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CHAPTER 1 

INTRODUCTION 

Phase transitions are interesting natural phenomena, common in our daily ex

perience. The most common is the transition of water into ice. There are lots of 

substances other than water which undergo phase transitions under certain condi

tions. Indeed, phase transitions are central to life on earth B;Ild understanding them 

is one of the main objects of physics research. 

Under ordinary circumstances, phase transitions of water are first-order with 

latent heat absorbed or released, involving radical structure changes in the system. 

However, there are other kinds of phase transitions, where the structures change con

tinuously during phase transitions. For example, when the temperature T increases, 

certain magnetic materials will change from a ferromagnetic phase to a paramagnetic 

phase at Curie temperature Tc. In the paramagnetic phase ·(T > Tc), the material 

is not magnetized in the absence of an applied magnetic field. If a weak field B is 

applied, the magnetic moment per unit volume m is proportional to the applied field: 

m = µB withµ a positive constant. In the ferromagnetic phase (T < Tc), the ma- . 

terial is magnetized even when no field is applied (spontaneous magnetization), and 

this magnetization swings almost instantaneously to align with B when an external 

field B is applied, large enough to overcome the effects of hysteresis. Consequently, 

m is no longer linearlr related to B. 

The Ising model which has become a well-known model now has been invented 

originally to understand these magnetic phenomena. They are called order-disorder 

transitions. There exist many models that describe this kind of phase transitions other 

than the Ising model. Comparing with the order-disorder phase transitions, another 

kind of phase transition, the so called commensurate-incommensurate (C-IC) transi

tions, which shall be described in detail later, are not fully understood, although they 
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occur in systems as diverse as ferroelectrics, 1•2 magnetic systems, 3•4 physisorbates, 5 

structural polytypes,6 lipid bilayers,7 etc. They are associated with the onset of spa

tially modulated phases and have been extensively studied both experimentally and 

theoretically since the eighties.s-17 

Scaling theory is well known and has led to attempts to classify phase transitions 

into different universality classes and to determine the scaling properties of these 

universality classes. From this point of view, C-IC transitions are of particular interest 

because the scaling properties of some of these transitions are still elusive in two

dimensional systems. Consequently, a great deal of theoretical and experimental 

research has been done to study C-IC transitions in two-dimensional systems. The 

basic understanding of such transitions mainly comes from the domain wall theory 

or more specifically, the fermion theory ( see den Nijs 18 for full review). Other than 

the fermion theory1g-24 which is valid for uniaxial systems where only one type of 

domain walls exists, the ANNNI (Axial-Next-Nearest-Neighbor Ising) model25 and 

the 3-state chiral Potts model26•27 are used to study such transitions because these 

two models are the simplest but still can exhibit highly nontrivial physics. 

In this chapter, we shall first compare experiments and models, then give some 

basic understanding of the theory. Following M. den Nijs, 18 we shall build the cell 

spin models based on a few specific examples in physisorption. We then shall use 

these to describe C-IC transitions and how the different models such as the ANNNI 

model, the 3-state chiral Potts model and the fermion theory are used for the differe~t 

experimental situations. 

1.1 CELL SPIN MODELS 

Adsorbed monolayers can be modelled as two-dimensional systems of interacting 

particles subject to a periodic external substrate field. In the modelling, the grand 

canonical ensemble will be used. 

In the domain wall theory of C-IC transitions, domain walls, instead of the 

monolayer particles, are the basic fluctuating variables. All degrees of freedom at 

length scales smaller than the wall width are integrated out, and the grand canonical 
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ensemble for adsorbed particles is replaced by a grand canonical ensemble for domain 

walls. 

Let us consider a specific physisorption experiment, more specifically xenon 

, monolayer physisorbed on the (110) face of copper. 17 

A xenon monolayer physisorbed on the (110) face of copper orders into the 

c(2 x 2) structure shown in Fig. 1.1. The absorption sites form a rectangular array. 

Because the diameter of the Xe atoms is too large for nearest-neighbor occupation, in 

the ground state the Xe atoms occupy only one of the two (checker-board) sublattices, 

resulting in the commensurate ( C) phase. Obviously, because of symmetry, there 

are two phases with the same energy. One phase is generated by displacing the 

other phase by lattice vector B,i or at. If the Xe atoms occupy only one of the two 

sublattices in certain region, the configuration in this region is called a commensurate 

(C) patch and this region a commensurate (C) domain. Hence there are two kinds 

of C patches and C domains. In diffraction experiments such as LEED (low-energy 

electron diffraction) and synchrotron X-ray diffraction, the Bragg peaks are locked in 

certain positions when the monolayer is in the C phase. As the temperature and atom 

density increase, both C domains appear in the monolayer and different C domains 

are separated by domain walls. Apparently there is excess energy called interfacial 

tension due to the appearance of these domain walls and domain walls carry excess 

density as well. When the ratio of the average distance between absorption sites 

of xenon and the lattice spacing of copper is an irrational number, the phases are 

called incommensurate (IC) phases. In IC phases, the Xe atom density is between 

the density of the C phase and the onset of second layer formation. The diffraction 

peaks move continuously with density and temperature. 

Having the above experiment in, mind, let us now describe the general procedures 

available to obtain cell spin models for adsorbed monolayers. In the domain wall 

theory, domain walls carry additional energy and the thermodynamic properties are 

determined by the fluctuation of domain walls. There are many different domain 

walls. Since different domain walls have different excess energies, the possibility for 

each domain wall to appear is different. However, it is not necessary to consider all 
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Figure 1.1. Commensurate c(2 x 2) structure of Xe adsorbed on Cu(llO}. 
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kinds of domain walls and their fine structures. The wall widths, the rigidities of walls 

at small length-scales, and the preferred wall directions can be taken into account by 

introducing a lattice cut-off with lattice constants comparable to the typical domain 

wall width. In the resulting lattice model (cell spin model), the domain walls are 

along the bonds of a lattice. The symmetry of the lattice of the cell spin model 

reflects the preferred wall directions imposed by the substrate. Typically it will have 

the same symmetry as the substrate. Clearly, each face can be associated with a 

cell. spin variable to describe the possible C patch. A cell spin configuration does 

not uniquely describe a domain wall configuration since the widths of the domain 

walls are undetermined in c.ell spin configurations. However, the term Bloch walls 

is used to represent the whole class of domain walls that are possible between two 

C patches. Consequently, a cell spin configuration can uniquely describe a Bloch 

wall configuration. Formally, the reduction of the domain wall lattice model to the 

cell spin model involves the summing over all other degrees of freedom of domain 

wall configurations which contribute to the same Bloch wall configuration. This can 

be done trivially only in some special cases. In specific local regions of chemical 

potential and temperature, -the excess energy for certain domain walls becomes much 

lower. Practically, instead of averaging, we can select the domain wall with lowest 

excess energy for each set of domain walls with the same Bloch wall._ 

Following the general procedure described above, we use specific examples to . 

derive the ANNNI model and the 3-state chiral Potts model. 

1.1.1 THE ANNNI MODEL 

For a xenon monolayer physisorbed on the (110) face of copper as shown in 

Fig. 1.1, the adsorption sites of the substrate form a rectangular array with basis 

vectors~= anen and at= ati~t· The C ground state has basis vectors b 1 =~+at 

and b 2 = at-~· In each cell, the two possible choices of C patches can be represented 

by Ising spins S(r) = ±L The monolayer prefers to compress in the direction en with 

the domain walls parallel to the direction Elt, The Hamiltonian for this system can 
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be written as 

{ 1 1 
H = L 2(En - µ)[1 - S(n, t)S(n + 1, t)] + 2Et[l - S(n, t)S(n, t + 1)] 

n,t 
1 . 

. +4L[l - S(n -1, t)S(n, t)][l - S(n, t)S(n + 1, t)]} (1.1) 

where the nearest-neighbor interaction in the en direction, En - µ, represents the 

energy and chemical potential contributions of a compressed domain wall in the uni

axial direction en, The nearest-neighbor coupling constant Et represents the energy 

contribution of a shear wall in the Elt direction. Domain walls in the direction en 

at nearest-neighbor vertical bonds repel each other for L > 0. Other domain wall 

interactions are neglected. Because the cell spin configuration doesn't uniquely de

termine the state of the monolayer, these parameters should be the thermo-average 

of all states with the same cell spin configuration. It is more common to write the 

Hamiltonian of the ANNNI model as following: 28- 30 

H = - 1:{E~S(n, t)S(n + 1, t) + E~S(n, t)S(n, t + 1) 
n,t 

+E~nS(n -1, t)S(n + 1, t)}. (1.2) 

1.1.2 THE 3-STATE CHIRAL POTTS MODEL 

The 3-state chiral Potts model applies to uniaxial systems with three competing 

C ground states. For example, H chemisorbed on Fe(llO) includes a C (3 x 6)H6 phase 

with such a symmetry.31 For simplicity, it is generally assumed that the underlying 

symmetry is the simpler 3 x 1 structure shown in Fig. 1.2. 

The absorption sites form a rectangular array with basis vectors c1n = anen and 

at = atilt, The C ground state has basis vectors bn = 3c1n and ht = at, Hence in 

each cell, there are three kinds of adsorption sites, corresponding to three competing 

C patches. The monolayer prefers to compress in the en direction with domain walls 

parallel to the Elt direction. The three types of C patches can be represented by 

the discrete angle variables () = 0, ±21r /3 of the 3-state Potts model. The cell spin 

model then contains two types of Bloch walls with O(r') - O(r) = ±21r /3 in the Potts 

model language, in which they are called clockwise and anticlockwise walls. For the 
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Figure 1.2. (3 x 1) commensurate structure on a rectangular substrate. 
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en direction, anticlockwise (ACW) and clockwise (CW) walls generally have different 

excess energy. But for the et direction, no Bloch wall exists and the excess energy 

in cell spin model is due to shear. We denote the excess energy for an anticlockwise 

Bloch wall ( O(n, t) - O(n + 1, t) (mod 27r) = 271"/3) by EAc, the excess energy for a 

clockwise Bloch wall ( O(n, t) - O(n + 1, t) (mod 271") = -271"/3) by Ee and the shear 

energy by Es. If O(n, t) - O(n + 1, t) = 0, no Bloch wall exists locally. Since generally 

EAc =J. Ee, chirality is present in this effective model. 

Conventionally, we can introduce En, Et and!::,, "to express EAc, Ee and Es by 

E AC = En cos ( 2; !::,, ) - En cos ( 2; (1 + !::,, ) ) , 

Ee = En COS ( 
2; !::,, ) - En cos ( 2; ( -1 + !::,, ) ) , 

( 271") . 3 
Es= Et-Et cos 3 = 2Et. 

Hence, the Hamiltonian for the 3-state chiral Potts model26•27 can be written as 

H = - ~ { En cos (o(n, t) - O(n + 1, t) + ~7r!J,,) + Et cos (o(n, t) - O(n, t + 1))}. 

(1.3) 

1.2 FERMION THEORY 

It is well known that for every D-dimensional problem in statistical mechanics, 

there is a corresponding D-1 dimensional quantum field theory. The correspondence 

can be constructed by the.path integral formalism. Just as the two-dimensional Ising 

model is equivalent to a free fermion theory, the two-dimensional ANNNI model can 

be transformed into an interacting fermion theory with the Hamiltonian32 

n 

-it[CT+(n)CT-(n + 1)' + CT-(n)CT+(n + 1) 

+CT+(n)CT+(n + 1) + CT-(n)CT-(n + 1)]} (1.4) 

This is just a special case of a more general fermion theory, where CT± are standard 

Pauli matrices. The generic form of the fermion theory's Hamiltonian is 

H = l)moCT+(n)CT-(n) 
n 



+LCT+(n)CT-(n)CT+(n + l)CT-(n + 1) 

-L2t2CT-(n)CT+(n)CT-(n + l)CT+(n + 1) 
1 - 2t[CT+(n)CT-(n + 1) + CT-(n)CT+(n + 1)] 

1 - 2tP-1up[D:(n) + D;(n)]}, 

where the D; are dislocation operators 

9 

(1.5) 

n:(n) - CT+(n)CT+(n + l)CT+(n + 2) ... CT+(n + p - 1), (1.6) 

n;(n) - CT-(n)CT-(n + l)CT-(n + 2) ... CT-(n + p - 1). (1.7) 

The value of p is 2 in the ANNNI model. 

When we restrict ourselves to regions in any phase diagram where one type of 

domain wall is significantly more abundant than any other type of wall, only one 

kind of wall need be considered and the critical properties of the monolayer can be 

described by a one-dimensional fermion quantum field theory. As we have mentioned 

earlier, only one type of domain wall exists in the ANNNI model and this model 

is essentially a special case of the fermion theory with p = 2.32 Let Q denote the 

wavenumber of the oscillation in the domain wall density or the pitch of quasi-particles 

in fermion language. The formalism of the fermion theory is suitable for the study 

of the region around Q = 0, but the formulation as a spin model, i.e. the ANNNI 

model, is more suitable for the study of the region around Q = ! ( with period equal 

two lattice spacings) in fermion language. In the 3-state chiral Potts model with 

large chirality and low temperature where the energy of ACW walls becomes much 

larger than the energy of CW walls, the system can be approximated by a p = 3 

fermion field theory as well. 26 The fermion theory is the most developed theory for 

C-IC transitions and it provides us basic understanding of C-IC transitions. 

In the fermion description, there are four types of phases: C solids ( commen

surate ordered phases), SIC floating solids (striped incommensurate phases), C fluids 

(commensurate disordered phases) and SIC fluids (striped incommensurate disordered -

phases). The different phases are distinguished by their difference in the fermion den

sity correlation functions. The solid phase has long-range-order with nonvanishing 
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order parameters, whereas the :fluid phase has short-range-order with vanishing order 

parameter. The correlation functions decay exponentially with possible oscillatory 

envelopes with pitch Q. If the period, which is Q-1, of this oscillat1on is commensu

rate with the lattice spacing, the system is called commensurate, otherwise it is called 

incommensurate. The peaks in the diffraction pattern, which are intimately related 

to the density correlations through Fourier transform, are therefore locked in certain 

positions for the commensurate phase, but shift as function of density and tempera

ture in the incommensurate phase. The SIC :floating solid phase is more often called 

modulated phase because the correlation functions decay algebraically with infinite 

correlation length. It is therefore not strictly a solid phase but a critical phase. So 

there are totally six types of possible transitions between these four types of phases. 

The fermion theory predicts the nature of four of the six possible types of phase transi

tions. In uniaxial systems, the phase transitions from SIC :floating solids into C solids 

are Pokrovsky-:-Talapov (PT) transitions. 19 The melting of the SIC :floating solids into 

the SIC :fluids are Kosterlitz-Thouless (KT) transitions.33•34 From the results of the 

antiferromagnetic Ising model, it is known that the correlations decay exponentially 

below the disorder temperature Tn but with an oscillatory envelope above Tn. How

ever, Tn is not a singular point in any of the physical quantities. Therefore there 

is no phase transition at Tn. We have no evidence that C :fluids and IC :fluids are 

different phases. Similarly, we have assumed these are different phases to see if there 

is a different type of phase transition. The phase boundaries between SIC :fluids and 

C :fluids are probably not sharply defined in general. The C melting transitions, direct 

transitions between C solids and C :fluids, are also well understood. This leaves only 

two other types of phase transitions, direct transitions between SIC :floating solids 

and C :fluids, and direct transitions qetween C solids and SIC :fluids. Both are absent 

from the solved part of the fermion theory (local structure of phase diagram around 

the Q = 0 C solids), but might appear in general'context (for example it is believed 

that there is possible chiral melting around Q = 1 /2 C solids). 

Lifshitz points are defined as kind of triple points where the uniformly ordered, 

modulated ordered and disordered phase meet. So, in the global phase diagram, a 
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Lifshitz point may appear with the direct melting of a solid into an IC fluid. Although 

there are no models or experimental systems for which we are sure that there is a Lif

shitz point, it is believed to exist. Experimentally, they have been suggested to occur 

in various systems including liquid crystals, 35•36 ferroelectrics37 and magnets. 38,39 The

oretically, the ANNNI model25 and the 3-state chiral Potts model have been thought 

as good candidates for the study of chiral melting and Lifshitz points. Chiral melting 

is named for the case of a direct transition from C solids into SIC fluids. There is 

no evidence, not even the slightest hint, that the other possibility, a direct transition 

from an IC floating solid into a C fluid, can ever be realized. 

Theoretical study has only been concentrated on the direct transitions from C 

solids into IC fluids. Because an IC fluid is characterized by two length-scales: the 

correlation length e and the inverse of pitch Q, the C-IC transition is a transition 

in which the lock-in of Q and the divergence of the correlation length take place 

simultaneously. Let us denote the lock-in pitch for commensurate solids by Q0 , then 

both 1/(Q - Q0 ) and e diverge simultaneously when the system reaches the critical 

point. Den Nijs argued that there are three kinds of possible behaviors for C-IC 

transitions.18 

(i) When 1/(Q - Q0 ) diverges faster thane, the C-IC melting transition will remain 

in the same universality class as the C melting transition. 

(ii) When 1/(Q - Q0 ) diverges slower thane, the C-IC melting transition should be 

KT-like or first-order. 

(iii) When 1/(Q-Qo) diverges at the same rate as e, i.e. 1/(Q-Qo) "'e, the nature 

of the transition might change in a fundamental way. 

Among (i-iii), (iii) is the most interesting. Huse and Fisher realized this and called 

the effect chiral melting. Unfortunately, no models or experimental systems can tell 

us if this type of transition is realized for sure. The ANNNI model and the 3-state 

chiral Potts model have served as model candidates to study chiral melting behavior 

since then. 
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1.3 PREVIOUS STUDIES OF THE 3-STATE CHIRAL POTTS MODEL 

The 3-state chiral Potts model has attracted much attention as it is a natural 

extension of the fermion theory and a possible realization of chiral melting. 26,27,40,41 In 

this section, we give a brief review of the understanding of the possible phase diagram 

of this model. 

The model contains two types of walls: clockwise and anticlockwise domain 

walls. At ~ = 0 they cost equal amounts of energy, but when O < ~ ~ 1/2 the 

anticlockwise domain walls cost more energy than clockwise domain walls. When 

~ = 0, the model is reduced to the 3-state Potts model. When ~ = 1/2, the model 

becomes a model with antiferromagnetic horizontal interaction and ferromagnetic 

vertical interaction that has been studied by Kinzel et al. 42 

The general model was originally introduced and studied by Ostlund and 

Huse. 26•27 Ostlund used free fermion analysis to show that there are IC phases in 

this model. This makes the model interesting for the study of C-IC phase transitions. 

Although there is one integrable line available,43 unfortunately this integrable 

line is located in the region of C solids except for the Potts point. It cannot provide 

information on the phase boundary. Since the model could not be solved exactly 

and there is no known analytical method applicable to the case with general chiral

ity ~' numerical study is very important for the understanding of this model. It 

has been studied by finite-size scaling in the transfer matrix formalism, 44•45 Monte

Carlo simulations,46 Monte-Carlo renormalization group47 and series expansions in the 

quantum Hamiltonian formalism,48- 50 and finite size scaling in the quantum Hamil

tonian formalism. 51- 53 

These numerical calculations help to fill the gap in the phase diagram left by the 

analytical results, i.e. the fermion theory which describes the phase diagram around 

~ - 1/2 and the chiral cross-over results at ~ = 0. Around ~ = 1/2 the fermion 

theory predicts PT transitions from SIC floating solids into C solids, and KT melting 

transitions from the SIC floating solids into the SIC fluids. At ~ = 0, the exact values 

of the critical dimension xcH of the chiral operator have been determined at the C 
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melting transition in the Potts model but it leaves several possible melting scenarios 

about the phase transition for small .6.. 54 

In spite of all these efforts, it is still not clear which scenario is realized in this 

model. It has been a long time mystery if there is a Lifshitz point in the phase diagram, 

i.e. whether the floating phase extends up to .6. = 0. Haldane et al. 40 and Schulz41 

argued against the idea of a Lifshitz point at finite chirality, while Howes,48 Huse et 

al., 10 Selke46 and Duxbury et al. 44 are for it. Even among the authors who agree on 

the existence of a Lifshitz point at finite .6., there is no agreement on the nature of 

the transitions from C solids into SIC fluids. According to Howes, the transition is in 

the Potts universality class. Huse and Fisher10 proposed that it should be in a new 

chiral universality class and their conjecture is supported by the numerical work of 

Duxbury et al.44 but is questioned by the work of Vescan et al. 53 

Meanwhile, as a result of the fermion theory, the IC floating solids should 

bear the characteristics of Kosterlitz-Thouless (KT) phases. 33•34 In particular, the 

wavevector-dependent susceptibility should satisfy xq(T) ~ exp(a(l - T /Tc)-112), 

when Tis above but close to Tc, at which the transition from the IC fluid into the IC 

floating solid takes place. Here xq(T) is defined in (3.51) .. The last assertion depends 

on the assumption that the dislocation density of the domain wall array is still low 

even at the melting temperature. This has· never been checked in an independent 

calculation. 

In Chapters 2 and 3, the existence of Lifshitz point will be investigated and 

the phase transition nature of the melting of incommensurate floating solids in this 

model will be focused on to give a reasonable explanation of previous results. 



CHAPTER2 

MEAN FIELD STUDY OF THE PHASE 

DIAGRAM OF THE 3-STATE CHIRAL POTTS 

MODEL (I) 

2.1 INTRODUCTION 

Since the chiral Potts model exhibits such rich and complicated behaviors as 

mentioned in the last chapter, no one method has been able to fully reveal its phase 

diagram. The existence of a Lifshitz point and the nature of the related phase tran

sitions are still unclear. To get a reliable understanding of this model, further study 

by different methods is necessary. 

It is well known that mean field theory is the simplest tool for the study of 

critical phenomena. In simple mean field theory, all interactions are replaced by ef

fective fields. Therefore, in this theory only long-range order parameters are included, 

while short-range correlations due to local interactions are completely ignored. In an 

improved mean field theory, instead of replacing all interactions with effective fields, 

a cluster is considered while replacing interactions along the boundary of this cluster 

by effective fields and keeping the interactions within the cluster exact. Hence, part 

of the short-range correlations are successfully included in this kind of mean field 

theory. Although the phase diagram can be systematically improved by consider

ing larger and larger clusters, any mean field theory will only give classical critical 

exponents. 

Several years ago, Suzuki introduced the coherent anomaly method (CAM), 55 

which is a systematic procedure to include more and more interactions exactly in 

the effective field approximation such that CAM series can be obtained. These series 

are then used to extrapolate to the critical behavior of the original system. This 
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method has been successfully applied in various models. 56 The mean-field transfer 

matrix (MFTM) method was introduced by him as one possible way to construct a 

CAM series. 57 The MFTM method retains the intuitive spirit of mean field theory 

by separating the whole system into several different decoupled strips with effective 

fields on their boundaries and treating interactions within them exactly. 

By systematically treating wider and wider strips, i.e. more and more interac

tions are treated exactly, one should get better and better approximations to the exact 

phase diagram of the original physical system. From these successive approximations, 

one can obtain an extrapolation to the exact results. Meanwhile, it has been found 

that the MFTM method in its simplest form (i.e. an infinite chain with effective fields 

on the boundaries) can qualitatively improve the simple mean field results. 58 

In this chapter, the approximate free energy is calculated by the MFTM method. 

We compare approximate free energies for different mean-field solutions to determine 

the possible phase diagram of the 3;.state chiral Potts model. From the systematic 

improvement of the mean-field approximation; the resulting mean-field phase diagram 

should become closer and closer to the exact one. Possible CAM behavior will be 

analyzed in the next chapter. 

In Section 2.2, we review some basic knowledge of the model. In Section 2.3, we 

describe the approximate free energy resulting from the Gibbs-Bogoliubov inequality 

and the MFTM method. Numerical results will be presented in Section 2.4. Finally, 

a brief summary is given in Section 2.5. 

2.2 NOTATIONS AND WELL-KNOWN RESULTS 

In the last chapter, we have introduced the cell spin model. The Hamiltonian 

for this model reads 

H = - L { En cos (o(n, t) - O(n + 1, t) + ~71"~) + Et cos (o(n, t) - O(n, t + 1))} 
n,t 

(2.1) 
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where (n, t) represents a lattice site of a two-dimensional square lattice, and O(n, t) is 

the spin variable on the lattice site (n, t) taking values 0, 21r /3 or 41r /3. This model 

is a special case (Ostlund-Huse case) of the more general chiral Potts model. 

For later convenience, we change some notations and write the model as 

-.BH({ni,i},~) = ~ [Kncos~1r(ni,i -ni,i+l +~) +Ktcos~1r(niJ -ni+1,i)] (2.2) 
i,3 

where .B = l/kaT, Kn = .BEn and .Kt = .BEt. We may not write out arguments 

explicitly for H ( { ni,i}, ~) if it will not cause confusion. 

There are some useful symmetry relations in this model. For example, if 

then 

and if 

or if 

then 

~, = ~ + 1/2, n~,i = niJ - j (mod 3) 

H( {n~J}, ~') ~ -H( {ni,j}, ~), 

~, = ~ + 1, n~,i = niJ + j (mod 3) 

Al_ A 
L.l. - -u, n~,i = -ni,i (mod 3) 

H( {n~J}, ~') = H( {ni,i}, ~). 

The second relation also indicates that if 

~, = 1 - ~' n~,i = -ni,i + j (mod 3) 

then 

H({n~J},~') . H({ni,j},~). 

Hence, we only need to examine the region with O :::; ~ < 1 /2 in this model. 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

Particularly, when~= 1/2, the model becomes a model with antiferromagnetic 

horizontal interactions and ferromagnetic vertical interactions studied by Kinzel et 

al. 42 and its spin correlation is exactly known when T = 0.26 When~= 0 and Kt= 

. .----·-
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Kn= K, the model becomes the 3-state Potts model. For the 3-state ferromagnetic 

Potts model, the critical point Kc, critical exponents a, /3, µ, and v have been obtained 

as Kc= 2ln(v3 + 1)/3, a= 1/3, /3 = 1/9, µ = v = 5/6. 

In this model with O :s; ~ < 1/2, the order parameter (a) = (exp(21rini,;/3)) # 0 

for C solids which means pitch Q = 0. For IC floating solids or IC fluids, we would 

expect that the pair correlation decays exponentially with an oscillatory envelope 

along the chiral direction and with a continuously varying oscillation frequency ( Q # 

0). To distinguish IC floating solids and IC fluids, we have to see correlation lengths 

along the chiral direction and the non-chiral direction respectively. For IC floating 

solids, the correlation length is infinite in one direction at least but for IC fluids, both 

correlation lengths are finite. From now on, we change some of the terminology used 

in Chapter 1. Since we only need study the region O < ~ ~ 1/2, the pitch Q of C 

solids in this region is 0. Meanwhile, in our method, we are not able to distinguish IC 

fluids and C fluids. Hence we use ordered phases to denote C solids, disordered phases 

to denote C or IC fluids. Without confusion, incommensurate phases or modulated 

phases are used to denote IC floating solids. 

2.3 FREE ENERGY CALCULATION BY THE MEAN-FIELD TRANSFER 

MATRIX METHOD 

~The approximated free energy is obtained by the use of the Gibbs-Bogoliubov 

inequality 

F < FMF = min(Fo + (H - Ho)), (2.10) 

where F is the exact free energy of the original system and H is the original Hamil

tonian. HO is a trial Hamiltonian and F0 is the exact free energy of the system 
. . 

defined by H0 . (· • ·) means average carried out in the ensemble defined by Ho and 

this convention will be used throughout this chapter. For boundary spins, it is more 

convenient to introduce the vector notation 

Si,i = ( cos 2; ni,i, sin 2; ni,i) . (2.11) 
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Hand Ho are defined as follows: 

- ~ [Kn cos 2; (ni,j - ~.i+l + D.) + Kt cos 2; (~.i - ni+1,;)] , {2.12) 
z,3 

-/3H 

211" - '°' K cos -(n· · - n· ·+1 + D.) ~ n 3 Z,J Z,J 
Z,J 

Ns-1 (p+i)N-2 211" 
+ L L LKtcoS 3 (nk,; -nk+1,i) 

p=O k=pN j 

Ns-1 L-1 

+ L L Kt11k. (SpN-1,p'L+k + SpN,p'L+k), (2.13) 
p,p'=O k=O 

where O < i ~ N8 N - 1, 0 ~ j < N8 L - 1, periodic boundary conditions are 

imposed on both directions and /3 = 1/k8 T. The trial Hamiltonian H0 consists of 
, 

N 8 independent strips of width N and length N 8 L with effective boundary fields 

{11; = (f/jl, r,;2)} having period L to replace the exact interactions between strips.* In 

Fig: 2.1, we show how to replace the exact vertical interactions in the original model 

.by effective field interactions within one row. 

To find a good approximation for the free energy, we use (2.10) to find the 

. minimum conditions which { 11 i} should satisfy. Let 

F({11i}) - Fa+ (H - Ho) 

- -/3-1 lnZo + (H - Ho), (2.14) 

where 

Zo = L exp(-f3Ho), (H - Ho) = L (H - Ho) exp(-f3Ho)/Zo. (2.15) 
{n.,;} {ni,j} 

Then the effective fields {71j} should satisfy 

8F({71i}) . O 

a11i 
(2.16) 

for any i to make F( {11i}) minimal and therefore the best possible approximated free 

energy for this given trial Hamiltonian. Eq. (2.16) can be calculated as follows:· 

8F({11;}) = /3 ((8Ho)(H.:.... Ha) - (8Ho(H -Ho))) (2.17) 
a11i a11i a11i 

*We could have chosen the length to be N~L with N~ independent of N 8 • But in 
the thermodynamic limit N~, N 8 --+ oo, we can limit ourselves to the case N~ = N 8 

without loss of generality. 
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H-Ho 
Ns-1 L-1 

- L L Kt,B-1[SpN,p'L+k' SpN-1,p'L+k 
p,p'=O k=O 

-'17k · (SpN,p'L+k + SpN-1,p'L+k)l 

Ns-1 
-Kt,B-1 L (SpN-1,p'L+k + SpN,p'L+k). 

p,p1=0 

Since there is no interaction between the different strips in H0 , we find 

(spN,jspN-1,i) .:_ (spN,j)(spN-1,i), 

(SpN,j. SpN-1,jSp'N,i) - (SpN,j. SpN-1,j)(Sp'N;i) = 0 if p' -=I- p,p- 1, 

(spN,j • spN-1,jsp'N-1,i) - (SpN,j · spN-1,j)(Sp'N-1,i) = o if p' -=1- P,P + 1. 
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(2.18) 

By periodicity of the trial Hamiltonian Ho along both directions and reflection sym

metry, we have 

for arbitrary p, p'. Hence explicitly substituting (2.18) into (2.17) and using the above 

relations to simplify it, we have 

where we have used the connected correlation function 

(2.20) 

From (2.19), we immediately get the necessary conditions for F({77j}) to be minimal 

as 

(2.21) 

Since Ho contains N8 identical independent strips, we can write Z0 defined in (2.15) 

as 

Z -zNs 0 - O , (2.22) 
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where Zo is the partition function defined on one strip. It is convenient for us to 

introduce the site-dependent column transfer matrix for one strip 

(2.23) 

and boundary-spin operator matrix M 

N-1 

M{n;},{n3} = So II 8(n;, n~), (2.24) 
j=O 

where 

and {ni} is a short-hand notation for {n0 , n1, · · ·, nN-i}, which is the column spin 

configuration within one strip along the non-chiral direction, and 11; is the effective 

boundary field. Hence Zo can be given as 

({ L-1 }Ns) zo = Tr !! T(11;) . (2.25) 

and m; can be calculated by 

(2.26) 

If we define L-1 i-1 
Ti= II T(11k) II T(11k), (2.27) 

k=i k=O 

then we have 

(2.28) 

where i can take any value of 0, 1, · · ·, L - 1, and 

m; Tr ( ( r0)Ns-1T( 11o)T( 111)' · · MT( 11 j) · · · T( 11 L-1)) / Zo 

- Tr((ri)NsM)/zo, j=0,1, .. ,,£-1. (2.29) 
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Consequently, in thermodynamic limit N 8 ---+ oo, ignoring the exponentially small 

terms in the trace, we find that z0 and m; are given in terms of the largest eigenvalue 

of ri and its corresponding eigenvector. Hence, we get 

(2.30) 

and 

(2.31) 

where I..X0 ) and (..X0 1 are the right and left eigenvectors of r 0 respectively (with 

(..X0 !..X0 ) = 1), corresponding to the largest eigenvalue ..X0 = ..X0 ({'TJ;}). Therefore, 

from (2.14) and (2.18), we can write the approximated free energy per site as 

1 Kt L-1 . 

!MF= - NLl-l ln..X0({'TJ;}) + NLl-l ~(2'TJ; · m; - m; · m;) 
JJ JJ 3=0 

(2.32) 

and the effective boundary fields are determined by the equations 

'T/; = m;, where j = 0, 1, · · ·, L - 1. (2.33) 

It is easy to see that the effective fields in our trial Hamiltonian are essentially the 

thermal average of boundary spins from (2.33) and our study is essentially a mean

field theory. Since (2.33) only gives a necessary but not a sufficient condition for !MF 

to be minimal, any solution to the mean-field equations (2.33) only gives an extremum 

of the approximated free energy (2.32) in the phase space and could be is metastable 

or unstable. The thermodynamically stable phase is the one that gives the absolute 

minimum free energy for all different solutions with all possible L. Therefore, to find 

the best approximation to the true free energy of the system requires obtaining all 

solutions for all L. 

Clearly it is impossible to do that, namely to obtain all the solutions for all L 

and we have to put a restriction L < Lmax, Meanwhile, since the largest eigenvalue 

..X0 and its corresponding eigenvector are functions of {'TJ;} with O ~ j < L - 1; the 

mean-field equations (2.33) and (2.31) are systems of transcendental equations in 

L unknowns, such that their solutions can only be calculated numerically and may 

admit many many different solutions. In this calculation, we limit our solutions to 



22 

those which can be obtained by direct iteration.* That is, the boundary fields are 

obtained iteratively as 

(2.34) 

Since Ho depends on the effective fields {77J and m; = (So,;) = (SN-l,j), m; will 

depend on { 77J and we write the dependence explicitly in the above equations. If we 

have the initial set of { 77J for the trial Hamiltonian Ho, we can calculate { 77j} accord

ing to (2.34) and then use the results as effective fields to obtain {771}. This process 

can be continued until the difference between {77~n)} and {11t-1>} becomes negligi

ble, hence we get the approximated solutions to the mean-field equations. Obviously, 

the convergence of these solutions fully depends on the given initial conditions, and 

it is very important to choose the right initial conditions in order to obtain a fast 

convergent result. We make this choice according to the physical situation. 

For O < 6. ~ 1/2, we expect that the average magnetization of the system is 

translationally invariant-the same for all sites (Q=O), and is identically zero when 

it is in the disordered state, nonvanishing when it is in the C ordered state. In the 

modulated phase, it is aperiodic or approximately periodic with L > 1. Hence we may 

expect three types of solution to the mean-field equations (2.33), i.e. the disordered 

solution with (77 = 0), the ordered solution with (77 #- 0) which can be obtained 

by setting L = 1 in the mean-field equations (2.33) and modulated solutions with 

unequal boundary magnetizations ( L > 1). 

Let us first discuss the ordered and the disordered solutions, which is equivalent 

to discussing the solutions to the mean-field equation (2.33) with L = 1. It can be 

shown that the boundary magnetization m = 0 if 77 = 0. Therefore, the disordered 

solution is always present and its corresponding approximated free energy is always 

a local extremum in the phase space. To obtain the ordered solution by iteration, we 

set the initial value 77 = (1, 0). For L = 1, the mean-field equation (2.33) has only 

one variable 77, and can be solved directly. The extrema of !MF can be obtained with 

*We have verified by Maple and Fortran that this procedure gives the desired 
solution for small N = 1, 2, 3, 4, as is discussed below. 
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high accuracy for N ::; 4, and the results are used to understand the validity and the 

accuracy of our iterative procedure. 

The free energy !MF in (2.32) is plotted versus the magnitude T/ of the boundary 

field r, for three different temperature regions in Fig. 2. 2 for D. = 0. We find f MF ( r,) is 

an extremum for TJ = 0, as expected. It is a minimum at high temperature as shown 

by the bottom line and is the only minimum. The top line is the low-temperature 

behavior which has a maximum at TJ = 0, and a minimum at T/ near 1. But for 

intermediate temperatures, near the transition temperature Tc it is represented by 

the middle line (enlarged in Fig. 2.3), which has two local minima. Above Tc, the 

minimum at TJ = 0 has a lower value and below Tc a higher value. At Tc the two 

minima have the same value: Thus the initial condition r, = (1, 0), would converge to 

the local minimum near T/ = 1, and we call it the ordered solution which may or may 

not be the true minimum. It is also easy to see from Fig. 2.3 that the phase transition 

at Tc is of first order (with discontinuity in the derivative of the free energy). For 

D. =/. 0, these features for L = 1 remain the same. In our iteration scheme, we are only 

able to get the solution with the larger value of r,. However, the solution, which is 

missed in our iteration scheme, always gives a higher approximated free energy than 

the solution obtained by our iteration scheme. Because fMF(TJ) is bounded below and 

increases for r, large enough, the iteration scheme always converges to a minimum. 

Now let us discuss how to get modulated solutions. Obviously, to obtain a mod

ulated solution by iteration, we have to choose non-uniform { T/i} as initial conditions. 

Here we choose the initial values of { T/i} with period L to be 

with i = 0, 1, · · ·, L - 1, 

where { n0, n 1, • • ·, nL_i} can be any row spin configuration. Since not all initial 

non-uniform values for { T/i} lead to 'modulated solutions (some may converge to the 

ordered solution or. the disordered solution and some may not converge at all) and 

not all modulated solutions give local minima (some of them may be maxima) of the 

approximated free energy, we have to include as many initial conditions as possible. 

On the other hand, there are many different initial conditions leading to modulated 

solutions with equal or nearly equal approximated free energies which means we 
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Figure 2.1. Exact vertical interactions within one row approximated by effective field 
interactions. 
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Figure 2.2. !MF versus (171 , 0), with !.l. = 0, Kn= Kt and different temperatures. 
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can ignore their difference when we determine the phase diagram. It should not be 

necessary to include all possible different configurations with the same period. Indeed, 

we find that instead of the spin configuration {ni}, it is more economical for us to 

put restrictions on the initial values of {77i} through the difference sequence {mi}, 

which is defined in Appendix A. 

If we put all independent difference sequences with length l ~ lmax as possible 

initial conditions for { 71J, it shall be shown in Appendix A that this set of initial 

conditions not only includes all possible initial conditions for { 11d determined by 

all different spin configurations with period L < lmax, but it also includes a small 

fraction of the spin configurations with period L in the range lrnax < L ~ 3lmax. 

Although the periods for the two cases (P = n0 :- nz = 0 or P =J 0) are different, 

they take approximately equal calculation time as shown in Appendix B. Since the 

ffii in difference sequence { mi} is the difference of successive spins along the chiral 

direction, and is related to the excess energy of the spin configuration, we may reduce 

further the number of possible initial conditions by restricting mi = 0 or 2, as ffii = 0 

or 2 gives a lower edge interaction than mi = 1. 

The approximated free energies for the disordered and ordered solutions can be 

obtained without much effort. To determine if the system is in a modulated phase, 

we only need to find a modulated solution giving a lower approximated free energy 

than the free energies given by the ordered and disordered solutions. However, to be 

sure that the system is.not in a modulated phase, we have to find all the modulated 

solutions with all possible L. Hence, because only part of the modulated solutions 

is considered, the incommensurate phase region in our approximated phase diagram 

is possibly smaller than the one in the exact phase diagram, with exact in the sense 

that we obtain all possible modulate~ solutions and compare their free energies.· The 

validity of the restriction of l ~ lmax is checked below in Figs. 2.9 and 2.10, and the 

validity of the restriction of ffii =J 1 is checked in Table 2.3. 
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2.4 NUMERICAL RESULTS ON THE PHASE DIAGRAM 

Before presenting our numerical results, we would like to mention that since 

Kt and Kn are proportional to 1/T and we are only concerned about the relative 

values of approximated free energies and temperatures, we can set Et = k8 = 1, 

giving in T = 1/Kt, in Chapters 2 and 3 without loss of generality. In our_numerical 

calculation, the maximum number of iterations used to solve the mean-field equations 

is 3000 and typically the solutions are obtained after hundreds of times of iteration. 

We first establish the global phase diagram of the model by· comparing the 

approximated free energies for different solutions of (2.33), and then compare our 

results with the well-established results to check the validity of this method. . To 

obtain the phase diagram, we have to find the upper-temperature limit and the lower

temperature limit of the modulate phase for fixed ~ in the phase diagram. 

To determine the phase boundaries, we first locate a temperature Te at which 

the approximated free energy for the ordered solution and the approximated free 
. . 

energy for the disordered solution are equal. The reason for searching for Te is that 

if there are modulated phases for this fixed ~' then the system at Te must be in 

the modulate phase. This can be shown as follows: Let us denote the approximated 

free energy by f 0 for the ordered solution, id for the disordered solution and f m for 

the lowest approximated free energy resulting from all modulated solutions. Then 

on the phase boundary between the ordered phase and modulated phase, we have 

f 0 = fm· Hence, near the phase boundary, which separates the ordered phase from 

the modulated phase, we can expect in the ordered phase f 0 < fm < !d, and in 

the modulated phase we have fm < f 0 < !d· Similarly, near the phase boundary 

which separates the disordered phase from the modulated phase, in the modulated 

phase we have f m < fd < f 0 • Therefore, we can conclude that fd = J0 must happen 

somewhere within the modulated phase region. To search for Te, we first take a 

temperature Td with Td high enough so that the approximated free energy for the 

disordered solution is lower than the one for the ordered solution. Then we take 

another temperature T0 with T0 low enough so that the approximated free energy for 
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the ordered solution is lower than the one for the disordered solution. After taking 

these two initial temperatures, we use a bisecting method by checking the system at 

temperature (Td + T0 ) /2. If the approximated free energy for the disordered solution 

is lower than the one for the ordered solution at temperature (Td +T0 )/2, we set this 

temperature as the new Td, otherwise we choose it as the new T0 • We can repeat 

this process until the difference of Td and T0 vanishes within our numerical accuracy, 

resulting in the point with Te= (Td + T0 )/2. 

After the temperature Te is located, we can use this temperature to locate the 

upper-temperature limit Th and the lower-temperature limit 11, which are estimates of 

the boundaries of the modulated phases. In the following, we show how to search for 

the upper-teniperature limit for fixed ll.. We first check if the system at temperature 

Te is in the modulated phase. If the system is not in the modulated phase, this means 

that no modulated phase exists for this ll., and that there are ordered phases for 

temperatures lower than Te and disordered phases for temperatures higher than Te. 

If the system is in a modulated phase, we set Tm = Te and find a temperature Th 

with Th high enough so that the corresponding system is in the disordered phase. 

Then we check the phase of the system with temperature (Tm + Th) /2. If it is in the 

modulated phase, we set this temperature as the new Tm, otherwise we set it as the 

new Th. We can repeat this bisecting procedure until the difference between Th and 

Tm is within the required accuracy for the upper-temperature limit of the modulated 

phase. Similarly, we can get the lower-temperature limit of the modulated phase for 

fixed ll.. 

The initial values { '1i} that we use are given by all possible difference sequences 

{ m 1, ffi2, · · · , mi} with l ~ 12 and mi = 0 or 2, representing different spin configu- · 

rations. The accuracy used in this part of the calculation is 10-11 for free energies, 

10-5 for effective fields and 10-3 for critical temperatures. In Table 2.1, we present 

the approximated free energies of the disordered solution, the ordered solution, and 

the lowest one resulting from all modulated solutions for various Tat ll. = 0.30 with 

Kn = Kt and width N = 2. In this table, there are significant differences between 

the free energies of the disordered solution, the ordered solution, and the lowest one 
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T Disordered Ordered Modulated 

1.57244 -1.98083 -1.98165 

1.57457 -1.98279 -1.98312 -1.98312 

.1.57670 -1.98476 -1.98460 -1.98495 

1.57883 -1.98672 -1.98610 -1.98680 

1.58096 -1.98869 -1.98762 

TABLE 2.1. Table of /MF for various mean-field solutions and temperatures where 
Kn = Kt, ~ = 0.30, and N = 2. Two items are empty meaning that 
no corresponding solution for the mean-field equations in our scheme 
exists. The approximated free energy for the modulated solution is the 
lowest one resulting from all modulated solutions we considered. 

resulting from all modulated solutions when the temperature T is away from a critical 

one Tc = Th or 'Ii with IT - Tel > 10-3 • 

For a slightly smaller value of~= ~L, we find evidence for the existence of a 

Lifshitz point in the case of a strip with width N = 2 in a periodic effective boundary 

field. At Kn = Kt = 0.627354 and ~ = 0.288313 we find a modulated solution* with 

/MF - -2.0022416, (2.35) 

'Tio (0.036778, -0.007183) 

'11 (0.036778, 0.007183) 

'Tl'l, - (0.029948, 0.020518) (2.36) 

'73 (0.017780, 0.030796) 

'74 (0.002795, · 0.036195), 

*Since this modulated solution is close to the form 'Tli = A(cos(jq+a), sin(jq+a)), 
we may expect that the modulated solution, which gives the lowest free energy, is close 
to 'Tlj = A(cos(jq+~), sin(jq+a)) with suitable q. Hence, in our calculation, we also 
put the initial condition 'Tl;= (cos(21rkj/ L), sin(21rkj/ L)) with k = 0, 1, · · ·, L-1 and 
L being the period of {'Tli}. (However, since translational invariance has been broken 
within the mean-field transfer m~trix method, we may not expect the solution to be 
exactly of this form. Further group-theoretical analysis may clarify the situation.) 
We also calculated ~L with L up to 250 and confirmed the accuracy for ~L achieved 
in Figs. 2.9 and 2.10. 
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and 11i+S = R17i where R is defined in (B.2) with P = 1. This modulated solution 

above has almost. the same free energy as the disordered solution with 11i = 0 and 

the ordered solution with 11i = (0.556284, 0). However, to our numerical accuracy, 

this modulated solution is significantly different from the disordered solution and the 

ordered solution. This also indicates that the transition from the disordered phase 

into the modulated phase for~ =f:. 0 is first order in a finite-width mean-field system 

just as the transition from the disordered phase into the ordered phase for ~ = 0. 

Meanwhile, (2.36) and Table 2.1 also show that we need not worry about the floating

point errors when we determine the phas~ of a system. 

As reviewed byWu,59 simple mean-field theory predicts a first-order phase tran

sition in the 3-state Potts model which is· equivalent to the ~ = 0 3-state chiral Potts 

model. Our finite-width MFTM theory also predicts a first-order phase transition 

for ~· = 0. There are ordered and disordered solutions which give equal free energies 

at the critical point in the· MFTM method. The disordered solution is trivial and 

the ordered solutions with different strip width N are presented in Table 2.2. These 

numbers have been compared with the results obtained by solving the mean-field 

equation directly using Maple for N ::;: 4, and have been found to be quite accurate. 

From Table 2.2, we can see that the two solutions for 17 will not merge when N .- oo. 

Hence, the effective fields 17 have a jump as the temperature crosses the critical point. 

In the simple mean-field theory, this effective field can be explained as magnetization 

and therefore the result indicates a first-order phase transition. 59 This effective field 

17 is not related to the bulk magnetization but to the boundary magnetization in the 

MFTM method; it nevertheless also leads to a non-vanishing bulk magnetization and 

a jump of the specific heat at a critical point in any finite-width mean-field system. 

From Table 2.2, it also can be seen t];iat the bulk magnetization Ille, which is the spin 

average of the central row of the strip, decreases as N increases. When N .- oo, this 

effective field 17 should give an infinitely small effect on the bulk magnetization Ille 

and the specific heat. Hence, the extrapolation of the MFTM method would be able 

to give the correct nature of the phase transition, i.e. a continuous phase transition. 

This should also be true for cases with ~ =f:. 0. 
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Figure 2.3. !MF versus (771, 0), with ~ = 0, Kn = Kt and temperatures near the 
critical one 1'c. 

N 1/Tc fMF ,,, Ille 

1 0.50966 -2.29128 (0.500000, 0) (0.500000, 0) 

2 0.55266 -2.22560 (0.495022, 0) (0.495022, 0) 

3 0.57291 -2.19947 (0.495454, 0) (0.464888, 0) 

4 0.58511 -2.18501 (0.497653, 0) (0.450472, 0) 

5 0.59336 -2.17579 (0.500329, 0) (0.423631, 0) 

6 0.59934 -2.16941 (0.502935, 0) (0.406160, 0) 

7 0.60386 -2.16478 (0.505231, 0) (0.380529, 0) 

TABLE 2.2. Table of !MF, T/ and Ille for 6. = 0. !MF(N) is the approximated free 
energy, TJ(N) is the ordered solution and lllc(N) is the magnetization 

. on the central row with this ordered solution at Kn = Kt = 1/Tc, 6. = 0 
with strip width N. At this point, the approximated free energies given 
by the disordered solution and the ordered solution are equal. 
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The global phase diagrams with Kn = Kt are shown in Fig. 2.4 for N = 1, in 

Fig. 2.5 for N = 2, and in Fig. 2.6 for N = 3. We find approximately f:,.L > 0.30 

for N = 1, t:,.L ~ 0.29 for N = 2 and f:,.L ~ 0.28 for N = 3. In order to check the 

applicability of the MFTM method, we compare the result for the critical point at 

the Potts point f:,. = 0 in Fig. 2. 7 and the result for the C-IC transition line with 

a well-known result26 which was obtained by free-fermion approximation for /j. near 

1/2 in Fig. 2.8. From Figs. 2.7 and 2.8, we see that the convergence is slow but the 

phase diagram is really systematically improved. From the phase diagram obtained 

in Figs. 2.6, 2.7, and 2.8, the global structure of the phase diagram agrees with the 

well-established results. This gives us more confidence that the results for the free 

energy obtained by the mean-field transfer matrix method will be reliable. 

One of the main motivations for the current study is the question of the existence 

of Lifshitz point f:,.L at finite chirality. Therefore, higher accuracy for f:,.L is desired. 

For later purposes, it is necessary to explain more clearly the approximation for 

t:,.L we made. From now on, we use f:,.L to denote the exact Lifshitz point for the 

original thermodynamic system, f:,.f(N) to denote the exact Lifshitz point of the 

mean-field transfer matrix system for a strip of width N (in a sense, we consider 

all the possible modulated solutions with all possible l), and t:,.i,(N) to denote the 

approximate Lifshitz point in which we only consider the modulated solutions with 

initial values of { 71J represented by the independent set of difference sequences of 

length l, although in principle it should be better to include all-the solutions with 

length of difference sequence less than l. We would expect that mint~l t:,. 1, ( N) will 

approach f:,.f(N) when l - oo for fixed width N of the mean-field transfer matrix 

system and that f:,.f(N) will approach f:,.L when the, width N of the strip goes to 

infinity. Since no closed form for the solutions of the mean-field transfer matrix 

equation exists, it is impossible to determine f:,.f(N) directly. We use t:,.i(N) for 

suitable l as a good approximation to f:,. 'f ( N). 

We shall now concentrate on the calculation of f:,.L since the information about 

f:,.L is still crude in our early calculation. Because the approximated free energies of 

the ordered solution, the disordered solution and certain modulated solutions (which 
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Figure 2.4. The mean-field transfer matrix phase diagram with strip width N = 1. 
The approximate value of !::,.L > 0.30. To obtain the phase diagram, 
we considered mean-field solutions with l ::; 12. 
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Figure 2.5. The mean-field transfer matrix phase diagram with width N = 2. The 
approximate value of b..L ~ 0.29. We considered mean-field solutions 
with l S 12. 
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Figure 2.6. The mean-field transfer matrix phase diagram with width N = 3. The 
approximate value of D..L ::; 0.28. We considered mean-field solutions 
with l < 12. 
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Figure 2. 7. Systematic improvement of the approximated critical point Tc versus 1 / N, 
where N is the width of the strip, o denotes approximated mean-field 
transfer matrix results and r; the exact 3-state Potts result. 
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give the lowest approximated free energy among all possible modulated solutions) 

are equal at the Lifshitz point, we only need to calculate the approximated free 

energy with modulated solutions along the line (~,Te) on which the approximated 

free energies of the ordered solution and the disordered solution are equal to obtain 

higher accuracy for ~i(N). This greatly reduces the calculation time. Hence, we can 

spend more time to increase the accuracy for ~t(N) up to 10-4 making larger N and 

l possible (up to 16 for l where l is the length of difference sequence which determines 

the initial value of { 1Ji}). The limiting ~ 'f (N) should be the minimum among the 

set {~i(N)} with l taking all positive integer values. 

In the following, we show how to use a bisecting procedure to get ~i(N). 

We first take ~min = 0 and ~max = 0.5, then check if point (~m,Te) with ~m = 

(~min+ ~max)/2 is in the modulated phase. If point (~m,Te) is in the modulated 

phase, we set new ~max= ~m otherwise ~min= ~m- We repeat the above procedure 

until the difference between ~max and ~min is negligible. The results are shown in 

Figs. 2.9 and 2.10. From Figs. 2.9 and 2.10, we find that ~i(N) is oscillating with 

l and that the local minima shown in Fig. 2.9 are very close. If this is the case for 

arbitrary l, then we can conclude that the first local minimum of ~i(N) is good 

enough to be an approximation for ~'f(N). We also find that the l which gives 

the first minimum of ~i(N) increases and ~i(N) decreases when N increases. We 

obtain ~'f(l) ~ 0.3143, ~'f(2) ~ 0.2883, ~'f (3) ~ 0.2770 and ~'f (4) ~ 0.2709 when 

Kn = Kt. When Kn = lOKt, we get ~'f (l) ~ 0,2258 and ~'f (2) .:::; 0.2156. This 

coincides with our intuition that larger Kn/ Kt leads to faster convergence. We can 

roughly explain it as follows: Since larger Kn/ Kt effectively reduces the correlation 

length At in the non-chiral direction at the approximated critical temperature, this 

will increase the scaled variable N / At in finite-size scaling theory. 

Finally, we come back to the validity of the restriction of mi = 0 or 2 in 

the difference sequence m 1m 2 · · · m1 by comparing ~i(l) obtained by mi taking all 

possible values (0,1 and 2) with ~i(l) obtained by only taking mi = 0 or 2. From 

Table 2.3, we see that the difference is very small within our error bars and thus can 

be neglected. This is assumed to be the general case for larger l and wider strips. 
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Figure 2.8 . .6. versus Tc. The solid line is derived from the free-fermion approximation 
which should be a better approximation for .6. close to 1/2. 

l 4 5 6 7 8 9 10 

.6.i{l) 0.3143 0.3163 0.3179 0.3172 0.3142 0.3152 0.3164 

.6.i{l) 0.3143 0.3164 0.3180 0.3173 0.3143 0.3152 0.3164 

TABLE 2.3. Table of .6.t. The .6.t in the second row are obtained with mi taking 
any value of 0, 1 and 2, but the .6.t in the third row are obtained with 
mi taking only values O or 2. Kn = Kt and N = 1 in both cases. 
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Figure 2.9. ~i,(N) versus l with Kn = Kt and strip width N. Local minima are 
0.3143 at l = 4, 8, 12 for N = 1, 0.2883 at l = 5, 10, 15 for N = 2, 
0.2770 at l = 6 for N = 3, and 0.2709 at l = 7 for N = 4. 
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From the above, we can safely claim that the Lifshitz point located by the 

MFTM method is systematically moving to the left when the width N becomes larger. 

It is conceivable that the Lifshitz point is located at A = 0 when width N --+ oo as 

suggested by Haldane et al.40 and Schulz.41 

2.5 SUMMARY 

In this chapter, we have studied the Lifshitz point problem in the 3-state chiral 

Potts model. We have compared the mean-field transfer matrix free energies of dif

ferent phases to find the true phase for certain points in the phase diagram. We first 

calculated the global phase diagram and compared it with some reliable information. 

The result is confirmed strikingly well. Then, we applied this method to a more subtle 

point of the phase diagram, i.e. the existence of a Lifshitz point AL at finite chirality. 

We first approximated the real Lifshitz point AL assuming it exists by Lifshitz point 

A'f (N) in a finite strip mean-field transfer matrix system. Unfortunately, we cannot 

determine the Lifshitz point A'f(N) in the mean-field transfer matrix system directly, 

which requires the determination of the whole set of solutions of non-uniform mean

field parameters {'7i} to the mean-field transfer matrix equations. These {A},(N)} . 

are used to find an approximation for A 'f ( N) where l is the index to denote certain 

mean-field solutions. By systematically increasing the size of the mean-field system, 

the A'f(N) are found to become smaller. We can expect that A'f(N) will give AL 

when the MFTM strip becomes infinitely wide. We see that A'f(N) decreases with 

N and it is possible that there is no Lifshitz point at finite chirality (A=/- 0). 



40 

0.45 
AL I Kn= lOKt I 

0 

0.40 

• 0 

0.35 • 0 

• 0 N=2 
0.30 0 • 

0 

N= 1 • 0 

0.25 • 0 • • 0 

• i • 0 • 0 0 l 
0.20 

2 4 6 8 10 12 14 16 18 

Figure 2.10. ~i(N) versus l with Kn = lOKt and strip width N. The minima are 
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CHAPTER3 

MEAN FIELD STUDY OF THE PHASE 

DIAGRAM OF THE 3-STATE CHIRAL POTTS 

MODEL (II) 

3.1 INTRODUCTION 

In the previous chapter, we calculated mean-field transfer matrix (MFTM) free 

energies of various metastable states and compared these free energies to determine 

the approximate phase diagram of the 3-state chiral Potts model. In that calculation, 

we found that a Lifshitz point at finite chirality (~L) is always present in the finite

strip calculation, but ~L becomes smaller when ·the width of the strip is increased. 

This may hint that the Lifshitz point at finite chirality is a finite-size effect as first 

pointed out by von Gehlen et al. 52 

In this chapter, we are going to continue our mean-field transfer matrix study 

of the problem of the Lifshitz point and the nature of the phase transition along 

the critical line between the IC floating solid phase (incommensurate) and the IC 

fluid phase (disorder), i.e. paramagnetic-incommensurate transitions. The coherent 

anomaly method (CAM)55 will be used to analyze the critical behavior. The MFTM 

method55 with Weiss-type60 and Bethe-type61 mean-field approximation will be used 

to construct the CAM series respectively. 

In order to circumvent the difficulty of data analysis involving logarithmic cor

rection, based on some reasonable assumption, we construct a new series to show that 

it is most likely that there is no direct transition from the IC fluid phase into the C 

solid phase, i.e. no Lifshitz point exists at finite chirality in this model and the phase 

transitions from the IC fluid phase into the IC floating solid phase are most likely of 

Kosterlitz-Thouless type. 

41 
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The plan is as follows. In Section 3.2, the CAM theory is briefly reviewed. In 

Section 3.3, we describe the mean-field transfer matrix method putting mean fields on 

the boundary by Weiss-type and Bethe-type approximation respectively. We present 

a new series whose convergence is based on two other converging series in Section 3.4. 

In Section 3.5, we analyze the CAM series obtained by the two types of mean:..field 

transfer matrix method. In Section 3.6, we analyze the characteristic wavevector of 

the correlation function at the critical point. A brief summary is given in Section 3. 7. 

3.2 CAM THEORY. 

The coherent anomaly method ( CAM) has been introduced first by Suzuki in 

1986. 55 It is based on the observation that as the degree of the approximation is 

increased, or as the approximate critical points approach the exact one, the residues 

of these classical singularities vary systematically and show a definite anomaly. 

In this chapter we shall consider the susceptibility as an example. In the mean

field type theories, the susceptibility is &lways given by the Curie-Weiss form 

(3.1) 

where Tc is the critical temperature and x(Tc) the amplitude of the singularity. No 

matter how good the mean-field type of approximation is, such an approximation 

can only give classical critical exponents. In CAM theory, a canonical series of ap

proximations will be used instead. The approximating. series is called canonical if 

the Tc of this series is convergent to the true critical point T: of the original ther

modynamical system. By systematically improving the approximation, such a· series 

can be constructed. It is to be expected that x(Tc) encodes the information on the 

real susceptibility x*(T) of the syst~m. Moreover, Suzuki has argued that the real 

susceptibility is well approximated by the envelope curve of curves defined by this set 

of approximations in x - T space. 

For the susceptibility to have the conventional power-law divergence, all of the 

x(Tc) should show the coherent anomalous behavior 

(3.2) 
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The envelope curve of this set of curves will then be 

* ('¢ + 1)1P+l 1 
X (T) = f '¢1/J (T - Tt)1/J+1' (3.3) 

So, the real critical exponent 'Y is found to be 'Y = '¢ + 1 and the real susceptibil

ity can be extrapolated from these mean-field results.57 This idea has been gener

alized to Kosterlitz-Thouless phase transitions. 62•63 For a Kosterlitz-Thouless phase 

transition,33•34 the susceptibility is expected to diverge exponentially64•65 , i.e. 

x(T) "' (T ! T;)• exp ( (T _c T;)•) , (3.4) 

but the mean-field approximations still will be of the form 

x*(T) -:::!. x(Tc)/(T -Te). (3.5) 

According to CAM theory, it should be expected that62•66 

-r. "' ex c !' ( ) x( c) - (T -Tt)1/J-u-1 P (Tc - Tt)"' (3.6) 

This has been checked for a two-dimensional ferromagnetic six-state clock model but 

the result is not very conclusive. 62 

For the conventional power-law divergent case, Suzuki67 has also found that the 

coherent anomaly behavior of x(Tc) can ·be derived from Fisher's finite size scaling 

theory. See ref. 56 for a full review. 

3.3 WEISS-TYPE AND BETHE-TYPE APPROXIMATION 

Within an improved mean-field theory, there are two most important aspects 

that have to be paid serious attention to: The first one is how to treat fluctuations 

effectively in a finite (here finite-width strip) system and the second one is how to 

relate the effective· fields on the boundary and the typical order parameters of the 

relevant finite (finite-width strip) system. These two aspects determine whether the 

approximate critical points obtained will be convergent to the true one and how fast 

the convergence will be. Currently, the two most-commonly used kinds of approxi

mations are the Weiss approximation and the Bethe approximation. In this section, 
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we will show how the Weiss-type60 and the Bethe-type61 approximation can be ap

plied in our case. We decouple the whole lattice into many identical strips, treat the 

interactions within strips exactly and put effective fields on the boundary and a small 

auxiliary modulated external field in the bulk to be determined by Weiss and Bethe 

approximation condition respectively. Although we will not give a rigorous proof of 

the validity of these approximations, they have been successfully applied in the Ising 

model and many other models. 56 Here we shall apply these approximations to the 

3-state chiral Potts model. 

We take the trial Hamiltonian of one strip in the disordered regime as follows: 

N 21r 
-f3H' = -(3H+KthL:Ecos(-ni,i-jq) 

i i=l 3 

+ Kt'f/ ~ [cos ( 2; n1,j - jq) +cos c; nN,j - jq)] (3.7) 
3 

with 

-(3H 
N 21r 

L [Kn :Ecos ( 3 (ni,j - ni,i+l + ~)) 
j i=l 

N-1 2 
+ Kt L cos (; (ni,i - ni+1,j))J, 

i=l 

(3.8) 

where 'T/ denotes the amplitude of the modulated effective boundary fields, h the am

plitude of the auxiliary external bulk fields, and q the wavevector of the external 

field and modulated effective boundary fields along the chiral direction. Meanwhile, 

because most of the previous understanding has come from the study of the Hamilto

nian limit, which corresponds to either Kn/ Kt--+ 0 or Kn/ Kt --+ oo,48•50- 53 it is kind 

of natural for us to keep Kn/ Kt general. 

In the disordered phase and with a weak field condition, we can expect the 

response of the spin average to be characterized by the same wavevector q because 

of the symmetry of H and H'l.,,=o,h=O under translation. When we introduce our 

Weiss-type and Bethe-type mean-field approximations, the effective fields should be 

characterized by this wavevector q as well. 

Since in all calculations below we take ensemble averages based on H' and often 

with both 'T/ and h being zero, we use (· · ·) to denote the statistical average with 

ensemble based on H' and (· · ·)o to denote (· · ·)l11=o,h=O· 
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disordered phase, which implies that 

(3.18) 

as the LHS would go to exp(i41r /3) times itself. 

3.3.1 WEISS-TYPE APPROXIMATION 

In the Weiss-type approximation60 , we put the self-consistent condition as 

(3.19) 

From (3.10), we can rewrite this mean-field equation as 

(3.20) 

The wavevector-dependent susceptibility is best approximated by the ratio of the 

order parameter (Qc) and the infinitesimal field h. Hence, it is given by 

(3.21) 

This wavevector-dependent susceptibility has a peak located at qm which gives an 

approximation to the characteristic wavevector of the corresponding correlation func

tion. Eq. (3.21) is valid only when the system is in the disordered phase. In the 

disordered phase, the peak of the wavevector-dependent susceptibility is finite, which 

means 

(3.22) 

When the system changes from the disordered phase into the incommensurate 

phase as the temperature is lowered, the peak of the wavevector-dependent suscep

tibility also changes into a divergence. Hence, the critical point that demarcates the 

paramagnetic-incommensurate phase transition can be located from 

(3.23) 
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This can be written, using the .Z3 symmetry (3.18) as 

mJn ( 1 - K, ~ ( Q,Q&,;) exp(ijq)) = 0 (3.24) 

where the minimum condition is over all q. The corresponding Qm will give an approx

imation to the wavevector Qc, characteristic of the correlation function at the phase 

transition point. Here and in the following we write K = Kt and Kc - Ktc, its value 

at the critical point separating the disordered and modulated phases. Kn and Kt vary 

proportionally. Below, we shall most often fix Kn = Kt, Kn = lOKt, or Kn = lOOKt. 

The susceptibility near this critical point (K < Kc) is 

The coherent anomaly amplitude is worked out as 

Xweiss 
\Qc~~\ 

"£(QcM;) exp(ijqm) 
j 

2 (:c + ~ ((QcQa,iEi) - (QcQa)(Ei)) exp(ijqm)) 
i,3 

(3.25) 

, (3.26) 

where we again have used the .Z3 symmetry (3.18), and the susceptibility can be 

rewritten as 
XWeiss 

Xweiss = K 
. _c -1 

K 

3.3.2 BETHE-TYPE APPROXIMATION 

(3.27) 

In the Bethe-type approximation, we have to put the self-consistent condition 

as 

(Qc) == (Qa,o). (3.28) 
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The mean-field equation can now be written as 

((Q,!:). -(Qa,o!:)} 
( ( Qa,o °:;) 0 - ( Q, °:;) 0) ~ + 0(~2) + O(h'), (3.29) 

and the wavevector-dependent susceptibility can be given as 

J 8P) ( oP) TJ 
XBethe = \ Qc oh O + Qc OTJ oh 

I oP) . ( oP) ( ( Qc;\ - ( Qa,a;) a) 
\ Qc oh o + Qc OTJ o ((Qa,o oP) _ (Qc oP) ) . 

· . OTJ o OTJ o 

(3.30) 

Similarly as in the Weiss approximation case, the paramagnetic-incommensurate 

phase transition point is determined by 

mJn ( ( Qa,o ~:) 0 -( Qc ~:\) = 0. (3.31) 

Again using the Z3 symmetry (3.18), this can be written as 

mJn ~ ( (Qa,0Q'a,i) - (QcQa)) exp(ijq) = 0, (3.32) 
3 

where the minimum condition is taking over all q, and the corresponding qm will 

give the approximation of the wavevector qc at the phase transition point. The 

susceptibility near Kc (K < Kc) is 

( Qc~) 0 ( ( Qa,a;) 0 - ( Qc;) 0) 

XBethe - K, d~ ( ( Q, !:) o - ( Qa,o !:) .) 
1 

(3.33) 

(3.34) 



where we have used the Z3 symmetry (3.18) and 

and 

and the susceptibility can be rewritten as 

XBethe 
XBethe = K 

_c _1 
K 
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(3.35) 

(3.36) 

(3.37) 

Within the Weiss approximation, we calculated numerically cases with widths 

N = 2, 3, 4, 5, 6, 7. But within the Bethe approximation, we only have dealt 

with cases with widths N = 3, 4, 5, 6, 7. For this calculation, a huge memory is 

required. To save memory and accelerate the speed, we use a Z3 invariant basis set.* 

To solve the mean-field equations and to evaluate the expressions for the coherent 

anomaly co~fficients, three- and four:-spin correlations will be involved. By tedious 

but straightforward algebraic calculation, we can get these expressions of three- and 

four-spin correlation in this new basis set. We will not present the details here. The 

resulting numerical values and their coherent anomaly analysis will be given in the 

next sections. 

3.4 NEW EXTRAPOLATION METHOD 

If there exist two sequences { a( n)} and {b( n)}, which satisfy 

i) limn ..... 00 a(n) = c, lirnn ..... 00 b(n) = c and a(n), b(n) =/- c for any n, 

ii) limn--+oo (a(n + 8n) - a(n)) / (b(n + 8n) - b(n)) exists and is not 1, 

it is possible to construct a third sequence { c( n)} with lirnn-.00 c( n) = c by 

a(n + 8n)b(n) - a(n)b(n + 8n) 
c(n) - ---------

- a(n + 8n) - a(n) - b(n + 8n) + b(n) · 
(3.38) 

*Indeed, the reflection invariance along the non-chiral direction can be used to 
reduce the memory requirement even further. But for the computing resources avail
able to us, this reduction is not enough for us to get to larger strips even with width 
N=8. 
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Under certain conditions, we can expect that the sequence { c( n)} will converge faster 

than either {a(n)} or {b(n)}. To prove the convergence of the third sequence, let 

( ) _ a(n + 8n) - a(n) 
T1n -------

- b(n + 8n) - b(n) 

and 
_ a(n+8n)-c 

r2(n) = b( 8 ) . n+ n -c 

It is obvious that {r1(n)} and {r2 (n)} will both converge to the same limit. If we 

define sequence {d(n)} by 

( ) _ a(n + 8n) - d(n) 
ri n = b(n + 8n) - d(n)' 

through simple algebraic calculation, we find that d( n) = c( n) for each n and so we 

can conclude that sequence { c( n)} will converge to c. 

Now let us check how fast the convergence of sequence {c(n)} will be. For our 

purpose, we consider two cases. 

Case 1: Let us assume 

(3.39) 

and 

(3.40) 

Then, using (3.39) and (3.40) for n large enough, we can formally take 8n ---+ 0 and 

8c(n) = a(n + 8n)b(n) - a(n)b(n + 8n) _ c 
a(n + 8n) - a(n) - b(n + 8n) + b(n) 

(3.41) 

8a(n)8b(n)(a1b2 - a2b1)(n ln n - n) 
(3.42) 

where 8a(n) = a(n) - c, and simila~ly for 8b(n) and 8c(n). For n large enough, we 

have 

8c(n) "' (a2 _ b2) 8a(n)8b(n) ln n 
a1 b1 max(l8a(n)I, J8b(n)I) n · 

(3.43) 

Case 2: Let us assume 

a(n) = c + (a1ln n/n + a2/n) 1lv (3.44) 



51 

and 

(3.45) 

Then, similarly, we have 

6c(n) = 8a(n)8b(n)(a2b1 - a1b2)(n ln n - n) 
8a(n)(ailn. n - a1 + a2)(biln n + b2) - 8b(n)(bilnn - b1+b2)(a11n n + a2) 

(3.46) 

and 
6c n ,..., (a2 _ b2) . 8a(n)8b(n) 1 

( ) · a1 b1 max(J8a(n)I, J8b(n)I) ln2 n · 
(3.47) 

From the above two cases., we find that the new sequence may converge much 

faster than the original ones for n large enough. More interestingly, the new sequence 

may approach the limit from below monotonically even both of the original sequences 

approach the limit from above because of the factor (a2/a1 - b2/b1). In physical 

problems, it is difficult to get a(n) and b(n) for large n, but in practice the condition 

can be much looser, as it is often found that the scaling behavior is quite good even for 

small n. For the new extrapolation method to be reasonable, it is necessary that a(n) 

and b(n) are dominated by the first three terms in the large-n asymptotic expansion 

and that Ja(n + 8n) - a(n)I is larger than Jb(n + 8n) - b(n)I if J8a(n)I is larger than 

J8b(n)I or vice versa. 

We use the square lattice Ising model and rectangular Potts models to see how 

well the results will be in this new construction. 

Hu et al. 57 obtained approximate critical temperatures for the square lattice 

Ising model using the MFTM method. We present their results in Table 3.1. From 

Table 3.1 and comparing with the exact value 2.269, we clearly see that the new 

sequence Tn(N) is much closer to the exact value and converges in the right direction. 

In the rectangular Potts model (6. _:_ 0) with Kn = rKt and r a constant, 

the critical temperature is exactly known. We now compare the exact critical tem

peratures with Th(N) the one obtained by Bethe approximation, Tw(N) by Weiss 

approximation and Tn(N) by the new construction (3.38) with 8N = 2 from Tb(N) 

and Tw(N). From Table 3.2 for Kn= Kt, Table 3.3 for Kn= lOKt, and Table 3.4 for 

Kn = lOOKt, we see-that even with such short sequences, Eq. (3.38) can give a much 

better convergence than the original sequences. 
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N 3 5 7 

Tb 2.5719 2.4852 2.4396 

Tw 2.9221 2.7285 2.6294 

Tn 2.287 2.278 

TABLE 3.1. Table of Tb, Tw and Tn for the square lattice Ising model. Critical 
temperature n(N) is obtained by the Bethe-type approximation and 
Tw(N) by the Weiss-type approximation where N is the width of the 
finite strip. Tn(N) is obtained by Eq. (3.38) with 8N = 2. The exact 
value Tc* = 2.269. 

N 3 4 5 6 7 

Tb 1.56208 1.55004 1.54073 1.53471 1.52965 

Tw 1.65702 1.62624 1.60251 1.58794 1.57563 

Tn 1.5010 1.4992 1.4974 

TABLE 3.2. Table of Tb, Tw and Tn for the model with ..6. = 0 and Kn = Kt. 
Critical temperature Tb(N) is obtained by Bethe-type approximation, 
Tw(N) by Weiss-type approximation, where N is the width of the finite 
strip, and Tn(N) is obtained by (3.38) with 8N = 2. The exact value 
Tc* = 1.4925. 

N 3 4 5 6 7 

Tb 6.25082 6.22099 6.19836 6.18422 6.17242 

Tw 6.38835 6.33589 6.29469 6.26873 6.24660 

Tn 6.0757 6.0820 6.0855 

TABLE 3.3. Table of Tb, Tw and Tn for the model with ..6. = 0 and Kn = lOKt, 
Critical temperature n(N) is obtained by Bethe-type approximation, 
Tw(N) by Weiss-type approximation, where N is the width of the finite 
strip, and Tn(N) is obtained by (3.38) with 8N = 2. The exact value 
Tt = 6.0899. 
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N 3 4 5 6 7 

Tb 35.8934 35.7828 35.6987 35.6462 35.6023 

Tw 36.3812 36.1933 36.0449 35.9508 35.8706 

Tn 35.223 35.253 35.270 

TABLE 3.4. Table of Tb, Tw and Tn for the model with .6. = 0 and Kn = lOOKt, 
Critical temperature Tb(N) is obtained by Bethe-type approximation, 
Tw(N) by Weiss-type approximation, where N is the width of the finite 
strip, and Tn(N) is obtained by (3.38) with 8N = 2. The exact value 
T; = 35.2947. 

We have used 8N = 2 above and also will use it later because the quantity 

defined in (3.11) in this chapter behaves differently for strips with even width and 

strips with odd width. 

Now let us look at the critical point for .6. = 0.50. The results are shown in 

Table 3.5 for Kn = Kt, Table 3.6 for Kn = lOKt, and Table 3. 7 for Kn = lOOKt, For 

.6. = 1/2, Kinzel et al. 42 suggest that the critical point occurs at 

(e3Kt/2 _ l)(e-3Kn/2 + 1) = 3. (3.48) 

From Tables 3.5, 3.6 and 3.7, we see that the mean-field transfer matrix results agree 

qualitatively with (3.48), i.e. in the dependence of Tc on Kn/ Kt. Both results show 

that Tc increases with Kn/ Kt and, when Kn/ Kt» 1, Tc shows a very tiny dependence 

on it. But the mean-field transfer matrix results would suggest a much lower Tc than 

the prediction from (3.48). 

3.5 CAM ANALYSIS 

The susceptibility of the classical two-dimensional XY model satisfies the form 

(3.4). This only can be applied as such to the case where there is no oscillating 

factor in the spin-spin correlation functions. In the 3-state chiral Potts model, there 

is an oscillating factor in the spin-spin correlation function along chiral direction. 

Therefore, instead of the usual susceptibility, we should introduce the wavevector

dependent susceptibility as we already did in section 3.3. The divergent quantity 
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N 3 4 5 6 7 

Tb 1.13291 1.08831 1.05195 1.02848 1.00791 

Tw 1.35789 1.29641 1.24498 1.21142 1.18112 

Tn 0.5628 0.5935 0.6230 

TABLE 3.5. Table of Tb, Tw and Tn for the model with~ = 1/2 and Kn - Kt, 
Critical temperature n(N) is obtained by Bethe-type approximation, 
Tn(N) by Weiss-type approximation, where N is the width ofthe finite 
strip, and Tn(N) is obtained by (3.38) with 8N = 2. 

N 3 4 5 6 7 

Tb 1.50367 1.44230 1.39189 1.35556 1.32355 

Tw 2.17384 2.02249 1.89716 1.81757 1.74622 

Tn 1.0494 1.0164 0.9738 

TABLE 3.6. Table of Tb, Tw and Tn for the model with~= 1/2 and Kn= lOKt, 
Critical temperature n(N) is obtained by Bethe-type approximation, 
Tw(N) by Weiss-type approximation, where N is the width of the finite 
strip, and Tn(N) is obtained by (3.38) with 8N = 2. 

N 3 4 5 6 7 

Tb 1.50374 1.44235 1.39192 1.35558 1.32358 

Tw 2.17792 2.02472 1.89842 1.81841 1.74679 

Tn 1.0542 1.0196 0.9763 

TABLE 3.7. Table of Tb, Tw and Tn for the model with~= 1/2 and Kn--.: lOOKt. 
Critical temperature Tb(N) is obtained by Bethe-type approximation, 
Tw(N) by Weiss-type approximation, where N is the width of the finite 
strip, and Tn(N) is obtained by (3.38) with 8N = 2. 
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should be the wavevector-dependent susceptibility in the incommensurate phases. Let 

us define the quantity more precisely before studying its coherent anomaly behavior. 

We assume that the spin-spin correlation function can be written as 

( exp (i2; no,o) exp ( -?; n;,k)) = C(j, k, T) exp ( - ikq(T) ), (3.49) 

where C(j, k, T) is a function without oscillation. Hence, we can define the wavevector- · 

dependent susceptibility by 

kBTx(qt, qn, T) = ~ ( exp (i 2; no,o) exp ( - i; n;,k)) exp (i(jqt + kqn) ). (3.50) 
. . t,J 

In the non-chiral case, with q(T) = 0, we know that x(O, 0, T) diverges at T = Tc and 

x(qt, qn, T) is finite for qt, qn # 0. It is then easily seen that in the chiral case, with 

chiral field in one direction x(qt, qn, T) diverges at qn = q(T), qt= 0 and T = Tc(.1.) 

where q(T) is defined in (3.49). Therefore, we denote 

xq{T) = x(O, q(T), T). (3.51) 

If the correlation functions decay algebraically in the incommensurate phase, then 

Xq(T) is divergent there. We expect it to diverge exponentially at the paramagnetic

incommensurate transitions if these phase transitions are of Kosterlitz-Thouless type. 

We can verify that the mean-field transfer matrix formalism (XBethe and Xweiss) of 

section 3.3 is still applicable to xq(T), i.e. 

(3.52) 

with xq(Tc) = XBethe in Bethe approximation and xg(Tc) = XWeiss in Weiss approxi

mation. 

According to the CAM theory, we expect that 

(3.53) 

. where we ignore the prefactor (T-Ttt-'lj.,+1 which appears in (3.6). We will comment 

on the effects of neglecting this prefactor when we try exponential fittings later on. 
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3.5.1 CAM TEST FOR~= 0 

Before applying the above theories to the case with general~' we shall first test 

how they work at the point~ =0. 

The model at ~ = 0 is equivalent to the (scalar) Potts model and both its 

critical temperature and its susceptibility exponent for general Kn/ Kt are known.68 

It provides a good testing ground to see how well the CAM applies to the chiral 

Potts model and how Kn/ Kt affects the convergence of the approximation. We have 

checked the critical temperatures approximated by our new construction (3.38) in the 

last section and found it to work very well. 

Critical temperatures obtained by Weiss-type approximation are shown in 

Fig. 3.1 and by Bethe-type approximation in Fig. 3.2, for three different values of 

Kn/ Kt at ~ = 0. Both figures show good convergence of tc ---+ 0 when N ---+ oo, 

where tc = (Tc - T;) /T;. 

We use the exact critical temperatures and leave the exponents 'Y as fitting 

parameters, see (3.54) in the next section. We plot ln(Tc/T; - 1) along the x-axis 

versus lnx(Tc) along the y-axis. The slopes are expected to give the values of 1 - 'Y· 

These CAM fits are presented in Fig. 3.3 for Kn = Kt, in Fig. 3.4 for Kn = lOKt, 

and in Fig. 3.5 for Kn = lOOKt, From Figs. 3.3, 3.4 and 3.5, we get reasonable values 

for 1 - 'Y compared with the exact value of -4/9. It looks that both Weiss-type and 

Bethe-type approximations give reasonable exponents. 

Meanwhile, since the exact critical temperatures for general ~ are not known, 

we also try fitting by leaving the critical temperature as one of the fitting parame

ters but requiring that both Bethe-type and Weiss-type approximations give the same 

extrapolated critical temperature and close exponents. These fits give critical temper

ature T; = 1.5015 and 1-"f = -0.3655 for Kn= Kt, T; = 6.1003 and 1-"f = -0.4105 

for Kn = lOKt, and Tc* = 35.316 and 1 - "f = -0.4362 for Kn = lOOKt, Compared 

with the exact information, these fits give both reasonable approximations for critical 

temperatures and critical exponents. 
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Figure 3.1. Critical temperature shift tc versus 1 / N for Potts model, where 
tc = (Tc - T;)/T; and N is the width of strip in Weiss-type MFTM 
method. 
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Figure 3.2. Critical temperature shift tc versus 1/N for Potts model, where 
tc = (Tc - Tc*) /T; and N is the width of strip in Bethe-type MFTM 
method. 
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It seems that the larger values of Kn/ Kt give better approximations of both 

the critical temperature and the critical exponent. One possible explanation of bet

ter behavior for larger Kn/ Kt is that increasing the value Kn/ Kt will increase the 

correlation length along the chiral direction but reduce the correlation length along 

the non-chiral direction and the bulk behavior possibly depends on the ratio of the 

width of the finite strip and the correlation length along the finite direction in the 

mean-field transfer matrix method. 

We might convince ourselves that a power law gives a better fit than exponential 

. fitting for the coherent anomaly coefficients of the susceptibility because it is known 

to be power-law divergent at this point. However, the plots ,show almost the same 

good fit for an exponential form with a small exponent u and lower extrapolated T; 
in (3.55). One has to conclude that additional information is necessary to decide 

which CAM extrapolation scheme to use. 

3.5.2 CAM ANALYSIS FOR GENERAL~. 

In this section, we try to fit the data to the power-law form 

(3.54) 

and also the exponential form 

(3.55) 

for general ~' where T; is the extrapolated critical temperature, Tc is the finite strip 

result, and both A and B are fitting parameters. 

The power-law fit (3.54) comes from the assumption xq{T) ex: (T /Tc* - 1)-1'. 

Using this, we fit six points (Weiss-type) or five points (Bethe-type) with three pa

rameters, i.e. A, T; and 'Y· We plot ln(TcfTt - 1) along the x-axis versus lnxq(Tc) 

along the y-axis~ The slopes are expected to give the values of 1 - 'Y. We use least

squares fit to a straight line by trying different Tt and require the deviation to be 

less than 3%. We also require both Weiss-type and Bethe-type approximations giving 

maximal consistency, i.e. that their fits give the same extrapolated critical tempera

ture Tt and close critical exponents 'Y· These fits are presented in Figs. 3.6 and 3.7 
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for the case of Kn = lOOKt, We find that 'Y increases from 1.4 ± 0.1 at I),,. = 0 to 

about 2.3 ± 0.2 at I),,. = 0.5 using this power-law fitting method. We also find that 

'Y for different Kn/ Kt are almost the same when /),,. = 0, /),,. = 1/2 or very small !),,., 

with only differences within fitting errors. When/),,. is large but smaller than 1/2, we 

can clearly see the difference of 'Y for different Kn/ Kt, For example, when I),,.= 0.45, 

'Y = 2.1 ± 0.2 for Kn/ Kt = 1, 'Y = 1.65 ± 0.1 for Kn/ Kt = 10 and 'Y = 1.6 ± 0.1 for 

Kn/Kt= 100. 

The exponential fit (3.55) comes from the assumption (3.53). Using this for

mula, we fit six points (Weiss-type) or five points (Bethe-type) with four parameters 

i.e. A, B, T: and u. We plot (~/Tc* -1)-u versus lnxq(Tc). To find the best fits for 

this fc_>rm, we have to try various ~* and u with the same accuracy as in the power

law fitting case. We also require both Weiss-type and Bethe-type approximations 

giving the same extrapolated critical temperature Tc*, close exponents u and close 

B's. These fits are presented in Figs 3.8 and 3.9 for the case of Kn= lOOKt, We find 

that u is close to zero for small I),,. and about 0.45 ± 0.1 for I),,. > 0.40 giving the best 

fit. For larger/),,., the exponent u is comparable with the exponent u = 1/2 given in 

the XY model. We also find that the exponents for different Kn/ Kt are almost the 

same in these exponential fits, with only differences within fitting errors. 

We also have tried to include the prefactor (T- T:)u-,J,+1 in our exponential 

fitting form with '¢ from O to 1. The inclusion of this prefactor will give a small increase 

of the exponent u for small /),,. and the resulting extrapolated critical temperature will 

lie between the one given by power-law fitting and the other given by exponential 

fitting. This is understandable because the original data of the coherent anomaly 

coefficients fit both the power-law form and the exponential form very well. 

Although both power-law fittiIJ.g and exponential fitting fit the data very well, 

the significant difference between the two types of fitting is that power-law fitting 

gives higher critical temperatures than exponential fitting. Hence, we may expect 

that higher accuracy for critical temperature and a few more data will provide further 

understanding of the nature of the phase transition. 
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Figure 3.6. Power-law fits of the CAM for the case of Kn = lOOKt, D. = 0.15 and 
r; = 31. 
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In our fitting procedure, the mean square deviation is always kept less than 

3%. But if we require less accuracy, many more fits can be allowed. For example, a 

different exponential fit is given in Fig. 3.10 with u = 0.5 leading to an about three 

times larger deviation. 

Meanwhile, according to mean-field theory and finite-size scaling,69 we would 

expect that (Tc/T; - 1) ex: (1/ L + aln L/ L)-lfv for both types of approximation,7° 

where L denote the system size in which the interactions have been dealt with ex

actly. As discussed in section 3.4, a new sequence {Tn(N)} can be constructed from 

two sequences {Tw(N)} and {Th(N)}, where {Tw(N)} and {Th(N)} are the critical 

points obtained by Weiss-type and Bethe-type approximation respectively. We expect 

this new sequence to give a much better approximation to the critical temperature. 

Therefore, we can use this sequence as the additional information for judging the ac

curacy of the two fittings methods. As an example, we study the case !l. = 0.45 and 

Kn/ Kt = 100, in order to compare the different critical temperatures given in two pre

vious methods (3.54) and (3.55). We construct the new sequence {Tn(3), Tn(4), Tn(5)} 

as {7.7110, 7.7334, 7.7475} using (3.38). Power-law fitting gives r; to be around 7.95 

and exponential fitting gives r; to be around 7. 78 at !l. = 0.45 and Kn/ Kt = 100. It 

looks that exponential fitting is more reasonable at this point. However, the result is 

far from conclusive. To make a clear conclusion; additional information is necessary. 

3.6 WAVEVECTOR ANALYSIS 

As is well-known,44 we should be able to get phase transition information 

through the analysis of the wavevector at the phase transition point. If a Lifshitz 

point !l.L exists at finite chirality, the wavevector along the critical line should vanish 

if !l. < !l.L, Although we are not sure how this Lifshitz point !l.L will depend on 

Kn/ Kt, old works44•47•48 indicate that there is no big dependence of !l.L on Kn/ Kt. 

Let us introduce a reduced wavevector q = 3q/(21r!l.). 

Two cases have been studied at !l. = 0.05. These calculations for the wavevector 

need an accuracy of 10-8 for q. Higher accuracy will be needed for smaller !l. and the 

numerical values will not be so reliable. The results are presented in Tables 3.8 and 
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N 3 4 5 6 7 

qw 0.1707023 0.1485028 0.1304893 0.1182574 0.1076384 

(Jb 0.1347898 0.1168134 0.1026421 0.0929284 0.0846686 

qn -0.00836 -0.00219 0.00002 

TABLE 3.8. Table of qb, qw and qn for~= 0.05 and Kn= lOKt. The reduced critical 
wavevector <Jb(N) is obtained by Bethe-type approximation and qw(N) 
by Weiss-type approximation, where N is the width of the finite strip. 
Here, ii.c(N) is obtained by (3.38) with 8N = 2. 

3.9. Although we only have three members in these new sequences and we cannot 

make a very conclusive result, it looks very tempting to say that these sequences will 

converge to the true ii.c from below. Compared with previous results for ~L to be 

around 0.25 to 0.40,44•47•48 we have ~L < 0.05. Hence, we may conclude that even 

for a very small ~ the wavevector at the transition point is non-zero. This means 

that the transition should be from the paramagnetic to the incommensurate phase 

and possibly no Lifshitz point exists at finite chirality at all. 

In Fig. 3.11, we plot ii.c versus ~ for different Kn/ Kt and the same N based 

on Weiss approximation. We can see that the reduced wavevectors qw decrease as ~ 

decreases. However, qw does not approach O as ~ - 0 as it should. Similar results 

hold in the Bethe approximation. But the new sequence, which is constructed from 

qw(N) and iJ.h(N), approaches O as ~ - 0. This is also suggested by Tables 3.8 and 

3.9. We also find that qc decreases as Kn/ Kt increases for fixed ~ and N. This 

in turn is consistent with the results of the quantum chain case Kn/ Kt - oo,50•53 

where the incommensurate phase will disappear, i.e. qc = 0 for O < ~ < 1/2,53 when 

Kn/ Kt - oo. To see the convergencv of ii.c with increasing N, plots of ii.c versus~ for 

different widths N are shown in Fig. 3.12. We find that for fixed~' ii.c decreases as 

· N increases in Weiss approximation, but possibly 9.c will not converge to O for ~ =/- 0 

as we concluded earlier. 
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Figure 3. 7. Power-law fits of the CAM for the case of Kn = lOOKt, 6. = 0.45 and 
r: = 7.94. 

N 3 4 5 6 7 

9.w 0.0463680 0.0402710 0.0353594 0.0320544 0.0291924 

<lb 0.0362354 0.0314054 0.0276127 0.0250293 0.0228355 

qn -0.00038 0.00069 0.00099 

TABLE 3.9. Table of <Jb, <J.w and 9.n for 6. = 0.05 and Kn = lOOKt. The reduced 
critical wavevector <Jb(N) is obtained by Bethe-type approximation and 
9.w(N) by Weiss-type approximation, where N is the width of the finite 
strip. Here, <J.c(N) is obtained by (3.38) with 8N = 2. 
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3.7 SUMMARY 

In conclusion, although we can not exclude the possibility that there exists a 

Lifshitz point for the asymmetric chiral Potts model, it looks most likely that there 

is no Lifshitz point at finite chirality at all. Meanwhile; CAM analysis does give 

consistency with the well-known results at the Potts point and for large Ll cases. The 

susceptibility does not fit the exponential law very well using our data when Ll is 

small. From this, one tends to conclude that a Lifshitz point exists at finite chirality 

contradicting our wavevector analysis. One possibility is that for small Ll, we may 

need a much better estimate of the critical temperature to make the CAM analysis 

successful. It is also discomforting to find "Y, u to be . possible functions of Ll and 

Kn/Kt. 

To extend the study to larger strips will be very interesting. We may see if the 

sequence defined in (3.38) is already monotonic for such kind of small width N. (For 

phenomenological renormalization, it is often found that it is in the scaling region 

even for small N.) We may also check if the transition is of Kosterlitz-Thouless type 

when Ll is small and see how the critical exponents change following a change of Ll 

and possibly Kn/ Kt. 

Our conclusion that no Lifshitz point exists at finite chirality, is based on the 

following assumptions: 

a) Both Weiss-type and Bethe-type mean-field transfer matrix theories will give the 

correct critical temperature and wavevector when the width of the strip becomes 

infinite. 

b) The new sequence constructed for the wavevector on the critical line is already in 

the monotonic region even for a small width N . 

. c) For all finite Kn/ Kt, the phase diagrams have the same global structure. 

d) The Ll, for which we calculated 'le and find most likely 'le #- 0, is small enough. 

(To calculate 'le at smaller Ll will need much higher numerical accuracy.) 
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3.8 DISCUSSION OF RELATED WORKS 

In this section, we will try to reexamine some old results ~d hopefully get some 

new insights. Many previous studies of the chiral Potts model are not on the same 

case. There are several studies concentrating on the quantum Hamiltonian formalism. 

They are equivalent to either Kn/ Kt --+ oo or Kn/ Kt --+ 0 in our formalism. 

Howes48 used the quantum Hamiltonian formalism to study the one-particle 

excitation mass gap. His case is equivalent to the Kn/ Kt --+ 0 case. He got the series 

expansion for the mass gap of light and heavy domain wall respectively, then a D log 

Pade method was employed to · analyze the zeroes of the mass gap. He found that 

the zeroes located at m 1 and m2 are very close when !:l. ~ 1/ 4 but scattered when 

!:l. > 1/4. Hence he concluded that a possible Lifshitz point is located at !:l. = 1/4. 

He also obtained Vt = Vn = 5/6 when O :::; !:l. < 1/4, Vt = 1 and Vn = 2/3 when 

!:l. = 1/4 and that Vt = 1 and Vn = 1/2 along the critical line which separates the 

commensurate phase and the incommensurate phase when 1/4 < !:l. < 1/2. 

Duxbury et al. 44 used the phenomenological renormalization group method71 

to study this model with Kn = Kt, They used scaling of the correlation length 

to determine the critical line which separates the incommensurate phase from the 

disordered phase and used scaling of the wavevector to determine the critical line 

which separates the incommensurate phase from the ordered phase. They assumed the 

anisotropic scaling XN(Tc) = N 8 where XN = 1/EN in the case of correlation length 

scaling or 6qN for wavevector scaling. They concluded that Vt = Vn = 0.85 ± 0.05 

when !:l. < !:l.L and Vn becomes small when !:l. > !:l.L for both the critical line which 

separates the ordered phases from the incommensurate phase and the critical line 

which separates the incommensurate phase from the disordered phase. Carefully 

checking Figures 3 (a) and (b) in their letter, it is very tempting to conclude that the 

wavevector exponent f3 = Vn. 

In the above two works, they locate the two critical lines separately. Since dif

ferent methods will have different errors and the incommensurate region is so narrow 
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for small ~' it may not be surprising if the difference of these two critical lines is 

covered by these errors. 

Houlrik et al. 47 used Monte Carlo renormalization group methods to study the 

incommensurate phase. Their scheme is built upon a fixed point of the Hamiltonian in 

the renormalization group theory and the same block scale was used in both directions 

although the original model was obviously anisotropic. In Fig. 4 of their paper, we see 

that there are two values (E(m)(T) in their paper) for different size lattices crossing 

over between a point with temperature 1.09 and wavevector O and a point with 

temperature 1.10 and wavevector 1r /15, this indicates that there is at least one point 

at which the two values equal and this point is in the incommensurate phase according 

to their algorithm. 

The quantum Hamiltonian in Everts' study50 is equivalent to the case with 

Kn/ Kt - oo. They concluded that Vt ~ 0.97 and Vn ~ 0.7 and that there is a 

possibility that the floating phase extends to ~ in a very narrow strip between the 

disordered and the ferromagnetic phase, i.e. the non-existence of the Lifshitz point at 

finite chirality cannot be ruled out. 

The quantum Hamiltonian in the study of Vescan et al. 53 is equivalent to the 

case with Kn/ Kt - oo. In this case, the quantum Hamiltonian will not depend on~

The limits Kn/ Kt - oo and ~ - 0 do not commute. Vescan et al. concluded that 

only one kind of phase transition exists for O < ~ ::::; 1 /2. It means that the Lifshitz 

point moves to 1/2 when Kn/ Kt - oo. They also estimated that Vt = 0.95 ± 0.04 

and Vn = 0.67 ± 0.07. 

The case von Gehlen et al. studied52 is equivalent to the case with Kn/ Kt - 0. 

They concluded that short quantum chains or low- and high-temperature expansions 

will produce fake Lifshitz points an~ there is no Lifshitz point in this case. 

The quantum formalism in Centen et al.51 is equivalent to the Kn/ Kt - 0 case 

(there is a misprint in formula 2.8 on page 587). Centen et al. estimated the Vt along 

the critical line which separates the commensurate phase from the incommensurate 

phase or from the fluid phase. They found that Vt varies continuously from 5/6 

( corresponding to the Potts case) to 1. 
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After reviewing these works for the chiral Potts model on the square lattice, 

we see that it is consistent with our results that for any finite Kn/ Kt, the disordered 

phase and the ordered phase are always separated by the incommensurate phase for 

0 < ~ < 1/2 and that the incommensurate region shrinks as Kn/ Kt is increased. 

When~= 0, Vt= Vn = 5/6 and when~ - 1/2, Vt - 1,50•51•53 Vn - 1/2 (from 

the fermion theory) along the commensurate-incommensurate line for Kn/ Kt - 0 and 

Vn = 0.67 ± 0.07 50•53 for Kn/ Kt - oo. Generally, both Vt and Vn continuously vary 

with ~-51 When ~ increases, Vt increases but Vn decreases on both critical lines. When 

Kn/ Kt - oo, the two critical lines merge. Much less information is available for the 

incommensurate-disorder line. For fixed ~' the anisotropic exponent which is defined 

by vn/vt, decreases with Kn/ Kt increasing from O to oo. With these exponents, 

what has been assumed is that the correlation lengths in both directions diverge 

simultaneously on the critical lines and this assumption has been taken indirectly 

in previous works. This assumption can not be taken for certain because at least 

the exact result of the correlation function at T = 0 and ~ = 1/2 shows that the 

correlation length along the non-chiral direction is infinite but finite along the chiral 

direction. 
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Figure 3.8. Exponential fits of the CAM for the case of Kn = lOOKt, ~ = 0.15 and 
Tc*= 30.90 with a= 0.14. 
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Figure 3.9. Exponential fits of the CAM for the case of Kn= lOOKt, 6- = 0.45 and 
Tc*= 7.76 with a= 0.35. 
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Figure 3.10. Exponential fits of the CAM for the case of Kn= 100Kt, I!:,,.= 0.15 and 
r: = 30.56 with a = 0.5. 
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Figure 3.11. Reduced wavevector 'le versus /:).. with N = 5 based on Weiss approxi
mation. As Kn/ Kt increases, 'le decreases for fixed /:)... 
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Figure 3.12. Reduced wavevector qw versus .6. with Kn = lOKt based on Weiss 
approximation. As N increases, qc decreases for fixed .6.. 



CHAPTER4 

SCALING LIMIT FOR THE TWO-POINT 

CORRELATION FUNCTION IN THE 

Z-INVARIANT ISING MODEL 

In this chapter we shall derive a new result for the two-spin correlation function 

of-the Z-invariant Ising model in the scaling limit. It is well known that knowing the 

correlation function is very important· to understand statistical mechanics systems. 

For example, the susceptibility is a sum of spin correlation functions. Unfortunately, 

it cannot be explicitly calculated in most of the solvable models at this time. One 

exception is the two-dimensional Ising model whose correlation functions have been 

intensively studied by many authors.72-93 Baxter78 gave a formula for the spin cor

relation function of Z-invariant Ising model. It is beautiful but intractable. Here we 

use some of Baxter's arguments 78 and a quadratic identity81 obtained by Perk for the 

most general planar Ising model to derive a new result for the two-spin correlation 

function of the Z-invariant Ising model in the scaling limit. 

4.1 Z-INVARIANT ISING MODEL 

The Z-invariant inhomogeneous Ising model78•79 has been introduced by Baxter 

as a natural extension of Onsager's uniform Ising model within the framework of 

star-triangle equations and commuting transfer matrices. It is defined in terms of 

a set of oriented straight lines carrying "rapidity" variables ui. Only two lines can 

meet at each intersection and the areas separated by the rapidity lines can be colored 

alternatingly black and white. An Ising spin is associated with each black area and 

a dual Ising spin with each white area, see also Fig. 4.1. 

This defines two Ising models. In the first one each pair of spins meeting at an 

intersection of two rapidity lines has the usual pair interaction -K crxcry with reduced 
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Figure 4.1. The lattice of a two-dimensional Z-invariant Ising model is represented 
by solid lines, the rapidity lines on the medial graph are represented 
by oriented dashed lines. These lines carry rapidity variables ui and 
Vj, The position of the spins are indicated by small black circles, the 
positions of the dual spins by white circles. 
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interaction strength K. In the second model the two dual spins that meet at the 

same intersection interact as -K*<Jx•<Jy*, where sinh(2K) sinh(2K*) = 1. Here Kand 

therefore also K* only depend on a fixed elliptic modulus k and the two rapidity 

variables u1 and u2 of the two rapidity lines that meet. 

We have two possible choices for the reduced interaction strength Kx,y of the 

spins at positions x and y, see Fig. 4.2. If the two rapidity lines with rapidity variables 

u1 and u2 pass through the line connecting the two spins toward the same side of that 

line, we must choose Kx,y = K(u1, u2); otherwise, if they pass toward opposite sides, 

we must take Kx,y = K(u1,u2). These choices K(u1,u2) and .K(u1,u2) are given by 

sinh (2K(u1, u2)) = k sc(u1 - u2, k') = cs(K(k') + u2 - u1, k'), 

sinh (2.K(u1, u2)) = cs(u1 - u2, k') = k sc(K(k') + u2 - u1, k'), 

(4.1) 

where k' = JI - k2 is the complementary elliptic modulus, K(k) denotes the 

complete elliptic integral of the first kind, and sc(v, k) = sn(v, k)/cn(v, k) and 

cs(v, k) = cn(v, k)/sn(v, k) are Jacobi .elliptic functions. There is still a sign am

biguity in definition ( 4.1) depending on which of the two rapidity lines carries u1 and 

which u2 • This ambiguity is removed if we take u1 to be the rapidity variable of the 

line that points in a direction (less than 180°) clockwise with respect to the other 

rapidity line. [In Fig. 4.2 we have to identify ui as the u1 and Vj as the u 2 of (4.1).] 

Eq. (4.1) also exhibits a remarkable "rotation symmetry" in this Z-invariant 

Ising model. We can flip the direction of a rapidity line j providing we change its 

rapidity variable Uj to Uj ± K(k'). This interchanges the Kand K choices in (4.1). 

It is a simple exercise to see that this is consistent using sc(v + 2K(k'),k') = sc(v, k') 

and the corresponding periodicity formula for cs(v, k') = 1/sc(v, k'). This symmetry 

plays an important role in the calculation of the correlation functions and was noted 

before. We shall now exploit it. 

In the Z-invariant Ising model, following Baxter's argument,78•79 the two-point 

correlation function can only depend on the elliptic modulus k and the values of the 

2m rapidity variables u1, ... , u 2m that pass between the two spins under consideration. 
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Hence, there should exist universal functions g2, ... , g2m such that for the appropriate 

m-value 

(aa') = 92m(k; iii, .. ·, ii.2m) = 92m(k; 'U.P(l) + V, · .. , 'U.P(2m) + v), (4.2) 

where ii.i = Uj if the jth rapidity line passes between the two spins a and a' in a fixed 

chosen direction and82 ii.i = ui + K(k') if it passes in the opposite direction. The 

Z-invariance implies that there should be complete permutation symmetry under all 

permutations P of the rapidities and the "difference property" implies a translation 

invariance when shifting all the ui by the same amount v. These properties have been 

expressed in the above equation. 

If two rapidity variables differ by K(k'), they can be viewed as belonging to a 

single rapidity line passing between the two spins and back. The correlation function 

cannot depend on them, i.e. 

(aa') = 92m+2(k; ii.1, ... , ii.2m, ii.2m+1, ii.2m+1 + K(k')) = 92m(k; ii.1, ... , ii.2m). (4.3) 

4.2 SCALING LIMIT 

We can use these properties (4.2) and (4.3) to propose a formula for the two

point function in the scaling limit, where k ---+ 1 and the distance of the spins tends 

to infinity. In this limit we have K(k') = 1r /2, 

sinh (2K(u1, u2)) = tan(u1 - u2) = cot(±}1r + u2 - u1), (4.4) 

- 1 
sinh (2K(u1, u2)) = cot(u1 - u2) = tan(±21r + u2 - u1). (4.5) 

The· scaling limit is defined by the assumption that the scaled correlation function de

pends on a single distance variable R. We can view the rapidity variables as angle vari

ables, and the translation symmetry· in ( 4.3) becomes a rotation symmetry in a two

dimensional plane. Writing the ui in terms of unit vectors ei = ( cos(,\ui), sin(,\ui)), 

the simplest expression for R that exhibits the required rotation and permutation 

symmetries is 

R=cjfeij 
J=l 

1 [{ 2m }2 { 2m }2] 1/2 or R = - ~ cos(2ui) + ~ sin(2u;) . 
2 J=l J=l 

(4.6) 
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We set ,\ = 2 in view of ( 4.3) which says that any pair u and u + lrr must cancel out. 

Furthermore, we choose the scale factor C = f. 
5 

For the special case of diagonal correlations (aooamm) in the uniform rectangular 

Ising model, for which all 2m u/s are equal, we find from ( 4.6) R = m, justifying 

the above choice of C. The consistency of our choice is justified by the well known 

results of the rectangular Ising model. In this special case the correlation length ed 
is known 76 and we can use it to introduce the scaled distance* 

r = R/ed, where etl1 = J logkJ. (4.8) 

We can now propose the general form of the scaled correlation functions for the lattice 

and the dual lattices (*) to be 

(4.9) 

where the functions F(r) and G(r) are expected to be Painleve functions and the 

front factor is the square of the spontaneous magnetization for T < Tc or k > 1. 

It is easy to verify that these scaling forms agree with all existing results for the 

uniform rectangular and triangular Ising models.77•90 We shal~ proceed with providing 

strong evidence that they are also correct for the general .Z-invariant Ising model. 

For the most general planar Ising model we can use a quadratic identity relating 

the two-point correlation function (axay) with its counterpart on the dual lattice 

(ax*O'y* )*, i.e.81 

(4.10) 

see also Fig. 4.3. Here we have two arbitrarily chosen unequal nearest-neighbor pairs 

of spins at the sites {x1, y1} # {x2, Y2} with couplings K1 = f3J1, and K2 = f3J2. Also 

*Strictly spoken, the diagonal distance is not m, but m../2, so that the inverse 
diagonal correlation length really should be I log kl/ ../2 agreeing with following equa-
tion 

e-1 = e;1(k) = J2K - 2K*I = larsinh(ki) - arsinh(k-i)J, (4.7) 

in the limit k ~ 1. 
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Figure 4.2. (a) The horizontal coupling Kii and (b) the vertical coupling [(ii· 

* K* xl 0------- ----1--o y 1 * 

Figure 4.3. Part of an Ising model a:nd its dual on a general planar graph: Indicated 
are two neighbor pairs of spins indicated by small black circles with 
their reduced interaction constants Ki ( drawn lines). Also indicated 

· are their corresponding two pairs of dual spins indicated by white circles 
with their reduced interaction constants K; (dashed lines). Not.e that 
are both (x1, xi, Y1, yr) and (x2,X2, Y2, y;D are arranged clockwise. 
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we have their corresponding two nearest-neighbor pairs of dual spins at sites {xi,Yn 

and {x2, YH with couplings Ki and K2 satisfying sinh(2Ki) sinh(2K:) = 1, (i = 1, 2). 

The orientations of the two quadruples of points (x1,xi, y1, Yi) and (x2,x2, y2, y2) must 

both be chosen the same for ( 4.10) to hold with a plus sign on the second line. Many 

results can be derived from this one equation alone, which is an ultimate statement 

of the fermionic character of the Ising model. 81 

Restricting ourselves to the Z-invariant · Ising model the quadratic identity re

duces to 

k2sc(u2 - u1, k')sc(u4 - ua, k') 

x{g(u1, u2, ua, u4, · · ·)g(· · ·) - g(u1, wi, · · ·)g(ua, u4, · · ·)} 

+ {g*(u1, ua, · · ·)g*(u2, u4, · · ·) - g*(u1, u4, · · ·)g*(u2, ua, · · ·)} = 0, 

(4.11) 

suppressing all arguments but the four rapidity variables that differ among the two

point functions g and g*. This result is easily derived assuming that all rapidity lines 

pass between the spins in the same direction. Eq. (4.11) is also applicable if some 

of the rapidity lines go in the opposite direction, providing the corresponding Uj are 

replaced by Uj + K(k'), as discussed above. 

In the scaling limit k--+ 1, k'--+ 0, (4;11) reduces to the leading term of 

tan(u2 - u1) tan(u4 - ua){F(r12a4)F(r) - F(r12)F(ra4)} 

+{G(r1a)G(r24) - G(r14)G(r2a)} = 0, · (4.12) 

where we introduced the notations r for the scaled distance given in ( 4.6) with only 

the ui variables common to all eight two-point functions occurring and Tij ... for the 

scaled distance with the variables u·i, ui, · · · added. Also, F and G are the scaling 

limit functions corresponding tog and g*, see (4.9). More specifically, we can write 

rcos'I/J = ie-1 I: cos(2uj), r sin 'Ip= ie-1 I: sin(2uj). (4.13) 
j,i,1,2,3,4 j,i,1,2,3,4 

Since ( --+ oo the few omitted terms are infinitesimally small. 
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Expanding to second order and doing straightforward manipulations we arrive 

at 

cos(u1 + U2 - '1/J) cos(ua + U4 -'1/J)(FF" - F'2 + r-1cG') 

+ sin(u1 + u2 - '1/J) sin(ua + u4 - '1/J)(GG" - G12 + r-1 FF') 

=0, (4.14) 

where the ,primes denote differentiation with respect to r. Since this must hold for 

all values of '1/J, we conclude 

FF" - F12 = -r-1GG' 
' 

GG" - G'2 = -r-1 FF'. 

(4.15) 

(4.16) 

These are the same equations as those that would follow from the quadratic identities 

for the rotational-invariant scaling functions of the uniform case. 

4.3 PAINLEVE EQUATIONS 

We can take the first derivative of (4.15), i.e. 

(4.17) 

Eliminating G' and G" from (4.17) using (4.15) and (4.16), we find 

2 -2r3(FF" - F'2) 2 

G = r2(FF"' - F'F") + r(FF" - F'2) - FF'' 
(4.18) 

Taking the first derivative of this and substituting it in (4.15), we find a closed 

equation for F(r), namely 

(FF" - F12 )(r4F"" - 2r2 F" + rF') + FF12 

+r4 (2F' F" F"' - FF"'2 - F"3) = 0. (4.19) 

Clearly, G(r) satisfies the same equation. Following Jimbo and Miwa91 we can change 

to a new dependent variable 

( = rF'/F, (4.20) 
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which satisfies 

r 3 (('("' - ("2) - r 2((("' - ('(") - r((" + ((' + 2r2('3 - 6r(('2 + 4(2(' = 0. (4.21) 

This can be integrated once as 

r2(112 + 4('2(r(' _ () _ ('2 , 2 
4(r(' - () 2 = µ (4.22) 

where µ is a constant setting the scale. Hence, we arrive at the Painleve V 

equation 91,93 

(r(")2 = 4µ2(r(' - ()2 - 4(12(r(' - () + ('2 (4.23) 

and its derivative 

r 2("' + r(" = 4µ 2r(r(' - () - 4('(r(' - () - 2r('2 + ('. (4.24) 

Eqs. (4.19) and (4.21) are recovered again by eliminating µ2 between the last two 

equations. Comparing with the result ,for the uniform rectangular case,77,93 we see 

that we must setµ= 1. Originally these scaling functions F(r) and G~r) were given 

in terms of a Painleve III formulation,77 but this has been shown to agree with the 

Painleve V version. 93 



CHAPTER5 

FIBONACCI ISING MODEL 

5.1 INTRODUCTION 

The wavevector-dependent susceptibility x(q) is in many ways similar to the 

static structure factor S(q) = (,o(q),o(-q)), with ,o(q) the Fourier transform of the 

local density p(r). Just like S(q), x(q) gives information on the average relative 

locations of the atoms. It can also be determined experimentally and for the Ising 

model x( q) even translates into the static structure factor of the equivalent lattice 

gas model. 

Since x(q) is a sum of spin correlation functions, at this time it cannot be. 

explicitly calculated in most of the solvable models of statistical mechanics. Mod

els to be considered in this chapter are the one-dimensional Ising model and the 

two-dimensional Z-invariant Ising model near the critical region whose correlation. 

functions have been studied in the last chapter. 

More specifically, we shall study exactly the q-dependent susceptibility of cer

tain Fibonacci Ising models in order to obtain some insight in the theory of aperiodic 

crystals. More specifically, the aperiodic lattice is a limiting case of a sequence of peri

odic lattices whose period Fn is the nth element in the Fibonacci sequence, satisfying 

the defining relation 

(5.1) 

We shall compare the results for the periodic case with period Fn with the aperiodic 

case with Fn - oo for different correlation lengths. Meanwhile, this may shed some 

light on the difference of assuming that the system is quasiperiodic or just a system 

with a large unit cell. Since these are very crude models, one does not expect them 

84 
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to represent any existing physical systems, even though with modern experimental 

techniques one should be able to grow crystals that are well approximated by them. 

Our crude models can nevertheless be used to gain theoretical understanding 

as to what is the most important factor that would reproduce the infinitely many 

and everywhere dense peaks in the q-dependent susceptibility, or in the diffraction 

patterns94- 96 in quasicrystals. 

The chapter is organized as follows. First, in Section 5.2 we present the work for 

the one-dimensional Ising model. In Section 5.3 we introduce a purely ferromagnetic 

Z-invariant Ising model with rapidity variables { Uj} and { Vj} forming the Fibonacci 

sequences {uA,ua,uA,uA,ua,···} and {vA,va,vA,VA,va,· ··}. In Section 5.4 we use 

the results obtained in the last chapter to get the effective connected spin-spin corre

lation which is the average of the spin-spin correlation over the unit cell in the scaling 

limit. In Section 5.5, we calculate the wave-dependent susceptibility of this Fibonacci 

Z-invariant Ising model in the scaling limit. Finally, we present our conclusions in 

Section 5.6. 

5.2 ONE-DIMENSIONAL FIBONACCI ISING MODEL 

The infinite set of Fibonacci sequences {Sn} is defined recursively by Sn+l = 

SnSn-1 with So = B and 81 = A; then 82 = AB, 83 = ABA, 84 = ABAAB and 

so on. This uses symbols A and B that can represent many different things. The 

sequence Sn has Fn symbols with Fn the nth Fibonacci number given in (5.1). The 

n-th Fibonacci chain can be formed by periodically repeating a unit cell which is 

taken to be the Fibonacci sequence Sn. 

The one-dimensional Ising model in zero field is defined by the interaction energy 

£ /kaT' = - L Kiuiui+l· (5.2) 

If we choose {Ki} to form an n-th Fibonacci sequence of KA and K 8 , then the model 

will be called the n-th Fibonacci Ising chain. The pair correlation function for an 

open Ising chain in zero field is simply given by 
max(m,n)-1 

(umun) = IT tanhKl, I tanhKll = exp(-1/{z), (5.3) 
Z=min(m,n) 
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with ~z the correlation length for the uniform case with all couplings equal Kz. There

fore, it takes only little effort to calculate x(q) for the case that the {K;} forms an 

n-th Fibonacci sequence, i.e. for then-th Fibonacci Ising chain. 

In the limit n -+ oo, the model becomes an aperiodic Fibonacci Ising chain. 

Hence, the q-dependent susceptibility can be calculated by 

(5.4) 

where £ = LFn is the length of the chain, with L denoting some positive integer 

and the superscript ( c) is used to indicate that we are having connected two-point 

correlation functions given by 

(5.5) 

We may rewrite 
00 

kr3Tx(q) = L eiqlc(c)(l), (5.6) 
l=-oo 

where 

(5.7) 

averaging over the unit cell. 

We can simplify this using a result obtained by Tracy.97 We let N(m, m') be the 

number of KA in the Fibonacci sequence among the m bonds sandwiched between 

the m'th and (m' + m)th sites. Using Lemma 2.5 in ref. 97, we find that N(m, m') is 

either LNmJ or LNmJ + 1, where Nm= mFn_if Fn and LxJ denotes the integer part of 

x. Furthermore, in the interval O < m' ~ Fn -1, the number of times that N(m, m') 

equals LNmJ is Fn(l-{Nm}), where {x} is the fractional part of x, while the number 

of times that N(m, m') equals LNmJ .+ 1 is Fn{Nm}. Consequently, if KA and Ka are 

both ferromagnetic, we find 

00 

kaTx(q) = 1 + 2 :Ec(c)(n) cos(qn), (5.8) 
n=l 

with 
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kTX(q) kT'X,(q) 

1.5 0 -1.5 1.5 

(a) 
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(b) 
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1 kT'X,(q) kT'X,(q) 

(c) 
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(d) 
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Figure 5.1. Reduced wavevector dependent susceptibility kBTx(q) for the 
one-dimensional Ising chain. The four cases are: (a) the uniform fer
romagnetic case; (b) the 4: 1 Fibonacci case; (c) the 226 : 1 Fibonacci 
case; and (d) the mixed-sign 1 : 1 Fibonacci case. See text. 



Using the theory of Fourier series, we can then rewrite (5.9) as 

where 

00 'nh2 l t" _ '°' SI 2u . 27riman-~n 
- L. 1 e 

m=-oo (28 + 1rim)2 

a 1-a 
K= T"°+-c-· 
· ~A ~B 

(n ~ 0), 

If KA< 0 and Ka> 0, we still have (5.8), but we have to replace (5.9) by 

c<c>(-n) 

(1 _ {an} )(-1 )-LcmJe-LanJ/eAe-(n-LanJ)/eB 

+ { an }(-lt(lanJ+l)e-(LanJ+l)/eAe-(n-LcmJ-1)/eB 

00 h2 15 1 '°' COS 2 27ri(m+-)an-~n (n ~ O). 
L. ( 1 t"· ( 1))2 e 2 , 

m=-oo -2ul + 7r m + 2 
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. (5.10) 

(5.11) 

(5.12) 

Eq. (5.12) is equivalent to replacing 1/(A by 1/(A - 1ri in (5.9) and (5.11), or 8 has 

to be replaced by 8 + 1ri and K by K - 1ria. 

Since the effective correlation function (5.9) decays exponentially, it is trivial to 

calculate the sum (5.8) numerically using software packages like Maple. Therefore, 

without too many further details we shall present plots for four cases in Fig. 5.1. 

The first plot is for the uniform ferromagnetic case at three different tempera

tures, with the highest and sharpest peak at q = 0 for the lowest temperature. The 

reduced wavevector-dependent susceptibility in this case is given· by 

k T ( ) - sinh e-1 c 1 1 h K 
B Xo q - cosh(-1 - cosq' ~ - = - ogtan . (5.13) 

The peaks get higher and narrower as the temperature goes down, while the area 

under the curve remains constant, namely 21r. -

The second plot is for the case that (A and (a have a ratio of 4 : 1. It is hard 

to see any difference with the first plot; this is also true for the case with ratio 1 : 4, 
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which is not shown. The third case has ratio 226 : 1, very close to the decoupling 

limit; even though there is a clear quantitative difference, qualitatively it still looks 

like the uniform case. Indeed, in the ferromagnetic Fibonacci case we have from (5.8) 

and (5.10) that 

k T _ I: sinh2 !8 sinh(K - 21rima) 
a x(q) - m=-oo (!8 + 1rim)2 cosh(K - 21rima) - cos q · (5.14) 

In the limit T --+ Tc = 0, both 8 and K tend to zero exponentially" fast, and it is not 

difficult to see that them= 0 term totally dominates (5.14), or x(q) ~ x0 (q) with 

e-1 = K. This clear universal behavior, with only a single delta-function divergence 

at q = 0, holds as long as both KA and Ka are positive. Similarly, when KA and Ka 

are both negative there is only one divergence at q = 1r, as x(q) then equals x(q±1r) 

of the ferromagnetic case. 

The final plot is for the mixed case with ferro- and antiferrotnagnetic couplings 

of equal strength. This last case is very different with clear incommensurate peaks at 

the lowest temperature. In this mixed case, (5.12) can be rewritten as 

(5.15) 

Hence, we have 

00 1 
Xm(q) = m~oo (m + i)21r2 Xo(q + 21r(m + i)a), a= l( V5 - 1), (5.16) 

indicating the locations and heights of the visible peaks. In fact, x0(q) is periodic 

mod 21r, so that the peaks are located at q = 21r(m + i)a + 21rn, with m and n 

arbitrary integers. The number of visible peaks increases as the temperature decreases 

and the correlation length e increases. It does not matter that we have chosen the 

antiferromagnetic coupling to be the more abundant one, as the other case follows 

from this one simply replacing x(q) --+ x(q ± 1r), corresponding to a flip of sign of 

every other spin. 

It may be worthwhile to note that also in this mixed case we have strong uni

versality, with x(q) ~ Xm(q) as T--+ 0. Now 8--+ 1ri instead of 0, causing all terms in 

(5.14) to contribute, rather than just them= 0 term. 
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5.3 Z-INVARIANT FIBONACCI ISING MODEL 

We study the simplest two-dimensional ferromagnetic case, which is the Z

invariant Ising model with quasiperiodicity in one or two diagonal directions. 

This model is described ·in terms of two perpendicular sets of diagonal rapidity 

lines, shown in Fig. 4.1. The rapidity variables { u;} and { v;} form the Fibonacci 

sequences { UA, UB, UA, UA, UB, •.• } and { VA, VB, VA, VA, VB, ••• }. If VA = VB, the aperi

odicity in the corresponding diagonal direction disappears. As shown in Fig. 4.1, the 

rapidity lines define a checkerboard lattice with alternatingly black and white faces, 

where the order variables (spins u = ±1) and disorder variables (dual spinsµ= u*) 

live. Two adjacent spins share one vertex which is the intersection of two rapidity 

lines ui and v;. 

The pair interaction energies between such pairs of spins are either Ki; shown 

in Fig. 4.2a, or Ki; shown in Fig. 4.2b. We have given a real elliptic parametrization 

in (4.1). Two other parametrizations have been used by Baxter78•79 and Marti'.nez.84,85 

They are 

sinh 2Ki; = -ik sn(iui - iv;, k), sinh 2Ki; - i/ sn(iui - iv;, k), (5.17) 

suitable for T > Tc ( or k < 1) and 

sinh2Ki; = -isn(iu~ - ivj, 1/k), sinh2Ki; = ik/sn(iu~ - ivj, 1/k), (5.18) 

more suited for T < Tc (or k > 1). This last representation involves an implicit 

rescaling of the rapidity variables by a factor k, u~ = kui, vi = kv;, in view of 

Jacobi's real transformation ksn(x, k) = sn(kx, l/k). 

The pair correlation functions of the order _and disorder variables have been 

discussed in Chapter IV. Therefore, .we can write 

(um,n<:Tm1,n1 ) = 92m1-2m(k; Um-n+l, · · ·, Um'-n', Vm+n, · · ·, Vm1+n1-1), 

(u~n<:T~, n')· = 9;m'-2m(k; Um-n+l, · · · ,Um1-n1 ,Vm+n+l, · · · ,Vm1+n1 ), ' ' . 

(5.19) 

assuming m + n < m' + n' and m - n ~ m' - n', in which case all rapidity lines 

pass between the spins ( or dual spins) in the same direction. Clearly, the same result 
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holds if m + n ~ m' + n' and m - n ~ m' - n', interchanging ( m, n) with ( m', n'). 

On the other hand, if m + n ~ m' + n' and m - n ~ m' - n', we have 

((J'm,nUm',n') = 92n'-2n(k; Um'-n'+l, · · ·, Um-n, Vm+n, · · ·, 'Vm'+m'-1), 

(5.20) 

where vi= vi+ K(k'). Finally, form+ n ~. m' + n' and m - n ~ m' - n', we have 

to interchange (m, n) with (m', n') in (5.20). There exist several multiple integral, 

determinant, and Pfaffian representations78•82- 85 for these functions g2m. In our study 

of the Fibonacci Ising model in the scaling limit, it is not necessary to use any of these 

results. We can use the results derived in Chapter 4. 

5.4 EFFECTIVE CONNECTED PAIR CORRELATION FUNCTION IN THE 

SCALING LIMIT 

If we assume that the rapidity variables take at most four different values 

u 1, ... , u4 and if we let Mi be the number of times that the value ui occurs as 

argument of a given 92m function, then we can define the short-hand notation 

(5.21) 

with M 1 +M2 +Ma+M4 = 2m. Next, ifwe write u1 = UA, u2 = UB, ua = VA, U4 = VB 

for the Fibonacci Ising model of this section, then we can apply lemma 2.5 in ref. 97• 

This yields the effective connected pair correlation function 

C(c)( ) l" l'-2 '°' ( )(c) m, n = Im J.., ~· Um1,n1(J'm'+m,n'+n 
L,->IX) I I . m,n 

= (1 - {(m + n)a} )(1 - {(m - n)a} )G(N1, N2, Na, N4) · 

+(1 - {(m + n)a} ){(m - n)a}G(N1 + 1, N2 - 1, Na, N4)) 
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+{(m+n)a}(l-{(m-n)a})G(N1,N2,N3 + l,N4-l) 

+{(m + n)a}{(m - n)a}G(N1 + 1, N2 -1, N3 + 1, N4 - 1), 

(5.22) 

where 

N1=m-n-N2= L(m-n)aJ, 

N3 = m+n-N4 = L(m+n)aJ. (5.23) 

The Fourier transform of (5.22) gives the exact q-dependent susceptibility. 

It is to be expected that at temperatures for which the correlation length is 

short, the q-dependent susceptibility of the aperiodic lattice does not show much 

difference from that of the periodic lattice. We really need only to examine the case 

that Tis close to Tc. For the remainder of this section we shall restrict ourselves to 

the scaling limit and use the results of Chapter IV. From (4.8) and (4.9) we find 

(5.24) 

with t = 1 - k and with f+ and f- the connected versions of F and G. In other 

words, J_ for T < Tc includes a subtraction of the contribution due to the square 

of the spontaneous magnetization. For correlation functions of the form (5.21), (4.6) 

reduces to 

(5.25) 

If the rapidity lines with rapidity variable Uj pass between the two spins in the opposite 

direction compared to a preferred direction, we have to replace Uj by Uj ± K(O) = 

ui±!1r, as explained in Chapter IV. Equivalently, we can replace Mi> 0 by -Mi< 0. 

Because of this, R continues smoothly across a boundary where Mi= 0. 



93 

The spin correlation function of the regular two-dimensional Ising model has 

this scaling form with u 1 = u and u2 = v, whereas U3 and u4 are absent. More 

precisely, (5.24) reduces to 

(5.26) 

with 

R = Jm2 cos2 (u - v) + n2 sin2(u - v). (5.27) 

Here one may have assumed that mtn, m--n > 0. However, (5.27) is valid generally for 

R large taking in accc:>unt the remark below (5.25). Therefore, the scaled correlation 

function is indeed rotationally invariant and, as shown also in Chapter 4, it is given 

in terms of Painleve equations 77,91,93 . 

In order to compare with Vaidya's90 work on the triangular Ising model, we must 

study a quadratic Ising model with "SW-NE" diagonal interactions. At criticality, the 

horizontal interactions K1, the vertical interactions K 2 , and the diagonal interactions 

K3 are given by 

Here we have vertical rapidities u 1 pointing north, horizontal rapidities u2 pointing 

east, and diagonal rapidities u3 pointing northeast. Each rapidity line intersects each 

bond it meets in the middle. Using (5.25), we find that the scaled correlation_ function 

is given by 

(ao,oO"m,n){c) = G(m, -n, m - n, 0), for m 2:: 0 and n ::; 0. (5.29) 

Substituting Mi and ui into (5.25), we find th.at vector (m, n) corresponds to the 

scaled distance 

R2 = m 2 cos(u - w) 2 + n 2 cos(v - w) 2 

-2mn cos(u - w) cos(v - w) cos(u - v). (5.30) 

Again, taking in account the remark below (5.25), (5.30) gives R also for the regions 

with m < 0 or n > 0. This result for R is proportional to the one of Vaidya90 after 
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some simplifications and after identifying N = m, M - n. Eq. (5.30) gives the most 

general positive definite quadratic form in m and n. Therefore, the scaled correlation 

function of the most general periodic Z-invariant Ising model cannot be distinguished 

from that of the triangular lattice. 

5.5 WAVEVECTOR DEPENDENT SUSCEPTIBILITY OF THE FIBONACCI 

ISING MODEL IN THE SCALING LIMIT 

The effective pair correlation of the Z-invariant Fibonacci Ising model has been 

evaluated exactly in (5.22). We now use (5.24) with R given by (5.25) to rewrite it 

in the scaling limit as 

+{(m-n)a}{(m+n)a}[f±(ltlR1)- f±(ltlR2)- f±(ltlR3)+ f±(ltlR4)], 

(5.31) 

where u1 = uA, u2 = uB, u 3 = VA, and u 4 = VB, The Ri, for j = 1, 2, 3, 4, follow from 

(5.25) with the substitutions 

R1: (M1,M2,M3,M4) = (N1,N2,N3,N4), 

R2 : (M1, M2, M3, M4) = (N1 + 1, N2 - 1, N3, N4), 

R3 : (M1, M2, M3, M4) = (Ni, N2, N3 + 1, N4 - 1), 

R4: (M1,M2,M3,M4) = (N1 + l,N2 - l,N3 + l,N4 -1), (5.32) 

in accordance with (5.22). Since la(m ± n)J ·~ a(m ± n) for m, n large, we expand 

the Ri around Ro, which is given by 

4R~ = [(m-n)(a cos 2uA + (1-a) cos 2uB) 
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+(m+n)(a cos 2vA + (1-a) cos 2vB)]2 

+ [(m-n)(a sin 2uA + (1-a) sin 2uB) 

+(m+n)(asin2vA + (1-a) sin2v8 )] 2, (5.33) 

which has the general quadratic form A(m-an)2 +B(n+am)2 with A, B, and a some 

constants, no more general than Vaidya's form90 for the triangular lattice (5.30). 

It is straightforward to verify that 

~ - !lo = 0(1), (5.34) 

when !lo - oo. Also, we can Taylor expand 

/±(ltl~) = /±(ltlllo) + ltl(~ - Ilo)/~(ltlRo) + · · · . (5.35) 

Therefore, in the scaling limit, we find that (5.31) becomes 

(5.36) 

where the error is of the same order of magnitude as corrections to scaling. In the 

scaling limit, we have to ignore those higher-order corrections and substitute (5.36) 

into (5.6), converting the sum to an integral. It is easily seen by comparing (5.36) with 

(5.27) that the only difference is the change in R, which corresponds to a combination 

of a rotation and a scale transformation. Hence, the scaled q-dependent susceptibility 

of the Z-invariant ferromagnetic Fibonacci Ising model is the same as the one of a 

ferromagnetic Ising model on a triangular lattice. There is only one peak at qx = qy = 

0 mod 21r, whose height is given by the form of the susceptibility of the ferromagnetic 

'1Ili.form two-dimensional Ising model, i.e. 

T 
t = T. - 1 ex: 1 - k. 

C 

(5.37) 

except for a change in the constant C±· This is another manifestation of universality. 
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5.6 CONCLUSIONS 

. Even though several authors have shown that the quasi-periodic Ising model 

is in the same universality class as the regular Ising model, with the same critical 

exponents, its wavevector-dependent susceptibility can have multiple incommensurate 

peaks. However, this only happens when the pair interactions are both attractive and 

repulsive and the sign of the interactions varies in an incommensurate way. 

Indeed, for the mixed Fibonacci Ising model (with an incommensurate sequence 

of ferro- and antiferromagnetic bonds), x(q) has infinitely many divergencies at Tc, 

which are everywhere dense in the unit cell O ::; qx, qy ::; 211". Away from Tc there is a 

finite number of incommensurate peaks, and more· and more of these peaks become 

invisible as T moves farther away from Tc. 

When all pair interactions are ferromagnetic, however, the q-dependent sus

ceptibility behaves just like the one in the regular ferromagnetic Ising model, with 

only one diverging peak per unit cell located at (qx, qy) = (0, 0), in spite of aperi

odicity present in the lattice. This is explained by the fact that the spin correlation 

function in a ferromagnetic Ising Fibonacci lattice decays as a function of distance 

without changing sign. We have shown this in two examples, the one-dimensional 

case (Tc = 0) in Section 5.2 and the scaling limit of the Z-invariant Ising model in 

Section 5.5. 

In other words, when there are no oscillations in the pair correlation, then there 

is no trace of the multi-peaks in the q-dependent susceptibility. This is a confirmation 

of work by Nelson and Widom, that the interference pattern in the icosahedral alloy 

is a result of the many oscillations in the radial pair correlation functions98- 100 • 

Not only does the wavevector-dependent susceptibility x(q) have but one pro

nounced peak at q = (0, 0), leading to a single T = 0 divergence, if all the interactions 

are ferromagnetic; also if the interactions on the quadratic lattice are purely antifer

romagnetic we expect only one such peak at q = ( 11", 11"), even if the magnitudes of the 

interactions vary quasiperiodically. 
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For the case with aperiodic mixed signs of the bonds, the pair correlations as 

seen from (5.12) pick up oscillating phase factors. Thus it follows that the every

where dense set of overlapping peaks is a result of aperiodic oscillations of the pair 

correlations. The difference in the number of peaks at different temperatures shows 

that the number of oscillations per correlation length in the pair correlation function 

determines the number of visible peaks. 

If-instead of aperiodic oscillations-the pair correlation picks up a periodic 

phase factor, then the diffraction patterns as well as the q-dependent susceptibilities 

in the two cases differ in two ways. As the correlation length increases, the peaks move 

and approach their different sets of positions for the two cases, one commensurate and 

the other incommensurate. Moreover, as~-+ oo there is an ever-increasing number 

of peaks for the aperiodic case, while the number of peaks for the periodic case has 

an upper bound. 

Finally, in our present work we have chosen the underlying lattice to be regular. 

With our increased knowledge of the correlation functions we should be able to repeat 

the calculations for certain aperiodic lattices101- 110 like Penrose tilings. 



CHAPTER 6 

FREE ENERGY OF THE INTEGRABLE 

CHIRAL POTTS MODEL 

6.1 INTRODUCTION 

The integrable chiral Potts model is a two-dimensional lattice model-to each 

site of the lattice we associate a spin which takes N different values and two "rapidity 

lines" cross each edge. 111 Here we shall consider a square lattice rotated 45° so that the 

rapidity lines are oriented horizontally and vertically marking the commuting diagonal 

transfer matrices, which also commute with Hamiltonians of certain quantum spin 

chains. 112 A recent review of the model is given by Au-Yang et al. 113 . 

The Boltzmann weights for the pair interaction between the two spins on an 

edge are given by 

(6.1) 

in which w = e21ri/N_ The weights are shown in Fig. 6.1, where the subscripts p and 

q are the two rapidity variables. We associate with every rapidity line p ( or q), a 

variable tP ( or tq). Let Ap = µf, then >. is related to t by 

(6.2) 

where k2 + k'2 = 1. The variables k ~nd k' are fixed and the same for all the rapidity 

lines, and they are related to the temperature of the the system (with k' - 0 for 

T - 0 and k' - 1 for T - Tc). We can uniquely determine >. from this quadratic 

equation by choosing the branch with either>.> 1 or>. < 1. Now, let 

(6.3) 

98 
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Consequently, Xp, YP and J1p are given in terms of tp up to an integral power of w. 

Since xf y{ = tf, we make the further restriction XpYp = tP. Thus the variables x, 

y and µ (with subscript p or q) on the right-hand side of (6.1) are now completely 

determined except for some irrelevant w factors. It is easily seen from (6.3), that 

,\ --+ 1 / .\ corresponds to interchanging x and y; thus moving from one Riemann sheet 

to the other corresponds to interchanging x and yin the weights. 

The transfer matrices are defined by 

L 
11 I - I 

T(xq,yq)uu' = Wpq(Oj- uJ)Wp1q(uJ+I - uJ), 
J=l 

L 
~ 11- I II I II T(xq,, Yer )u'u" = Wpq' (u J - u J )Wp'q' (u J - u J+i), 

J=l 

(6.4) 

(6.5) 

where L x M denotes the size of the lattice. They have been shown 114 to satisfy some 

functional relations: 

Tj(tq)T2(wi-1tq) = z(J-1tq)XTj-1(tq) + Tj+1(tq), 

TN+1(tq) = z(tq)XTN-i(wtq) + (aq + aq)l, 

where Xis the spin shift operator, 

L 

Xu,u' = 116(uJ,u~+ 1), 
J=l 

{ 
1 if n = j mod N, 

6(n,j) = 
0 otherwise. 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

Unlike the eigenvalues of transfer matrices, whose dependences on tq are very compli

cated, the elements and the eigenvalues of the matrices Tj ( tq) are polynomials in tq of 

degree (j - l)L with To(t) = 0 and T1(t) = 1. The scalar variables in these equations 

are 

(6.10) 

while A (j) = A (j,o) with q q 

(6.11) 



z(tq) = [wJjpµp,(tP - tq)(tp, - tq)]L, 

aq = [k'(l - ApAq)(l - Ap,Aq)/k2 Aq]L, 

aq = [k' ( Aq - Ap) ( Aq - Ap') /k2 Aq] L. 

100 

(6.12) 

(6.13) 

(6.14) 

Since all the matrices commute, these relations are the functional relations between 

their eigenvalues. It is straightforward to verify that 

N-1 

IJ z(cdtq) = aqaq. (6.15) 
j=O 

It is easily seen from (6.10) that 

(6.16) 

Consequently, if we let 

rU) = a A U)jfii) q q q p'q, (6.17) 

then (6.6) is equivalent to 

(6.18) 

Iterating (6.7) N - 1 times, and then combining with (6.8), we find 

(6.19) 

where ~(t) is a sum of products of the polynomials T2(t) and z(t). From this equation 

all the coefficients of the polynomial T2 (t) can be evaluated in principle by solving a 

system of L-1 coupled Nth order polynomial equations. However, as the lattice size 

L increases, it becomes a numerical nightmare. When T2 (t) is obtained, we can use 

(6.7) to obtain Tj(t) for j = 3, · · ·, N successively. 

It is easily verifiable115 that 
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where S(,\) is a polynomial in,\ of degree (N - 1)£, and 

N-1 N-1 

1/dq = c II (YP' _ wiyq)iL II (xp _ wiyq/N-1-i)L, 
j=l j=O 
N-1 N-1 

1/dq = c II (yp - wixq)iL II (xp, - wixq)(N-1-i)L, (6.21) 
j=l j=O 

(6.22) 

whereas letting j =Nin (6.6), we obtain 

(6.23) 

Thus the identity 

fl_(N) /A (N) = H(O) /A (0) 
pq q pq q (6.24) 

must hold, as can be easily verified. 

Replacing Xq in (6.22) by wxq, · · ·, wN-lxq, and multiplying together all the N 

resulting equations, we get 

(6.25) 

Whenever TN(t) is given, this equation can be used together with (6.2) to obtain 

all the zeroes of S(,\). Letting j = 0, · · ·, N - 1 in (6.6) and multiplying these N 

equations together, we get 

(6.26) 

From this equation, all the eigenv~ues of the transfer matrix can be evaluated in 

principle when the polynomials S(.Aq) and Tj(tq) are given. 

The outline of this chapter is as follows: We review, in Section 2, the steps 

used by Baxter to obtain the free energy for the N-state chiral Potts model for two 

different regimes. The results then are extended, in Section 3, to other regimes by 

rotations and symmetries. 
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6.2 THE LARGEST EIGENVALUE 

To calculate the free energy, we need to calculate the largest eigenvalue of the 

transfer matrix. To determine which one is the largest eigenvalue, we need to examine 

the zero-temperature limit, where for the ferromagnetic case, the largest eigenvalue 

is known. In the chiral Potts model, the limit T-. 0 corresponds to k' -+ 0. It can 

be seen from (6.2) that, for given t, A is either k' or 1/k', depending on the choice 

of the Riemann sheet with A < 1 or A > 1. If both tq and tp are arbitrary, then the 

weights in (6.1) cannot be made to correspond to the zero-temperature ferromagnetic 

weights with 

Wpq(n) = o(n, 0), Wpq(-n) = o(n, 0). (6.27) 

If, however, we have tN -+ 1 for one of the rapidity variables, then the corresponding 

A is finite. In this section, the case lµql > 1 but lµp/lp' I < 1 and lµpµp, I > 1 will be 

considered. We choose 

(6.28) 

Consequently, (6.1) becomes 

TXT ( ) k1n/N UT ( ) ktn/N ""pq n ex , ""pq -n ex . (6.29) 

There are seemingly many other choices-these are the subtleties which we have not 

yet understood. From (6.29) we find that, ask'-. 0, the Boltzmann weights are zero 

except when the adjacent spins are equal. Since the shift operator X, the transfer 

matrices, and the 1"j(tq) all commute, they can be simultaneously diagonalized. The 

common eigenvector, which gives the largest eigenvalue of the transfer matrix in the 

Q sector, is 
N-1 

IQ)= ~ wQula), la) = la1 = CT2 • • • = lTL = a), (6.30) 
u=O 

such that 

(6.31) 



103 

From (BBP3.44) and (BBP3.48),* for a given choice of Q, we can explicitly calculate 

the corresponding eigenvalue of T2(t) as 

(6.32) 

From here on, we shall assume that all the matrices in the functional relations are in 

their diagonalized form, and we are considering now the functional relation between 

the leading eigenvalues whose common eigenvector gives the largest eigenvalue of the 

transfer matrix. 

As L -+ oo, we find that the case 1/lp/lp' I > 1 is very different from the case 

lµPµP, I < 1, namely 

(6.33) 

Consequently, for lµp/lp'I < 1, T2(t) ,.._, 0(1) and its L zeroes are at w-1. As the 

temperature increases, we expect the L zeroes of T2(t) to move away but still to stay 

around w-1; while for lµp/lp' I > 1, we expect T2(t) ex (µPµP, )L and its L zeroes to be 

around 1. Now from (6.12) we find that z(t) ex (µPµP, )L, thus by comparing the order 

of magnitude we find from (6. 7) that 

ex 1 

(6.34) 

In the limit k' -+ 0, we have Aq » 1 and 

- ,L 
aq-+ Aq. (6.35) 

Using (6.34) to estimate the order of magnitude, we find in the limit L -+ oo, that 

(6.19) becomes 

{ 
aq if lµpµp, I < 1, 

T2(tq)T2(wtq) · · · T2(wN-ltq) -+ 

aq · if lµpµp, I > 1. 

*We shall quote equations in ref. 114 as (BBPx.xx) in the following. 

(6.36) 
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Thus when the right-hand side of the equation is given as a function of A, the problem 

of finding T2(t) whose zeroes are on one of the Riemann sheets, may be viewed as a 

generalization of the factorization problem in Wiener-Hopf sum or integral equations. 

From (6.2), we write 

(6.37) 

such that the complex A-plane consists of N Riemann sheets. If all the zeroes of T2 (t) 

are on the lth sheet, then the N - 1 functions T2(wmt) form=/ 0 have no zeroes on 

this sheet. Using Cauchy's integral formula, O'Rourke and Baxter derived that for 

Aq > 1, lµpµp,I < 1 and l = -1 (or N - 1) 

(6.38) 

Letting 

~(O) = [(1 + k'2 - 2k' cos O)/k2] 1/N = .6.(A), (6.39) 

the above integral can be rewritten as 

(6.40) 

It is clearly seen from (6.37) and (6.39) that in these integrals, the functions ~(O) 

and .6.(A) are single-valued and their arguments are in [-1r/N,1r/N]. This expression 

is exact subject to Baxter's assumption about the location of the zeros, for L large 

and the argument of tq out of [-31r / N, -1r /NJ. 

Similarly for lµpµp, I > 1, when the zeroes of T2 (t) are around 1, we find 

(6.41) . 

yielding 

· T2 (tq) L 21r [1 + --';1ei9 1 + \/ei9 ] 
In ( )L = - { dB A_1 .9 + A _1 .9 ln[~(O}-tqJ· 

wµpµp, 41r lo 1 - P ei 1 - P' ei 
(6.42) 

where the argument of tq is out of range [-1r / N, 1r /NJ. For the argument of tq to be 

(6.43) 
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Adding (6.43) by taking m = 1, 2, · · ·, N - 1, we have 

N-1 r,(wmt) L 21r [1+,\-leiO l+,\-leiO]N-1 
L In ( 2 ,)L = -4 r d() 1- ,\~l iO + 1 - ,\~l iO L ln[.6.(0)-w~ql• (6.44) 
m=l wµpµp 7f lo p e p' e m=l 

We may write 

and use (6.2) and (6.39) and the integral formulae, valid for 1,\1, lµI < 1, 

r d() (1-,\2) =7r rd() ln(l + µ2 -2µcos0) = 21rln(l-,\µ) (6.46) 
lol+,\2-2,\cosB 'lo 1+,\2-2,\cosB (1-,\2)' 

to verify that the r 2(t) given by (6.42) is correct for case the argument of tq in 

[-1r/N,1r/N] hence for any tq if Aq > 1, lµpµp,I > 1. Similarly, r 2(t) given by (6.40) is 

correct for any tq if Aq > 1, lµpµp, I < 1. To summarize, when the right-hand side of 

(6.36) is given, being a polynomial in ,\ related tot by (6.2), then r 2(tq) for IAql > 1, 

whose zeroes are on the lth sheet of the complex ,\ plane, is given by 

dlnaq . I I 
d,\ ' 1f µpµp, < 1, 

(6.47) 

where d0 is some constant. From (6.34), we find 

(6.48) 

Consequently, for lµPµP, I < 1, we find that the zeroes of TN ( t) are around w-1, w-2 , • • • , 

J-N; but not on the Riemann sheets with t = Li(,\). Therefore, we can see from 

(6.22), that T(xq, yq) cannot have zeroes on this sheet also; similarly for lµPµP, I > 1, 

we find that T(xq, yq) has no zeroe~ on the Riemann sheet t = w.LS.(,\). Rewriting 

(6.26) as 

T(xq, yq)N dqS(,\q) = ,\~N-I)L[H~~)TN(tq)/ A~0)Jr(,\q, tq), (6.49) 

where S(,\q) = ,\~N-I)LS(l/ Aq) and 

N-1 N-1 
r(,\q, tq) = II [.H~{~rj(tq)/A~)] + II [H~~TN-i(witq)/A~)] (6.50) 

j=l j=l 
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Baxter and O'Rourke115•116 then examine (6.49) for jµPµP, I < 1, around tq,...., 1, where 

T(xq, yq) and TN(tq) have no zeroes; therefore the zeroes of r(.Xq, tq) are the zeroes of 

S'(..Xq). Considering the limit k' - 0, they115 then show that the (N - l)L zeroes of 

r(..Xq, lq) lie on N - 1 circles of different radius, inside the annulus 1 < I..Xql < 1/k'. 

These zeroes can be surrounded by two contours C_ and C+. On the N - 1 circles 

where the zeroes of r(..\q, tq) are, the two terms in (6.50) must be of the same order of 

magnitude, but of opposite sign. As one moves away from these circles, the difference 

in magnitude of these two terms becomes big. Using Cauchy's integral formula, they 

write 

d A ( ) 1 [i dX d ( , ') i dX d ( , , J 
d..\lnS ..\ = 27ri c+..\-NdA'Inr ..\,t - c_.X-NdNinr ..\,t)j, (6.51) 

in which t' = b.(N). Guided by the results obtained in the limit k' - 0, Baxter and 

O'Rourke found that on the contour C+ the second term of r(..\, t) in (6.50) dominates 

in the limit L - oo, and on the contour C_ the first term dominates. After dropping 

the exponentially small terms, the two contours can be shifted to the unit circle, 

Performing integration with respect to .X, they obtain 

A 1 . d N-I [H(j)T ·(wit')] 
In S(.X) =di+ -.1 dX In(..\-..\') d" L In P~ (~-J , 

271"iliNl=l /\ ·-1 H 1 T·(t') J- p q J 

(6.52) 

where d1 is some constant. We use (6.16) to find 

N-1 N-1 . N-1 

II [H~~ I .ii~!~] = a~(N-l) II z(wltq)N-l-l = ii~N~l) II z(wltqrl' (6.53) 
j=l l=O l=l 

where (6.15) is also used, and from (6.34) obtain 

N-1 N-1 

L In[TN-j(wit')/Ti(t')] = L (N - 2j) In T2 (wi- 1t'). (6.54) 
j=l j=l 

Since the zeroes of T2(t) are around w-1, we find T2(wi- 1t) for j = 1, · · ·, N - 1 have 

no zeroes on the sheet t = b.(..\), thus the above function is single-valued on this 

Riemann sheet. Similarly, we find z(wit) for j = 1, · · ·, N - 1 have no zeroes on the 

sheet t = b.(.X) either, as seen from (6.12) and (6.28). 

After substituting the second identity in (6.53) and (6.54) into (6.52), the inte

gration involving iiq can be carried out explicitly, while the rest of the integrand has 
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been shown to be a single-valued function on the sheet t = l(>.). Using the identity 

(6.55) 

which is valid if J(>.) and g(>.) are singled-valued, and (6.40), we arrive at the final 

result 

where 

and 

(6.56) 

1 271" 1 +). iB N-1 
A(>.q, tp) =- r d(} - ). qeiB L (N - j) ln[w-il2.6.(0) - w-fl2tp], (6.57) 

21r lo 1 qe i=l . . 

N-1 

x L (N-2j) ln[w-il2_6.(0) - wil2_6.(¢)]. 
j=l 

(6.58) 

If instead, we use the first identity in (6.53), we would obtain the identical result, 

even though it is more difficult to justify using (6.55). 

These are the most crucial steps. If one uses (6.25) to determine the zeroes of 

S(>.), one would find from (6.48) that they are the image of the zeroes of , 2 (t). This 

means that instead of the zeroes of S(>.) lying on the N -1 circles of different radius, 

as implied by the solution in {6.56), they would be lying on just one circle. This just 

shows the ingenuity of Baxter in being able to choose the right path. 

Similarly, for lµpµp,I > 1, we again find from (6.50) that the zeroes of S(>.) 

can be surrounded by two contours C_ and C+, and that Cauchy's integral formula 

(6.51) still holds. We then estimate the order of magnitude of the two terms in (6.50) 

for t' ,..., w in the limit k' --+ 0. We now find on the contour C+ the first term in 

(6.50) dominating instead, while on the contour C_ the second term dominates. We 
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again drop the insignificant terms, shift the two contours to the unit circle, and then 

integrate with respect to >. to obtain a similar equation, 

lnS(>.) = d2 - -. d>.' In(>.->.')- L In P~ ~-J . . 
A 1 i d N-l [H(j)T ·(wit')] 

21ri INl=l d)..' i=l H~]~ Ti ( t') 
(6.59) 

This equation differs from (6.52) not only in the sign in front of the integral, but 

also in the variable t'. Here we have t' = wb.(A') instead oft' = b.(A'). It may be 

worthwhile to mention again, that calculating the largest eigenvalue of the transfer · 

matrix, we find for Jµpµp, I < 1, the zeroes of r(Aq, tq) on the Riemann sheet t' = b.(X) 

are the zeroes of S(X), whereas for Jµpµp,J > 1, the zeroes of r(Aq, tq) on the sheet 

t' = wb.(A') are the zeroes of S(A'). Using (6.53), (6.54) and (6.42), we find (6.59) 

becomes 

where 
1 21r 1 + ).. iO N -1 

C(>,. t )=- f dO qe_ '°' jin[w-il2~(0)-wil2t ]. (6.61) 
q, P 21r Jo 1 - ).. ei0 !--,; P 

q 3=1 

Finally as S()..) is now given, (6.49) can be used to calculate the largest eigenvalue of 

the transfer matrix, by dropping the exponentially small term in (6.50). From (6.16) 

and (6.14), we find that the ratio of the first term to the second term in (6.50) is of 

the order (µPµP, )N(N-l)L/2, thus for Jµpµp, I < 1, the first term is exponentially small, 

while for JµPµP, I > 1, the second term is exponentially small. That is 

N-1 
-(N-1) II [ ( it ) ( it )-iJ Eq aq TN-j W q Z W q , 

i=O 

N 
(6.62) 

Eq II Ti(tq), 
i=l 

where 
N 

= dA~l).. (N-l)L II [fI.(j) /A (j)J 
Eq q q p'q q ' (6.63) 

i=l 
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and (6.24) and (6.53) are used for the first case. It is easy to show from (6.10) and 

(6.11) that 

[p D- m. ]NL[,2, /' ]CN-l)L/4 Eq = pq p'q'±'O AqAp Ap' , (6.64) 

in which 

N-1 N-1 

P:q = II Wpq(n), p~ = II Wpq(n), 
n=l n=l 

(6.65) 

It was shown in these papers113•117•118 that 

N-1 (t it )i jjN = NN/2cp-N II · . p - W q 

pq O . (y - w-iy )i(x - wix )i 
J=l q p p q 

(6.66) 

with 

cI>o = ei1r(N-l)(N-2)/12N (6.67) 

and 

N-1 

[Dpq/ppq]N = NN/2cpoN[(y: - y:)(x: - x:)r!(N-1) II (tp - witq)i' 
j=l 

(6.68) 

From (6.34), we find 

N-1 N-l 
L In TN-i(witq) = L j ln T2(wi-1tq), (6.69) 
j=O j=l 

N N-l 
L ln Tj(tq) = L (N - j) In T2(wi-ltq). (6.70) 
i=l i=l 

Consequently, equations (6.62) and (6.64) can be used to give the largest eigenvalue 

of the transfer matrix as 

(6.71) 

in which we substitute (6.40) into (6.69) and use (6.56) for S to obtain, for lµPµP,I < 1, 

N-1 

Nln~pq = HN -1) ln(..Xq/..Xp) - 2 L (N - j) ln[w-il2tq-wil2tp] 
j=l 
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(6.72) 

As can be seen from (6.28) and the fact that the zeroes of S are evaluated on the 

Riemann sheet tq = Li ( Aq) , we find that the above expression is valid for 

7r 7r 
I Aql > 1 and - N :::; arg tP, arg tq :::; N. 

Similarly, we use (6.42) in (6.70) and (6.60) for S to express (6.62) for iµPµP, I > 1 

as 

where d3 is again some constant to be determined. It is easily seen from (6.57) and 

(6.61) that 

From (6.45) and (6.46) we find the identity, for IApl < 1, 

7r { (N -1) ln[k' (,\q - Ap) 2 / Aqk2] 

J(,\p, tq)=-N(N-l)- + 
2 (N --'- 1) ln[k' (1 - ApAq) 2 / Aqk2] 

(6.75) 

Now we use (6.75) in (6.73) to obtain 

We may also use (6.75) when p and q are interchanged to write (6.73) as 
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Since S given by (6.60) is evaluated on the Riemann sheet tq = wbt.(..\q), we find 

from (6.28), that equations (6.73), (6.76) and (6.77) are valid for the regime -1r/N ~ 

argtp, arg(tq/w) ~ 1r /N. 
When the rapidity lines satisfy p = p', the partition function is denoted by Zpq 

and the partition function per site117 is then 

Z l/ML - . D-Kpq = pq = Kpqppq pq. (6.78) 

From the inversion relation, Baxterll7 has shown 

(6.79) 

On the other hand, from (6.58), we find 

(6.80) 

Consequently, we can see easily that (6.76) and (6.77) indeed satisfy this inversion 

relation (6. 79). This shows that the constants are correctly chosen. 

Baxter116 has also shown that, for !µPl < 1 and lµql < 1, 

valid in -1r /N ~ argtp, argtq ~ 1r /N. It is shown by Baxter115 that (6.72) is an 

analytic continuation of (6.81) as Aq moves from the inside of the unit circle to the 

outside. 

6.3 ROTATIONS AND SYMMETRIES 

. The weights satisfy the properties111,117 

where q* = R-1q, namely 

-1 
Xq* = w Yq, 

(6.82) 

(6.83) 
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and 

(6.84) 

in which· 

µRp = 1/ µp, XRp = Yp, YRP = WXp, (6.85) 

Combining them, we find 

(6.86) 

From the definitions in (6.65), we obtain 

PRp,Rq = pPq ' pq,Rp = pPq' Pq*p = Ppq' 

(6.87) 

From these relations, we find that the partition per site defined in (6.78) satisfies 

Hence, 

KRmp,Rmq = { 
x:(wlmxp,w!myp,wlmxq,w!myq), m even, 

x:(wi(m+I)y w!<m-l)x w!(m+I)y, w!<m-l)x ) m odd 
p, p,' q, q ' . 

(6.88) 

(6.89) 

(6.90) 

(6.91) 

(6.92) 

As mentioned earlier, interchanging x and y is equivalent to changing A to 1/A. Thus, 

these rotations allow one to extend (6.72), (6.77) and (6.81) to other regimes. 

We first consider the automorphism T, given in refs. 111•114, that leaves t = xy 

and A unchanged. Let 

-1 -1 
Jl,rq = w µq, XTq = WXq, YTq = w Yq• (6.93) 

Then we find from (6.1) that 

( ) Wpq(n + 1) 
Wp,Tq n = Wpq{l) , (6.94) 
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As a consequence, the partition function satisfies 

(6.95) 

From (6.65), it is seen that 

tJ. = (-l)(N-1)/N Dpq 
p,Tq Wpq(l) (6.96) 

Therefore, for odd N = 2n + 1, we find from (6.95), (6.96) and (6.78) that 

(6.97) 

Similarly, we find 

(6.98) 

This shows that the automorphism· T leaves the normalized partition function per 

site r;, invariant for odd N = 2n + 1. 

Letting m = 2n = N - 1 in (6.92), and using (6.87), (6.97) and (6.98), we find 

that (6.91) becomes 

in which the ,\ remains unchanged, but in which lq, tP shift to w-1tq, w-1tP' 

Similarly, we let m = 2n + 1 = N in (6.92) to obtain 

(6.99) 

(6.100) 

Thus this transformation relates the normalized partition functions where the tq, tP 

are unchanged but ,\ is replaced by 1/ ..\. 
For l..\pl, l..\ql < 1, we find I..\Rpl, I..\Rql > 1. If also -n:/N ~ argtRp ~ n:/N, 

and n: /N ~ arg tRq ~ 3n: / N, then ( 6. 77) hold for K-Rp,Rq. Consequently, we find using 

(6.87) that 

(6.101) 
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which, as seen from (6.85), is identical to (6.81), except for the regime of validity. 

Combining the two regimes we find (6.105) listed in the table below and valid for 

-31r/N ~ arg(tp) ~ 1r/N and -1r/N < arg(tq) ~ 1r/N. 

For 1-Xpl, j,\qj > 1, -31r/N ~ arg(tp) ~ 1r/N and -1r/N ~ arg(tq) ~ 1r/N, 

we use (6.100) to invert (6.105), and the result is (6.106) which is also listed in the 

table, and it differs from (6.77) in that w- 1t in (6.77) becomes tin (6.106). Since the 

regimes of validity for the two equations are different by a multiplicative w factor, 

this is consistent with (6.99). 

From (6.87), we find 

(6.102) 

For j,\pj < 1, j,\qj > 1, such that j,\q*I < 1, we consider the regime where -31r /N ~ 

arg(tq*) ~ 1r/N and -1r/N ~ arg(tp) ~ 1r/N, such that (6.105) holds for Kg*p, 

Using (6.68) and (6.75), we may rewrite (6.102) as 

N-1 

In ~P = In ~:q + (N - 1) In ,\P + 2 I: (N -j) ln(w-il2tq - wil2tp) 
j=l 

(6.103) 

(6.104) 

Consequently, we find (6.107) in the table, which is again identical to (6.72), but with 

region of validity extended. This shows that all the calculations are consistent. 

Finally, for j,\pj > 1, j.Xql < 1, we again use (6.100) in (6.107) to obtain (6.108) 

which is given also in the table. Even though equations (6.97)-(6.100) are proven here 

for odd N only, the results in (6.105), (6.106), (6.107) and (6.108) are valid for even 

N also, because we have derived these formulae using a more tedious way, namely by 

taking a different low-temperature k' -. 0 limit choosing µq-. k' instead of µP -. k' 

as Baxter did in ref. 116. 

The regime of tp, tq for which (6.105) is valid is different from the regime for 

which (6.107) holds. In the intersection of these two regimes, it is found that (6.107) is 
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TABLE 6.1. Free energy of integrable chiral Potts model for different regions. 

N-1 

N In ~q = !(N -1) ln(..\q/ ,\P) - 2 L (N -j) In(w-il2tq - wi12tP) 
j=l 

N-1 

Nln~q =!(N-l)ln(..\p/..\q)-2 :E(N-j)In(w-il2tq-wil2tp) 
j=l 

(6.105) 

(6.106) 

(6.107) 

(6.108) 

an analytic continuation of (6.105) as the variable Aq moves from inside the unit circle 

to outside the unit circle. However, ,since the two regimes do not coincide, it shows 

that this is not true in general. Thus even though the regimes of validity for (6.108) 

and (6.106) do intersect, we found that (6.106) is not the analytic continuation of· 

(6.108) when Ap is continued from inside the unit circle to outside. When l..\pl, l..\ql < 1 

or l..\pl, l..\ql > 1 we find from (6.105) or from (6.106) that the inversion relation (6.79) 

holds. However, if I..\PI < 1 and l..\ql > 1, then we need to use (6.107) for ~pqi and 
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(6.108) for Kqp; we find that inversion relation (6.79) does not hold. This is rather 

perplexing. 

6.4 CONCLUSION 

In this chapter, we follow the technique given by Baxter115•116•119•120 to obtain 

the free energy of the N-state chiral Potts model for two different regimes. There are 

more quantities and regimes in this integrable model which have not been solved yet. 
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Figure 6.1. Boltzmann weights vl{,q(a - b) and Wpq(a - b) for the two types of edge 
interaction between the spins a and b: 
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APPENDIX A 

DIFFERENCE SEQUENCE 

We have introduced the difference sequence to denote spin configurations along 

one row in the chiral direction because only the differences between the successive 

spins are important in view of the Z3 invariance of the original model. We use the 

smallest periodic unit to denote a spin configuration. For example, if we have a spin 

con.figuration along one row such as · · · 11122001112200 · · ·, the sequence of differ

ences between successive spins is · · · 20020202002020 · · · and the smallest unit of this 

sequence is any one of 2002020, 0020202, · · ·, 0200202. So these sequences denote the 

equivalent spin configuration and we only need take one of them to denote this con

figuration. We take the smallest one in numerical value i.e. 0020202 if these sequences 

are treated as numbers. A set of difference sequences is called independent if it doesn't 

contain any two elements representing the same Z3 equivalent spin configuration. 

Thus, element m1m 2 • • • mz in an independent difference sequence set satisfies: 

1 )m1 m2 · · · mz is the smallest among m 2 m 3 · · · mz m 1, m3 m4 · · · mz m1 m2, · · ·, 

mz m 1 · · · mz-1, if these sequences are treated as numbers. 

2)m1 m 2 • • • m1 can not be separated into more than one identical subsequences. 

Generally, mi can take any value of 0, 1, and 2 and if the length of a difference 

sequence is l, the period of this spin configuration is l or 3l depending on the value 

of P = :E!=l mi (mod 3). If P = 0, then the period of this spin configuration is l. 

Otherwise, the period will be 3l. We introduce the difference sequence also because 

the complexity and time consumption of our numerical calculation depends on the 
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length of the sequence instead of the period of the spin configuration. The difference 

sequence for the ground state is O when O ~ ~ < 1 /2 and 2 when 1 /2 < ~ ~ 1. 



APPENDIX B 

SIMPLIFIED FORMALISM FOR A SPECIAL CASE 

For a set of boundary fields {'TJi}, let us look at the following situation, 

where 

R = ( cos(21rP/3) - sin(21rP/3) ) 

sin(21r P /3) cos(21r P /3) 

(B.1) 

(B.2) 

and P can take any value of 0, 1 and 2. If P = 0, we have 'TJi+l = 'TJi and (2.33) and 

(2.32) can be applied directly with period L = l. If P #- 0, clearly, 

(B.3) 

Hence, the period for boundary fields L = 3l and (2.33) and (2.32) can be applied. 

However, not all equations in (2.33) are independent for P #- 0. Following, we find 

a set of independent mean field equations and give similar formula for calculation of 

approximated free energy for this case. From (B.2) and (2.23), we can show 

(B.4) 

We defined Tk in (2.27), hence if we denote its largest eigenvalue, corresponding left 

and right eigenvectors as Ak, (Aki and IAk) (with (AklAk) = 1) respectively, it is easy 

to show that 

( (Ak+1l){ni} - ( (Akl){ni-P}, 

(IAk+l) ){ni} - (IA k) ){ni-P}· 
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(B.5) 

(B.6) 

(B.7) 

(B.8) 
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Meanwhile mk can be calculated as 

(B.9) 

where Mis defined in (2.24). Through simple algebraic calculation, we can get 

(B.10) 

By iteration procedure· (2.34), we can expect this relation to be kept by { 11fn)} for · 

arbitrary n and hence by final solutions of {17J. With the help of (B.4) and (B.10), 

the calculation can be reduced as 

(B.11} 

the independent mean field equations 

'1J; = m; wherej = 0, 1, · · · ,l - l. (B.12) 

and 

ll1i = (,.\0)-1 (,.\0 IT('1J0)T('1J1) • • · MT('1Ji) · · · T('1J1_ 1)VWl,.\0) for i = 0, 1, · · ·, l - 1 

(B.13) 

where we define 

l-1 

u - II T('1Ji), (B.14) 
i=O 

°V{n,},{nH - U{n,-P},{n~-P}, (B.15) 

W{ni},{n~}. °V{n,-P},{n~-P}, (B.16) 

ro - uvw (B.17) 



APPENDIX C 

MAIN FORTRAN PROCEDURE FOR CHAPTER 2 

c This program is to search for upper limit of Lifshitz point 

parameter(ichain=9,mult=1,iper=55,itl=2184) 

c ichain is the length of period and mult is the width of strip 

c nps is number of Potts states, iper is repeating times in 

c searching for phase boundary. The accuracy is -/2**iper. 

c itl is the number of different boundary conditions. 

c mnps is the dimension of transfer matrix intrix(i,j), i means 

c row index in transfer matrix and j means column index 

parameter(nps=3,mnps=nps**mult) 

integer intrix 

double precision tdum1 

double precision so,pie,temp,dta 

double precision nsb,erf 

common so(mnps,2),pie 

c above first class 

common temp,dta 

c above second class 

common nsb(2,0:ichain-1) 

common tdum1(mnps,mn.ps) 

common erf,ipmt(2,mnps),intrix(mnps,mult) 

c . above third class 

double precision tpt,dmax,dmin 

129 



double precision tpdis,tpord,kxy 

double precision fretO,fret,fretf,fretfO,sum 

double precision sbO,sb,func,erff,erffO 

dimension sb(2,0:ichain-1), sb0(2,0:ichain-1) 

dimension it(O:ichain,itl) 

integer s(O:ichain-1) 

integer it,ipf 

character*6 ppout 

character*4 ppbin 

character*2 cwidth,clength 

if (mult .le. 9) cwidth='w'//char(mult+48) 

if (mult .gt. 9) cwidth='w'//char(mult+55) 

if (ichain .le. 9) clength='b'//char(ichain+48) 

if (ichain .gt. 9) clength='b'//char(ichain+55) 

ppout=cwidth//clength//'.p' 

ppbin=clength//'.p' 

open (unit=2,file=ppout,status='new') 

open (unit=3,file=ppbin,status='old') 

read(3,*) ((it(i,j),i=O,ichain),j=1,itl) 

ccccccccccccccccccccccccccccccc 

kxy=10.0d0 

dmax=0.50d0 

dmin=O.OOdO 

cccccccccccccccccccccccccccccccc 

erf=0.10d-13 

pie =2.0d0*3.14159265358979324d0/dble(nps) 

do 10 irow=1,mnps 

do 10 icol=1,mult 
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intrix(irow,icol)=mod(int((irow-1)/(nps**(icol-1))),nps) 

10 continue 

do 25 irow=1,mnps 

ipmt(1,irow)=1 

ipmt(2,irow)=1 

do 20 icol=1,mult 

ipmt(1,irow)=ipmt(1,irow)+nps**(icol-1) 

z * mod((intrix(irow,icol)+1),nps) 

ipmt(2,irow)=ipmt(2,irow)+nps**(icol-1) 

z * mod((intrix(irow,icol)+2),nps) 

20 continue 

25 continue 

do 30 i1=1,mnps 

So(i1,1) =cos(pie*intrix(i1,1)) 

So(i1,2) =sin(pie*intrix(i1,1)) 

30 continue 

do 190 itdta=1,iper 

dta=(dmax+dmin)*0.50d0 

tpord=2.0d0 

tpdis=0.10d0 

c following sentence is the do loop searching for o-d point 

do 180 ittmp=1,60 

c above sentence is the do loop searching for o-d point 

tpt=(tpord+tpdis)*0.50d0 

temp=tpt 

c following gives transfer matrix which is not related to MF 

do 60 i1=1,mnps 

do 60 i2=1,mnps 
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sum=O.dO 

do 40 im =1,mult 

swn=su.m+kxy*temp*(cos((intrix(i1,im)-

z intrix(i2,im)+dta)*pie)) 

40 continue 

do 50 im =1,mult-l 

sum=sum+temp*(cos((intrix(i1,im)

z intrix(i1,im+1))*pie)) 

50 continue 

tdum1(i1,i2)=exp(sum) 

60 continue 

c above gives transfer matrix which is not related to MF 

c following calculates either ordered or disordered phase 

c following gives the free energy of disordered phase 

do 70 i=O,ichain-1 

do 70 j1=1,2 

sb(j1,i)=O.Od0 

70 continue 

fret=func(sb,O) 

fretf=fret 

c above gives the free energy of disordered phase 

c following gives the free energy of ordered phase 

do 80 i=O,ichain-1 

sb(1,i)=1.0d0 

sb(2,i)=O.Od0 

80 continue 

fretO=O.OdO 

do 100 ii=i,3000 
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fret=func(sb,0) 

erff=abs(fretO/fret -1.0dO) 

if (erff .le. erf) go to 110 

fretO=fret 

do 90 i=O,ichain-1 

do 90 j1=1,2 

sb(j1,i)=nsb(j1,0) 

90 continue 

100 continue 

c above gives the free energy of ordered phase 

110 if(fretf .le. fret) then 

tpdis=tpt 

else 

tpord=tpt 

end if 

180 continue 

ipf=O 

c if(itdta .eq. iper) then 

c write(2,500) temp,dta 

c write(2,500) fretf, fret 

c write(2,500)((sb(j1,i),j1=1,2),i=O,ichain-1) 

c endif 

c above calculates either ordered or disordered phase 

c following calculates the free energy of modulated phases 

s(O)=O 

fretfO=O.OdO 

itO=O 

do 170 its=1,itl 
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do 120 i=1,ichain-1 

s(i)=mod(s(i-1)+it(i,its), nps) 

120 continue 

do 130 j=O,ichain-1 

sb(1,j) = COS(pie*dble(s(j))) 

sb(2,j) = SIN(pie•dble(s(j))) 

130 continue 

fretO=O.OdO 

do 150 ii=1,3000 

fret=func(sb,it(O,its)) 

erff=abs(fretO/fret-1.0dO) 

if (erff .le. erf) go to 160 

fretO=fret 

do 140 i=O,ichain...:1 

do 140 j1=1,2 

sb(j1,i)=nsb(j1,i) 

140 continue 

150 continue 

160 if(fret .le. fretfO) then 

fretfO=fret 

itO=it(O, its) 

do 165 i=O,ichain-1 

do 165 j1=1,2 

sbO(j1,i)=sb(j1,i) 

165 continue 

end if 

if (fretfO .1 t. fretf . and. abs (fretfO/fretf-1. OdO) 

c .gt. 10.0dO•erf) then 
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ipf=1 

go to 175 

end if 

170 CONTINUE 

c above give the calculation of free energy of modulate phase 

175 if(ipf .eq.1) then 

190 

500 

501 

dmax=dta 

else 

dmin=dta 

end if 

if(itdta .eq. iper) then 

write(2,501) temp,dta, itO 

write(2,500) fretf, fretfO 

write(2,500)((sb0(j1,i),j1=1,2),i=O,ichain-1) 

end if 

continue 

format(1x,2d22.14) 

format(1x,2d22.14, i3) 

stop 

end 

double precision function func(sb,its) 

C THIS IS A SUBROUTINE TO CACULATE FREE ENERGY 

c ichain is period length of strip and mult is width of strip 

c nps is number of Potts states. pie is math parameter, 

c temp is inverse of temperature and dta means chiral phase 

parameter(ichain=9,mult=1) 

135 



parameter(nps=3,mnps=nps**mult) 

integer intrix 

double precision tdum1 

double precision so,pie,temp,dta 

double precision nsb,erf 

common so(mnps,2),pie 

c above first class 

common temp,dta 

c above second class 

common nsb(2,0:ichain~1) 

common tdum1(mnps,mnps) 

common erf,ipmt(2,mnps),intrix(mnps,mult) 

c above third class 

double precision tt,st, rnorm 

double precision sb,t1,sum,bt,scl 

dimension sb(2,0:ichain-1) 

dimension t1(mnps) 

dimension st(mnps,O:ichain), bt(mnps,O:(ichain-1)) 

dimension tt(mnps,O:ichain), scl(2) 

integer its 

c following produces part of transfer matrix due to mean field 

do 10 i1=1,mnps 

DO 10 ii= 0,ichain-1 

sum=temp*(sb(1,ii)* 

z (cos(intrix(i1,mult)*pie)+ 

z cos(intrix(i1,1)*pie)) 

z + sb(2,ii)*(sin(intrix(i1,mult)*pie)+ 

z sin(intrix(i1,1)*pie))) 
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bt(i1,ii) =exp(sum) 

10 CONTINUE 

c above produces part of transfer matrix due to mean field 

c following calculates eigenvalue and left eigenvector 

do 20 i1=1, mnps 

tt(i1, ichain)=1.0d0 

20 continue 

1000 do 30 i1=1,mnps 

tt(i1,0)=tt(i1,ichain) 

30 continue 

scl(1)=1.0d0 

do 90 ii2=1, ichain 

do 40 i1=1,mnps 

t1(i1)=tt(i1, ii2-1)*bt(i1,ii2-1) 

40 continue 

do 60 i2=1,mnps 

sum =O.OdO 

do 50 i1=1,mnps 

sum=sum.+t1(i1)*tdum.1(i1,i2) 

50 continue 

tt(i2,ii2)=sum 

60 continue 

sum=O.OdO 

do 70 i2=1, mnps 

sum=sum+tt(i2,ii2)*tt(i2,ii2) 

70 continue 

scl(2)=sqrt(sum/dble(mnps)) 

do 80 i2=1,mnps 
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tt(i2,ii2)=tt(i2,ii2)/scl(2) 

80 continue 

scl(1)=scl(1)•scl(2) 

90 continue. 

if(its.ne.O) then 

if (its .eq. 1) then 

do 140 ii2=1, ichain 

do 100 i1=1,mnps 

t1(i1)=tt(i1, ichain)•bt(ipmt(2,i1),ii2-1) 

100 continue 

do 120 i2=1,mnps 

sum =O.OdO 

do 110 i1=1,mnps 

sum=sum+t1(i1)•tdum1(i1,i2) 

110 continue 

tt(i2,ichain)=sum 

120 continue 

sum=O.OdO 

do 130 i2=1,mnps 

sum=sum+tt(i2,ichain)•tt(i2,ichain) 

130 continue 

scl(2)=sqrt(sum/dble(mnps)) 

do 135 i2=1,mnps 

tt(i2,ichain)=tt(i2,ichain)/scl(2) 

135 continue 

scl(1)=scl(1)•scl(2) 

140 continue 

do 200 ii2=1, ichain 
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do 150 i1=1,mnps 

t1(i1)=tt(i1, ichain)*bt(ipmt(1,i1),ii2-1) 

150 continue 

do 170 i2=1,mnps 

sum =O.OdO 

do 160 i1=1,mnps 

sum=sum+t1(i1)*tdum1(i1,i2) 

160 continue 

tt(i2,ichain)=sum 

170 continue 

sum=O.OdO 

do 180 i2=1,mnps 

sum=sum+tt(i2,ichain)*tt(i2,ichain) 

180 continue 

scl(2)=sqrt (sum/dble(mnps)) 

do 190 i2=1,mnps 

tt(i2,ichain)=tt(i2,ichain)/scl(2) 

190 continue 

scl(1)=scl(1)*scl(2) 

200 continue 

else 

do 260 ii2=1, ichain 

do 210 i1=1,mnps 

t1(i1)=tt(i1, ichain)*bt(ipmt(1,i1),ii2-1) 

210 continue 

do 230 i2=1,mnps 

sum =O.OdO 

do 220 i1=1,mnps 
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sum=sum+t1(i1)*tdum1(i1,i2) 

220 continue 

tt(i2,ichain)=sum 

230 continue. 

sum=O.OdO 

do 240 i2=1,mnps 

sum=sum+tt(i2,ichain)•tt(i2,ichain) 

240 continue 

scl(2)=sqrt(sum/dble(mnps)) 

do 250 i2=1,mnps 

tt(i2,ichain)=tt(i2,ichain)/scl(2) 

250 continue 

scl(1)=scl(1)•scl(2) 

260 continue 

do 320 ii2=1, ichain 

do 270 i1=1,mnps 

t1(i1)=tt(i1, ichain)•bt(ipmt(2,i1),ii2-1) 

270 continue 

do 290 i2=1,mnps 

sum =O.OdO 

do 280 i1=1,mnps 

sum=sum+t1(i1)*tdum1(i1,i2) 

280 · continue 

tt(i2,ichain)=sum 

290 continue 

sum=O.OdO 

do 300 i2=1,mnps 

sum=sum+tt(i2,ichain)•tt(i2,ichain) 
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300 continue 

scl(2)=sqrt(sum/dble(mnps)) 

do 310 i2=1,mnps 

tt(i2,ichain)=tt(i2,ichain)/scl(2) 

310 continue 

scl(1)=scl(1)*scl(2) 

320 continue 

end if 

end if 

sum.=O.OdO 

do 330 i1=1,mnps 

sum.=sum+(tt(i1,ichain)-tt(i1,0))**2 

330 continue 

sum.=sqrt(sum/dble(mnps)) 

if (sum .gt. erf) goto 1000 

c above calculates the left.eigenvector 

c following calculates right eigenvector 

do 335 i1=1, mnps 

st(i1,0)=1.0d0 

335 continue 

2000 do 340 i1=1,mnps 

tt(i1,ichain)=st(i1,0) 

st(i1,ichain)=st(i1,0) 

340 continue 

scl(1)=1.0d0 

if(its.ne.O) then 

if (its .eq. 1) then 

do 400 ii2=ichain-1, 0, -1 
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do 360 i2=1,mnps 

sum =O.Odo· 

do 350 i1=1,mnps 

sum=sum+_ tdum1(i2,i1)*st(i1, ii2+1) 

350 continue 

t1(i2)=sum 

360 continue 

do 370 i1=1,mnps 

st(i1,ii2)=bt(ipmt(1,i1),ii2)*t1(i1) 

370 continue 

sum=O.OdO 

do 380 i2=1,mnps 

sum=sum+st(i2,ii2)*st(i2,ii2) 

380 continue 

scl(2)=sqrt(sum/dble(mnps)) 

do 390 i2=1,mnps 

st(i2,ii2)=st(i2,ii2)/scl(2) 

390 continue 

scl (1)=scl (1) *scl (2) 

400 continue 

do 405 i1=1,mnps 

st(i1,ichain)=st(i1,0) 

405 continue 

do 460 ii2=ichain-1, 0, ·-1 

do 420 i2=1,mnps 

sum =O.OdO 

do 410 i1=1,mnps 

sum=sum+ tdum1(i2,i1)*st(i1, ii2+1) 
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410 continue 

t1(i2)=sum 

420 continue 

do 430 i1=1,mnps 

st(i1,ii2)=bt(ipmt(2,i1),ii2)*t1(i1) 

430 continue 

sum=O.OdO 

do 440 i2=1,mnps 

sum=sum+st(i2,ii2)*st(i2,ii2) 

440 continue 

scl(2)=sqrt(sum/dble(mnps)) 

do 450 i2=1,mnps 

st(i2,ii2)=st(i2,ii2)/scl(2) 

450 continue 

scl(1)=scl(1)*scl(2) 

460 continue 

do 465 i1=1,mnps 

st(i1,ichain)=st(i1,0) 

465 continue 

else 

do 520 ii2=ichain-1, 0, -1 

do 480 i2=1,mnps 

sum =O.OdO 

do 470 i1=1,mnps 

sum=sum+ tdum1(i2,i1)*st(i1, ii2+1) 

470 continue 

t1(i2)=sum 

480 continue 
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do 490 i1=1,mnps 

st(i1,ii2)=bt(ipmt(2,i1),ii2)*t1(i1) 

490 continue 

sum=O.OdO 

do 500 i2=1,mnps 

sum=sum+st(i2,ii2)*st(i2,ii2) 

500 continue 

sc1(2)=sqrt(sum/dble(mnps)) 

do 510 i2=1,mnps 

st(i2,ii2)=st(i2,ii2)/scl(2) 

510 continue 

sc1(1)=sc1(1)*sc1(2) 

520 continue 

do 525 i1=1,mnps 

st(i1,ichain)=st(i1,0) 

525 continue 

do 580 ii2=ichain~1, 0, -1 

do 540 i2=1,mnps 

sum =O.OdO 

do 530 i1=1,mnps 

sum=sum+ tdum1(i2,i1)*st(i1, ii2+1) 

530 continue 

t1(i2)=sum 

540 continue 

do 550 i1=1,mnps 

st(i1,ii2)=bt(ipmt(1,i1),ii2)*t1(i1) 

550 continue 

sum=O.OdO 
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do 560 i2=1,m.nps 

sum=sum+st(i2,ii2)*st(i2,ii2) 

560 continue 

sc1(2)=sqrt(sum/dble(mnps)) 

do 570 i2=1,mnps 

st(i2,ii2)=st(i2,ii2)/sc1(2) 

570 continue 

sc1(1)=sc1(1)*sc1(2) 

580 continue. 

do 585 i1=1 ,m.nps 

st(i1,ichain)=st(i1,0) 

585 continue 

endif 

end if 

do 640 ii2=ichain-1, 0, -1 

do 600 i2=1,mnps 

sum =O.OdO 

do 590 i1=1,mnps 

sum=sum+ tdum1(i2,i1)*st(i1, ii2+1) 

590 continue 

t1(i2)=sum 

600 continue 

do 610 i1=1 ,mnps 

st(i1,ii2)=bt(i1,ii2)*ti(i1) 

610 continue 

sum=O.OdO 

do 620 i2=1,mnps 

sum=sum+st(i2,ii2)*st(i2,ii2) 
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620 continue 

scl(2)=sqrt(sum/dble(mnps)) 

do 630 i2=1,mnps 

st(i2,ii2)=st(i2,ii2)/scl(2) 

630 continue 

sc1(1)=scl(1)*sc1(2) 

640 continue 

sum=O.OdO 

do 650 i1=1,mnps 

sum=sum+(tt(i1,ichain)-st(i1,0))**2 

650 continue 

sum=sqrt(sum/dble(mnps)) 

if (sum .gt. erf) goto 2000 

c above calculates the right eigenvector 

do 690 ii2=0, ichain-1 

SUM = O.dO 

DO 680 MM= 1, mnps 

SUM=SUM+tt(mm, ii2)*st(mm,ii2) 

680 CONTINUE . 

rnorm = SUM 

do 670 iii= 1,2 

SUM= O.dO 

DO 660 MM= 1, mnps 

SUM=SUM+tt(mm, ii2)*So(MM,iii)*st(mm,ii2) 

660 CONTINUE 

Nsb(iii,ii2) = SUM/rnorm 

670 CONTINUE 

690 continue 
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sum= O.dO 

DO 700 II= 0,ichain -1 

DO 700 JJ = 1, 2 

sum= sum +temp*Nsb(JJ,II)* Nsb(jj,II) 

700 CONTINUE 

DO 710 II= 0, ichain - 1 

DO 710 MM =1, 2 

sum= sum-2.0dO*temp*sb(MM,II)*Nsb(MM,II) 

710 CONTINUE 

if (its .eq. 0) then 

func = (- log(scl(1)) - sum) 

z /(dble(ichain)*temp*dble(mult)) 

else 

func = (- (log(scl(1)))/3.0d0 - sum) 

z /(dble(ichain)*temp*dble(mult)) 

endif 

return 

end 
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APPENDIX D 

MAIN FORTRAN PROCEDURE FOR CHAPTER 3 

c This is the procedure to find critical point, 

c wavevector at critical point and coherent 

c coefficient. "mult" is parameter to denote the 

c width of strip in mean field calculation. 

c This procedure includes main, one subroutine 

c printed here and three standard routines 

c calle.d "rg.f" (which is for diagonalization 

c of real matrix), "cg.f" (which is for diagonalization 

c of complex matrix) and "cvert .f" (which is for 

c inversion of complex matrix). 

parameter(mult=7) 

parameter(nps=3,mnps=npS**(mult-1)) 

double precision pie,temp,dta,phl 

double precision st1,eng1 

double complex csb,css,cni,czero,st2,eng2 

common pie 

common csb(mnps) 

common css(mnps) 

common cm(mnps),czero 

c above first class 

common temp,dta,phl 

c above second class 
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common st1(mnps,mnps) 

common st2(mnps,mnps) 

common eng1(mnps,mnps) 

common eng2(mnps,mnps) 

c above third class 

integer intrix(mnps,mult) 

double precision sum,sum0,sum1,sum2,rat 

double complex suc,suc0,suc1,suc2 

double precision errb, ddta(S,11) 

double precision fmin,rnom,rdem,theta 

double complex omega 

double precision tpt,tpv,kxy 

character*6 ppout,ppin 

character*2 cwidth,cpotts 

if (mult .le. 9) cwidth='w'//char(mult+48) 

if (mult .gt. 9) cwidth='w'//char(mult+55) 

if (nps .le. 9) cpotts='a'//char(nps+48) 

if (nps .gt. 9) cpotts='a'//char(nps+55) 

ppin=cpotts//cwidth//'.o' 

ppout=cpotts//cwidth//'.b' 

open (unit=3, file= ppin, status='old') 

open (unit=2,file=ppout,status='new') 

read(3, *) ((ddta(i,j),i=1,5),j=1,11) 

cccccccccccccccccccccccccccccccccccccccccccccccc 

c when rat=O.OdO give weiss result 

c when rat=1.0d0 give bathe result 

c kxy is the ratio of interactions between 

c chiral direction and non-chiral direction 
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rat=1.0d0 

kxy=100.0d0 

cccccccccccccccccccccccccccccccccccccccccccccccc 

pie =2.0d0*3.14159265358979323846264338328d0 

z /dble(nps) 

czero=cmplx(O.OdO,O.OdO) 

omega=cmplx(cos(pie),sin(pie)) 

do 10 irow=1,mnps 

do 10 ico1=1,mult 

intrix(irow,icol)=mod(int((irow-1)/(nps**(icol-1))),nps) 

10 continue 

c following defines quantities such as boundary spin, central 

c spin and one column magnetic operator in Z3 invariant base 

do 15 i1=1,mnps 

csb(i1)=cmplx((cos(pie*dble(intrix(i1,mult))) 

c +cos(pie*dble(intrix(i1,1))))/2.0d0 

c ,(sin(pie*dble(intrix(i1,mult))) 

c +sin(pie*dble(intrix(i1,1))))/2.0d0) 

15 continue 

do 20 i1=1,mnps 

if (mod(mult,2) .eq. 0) then 

css(i1)=cmplx((cos(pie*dble(intrix(i1,mult/2)))+ 

c cos(pie*dble(intrix(i1,mult/2+1))))/2.0d0, 

c -(sin(pie*dble( 

c intrix(i1,mult/2)))+sin(pie*dble(intrix(i1,mult/2+1)) 

c ))/2.0dO) 

else 

css(i1)=cmplx(cos(pie*dble(intrix(i1,(mult+1)/2))), 
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c -sin(pie*dble(intrix(i1,(mult+1)/2)))) 

end if 

20 continue 

do 30 i1=1,mnps 

cm(ii)=czero 

do 25 i2=1,mult 

cm(i1)=cm(i1)+cmplx(cos(pie*dble(intrix(i1,i2))), 

c sin(pie*dble(intrix(i1,i2)))) 

25 continue 

30 continue 

c above defines quantities such as boundary spin, central 

c spin and one column magnetic operator in Z3 invariant base 

do 700 itdta=1,6 

dta=ddta(1, itdta) 

tpt=ddta(2, itdta) 

phl=ddta(3,itdta) 

nit=O 

600 temp=tpt 

c following gives the column transfer matrix 

c and one column energy operator in Z3 bases 

do 50 i1=1,mnps 

do 50 i2=1,mnps 

sum=O.OdO 

do 35 im=i,mult-1 

sum=sum+kxy*cos((dble(intrix(i1,im)-

z intrix(i2,im))+dta)*pie) 

z +cos(dble((intrix(i1,im)-intrix(i1,im+1)))*pie) 

35 continue 

151 



su.m=su.m+kxy•cos(dble((intrix(i1,mult)

z intrix(i2,mult))+dta)•pie) 

su.m.O=su.m 

su.m=O.OdO 

do 40 im=i,mult-1 

su.m=su.m+kxy•cos((dble(intrix(i1,im)

z intrix(i2,im)-1)+dta)•pie) 

z +cos(dble(intrix(i1,im)-intrix(i1,im+1))•pie) 

40 continue 

su.m=su.m+kxy•cos(dble((intrix(i1,mult)-

z intrix(i2,mult)-1)+dta)•pie) 

su.m.1=sum 

sum=O.OdO 

do 45 im=i,mult-1 

su.m=su.m+kxy•cos(dble((intrix(i1,im)

z intrix(i2,im)-2)+dta)•pie) 

z +cos (dble ( (intrix (i1, im)-intrix (i1, im+1))) *pie) 

45 continue 

su.m=su.m+kxy•cos(dble((intrix(i1,mult)-

z intrix(i2,mult)-2)+dta)•pie) 

su.m.2=sum 

sum=exp(temp•(su.m.0-kxy*mult*cos(dta•pie))) 

z +exp(temp•(su.m.1-kxy•m.ult•cos(dta*pie))) 

z +exp(temp•(sum2-kxy*muit•cos(dta•pie))) 

suc=exp(temp*(sumO-kxy*mult*cos(dta•pie)))+omega* 

z exp(temp*(su.m.1-kxy•mult*cos(dta*pie)))+ 

z omega•omega•exp(temp•(sum2-kxy•mult•cos(dta•pie))) 

st1(i1,i2)=sum 
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st2(i1,i2)=suc 

sum=temp*(sum.O*exp(temp*(sum.0-kxy*mult*cos(dta*pie))) 

z +sum.1*exp(temp*(sum.1-kxy*mult*cos(dta*pie))) 

z +sum.2*exp(temp*(sum.2-kxy*mult*cos(dta*pie)))) 

suc=temp*(sum.O*exp(temp*(sum.0-kxy*mult*cos(dta*pie))) 

z +omega*sum.1*exp(temp*(sum.1-kxy*mult*cos(dta*pie))) 

z +omega*omega*sum.2*exp(temp*(sum.2-kxy*mult*cos(dta*pie)))) 

eng1(i1,i2)=sum 

eng2(i1,i2)=suc 

50 continue 

c following gives the column transfer matrix 

c and one column energy operator in Z3 bases 

call auxdia(theta,fmin,errb,rnom,rdem,rat) 

tpv=tpt-errb/rdem 

nit=nit+1 

if (abs(tpv/tpt-1.0dO) .gt. 1.0d-6) then 

tpt=tpv 

go to 600 

end if 

if (dta .ne. O.OdO) then 

theta=theta/(dta*pie) 

end if 

write(2,502) dta,temp,theta,fmin,idd 

700 continue 

502 format(1x,d10.2,3d14.6,i3) 

stop 

end 
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subroutine auxdia(xmin,fmin,errb,rnom,rdem,rat) 

parameter(mult=7) 

parameter(nps=3,mnps=nps**(mult-1)) 

double precision pie,temp,dta,phl 

double precision st1,eng1 

double complex csb,css,cm,czero,st2,eng2 

common pie 

common csb(mnps) 

common css(mnps) 

common cm(mnps),czero 

c above first class 

common temp,dta,phl 

c above second class 

common st1(mnps,mnps) 

common st2(mnps,mnps) 

common eng1(mnps,mnps) 

common eng2(mnps,mnps) 

c above third class, ss31(mnps,mnps-1) sub by eng2(mnps,mnps) 

double precision sum 

double complex suc,suc1 

double complex sslO(mnps),ssrO(mnps),sblO(mnps) 

c ,sbr0(mnps),csb31(mnps,mnps-1) 

c ,ss12(mnps-1,mnps),b021(mnps,mnps-1),b013(mnps-1,mnps), 

c hlO(mnps-1),hrO(mnps-1)~csb12(mnps-1,mnps), 

c h022(mnps,mnps), 

c maglO(mnps),wri2(mnps),wri1(mnps-1), 

c magrO(mnps) 

double complex vlf1(mnps,mnps-1),vrf1(mnps,mnps-1) 
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double complex vlf2(mnps,mnps),vrf2(mnps,mnps) 

double precision emaxx,test,xmin,zr(mnps,mnps) 

double complex vlO(mnps),vrO(mnps),root 

double precision wr(mnps),wi(mnps) 

double precision vr(mnps,mnps),fv2(mnps),fv3(mnps) 

double precision errb,fmin,fv1(mnps),zi(mnps,mnps) 

double precision errb1,errb2,rdem1,rdem2,test1,test2 

double precision rat 

equivalence (zr,csb31),(zi,ss12),(vr,b021) 

integer iv1(mnps) 

integer iv2(mnps) 

double complex df,f,eav 

double precision rnom,rdem,ax,bx,rnom1,rnom2 

c following gives the diagonalization of real block 

c we use index 1 to denote this block 

call rg(mnps,mnps,st1,wr,wi,1,vr,iv1,fv1,in:fo) 

emaxx=sqrt(wr(1)*wr(1)+wi(1)*wi(1)) 

maxid=1 

do 10 ii=2,mnps 

test=sqrt(wr(ii)*wr(ii)+wi(ii)*wi(ii)) 

if (emaxx .le. test) then 

maxid=ii 

emaxx=test 

endif 

10 continue 

do 15 ii=1,mnps 

vrO(ii)=cmplx(vr(ii,maxid)/sqrt(emaxx),O.OdO) 

15 continue 
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ii=1 

1000 if (ii .lt. maxid) then 

if (wi(ii) .eq. O.OdO) then 

wri1(ii)=cmplx(wr(ii)/emaxx,wi(ii)/emaxx) 

do 20 jj=1,mnps 

vrf1(jj,ii)=cmplx(vr(jj,ii)/sqrt(emaxx),O.Od0) 

20 continue 

ii=ii+1 

else 

wri1(ii)=cmplx(wr(ii)/emaxx,wi(ii)/emaxx) 

wri1(ii+1)=cmplx(wr(ii)/emaxx,-wi(ii)/emaxx) 

do 25 jj=1,mnps 

vrfi(jj,ii)=cmplx(vr(jj,ii)/sqrt(emaxx), 

c vr(jj,ii+1)/sqrt(emaxx)) 

vrfi(jj ,ii+1)=cmplx(vr(jj ,ii)/sqrt(emaxx), 

c -vr(jj,ii+1)) 

25 continue 

ii=ii+2 

end if 

go to 1000 

end if 

ii=maxid+1 

1200 if (ii .le. mnps) then 

if (wi(ii) .eq. O.OdO) 'then 

wri1(ii-1)=cmplx(wr(ii)/emaxx,wi(ii)/emaxx) 

do 35 jj=1,mnps 

vrf1(jj,ii-1)=cmplx(vr(jj,ii)/sqrt(emaxx),0.0d0) 

35 continue 
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ii=ii+1 

else 

wri1(ii-1)=cmplx(wr(ii)/emaxx,wi(ii)/emaxx) 

wri1(ii)=cmplx(wr(ii)/emaxx,-wi(ii)/emaxx) 

do 40 jj=1,mnps 

vrf1(jj,ii-1)=cmplx(vr(jj,ii)/sqrt(emaxx), 

c vr(jj,ii+1)/sqrt(emaxx)) 

vrfi(jj ,ii)=cmplx(vr(jj, ii)/sqrt (emaxx), 

c -vr(jj,ii+1)/sqrt(emaxx)) 

40 continue 

ii=ii+2 

end if 

go to 1200 

·endif 

do 45 ii=1,mnps 

do 45 jj=1,mnps-1 

vrf2(ii,jj)=vrf1(ii,jj) 

45 continue 

do 50 ii=1,mnps 

vrf2(ii,mnps)=vrO(ii) 

50 continue 

call CVERT(vrf2,mnps,mnps,iv2) 

do 55 ii=1,mnps-1 

do 55 jj=1,mnps 

vlf1(jj,ii)=vrf2(ii,jj) 

55 continue 

do 60 ii=1,mnps 

vl0(ii)=vrf2(mnps,ii) 
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60 continue 

do 65 ii=1,mnps 

do 65 jj=1,mnps 

st1(ii,jj)=dble(st2(ii,jj)) 

vr(ii,jj)=aimag(st2(ii,jj)) 

65 continue 

c above gives diagonalization of real block 

c following gives diagonalization of complex block (2) 

c there are two, one(2) is the conjugate of the other(3) 

call cg(mnps,mnps,st1,vr,wr,wi,1,zr,zi,fv1,fv2,fv3,info) 

do 70 ii=1,mnps 

wri2(ii)=cmplx(wr(ii)/emaxx,wi(ii)/emaxx) 

70 continue 

do 75 ii=1,mnps 

do 75 jj=1,mnps 

vrf2(ii,jj)=cmplx(zr(ii,jj)/sqrt(emaxx),zi(ii,jj)/sqrt(emaxx)) 

75 continue 

do 80 ii=1,mnps 

do 80 jj=1,mnps 

vlf2(jj,ii)=vrf2(ii,jj) 

80 continue 

call cvert(vlf2,mnps,mnps,iv2) 

c above gives diagonalization of complex block (2) 
. 

c following gives all the related matrix elements 

c which will be used in calculation of correlation 

do 90 mm=1,mnps 

suc=czero 

suc1=czero 
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do 85 nn=1,mnps 

suc=suc+eng1(mm,nn)*vr0(nn) 

suc1=suc1+vlO(nn)*eng1(nn,mm) 

85 continue 

st2 (mm, 1) =sue 

st2(mm,2)=suc1 

90 continue 

do 100 jj=1,mnps-1 

suc=czero 

suc1=czero 

do 95 mm=1,mnps 

suc=suc+vlf1 (mm,jj)*st2(mm, 1) 

suc1=suc1+st2(mm,2)*vrf1(mm,jj) 

95 continue 

hlO(jj)=suc/emaxx 

hrO(jj)=suc1/emaxx 

100 continue 

suc=czero 

do 105 mm=1,mnps 

suc=suc+vl0(mm)*st2(mm,1) 

105 continue 

eav=suc/emaxx 

do 115 ii=1,mnps 

do 115 mm=1,mnps 

suc=czero 

do 110 nn=1,mnps 

suc=suc+vlf2(nn,ii)*eng2(nn,mm) 

110 continue 
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st2(ii,mm)=suc 

115 continue 

do 125 ii=1,mnps 

do 125 jj=_1,mnps 

suc=czero 

do 120 mm=1,mnps 

suc=suc+st2(ii,mm)*vrf2(mm,jj) 

120 continue 

h022(ii,jj)=suc/emaxx 

125 continue 

do 135 jj=1,mnps 

suc=czero 

suc1=czero 

do 130 kk=1,mnps 

suc=suc+conjg(vlf2(kk,jj))*css(kk)*vr0(kk) 

suc1=suc1+vlO(kk)*css(kk)*vrf2(kk,jj) 

130 continue 

sslO(jj)=suc 

ssrO(jj)=suc1 

135 continue 

do 145 jj=1,mnps 

suc=czero 

suc1=czero 

do 140 kk=1,mnps 

suc=suc+vlf2(kk,jj)*csb(kk)*vr0(kk) 

suc1=suc1+vl0(kk)*csb(kk)*conjg(vrf2(kk,jj)) 

140 continue 

sblO(jj)=suc 
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sbr0(jj)=suc1 

145 continue 

do 150 ii=1,mnps 

do 150 kk=.1,mnps 

st2(kk,ii)=conjg(vlf2(kk,ii))•css(kk) 

150 continue 

do 160 ii=1,mnps 

do 160 jj=1,!11D.ps-1 

suc=czero 

do 155 kk=1,mnps 

suc=suc+st2(kk,ii)•vrf1(kk,jj) 

155 continue 

eng2(ii,jj)=suc 

160 continue 

do 165 ii=1,mnps 

do 165 kk=1,mnps 

st2(kk,ii)=conjg(vlf2(kk,ii))•conjg(csb(kk)) 

165 continue 

do 175 ii=1,mnps 

do 175 jj=1,mnps-1 

suc=czero 

do 170 kk:=1,mnps 

suc=suc+st2(kk,ii)•vrf1(kk,jj) 

170 continue 

csb31(ii,jj)=suc 

175 continue 

do 180 ii=1,mnps-1 

do 180 kk=1,mnps 
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st2(kk,ii)=vlf1(kk,ii)*conjg(csb(kk)) 

180 continue 

do 190 ii=1,mnps-1 

do 190 jj=1,mnps 

suc=czero 

do 185 kk=1,mnps 

suc=suc+st2(kk,ii)*vrf2(kk,jj) 

185 continue 

csb12(ii,jj)=suc 

190 continue 

do 195 ii=1,mnps-1 

do 195 kk=1,mnps 

st2(kk,ii)=vlf1(kk,ii)*css(kk) 

195 continue 

do 210 ii=1,mnps-1 

do 210 jj=1,mnps 

suc=czero 

do 200 kk=1,mnps 

suc=suc+st2(kk,ii)*vrf2(kk,jj) 

200 continue 

ss12(ii,jj)=suc 

210 continue 

do 215 ii=1,mnps-1 

do 215 kk=1,mnps 

st2(kk,ii)=vlf1(kk,ii)*csb(kk) 

215 continue 

do 225 ii=1,mnps~1 

do 225 jj=1,mnps 
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suc=czero 

do 220 kk=1,mnps 

suc=suc+st2(kk,ii)*conjg(vrf2(kk,jj)) 

220 continue 

b013(ii,jj)=suc 

225 continue 

do 230 ii=1,mnps 

do 230 kk=1,mnps 

st2(kk,ii)=vlf2(kk,ii)*csb(kk) 

230 continue 

do 240 ii=1,mnps 

do 240 jj=1,mnps-1 

suc=czero 

do 235 kk=1,mnps 

suc=suc+st2(kk,ii)*vrf1(kk,jj) 

235 continue 

b021(ii,jj)=suc 

240 continue 

do 250 jj=1,mnps 

suc=cmplx(O.OdO,O.OdO) 

suc1=cmplx(O.Od0,0.0d0) 

do 245 kk.=1,mnps 

suc=suc+vlf2(kk,jj)*cm(kk)*vrO(kk) 

suc1=suc1+vl0(kk)*cm(kk)*conjg(vrf2(kk,jj)) 

245 continue 

maglO(jj)=suc 

magrO(jj)=suc1 

250 continue 

163 



c above gives all of the matrix elements 

c following searches for corresponding qmin 

c for fixed dta and temp 

ax=O.OdO 

bx=ph1*dta*pie 

do 310 it=1,60 

xmin=(ax+bx)/2.0dO 

root=cmplx(cos(xmin),sin(xmin)) 

suc=czero 

do 255 mm=1,mnps 

suc=suc+ssrO(mm)*sblO(mm)/(1.0d0-wri2(mm)/root) 

255 continue 

df=suc 

suc=czero 

do 260 mm=1,mnps 

suc=suc+sbrO(mm)*sslO(mm)*root*conjg(wri2(mm))/ 

c (1.0d0-root*conjg(wri2(mm))) 

260 continue 

df=df+suc 

errb1=dble(df) 

suc=czero 

do 265 mm=1,mnps 

suc=suc+conjg(sbrO(mm))*sblO(mm)/(1.0dO-wri2(mm)/root) 

265 continue 

df=suc 

suc=czero 

do 270 mm=1,mnps 

suc=suc+sbrO(mm)*conjg(sblO(mm))*root*conjg(wri2(mm))/ 
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165 

C (1.0d0-root*conjg(wri2(mm.))) 

270 continue 

df=df+suc 

errb2=dbl_e (df) 

errb=errb1-rat*errb2-(1.0d0-rat)/temp 

suc=czero 

do 275 mm.=1,mnps 

suc=suc+ssrO(mm)*sblO(mm)*cmplx(O.Od0,-1.0dO)* 

C (wri2(mm.)/root)/((1.0d0-wri2(mm.)/root)* 

C (1.0d0-wri2(mm)/root)) 

275 continue 

df=suc 

suc=czero 

do 280 mm.=1,mnps 

suc=suc+sbrO(mm)*sslO(mm)*cmplx(O.Od0,1.0dO)* 

C root*conjg(wri2(mm.))/((1.0d0-root*conjg(wri2(mm.)))* 

C (1.0d0-root*conjg(wri2(mm.)))) 

280 continue 

df=df+suc 

test1=dble(df) 

suc=czero 

do 285 mm.=1,mnps 

suc=suc+conjg(sbrO(mm.))*sblO(mm)*cmplx(O.Od0,-1.0dO)* 

C (wri2(mm.)/root)/((1.0d0-wri2(mm.)/root)* 

C (1.0d0-wri2(mm.)/root)) 

285 continue 

df=suc 

suc=czero 



do 290 mm.=1,mnps 

suc=suc+sbrO(mm)*conjg(sblO(mm))*cmplx(O.Od0,1.0dO)* 

c root*conjg(wri2(mm))/((1.0d0-root*conjg(wri2(mm)))* 

c (1.0d0-root*conjg(wri2(mm)))) 

290 continue 

df=df+suc 

test2=dble(df) 

test=test1-rat*test2 

if (test .gt. O.OdO) then 

ax =xmin 

end if 

if (test .lt. O.OdO) then 

bx =xmin 

end if 

if (test .eq. O.OdO) then 

go to 3000 

end if 

310 continue 

3000 root=cmplx(cos(xmin),sin(xmin)) 

c above gives the right qmin and errb 

c which at critical temperature is zero 

c following calculates related correlation and their 

c summation and the k derivative of errb called rdem 

do 320 mm.=1,mnps 

st2(mm,1)=ssr0(mm)/(1.0d0-wri2(mm)/root) 

320 continue 

do 325 mm.=1,mnps-1 

st2(mm,2)=hlO(mm)/(1.0d0-wri1(mm)) 
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325 continue 

do 335 mm=1,mnps 

suc=czero 

do 330 nn=1,mnps-1 

suc=suc+b021(mm,nn)*st2(nn,2) 

330 continue 

vrO(mm)=suc 

335 continue 

suc=czero 

do 340 mm=1,mnps 

suc=suc+st2(mm,1)*vr0(mm) 

340 continue 

f=suc 

do 345 mm=1,mnps~1 

st2(mm,1)=hrO(mm)/(1.0dO-wri1(mm)) 

345 continue 

do 350 mm=1,mnps 

st2(mm,2)=sblO(mm)/(1.0dO-wri2(mm)/root) 

350 continue 

do 360 mm=1,mnps-1 

suc=czero 

do 355 nn=1,mnps 

suc=suc+ss12(mm,nn)*st2(nn,2) 

355 continue 

vrO(mm)=suc 

360 continue 

suc=czero 

do 365 mm=1,mnps-1 
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suc=suc+st2(mm,1)*vr0(mm) 

365 continue 

f=f+suc 

do 370 mm=1,mnps 

st2(mm,1)=root*conjg(wri2(mni))*sbr0(mm) 

c /(1-root*conjg(wri2(mm))) 

370 continue 

do 375 mm=1,mnps-1 

st2(mm,2)=hlO(mm)/(1.0dO-wri1(mm)) 

375 continue 

do 385 mm=1,mnps 

suc=czero 

do 380 nn=1,mnps-1 

suc=suc+eng2(mm,nn)*st2(nn,2) 

380 continue 

vrO(mm)=suc 

385 continue 

suc=czero 

do 390 mm.=1,mnps 

suc=suc+st2(mm,1)*vr0(mm) 

390 continue 

f=f+suc 

do 395 mm=1,mnps-1 

st2(mm,1)=hrO(mm)/(1.0dO~wri1(mm)) 

395 continue 

do 400 mm=1,mnps 

st2(mm,2)=ssl0(mm)*root*conjg(wri2(mm)) 

c /(1.0d0-root*conjg(wri2(mm))) 
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400 continue 

do 410 mm=1,mnps-1 

suc=czero 

do 405 nn=1,mnps 

suc=suc+b013(mm,nn)*st2(nn,2) 

405 continue 

vrO(mm)=suc 

410 continue 

suc=czero 

do 415 mm=1,mnps-1 

suc=suc+st2(mm,1)*vrO(mm) 

415 continue 

f=f+suc 

do 420 mm.=1,mnps 

st2(mm,1)..;ssrO(mm)/(root-wri2(mm)) 

420 continue 

do 425 mm.=1,mnps 

st2(mm,2)=sbl0(mm)/ 

z (1.0d0-wri2(mm)/root) 

425 continue 

do 435 mm.=1,mnps 

suc=czero 

-do 430 nn=1,mnps 

suc=suc+h022(mm,nn)*st2(:nn,2) 

430 continue 

vrO(mm)=suc 

435 continue 

suc=czero 



do 440 mm=1,mnps 

suc=suc+st2(mm,1)*vrO(mm) 

440 continue 

f=f+suc 

do 445 mm=1,mnps 

st2(mm,1)=sbrO(mm)*root/ 

c (1.0d0-root*conjg(wri2(mm))) 

445 continue 

do 450 mm=1,mnps 

st2(mm,2)=sslO(mm)/(1.0dO-root*conjg(wri2(mm))) 

450 continue 

do 460 mm=1,mnps 

suc=czero 

do 455 nn=1,mnps 

suc=suc+conjg(h022(mm,nn))*st2(nn,2) 

455 continue 

vrO(mm)=suc 

460 continue 

suc=cz.ero 

do 465 mm=1,mnps 

suc=suc+st2(mm,1)*vrO(mm) 

465 continue 

f=f+suc 

do 470 mm=1,mnps 

st2(mm,1)=-root*wri2(mm)/((root-wri2(mm))*(root-wri2(mm))) 

470 continue 

suc=czero 

do 475 mm=1,mnps 
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suc=suc+ssrO(mm)*sblO(mm)*st2(mm,1) 

475 continue 

f=f+suc*eav 

suc=czero 

do 480 mm=1,mnps 

suc=suc+sbrO(mm)*sslO(mm)*conjg(st2(mm,1)) 

480 continue 

f=f+suc*eav 

rdem1=dble(f/temp) 

do 485 Iilm.=1,mnps 

st2(mm,1)=conjg(sbrO(mm))/(1.0dO-wri2(mm)/root) 

485 continue 

do 490 mm=1,mnps-1 

st2(mm,2)=hlO(mm)/(1.0dO-wri1(mm)) 

490 continue 

do 510 mm=1,mnps 

suc=czero 

do 500 nn=1,mnps-1 

suc=suc+b021(mm,nn)*st2(nn,2) 

500 continue 

vrO(mm)=suc 

510 continue 

suc=czero 

_do 515 mm=1,mnps 

suc=suc+st2(mm,1)*vrO(mm) 

515 continue 

£=sue 

do 520 mm=1,mnps-1 
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st2(mm,1)=hrO(mm)/(1.0d0-wri1(mm)) 

520 continue 

do 525 mm.=1,mnps 

st2(mm,2)=sblO(mm)/(1.0dO-wri2(mm)/root) 

525 continue 

do 535 mm.=1,mnps-1 

suc=czero 

do 530 nn=1,mnps 

suc=suc+csb12(mm,nn)*st2(nn,2) 

530 continue 

vrO(mm)=suc 

535 continue 

suc=czero 

do 540 mm.=1,mnps-1 

suc=suc+st2(mm,1)*vr0(mm) 

540 continue 

f=f+suc 

do 545 mm.=1,mnps 

st2(mm,1)=root*conjg(wri2(mm))*sbrO(IIl1!1) 

c /(1-root*conjg(wri2(mm))) 

545 continue 

do 550 mm.=1,mnps-1 

s~2(mm,2)=hlO(mm)/(1.0dO-wri1(mm)) 

550 continue 

do 560 mm.=1,mnps 

suc=czero 

do 555 nn=1,mnps-1 

suc=suc+csb31(mm.,nn)*st2(nn,2) 
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555 continue 

vrO(mm.)=suc 

560 continue 

suc=czero 

do 565 mm.=1,mnps 

suc=suc+st2(mm.,1)*vrO(mm.) 

565 continue 

f=f+suc 

do 570 mm.=1,mnps-1 

st2(mm.,1)=hr0(mm)/(1.0d0-wri1(mm.))' 

570 continue 

do 575 mm.=1,mnps 

st2(mm.,2)=conjg(sblO(mm))*root*conjg(wri2(mm.)) 

c /(1.0d0-root*conjg(wri2(mm.))) 

575 continue 

do 590 mm.=1,mnps-1 

suc=czero 

do 580 nn=1,mnps 

suc=suc+b013(mm.,nn)*st2(nn,2) 

580 continue 

vrO(mm.)=suc 

590 continue 

suc=czero 

do 595 mm.=1,mnps-1 

suc=suc+st2(mm.,1)*vr0(mm) 

595 continue 

f=f+suc 

do 600 mm=1,mnps 
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st2(mm,1)=conjg(sbrO(mm))/(root-wri2(mm)) 

600 continue 

do 605 mm.=1,mnps 

st2(mm,2)=sbl0(mm)/ 

z (1.0d0-wri2(mm.)/root) 

605 continue 

do 615 mm.=1,mnps 

suc=czero 

do 610 nn=1,mnps 

suc=suc+h022(mm,nn)•st2(nn,2) 

610 continue 

vrO(mm)=suc 

615 continue 

suc=czero 

do 620 mm=1,mnps 

.suc=suc+st2(mm,1)•vr0(mm) 

620 continue 

f=f+suc 

do 625 mm=1,mnps 

st2(mm,1)=sbrO(mm)•root/ 

c (1.0d0-root•conjg(wri2(mm))) 

625 continue 

do 630 mm.=1,mnps 

st2(mm,2)=conjg(sblO(mm)J/(1.0d0-root•conjg(wri2(mm))) 

630 continue 

do 640 mm=1,mnps 

suc=czero 

do 635 nn=1,mnps 
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suc=suc+conjg(h022(mm,nn))*st2(nn,2) 

635 continue 

vrO(mm)=suc 

640 continue 

suc=czero 

do 645 mm=1,mnps 

suc=suc+st2(mm,1)*vrO(mm) 

645 continue 

f=f+suc 

do 650 mm=1,mnps 

st2(mm,1)=-root*wri2(mm.)/((root-wri2(mm)}*(root-wri2(mm))) 

650 continue 

suc=czero 

do 655 mm=1.,mnps 

suc=suc+conjg(sbrO(mm))*sblO(mm)*st2(mm,1) 

655 continue 

f=f+suc*eav 

suc=czero 

do 660 mm=1,mnps 

suc=suc+sbrO(mm)*conjg(sblO(mm))*conjg(st2(mm,1)) 

660 continue 

f=f+suc*eav 

rdem2=dble(f/temp) 

rdem=rdem1-rat*rdem2+(1.0d0-rat)/(temp*temp) 

suc=czero 

do 665 mm=1,mnps 

suc=suc+ssrO(mm)*maglO(mm)/(1.0d0-wri2(mm)/root) 

665 continue 
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df=suc 

suc=czero 

do 670 mm.=1,mnps 

suc=suc+magrO(mm)*sslO(mm)*root*conjg(wri2(mm))/ 

c (1.0d0-root*conjg(wri2(mm))) 

670 continue 

df=df+suc 

rnom1=dble(df) 

suc=czero 

do 675 mm.=1,mnps 

suc=suc+conjg(sbrO(mm))*maglO(mm)/(1.0d0-wri2(mm)/root) 

675 continue 

df=suc 

suc=czero 

do 680 mm.=1,mnps 

suc=suc+magrO(mm)*conjg(sblO(mm))*root*conjg(wri2(mm))/ 

c (1.0d0-root*conjg(wri2(mm))) 

680 continue 

df=df+suc 

rnom2=dble(df) 

rnom=(1.0d0-rat+rat*temp*errb1)*(rnom1-rat*rnom2)/temp 

fmin=rnom/rdem 

c above calculates related correlation and their summation 

c and the k derivative of errb called rdem 

return 

end 
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