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CHAPTER ONE
INTRODUCTION

As the ratio of the sample standard deviation to the sample mean, the sample
coeflicient of variation (CV) provides a useful and unitless measure of relative variability.
As Ahmed (1994) notes, the CV can sometimes be more relevant than the standard
deviation alone, such as when the precision of measuring instruments or the volatility of
stocks is considered. Hurlimann (1995) points out that the CV is useful in insurance risk
assessment as a measure of the heterogeneity of insurance portfolios. Williams (1991)
cites the importance of the CV in the determination of detection limits in instrumental
analysis. Feltz and Miller (1996) notes that in medical studies, the CV often determines
the feasibility of combining results from separate clinical trials.

Payton (1997) suggests that the types of populations for which the CV has
relevance are those which are of the ratio type. In such populations, an observation equal
to zero represents the absence of the measured characteristic, such as with populations of
volumes, yields, or weights, since only in this context does the CV ratio itself have
meaning. Negative observations are not possible.

Although theoretically not Qf the ratio type, normal populations have long been
considered in connection with the behavior of sample CVs. In such cases, negative sample

means are assumed to be highly improbable. However, in contrast with the mean of the



normal distribution, comparatively little work has been done in connection with hypothesis
tests and confidence intervals for unknown population CVs based on observed data.
Papers which have addressed these subjects for a single population CV include Koopmans,
et al. (1964), Vangel (1996), and Payton (1997), which utilize exact and approximate
distributions of the sample CV from a normal population. Tests for the equality of k
normal population CVs that employ approximate distributions and the normal density
include Bennett (1976), Miller and Karson (1977), Doornbos and Dijkstra (1983), and
Shafer and Sullivan (1986). Gupta and Ma (1996) extends a Wald test developed by Rao
and Vidya (1992) for two populations based on the normal density to k populations and
introduces a score test which also utilizes the actual density of the observations. A test
based on the asymptotic moments of the CV is provided by Feltz and Miller (1996).

Less work has addressed the analysis of population CVs in the context of designed
factorial experiments. Taguchi (1992) discusses a well-known approach to the analysis of
product quality using fractional factorial designs that often models a log-transformed CV.
However, his approach has yielded recent criticisms (see, for example, Box, 1988) and
corrections because of biased tests of factor effects. More recent work by McCullagh and
Nelder (1989) and Nelder and Lee (1591) has utilized models of the CVs of gamma
populations within a larger theory of joint modelling of mean and dispersion in designed
industrial experiments. An alternative approach to modelling the CVs of gamma
distributions from a sociological standpoint is provided by Eliason (1993).

Absent from the current literature, however, is a technique for constructing
factorial models of the CVs of normal populations that makes use of known approximate

distributions and asymptotic moments of the sample CV. The current work addresses this



situation by first establishing a proper structure for a model of population CVs in a general
setting. Next, the theory of generalized linear modelling is applied in the context of
maximum- and quasi-likelihood estimation to achieve a simplified iterative algorithm for
estimation of model parameters that parallels methods currently used to fit models in
categorical data analysis. An application of model diagnostics like those used in
categorical analysis is proposed, and simulations to investigate the power of these
diagnostics in the context of the approximate distributions and asymptotic moments are

discussed. The effects of departures from the normal assumption also are determined.



CHAPTER TWO
REVIEW OF LITERATURE

In this chapter, several approximations to the exact distribution of the sample CV
when data are drawn from a normal population are discussed, and comparisons to the
exact distribution are made. Several one-factor tests for the equality of k normal
population CVs currently in the literature are reviewed, and variations of the Taguchi
approach, which often implicitly models a log-transformed CV in a (fractional) factorial
design, are summarized.

Terminology and Definitions

Let X, X3, ..., X, be a random sample from a normal population with E(X;) =

p>0and Var(X;))=06%i=1,2, ..., n, and let R = 6 / p be the population CV. Define
X= Z X. / n to be the sample mean and assume that P()_( < 0) is negligible. Let 8% =
i=1

n n

Z(Xi — i)z /(n-1) and §? = Z:(Xi - )—()2 / n be the unbiased and maximum-

i=1 i=1
likelihood estimates of 6%, respectively, and let r = S / X andr, =S,/ X be the

corresponding point estimates of R. Note that r, is the maximum-likelihood estimate of R

and that r, = ((11 - 1) / n) V2 r. Although neither r nor r, is an unbiased estimate of R, both



are strongly consistent; that is, P(]imr = R) = P(lim I, = R) =1 (Serfling, 1980, pp. 24-

n—oo n—>o0
26, 136-137). Hence, both are reasonable estimators of R, particularly when computed
from large samples.

For later convenience, define the h-function h(x) = x>/ (1 + x*) for x> 0. Thenh
has an inverse, and h™'(x) = (x/ (1- x)) " for0<x<1. Additionally, define a random

variable Y to have the gamma distribution with parameters A and v if and only ifits

density is given by
f(y) = L(ﬂ) v eXP(— ﬂ) yz0
yL(W\ A Wi

= 0, y<0,
where A > 0, v >0, and I'(e) is the gamma function. It follows that E(Y) = A and Var(Y)
=A%/ v. The parameter v is sometimes called the index (McCullagh and Nelder, 1989, p.
287).

Approximate Distributions of the Sample CV

Under normal theory, the exact distribution of r is a multiple (v/n ) of the inverse

of a non-central t distribution having (n - 1) degrees of freedom and non-centrality

parameter Vn/R. The density of the non-central t for degrees of freedom p and non-

centrality parameter q is given by Lehmann (1959, p. 200) as

f(t)= (2(p+1)/2 F(p/Z)(n:p) 1/2)'1"' y(p—l)/2 exp{—%—%[t\/%— q) ]dy , (2.1)

0



for —o <t <. Given the density of r, the density of r, can be obtained, in turn, by
transforming r according to r,= ((n -1)/ n) ¥ ;. Difficulties associated with direct

application of the non-central t distribution itself have prompted the study of several
approximations to the exact distributions of r and r,.

McKay’s and David’s Approximations

McKay (1932) gives the earliest approximation to the distribution of 1, when
samples are drawn from a normal population. By utilizing a contour-integral expression of
the density of 1,, he is able to show that nh(r,) / h(R) has an approximate %’ distribution
with (n - 1) dégrees of freedom, provided fhat R € (0, 1/3). This requirement on R is
consistent with the added assumption that negative observations also are highly
improbable, in addition to a negative sample mean. Equivalently, (n / (n - 1))h(r,) has an
approximate gamma distribution with expectation h(R) and index (n - 1) / 2. Vangel
(1996) observes that McKay utilizes an asymptotic approximation in his derivation, so that
his approximation is, in fact, most accurate for large n, although its small sample
properties also are very good.

David (1949) obtains an approximation to the distribution of r by reexpressing
McKay’s approximation in terms of r and deleting a negligible term. Beginning with

nh(z,) / h(R), she writes

n—-1) ,
nh(r,)  n 1, n (n)r

hR) ~ hR)I1+r;  h(R) H(n_—l)rz
n




2

n-1 r _n-1r’ B (n-Dh(r)
* " h 7 a®)
WR) L. r | R Der ®

n

since r* / n is typically close to zero for large n. She thus obtains that (n - 1)h(r) / h(R)
also has an approximate ° distribution with (n - 1) degrees of freedom, or, equivalently,
that h(r) is distributed approximately gamma with expectation h(R) and index (n- 1) / 2.

Ielewicz and Mvers’ Approximation

A third approximation for consideration is discussed by Iglewicz and Myers
(1970). They derive asymptotic expansions for the moments of the exact distribution of r
under normal theory and conclude that an adequate approximation for even relatively

small n can be obtained by assuming that r itself is normally distributed with mean R and

2

. R 1 . . . . .
variance (——) (Rz + 5) . This variance was apparently given originally by Pearson
n

(David, 1949). Both Serfling (1980, pp. 136-137) and Feltz and Miller (1996) note that r
is, in fact, asymptotically normal with these same moments. Hence, an application of
Slutsky’s Theorem gives that r, likewise possesses these asymptotic properties (Serfling,
p. 19). Simulation results reported by Iglewicz and Myers suggest that this approximation
is superior to other normal approximations with higher-order expansions for the mean and
variance.

Comparisons to Exact Quantiles

Owen (1968) outlines a process to determine cumulative probabilities of the exact

distribution of r based on the non-central t distribution. Making use of (2.1), he notes



that, for ¢ > 0,

X vaX _+n

P(r>c) = P(%>c) = P(0<—S—_<%) = P(O<T<——c£)

e

PO<t<Y2)
v .

where t has the non-central t distribution with (n - 1) degrees of freedom and non-

centrality parameter Vo /R Hencé,

P(r<c) = P(t<0) + P(t>@). Y

Using (2.2), exact quantiles can be computed for r, from which quantiles for 1, can be
obtained using r, = ’((n -1)/ n) ¥2 ¢ . Tables I through IX give selected exact quantiles for r

and r,,, as well as corresponding quantiles for each of the approximate distributions
discussed above. The SAS program used to calculate these quantiles is included in
Appendix B.

Tim tables suggest that both McKay’s and David’s apptdximations perform very
well, especially for smaller values of R and for large n. Iglewicz and Myers’
approﬁlﬁaﬁon generally perfdrms worse than David’s approximation but improves for
large n. All three approximﬂtions are less accurate as R incréases. There is a clear
dispaﬁty between Iglewicz and Myers’ approximation and the exact distribution of r near
the first and third quartiles, particularly for small n. David (1949) comments that the

normal approximation to the distribution of r works best for values of n > 40.



TABLE I

EXACT AND APPROXIMATE QUANTILES OF THE DISTRIBUTION
OFrANDr, FORR=0.1 ANDn=10

Quantile Exact r, McKay Exact r David ™M
0.01 0.04556 0.04551 0.04802 0.04798 0.04746
0.05 0.05753 0.05747 0.06064 0.06059 0.06285
0.10 0.06444 0.06437 0.06792 0.06787 0.07106
0.20 0.07325 0.07318 0.07722 0.07716 0.08099
0.30 0.07989 0.07981 0.08422 0.08416 0.08816
0.40 0.08575 0.08566 0.09038 0.09033 0.09428
0.50 0.09135 0.09126 0.09630 0.09624 0.10000
0.60 0.09709 0.09700 0.10234 0.10230 0.10572
0.70 0.10337 0.10326 0.10896 0.10891 0.11184
0.80 0.11088 0.11077 0.11688 0.11684 0.11901
0.90 0.12158 0.12146 0.12816 0.12814 0.12894
0.95 0.13065 0.13053 0.13772 0.13772 0.13715
0.99 0.14821 0.14806 0.15622 0.15626 0.15254

IM = Iglewicz and Myers’ Approximation



TABLE I

EXACT AND APPROXIMATE QUANTILES OF THE DISTRIBUTION
OF r AND 1, FORR =0.1 ANDn =50

Quantile Exact 1, McKay Exactr David ™M
0.01 0.04556 0.04551 0.04802 0.04798 0.04746
0.05 0.08226 0.08225 0.08310 0.08309 0.08339
0.10 0.08572 0.08570 0.08659 0.08658 0.08706
0.20 0.08997 0.08995 0.09088 0.09087 0.09150
0.30 0.09309 0.09307 0.09403 0.09402 0.09470
0.40 0.09578 0.09576 0.09675 0.09674 0.09744
0.50 0.09832 -0.09830 0.09932 0.09931 0.10000
0.60 0.10089 0.10087 0.10192 0.10191 0.10256
0.70 0.10366 0.10364 0.10472 0.10471 0.10530
0.80 0.10694 0.10692 0.10803 0.10802 0.10850
0.90 0.11154 0.11152 0.11268 0.11267 0.11294
0.95 0.11540 0.11537 0.11657 0.11656 0.11661
0.99 0.12274 0.12271 0.12398 0.12398 0.12349

IM = Iglewicz and Myers’ Approximation
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TABLE 111

EXACT AND APPROXIMATE QUANTILES OF THE DISTRIBUTION
OF r AND 1, FORR =0.1 ANDn =100

Quantile Exact r, McKay Exactr David ™M
0.01 0.08309 0.08308 0.08350 0.08350 0.08339
0.05 0.08768 0.08768 0.08813 0.08812 0.08825
0.10 0.09017 0.09017 0.09063 0.09062 0.09085
0.20 0.09323 0.09322 0.09370 0.09369 0.09399
0.30 0.09545 0.09544 0.09593 0.09592 0.09626
0.40 0.09736 0.09735 0.09785 0.09785 0.09819
0.50 0.09917 0.09916 0.09966 0.09966 0.10000
0.60 0.10098 0.10097 0.10149 0.10148 0.10181
0.70 0.10293 0.10292 0.10345 0.10345 0.10374
0.80 0.10524 0.10523 0.10577 0.10576 0.10601
0.90 0.10846 0.10845 0.10901 0.10900 0.10915
0.95 0.11115 0.11114 0.11171 0.11170 0.11175
0.99 0.11625 0.11624 0.11683 0.11683 0.11661

IM = Iglewicz and Myers’ Approximation
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TABLE IV

EXACT AND APPROXIMATE QUANTILES OF THE DISTRIBUTION
OF r AND 1, FORR=0.2 ANDn =10

Quantile Exact 1, McKay Exact r David ™M
0.01 0.09034 0.08997 0.09523 0.09488 0.09188
0.05 0.11428 0.11382 0.12046 0.12006 0.12355
0.10 0.12816 0.12764 0.13509 0.13467 0.14044
0.20 0.14594 0.14536 0.15384 0.15340 0.16088
0.30 0.15941 0.15878 0.16803 0.16760 0.17563
0.40 0.17132 0.17065 0.18059 0.18017 0.18823
0.50 0.18280 0.18208 0.19268 0.19228 0.20000
0.60 0.19458 0.19382 0.20511 0.20473 0.21177
0.70 0.20754 0.20673 0.21877 0.21843 0.22437
0.80 0.22315 0.22229 0.23522 0.23496 0.23912
0.90 0.24560 0.24465 0.25888 0.25875 0.25956
0.95 0.26483 0.26382 0.27915 0.27917 0.27645
0.99 0.30263 0.30151 0.31900 0.31943 0.30812

IM = Iglewicz and Myers’ Approximation
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TABLE V

EXACT AND APPROXIMATE QUANTILES OF THE DISTRIBUTION
OFr AND 1, FORR =0.2 ANDn =50

Quantile Exact 1, McKay Exact r David ™M
0.01 0.15103 0.15089 0.15257 0.15246 0.15165
0.05 0.16385 0.16371 0.16551 0.16541 0.16581
0.10 0.17087 0.17073 0.17261 0.17251 0.17336
0.20 0.17955 0.17940 0.18137 0.18128 0.18251
0.30 0.18592 0.18577 0.18781 0.18772 0.18910
0.40 0.19144 0.19129 0.19339 0.19330 0.19473
0.50 0.19667 0.19651 0.19866 0.19858 0.20000
0.60 0.20195 0.20179 0.20400 0.20393 0.20527
0.70 0.20767 0.20751 0.20978 0.20971 0.21090
0.80 0.21445 0.21430 0.21663 0.21657 0.21749
0.90 0.22401 0.22386 0.22629 0.22625 0.22664
0.95 0.23205 0.23189 0.23440 0.23437 0.23419
0.99 0.24744 0.24729 0.24996 0.24996 0.24835

IM = Iglewicz and Myers’ Approximation
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TABLE VI

EXACT AND APPROXIMATE QUANTILES OF THE DISTRIBUTION
OF r AND 1, FORR =0.2 AND n =100

Quantile Exact 1, McKay Exact r David ™M
0.01 0.16548 0.16539 0.16631 0.16625 0.16581
0.05 0.17483 0.17475 0.17571 0.17566 0.17583
0.10 0.17991 0.17983 0.18082 0.18077 0.18117
0.20 0.18615 0.18607 0.18709 0.18704 0.18763
0.30 0.19071 0.19063 0.19167 0.19162 0.19229
0.40 0.19464 0.19456 0. 19562 0.19557 0.19628
0.50 0.19834 0.19826 0.19934 0.19930 0.20000
0.60 0.20207 0.20200 0.20309 0.20306 0.20372
0.70 0.20610 0.20603 0.20714 0.20711 0.20771
0.80 0.21086 0.21079 0.21192 0.21190 0.21237
0.90 0.21754 0.21747 0.21863 0.21862 0.21883
0.95 0.22312 0.22305 0.22424 0.22423 0.22417
0.99 0.23376 0.23370 0.23493 0.23494 0.23419

IM = Iglewicz and Myers’ Approximation
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TABLE VII

EXACT AND APPROXIMATE QUANTILES OF THE DISTRIBUTION
OFr AND 1, FORR=0.33 ANDn=10

Quantile Exact 1, McKay Exact r David ™M
0.01 0.14770 0.14603 0.15568 0.15411 0.14164
0.05 0.18756 0.18546 0.19770 0.19586 0.19779
0.10 0.21090 0.20855 0.22230 0.22037 0.22773
0.20 0.24110 0.23845 0.25415 0.25215 0.26398
0.30 0.26422 0.26134 0.27851 0.27653 0.29012
0.40 0.28488 0.28180 0.30029 0.29837 0.31246
0.50 0.30496 0.30170 0.32145 0.31964 0.33333
0.60 0.32581 0.32236 0.34343 0.34178 0.35421
0.70 0.34899 0.34536 0.36787 0.36648 0.37655
0.80 0.37735 0.37350 0.39776 0.39679 0.40268
0.90 0.41899 0.41486 0.44165 0.44154 0.43894
0.95 0.45560 0.45127 0.48024 0.48115 0.46887
0.99 0.53048 0.52591 0.55918 0.56308 0.52503

IM = Iglewicz and Myers’ Approximation
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TABLE VIII

EXACT AND APPROXIMATE QUANTILES OF THE DISTRIBUTION
OFr AND1, FORR =033 ANDn =50

Quantile Exact 1, McKay Exactr David 1%}
0.01 0.24862 0.24787 0.25115 0.25054 0.24760
0.05 0.27058  0.26982 0.27333 0.27276 0.27272
0.10 0.28270 0.28194 0.28557 0.28503 0.28611
0.20 0.29777 0.29702 0.30079 0.30031 0.30232
0.30 0.30891 0.30817 0.31205 0.31160 0.31401
0.40 0.31861 0.31789 0.32185 0.32145 0.32400
0.50 0.32784 0.32713 0.33117 0.33081 0.33333
0.60 0.33721 0.33653 0.34064 0.34034 0.34267
0.70 0.34742 0.34677 0.35095 0.35072 0.35266
0.80 0.35960 0.35898 0.36325 0.36311 0.36435
0.90 0.37691 0.37636 0.38074 0.38074 0.38056
0.95 0.39159 0.39112 0.39557 0.39571 0.39395
0.99 0.42012 0.41982 0.42438 0.42485 0.41906

IM = Iglewicz and Myers’ Approximation
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TABLE IX

EXACT AND APPROXIMATE QUANTILES OF THE DISTRIBUTION
OF r AND 1, FORR =0.33 AND n =100

Quantile Exact 1, McKay Exact r David ™M
0.01 0.27322 0.27273 0.27459 0.27420 0.27271
0.05 0.28939 0.28893 0.29085 0.29050 0.29047
0.10 0.29823 0.29778 0.29973 0.29941 0.29994
0.20 0.30912 0.30870 0.31068 0.31041 0.31140
0.30 0.31712 0.31672 0.31872 0.31848 0.31967
0.40 0.32404 0.32367 0.32568 0.32547 0.32673
0.50 0.33060 0.33024 0.33226 0.33209 0.33333
0.60 0.33722 0.33689 0.33892 0.33878 0.33994
0.70 0.34440 0.34410 0.34614 0.34604 0.34700
0.80 0.35291 0.35265 0.35469 0.35465 0.35526
0.90 0.36493 0.36473 0.36677 0.36681 0.36673
0.95 0.37504 0.37489 0.37693 0.37705 0.37619
0.99 0.39447 0.39445 0.39646 0.39675 0.39395

IM = Iglewicz and Myers’ Approximation
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One-Factor Tests for Population CVs

Suppose X;;,X,,...,X;, » 1= 1,2, ..., k are independent random samples from k
normal populations having E(X;) = W; >0, Var(X;) = 67, and CVs Ry =6; / ;. Assume
P(X; < 0) is negligible for alli. Let S? and S2, be the unbiased and maximum-likelihood

estimates of c)'i2 , respectively, and let r; = S; / X; and Tni=Sni / X; be the corresponding
point estimates of R; .

Bennett’s and Shafer and Sullivan’s Tests

Bennett (1976) proposes a procedure for testing H, : R; = R, = ... = Ry that makes
apparent use of McKay’s approximation for r,. He notes that since h(R;) is a monotone
function of R;, then the null hypothesis H/:h(R;) = h(Rz) = ... = h(Ry) is equivalent to H,
and corresponds to a test of the equality of means of k gamma distributions, since
(m; / (s - 1))h(ry;) is distributed approximately gamma with expectation h(R;) and index
(n; - 1) / 2 according to McKay (1932).

Under this distributional assumption and hypothesis, Bennett applies a likelihood-

ratio statistic suggested by Pitman (1939) and obtains

(N-k) logi (nih(ri) /(N - k)) - i(ni - l)log(nih(ri) / (11i - 1)), (2.3)

where N = Zni , which, he argues, is approximately distributed > with (k - 1) degrees

of freedom under H! .
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However, Bennett makes the erroneous assumption that McKay’s approximation
applies to r;, not r,;, as McKay intended. That is, Bennett assumes that (n; / (n; - 1))h(r;) is
distributed approximately gamma with mean h(R;) and index (n; - 1) / 2, or, equivalently,
that n;h(r;) / h(R;) is approximately distributed y* with (n; - 1) degrees of freedom, which is
a slightly less accurate approximation to the distribution of r; than McKay’s approximation
is of r,; (Umphrey, 1983). Curiously, Warren (1982) also makes this mistake in a paper
documenting apparent discrepancies between McKay’s approximation and the exact
distribution of 1. |

This fact led Shafer and Sullivan (1986) to investigate the effect of replacing h(r;)
by the more appropriate h(r,;) in (2.3). They find a slight increase in power, but
recommend Bennett’s test since it employs a more familiar form of the sample CV.

Doombos and Dijkstra’s Likelihood-Ratio Test

Doornbos and Dijkstra (1983) proposes a likelihood-ratio test for the equality of k
normal population CVs that utilizes a reparameterized normal density and extends an

earlier procedure by Miller and Karson (1977), which deals only with two populations and

G.
equal sample sizes. Doormnbos and Dijkstra substi’cutefl for y; in the density (since R; =

o: / W;) and solve their chosen likelihood equations inR "andc,,i= 1, 2, ..., k under the

null hypothesis H,: R; =R; = ... = R =R (unknown). However, Doornbos and Dijkstra
offer an iterative algorithm for solving these equations which Gupta and Ma (1996) calls

“questionable”. In response, Gupta and Ma provide an alternative reparameterization,
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substituting R;p; for ¢;, and suggest an improved algorithm for solving the resulting

likelihood equations.

Under H,: R; =R, =...= R¢ = R (unknown), using Gupta and Ma’s

k
parameterization, the log-likelihood is given by L, = — Zn Jlog((2m)”* u,R) —

i=1

2
LI D Gy T
Z Z ( 21 sz) -. Differentiating with respect to R and p; gives the likelihood equations

i=1 j=1

2
oL K n, k3 (Xij—ui)
= — — + ~——=3 = 0,and
R ER ZIZJZ; 2R’
oL n. 5 X\ X — 1y .
5 ° - 1 + Z—J(—%-Z—)— = O, 1:1,2, ,k
Wi My j=1 HR
Simplifying the equations gives

Zk:ni(1+\/1+4(1+ri2)R2) Zkl 0 ad (24
2(1+17) Tgh ot Smd 04

- 20+ 5)X: i=1,2,...k 2.5)

1+\[1+4(1+rf)R2 ’
Equation (2.4) has no closed form solution in R for k > 2 and requires an iterative
solution.
Using Gupta and Ma’s algorithm, let m = min{r;, 15, ..., rxjand M = max{ry, o, ...,
1. Let G(R) equal the left-hand side of (2.4). Then G(m) < 0 < G(M), so that the
solution is in the interval [m, M]. Bisecting [m, M], the solution falls into the half having
left endpoint m; satisfying G(m;) < 0 and right endpoint M; satisfying G(M;) > 0.

Bisecting [m;, M;] in turn, the solution now falls into the half having left endpoint m,
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satisfying G(m,) < 0 and right endpoint M, satisfying G(M,) = 0. The process is
continued until, at the t™ iteration, the bisection point (m, + M) / 2 gives G((m; + M) / 2)
sufficiently close to zero.

Denoting the resulting approximate solution by R, the value may be substituted

into (2.5) to obtain the restricted estimators 1i,. Under H,, the restricted maximum of L,

is then given by
. N : — N
L, = -7 log2m) - Xnlog(iiR) - -,
i=1

where N = Z n, . The unrestricted maximum is given by

R N k N
L = - Elog(Zn) - Zni log(S,;) - ER
i=1

Hence, the traditional likelihood-ratio statistic is given by

- 2(_ Zk: n, log({i.K) + Zk: 1, log(Sn,i ))

i=1 i=1

-2(L; -1')

- Zk:nilog(ﬁfﬁz)—zk:nilo Si,i)
i=1

i=1

~

= n. 10 .
=

Under H,, Doombos and Dijkstra suggest that this statistic is asymptotically distributed as

x> with (k-1) degrees of freedom. However, an apparent requirement that all n, — oo is

not stressed (Silvey, 1975, pp. 112-114). This approach illustrates how methods which

utilize the normal density are sometimes complicated by the fact that restrictions (and
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models) on the CV often cannot be made without addressing additional nuisance
parameters.

Doornbos and Dijkstra’s Non-Central t Test

Doornbos and Dijkstra (1983) also suggests an alternative test for the equality of k

1
normal population CVs based on the non-central t distribution (2.1). Let b, = o i=1,2

1

.
..., k, and define b = Y\I—Znibi , whereN=Z:ni . Under H;: Ry =Ry =...=R¢=R

i=1

(unknown), \/n—i b, has a non-central t distribution with (n; - 1) degrees of freedom and

n,
non-centrality parameter Tl . Tt follows that

, and (2.6)

n -1(1 | I
E(b?) = (;+E;J,1=1,2,_...,k. (2.7)

1

See, for example, Owen (1968). Hence,

k

: : i —1 1 An; -1
E(;nlb?J = Z;l _3 + an—lgn—_?), (28)

i=1 i i=1 i

; ) 1 .
so that an unbiased estimate of F is
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n -1
B2 - Zn Zn, 29)
k n(n —) ' '
; n, -3

1
given above that T is distributed approximately as( Rz) x;_, under H,. Further,

E(T)

1
o
M-
=}
=
(3]
5
N
(I
I__I
iPM-
b
e
I
ZL,
h
M-
b
O“
;/
5

Il
t

1—1

gnibf} - —;?Zn [E ]+(;niE(bi)J2:|.

Substituting (2.6), (2.7), and (2.8) into this last equation gives

BT = Z“:(N—ni)(ni—l)

= N(n, -3)
R

1 -
Finally, substituting (2.9) for © and denoting the result by E(T), it follows that for
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1
2R*

)(kl) that under H,, (k—1)—— h
— SO at unger — 1)——— nas
2 2 E(T)

large samples E(T) =~ E(T) ~ (1 +

approximately a 3 distribution with (k - 1) degrees of freedom.

Gupta and Ma’s Wald Test

Gupta and Ma (1996) proposes a Wald procedure for testing H,: Ri =R, = ...
= R based on an earlier form by Rao and Vidya (1992), which deals only with two
populations and equal sample sizes. Gupta and Ma suggest the following general theory:

Under regularity conditions satisfied by the normal log-likelihood, suppose that a random

!

sample of size n is taken from a distribution with parameter vector 6 = (0 1505,...,0 P) .

’

A A A~

Let § = (0 15055...,0 p) be the unrestricted maximum-likelihood estimate of 6 obtained
via the log-likelihood L(0). Then a test for H,: k(0) = ((k,(0), k,(0),...,k_(8))' =0,
where the k; are differentiable with respect to 0, is given via the statistic

k(@)K '(1if) K] k(6) (2.10)
where K is a p x m matrix having entries k; = 0k,(8)/88,,i=1,2, ..,p,j=1,2,..,m
estimated at § and where IAf is the p x p Fisher’s information matrix having entries

. o*L(®)) . . )
i, =-E 2020, .l k=12, .., p, also evaluated at 6. Under H,, (2.10) hasa y
YV

distribution with m degrees of freedom for large n (Silvey, 1975, pp. 115-116).
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Gin

G, .
Gupta and Ma take 0 = (u,,06,,14,,0,,...,1,,0, )" and ki(0)= —— ,i=1,
i i+1
k
2,..,k-1totest H,: R, =R, =... = Ry, where L(0) = — Z:ni log((2m)"0,) —
i=1
2
k3 (Xg - ui) )
> > >———"—. From (2.10), for k = 2, they obtain
=1 =1 20;
2
(rn,l _rn,Z)
TS SRR ST A @11)
n,l n,l + n,2 + n,2
2n, n, 2n, n,
while for k = 3, (2.10) gives
PR AR S o 2, 1t N
. . ' 2'11_,1 n_,1+2n,2 ,+n_,2 _ 2n,2 n,2 . .
n,l - n,2 n n n n n n n,1 - n,
(r -1 ) 1 r12 rZ ’ 2, 1 i r22 r (r -1 2)' (2.12)
n,2 n,3 _ n,2 _ n,2 n,2 + n,2 + n,3 n,3 n,2 n,3
2n, n, 2n, =n, 2n, n,

They state that for k > 3, the general formula is omitted “because of its complexity”. In

order for this application of Wald theory to apply, however, it is apparently necessary that

all n;, > oo (Silvey, 1975, pp. 115-118), a requirement which Gupta and Ma do not

address.

Gupta and Ma also do not simplify their statistics. For example, (2.11) may be

reexpressed as

(cr) [eve | (o),
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r2.

o n,i 1 . . .
where C=(1,-1),r= (r,,, 1,,) ,and V = diag{ n’ (rii +E)}’ i=1,2. Similarly,

1

1 -1 0 A
] and expanding r and V to

(2.12) may be simplified in this way by taking C = [ 01 -1

contain a third element. These simplifications suggest that Gupta and Ma’s test may also

be obtained from the discussion surrounding the Iglewicz and Myers’ approximation by

!

noting that since the samples are independent, r = (r r r ) is asymptotically

n,1° n2%'*""nk

! R? 1
normal with mean R = (Rl,R2 ,...Rk) and covariance matrix V = diag{ nl (Rf +—)}.

; 2
1 -1 0 0 0
’ 0 1 -1 - 0. ]
Hence, under H,: CR =0, whereC=|. . . . . . . [isa(k-1)xkmatrix
6 0 0 - 01 -1

of restrictions on R corresponding to R; = R, =...= Ry, Cr is asymptotically normal with

mean 0 and covariance matrix CVC’. Evaluating V at r to obtain V, it follows that

(Cr) [C‘A/'C’]_I(Cr) is asymptotically distributed as y* with (k-1) degrees of freedom
under H, for large n; (Serfling, 1980, pp. 128-130, 155; Judge, et al., 1988, pp. 52, 109-
110; Eliason, 1993, pp. 34-35).

Gupta and Ma’s Score Test

Gupta and Ma (1996) also develops a likelihood-based test that utilizes a
reparameterized normal density and the following general theory: Under regularity

conditions satisfied by the normal log-likelihood, suppose that a random sample of size n
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14

is taken from a distribution with parameter vector 6 = (6 1,0,,...,0 p) . Assume

!

0= (51, 52 yenns §p) is the restricted maximum-likelihood estimate of 6 obtained via the
log-likelihood 1(0) under H,: k(8) = ((k,(0), k,(0),....k,_(0))’=0. Let U@)beapx1
vector having elements w; = 81(8)/80,,i= 1,2, ..., p. Then a test of H, is given via the

statistic

(U(ﬁ))’(lﬁf)_l(U(ﬁ)), (2.13)

azuf»J k

where Inif is the p x p Fisher’s information matrix having entries i, = —E( 2000
jOY

=1, 2, ..., p, evaluated at 0. Under H,, (2.13) has a x° distribution with m degrees of

freedom for large n (Rao, 1973, pp. 418-420; Silvey, 1975, pp. 118-120).

!

Gupta and Ma take 8 = (R,,R,,...,R,, 1y, l,,..0, ) and k(@)= R, -R,,,i=

2, ..., k-1to test H,: R; =R, =... = Ry = R (unknown), where the reparameterized

normal likelihood L(8) = —Zn log((2m)"* wR;) — Zkli( )

. From (2.13),
i=1l j=1 2”‘2R2

they obtain

k 2
( ) 4
1—111

i(Xij‘ﬁi)z
where a; = -

n, ~ ~ .
== =,i=1,2, ...,k and where R and y, are the restricted
u;iR R

parameter estimates under H,, obtained via the iterative algorithm outlined above for
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Doombos and Dijkstra’s likelihood-ratio test. Once again, however, an apparent

requirement that all n, — o is not addressed.

Feltz and Miller’s Test

Feltz and Miller (1996) suggests a test for the equality of k normal population CVs
which is developed solely from the standpoint of asymptotic moments, much like the

simplification of the Wald test offered above. Feltz and Miller note that since the samples

!

are independent, r = (r1 IS rk) is asymptotically normal with mean

' R? 1
R= (RI,RZ,...Rk) and covariance matrix V = diag{ nl (Rf +Z)}’ i=12, ..k

1

1
Under H,: R; =R; = ... =R, = R (unknown), V simplifies to R’ (Rz + 5) diag{n;'}.

Constructing the quadratic form r’Ar under H,, with A =V~ —(V3Iv)/(1'v'1),
where J is a k x k matrix of ones and 1 is a k x 1 vector of ones, Feltz and Miller note that
since AV is idempotent, then r’Ar is asymptotically distributed as y* with (k-1) degrees

of freedom (for large n;) (Serfling, 1980, pp. 128-129). Simplified and evaluated at r,

rAr = [i(ﬁ %)] Sa —i)zj,

\'i=1

k 3
where, for N = Z n,,R= (Z n;1; | / N is offered as a reasonable estimate of R under

i=1

H, Note thatR is simply the weighted average of the r; .
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Factorial Designs for Population CVs

The Taguchi Approach

The methods of statistical experimental design have taken an increasingly
important role in industry worldwide, as businesses seek to improve product quality and
consistency, while minimizing cost. At the core of this movement have been the Taguchi
methods, which utilize some of the more basic concepts of experimental design to great
effect.

Among the responses of interest are the Taguchi signal-to-noise ratios, which are
calculated within treatment combinations and are designed to reflect the effect of the
individual treatments on the ability of a process to attain a designated target value. In
particular, if it is desired to identify treatment factors that are important for maintaining

closeness to a finite, positive average with minimum variation, Taguchi (1992, pp. 120-

. 1 1 .
124) suggests that the response statistic 101og, [—2 -~ —j be analyzed in the context of a

i i

fractional factorial design. Noting that for values of r; < 0.3 and n; > 2, the term 1/ 1y is

v 1
proportionately small, an alternative ratio is often given as10log,, (—2) = -20log,, 1;
I

(Maghsoodloo, 1990; Schmidt and Launsby, 1994, Ch. 5, p. 18), which is simply the log-
transformed sample CV.

Under a null hypothesis of no factor effects, these statistics have constant variance.
A typical approach, then, is to conduct a standard normal-theory analysis of variance,

treating the signal-to-noise ratios as the responses. However, there is only a single
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statistic per treatment combination, so that no Iestimate of the experimental error is
available unless at least one mean square (corresponding to the highest-order interaction in
a full factorial, presumably) is used for this purpose. Unfortunately, in the context of
fractional factorials, there is usually no clearly defined hierarchy of effects, so that the one
or several very small effects are pooled to create an estimate of the error. This process
tends to produce tests of factor effects that have mflated Type I error rates because of the
post-test selection of small effects (Box, 1988; Bissell, 1989; Zacks, 1991). In addition, at
least one factor must always be declared negligible, even though experimental results may
suggest that all factors are potentially important.

Bissell’s Approach

Bissell (1989) proposes two procedures that simultaneously solve the bias problem
and the lack of a test for all factor effects while maintaining a normal-theory analysis of
variance of the signal-to-noise ratios.

According to his first solution, suppose there are a total of k factors, arranged in
his example according to a fractional factorial. Calculate the mean squares M, My, ..., My

of the response signal-to-noise ratios and compute the overall average mean square

. k
M= Z M., /k. If each factor has, say, x degrees of freedom, then under the assumption

i=1

of homogeneity of mean squares (that is, no factor effects), the common variance of the

- —2 . . . - -
M; may be estimated as 2M /k. A statistic for testing the deviation of at least one M;

from this hypothesis is then
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(k—T)Var(M,) (k- )xVar(M,)
oM /K oM

b

k —
where Var(M;) = Z (Mi - M)2 / (k - 1) is the observed variance of the M;. Under the null

i=1
hypothesis of homogeneity, this statistic has an approximate ” distribution with (k - 1)
degrees of freedom. If the hypothesis of homogeneity is rejected, Bissell suggests
identifying the largest mean square as corresponding to a significant effect, removing it
from consideration, and repeating the entire process until the hypothesis of homogeneity is
not rejected.

Bissell’s application of this procedure is to fractional factorials, which typically do
not have hierarchy restrictions on factors since interactions are often not considered.
However, it also could be used in more traditional full factorial settings by examining
specific terms in order.

Bissell’s second solution also addresses the problem from a homogeneity
standpoint using the well-known Bartlett’s test for equality of variances. Assuming that
each of the k factors has k degrees of freedom, Bissell’s variant, applied to the mean

squares, is

1& ] &
B = log(EZMi) -5 2log(M,),

i=1 i=1
where Box’s small-sample correction gives that (kif,B)/ (f, (b—kxB)) has approximately

an F distribution with f; and f; degrees of freedom under the null hypothesis of
homogeneity of mean squares, with f; =k - 1 and f; = (k- 1)/ A>, where A =

1+ (k+1)/(2kk), and where b=1£,/ (1 - A+ 2/ £). Bissell utilizes a top-down
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approach for the elimination of factors as in his first solution, wherein the effects are
removed in descending order according to size until the null hypothesis of homogeneity is
not rejected. He notes general agreement between his two procedures, although a power
analysis was not conducted.

Zacks’ Approach

An alternative cqrrection for the bias induced by selecting the several smallest
effects post-test is discussed by Zacks (1991), who considers modified F critical values.
Howeyver, this approach does not address the lack of a test of all factor effects. An
additional apparent shortcoming of Zacks’ approach and of the related approaches
discussed above is that subsequent analysis of the CV itself is somewhat compromised by
the log transformation and the> corresponding assumption of equal variance, which is

incorrect outside the null hypothesis of no factor effects.
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CHAPTER THREE
REVIEW OF THEORY

In this chapter, the theories of maximum- and quasi-likelihood estimation and their
application in the context of the generalized linear model are discussed. In Chapter Four,
these techniques will be applied to the approximate distributions of the sample CV
discussed in Chapter Two in order to estimate the parameters of a factorial model of the
population CV, once a proper form for such a model is proposed.

The Exponential Family

Let Y be a random variable whose probability function may be expressed in the

form
£(y;0,0) = exp{(y0-b(0))/a(0)+ o[y, 2(0))} (.
with parameters 6 and ¢ for suitably chosen functions a(e),b(s), and c(e). The parameter

0 is called the natural parameter and ¢ is called the dispersion parameter. If ¢ is known,
such a function is said to belong to the exponential family. Examples include the binomial
and Poisson. For unknown ¢, (3.1) encompasses the two-paraineter exponential family,
which includes the gamma and the normal.

McCullagh and Nelder (1989, pp. 28-29), and Agresti (1990, p. 446-447)

demonstrate how the first two moments of Y can be expressed in terms of 6 and ¢. Let
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4(0,9;y) = log f(y;0,¢) be the log-likelihood of Y. Then

A0.6;y) = (y0-b(6))/a(6) +<(y.a(e))
and so

A a0) #i _ ()

®  a(9) 00*  a(e)

¢ o4
Under regularity conditions satisfied by (3.1), it follows that E (%9—) =0 and E(ae 2) +

{2 -0
) O Hence,

Y-b'(6))  E(Y)-b'(6)
E( 20 ) O

which implies that E(Y) = vy = b’(@). Similarly,

= 0,

R I

which implies that Var(Y) = a($)b”(8) . The function b”(6) depends only on the mean y
via the natural parameter 0 and is called the variance function. The notation V() is
typically used. The function a(¢) typically has the form a(¢) = ¢ / w, where w is a known

weight. In the future, the weight w will be absorbed into V (), so that the notation

Var(Y) +
a() -

Var(Y) = ¢ V() will be employed. Additionally, noting that aa_\(l)/ =b"(8) =

follows that
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o _ oo _ y-y a®) _ y-v

oy 0oy a(9) Var(Y)  Var(Y)

(32)

Wedderburn (1974) shows that (3.2) is, in fact, a property possessed solely by probability
functions of the form (3.1).

Maximum-Likelihood Estimation

Let Y= (Y,,Y,,...,Yy) beavector of independent observations with

expectation y = (\u1 SWoseeo ,\VN) and covariance matrix ¢V(y) = d¢diag{Vi(v1), V2(y2),
..., V(Wn)}, and let the probability function of the Y; ,i=1, 2, ..., N, have the form (3.1).

Using conditions established by McCullagh (1983, 1986), suppose that \ is related to a p-

’

dimensional parameter vector f = ([31 Baseens BP) through an arbitrary (possibly

nonlinear) regression model y = y(B) such that 8°y;(B)/0B; are bounded fori=1,2,

s Nyj=1,2, ..., p, and such that if § =B’ then y(p) = \V(B') (that is, assume that the

model is identifiable). Let £, denote the log-likelihood of the i" observation. Then the

N
log-likelihood of the N observations as a function of B via w(B) is L(B) = Z £.. A

i=1
commonly used iterative method for determining the vector ﬁ that maximizes L(), that
is, determines the solution of GI(B) /0B = 0, is a variation of the Newton-Raphson

algorithm known as Fisher scoring, discussed in Judge, et al. (1988, pp. 524-527), Agresti

(1990, pp. 447-451) and Eliason (1993, pp. 41-45).
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The Newton-Raphson Algorithim

Given a suitable initial estimate B(” of B, let B(*) denote the approximation of B at

the t™ iteration. Then the (t + 1)™ estimate of B is given via the Newton-Raphson

algorithm as

g = B(t)_(H(t))"lq(t), (33)

oL(p) N .
B, ~ ZoB,’
with
o¢; o¢; oy, V-V oW,

aBj - ov; aBj - oV: (w;) aBj ’
evaluated at B®, and where H® is the Hessian matrix (assumed nonsingular) having

elements hy; = 8*1(B)/ 9B, 6B, with

’uUB) _ 0 ( vi- v, awi]
0B, B; B, T oVi(w,) 0B,

o 1g _ 0 1 oy, | | 1 oy, oy,
- ¢§((yi Ok {vi(wi) asj] [vi(wi) 3, aBkD’ G4

also evaluated at B®. In vector form, the estimating equations may be written as

oup) _
op

up) = D'V (y-w(B))/¢,
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where D has elements d; = 0y, /9B; andy = (yl,y2 ,...,yN) , and where, under the

identifiability condition on the model, D has full rank. The vector U(f) is commonly
called the score vector. Note that the (possibly) unknown dispersion parameter ¢ cancels

in the iterative equation (3.3) and does not affect the estimation of .

The Fisher Scoring Algorithm

Fisher scoring replaces —H with its expectation, also known as the Fisher’s

information matrix. In this case Inf = —E(H) has elements

i _ li 1 aW1 6\‘"/1
N ¢ = Vi(\j/i) oB; 0By~

a fact obtained from (3.4) by noting that the first term of the summand has expectation
zero. Hence, at the t iteration, Inf®, not HY, is evaluated at B°. In matrix form, Inf =
D'V'D/¢. Substitution into the Newton-Raphson algorithm gives two forms of the

iterative equations:
B = O 4 (Inf(‘))_lq(’) (3.5)
BY + (VD) DVvi(y-y(®), e

where, as before, both D and V are evaluated at B®. For both the Newton-Raphson and

Fisher scoring methods, iteration continues until changes in B® are acceptably small.

Alternate Step Lengths

In order to reduce the possibility that the iterative equations (3.3) or (3.5) will

overstep the maximum of the likelihood surface and fail to converge, the Newton-Raphson
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and Fisher scoring algorithms are often modified to include a step length (Judge, et al,,
1988, pp. 517, 524, Eliason, 1993, p. 45). In particular, the Newton-Raphson algorithm

may be rewritten as
gl = gl g (Hm)‘lq(r),

where s; is a constant which may be adjusted at each iteration. The Fisher scoring

algorithm is modified according to
B = BO 4 St(Iﬂf(t))_lq(t).

If s = 1 for all t, these algorithms reduce to the forms (3.3) and (3.5) given above.

Some techniques call for s, to be adjusted at each iteration in order to achieve the
optimum movement toward the maximum. However, for simplicity, a fixed step other
than one can also be used. Often, a fixed step length of 0.5 can greatly improve the odds
that the iterative equations will converge. On occasion, a step of 0.1 or 0.2 may be
required. In general, the smaller the step, the greater the chance of convergence, although
an increasing number of iterations may become necessary.

Quasi-Likelihood Estimation

Wedderburn (1974) establishes a method of estimation for nonlinear models that

makes assumptions only about the first two moments of the observed data. Proceeding

much like before, let Y = (Y,,Y,,...,Yy) be avector of independent observations with

expectation Y = (y,,y,,...,Wy) and covariance matrix pV(y) = ddiag{Vi(w1), Va(w2),

.., V(Wn)}. Suppose that v is related to a p-dimensional parameter vector § =
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(Bl Bas-- ,Bp) through an arbitrary (possibly nonlinear) regression model y = () such

that 9°y,(B)/0B; are bounded fori=1,2,..,N,j=1,2, ..., p, and such that if
B =B’ then y(B) = \V(B ’) (that is, assume identifiability of the model). Note, however,

that no distributional assumptions about Y have been made.

Under these conditions, Wedderburn defines the log-quasi-likelihood, or simply the

quasi-likelihood, of the i observation Q(\; ; y;) by the relation

0Q; Y —V;
= R 3.7
oy, d)Vi(Wi) @7

so that for the given variance function Vi(y), the function Q; possesses the same property
(3.2) uniquely associated with log-likelihoods of probability functions having the form
(3.1). Any function Q; satisfying (3.7) may serve as a quasi-likelihood, including functions
which are not actual likelihoods; hence, the term quasi-likelihood. In particular, Q; cannot
correspond to an actual likelihood unless V;i(y;) is a variance function of a distribution
with probability function satisfying (3.1). McCullagh and Nelder (1989, p. 325) defines Q;

as

Vi

Q:(v;sy;) = Idzlv_(tt) dt, (3.8)

Yi
provided that the mtegral exists. Note that by the Fundamental Theorem of Calculus, this
definition satisfies (3.7).

Under the assumption of independence, and provided that each of the Q; exist, the

log-quasi-likelihood of the N observations, as a function of B, is given by Q(B) =
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N ~
ZQi (McCullagh, 1983; McCullagh and Nelder, 1989, p. 325). The vector B that

i=1
maximizes Q(f), that is, provides the solution of aQ(B) /0B = 0, can be determined using

Fisher scoring. The estimating equations are given in matrix form by

u(g) = a‘;—f;*) = pvi(y-w(g)/e, (9

where D has full rank with elements d;; = oy, /0B, and the (t + 1)™ estimate of B is given

as

BB - Vv ev). e

where current estimates of D and V are obtained from B as before. The vector (3.9) is
commonly called the quasi-score vector. It is of interest to note that the estimating
equations (3.9) do not explicitly require that Q(f3) exist as a function (McCullagh, 1986).

For the particular case where V, (o) is constant for eachi=1, 2, ..., N, (3.10)

reduces to the Gauss-Newton method for obtaining the solution ﬁ that minimizes the

nonlinear weighted least squares criterion (y— w(B)) A% (y - w(B)) (Wedderburn, 1974;
McCullagh, 1983, 1986). For the general case where the V, (0) are functions of the v;,

(3.10) offers a computationally attractive alternative to the generalized least squares
technique discussed by Carroll and Ruppert (1988, pp. 13-15), since the latter approach
usually requires several successive applications of an iterative nonlinear weighted least

squares algorithm. When the observation vector Y represents a sample from a distribution
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with probability function satisfying (3.1), quasi- and maximum-likelihood estimation
coincide.

Asymptotic Properties of the Maximum- and Quasi-Likelihood Estimators

A convenient by-product of the Newton-Raphson and Fisher scoring algorithms
for maximum-likelihood estimation is that estimated covariance matrices of B are
available upon convergence. For Newton-Raphson, this matrix is the iterated solution for

—H™, once a suitable estimate of ¢ is obtained (if necessary) (Judge, et al., 1988, pp.
519-527; Agresti, 1990, p. 116). For Fisher scoring, Inf * = — (E(H)) = ¢(D'V'D)"
is the asymptotic covariance matrix of ﬁ (Judge, et al., pp. 521-523; Agresti, p. 451,
Eliason, 1993, p. 40). Wedderbum (1974) shows that the asymptotic covariance matrix of
the quasi-likelihood estimator ﬁ can similaﬂy be expressed as d)(D’V‘lD)_l.

McCullagh (1983) establishes that the desirable asymptotic properties of ﬁ in the
context of maxinmm-likelihood, namely consistency of ﬁ and asymptotic nqrmality of

both ﬁ and U(B), can be applied to quasi-likelihood under the model and moment

1
assumptions of the previous section with the additional requirement that E)E\I— (D ’V'ID)

has a positive definite limit as N — o0 .
For the case where N remains fixed, and the responses Y;,i=1,2, ..., N,

correspond, for example, to proportions or counts, these results are contingent on the

1
assumption that the elements of 5 (D’V‘lD) increase without limit (McCullagh and
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Nelder, 1983, p. 133; 1989, p. 328). This requirement generally holds, at least for N > p,
provided that the number of sample elements n; contributing to each of the Y; increases

without bound (McCullagh and Nelder, 1983, pp. 82-83, 133). In particular, assuming

that the fitted model is correct, for large n;, it follows that ﬁ ~ N(B, ¢(D ’V’lD) _1) and

u(B) N(O,i(D ’V”‘D)) .
The Generalized Linear Model

The algorithms (3.6) and (3.10) may be simplified in terms of iteratively
reweighted least squares equations, provided that the nonlinear regression equation y =

y(P) can be linearized in B via a properly chosen transformation. Let Y =

(Y,,Y,,...,Yy) beavector of independent observations with expectation y =

(W1,Ws,...,Wy) and covariance matrix $V(y) = dpdiag{Vi(y1), Va(y2), ..., Va(w)},

and suppose that there exists a monotone, differentiable function g(O) relating v; to a p-

!

dimensional parameter vector § = (51 Boseees Bp) of the form

s(v;) = xB, i=1,2, .., N,

1

where x; = (xil 5 SN xip) is the i set of covariates. A model of  in B which may be

expressed in this form is called a generalized linear model, and g(s)is called a link

function. The form of the iterative equations when such a function exists is summarized in

the following important theorem, given in Nelder and Wedderburn (1972), Wedderburn

42



(1974), McCullagh and Nelder (1989, p. 40-43), and Agresti (1990, p. 449-451), and
examined by Hillis and Davis (1994).
Theorem 3.1 Let Y be defined as above with E(Y) = y and cov(Y) = ¢V(y), and

suppose that g(e) exists as defined above with

g(y;)=m;=xB,i=1,2,..,N. (3.11)
Then a method equivalent to the iterative equations (3.6) and (3.10) is to calculate
repeatedly a weighted linear regression of

z, = glv)) + gw)y:i-wvi)

’

on x; =(xi1,xi2,...,xip) using weight

W; = [g’(\lfi)]—2 [Vi (\Vi)]_l
fori=1, 2, ..., N, where the current estimates of y; are computed from the current

estimates of 31, B2, ..., Bp -

Proof From (3.6) and (3.10), the (t + 1)™ estimate of B is given by

-1

e = Y + (p'v7D) D'V"l(y— \V(B(‘) ))
where D has elements d;; = dy; /9B;. Multiplying through by D'V'D gives
(@vDp)p‘ = (DV'DY + DV (y— w(s" )) (3.12)
However, from (3.11), it follows that

oy, _ oy, on; _ 1

B,  om B, glv) "

Hence, D'V ™'D = X'WX, where X is an N x p matrix of full rank having elements x;; and
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where
W - diag{[gf(wl)]""[vl(wl)]‘l,...,[g'(wN)]""[VN(wN)]A}
= diag{Wl,Wz,...WN},

evaluated at B® . Further, (]) 'V _ID)B(‘) is a vector, say u, having elements

X. Xi' 1
uk = Z lkJ ( Bgt) > k= 19 29 sees P>

v, = i (Yi_\Vi )xik
1

2 k= 1, 2, e p,
PV
where y(¥ = g™ (X;B(‘)). Adding the vectors on the right-hand side of (3.12), that is,

taking u + v, gives a vector having elements

S XXy 1 (¥ (Yi_\VEt))xik
= 22 i . RS

= A v(v?) [e/(v?)

ZN: [g’(\v E")]_2 [Vi (WE‘))]_lxik {Zp: x,B0 +2/(w)y, - w)|.

Hence, u + v = X'Wz, where z = (z1 »Z, ,...,zN) , and (3.12) may be written as
(X'WX)B™ = X'Wz
or

B = (X'WX)" X'Wz QED.
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An immediate corollary of the theorem is that the asymptotic covariance matrix of

ﬁ may be reexpressed as d)(X’WX) - , which may be estimated using the iterated solution
of B. Further, the estimating equations D'V ™ (y - \V(B)) may be rewritten as
DVi(y-w(B) = X6 V(y-u(p)) = xeW(y-v(p)).

where G = diag{g'(\yl), g’(\yz),... , g'(wN)}. Adequate starting values for the z; and w;

may be obtained by substituting y; for \y; (Wedderburn, 1974; McCullagh and Nelder,
1989, p. 41; Agresti, 1990, p. 450). Ifnecessary, a step length s, can be introduced to aid

with convergence, in which case the response z; is given by

z; = g(Wi) + Stg'(wi)(yi - Wi)-

If the fitted model is saturated, that is, has as many parameters as observations,
" then the iteratively reweighted least squares estimates may be computed directly via

ordinary least squares. This result holds because weighted and ordinary least squares are

equivalent in the saturated case and because observed and predicted responses coincide,

so that the starting substitution in the z; is unchanged. Hence, the estimate ﬁ is given in

closed form by

B = (X'X)'X'z,

!

where z= (g(yl), g(y2 ), ooy g(yN)) . The estimated asymptotic covariance matrix is

given in closed form by d)(X'VAVX)_I, where W = diag{[g'(yi)]_2 [Vi (yi)]—l}, i=1,2, ..,

N.
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Model Diagnostics

Several techniques for examining the adequacy of a model fit made utilizing quasi-
and, in particular, maximum-likelihood estimation are available. These include the Wald
test, the likelihood-ratio test, and the score test. The behavior of these tests has, in large
part, been determined by the general asymptotic results of McCullagh (1983).

The Wald Test

Let ﬁ = (ﬁ{,ﬁ;)’ be the unrestricted quasi-likelihood estimate of a p x 1 vector of
model parameters with subvector dimensions B: (p-q) x 1 and B: qx 1,0 <q<p <N.
Then under conditions where ﬁ has an approximate p-variate normal distribution with
mean 3 and covariance matrix ¢ (D 'V '1D) - , or, in the context of a generalized linear

model, with covariance matrix ¢(X"WX) ™ a Wald-type test can be used (Serfling, 1980,
pp. 128-130; Carroll and Ruppert, 1988, pp. 213-214; Judge, et al., 1988, pp. 52, 109-
110; Eliason, 1993, pp. 34-35).

In particular, a test of H,: B2 = 0, assuming that ¢ = 1, is given by

Y, ’ 41 \1t4

BZ((X wx)qxq) BZ > (3'13)
where W is estimated at ﬁ , and the q x q subscript denotes the q x q submatrix of
(X'WX) ~ corresponding to ﬁz . Under H,, (3.13) has an approximate ° distribution

with q degrees of freedom.
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The Likelihood-Ratio Test

McCullagh (1983) discusses the asymptotic behavior of a test of model fit based
on a difference of log-quasi-likelihoods which extends a traditional test based on the log-
likelihoods of probability distributions having the form (3.1) detailed in Agresti (1990, p.

452).

LetY= (Y1 R S YN) be a vector of independent observations with

expectation W = (W, V,,...,yy) such that the probability function of the Y;,i=1,2, ...,

’

N is of the form (3.1), and suppose initially that = (B{,B; ,Bg) is an associated N x 1

parameter vector corresponding to a saturated model, with subvector dimensions
Br:(p-9)x 1, Brqx1,and Bs: (N-p)x 1,0<q<p<N. Let 6 = (61,62,...,6N) be the
vector of natural parameters of the observations. Let 6= G(ﬁ) denote its estimate in the

saturated case, and let L(ﬁ) denote the unrestricted maximum of the log-likelihood.

Suppose, however, without loss of generality, that a model containing only the

parameters in (B{ ,B;) is also under consideration. T akeé1 2= 6({31 2) as the estimate of 0

for this model and L (ﬁl 2) as the restricted maximum of the log-likelihood. Letting

a;(¢)=¢/w; in (3.1), it follows that
~2(L(B,,)-L(B)) - 2§Jwi[yi(éi—ém)—b(éi)+b(él,2,i)]/¢ (3.14)

= D(y;{,,), say,
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where y,, = \y(ﬁm) andy = (yl,yz,...,yN), . The function D(y;ﬁ/lg)is called the

scaled deviance and is often employed as a relative measure of the discrepancy of fit of the
reduced model (McCullagh and Nelder, 1989, pp. 33-34; Agresti, 1990, p. 452). For the
more general quasi-likelihood, using McCullagh and Nelder’s definition (3.8), the scaled

deviance (3.14) becomes

D) = -20B..)-QB)] = -20(6..).
In certain cases to be discussed shortly, the distribution of the scaled deviance under the
null hypothesis that the reduced model is correct may be approximated by a x” distribution
with (N - p) degrees of freedom.

Suppose for the moment, however, without loss of generality, that two reduced

!

models, one containing the parameters (B{ , B;) and the other containing only the

parameters [3;, are to be compared. Take él = O(ﬁl) as the estimate of 0 in the latter
case and L(ﬁl) as the corresponding restricted maximum. Then, letting D(y; \I}I) =

- 2(L(f51) - L(fi)) be the corresponding scaled deviance for the latter model, it follows

that the difference

D(y;\iﬁ) - D(y;‘I’13) = Ziwi[Yi(élg,i_él,i)_b(él,2,i)+b(él,i)]/¢ (3.15)

i=1
also has the form of the scaled deviance as in (3.14). McCullagh shows that under the

general model and moment assumptions for quasi- and, hence, maximum-likelihood

1
estimation, if d)—N_(D ’V'ID) has a positive definite limit as N — oo (or alln; —> oo for fixed
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N), then the difference (3.15) has a limiting 5 distribution with q degrees of freedom, the
difference in the number of parameters between the reduced models, under H,: B = 0 (see
also Silvey, 1975, pp. 112-114, and McCullagh and Nelder, 1989, pp. 118-119).

The asymptotic behavior of the scaled deviance itself, however, may be determined
only under certain restrictions. Results reported by McCullagh and Nelder (1983, pp. 82-

83, 133; 1989, pp. 118-119) suggest that, for fixed N, with all n, — o, the scaled

deviance can generally be approximated by a y” distribution, although a detailed theory is
apparently unavailable. Conversely, the approximation appears to be generally invalid
asN — oo except when the observations are drawn from normal distributions (McCullagh
and Nelder, 1989, p. 36). Evidently, the requirement that all n, — c is not considered by
either Bennett (1976) or Shafer and Sullivan (1986) in the development of their (scaled
deviance) tests, which utilize a fixed N.

The Score Test

’

Let E = (El’ ,O’) be the restricted quasi-likelihood estimate of a p x 1 vector of

model parameters § = (B{,B;) with subvector dimensions B1: (p-q) x 1 and B,: q x 1,

0 < q <p <N under the hypothesis H,: B, = 0. Then under conditions where U(B) has an

approximate p-variate normal distribution with mean 0 and covariance matrix

—(I)’V“II)) , or, in the context of a generalized linear model, with covariance matrix

¢
1
g(X’WX) , a score test can be used (Rao, 1973, pp. 418-420; Serfling, 1980, pp. 156-

158; McCullagh, 1986; Fahrmeir, 1987; Carroll and Ruppert, 1988, pp. 215-216).
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In particular, a test of H,: B, = 0, assuming that ¢ = 1, is given by
[u(p)] xwx)[u(p)]. (3.16)
where W and U(ﬁ) , the quasi-score vector of estimating equations, are both evaluated at

E . Under H,, (3.16) has an approximate ° distribution with q degrees of freedom.

Tests for the Saturated Model

Although McCullagh and Nelder (1983, 1989) effectively argue that the scaled

deviance itself can, for fixed N and n, — oo, be used as a test of fit of a reduced model

versus a saturated model, there is little discussion in the literature of the asymptotic

behavior of the Wald and score tests in this same scenario. However, given the form of
the direct estimate of [§ in the saturated generalized linear model, for the responses
considered in the next chapter, the results of Serfling (1980, pp. 24-25, 118, 128-130)
provide for the asymp\totic normality of [§ and the large-sample distribution of the Wald

test.
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CHAPTER FOUR
THE MODELLING APPROACH

In this chapter, a proper form for a factorial model of the population CV is
proposed. In the context of each of the approximate distributions discussed in Chapter
Two, the proposed multiplicative model is shown to satisfy the form of the generalized
linear model reviewed in Chapter Three, and the corresponding iteratively reweighted least
squares equations for estimating its parameters are established. In addition, a form for the
iterative equations for an additive model is also suggested, and the equivalence of some
associated one-factor model diagnostics to several of the one-factor tests currently in the
literature is shown.

Choice of Model

In contrast with the one-factor tests discussed in the review of literature, a model
of the population CV in a factorial experiment must accommodate the fact that additive
restrictions may not adequately describe interactions and main effects. Models of the p; in
classical analysis of variance are typically linear, for example, under the often implicit
assumption that the p; may take any value on the real number line. However, the
population CV is, by assumption, strictly positive, suggesting that multiplicative models

are more appropriate.
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Some justification for this argument is provided by McCullagh and Nelder (1989)

and Eliason (1993). In the notation of Chapter Three, for models with a gamma-

distributed response Y = (Y}, Y,,...,Yy) , McCullagh and Nelder (p. 286) argues that an

appropriate model for the mean vector y = (\u1 W3 ,s..., Wy ) based on a p-dimensional

’

parameter vector 3 = (Bl ,Baseets Bp) is the multiplicative model

v, = exp(x/p),i=1,2,.., N,

’

where x; = (x- X, X ) is the i set of covariate values. Similarly, Eliason (pp. 22-

il>“*i2 9> *ip
23, 47-48) argues for such a model for gamma-distributed responses because of the
restriction of the range of the \; to positive values.

If it is assumed that the dispersion parameter ¢ may vary from observation to

observation, then the dispersion vector ¢ = (¢1 Y JR d)N) can likewise be modelled.

Eliason (pp. 22-23) notes that since the parameters of ¢ cannot be negative, the
corresponding model structure should reflect this fact and not allow for unrealistic, that is,
negative, values.

Hence, a model of the population CV in a factorial experiment may be argued in
the following way. Take a collection of CVs Ry, Ry, ..., R¢ of normal populations, where,
for convenience, a single subscript is used, but where any number of associated fixed

factors may be supposed. Assume that the i population has mean p; > 0 and variance
pop

c;,sothatR;=0;/pi,i= 1,2, ..., k. An appropriate model structure for the y; is then

p, = exp(xia), i=1,2, ..,k
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’

where o = (a 15005, O p) is a parameter vector of fixed factor effects (p<k) and x; =

!

(xil 5 Xigseens xip) is the i" set of covariate values. For a factorial model, these covariates
are properly assigned values of zero or positive or negative one under some identifiability
constraint; for example, that the associated parameters summed across any single subscript
must equal zero. Similarly, a model for the 6} might be

ol = exp(xly),i=L2 ..k

!

where y = (y S P 1,) is the corresponding parameter vector for the variances, so that
a model for the o; may be written as

o, = exp(x{y’), i=1,2, ..,k
where v* = 0.5y.

Combining these models gives a multiplicative model for the R;:

; explx;y” .
R, = E_; = #Xﬁ)) = exp(xi(y —oc))
= exp(x}d), i=12, ..,k 4.1)

where 8 =y* — a. This approach is corroborated for the case of gamma-distributed
responses (as opposed to normal) by Eliason (1993, pp. 48-51).

As an example of such a model, suppose that two fixed factors, A and B, with a
total of a and b levels, respectively, are arranged in a factorial experiment. Then model

(4.1) may initially be expressed in the form

R, = exp(R*+ai+Bj+(aB)ij),i=l, 2,.,8j=12,..b,
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where exp(R*) is the overall population CV, exp(oc i)is the multiplicative effect caused by

the i" level of A, exp(B j) is the multiplicative effect caused by the j level of B, and the

terms exp ((OLB) 1J) describe the multiplicative effect caused by an interaction between A and

i=1

a b
B. In order to estimate the model, an identifiability constraint that, say, Z o; = Z B, =
=1
a | b
af). = of3). =0 is also imposed.
3 o), = 33 (08), =0 s o mp
The relationship between the parameters of (4.1) and those of models of the p; and
the o; demonstrates one of the traditional criticisms of the CV, namely, that simultaneous
factor effects on both the mean and standard deviation which are of equal magnitude leave
the CV unchanged. Hence, a factor declared not to be significant in (4.1) might have no

effect on either the mean or the standard deviation, or the same effect on both.

The Model-Fitting Algorithm

Suppose, now, that independent random samples of size n; are drawn from each of
the k normal populations, and that the sample CVst; = S;/ X; and Ini = Sni / X are
computed, where, as before, S? and S, are the unbiased and maximum-likelihood
estimates of 67, respectively. Further, suppose that R; € (0, 1/3),i=1, 2, ..., k, that is,
that each of the k populations essentially consists of positive values. Although this
restriction is not made in the literature except in the context of McKay’s approximation, it

is largely consistent with the suggestion by Payton (1997) that the populations be of the

ratio type and will be assumed throughout the remainder of this thesis.
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McKay’s and David’s Approximations

According to David’s approximation, h(r;) is distributed approximately gamma

. PR N LTC) .
with expectation h(R;) and index (n; - 1) / 2, so that Var(h(r;)) = N Vi(h(R)))
n, —

1

(taking ¢ = 1). Supposing the model (4.1) for the R; gives, as a model for the h(Ry),
h(R,) = hexp(xi8)),i=1,2, ...k

for which a linearizing transformation is
logh™(h(R,)) = x3. (4.2)

Model (4.2) is a generalized linear model of the h(R;) with link function logh™ (0) , but in

the parameters of the original model of the R;, so that estimating (4.2) simultaneously

estimates (4.1). Additionally, for 0 <x <1,

4 x " 1 X |
logh™(x) = logl — = Elog — = -2-10g1t(x),

1- 1-
so that (4.2) also has the form of a logit model but with a gamma-distributed response.

As provided by Theorem 3.1, iteratively reweighted least squares may be employed

to fit (4.2). Letting R; =h(R.) and 1, = h(r,), it follows that

d(logh™(R}))

z, = logh'l(R:) + = (ri*—R:)
= logh_l(R:) + E{Iﬁ R (4.3)

and
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2 -2
) W 1
w, = i) VALY [ZR;(l—R:)} n, -1

20, -1(1-R})". (4.4)
Appropriate starting values for z and w; may be obtained by substituting 1, for R} in

(4.3) and (4.4). Given that the t™ iteration has been made and that the t™ estimate 5" has

been obtained, the (t + 1)™ estimate of § can be computed after the substitution of (R:)(t)
- h(exp(x;S(t) )) into (4.3) and (4.4).
If the alternative approximation of McKay is used, then (n; / (n;~ 1))h(ry;) is
supposed to be distributed approximately gamma with expectation h(R;) and index
(n;- 1)/2. Hence, 1, ; = (n;/ (n; - 1))h(t,;) may be substituted in z and w; in place of ;.
Upon convergence of the iteratively reweighted least squares algorithm to the
maximum-likelihood estimate & , any of the Wald test, the likelihood-ratio test, or the
score test may be used to determine the significance of interactions and main effects.

In order to construct the likelihood-ratio test, it is necessary to know the form of

the scaled deviance. By the parameterization given in (3.1), the approximate distributions

of McKay and David give
0, = N S \.b(e ) = 1o h(R) = logR;]
i h(R,) R > i g i g,

with¢=1land w;=(;-1)/2,i=1, 2, ..., k. Hence, by (3.14) the scaled deviance

associated with a fitted model giving lif = h(exp(x :3)) in terms of David’s
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approximation, with r” =(r1*,r;,...,r1:) and R” =(RI,IA{2,...,Rk) , s

)-(5:8)]

k ( r

= —) (n,—1)|log| ==

2. e

(McCullagh and Nelder, 1989, p. 290). For McKay’s approximation, 1, ; should be

substituted for 1, in the scaled deviance.

Islewicz and Myers’ Approximation

According to Iglewicz and Myers’ approximation, r; is distributed approximately

2

R
normal with mean R; and variance [—‘) (Rf +%) = Vi(R) (taking ¢ = 1). However, the
n

small-sample behavior of this approximation is inferior to that of McKay’s and David’s
approximations, suggesting that the incorporation of the normal likelihood into the model
estimation process here is less desirable than was the previous use of the gamma
likelihood. Further, when the variance of a normal distribution is a function of its mean,
the probability function no longer has the form (3.1), so that maximum-likelihood
estimation via iteratively reweighted least squares is not possible. Carroll and Ruppert
(1988, pp. 21-23) suggests that generalized least squares estimation, of which quasi-
likelihood estimation is a special case, is generally preferred in these settings. Since quasi-
likelihood estimation may be achieved through the same least squares process used to fit

models for the McKay’s and David’s approximations, an opportunity to construct a single
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algorithm which incorporates all three approximations is available, provided that a model
of the R; in the context of the Iglewicz and Myers’ approximation may be expressed as a
generalized linear model.
This is easily achieved since, under the Iglewicz and Myers’ approximation, the r;
have expectation R;, and a log transformation of (4.1) gives the desired form. Specifically,
logR;, = x06, (4.5)
which has the structure of a log-linear model. Theorem 3.1 may be applied to obtain the

quasi-likelihood estimates of the model parameters in (4.5) with

d(logR.
z, = logR;, + %i‘)(ri—l{i)
r. — R.
= logR. ! ! 4.6
ogR; + — (4.6)

and

o - ] - B

n,
= T 4.7)
R} +

In this case, appropriate starting values for z and w; are obtained by substituting r; for R;

in (4.6) and (4.7). Subsequently, once the t™ iterated estimate of 8 is obtained, the

(t + 1)™ is computed by substitution of R = exp(x;S “)) into (4.6) and (4.7), with the
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process being repeated until convergence to the quasi-likelihood estimate 6. Upon
convergence, tests of factor effects may be conducted as before.

Using the form of the quasi-likelihood function (3.8), the scaled deviance

associated with a fitted model giving R, = exp(x{é) , with r = (r1 JIy,...,T, ) and

14

R=(R,,R,,...R,) ,is

D(r;ﬁ) = —22 Qi(f{i 3T )

where

Qi(ﬁi;ri) = Iﬁi ri_tdt = — it

i Vi(t) Y, t* (tz +1)

_ {,(m(f)m(m)(l‘ﬂ

(Burington, 1947, p. 64).

Existence and Uniqueness of Estimators

The existence of maximum- and quasi-likelihood estimators in the context of logit
and log links is often a function of whether any of the responses, y;, equal zero
(McCullagh and Nelder, 1989, p. 117; Agresti, 1990, pp. 245, 249). Because for the

current models, such an occurrence is possible only if all of the observations at a given
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treatment combination are identical (making the sample CV zero), existence of § is
apparently not an issue. Unfortunately, in the context of these same link functions, the
log- and quasi-likelihood surfaces considered above are not strictly concave in 8. In
general, this implies that unique maximum- and quasi-likelihood estimates cannot be
guaranteed for small n; (Wedderburn, 1976; McCullagh, 1983; Fahrmeir and Kaufmann,
1985). However, empirical examination of these likelihood surfaces in simulation suggests
that unique maxima do, in fact, exist even for relatively small n;. In any event, McCullagh
shows that for sufficiently large n;, the iterative equations will converge to the correct
maximum with high probability.

Model Selection

Although the algorithm for fitting generalized linear models has been established,
and diagnostics for determining the adequacy of these models have been summarized, a
broader technique for selecting the best model from a collection of potential models is
necessary. In a regression setting, several techniques such as forward selection, backward
elimination, and stepwise regression are available for determining the best subset of
potential covariates. However, for factorial models, the number and type of terms
available are limited. Despite this fact, Agresti (1990, pp. 218-222) considers both
forward selection and backward elimination in his discussion of log-linear modelling.
Nevertheless, he apparently prefers backward elimination, stating, “It is usually safer to
delete terms from an overspecified model than to add terms to an underspecified one” (p.

218). For this reason, and also in an attempt to retain much of the spirit of an analysis of
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variance for normally-distributed data (which is a special case of the generalized linear
model approach discussed here), the backward elimination approach is advocated.

According to this approach, the highest-order interaction of the full or saturated
model is tested first, followed in turn, if necessary, by lower-order interactions and main
effects according to the standard hierarchy. However, estimated factor effects are
generally not independent, so that a reduced model must be iteratively refitted following
the deletion of any factor judged not to be significant (McCullagh and Nelder, 1989, pp.
35-36). Further, when testing the significance of several factors with the same hierarchy --
for example, the three two-way interactions in a 2° or 3° factorial -- it is necessary when
using the likelihood-ratio or score test to temporarily delete each individual factor in turn
in order to build statistics to indicate which, if any, of these are not significant. Examples
of model selection are given in Chapter Six.

Additive Models for Population CVs

Although not consistent with the multiplicative argument given earlier in this
chapter, Gupta and Ma’s Wald test, for example, expresses relationships among CVs in
additive terms. It should be noted that the Wald tests of the significance of the single
factor are not the same for additive and multiplicative models (the likelihood-ratio and
score tests are unaffected). Because an additive model of the population CV could,
conceivably, be desired even in the factorial case, the iterative algorithms for the additive
model are given below. In particular, for the one-factor case, a model of the R; may be
written as R, =R + a;, 1= 1, 2, ..., k, where R is the overall population CV and «; is the

additive effect caused by the i factor level. While it is unnecessary to distinguish between
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additive and multiplicative models when testing for the presence of the single factor,
conceptually, a multiplicative model may be preferred if certain contrasts are desired based
on the saturated model (see Chapter Six, Applied Example #1).

McKav’s and David’s Approximations

For McKay’s and David’s approximations, since a proposed model of the R; is

now R, = x!8, the associated model of the h(R;) is given by
h(R,) = w(x/8),i=1,2,..k
and by the generalized linear model
h(b(®R,) = x3.
Using Theorem 3.1 and letting R; = h(R,) and 1, = h(r,) as before, David’s

approximation gives

= n?(R]) + Lo (4.8)

and

= ———— (4.9)

As before, appropriate starting values for z; and w; may be obtained by substituting 1, for
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R; in (4.8) and (4.9). Further, the (t + 1)" iterated estimate of 8 can be computed after
the substitution of (R:)(t) = h(xi’S(t)) into (4.8) and (4.9). For McKay’s approximation,

1;. = (n;/ (n; - 1))h(r,;) may be substituted for 1, .

Ielewicz and Myers’ Approximation

For Iglewicz and Myers’ approximation, the model R, = x/8 may be estimated via

-1

R} 1
Theorem 3.1 using simply z; = r; and w; = [( : )(Rf +Eﬂ , since the derivative of the
n.

1

link function with respect to R; is one. In this case, only w; is updated after each iteration.
Values for the w; are obtained initially by substituting r; for R; and, after the t™ iteration, by
substituting R =x!8%.

Existent One-Factor Tests as Special Cases

In certain one-factor cases, with the appropriate approximation, tests discussed in
the review of literature are special cases of model diagnostics discussed in Chapter Three.
In particular, Shafer and Sullivan’s test, Gupta and Ma’s Wald test, and Feltz and Miller’s
test have a more general form applicable to factorial experiments.

Shafer and Sullivan’s Test

It is easily shown that Shafer and Sullivan’s test is equivalent to the likelihood-

ratio test using McKay’s approximation in the one-factor case. For simplicity, let
R{=h(R;)and 1., = (ni /(ni - 1))h(rn,i) as before. Under the null hypothesis H,: R; =

R, =... =Ry, or, equivalently, supposing that the model R; =R, i=1, 2, ..., k holds, where
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R is the common population CV, the maximum-likelihood estimate of the single parameter
R may be obtained by solving the estimating equation

i=1

n. -1

1

for R. The solution gives, as an estimate of the common predicted mean R "= h(R) under

A

k
McKay’s approximation, R = ( (11i - l)r:,i) /(N-k), where N = Zn .. Substituting
i=1 i

into the scaled deviance gives

k *” ) * o ﬁ*
_ ; (ni - 1)(log(;{’:) - (rn’lﬁ* D

]
|
=}
|
=
fa—
=)
e
H
=]
+
M-
=}
|
[a—
p ——
[y
=)
oz]
N
M-~
—_
z —I
o=
i
B
e S

i=1 i i=1

) _Zk:(ni—l)log nhr, ) + Zk:(ni—l)log[gn;l(_r':)}

i=1 i

TR L) (N_k)log[z ()]

which is distributed as x2 with (k - 1) degrees of freedom under H, for large n;, However,
this is the Shafer and Sullivan statistic for testing the same hypothesis.

Gupta and Ma’s Wald Test

For the case k = 2, it is easily shown that the Wald test using Iglewicz and Myers’

approximation is equivalent to Gupta and Ma’s Wald test if the approximation is applied
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to the r,; as opposed to the r;. Since the decision to use 1; in place of 1, is largely
unimportant, this shows that the Gupta and Ma test is also a special case of the current
results.

For the model R; =R + «;, i = 1, 2, where R is the overall population CV and o is

the deviation due to the i factor level, a corresponding model in matrix form, subject to

2
the identifiability constraint Z o, =0,is

i=1

MR

Because the model is saturated, quasi-likelihood estimates of R and o; may be obtained

directly via ordinary least squares as

~

{ﬂ - (xXX)Xr,

a‘l
1 1 !
where X = 1 -1l and r = (rn’l,rn,z) . Hence,
N 1 1 n 1 1
R = 5 Tax +Er’1’2 , and A = STyt

The estimated asymptotic covariance matrix of

(rn,z )

Vi
(rn,Z ) Vi

1

f{} .
. | is given by
oy

ﬁi:i ﬂ’

- 2, e 4
where W = diag{{ 1’:‘ (fj,i +Eﬂ }: djag{[Vi (rn,i )] }, i=1, 2. Testing the null

Vv, (r

) - L wt) T V2
(X WX) 4 {V1 (rn,l) -V,

(r.r)
(r.

-V,
T, )+V2

1
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hypothesis that R; = R, is equivalent to testing a; = 0, and the Wald test for the latter

equality is

2 2 >
r“—’l(rz +1) | 2 (rz +1)
n, \™ 2/ n, \'™ 2

2
which is distributed as x> with one degree of freedom under H, for large n;. This is also
the Gupta and Ma Wald test for k = 2. A similar equivalence holds for k > 2 if the
hypothesis H,: ai =0,i=1, 2, ..., k - 1 is tested.

Feltz and Miller’s Test

For the case k = 2, it is easily shown that the quasi-score test using Iglewicz and
Myers’ approximation is equivalent to Feltz and Miller’s test. Under the null hypothesis
that R; = R, = ... =Ry, the model for the R; may be written as R; =R, i= 1, 2, ...k, where
R is the common population CV. The restricted quasi-likelihood estimate of the single

model parameter R is obtained by solving the estimating equation

k
. —R.
X,

= —‘(Rf +1)
n. 2

k
which gives R = (Z niri) /N, where N = Z:ni . This estimate of R is the weighted
i=1 i

average of 1; given by Feltz and Miller as a reasonable estimate of the common CV under

H,. Substituting R into the formula for the quasi-score test for the specific case k =2
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nitially gives

’

!
~

[(®)] (x %) "[u(®)] - [(,-_ﬁ) Wx|(xWx)"[x W(-R)]. @10

1
where X = [1

s i ix of th d model | .
11sthedes1gnmz:1tr1xotesaturate mode R,| |1 -1, |

’

~ -1
W = diag{|:1—:li (INKZ +%):| }= diag{[Vi (INK)]_I}, i=1, 2, and where r = (rl,rz) and

R = (I~{1 ,ﬁz) = (R, R) . However, (4.10) may be reexpressed as
g_§+g-ﬁ' n-R 1-K
V,[®) " v, (R) (1 V,R)+Vv,[R) v,®)-Vv,®)]) v,(R) " v,(R)
rl_R_rZ_R 4 V1(§)_V2(i) VI(INK)+V2(1~{) II_R_I2_R
Vi(R) v, (R) V,(R) Vv,(R)

ALY v, (K)
= —_‘1—n1rl—~2+n2 1_2_"’2’
T (ﬁz . ;)[ (r, -K)" +2,(r, -R) ]

which is the Feltz and Miller statistic. A similar result holds for k > 2 but becomes

difficult to demonstrate because of the complexity of (X’WX) in closed form.

Confidence Intervals for Fitted Models

Once the significant interactions and main effects in a fitted factorial model have
been determined, confidence intervals for estimated contrasts may be desired. For the

multiplicative model (4.1), such contrasts estimate ratios of unknown population CVs

67



rather than differences, as in normal-theory aﬁalysis of variance. Ifthe additive model of
the CVsis used, these contrasts will estimate differences.

For simplicity, sﬁppose that two population CVs, R; and R;, are to be contrasted,
and assume that the multiplicative model (4.1) has been fitted. Note that although a single
subscript is used, these CVs may be associated with either main or simple effects of

factors. In this context, the unknown ratio of R; and R, may be expressed as

R :

logl =] = logR,-logR, = x6-x8 = (x]-x})8 = x,8.

R 1
2

Once the maximum- or quasi-likelihood estimates of 6 are obtained via one of the three

approximations under consideration, an asymptotic 100(1 - o)% confidence interval for

the log-ratio is then
S

TR A
log(R—j = Xx,0

where z,,, is a value from a standard normal distribution having right-tail probability

Zuﬁ \/x 12 (X'WX) N X2

+

o/2, and where (X'WX) s the appropriate estimated asymptotic covariance matrix of 5.
Denoting the lower and upper endpoints of this interval by L and U, respectively, a
corresponding 100(1 - a)% confidence mteﬁﬂ for R; / R; is then given by
(exp(I:), exp(fJ)) . Examples of interval estimation are provided in Chapter Six.

For the additive model,

R,-R, = x8-x;8 = (x;-x})5 = x,8,
so that a 100(1 ] )% confidence interval for the difference between population CVs may

be constructed as
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H

~ ~ -1
R,-R, = x,,8 za/z‘/xiz(X'WX) Xy »

where z,, and (X’WX) “are defined as before.
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CHAPTER FIVE

SIMULATION METHODS AND RESULTS

In this chapter, the objectives and methods of the adopted simulation strategy are
discussed. Simulation results, as well as their potential ramifications on the overall
modelling approach, are summarized. For reference throughout this chapter, tables of
simulation results are included in Appendix A. The simulation programs for SAS are
included in Appendixes C through F.

Simulation Objectives

Asymptotic Behavior of the Scaled Deviance

Since there are apparently no conclusive results pertaining to the asymptotic
behavior of the scaled deviance, the sufficiency of large samples in the current modelling
context is investigated. In particular, the capability of the scaled deviance as a test of
interaction in a 2 x 2 factorial experiment is simulated. The corresponding Wald and score
tests also are considered.

Asymptotic Behavior of a Difference of Scaled Deviances

Agresti (1990, p. 250) notes that for log-linear models for count data, where the

scaled deviance is known to have a limiting * distribution, a difference of scaled

70



deviances for comparing a reduced model to an intermediate but unsaturated model
converges to its limiting distribution more quickly than the scaled deviance, provided that
the reduced model holds. This suggests that the use of a difference as a test of
significance of, say, a main effect in a 2 x 2 factorial model of population CVs may be
superior to the required use of the scaled deviance as a test of interaction in the same
experiment. The relative behavio£ of these diagnostics is determined for this case. The
corresponding Wald and score tests also are considered.

Relative Capabilities of Model Diagnostics

The combination of the three approximations under consideration (McKay’s,
David’s, and Iglewicz and Myers’) with the three potential diagnostic tests (Wald,
likelihood-ratio, and score) results in nineb ways of testing the significance of an effect(s) in
a fitted factorial model. The relative powers and Type I error rates of these nine tests in
the context of the 2 x 2 factorial experiment discussed above are investigated.

The One-Factor Experiment

For the one-factor experiment, the likelihood-ratio test using McKay’s
approximation and the Wald and score tests using Iglewicz and Myers’ approximation
correspond to established tests (see Chapter Four). However, the six remaining tests are
new in this context. For this reason, the capabilities of all nine tests in the one-factor
experiment are compared. In addition, three other existent tests discussed in the review of

literature are simulated.
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Non-Normal Data

If Payton’s (1997) suggestion that the CV be associated primarily with ratio-level
data is followed, the possibility exists that data will actually be taken from extremely right-
skewed populations. To investigate the impact of skewed data, simulated observations are
drawn from gamma distributions having CV's marginally within and clearly outside the
range (0, 1/3) of values consistent with the assumption of “ratio-normality”.

Simulation of a 2 x 2 Factorial Experiment

In order to assess and compare the capabilities of the approximation-diagnostic
combinations under consideration, tests of interaction and a main effect were conducted

on normal data that were generated using a 2 x 2 multiplicative factorial model of the form

Rij = eXp(R* -}-(Xi +Bj +(aB)ij)’ 1,_] p— 1’ 2’ (51)

2

2
where, for identifiability, Z o, = Z B, = Z (ocB)ij = Z (ocB) ;= 0. For convenience,

2
i=1 j=1 i=1 =1

[

the data were drawn from normal populations having means p; = 1 and standard
deviations o;; = R;;.

For the simulations, the overall CV, exp(R”), was set at both 0.1 and 0.2. For an
overall CV of 0.1, tests of interaction were conducted with exp((af3);1) setto 1, 1.1, 1.2,
..., 1.6, and, for simplicity, with o; = ; = 0. The main-effect tests were conducted only
for a single factor. In particular, effect sizes of exp(B;) =1, 1.1, 1.2, ..., 1.6 were
considered. In this case, the interaction terms (aff); were removed from the generating

model so that the main-effect tests could be conducted in the proper context. For

72



simplicity, o; was set to zero. For an overall CV of 0.2, tests were conducted on
interaction and main effect sizes of 1, 1.05, 1.1, 1.15, ..., 1.3. Smaller sizes were chosen
to preserve the range (0, 1/3) of population CVs of “ratio-normal” distributions.

For an overall CV of 0.1, equal sample sizes of 10, 20, 30, and 50 were taken from
each of the 2 x 2 = 4 factor level combinations. Sample size combinations of 10 with 20,
10 with 30, 20 with 30, and 30 with 50 also were considered. For an overall CV of 0.2,
samples with equal sizes of 30, 50, and 100 were drawn, the larger samples reflecting the
smaller effect sizes considered. Combinations of 30 with 50 and 50 with 100 also were
examined.

For each combination of overall CV, effect type (main or interaction), effect size,
and sample size configuration, 10,000 data sets were simulated, and the appropriate effect
was tested at the 0.05 level using each of the nine approximation-diagnostic combinations
under consideration. On occasion, this strategy produced duplicate simulations when
effect sizes were set to one. These simulations were combined to give improved estimated
Type I error rates based on 20,000 data sets andvare marked in the tables by a single
asterisk (*).

Simulation of a One-Factor Experiment

In order to compare the new approximation-diagnostic combinations in the one-
factor case, normal data also were generated from a one-factor multiplicative model
having three levels. A multiplicative model was chosen to provide greater flexibility when
varying the magnitude of the single factor effect. However, an additive model was

actually fitted in the simulation so that Gupta and Ma’s Wald test would have the proper
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form. In particular, the model

R, = exp(R'+a;),i=123,
was used to generate the data. Like the 2 x 2 factorial model above, data were generated
from normal distributions having means p; = 1 and standard deviations o; = Ri. The
identifiability constraint o, = 0 was used. For simplicity, o; was set equal to -a3, with

o = 0. Numerically, this produced R; < R; < Rs, with R; equal to the overall
population CV, exp(R").

The overall CV was set at both 0.1 and 0.2. For an overall CV of 0.1, tests were
conducted with exp(az) =1, 1.1, 1.2, ..., 1.6. In this case, equal sample sizes of 10, 20,
30, and 50 were taken, while combinations of 10 with 20, 10 with 30, 20 with 30, and 30
with 50 also were considered. For an overall CV of 0.2, exp(cts) was set at 1, 1.05, 1.1,
1.15, ..., 1.3, the smaller effect sizes preserving the “ratio-normal” range of population
CVs. Equal sample sizes of 30, 50, and 100 were simulated, as well as combinations of 30
with 50 and 50 with 100.

For each combination of overall CV, effect size, and sample size configuration,
10,000 data sets were simulated. The effect was tested at the 0.05 level using each of the
nine approximation-diagnostic combinations under consideration and also using Doombos
and Dijkstra’s likelihood-ratio and non-central t tests, and Gupta and Ma’s score test.
Duplicate simulations for effect sizes of one were combined to give 30,000 data sets to
use in assessing the Type I error rate. These are marked by a double asterisk (**) in the

tables.
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Simulation of Non-Normal Data

In order to determine the impact of non-normal data, in particular, right-skewed
data, on the approximation-diagnostic combinations, observations also were generated

from gamma distributions having CVs determined by model (5.1). Since the mean of a

A
gamma distribution is A and the standard deviation is T , the corresponding population
\Y

AV

1
CV is given by n = T For convenience, the data satisfying (5.1) were drawn from
\Y
N . . 1
gamma distributions having means A; = 1 and index parameters v, = xR
:

Skewed data were simulated using overall population CVs of 0.3 and 0.6. Larger
overall values were chosen so that the generated data would possess a noticeable level of
skewness. Tests of interaction only were conducted with exp((af3);1) setto 1, 1.1,1.2, ...,
1.6 for sample configurations involving sizes of 10, 20, and 30 at both overall CV values.
Sample configurations involving sizes of 50 and 100 also were investigated for interaction
effect sizes of 1, 1.05, 1.1, 1.15, ..., 1.3 at both overall CV values.

Simulation Results

The Interaction Test

Tables XV through XXXIX summarize the simmlations of the scaled deviance as a
test of interaction in a 2 x 2 factorial experiment, as well as the corresponding Wald and
score tests. For equal sample sizes, Type I error rates tended to be high for all tests

except the score tests using McKay’s (M) and David’s (D) approximations, but tended to
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improve as the sample size increased. Type I error rates for Iglewicz and Myers’ (IM)
approximation were consistently higher than M and D.

Except for the score tests using M and D, Type I error rates were adversely
affected by unequal sample sizes, but more so when overall sample sizes were small. In
particular, effects of unequal sample sizes were most pronounced for combinations of 10
with 20 and 10 with 30.

For unequal sample sizes, the Wald, likelihood-ratio, and score tests performed
comparably when larger samples were drawn from populations with smaller CVs for all
approximations, while the Wald test was consistently more powerful than the likelihood-
ratio and score tests when larger samples were associated with larger CVs. This last
pattern was present though less pronounced when sample sizes were evenly split between
the “low” and “high” levels of interaction. OveralL the effects of unequal sample sizes
were strongest when sample sizes were small (in particular, 10 with 20 and 10 with 30).

In general, sample size configurations common to simulations involving overall
CVs of 0.1 and 0.2 (all 30, all 50, 30 with 50) showed that powers tended to be slightly
lower when the overall CV was larger.

The Main-Effect Test

Tables XL through LXIV summarize the use of a difference of scaled deviances as
a test of a main effect in a 2 x 2 factorial experiment, as well as the corresponding Wald
and score tests. For both overall CV values and equal sample sizes, the performance of

these main-effect tests, based on a single degree of freedom, was virtually identical to the
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interaction tests above, which also were based on one degree of freedom. However, Type
I error rates were slightly improved.

For unequal sample size configurations, for both overall CV values, the main-effect
tests performed better than the interaction tests when large samples were coupled with
small population CVs and when sample sizes were split evenly between “low” and “high”
levels for all approximations. On the other hand, the interaction tests performed better
when large samples were combined with large CVs. As in other previous cases involving
unequal samples, these results were most pronounced when overall sizes were small (in
particular, 10 with 20 and 10 with 30). In addition, the main-effect tests were typically
more successful than the interaction tests at maintaining the stated Type I error rate when
small and disparate sample sizes were used.

Relative Capabilities of Model Diagnostics

Relative performance among the approximation-diagnostic combinations under
consideration was virtually the same for the interaction and main-effect tests. In general,
diagnostics using IM tended to have higher power than M or D, while M tended to have
slightly higher power than D. However, IM also tended to exceed the Type I error rate
more often than M or D.

Among diagnostics associated with a given approximation, when larger samples
were associated with smaller population CVs, the likelihood-ratio test tended to have the
highest power, followed closely by both the Wald and score tests. When larger samples
were associated with larger CVs, the Wald test typically has the highest power, followed

closely by the likelihood-ratio test. However, the score test had much lower power when
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M or D was used and moderately so when IM was used. This last pattern was also
present when sample sizes were unequal but split evenly between “low” and “high” levels
of the relevant effect, although the score tests associated with M and D were more
powerful. When sample sizes were equal, all tests and approximations were comparable.

The One-Factor Experiment

Tables LXV through CVII summarize the use of the approximation-diagnostic
combinations under consideration as tests of the single effect in a one-factor experiment.
For equal sample sizes, at both overall CV values, the Type I error rates for IM and
Doornbos and Dijkstra’s likelihood-ratio test (DDL) were extremely poor but improved as
the sample sizes increased. Among all tests, the likelihood-ratio test using IM was the
most powerful but had the most difficulty achieving the Type I error rate. Doornbos and
Dijkstra’s t test (DDT) and Gupta and Ma’s score test (GM) consistently had the lowest
power but improved as the sample sizes increased.

For one small and two large samples, when the largest samples corresponded to
the largest population CVs, the Wald and likelihood-ratio tests using IM were the most
powerful. For other configurations involving one small and two large samples, the
likelihood-ratio test using IM and DDL were consistently the most powerful. Overall, the
score tests using M and D, DDT, and GM preserved the Type I error rate, while the Wald
and likelihood-ratio tests using IM and DDL had the worst Type I rates. As overall
sample sizes increased, the score test using IM also tended to have a good Type I error

rate.
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For two small and one large sample, when the single large sample corresponded to
the largest population CV, the Wald test using IM was the single most powerful test but
had the worst Type I error rate. For other configurations involving two small and one
large sample, the likelihood-ratio test using IM and DDL were the most powerful but were
among the worst at preserving the Type I rate. Overall, as before, the score tests using M
and D, DDT, and GM preserved the Type I error rate and were joined by the score test
using IM as overall sample sizes increased.

Among all simulations involving unequal sample size configurations, as sample
sizes became more disparate, Type I error rates tended to worsen, but improved as overall
sample sizes increased. However, the Wald and likelihood-ratio tests using IM and DDL
continued to have difficulty preserving the Type I rate. Among sample size configurations
common to both overall CV values, powers tended to be less for an overall CV value of
0.2 as opposed to 0.1.

The Interaction Test for Non-Normal Data

Tables CVIII through CXXV summarize the capabilities of the approximation-
diagnostic combinations under consideration as tests of interaction in a 2 x 2 factorial
experiment when the observations belong to right-skewed populations. For an overall CV
of 0.3, which resulted in some population CV values falling outside the range expected for
“ratio-normal” distributions, powers of all tests were somewhat lower for every sample
size configuration than for “ratio-normal” data. However, except for IM in some small

sample cases, the simulated Type I error rates were below the stated 0.05 level.
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For an overall CV of 0.6, powers were substantially lower among all sample size
configurations compared to the corresponding tests when the overall CV was at 0.3. The
powers for the score tests summarized in Table CXXIII were particularly poor. However,
all Type I error rates attained the stated level. Overall, the likelihood-ratio test using IM
retained the most power.

In some cases where the sample sizes were moderately small, the score tests
actually decreased in power when an extremely large interaction effect was present! In
order to determine if these results were due to sampling error alone, all affected rejection
rates were tested for a significant decrease at the 0.05 level, and those found to be
significant are bolded in the tables (in particular, tables CXIV, CXV, CXIX, and CXXIII
are affected). These results can apparently be attributed to the inability of the approximate
likelihood surfaces under consideration to completely incorporate extreme effect sizes
associated with right-skewed populations having CVs outside the range expected for
“ratio-normal” data.

Recommendations

For factorial experiments, if sample sizes are equal, the score tests using M and D
are preferred. These tests preserve the Type I error rate but have powers comparable to
the other approximation-diagnostic combinations for hypotheses involving both saturated
and reduced models as indicated by the interaction and main-effect tests simulated here.

On the other hand, if sample sizes are small and unequal, and large samples are

associated with the largest population CVs, these score tests can perform poorly. In this
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case, the likelihood-ratio tests using M and D are preferred. Practically, however, this
situation can be avoided by insuring that all sample sizes exceed 20.

For one-factor experiments, if the sample sizes are equal, the score tests using M
and D are preferred since they preserve the Type I error rate and have higher power than
DDT and GM for very small samples. These tests also are generally better when sample
sizes are unequal, though DDT and GM are best in some cases.

If data are suspected of belonging to right-skewed distributions in a factorial
experiment, but the population CVs are within the range (0, 1/3) for “ratio-normal” data,
the same recommendations given above apply. If the population CVs are outside this
range, however, the likelihood-ratio test using IM is generally preferred. In this case,

based on simulation results, the score tests are not recommended.
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CHAPTER SIX

APPLIED EXAMPLES

In this chapter, two applied examples of factorial experiments are introduced and
the appropriate models are fitted. The first example is a component of a data set originally
discussed by Gerig and Sen (1980) involving relative variability of duck kills in Canadian
provinces for the years 1969 and 1970. Gupta and Ma (1996) utilizes one-factor tests for
each province to test for a difference in years. With the new method, a global test for
interaction between province and year is available. The second example is based on two
data sets given in Ott (1993) where the pH level of drug vials stored at two temperatures
in two different labs is the variable of interest.

Applied Example #1

During each of the years 1969 and 1970, as part of the Canada migratory game
bird surveys, random samples of hunters were drawn from each Canadian province using
lists of the previous year’s permit holders. Among hunters reporting at least one duck kill
(excluding sea ducks), the log (base 10) of the number of kills per hunter was recorded.
Although the log transformation compromises the ratio-level nature of the data, it was
claimed by Gerig and Sen (1980) to be necessary in order to induce normality. The

observed sample means, standard deviations, and CVs for the four westernmost provinces
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are given in Table X. Although the data are no longer of the ratio type, they are strictly
noh—negativeo As a result, judging from the observed CV values, the assumption of
normality is questionable.

Gupta and Ma (1996) uses a variety of one-factor tests to assess the hypothesis
claimed by Gerig and Sen (1980) that thé reiative variability of log-duck-kills per hunter
for 1969 and 1970 were equal for each province. However, no gldbal test of interaction
between province and year.wés available.

For simpﬁcity, only the four westernmost provinces were reanalyzed using a
2x4 factorial model. The saturated model has the form -

Ry = exp(R’ +as+ B + (@B, i = L,2,j = 1,2,3,4,
where exp(R") is the overall population CV, exp(c) is the effect of the i year, exp(f3;) is

the effect of the j province, and the terms (a )y describe the interaction between year and

4 2 4

) ‘
province. The identifiability constraint Z o; = Z B, = Z (ocB)ij = Z(aﬁ)ﬁ =0 was

i=1 . j=l i=1 j=1

used. In matrix form, the resulting generalized linear model is given by

-~ p~—

[log Ry | 11100100| [R ]
log Ryz 1101001 0| |a
log Ry 1100100 1| |B
logRu| _ [1 1 -1-1-1-1-1-1] |B,
logRn|= |1 -1 100-100| [ |
log Ray 1-10100-0{| |@Bu
logR23 1-10 0 1 0 0 -1 (aB)u
_IOgR24_d 1 -1-1-1-1 11 1_ L((XB)B__

For brevity, only Iglewicz and Myers’ approximation was applied to fit the saturated
model. The resulting tests of significance of the interaction, based on three degrees of

freedom, are appended to Table XI. All tests were clearly significant at the 0.05 level,
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TABLE X

OBSERVED MEANS, STANDARD DEVIATIONS, AND CVs OF LOG-
DUCK-KILLS (BASE 10) PER HUNTER BY PROVINCE AND YEAR

Province Year n X s r
British Columbia 1969 503 0.9299 0.4680 0.5034
1970 743 0.9539 0.4906 0.5143
Alberta 1969 654 1.0817 0.4350 0.4021
1970 882 1.0474 0.4645 0.4435
Saskatchewan 1969 863 1.0085 0.4080 0.4046
1970 977 1.1084 0.4214 0.3802
Manitoba 1969 1,102 0.9653 0.4301 0.4455
1970 1,031 1.0080 0.4261 0.4228
TABLE XI
ESTIMATED PARAMETERS FOR SATURATED MODEL OF
CVs OF LOG-DUCK-KILLS (BASE 10) PER HUNTER
Parameter Estimate Standard Error Effect
R* -0.8271 0.01049 log overall CV
o1 -0.000615 0.01049 1969
B1 0.1514 0.02064 British Columbia
B2 -0.03496 0.01831 Alberta
Bs -0.1089 0.01699 Saskatchewan
(aB)u -0.01010 0.02064 1969 / B.C.
(aB)i2 -0.04838 0.01831 1969 / Alberta
(aB)is 10.03172 0.01699 1969 / Sask.
Tests for Interaction: Wald x> 10.152, p =0.0173; LR x> 10.089, p = 0.0178;

Score 1% 9.626, p = 0.0220, each based on 3 df
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suggesting that the ratio of the relative variabilities of log-duck-kills per hunter (1969 to
1970) was not consistent across provinces. Estimated parameters for the saturated model
are given in Table XI. Asymptotic 95% confidence intervals for the log-ratio and ratio of
population CVs (1969 to 1970) for each province are given in Table XII. Apparently, the
relative variability of log-duck kills per hunter for Alberta was only between 0.83 and 0.99
times as large in 1969 as in 1970. No significant difference was found for the other
provinces.

To demonstrate the versatility of the current modelling technique, the relative
variability of the westemn provinces (British Columbia and Alberta) was contrasted with
that of the central provinces (Saskatchewan and Manitoba) for each year. For the
multiplicative model, these contrasts estimate the ratio of the geometric average of the
“western” population CVs to the geometric average of the “central” population CVs.

Because a normal population CV is a ratio of distinct parameters, a geometric
average of two or more CVs preserves information about the contributing means and
standard deviations that is typically lost by taking an arithmetic average. This suggests
that the multiplicative model should generally be used even in the one-factor case.

For 1969, the contrast has the form

(RuRu )1/2 1 1 1 1
log| ——4 | = ElogR11 +Elogl{12 —Eloan —Elogl{14

(R13R14 )1/2

By +B, +(oB),, +(aB),, -
The estimated log-ratio and ratio are 0.05799 and 1.0597, respectively, and the

corresponding asymptotic 95% confidence intervals are (-0.002843, 0.1188) and (0.9972,
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TABLE XII

ASYMPTOTIC 95% CONFIDENCE INTERVALS FOR LOG-RATIO
AND RATIO OF CVs OF LOG-DUCK-KILLS (BASE 10) PER
HUNTER (1969 TO 1970) BY PROVINCE

Log-Rati Ratio
Province Estimate CI Estimate CI
B.C. -0.02142 (-0.1199, 0.07710) 0.9788 (0.8870, 1.0802)
Alberta -0.09800  (-0.1812,-0.01480)  0.9067 (0.8343, 0.9853)
Sask. 0.06220 (-0.01189, 0.1363) 1.0642 (0.9882, 1.1460)

Manitoba 0.05230 (-0.01816, 0.1228)  1.0537 (0.9820, 1.1306)
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1.1262). For 1970, the estimated log-ratio and ratio are 0.1750 and 1.1912, with
asymptotic 95% confidence intervals (0.1204, 0.2295) and (1.1279, 1.2580).

It would appear that the relative variability of the western provinces was
significantly higher than that of the central provinces in 1970 but not in 1969, which helps
to explain the significant interaction.

Applied Example #2

Ott (1993, pp. 916, 919) lists the observed pH levels of 2-mL vials of a drug
product stored at each of two temperatures (30°C and 40°C) in two labs (#1 and #2).
Twelve vials were examined from each temperature-lab combination. The data, along
with the sample means, standard deviations, CVs, and Shapiro-Wilk statistics for testing
normality (SAS Institute, Inc., 1990, p. 627) are given in Table XIII. The objective in this
applied example is to estimate a factprial model that describes how each factor influences
the relative variability of the pH.

Technically, pH is not a ratio-level variable, partly because a negative pH is
possible, and partly because the pH is computed as a (negative) log (base 10) of hydrogen
ion concentration in a solution (Holtzclaw and Robinson, 1988, pp. 479-480). However,
it represents a variable whose relative consistency is potentially of interest and so is
considered here.

The saturated model has the form

Ry = exp(R" + o + B + (@f)y), i = 1,2, j = 1,2,
where exp(R") is the overall population CV, exp(c;) is the effect of the i™ temperature,

exp(B;) is the effect of the j* lab, and the terms exp((ctB);) describe the interaction
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TABLE XIII

OBSERVED MEANS, STANDARD DEVIATIONS, AND
CVs OF pH LEVELS BY TEMPERATURE AND LAB

Temperature  Lab pH Data X s Ip

n

30°C #1 3.45,3.48,3.50,3.55 3.5883 0.09754 0.02718
(W=0.905,p=0.173)  3.56, 3.57, 3.59, 3.60 '
' 3.60, 3.61, 3.74, 3.81

30°C #2 3.70,3.74,3.75,3.76  3.8108 0.06689 0.01755
(W=0.921,p=0.277)  3.77,3.80, 3.80, 3.84
3.87, 3.90, 3.90, 3.90

40°C #1 3.29,3.32,3.38,3.39 3.5108 0.1348 0.03838
(W=0.931,p=0367) 3.45,3.51, 3.59, 3.60
3.61, 3.63, 3.65, 3.71

40°C #2 3.60,3.64,3.68,3.70  3.7233 0.06587  0.01769
(W=0.906,p=0.179)  3.70, 3.70, 3.70, 3.75
3.80, 3.80, 3.80, 3.81

Values given in parentheses are the Shapiro-Wilk statistics and p-values for testing the null
hypotheses that the samples were drawn from normal distributions.
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2 2 2
between temperature and lab. The identifiability constraintz o; = Z B; = Z (O‘ﬁ);j =
bt . .

2

Z (aB) i = 0 was used. In matrix form, the resulting generalized linear inodel is given by

j=1

*

log Ry; 1 111 R

log Ru — 1 -1 -1 [0 4]

log R21 - 1 -1 1 -1 Bl .
log Rzz 1 -1-1 1 (GB)U

McKay’s approximation was applied to fit the model. The corresponding tests for
interaction, based on one degree of freedom, are appended to Table XIV. Note tﬁat there
is clearly no evidence of interaction, so that a reduced modelv with only main effects was
considered.

In order to determ_ine if both main effects are significant, Wald tests were
conducted on the estimated parameters of the main-effects model, while each main effect
was individually removed in tum so that assbciated likelihood-ratio and score tests also
could be constructed. These conditional %’ statistics for assessing the significance of
temperature and lab, each based on one degree of freedom, also are appended to Table
XIV. |

Apparently, temperature can be removed from the modél. The estimated
parameters of the resulting ‘iab” model are given in Table XIV. Updated tests for the
significance of the lab effect alsol .are included. To assess the overall adequacy of this
model, a global test for interaction and temperature effects also was conducted which
corroborated these findings (Wald y* 1.307,p = -0.520; LR x* 1.282,p= 0.527; Score

x*: 1.210, p = 0.546, each based on 2 df).

89



TABLE XIV

ESTIMATED PARAMETERS FOR LAB
MODEL OF CVs OF pHLEVELS

Parameter Estimate Standard Error Effect
R* -3.6775 0.1067 log overall CV
B1 0.3175 0.1067 Lab #1

Tests for Interaction: Wald x> 0.624, p = 0.429; LR ¢* 0.621, p = 0.431;

Score x* 0.613, p = 0.434, each based on 1 df.

Tests for Temperature | Lab: Wald x> 0.683, p = 0.409; LR x* 0.661, p = 0.416;

Score x> 0.633, p = 0.426, each based on 1 df.

Tests for Lab | Temperature: Wald x> 8.065, p = 0.005; LR x* 7.437, p = 0.006;

Score x* 6.185, p = 0.013, each based on 1 df

Tests for Lab Only: Wald x> 8.859, p =0.003; LR x* 8.323,p = 0.004;

Score x% 6.930, p = 0.008, each based on 1 df.
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Based on the fitted “lab” model, the estimated log-ratio and ratio for lab (#1 to
#2), irrespective of storage temperature, are 0.6350 and 1.8871, respectively, while the
asymptotic 95% confidence intervals are (0.2168, 1.0532) and (1.2421, 2.8668). It

appears that vials stored in lab #1 have a significantly higher relative variability than those

stored in lab #2.
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CHAPTER SEVEN
CONCLUSION

The modelling approach developed in this thesis is significant because it expands
the settings in which the normal population CV may be analyzed to include designed
factorial experiments. In particular, the use of approximations of the distribution of the
sample CV provides a context well suited to the application of the generalized linear
model and its iterative algorithms for model estimation. When the CV is the population
characteristic of interest, the approach is apparently superior to the modelling efforts
associated with Taguchi because it incorporates estimable model and covariance structures
for the observed sample CVs rather than use transformed CVs that are assumed to have
constant variance. As a result, estimated model parameters are easily interpreted, tests of
all effects in a fitted factorial model are available, and asymptotic confidence intervals for
raﬁos of contrasted population CVs are readily obtained. Further, the approach
incorporates several tests for the equality of population CVs in a one-factor exﬁen'ment
which have previously been discussed in the literature.

Several related topics are available for future research. Of principal importance is
a detailed investigation of the behavior of the exact and approximate likelihood surfaces
under consideration in the context of the score test. Evidently, in both factorial and one-

factor experiments, when larger samples are associated with populations having larger CV
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values, and the overall sample sizes are small, the likelihood surfaces are poorly behaved,
since the powers of the associated score tests are vefy low. The existence of a unique
maximum is apparently not an issue, but rather the behavior of the surfaces at points other
than the maximum.

The current modelling approach is based on approximate distributions because the
structure of these distributions is simple and easily incorporated into the theory of
generalized linear models. However, an exact model of the population CV also could be
obtained using the normal likelihood of the observed data reparameterized in terms of the
R; and ; as in Gupta and Ma (1996). In this case, model (4.1) and a corresponding
multiplicative model of the 1; could be estimated via maximum-likelihood and compared
to the current models, although a direct application of the Fisher scoring algorithm
without the benefit of generalized linear models would be necessary.

Rather than estimate the variances of the observed sample CVs in the context of a
generalized linear model, the observed data might also be resampled via a bootstrap or
jackknife technique to obtain estimated variances which could be incorporated into a
weighted least squares model. For example, if a multiplicative model of the R; is desired,
then (4.5) might be estimated as an additive model using the log ; as the responses, with
weights obtained by estimating the variances of the log r; using a resampling scheme.
Estimated model parameters could be tested using a Wald procedure and reduced models
could be fitted using the resampled variance estimates as weights. Presumably, resulting
parameter estimates would at least be comparable to those obtained via generalized linear

models and better than those obtained using the Taguchi approach.

93



Lastly, the likelihood-ratio test using Iglewicz and Myers’ approximation often has
the best power as a test of an effect in a factorial or one-factor experiment. Howeyver, its
Type I error rate is extremely poor, especially for small samples. As a result, Bartlett’s
correction factor could likely be used to improve the % approximation for this test when

sample sizes are small (Shafer and Sullivan, 1986), although its effect on power would

need to be investigated.
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TABLE XV

REJECTION RATES FOR INTERACTION TEST AT o = 0.05

FOR OVERALL R =0. 1, N =Np=01= 0= 10

Effect Size Wald LR Score

1 M 0.0613 0.0574 0.0452
D 0.0610 0.0569 0.0452

M 0.0755 0.0744 0.0708

1.1 M 0.1422 0.1347 0.1095

D 0.1419 0.1345 0.1085

M 0.1631 0.1618 0.1551

1.2 M 0.3414 0.3291 0.2882

D 0.3409 0.3285 0.2876

M 0.3745 0.3723 0.3631

1.3 M 0.5976 0.5869 " 0.5389

D 0.5964 0.5863 0.5380

M 0.6324 0.6301 0.6218

1.4 M 0.7963 0.7887 0.7519

D 0.7957 0.7883 0.7505

M 0.8233 0.8215 0.8144

1.5 M 0.9154 09111 0.8892

D 0.9150 0.9108 0.8888

™M 0.9287 0.9277 0.9239

1.6 M 0.9689 0.9669 0.9574

: D 0.9687 0.9669 0.9571

M 0.9763 0.9758 0.9734

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XVI

REJECTION RATES FOR INTERACTION TEST AT a = 0.05

FOR OVERALL R = 0.1, n;; =1n;,=1n2,=1n3,=20

Effect Size Wald LR Score
1 M 0.0539 0.0521 0.0457
D 0.0538 0.0519 0.0456

M 0.0590 0.0588 0.0572

1.1 M 0.2165 0.2117 0.1969
D 0.2163 0.2117 0.1969

™ 0.2315 0.2300 0.2254

1.2 M 0.5953 0.5879 0.5675
D 0.5946 0.5876 0.5671

™M 0.6149 0.6138 0.6088

1.3 M 0.8904 0.8880 0.8769
D 0.8902 0.8879 0.8769

™M 0.8995 0.8991 - 0.8970

1.4 M 0.9823 0.9816 0.9790
D 0.9823 0.9816 0.9790

™M 0.9840 0.9838 0.9837

1.5 M 0.9977 0.9976 0.9973
D 0.9977 0.9976 0.9973

™ 0.9980 0.9980 0.9980

1.6 M 0.9999 0.9999 0.9999
D 0.9999 0.9999 0.9999

™M 0.9999 0.9999 0.9999

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XVII

REJECTION RATES FOR INTERACTION TEST AT o = 0.05

FOR OVERALLR = 01, N 1= Np=Nh=Np= 30

Effect Size Wald IR Score
1 M 0.0519 0.0506 0.0471
D 0.0516 0.0506 0.0470

™M 0.0562 0.0559 0.0543

1.1 M 0.3088 0.3061 0.2925
D 0.3088 0.3059 0.2924

M 0.3217 0.3207 0.3175

1.2 M 0.7894 0.7859 0.7770
D 0.7892 0.7857 0.7767

M 0.7988 0.7982 0.7960

1.3 M 0.9759 0.9748 0.9731
D 0.9759 0.9748 0.9731

™M 0.9783 0.9781 0.9772

1.4 M 0.9984 0.9983 0.9983
D 0.9984 0.9983 0.9983

™M 0.9986 0.9986 0.9985

1.5 M 0.9999 0.9999 0.9999
D 0.9999 0.9999 0.9999

M 0.9999 0.9999 0.9999

1.6 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

M 1.0000 1.0000 1.0000

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers® Approximation
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TABLE XVIII

REJECTION RATES FOR INTERACTION TEST AT o = 0.05

FOR OVERALL R =0. 1, N =Np~Mp1=0n= 50

Effect Size Wald LR Score
1 M 0.0534 0.0524 0.0511
D 0.0534 0.0523 0.0511

™M 0.0557 0.0556 0.0551

1.1 M 0.4627 0.4598 0.4539
D 0.4627 0.4595 0.4536

™M 0.4694 0.4690 0.4678

1.2 M 0.9432 0.9428 0.9404
D 0.9432 0.9428 0.9404

™M 0.9464 0.9462 0.9451

1.3 M 0.9993 0.9993 0.9993
D 0.9993 0.9993 0.9993

™M 0.9993 0.9993 0.9993

1.4 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

™M 1.0000 1.0000 1.0000

1.5 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

™M 1.0000 1.0000 1.0000

1.6 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

™M 1.0000 1.0000 1.0000

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XIX

REJECTION RATES FOR INTERACTION TEST AT a = 0.05

FOR OVERALL R =0. 1, Nj =N~ 10, nj2= N1 — 20

Effect Size Wald LR Score
1* M 0.0646 0.0601 0.0307
D 0.0646 0.0600 0.0307

™M 0.0772 0.0752 0.0551

1.1 M 0.1330 0.1468 0.1390
D 0.1325 0.1462 0.1381

™M 0.1522 0.1594 0.1478

1.2 M 0.3908 0.4205 0.4106
D 0.3899 0.4196 0.4103

M 0.4257 0.4389 0.4224

1.3 M 0.6811 0.7022 0.6964
D 0.6804 0.7013 0.6957

™M 0.7059 0.7190 0.7040

1.4 M 0.8706 0.8834 0.8804
D 0.8702 0.8831 0.8794

™M 0.8857 0.8922 0.8847

1.5 M 0.9572 0.9627 0.9608
D 0.9568 0.9625 0.9606

™M 0.9631 0.9657 0.9627

1.6 M 0.9872 0.9889 0.9884
D 0.9870 0.9888 0.9883

™M 0.9891 0.9907 0.9890

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XX

REJECTION RATES FOR INTERACTION TEST AT o = 0.05

FOR OVERALL R = 0.1, ny; = 03, = 20, 112= 15, = 10

Effect Size Wald LR Score
1* M 0.0646 0.0601 0.0307
D 0.0646 0.0600 0.0307

™M 0.0772 0.0752 0.0551

1.1 M 0.2063 0.1782 0.0665
D 0.2063 0.1783 0.0665

™M 0.2275 0.2159 0.1561

1.2 M 0.4782 0.4296 0.2229
D 0.4782 0.4295 0.2226

™M 0.5101 0.4917 0.3932

1.3 M 0.7579 0.7179 0.4844
D 0.7578 0.7179 0.4842

™M 0.7846 0.7692 0.6881

1.4 M 0.9288 0.9085 0.7573
D 0.9288 0.9085 0.7572

™M 0.9379 0.9328 0.8936

1.5 M 0.9844 0.9787 0.9167
D 0.9844 0.9787 0.9167

™M 0.9878 0.9863 0.9734

1.6 M 0.9981 0.9972 0.9809
D 0.9981 0.9972 0.9809

™M 0.9986 0.9982 0.9959

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XXI

REJECTION RATES FOR INTERACTION TEST AT o = 0.05

FOR OVERALL R =0. 1, ny=np= 20, M1 =Ny — 10

Effect Size Wald LR Score
1 M 0.0645 0.0602 0.0301
D 0.0640 0.0601 0.0301

™ 0.0747 0.0743 0.0563

1.1 M 0.1630 0.1549 0.0926
D 0.1626 0.1542 0.0925

™ 0.1841 0.1825 0.1479

1.2 M 0.4457 0.4337 0.3143
D 0.4453 0.4328 0.3136

™ 0.4764 0.4733 0.4206

1.3 M 0.7216 0.7091 0.5893
D 0.7211 0.7085 0.5887

M 0.7486 0.7461 0.6980

1.4 M 0.8968 0.8908 0.8191
D 0.8967 0.8906 0.8188

M 0.9091 0.9078 0.8837

1.5 M 0.9730 0.9712 0.9443
D 0.9730 0.9712 0.9442

M 0.9781 0.9776 0.9679

1.6 M 0.9930 0.9923 0.9837
D 0.9830 0.9923 0.9837

™ 0.9943 0.9941 0.9914

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XXI1

REJECTION RATES FOR INTERACTION TEST AT o = 0.05

FOR OVERALL R = 01, N1 =Ny = 20, Nnp=Nn731= 30

Effect Size Wald IR Score

1* M 0.0546 0.0522 0.0402

D 0.0546 0.0522 0.0402

M 0.0602 0.0597 0.0522

1.1 M 0.2345 0.2436 0.2414

D 0.2343 0.2435 0.2406

M 0.2491 0.2546 0.2503

1.2 M 0.6710 10.6797 0.6780

D 0.6706 0.6793 0.6774

M 0.6840 0.6882 0.6857

1.3 M 0.9251 0.9282 0.9274

D 0.9247 0.9281 10.9274

M 0.9303 0.9313 0.9306

1.4 M 0.9905 0.9909 0.9909

D 0.9904 0.9909 0.9908

M 0.9912 0.9915 0.9913

1.5 M 0.9991 0.9992 0.9992

D 0.9991 0.9992 0.9992

M 0.9993 0.9993 0.9993

1.6 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

M 1.0000 1.0000 1.0000

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XXIII

REJECTION RATES FOR INTERACTION TEST AT a = 0.05

FOR OVERALL R = 01, N1 =N = 30, Ny = MNo1 = 20

Effect Size Wald LR Score
1* M 0.0546 0.0522 0.0402
D 0.0546 0.0522 0.0402

M 0.0602 0.0597 0.0522

1.1 M 0.2782 0.2620 0.2004
D 0.2782 0.2618 0.2004

M 0.2919 0.2847 0.2555

1.2 M 0.6989 0.6793 0.6120
D 0.6989 0.6791 0.6119

M 0.7135 0.7059 0.6724

1.3 M 0.9477 0.9432 0.9192
D 0.9477 0.9431 0.9192

M 0.9512 0.9497 0.9403

1.4 M 0.9963 0.9955 0.9925
D 0.9963 0.9955 0.9925

M 0.9970 0.9967 0.9952

1.5 M 0.9994 0.9993 0.9991
D 0.9994 0.9993 0.9991

M 0.9994 0.9994 0.9993

1.6 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

M 1.0000 1.0000 1.0000

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XXIV

REJECTION RATES FOR INTERACTION TEST AT o = 0.05

FOR OVERALL R = 01, ni1=np~= 30, N1 — N — 20

Effect Size Wald LR Score
1 M 0.0547 0.0529 0.0422
D 0.0545 0.0527 0.0422

™ 0.0605 0.0601 0.0532

1.1 M 0.2525 0.2482 0.2209
D 0.2524 0.2479 0.2204

M 0.2658 0.2649 0.2492

1.2 M 0.6851 0.6801 0.6412
D 0.6851 0.6798 0.6405

M 0.7010 0.6995 0.6805

1.3 M 0.9321 0.9305 0.9154
D 0.9320 0.9304 0.9152

™ 0.9370 0.9365 0.9311

1.4 M 0.9935 0.9935 0.9902
D 0.9935 0.9935 0.9902

™ 0.9941 0.9941 0.9935

1.5 M 0.9996 0.9996 0.9996
D 0.9996 0.9996 0.9996

M 0.9996 0.9996 0.9996

1.6 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

M 1.0000 1.0000 1.0000

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XXV

REJECTION RATES FOR INTERACTION TEST AT o = 0.05

FOR OVERALL R = 0.1, 01 = 0y = 10, 135= 121 = 30

Effect Size Wald LR Score
1* M 0.0657 0.0577 0.0160
D 0.0655 0.0575 0.0159

™M 0.0771 0.0729 0.0325

1.1 M 0.1307 0.1530 0.1262
D 0.1305 0.1523 0.1256

™M 0.1503 0.1635 0.1235

1.2 M 0.4017 0.4418 0.4036
D 0.4006 0.4406 0.4024

™M 0.4320 0.4532 0.3947

1.3 M 0.6971 0.7322 0.6997
D 0.6962 0.7315 0.6987

™M 0.7219 0.7422 0.6887

1.4 M 0.8988 0.9155 0.8991
D 0.8983 0.9151 0.8989

™M 0.9103 0.9191 0.8959

1.5 M 0.9664 0.9718 0.9667
D 0.9663 0.9717 0.9665

™M 0.9709 0.9732 0.9659

1.6 M 0.9903 0.9923 0.9905
D 0.9903 0.9923 0.9904

™M 0.9920 0.9925 0.9900

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XXVI

REJECTION RATES FOR INTERACTION TEST AT o = 0.05

FOR OVERALL R =0. 1, Ny =nxp= 30, Nnp—NMr = 10

Effect Size Wald LR Score
1* M 0.0657 0.0577 0.0160
D 0.0655 0.0575 0.0159

™M 0.0771 0.0729 0.0325

1.1 M 0.2302 0.1877 0.0215
D 0.2302 0.1877 0.0215

™M 0.2549 0.2352 0.1123

1.2 M 0.5363 0.4729 0.1079
D 0.5364 0.4730 0.1078

™M 0.5705 0.5431 0.3449

1.3 M 0.8206 0.7753 0.3133
D 0.8208 0.7755 0.3132

™M 0.8420 0.8275 0.6523

1.4 M 0.9612 0.9426 0.5883
D 0.9613 0.9426 0.5884

™M 0.9684 0.9624 0.8836

1.5 M 0.9928 0.9883 0.8268
D 0.9928 0.9883 0.8267

™M 0.9943 0.9930 0.9742

1.6 M 0.9996 0.9992 0.9468
D 0.9996 0.9992 0.9467

™M 0.9997 0.9996 0.9966

M = McKay’s Approximation

‘D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XXVII

REJECTION RATES FOR INTERACTION TEST AT o = 0.05

FOR OVERALLR = 01, n;=np= 30, N2 = N2 = 10

Effect Size Wald LR Score
1 M 0.0651 0.0617 0.0138
D 0.0651 0.0615 0.0138

™M 0.0754 0.0739 0.0395

1.1 M 0.1828 0.1722 0.0543
D 0.1825 0.1717 0.0541

™M 0.2041 0.2014 0.1224

1.2 M 0.4715 0.4538 0.2170
D 0.4705 0.4533 0.2165

™M 0.5026 0.5001 0.3713

1.3 M 0.7720 0.7577 0.5119
D 0.7717 0.7573 0.5110

™M 0.7929 0.7910 0.6855

1.4 M 0.9324 0.9258 0.7791
D 0.9323 0.9257 7 0.7787

™M 0.9427 0.9419 0.8887

1.5 M 0.9831 0.9812 0.9270
D 0.9830 0.9812 0.9267

™M 0.9865 0.9862 0.9709

1.6 M 0.9968 0.9958 0.9801
D 0.9968 0.9958 0.9801

™M 0.9976 0.9975 0.9935

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation

113



TABLE XXVIII

REJECTION RATES FOR INTERACTION TEST AT o = 0.05

FOR OVERALLR = 01, Ny 1=Nyp= 30, Nip2= N1 = 50

Effect Size Wald LR Score
1* M 0.0545 0.0530 0.0425
D 0.0545 0.0530 0.0425

M 0.0583 0.0579 0.0493

1.1 M 0.3453 0.3558 0.3498
D 0.3448 0.3553 0.3495

™M 0.3542 0.3608 0.3494

1.2 M 0.8522 0.8593 0.8559
D 0.8521 0.8593 0.8556

M 0.8586 0.8623 0.8552

1.3 M 0.98908 0.9904 0.9901
D 0.9898 0.9904 0.9901

™M 0.9902 0.9907 0.9901

1.4 M 0.9998 0.9998 0.9998
D 0.9998 0.9998 0.9998

M 0.9998 0.9998 0.9998

1.5 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

M 1.0000 1.0000 1.0000

1.6 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

M 1.0000 1.0000 1.0000

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XXIX

REJECTION RATES FOR INTERACTION TEST AT a = 0.05

FOR OVERALLR = 01, N1 =N~ 50, np2=Mn021= 30

Effect Size Wald LR Score
1* M 0.0545 0.0530 0.0425
D 0.0545 0.0530 0.0425

M 0.0583 0.0579 0.0493

1.1 M 0.3878 0.3684 0.2978
D 0.3879 0.3684 0.2978

M 0.3981 0.3908 0.3469

1.2 M 0.8781 0.8694 0.8206
D 0.8781 0.8694 0.8206

M 0.8851 0.8796 0.8564

1.3 M 0.9955 0.9950 0.9903
D 0.9955 0.9950 0.9903

M 0.9961 0.9957 0.9945

1.4 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

M 1.0000 1.0000 1.0000

1.5 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

™M 1.0000 1.0000 1.0000

1.6 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

™M 1.0000 1.0000 1.0000

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XXX

REJECTION RATES FOR INTERACTION TEST AT o = 0.05

FOR OVERALL R = 01, N1 =Ny~ 50, D21 = 0= 30

Effect Size Wald LR Score
1 M 0.0533 0.0519 0.0422
D 0.0532 0.0517 0.0421

™M 0.0570 0.0568 0.0488

1.1 M 0.3625 0.3573 0.3190
D 0.3624 0.3572 0.3188

™M 0.3722 0.3719 0.3426

1.2 M 0.8639 0.8621 0.8385
D 0.8637 0.8617 0.8383

™M 0.8708 0.8705 0.8545

1.3 M 0.9932 0.9925 0.9899
D 0.9931 0.9924 0.9899

™M 0.9936 0.9936 0.9916

1.4 M 1.0000 1.0000 0.9999
D 1.0000 1.0000 0.9999

™M 1.0000 1.0000 0.9999

1.5 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

™M 1.0000 1.0000 1.0000

1.6 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

™M 1.0000 1.0000 1.0000

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XXXI

REJECTION RATES FOR INTERACTION TEST AT o = 0.05

FOR OVERALL R = 0.2, n;; = nj2= 111 = = 30

Effect Size Wald LR Score
1 M 0.0552 0.0542 0.0493
D 0.0547 0.0540 0.0488

™M 0.0606 0.0604 0.0585

1.05 M 0.1193 » 0.1179 0.1106
D 0.1188 0.1173 0.1101

™M 0.1269 0.1263 0.1245

1.1 M 0.2912 0.2885 0.2766
D 0.2904 0.2877 0.2756

™M 0.3014 0.3008 0.2978

1.15 M 0.5256 0.5231 0.5110
D 0.5246 0.5221 0.5099

™ 0.5387 0.5384 0.5350

1.2 M 0.7493 0.7462 0.7367
D 0.7488 0.7453 0.7358

™M 0.7587 0.7584 0.7553

1.25 M 0.9016 0.8996 0.8945
D 0.9009 0.8991 0.8941

™M 0.9064 0.9064 0.9043

1.3 M 0.9714 0.9711 0.9689
D 0.9712 0.9708 0.9688

™M 0.9737 0.9736 0.9732

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XXXII

REJECTION RATES FOR INTERACTION TEST AT a=0.05"

FOR OVERALLR = 02, N =NnNp~=n1=nNp=— 50

Effect Size Wald LR Score
1 M 0.0494 0.0488 0.0470
D 0.0492 0.0485 0.0469

M 0.0512 0.0512 0.0507

1.05 M 0.1585 0.1574 0.1532
D 0.1581 0.1572 0.1528

M 0.1639 0.1639 0.1624

1.1 M 0.4442 0.4421 0.4334
D 0.4439 0.4411 0.4327

M 0.4514 0.4510 0.4487

1.15 M 0.7527 0.7515 0.7443
D 0.7525 0.7509 0.7431

M 0.7581 0.7580 0.7567

1.2 M 0.9360 0.9354 0.9336
D 0.9358 0.9353 0.9335

™M 0.9392 0.9390 0.9378

1.25 M 0.9864 0.9863 0.9853
D 0.9863 0.9862 0.9853

M 0.9869 0.9869 0.9869

1.3 M 0.9984 0.9984 0.9983
D 0.9984 0.9984 0.9983

M 0.9986 0.9986 0.9984

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XXX

REJECTION RATES FOR INTERACTION TEST AT o = 0.05

FOR OVERALLR = 02, N1=Np2=N21=Nxp—= 100

Effect Size Wald LR Score
1 M 0.0539 0.0537 0.0527
D 0.0539 0.0536 0.0526

™M 0.0554 0.0554 0.0550

1.05 M 0.2656 0.2643 0.2619
D 0.2654 0.2641 0.2617

™M 0.2688 0.2687 0.2679

1.1 M 0.7301 0.7289 0.7261
D 0.7297 0.7287 0.7256

™M 0.7337 0.7337 0.7332

1.15 M 0.9634 0.9631 0.9626
D 0.9632 0.9631 0.9625

M 0.9641 0.9641 0.9640

1.2 M 0.9984 0.9984 0.9983
D 0.9984 0.9984 0.9983

™M 0.9984 0.9984 0.9984

1.25 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

™M 1.0000 1.0000 1.0000

1.3 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

™M 1.0000 1.0000 1.0000

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XXXIV

REJECTION RATES FOR INTERACTION TEST AT o = 0.05

FOR OVERALLR = 02, n;;=npn= 30, np=n,31= 50

Effect Size Wald LR Score
1* M 0.0560 0.0536 0.0422
D 0.0559 0.0533 0.0421

™ 0.0593 0.0586 0.0485

1.05 M 0.1164 0.1235 0.1181
D 0.1159 0.1227 0.1173

™ 0.1226 0.1273 0.1194

1.1 M 0.3290 0.3436 0.3382
D 0.3276 0.3420 0.3365

™ 0.3401 0.3476 0.3380

1.15 M 0.6179 0.6313 0.6254
D 0.6161 0.6298 0.6237

™M 0.6273 0.6351 0.6252

1.2 M 0.8322 0.8414 0.8378
D 0.8310 0.8401 0.8368

™ 0.8394 0.8441 0.8376

1.25 M 0.9467 0.9505 0.9488
D 0.9462 0.9501 0.9481

™ 0.9494 0.9509 0.9489

1.3 M 0.9858 0.9869 0.9865
D 0.9857 0.9867 0.9863

™ 0.9866 0.9875 0.9864

- M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XXXV

REJECTION RATES FOR INTERACTION TEST AT o = 0.05

FOR OVERALL R = 02, n; =N~ 50, Np=Ny = 30

Effect Size Wald LR Score
1* M 0.0560 0.0536 0.0422
D 0.0559 0.0533 - 0.0421

™M 0.0593 0.0586 0.0485

1.05 M 0.1436 0.1332 0.0964
D 0.1436 0.1331 0.0964

™M 0.1515 0.1452 0.1210

1.1 M 0.3637 0.3453 0.2752
D 0.3641 0.3453 0.2752

™M 0.3730 0.3654 0.3198

1.15 M 0.6458 0.6280 0.5516
D 0.6460 0.6280 0.5517

™M 0.6548 0.6474 0.6060

1.2 M 0.8571 0.8475 0.7973
D 0.8571 0.8475 0.7973

™M 0.8642 0.8580 0.8323

1.25 M 0.9621 0.9586 0.9355
D 0.9622 0.9586 0.9355

™M 0.9648 0.9624 0.9512

1.3 M 0.9922 0.9906 0.9839
D 0.9922 0.9906 0.9839

™M 0.9925 0.9923 0.9885

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XXXVI

REJECTION RATES FOR INTERACTION TEST AT o = 0.05

FOR OVERALL R= 02, n;;=—np= 50, Ny =N = 30

Effect Size Wald LR Score
1 M 0.0522 0.0514 0.0404
D 0.0519 0.0509 0.0402

™M 0.0561 0.0560 0.0478

1.05 M 0.1298 0.1275 0.1049
D 0.1296 0.1268 0.1045

™M 0.1353 0.1351 0.1186

1.1 M 0.3471 0.3442 0.3026
D 0.3463 0.3436 0.3021

™M 0.3577 0.3568 0.3282

1.15 M 0.6277 0.6245 0.5872
D 0.6269 0.6234 0.5861

™M 0.6389 0.6384 0.6109

1.2 M 0.8441 0.8424 0.8135
D 0.8436 0.8419 0.8129

M 0.8502 0.8494 0.8328

1.25 M 0.9572 0.9564 0.9454
D 0.9567 0.9562 0.9453

™M 0.9594 0.9591 0.9523

1.3 M 0.9899 0.9898 0.9871
D 0.9899 0.9898 0.9870

™M 0.9910 0.9910 0.9890

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XXXVII

REJECTION RATES FOR INTERACTION TEST AT o = 0.05

FOR OVERALLR = 02, N 1=0n= 50, D=0y — 100

Effect Size Wald LR Score
1* M 0.0525 0.0512 0.0362
D 0.0524 0.0511 0.0363

™M 0.0544 0.0544 0.0404

1.05 M 0.1815 0.1919 0.1746
D 0.1802 0.1912 0.1737

™M 0.1857 0.1927 0.1689

1.1 M 0.5278 0.5437 0.5224
D 0.5265 0.5422 0.5209

™M 0.5346 0.5441 0.5139

1.15 M 0.8530 0.8616 0.8488
D 0.8520 0.8604 0.8482

™M 0.8562 0.8619 0.8435

1.2 M 0.9725 0.9743 0.9712
D 0.9720 0.9742 0.9710

™ 0.9733 0.9744 0.9703

1.25 M 0.9965 0.9969 0.9959
D 0.9964 0.9968 0.9959

™ 0.9965 0.9969 0.9957

1.3 M 0.9999 0.9999 0.9999
D 0.9999 0.9999 0.9999

M 0.9999 0.9999 0.9999

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation

123



TABLE XXXVIII

REJECTION RATES FOR INTERACTION TEST AT o = 0.05

FOR OVERALLR = 02, n; = nNpp—= 100, N2~ 021~ 50

Effect Size Wald LR Score
1* M 0.0525 0.0512 0.0362
D 0.0524 _ 0.0511 0.0363

™M 0.0544 0.0544 0.0404

1.05 M 0.2032 0.1925 0.1338
D 0.2036 0.1929 0.1339

M 0.2076 0.2019 0.1561

1.1 M 0.5756 0.5555 0.4587
D 0.5758 0.5558 0.4589

™M 0.5839 0.5733 0.5019

1.15 M 0.8756 0.8664 0.8079
D 0.8760 0.8665 0.8085

M 0.8794 0.8744 0.8350

1.2 M 0.9812 0.9794 0.9660
D 0.9812 0.9794 0.9662

™M 0.9816 0.9807 0.9726

1.25 M 0.9988 0.9986 0.9968
D 0.9988 0.9986 0.9968

M 0.9989 0.9988 0.9977

1.3 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

™M 1.0000 1.0000

1.0000

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XXXIX

REJECTION RATES FOR INTERACTION TEST AT o = 0.05

FOR OVERALL R = 0.2, n;; =n;;= 100, n3; = np = 50

Effect Size Wald LR Score
1 M 0.0519 0.0508 0.0360
D 0.0516 0.0507 0.0357

™M 0.0542 0.0541 0.0402

1.05 M 0.1923 0.1905 0.1555
D 0.1918 0.1902 0.1553

11\ 0.1961 0.1960 0.1658

1.1 M 0.5536 0.5510 0.4933
D 0.5530 0.5505 0.4928

™M 0.5610 0.5603 0.5115

1.15 M 0.8691 0.8679 0.8328
D 0.8690 0.8675 0.8324

11\ 0.8730 0.8726 0.8447

1.2 M 0.9784 0.9780 0.9692
D 0.9783 0.9779 0.9691

™M 0.9790 0.9789 0.9716

1.25 M 0.9978 0.9977 0.9963
D 0.9978 0.9977 0.9963

11\ 0.9979 0.9979 0.9969

1.3 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

™M -1.0000 1.0000 1.0000

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XL

REJECTION RATES FOR MAIN-EFFECT TEST AT o = 0.05

FOR OVERALLR =0. 1, N;;=Np=N3=Npp= 10

Effect Size Wald LR Score
1 M 0.0665 0.0544 0.0362
D 0.0660 0.0542 0.0361

™ 0.0815 0.0782 0.0707

1.1 M 0.1437 0.1259 0.0929
D 0.1431 0.1253 0.0925

™ 0.1669 0.1620 0.1521

1.2 M 0.3498 0.3212 0.2607
D 0.3494 0.3207 0.2601

™ 0.3832 0.3766 0.3623

13 M 0.5978 0.5621 0.4947
D 0.5962 0.5612 0.4938

™ 0.6365 0.6273 0.6102

1.4 M 0.7993 0.7723 0.7157
D 0.7989 0.7718 0.7150

M 0.8271 0.8218 0.8092

1.5 M 0.9148 0.9006 0.8656
D 0.9145 0.9001 0.8649

™M 0.9294 0.9267 0.9194

1.6 M 0.9694 0.9615 0.9433
D 0.9690 0.9614 0.9430

™ 0.9746 0.9730 09711

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XLI

REJECTION RATES FOR MAIN-EFFECT TEST AT a = 0.05

FOR OVERALLR =0. ]., N —Npp=N1 =Ny = 20

Effect Size Wald LR Score
1 M 0.0558 0.0510 0.0427
D 0.0558 0.0510 0.0427

™ 0.0618 0.0599 0.0573

1.1 M 0.2154 0.2048 0.1830
D 0.2150 0.2046 0.1825

™ 0.2288 0.2246 0.2202

1.2 M 0.5964 0.5798 0.5488
D 0.5960 0.5793 0.5482

™ 0.6154 0.6099 0.6036

1.3 M 0.8897 0.8825 0.8623
D 0.8896 0.8822 0.8623

™ 0.8989 0.8969 0.8938

1.4 M 0.9831 0.9813 0.9761
D 0.9829 0.9813 0.9760

™M 0.9850 0.9844 0.9836

1.5 M 0.9982 0.9977 0.9971
D 0.9982 0.9977 0.9971

™ 0.9984 0.9984 0.9982

1.6 M 0.9999 0.9999 0.9999
D 0.9999 0.9999 0.9999

™M 0.9999 0.9999 0.9999

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XLII

REJECTION RATES FOR MAIN-EFFECT TEST AT o = 0.05

FOR OVERALL R = 01, Nn=np=m~nDdpn~= 30

Effect Size Wald LR Score
1 M 0.0560 0.0521 0.0460
D 0.0560 0.0518 0.0459

1\ 0.0592 0.0584 0.0570

1.1 M 0.2965 0.2866 0.2688
D 0.2962 0.2862 0.2686

™M 0.3079 0.3057 0.3007

1.2 M 0.7797 0.7705 0.7545
D 0.7791 0.7703 0.7541

™M 0.7890 0.7875 0.7828

1.3 M 0.9756 0.9738 0.9705
D 0.9756 0.9736 0.9705

1\ 0.9777 0.9773 0.9761

1.4 M 0.9987 0.9987 0.9984
D 0.9987 0.9987 0.9984

™M 0.9988 0.9988 0.9988

1.5 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

™M 1.0000 1.0000 1.0000

1.6 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

1\ 1.0000 1.0000 1.0000

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XLIIT

REJECTION RATES FOR MAIN-EFFECT TEST AT o = 0.05

FOR OVERALLR = 01, N =Ny~ M= N~ 50

Effect Size Wald LR Score
1 M 0.0511 0.0490 0.0460
D 0.0510 0.0489 0.0460

™M 0.0535 0.0532 0.0523

1.1 M 0.4615 0.4552 0.4434
D 0.4612 0.4549 0.4433

™M 0.4691 0.4673 0.4634

1.2 M 0.9462 0.9447 0.9409
D 0.9460 0.9447 0.9407

™M 0.9480 0.9477 0.9471

1.3 M 0.9990 0.9990 0.9989
D 0.9990 0.9990 0.9989

™M 0.9990 0.9990 0.9990

1.4 M 0.9999 0.9999 0.9999
D 0.9999 0.9999 0.9999

M 0.9999 0.9999 0.9999

1.5 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

M 1.0000 1.0000 1.0000

1.6 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

M 1.0000 1.0000 1.0000

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XLIV

REJECTION RATES FOR MAIN-EFFECT TEST AT a = 0.05

FOR OVERALLR = 01, np=nyn= 10, Ni2= N~ 20

Effect Size Wald LR Score
1* M 0.0608 0.0519 0.0267
D 0.0606 0.0517 0.0266

M 0.0733 0.0707 0.0492

1.1 M 0.1509 0.1570 0.1412
D 0.1500 0.1564 0.1411

™M 0.1631 0.1695 0.1533

1.2 M 0.4074 0.4176 0.3955
D 0.4065 0.4161 0.3946

™M 0.4212 0.4331 0.4111

1.3 M 0.7122 0.7211 0.6998
D 0.7115 0.7197 0.6995

M 0.7248 0.7335 0.7155

1.4 M 0.8848 0.8880 0.8761
D 0.8843 0.8876 0.8755

™M 0.8893 0.8933 0.8846

1.5 M 0.9673 0.9686 0.9632
D 0.9672 0.9686 0.9631

™M 0.9691 0.9707 0.9669

1.6 M 0.9895 0.9905 0.9890
D 0.9895 0.9905 0.9889

M 0.9905 0.9911 0.9901

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XLV

REJECTION RATES FOR MAIN-EFFECT TEST AT o = 0.05

FOR OVERALLR = 01, n=ns = 20, Nnp=Nxn= 10

Effect Size Wald LR Score
1* M 0.0608 0.0519 0.0267
D 0.0606 0.0517 0.0266

™M 0.0733 0.0707 0.0492

1.1 M 0.1759 0.1416 0.0480
D 0.1758 0.1415 0.0480

™M 0.2084 0.1921 0.1357

1.2 M 0.4534 0.3922 0.1789
D 0.4534 0.3921 0.1788

™M 0.5001 0.4800 0.3791

1.3 M 0.7471 0.6936 0.4372
D 0.7471 0.6936 0.4370

™M 0.7864 0.7697 0.6772

1.4 M 0.9164 0.8912 0.7058
D 0.9164 0.8912 0.7056

™M 0.9346 0.9251 0.8817

1.5 M 0.9810 0.9722 0.8878
D 0.9810 0.9722 0.8878

™M 0.9865 0.9844 0.9697

1.6 M 0.9963 0.9934 0.9655
D 0.9963 0.9934 0.9655

M 0.9975 0.9970 0.9931

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XL VI

REJECTION RATES FOR MAIN-EFFECT TEST AT o = 0.05

FOR OVERALL R = 01, n;=np~—= 20, Ny =Ny = 10

Effect Size Wald LR Score
1 M 0.0613 0.0524 0.0418
D 0.0611 0.0523 0.0415

M 0.0692 0.0675 0.0632

1.1 M 0.1738 0.1613 0.1367
D 0.1737 0.1609 0.1367

M 0.1894 0.1857 0.1816

1.2 M 0.4719 0.4529 0.4055
D 04714 0.4526 0.4051

™M 0.4983 0.4927 0.4828

1.3 M 0.7778 0.7596 0.7221
D 0.7775 0.7587 0.7219

™M 0.7965 0.7917 0.7848

1.4 M 0.9316 0.9234 0.9055
D 0.9313 0.9231 0.9050

™M 0.9388 0.9371 0.9340

1.5 M 0.9861 0.9845 0.9789
D 0.9861 0.9844 0.9787

™M 0.9887 0.9883 0.9870

1.6 M 0.9976 0.9972 0.9956
D 0.9976 0.9972 0.9955

™M 0.9979 0.9979 0.9977

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation

132



TABLE XLVII

REJECTION RATES FOR MAIN-EFFECT TEST AT a = 0.05

FOR OVERALL R =0. 1, n;=0p = 20, N~ N = 30

Effect Size Wald LR Score
1* M 0.0572 0.0525 0.0401
D 0.0571 0.0525 0.0400

M 0.0618 0.0601 0.0534

1.1 M 0.2426 0.2448 0.2372
D 0.2420 0.2442 0.2368

™M 0.2516 0.2555 0.2505

1.2 M 0.6681 0.6692 0.6589
D 0.6674 0.6683 0.6581

™M 0.6769 0.6815 0.6744

1.3 M 0.9335 0.9338 0.9303
D 0.9333 0.9337 0.9302

™M 0.9364 0.9380 0.9352

1.4 M 0.9945 0.9940 0.9933
D 0.9945 0.9940 0.9933

™M 0.9945 0.9945 0.9943

1.5 M 0.9992 0.9993 0.9993
D 0.9992 0.9993 0.9993

™M 0.9993 0.9993 0.9993

1.6 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

™M 1.0000 1.0000 1.0000

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XLVIII

REJECTION RATES FOR MAIN-EFFECT TEST AT o = 0.05

FOR OVERALL R=0. ]., n1=nz1= 30, Np=Nypn~= 20

Effect Size Wald LR Score
1* M 0.0572 0.0525 0.0401
D 0.0571 0.0525 0.0400

M 0.0618 0.0601 0.0534

1.1 M 0.2574 0.2360 0.1752
D 0.2573 0.2360 0.1752

M 0.2770 0.2681 0.2378

1.2 M 0.6903 0.6623 0.5797
D 0.6903 0.6620 0.5795

™M 0.7113 0.7015 0.6639

1.3 M 0.9438 0.9337 0.9000
D 0.9438 0.9336 0.9000

M 0.9482 0.9462 0.9357

1.4 M 0.9941 0.9930 0.9868
D 0.9941 0.9930 0.9868

™M 0.9953 0.9948 0.9934

1.5 M 0.9997 0.9995 0.9988
D 0.9997 0.9995 0.9988

M 0.9998 0.9997 0.9995

1.6 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

™M 1.0000 1.0000 1.0000

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE XLIX

REJECTION RATES FOR MAIN-EFFECT TEST AT o = 0.05

FOR OVERALL R =0. 1, n; =N~ 30, N2 = N22= 20

Effect Size Wald LR Score
1 M 0.0572 0.0515 0.0409
D 0.0572 0.0513 0.0409

™M 0.0624 0.0611 0.0527

1.1 M 0.2518 0.2427 10.2097
D 0.2516 0.2424 0.2093

™M 0.2653 0.2632 0.2463

1.2 M 0.6885 0.6751 0.6329
D 0.6880 0.6744 0.6326

™M 0.7043 0.7009 0.6803

1.3 M 0.9382 0.9326 0.9155
D 0.9382 0.9326 0.9151

™M 0.9427 0.9410 0.9342

14 M 0.9934 0.9923 0.9890
D 0.9934 0.9922 0.9890

™M 0.9944 0.9940 0.9927

1.5 M 1.0000 0.9999 0.9995
D 1.0000 0.9999 0.9995

™M 1.0000 1.0000 0.9999

1.6 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

™M 1.0000 1.0000 1.0000

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE L

REJECTION RATES FOR MAIN-EFFECT TEST AT a = 0.05

FOR OVERALL R = 0.1, n;;=1n3;=10, nja=n2,= 30

Effect Size Wald LR Score
1* M 0.0605 0.0529 0.0187
D 0.0604 0.0528 0.0185

™M 0.0747 0.0712 0.0319

1.1 M 0.1543 0.1730 0.1364
D 0.1531 0.1724 0.1354

™M 0.1629 0.1733 0.1312

1.2 M 0.4480 0.4776 0.4259
D 0.4472 0.4762 0.4246

™M 0.4570 0.4751 0.4144

1.3 M 0.7503 0.7739 0.7314
D 0.7492 0.7729 0.7303

™M 0.7573 0.7715 0.7190

1.4 M 0.9124 0.9223 0.9013
D 0.9119 0.9220 0.9007

™M 0.9147 0.9207 0.8959

1.5 M 0.9738 0.9774 0.9702
D 0.9738 0.9773 0.9700

™M 0.9747 0.9769 0.9687

1.6 M 0.9950 0.9955 0.9933
D 0.9949 0.9955 0.9933

m™M 0.9948 0.9953 0.9928

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation

136



TABLE LI

REJECTION RATES FOR MAIN-EFFECT TEST AT o = 0.05

FOR OVERALL R =0. 1, N =01 = 30, N =Ny = 10

Effect Size Wald LR Score
1* M 0.0605 0.0529 0.0187
D 0.0604 0.0528 0.0185

™M 0.0747 0.0712 0.0319

1.1 M 0.1948 0.1548 0.0146
D 0.1951 0.1549 0.0146

™M 0.2320 0.2120 0.1014

1.2 M 0.4993 0.4266 0.0793
D 0.4996 0.4267 0.0794

™M 0.5503 0.5248 0.3188

1.3 M 0.7995 0.7404 0.2605
D 0.7997 0.7407 0.2605

™M 0.8360 0.8176 0.6413

1.4 M 0.9450 0.9224 0.5307
D 0.9451 0.9224 0.5304

M 0.9602 0.9515 0.8690

1.5 M 0.9923 0.9866 0.7908
D 0.9923 0.9866 0.7908

™M 0.9950 0.9937 0.9715

1.6 M 0.9991 0.9984 0.9348
D 0.9991 0.9984 0.9349

™M 0.9996 0.9994 0.9952

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE LII

REJECTION RATES FOR MAIN-EFFECT TEST AT o = 0.05

FOR OVERALLR = 01, n;1—Nnp~— 30, Ny~ Ny — 10

Effect Size Wald LR Score
1 M 0.0535 0.0484 0.0410
D 0.0534 0.0482 0.0409

M 0.0607 0.0591 0.0566

1.1 M 0.2239 0.2105 0.1877
D 0.2235 0.2101 0.1872

™M 0.2386 0.2339 0.2273

1.2 M 0.5976 0.5818 0.5522
D 0.5972 0.5818 0.5521

™M 0.6132 0.6107 0.6035

1.3 M 0.8904 0.8838 0.8652
D 0.8903 0.8834 0.8652

™M 0.8986 0.8976 0.8946

1.4 M 0.9827 0.9805 0.9758
D 0.9827 0.9803 0.9758

™M 0.9844 0.9842 0.9835

1.5 M 0.9979 0.9977 0.9971
D 0.9979 0.9976 0.9971

M 0.9981 0.9980 0.9979

1.6 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

™M 1.0000 1.0000 1.0000

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE LIIT

REJECTION RATES FOR MAIN-EFFECT TEST AT o = 0.05

FOR OVERALL R = 01, Ny —no1 = 30, N =Ny~ 50

Effect Size Wald LR Score
1* M 0.0544 0.0518 0.0402
D 0.0541 0.0518 0.0401

M 0.0587 0.0580 0.0480

1.1 M 0.3635 0.3709 0.3596
D 0.3631 0.3703 0.3587

M 0.3687 0.3739 0.3599

1.2 M 0.8548 0.8577 0.8505
D 0.8545 0.8576 0.8503

M 0.8564 0.8595 0.8509

1.3 M 0.9927 0.9929 0.9923
D 0.9927 0.9929 0.9923

M 0.9929 0.9930 0.9925

1.4 M 0.9995 0.9995 0.9995
D 0.9995 0.9995 0.9995

M 0.9995 0.9995 0.9995

1.5 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

M 1.0000 1.0000 1.0000

1.6 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

M 1.0000 1.0000 1.0000

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE LIV

REJECTION RATES FOR MAIN-EFFECT TEST AT a = 0.05

FOR OVERALLR = 01, n;;=ny= 50, Ni2=Nn= 30

Effect Size Wald LR Score
1* M 0.0544 0.0518 0.0402
D 0.0541 0.0518 0.0401

™M 0.0587 0.0580 0.0480

1.1 M 0.3648 0.3447 0.2713
D 0.3650 0.3447 0.2713

™M 0.3881 0.3709 0.3297

1.2 M 0.8825 0.8681 0.8141
D 0.8825 0.8681 0.8141

™M 0.8915 0.8866 0.8587

1.3 M 0.9934 0.9924 0.9864
D 0.9934 0.9924 0.9864

™M 0.9947 0.9941 0.9917

1.4 M 1.0000 1.0000 0.9997
D . 1.0000 1.0000 0.9997

™M 1.0000 1.0000 0.9999

1.5 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

™M 1.0000 1.0000 1.0000

1.6 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

™M 1.0000 1.0000 1.0000

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE LV

REJECTION RATES FOR MAIN-EFFECT TEST AT o = 0.05

FOR OVERAILLR = 01, Ny = N2 = 50, N2 = N2 = 30

Effect Size Wald LR Score
1 M 0.0535 0.0515 0.0449
D 0.0535 0.0515 0.0449

™M 0.0563 0.0554 0.0541

1.1 M 0.3825 0.3746 0.3598
D 0.3825 0.3742 0.3594

™M 0.3926 0.3902 0.3864

1.2 M 0.8827 0.8788 0.8713
D 0.8827 0.8788 0.8712

™M 0.8869 0.8861 0.8843

1.3 M 0.9959 0.9956 0.9949
D 0.9959 0.9956 0.9949

™M 0.9960 0.9960 0.9959

1.4 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

™M 1.0000 1.0000 1.0000

1.5 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

™M 1.0000 1.0000 1.0000

1.6 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

™M 1.0000 1.0000 1.0000

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE LVI

REJECTION RATES FOR MAIN-EFFECT TEST AT o = 0.05

FOR OVERALL R = 02, N1 =0y —Nxp= 30

Effect Size Wald LR Score
1 M 0.0544 0.0506 0.0454
D 0.0536 0.0503 0.0451

™ 0.0584 0.0576 0.0559

1.05 M 0.1188 0.1129 0.1044
D 0.1181 0.1127 0.1038

™M 0.1245 0.1228 0.1193

1.1 M 0.2855 0.2770 0.2605
D 0.2847 0.2763 0.2599

™ 0.2964 0.2941 0.2893

1.15 M 0.5473 0.5352 0.5165
D 0.5458 0.5347 0.5148

™M 0.5569 0.5549 0.5506

1.2 M 0.7623 0.7543 0.7377
D 0.7616 0.7534 0.7369

™M 0.7720 0.7701 0.7665

1.25 M 0.9023 0.8984 0.8889
D 0.9020 0.8979 0.8887

™ 0.9076 0.9061 0.9038

1.3 M 0.9679 0.9657 0.9612
D 0.9677 0.9654 0.9607

™M 0.9696 0.9695 0.9687

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE LVII

REJECTION RATES FOR MAIN-EFFECT TEST AT o = 0.05

FOR OVERALLR = 02, N1 =N~y =Ny~ 50

Effect Size Wald LR Score
1 M 0.0543 0.0522 0.0485
D 0.0540 0.0517 0.0484

™M 0.0569 0.0563 0.0552

1.05 M 0.1574 0.1530 0.1440
D 0.1572 0.1525 0.1438

M 0.1610 0.1603 0.1585

1.1 M 0.4410 0.4345 0.4225
D 0.4401 0.4341 0.4218

M 0.4479 0.4465 0.4441

1.15 M 0.7582 0.7525 0.7418
D 0.7577 0.7520 0.7416

M 0.7641 0.7637 0.7598

1.2 M 0.9343 0.9316 0.9273
D 0.9343 0.9314 0.9271

™M 0.9370 0.9364 0.9352

1.25 M 0.9869 0.9865 0.9849
D 0.9868 0.9865 0.9849

M 0.9878 0.9876 0.9875

1.3 M 0.9984 0.9984 0.9984
D 0.9984 0.9984 0.9984

™M 0.9986 0.9986 0.9985

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE LVIII

REJECTION RATES FOR MAIN-EFFECT TEST AT o = 0.05

FOR OVERALLR = 02, N;1—Npp=Ny1 =Ny = 100

Effect Size Wald LR Score
1 M 0.0496 0.0491 0.0474
D 0.0494 0.0489 0.0472

M 0.0513 0.0512 0.0501

1.05 M 0.2610 0.2586 0.2545
D 0.2607 0.2585 0.2541

M 0.2650 0.2642 0.2627

1.1 M 0.7395 0.7366 0.7297
D 0.7395 0.7364 0.7292

M 0.7429 0.7422 0.7404

1.15 M 0.9639 0.9631 0.9615
D 0.9638 0.9630 0.9615

™M 0.9645 0.9644 0.9643

1.2 M 0.9992 -~ 0.9992 0.9991
D 0.9992 0.9992 0.9991

M 0.9992 0.9992 0.9992

1.25 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

™ 1.0000 1.0000 1.0000

1.3 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000

™ 1.0000 1.0000 1.0000

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE LIX

REJECTION RATES FOR MAIN-EFFECT TEST AT o = 0.05

FOR OVERALLR = 0.2, ng=m= 30, Np=—0n= 50

Effect Size Wald LR Score
1* M 0.0521 0.0493 0.0364
D 0.0520 0.0491 0.0363

™M 0.0556 0.0550 0.0449

1.05 M 0.1295 0.1353 0.1268
D 0.1288 0.1342 0.1256

™M 0.1338 0.1371 0.1295

1.1 M 0.3484 0.3575 0.3464
D 0.3463 0.3564 0.3443

™M 0.3546 0.3616 0.3494

1.15 M 0.6197 0.6293 0.6181
D 0.6179 0.6272 0.6162

™M 0.6245 0.6326 0.6199

1.2 M 0.8382 0.8444 0.8365
D 0.8367 0.8430 0.8356

™M 0.8411 0.8470 0.8375

1.25 M 0.9502 0.9528 0.9496
D 0.9497 0.9524 0.9490

™M 0.9515 0.9536 0.9505

1.3 M 0.9881 0.9884 0.9877
D 0.9879 0.9884 0.9877

™M 0.9883 0.9886 0.9879

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE LX

REJECTION RATES FOR MAIN-EFFECT TEST AT o = 0.05

FOR OVERALLR = 02, n;;=n1= 50, N =Ny = 30

Effect Size Wald LR Score
1* M 0.0521 0.0493 0.0364
D 0.0520 0.0491 0.0363

M 0.0556 0.0550 0.0449

1.05 M 0.1323 0.1203 0.0856
D 0.1321 0.1203 0.0855

M 0.1421 0.1357 0.1098

1.1 M 0.3545 0.3313 0.2583
D 0.3545 0.3315 0.2583

M 0.3707 0.3606 0.3155

1.15 M 0.6385 0.6155 0.5297
D 0.6387 0.6157 0.5298

M 0.6545 0.6430 0.5998

1.2 M 0.8578 0.8419 0.7837
D 0.8580 0.8419 0.7837

M 0.8672 0.8605 0.8324

1.25 M 0.9582 0.9499 0.9222
D 0.9582 0.9499 0.9222

M 0.9624 0.9599 0.9448

1.3 M 0.9913 0.9898 0.9820
D 0.9913 0.9898 0.9820

M 0.9926 0.9917 0.9885

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE LXI

REJECTION RATES FOR MAIN-EFFECT TEST AT o = 0.05

FOR OVERALL R = 02, Ny — N2 = 50, Ny = Ny = 30

Effect Size Wald LR Score
1 M 0.0511 0.0494 0.0442
D 0.0510 0.0493 0.0440

™M 0.0535 0.0527 0.0517

1.05 M 0.1282 0.1238 -0.1159
D 0.1274 0.1231 0.1155

™M 0.1336 0.1324 0.1299

1.1 M 0.3713 0.3660 0.3523
D 0.3703 0.3652 0.3520

™M 0.3799 0.3790 0.3751

1.15 M 0.6612 0.6521 0.6353
D 0.6608 0.6515 0.6339

™M 0.6711 0.6690 0.6643

1.2 M 0.8738 0.8687 0.8582
D 0.8734 0.8684 0.8579

™M 0.8792 0.8779 0.8751

1.25 M 0.9676 0.9657 0.9633
D 0.9674 0.9656 0.9631

M 0.9693 0.9692 0.9680

1.3 M 0.9932 0.9927 0.9916
D 0.9931 0.9926 0.9915

M 0.9937 0.9935 0.9933

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE LXII

REJECTION RATES FOR MAIN-EFFECT TEST AT o = 0.05

FOR OVERALLR = 02, n;=n = 50, N =Ny~ 100

Effect Size Wald LR Score
1* M 0.0499 0.0475 0.0323
D 0.0498 0.0472 0.0321

™M 0.0523 0.0512 0.0371

1.05 M 0.1861 0.1961 0.1771
D 0.1854 0.1948 0.1764

™M 0.1862 0.1923 0.1706

1.1 M 0.5517 0.5638 0.5383
D 0.5503 0.5625 0.5366

™M 0.5525 0.5614 0.5286

1.15 M 0.8591 0.8675 0.8511
D 0.8589 0.8667 0.8501

™M 0.8598 0.8651 0.8460

1.2 M 0.9769 0.9780 0.9753
' D 0.9767 0.9778 0.9753

™M 0.9768 0.9776 0.9738

1.25 M 0.9978 0.9980 0.9976
D 0.9978 0.9979 0.9976

™M 0.9978 0.9979 0.9974

1.3 M 0.9998 0.9998 0.9995
D 0.9998 0.9998 0.9995

™M 0.9998 0.9998 0.9994

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE LXIIT

REJECTION RATES FOR MAIN-EFFECT TEST AT a = 0.05

FOR OVERALL R = 02, Ny =n21= 100, Npip=Nypp= 50

Effect Size Wald LR Score
1* M 0.0499 0.0475 0.0323
D 0.0498 0.0472 0.0321

M 0.0523 0.0512 0.0371

1.05 M 0.2016 0.1861 0.1288
D 0.2016 0.1884 0.1291

M 0.2128 0.2026 0.1560

1.1 M 0.5642 0.5435 0.4426
D 0.5645 0.5438 0.4429

M 0.5801 0.5668 0.4957

1.15 M 0.8684 - 0.8573 0.7993
D 0.8688 0.8576 0.7996

M 0.8747 0.8694 0.8344

1.2 M 0.9811 0.9787 0.9637
D 0.9811 0.9788 0.9637

M 0.9823 0.9813 0.9723

1.25 M 0.9985 0.9985 0.9970
D 0.9986 0.9985 0.9970

M 0.9987 0.9985 0.9978

1.3 M 0.9998 0.9998 0.9996
D 0.9998 0.9998 0.9996

M 0.9998 0.9998 0.9998

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation

149



TABLE LXIV

REJECTION RATES FOR MAIN-EFFECT TEST AT « = 0.05

FOR OVERALL R = 0.2, n;; =n;2= 100, n3; = nyp»p = 50

Effect Size Wald LR Score
1 M 0.0525 0.0513 0.0494
D 0.0524 0.0512 0.0491

™M 0.0546 0.0544 0.0532

1.05 M 0.2115 0.2087 0.2044
D 02112 0.2081 0.2042

™M 0.2158 0.2154 0.2134

1.1 M 0.6055 0.6022 0.5940
D 0.6053 0.6017 0.5936

™M 0.6095 0.6081 0.6063

1.15 M 0.8996 0.8983 0.8949
D 0.8996 0.8982 0.8947

M 0.9021 0.9015 0.9002

1.2 M 0.9879 0.9872 0.9862
D 0.9878 0.9871 0.9862

M 0.9883 0.9883 0.9881

1.25 M 0.9992 0.9991 0.9991
D 0.9992 0.9991 0.9991

M 0.9992 0.9992 0.9992

1.3 M 0.9999 0.9999 0.9999
D 0.9999 0.9999 0.9999

™M 0.9999 0.9999 0.9999

M = McKay’s Approximation

D = David’s Approximation

IM = Iglewicz and Myers’ Approximation
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TABLE LXV

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALLR =0.1,n;=n;=n3= 10

Effect Size Wald LR Score Alternate Tests

1 M 0.0530 0.0560 0.0312 DDL  0.0730
D 0.0528 0.0559 0.0310 DDT  0.0297
M 0.0717 0.0837 0.0713 GM 0.0227
1.1 M 0.0722 0.0793 0.0472 DDL  0.1056
D 0.0714 0.0790 0.0471 DDT  0.0392
™M 0.0945 0.1178 0.1045 GM 0.0342
1.2 M 0.1171 0.1452 0.0973 DDL  0.1793
D 0.1162 0.1448 0.0970 DDT  0.0687
M 0.1479 . 0.1954 0.1802 GM 0.0768
1.3 M 0.2037 0.2593 0.1880 DDL 0.3074
D 0.2023 0.2583 0.1872 DDT 0.1252
™M 0.2514 0.3272 0.3072 GM 0.1563
1.4 M 0.3199 0.3985 0.2999 DDL  0.4558
D 0.3183 0.3968 0.2985 DDT  0.2157
™M 0.3809 0.4753 0.4537 GM 0.2594
1.5 M 0.4560 0.5445 0.4192 DDL  0.5950
D 0.4527 0.5433 0.4184 DDT  0.3337
M 0.5210 0.6170 0.5899 GM 0.3761
1.6 M 0.5964 0.6809 0.5339 DDL  0.7281
D 0.5945 0.6797 0.5332 DDT  0.4624
™M 0.6634 0.7497 0.7220 GM 0.4897
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE LXVI

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALLR = 01, ni=nN,=n3z= 20

Effect Size Wald LR Score Alternate Tests

1 M 0.0540 0.0547 0.0419 DDL  0.0622
D 0.0537 0.0546 0.0418 DDT 0.0415
M 0.0616 0.0661 0.0616 GM 0.0361
1.1 M 0.0981 0.1084 0.0881 DDL  0.1220
D 0.0979 0.1084 0.0881 DDT  0.0770
M 0.1107 0.1276 0.1213 GM 0.0782
1.2 M 0.2333 0.2625 0.2269 DDL  0.2859
D 0.2331 0.2618 0.2264 DDT  0.1981
M 0.2564 0.2942 0.2889 GM 0.2087
1.3 M 0.4703 0.5088 0.4556 DDL  0.5367
D 0.4693 0.5082 0.4552 DDT  0.4210
M 0.4984 0.5474 0.5348 GM 0.4326
1.4 M 0.7004 0.7275 0.6649 DDL  0.7484
D 0.6998 0.7269 0.6644 DDT  0.6534
M 0.7245 0.7589 0.7448 GM 0.6417
1.5 M 0.8619 0.8781 0.8271 DDL  0.8920
D 0.8616 0.8779 0.8268 DDT  0.8315
M 0.8761 0.8979 0.8887 GM 0.8123
1.6 M 0.9458 0.9514 0.9233 DDL  0.9580
D 0.9457 0.9514 0.9229 DDT  0.9307
M 0.9531 0.9605 0.9562 GM 0.9145
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE LXVII

REJECTION RATES FOR ONE-FACTOR TEST AT a = 0.05
FOR OVERALL R =0.1,n;=n,=n3= 30

Effect Size Wald LR Score Alternate Tests

1 M 0.0551 0.0580 0.0482 DDL  0.0633
D 0.0550 0.0578 0.0482 DDT  0.0457
IM  0.0605 0.0655 0.0628 GM 0.0437
1.1 M 0.1304 0.1394 0.1225 DDL  0.1505
D 0.1303 0.1392 0.1220 DDT 0.1122
M 0.1399 0.1561 0.1501 GM 0.1146
1.2 M 0.3704 0.3931 0.3642 DDL 04116
D 0.3699 0.3923 0.3637 DDT  0.3430
IM  0.3890 0.4193 0.4100 GM 0.3516
1.3 M 0.6797 0.6992 0.6593 DDL 0.7163
D 0.6792 0.6988 0.6591 DDT  0.6521
IM  0.6952 0.7219 0.7121 GM 0.6462
1.4 M 0.8870 0.8940 0.8704 DDL 0.9015
D 0.8867 0.8939 0.8703 DDT 0.8736
IM  0.8953 0.9045 0.9008 GM 0.8611
1.5 M 0.9719 0.9739 0.9630 DDL 0.9768
D 0.9718 0.9738 0.9630 DDT  0.9667
IM 09745 0.9779 0.9758 GM 0.9604
1.6 M 0.9953 0.9959 0.9928 DDL  0.9963
D 0.9953 0.9959 0.9928 DDT  0.9943
IM  0.9962 0.9966 0.9961 GM 0.9917
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE LXVII

REJECTION RATES FOR ONE-FACTOR TEST AT a = 0.05
FOR OVERALL R=0.1,n;=n,=n3=50

Effect Size Wald LR Score Alternate Tests

1 M 0.0523 0.0528 0.0488 DDL  0.0554
D 0.0522 0.0528 0.0487 DDT  0.0472
IM  0.0553 0.0574 0.0569 GM 0.0465
1.1 M 0.1918 0.1991 0.1876 DDL  0.2059
D 0.1914 0.1989 0.1874 DDT 0.1782
IM  0.1988 0.2091 0.2062 GM 0.1822
1.2 M 0.5974 0.6113 0.5913 DDL  0.6215
D 0.5972 0.6109 0.5911 DDT 0.5801
IM  0.6074 0.6243 0.6216 GM 0.5828
1.3 M 0.9049 0.9087 0.8958 DDL 0.9123
D 0.9048 0.9087 0.8954 DDT  0.8967
M 0.9093 0.9145 0.9123 GM 0.8924
1.4 M 0.9897 0.9899 0.9856 DDL  0.9902
D 0.9896 0.9899 0.9856 DDT  0.9880
IM  0.9904 0.9905 0.9903 GM 0.9853
1.5 M 0.9992 0.9991 0.9990 DDL  0.9991
D 0.9992 0.9991 0.9990 DDT  0.9992
M 0.9992 0.9991 0.9991 GM 0.9990
1.6 M 1.0000 0.9999 0.9999 DDL  0.9999
D 1.0000 0.9999 0.9999 DDT  0.9999
IM  1.0000 0.9999 0.9999 GM 0.9999
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE LXIX

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R=0.1,n;= 10, n,=n3= 20

Effect Size Wald LR Score Alternate Tests
1%* M 0.0645 0.0570 0.0344 DDL  0.0683
D 0.0642 0.0566 0.0342 DDT  0.0405
™M 0.0763 0.0753 0.0572 GM 0.0324
1.1 M 0.1222 0.0899 0.0458 DDL 0.1074
D 0.1220 0.0897 0.0455 DDT  0.0862
™M 0.1401 0.1233 0.0849 GM 0.0481
1.2 M 0.2403 0.1906 0.1015 DDL  0.2208
D 0.2401 0.1902 0.1012 DDT 0.1775
™M 0.2675 0.2451 0.1811 GM 0.1117
1.3 M 0.4151 0.3617 0.2149 DDL  0.4016
D 0.4144 0.3614 0.2143 DDT  0.3236
M 0.4465 0.4314 0.3470 GM 0.2344
1.4 M 0.5898 0.5328 0.3546 DDL  0.5757
D 0.5885 0.5325 0.3543 DDT  0.4858
M 0.6252 0.6051 0.5165 GM 0.3843
1.5 M 0.7528 0.7017 0.5085 DDL  0.7385
D 0.7515 0.7016 0.5081 DDT  0.6623
™M 0.7776 0.7655 0.6840 GM 0.5433
1.6 M 0.8711 0.8318 0.6371 DDL  0.8601
D 0.8701 0.8317 0.6368 DDT 0.7966
.M 0.8897 0.8794 0.8170 GM 0.6779
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE LXX

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R =0.1, n; =20, n;= 10, n3=20

Effect Size Wald LR Score Alternate Tests
1%%* M 0.0645 0.0570 0.0344 DDL  0.0683
D 0.0642 0.0566 0.0342 DDT  0.0405
™M 0.0763 0.0753 0.0572 GM 0.0324
1.1 M 0.1041 0.1069 0.0726 DDL  0.1237
D 0.1040 0.1065 0.0724 DDT  0.0650
™M 0.1187 0.1310 0.1118 GM 0.0693
1.2 M 0.2445 0.2657 0.2063 DDL  0.2902
D 0.2435 0.2655 0.2057 DDT 0.1614
™M 0.2689 0.3036 0.2811 GM 0.1992
1.3 M 0.4574 0.5018 0.4238 DDL  0.5287
D 0.4564 0.5012 0.4232 DDT 0.3419
M 0.4905 0.5430 0.5202 GM 0.4129
1.4 M 0.6858 0.7228 0.6502 DDL  0.7462
D 0.6852 0.7225 0.6496 DDT  0.5703
M 0.7127 0.7574 0.7395 GM 0.6337
1.5 M 0.8555 0.8788 0.8231 DDL  0.8907
D 0.8547 0.8785 0.8225 DDT 0.7680
M 0.8727 0.8975 0.8864 GM 0.8097
1.6 M 0.9425 0.9541 0.9256 DDL  0.9601
D 0.9421 0.9538 0.9252 DDT  0.8995
™M 0.9506 0.9624 0.9577 GM 0.9181
M = McKay’s Approximation DDL = Doormnbos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE LXXI

REJECTION RATES FOR ONE-FACTOR TEST AT a = 0.05
FOR OVERALL R =0.1,n;=n,=20,03= 10

Effect Size Wald LR Score Alternate Tests
1+ M 0.0645 0.0570 0.0344 DDL  0.0683
D 0.0642 0.0566 0.0342 DDT  0.0405
™M 0.0763 0.0753 0.0572 GM 0.0324
1.1 M 0.0612 0/.0901 0.0806 DDL  0.1067
D 0.0608 0.0897 0.0800 DDT  0.0355
™M 0.0729 0.1068 0.0994 GM 0.0731
1.2 M 0.1233 0.1982 0.1862 DDL  0.2264
D 0.1227 0.1977 0.1855 DDT 0.0774
M 0.1470 0.2240 0.2162 GM 0.1696
1.3 M 0.2407 0.3714 0.3503 DDL  0.4061
D 0.2393 0.3704 0.3496 DDT 0.1621
™M 0.2793 0.4046 0.3923 GM 0.3241
1.4 M 0.4084 0.5627 0.5324 DDL  0.5957
D 0.4061 0.5621 0.5312 DDT  0.3057
M 0.4586 0.5930 0.5812 GM 0.5026
L5 M 0.5783 0.7299 0.6929 DDL 0.7582
D 0.5763 0.7288 0.6923 DDT  0.4686
M 0.6331 0.7594 0.7450 GM 0.6643
1.6 M 0.7400 0.8489 0.8137 DDL 0.8670
D 0.7381 0.8486 0.8131 DDT  0.6442
M 0.7838 0.8679 0.8582 GM 0.7913
M = McKay’s Approximation DDL = Doormbos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doorbos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE LXXII

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R = 0.1, n;=n,= 10, n3= 20

Effect Size Wald LR Score Alternate Tests
1** M 0.0668 0.0582 0.0331 DDL  0.0731
D 0.0666 0.0579 0.0328 DDT 0.0374
IM  0.0809 0.0804 0.0616 GM 0.0300
1.1 M 0.1274 0.0834 0.0230 DDL 0.1054
D 0.1273 0.0829 0.0228 DDT 0.0760
IM  0.1480 0.1233 0.0783 GM 0.0327
1.2 M 0.2506 0.1865 0.0446 DDL 0.2212
D 0.2504 0.1861 0.0444 DDT 0.1622
IM  0.2806 0.2498 0.1702 GM 0.0802
1.3 M 0.4148 0.3288 0.0972 DDL 0.3756
D 0.4141 0.3284 0.0969 DDT 0.2891
IM  0.4496 0.4172 0.2998 GM 0.1618
1.4 M 0.6062 0.5191 0.1859 DDL  0.5705
' D 0.6051 0.5188 0.1859 DDT 0.4630
IM  0.6426 0.6099 0.4869 GM 0.2908
1.5 M 0.7606 0.6829 0.3053 DDL 0.7307
D 0.7602 0.6825 0.3048 DDT 0.6361
M  0.7881 0.7634 0.6480 GM 0.4305
1.6 M 0.8676 0.8086 0.4348 DDL  0.8438
D 0.8670 0.8085 0.4347 DDT 0.7751
IM  0.8845 0.8698 0.7835 GM 0.5727
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE LXXIII

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R =0.1, n;= 10, n,= 20, n3= 10

Effect Size - Wald LR Score Alternate Tests
1%* M 0.0668 0.0582 0.0331 DDL 0.0731
D 0.0666 0.0579 0.0328 DDT 0.0374
IM  0.0809 0.0804 0.0616 GM 0.0300
1.1 M 0.0887 0.0790 0.0517 DDL  0.1009
D 0.0885 0.0789 0.0513 DDT  0.0520
M 0.1066 0.1102 0.0890 GM 0.0442
1.2 M 0.1395 0.1444 0.1120 DDL 0.1771
D 0.1388 0.1439 0.1116 DDT  0.0842
M  0.1630 0.1899 0.1619 GM 0.0964
1.3 M 0.2360 0.2681 0.2239 DDL 0.3101
D 0.2354 0.2674 0.2231 DDT 0.1556
IM  0.2766 0.3236 0.2950 GM 0.1920
1.4 M 0.3528 0.4054 0.3380 DDL  0.4538
D 0.3513 0.4044 0.3368 DDT  0.2443
IM  0.4063 0.4705 0.4394 GM 0.2951
1.5 M 0.4918 0.5514 0.4529 DDL  0.5991
D 0.4897 0.5503 0.4515 DDT 0.3705
IM  0.5470 0.6170 0.5788 GM 0.4145
1.6 M 0.6279 0.6745 0.5653 DDL 0.7201
D 0.6258 0.6739 0.5644 DDT 04975
IM  0.6809 0.7365 0.6982 GM 0.5267
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE LXXIV

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R=0.1, n; =20, n,=n3= 10

Effect Size Wald LR Score Alternate Tests
1** M 0.0668 0.0582 0.0331 DDL  0.0731
D 0.0666 0.0579 0.0328 DDT 0.0374
M 0.0809 0.0804 0.0616 GM 0.0300
1.1 M 0.0576 0.0920 0.0856 DDL 0.1102
D 0.0572 0.0912 0.0852 DDT  0.0285
™M 0.0733 0.1137 0.1057 GM 0.0697
1.2 M 0.0972 0.2073 0.2052 DDL  0.2340
D 0.0959 0.2059 0.2045 DDT  0.0458
M 0.1244 0.2316 0.2284 GM 0.1751
1.3 M 0.1912 0.3722 0.3718 DDL  0.4074
D 0.1895 0.3713 0.3711 DDT  0.0964
M 0.2389 0.4025 0.4034 GM 0.3322
1.4 M 0.3318 0.5566 0.5451 DDL  0.5965
D 0.3276 0.5553 0.5440 DDT  0.1925
™M 0.3954 0.5890 0.5864 GM 0.5076
1.5 M 0.5035 0.7237 0.7041 DDL  0.7549
D 0.5010 0.7231 0.7035 DDT  0.3328
M 0.5768 0.7508 0.7456 GM 0.6723
1.6 M 0.6690 0.8423 0.8195 DDL  0.8603
D 0.6655 0.8413 0.8190 DDT  0.5045
™M 0.7296 0.8584 0.8520 GM 0.7941
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doormbos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE LXXV

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R=0.1,n;= 20, n,=1n3= 30

Effect Size Wald LR Score Alternate Tests
1%* M 0.0543 0.0535 0.0404 DDL  0.0592
D 0.0542 0.0535 0.0403 DDT 0.0436
M  0.0611 0.0630 0.0554 GM 0.0381
1.1 M 0.1336 0.1158 0.0790 DDL  0.1286
D 0.1335 0.1157 0.0790 DDT 0.1126
M 0.1464 0.1391 0.1154 GM 0.0819
1.2 M 0.3321 0.3149 0.2372 DDL 0.3336
D 0.3319 0.3146 - 0.2368 DDT 0.2948
M 03512 0.3501 0.3137 GM 0.2446
1.3 M 0.6136 0.5953 0.4917 DDL  0.6162
D 0.6130 0.5952 0.4913 DDT 0.5758
M 06321 0.6343 0.5931 GM 0.5062
1.4 M 0.8226 0.8113 07193  DDL 0.8271
D 0.8222 0.8112 0.7190 DDT  0.7954
IM  0.8377 0.8382 0.8080 GM 0.7342
1.5 M 0.9406 0.9313 0.8750 DDL  0.9391
D 0.9406 0.9312 0.8749 DDT  0.9275
M 09471 0.9451 0.9292 GM 0.8851
1.6 M 0.9860 0.9824 0.9532 DDL  0.9845
D 0.9860 0.9823 0.9531 DDT 0.9810
M 0.9870 0.9868 0.9810 GM 0.9587
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE LXXVI

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R = 0.1, n; = 30, n,= 20, n3= 30

Effect Size Wald LR Score Alternate Tests
1** M 0.0543 0.0535 0.0404 DDL  0.0592
D 0.0542 0.0535 0.0403 DDT 0.0436
M  0.0611 0.0630 0.0554 GM 0.0381
1.1 M 0.1296 0.1395 0.1164 DDL 0.1492
D 0.1293 0.1393 0.1164 DDT 0.1081
™M 0.1412 0.1535 0.1459 GM 0.1134
1.2 M 0.3560 0.3800 0.3411 DDL 0.3978
D 0.3557 0.3796 0.3408 DDT 0.3151
M 03752 0.4056 0.3958 GM 0.3289
1.3 M 0.6726 0.6925 0.6494 DDL 0.7089
D 0.6719 0.6922 0.6492 DDT  0.6320
IM  0.6889 0.7170 0.7051 GM 0.6392
1.4 M 0.8843 0.8957 0.8704 DDL  0.9028
D 0.8842 - 0.8957 0.8703 DDT 0.8616
M  0.8937 0.9070 0.9021 GM 0.8621
1.5 M 0.9719 0.9757 0.9674 DDL 0.9791
D 0.9719 0.9757 0.9674 DDT  0.9651
M 09750 0.9799 0.9783 GM 0.9647
1.6 M 0.9959 0.9967 0.9946 DDL  0.9973
D 0.9959 0.9967 0.9946 DDT  0.9938
IM  0.9966 0.9976 0.9971 GM 0.9939
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE LXXVII

REJECTION RATES FOR ONE-FACTOR TEST AT a = 0.05
FOR OVERALL R = 0.1, n;=n,=30, n3= 20

Effect Size Wald LR Score Alterate Tests
1** M 0.0543 0.0535 0.0404 DDL  0.0592
D 0.0542 0.0535 0.0403 DDT 0.0436
M 0.0611 0.0630 0.0554 GM 0.0381
1.1 M 0.0895 0.1181 0.1131 DDL  0.1303
D 0.0893 0.1177 0.1129 DDT 0.0725
M 0.0992 0.1320 0.1284 GM 0.1040
1.2 M 0.2552 0.3221 0.3090 DDL  0.3402
D 0.2546 0.3215 0.3086 DDT  0.2240
M 0.2775 0.3402 0.3372 GM 0.2908
1.3 M 0.5394 0.6147 0.5925 DDL  0.6335
D 0.5387 0.6139 0.5918 DDT 0.4976
M 0.5631 0.6344 0.6292 GM 0.5724
1.4 M 0.7715 0.8258 0.8064 DDL  0.8375
D 0.7706 0.8254 0.8059 DDT 0.7352
M 0.7901 0.8395 0.8339 GM 0.7918
1.5 M 0.9186 0.9431 ©0.9302 DDL 0.9472
D 0.9183 0.9430 0.9300 DDT 0.9028
M 0.9270 0.9477 0.9463 GM 0.9210
1.6 M 0.9748 0.9816 0.9763 DDL  0.9838
D 0.9744 0.9816 0.9762 DDT  0.9689
M 0.9783 0.9843 0.9822 GM 0.9737
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE LXXVII

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALLR = 01, n;=n= 20, nz— 30

Effect Size Wald LR Score Alternate Tests
1** M 0.0542 0.0536 0.0401 DDL  0.0607
D 0.0540 0.0532 0.0401 DDT 0.0418
IM  0.0608 0.0645 0.0576 GM 0.0379
1.1 M 0.1322 0.1197 0.0726 DDL  0.1319
D 0.1319 0.1195 0.0726 DDT 0.1119
M  0.1446 0.1421 0.1206 GM 0.0795
1.2 M 0.3330 0.3103 0.2164 DDL  0.3319
D 0.3325 0.3103 0.2162 DDT 0.2919
™M 0.3521 0.3480 0.3077 GM 0.2325
1.3 M 0.6004 0.5744 0.4464 DDL 0.5974
D 0.6003 0.5742 0.4462 DDT  0.5532
M  0.6206 0.6157 0.5695 GM 0.4685
14 M 0.8254 0.8021 0.6936 DDL  0.8208
D 0.8249 0.8019 0.6935 DDT  0.7889
IM  0.8410 0.8351 0.7993 GM 0.7155
1.5 M 0.9432 0.9354 0.8693 DDL  0.9426
. D 0.9430 0.9351 0.8689 DDT  0.9293
IM  0.9501 0.9489 0.9333 GM 0.8808
1.6 M 0.9844 0.9807 0.9523 DDL  0.9830
D 0.9844 0.9806 0.9522 DDT 0.9785
IM  0.9860 0.9857 0.9803 GM 0.9566
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE LXXIX

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R = 0.1, n; = 20, n,= 30, n; = 20

Effect Size Wald LR Score Altemnate Tests
1** M 0.0542 0.0536 0.0401 DDL  0.0607
D 0.0540 0.0532 0.0401 DDT 0.0418
IM  0.0608 0.0645 0.0576 GM 0.0379
1.1 M 0.0994 0.1075 0.0860 DDL 0.1184
D 0.0988 0.1075 0.0859 DDT 0.0798
™M 0.1121 0.1237 0.1156 GM 0.0799
1.2 M 0.2433 0.2636 0.2272 DDL  0.2848
D 0.2426 0.2633 0.2266 DDT 0.2079
M 0.2617 0.2947 0.2818 GM 0.2121
1.3 M 0.4729 0.5071 0.4524 DDL  0.5337
D 0.4720 0.5062 0.4520 DDT  0.4250
IM  0.49%4 0.5418 0.5284 GM 0.4338
14 M 0.6995 0.7294 0.6714 DDL 0.7501
D 0.6990 0.7286 0.6704 DDT  0.6555
M 0.7232 0.7597 0.7443 GM 0.6530
1.5 M 0.8697 0.8826 0.8326 DDL  0.8941
D 0.8690 0.8820 0.8324 DDT  0.8447
IM  0.8835 0.8996 0.8886 GM 0.8221
1.6 M 0.9512 0.9544 0.9236 DDL 0.9594
D 0.9509 0.9544 0.9234 DDT 0.9387
M  0.9564 0.9629 0.9570 GM 0.9168
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE LXXX

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R = 0.1, n; =30, n,=n3= 20

Effect Size Wald LR Score Alternate Tests
1** M 0.0542 0.0536 0.0401 DDL  0.0607
D 0.0540 0.0532 0.0401 DDT 0.0418
IM  0.0608 0.0645 0.0576 GM 0.0379
1.1 M 0.0886 0.1249 0.1193 DDL  0.1365
D 0.0885 0.1245 0.1192 DDT 0.0682
™M  0.1027 0.1369 0.1350 GM 0.1061
1.2 M 0.2431 0.3195 0.3124 DDL  0.3399
D 0.2426 0.3192 0.3116 DDT  0.2009
M  0.2667 0.3887 0.3401 GM 0.2919
1.3 M 0.5056 0.5954 0.5836 DDL 0.6143
D 0.5045 0.5948 0.5829 DDT  0.4485
M  0.5338 0.6142 0.6133 GM 0.5601
1.4 M 0.7554 0.8232 0.8046 DDL.  0.8358
D 0.7544 0.8229 0.8041 DDT 0.7125
M 0.7775 0.8370 0.8332 GM 0.7879
1.5 M 0.9049 0.9377 0.9293 DDL  0.9442
D 0.9044 0.9374 0.9292 DDT  0.8845
M 09167 0.9453 0.9416 GM 0.9214
1.6 M 0.9716 0.9828 0.9775 DDL  0.9846
D 0.9714 0.9827 0.9775 DDT 0.9629
M 09757 0.9850 0.9841 GM 0.9755
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE LXXXI

REJECTION RATES FOR ONE-FACTOR TEST AT a = 0.05
FOR OVERALLR =0.1,n;= 10, n,=n3= 30

Effect Size Wald LR Score Alternate Tests
1** M 0.0714 0.0552 0.0309 DDL  0.0661
D 0.0710 0.0551 0.0307 DDT  0.0443
IM  0.0805 0.0723 0.0437 GM 0.0375
1.1 M 0.1466 0.0945 0.0443 DDL 0.1110
D 0.1466 0.0943 0.0442 DDT 0.1003
IM 0.1631 0.1282 0.0723 GM 0.0552
1.2 M 0.3095 0.2245 0.1125 DDL  0.2553
D 0.3094 0.2242 0.1123 DDT  0.2281
IM 03344 0.2838 0.1829 GM 0.1432
1.3 M 0.5132 0.4207 0.2470 DDL  0.4587
D 0.5127 0.4206 0.2465 DDT  0.4064
IM  0.5400 0.4908 0.3591 GM 0.3006
1.4 M 0.7146 0.6342 0.4169 DDL  0.6702
D 0.7144 0.6342 0.4163 DDT 0.6115
M  0.7379 0.6998 0.5665 GM 0.4936
1.5 M 0.8558 0.7978 0.5884 DDL  0.8239
D 0.8555 0.7977 0.5880 DDT 0.7793
IM 0.8719 0.8436 0.7402 GM 0.6674
1.6 M 0.9423 0.9072 0.7450 DDL 09217
D 0.9422 0.9071 0.7446 DDT  0.8982
M 0.9507 0.9338 0.8683 GM 0.8683
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doormbos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE LXXXII

REJECTION RATES FOR ONE-FACTOR TEST AT a = 0.05
FOR OVERALL R =0.1,n;= 30, n,= 10, n3= 30

Effect Size Wald LR Score Alternate Tests
1** M 0.0714 0.0552 0.0309 DDL  0.0661
D 0.0710 0.0551 0.0307 DDT  0.0443
M 0.0805 0.0723 0.0437 GM 0.0375
1.1 M 0.1427 0.1384 0.1001 DDL  0.1553
D 0.1423 0.1381 0.0998 DDT  0.0877
M 0.1587 0.1633 0.1305 GM 0.1089
1.2 M 0.3798 0.3962 0.3260 DDL  0.4218
D 0.3790 0.3956 0.3253 DDT  0.2551
M 0.4058 0.4360 0.3924 GM 0.3359
1.3 M 0.6853 0.7084 0.6465 DDL 0.7274
D 0.6844 0.7078 0.6464 DDT  0.5452
M 0.7096 0.7374 0.7115 GM 0.6489
1.4 M 0.8780 0.8915 0.8601 DDL  0.8998
D 0.8779 0.8912 0.8595 DDT  0.7966
M 0.8900 0.9036 0.8947 GM 0.8565
1.5 M 0.9744 0.9780 0.9670 DDL  0.9813
D 0.9744 0.9779 0.9670 DDT 0.9422
™M 0.9773 0.9825 0.9795 GM 0.9652
1.6 M 0.9952 0.9961 0.9928 DDL  0.9968
D 0.9951 0.9961 0.9927 DDT  0.9857
M 0.9961 0.9970 0.9964 GM 0.9923
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE LXXXIIT

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R =0.1,n;=n,=30,n3=10

Effect Size Wald LR Score Alternate Tests
| R M 0.0714 0.0552 0.0309 DDL  0.0661
D 0.0710 0.0551 0.0307 DDT  0.0443
M  0.0805 0.0723 0.0437 GM 0.0375
1.1 M 0.0726 0.0998 0.0791 DDL 0.1144
D 0.0725 0.0994 0.0786 DDT  0.0365
IM  0.0835 0.1141 0.0916 GM 0.0868
1.2 M 0.1492 0.2415 0.2214 DDL 0.2667
D 0.1482 0.2407 0.2199 DDT 0.0828
M 0.1703 0.2585 0.2281 GM 0.2287
1.3 M 0.3012 0.4507 0.4136 DDL  0.4838
D 0.2999 0.4497 0.4125 DDT 0.1977
IM  0.3368 0.4726 0.4338 GM 0.4237
1.4 M 0.5126 0.6651 0.6229 DDL  0.6910
D 0.5108 0.6639 0.6217 DDT 0.3830
IM  0.5562 0.6842 0.6490 GM 0.6283
1.5 M 0.7114 0.8251 0.7906 DDL 0.8416
D 0.7099 0.8250 0.7901 DDT 0.5899
IM  0.7466 0.8384 0.8157 GM 0.7923
1.6 M 0.8519 0.9161 0.8905 DDL  0.9255
D 0.8506 0.9159 0.8899 DDT  0.7587
IM  0.8746 0.9249 0.9100 GM 0.8910
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers® Approximation GM = Gupta and Ma’s Score Test
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TABLE LXXXIV

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R = 0.1, n;=n,= 10, n3= 30

Effect Size Wald LR Score Alternate Tests
1** M 0.0802 0.0545 0.0322 DDL  0.0700
D 0.0801 0.0544 0.0320 DDT 0.0430
IM  0.0935 0.0790 0.0474 GM 0.0314
1.1 M 0.1750 0.0996 0.0132 DDL 0.1221
D 0.1747 0.0996 0.0132 DDT 0.1032
IM  0.1965 0.1432 0.0614 GM 0.0302
1.2 M 0.3351 0.1978 0.0119 DDL  0.2348
D 0.3348 0.1977 0.0117 DDT 0.2083
IM  0.3612 0.2758 0.1248 GM 0.0673
1.3 M 0.5325 0.3692 0.0229 DDL  0.4200
D 0.5322 0.3692 0.0229 DDT 0.3828
IM  0.5654 0.4704 0.2557 GM 0.1587
1.4 M 0.7178 0.5604 0.0524 DDL 0.6156
D 0.7177 0.5602 0.0523 DDT 0.5710
M 0.7441 0.6673 0.4152 GM 0.2779
1.5 M 0.8589 0.7426 0.1079 DDL 0.7843
D 0.8586 0.7426 0.1079 DDT 0.7485
IM  0.8745 0.8220 0.6072 GM 0.4399
1.6 M 0.9437 0.8720 0.1934 DDL  0.9020
D 0.9437 0.8720 0.1936 DDT  0.8802
M 0.9541 0.9240 0.7698 GM 0.6047
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE LXXXV

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R = 0.1, n;= 10, np,= 30, n3= 10

Effect Size Wald LR Score Alternate Tests
1** M 0.0802 0.0545 0.0322 DDL  0.0700
D 0.0801 0.0544 0.0320 DDT  0.0430
M 0.0935 0.0790 0.0474 GM 0.0314
1.1 M 0.1096 0.0814 0.0532 DDL 0.1012
D 0.1093 0.0812 0.0526 DDT  0.0606
M 0.1255 0.1110 0.0747 GM 0.0510
1.2 M 0.1619 0.1466 0.1199 DDL 0.1756
D 0.1616 0.1464 0.1189 DDT  0.0935
M 0.1866 0.1864 0.1487 GM 0.1045
1.3 M 0.2543 0.2566 0.2163 DDL  0.2982
D 0.2534 0.2557 0.2150 DDT 0.1603
M 0.2871 0.3136 0.2698 GM 0.1921
1.4 M 0.3718 0.4017 0.3487 DDL  0.4495
D 0.3703 0.4002 0.3481 DDT  0.2459
M 0.4177 0.4679 0.4201 GM 0.3193
1.5 M 0.5112 0.5436 0.4684 DDL  0.5922
D 0.5102 0.5248 0.4670 DDT 0.3668
M 0.5638 0.6090 0.5638 GM 0.4273
1.6 M 0.6409 0.6778 0.5846 DDL  0.7228
D 0.6386 0.6771 0.5834 DDT 0.4918
M 0.6876 0.7356 0.6934 GM 0.5448
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE LXXXVI

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALLR =0.1,n;=30,n,=n3= 10

Effect Size Wald LR Score Alternate Tests
1** M 0.0802 0.0545 0.0322 DDL  0.0700
D 0.0801 0.0544 0.0320 DDT  0.0430
™M 0.0935 0.0790 0.0474 GM 0.0314
1.1 M 0.0561 0.1001 0.1006 DDL 0.1192
D 0.0557 0.0999 0.0994 DDT 0.0261
™M 0.0698 0.1159 0.1026 GM 0.0928
1.2 M 0.0891 0.2374 0.2484 DDL  0.2649
D 0.0885 0.2363 0.2467 DDT 0.0313
™M 0.1172 0.2555 0.2369 GM 0.2369
1.3 M 0.1809 0.4423 0.4456 DDL 0.4764
D 0.1789 0.4407 0.4445 DDT 0.0712
™M 0.2365 0.4558 0.4365 GM 0.4411
1.4 M 0.3396 0.6440 0.6388 DDL  0.6733
D 0.3374 0.6429 0.6369 DDT  0.1587
™M 0.4154 0.6590 0.6331 GM 0.6385
1.5 M 0.5365 0.8011 0.7886 DDL  0.8215
D 0.5333 0.8008 0.7883 DDT 0.3104
™M 0.6140 0.8123 0.7880 GM 0.7920
1.6 M 0.7044 0.8982 0.8864 DDL  0.9125
D 0.7022 0.8977 0.8858 DDT  0.4767
™M 0.7622 0.9050 0.8889 GM 0.8914
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doormbos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE LXXXVII

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R=0.1,n; =30, n,=n3= 50

Effect Size Wald LR Score Alternate Tests
| ko M 0.0516 0.0515 0.0419 DDL  0.0560
D 0.0515 0.0514 0.0419 DDT 0.0444
M 0.0556 0.0577 0.0509 GM 0.0426
1.1 M 0.1849 0.1621 0.1079 DDL  0.1694
D 0.1849 0.1620 0.1078 DDT 0.1639
M 0.1942 0.1790 0.1537 GM 0.1251
1.2 M 0.5110 0.4684 0.3622 DDL  0.4827
D 0.5106 0.4683 0.3621 DDT 0.4764
M 0.5237 0.5020 0.4502 GM 0.3963
1.3 M 0.8293 0.8015 0.7048 DDL  0.8131
D 0.8293 0.8015 0.7047 DDT 0.8076
M 0.8364 0.8257 0.7841 GM 0.7383
1.4 M 0.9679 0.9576 0.9146 DDL  0.9612
D 0.9677 0.9576 0.9146 DDT  0.9598
M 0.9702 0.9651 0.9518 GM 0.9298
1.5 M 0.9956 0.9932 0.9839 DDL  0.9960
D 0.9956 0.9932 0.9839 DDT 0.9951
M 0.9960 0.9951 0.9916 GM 0.9916
1.6 M 0.9996 0.9993 0.9982 DDL  0.9993
‘ D 0.9996 0.9993 0.9982 DDT  0.9995
M 0.9997 0.9997 0.9990 GM 0.9985
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE LXXXVIII

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R = 0.1, n; = 50, n;= 30, n3 = 50

Effect Size Wald LR Score Alternate Tests
1** M 0.0516 0.0515 0.0419 DDL  0.0560
D 0.0515 0.0514 0.0419 DDT  0.0444
IM  0.0556 0.0577 0.0509 GM 0.0426
1.1 M 0.1998 0.2028 0.1815 DDL 0.2129
D 0.1995 0.2028 0.1814 DDT 0.1801
™M 0.2077 0.2182 0.2082 GM 0.1826
1.2 M 0.5919 0.6052 0.5790 DDL 0.6180
D 0.5915 0.6050 0.5786 DDT 0.5613
IM  0.6037 0.6242 0.6136 GM 0.5767
1.3 M 0.8995 0.9041 0.8893 DDL  0.9085
D 0.8994 0.9040 0.8892 DDT  0.8860
IM  0.9040 0.9115 0.9069 GM 0.8870
1.4 M 0.9893 0.9907 0.9876 DDL 0.9916
D 0.9893 0.9907 0.9875 DDT  0.9880
M  0.9905 0.9921 0.9915 GM 0.9871
1.5 M 0.9990 0.9993 0.9990 DDL  0.9994
D 0.9989 0.9993 0.9990 DDT  0.9988
M 0.9992 0.9995 0.9994 GM 0.9990
1.6 M 1.0000 1.0000 1.0000 DDL  1.0000
D 1.0000 1.0000 1.0000 DDT  1.0000
M 1.0000 1.0000 1.0000 GM 1.0000
M = McKay’s Approximation DDL = Doornbos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doornbos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test

174



TABLE LXXXIX

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALLR = 0.1, n=n= 50, Nz = 30

Effect Size Wald LR Score Alternate Tests
1** M 0.0516 0.0515 0.0419 DDL  0.0560
D 0.0515 0.0514 0.0419 DDT 0.0444
IM  0.0556 0.0577 0.0509 GM 0.0426
1.1 M 0.1314 0.1635 0.1597 DDL  0.1725
D 0.1311 0.1634 0.1594 DDT 0.1169
IM  0.1395 0.1696 0.1675 GM 0.1566
1.2 M 0.4312 0.4929 0.4796 DDL  0.5059
D 0.4304 0.4926 0.4792 DDT  0.4073
IM  0.4454 0.4997 0.4961 GM 0.4726
1.3 M 0.7697 0.8145 0.8032 DDL  0.8234
D 0.7691 0.8144 0.8029 DDT  0.7493
IM  0.7806 0.8213 0.8157 GM 0.7979
1.4 M 0.9475 0.9588 0.9531 DDL 0.9613
D 0.9473 0.9588 0.9531 DDT  0.9388
IM  0.9515 0.9614 0.9592 GM 0.9510
1.5 M 0.9931 0.9943 0.9928 DDL  0.9950
D 0.9931 0.9943 0.9928 DDT 0.9918
IM  0.9936 0.9949 0.9945 GM 0.9922
1.6 M 0.9992 0.9993 0.9995 DDL  0.9993
D 0.9992 0.9993 0.9995 DDT 0.9991
M 0.9992 0.9993 0.9993 GM 0.9993
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE XC

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R = 01, ni=Nny= 30, n3= 50

Effect Size Wald LR Score Alternate Tests
1% M 0.0535 0.0522 0.0413 DDL  0.0567
D 0.0534 0.0522 0.0413 DDT  0.0453
M  0.0579 0.0593 0.0522 GM 0.0420
1.1 M 0.1799 0.1547 0.0986 DDL 0.1657
D 0.1796 0.1546 0.0986 DDT 0.1616
M  0.1897 0.1735 0.1427 GM 0.1165
1.2 M 0.5160 0.4746 0.3665 DDL  0.4917
D 0.5158 0.4745 0.3664 DDT  0.4806
M 05294 0.5090 0.4542 GM 0.4054
1.3 M 0.8295 0.8033 0.7151 DDL  0.8133
D 0.8293 0.8032 0.7151 DDT 0.8066
M  0.8377 0.8241 0.7897 GM 0.7460
14 M 0.9675 0.9573 0.9160 - DDL  0.9609
D 0.9675 0.9573 0.9160 DDT 0.9616
M 09704 0.9654 0.9508 GM 0.9298
1.5 M 0.9956 0.9937 0.9859 DDL  0.9945
D 0.9956 0.9937 0.9859 DDT 0.9946
M 0.9958 0.9951 0.9930 GM 0.9884
1.6 M 0.9993 0.9992 0.9974 DDL  0.9993
D 0.9993 0.9992 0.9974 DDT  0.9992
M  0.9993 0.9993 0.9992 GM 0.9977
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE XCI

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R = 0.1, n; = 30, n, = 50, n3 = 30

Effect Size Wald LR Score Alternate Tests
1** M 0.0535 0.0522 0.0413 DDL  0.0567
D 0.0534 0.0522 0.0413 DDT  0.0453
IM  0.0579 0.0593 0.0522 GM 0.0420
1.1 M 0.1292 0.1354 0.1190 DDL  0.1445
D 0.1290 0.1353 0.1189 DDT 0.1145
IM 0.1388 0.1479 0.1407 GM 0.1151
1.2 M 0.3714 0.3926 0.3559 DDL  0.4090
D 0.3711 0.3916 0.3557 DDT  0.3447
IM  0.3890 0.4154 0.4041 GM 0.3464
1.3 M 0.6823 0.7014 0.6634 DDL 0.7141
D 0.6820 0.7011 0.6633 DDT  0.6557
IM  0.6964 0.7191 0.7115 GM 0.6525
1.4 M 0.8895 0.8966 0.8719 DDL 0.9041
D 0.8892 0.8965 0.8719 DDT 0.8769
IM  0.8958 0.9079 0.9021 GM 0.8671
1.5 M 0.9727 0.9735 0.9629 DDL 0.9754
D 0.9726 0.9734 0.9629 DDT 0.9676
IM  0.9750 0.9765 0.9744 GM 0.9603
1.6 M 0.9954 0.9949 0.9913 DDL  0.9952
D 0.9954 0.9949 0.9913 DDT  0.9944
IM  0.9959 0.9956 0.9949 GM 0.9903
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE XCII

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R = 0.1, n; = 50, n,= n3 = 30

Effect Size Wald LR Score Alternate Tests
1** M 0.0535 0.0522 0.0413 DDL  0.0567
D 0.0534 0.0522 0.0413 DDT  0.0453
IM  0.0579 0.0593 0.0522 GM 0.0420
1.1 M 0.1265 0.1650 0.1654 DDL  0.1751
D 0.1261 0.1647 0.1653 DDT 0.1081
IM  0.1346 0.1719 0.1695 GM 0.1593
1.2 M 0.4195 0.5015 0.4974 DDL 0.5143
D 0.4187 0.5008 0.4969 DDT  0.3869
IM  0.4369 0.5131 0.5042 GM 0.4885
1.3 M 0.7588 0.8156 0.8076 DDL  0.8232
D 0.7583 0.8154 0.8073 DDT 0.7314
M 0.7717 0.8205 0.8171 GM 0.8024
14 M 0.9395 0.9588 0.9563 DDL  0.9626
D 0.9394 0.9588 0.9563 DDT  0.9303
IM  0.9459 0.9622 0.9596 GM 0.9549
15 M 0.9912 0.9947 0.9935 DDL  0.9951
D 0.9912 0.9947 0.9935 DDT 0.9884
M 09919 0.9950 0.9945 GM 0.9934
1.6 M 0.9993 0.9996 0.9992 DDL  0.9996
D 0.9993 0.9996 0.9992 DDT  0.9989
IM  0.9993 0.9996 0.9995 GM 0.9992
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE XCIII

REJECTION RATES FOR ONE-FACTOR TEST AT a = 0.05
FOR OVERALL R = 02, n=n=nz— 30

Effect Size ' Wald LR Score Alternate Tests

1 M 0.0479 0.0503 0.0408 DDL  0.0545
D 0.0471 0.0496 0.0404 DDT  0.0409
IM  0.0534 0.0586 0.0544 GM 0.0372
1.05 M 0.0683 0.0755 0.0654 DDL 0.0812
D 0.0674 0.0751 0.0650 DDT 0.0612
M 0.0754 0.0852 0.0803 GM 0.0599
1.1 M 0.1190 0.1282 0.1123 DDL 0.1374
D 0.1178 0.1269 0.1119 DDT 0.1076
M 0.1265 0.1420 0.1355 GM 0.1053
1.15 M 0.2132 0.2347 0.2076 DDL  0.2477
D 0.2117 0.2338 0.2063 DDT 0.1996
M 02264 0.2537 0.2475 GM 0.1974
1.2 M 0.3405 0.3692 0.3375 DDL  0.3840
D 0.3388 0.3680 0.3367 DDT  0.3250
M  0.3580 0.3918 0.3832 GM 0.3250
1.25 M 0.4885 0.5210 0.4838 "DDL  0.5376
D 0.4861 0.5202 0.4825 DDT  0.4696
IM  0.5065 0.5472 0.5350 GM 0.4700
1.3 M 0.6376 0.6716 0.6301 DDL 0.6874
D 0.6349 0.6706 0.6286 DDT 0.6197
IM  0.6560 0.6942 0.6838 GM 0.6176
M = McKay’s Approximation DDL = Doormbos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE XCIV

REJECTION RATES FOR ONE-FACTOR TEST AT a = 0.05
FOR OVERALLR =0.2,n;=ny;=n3= 50

Effect Size Wald . LR Score Alternate Tests

1 M 0.0494 0.0501 0.0430 DDL  0.0527
D 0.0488 0.0499 0.0429 DDT  0.0448
M 0.0521 0.0547 0.0522 GM 0.0415
1.05 M 0.0811 0.0859 0.0797 DDL  0.0894
D 0.0806 0.0857 0.0792 DDT  0.0765
M 0.0846 0.0915 0.0902 GM 0.0757
1.1 M 0.1787 0.1930 0.1816 DDL  0.1999
D 0.1782 0.1928 0.1813 DDT  0.1713
M 0.1875 0.2040 0.2012 GM 0.1760
1.15 M 0.3454 0.3619 0.3452 DDL  0.3723
D 0.3443 0.3610 0.3442 DDT  0.3357
M 0.3554 0.3765 0.3710 GM 0.3375
1.2 M 0.5620 0.5756 0.5572 DDL  0.5885
D 0.5603 0.5753 0.5561 DDT  0.5503
M 0.5707 0.5928 0.5869 GM 0.5497
1.25 M 0.7428 0.7571 0.7377 DDL  0.7649
D 0.7420 0.7567 0.7373 DDT  0.7348
M 0.7508 0.7687 0.7637 GM 0.7319
1.3 M 0.8787 0.8855 0.8690 DDL  0.8890
D 0.8779 0.8851 0.8689 DDT  0.8715
M 0.8840 0.8914 0.8888 GM 0.8655
M = McKay’s Approximation DDL = Doornbos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doormbos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE XCV

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R= 0.2, n;=n,=n3= 100

Effect Size Wald LR Score Alternate Tests

1 M 0.0525 0.0535 0.0512 DDL  0.0553
D 0.0521 0.0533 0.0510 DDT  0.0504
™M 0.0545 0.0566 0.0555 GM 0.0501
1.05 M 0.1154 0.1211 0.1145 DDL  0.1230
D 0.1150 0.1207 0.1145 DDT 0.1134
M 0.1189 0.1246 0.1226 GM 0.1128
1.1 M 0.3424 0.3515 0.3428 DDL  0.3568
D 0.3420 0.3509 0.3421 DDT  0.3388
M 0.3472 0.3584 0.3561 GM 0.3397
1.15 M 0.6532 0.6584 0.6485 DDL  0.6641
D 0.6524 0.6579 0.6481 DDT  0.6491
M 0.6585 0.6670 0.6631 GM 0.6450
1.2 M 0.8773 0.8816 0.8732 DDL  0.8850
D 0.8767 0.8813 0.8729 DDT  0.8755
M 0.8801 0.8865 0.8839 GM 0.8713
1.25 M 0.9732 0.9755 0.9729 DDL  0.9763
D 0.9731 0.9754 0.9729 DDT  0.9728
M 0.9742 0.9761 0.9755 GM 0.9724
1.3 M 0.9969 0.9970 0.9966 DDL  0.9971
D 0.9969 0.9970 0.9966 DDT  0.9969
M 0.9972 0.9971 0.9971 GM 0.9965
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE XCVI

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R=0.2,n;= 30, n,=n3= 50

Effect Size Wald LR Score Alternate Tests
1** M 0.0540 0.0526 0.0418 DDL  0.0560
D 0.0536 0.0521 0.0414 DDT  0.0475
M 0.0577 0.0584 0.0518 GM 0.0429
1.05 M 0.0844 0.0739 0.0503 DDL  0.0789
D 0.0841 0.0736 0.0502 DDT 0.0738
M  0.0894 0.0833 0.0704 GM 0.0555
1.1 M 0.1744 0.1520 0.1130 DDL 0.1622
D 0.1732 0.1516 0.1129 DDT 0.1603
IM  0.1816 0.1691 0.1437 GM 0.1217
1.15 M 0.3159 0.2929 0.2256 DDL 0.3047
D 0.3148 0.2923 0.2253 DDT  0.2981
M 03281 0.3149 0.2777 GM 0.2431
1.2 M 0.4797 0.4581 0.3736 DDL 0.4734
D 0.4791 0.4577 0.3730 DDT  0.4587
IM 04926 0.4847 0.4435 GM 0.3998
1.25 M 0.6632 0.6349 0.5429 DDL  0.6485
D 0.6625 0.6345 0.5426 DDT 0.6424
IM  0.6753 0.6636 0.6164 GM 0.5708
1.3 M 0.8030 0.7855 0.6973 DDL 0.7966
D 0.8024 0.7852 0.6969 DDT 0.7899
M 0.8127 0.8073 0.7706 GM 0.7254
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE XCVII

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R =0.2, n; = 50, n,= 30, n3= 50

Effect Size Wald LR Score Alternate Tests
¥ M 0.0540 0.0526 0.0418 DDL  0.0560
D 0.0536 0.0521 0.0414 DDT  0.0475
M 0.0577 0.0584 0.0518 GM 0.0429
1.05 M 0.0827 0.0854 0.0712 DDL  0.0909
D 0.0821 0.0850 0.0711 DDT 0.0754
IM  0.0865 0.0938 0.0842 GM 0.0727
1.1 M 0.1794 0.1922 0.1718 DDL  0.2000
D 0.1785 0.1914 0.1711 DDT 0.1642
IM  0.1880 0.2038 0.1951 GM 0.1710
1.15 M 0.3524 0.3724 0.3465 DDL  0.3831
D 0.3504 0.3712 0.3457 DDT 0.3328
IM  0.3633 0.3875 0.3759 GM 0.3454
1.2 M 0.5685 0.5895 0.5588 DDL  0.6005
D 0.5673 0.5877 0.5582 DDT  0.5477
IM  0.5805 0.6061 0.5947 GM 0.5551
1.25 M 0.7475 0.7627 0.7365 DDL  0.7704
D 0.7464 0.7618 0.7359 DDT 0.7300
IM  0.7556 0.7747 0.7657 GM 0.7326
1.3 M 0.8782 0.8891 0.8738 DDL  0.8932
D 0.8777 0.8884 0.8734 DDT 0.8677
IM  0.8846 0.8963 0.8920 GM 0.8717
M = McKay’s Approximation DDL = Doormbos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE XCVIII

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R = 0.2, n; = ny= 50, n3 = 30

Effect Size Wald LR Score Alternate Tests
1** M 0.0540 0.0526 0.0418 DDL  0.0560
D 0.0536 0.0521 0.0414 DDT  0.0475
M 0.0577 0.0584 0.0518 GM 0.0429
1.05 M 0.0636 0.0768 0.0727 DDL  0.0827
D 0.0630 0.0762 0.0718 DDT  0.0582
M 0.0679 0.0814 0.0797 GM 0.0712
1.1 M 0.1211 0.1567 0.1515 DDL 0.1644
D 0.1196 0.1559 0.1505 DDT 0.1120
M 0.1285 0.1651 0.1600 GM 0.1487
1.15 M 0.2367 0.3001 0.2960 DDL 0.3126
D 0.2351 0.2987 0.2952 DDT  0.2273
M 0.2496 0.3096 0.3062 GM 0.2907
1.2 M 0.3875 0.4590 0.4525 DDL  0.4712
D 0.3853 0.4573 0.4510 DDT 0.3744
M 0.4035 0.4701 0.4649 GM 0.4447
1.25 M 0.5877 0.6529 0.6432 DDL  0.6648
D 0.5851 0.6517 0.6417 DDT  0.5759
M 0.6033 0.6627 0.6587 GM 0.6348
1.3 M 0.7445 0.7972 0.7840 DDL  0.8053
D 0.7428 0.7962 0.7832 DDT  0.7333
M 0.7580 0.8055 0.7980 GM 0.7783
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE XCIX

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALLR = 02, nm=mn= 30, n3= 50

Effect Size Wald LR Score Alternate Tests
1** M 0.0529 0.0516 0.0409 DDL 0.0572
D 0.0524 0.0512 0.0405 DDT 0.0452
IM  0.0571 0.0595 0.0521 GM 0.0406
1.05 M 0.0891 0.0765 0.0494 DDL  0.0826
D 0.0885 0.0765 0.0491 DDT 0.0785
IM  0.0961 0.0893 0.0717 GM 0.0565
1.1 M 0.1769 0.1542 0.0990 DDL  0.1637
D 0.1759 0.1535 0.0985 DDT 0.1616
IM 0.1863 0.1732 0.1399 GM 0.1138
1.15 M 0.3173 0.2848 0.1977 DDL 0.3013
D 0.3167 0.2842 0.1973 DDT 0.2916
IM  0.3303 0.3139 0.2661 GM 0.2271
1.2 M 0.4887 0.4548 0.3452 DDL  0.4709
D 0.4879 0.4545 0.3448 DDT  0.4640
IM  0.5045 0.4853 0.4312 GM 0.3826
1.25 M 0.6534 0.6203 0.5056 DDL  0.6360
D 0.6530 0.6201 0.5051 DDT 0.6286
IM  0.6661 0.6515 0.5951 GM 0.5446
1.3 M 0.8007 0.7765 0.6716 DDL  0.7890
D 0.7999 0.7761 0.6712 DDT 0.7817
IM  0.8099 0.8003  0.7554 GM 0.7092
M = McKay’s Approximation DDL = Doorbos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doornbos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE C

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R =0.2, n; = 30, n,= 50, n3= 30

Effect Size Wald LR Score Alternate Tests
1%%* M 0.0529 0.0516 0.0409 DDL  0.0572
D 0.0524 0.0512 0.0405 DDT  0.0452
™M 0.0571 0.0595 0.0521 GM 0.0406
1.05 M 0.0708 0.0715 0.0588 DDL  0.0782
D 0.0705 0.0709 0.0585 DDT  0.0628
M 0.0767 0.0821 0.0717 GM 0.0586
1.1 M 0.1225 0.1329 0.1100 DDL  0.1410
D 0.1216 0.1324 0.1092 DDT 0.1114
™M 0.1307 0.1471 0.1343 GM 0.1070
1.15 M 0.2157 0.2277 0.2045 DDL  0.2406
D 0.2145 0.2271 0.2029 DDT 0.2021
™M 0.2288 0.2474 0.2357 GM 0.1974
1.2 M 0.3548 0.3785 0.3444 DDL  0.3945
D 0.3531 0.3768 0.3431 DDT 0.3364
M 0.3704 0.4001 0.3868 GM 0.3352
1.25 M 0.4993 0.5267 0.4924 DDL  0.5444
D 0.4964 0.5256 0.4899 DDT  0.4818
M 0.5165 0.5502 0.5377 GM 0.4789
1.3 M 0.6491 0.6725 0.6306 DDL  0.6870
D 0.6467 0.6719 0.6297 DDT  0.6315
M 0.6666 0.6942 0.6793 GM 0.6225
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE CI

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R =0.2, n;= 50, n,=n3=30

Effect Size Wald LR Score Alternate Tests
1** M 0.0529 0.0516 0.0409 DDL 0.0572
D 0.0524 0.0512 0.0405 DDT  0.0452
M 0.0571 0.0595 0.0521 GM 0.0406
1.05 M 0.0581 0.0747 0.0709 DDL  0.0796
D 0.0573 0.0744 0.0702 DDT 0.0524
IM  0.0630 0.0807 0.0774 GM 0.0672
1.1 M 0.1140 0.1581 0.1621 DDL 0.1685
D 0.1124 0.1572 0.1610 DDT 0.1037
™M 0.1222 0.1677 0.1659 GM 0.1566
1.15 M 0.2256 0.2987 0.2992 DDL 0.3094
D 0.2234 0.2974 0.2977 DDT 0.2116
IM  0.2385 0.3079 0.3059 GM 0.2908
1.2 M 0.3873 0.4777 0.4734 DDL  0.4904
D 0.3838 0.4766 0.4710 DDT 0.3689
IM  0.4017 0.4885 0.4844 GM 0.4626
1.25 M 0.5637 0.6542 0.6488 DDL  0.6652
D 0.5608 0.6526 0.6473 DDT 0.5451
IM  0.5801 0.6627 0.6592 GM 0.6418
1.3 M 0.7240 0.7956 0.7831 DDL  0.8043
D 0.7217 0.7948 0.7813 DDT 0.7072
IM  0.7388 0.8031 0.7965 GM 0.7781
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE CII

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALLR = 02, n = 50, n=n3— 100

Effect Size Wald LR Score Altemnate Tests
1** M 0.0512 0.0507 0.0401 DDL  0.0525
D 0.0509 0.0506 0.0401 DDT  0.0479
M  0.0531 0.0537 0.0448 GM 0.0458
1.05 M 0.1170 0.1012 0.0715 DDL  0.1049
D 0.1169 0.1011 0.0715 DDT 0.1093
M  0.1216 0.1092 0.0851 GM 0.0845
1.1 M 0.2811 0.2538 0.1943 DDL 0.2610
D 0.2808 0.2537 0.1940 DDT 0.2699
IM  0.2869 0.2690 0.2267 GM 0.2256
1.15 M 0.5270 0.4901 0.4033 DDL  0.4999
D 0.5267 0.4899 0.4031 DDT 0.5123
IM  0.5361 0.5112 0.4497 GM 0.4482
1.2 M 0.7588 0.7336 0.6557 DDL  0.7422
D 0.7587 0.7335 0.6554 DDT 0.7473
IM  0.7659 0.7481 0.7029 GM 0.7005
1.25 M 0.9109 0.8955 0.8449 DDL  0.8981
D 0.9109 0.8956 0.8447 DDT  0.9059
IM 09149 0.9038 0.8768 GM 0.8743
1.3 M 0.9768 0.9708 0.9441 DDL  0.9720
D 0.9768 0.9708 0.9441 DDT 0.9747
IM 0.9784 0.9740 0.9599 GM 0.9581
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE CIII

REJECTION RATES FOR ONE-FACTOR TEST AT a = 0.05
FOR OVERALL R = 0.2, n; = 100, n,= 50, n3= 100

Effect Size Wald LR Score Alternate Tests
1** M 0.0512 0.0507 0.0401 DDL  0.0525
D 0.0509 0.0506 0.0401 DDT  0.0479
™M 0.0531 0.0537 0.0448 GM 0.0458
1.05 M 0.1123 0.1135 0.1012 DDL 0.1172
D 0.1122 0.1133 0.1010 DDT 0.1069
™M 0.1153 0.1190 0.1094 GM 0.1073
1.1 M 0.3377 0.3480 0.3259 DDL 0.3536
D 0.3368 0.3476 0.3258 DDT  0.3281
™M 0.3444 0.3561 0.3422 GM 0.3328
1.15 M 0.6517 0.6631 0.6468 DDL  0.6685
D 0.6508 0.6626 0.6467 DDT 0.6396
™M 0.6571 0.6706 0.6614 GM 0.6502
1.2 M 0.8808 0.8865 0.8790 DDL  0.8897
D 0.8805 0.8864 0.8788 DDT  0.8763
™M 0.8838 0.8913 0.8869 GM 0.8800
1.25 M 09752  0.9763 0.9732 DDL 0.9770
D 0.9752 0.9763 0.9732 DDT 0.9730
™M 0.9759 0.9777 0.9764 GM 0.9734
1.3 M 0.9959 0.9963 0.9959 DDL  0.9966
D 0.9959 0.9962 0.9959 DDT  0.9949
™M 0.9962 0.9969 0.9964 GM 0.9958
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE CIV

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R =0.2, n; =n,= 100, n3= 50

Effect Size Wald LR Score Alternate Tests
1%* M 0.0512 0.0507 0.0401 DDL  0.0525
D 0.0509 0.0506 0.0401 DDT 0.0479
M 0.0531 0.0537 0.0448 GM 0.0458
1.05 M 0.0770 0.0979 0.0939 DDL 0.1014
D 0.0765 0.0971 0.0936 DDT  0.0737
M 0.0797 0.0991 0.0925 GM 0.1017
1.1 M 0.2146 0.2591 0.2511 DDL  0.2649
D 0.2137 0.2587 - 0.2502 DDT  0.2096
™M 0.2209 0.2617 0.2475 GM 0.2607
1.15 M 0.4489 0.5101 0.4966 DDL  0.5177
D 0.4471 0.5089 0.4955 DDT  0.4434
™M 0.4582 0.5128 0.4976 GM 0.5089
1.2 M 0.6906 0.7359 0.7245 DDL  0.7424
D 0.6898 0.7352 0.7232 DDT 0.6861
™M 0.6977 0.7387 0.7244 GM 0.7320
1.25 M 0.8697 0.8959 0.8882 DDL  0.8989
D 0.8688 0.8951 0.8879 DDT 0.8666
M 0.8736 0.8972 0.8884 GM 0.8944
13 M 0.9650 09727 - 0.9687 DDL  0.9740
D 0.9649 0.9724 0.9686 DDT  0.9640
M 0.9660 0.9735 0.9702 GM 0.9707
M = McKay’s Approximation DDL = Doornbos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE CV

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R = 0.2, n;=1n,= 50, n3= 100

Effect Size Wald LR Score Alternate Tests
IH* M 0.0517 0.0506 0.0403 DDL  0.0527
D 0.0515 0.0504 0.0400 DDT 0.0470
M 0.0542 0.0546 0.0458 GM 0.0451
1.05 M 0.1179 0.0969 0.0590 DDL  0.0999
D 0.1178 0.0967 0.0589 DDT 0.1091
™M 0.1219 0.1064 0.0803 GM 0.0783
1.1 M 0.2818 0.2408 0.1592 DDL  0.2503
D 0.2818 0.2407 0.1591 DDT  0.2658
M 02899 0.2627 0.2027 GM 0.2021
1.15 M 0.5250 0.4775 0.3642 DDL  0.4889
D 0.5248 0.4776 0.3642 DDT 0.5050
IM  0.5334 0.5006 0.4286 GM 0.4256
1.2 M 0.7627 0.7234 0.6111 DDL 0.7312
D 0.7625 0.7233 0.6111 DDT 0.7472
M 0.7682 0.7426 0.6796 GM 0.6778
1.25 M 0.9098 0.8875 0.8128 DDL 0.8917
D 0.9096 0.8877 0.8129 DDT  0.9020
M 09129 0.8980 0.8620 GM 0.8571
1.3 M 0.9772 0.9673 0.9352 DDL  0.9694
D 0.9772 0.9673 0.9352 DDT 0.9742
IM  0.9782 0.9727 0.9554 GM 0.9526
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doombos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test

191



TABLE CVI

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R =0.2, n;= 50, n;= 100, n3= 50

Effect Size Wald LR Score Alternate Tests
1** M 0.0517 0.0506 0.0403 DDL  0.0527
D 0.0515 0.0504 0.0400 DDT  0.0470
M  0.0542 0.0546 0.0458 GM 0.0451
1.05 M 0.0786 0.0801 0.0692 DDL  0.0846
D 0.0784 0.0797 0.0690 DDT 0.0744
M 0.0824 0.0864 0.0769 GM 0.0721
1.1 M 0.1821 0.1941 0.1793 DDL 0.2012
D 0.1816 0.1938 0.1788 DDT 0.1753
M 0.1891 0.2030 0.1923 GM 0.1815
1.15 M 0.3499 0.3661 0.3457 DDL 0.3761
D 0.3488 0.3653 0.3446 DDT  0.3387
M 0.3597 0.3783 0.3682 GM 0.3472
1.2 M 0.5693 0.5862 0.5580 DDL 0.5970
D 0.5685 0.5854 0.5566 DDT 0.5573
M 0.5811 0.5984 0.5875 GM 0.5584
1.25 M 0.7537 0.7672 0.7379 DDL  0.7742
D 0.7528 0.7668 0.7372 DDT  0.7440
M 0.7379 0.7619 0.7775 GM 0.7382
1.3 M 0.8842 0.8903 0.8687 DDL  0.8940
D 0.8836 0.8900 0.8684 DDT  0.8783
IM  0.8893 0.8975 0.8891 GM 0.8674
M = McKay’s Approximation DDL = Doombos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doormbos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE CVIL

REJECTION RATES FOR ONE-FACTOR TEST AT o = 0.05
FOR OVERALL R = 0.2, n;= 100, n,=n3= 50

Effect Size Wald LR Score Alternate Tests
¥ M 0.0517 0.0506 0.0403 DDL  0.0527
D 0.0515 0.0504 0.0400 DDT  0.0470
M  0.0542 0.0546 0.0458 GM 0.0451
1.05 M 0.0766 0.0998 0.0984 DDL 0.1041
D 0.0761 0.0994 0.0975 DDT 0.0713
IM  0.0803 0.1026 0.0964 GM 0.1026
1.1 M 0.1973 0.2565 0.2530 DDL  0.2632
D 0.1962 0.2551 0.2519 DDT  0.1903
M 0.2057 0.2583 0.2446 GM 0.2620
1.15 M 0.4206 ~ 0.4955 0.4902 DDL  0.5021
D 0.4185 0.4944 0.4883 DDT 04117
IM 04286  0.4975 0.4815 GM 0.5018
1.2 M 0.6776 0.7450 0.7364 DDL  0.7490
D 0.6759 0.7437 0.7348 DDT  0.6685
IM  0.6863 0.7435 0.7317 GM 0.7490
1.25 M 0.8512 0.8920 0.8842 DDL  0.8949
D 0.8504 0.8915 0.8838 DDT  0.8458
IM  0.8578 0.8924 0.8827 GM 0.8924
1.3 M 0.9494 0.9655 0.9616 DDL  0.9662
D 0.9487 0.9654 0.9615 DDT 0.9464
M 0.9516 0.9657 0.9613 GM 0.9645
M = McKay’s Approximation DDL = Doornbos and Dijkstra’s LR Test
D = David’s Approximation DDT = Doornbos and Dijkstra’s t Test

IM = Iglewicz and Myers’ Approximation GM = Gupta and Ma’s Score Test
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TABLE CVIII

REJECTION RATES FOR INTERACTION TEST FOR
GAMMA-DISTRIBUTED DATA AT o = 0.05 FOR
OVERALL R = 03, Ni1=N12=Np1 = Npp = 10

Effect Size Wald LR Score
1 M 0.0478 0.0460 0.0335
D 0.0463 0.0444 0.0329
™M 0.0599 0.0596 0.0531
1.1 M 0.1038 0.1006 0.0783
D 0.1007 0.0972 0.0754
™M 0.1230 . 0.1232 0.1160
1.2 M 0.2816 0.2752 0.2293
D 0.2757 0.2704 0.2250
™M 0.3176 0.3186 0.3035
1.3 M 0.5179 0.5110 0.4506
D 0.5111 0.5045 0.4444
™M 0.5605 0.5630 0.5445
1.4 M 0.7418 0.7358 0.6759
D 0.7356 0.7293 0.6710
™M 0.7734 0.7746 0.7583
1.5 M 0.8881 0.8849 0.8291
D 0.8849 0.8826 0.8283
™M 0.9065 0.9077 0.8872
1.6 M 0.9574 0.9560 0.8782
D 0.9557 0.9541 0.8848
™M 0.9678 0.9682 0.9264

M = McKay’é Approximation
D = David’s Approximation
IM = Iglewicz and Myers’ Approximation
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TABLE CIX

REJECTION RATES FOR INTERACTION TEST FOR
GAMMA-DISTRIBUTED DATA AT o = 0.05 FOR
OVERALL R = 03, N =Np= N =nNn= 20

Effect Size Wald LR Score
1 M 0.0445 0.0437 0.0388
D 0.0440 0.0429 0.0381

™M 0.0504 0.0504 0.0478

1.1 M 0.1786 0.1760 0.1608
D 0.1763 0.1725 0.1582

™M 0.1918 - 0.1921 0.1872

1.2 M 0.5471 0.5437 0.5170
D 0.5442 0.5398 0.5132

™M 0.5652 0.5660 0.5605

1.3 M 0.8445 0.8420 0.8292
D 0.8422 0.8397 0.8273

™M 0.8570 0.8574 0.8538

1.4 M 0.9712 0.9707 0.9668
D 0.9707 0.9703 0.9662

™M 0.9741 0.9741 0.9732

1.5 M 0.9964 0.9964 0.9954
D 0.9963 0.9963 0.9954

™M 0.9968 0.9969 0.9961

1.6 M 0.9997 0.9997 0.9949
D 0.9997 0.9997 0.9961

™M 0.9997 0.9997 0.9972

M = McKay’s Approximation
D = David’s Approximation
IM = Iglewicz and Myers’ Approximation
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TABLE CX

REJECTION RATES FOR INTERACTION TEST FOR
GAMMA-DISTRIBUTED DATA AT o = 0.05 FOR
OVERALLR = 03, Ny =np—Nx = Nxpn=— 30

Effect Size Wald LR Score

1 M 0.0412 0.0408 0.0363
D 0.0406 0.0401 0.0359
™M 0.0452 0.0453 0.0446
1.1 M 0.2589 0.2566 0.2430
D 0.2568 0.2549 0.2416
™M 0.2709 0.2712 0.2672
1.2 M 0.7213 0.7190 0.7060
D 0.7190 0.7175 0.7028
™M 0.7317 0.7321 0.7283
1.3 M 0.9608 0.9607 0.9571
D 0.9606 0.9599 0.9564
™M 0.9641 0.9643 0.9630
1.4 M 0.9975 0.9975 0.9972
D 0.9975 0.9975 0.9972
™M 0.9977 0.9977 0.9977
1.5 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000
™M 1.0000 1.0000 1.0000
1.6 M 1.0000 1.0000 0.9999
D 1.0000 1.0000 0.9999
™M 1.0000 1.0000 0.9999

M = McKay’s Approximation
D = David’s Approximation
IM = Iglewicz and Myers’ Approximation
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TABLE CXI

REJECTION RATES FOR INTERACTION TEST FOR
GAMMA-DISTRIBUTED DATA AT o = 0.05 FOR
OVERALLR = 03, N =N~ =Ny~ 50

Effect Size Wald LR Score

1 M 0.0423 0.0419 0.0400
D 0.0419 0.0415 0.0397
™M 0.0448 0.0448 0.0438
1.05 M 0.1306 0.1302 0.1262
D 0.1303 0.1295 0.1256
™M 0.1350 0.1352 0.1341
1.1 M 0.3935 0.3928 0.3864
D 0.3929 0.3918 0.3853
™M 0.4050 0.4054 0.4024
1.15 M 0.7336 0.7328 0.7256
D 0.7330 0.7317 0.7250
™M 0.7408 0.7410 0.7389
1.2 M 0.9189 0.9134 0.9147
D 0.9184 0.9178 0.9142
M 0.9225 0.9228 0.9215
1.25 M 0.9855 0.9854 0.9846
D 0.9853 0.9851 0.9844
™M 0.9863 0.9863 0.9860
1.3 M 0.9975 0.9975 0.9974
D 0.9975 0.9975 0.9974
™M 0.9977 0.9977 0.9976

M = McKay’s Approximation
D = David’s Approximation
IM = Iglewicz and Myers’ Approximation
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TABLE CXII

REJECTION RATES FOR INTERACTION TEST FOR
GAMMA-DISTRIBUTED DATA AT a = 0.05 FOR
OVERALLR = 03, N =Np=Ny1=Nxpn= 100

Effect Size Wald LR Score

1 M 0.0416 0.0414 0.0405
D 0.0414 0.0413 0.0404
M 0.0432 0.0432 0.0430
1.05 M 0.2345 0.2344 0.2310
D 0.2344 0.2340 0.2305
M 0.2397 0.2399 0.2386
1.1 M 0.6918 0.6912 0.6870
D 0.6913 0.6906 0.6864
M 0.6982 0.6984 0.6971
1.15 M 0.9567 0.9565 0.9555
D 0.9565 0.9561 0.9553
M 0.9582 0.9582 : 0.9578
1.2 M 0.9984 0.9984 0.9984
D 0.9984 0.9984 0.9984
M 0.9984 0.9984 0.9984
1.25 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000
M 1.0000 1.0000 1.0000
1.3 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000
M 1.0000 1.0000 1.0000

M = McKay’s Approximation
D = David’s Approximation
IM = Iglewicz and Myers’ Approximation
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TABLE CXIII

REJECTION RATES FOR INTERACTION TEST FOR
GAMMA-DISTRIBUTED DATA AT a. = 0.05 FOR
OVERALL R= 06, N ~=N~=N1=Nn= 10

Effect Size Wald LR } Score

1 M 0.0133 0.0160 0.0065
D 0.0128 0.0141 0.0056
M 0.0232 0.0237 0.0155
1.1 M 0.0377 0.0442 0.0195
D 0.0347 0.0394 0.0171
M 0.0619 0.0643 0.0403
1.2 M 0.1087 0.1302 0.0646
D 0.1015 0.1201 0.0616
M 0.1659 0.1740 0.1179
1.3 M 0.2616 0.3047 0.1519
D 0.2436 0.2859 0.1485
M 0.3609 0.3779 0.2553
1.4 M 0.4623 0.5280 0.2655
D 0.4486 0.5040 0.2733
M 0.5886 0.6033 0.4026
1.5 M 0.6696 0.7318 0.3671
D 0.6615 0.7139 0.3836
M 0.7779 0.7934 0.5003
1.6 M 0.8110 0.8669 0.3959
D 0.8102 0.8526 . 0.4342
M 0.8940 0.9037 0.5093

M = McKay’s Approximation
D = David’s Approximation :
IM = Iglewicz and Myers’ Approximation
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TABLE CXIV

REJECTION RATES FOR INTERACTION TEST FOR
GAMMA-DISTRIBUTED DATA AT o = 0.05 FOR
OVERALLR = 06, N 1=Np2=N21— D= 20

Effect Size Wald LR Score
1 M 0.0140 0.0160 0.0110
D 0.0121 0.0152 0.0100

™M 0.0212 0.0235 0.0189

1.1 M 0.0794 0.0883 0.0729
D 0.0766 0.0833 0.0692

™M 0.1065 0.1111 0.1001

1.2 M 0.3144 0.3332 0.2956
D 0.3052 0.3233 0.2857

™M 0.3745 0.3846 0.3599

1.3 M 0.6591 0.6814 0.6344
D 0.6499 0.6687 0.6245

™M 0.7190 0.7307 0.7017

1.4 M 0.8867 0.8980 0.8485
D 0.8816 0.8922 0.8482

™M 0.9194 0.9222 0.8866

1.5 M 0.9759 0.9785 0.9002
D 0.9743 0.9775 0.9154

™M 0.9825 0.9835 0.9065

1.6 M 0.9969 0.9971 0.8167
D 0.9968 0.9970 0.8501

™M 0.9980 0.9982 0.8025

M = McKay’s Approximation
D = David’s Approximation
IM = Iglewicz and Myers’ Approximation
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TABLE CXV

REJECTION RATES FOR INTERACTION TEST FOR
GAMMA-DISTRIBUTED DATA AT o = 0.05 FOR
OVERALLR = 06, Nn=Np=0D1= Ny~ 30

Effect Size Wald LR Score

1 M 0.0164 0.0172 0.0157
D 0.0157 0.0165 0.0152
™M 0.0213 0.0223 0.0203
1.1 M 0.1317 0.1390 0.1253
D 0.1277 0.1342 - 0.1212
™M 0.1602 0.1641 0.1553
1.2 M 0.5113 0.5258 0.4990
D 0.5031 0.5160 0.4907
™M 0.5640 0.5704 0.5547
1.3 M 0.8658 0.8732 0.8594
D 0.8614 0.8683 0.8544
™M 0.8935 0.8961 0.8897
1.4 M 0.9826 0.9845 0.9774
D 0.9817 0.9835 0.9774
™M 0.9876 0.9882 0.9820
1.5 M 0.9991 0.9991 0.9779
D 0.9989 0.9991 0.9829
™M 0.9994 0.9994 0.9724
1.6 M 1.0000 1.0000 1.0000
D 1.0000 1.0000 1.0000
™M 1.0000 1.0000 1.0000

M = McKay’s Approximation
D = David’s Approximation
IM = Iglewicz and Myers’ Approximation
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TABLE CXVI

REJECTION RATES FOR INTERACTION TEST FOR
GAMMA-DISTRIBUTED DATA AT a = 0.05 FOR
OVERALLR = 06, Ny 1=Np2=Np1 =~ Nap = 50

Effect Size Wald LR Score

1 M 0.0189 0.0198 0.0180
D 0.0183 0.0190 0.0174
™M 0.0243 0.0251 0.0235
1.05 M 0.0678 0.0697 0.0651
D 0.0657 0.0682 0.0634
™M 0.0824 0.0840 0.0805
1.1 M 0.2390 0.2449 0.2343
D 0.2352 0.2402 0.2308
™M 0.2733 0.2771 0.2700
1.15 M 0.5104 0.5199 0.5062
D 0.5063 0.5137 0.5005
™M 0.5563 0.5599 0.5525
1.2 M 0.7794 0.7852 0.7747
D 0.7756 0.7811 0.7705
™M 0.8093 0.8123 0.8064
1.25 M 0.9342 0.9364 0.9325
D 0.9330 0.9349 0.9313
™M 0.9449 0.9465 0.9435
1.3 M 0.9881 0.9890 0.9878
D 0.9878 0.9886 0.9871
™M 0.9924 0.9927 0.9921

M = McKay’s Approximation
D = David’s Approximation
IM = Iglewicz and Myers’ Approximation
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TABLE CXVII

REJECTION RATES FOR INTERACTION TEST FOR
GAMMA-DISTRIBUTED DATA AT o =0.05 FOR
OVERALLR = 06, N =Np=Np =Ny = 100

Effect Size Wald LR Score

1 M 0.0209 0.0217 0.0204
D 0.0204 0.0212 0.0200
™M 0.0269 0.0272 0.0264
1.05 M 0.1180 0.1203 0.1167
D 0.1170 0.1188 0.1153
™M 0.1377 0.1391 0.1360
1.1 M 0.4936 0.4961 0.4907
D 0.4911 0.4943 0.4888
™M 0.5317 0.5347 0.5298
1.15 M 0.8613 0.8629 0.8604
D 0.8602 0.8617 0.8594
™M 0.8790 0.8798 0.8780
1.2 M 0.9832 0.9836 0.9828
D 0.9829 0.9833 0.9828
™M 0.9861 0.9862 0.9861
1.25 M 0.9992 0.9992 0.9992
D 0.9992 0.9992 0.9992
™M 0.9994 0.9994 0.9994
1.3 M 1.0000 1.0000 ' 0.9999
D 1.0000 -1.0000 0.9999
™M 1.0000 1.0000 1.0000

M = McKay’s Approximation
D = David’s Approximation
IM = Iglewicz and Myers’ Approximation
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TABLE CXVIII

REJECTION RATES FOR INTERACTION TEST FOR
GAMMA-DISTRIBUTED DATA AT o = 0.05 FOR
OVERALLR = 03, n;1=nNxpn= 10, Np=Ny = 20

Effect Size ‘Wald LR Score
1* M 0.0485 0.0443 0.0211
D 0.0479 0.0434 0.0202

™ 0.0577 0.0556 0.0371

1.1 M 0.0925 0.1124 0.1054
D 0.0881 0.1080 0.1006

™ 0.1105 0.1220 0.1135

1.2 M 0.3125 0.3546 0.3464
D 0.3021 0.3454 0.3362

™ 0.3437 0.3741 0.3589

1.3 M 0.6044 0.6437 0.6362
D 0.5945 0.6355 0.6274

™ 0.6333 0.6601 0.6471

1.4 M 0.8319 0.8557 0.8512
D 0.8268 0.8513 0.8471

™ 0.8502 0.8665 0.8585

1.5 M 0.9410 0.9511 0.9495
D 0.9387 0.9494 0.9475

™ 0.9491 0.9542 0.9515

1.6 M 0.9836 0.9867 0.9853
D 0.9827 0.9860 0.9849

™ 0.9858 0.9885 0.9870

M = McKay’s Approximation
D = David’s Approximation
IM = Iglewicz and Myers’ Approximation

204



TABLE CXIX

REJECTION RATES FOR INTERACTION TEST FOR
GAMMA-DISTRIBUTED DATA AT o = 0.05 FOR
OVERALL R = 03, N = Nyy= 20, Np=n53 = 10

Effect Size Wald LR : Score
1* M 0.0485 0.0443 0.0211
D 0.0479 0.0434 0.0202

M 0.0577 0.0556 0.0371

1.1 M 0.1610 0.1333 0.0413
D 0.1609 0.1331 0.0411

M 0.1850 0.1674 0.1040

1.2 M 0.4195 0.3680 0.1536
D 0.4190 0.3674 0.1528

™M 0.4575 0.4278 0.3127

1.3 M 0.7128 0.6582 0.3722
D 0.7124 0.6581 0.3721

M 0.7470 0.7202 0.5931

1.4 M 0.8986 0.8667 0.6109
D 0.8982 0.8662 0.6116

M 0.9143 0.9016 0.8117

1.5 M 0.9759 0.9652 0.7566
D 0.9759 0.9649 0.7617

M 0.9809 0.9774 0.9023

1.6 M 0.9954 0.9923 0.7487
D 0.9954 0.9922 0.7572

M 0.9964 0.9957 0.8695

M = McKay’s Approximation
D = David’s Approximation
IM = Iglewicz and Myers’ Approximation
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TABLE CXX

REJECTION RATES FOR INTERACTION TEST FOR
GAMMA-DISTRIBUTED DATA AT o = 0.05 FOR
OVERALLR = 03, Ny =Ny~ 50, Npp=n21= 100

Effect Size Wald LR Score
1* M 0.0417 0.0410 0.0277
D 0.0418 0.0408 0.0275

M 0.0447 0.0436 0.0313

1.05 M 0.1400 0.1496 0.1369
D 0.1385 0.1478 0.1353

M 0.1438 0.1512 0.1343

1.1 M 0.4884 0.5079 0.4850
D 0.4853 0.5051 0.4822

M 0.4963 - 0.5103 0.4808

1.15 M 0.8353 0.8477 0.8328
D 0.8335 0.8459 0.8311

M 0.8397 0.8490 0.8297

1.2 M 0.9658 0.9692 0.9649
D 0.9651 0.9687 0.9643

M 0.9669 0.9696 0.9638

1.25 M 0.9973 0.9976 0.9971
D 0.9972 0.9976 0.9971

M 0.9974 0.9977 0.9970

1.3 M 0.9998 0.9998 0.9998
D 0.9998 0.9998 0.9996

M 0.9998 0.9998 0.9996

M = McKay’s Approximation
D = David’s Approximation
IM = Iglewicz and Myers’ Approximation
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TABLE CXXI

REJECTION RATES FOR INTERACTION TEST FOR
GAMMA-DISTRIBUTED DATA AT o = 0.05 FOR
OVERALLR = 03, Ny =Np= 100, Np=—n3= 50

Effect Size Wald LR Score
1* M 0.0417 0.0410 0.0277
D 0.0418 0.0408 0.0275

™ 0.0447 0.0436 0.0313

1.05 M 0.1841 0.1716 0.1162
D 0.1846 0.1723 0.1166

™ 0.1904 0.1831 0.1369

1.1 M 0.5435 0.5228 0.4219
D 0.5446 0.5235 0.4227

™ 0.5538 0.5412 0.4660

1.15 M 0.8623 0.8502 0.7791
D 0.8630 0.8503 0.7804

™ 0.8681 0.8612 0.8126

1.2 M 0.9777 0.9741 0.9535
D 0.9778 0.9744 0.9538

™ 0.9790 0.9774 0.9634

1.25 M 0.9984 0.9982 0.9968
D 0.9984 0.9982 0.9968

™ 0.9985 0.9983 0.9971

1.3 M 1.0000 1.0000 0.9999
D 1.0000 1.0000 0.9999

™ 1.0000 1.0000 1.0000

M = McKay’s Approximation
D = David’s Approximation
IM = Iglewicz and Myers’ Approximation
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TABLE CXX1II

REJECTION RATES FOR INTERACTION TEST FOR
GAMMA-DISTRIBUTED DATA AT o = 0.05 FOR
OVERALLR = 06, N =Ny = 10, Np=nNp1= 20

Effect Size Wald LR Score
1* M 0.0200 0.0164 0.0045
D 0.0198 0.0150 0.0036
™ 0.0287 0.0262 - 0.0104
1.1 M 0.0187 0.0458 0.0392
D 0.0162 0.0376 0.0322
™ 0.0367 0.0582 0.0529
1.2 M 0.0925 0.1907 0.1765
D 0.0835 0.1675 0.1558

™M 0.1604 0.2223 0.2138
1.3 M 0.2700 0.4388 0.4210
D 0.2494 0.4049 0.3868
™ 0.3906 0.4802 0.4698
1.4 M 0.5387 0.7069 0.6889
D 0.5158 0.6772 0.6615
™ 0.6648 0.7406 0.7297
1.5 M 0.7714 0.8827 0.8667
D 0.7580 0.8667 0.8530
™ 0.8584 0.8996 0.8840
1.6 M 0.9047 0.9618 0.9393
D 0.9027 0.9545 0.9414
™ 0.9513 0.9693 0.9361

M = McKay’s Approximation
D = David’s Approximation
IM = Iglewicz and Myers’ Approximation
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TABLE CXXIII

REJECTION RATES FOR INTERACTION TEST FOR
GAMMA-DISTRIBUTED DATA AT o = 0.05 FOR
OVERALLR = 06, Ny =Ny — 20, Nyy=MNy1 = 10

Effect Size Wald LR Score
1* M 0.0200 0.0164 0.0045
D 0.0198 0.0150 0.0036

™M 0.0287 0.0262 0.0104

1.1 M 0.0883 0.0602 0.0085
D 0.0884 0.0600 0.0087

™M 0.1177 0.0934 0.0289

1.2 M 0.2577 0.1932 0.0289
D 0.2581 0.1932 _ 0.0304

™M 0.3216 0.2686 0.0888

1.3 M 0.5185 0.4353 0.0813
D 0.5187 0.4357 0.0844

™M 0.5931 0.5343 0.2085

14 M 0.7556 0.6813 0.1256
D 0.7554 0.6812 0.1309

™M 0.8163 0.7680 0.2817

1.5 M 0.9021 0.8562 0.1604
D 0.9017 0.8560 0.1733

™M 0.9335 0.9113 0.3075

1.6 M 0.9634 0.9450 0.1555
D 0.9636 0.9449 0.1699

™M 0.9806 0.9693 0.2584

M = McKay’s Approximation
D = David’s Approximation
IM = Iglewicz and Myers’ Approximation
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TABLE CXXIV

REJECTION RATES FOR INTERACTION TEST FOR
GAMMA-DISTRIBUTED DATA AT a = 0.05 FOR
OVERALLR = 0.6, N =nNpn= 50, nix=n31= 100

Effect Size Wald LR Score
1* M 0.0195 0.0202 0.0127
D 0.0197 0.0197 0.0121

M 0.0252 0.0250 0.0178

1.05 M 0.0637 0.0806 0.0682
D 0.0605 0.0758 0.0650

™M 0.0795 0.0939 0.0822

1.1 M 0.2808 0.3209 0.2981
D 0.2714 0.3116 0.2870

M 0.3173 0.3475 0.3242

1.15 M 0.6249 0.6651 0.6420
D 0.6139 0.6559 0.6302

M 0.6615 0.6885 0.6676

1.2 M 0.8797 0.8999 0.8868
D 0.8752 0.8949 0.8824

™M 0.8977 0.9105 0.8999

1.25 M 0.9776 0.9831 0.9803
D 0.9759 0.9820 0.9790

™M 0.9824 0.9850 0.9829

1.3 M 0.9983 0.9986 0.9983
D 0.9980 0.9986 0.9983

™M 0.9986 0.9989 0.9986

M = McKay’s Approximation
D = David’s Approximation
IM = Iglewicz and Myers’ Approximation
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TABLE CXXV

REJECTION RATES FOR INTERACTION TEST FOR
GAMMA-DISTRIBUTED DATA AT a = 0.05 FOR
OVERALLR = 06, ny1=nNpn= 100, Np=—Ny1 = 50

Effect Size Wald LR Score
1* M 0.0195 0.0202 -0.0127
D 0.0197 0.0197 0.0121

™ 0.0252 0.0250 - 0.0178

1.05 M 0.1044 0.0920 0.0534
D 0.1054 0.0932 0.0544

™ 0.1243 0.1112 0.0720

1.1 M 0.3617 0.3327 0.2319
D 0.3645 0.3361 0.2341

™ 0.4032 0.3765 0.2833

1.15 M 0.7053 0.6771 0.5585
D 0.7082 0.6798 0.5614

M 0.7450 0.7180 0.6252

1.2 M 0.9151 0.9035 0.8405
D 0.9164 0.9051 0.8423

™ 0.9319 0.9221 0.8772

1.25 M 0.9858 0.9825 0.9629
D 0.9862 0.9831 0.9638

™ 0.9895 0.9877 . 0.9753

1.3 M 0.9988 0.9984 0.9954
D 0.9989 0.9984 0.9954

- ™ 0.9991 0.9991 0.9971

M = McKay’s Approximation
D = David’s Approximation
IM = Iglewicz and Myers’ Approximation
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APPENDIX B

SAS PROGRAM TO CALCULATE EXACT
AND APPROXIMATE QUANTILES
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/******************************************************

This SAS program generates selected quantiles from the exact
distribution of the sample CV for data drawn from a normal
population using the method of Owen (1968). Corresponding
quantiles from McKay's, David's, and Iglewicz and Myers'

approximations are also calculated.
******************************************************/

DATA CVQUANT;
DO R=0.1,0.2,0.33; /* population CVs */
DO N=10,50,100; /* sample sizes */
DO P=0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99; /* quantiles */

NC=SQRT(N)/R; /* calculate non-centrality parameter */
TQ=1-P+PROBT(0,N-1,NC); /* calculate relevent quantile

from non-central t */
RQ=SQRT(N)/TINV(TQ,N-1,NC); /* compute p-th exact quantile of r */
RSUBNQ=SQRT((N-1)/N)*RQ; /* compute p-th exact quantile of r sub n */

CO=(R**2/(1+R**2)y*CINV(P,N-1)/(N-1);
C1=(N-1)/N*C0;

RSUBNQM=SQRT(C1/(1-C1)); /* calculate p-th quantile from McKay */
RQD=SQRT(C0/(1-C0)); /* calculate p-th quantile from David */
RQIM=R+PROBIT(P)*SQRT(R**2/N*(R**2+0.5)); /* calculate p-th quantile
from Iglewicz and Myers */
OUTPUT;
END;
END;
END;

PROC PRINT NOOBS DATA=CVQUANT; /* print exact and approximate quantiles */

VAR R N P RSUBNQ RSUBNQM RQ RQD RQIM:
RUN;
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APPENDIX C

SAS PROGRAM TO SIMULATE
THE INTERACTION TEST
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/*****************************************************

This SAS program simulates the test of interaction using data
from normal populations arranged in a 2 x 2 factorial having
CVs determined by the model

R = exp(rstar + a + b + ab),

where exp(rstar) is the overall population CV, exp(a) is the
effect of factor A, exp(b) is the effect of factor B, and
exp(ab) is the effect of interaction between A and B. For
simplicity, both main effects in the generating model are set

to zero.
******************************************************/

PROC IML;

START;
NUMSAMP=10000;MAXITER=1000;ALPHA=.05; /* calculate 10,000 sets */
OVERALLR=0.1;FACTAB=1.3;N11=10;N12=10;N21=10;N22=10;

/* as an example, exp(rstar) is set at 0.1, exp(ab) is set at 1.3,
and all sample sizes are set at 10 */

DWALDREJ=0;DLRREJ=0;DSCREJ=0;
MWALDREJ=0;MLRREJ=0;MSCREJ=0;
IWALDREJ=0;ILRREJ=0;ISCREJ=0;

STEP=0.5;BOUND=1E-6; /* set step length and convergence criterion */
DO COUNT=1 TO NUMSAMP;

/* generate a set of samples from a 2 x 2 factorial and compute
sample CVs using (n-1) divisor for sample variance */

SUM11=0;SUMSQ11=0;

DO OBSCOUNT=1 TO N11;
Y11=1 + RANNOR(0)*(OVERALLR*FACTAB);,
SUM11=SUM11+Y11; SUMSQ11=SUMSQ11+Y11%*2;

END;
CV11=SQRT((SUMSQ11-SUM11**2/N11)/(N11-1))/(SUM11/N11);

SUM12=0;SUMSQ12=0;

DO OBSCOUNT=1 TO N12;
Y12=1 + RANNOR(0)*(OVERALLR*INV(FACTAB));
SUM12=SUM12+Y12; SUMSQ12=SUMSQI2+Y12**2;

END;
CV12=SQRT((SUMSQ12-SUM12**2/N12)/(N12-1))/(SUM12/N12);
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SUM21=0;SUMSQ21=0;

DO OBSCOUNT=1 TO N21;
Y21=1 + RANNOR(0)*(OVERALLR*INV(FACTAB));
SUM21=SUM21+Y21; SUMSQ21=SUMSQ21+Y21**2;

END;
CV21=SQRT((SUMSQ21-SUM21**2/N21)/(N21-1))/(SUM21/N21);

SUM22=0;SUMSQ22=0;

DO OBSCOUNT=1 TO N22;
Y22=1 + RANNOR(0)*(OVERALLR*FACTAB);
SUM22=SUM22+Y22; SUMSQ22=SUMSQ22+Y22**2;

END;
CV22=SQRT((SUMSQ22-SUM22**2/N22)/(N22-1))/(SUM22/N22);

R=CV11//CV12//CV21//CV22;
N=N11//N12/N21//N22;
RSTAR=R##2/(1+R##2);

Z=LOG(SQRT(RSTAR/(1-RSTAR))); /* estimate saturated model using David’s */

W=DIAG(2#(N-1)#(1-RSTAR)##2); /* approximation

1,

“

-1
17

1};
B=INV(T(XB)*XB)*T(XB)*Z;

COVB=INV(T(XB)*W*XB);
C={0001};

CHISQ=T(C*B)*INV(C*COVB*T(C))*C*B; /* compute Wald statistic for David’s */

PWALD=1-PROBCHI(CHISQ,1); /* approximation
IF PWALD < ALPHA THEN DWALDREJ=DWALDRE] + 1;

X={1 1 1, /* estimate main effects model using David’s approximation */

-1,
1

-1}
B=INV(T(X)*W*X)*T(X)*W*Z;
OLDB=B+1;

1
11-
1-1
1-1

DO ITER=1 TO MAXITER WHILE(MAX(ABS(B-OLDB)) > BOUND);
OLDB=B;
RSTARHAT=((EXP(X*B))#2)/(1+((EXP(X*B))##2));
Z=LOG(SQRT(RSTARHAT/(1-RSTARHAT)))+
STEP*((RSTAR-RSTARHAT)/(2#RSTARHAT#(1-RSTARHAT)));
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W=DIAG(2#(N-1)#(1-RSTARHAT)##2);
B=INV(T(X)*W*X)*T(X)*W*Z;
END;

DEVOBS=-(N-1)LOG(RSTAR/RSTARHAT)-

((RSTAR- RSTARHAT)/RSTARHAT));
DEV=SUM(DEVOBS); /* compute LR statistic for David’s approximation */
PLR=1-PROBCHI(DEV, 1);

IF PLR < ALPHA THEN DLRREJ=DLRRE]J + 1;

G=DIAG(1/(2#RSTARHAT#(1-RSTARHAT)));
ESTEQ=T(XB)*G*W*(RSTAR-RSTARHAT);
CHISQ=T(C*ESTEQ)*INV(C*T(XB)*W*XB*T(C))*C*ESTEQ); /* compute score
statistic */
PSCORE=1-PROBCHI(CHISQ,1); /* for David’s
approx. */
IF PSCORE < ALLPHA THEN DSCREJ=DSCREJ + 1;

RN=SQRT((N-1)/N)#R; /* estimate saturated model using McKay’s approximation */
RSTARN=(N/(N-1))#(RN##2/(1+RN##2));
Z=LOG(SQRT(RSTARN/(1-RSTARN)));

W=DIAG(2#(N-1)#(1-RSTARN)##2);

B=INV(T(XB)*XB)*T(XB)*Z;

COVB=INV(T(XB)*W*XB);,

CHISQ=T(C*B)*INV(C*COVB*T(C))*C*B; /* compute Wald statistic for McKay’s */
PWALD=1-PROBCHI(CHISQ,1); /* approximation */
IF PWALD < ALPHA THEN MWALDREJ=MWALDRE]J + 1;

B=INV(T(X)*W*X)*T(X)*W*Z; /* estimate main effects model using */
OLDB=B+1; /* McKay’s approximation */

DO ITER=1 TO MAXITER WHILE(MAX(ABS(B-OLDB)) > BOUND);
OLDB=B; '
RSTARHAT=((EXP(X*B))##2)/(1 H(EXP(X*B))##2));
Z=-LOG(SQRT(RSTARHAT/(1-RSTARHAT)))+

STEP*((RSTARN-RSTARHAT)/(2#RSTARHAT#(1-RSTARHAT)));

W=DIAG(2#(N-1)#(1-RSTARHAT)##2),
B=INV(T(X)*W*X)*T(X)*W*Z,

END;

DEVOBS=-(N-1(LOG(RSTARN/RSTARHAT)-

((RSTARN-RSTARHAT)/RSTARHAT));
DEV=SUM(DEVOBS); /* compute LR statistic for McKay’s approximation */
PLR=1-PROBCHI(DEV,1);
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IF PLR < ALPHA THEN MLRREJ=MLRRE] + 1;

G=DIAG(1/(2#RSTARHAT#(1-RSTARHAT)));
ESTEQ=T(XB)*G*W*(RSTARN-RSTARHAT);
CHISQ=T(C*ESTEQ)*INV(C*T(XB)*W*XB*T(C))*C*ESTEQ; /* compute score
statistic */
PSCORE=1-PROBCHI(CHISQ,1); /* for McKay’s
approx. */
IF PSCORE < ALPHA THEN MSCREJ=MSCRE] + 1;

Z=LOG(R); /* estimate saturated model using Iglewicz and Myers’ approximation */
W=DIAG(N/(R##2+0.5));

B=INV(T(XB)*XB)*T(XB)*Z;

COVB=INV(T(XB)*W*XB);,

CHISQ=T(C*B)*INV(C*COVB*T(C))*C*B, /* compute Wald statistic using IM */
PWALD=1-PROBCHI(CHISQ,1); /* approximation */
IF PWALD < ALPHA THEN IWALDREJ=IWALDREJ + 1;

B=INV(T(X)*W*X)*T(X)*W*Z, /* estimate main effects model using IM approx. */
OLDB=B+1;

DO ITER=1 TO MAXITER WHILE(MAX(ABS(B-OLDB)) > BOUND);
OLDB=B;
RHAT=EXP(X*B);
Z=LOG(RHAT)+STEP*((R-RHAT)/RHAT);
W=DIAG(N/(RHAT##2+0.5));
B=INV(T(X)*W*X)*T(X)*W*Z,

END;

DEVOBS=N#(2#((SQRT(2#R# ATAN(SQRT(2)#R) - ATAN(SQRT(2)#RHAT)))-
((R- RHAT)/RHAT))+
LOG(((R#2)H(RHAT#H#2+.5) )/ ((RHATH2)H(R#H2+.5))));

DEV=-2*SUM(DEVOBS); /* compute LR statistic for IM approximation */

PLR=1-PROBCHI(DEV, 1);

IF PLR < ALPHA THEN ILRREJ=ILRREJ + 1;

G=DIAG(1/RHAT);

ESTEQ=T(XB)*G*W*(R-RHAT);

CHISQ=T(C*ESTEQ)*INV(C*T(XB)*W*XB*T(C))*C*ESTEQ); /* compute score
statistic */

PSCORE=1-PROBCHI(CHISQ,1); /* using IM approx. */

IF PSCORE < ALPHA THEN ISCREJ=ISCREJ + 1,

END;
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DWALDPWR=DWALDREJ/NUMSAMP; /* calculate observed powers and print */
/* results */

DLRPWR=DLRREJ/NUMSAMP;

DSCPWR=DSCREJ/NUMSAMP;

MWALDPWR=MWALDREJ/NUMSAMP;
MLRPWR=MLRREJ/NUMSAMP;
MSCPWR=MSCREJ/NUMSAMP;

IWALDPWR=IWALDREJ/NUMSAMP;
ILRPWR=ILRREJ/NUMSAMP;
ISCPWR=ISCREJ/NUMSAMP;

PRINT DWALDPWR DLRPWR DSCPWR MWALDPWR MLRPWR MSCPWR
IWALDPWR ILRPWR ISCPWR;

PRINT OVERALLR FACTAB;

PRINT N11 N12 N21 N22;

FINISH;

RUN;
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APPENDIX D

SAS PROGRAM TO SIMULATE
THE MAIN-EFFECT TEST
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/****************************************************

This SAS program simulates the test of a main effect using
data from normal populations arranged in a 2 X 2 factorial
having CVs determined by the model

R = exp(rstar + a + b),

where exp(rstar) is the overall population CV, exp(a) is
the effect of factor A, and exp(b) is the effect of factor
B. In order to examine the capability of the tests in a
proper setting, no interaction is included in the
generating model. For simplicity, one main effect, say A,

is also set to zero in the generating model.
****************************************************/

PROC IML;

START;
NUMSAMP=10000;MAXITER=1000;AL PHA=0.05; /* calculate 10,000 sets */
OVERALLR=0.2;FACTB=1.15:N11=10;:N12=10;N21=10;N22=10;

/* as an example, exp(rstar) is set at 0.2, exp(b) is set at 1.15,
and all sample sizes are set at 10 */

DWALDREJ=0;DLRREJ=0;DSCREJ=0;
MWALDREJ=0:MLRREJ=0:MSCREJ=0;
IWALDREJ=0;ILRREJ=0;ISCREJ=0;

STEP=0.5;BOUND=1E-6; /* set step length and convergence criterion */
DO COUNT=1 TO NUMSAMP;

/* generate a set of samples from a 2 x 2 factorial and compute
sample CVs using (n-1) divisor for sample variance */

SUM11=0;SUMSQ11=0;

DO OBSCOUNT=1 TO N11;
Y11=1 + RANNOR(0)*(OVERALLR*FACTB);
SUM11=SUM11+Y11; SUMSQ11=SUMSQ11+Y11**2;

END;
CV11=SQRT((SUMSQ11-SUM11**2/N11)/(N11-1))/(SUM11/N11);

SUM12=0;SUMSQ12=0;
DO OBSCOUNT=1 TO N12;
Y12=1 + RANNOR(0)*(OVERALLR*INV(FACTB));
SUM12=SUM12+Y12; SUMSQ12=SUMSQ12+Y 12**2;
END;
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CV12=SQRT((SUMSQ12-SUM12**2/N12)/(N12-1))/(SUM12/N12);

SUM21=0;SUMSQ21=0;

DO OBSCOUNT=1 TO N21;
Y21=1 + RANNOR(0)*(OVERALLR*FACTB);
SUM21=SUM21+Y21; SUMSQ21=SUMSQ21+Y21**2;

END;
CV21=SQRT((SUMSQ21-SUM21**2/N21)/(N21-1))/(SUM21/N21);

SUM22=0;SUMSQ22=0;

DO OBSCOUNT=1 TO N22;
Y22=1 + RANNOR(0)*(OVERALLR*INV(FACTB));
SUM22=SUM22+Y22; SUMSQ22=SUMSQ22+Y22**2;

END;
CV22=SQRT((SUMSQ22-SUM22**2/N22)/(N22-1))/(SUM22/N22);

R=CV11//CV12//CV21//CV22;

N=N11//N12//N21//N22;

RSTAR=R##2/(1+R##2),

Z=LOG(SQRT(RSTAR/(1-RSTAR))); /* estimate main effects model using */
W=DIAG(2#(N-1)#(1-RSTAR)##2), /* David's approximation */

XB={

b

>

b

B=INV(T(XB)*W*XB)*T(XB)*W*Z;
OLDB=B+1;

Pt
P pd

1
-1,
1
-1

DO ITER=1 TO MAXITER WHILE(MAX(ABS(B-OLDB)) > BOUND);
OLDB=B;
RSTARHAT=((EXP(XB*B))##2)/(1+((EXP(XB*B))##2));
Z=LOG(SQRT(RSTARHAT/(1-RSTARHAT)))+
STEP*((RSTAR-RSTARHAT)/(2#RSTARHAT#(1-RSTARHAT)));
W=DIAG(2#(N-1)#1-RSTARHAT)#2);
B=INV(T(XB)*W*XB)*T(XB)*W*Z;

END;

COVB=INV(T(XB)*W*XB),

C={001};

CHISQ=T(C*B)*INV(C*COVB*T(C))*C*B; /* compute Wald statistic for 'B' */
PWALD=1-PROBCHI(CHISQ,1); /* effect for David's approx. */

IF PWALD < ALPHA THEN DWALDREJ=DWALDRE]J + 1;
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DEVOBS 1=-(N-1)#LOG(RSTAR/RSTARHAT)-
((RSTAR- RSTARHAT)/RSTARHAT));
DEV1=SUM(DEVOBS1); /* scaled deviance for main effects model */

Z=LOG(SQRT(RSTAR/(1-RSTAR))); /* estimate model with 'A' effect only */
W=DIAG(2#(N-1)#(1-RSTAR)##2); /* using David's approximation */

X={1 1,
11,
1-1,
1-1};

B=INV(T(X)*W*X)*T(X)*W*Z;
OLDB=B+1;

DO ITER=1 TO MAXITER WHILE(MAX(ABS(B-OLDB)) > BOUND);
OLDB=B;
RSTARHAT=((EXP(X*B))##2)/(1+((EXP(X*B))##2));
Z=LOG(SQRT(RSTARHAT/(1-RSTARHAT)))+

STEP*((RSTAR-RSTARHAT)/(2#RSTARHAT#(1-RSTARHAT)));

W=DIAG(2#(N-1)#(1-RSTARHAT)##2);
B=INV(T(X*W*X *T(X)*W*Z;

END;

DEVOBS2=-(N-1){LOG(RSTAR/RSTARHAT)-
((RSTAR-RSTARHAT)/RSTARHAT));

DEV2=SUM(DEVOBS2); /* scaled deviance for 'A' effect model */

PLR=1-PROBCHI(DEV2-DEV1,1); /* compute LR statistic for 'B' */

IF PLR < ALPHA THEN DLRREJ=DLRRE] + 1; /* effect for David's approx. */

G=DIAG(1/(2#RSTARHAT#(1-RSTARHAT)));
ESTEQ=T(XB)*G*W*(RSTAR-RSTARHAT);
CHISQ=T(C*ESTEQ)*INV(C*T(XB)*W*XB*T(C))*C*ESTEQ;

/* compute score statistic for ‘B’ effect for David’s approximation */
PSCORE=1-PROBCHI(CHISQ, 1);
IF PSCORE < ALPHA THEN DSCREJ=DSCREJ + 1;

RN=SQRT((N-1)/N)#R;

RSTARN=(N/(N-1))#(RN##2/(1+RN#42));
Z=LOG(SQRT(RSTARN/(1-RSTARN))); /* estimate main effects model using */
W=DIAG(2#(N-1)#(1-RSTARN)##2); = /* McKay's approximation */

B=INV(T(XB)*W*XB)*T(XB)*W*Z;
OLDB=B+1;
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DO ITER=1 TO MAXITER WHILE(MAX(ABS(B-OLDB)) > BOUND);
OLDB=B;
RSTARHAT=((EXP(XB*B))y##2)/(1+((EXP(XB*B))##2));
Z=LOG(SQRT(RSTARHAT/(1-RSTARHAT)))+

STEP*((RSTARN-RSTARHAT)/(2#RSTARHAT#(1-RSTARHAT)));

W=DIAG(2#(N-1)#(1-RSTARHAT)##2);
B=INV(T(XB)*W*XB)*T(XB)*W*Z;

END; '

COVB=INV(T(XB)*W*XB);

C={00 1};
CHISQ=T(C*B)*INV(C*COVB*T(C))*C*B; /* compute Wald statistic for B' */
PWALD=1-PROBCHI(CHISQ,1); /* effect for McKay's approx.  */

IF PWALD < ALPHA THEN MWALDREJ=MWALDREJ + 1;

DEVOBS1=-(N-1)(LOG(RSTARN/RSTARHAT)-
((RSTARN-RSTARHAT)/RSTARHAT));
DEV1=SUM(DEVOBS1); /* compute scaled deviance for main effects model */

Z=LOG(SQRT(RSTARN/(1-RSTARN))); /* estimate model with 'A' effect only */
W=DIAG(2#(N-1)#(1-RSTARN)##2);  /* using McKay's approximation */

B=INV(T(X)*W*X)*T(X)*W*Z;
OLDB=B+1;

DO ITER=1 TO MAXITER WHILE(MAX(ABS(B-OLDB)) > BOUND);
OLDB=B;
RSTARHAT=((EXP(X*B))##2)/(1+((EXP(X*B))##2));
Z=LOG(SQRT(RSTARHAT/(1-RSTARHAT)))+

STEP*((RSTARN-RSTARHAT)/(2#RSTARHAT#(1-RSTARHAT)));

W=DIAG(2#(N-1)#(1-RSTARHAT)##2),
B=INV(T(X)*W*X)*T(X)*W*Z;

END;

DEVOBS2=-(N-1)#(LOG(RSTARN/RSTARHAT)-
((RSTARN-RSTARHAT)/RSTARHAT));

DEV2=SUM(DEVOBS2); /* scaled deviance for 'A' effect model */

PLR=1-PROBCHI(DEV2-DEV1,1); /* compute LR statistic for B' */

IF PLR < ALPHA THEN MLRREJ=MLRREJ + 1; /* effect for McKay's approx. */

G=DIAG(1/(2#RSTARHAT#(1-RSTARHAT)));
ESTEQ=T(XB)*G*W*(RSTARN-RSTARHAT);
CHISQ=T(C*ESTEQ)*INV(C*T(XB )*W*XB*T(C))*C*ESTEQ;

/* compute score statistic for ‘B’ effect for McKay’s approximation */
PSCORE=1-PROBCHI(CHISQ,1);
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IF PSCORE < ALPHA THEN MSCREJ=MSCREJ + 1;

Z=1L.OG(R); /* estimate main effects model using */
W=DIAG(N/(R##2+0.5)); /* Iglewicz and Myers' approximation */

B=INV(T(XB)*W*XB)*T(XB)*W*Z;
OLDB=B+1;

DO ITER=1 TO MAXITER WHILE(MAX(ABS(B-OLDB)) > BOUND);
OLDB=B;
RHAT=EXP(XB*B);
Z=LOG(RHAT)+STEP*((R-RHAT)/RHAT);
W=DIAG(N/(RHAT##2+0.5));
B=INV(T(XB)*W*XB)*T(XB)*W*Z;

END;

COVB=INV(T(XB)*W*XB);

CHISQ—T(C*B)*]NV(C*COVB*T(C))*C*B /* compute Wald statistic for 'B' */
PWALD=1-PROBCHI(CHISQ,1); /* effect using IM approximation */
IF PWALD < ALPHA THEN IWALDREJ=IWALDRE]J + 1;

DEVOBS1=N#(2#((SQRT(2)#R#ATAN(SQRT(2)}#R) - ATAN(SQRT(2)#RHAT)))-
((R-RHAT)/RHAT))+
LOG(((R##2)H(RHAT#H##2+.5))/ (RHATH#H#2)#(R##2+.5))));
DEV1=-2*SUM(DEVOBSI1); /* scaled deviance for main effects model */

Z=LOG(R); /* estimate model with 'A’ effect only */
W=DIAG(N/(R##2+0.5));  /* using IM approximation */

B=INV(T(X)*W*X)*T(X)*W*Z;
OLDB=B+1;

DO ITER=1 TO MAXITER WHILE(MAX(ABS(B-OLDB)) > BOUND);
OLDB=B;
RHAT=EXP(X*B);,
Z=LOG(RHAT)+STEP*((R-RHAT)/RHAT);
W=DIAG(N/(RHAT##2+0.5));
B=INV(T(X)*W*X)*T(X)*W*Z;

END;

DEVOB S2=N#(2#((SQRT(2#R#ATAN(SQRT(2)#R) - ATAN(SQRT(2)#RHAT)))-
((R-RHAT)/RHAT))+
LOG(((R##2)H(RHAT##2+.5))/ (RHATHH#2)#(R##2+.5))));
DEV2=-2*SUM(DEVOBS2); /* scaled deviance for 'A' effect model */
PLR=1-PROBCHI(DEV2-DEV1,1); /* compute LR statistic for 'B' */
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IF PLR < ALPHA THEN ILRREJ=ILRRE] + 1; /* effect for IM approx. */

G=DIAG(1/RHAT);

ESTEQ=T(XB)*G*W*(R-RHAT);

CHISQ=T(C*ESTEQ)*INV(C*T(XB)*W*XB*T(C))*C*ESTEQ;
/*compute score statistic for ‘B’ effect for IM approximation */

PSCORE=1-PROBCHI(CHISQ,1);

IF PSCORE < ALPHA THEN ISCREJ=ISCREJ + 1;

END;

DWALDPWR=DWALDREJ/NUMSAMP; /* calculate observed powers and print */
DLRPWR=DLRREJ/NUMSAMP; /* results */
DSCPWR=DSCREJ/NUMSAMP;

MWALDPWR=MWALDREJ/NUMSAMP;
MLRPWR=MLRREJ/NUMSAMP;
MSCPWR=MSCREJ/NUMSAMP;

IWALDPWR=IWALDREJNUMSAMP;
ILRPWR=ILRREJ/NUMSAMP;
ISCPWR=ISCREJ/NUMSAMP;

PRINT DWALDPWR DLRPWR DSCPWR MWALDPWR MLRPWR MSCPWR
IWALDPWR ILRPWR ISCPWR,;

PRINT OVERALLR FACTB;

PRINT N11 N12 N21 N22;

FINISH;

RUN;
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APPENDIX E

SAS PROGRAM TO SIMULATE
THE ONE-FACTOR TEST
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/******************************************************

This SAS program simulates the test of the single factor in
a one-factor experiment using data from normal populations
having CVs determined by the model

R = exp(rstar + a),

where exp(rstar) is the overall population CV and exp(a) is

the effect of the single factor. Fitted models are additive.
*******************************************************/

PROC IML;;

START;
NUMSAMP=10000;MAXITER=1000;ALPHA=0.05; /* calculate 10,000 sets */
OVERALLR=0.1;FACTA=1.2:N1=20:N2=20:N3=20;

/* as an example, exp(rstar) is set at 0.1, exp(a) is set at
1.2, and all sample sizes are set at 20 */

DWALDREJ=0;DLRREJ=0;DSCREJ=0;
MWALDREJ=0;MLRREJ=0;MSCREJ=0;
IWALDREJ=0;ILRREJ=0;ISCREJ=0;
DDLRREJ=0;GSCREJ=0;DDTREJ=0;

STEP=0.5;BOUND=1E-6; /* set step length and convergence criterion */

DO COUNT=1 TO NUMSAMP;

/* generate a set of samples from a one-factor model with three
levels and compute sample CVs using (n-1) divisor for sample
variance */

SUM1=0,SUMSQ1=0;

DO OBSCOUNT=1 TO N1;
Y1=1 + RANNOR(0)*(OVERALLR*INV(FACTA));
SUM1=SUM1+Y1; SUMSQ1=SUMSQI1+Y1**2;

END;
SSQR1=(SUMSQI1-SUM1*#*2/N1)/(N1-1);XBAR1=SUM1/N1;
CV1=SQRT(SSQR1)/XBARI;

- SUM2=0;SUMSQ2=0;
DO OBSCOUNT=1 TO N2;
Y2=1+ RANNOR(0)*(OVERALLR);,
SUM2=SUM2+Y2; SUMSQ2=SUMSQ2+Y2**2.
END;
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SSQR2=(SUMSQ2-SUM2**2/N2)/(N2-1);: XBAR2=SUM2/N2;
CV2=SQRT(SSQR2)/XBAR2;

SUM3=0;SUMSQ3=0;

DO OBSCOUNT=1 TO N3;
Y3=1 + RANNOR(0)*(OVERALLR*FACTA);
SUM3=SUM3+Y3; SUMSQ3=SUMSQ3+Y3**2;

END;
SSQR3=(SUMSQ3-SUM3**2/N3)/(N3-1);XBAR3=SUM3/N3;
CV3=SQRT(SSQR3)/XBAR3;

R=CV1//CV2//CV3;

N=N1//N2//N3;

RSTAR=R##2/(1+R##2);

Z=SQRT(RSTAR/(1-RSTAR)); /* estimate saturated model using */
W=DIAG(2#(N-1)#(1-RSTAR)##3/RSTAR); /* David's approximation */
XB={1 1 0,
101,

1-1-1};
B=INV(T(XB)*XB)*T(XB)*Z;
COVB=INV(T(XB)*W*XB);

C={010,

001};
CHISQ=T(C*B)*INV(C*COVB*T(C))*C*B; /* compute Wald statistic for David's */
PWALD=1-PROBCHI(CHISQ,2); /* approximation */

IF PWALD < ALPHA THEN DWALDREJ=DWALDRE]J + 1;

X={1, /* estimate null model using David's approximation */
1
1};

B=INV(T(X)*W*X)*T(X)*W*Z;
OLDB=B-+1;

DO ITER=1 TO MAXITER WHILE(MAX(ABS(B-OLDB)) > BOUND);
OLDB=B;
RSTARHAT=((X*B)##2)/(1 +(X*B)##2);
Z=SQRT(RSTARHAT/(1-RSTARHAT))+

STEP*((RSTAR-RSTARHAT)/
(2#SQRT(RSTARHAT#(1-RSTARHAT)##3)));

W=DIAG(2#(N-1)#(1-RSTARHAT)##3/RSTARHAT),
B=INV(T(X)*W*X)*T(X)*W*Z;

END;
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DEVOBS=-(N-1)#(LOG(RSTAR/RSTARHAT)-
((RSTAR-RSTARHAT)/RSTARHAT));

DEV=SUM(DEVOBS); /* compute LR statistic for David's approximation */

PLR=1-PROBCHI(DEV,2);

IF PLR < ALPHA THEN DLRREJ=DLRRE]J + 1;

G=DIAG(1/(2#SQRT(RSTARHAT#(1-RSTARHAT)##3)));

ESTEQ=T(XB)*G*W*(RSTAR-RSTARHAT);,

CHISQ=T(C*ESTEQ)*INV(C*T(XB)*W*XB*T(C))*C*ESTEQ;
/* compute score statistic for David’s approximation */

PSCORE=1-PROBCHI(CHISQ,2);

IF PSCORE < ALPHA THEN DSCREJ=DSCRE] + 1;

RN=SQRT((N-1)/N)#R; /* estimate saturated model using McKay's approx. */
RSTARN=(N/(N-1))#(RN##2/(1+RN##2));
Z=SQRT(RSTARN/(1-RSTARN));
W=DIAGQ2#(N-1)#(1-RSTAR)##3/RSTAR);

B=INV(T(XB)*XB)*T(XB)*Z;
COVB=INV(T(XB)*W*XB);,
CHISQ=T(C*B)*INV(C*COVB*T(C))*C*B;

/* compute Wald statistic for McKay's approximation */
PWALD=1-PROBCHI(CHISQ,2);
IF PWALD < ALPHA THEN MWALDREJ=MWALDRE] + 1;

B=INV(T(X)*W*X)*T(X)*W*Z; /* estimate null model using McKay's approx. */
OLDB=B+1;

DO ITER=1 TO MAXITER WHILE(MAX(ABS(B-OLDB)) > BOUND);
OLDB=B;
RSTARHAT=((X*B)##2)/(1 HX*B)##2);
Z=SQRT(RSTARHAT/(1-RSTARHAT))+

STEP*((RSTARN-RSTARHAT)/
(2#SQRT(RSTARHAT#(1-RSTARHAT)##3)));

W=DIAG(2#(N-1)#(1-RSTARHAT)##3/RSTARHAT);
B=INV(T(X)*W*X)*T(X)*W*Z,

END;

DEVOBS—(N-1)#LOG(RSTARN/RSTARHAT)-
((RSTARN-RSTARHAT)RSTARHAT));

DEV=SUM(DEVOBS); /* compute LR statistic for McKay's approximation */

PLR=1-PROBCHI(DEV,2);

IF PLR < ALPHA THEN MLRREJ=MLRRE] + 1;

G=DIAG(1/(2#SQRT(RSTARHAT#(1-RSTARHAT)#43)));
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ESTEQ=T(XB)*G*W*(RSTARN-RSTARHAT);

CHISQ=T(C*ESTEQ)*INV(C*T(XB)*W*XB*T(C))*C*ESTEQ;
/* compute score statistic for McKay’s approximation */

PSCORE=1-PROBCHI(CHISQ,2);

IF PSCORE < ALPHA THEN MSCREJ=MSCREJ + 1;

Z=R; /* estimate saturated model using Iglewicz and Myers' approx. */
W=DIAG(N/(R##2#(R##2+0.5)));

B=INV(T(XB)*XB)*T(XB)*Z;

COVB=INV(T(XB)*W*XB); |
CHISQ=T(C*B)*INV(C*COVB*T(C))*C*B; /* compute Wald statistic using IM */
PWALD=1-PROBCHI(CHISQ,2); /* approximation */
IF PWALD < ALPHA THEN IWALDREJ=IWALDRE]J + 1;

B=INV(T(X)*W*X)*T(X)*W*Z; /* estimate null model using IM approximation */
OLDB=B+1;

DO ITER=1 TO MAXITER WHILE(MAX(ABS(B-OLDB)) > BOUND);
OLDB=B;
RHAT=X*B;
W=DIAG(N/(RHAT##2#(RHAT##2+0.5)));
B=INV(T(X)*W*X)*T(X)*W*Z;

END;

DEVOBS=N#(2#((SQRT(2)#R# ATAN(SQRT(2)#R) - ATAN(SQRT(2)#RHAT)))-
((R-RHAT)/RHAT)) +
LOG(((R##2)#RHAT##2+.5)) (RHATHR2)H(R##2+.5))));
DEV=-2*SUM(DEVOBS); /* compute LR statistic for IM approximation */
PLR=1-PROBCHI(DEV,2);
IF PLR < ALPHA THEN ILRREJ=ILRRE] + 1;

ESTEQ=T(XB)*W*(R-RHAT);

CHISQ=T(C*ESTEQ)*INV(C*T(XB)*W*XB*T(C))*C*ESTEQ;
/*compute score statistic using IM approximation */

PSCORE=1-PROBCHI(CHISQ,2);

IF PSCORE < ALPHA THEN ISCREJ=ISCREJ + 1;

SMALLM=MIN(R); /* calculate ML estimate of R in (2.4) using */
LARGEM=MAX(R); /* Gupta and Ma's solution */
RTILDA=(SMALLM-+LARGEM)/2;
G=SUM(N#(1-+SQRT(1+4#(1+R##2H#RTILDA##2))/(2#(1+R##2)))-SUM(N);
DO ITER=1 TO MAXITER WHILE(ABS(G)>BOUND);

IF G<=0 THEN SMALLM=RTILDA;
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ELSE LARGEM=RTILDA;
RTILDA=(SMALLM-+LARGEM)/2;
G=SUM(N#(1+SQRT(1+4#(1+R##2HRTILDA##2))/(2#(1+R##2)))-SUM(N);
END;

XBAR=XBAR1//XBAR2//XBAR3;

SSQR=SSQR1//SSQR2//SSQR3;

SUMSQ=SUMSQ1/SUMSQ2//SUMSQ3;

MU=((2#(1+R##2)#XBAR)/(1+SQRT(1+4#(1+R#H2WHRTILDA##2));

/* calculate ML estimates of mu's in (2.5) */

LR=SUM(N#LOG((MU#RTILDA)##2/SSQR)); /* compute Doornbos and
Dijkstra's LR statistic */

PVAL=1-PROBCHI(LR 2);

IF PVAL<ALPHA THEN DDLRREJ=DDLRREJ+1;

TEMPVEC1=SUMSQ-24N#MU#XBAR+N#MU##2; /* compute Gupta and Ma's

score statistic */

TEMPVEC2=MU##2#RTILDA##3;

AVEC=TEMPVEC1/TEMPVEC2-(N/RTILDA);

AVECI=AVEC##2/N;

SCORE=0.5#R TILDA##2#(2#RTILDA##2+1)#SUM(AVEC1);

PVAL=1-PROBCHI(SCORE,?2);

IF PVAL<ALPHA THEN GSCREJ=GSCREJ+1;

B=1/R; /* calculate Doornbos and Dijkstra's non-central t statistic */

BIGN=SUM(N);

BBAR=SUM(N#B)/BIGN;

T=SUM(N#(B-BBAR)##2);

RTILDA=(SUM(N#B##2)-SUM((N-1)/(N-3)))/SUM(N#(N-1)/(N-3));

EP=SQRT((N-1)/2)#GAMMA((N-2)/2)/ GAMMA((N-1)/2);

EXPT=SUM((BIGN-N)#(N-1)/(BIGN#(N-3)))+
RTILDA#(SUM(N#BIGN-N)#(N-1)/(BIGN#(N-3)))+
((SUM((N#EP)##2)-(SUM(N#EP))##2)/BIGN));

D=2*T/EXPT;

PVAL=1-PROBCHI(D,2);

IF PVAL<ALPHA THEN DDTREJ=DDTREJ+1;

END;

DWALDPWR=DWALDREJ/NUMSAMP; /* calculate observed powers and print
results */
DLRPWR=DLRREJ/NUMSAMP;

DSCPWR=DSCREJ/NUMSAMP;

MWALDPWR=MWALDREJ/NUMSAMP;

MLRPWR=MLRREJ/NUMSAMP;
MSCPWR=MSCREJ/NUMSAMP;
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IWALDPWR=IWALDREJ/NUMSAMP;
ILRPWR=ILRREJ/NUMSAMP;
ISCPWR=ISCREJ/NUMSAMP;

DDLRPWR=DDLRREJ/NUMSAMP;
GSCPWR=GSCREJ/NUMSAMP;
DDTPWR=DDTREJ/NUMSAMP;

PRINT DWALDPWR DLRPWR DSCPWR MWALDPWR MLRPWR MSCPWR
IWALDPWR ILRPWR ISCPWR;

PRINT DDLRPWR GSCPWR DDTPWR;

PRINT OVERALLR FACTA;

PRINT N1 N2 N3;

FINISH;

RUN;
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APPENDIX F

SAS CODE TO GENERATE GAMMA-DISTRIBUTED
DATA FOR THE INTERACTION TEST
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/*******************************************************

The following SAS code should be inserted in place of the data
generation code in the test-of-interaction program in order to

obtain data from gamma distributions with those same CVs.
*******************************************************/

SUM11=0;SUMSQ11=0;

DO OBSCOUNT=1 TO N11;
Y11=RANGAM(0,(OVERALLR*FACTAB )**-2)*(OVERALLR*FACTAB)**2;
SUM11=SUM11+Y11; SUMSQ11=SUMSQ11+Y11**2;

END;
CV11=SQRT((SUMSQ11-SUM11**2/N11)/(N11-1))/(SUM11/N11);

SUM12=0;SUMSQ12=0;
DO OBSCOUNT=1 TO N12;
Y12=RANGAM(0,(OVERALLR*INV(FACTAB))**-2)*
(OVERALLR*INV(FACTAB))**2;
SUM12=SUM12+Y12; SUMSQ12=SUMSQ12+Y12**2;
END;
CV12=SQRT((SUMSQ12-SUM12%*2/N12)/(N12-1))/(SUM12/N12);

SUM21=0;SUMSQ21=0;
DO OBSCOUNT=1 TO N21,
Y21=RANGAM(0,(OVERALLR*INV(FACTAB))**-2)*
(OVERALLR*INV(FACTAB))**2;
SUM21=SUM21+Y21; SUMSQ21=SUMSQ21+Y21**2;
END;
CV21=SQRT((SUMSQ21-SUM21**2/N21)/(N21-1))/(SUM21/N21);

SUM22=0;SUMSQ22=0;

DO OBSCOUNT=1 TO N22;
Y22=RANGAM(0,(OVERALLR*FACTAB)**-2)*(OVERALLR*FACTAB )**2;
SUM22=SUM22+Y22; SUMSQ22=SUMSQ22+Y22**2;

END; ‘
CV22=SQRT((SUMSQ22-SUM22**2/N22)/(N22-1))/(SUM22/N22);
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