), we follow (Zhou, and Khargonekar, 1987) to restrict that hlj are
negative and h,; are positive although this is not required for Theorem 3.2. According to

this reference, stability of (E 3.2.1) is guaranteed if one of the following conditions are

satisfied:
hi(x) +h3 (x) < 0.8158 (E3.2.2a)
0.6052| 2y (x)] +0.3512| A, (x)| <1 (E3.2.2b)
|y (x)| < 1.5532, j=1,2 (E3.2.2¢)

By direct computation, it can be shown that (E 3.2.2) does not include the case in which:

h(x)€ [-3*10°, 1.74] (E3.23 a)
1
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h,(x)e [-6%10°, 2.99] (E3.2.3b)
where the bounds in (E 3.2.3) are obtained by using the univariate optimization technique,
which will be discussed in detail when we generate LAR controllers for uncertain
nonlinear systems. Note that Theorem 3.2 accepts both symmetric and asymmetric

uncertainties. Uncertainties in hj x)e [hlj, h,;] are called “symmetric” if —h; = huj, and

“asymmetric” otherwise. Using Theorem 3.2, we want to show that (E 3.2.1) is stable

Vh;(x) satisfying (E 3.2.3). To show this, we choose:

0.2511 0.0175 0.0784
Q=/0.0175 2.2850*10° 0.0093 (E3.24)
0.0784 0.0093 0.5202

This choice of Q is obtained by using the univariate optimization technique. Starting from

1 01 0.1
Q=(0.1 1 0.1}, theunivariate technique takes less than 1 minute on our computer to
0.1 0.1 1

produce (E 3.2.4). The initial value for Q was arbitrarily selected. Other choices of initial
value may or may not produce the same result. We now follow the procedure listed in

Theorem 3.2:

1) Following (3.18 a), we obtain:

0.1350 0.0145  —0.0188
P=| 0.0145 7.6167*10° —0.0187 (E3.2.5)
~0.0188 —0.0187  0.1348
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2) Following (3.18 b), we obtain:

-2 0 -1 1 01 000
A=l 0 -3 0[-3*%10°l0 0 0{-6*10°{0 1 0
-1 -1 4 1 01 010
- (E 3.2.6)
—300002 0 — 300001
=l 0 - 600003 0
| —300001 —600001 —300004

3) Following (3.18 c), we obtain:

-6.9685%10*  3.8437*10° -6.9623*10*
®=| 3.8437%10° -9.1400*10"" —6.8404*10* (E3.2.7)
—-6.9623%10* —6.8404%10"° —6.9562*10"

Note that (3.18 a) is satisfied because the eigenvalues of ® are A, =-0.585,
A, =—1.3925%10°, and A, = —9.1400*10"" . Since @ = ®" € R™", this implies

that @ is negative definite.

4) Following (3.18 d), we obtain:

0.2323 -4.1678%107 0.2321
¥, = -4.1678%107 0 ~-4.1678%107° (E3.2.8 a)
0.2321 ~4.1678%1073 0.2319
0 —4.3223*%10° 0
Y, =|-43223%107 1.5233*10° 0.1161 (E 3.2.8 b)
0 0.1161 0

5) Following (3.18 e), we obtain:

-0.7074 { 0.7067 | —-0.0156
Ty, =| 0.0127 | 0.0347 | 0.9993 (E3.29a)
—-0.7067 | —0.7067 | 0.0335



0.9993 | 0 | —0.0372
Ty,=| 0 |-1] 0
0.0372 | 0 | 0.9993

¥’ = diag[0.4642 0 -7.493%107]
YD =diag[0 1.5233%10° -1%10®]
6) Following (3.18 f), we obtain:
¥% = diag[0.4642 0 0]

P20 = diag[0 1.5233%10° 0]

7) Following (3.18 g), we obtain:

0.2323 ~4.1690*107 0.2321
YOt =|-4.1690%107 7.4824*107° —4.1653%107
0.2321 ~4.1653*%107 0.2319

1.2264 %10 —4.3223%10° —3.294%1071° ]
Yt =|-43223%107 1.5233*10° 0.1161
—3.294*1071° 0.1161 8.847*107

8) Following (3.18 h), we obtain:

, —9.2578*107? —0.4049 0.2351
Z=®+ ) [(h,—h)¥ =] -04049  -15211*10" 1.0745
J=1 0.2351 1.0745 —-0.6064
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(E3.29b)

(E3.2.9¢)

(E3.2.94d)

(E3.2.10a)

(E3.2.10 b)

(E3.2.11 a)

(E3.2.11b)

(E3.2.12 a)

It can be shown that the eigenvalues of Z are A, = —1.2499*107, A, = —0.6976, and

Ay =-1.5211* 10* showing that (3.17 b) is satisfied. Since (3.11 a) and (3.11 b) are

satisfied, we conclude that the system is stable when the uncertain functions A j (x) are

within the bounds given in (E 3.2.3) V. Now, we notice that
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Aax (Z) = ~1.2499 %107 < 0 . This suggests that the allowable uncertainty bound can be

greater than (E 3.2.3). Indeed, reapplying the same procedure shows that the lower bounds

of h;(x), j=1,2 can be expanded beyond —3* 10° and - 6*10° respectively. However,

we omit this because the present results are sufficient to demonstrate the effectiveness of

Theorem 3.2. When A,(X) and h,(x) are fixed at their extreme values, we have:

1)

2)

3)

4)

When A, (x)=-3% 103 _ and h,(x)=-6%* 10°, the eigenvalues of

[A, -3*10°E, —~6*10°E,] are A, =2, A, = ~6*10°, and Ay =—6%10.
When A, (x) =1.74 and h,(x)=2.99, the eigenvalues of [Xn +1.74E, +2.99E, ]
are A, =—1.5974*107, &, =-1%107, and A, = —2.5040.

When A,(x) =-3* 10° and h,(x) = 2.99, the eigenvalues of

[A, -3*10°E, + 2.99E2] are A, =2, A, =—0.01, and A, =—6%10°.

When £, (x) =1.74 and h,(x)=-6* 10°, the eigenvalues of

[A, +1.74E, - 6*10°E,] are A, = —2.5040, A, = ~0.016, and A, = —6*10°.

Figure E3.2.1 compares our allowable uncertainty bounds to those from (Zhou, and

Khargonekar, 1987) = (ZK), (Lee et al, 1996) = (L), (Olas, and Ahmadkhanlou, 1994) =

(OA). We see from Fig. E3.2.1 that our upper bounds are approximately the same as those

in the references. However, the lower bounds in these references are significantly smaller

than ours.
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-

-2.85

-76.3

-3000

- 6*10°

~-3%10° -1500 -31.4 -1.75 I 1.74 1.7486 1.75

Fig. E3.2.1 Area of Allowable Uncertainties Resulting from
(ZK), (L), (OA), and Theorem 3.2 (not to scale)
Legends: O = (ZK), S= (L), &A= (0A), # = Theorem 3.2

While the “areas” of allowable uncertainties resulting from Theorem 3.2 and (Olas, and
Ahmadkhanlou, 1994) are larger than those from (Zhou, and Khargonekar, 1987) and
(Lee‘et al, 1996), the formers require considerably more computations than the latters.
The amount of computation required for computing the bounds in Theorem 3.2 and in
(Olas, and Ahmadkhanlou, 1994) depends significantly on the order of the system (n) and
the number of uncertainty matrices (r). This will be discussed when we give an algorithm

for generating a LARC in the presence of uncertainties.

When the structure of the uncertain vector fq (x,#) is unknown and the only known

[fo (x.0)]

I~

uncertainty specification is a bound on , Theorem 3.2 is inapplicable and the
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uncertainty is called unstructured. In this case, we adopt a theorem from (Kim, 1995) as
Theorem 3.3 for such unstructured uncertainties. This theorem is the latest we have found
in the literature for this subject. By means of common examples, the author (Kim, 1995)
shows that the resulting allowable bound is less conservative than those in (Patel, Toda,

and Sridhar, 1977) and (Chen, and Han, 1994).

Theorem 3.3 (Unstructured Uncertainty Bound)

The system:
x=A x+f,(x,1) (32)
is stable if:
fo(x,t
B0 302 50— c2pp) (3.43)

[~
where the symmetric positive definite matrices P and Q satisfy the Lyapunov equation

~-2Q=PA, +A’P with A being a stable matrix and:

2

O<e<———s—=¢_ (3.44 a)
O (QP)

w=A’2(2eQ-*PP) >0 (3.44b)

where Q72 =[QV?T!, QV2QY? =, O max (Q?P) is the maximum singular value of

[Q /2P]. The proof of Theorem 3.3 can be found in (Kim, 1995). The time derivative of

the quadratic Lyapunov function (1.5) along trajectories of (3.2) is given by:

V(x,1) = %xT [PA, + ATPIx +£] (x,1)Px (3.45)
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The function V(x,1) is guaranteed to be negative definite in a region I' where (3.43) is
satisfied. Given a triplet of A, , P and Q, we search over the interval of ¢ given in (3.44-

a) to find max(u) =u_,, in (3.44 c) because this is the least conservative allowable

fo(x,t .
uncertainty bound on M that guarantees the negative definiteness of V(x,¢) in I".

[

We now apply Theorem 3.3 to Example 3.1 and 3.2, and compare the resulting allowable

uncertainty bounds to those resulting from Theorem 3.2.

Example 3.1 (Cont.)
If the structure of the uncertainty in Example 3.1 is unknown, then we represent the
system by (3.2):

x=A, x+f5(x) (3.2)

— -3 -2
where A, = [ L 0 } is a stable matrix. The objective is to find a large allowable bound

[l

trajectories of (3.2) is globally negative definite to establish global stability. It appears in

such that the time derivative of the quadratic Lyapunov function along

(Kim, 1995) that:

_|23 1 E3.1.18
Q= L s (E 3.1.18)

Applying (3.18 a), we obtain:

1.6000 2.5000
P= (E 3.1.19)

12.5000 8.7000

Applying (3.44 a), we obtain:
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2
=g =0.1183 (E 3.1.20)
O-Iiax(Q 1/2P)

Now, we employ (3.44 c¢) and plot  as a function of ¢ in Fig. E3.1.1. It can be shown
that the maximum value of W and the corresponding € are given by:
Mmax = 0.5351 (E3.1.21 a)

€, =0.0753 (E3.1.21b)

Hma

For stability of (3.2), we must have that:

max[ [fo (X)Hj <u. =0.5351 (E3.1.22)

I
Indeed, we can employ the univariate optimization technique presented in Section 3.6 to

obtain W, =0.5401 using:

(E 3.1.23)

3.4633 2.1302
2.1302 6.6823

0.6 .

« L. +0.5351
0.5 //Of(\
0.4 // \
23 0.3 4

0.2 / \
0.1 \
0

0 0.02 0.04 0.06 0.08 0.1 0.12
£

Fig. E3.1.1 Uncertainty Bound u for Stability as a Function of €
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To compare the resulting bound in (E 3.1.22) with that when the uncertainty is structured,

we examine:
fo (x) = h(x)Ex (E3.1.24 a)
max Ife 0] =max ook ) h, max [x] ) _ h,|E| = 2.8284" > . (E3.1.24 b)
x| x| x|

According to (E 3.1.22) and (E 3.1.24 b) we see that when the structure of uncertainty is

known, the uncertainty bound is significantly larger than that when the structure of the

uncertainty is unknown.

Example 3.2 (Cont.)

If the structure of the uncertainty in Example 3.2 is unknown, then we represent the
system by (3.2). The original paper in which this example appears (Zhou, and
Khargonekar, 1987) does not consider unstructured uncertainties. In addition, the
reference from which Theorem 3.3 is draWn (Kim, 1995) does not employ this example,
and does not propose a technique to find Q for obtaining a large allowable uncertainty
bound. Accordingly, we find Q fér this problem at this point by using trial-and-error. We
start by using Q =1, find fhe corresponding W and tune the diagonal elements of Q
accordingly. For simplicity, we restrict Q to be diagonal, although this does not
necessarily yield the best result. The largest um;x we can find under this restriction

corresponds to:

1 0 O
Q=0 195 0 (E 3.2.13)
0 0 1
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Applying (3.12 a), we obtain:

0.5714  0.0378 —-0.1429
P=| 0.0378 0.6654 -0.0462 (E3.2.14)
-0.1429 -0.0462 0.2857

Applying (3.44 a), we obtain:

2
Cax [Q°P]

i

e . =4.8372 (E 3.2.15)

Now, we employ (3.44 c) and plot u as a function of € in Fig. E3.2.2. It can be shown
that the maximum value of u and the corresponding € are given by:
w. =1.5679 (E 3.2.16 a)

£, =24427 (E3.2.16 b)

Note that a very similar result can be obtained using a different choice for Q. Indeed, we

can employ the univariate optimization to obtain i, =1.5680 with:

0.9135 0.0960 0.0886
Q=0.0960 0.9797 0.0951 (E3.2.17)
0.0886 0.0951 1.0829

To compare the resulting bound with that when the uncertainty is structured, we examine:

2
fo(x) = [h;(X)E X] (E3.2.18 )

j=1

ma){ It (x)l]) g max[ B,y + By ):“}LME1 B =47852> . (E3.2.18b)

[~ [~

According to (E 3.1.16 a) and (E 3.2.18), we see that when the structure of uncertainty is

known, the resulting uncertainty bound is significantly larger than that when the structure

of the uncertainty is unknown. This conclusion is the same as that for Example 3.1.
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1.6 ——

1.2 /
1

/ L, =15679 \
u 0.8

0.6 /
0.4 / \
0.2 / \\

€

Fig. E3.2.2 Uncertainty Bound u for Stability as a Function of €

3.5 Controller Selection

A stabilizing linear controller can be geherated by substituting the given uncertainty
specifications into T heorem 3.2 (for structured uncertainties) and into Theorem 3.3 (for
unstructured uncertainties), and solve for a set of {K, Q, P} that satisfies relevant
theorems. We desire that {K, Q, P} is such that the relevant theorem is satisfied in a
radially large region about the origin because this produces a large LAR. It would be ideal
if we could solve for such {K, Q, P} algebraically. However, we do not expect this to
happen when we deal with practical problems because of the nonlinearities involved. In
this research work, we propose to solve for such {K, Q, P} using numerical optimization.
We find that at least two existing optimization techniques (Fox, 1971), (Olas, 1994),

(Olas, and Ahmadkhanlou, 1994) can be employed to find a stabilizing controller.
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However, the amount of computation required for these optimization techniques grows
significantly as the order of the system increases. When the uncertainties are structured,
considerably more computations are required as the number of uncertain terms ()

increases. Accordingly, it is crucial that we start the optimization routine from a

“reasonably good” initial value. By “reasonably good”, we mean that the initial value is-
such that the allowable uncertainty bound is large or is at a local maximum with respect to

Theorem 3.2 and 3.3 in a feasible domain.

By generating a set of LAR controllers for the nominal linear model (3.4), we obtain the
corresponding set of initial values for such vo.ptimization. Then we select from this set a
“reasonably good” initial value based on Theorem 3.2 (for structured uncertainties),
Theorem 3.3 (for unstructured uncertainties), and the available control energy. We employ
such an initial value for the optimization because it satisfies the eigenvector condition. To
see why this is desirable, we rewrite (3.2) as:

X = [Anx+f2_(x,t,u)]+Bn U apc (X) (3.2)
It can be shown that the time derivative of the quadratic Lyapunov function (1.5) along

trajectories of (3.2) is:

Vix,1) = %xT [PA, +[PA, 17 [x + X7 PEs (%, 1,4, pe () + X PB it (X)

=x' M, X + X Pty (X,2,1, 50 (X)) + X PB ity s (X) (3.45)
=F, (X)+ Fo (X, 1,4 450 (X)) + Gy, (XDt 4o (X)

= FA (X,t, UraRC (X)) +Gy, (X)ULARC (x)

where M, s%[PAn FIPA T ], Ey (%t upipe (0) = XTPES (X, £, 1) 40 (X)),

F, (x)=x"M x, G, (x)=x"PB,, and F,(X,2,u;pc (X)) = Fp, (X) + Fy (X, 1,1 45c (X))
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We define Sp, _o ={x|F;,(x) =0}, S5, -0 ={x|G,(x)=0},and Sg, _, ={x|Fy(x,1,
u(x)) = 0} . From the expression for u; 4z (X) in (2.16), we note that Sg, _o=S,,,.-0-
We recall from Lemma 2.3 that the matrix P corresponding to a LAR controller is such

that the eigenvector condition is satisfied and it follows from the definition of the

eigenvector condition that S, _, is symmetric about Sg, _o suchthat S, _ C
R F;, <o1ut0) - From the expression for V(x,t), we see that § Fy,=0 18 the same as Sp, g

when there is no uncertainty (f5(X,#,#(x)) = 0). In this situation, it follows from the

defiﬁition of the eigenvector condition that Sy, _, is symmetric about Sg;, _, such that
S6;,=0 C Ripy<o1uq0y - Because of the uncertain vector fy(x,7,u(x)), Sg, - deviates from
Sp, =0 and can be time-varying. However, Theorem 3.2 and 3.3 implies that Sy, _, does
not intersects SGy,=0 when £ (x,,u(x)) is sufficiently small V¢. Indeed, if S FA=0
intersects Sg, _o at a particular ¢, then V(x,t) is not globally uniformly negative definite.

This leads to a contradiction because we know from Theorem 3.2 and 3.3 that V(x,¢) is

globally uniformly negative definite under sufficiently small uncertainties. Since Sg In=0

is fixed in the state space for all possible uncertainties and ¢, this implies that Sy, o isina

small neighborhood about S Fy,—0 for sufficiently small uncertainties V. We emphasize

that the deviations of S, -, from Sp,__, can occur arbitrarily close to the origin because

of the uncertainties.

Next, we illustrate graphically in Fig. 3.1 how these deviations can affect the dimension of
the LAR when the eigenvector condition is both dissatisfied and not satisfied. In this

illustration, we employ the following representations:
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1) O = the intersection point between the surfaces SG,, -0 and S, _, corresponding

to the exact nonlinear model (3.2)

2) —— = thesurface S;, _,, which is the same as Sy, _, when fy(x,7,u(x)) =0.
3) m—— = the surface S Fx=0
S) = = = the surface §; _

5) = regions of uncertainties.

Y

S-";J,z{},i

S Fa=0,1

\ Vyv,2 (}"M"E <0)
\
\

S Gip=0 ( b)

(a) S Fpp=0.2 S Fp=0.2

Sr-a:n.: S;v'__.ﬁ(:,z
Fig. 3.1 Effects of Nonlinear Uncertainties on the Possible Intersection between S,
and Sp, _, when the Eigenvector Condition is not Satisfied (a) and is Satisfied (b)
a) Sg,,-o runscloseto Sy, o, and far from S, . locating the intersection

between S, _, and S, _, (denoted by <© ) undesirably close to the origin.

Fa =
b) Sg,,-0 runs midway between the lines S, o, and S, _;,

When the eigenvector condition is not satisfied, S, _, may be located close to a

particular portion of S, _,. Accordingly, small deviations of S, _, from §, _, can
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result in an intersection between S _, and S, _, corresponding to the exact nonlinear

model arbitrarily close to the origin. At such intersection point, V(X, t) =0 for all possible
choices of u(x) including u(Xx) = u; 4z~ (x). Since it is necessary that V(x,t) lz0< O ina

LAR, it follows that such small deviations can lead to an arbitrarily small LAR when the

eigenvector condition is dissatisfied. This situation is illustrated in Fig. 3.1 (a).

In Fig. 3.1 (b), the eigenvector condition is satisfied and S, _, is symmetric about S; _,.
Accordingly, S, _, does not run close to a particular portion of S _,. When the
uncertainties are sufficiently small, we have seen that Sy, _, is in a small neighborhood
about Sy _gandthus Sg _, does notintersect S, _,. In this situation,

S6,,=0  Ripy<oju0; and the expression for V(x,t) in (3.45) implies that we can force the
LAR to be as large as we like by manipulating u; - (x). When the eigenvalue ratio T,
corresponding to the time derivative of the Lyapunov function along the nominal linear
model (3.4) is large, the additional adverse effects are straightforward from Proposition
1.2 and the above discussions. These arguments are the same as those given in Section 1.4

except that the possible adverse effects resulting from uncertainties are now added to

those resulting from nonlinearities.

Remark: A special case of the situation discussed previously occurs when the nominal

linear model X = A, x +B, u(x) is exactly the linearized model about the origin of the

exact time-varying nonlinear system X = f(x,7) + g(x,#)u(x) , implying that
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imsuwzan imsuwz nder these
”’1‘”*"[ ,25’[ x| D " du}«neo[ tzop[ B D 0. Under th

[fo(x.0)]

conditions, is negligible in sufficiently small regions about the origin, and it

follows from Theorem 3.3 that the nonlinear system is locally uniformly asymptotically

stable when K is such that A, =[A, - B, K] is stable. In addition, it can be drawn from
the previous argument that Sy, _, =Sy, -, and the deviations of Sy, _, from these

surfaces are negligible in sufficiently small region about the origin. In this special case,
we see that LARC in Chapter I and II can be employed to stabilize the system

x =f(x,1) + g(x,)u(x) such that the origin is locally uniformly asymptotically stable

with a reasonably large attractive region by regarding A, as A, and B, as B. Note that

[ (x. 0]

—H—— is not negligible in sufficiently small regions about the origin, we need
X

when

fo(x,? . o .
information about "Q(—)ﬂ to generate a stabilizing LARC. This is discussed in the next

]

section.

3.6 Controller Generation

Given (3.2) with specifications for uncertainties, we want to determine for stabilization of
(3.2) the solution K =Kz, Q, and P such that V(x, t) is negative definite in an
operating region ® about the origin where such specifications are valid. We restrict our

LARC to be linear for simplicity, although this does not necessarily produce the best

result. Note that:
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1) We say that the controller “meets” the given uncertainty specifications in the
region © when V(x,1) is negative definite in the same region. Clearly, we desire
that the uncertainties are met in a radially large region about the origin.

2) We need not write P explicitly in the solution, because K = K, .~ and Q implies

P.

A choice of Q in Theorem 3.2 and 3.3 do not affect physical properties of the system
because Q does not represent any components in a physical system. However, it turns out
that some particular choices of Q can be employed to demonstrate that uncertainty
specifications are met under a particular linear coﬁtroller using Theorem 3.2 and 3.3. Note
that Theorem 3.2 and 3.3 demonstrate global stability by showing that the time derivative
of the quadratic Lyapunov function along system trajectories is globally negative definite
and the LAR is radially unbounded fof sufficiently small uncértainties. However, we need
not restrict the applications of Theorem 3.2 and 3.3 to the case in which a LAR is radially
unbounded. As we have seen from Chapters I and II, we desire only that a LAR be
radially large when local stabilization is acceptable. We emphasize that the LARC
developed in the previous chapters is primarily for systems that can be approximated in ©
by linear time-invariant models. In this chapter, such LARC is integrated with Theorem
3.2 and 3.3 to remove such restriction. Procedures for generating a LARC in the presence

of uncertainties using Theorem 3.2 and 3.3 are now given:
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Systems with Structured Uncertainties

To generate a LAR controller for the system (3.2) with structured uncertainties, we find

under the given structured uncertain specifications a particular pair of K, .- and Q such

that in an operating region ® about the origin:

A (Z(K g, Q) <0 (3.46)
where the uncertainty specifications and the relevant notations are given in the section
“Structured Uncertainty Specifications for Controller Generations”. The procedure begins

by choosing a re‘gion {(p,M|0<p, <p=<p,1<M<n,} and compute K =K,z and Q
at points distributed evenly in this region using (2.12) and (2.16). Knowing K =K 4z

and Q at these points, we plot A (Z(K .- (0,m), Q(p,n)) =A_., (Z(p,n)) versus p

and m using Theorem 3.2. If A, (Z) <0 at any point in this region, K¢

max

corresponding to such point meets the uncertainty specifications and we terminate the

procedure. Otherwise, we obtain from this plot a coordinate (p,Tm) corresponding to a

small value of A (Z) and we employ this (p,m) to obtain {K,,xc,Q} as the initial

max

value for the next optimization routine. Generally, selecting such (p,m) is possible

because we can visualize clearly a plot in three dimensions.

Starting from the feasible initial value {K,,z-,Q} determined previously, we want to find

a particular pair of K,z and Q such that A ., (Z(K4zc>Q)) <0 under the given

max
uncertainty specifications. This problem can be cast as a constrained optimization problem

in which the objective is to minimize A, (Z(K,4zc,Q)) and the constraints are
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Re(A; (A, ~B, K, ,z-))<0 Vi, Q=Q" and %, (Q) > 0. The latter is required to

guarantee that the quadratic Lyapunov function is negative definite. We call a point

satisfying these constraints a “feasible” point, and denote a solution for K ;- by
K o1urc Where the subscript “OLARC” designates that the LAR gain matrix is obtained

by using optimization. In this phase of the procedure, Kz~ and Q are to be updated by

an optimization routine, not by (2.12) and (2.16). We emphasize that the feasible initial

value {K, ,zc,Q} _for the optimization selected previously from the plot of A . (Z(p,n))

is reasonably good. This is in the sense that such an initial value corresponds to a small

value of A, (Z) in acertain set of {K 4z, Q} satisfying the eigenvector condition.

For simplicity, we employ the “univariate” optimization technique (Fox, 1971) to find a
solution {K,4zc,Q} such that A_,, (Z(K -, Q)) <0 while we understand that other
techniques may produce better results. Using the univariate technique, we perturb one-
variable in the objective function at a time and update the solution {K,z-,Q} if such
perturbation decreases A, (Z) . The procedure is terminated when the decrement in
A (Z)) is less than a prescribed value after all variables in the objective function are

perturbed. In general, the solution can be as close to a local minimum as we like but it is
likely not the minimum because this approach does not include a mechanism to compute
the gradient. Except for pathological cases, this seems to be acceptable for our purpose

because we need not obtain a true minimum. Indeed, it is sufficient to admit any solution

such that A, (Z) <0. Of course, obtaining the solution {K,,z-,Q} that meets the given

uncertainty specifications may not be possible for some strong specifications.
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We emphasize that the univariate technique is not the only possible technique for this

optimization problem. Indeed, we have seen in Example 3.3 that the results obtained from
the gradient-based technique in (Olas, 1994) and (Olas, and Ahmadkhanlou 1994) are
satisfactory. Given a fixed linear gain matrix K such that Re(%,; (A, - B,K)) <0 Vi, this
technique requires us to compute eigenvalues of C, =2" matrices of dimension nxn to
update Q, where r is the number of uncertainty matrices E; and is bounded by
1<r<dim(A,)+dim@B,) = (n* + mn) . For the univariate technique, we know by
inspecting Theorem 3.2 that we need to compute the eigenvalues and eigenvectors of ¥,
j=1,2, ..., rand the eigenvalues of Z to see if a change in an element of Q decreases

A ek (Z) . Since A, (Z) may decrease when we decrease or increase an element of Q,
and Q = QT contains 1+2+...+n = %n(n +1) different elements, it follows that we
need to compute A, (Z) at least once and at most n(n +1) times to update the solution

for Q. Thus, we are required to compute eigenvalues of at most C, = (r+1)n(n+1)

matrices of dimension n X n to update Q. When r is small, the technique in (Olas, 1994)
and (Olas, and Ahmadkhanlou, 1994) generally requires less computation than the
univariate technique. However, the former requires more computation than the latter does

when r is large.

For these optimization techniques, it is clear that the required computation grows very
rapidly as the order of the system » and the number of uncertainty matrices r increase.

Accordingly, it is crucial for a high dimensional system with a large number of

uncertainty matrices that the initial value be reasonably good. In our case, we obtain this
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initial value from the plot generated previously using (2.12), (2.16) and Theorem 3.2.

Procedure 2 is now given (Procedure 1 was given in Chapter II):

Step 1

Step 2

Choose aregion {(p,n)|0<p, <p<p,,1<N<n,} and compute K =K,z

and Q at points distributed evenly in this region using (2.12) and (2.16). Then

plot A__ (Z(p,m)) versus p and 1M in three dimensions using Theorem 3.2 and

max

the given structured uncertainty specifications, and find a region of (p,mn)
where A (Z(p,m)) is small or is negative from such plot. For each of our

example problems to follow, less than 3 minutes were required to accomplish

this.

If we find from the plot in Step 1 that A_,, (Z(p,n)) <O at a particular (p,7n),
then the matrix K, - corresponding to such (p,m) meets the uncertainty

specifications and we terminate the procedure. In this case, we usually select

{K urc>Q} corresponding to the minimum of A

max

(Z(p,m)) in the plots as our
solution although we can accept any solutions such that A_,, (Z(p,n)) < 0. If
the minimum of A_, (Z(p,m)) in the plot is positive, we obtain from this plot

an initial value {K, 4z, Q} such that the corresponding A, (Z(p,m)) is small

max

for the optimization in Step 3.

When the available control energy is limited, it is preferable to start the

optimization from an initial value in which K.~ is small. This usually forces

us to admit an initial value {K, -, Q} corresponding to a larger
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Avax (Z(p,M)) . In this case, we select the initial value from a “flat” portion of

the plot where decreasing (p,m) does not increase A, (Z(p,m)) significantly.

Starting from the feasible initial value in Step 2, we employ an optimization

technique to search for {K,,p-,Q} such that A_,, (Z(K ,zc,Q)) <0. There

are several applicable optimization techniques but we employ the

straightforward “univariate” technique (Fox, 1971) for simplicity. We regard

the elements of Kz~ and Q as our variables in the objective function

Amax (Z(K [ pe, Q) . Then ‘we perturb these variables one at a time and
examine the corresponding A, (Z(K rarc»Q)) . Our perturbations must be
such that {K,z-,Q} remains feasible. If the objective function decreases, we

continue to perturb this variable in the same direction. Otherwise, we reverse
the direction of the perturbation and repeat the above sequences. When the
decrement in A, (Z(K,z-,Q)) is less than a prescribed value, we perturb a
new variable and repeat the above sequences. These nested loops terminate
when computation time is expired or when the decrement in

A ax (Z(K 1420, Q)) is less than a prescribed value after all the variables are
perturbed in this fashion. All the “prescribed” values and the perturbations are
determined by using heuristics. In the examples herein, we set these to be

between 0.5% - 1% of the previous values.
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Systems with Unstructured Uncertainties

To generate a LAR controller for the system (3.2) with unstructured uncertainties, we find

under the given unstructured uncertainty specifications a particular pair of Kz~ and Q

such that in an operating region ® about the origin:
[~

max[ “Af(x,t)”} + K Lirc| max(Ag(x, 1)) < Wi (3.47)

where the uncertainty specifications and the relevant notations are given in the section

“Unstructured Uncertainty Specifications for Controller Generations”. Given a known pair

. . |Af(x,1)| .
of unstructured uncertainty specifications max ——“—Xr and max(“Ag(x, t)”) , it follows
from (3.47) that we want to find K 4z~ such that:
Af(x, |
8= max[”_ﬁ’_)n + “K»LARC“ max(| Ag(X, 1)) = hypax SO (3.48)

Note that defining 0 as in (3.48) allows us to obtain the corresponding optimization
algbrithm from that for structured uncertainties quickly. To see this, notice that the
problem statement for structured uncertainties in (3.46) is similar to that for unstructured
uncertainties in (3.48). We now introduce a procedure for generating a LARC under
unstructured uncertainties. Except that we employ Theorem 3.3 instead of Theorem 3.2,
this procedure is the same as Procedure 2 given previously. This procedure begins by

choosing a region {(p,m)|0<p, <p<p,1<N<n,} and compute K=K, - and Q at

u?’

points distributed evenly in this region using (2.12) and (2.16). Knowing K =K .- and

Q at these points, we plot (K .- (P,m), Q(p,M)) = 8(p,m) versus p and 1 using

Theorem 3.3 and (3.48). If 8(p,m) <0 at any point in this region, K,z corresponding to
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such point meets the uncertainty specifications and we terminate the procedure.

Otherwise, we obtain from this plot a coordinate (p,m) corresponding to a small value of
d(p,m) and we employ this (p,m) to obtain {K,4zc,Q} as the initial value for the next
optimization routine. Generally, selecting such (p,m) is possible because we can visualize

clearly a plot in three dimensions.

Starting from the feasible initial value {K ;4rc>Q} determined previously, we want to find
a particular pair of Kz~ and Q such that 3(K 4z, Q) <0 under the given uncertainty
specifications. This problém can be cast as a constrained optimization problem in which
the objective is to minimize 6(K, 4z-,Q) and the constraints are

Re(A; (A, —B, K 4zc)) <0 Vi, Q= Q” and Knlén (Q) > 0. The latter is required to
guarantee that the quadratic _Lyapunov-function is negative definite. We call a point

satisfying these constraints a “feasible” point, and denote a solution for K, 4z~ by
K s14rc Where the subscript “OLARC” designates that the LAR gain matrix is obtained
by using optimization. In this phase of the procedure, K, - and Q are to be updated by

an optimization routine, but not by (2.12) and (2.16). We emphasize that the feasible

initial value {K 4z, Q} for the optimization selected previously from the plot of d(p,n)

is reasonably good. This is in the sense that such an initial value corresponds to a small

value of § in a certain set of {K,,-,Q} satisfying the eigenvector condition.

By inspecting Theorem 3.3, it is clear that the required computation grows very rapidly as

the order of the system n increases. Accordingly, it is crucial for a high dimensional
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system that the initial value be reasonably good. In our case, we obtain this initial value by

using (2.12), (2.16) and Theorem 3.3. Procedure 3 is now given:

Step 1

Step 2

Choose aregion {(p,M)|0<p, <p<p,,1<N<n,} and compute K =K, .-
and Q at points distributed evenly in this region using (2.12) and (2.16). Then
plot 8(p,m) versus p and 7 in three dimensions using Theorem 3.3 and the

given unstructured uncertainty specifications. The objective of this step is to
find a region of (p,m) where 8(p,m) is small or is negative. Although it is not

clear where this region is when we start this step, the shape of the first plot will
guide us to a better selection of this region for the second plot and so on. In the
examples herein, the time required for this is approximately the same as that

when the uncertainties are structured.

If we find from the plot in Step 1 that 8(p,m) <0 at a particular (p,n), then
the matrix K, ,,- corresponding to such (p,n) meets the uncertainty

specifications and we terminate the procedure. In this case, we usually select

{K 4rc»>Q} corresponding to the minimum of d(p,m) in the plot as our
solution, although we can accept any solutions such that d(p,n) <0. If the
minimum of 8(p,n) in the plot is positive, we obtain from this plot an initial
value {K,,z-,Q} such that the corresponding 8(p,m) is small for the

optimization in Step 3.
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When the available control energy is limited, it is preferable to start the
optimization from an initial value in which K, ,.~ is small. This usually forces
us to admit an initial value {K;,.,Q} corresponding to a larger 6(p,m). In

this case, we select the initial value from a “flat” portion of the plot where

decreasing (p,1m) does not increase 6(p,1) significantly.

Starting from the feasible initial value in Step 2, we employ an optimization

technique to search for {K, ,z-,Q} such that (K, 4zc,Q) <0. There are

several applicable optimization techniques but we employ the straightforward

“univariate” technique (Fox, 1971) for simplicity. We regard the elements of Q

and K as our variables in the objective function 6(K, ., Q). Then we perturb
these variables one at a time and examine the corresponding 6(K 4z, Q). Our
perturbations must be such that {K,,.-,Q} remains feasible. If the objective

function decreases, we continue to perturb this variable in the same direction.
Otherwise, we reverse the direction of the perturbation and repeat the above
sequences. When the decrement in 6(K, 5, Q) is less than a prescribed
value, we perturb a new variable and repeat the above sequences. These nested
loops terminate when computation time is expired or when the decrement in
O(K 4rc,Q) is less than a prescribed value after all the variables are perturbed
in this fashion. All the “prescribed” values and the perturbations are

determined by using heuristics. In examples herein, we set these to be between

0.5% - 1% of the previous values.
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Example 3.3 (The Double-Inverted-Pendulum System with Lower-Joint Control)

In this example, we draw the double-inverted-pendulum system from Example 2.2 to
demonstrate how to generate a LARC in the presence of structured uncertainties.
Nonlinearities are treated as “pseudo” structured uncertainties entering the nominal
linearized model. Additional structured uncertainties can be augmented to these pseudo
uncertainties as in (3.7), and we can apply the same procedure to generate LAR
controllers for such systems. Recall from Example 2.2 the equation of motion of the

system is:

x=f(x)+gx)u (E2.2.2 a)
where:
x=[x x x =x T=lx, x, % %] (E2.2.2b)
_ % -
v X4
(sin(x; — x, )x32 +0.2824x, —0.2824x, +48.2776sin(x, ))cos(x, — x,)
£00) +0.9833x; +1.1206sin(x; — x, )xf -0.3165x, —214.3082sin(x,)
X)=

—5.9809 + cos?(x; — x,)
(-0.8774x; —sin(x; — x,)x2 +0.2824x, +191.2383sin(x, ))cos(x, — x, )}
{-— 5.3371sin(x; — x,)x5 —1.5071x; +1.5071x, — 257.6614sin(x, )
—5.9809 + cos® (x,-x,)

(E2.2.2¢)
) . -
0
~565.1008
g(x) = (E2.2.2d)

~5.9809 + cos*(x, — x,)

| —5.9809 +cos” (x; ~ x,) |
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For the singular point at the origin of this system, the linearized model of (E 2.2.2) is

given by:
0 0 1 0 0
_ 0 0 0 1 - 0 y
43.0258 —9.6925 -0.2541 0.1202 1134531 (E2.23)
—383942 51.7297 04787 -0.3593 —101.2401
=A x+Bu

By inspecting (E 2.2.2), we see that the system cannot be described globally by (3.9).
However, it appeéfs that (3.9) can approximate (E 2.2.2) better than (E2.23)ina
region about the origin because (3.9) represents a family of infinitely many models
including (E 2.2.3). We then employ (3.9) to generate a LARC for (E 2.2.2). To obtain
reasonable sfructured uncertainty specifications for (3.9), we notice that the nominal

linearized model (E 2.2.3) does not include the effects of the following nonlinear terms in

E222¢):
: B 2
1) wy(X) = sin(x — X, )COS(ZX 1= %)X in the third component of f(x)
—-5.9809 + cos”(x; — x,)
o 2
2) W, (X) = 1.1206sin(x, - *2) %4 in the third component of f(x)
75,9809 + cos?(x, — x,)
— 1 — — 2
3) wy(X) = sin(x — x, )cosz(xl %)% in the forth component of f(x)
—5.9809 + cos” (x; — x,) '
— ] — 2
4) W, (X) = 2.3371sin(x = %)) %3 in the forth component of f(x)

~5.9809 + cos? (x, — x,)

This is because linearizing them about the origin produces zeros. It is possible to consider

other nonlinear terms but we omit these because w;(x), i =1,2,3,4 are sufficient for
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demonstrating how to generate a LARC. We are interested in w;(x) because we know
from numerical simulations in Example 2.2 that when trajectories converge, x; (joint
velocity of the lower link) and x, (joint velocity of the upper link) are relatively large
when compared to x; (joint angle of the lower link) and to x, (joint angle of the upper

link). Assuming that this is true for the system under our LARC, we see that neglecting

w;(x), i =1,2,3,4 can lead to significant modeling error. Based on this assumption, we

now assume a crude operating region in which we desire convergence:

T T
©={x Hx1|<E, x2{<%,| x%;| <0.5,and | x,| < 0.5} (E3.3.1)

where we note that :1% =0.0785 =4.5°. After we obtain the LARC and perform numerical
simulations, we shall see that this assumption is valid. Now, we write w;(x), i =1,2,3,4

as structured uncertainties:

1) For w;(x), we obtain:
0 | 000 0fx
0 | sin(x —xy)cos(x; —x,)x; |0 0 0 0 x,
wi(x)|  —59809+cos’(x; —x,) |0 0 1 0fx; (E3.3.22)
0 000 0]x,
= b (x)Efnx
1 sin(i) cos(it—)
where i (x)€ [hl, B 1, min =2 20 2% =—00154,
— 59809 + cos?(—)
20
1sin( 7r)cos( n) 0099
5 Smi= o) cosi=—= 0000
pin =220 20-=00154, and B =E; =|
~5.9809 +cos? (——)
20 0000



2) For w,(x), we obtain:
0 0 0 0 0fx
0 | 1.1206sin(x; —x,)x, |0 0 0 0)x,
wy(X) | —5.9809+cos’(x, —x,)|0 0 O 1] x,
0 0 0 0 Ofux,

= hfn (x)Efx

1y 1206sin(E)
where B (x)e [h, b1, by = —2 20n =-0.0175, and
—5.9809 + cos? (2—0)

1 n 000
~1.1206sin(——-) 00 0

hiy =—2 000175, and B =F, =
—5.9809 + cos?(— —) 000
20 00 0

3) For w;(x), we obtain:

0 0 0 0 0]x

0 | —sin(x; —xy)cos(x; —x,)x, |0 0 0 0} x,

0 ~5.9809 +cos*(x; —x,) |0 0 0 0 x,

ws(X) ‘ 0 0 0 1jx

= hsn (x)Egnx

where il (x)e [h, h¥ ], hin = —2 72r0 =-0.0154,
—5.9809 + cosz(—%)

0
T
20 0
2= 0.0154, and E{" =E; =
~5.9809 + cos?(—%-) 0
20 0

—lsin(i) cos(
hAn = 2 20
u3

o O O O
oS O O O
- O O O

o = O O
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(E3.3.2b)

(E332¢)



4) For w,(x), we obtain:
0 00 0 0fx
0 | —5337Isin(x; —xy)x; |0 0 0 O} x,
0 —5.9809 +cos*(x; —x,) |0 0 0 0] x,
w, (X) 001 0fx,
= hir (X)E{"x
L 533716in- 5
where ki (x)e [hlr, b1, i =—2 20— _0,0834,

59809 + cos?(— L)
| 20

1 n 0 0O
——0.0834sin(—) 10 0 0
An p— 2 20 — Al‘l — —
hor = =0.0834,and E;* =E, =
ud o 4 ““lo 0 o
—~5.9809 + cos”(—)
20 0 0 1

Note that w;(x), i =1,2,3,4 are treated as uncertainties entering A , :

L
[AA, (01X = Y [A" (E;" Ix

o=1

o O O O
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(E3.3.24d)

(E3.33)

To generate a LARC, we want to include the nonlinearities in g(x) into our considerations.

This is because while it is reasonable to employ B, in the nominal linearized model to

approximate g(x) in ©, [g(X) —~BIK 4zc = [AB, (X)]K4rcX may be large in © because

of the possibility that the resulting K, - may be large. To include this possibility into

our controller generation, we augment [AB, (X)]K;,z-X to the nominal linearized model

as additional structured uncertainties entering B, . We recall from (3.11):
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0

0
~565.1008 2

_ ~113.4531 | = N [0 ABn

AB, (%) =| “Z e PYNCT B§:lj[hB x,NE;™Ix (E3.3.4)

504.2688cos(x; — x,)
| —5.9809 +cos” (x; — x,)

+101.2401

where 121 (x,1) = AB_(x)(3,1), hi" (x,1) = AB_(x)(4,1), E2®» =[0 01 0], and
E%" =[0 0 0 1)7 . 1t follows that:

0 0

2
~[AB, (x)]Kx = | A’ (x,1) _OK +hIn(x,1) g x:g:l[h;n (ME;" x  (E3.3.5)

0 -K
where
) ke h, i)
2)  mrxelhy, by
3) hir = ~565.1008 ———113.4531 = -0.5547
—5.9809 + cos” (—)
20
4 k= _565'10082 ~113.4531=0
—5.9809 + cos(0)
S e 504.268800s§0) +101.2401=0,
—5.9809 + cos“(0)

504.2688 cos (—=)
6  hE= 20 +101.2401=1.7353

—5.9809 + cos? (%)
20

7 EF=[0 0 -K" of

8 EX=0 0 0 -K'".
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Using the uncertainty specifications obtained previously, we approximate (E 2.2.2) in ©

by:

4 2
x=[[A, + Y [A (XES 1+ [-B,K+ ¥ [k (X)EL"]]
u§=:1 Z{ bR (E3.3.6)
=[[A, + AL, (0]+[-[B, + AB, (x)IK]
where AA , (x) and — AB,(x)K are given by (E 3.3.3) and (E 3.3.5) respectively. Note

that (E 3.3.6) does not represent (E 2.2.2) exactly in © but we expect that it approximates

(E 2.2.2) better than (E 2.2.3) does in the same region because of the augmented nonlinear
structured pseudo-uncertainties. We emphasize that hf” x), a=1,2,3,4 and hff "(Xx),

B =1, 2 need not be the corresponding functions given previously. Rather, they can be any

functions that obey the corresponding bounds [/, , 4 ] and [hlg” , hfg }. Accordingly,

we see that (E 3.3.6) includes not only the pseudo-uncertainties, but also any uncertainties
obeying such bounds. To generate a LARC for (E 3.3.6), we follow the procedure given in

Section 3.5. Using (2.12), (2.16), and Theorem 3.2, we plot A (Z) versus pe R* and

max

N =1, and determine the minimum of A _,, (Z) in this plot. We realize that the values of

p and M corresponding to this minimum may produce a LARC that requires a large

amount of control energy but we assume in this example that we are not limited by this
factor. When the availability of control energy is limited, we usually want to choose small

values of p and m that correspond to a smaH value of A, (Z)from such plot because
small values of p and m usually produce a small K, ,.-. This will be illustrated in

Example 3.4.
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Because we do not know where the minimum of A, (Z) is, we first generate the plot in
a large region of 0.001<p <100 and 1 <N <100 using large grids as shown in Fig
E3.3.1. From Fig. E3.3.1, we find that A . (Z) has a local minimum when p and m are

small. Accordingly, we reduce the plotting domain to 0.001<p <0.1 and 1<Nn<2.5, and

plot A_,.(Z) versus p and M as in Fig. E3.3.2. From Fig. E3.3.2, we find that
min(A . (Z)) =0.7220 occurs at (p,n) =(p ,M") = (0.031,1.65) . The plot of A, (Z)

versus 1 when p=p = 0.031 is given in Fig. E3.3.3. Using our computer, the

computation time is less than 1 minute.

minimum point

Fig. E3.3.1 APlotof A_,,(Z) versus pe [0.001, 100]and n e [1, 100]
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400 "

-
300 "

}\'max (Z) 200 4

1 00 = N

Fig. E3.3.2 A Plotof A, (Z) versus pe [0.001, 0.1] andné [1, 2.5]

max (24 Y--———-(n"‘,xm(zj)=(1.65,0.722)

RN

\_O__./

| ) 2 25
n

Fig. E3.3.3 A Plot of A, (Z) versus ne [1, 2.5] when p = p* =0.031
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The minimum point A, (Z) = 0.7220 corresponds to the following matrices:

max

K upe =[-0.1141 —7.1286 —0.4935 —1.0932] (E33.7)

1.1002 62628  0.4335  0.9604
6.2628 392.3790 27.0938 60.0187

Q= (E 3.3.8)
0.4335 27.0938 2.8756 4.1549

0.9604 60.0187 4.1549 10.2040

45672 11.4836 1.4703 1.6697
11.4836 101.9292 10.9763 13.6770
1.4703 109763 1.3090 1.5622

1.6697 13.6770 1.5622 1.9617

0 0 1 0

_ 0 0 0 !
A=A —BK. e E3.3.10
=B Rl =) 065 000742 557340 12401461 | :

—49.9428 —-669.9749 -49.4824 -111.0340
where the eigenvalues of A, are at A, =—43.3035, A, ; =—5.0925+ j2.1912, and

A, =-1.8116 in the LHP. Because A_,, (Z) > 0, the time derivative of the quadratic

max
. I . . .

Lyapunov function V(x) = —2—x P(E3‘3.9)x along trajectories of (E 3.3.6) is not

negative definite in ©. Accordingly, we continue with the simple univariate optimization

technique to search for K, 4~ that meets the structured uncertainty specifications. We
start the univariate technique with the initial value for K, and Q taken from (E 3.3.7)

and (E 3.3.8) respectively. In less than 10 seconds on our computer, the univariate

technique gives a linear gain matrix K~ and Q such that A, (Z) <0, implying that

max

the uncertainty specifications are met under such Kz~ and Q. However, we continue to

run the optimization algorithm to decrease A_,, (Z) further. The algorithm does not

max
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produce better results after it runs for approximately 2 minutes on our computer. At this
point, we obtain:

Ao (Z) = =1.7797 (E3.3.11)

The corresponding matrices are given by:

K uxe = Kopage =[-0.0804 ~8.6189 —0.5572 ~1.1748]  (E3.3.12)

1.6119 13.1838 1.2758  1.7495
13.1838 332.1778 30.3678 49.3434

Q= (E 3.3.13)
1.2758 30.3678 4.7783  4.6135

1.7495  49.3434 4.6135 9.1941

46236 124067 14066 1.6109

12.4067 157.1118 17.1767 20.6637
11.4066 17.1767 2.0826  2.4550

1.6109  20.6637 24550 2.9956

0 0 1 0

_ 0 0 0 1
A =[A -BK = E3.3.15
n = Ay =B Ko 52.1474  968.1484  62.9620  133.4049 ( )

—-46.5339 -820.8486 —55.9323 -119.2962
where the eigenvalues of A, are A, =-39.7642, A, =—11.8991, A, =—3.1758, and

Ay =—1.4951 in the LHP. Because A, (Z) <0, it follows that the region about the

max
L : . _— . : 1 7
origin in which the time derivative of the quadratic Lyapunov function V = EX Prssi1nX

along trajectories of (E 3.3.6) is negative definite contains ©®. When A, (Z)=0", we
know from the fundamental idea of LARC that the corresponding LAR is the largest B,
that can be contained in ©. For this particular example, A, (Z) <0 . Accordingly, the

corresponding LAR is larger than the largest § that can be contained in ©. Note that the

initial value is extremelv important for obtaining a solution of the optimization problem.
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Indeed, our univariate optimization cannot find a solution K, ,z~ that meets the given

uncertainty specifications when we employ the same initial value K, .~ in (E 3.3.7) but
replace the initial value Q in (E 3.3.8) by the feasible matrix:

1 01 01 0.1
Jjo1r 101 ol
o1 01 1 01

0.1 01 01 1

Q

To estimate the attractive regions corresponding to Kz~ (E 3.3.7) and to K 5~ (E-

3.3.12), we employ numerical simulations. We define convergence and divergence to be

the same as those in Example 2.2. These attractive regions are displayed in Table E3.3.1
and E3.3.2 with the attractive region corresponding to K,z (Misawa, Arrington, and
Ledgerwood, 1995) in Example 2.2. From these tables, it appears that the attractive region

corresponding to K, .- is the largest while the attractive region corresponding to
K, src is larger than that corresponding to K Lor - From the tables, we see that the

attractive regions corresponding to K, spc is larger than ®. Since a LAR must be
contained in @, this agrees with a known fact that the attractive region must contain every
LAR. We do not present the application of the unstructured uncertainty bound from
Theorem 3.3 in this example because the resulting allowable bound is very conservative.

This result agrees with those in Example 3.1 and 3.2.

Using the matrices resulting from the univariate technique, we now illustrate the
application of Theorem 3.2. Note that internal computing precision is 16 decimal digits

but we display only 4 decimal digits for conveniences:



1) Following (3.18 b), we obtain:

6
A=A, + Y hE;
j=1

4 2
=A,-B K+ Y [h(0E} x+ Y [hg" (OE;" Ix

=1 =1
0 0 1
~ 0 0 0
] 521028  963.3675  62.6375
—46.5339 —820.8486 —56.0157
2) Following (3.18 ¢), we obtain:
~33493 —33.8584 —3.2352
| -33.8584 —828.5962 —77.9894
| =32352  -77.9894 —11.3176
—45745 —122.2360 —11.7048

132.7357
—-119.3116

—4.5745
—122.2360
—11.7048
—21.7660
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(E 3.3.16)

(E3.3.17)

The eigenvalues of ® are A, =—-855.4701, A, =—-4.0113, A; =-3.6898, and

Ay =—1.8579. So we have A, (®)=—1.8579 and the condition in (3.17 a) is satisfied.

3) Following (3.18 d), we obtain:

T 0 0 - 1.4066
v _ 0 0 17.1767
17114066 17.1767 4.1653
0 0 2.4550
[0 0 0
0 0 0
¥, = o
0 0 0
11,4066 17.1767 2.0826
[0 0 0
0 0 0
v, =
0 0 0
11.6109  20.6637 2.4550

0

0
2.4550

0

1.4066 |
17.1767
2.0826

4.9099 |

1.6109
20.6637
2.4550
5.9912

(E3.3.18a)

(E3.3.18b)

(E3.3.18 ¢)



4=

0 0

|0 0
1.6109 20.6637

0 0
[0.2262  13.5043
13.5043 296.0890
0.9512 27.5210
| 1.8498  41.3384
[0.2590 15.5457
15.5457 356.1974
1.0950  32.6730
| 21334 50.0945

4) Following (3.18 e), we obtain:

Ty,

2

3

4

—0.9967
0.0800
0.0000
0.0114

[~ 0.9967
0.0804
0.0098
| 0.0000

[~0.9970
0.0766
0.0091
| 0.0000

[-0.9970
0.0761
0.0000
| 0.0110

0.0536
0.6550
0.7479
0.0936

0.0531
0.6488
0.0787
0.7550

0.0506
0.6484
0.0770
0.7557

0.0511
0.6558
0.7471
0.0951

1.6109 0
206637 0
49099 2.9956
2.9956 0
0.9512  1.8498 |
27.5210 41.3384
23209 3.8146
3.8146  5.7682 |
1.0950  2.1334
32.6730 50.0945
27358 4.5532
45532 7.0385 |
0.0604 | 0.0000
0.7380 | -0.1415
-0.6638 | 0.0000
0.1055 | 0.9899
—-0.0612 | 0.0000 |
~0.7470 | —0.1204
~0.0906 | 0.9927
0.6557 | 0.0000 |
-0.0583 | 0.0000 |
—0.7482 | -0.1180
~0.0889 | 0.9930
0.6550 | 0.0000 |
0.0575 | 0.0000 |
0.7372 | —0.1435
—-0.6647 | 0.0000
0.1069 | 0.9897 |
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(E3.3.18 d)

(E3.3.18¢)

(E3.3.18 )

(E3.3.19 a)

(E3.3.19 b)

(E3.3.19¢)

(E3.3.194d)



0.0448

1 0.9852

S 10.0914
0.1375

0.0429
0.9853
6 10.0903
0.1386

0.7860
—-0.1002
0.6073
0.0581

0.7809
-0.1018
0.6104
0.0848

0.6160
0.0504
—0.7851
—0.0396

—0.5095
0.0221
0.7208

—-0.4694

0.1613
—-0.1077
-0.3155

0.9289

0.0337

0.1265

0.1148
—0.9847

¥ =diag[0 19.6150 -15.4497 0]

¥> =diag[0 19.9873 -15.0774 0]

‘I’?:diag[o 24.0808 -18.0896 0]

YD =diag[0 23.5402 -18.6302 0]

W2 = diag [305.0279 -0.6236 0 0]

W2 = diag[366.9107 —0.6800 0 O]

5) Following (3.18 f), we obtain:

w20 = diag [0
w20 = diag [0
w20 = diag [0

P20 = diag [0

19.6150 0
19.9873 0

24.0808 O

23.5402 0

0]
0]
0]

0]

P20 = diag[305.0279 0 0 0]

P20 = diag[366.9107 0 0 0]

6) Following (3.18 g), we obtain:

0.0564
0.6890

| S
0.7868
0.0985

0.6890
8.4142
9.6086
1.2026

0.7868
9.6086
10.9725
1.3733

0.0985
1.2026
1.3733
0.1719
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(E3.3.19¢)

(E3.3.191)

(E 3.3.20 a)
(E 3.3.20 b)
(E3.3.20 ¢)
(E 3.3.20 d)
(E33.20¢)

(E3.3.201)

(E3.3.21 a)
(E3.3.21 b)
(E3.321¢)
(E 3.3.21 d)
(E3.3.21¢€)

(E3.3.211)

(E33.222a)
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[0.0564 0.6890 0.0835 0.8018
0.6890 8.4142 1.0202 9.7910
0.0835 1.0202 0.1237 1.1871

10.8018 9.7910 1.1871 11.3930

P = (E 3.3.22b)

[0.0615 0.7894 0.0938 0.9199

0.7894 10.1254 - 1.2030 11.7997
“10.0938 12030 0.1429 14019
109199 11.7997 1.4019 13.7510

(E3.3.22¢)

0.0615 0.7894 0.8992 0.1144

o 107894 10.1254 11.5348 1.4679
v = (E3.3.22d)

0.8992 11.5348 13.1405 1.6722

0.1144 14679 1.6722 0.2128

0.6114 13.4552 1.2489 1.8783

or  |13.4552 296.0953 27.4830 41.3347

¥s' = (E33.22¢)
1.2489 274830 2.5509 3.8366

1.8783 41.3347 3.8366 5.7703

0.6737 154916 1.4191 2.1784
or _ | 154916 356.2044 32.6307 50.0836

o= (E33.221)
14191 32.6307 29892 4.5885
2.1784 50.0886 4.5885 7.0433
7 Following (3.18 h), we obtain:
-1.8251 0.6891 0.1002 0.3261
6 0+ 0.6891 -43.6762 -3.8277 -11.4009
Z=®+ ) [(h, —h)¥)]= (E3.3.23)

P 0.1002 -3.8277 -2.1770 -1.2084
0.3261 -11.4009 -1.2084 —5.4798

It can be shown that the eigenvalues of Z are A, =—-47.1905, A, =-2.4052,

Ay =-1.7827,and A, = -1.7797 . Accordingly, we have that A _,, (Z) =-1.7797 <0 and

(3.17 b) is satisfied.
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Example 3.4 (A Fighter Aircraft)

In this example, we consider the problem of stabilizing the longitudinal short period
mode of a fighter aircraft about two operating points (Schmitendorf, 1988), (Chen, and
Chen, 1991). We assume that the available control energy is limited and thus we require
that every element of our linear state-feedback gain matrix be small. The dynamics at
mach = 0.5 and altitude = 5000 feet, and at mach = 0.9 and altitude = 35,000 feet are
given by (E 3.4.1 a) and (E 3.4.1 b) respectively:‘

x=[A, +AA x+[B, +AB Ju ‘ (E34.1a)

x=[A, —AA Jx+[B, — AB_ Ju (E3.4.1b)

where X =[x, x, x3]", x; = normal acceleration, x, = pitch rate, x5 = elevator

—-0.8251 17.76  90.245
angle, u = elevator control, A, =| 0.1734 —-0.7549 ~—11.1 | is unstable,

0 0 - 250
-0.1645 -035 5.905 -91.44 : -6.34
AA. =] 0.0914 -0.0963 -0.29|, B, = 0 ;and AB, = 0

0 0 0 : 250 0

In (Schmitendorf, 1988), the system is modeled as:

x=[A, +AA  (X)]x +[B, + AB, (x)]u (E3.4.22)
AA (x) = b (x, DE" + hin (x,)EL" (E3.4.2b)
AB, (x) = bl (x,£)ER" (E3.4.2¢)
~0.1645 -0.35 5.905 0 0 0
where E/" = 0 0 0 |, Ef"=[0.0914 -0.0963 -0.29|,

0 0 0 0 0 0
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~6.34
EM¥ = 0 |, h(x,0)e[-L1], k" (x,r)e [-1,1], and A’ (x,1) € [~1,1]. When the
0

system is modeled as (E3.4.2), we see that the uncertainties in A, are assumed to enter
each row of A, pfoportionally. The solution from (Schmitendorf, 1988) is:

Kisn =10.593 1.8965 —0.642] (E3.4.3)
Reference (Chen, and Chen, 1991) refers to (Schmitendorf, 1988) and reports the
}stabilizing solution gain matrix:

Kicep =[0.2556 0.3595 0.1370] (E3.4.4)
We say that K¢ is “smaller” than K .,; because each element of K, is smaller
than the respective one in K, . In this particular example, K, is preferable because

the control energy is limited. Our objective is to show that our LARC can handle more

general and stronger uncertainties with a smaller gain matrix. We now cast the problem

in a more general form, allowing the uncertainties to enter A, independently. In this

case, the dynamics of the uncertain system are:

6
x=[A, + Y [h¥ (x,DE} 11X~ [B, + 1" (x,1)E;™ [Kx
“6:1 (E 3.4.5)
=[A, + Y [h" (x, DE;* 11x + [-B, K + A" (x, HE]" 1x

a=1
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,0.16451, hin (x,1)€ [-0.35,0.35], hi" (x,1) € [-5.905,5.905], hj (x,1) € [-0.0914,

,0.0914], ki (x,1) € [-0.0963,0.0963], hi" (x,1) € [-0.29,0.29], and h/" (x,1) € [-6.34

,6.34].

To generate a LARC for this uncertain system, we start the “second” procedure by

(Z) versus p and 1, and determine from this

max

generating a three-dimension plot of A

plot if there exists a particular (p,m) suchthat A, (Z)<0.Aplotof A, (Z) ina

max max

region of p and 7 is shown in Fig. E3.4.1, from which we see that the minimum of

Amax (Z) 1s nonnegative. We emphasize that the sign of A, (Z) for large values of p

max

and 1 _need not be examined because these correspond to large gain matrices.

150+

100+

Z)

max (

0o 1

Fig. E3.4.1 A Plotof A, (Z) versus pe [0.0001,0.2]and ne [1,2]

max
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Because the minimum of A__ (Z) in Fig. E3.4.1 is nonnegative, we enter the second

max
phase of the procedure in which optimization is employed to find a gain matrix that meets
the given uncertainty specifications. To find an initial value for such optimization, we

normally select from this plot (p,n) at which A . (Z) is small because we want to

max

minimize A, (Z).Fig. E3.4.1 shows that A . (Z) is small when (p,7) is large.

max max

However, direct computations show that a large (p,m) corresponds to a large K,z .
Since the solution K, .~ for this problem is required to be small, we need to trade a

larger A, (Z) for a smaller (p,m). Now, we notice from Fig. E3.4.1 that A (Z)

decreases sharply in regions where p and m are small. This suggests that we examine the
plot in such regions to do the trade-off. Using our computer, it takes approximately 5

seconds to produce the plot of A, (Z) shown in Fig. E3.4.2 and Fig. E3.4.3.

max

"M, A, (Z)) = (0.002,2,11.9933)

(0 M, A (2)) = (0.0015,1.4,14.4718) — ..

150 "

A (Z)

max (
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Fig. E3.4.2 APlotof A . (Z) versus pe [0.0001,0.002]and n € [1,2]

max

26
K—— M, Aoy (£)) = (1.4,14.4718)

"I\
20\
o A\

TN

1 1.2 1.4 1.6 1.8 2
n
Fig. E3.43 A Plotof A, (Z) versus ne [1, 2] when p =0.0015

14

The minimum value of A, (Z)=11.9933 in Fig. E3.4.2is at (p’,m’) = (0.002,2) . We

examine Fig. E3.4.2 and find that a portion of the plot is flat. In this flat portion, reducing
the values of pandmn does not increase the value of A, (Z) significantly. Accordingly,
we select from this flat portion (p,m) =(0.0015,1.4) corresponding to

Amax (Z) =14.4718 and employ this (p,m) to generate {K -, Q} as an initial value for

our optimization routine. Other points in this flat portion having small A . (Z) can be

max

selected for this purpose as well. To investigate effects of different initial values, we start

our optimization routine from the initial values corresponding to (p",Mn") =(0.002,2) and
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to (p,m) =(0.0015,1.4) . Using Lemma 2.3, the initial value {K . ,,Q} corresponding

to (p',Mm") =(0.002,2) is given by:
K ugc: =[-0.0817 —0.4451 -0.0055] (E3.4.6 a)

1.8342  4.5452  0.0559
Q=[4.5452 25.7659 0.3046 (E3.4.6D)
0.0559 0.3046 1.0037

In the same fashion, the initial value {K 4zc ,,Q} corresponding to
(p,m) =(0.0015,1.4) is given by:
K 4rc2 =[-0.0500 -0.2886 —0.0030] (E3.4.7a)

1.3398 1.9624 0.0204
Q=|1.9624 12.3335 0.1177 (E3.4.7b)
0.0204 0.1177 1.0012

Notice that the gain matrix corresponding to (p*,m") = (0.002,2) is relatively larger than
that corresponding to (p,m) = (0.0015,1.4) . Applying the univariate optimization to

Theorem 3.2, it takes our PC approximately 1 minute to find a solution corresponding to

the initial value in (E 3.4.6):

Koare1 =[-0.0825 —0.4451 —0.0055] (E3.4.8a)

0.2336 0.6211 0.0396
Q=]0.6211 4.0120 0.2410 (E3.4.8b)
0.0396 0.2410 0.9833

The solution K, szc; in (E 3.4.8) corresponds to A ., (Z) = —0.0101. In the same

fashion, it takes our PC approximately 1 minute to find a solution corresponding to the

initial value in (E 3.4.7). This solution is given by:
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Kouurea =[-0.0715 -0.2886 —0.0030] (E3.4.9 a)

0.1209 0.2316 0.0090
Q={02316 0.9881 0.0188 (E3.49D)
0.0090 0.0188 0.5874

The solution Ky, zc 5 in (E 3.4.9) corresponds to A ., (Z) = —-0.0108 . Notice that the

solution K, szc , is smaller than K¢y in (E 3.4.3), K¢y in (E3.4.4), and Ky ,pc

(E 3.4.8 a). We see from this particular example that a small initial gain matrix can lead

to a small solution gain matrix.

For this particular example, we want to show further that our “second” procedure can

generate a LARC to meet increased uncertainty specifications with a small state-feedback
gain matrix. For this purpose, we assume that the‘variations in h;‘" x,t), aa=12,...,6
and hlB " (X,t) increase by 25 %. We now have:
hin (x,1)€ 1.25[-0.1645,0.1645], k) (x,1)€ 1.25[-0.35,0.35], ...,
hn (x,1) € 1.25[-0.29,0.29], and A’ (x,1)€ 1.25[-6.34,6.34]
(E3.4.10)

We reapply the second procedure by plotting A . (Z) versus p and 1 according to the

max
increased structured uncertainty specifications. The plot is given in Fig. E3.4.4. It is clear

that the minimum of A _,, (Z) in this plot is greater than zero and thus we employ

optimization to find a small gain matrix that meets the increased specifications. In the

same fashion, we see that this plot has a flat portion, and we select from this portion a

point at which p,n,and A, (Z) are small to generate an initial value for the optimization
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routine. We select from this portion the same coordinate (p,m) = (0.0015,1.4), which

now corresponds to A . (Z)=18.7552.

max

(P, My A oy (Z)) = (0.0015,1.4,18.7552)

150

1004—"

}\’max (Z)

Fig. E3.4.4 A Plotof A, (Z) versus p € [0.0001,0.002] and ny € [1,2]

We have seen that (p,m) =(0.0015,1.4) corresponds to the initial value {K,zc,,Q} in

(E 3.4.7). Using this initial value, we apply the univariate optimization to Theorem 3.2
and obtain the solution:

Koarcs =[-0.0939 —0.4451 —0.0055] (E3.4.11 a)

0.2623 0.5707 0.0327
Q=]0.5707 2.2043 0.1089 (E3.4.11b)
0.0327 0.1089 1.1397

This solution corresponds to A ., (Z) = —0.0101 and a computation time of

approximately 1 minute. Continue running the optimization routine yields the minimum

value of A, (Z)=-0.1403, which corresponds to:
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Korea =[~0.1635 —0.5303 —0.4297] (E3.4.12 a)

0.3498 0.5817 0.0399
Q=10.5817 1.6964 0.0043 (E3.4.12b)
0.0399 0.0043 0.9250

The total computation time is approximately 2 minutes. Since we require that the linear

gain matrix be small, we select the solution K, 4zc 3 in (E 3.4.11 a) for the increased
uncertainties. Because the gain matrices K 4pc 3 and K, 4z 4 are such that

Aax (Z) < 0, we know that they can stabilize the system when the uncertainties are

increased by more than 25 %. We do not pursue this further because it appears that the

present results are satisfactory.
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Example 3.5 (The Cart-and-Pole System with Force Control on Cart)

In this example, we generate a robust LARC for stabilizing the cart-and-pole system in
Example 2.2 about the origin. We treat nonlinearities as “pseudo” structured uncertainties
entering the nominal linearized model as in Example 3.3. Additional structured
‘uncertainties dan be augmented to these pseudo uncertainties as in (3.7), and we can
apply the same procedure to generate LAR controllers for such systems. Recall the
equation of motion of the system from (E 2.3.2):
X =f(x)+gx)u : (E2.3.2a)

where:

x=[x, x, x x]J =[x x, % %] (E23.2b)

ml sin(x,)x; —mg sin(x, ) cos(x,)
(M+ sinz(x2 m)
(m+M)gsin(x,) cos(x,)msin(x,)x;
| (Msin®(x)m)l  (M+sin®(xy)m) |

f(x) =

(E232¢)

0

1
1

M+sin® (xy)m
_ cos(x,)
| (M+sin® (x)m)l |

g(x) = (E2.3.24d)

Linearizing the (E 2.3.2) about the origin using the physical parameters M =2 kg, m = 0.1

kg,1=0.5m, and g =9.81 kg.m.s'2 produces the linearized model in (Ogata, 1997):
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5] o o 10] Jo

X, 0 0 01 0
‘= X + u
X3 0 —0.4905 0 0 0.5 (E2.3.3)
Xy 0 20.6010 0 O -1
=A,x+B,u

By inspecting (E 2.2.2), we see that the system cannot be described globally by (3.9).
However, it appears that (3.9) can approximate (E 2.3.2) better than (E 2.3.3) in a
region about the origin because (3.9) represents a family of infinitely many models
including (E 2.3.3). We then employ (3.9) to generate a LARC for (E 2.3.2). To obtain
reasonable structured uncertainty specifications for (3.9), we notice that the nominal

linearized model (E 2.2.3) does not include the effects of the following nonlinear terms in

(E2.3.2¢):
: 2
1 wy(X) = ml s1n(2x2 )% in the third component of f(x)
(M+sin®(x,)m)
: 2
2) W, (X) = — c0s(x, )Tn jm(xz )% in the forth component of f(x)
(M+sin” (x,)m)

This is because linearizing them about the origin produces zeros. We are interested in
w;(X), i =1,2 because we know fr(im numerical simulations in Example 2.3 that when
trajectories converge, x, (joint velocity of the pole) is relatively large when compared to
x, (joint angle of the pole). Assuming that this is true for the system under our LARC,
we see that neglecting w;(x), i =1,2 can lead to significant modeling error. Based on this

assumption, we now assume a crude operating region in which we desire convergence:

©={x|| x,|<0.5, and | x,| < 1.5} (E35.1)
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After we obtain the LARC and perform numerical simulations, we shall see that this

assumption is valid. Now, we write w;(X), i =1,2 as structured uncertainties:

1) For w,(x), we obtain:
0 000 07x,
0 |  misin(xy)x, {000 0}x,
wi(X) | (M+sin®(x,)m)[0 0 0 1] x, (E3.5.2 a)
0 , 000 O0]x,
= b/ (x)E{"x
where h" (x)e [, hin ], pin = TESMC09)% 4 197¢
(M+sin“(-0.5)m)
0000
in(— 0000
PR 00X 001778, and E{" =F, = :
(M+sin?(~0.5)m) 0001
0000
2) For w,(x), we obtain:
0 000 0fx,
0 | cos(xy)msin(x,)x, |0 0 0 0} x,
0 (M+sin®(x,)m) [0 0 0 0] x, (E3.5.2b)
= hin (x)ESnx
where h» (x)e [y, bl ], b = - S8O0IMSNOIL, _ 65315 g
(M+sin”(0.5)m)
0000
_ o (— 0000
i __cos( O.S)n;sm( 0.5)x, ~0.0312, and E* = E, = '
(M+sin”(=0.5)m) 0000

0001
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Note that w,(x), i =1,2 are treated as uncertainties entering A, :

2
[AA, (0]x = Y [h" (DE Ix (E3.5.3)

a=1
To generate a LARC, we want to include the nonlinearities in g(x) into our

considerations. This is because while it is reasonable to employ B, in the nominal
linearized model to approximate g(x) in ©, [g(X) —BJK  zc = [AB, (X)]K , ,zcX may be
large in © because of the possibility that the resulting K, ,,- may be large. To include
this possibility into our controller generation, we augment [AB, (X)]K ;4z-X to the

nominal linearized model as additional structured uncertainties entering B, . We recall

from (3.11):
_ 0 ,
1
1 _05 Z B ABn
AB,(x)=| 37— Gam O =B§[hﬁ (x, HE;™ Ix (E3.5.4)

cos(x,)

- — +1

| (M+sin”(x,)m)l

where k" (x,1) = AB,(x)(3,1), By (x,1) = AB, (x)(4,1), E;*" =[0 01 0]", and
E5™ =10 0 0 117 . 1t follows that:
0 0
AB, (x)]Kx = b O e ! —ith E;"x (B3.5.5
—[AB,(®0IKx =\ I" (x.0) [ HT D x—[H[B (OE;" x (E3.5.5)
0 -K
where
1) hPr(x)e [nfr, hir ]

> Tl

2) hin (x)e [hir, hip ]



198

3) hin = i ~0.5=-0.0057
M+sin“(0.5)m
4y hr :———12———0.5:0
M+sin” (0)ym
5 hin=- °°S§0) +1=0
(M+sin”(0)ym)l
6  nf=——C00) 4413
(M+sin”(0.5)ym)l

7 EF=[0 0 -K' of

8 EX=[0 0 0 -K"T.

Using the uncertainty specifications obtained previously, we approximate (E 2.3.2) in ©

by:

2 2
x=[A, + Y [A" (OE Ix+[-B, K + ¥ [ " (OEF" ]]x
Zﬁ gi b (E 3.5.6)
=[[A, +AA,(X)]+[-[B, + AB, (x)]K] K
where AA | (x) and —AB, (x)K are given by (E 3.5.3) and (E 3.5.5) respectively. Note
that (E 3.5.6) does not represent (E 2.3.2) exactly in © but we expect that it approximates

(E 2.3.2) better than (E 2.3.3) does in the same region because of the augmented

nonlinear structured pseudo-uncertainties. We emphasize that h;‘ (x), a=1,2 and
hg‘ " (x), B =1, 2 need not be the corresponding functions given previously. Rather, they

can be any functions that obey the corresponding bounds [hfn hﬁ;’ ] and [hllé" ,hfé’] .

lo.
Accordingly, we see that (E 3.5.6) includes not only the pseudo-uncertainties, but also

any uncertainties obeying such bounds. To generate a LARC for (E 3.5.6), we follow the
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procedure given in Section 3.5. Using (2.12), (2.16), and Theorem 3.2, we plot A . (Z)

versus p€ R and n > 1, and determine the minimum of A__ (Z) in this plot. We realize

max

that the values of p and m corresponding to this minimum may produce a LARC that

requires a large amount of control energy but we assume in this example that we are not

limited by this factor.

Because we do not know where the minimum of A _,, (Z) is, we first generate the plot in
a large region of 0.2 <p <100 and 1<m <100 using large grids as shown in Fig E3.5.1.
From Fig. E3.5.1, we find that A_,, (Z) has a local minimum when p and 7 are small.
Accordingly, we reduce the plotting domainto 0.2<p <3 and 1.35< N<4, and plot

Aax (Z) versus p and 7 as in Fig. E3.5.2. From Fig. E3.5.2, we find that
min(A ,, (Z)) = —0.4803 occurs at (p,m) =(p ,M") = (1.95,1.8) . The plot of A, (Z)

versus 1 when p=p" =1.95 is given in Fig. E3.5.3. Using our computer, the

computation time is less than 1 minute. Since min(A,,, (Z)) <0, no optimization is

called to generate a LARC. Using p~ and n", we solve the Riccati equation (2.12) for P
and generate LARC according to (2.16). This produces:

K e =[-2.5136 —57.4749 —5.1254 —13.0073] (E3.5.7)
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20
15
10
M tnax (£) (N, Ay (Z)) = (1.8,—0.4803)
5 /
'/ JE
O
-5
1 2 3 4 5 6

n
Fig. E3.5.3 APlotof A, (Z) versus ne [1, 6] when p=p  =1.95

1.8000 18.2927 1.6313 4.1399
18.2927 419.2795 37.3006 94.6621

Q= (E3.5.8)
1.6313 373006 43263 8.4416

4.1399 94.6621 8.4416 22.4233

4.0782 10.3497 3.1579 2.2951
10.3497 119.5777 18.8090 25.7791

P=P = E3.5.9
(E359) 71 31579 18.8090 5.3843 4.1524 ( )
22051 257791 4.1524 5.7820
0 0 1 0
_ 0 0 0
A, =[A,-B K, pc]= (E 3.5.10)

1.2568  28.2469 2.5627  6.5037
—2.5136 —36.8739 —5.1254 -13.0073

where the eigenvalues of A, are at A, =—5.4495, A, ; =—1.9466 + j0.5630, and

A4 =—1.1020 in the LHP. Because A, (Z) > 0, it follows from Theorem 3.2 that the

max
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time derivative of the quadratic Lyapunov function V' (x) = %XTP(B_SS)X along
trajectories of (E 3.5.6) is negative definite in ®. In addition, the corresponding LAR

contains the largest B that can be contained in ®.

To estimate the attractive regions corresponding to K .~ (with uncertainty
specifications), we employ numerical simulations. The corresponding attractive region is

displayed in Table E3.5.1 and E3.5.2 with those corresponding to K pp, (Ogata, 1997)
and to Kz (without uncertainty specifications) in Example 2.3. In the same fashion as
in previous examples, we assume that a trajectory converges to the origin if [[x(1)]| < 0.01
for 40 <# <50, and diverges from the origin if 3¢ such that |x(#)]| > 2000 . From these
tables, it appears that the attractive region corresponding to K ;.- (with uncertainty
specifications) and to K 4.~ (without uncertainty specifications) are approximately the
same while the attractive region corresponding to K, is significantly smaller. From

these tables, we see that the attractive regions corresponding to Kz~ (with uncertainty

specifications) is larger than ®. Since a_LAR must be contained in ®, this agrees with a
known fact that the attractive region must contain every LAR. We do not present the
application of the unstructured uncertainty bound from Theorem 3.3 in this example
because the resulting allowable bound is very conservative. This result agrees with those

in Example 3.1 and 3.2.
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Example 3.6 (Choosing an Appropriate Nominal Model)

Given a nominal linear time-invariant model and the associated structured uncertainty
specifications, it appears from the previous common examples that we can generate a
LARC systematically to obtain satisfactorily large attractive regions when compared to
those in the literature. In each of those examples, the linearized model about the origin is
employed as the nominal model for sifnplicity, but this need not be the best choice. While

it is true that properties of a system should not change because of different

representations, we note that Theorem 3.2 is based on the sufficiency of the Lyapunov

stability, and thus we do not expect it to vield the same result for all possible

representations. Indeed, some representations allow us to find a stabilizing LAR

controller using Theorem 3.2 very easily, while others do not. A nominal model that
forces us to employ special treatments to obtain a stabilizing LAR controller is said to be
“poor”. When a sufficiently poor nominal is employed, we may not be able to find a
stabilizing controller using Theorem 3.2, although one may exist. Indeed, we illustrate in
this example effects of a poor nominal model. The nonlinear system of interest is now
represented as a nominal model subjected to time-varying nonlinear structured

uncertainties:

2
x=A x+B u+ h.(x,0H)E )x
" " ;( j0E;) (E3.6.1a)

=A, x+Bu+f,(x,1)

2
where x =[x; x,]",and fo(x,0) = [fo;(X,8) far,(x,0F =Y (h;(x,HE)x. The

j=1
nominal model X = A x+B u and the associated uncertainty specifications are

given by:
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44 0 1
A, = B, =

10 00
E, = E, = E3.6.1b
oot <fi o Frorn

h(x,1)€ [-41.5,—38.5] = [hy, hy,]
h2 (X,t) € [Oa_ 1] = [hIZ’ th]

Note that the nominal model in (E 3.6.1) is not a linearized model. Otherwise, we must be

—HT_ =0 for some (X, #) because this is the definition of a

have lm {sup

x|—=0 >0

linearized model (Vidyasagar, 1993). Clearly, this is not true for (E 3.6.1). To find a

simple guideline for choosing a nominal model, we examine the proof of Theorem 3.2.

To apply Theorem 3.2, K must be such that A, =[A, — B, K] is stable because this

represents dynamics of the nominal model. In addition, we desire that A_,, (Z) <0 to

max
assure the negative definiteness of the Lyapunov time derivative in the region where

uncertainty specifications are valid. By examining (3.18 h), A, (Z) <0 if and only if

max

the symmetric matrix ® € R™" is negative definite, because the symmetric matrix

.
N [(h,; — k)P e R™ is cither positive definite or positive semidefinite by

j=1 . '

construction. From (3.18 ¢), the conditions that ® is negative definite and P is positive

definite can be satisfied simultaneously if and only if A, is stable, because (3.18 ¢) is a

Lyapunov equation. Now, we recall from (3.18 b) that A, = A + 2 h;E ; . It follows
j=1

from Theorem 3.1 that A, is stable if the hy; are sufficiently small Vj, because K is such

that Kn is stable. Notice that that we cannot reduce effects of 2 [(huj - hlj-)‘I’(}+] on
j=1

A max (Z) by recasting the model such that (huj - hlj) >0 are smaller Vj. However, we

can recast the model such that magnitudes of hj; are smaller Vj to suppress the effect of -

2 h;E; on A, . Indeed, we can decrease the magnitude of #;; by recasting the model as:
j=1
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2
x=Ax+Bu+ ) (h,(x,0)E )x
; ! g (E 3.6.2 a)

=A,x+Bu+f,(x,1)
where the nominal model x = A x + B, u and the associated uncertainty specifications in

(E 3.6.2 a) are determined from:

44-40 0] [40 ]
A” = = 5 Bn =

10 00
E, = E, = E3.62b
! {00} 2 [10} B

h(x,t)e [-41.5+40,-38.5+40] =[-1.5, 1.5]» ={h,, h,]
h,(x,1) € [_LO]; (. byl

The new representation is obtained by subtractihg 40x1 from the first state equation
X, =44x,; +u, and adding 40x, to the first uncertain component fq,(X,1) = h(X,1)x, .
We now employ Theorem 3.2 to find a LAR stabilizing controller. The plots of A ., (Z)

versus p and 7 corresponding to the representations in (E 3.6.1) and (E 3.6.2) are given
in Fig. E3.6.1 and E3.6.2 respectively. The plotting data in Fig. E3.6.1 show that there is

no coordinate (p,m) such that A __ (Z) < 0. Moreover, extending the plotting domain

produces the same result that we see from Fig. E 3.6.1, namely that the plot is flat for

large values of p and m. This is in contrast to Fig. E3.6.2, in which there are - many

coordinates (p,m) such that A, (Z)<0.

max
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Fig. E3.6.1 A Plotof A

Using the Representation in (E 3.6.1)
Remark: 1) There is no (p,m) such that A

2) The plot is flat for large values of p and 7).

(Z) versus pe [1,96]and n € [1,20]

max

(Z)<0.

max

(Ps My Aax (Z)) = (50, 10, —0.1227)

60wt

20
1
10 °

0 o n

Fig. E3.6.2 A Plot of A, (Z) versus p € [1,96]and € [1,20]

max
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For the representation in (E 3.6.2), we arbitrarily select (p,n) = (50,10) in Fig. E3.6.2 to
obtain A ax (Z) = —0.1227 . This corresponds to:

K arc =1278.1184 —137.5878] (E3.6.3)

140.2298 - 68.8783
= (E 3.6.4)

| -68.8783 35.0747

We note that it may be _pbssible to find other coordinates to produce other gain matrices
whose absolute value of each element is smaller than the réspective ones in (E 3.6.3).
However, we do not pursue this because the present result is sufficient to demonstrate
effects of a “poor” nominal model. Note that vthe nominal model in (E 3.6.1) is very poor.
Indeed, our optimization routine cannot find a solution {K, Q} fo meet the uncertainty
specifications in (E 3.6.1), although we start the routine from initial values corresponding

to small values of A,

(Z) in Fig. E3.6.1. The criteria for choosing an appropriate
nominal model presented in this example can be applied in the situation in which a
linearized model is given as well. We emphasize that an unnecessarily poor nominal

model may not allow us to employ Theorem 3.2 to generate a stabilizing LAR controller,

although one may exist. Now, suppose that the nominal model x = A, x + B, u and the

associated uncertainty specifications are determined from:

[44~41.5 o} {2.5 o} H
An = = s Bn =
0-1 -1 -11 1
10 00 L
- - E3.6.5
E, {o o}’ E, L OJ ( )

hy(x,1)€ [-41.5+41.5,—38.5+41.5] = [0, 3] =[hy;, hy]
hy(x,0)€ [-1+1,0+1]1=[0,1] = [Ay,, 5]
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The new representation in (E 3.6.5) is obtained by subtracting 41.5x,; from the first state
equation x; = 44x, +u , subtracting x; from the second state equation x, = x, +u,
adding 41.5x, to the first uncertain component fq,(X,?) = h(X,7)x,, and adding x; to
the second uncertain component f,(X,t) = h,(X,#)x;. Using Theorem 3.2, we plot

Aax (Z) versus p and m in Fig. E3.6.3 to find a stabilizing ILARC for the representation
in (E 3.6.5). According to the plotting data, there are many coordinates (p,m) such that

A ax (Z) < 0. One such coordinate is the coordinate (p,m) = (50,10) employed earlier for

the representation in (E 3.6.2). Because the model has been recast, we now have

A ey (Z) = —0.0657 and:

K, e =[280.7107 —75.9225] (E 3.6.6)

142.8373 —75.9225
(E3.6.7)

—-75.9225 41.6397

©, N, Ay (Z)) = (50, 10, —0.0657)

0 o n

Fig. E3.6.3 A Plot of A, (Z) versus pe [1,96]and n€ [1,20]
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Notice that A . (Z) corresponding to (E 3.6.2) is less than that corresponding to (E

max
3.6.5) under the same coordinate (p,n) = (50,10), although the magnitudes of h,j j=12
in (E 3.6.5) are zero. This suggests that it is unnecessary to choose a nominal model such

that the magnitudes of hlj are zero Vj, and it is sufficient that these are small. We do not

examine how an appropriate nominal model should be chosen when the uncertainties are
unstructured. This is because it has been our experience that unstructured uncertainty

bounds are too conservative to be employed in actual practice.
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Summary

In this chapter, we state explicitly in Theorems 3.2 and 3.3 two numerical bounds

’ fo(x,t
on the uncertain nonlinear function M that guarantee the negative

I~

definiteness of V (x,?) in operating regions about the origin where such bounds

are obeyed. We desire that V(x,t) is negative definite in a radially large region

about the origin because this implies a large LAR.

In the first portion of this chapter, we propose a new structured uncertainty bound
and draw an unstructured uncertainty bound from the litérature for analyzing
(3.2). Our focus is at the former beéause we find from our preliminary studies that
unstructured uncertainty bounds usually produce conservative results. For system
analysis, we apply our structured uncertainty bound to common examples
employed in the literature. It appears that our allowable uncertainty bound is
equally or less conéervative than the existing ones. For controller generation, the
concept of eigenvector condition is combined with our structured uncertainty
bound and an optimization technique. It appears that when the initial value for the
optimization is generated frpm the eigenvector condition and our structured
uncertainty bound, a simple optimization technique is sufficient to produce robust
LAR controllers. The allowable uncertainty bounds resulting from our procedure
are less conservative than those in (Chen, and Chen, 1991), which are the least

conservative results for the common examples we draw from the literature. In
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addition, results from such common examples show that our LLAR linear gain

matrices are smaller than the corresponding ones from (Chen, and Chen, 1991).

We emphasize that the optimization phase is not always needed when generating
our robust LARC. It is employed only when needed to ensure that computing
resources and time are not consumed unnecessarily. When such an optimization is
needed, our Procedures 2 and 3 indicate this and provide a plot for determining
reasonably good initial values for the optimization. By means of examples, it
appears that these initial values result in fast convergence to solutions, with
appropriate choices for initial values. However, convergence does not occur if

inappropriate initial values are employed.

Theorem 3.2 and 3.3 can be employed to guarantee global stability of (3.2) when

o (x, 1))

£=———— is sufficiently small.
I
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Chapter IV

LARC for MIMO Systems

4.1 Linearized Model Case

Our primary objective in this chapter is to obtain a MIMO version of LARC developed in
Chapter II. The available mathematical description is assumed to be:

x =f(x) + g(x)u(x) 4.1)
where the vector f(x)€ R”", and matrix g(x)€ R™" can be uncertain. In our discussions,
f(x), g(x), and the control u(x) = -Kxe 91’7 are such that X is locally Lipschitz in the
operating region of interest in R” V¢ >0. We assume that the linearized model of (4.1)
exists about the origin and is given by:

x = Ax + Bu(x) 4.2)
where A € R, and Be R™™ are known, and [A B] is controllable or stabilizable. An
uncertain nonlinear system having a known linearized model can be found in Section 1.1.

The gain matrix K is such that A =[A - BK] is stable. In the Chapter I and I, we

explore several key properties of the functions F L(X) = x/PAx and G, (x)= x'PB.
Using these properties, we establish the concepts of eigenvector condition, eigenvalue
ratio, and formulate LARC for SIMO systems when the linearized model is available. In
this chapter, these known properties will be extended to formulate LARC for MIMO

systems. We shall see that some theorems for SIMO systems can be applied to MIMO
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systems immediately while some require slight changes. Indeed, the formulation of

LARC for MIMO systems is straightforward from that for SIMO systems.

Eigenvector Condition

Most of our notations in this section are derived from those in Chapter I, and II. In this

chapter, we provide statements and recall mathematical objects from the previous

chapters, with the understanding that we replace g(x)e R", Be R",
G(x)=x"Pg(x)e R, G, (x)= x'PBe R, and u(x)e R in the previous chapters by

g(x)e R, Be R™, G(x) =x'Pg(x)e R, G, (x)e R, and u(x)e R

respectively.

It is well-known that Lyapunov stability is applicable to MIMO systems as well as SIMO
systems. Thus, the fundamental idea of LARC presented in Section 1.2 applies to MIMO
systems. Now, consider the time derivative of the quadratic Lyapunov function (1.5)

along trajectories of the nonlinear system (4.1):

V(x) = x"PE(x) + x Pg(x) u(x) “3)

= F(x) + G(x)u(x) '
According to the fundamental idea of LAR, we desire that the region B; defined in (1.6)
be radially large to obtain a large LAR. The existence of B, about the origin is

guaranteed because K stabilizes the linear model (4.2). From the definitions of Xcg, n

section 1.3, we see that the dimensions of B; and LAR are limited by the existence of

Xc,, - At X¢ , We have that F(XCSi) =0 and G(XCs,- ) =0. It is clear from (4.3) that the
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control u(x) cannot force V(x) to be negative at X¢,, SOWe require that Xeg be

removed or be as far from the origin as possible. To accomplish this, we consider first a

MIMO version of Lemma 1.1

Lemma 4.1  (Relationship between Sg,_o and Rip, c1040})

If the basic conditions C1-C4 in Lemma 1.1 are satisfied then:
S,=0 © Rip, <o1ui0

where R, <10y ={x|F,(x)<0}U{0}, FL(X)EXTPAX, SG,-0 ={x|G,(x)=0},

G, (x)= x PB € R>" | and P and Q are symmetric positive definite matrices.

Proof

Consider the time derivative of the quadratic Lyapunov function (1.5) along the

trajectories of the linearized model (4.2) under a linear control u(x):

V,(x) = x" PAx + x" PBu(x)
= F, (x)+ G, (x)u(x)

4.4)

where G, (x) = x'PBe R | and F; (%) éxTPAx € R. The subscript “L” in V; (x),

G, (x) and F, (x) denotes that they are defined with respect to the linearized model.

Notice that the system of linear equations G, (x) = x’ PB =0 can be written as:
[BP],,% = [0],. 4.5)

From basic linear algebra, the dimension of the solution space of (4.5) is:

dim(SGLzo) =y=n-r (4.6)
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where r = rank(B’P) and S¢, -0 18 the solution space of (4.5). Depending on the point
we want to discuss, we alternatively denote the set {x |G, (x) =0} by S, ;=0 Orby
S, =0 When we want to consider it as a subspace or as a surface, respectively. Given a

nonzero B, we have that 1 <7 <n and thus 0 <y < (n—1). By Lyapunov stability, the
existence of the stabilizing linear gain matrix K implies the existence of a symmetric

positive definite matrix P such that V, (x) is globally negative definite. The coexistence
of the SGL:l; and the globally negative definite functioﬁ VL(X) implies that:

1) The region R, o100 CXists.

2) Se,=0 © R, <0000y

When rank(PB) =n, we have that y =0 . In this case, SGp-0 = {0} and Lemma 4.1 is -

trivially satisfied. This completes the proof.

From Lemma 4.1, we see that SGL=0 in MIMO systems is analogous to Sg, =0 in SIMO
systems excépt that 0 <dim(S¢ L=0) < (n} 1) while dim(SGL:O) =(n—-1).Referringto -

the discussions given in Chapter I for SIMO systems, it is conceivable for MIMO

systems that X can be located reasonably far from the origin by locating S¢, _ on the

symmetry plane of Sp _, such that F (x) lz0< 0 on Sg, _y. This relative orientation is

the eigenvector condition for MIMO systems.

By examining the proof of Theorem 1.2, we see that this theorem does not restrict the

dimension of B. Accordingly, it is immediate that the symmetry axes of Sg, _, for MIMO
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systems are the n orthonormal eigenvectors of M = %[PA + ATP]. Because of this and

because X' Mx = F . (x), the eigenvector condition for MIMO systems is satisfied if
S, -0 is spanned by y eigenvectors of M such that the corresponding y eigenvalues of
M are negative. Lemma 4.1 guarantees that M has at least y negative eigenvalues
because Sg,_o C K5, <ojuq0;- The following questions are immediate from the definition

of eigenvector conditions:

1) Under what ‘condition.’can the eigenvector condition for MIMO systems be -
satisfied by a particular choice of P?

2) Suppose the eigenvector condition can be satisfied by a particular choice of P,
how can we obtain such P? ’

It turns out that the existence of P satiéfying the eigenvector condition for MIMO systems

is guarahteed when 'I[A, B]is éontrollable or stabilizable, and such P is the unique

symmetric positive definite solution of a Riccati equation. In addition, it gives rise to the
control law u 1ARC (x) = ~npB"Px where > 1andpe R*. These are the same results

we obtained for SIMO systems.

Theorem 4.1 (Generating P to satisfy the Eigenvector Condition)

The symmetric positive definite matrix P generated from Theorem 2.3 satisfies the-

eigenvector condition for MIMO systems

Proof

Recall the Riccati equation in Theorem 2.3:
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(Proof of Theorem 4.1 (Cont.))

0=-2Q—-[PA+A"P]+2pPBB’P @7
=-cI-M+N

((PBIK + K*[PB]' 1| ;_

o |

where M = —;—[PA +A’P], N= oy~ P[PB B'P], and

Q = cl. We emphasize that now B e R™™ . Because Theorem 2.3 does not restrict the

dimension of B, the existence of the symmetric positive definite solution P of the Riccati

equation (4.7) is guaranteed when [A, B] is controllable or stabilizable. By
Lyapunov stability, the existence of such P guarantees that A =[A — BK]|

1S
K7 =p[PB]

stable. It remains to show that such P satisfies the eigenvector condition.

Now, we notice that the functioh G, (x)u(x) in (4.4) with u(x) = -Kx = -pB Px is:
G, (X)u(x) = —[foB][pBTPx] = —pr[PBBTP]x_; —x"Nx = —p[x"PB][x"PB]’ <0
(4.9)

where G, (x) =x'PB, N =p[PBB"P]=p[PBB’P]" =N7 , and x’ Nx > 0. We know

that:

1) The real symmetric matrix N has a set of n orthonormal eigenvectors
Vz ={Vxy> Vxp» - Y, ) spanning R* (Hagan et al, 1996).

2) Fori:1,2,...n,7uNi20 because x’ Nx >0 and N=N7.

3) A basis for generating S, .o contains ¥ = (n —r) linearly independent vectors.
Indeed, we know from Lemma 4.1 that 0 < dim(SGL:O) =y<(n-1), where

n=r=rank(PB)>1 for a nonzero B.
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Now, we notice from (4.9) that when KT = p[PB]: -
S, -0 = {x|x"Nx =0} (4.10)

Because 0 < dim(Sg,-o) =7 < (n—1) and because the n eigenvectors of N are
orthonormal, we know that a basis of Sg, ¢ is a set of v orthonormal eigenvectors of N.
For convenience, we arrange the vectors in this basis as {V'N(r oy YN(+2)7 0 Vi }= Vﬁy‘
and denote the set of the correspondjng eigenvalues by Ay, = {AN(,_ " ’}\'N(r +2)’~4-77‘ﬁn }.
For each of the basis vector, it follows from (4.10) tgat:

VENYN = VAR VN ;)‘Ni llvﬁi “2 =0 (4.11)
for i = (r +1),(r +2),...,n. This implies that )\’ﬁi =0 fori=(r+1),(r+2),....,n and we

have shown that N has at least y zero eigenvalues. Now, we claim that N has exactly vy

zero eigenvalues. Indeed, if N has more than vy zero eigenvalues then x’ Nx =0 along
the corresponding orthonormal eigenvectors, implying that there are more than y linearly

independent vectors belonging to S, -y - This is a contradiction because we know that
dim(Sg, o) = Y- Thus, N has exactly y zero eigenvalues. The remaining r eigenvalues -

of N are positive because x’ Nx >0 .

By examining the proof of Theorem 2.1, we see that this theorem applies to MIMO
systems immediately. Accordingly, we know that the matrices M and N in (4.7) share
the same set of orthonormal eigenvectors when Q = cI. Using these results, we can

reduce (4.7) to the principal axes of M:
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— 1:AMNLL 0 :| (412 a>
0 Ay
where
Ay =diaglhyg Aygs - Ay, ] | (4.12b)
AMNM: = dlag[KMl - }\,‘N'l )\‘MZ - }\'NZ - }\‘Mr - }\'ﬁr] ) (412 d)

Ay = 48y = ARgan Mo ARy o Avn T AR

. o (4.12e)
= diagAyriny Ameezy - Al

By inspecting (4.12), we see th'at Ay = —¢ <0 because Ag, =0, i=r+1,7r+2,..,n.
Accordingly, x'Nx =0 on the space spanned by {vy;}, i=r+1, r+2,..,n. Since
{x|x"Nx =0}= 8¢, it follows that {(Vag}, i=r+1,r+2, ..n spans Sg, o such
that A,y <0. This shows that the ei g’enyg?ctor condition is satisfied by. the solution P of

the Riccati equation (4.7) and completes the proof.

To conclude this section, we have shown that the éigenvector condition for MIMO
systems can be satisfied by the unique symmetric positive definite solution P of the
Riccati equation (4.7). Notice that the set {Ay,Aypz»----Ay, } CONtains at least one
positive number because A is unstable, but it may or may not contain a negative number.
Note in addition that when the eigenvector condition is satisfied, we can draw from

Theorem 4.1 that:



N
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1) Anis >7»Mj Vie{l,2,....,r} and Vje {r+1,r+2,...,n}.

2) 0>}\'M(7‘+1) :}\'M(l+2) =... :}\‘Mn =—C.

These statements are immediate from (4.12). For convenience, we denoted the maximum

positive eigenvalue of M by Ay, .

Eigenvalue Ratio

When the eigenvector condition is satisfied, we recall from Proposition 1.2 and from

Chapter II that the eigenvalue-ratio plot allows us to select a value for p to generate P

from the Riccati equation (2.12) such that the “angle” between § Fp -0 @nd Sg, o is large,
and X is reasonably far from the origin. Using such p and the corresponding P, in

Chapter II we generate quickly LAR controllers using (2.16). We see from examples in
Chapter II that such LAR controllers yield satisfactorily large attractive regions when

compared to those resulting from pole placement and from LQR.

For MIMO systems, we employ the eigenvalue-ratio plot to generate LAR controllers in a
similar fashion. The only major difference is the definition of eigenvalue ratio. This will
be drawn from Theorem 4.2, which is a straightforward extension of Theorem 1.3. All the

notations employed in Theorem 4.2 are immediate from those in Proposition 1.2 and in

Theorem 1.3.
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Theorem 4.2 (Implication of Eigenvalue Ratio)
Let the set of n orthonormal eigenvectors {Vygy,..., Vg, Varrepys-- o> Vaia b OF
M= %[PA + ATP] be employed for generating R" . If the basic conditions C1—C4 are

satisfied, then the angle 8 between a vector [z, z, ... z,]" = zva;I? VMas o vMn ) € S Fr=0

. . . T _
and its projection [0 ... 0 z,,, ... z,]" = Z(vnire1) VM (42, - ¥Ma) OO the plane spanned
bY AVM(r+1y> YM(r+2ys+--» Vi b 18 the smallest when z, =...=z,=27,,, =...=z, =0or
when:

F1.=0 _ _ T _. _F1.=0
z{le,sz,.'..,an} - [Zl 0 .. 0 Ll 0 .. O] - Z{VMI’VM(;~+1)}

where the eigenvalues of M are arranged as Ay = ... 2 Ay > Appiany 2.0 2 Ay,

F1=0
A >0, 0> Ayypqy 2.2 Ay and 20 # 0.

Proof
The projection of zvah;O,VMZMVMn} =lz 7 .. z,1' € SF, =0 onto the plane spanned
by {VM(,H),VM(,_@,...,an} is the vector:

"Z{VM(I‘+1);VM(r+2)y--.,an} :[0  .0 e %)

Note that we do not consicier the cases in which z; =z, =... =z, =0. To see this,
consider the expression for F; (x)‘: x'Mx =0 in the principal-axes coordinate:

FL(X) hemye= Frp (8) = Aynzt +.+ hag, Zp + Ay Ziosny + -+ AypZy =0 (4.11)
where the z; —axis is along vy, i=12,...,n and Ty; =[Vyy | Voo | --- | Ve - We see

thatif z; =z, =...=2z, =0 then (4.11) is satisfied only at the origin because
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0> Apmee1y 2 -+ 2 Ay, - Since Theorem 4.2 does not apply at the origin, this special case

Fy =0

is irrelevant. Our original problem is to find z (VML VM2 VM

such that the angle between

F1=0

(VAL VM2 ¥ ) and the corresponding projection z (YM(r+1) YM(r+2). - VM) 1S minimized

F1 =0

Y I possibl
over al p sible Z{le,Vsz--»VM

o 0 . From basic geometry, the cosine of the angle 6

F1 =0

between z{le,sz,...,an} and Z{VM(r+1),VM(r+2)v

vy} 18 glven by:

F1=0 Iz
{(YM1,YM2,-»¥Mn )~ “{YM(r+1),YM(r+2)s - YMn!}

Fr =0 T
” [Z{VMlaVM2:--~’VMn}] IH

2 2 2
Zri + Zri2 ...t Zn

cos(0) =

Z{VM(H-I) SYM(r+2)--»YMn

- 2 2 2 2 2 [ 2 2 2 (4.12)
\/Z1 +z)+...+ 2z, + 2, +...+zn\/z,.+l t 3, ... T2,

2 2 2
\/Z,~+1 + Z,~+2 +...+ Z”

S [2 . 2. 2, 2 2
’JZ] +Z2 +...+Zr +Z}'+1+"'+Zﬂ

Notice from (4.12) that for MIMO systems, cos(0) can be zero at infinitely many points

other than the origin because }»MII,XMZ, ...»Aqp, need not be all-positive. Example of such

points are [z, 2, ... Zoy Z, Zysq - Z,) =[c 0 ... 0 ¢ A 0 ..0

P

Fr=0 # 0, the denominator in

where c€ R, Ay >0, and Ay, <0. Because (g /o)

(4.12) is greater than zero, while we see that the numerator in (4.12) is nonnegative.:
These implies that 0 < cos(0) <1 and 0 <6< (7/2). In this range, we have that cos(0)

monotonically increases as 0 decreases. Accordingly, the original problem can be cast as

F1 =0

{YM1,YM2s-»VMn } #0 that

an optimization problem for which the objective is to find z

maximizes the right-hand side of (4.12), with constraints given by (4.11) and by Theorem

4.1:
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2 2 2
'\/Zr+l + Zr+2 t...t+ Zn

Maximize: J, = — — =
- \/zl+z2+...+z,.+z,+1+...+zn

Subjected t0: 1) Ayyzi +...4+ Ay 2r + Ay Ziosny + -+ AygaZr =0

£2) Aan 22 Ay > Aytoen 2 o2 Ay C@13)
23) 0> Aytgran 202 Ay
:4) Ay >0

We notice that the numerator and the denominator of the objective function are
nonnegative. Accordingly, squaring the objective function does not change the solution. -

For simplicity, we now convert (4.13) to:

2 2 2

Zoy1 T2 +...+ 2,
2 2 2 2 2
(zf +zy3 +.. + )+ (2t +z,)

Maximize :J, =J} =

Subjected to: 1) Ayyyzi +...+ Apg, 20 +}\M(,-+1)Z(2,-+1) +ot Az =0

12) An 22 hg > Ay o 2 Ay (4.14)
13) 0> Appgreny 2+ 2 Ay,
t4) Ay >0

where the range of the objective function is 0 < J, < 1. This is equivalent to:

2, .2 2
A4 e S o +1

R . T
Minimize:J; =J, =— PR
L1 Ty Too- T 2y

Subjected to: 1) Apgyzy +...+ Ay 22 +}\’M(r+l)z(2r+l) +ot Az =0

12) A 22 A > Ay 22 Ay, (4.15)
13) 0> Ay 2.2 Ay,
:4) Ay >0

where the range of the objective function is now 1< J; <. We emphasize that the signs

F1 =0
{YM1.- VM2~ VM)

of Apg. 1=2,3,...,r need not be the same. To find the solution z

=[z; ... 2, Zpq - z,1" # 0 for (4.15), we consider the following arguments:
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1y

2)

3)

4)

The set {z;,2,,...,2,} corresponding to the solution vector contains at least one
nonzero element z, such that A, > 0. Otherwise, the first constraint in (4.15) is
satisfied only at the origin, or the first constraint and the third constraint cannot be
satisfied at the same time. This leads to a contradiction since we omit the origin
and we require that all constraints be satisfied.

The set {z,,;,2,42.---,2,} corresponding to the solution vector contains at least -
oné nonzero’element. Othefwise we see from the objecﬁve function in (4.15) that
the objective function is at the maximum of infinity. Since we seek a minimum, it

follows that {z,,;,2,,5,.-.,2,} must contain at least one nonzero element.
The constraints in (4.15) implies that:

2 2 2 2 2 2
Az + 4+ 2) 2 Mnz +o Az =~y i Tt Ay 2) >0

2 2
Az 4ot Az — (A 2t A A7)
Z12+---+Z3->— Mi141 Mr<r _ M(r+1)<r+l Mn<n >0
My v

where — (}»M(,+1)zf+1 +...+ Ay, z2) > 0 because of the third constraint in (4.15).

2 2
Azttt A2

Notice that z; +...+z> = :
A

when z; =0,i=2,3,...,r.

Accordingly, z; +...+z’ is minimum for a given {z,41>---»2,} when z, =0,
i=2,3,...,r.
The constraints in (4.15) implies that:

2 2 2 2 _ 2 2
0> AM(,+1) (Zppy +oeat2))2 }»M(,.H)z,.+1 ot A2, = Az + T A7)

2

2 2 2 2
}"M(r+1)zr+1 +ooot Ay 2, _ ~ A2+t A 7))
r+l -

0<z’ +...+z. <

}"M(r+1) }"M(r+1)
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where the inequalities are reversed because Ay, < 0. Notice that

A 2 et Ay 2
M+ oot Ay .
22 g =D "2 when z;, =0, i=r+2,r+3,...,n.

n
}\’M(r+1)

Accordingly, z7,, +...+ 2> is maximum for a given {z4,...,2,} when z; =0,

i=r+2,r+3,....n.

It follows from the arguments in 1 — 4 that the solution of (4.15) is given by:

into the first constraint in (4.15)

Fp=0 _ : T _ . FL=0
Z{VMI)VMZ»M’VMn} - [Zl 0 .. 0z 0 .. 0] - Z{VMI’VM(HI)}
. Fr=0 .. ! . . . . . .
At the solution z (VML YM(D) ) the minimum of the objective function in (4.15) is given
by:
* ZZ
Jy=——+1 (4.16)
Zri
To find the minimum of J,, we substitute z/ L~

{YM1.YM(r+1) }
to produce:

2 2
Azl + A Zien =0

A 2 4.17)
2 _ M(r+1)Z(r+1)>0

2y =
v
where we recall that Ay >0 and Ay, <0. Notice that we can always find a value of

z; for every set of { Ay, Anirer)» 21 } Where Aggy >0 and Ay, <O such that the

A 72
first constraint is satisfied. Now, we substitute — MDD gy zl2 in (4.16). This
MI

produces the minimum values for J5:
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. Myier At — Aaer
Jy=-Mh g o TME TMeD) g (4.18 a)
Ay Anay
Ayt = Ay

where we note that >1 because Ay >0 and A,y <0. This solution

M1

corresponds to the maximum value of J, and J;:

}\’Ml

Ay — }\'M(Hl)

0<J =4J; = o (4.18 ¢)
}"Ml —)\‘M(r+l)

This completes the proof of Theorem 4.2.

0<J,=(J3)" = <1 (4.18 b)

We recall from (1.23) that the eigenvalue ratio is defined as:

_ max(Xyy,)

(1.23)

r}"M

max(Ay;)
where A}, are positive eigenvalues of M, Ay are the negative eigenvalues of M such
that vy; spans Sg, _, when the eigenvector condition is satisfied. Using the arrangement

of eigenvalues of M in (4.15), we have that i =1 and j=r+1,r+2,...,n. Thus, the

Y
’}"M(r+l) i }"M(r+1)

eigenvalue ratio for MIMO systems is given by 7, . By

inspecting (4.18), a small 5 corresponds to a large J5, to asmall J,, and to a small
J,.Since J; =cos(0), asmall J, implies that the angle between a vector belonging to
S p, -0 and its projection onto Sg, g is large by Theorem 4.2. By satisfying the

eigenvector condition with a small #_ , we not only locate S, _, symmetrically about
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S, -0 but also force S F =0 away from S¢, _o. In view of Proposition 1.1 and 1.2, this
implies that a possible intersection point X between Sp_, and Sg.., is located

“reasonably far” from the origin.

Generating LARC Using a‘ Lineérized Model

In this section, we are interested in generating a LARC. for (4.1) when the linearized
model about the origin is known. The fundamental idea of LARC is to force V(x) to be
negative definite in radially‘ large regions abou;t the origin. We see that this cannot be
accomplished at intersection points between Sy_, and S,_,, and between S,_, and
Su=o - When the relative orientations of these surfaces are poor, these intersection points
can occur arbitrarily close to the origin, and result in an arbitrarily small LAR in the
presence of small nonlineéﬁties. Now, we reexamine a local approximation of V(x)
about the origin:

V, (x) = x' PAX + x" PBu(x)

(4.4)
= F,(x) + G, (x)u(x)

where P is obtained from Theorem 4.1 to satisfy the eigenvector condition. Now, we

recall from the definition of eigenvector condition that Sp _, is symmetric about Sg, _
such that Sg, ¢ C R FL<0];-{0} . By examining (4.4), it is reasonable that we orient §,_,
and Sg, - in the same fashion such that S _, is symmetric about S,_,, and

Su=0 € Rip; <0100 - This particular relative orientation follows from the same reasoning

we employ to establish the eigenvector condition. Indeed, if S, is close to a particular
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portion of S, _, then the deviations of Sy_, from S, _, may locate an intersection
between S,_, and Sp_, arbitrarily close to the origin. At such an intersection, it is clear
that we cannot force V to be negative because u =0 and F =0, and the re»sulting LAR
is then small. We see that such linear control corresponds to the linear gain matrix
K =p[PB]" =pB”P employed in the Riccati equation (4.7) to solve for P.
Cdrresponding to.such linear gain matrix is the linear control:

u(x) = —pB’ Px B (4.19)
where pe R*. These resu]ts are the same as those obtained in Chapter II for SIMO

systems.

To obtain the general form of LARC for MIMO systems, we examine the proof of
Lemma 2.3 in which the general from of LARC for SIMO systems is derived. We see
that Lemma 2.3 does not assume a specific dimension for B. Accordingly, the general

form of LARC for MIMO systems is immediate from Lemma 2.3:
Uy apc(X)= —anTPx =K zcX (4.20)
where P is the solution of the Riccati equation in Theorem 4.1 and:
K, izc =MPB'P (4.21)
In addition, it is immediate from the proof of Lemma 2.3 that the linearized model (4.2)
is stable under (4.20) V p€ R" and 1 =>1. In this section, we fix 1 =1 for simplicity and
thus we need only to select p . To select an appropriate value for p, we construct the

eigenvalue-ratio plot using the definition of eigenvalue ratio for MIMO systems given in

Section 4.4. Generally, We select from this plot a value of p that yields a small
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eigenvalue ratio because this forces Sy _, away from Sg, _o. However, such a value of
P may correspond to a large K, - . If the control energy is limited, we may be forced to

select a larger eigenvalue ratio to obtain a smaller K, .. The tuning procedure

proposed in section 2.5 for SIMO systems is applicable to MIMO systems immediately.
Now, we point out the relationship between LQR and LARC for MIMO systems, which
turns out to be the same as that discovered in Chapter II. From linear optimal control
theory, we know by inspection that the Riccati equation (4.7) corresponds to the

quadratic performance index:

J= f: (x"Qx +u’Ru)dr

3} . (4.22)

- j (2ex"Ix + —u' Tu) dt
0 2p

where p, ce R, 6 =2cl and R = ZLI . In addition, we recognize that the linear
P
optimal control that minimizes J is given by:
u(x) =u; 5 (x) =-R 'B"Px = —2pB"Px (4.23)

We observe the same relationship between u; oz (x) and u, - (x) pointed out in

Chapter 11I:
2
U, op(X) = ﬁulARC(X) =Wy 4pc (X) Inzz (4.24)

Because of the relationship between LQR and LARC in (4.24), we note that for MIMO
linear systems:

1) It can be inferred that if the response characteristics resulting from LOR are

acceptable then so are those resulting from LARC with n=2.
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2) Robustness properties of LARC can be drawn directly from those of LQR.

However, we emphasize that LARC is primarily formulated for nonlinear systems.
Although it is possible to apply a LARC to a linear system, this may not offer advantages
over existing techniques because the available solutions of linear differential equations

have not been incorporated into the formulation of LARC.

4.2 Nominal Model Case

In the remainder of this chapter, we obtain a MIMO version of the robust LARC
developed in Chapter III. The system of interest is described by:

x =f(x,1) + g(x,Hu(x) (4.25)
where the vectors f(x,7)e R" and g(x,7)e R are uncertain, and u(x) = -Kxe R".
These are such that x is pie'cewise continuous in ¢, and is locally Lipschitz in the

operating region of interest in R" V> 0. Recall from Chapter I that the above state
equations can be rewritten as:

x=Ax+B, u(x)+[f(x,1)-A, x+g(x,)u(x) - B, u(x)]
- =A,X + B, u(x) +f;(x,7,u(x)) (4.26)
=A x+f,(x,1)

where the elements of (4.26) are immediate from Section 3.1. The corresponding nominal

model is:

x=A x+B, ux) (4.27)
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Uncertainty Specifications
Uncertainty specifications of MIMO systems are classified in the same fashion as those

for SIMO systems:

1) Structured uncertainty specifications for stability analysis

2) Unstructured uncertainty specifications for stability analysis

3) Structured uncertainty specifications for controller generation
4) Unstructured uncertainty specifications for controller generation

For stability analysis of MIMO systems, we say that the uncertain vector f, (x,7) are
“structured” if it can be written as:
fo (x,1) = [F(X,1) ~ A, X] +[g(X,1) — B, Ju(X) [,k

=¥ [h;(x,)E x]

J=1

(4.28)

where k;(x,1)€ [k, h,;1€ R, by <h,,and E; € R j=1,2, ..., r. The availability of

uj
the uncertainty specifications &y (a lower bound of £;(x,7)), h,; (an upper bound of

h;(x,)),and E; j=1,...,r is assumed. The uncertain vector fo(x,1) are
HfQ (X> t)”

1

MIMO “structured” and “unstructured” uncertainty specifications for stability analysis

“unstructured” if the only known information is a bound on . We see that the

are the same as those for SIMO systems. Indeed, all the uncertainty specifications for

MIMO systems are the same as those for SIMO systems given in Section 3.3.
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Controller Selection and Generation

Using the MIMO uncertainty specifications, we notice that Theorem 3.2 and 3.3 apply to
MIMO systems as well as to SIMO systems because these theorems do not restrict the
dimension of B. Because of this result, it follows that:

1) The reasoning for applying LARC to MIMO systems is the same as that for
applying LARC to SIMO systems. This is given in section “Controller Selection”

- of Chapter III.

2) The controller generation procedures for SIMO systems can be applied for MIMO
systems immediately. These procedures are given in section “Controller
Generation” of Chapter IIL

It is straightforward from the remark given at the eﬁd of Section 3.5 that the procedure

for generating a LARC for the time-invariant system (4.1) can be applied to (4.25),

~ provided that the linearized model about the origin of (4.25) is given by (4.2) with known

5 A and B Next, we give an example showing how to generate a robust LARC using the

controller generation procedure for structured uncertain systems.

- Example 4.1 (A Helicopter)

In this example, we want to stabilize a helicopter in a vertical plane for a range of air
speed from 60 knots to 170 knots (Schmitendorf, 1988), (Chen, and Chen, 1991). The
dynamics of the helicopter is given by:

x=[A, +AA, (x,)]x+[B, + AB_(x,0)]u (E4.1.1)
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—-0.0366 0.0271 0.0188 —0.4555 0.4422 0.1761
0.0482 -1.01 0.0024 -4.0208 0.0447 -7.5922
where A, = , B, = ;X =
0.1002 0.2855 -0.707 1.3229 =552 499
0 0 1 - 0 0 0

horizontal velocity, x, = vertical velocity, x; = pitch rate, x, = pitch angle, u; =
collective pitch control, and u, = longitudinal cyclic pitch control. The nominal model
x=A, x+B,u is subjected to time-varying structured uncertainties. Significant

uncertainties are at the elements (3,2) and (3,4) of A, , and at the element (2,1) of B, .

n?

The structured uncertainty specifications are given 'by:

‘ 2
AA, (x,1) = Y [hgn (OB 1x (E4.12 a)
a=1
AB, (x,1) = b (x, NE" (E4.1.2 b)
0000 0000 00
0000 0 0 0 0} 10
where Ef = 01 0 0 , B = 0 0 0 1 , EMn = 00 , ki (x,1)€ [-0.2192
0000 0000 00

,0.2192] , th” (x,1)e [~1.203], 1‘.2031], and hir (x,1) € [-2.0673,2.0673]. To generate a
LARC for this uncertain system, we start Procedure 2 by generating a three-dimension

plotof A_.. (Z) versus p and . Using our computer, it takes approximately 5 seconds to

max

produce the plot shown in Fig. E4.1.1 and Fig. E4.1.2.

According to this plot, there are infinitely many pairs of (p,m) for which A__ (Z)<0.

max

By Theorem 3.2, such a pair of (p,1n) can be employed to generate a LARC to meet the

given uncertainty specifications. At this point, we assume that sufficient control energy is
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available and we may choose (p,1) corresponding to the minimum of A .. (Z) in Fig.

max

E4.1.1 to gain the largest stability margin. In Fig. E4.1.1, the minimum value of

Ao (Z) =~0.2672 isat (p,m") = (0.06,1.6) . This corresponds to:

(E4.1.3 a)

0.3448 -0.0113 -0.3888 —0.5856
-0.0401 -0.2724 0.1715  0.4940

K arc :[

Fig. E4.1.1 A Plot of }”ﬁu (Z) versus pe [0.02, 0.2]and ne [1, 2]
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1.5

| (N3 Ay (Z3) = (1.6,—0.2672)
Amax () 0.5 i—\ T
0 _ : \\

— 00—

-0.5

1 1.2 1.4 1.6 1.8 2
n .

Fig. E4.12 A Plot of A . (Z) versus ne (1, 2] when p = p =0.06

max

14706  0.0275 —0.5504 —0.8659
] 00275 1.2903 -0.1654 —0.4998
Q_; ~0.5504 —0.1654 1.7054  1.2204
—0.8659 —0.4998 1.2204 3.2927

(E4.13b)

where the eigenvalues of A, =[A, —BK ;] are given by A, =-0.3922,

Ay =—0.8597 % j1.0525, and A, = —4.8231 in the LHP.

When the available control energy is limited, it is possible to find a pair of (p,n) from

Fig. E4.1.1 that generates a LARC to meet the given uncertainty specifications with a

smaller gain matrix. Indeed, we may zoom in Fig. E4.1.1 and find a pair of (p,n) thatis

smaller than (0.06, 1.6) such that the corresponding Amax (Z) < 0. The plot of A, (Z)

max

versus M€ [1.2, 2] when p =0.0150 is given in Fig E4.1.3. From Fig. E4.1.3, it is



238

sufficient to choose 1 =1.6 with p =0.0150 because these correspond to

Ay (Z) = —0.0055 < 0. The gain matrix corresponding to (p,1) = (0.0150,1.6) is given

by:
0.1560 —-0.0030 -0.2370 -0.3895
IARC = (E4.14 a)
-0.0342 -0.0994 0.1475  0.3598
1.3983  0.0456 —-0.6563 -1.1411
0.0456  1.1546 —0.2179 -0.5403
= (E4.14Db)

-0.6563 -0.2179 22177  2.2716
~1.1411 -0.5403 2.2716  5.3928

where the eigenvalues of A, =[A, =B, K, ] are given by A, =-0.2540,
Ay 5 =—0.6432 1 j0.9739, and A, = -3.0660 in the LHP. Note that it may be possible to

select other values for p and 7 to generate a LARC such that the uncertainty
specifications are met, and every element in the resulting gain matrix is smaller than the
respective one in (E 4.1.4 a). However, we do not pursue this further because the present

steps are sufficient to demonstrate how to select an appropriate coordinate of (p,m) from

the plot of A (Z) versus p and 7.

max
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Fig. E4.13 A Plot of A_, (Z) versus ne [1.2, 2] when p =0.0150

max

To compare our results with those in the literature, we now give the stabilizing gain
matrices from (Schmitendorf, 1988) and (Chen, and Chen, 1991) for the given
uncertainty specifications. The siabilizing gain matrix from (Schmitendorf, 1988) is:

-1.0181 0.2674 1.1123 1.7966
[Sch] =~ (E4.1.5)

0.9531 0.8428 -0.1412 —0.7419

The eigenvalues of A, =[A, ~ B, K ;] are given by A, =-1.0202 +0.1826,

Ay =-2.4804, and A, = —9.9443. The stabilizing gain matrix from (Chen, and Chen,

1991) is:

-0.1640 0.2699 0.4511 0.4308
(E4.1.6)

Kicey=-
0.0364 0.1692 -0.1066 —-0.4519
The eigenvalues of A, =[A, ~B,K ;] are given by A, , =—-0.4180* j0.2700, and

A; 4 =—2.2343 % j1.0195. Notice that most of the elements in our stabilizing gain matrix
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(E 4.1.4 a) are smaller than the respective ones in (E 4.1.5) (Schmitendorf, 1988) and (E
4.1.6) (Chen, and Chen, 1991). However, we know that the responses of the nominal

system corresponding to the linear state-feedback gain matrix (E 4.1.4 a) are slower than
those corresponding to (Schmitendorf, 1988) and (Chen, and Chen, 1991) because of the

nominal closed-looop pole at A, = —0.2540 . In practice, we may want to have a

reasonable stability margin to account for neglected uncertainties in other elements of

A, and B, . Accordingly, the controller in (E 4.1.3 a) may be preferable to (E 4.1.4 a)

because A

max (Z2) corresponding to (E 4.1.3 a) is less than that corresponding to (E 4.1.4
a). Note that optimization 1s not needed for these original “weak” uncertainty

specifications.

Now, we assume that the uncertainties in hlA” (x,1), h{‘" (x,t), and hlB " (x,t) increases
by 72.5%, 72.5%, and 72% respectively. In other words, the VériatiOns of hlA” (x,t),
hf" (x,t), and hlB” (x,'t) are now given by:

hin (x,t)€ 1.725[-0.2192,0.2192]
hn(x,t)€ 1.725[~1.2031,1.2031] (E4.1.7)
hPn (x,1)€ 1.72[-2.0673,2.0673] |

To generate a LARC for these “increased” uncertainty specifications, we reapply

Procedure 2. Fig. E4.1.4 shows the plot of A_,, (Z) versus p and 1. The minimum of

max

Mo (Z) = 1.2680 in Fig E4.1.4isat (p',n’ ) = (0.54,1) . Since the minimum of A___(Z)
is positive, optimization is now needed. Before we start our optimization, we examine

Fig. E4.1.4 and observe that a small value of A . (Z)=1.3546 occurs at (p,1) =

max
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(0.2,1.275) . Accordingly, we expect that this point corresponds to a reasonably good
initial value in addition to that corresponding to the minimum of A, Z@pE M=
1.2680 . Relatively, p is 63% smaller than p~ while M is 28% larger than m". This
suggests that elements of K5~ corresponding to (p,1) may be smaller than the
respective ones in that corresponding to (p”, 1) . Indeed, {K 14arc> Q} corresponding to

(p",n") =(0.54,1) is given by:

0.6911 —-0.0490 -0.6813 -0.9745
Karc1 = (E4.1.8 a)
-0.0277 -0.6418 0.1702  0.4887
Q=1 (E4.1.8b)
The LARC gain matrix and Q corresponding to (p,m) = (0.2,1.275) is given by:
0.5250 -0.0320 -0.5383 -0.7673
Kisrc2 = (E4.1.9 a)
’ -0.0371 —-0.4615 0.1684  0.5083

12343 0.0003 —0.2444 —0.3567
0.0003 1.1810 —0.0512 -0.1777 |
Q= (E4.1.9b)
—0.2444 —-00512 1.2691  0.4218

-0.3567 -=0.1777 0.4218 1.7165

Notice that most of the elements in K, 4pc , are smaller than the respective ones in
K src 1~ Starting from the initial value {K LAéc ,Q}in (E 4.1.8) corresponding to

(p",m") = (0.54,1), the simple univariate optimization technique runs approximately 1

minute on our PC to find a LARC that meets the increased uncertainty specifications:

(E 4.1.10 a)

-0.0513 -1.4803 0.1504  0.8280

0.1119 -0.0814 -1.0233 -0.9239
KOLARC,I =
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7.3811 0.8808 6.0303  0.0009
0.8808 10.4920 2.3856 —0.1883

Q= (E4.1.10b)
6.0303 23856 152885 8.0140

0.0009 -0.1883 8.0140 13.0632

O 1 A (Z)) = (0.54, 1.1.2680) (- A (Z)) = (0.2,1.275,1.3546)

M

A'II‘IHX (Z) 2 7

02 1 B

Fig. E4.1.4 APlotof A, (Z) versus pe [0.2, 0.8]andne [1, 1.6]

The solution in (E 4.1.10)‘ corresponds to A, (Z) =—8.8989 * 10”. The eigenvalues of
A, =[A, -B, Kz, ] are given by A, = 0.1107 , Ay =—1.5828, A; =—2.2188, and
‘A, =-15.2718. When starting from the initial value in (E 4.1.9) corresponding to

(p,M) =(0.2,1.275) , it takes approximately 1 minute to find the solution:

0.4604 -0.0310 -0.9121 -1.1086

K =
OLARC.2 [~0.0378 -0.5740  0.1841  0.8699

} (E4.1.11 a)
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0.9627 0.0066 —0.0247 —0.4258
0.0066  0.1734 -0.1309 -0.1777
Q= , (E4.1.11Db)
~0.0247 —0.1309 0.4298  0.4303

-04258 -0.1777 0.4303 0.7415

This solution corresponds to A (Z) =~1.6585%107. The eigenvalues of

max
A, =[A, -B, K rc,] are given by A =-0.3304, A, 5 = —1.5465+ j0.6234 , and
A, =—8.7442 . For this particular pfo‘blem and the particular two initial values in (E-

4.1.8) and (E 4.1.9), we notice that:

1) A solution can be obtained to meet a given set of uncertainty specifications,
although the initial value does not correspond to the minimum value of A, (Z)
in the three dimensional plot of A, (Z) versus p and n.

2) When starting the optimization, most-of the elements in the initial gain matrix

corresponding to (p*,n*) =(0.54,1) are larger than the respective elements in that

correspongiing to (p,mn) =(0.2,1.275) . However, most of the elements in the

solution gain matrix corresponding to (p*,n’) = (0.54,1) are smaller than the
respective elements in that corresponding to (p,n) = (0.2,1.275) .
3) We find no controller in the lli'terattylre that meets the increased uncertainty
specifications in (E 4.1.7).
When a set of strong uncértajnty specifications are given, we emphasize that a reasonably
good initial value is needed for the optimization algorithm to converge to a solution.
Indeed, the same optimization algorithm cannot find a solution when the initial value

{Q.K 4z} is generated from (p,7) = (1,2). Starting from this initial value, the

algorithm cannot find {Q,K 1zc} such that A, (Z) <4.2407 * 1072,

max



244

4.7  Summary

We have obtained a MIMO version of LARC by extending results we obtained for SIMO
systems. It turns out that the equations, theorems, and procedures employed to generate
LARC for SIMO systems can be extended to generate LARC for MIMO systems in a

straightforward fashion.
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Chapter V

Preliminary Investigations of Nonlinear LAR Controlleljs

5.1 Introduction

In this chapter, we give suggestions and recommendations for enhancing the ability of
LARC developed in the previous chapters. Using the concept of LAR, our primarily
objective in this chapter is to enlarge .the LAR resulting from linear LAR controllers
when stabilizing the time-invariant nonlinear systems (4.1) about the equilibrium point at
the origin. Preliminary studies show that extending LARC according to our suggestions
and recommendations can yield promising results when the availability of a perfect
model is assumed. Howéver, it is emphasized that the results in this chapter are
preliminary and thus further investigations are required. These include parameter

selections and robustness issues.

5.2 The Basic Idea of Nonlinear LAR Control

We propose the use of nonlineaf controls to enhance the ability of LARC developed in

the previous chapters. Indeed, in the previous chapters LARC was restricted to be linear

because this simplifies analysis of stability and of key properties of the control systems.
Using this simplification, we obtained in the previous chapters some building blocks on
which our ongoing research is developed. When an exact model is available, it turns out

that these building blocks allow us to obtain satisfactory results in a straightforward



246

fashion. We investigate now how a nonlinear auxiliary control could for MIMO systems

be used to augment the linear control w,;,,-(x) in previous chapter, to enlarge the LAR

resulting from u; ,,-(X) , which is called “the original LAR”. We denote by u,,(x)e R"
a smooth auxiliary control for enlarging the original LAR. The auxiliary control u,(x) is
an augmentation of the linear control u;,,~(X), such that our “total” LARC ;g (X)
can be written as:

Uy ape (X) = Upppe (X) +1,(X) (5.1)
where the. subscript “7T ” stands for “total” and u,(0) =0. In our prelinﬁnary studies, the
system is described by (4.1):

x =f(x) + g(x)u(x) (4.1)
where the vectors f(x)e R”, g(x)e R™" and we set W(X) = Uy 4p-(x). These are such

that x is locally Lipschitz in the operating region of interest. We assume that (4.1) is a
perfect description of the MIMO system of interest. The objective remains to stabilize
(4.1) such that the equilibrium point at the origin is at least locally asymptotically stable
with a reasonably large attractive region. When u(x) is set to Uy 4.~ (X), the time
derivative of the quadratic Lyapunov function (1.5) along trajectories of the nonlinear
system (4.1) is given by:

V(%) = X PE(X) + X Pg (X7 40 (X)
= F(X)+ GXu, 50 (X) + G(Xu, (x) (5.2)
=V(x)+ Q(x)

where V(x) = F(x) + G(X)u, 1z (x), and 2(x) = G(X)u,(x) are smooth because of the -

smoothness and continuity of the equation of motion and of wy; 4z (x). These functions
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vanish at the origin because F(0) =0 and G(0) =0. Because of these, VT (x) is smooth,
1s continuous and is vanishing at the origin. We now define the following regions:

Br={x|V;(x)<0}uU{0} : (5.3)

BCT = { BClBC,C:CT - BT?BC,C>CT & Br,CreR") (5.4)

In addition, we recall from Chapter I that:

Be={x|0<V(X)<C, CeR"} (1.8)
Br={x|V(x)<0} u {0} (1.9)
Bc, ={B| BC,C:CL;BLj Becsc, € Br, Cre R} | (1.10)
It is emphasized that:
1) BCT shrinks in all its dimensions as C;. decréases because V(x) is a quadratic

positive definite function.

2) The definitions (5.3) and (5.4) guarantee that BCT and B, have at least one

‘common boundary point.

We now state the main theorem of this chapter:

Theorem 5.1 (Expansion of a LAR)

If the intersections of the boundaries of B; and BCL or the “common boundary points” of

By and BCL ,denoted by p;, i =1,2,... are contained in II; then the smooth auxiliary
control u,(x) enlarges the original LAR with an additional region contained in

II= (IT, U 1Il,) provided that u,(x) satisfies:
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Q(p;) = G(p)u,(p;)<0 Vi

VT(x):V(x)+9(x)<o vxe {B, -0} (5.5)
Vr(0)=0
where
IT, = {x| G(x) # 0 and F(x) is arbitrary ) (5.6 a)
ﬁl = (x| G(x)=0, F(x)<0}uU{0} (5.6 b)
Proof

Since Q(x) = G(x)u,(x), the smooth auxiliary control u,(x) can satisfy (5.5) if and
only if G(p,) # 0. By definition (1.18), we are guaranteed that {3, is contained in B,
such that the set of common bouhdary points of BCL and B,; contains at least one point.
This can be illustrated graphically in Fig. 5.1. Fig. 5.1 (a) shows an artificial surface of
V(x) for a two dimensional system and Fig. 5.1 (b) shows level curves of V(x) and the

corresponding V(x) . In Fig. 5.1 (b), the boundary of B, is shown as Op while the

boundaries of B at C=C,, C‘-L,ahd C; are shown as Op and
C,C=C

7 OBc,c:cL ’

Og , respectively. The number of common boundary points of B and B, is
C,C:CL

assumed to be four in this illustration.

If p; € T1, Vi, we have that G(p,) # 0 by the definition of I, in (5.6 a). This allows us
to choose u,(x) such that Q(p;) = G(p;)u,(p;) <0 Vi.We see from (5.2) that when
(5.5) is satisfied:

1) V,(x) <0 in the By except at the origin where V,(0) =V (0) =0.
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(Proof of Theorem 5.1 (Cont.))
2) V,(p;) <V(p;) =0 Vi.This can be drawn from (5.2), knowing that V(p,) =0 by "

the definition of p;, G(p,;) #0, and G(p,)u,(p;) <0 by the choice of u,(x).

V(x,%,)

Fig. 5.1 (a) Artificial Surface of V(x;, x,)

Now, we consider V;(x) in a neighborhood U, about the common boundary point p ;

i =1,2,.... This neighborhood is defined as U; = {x IHX - pi]

<¢€;} where g, isa
sufficiently small positive number. Recall that when (5.5) 1s satisfied, we have for U,
i=1,2,... that V(p,) < 0. In this case, it follows from the continuity of V, (x) that
V,.(x)<0 Vxe U,. In other words, by the continuity of V, (x), there exists a number
g; >0, no matter how small, corresponding to a neighborhood U; about p, such that

VT (x) <0 for every point x€ U; (Buck, 1987). A magnified view of Fig. 5.1 (b) in the

second quadrant provided in Fig. 5.2 is a graphical illustration for this argument.
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X2
0
Bc,c:cz
(V(x)=Cp)
O B,
(V(x)=0)
X1
Bc,c:czr
Be,c=cp, (V(x)= CZ)
(V(x) = Cr) n

Fig. 5.1 (b) Conceptual Regions BCL ‘and By, Corresponding to Fig. 5.1 (a)

Symbol: o =common boundary points of BCL and By,

Remark: 0< C; <C, <C;

Because V, (x) <0 in B, and in‘ U, including p; i =1,2,..., we see that B, contains
B, and p;, Which are Lot on the boundary of Br. Accordingly, 8, and B have no
common boundary point and By contains Bc, because Be, € B, € Br. We then
expand BC,C:CL in every direction by increasing C beyond C;. The expansion occurs in
every direction because V(x) is a quadratic positive definite function. We denote by Cr
the value of C > C;, when the boundary of B first intersects the boundary of B;, and by

Bep theregion Be c_c, - The existence of suqh Bc c-cpsc; 18 guaranteed because:
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1) BCL CBT

2) BcL and Br have no common boundary point.

Since V(x) is a quadratic positive definite function and Cr> C; > 0, we conclude that
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B¢, ©Bc, andthe boundaries of B¢, and B¢, do not intersect. Thus the original LAR

can be enlarged by the auxiliary control u,(x) satisfying (5.5). This completes the proof.

(.
-

U,,V,(x)<0Vxe U,

possible boundary
of Br

.
*
.O
&

&
4
L4

LI
nang,
"y
L4

gamnssansE Il.llllll......
** »

*

PESLLTTS
. .,

Be,

U,,Vr(x)<0Vxe Uy

25 "2 s . a5
%

Fig. 52 Magnified View of Fig. 5.1 (b) Showing B¢, ,B¢, B, ,and By

S mbol": O, = boundaries of {, where { = , B¢ ,and B
y g Cy, cr L
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It is clear that (5.5) suggests infinitely many possible choices for u,(x). An obvious

possibility is given in Corollary 5.1:

Corollary 5.1 (A Choice of Auxiliary Control)
“The conditions in (5.5) arc satisfied if:
u, (x) = ¥Y()G (x) = ~y(x)g" (X)Px = K, (x)x (5.7)
where y(x)g’ (x)Px =K (x)€ R™", y(x) > 0, and P is obtained by using LARC
developed in the previous'chapteré because we desire that p; are reasonably far from the

origin Vi.

Under the choice of auxiligry control (5.7), the resultant nonlinear control is given by: -
Urzape (X) = =K paperX ' (5.8)

where Ky ipc =[K 4zc + K, (X)] when no optimization is employed to find the linear.

state-feedback gain matrix for LARC, and K pe =K g14rc + K, (X)] otherwise.

Notice that:

1) Ky éc is a nonlinear gain matrix obtained by weighting the linear gain matrix
K e of K uge against the nonlinear auxiliary gain matrix K, (x).

2) In thié ongoing stage, we restrict that y(x). be a constant Y. € R* for simplicity.
Under this restriction, a technique for selecting an appropriate value for vy is

clearly required and is a subject of our current investigations. At the moment, we
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choose a small y. to begin with, employ numerical simulations to estimate the

resulting attractive region, and tune Y. accordingly.

Example 5.1 (The Double-Inverted-Pendulum System with Lower-Joint Control)

In this example, we employ the double-inverted-pendulum system (Misawa, Arrington,

and Ledgerwood, 1995) to determine if the auxiliary nonlinear control u,(X) can enlarge
the attractive region resulting from the linear control u;,,~(x). To do this, we invoke
from (E 3.3.12) in Example 3.3 the linear gain matrix K, 4z~ to produce:

X)=[-0.0804 —8.6189 —0.5572 —1.1748]x
Urare (%) =1 ] (E5.1.1)

=-KoiarcX
where K, 4zc =[-0.0804 —8.6189 —0.5572 —1.1748]. This linear LARC
corresponds to P in (E 3.3.14). For convenience, we reproduce:

4.6236 124067 1.4066 1.6109

12.4067 157.1118 17.1767 20.6637
P= (E3.3.14)
1.4066  17.1767 2.0826  2.4550

1.6109  20.6637 24550 2.9956
We take from (5.7) in Corollary 5.1, the auxiliary nonlinear control:
0, (%) = —Y(0g)’ Px =K, (X)x
wﬁere y(x)g(x)TP =K,(x), and we set y(xj =Y € R" for simplicity. We recall from

Example 2.2 that:
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0
0
—565.1008 5
&%) =1 759809 + cos’ (x, — x,) (E2.2.24)
504.2688 cos(x;-x, )
| —5.9809 + cos” (x;, — x,) |
The total honlinear control is then given by: :

UrLARC (X) = _[KOLARC + 'ch(X)TP]X - ~KTLARCX (E 512)

where Ky apc = Kopare +¥cg(X)' P,

Now, we .want to select an appfopriate value for y.. Since we have not completed a
procedure for this, heuristics are employed to tune v . Following the suggestion given
after Corollary 5.1, we start our tuning process from a small value of y.. . Setting

Yc =0.001, numerical simulations show that the nonlinear auxiliary control can enlarge
the attractive region resulting from the linear LARC in (E 5.1.1). Increasing v, to 0.002

and to 0.003 produces increasingly better results. Next, we skip intermediate values and

set Y- = 0.01. The attractive region corresponding to Y~ = 0.01 is smaller than that
corresponding to Y. = 0.003. We do not pursue the optimal value for Y. and accept

Yo =0.003 because the present results are sufficient to demonstrate the benefit of the
nonlinear auxiliary control u,(x). Fig. E5.1.1 (a) and (b) shows system responses under
u;or (X) (Misawa, Arrington, and Ledgerwood, 1995) and u; 4. (X) when the system is
launched from two initial conditions. Notice that the responses under u;,, (X) are faster

than those under uz; 4pc (X), but u; o (X) is not able to force the trajectory to converge to
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the origin when the initial condition is large. Simulation results in Table E5.1.1 and Table
ES.1.2 compare the attractive region resulting from u; o, (x) (Misawa, Arrington, and

Ledgerwood, 1995) to that resulting from 4z~ (X) 1n (E 5.1.2) with y. =0.003 . Notice
that the latter is significantly larger than the former. In these tables, we define 1)

converge to the origin = “x(l)“ <0.01 for 40 <t <50, and 2) diverge from the origin =

3t such that [x(2)| > 2000.

0.3

/_—_' xl(l)“TLARC |

%
0.1 | \/—_ xl(t)“LOR
___ixy(t)(rad) \,\

et %y (1) (rad) oLk /\\

\_ ' xz(t)“TLARC
0.1 f
\—— xz,(t)ulQR
-0.2
0 1 2 3 4
t (sec)

Fig. ES.1.1 (a) Responses of the Double-Inverted-Pendulum System under uy; 45 (X)
and u; e (x) with x(0)=[-02 02 -0.1 -0.1]
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X (t LIL R
1 / G
0.8
0 N
_1x(t)(rad) / ¥
et Xy (1) (rad) / V% X2 O upy e
-0.2 ‘
| x__ X, (Z)uLQR
-0.4
0 1 2 3 4
t (sec)

Fig. E5.1.1 (b) Responses of the Double-Inverted-Pendulum System under uz ;o (X) -
and uLQR-(x) with x(0)=[0.25 0.25 0.1 0.1]"
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Example 5.2 (The Cart-and-Pole System with Force Control on Cart)

In this example, we employ the cart-and-pole system in Example 2.3 to determine if the

auxiliary nonlinear control u,(X) can enlarge the attractive region resulting from the
linear control u; 4~ (x). To do this, we invoke from (E 3.5.7) in Example 3.5 the linear
gain matrix K, .~ to produce:

Uy g (X) =[-2.5136 —57.4749 —5.1254 —13.0073]x

(ES5.2.1)
= -K gcX

where K, - =[-2.5136 —-57.4749 —-5.1254 —13.0073]. This linear LARC

corresponds to P in (E 3.5.9). For convenience, we reproduce:

40782 103497 3.1579 2.2951
10.3497 119.5777 18.8090 25.7791

P= (E 3.5.9)
3.1579 18.8090 5.3843 4.1524

2.2951 25.7791 4.1524 5.7820
We take from (5.7) in Corollary 5.1, the auxiliary nonlinear control:
u, (%) = —y(0)g(x)" Px =K, (0)x

where y(x)g(x)TP =K, (x), and we set Y(X) =Y. € R* for simplicity. We recall from
Example 2.3 that:

0

1
1

M+sin®(x,)m
3 cos(x,)
- (M+ sin? (xp)m)l |

g(x) = (E 2.3.2d)

where M =2 kg, m=0.1kg,[=0.5m, and g =9.81 kg.m.s”%. The total nonlinear control

is then given by:
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"rLARC (x) =K ppc + ch(X)TP]X = —KarcX (E5.2.2)

where K yune =K are +Yc8(X)P.

Now, we want to select an appropriate value for y.. Since we have not completed a
procedure for this, heuristics are employed to tune vy . Following the suggestion given
after Corollary 5.1, we start our tuning process from a small value of y. . Setting with

Yo = 0.001, numerical simulations show that the attractive regions corresponding to
Urare (X) and up 40 (X) are approximately the same, implying that effects of larger
values of Y are to be examined. We increase Y. gradually and observe some
enlargement in attractive region. When vy =1.25, numerical simulations show clearly
that the attractive regibn corre;sponding to up4pc(X) 1s larger than that corresponding
tou; 4zc (X). We terminate the tuning procedure and accept y.- =1.25 because the present
results are sufficient to demonstrate the benefit of the nonlinear auxiliary control u,(x).

Simulation results in Table ES.2.1 and Table ES5.2.2 compare the attractive regions

resulting from upp(X) (Ogata, 1997), from u; 4p (X) (without uncertainty specifications),
from u; 4z (X) (With uncertainty specifications), and from u; 45 (X) (With yo =1.25).
Notice that the latter is the largest. In these tables, we define 1) converge to the origin =

HX(t)H <0.01 for 40<t <50, 2) diverge from the origin = 3t such that Hx(t)[] > 2000, and

denote “uncertainty specifications” by “UCSPs”.
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Table E5.2.1 Simulation Results of the Cart and Pole System in Regions farther from the Origin (x,> 0, x,>0)
Legends: B =PP, LARC (with and without UCSPs) and TLARC systems converge,
@ = LARC (with and without UCSPs) and TLARC systems converge, B = LARC (with UCSPs) and TLARC systems converge
M = LARC (without UCSPs) and TLARC systems converge, 8 = TLARC system converges
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= LARC (with and without UCSPs) and TLARC systems converge, B = LARC (with UCSPs) and TLARC systems converge
M = LARC (without UCSPs) and TLARC systems converge, 8 = TLARC system converges
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Summary

In this section, we suggest that nonlinear controls be incorporated to the linear
LARC developed in the previous chapters to enlarge the original LAR under the
assumption that the available model is perfect. Indeed, we propose that a
nonlinear auxiliary control b¢ augmented to the linear LARC, and we denote this

augmentation by TLARC.

Based on the idea in 1, we present our preliminary studies and Theorem 5.1,

which leads to many forms of auxiliary controls that can be employed to enlarge
the original LAR. We point out a simple auxiliary control for this purpose in
Corollary 5.1. Using this auxiliary control, we require a technique for choosing an

appropriate value for the parameter Y. . This parameter weights the contribution
of the linear LARC and that of the auxiliary control. A procedure for selecting an
appropriate Y. is a subject of our current studies. At the moment, we select Y.

heuristically. We initially choose a small Y., employ numerical simulations to

estimate the corresponding attractive region, and tune Y. accordingly.

Using the double-inverted-pendulum system (Misawa, Arrington, and
Ledgerwood, 1995) with the optimized linear LARC obtatned in Example 3.3 and
the cart-and-pole system (Ogata, 1997) with the unoptimized linear LARC
obtained in Example 3.5, we examine how the auxiliary control in Corollary 5.1

can enhance the ability of the linear LAR controllers. Numerical simulations show
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that the attractive regions corresponding to TLARC are larger than those
corresponding to the linear LAR controllers, and are significantly larger than
those corresponding to LQR (Misawa, Arrington, and Ledgerwood, 1995) and

pole placement (Ogata, 1997). The tuning process for vy takes less than 5

minutes to complete in each of the two examples.
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Chapter VI

Conclusions and Recommendations

6.1  Conclusions

There are numerous physical nonlinear systems whose mathematical descriptions present
structural and algebraic difficulties when designing a globally stabilizing controller. For
such systems, we often admit locally stabilizing controllers designed by applying linear
system theory to suitable linearized models. Theoretically, we expect the linear controller
to stabilize the nonlinear system in a region where the linear approximation is valid.
However, it is traditional that we do not examine the extent of this region when designing .
a linear controller. After such design, simulations are employed to numerically estimate
the resultant attractive region. A major drawback of a linear controller designed in this
fashion is that the attractive region of the corresponding nonlinear system can be
unsatisfactorily small. It is known that a linear controller can be designed either by
relocating the eigenvalues of the linearized model, by optimizing a performance index
subjected to the linearized model, or by shaping frequency-domain plots of the linearized
model. However, their relationships to the attractive region of the corresponding
nonlinear system are not obvious. Thus, it is not clear how several design parameters for
the corresponding techniques should be chosen to obtain reasonably large attractive

regions.

Using the concepts of eigenvector condition and eigenvalue ratio, systematic procedures

for generating LAR controllers with and without uncertainty specifications are proposed.
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In the formulations of these procedures, effects of nonlinearities and of uncertainties on
LAR are handled implicitly using geometry. Given a linearized model about the origin, a
LAR controller can be generated in a timely fashion using an eigenvalue-ratio plot. The
resulting attractive region is reasonably large when compared to existing techniques such
as pole placement and LQR. For uncertain systems with uncertainty specifications, our
procedures typically call for an optimization routine. In this case, we provide a tool for
determining reasonably good initial values for the optimization. Starting from these initial
values, it appears that a simple optimization Toutine is sufficient to produce fast
convergence to a stabilizing LAR controller, which cannot be reached from inappropriate
initial values. When LARC is applied to common examples found in the literature for
local stabilization, the attractive regions resulting from LARC are larger than those
resulting from pole placement and LQR. For global stabilization, LARC produces the
least conservative allowable uncertainty bounds when compared to those in the common
examples. Because the available information and specific properties of the system of
interest imposed in various chapters are different, several types of stability are discussed.

The reader is cautioned about the applicability of LARC in these situations.

6.2 Recommendations for Future Work

1)  Because of the promising results in Chapter V, it is recommended that the
nonlinear LARC be investigated further. Extending the results in Chapter V to
handle time-varying cases is straightforward. However, it may not be obvious

how such results can be extended to select systematically parameters for the
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auxiliary control, and to handle robustness issues while maintaining applicability

- of the scheme for complex high-order nonlinear systems.

The results obtained in various chapters suggest strongly the profound effects of a
“reasonably good” Lyapunov function. Accordingly, it seems reasonable that
LARC be improved by finding a new class of Lyapunov functions that can be of

advantageous over the current quadratic Lyapunov function in the sense of LAR.

When dealing with uncertain systems, we proposed a technique for selecting
reasonably good initial values for optimizations. Starting from such 1nitial values,
it was found in all relevant examples that the simple univariate optimization
technique could be employed to obtain stabilizing LAR controllers in a timely .
fashion. Note that the univariate optimization technique was primarily employed

for simplicity, and thus we do not expect it to be the most efficient in general. It is

encouraged that an optimization technique be developed to speed up convergence

to the solution of LARC.

In the formulation of LARC, it is desirable that X be located far from the

origin to obtain a reasonably large LAR. While this formulation is valid, we

notice that it incorporates strongly effects of the location of x .., but not effects
of relative location of x. . with respect to the resulting LAR. It is recommended

that the latter be investigated in details, and be incorporated into the formulation.
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We suggest that a LAR observer be developed. Using results developed in the

‘previous chapters, it may be possible to formulate such an observer in a

straightforward fashion. Properties of a LAR output-feedback controller should

then be investigated.
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Appendix I
Step-by-Step Procedure for Generating LARC

Using a Linearized Model about the Origin

The system of interest is given by:

x=f(x,)+g(x,H)u (AD
where x, f(x,?), g(x,)e R", and the control u is restricted to be a vector-valued
function of x for simplicity. The objective isto design u(x)e R™ such that the origin of

(A 1) is locally uniformly asymptotically stable with a reasonably large attractive region.
In this section, we assume the knowledge that the linearized model about the origin of (A
1) exists and is given by:

X = Ax + Bu(x) (A2)

where A € R™", Be R This is equivalent to knowing that:
kel B

lim | sup| M =0
-0 20 ”X”

In addition, A and B are known with [A,B] being controllable or stabilizable. These are

(A3)

all information required for generating LARC using the “first” procedure. The first
procedure is primarily formulated for the case in which A is unstable but it is also

applicable when A is stable. For the latter case, we rewrite (2) as suggested in Section
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1.3. For simplicity, the control is restricted to be linear such that u(x) = -Kxe R",

K e R™ in the following procedure:

Step 1 Construct an-array containing increasingly large numerical values of p.

Remark: Typically, our array of p is 0.0001, 0.001, 0.01, ..., 100, 1000,

10000. However, an appropriate range and step size depend of the
system at hands. The key is to capture a portion of the eigenvalue-
raf[io plot (introduced in Step 2) where the slope changes
significantly. When such ‘portion is captured, replot it using a linear

scale for p.

For each value of p, we execute the following substeps:

1) Solve the steady-state Riccati equation:

2)

0=-—2Q-[PA+A"P]+20PBB'P=-I-M+N (A 4)

B 1 T N ! T T
where Q=1, M=—[PA+A'P], N=_[[PBIK +K'[PBT 1| 7 _ .

Find the n eigenvalues of M and compute the eigenvalue ratio 7, . The

expression for -~ given in (1.23) can be reduced to:

:‘ }\‘Ml ‘:_ }\‘Ml 5
P“M(rﬂ)' }\‘M(r+1) (A )

r}\M

where Ay ... 2 Ay, > Apgrany 2 .. 2 Ay, and 7 =rank(PB) . By

examining the proof of Theorem 4.1 and the statements thereafter, it
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should appear that Ayy >0 > Aygi,) =... = Ay, =1 and thus

V)\M = A’M] .

Example Suppose we are given that:

-—0.0366 0.0271 0.0188 -0.4555 0.4422 0.1761
| 0.0432 -1.0100 0.0024 —4.0208 | 3.0447 -7.5922
101002 02855 —0.7070 1.3229 |’ B= —5.5200 4.9900
0 0 1 0 0 0

and p =0.01. We obtain:

8.2875 —0.0200 —0.7288 —3.3907
-0.0200 0.9573 0.5717 -0.4832
-0.7288 0.5717 2.6766 34784
-3.3907 -0.4832 3.4784 10.5036

' —0.3773 0.0704 —1.1987 —2.1047
_| 00704 -0.8042 —-0.3593 —0.8472
| -1.1987 -0.3593 15737 4.7768

-2.1047 —-0.8472 4.7768 8.0889

0.6227 0.0704 -1.1987 —2.1047
0.0704  0.1958 —0.3593 —0.8472
—1.1987 -0.3593 2.5737 4.7768
—-2.1047 —-0.8472 4.7768 9.0889

N=

rank(PB) =2

—0.2047} 0.6223 |-0.1645| 0.7374
T, = —0.0758|~0.6597{—0.6355| 0.3939
0.4567 |—0.3286] 0.6233 | 0.5431

0.8625 | 0.2637 |-0.4249|-0.0779

Ay = TEMTy, = diag[11.1921 —0.7109 —1 —1]
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Ag = TyNTy = diag[12.1921 0.2891 0 0]

- :Ill._I?ZI% _ _11.1?21 111921 = Ay

Using the data obtained in Step 1, plot ~ versus p. Then select a few
values of p from a “flat” portion of the plot at which the corresponding values
of r,, are small. At such points, h.y does not change significantly when p
changes. For each selected value of p , we fiﬁd the corresponding LARC
using:

U ppe () = —MPBTPx|,_ = K pcX (A 6)
where K, p- = neB’ P . Selecting an appropriate value fof p 1is best

illustrated by examples. See Example 2.2, 2.3, and 2.4.

Verify that sufficient control energy is available to implement the controller
by colnsiderin g the resulting linear gain matrix and the required operating
region. If not, reconsider the éigenvalue—ratio plot aﬁd choose a new value for
p . Normally, a larger value of p results in a larger K, ,r~ and a greater
demand of control energy. Now, examine the attractive regions corresponding
to the selected values of p in Step 2 using numerical simulations. Then select

a controller that best suit design objectives and constraints. In our examples,

selecting 2 values of p according to the guideline in Step 2 results in an LAR
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controller that yields a satisfactorily large attractive region when compared to

those resulting from conventional linear control techniques.

This step is optional. The parameter 1| may now be tuned by means of
numerical simulations. When this is completed, the direction of K, .- may
be tuned by writing:

Upage (X) = —p”PB”ﬁx

= —p|[PB|| K ypcx (A7)
= —p|PB| [k, ... k,Ix

n

T

where "P—B” =[k, .. k1= KfARC . Now, perturb the direction of KL\RC by

increasing a component k j» JE {L,...,n} by a small value, normalize the

perturbed K7, using the 2-norm, and run simulations at initial conditions
just outside the attractive region recorded in Step 3. If the simulations show

convergence, restart Step 4. If the trajectories diverge, restore k i change the

index j, and restart Step 4. All components of K{ARC are perturbed in the

same fashion, and all perturbation must be “feasible” or

A (A —p|PB|K 4xc) <0 Vi forlocal stability.
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Appendix 11
Step-by-Step Procedure for Generating LARC

Using a Nominal Model and Uncertainty Specifications

In this Appendix II, the system of interest is the same as that in Appendix I. The
difference is that the availability of the linearized model about the origin of (A 1) is not
required. We rewrite the nonlinear system (A 1)as:

x=A x+B,ux)+[f(x,1) - A, x+gx Hux)-B,u(x)]

(A 8)
=A,x+B, u(x) +f5(x,7,u(x))

where the subscript “n” denotes the available “nominal” model, A, € R, B, € R™",
u(x) =-Kxe R", fy(x,t,u(x)) =[f(x,1) - A, x+g(x,H)u(x)-B, u(x)le R*. Itis
required that A, be unstable, and [A'n, B, ] be controllable or stabilizable. If A, is

stable, we rewrite A, assuggested in Section 1.3. The uncertain vector fy(x,?,u(x))

lumps together all the nonlinearities, uncertainties, and modeling errors entering the

nominal time-invariant linear system X = A, x + B, u(x). It is desirable to choose A,
and B, such that "fz (x, t,u(x))||/||x|| is small. Provided we can write (A 8) such that

”fz (x,t,u(x))” /||x|| is sufficiently small, the objective can be achieved using the

procedures in this section without knowing the linearized model of (A 2). Applications of

these procedures require that uncertainty specifications are available.
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A21 Systems with Structured Uncertainty Specifications

Consider the situation when it is known in the operating region of interest that:

Ay
AA,(x,1) =E(x,8) = A, x = ) [h2" (x,HEL" Ix (A 9)
a=1
B
AB, (x,1) = g(x,1) =B, = ¥ [ (x, DEL" Ix (A 10)
Bt

where h(f” (x,1)e [A™, k™ 1e R, h[f n(X,t)E [hz€”7 hfé‘ ]e R are uncertain functions,

lo > "ua

it < b, by < bt Egr e R B e R, 1<y, <nxn,and 1<r, <nxm.
n n

ua uf} »
The known uncertainty specifications are hlﬁ" (a lower bound of h[f n(X,1)), hg‘ (an

upper bound of h:" (x,1)), hlg" (a lower bound of h[f "(x,1)), hf " (an upper bound of

h[f n(x,t)), E(‘;‘” , and Eg” . In this case, we suggest the following steps to generate an

LARC:
Step 1 Cast the uncertain vector in the standard form in the operating region of

interest. Using the notations defined previously, we write:

B B
—[AB, (%, IKx = 3 [ (x, ) ~EAP KTix = 3 [ (x, B2 1x
p=1 p=1

where Eg” = [—EQB"K] e R™ and 1 Srg Snxm. Thus, we can cast the

uncertain vector in the standard from in the operating region as:

r

rAn rB)‘l
fy (%, 1,0(%)) |y g = X [he (DB I+ Y [y (x,DES" Ix= Y [h;(x,0E ; Ix
p=1

=1 j=1

where E.e R and r=r, +1ry .
J Ay B,
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Construct the matrix Z in Theorem 3.2. To do this, we follow the following

substeps:

1)

2)

3)

4)

5)

6)

-2Q= PKH + X:P , where P,Q € R are symmetric positive definite,

and A, =[A, -B,K].

A=A, +Y hE,

j=1
®=PA, +A/P, where ® is a symmetric matrix because
[PA,1" =A]P due to the symmetry of P.

¥, =[PE, +E'P]=¥'

Y] =Ty, ¥ Ty, =diag[h;;(¥)) ... A,(¥)l, wﬁere

Ty, =[vi;(¥) | | vy (DL Tg Ty =1, {v;;(F)) ... v,(¥))
is the set of n orthonormal eigenvectors of ¥ ;, and the superscript “D”
denotes “diagonal”.

\P?, 0+ :\PD I

7 , where the subscript [‘I’? (i, <0]1—

['P? (i,i)<0]—)[‘l‘? (i.1)=0]

[‘I’? (i,i) = 0] means that we obtain the diagonal matrix ‘I’? % from the
. . D . . . D

diagonal matrix W7 by setting all negative diagonal elements of ¥} to

zero, and ‘I’? (i,7) denotes the (i, i) element of ‘I’? . When the superscript
“0+” is employed with the superscript “D”, we designate that the diagonal
matrix ‘I’? ' has no negative element and is positive semidefinite or is

positive definite.
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7) ‘I’?* = [T\;,lj v [‘I’? /O ]T,T,j = T\P,[T? 0 ]T;/_ , where the superscript “0+”

designate that ‘I’;” is positive semidefinite or is positive definite but need

not be diagonal.

8) Z=®+) [(h,; —h)¥S]

J=1

Solve for {K, Q, P} such that in the operating region of interest:
Do (Z(K, Q, P)) <0 (A 11)

For some simple systems, finding a solution analytically may be possible but
we do not expect this iﬁ general. A more practical approach is to solve for a
solution {K, Q, P} for (A 11) using a numerical optimization technique. Since
{K, Q} implies P, we usually abbreviate {K, Q, P} by {K, Q}. The following

substeps are suggested to find a solution for (A 11):

1) Obtain reasonably good initial values {K, Q} for the optimization such

that the corresponding A, (Z(K, Q, P)) is small by using LARC. To do
this, we choose a region {(p,n)|0<p, <p<p,.1<N<m,} and compute
K =K, zc and Q at points distributed evenly in this region. For each p,
we set Q =1 and obtain P by solving

0=-2Q-[PA, +A’P|+20PB, B’P (A 12)
Using p and P, construct for each n:

K =K zc = NpB Px (A 13)
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Using p, n and P, obtain Q by solving:

0=-2Q-[PA, + ATP]+2onPB,B P (A 14)
Using {K 4z, Q} determined for each (p,m), we plot A . (Z(p,M))
versus p and M in three dimensions, and find a region of (p,mn) where
A .. (Z(p,Mm)) is small or is negative from such plot. Depending on the
context, we alternately write A (Z(p,n)) or A, (Z(K,4zc> Q)
because (p,m) implies {K, 1z, Q} in our setup.

If we find from the plot that A ., (Z(p,n)) <0 at a particular (p,1), then

max

the matrix K, .- corresponding to such (p,1) meets the uncertainty

specifications and we terminate the procedure. In this case, we usually

select {K; 4zc,Q} corresponding to the minimum of A, (Z(p,n)) in the

plots as our solution although we can accept any solutions such that

A ax (Z(p, 1)) < 0. If the minimum of A_, (Z(p,n)) in the plot is positive,

max

we obtain from this plot an initial value {K ,z-,Q} such that the

corresponding A (Z(p,m)) is small for the optimization. When the

max

available control energy is limited, it is preferable to start the optimization

from an initial value in which K 4z is small. This usually forces us to
admit an initial value {K, 4z, Q} corresponding to a larger A__ (Z(p,M)).

In this case, we select the initial value from a “flat” portion of the plot

where A__ (Z(p,m)) is small. This is best illustrated by examples. See

max

Example 3.3, 3.4,3.5, and 4.1.
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2) Starting from the feasible initial value determined previously, we employ

an optimization technique to search for {K,z-,Q} such that

Aoy (Z(K | 1rc»Q)) < 0. There are several applicable optimization

techniques but we employ the straightforward “univariate” technique
(Fox, 1971) for simplicity although other techniques may produce better

results. We regard the elements of K, .~ and Q as our variables in the

(Z(K | \rc» Q) . Then we perturb these variables

objective function A,

one at a time and examine the corresponding A, (Z(K 4z, Q)) . Our
perturbations must be such that {K,,..,Q} remains feasible. If the

objective function decreases, we continue to perturb this variable in the
same direction. Otherwise, we reverse the direction of the perturbation and

repeat the above sequences. When the decrement in A, (Z(K 4z, Q)) is

less than a prescribed value, we perturb a new variable and repeat the
above sequences. These nested loops terminate when computation time is

expired or when the decrement in A, (Z(K 4z»Q)) is less than a

max
prescribed value after all the variables are perturbed in this fashion. All the
“prescribed” values and the perturbations are determined by using
heuristics. In our codes, we set these to be between 0.5% - 1% of the
previqus values. The procedure terminates successfully when (A15) is
satisfied and unsuccessfully otherwise. For the former case, the

corresponding gain matrix is denoted by K, 1z -
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A2.2 Systems with Unstructured Uncertainty Specifications

Now, the structure of the uncertain vector is unavailable or is inapplicable but bounds

||Af(x )
W

Af(x,r) =1f(x,r) — A, xand Ag(x,1) = g(x,7) —B, . We denote these bounds by

[atos o

UK

steps to generate an LARC:

and [|Ag(x,1)| are known in the operating of interest, where

] and max(“Ag(x, t)”) respectively. In this case, we suggest the following

Step 1 From Theorem 3.3, we construct:
W, =max(\Z (2eQ - &*PP)) (A 15)
where P and Q are symmetric positive definite satisfying the Lyapunov

equation —2Q=PA, + ATP, A =[A -B K] is stable, and

O<e<————=¢

1
02,(Qp) ™ (A 10

where o, (Q7V2P) is the maximum singular value of [Q?P], and

Q1/2Q1/2 = Q .

Step 2 Solve for {K, Q, P} such that in the operating region of interest:

<

For some simple systems, finding a solution analytically may be possible but

max [”Af(x t)”]+”K”max("Ag(x,t)H) < P (A17)

we do not expect this in general. A more practical approach is to solve for a
solution {K, Q, P} for (A 17) using a numerical optimization technique. Now,

define:
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= max, M + max X, 1 —
5= [ ; }uxmu (Ag0] - (A 18)

Thus a set {K, Q, P} is a solution of (A 18)if 6(K,Q,P)<0. Since {K, Q}
implies P, we usually abbreviate {K, Q, P} by {K, Q}. The following
substeps are suggested to find a solution for (A 17):

1) Obtain reasonably good initial values {K, Q} for the optimization such

that the corresponding 8(K,Q) is small by using LARC. To do this, we
choose a region {(p,M)|0<p, <p<p,,1<n Snu} and compute
K =K 4zc and Q at points distributed evenly in this region. For each p,
we set Q =1 and obtain P by solving

0=-2Q-[PA, +A’P]+20PB,B’P (A 19)
Using p and P, construct for each n:

K =K, ,zc =npB!Px (A 20)

Using p, n and P, obtain Q by solving:

0=-2Q-[PA, +A}P]+2onPB,B.P (A 21)
Using {K | 1zc,Q} detemﬁned for each (p,m), we plot &(p,m) versus p
and 7 in three dimensions, and find a region of (p,m) where d(p,m) is

small or is negative from such plot. Depending on the context, we

alternately write 8(p,m) or &(K 4zc,Q) because (p,n) implies

{K 14rc>Q} in our setup.
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If we find from the plot that 8(p,m) <0 at a particular (p,m) , then the
matrix K,z corresponding to such (p,n) meets the uncertainty

specifications and we terminate the procedure. In this case, we usually
select {K,,zc»Q} corresponding to the minimum of §(p,m) in the plots as
our solution although we can accept any solutions such that 8(p,n) < 0. If
the minimum of 8(p,n) in the plot is positive, we obtain from this plot an
initial value {K,,z-,Q} such that the corresponding &(p,m) is small for
the optimization. When the available control energy is limited, it is
preferable to start the optimization from an initial value in which K 4z

is small. This usually forces us to admit an initial value {K,z-,Q}
corresponding to a larger 6(p,m). In this case, we select the initial value
from a “flat” portion of the plot where &(p,m) is small. This is the same as

the selection of A__ (Z(p,m)) illustrated in Example 3.3, 3.4, 3.5, and 4.1.

max

Starting from the feasible initial value determined previously, we employ

an optimization technique to search for {K,,z-,Q} such that

(K 4rc>Q) < 0. There are several applicable optimization techniques

but we employ the straightfo'rward “univariate” technique (Fox, 1971) for
simplicity although other techniques may produce better results. We

regard the elements of K, .- and Q as our variables in the objective

function &(K 4z, Q). Then we perturb these variables one at a time and
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examine the corresponding 8(K, 4zc,Q) . Our perturbations must be such

that {K,,zc,Q} remains feasible. If the objective function decreases, we
continue to perturb this variable in the same direction. Otherwise, we
reverse the direction of the perturbation and repeat the above sequences.
When the decrement in 8(K 4z, Q) is less than a prescribed value, we
perturb a new variable and repeat the above sequences. These nested loops
terminate when computation time is expired or when the decrement in
(K | 4zc-Q) is less than a prescribed value after all the variables are
perturbed in this fashion. All the “prescribed” values and the perturbations
are determined by using heuristics. In our codes, we set these to be
between 0.5% - 1% of the previous values. The procedure terminates
successfully when (A 17) is satisfied and unsuccessfully otherwise. For

the former case, the corresponding gain matrix is denoted by K, 4zc -
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Appendix ITI
Step-by-Step Procedure for Generating LARC

Using an Exact Nonlinear Model

Now, the system of interest is given by:

x =f(x) +g(x)u (A 22)
where x, f(x), g(x)e R". We substitute for u the “total” LARC:

Uy ape (X) =W yp0 (X) +u,(X) (A 23)
where u, ,p-(X) is generated by using a procedure in Appendix I or II. The objective is
to generate an auxiliary control u,(x) to augment u,,~(X) such that the corresponding
LAR is enlarged from that corresponding to u; 4z~ (x) when f(x) and g(x) are known
exactly. We suggest the following steps to generate u,(X):

Step 1 Select a choice for u,(x) . It has been pointed out in Chapter V that there are
infinitely many choices of u‘a.(x) satisfying (5.5), and thus can be employed
to achieve the objective. A possibility is given by:

u, (X) = -y(x)g’ (OPx =K, (X)X (A 24)
where y(x)g” (x)Px = K, (x)€ R™", y(x) >0, and P corresponds to
U, 4z (X) . The choice of u,(x) .in (A 24) is selected for simplicity although

other choices may produce better results. Under the choice of auxiliary control

(5.7), the resultant nonlinear control is given by:

Urare (X) = K 4perX (A 25)
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where Koy apec =K 4rc + K, (x)] when no optimization is employed to find
the linear state-feedback gain matrix for u, - (X), and Ky upe =[Kpiare +

K, (x)] otherwise.

Tune parameters for u,(x). When u,(x) is given by (A 24), the only
parameter is Y(x). For simplicity, we restrict that y(x) be a positive constant
denoted by y,-. BecaL\lse a tool for selecting an appropriate value for y. has
not been established, we tune y . using heuristic. We begin by choosing a
small positive value for Y, =v,[1]. T ypically, we set Y- [1] =0.001. Then
employ numerical simulations to estimate the attractive region corresponding
t0 Uryppc(X) |y =y o1y @nd compare this with that corresponding

10U 4pc (X) [y—o= Byrarc (X) . We accept Yc =Y [1] if the attractive region
corresponding to Uy ,pc(X) |, ¢ =yc 18 larger than or equal to that

corresponding to u;,z~(x) . The process is to be repeated until the

computation time is expired or the attractive region corresponding to

Urpare (X) by =y oy 18 smaller than that corresponding €0 Wryupc (%) |y ooyepity - -

In these case, we select Y- = y.[i —1] for generating u, (X).
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