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CHAPTER I 

INTRODUCTION TO THE STUDY 

Problem Statement 

Regional general equilibrium models (CGE) are influential tools in policy 

analysis. However, some serious questions have been raised about the empirical 

foundations of these models. The main focus of the critique has to do with the 

specification of production functions (Rick.man and Partridge, 1998). Researchers often 

specify Constant Elasticity of Substitution (CBS) or Cobb-Douglas (CD) production 

functions in empirical models. The CD production function restricts the elasticities of 

substitution to be unity, whereas CBS permits different, but constant elasticities of 

substitution across industries. Flexible functional forms (FFF) such as the translog do not 

impose a priori restrictions on elasticities and are capable of modeling inputs as 

substitutes and complements. This suggests that they are more suitable for specification 

of the production sector in a CGE model. 

Applied regional general equilibrium models (CGE) also have been criticized for 

their reliance on calibration. During calibration some parameters such as elasticities are 

chosen from the literature, others are set arbitrarily and the remainder are set to values 

that replicate the benchmark data. This may lead to specification problems, especially if 
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the elasticity estimates used have been estimated under a partial equilibrium framework 

or another framework that is inconsistent with the CGE model under study. 

Given the paucity of data at the regional level, it is hardly surprising that there 

have not been many attempts to estimate regional elasticities. Although a few have 

employed cross-sectional data to estimate elasticity parameters at the regional level, 

others have used pooled data to estimate the parameters. Although more precise, there is 

little reason to believe that these estimates are any less biased than those plucked from 

other empirical literature. 

There has been no attempt to estimate flexible production functions at the state 

level. One reason could be that the estimated production function might not be well 

behaved at low levels of aggregation, which in turn could lead to convergence problems 

for the numerical solutions. One simple soultion would be to estimate a flexible 

production function at a state level by ensuring that all theoretical properties of the 

function are imposed so that it is well behaved. Also, if there is information on elasticity 

parameters from national studies, one could incorporate this as prior information in 

estimating regional production function. The use of prior information of this type is 

expected to improve estimator precision; if the prior information is good, only a small 

amount of bias may be introduced. One advantage of the above approach is that a regional 

CGE modeler can use this specification for modeling the production sector. This 

production function would represent the underlying technology for the economy under 

study. The researcher will not have to resort to ad hoc calibration techniques in the 

specification of important elasticities. 
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Several alternative methods for imposing concavity and monotonicity restrictions 

have been developed in consumer-producer demand models. Conventionally, the way to 

deal with inequality restrictions is to model the problem at hand as a quadratic program. 

This can result in estimates which are on the boundary of the constraint. The Bayesian 

approach provides an alternative to nonlinear programming. The set of inequality 

restrictions are thought of as priors under this approach, which lead to a truncated 

posterior. Bayesian point estimates are interior, moving closer and closer to the boundary 

as data disagrees more and more with the restrictions (Griffiths ,1988). Also, with small 

sample you get exact finite sample inference. More recent works have emphasized the 

non-classical approach; e.g. Chalfant and White (1988), Terrell (1996) and Dashti (1996) 

used Bayesian methods to impose restrictions. The Bayesian approach is well suited to 

regional analysis, as there is paucity of data at regional level. This can be overcome by 

specifying informative priors from national clata for estimates like 

elasticities of substitution. 

Objectives of the Study 

The overall objective of the study is to use Bayesian methodology to estimate a 

regional translog cost function representing manufacturing in Oklahoma. Specific 

objectives are: 

1. To estimate the translog cost function by imposing monotonicity and concavity 

restrictions. 

2. Based on predictive accuracy and posterior probabilities, choose between the 

Translog and Cobb-Douglas functional form. 
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CHAPTER II 

PRODUCTION THEORY 

Intoduction 

The foundation for production theory models is the production function, which 

summarizes the technological base underlying decisions of the firm. When behavioral 

assumptions such as cost minimization or profit maximization are added to this, one can 

construct an explicit optimization problem for the firm using these behavioral 

assumptions as the goal and the production function as the constraint. Solving the first 

order conditions of such a model allows us to define a function directly representing the 

optimal choices of the firm. The resulting cost function is "dual" to the production 

function in the sense that it is explicitly based on the technological structure underlying 

the production function relationship, so the technology itself may implicitly be 

reproduced by a reverse optimization process 

For example, cost minimization requires in graphical terms, identifying the scale 

expansion path as a set of tangencies of isocost curves, defined by the given relative input 

prices and the isoquants. The shape of the path depends on the shape of the isoquants, 

which in tum is determined by the form of the production function. Therefore, 

information on scale expansion paths (SEP) supported by different input price 

combinations could, in reverse, allow us to trace out the form of the isoquants. Since the 
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scale expansion path provides the basis for the dual cost function, this means the cost 

function could in principle be used to trace out the shape of the production function. The 

fundamental idea of duality theory is that technology represented by the production 

function Y(v, t), where tis a time counter, Y is the output and vis a vector of variable 

inputs, can be represented equivalently in other forms, most of which also incorporate 

optimizing behavior. One of these forms is the cost function which reflects the minimum 

total cost of producing a particular output level, Y, given the production technology and 

input prices. Since the production function is by definition a constraint on this 

minimization problem, the cost function not only reflects cost minimization but also 

completely describes the technology of the firm. In reverse, it implies that in certain 

circumstances the cost function can be used to reproduce the original production function. 

Consider the basic cost function, the long run function TC (p, Y, t). Since it is founded on 

SEP, the optimized ( cost minimizing) levels of all inputs are incorporated in the function. 

Constructing a model based on this function, therefore allows us to explore the 

dependence of input demand and therefore cost on any exogenous variable included as an 

argument of the function (Morrison, 1999). 

In particular, demand equations for factors of production are derived from this 

function using Shephard's Lemma (a duality result) to obtain long- run optimal demand 

for inputs j; a TC (pj, p, Y, t) I a pj = Vj (pj; p, Y, t), where p here excludes the price of 

inputj. This procedure graphically implies identifying a point on the TC function, by 

finding for a particular p1, say, given Pk, Y, and t, what the associated point on the SEP 
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would be (assuming inputs are K and L). The resulting input demand function includes all 

arguments other than pj as shift parameters. More formally the cost function is defined as 

TC (Y, p, t) = min v {pT v: Y (v, t) ~ Y*} (1) 

Where (p1, p2 ... ·Pj) = p >> 01 is a vector of J positive input prices, >> implies strictly 

positive, Y* is a particular output level, no monopsony exists (input prices are 

exogenous), and the "T" superscript indicates a transposed vector. If a solution to the cost 

minimization problem (which involves solving first order conditions for all inputs in the 

v vector as well as satisfying the Y (v, t) ~ Y* constraint) exists, we can state a number of 

regularity conditions that the resulting function must satisfy: 

1. TC(•) is a nonnegative function (TC (Y, t, p) ~ 0). 

2. TC(•) is positively linear homogeneous in input prices for any fixed output level. 

3. TC(•) is increasing in input prices i) TC Ii) Pj > 0. 

4. TC ( •) is a concave function of p (o2 TC I a p/ ~ 0). 

5. TC(•) continuous in p and continuous from below in Y. 

6. TC ( •) is nondecreasing in Y for fixed p (i) TC I oY ~ 0). 

7. TC ( •) meets the symmetry requirement. By the symmetry of the Hessian matrix, it 

must be that o2 TC I i) Pi Pj = o2 TC I o2 pj Pi, and similarly for the cross-derivatives 

with respect to any two arguments of the function. 

Most of these conditions are quite intuitive. (1) simply reflects the fact that costs 

are positive for productive firms, if not, production would be infinite if output price were 

positive. (2) indicates that units of measurement for cost do not matter; if all prices 

increase by particular factor, minimum possible total cost of production for a given output 
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level must change by same proportion. This is the homogeneity restriction. (3) implies 

that if a price increases costs must also increase. If this is not the case costs could not 

have been minimized in the first place. This is the monotonicity restriction. ( 4) Implies 

that as input price rises minimum costs also go up, but this increase will not be 

proportional because substitution occurs. (5) in effect says that inputs must be divisible. 

This is required for derivatives to be defined for analysis. (6) ensures that marginal cost as 

well as total cost is positive, which is necessary for optimization to make sense. (7) 

requires that substitution matrix is negative semi-definite. It ensures that consistent 

choices are made. A sufficient condition for negative semi-definite substitution matrix is 

that eigenvalues must all be less than_ or equal to zero. If symmetry is falsified, cost is not 

minimized (Morrison, 1999). 

For empirical purposes the choice of the function to use for analysis is important, 

since, it determines what type of equations represent the production technology and 

behavior, and what economic performance indicators may be generated directly from 

these equations. 

A production function might initially be thought to be most useful to specify and 

work with, since, it directly represents the production technology. However, as the basis 

· for representing the behavior and thus responses of the firms, the production function has 

shortcomings. The main problem with the production function specification involves the 

endogeniety versus exogeniety of right-hand side variables. Essentially, if the behavioral 

assumptions are incorporated, the production function framework results in a system of 
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pricing equations for estimation that are implicitly based on the premise that the firm 

decides what prices to pay for given quantities of inputs. 

More specifically, in the production function specification the first-order 

conditions underlying the system of estimating equations stem from the profit 

maximizing equalities Pj = py* MPj = py* oY (v, t) Io Vj, where py* MPj = VMPj is the 

value of the marginal product. Thus the production function is used to define the marginal 

products, and the profit maximization assumption is imposed to generate the estimating 

system. 

However, in the above scenario the input price pj turns up on the left-hand side of 

the equation for estimation and the marginal product expression appears on the right hand 

side. This implies that v/s are exogenous and prices endogenous, whereas one usually 

would think firms work the other way around - they observe the market price and choose 

input demand. 

It seems more natural to represent firm's behavior in terms of costs. If estimation 

is based on cost function, the input demand functions can be derived directly from 

Shephard's Lemma. Input demand is therefore by construction the endogenous variable, 

which facilitates using these expressions as the basis for a system of estimation equations. 

Further, if one wishes to represent input demand elasticities, this implies specifying the 

model in terms of input demands. Use of cost function also avoids the issues of long-run 

behavior. With constant returns to scale and perfect competition profit maximization in 

the long run is not defined although cost minimization for a given output level is. 

8 



The conventional approach in production economics has been to posit an explicit 

production function, and then solve the cost-minimizing problem, to derive factor 

demand functions. This approach has been criticized on the grounds that it imposes quite 

restrictive assumptions regarding elasticity of substitution parameters, or leads to 

algebraic expressions for factor demands that involve empirically unmanageable 

parameters that characterize the underlying production function. This is especially true 

when one wishes the production function to be flexible in the sense that it provides a 

second-order differentiable approximation to an arbitrary twice continuously 

differentiable function. 

However, there is an alternative approach to study production relationships 

invoking the duality theorems. These duality theorems, in addition to their theoretical 

attractiveness, have resulted in very pragmatic formulation of production functions. 

Specifically, this approach utilizes Shephard duality and Shephard Lemma. Shepherd 

duality ensures the existence of a unique production function given the existence of a 

unique cost function with certain regularity conditions, and the latter require that we then 

estimate the relevant parameters by simple regression. 
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CHAPTER ill 

REVIEW OF LITERATURE AND RELATED RESEARCH 

Introduction 

There have been few attempts at estimating regional production functions for the 

United States. One reason for the lack of studies attempting to estimate production 

functions at the regional level is the lack of regional data. In this section we provide a 

general overview of the literature dealing with production functions. Next we present a 

summary of the few attempts at estimating production functions at the regional level 

The estimation of production functions has a long history. In the 1920s Charles 

Cobb and Paul Douglas (1928) used what has become known as the Cobb-Douglas (CD) 

production function, to test marginal productivity theory. Although the CD function was 

useful for labor value share application that was of interest to Cobb and Douglas, other 

economists who were more interested in measuring substitution elasticities among inputs 

found the CD functional form too restrictive. For the CD case, the elasticity of 

substitution always equals one. In a very important paper, Kenneth J. Arrow, Hollis B. 

Chenery, Bagica Minhas, and Robert Solow (1960) proposed an extension of CD 

function, referred to as Constant Elasticity of Substitution (CBS) production formulation. 

The CBS functional form provided an elasticity of substitution which was constant, but 

was not constrained to unity. 
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Around this time one sees efforts by Earl Heady and his associates to empirically 

estimate production functions. Heady et al. (1961) designed crop, seed, and fertilizer 

experiments for a large number of crops and then used these data and the least squares 

method to estimate input output relationships with alternative functional forms. Heady et 

al. wanted to include in their experiments input combinations which resulted in negative 

marginal products. The CD form only permits positive marginal products. Heady et al. 

experimented with Taylor's series expansion as polynomial approximations to unknown 

algebraic forms. They introduced the second degree polynomial in logarithms that added 

quadratic and cross-terms to CD function. This form was dubbed the translog function a 

decade later by Christensen et al (1971). They also reported least squares estimates of a 

square root transformation that included as a special case the generalized linear 

production function introduced by Diewert (1971). 

The efforts by Arrow et al. and Heady et al. all involved attempts to generalize 

the restrictive form of CD. It is noted that CD and CBS functional forms satisfy 

requirements of global regularity but make strong assumptions about input substitution. 

Uzawa (1964)showed that the CBS form had limited flexibility because it could not 

realize arbitrary elasticities of substitution. Interest then focused on functional forms 

which were Jocally flexible but not globally regular such as the generalized Leontief (GL) 

and the translog. GL and translog functional forms use duality between production and 

cost functions and permit arbitrary elasticities of substitution among several inputs. 

Price shocks of early 1970s led to a systematic study of relationship between 

energy and other inputs in the production process. The seminal paper by Berndt and 
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Wood (1975) use the translog functional form in focusing on cross-substitution 

possibilities between energy and other inputs to characterize the structure of technology 

in U.S. manufacturing. They find energy and labor to be substitutes, and energy and 

capital to be complements. Additional studies conducted by Griffin and Gregory (1976) 

and Pindyck (1979) find capital and energy to be substitutes. Evidence from engineering 

studies also tend to report the capital-energy substitutability. This capital-energy 

controversy has still not been resolved in the production literature. If capital and energy 

are complements, higher energy prices reduce capital investment and potential GNP. If on 

the other hand, capital and energy are substitutes, higher energy prices encourage capital 

investment and increase potential GNP. 

The literature at this stage tends to focus on reconciling the above capital and 

energy controversy. Berndt and Wood (1979) wrote a paper to point out that engineering 

studies usually include only energy and capital as inputs and focus on movement of 

production along a capital isoquant. They point out that with only two inputs, capital and 

energy can not be complements. They suggest that price elasticity be divided into gross 

and net price elasticity. Using their earlier data, Berndt and Wood (1979) find that net 

price elasticity dominated gross price elasticity, and thus the finding of energy-capital 

complementarity. Griffin (1981) refutes the arguments presented in Berndt and Wood 

(1979) paper and helps to reconcile the capital-energy substitutability finding. He points 

out that Berndt and Wood (1979) used time series data on U.S. manufacturing that had 

little energy price variation, while pooled international data provided greater variation. 

Cross-sectional international data are more likely to provide long-run elasticities, while 
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time series data used by Berndt and Wood (1979) are more likely to provide short-run 

elasticities. 

Berndt and Wood (1981) reply by pointing out that the Griffin paper did not 

include materials as factor of production. With fewer inputs, the finding of substitution is 

more likely. The quality of data used was also questioned. The capital price in many 

countries had to be adjusted for different tax structures and capital stock was measured as 

value added residual. Norsworthy and Malimquist (1983) use the translog cost function to 

extend the analysis beyond the first energy price shock. They compare U.S. and Japanese 

labor productivity, and perform different tests of input aggregation. They point out the 

capital-energy complementarity in agreement with Berndt and Wood finding. 

Improvements to Translog Estimation 

Improvements to the translog estimation was suggested by Woodland (1979). He 

points out that the standard share equation specification neglects the requirement that 

shares assume a value between zero and one. As an alternative, the Dirichlet distribution 

that automatically limits share values is suggested. A comparison using data from three 

empirical studies and two specifications provide evidence for continued use of the normal 

distribution. 

Considine and Mount (1984) use a logit specification that limits possible shares to 

values between zero and one. The disadvantage of this approach is that symmetry is 

imposed only on one observational point. They use expanded Berndt and Wood (1975) 

data for years 1947 through 1981 to estimate translog and logit specifications. The 
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translog suffers from concavity voilations at twenty-one of the thirty-five observations 

and positive own price elasticities for the years 1958 through 1981. The logit 

specification has negative own price elasticities for all years but suffers from concavity 

violation at the mean of the cost share, so concavity is violated at all observations. A 

dynamic logit model is also specified and no concavity violation is found at the cost share 

mean and thus concavity is satisfied for all observations. At the mean cost shares, energy 

and capital are substitutes while energy and labor, and labor and capital are complements 

in both the short and long run. 

Chavas and Segerson (1987) examine the stochastic specification used to estimate 

share equations and propose an alternative minimum distance estimator. This estimator is 

invariant to the deleted share equation and is based on a random objective function. They 

conclude that for the almost ideal demand system and the translog functional form, 

. assuming homoskedasticity can be restrictive and cause biased hypothesis testing. 

Considine (1990) uses a iterative nonlinear estimation procedure to impose 

symmetry for all observations of the logit model. Using the Berndt and Wood data no 

concavity violations are found. Capital and labor, and energy and labor are substitutes, 

while energy and capital are complements. 

Kim (1992) estimates a translog production function with variable returns to scale. 

Inverse input demand functions are written using the translog share equations form. These 

are estimated using the logistic-normal distribution so that shares will be distributed in 

the unit interval. Using the Berndt and Wood data he finds that constant returns to scale 

assumption is rejected. 
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Clark and Youngblood (1992) estimate a translog function as a cointegrated 

process using Canadian agriculture data. After testing for unit roots they find that factor 

prices, shares, and output are cointegrated implying thattechnical change is neutral. A 

traditional autocorrelation corrected translog with a time proxy for technical change is 

estimated for comparison. The cointegrated model satisfies the theoretical concavity and 

monotonicity requirements better than the traditional translog. The cointegrated model 

finds that all inputs are substitutes, while the translog finds that land and fertilizer are 

complements. 

Development of Alternative Functional Forms 

In an attempt to improve the estimation of production functions and criticism of 

translog functional form has led to the development of alternative functional forms. The 

different approaches to production or dual cost function estimation attempt to provide 

good approximation using economic theory, while permitting flexible substitution and 

complementary relations among inputs. Generally, the more parameters a functional form 

has the greater its flexibility, the more information it can provide about substitution and 

complementary relations among the inputs, and the more closely theoretical requirements 

can be met. Berndt, Morrison, and Watkins (1981) divide the efforts to estimate 

production functions into three generations. 

First Generation Models 

The first generation is characterized by single-equation dynamic models with 

fixed lag structures and limited interaction among the inputs. The CD and CES are 

examples of this. 
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Second Generation Models 

Second generation models are characterized by functional forms that recognize the 

inter-relatedness of factor demands such as the translog and generalized Leontief. These 

forms are termed as flexible functional forms. Flexible functional forms allow a general 

specification of interactions among arguments of the function such as input substitution. 

More specifically flexible functional forms allow data to identify patterns among the 

arguments of the function since by definition they impose no a-priori restrictions on these 

interactions. Flexible functional forms provide a second order approximation to arbitrary 

twice continuously differentiable functions. 

Further efforts to improve on flexible functional forms has led to the development 

of semi-nonparametric functional forms. Semi-nonparametric functional forms use 

additional terms of series expansion to asymptotically eliminate specification error bias. 

One usually increases the number of expansion terms used as the sample size increases. 

These functional forms constrain curvature conditions to be satisfied. This forces data to 

satisfy properties that must hold for our production theory model to hold. Such functional 

forms include the symmetric Mcfadden, the generalized Box-Cox, the Fourier, and the 

minflex Laurent. Gallant (1981) uses the Fourier series expansion to create a functional 

form that will approximate any functional form to a know bound. Barnett, Geweke, and 

Wolf (1991) have made an important contribution by using Muntz-Szatz series expansion 

to create their asymptotically ideal model. They find that the generalized Leontief 

functional form, which is often used as an alternative to translog, is a member of Muntz

Szatz expansion. 
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Third Generation Models 

Third generation models deal with fixity of certain inputs. An important 

assumption implicit under the formulation of translog and generalized Leontief has been 

that all inputs adjust instantaneously to their long-run equilibrium values. Specifically, 

researchers make a distinction between variable and quasi-fixed inputs, where the latter 

adjust only partially to their full equilibrium level within one period. Besides making a 

distinction between fixed and variable inputs, this approach analytically derives the 

optimal transition path from short to long-run. Third generation dynamic models are 

based on optimizing ,agents with dynamically changing functions. Input adjustment of 

quasi-fixed factors have endogenous time varying speeds of adjustment to their 

equilibrium levels instead of being exogenous and fixed. Short-run demand equations 

depend on the price of output and variable inputs while holding the quasi-fixed inputs 

constant. The transition from short to long-run for the variable input includes not only 

adjustment of quasi-fixed factors, but also incorporates economically optimal variation in 

their rates of utilization. The dynamic path of adjustment to long-run equilibrium is based 

on economic optimization at each point in time so the short and long-run are clearly 

defined. Berndt, Morrison, and Watkins (1981) provide a third generation model using 

partial adjustment and static expectations. Epstein (1981) develops the theoretical basis 

for dynamic factor demand models. A practical procedure for generating a large class of 

dynamic factor demand functional forms is described. Kokkelenberg and Bischoff (1986) 

discuss what they call fourth generation factor demand models. These models replace the 

static expectations specification used in earlier generation with stochastic expectations. 
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To model expectations stochastically requires one to posit an explicit process under 

which expectations were formulated. Rational expectation paradigm is a popular 

approach adopted in the literature. 

Rational Expectations Paradigm. Rational expectation hypothesis posits that 

individuals use all information when forming expectations about the future and thus do 

not make systematic forecasting errors. Rational expectations is commonly used as a 

"black box" that provides an instantaneous outcome for a complicated unexplained 

underlying process. 

Rational expectations models generally assume a linear time series model of 

factor prices with a quadratic production technology so a closed-form solution to the 

dynamic factor demand functions can be found. Attempts to estimate productions with 

rational expectations can be divided into three approaches. The first approach uses an 

explicit analytic solution to firm's optimization problem with expectations based on an 

autoregressive model and is explored by Hansen and Sargent (1980). Epstein and 

Yatchew (1985) use this approach with a simpler functional form and Berndt and Wood 

(1975) data extended to 1977. They find data to be inconsistent with the functional form 

and evidence that higher-order parameter adjustment terms are needed. Kokkelenberg and 

Bischoff (1986) use the approach with quarterly manufacturing data from 1959 through 

1977 and find evidence of energy-capital complementarity. They use ARIMA equations 

to supply future exogenous variables. 

The second approach to estimating production with rational expectations uses 

parameters from initial planning period Euler equations. Actual observed values are used 
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for expectations and an instrumental variable estimation technique is used. Greater 

functional form flexibility is possible, but the estimation procedure is not efficient. This 

approach is explored by Kennan (1979), Hansen (1982) and Hansen and Singleton 

(1982). Using the technique Pindyck and Rotemburg (1983) found energy and capital to 

be complements in the short-run with an elasticity close to that found by Berndt and 

Wood. In the long-run energy and capital are substitutes with elasticities close to that 

found by Pindyck (1979), and Griffin and Gregory (1976). They warn that with 

stochastically evolving prices, intermediate-and long-run elasticities must be interpreted 

with caution. 

The third approach suggested by Purcha and Nadiri (1984) uses a numerical 

algorithm that solves the firm's optimization problem at each iterative step. A certainty 

equivalence feedback control policy is used instead of stochastic closedloop feedback 

control policy of first two approaches. 

Fourth Generation Models 

Fourth generation dynamic production and cost models use rational expectations 

to model the formulation of expectations by assuming that agents maximize the value of 

some control function. To do so in the long-run requires knowledge about future prices or 

resource scarcity. 

Autocorrelation Correction 

The translog and generalized Leontief specification assume a complete 

adjustment of factor prices. Time series data used in empirical studies usually violates the 

19 



assumption of uncorrelated disturbances. Autocorrelation correction can be viewed as a 

convenient simplification of a dynamic model with a complex lag structure. 

In a simultaneous equation system the disturbance term of one equation can be 

correlated to itself and the disturbance terms of the other equations. A matrix of 

autoregressive factors can be used in a manner analogous to the single equation to correct 

the problem. For a single equation the Cochrane-Orcutt or Hildreth-Lu autocorrelation 

correction procedures are often used. The problem becomes more difficult when the 

system of simultaneous equations is singular as in the case of the translog share 

equations. 

Berndt and Wood (1975) discuss the autocorrelation correction for a singular 

system of equations. They prove that the column of the matrix of autoregressive factors 

must add to an unknown constant or the result will not be invariant to the equation 

deleted. If a single adjustment factor is used for each equation then the adjustment factors 

must be identical. When the matrix of autoregressive factors is nondiagonal, additional 

assmpptions must be made to recover the matrix of autoregressive factors for the original 

share equations. 

Anderson and Blundell (1982; 1983) consider the estimation of singular equation 

system using a general specification that incorporates the static, first differences, partial 

adjustment, and vector autoregressive models. They observe that when systems of 

demand equations are estimated, the theoretical requirements of symmetry and 

homogeneity, are often rejected and they believe that the difficulty exists because the 

dynamic structure of the model has not been correctly specified. The general specification 

20 



they suggest can be used with the translog and other functional forms. In empirical tests 

using the Berndt and Savin (1975) data and Canadian data for nondurable goods they find 

support for the vector autoregressive model. 

Kumbhakar and Seeletis (1990) use a translog specification and the method of 

Anderson and Blunndell (1982, 1983) to test a sequence of nested dynamic specifications. 

Using the data of Norsworthy and Malmquis (1983) and computing elasticities at the 

mean of the data, they found that capital-energy and capital-labor pairs are substitutes, 

while energy and labor are complements. 

Friesen (1992) uses the Anderson and Blundell (1982,1983) autocorrelation 

approach with a translog error-correction model and Berndt and Wood (1975) data 

extended through 1981. She tests several dynamic translog models holding various 

combinations of inputs as quasi-fixed. The quasi-fixed factors enter the translog cost 

share equation as a quantity instead of a price, and the cost of the factor is not included in 

the cost of production. The factors not held as quasi-fixed are assumed to fully adjust 

each period. Symmetry and homotheticity are tested using maximum likelihood values. 

While her error-correction model dominates other functional forms, it is unable to 

produce satisfactory long-run elasticity estimates. Positive own-price elasticities are 

found for many data points. She notes that prices were more stable before 1970s and the 

additional observations may be the reason for the theoretical violations. 

Comparison of Alternative Functional Forms 

Several functional forms have been reviewed above. How does one choose among 

competing functional forms? For example, let us look at three forms: the generalized 
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Leontief (GL), the translog (TL), and the generalized Cobb-Douglas (GSD). By definition 

all three have attractive local property and a researcher is not clear as to how to choose 

among them. A few studies have discussed the issue of choosing among the wealth of 

different productions that have been proposed. Wales ( 1977) performed a Monte Carlo 

study to investigate the ability of GL and TL forms to represent two-commodity 

homothetic preferences exhibiting constant elasticity of substitution. He finds TL to 

perform better in some cases while GL performs better in others. Berndt, Darrough, and 

Diewert (1977) used Canadian expenditure data to estimate three-commodity 

nonhomothetic GL, TL and GCD forms. On the basis of better fit and conformity with 

neoclassical restrictions, they concluded that the TL form was the better form for their 

data set. Tsurumi and Tsurumi (1976) explore Bayesian estimation of the CES production 

function. A Bayesian highest posterior density interval inference is made to examine the 

validity of the CD representation. The method is applied to micro and macro data on two 

Japanese manufacturing plants. Two cases out of five tested in their study reject the CD 

representation. They recommend to test the validity of CD form in micro and macro 

studies by testing it against other alternative functional forms. Rossi (1985) presents a 

Bayesian approach to choosing between two non-nested multivariate regression systems. 

The Bayesian approach involves the calculation of posterior probabilities of alternative 

hypothesis and formation of posterior odds ratio. Odds ratio are applied to make a choice 

between TL and Fourier flexible functional form. They apply this procedure to U.S. 

manufacturing cost data and the estimated odds ratio favor the Fourier flexible form over 

the translog form. 
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The above papers have employed statistical analysis as the basis for choosing 

among alternative functional forms. Implicit in these statistical investigations is the 

recognition that the ability of a function to perform well over a range of data points, in 

addition to the base point, is an important criterion to be used in choosing among flexible 

forms. Caves and Christensen (1980) address this issue and provide global regularity 

regions for the GL and TL forms. Recently, Terrell (1996) uses Gibbs sampling to impose 

the regularity condition on three flexible functional forms: generalized Leontief, · 

symmetric generalized McFadden and translog. Using Berndt and Wood (1977) data he 

finds that all three functional forms do not meet the regularity conditions. Using an 

informative prior defined as a prior that incorporates inequality restrictions from theory, 

he finds that imposing monotonicity and concavity over larger ranges of prices restricts 

the functional form in a manner similar to global restrictions. He finds that imposing 

restrictions over smaller range of prices gives one reasonable results without any loss of 

flexibility. 

Hedonic Cost Functions 

The translog and generalized Leontief specifications include a single output 

measure. Spady and Friedlaender (1978) have extended the above specification by 

integrating the hedonic approach, which emphasizes attributes of outputs, with the 

flexible functional form literature. They note that in many industries, physical output 

varies with respect to attributes or qualities. They construct a hedonic measure of output 

as a function of output characteristics and call it "effective" or "quality- adjusted" output. 

They argue that failure to take these output characteristics into account can create serious 
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specification errors. They examine regulated trucking in U.S., where ton-miles is the 

conventional measure of output. They distinguish the ton-mile of short-haul, small-load, 

less-than-truckload traffic from those of the long haul, large load, truckload traffic, not by 

treating them as separate outputs, but rather specifying an effective output that depends 

on generic measure of physical output and on the attributes of this output. 

Other Alternatives Formulations 

Another alternative is the estimation of frontier production or cost functions that 

originated with Farrell (1975). When estimating frontier cost or production functions all 

residuals are typically constrained to be negative. Firms are depicted as approaching but 

unable to reach a production possibilities frontier because of inefficiencies. This approach 

has primarily been used in efforts to study the efficiency of different industries. Varian 

(1990) suggests testing departures from optimizing behavior to see if they are significant 

in the economic sense instead of statistical sense. He discusses procedures for testing 

significance in economic sense by using a money metric goodness-of-fit measure and 

provides an example using aggregate consumer demand. Antle (1983) suggests a flexible 

moment-based approach to estimating production and cost functions. Affixing an additive 

or multiplicative error term to a deterministic production function imposes arbitrary 

restrictions on the moments. McElroy (1987) criticizes studies of production for adding 

linear error terms after specifying a deterministic model. She proposes general error 

models. General error models with an additive error is specified and estimated using 

Berndt and Wood (1975) data. Results are similar to that of Berndt and Wood (1975) 

study and are found except for a thirty-seven percent higher partial elasticity of 
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substitution between capital and labor. A specification test shows the translog additive 

general error models is superior to the standard translog specification. 

Regional Studies 

Studies by Gallaway (1963), Scully (1971), Alperovich (1980) and Hunt and 

Emerson (1982) are the few examples of regional studies. Gallaway tested and advanced 

the hypothesis that persistence of a steady 20 percent unadjusted wage differential 

between northern and southern manufacturing workers could be explained by the 

differences in production functions. Conclusions were that data could not support the 

hypothesis. A different conclusion was obtained by Scully (1971), who tested the same 

hypothesis for the period 1907-1946, and concluded that the two regions operated on 

different production functions. Alperovich (1980) tests the hypothesis that regional 

production functions are different due to regional differences in technological 

agglomeration economies, technical quality of capital etc. Using data from 1950-1969, for 

nine U.S. regions, they estimate a Constant-Elasticity-Substitution production function. 

Their conclusion is that elasticities of substitution are different across regions, but with 

the exception of few industries, these differences are not significant, implying uniformity 

across reg10ns. 

The above studies have been criticized for employing restrictive functional forms 

for estimating production functions and being limited to the two input case. The translog 

cost model, a flexible functional form for estimating cost function is estimated by Hunt 

and Emerson (1982). They estimate a three input cost function for U.S. manufacturing 

using cross-sectional data by state for 1976. They perform checks for monotonicity and 
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concavity restrictions and find that they are met. They conclude that there is significant 

North-South regional variation in production functions. 
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CHAPTER IV 

METHODOLOGY 

Bayesian Paradigm 

In this section we provide a very brief overview of Bayesian modeling. For 

illustration purposes consider a simple linear regression model: 

Y=XJ3 +e, e - N (0, cr2 IT) , (2) 

where Y and e are T x 1 vectors, and X is a T x K matrix of rank K containing the fixed 

regressors, X1, X2, .•..• Xk. Under the Bayesian paradigm, the parameters of the model, 

0 = [J3 cr2], are treated as random variables having probability distributions. These 

distributions are used to summarize the status of knowledge about the model parameters. 

A probability distribution, g(0), employed by a researcher to summarize his or her 

knowledge of 0 before observing sample observations on X and Y is called a prior 

distribution. Different researchers may have different knowledge about the parameters, 

and the knowledge may be subjective, reflecting prior beliefs. When prior information is 

not available, a "flat" or diffuse prior is adopted. Once Y is observed, a Bayesian 

researcher revises the distribution of the parameters by combining the prior distribution 

with the information contained in the sample, using Bayes' theorem. Denote the 

distribution of the sample observations Y given the parameters by f(Y j 0), the joint 

distribution of the data parameters by h(0, Y), and the marginal distribution of the data by 
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f (Y). The posterior distribution of parameters given the data is denoted by p(8 I Y). The 

joint distribution can also be written as: 

h(8, Y) = f (Y I 8) g(8) = p(8 I Y) f(Y) (3) 

from which Bayes' theorem is obtained as follows: 

p(8 I Y) = f (Y I 8) g(8) I f (Y) (4) 

or because f (Y) has no operational significance, 

p(8 I Y) = f (Y I 8) g(8). (5) 

It is customary, noting the functional equivalence off (Y I 8) and the likelihood function 

L(8 I Y), to express the posterior distribution as 

p(8 I Y) = L( 8 I Y) g(8). (6) 

This shows that posterior distribution combines the likelihood function with the prior 

distribution. 

Bayesian Approach to Inequality Restrictions 

To ensure the regularity of the translog function estimated in this paper, we 

impose monotonicity and concavity restrictions. These restrictions involve inequality 

constraints. We follow a Bayesian approach to impose these restrictions. We describe this 

approach below. 

Following the discussion of the above section, the first step of the Bayesian 

approach is to define a prior density function, over the vector of parameters, /3, call it 

p(f3). This prior contains all the information available about the parameter before 

estimation. If there is no prior information available about parameters, a diffuse or non

informative prior is specified. In this case p(f3) is defined to be proportional to a constant, 
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p(f3) oc c. On the other hand, if strong prior knowledge about elasticities and parameters 

exist, a prior incorporating this information can be specified. A second step in Bayesian 

analysis is to specify a likelihood function L(f3). Bayes theorem shows how to combine 

prior and sample information to obtain the posterior distribution of parameters in a given 

data set Y. The essential idea is that the posterior assessment is a blend of the new 

information and the prior assessment. Next, define an indicator function which is defined 

over the region consistent with inequality restrictions: 

h(/J)={lo if8cl8p~O, 8 2 cl8p8p' is N.S.D. 
otherwise. 

(7) 

This indicator function is one if monotonicity and concavity are satisfied, otherwise it is 

assigned a value of zero. Bayes theorem is used to combine the likelihood function, prior 

information and the above indicator function given in (7) to derive the posterior 

distribution 

f (/J I y) = {p(/J) L(~ I y) if a clap~ 0, a 2 clap a p' is N.S.D. 
0 otherwise. 

(8) 

The above posterior density is only defined over the range where the cost function 

satisfies monotonicity and concavity. We say that the posterior is truncated as it cannot 

take values outside the range defined by the indicator function. 

Model For Incorporating Informative Priors 

From the above discussion we gather that using the Bayesian approach one can 

impose inequality restrictions using either diffuse or informative priors. In this section, 

we posit a general model where we can incorporate diffuse and informative priors. We 
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consider the estimation of this model within the context of a set of seemingly unrelated 

regression (SUR) equations. The general form of the model is given as follows: 

(9) 

where y is a T x 1 vector, Zj is a T x K j matrix of explanatory variables, ~j is K j x 1 

vector of unknown parameters, E is a T x 1 vector, and j = 1, ... , m. Define Z as follows : 

Z '= [z 1 •••••••••• Zm]. 

The distributional assumptions for the above model is 

(10) 

The m x m matrix H is the precision matrix of the disturbance vector Et· 

The prior distribution of Eis given as follows: 

/J - N(/J, H 1}). (11) 

- --J 
/Jl(H,y,Z) -N(/J,Hp), (12) 

and Hp and /J represent the posterior precision and mean respectively. 

Denote W to represent the Wishart distribution, and assume the prior distribution 

of precision matrix, H, to be independent of /J. Then, the prior distribution of His given 

as follows: (13) 

where ~ is the sum-of-squares and cross products for the sample and !'. represents the 

degrees of freedom. The conditional distribution for His given as follows: 
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HI (,8, y, Z)- w [ (S + S) -1. V + T J (14) 

In the above framework, we can set-up our model to represent complete ignorance 

(diffuse) of the parameters of the model by specifying precision matrix to be of very small 

magnitude or we can make use of information available about the parameters from prior 

studies to set up the precision matrix. 

To complete the modeling exercise, we combine the SUR model described above 

with the Bayesain approach to imposing inequality restrictions, to impose monotonicity 

and concavity restrictions. To obtain point estimates of parameters of the posterior 

density under a quadratic loss function, one needs to find the mean of the truncated 

distribution for the parameter vector. While these calculations are straightforward, the 

integrals over the posterior density cannot be obtained analytically. Although it is 

impossible to sample directly from a joint posterior density of an SUR, a Gibbs sampling 

algorithm can be used to simulate posterior distribution of mean and precision for the 

model described above. The Gibbs sampling algorithm is discussed below. 

Gibbs Sampling 

Gibbs sampling is a Markov Chain Monte Carlo simulation tool for 

approximating joint and marginal distributions by sampling from conditional 

distributions. Gibbs sampler essentially breaks the "curse of dimensionality" by replacing 

draws from the high-dimensional joint distribution with draws from low dimensional 

conditional densities. The Gibbs sampler is made operational with starting values of the 

model unknowns. Next the sampler updates the components of the model by drawing 

from the conditional densities. This updating is done repeatedly to obtain a set of updated 
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vectors. This sequence provides a trajectory for a stationary Markov chain whose 

stationary distribution is precisely the desired joint distribution. In fact, the sequences 

associated with any particular vector converge in distribution to the marginal distribution 

of that component (Casella and George, 1992). 

Specifically, suppose we are given the joint density of k random variables,f (z1, 

z2, ... zk), and that we are interested in obtaining characteristics of the marginal density 

f(z,) = f. . .f f(z1, Z2, ..•.. , Zk) d Zl. ... d Zt -ld Zt + 1. .... d Zk, 
(15) 

such as mean or variance. However, the joint density may not be given, or even if the 

joint density is given, integration of the above joint density may be difficult to perform. 

This is usually tenhed the "curse of dimensionality". The Gibbs sampler as mentioned 

earlier breaks this curse of dimensionality. If we are given a complete set of conditional 

densities, f(ztl z j t: t), t = 1, 2, .... k, with Zj t: t = {z1, ...... z t-1,z t+l,·· .. zk}, then the Gibbs 

1. h . 11 1 j j j j f h . . samp mg tee mque a ows us to generate a samp e z1 , z2 , z3 ••••••••• , zk , rom t e JOmt 

density f(z1, ..... ,zk) without requiring that we know either the joint density or the 

marginal densities f(zt), t = 1, 2, .. ... k. Below we present the basic steps for implementing 

the Gibbs sampler. Given an arbitrary starting set of values ( zg , ...... zi ), 

1. Draw z; from f(z1 I zg , ..... zZ). 

2. Then draw z~ from f(z2 I z;, z~ , ...... zZ). 

3. Then draw z~ from f (z3 I z;, z;, z~ ...... zZ). 

k. Finally draw z! from f (Zk I z; ...... z!_1). 
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Steps 1 through k can be iterated J times to get ( z(, z£, z£ ......... , zf ), j = 1,2, ... J. 

Gelfand and Smith (1990) have shown that the joint and marginal distributions of 

d ( j j j j) . 1 h . . d . 1 generate z1 , z2 , z3 ......... , zk converge at an exponentia rate tot e Jomt an margma 

distributions of z1, z2, z3, ...... Zk, as J ~ oo. Thus the joint and marginal distribution of z1, 

z2, z3, ...... Zk can be approximated by the empirical distribution of M simulated values 

( z(, z£, zf ......... , zf) ( j = L + 1, L + M), where Lis large enough that the Gibbs sampler 

has converged. For example, the mean of the marginal distribution of Zi may be 

M 
~ L+j 
LJZi 

approximated by j=iM and the marginal distribution may be approximated by the 

· · 1 d" "b · f ( L+l L+2 L+M ) emp1nca 1stn ut10n o z1 , Z2 , .••••..•• , Z; . 

In context of our modeling exercise, we need the conditional densities for the 

SUR model to make the Gibbs sampler operational. Specifically, we need the conditional 

densities for the posterior mean and the precision. These are given above in (12) and (14), 

respectively. 

Model Formulation:Translog 

Consider the transcendental logarithmic cost function introduced by Christensen-

Jorgenson-Lau (1971, 1973). The translog function is viewed as a quadratic logarithmic 

approximation of an arbitrary function. Letting Pi denote the price of input i, q denote 

output, the translog function with n inputs is as follows: 

n n n n 

1nc(p, y, t) = ao + Ia 1n pi +aq 1nq + 112I Ia;ilnpi 1npj + Iadn pi 1nq 
i=l i=l j=l i=l 

+ II 2 Gqq In q ln q + aq t In q + II 2 Git t 2, (16) 
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where 

aii = aji for all i, j 

n n 
I,ai=l, L aii=O(i=l...,n) 
i=l j=l 

n n 
I, aiq = o, I, ait = o. 
i=l i=l 

The above conditions are imposed to ensure that the translog cost function is 

homogeneous of degree one with respect to factor prices and has a symmetric hessian 

matrix. 

For the purposes of this paper, we assume constant returns to scale and weak 

separability of materials inputs from the three other inputs namely capital (K), labor (L), 

and energy (E). The assumption of constant returns to scale is well established in the 

literature and the latter assumption is necessitated by the lack of suitable data on 

heterogeneous input materials (Jorgenson, 1974). These above assumptions simplify the 

modeling process by letting us ignore information on output and price of materials. Our 

simplified cost function looks as follows: 

n n n 

lnc(p) = ao+ I,ai In pi +1/2 L I,aiilnpi Inpj, (17) 
i=l i=l j=l 

where 

aii = aji for all i, j 

n n 
I,ai=l, L aii=O(i=l...,n). 
i=l j=l 
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As before, the above conditions are imposed to ensure that the translog cost 

function is homogeneous of degree one with respect to factor prices and has a symmetric 

hessian matrix. Logarithmic differentiation of (17) with respect to input prices and 

application of Shephard's Lemma give rise to the following share equation (Si): 

Blnc ~ 
Si = = a; + ~ aij In pj. 

Bin pi j 

(18) 

The homogeneity and symmetry conditions are easily verifiable. At any given 

price, monotonicity and concavity conditions can be verified based on the restrictions 

derived from the translog cost function. Monotonicity in input prices is equivalent to non-

negative shares for the translog. This is given by the following inequality: 

Si = a Inc. = a; + L aij In pj ~ 0 for all inputs i. 
Bln pi j 

(19) 

The necessary condition for concavity requires that the matrix of second derivatives with 

respect to input prices be negative. This condition is equivalent to the restriction that the 

matrix of substitution elasticities be negative semi-definite (N.S.D.). Negative 

definiteness implies that alternating minors change signs. For any cost function the matrix 

of elasticity of substitution is singular, so negative semidefiniteness requires checking the 

first n-1 principal minors of n dimensional matrix (Caves et al, 1988). These lead 

naturally to inequality restrictions on elasticities. Restrictions that second-derivative of 

cost function be negative semidefinite is equivalent to elasticity of substitution matrix 

being negative semidefinite. The restrictions implied on elasticities are as follows: 

O'ii < 0 and O'ii O'jj ~ O'ij 2 (20) 
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Allen-Uzawa (cr) elasticities of substitution and own-price (E) elasticities can be 

computed at the mean shares(s i ands i) to study interrelationships between inputs. These 

are given as follows: 

i = 1, 2 ,3, but i :t j (21) 

s2 
l 

i = 1, 2 ,3, but i :t j (22) 

cij = S; S j + aij 

Model Formulation: Cobb-Douglas 

In this section we describe the Bayesian model used to estimate the CD cost 

function for Oklahoma. There are instances when we have prior knowledge about the sign 

/magnitude of the coefficients of a model. Naturally these will be in the form of inequality 

restrictions. For the CD cost function we have prior information on labor and capital 

share given by O < ~L < 1 and O < ~K < 1. Below we present a model where these 

constraints will be embodied in a linear regression model. Consider a model posited as 

follows: 

Y =X/J+c; CI X ;., N(O, h-I fr) (23) 

and /3 - N(/3, H-1 ) , lh -x\v) (24) 
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The model with linear inequality constraints is (23) and (24) subject to 

a< D/3 < w 

where D is k X k nonsingular matrix, and - = 5,. a 1 < w i 5,. = (j = 1, ... .. k ). 

In this form a model may have from one to k linear combinations of coefficients that are 

constrained. Next define, 

Y =D/J, x* = X D-1 , r_ = D/3, Hr= v:-1Hn-1 

then (23) and (2 4) can be transformed and expressed as 

Y=x*y+c, 

y-N(/3,H~1 ), 

a< r < w. 

e Ix* - N(O, h-11r) 
2 2 

§. h - z (v) 

For the above model conditional distributions are given as follows: 

- --! 
r I (h, y, x*) - N(y, Hr ) ' 

~ 2 + (y- x*r)'(y- x*r)Jh I Cr, y, x* )- x2<T +:!:) 

where Hr = Hr + h x*' x*, g = (x*' x* t x*' y, y = H~1 (HrY + h x*' x* g ). 
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From (26) and (27) it is clear that the conditional posterior distribution of a single 

coefficient y j is university normal, subject to inequality restrictions. To describe the 

university normal distribution, let H = lhu J. From standard results in multivariate normal 

distribution theory, it can be shown that the precision of this university normal 

k 

distribution is hu, and mean is r j + h~; I, h ji (ri - rJ : 
i=l 
i,t,j 

rjl [r;(i i= j),h,y,X]-N[rj +htth;;(r;-Y;) ,h;] 
'*1 

(29) 

This setup provides a K+l - block Gibbs sampler for the posterior distribution. 

Again in context of out modeling exercise, we need the conditional densities for 

constrained OLS regression model to make the Gibbs sampler operational. Specifically, 

we need the conditional distributions for the posterior mean and precision. These are 

given as above in (26) and (27), respectively. 

Construction of Data Sets 

In this section we describe the construction of the three data sets employed in this 

paper. The three data sets provide information about U.S. manufacturing. Specifically, 

they provide information on capital, labor and energy. We use these three sets of national 

data to formulate ournational priors. These are labeled as BLS, BW and BWX and are 

presented in Tables I -III. Next we describe the construction of manufacturing data set 

for Oklahoma manufacturing. This is presented in Table IV and summary statistics for 
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national and regional data are presented in Tables V-VIII. We also describe the 

construction of price of capital and capital stock series for Oklahoma. National data sets 

are described first, and Oklahoma data set description follows. 

Description of BLS Data 

The BLS has produced data for U.S. manufacturing described in a paper by 

Gullickson and Harper (1987). The data was produced to provide various multifactor 

productivity indexes. Annual price and quantity data for output, capital, labor, nonenergy 

materials, and purchased business services are available from 1949 through 1996 for 

aggregate manufacturing and twenty two-digit SIC (20-39) manufacturing industries. 

Below we provide a brief description of how individual data series for capital stock, 

labor, and energy were constructed. 

Capital Stock 

The perpetual inventory method is used to compute the quantity of capital. First, 

real investment data from national income and product accounts is classified by industry 

and allocated to 47 different kinds of assets. Next, an age/efficiency function for each 

type of asset is estimated from data on its service life. The age/efficiency functions are 

used to determine the weight given to each type of asset in past years. A new asset starts 

with a weight of one that gradually declines with time and eventually reaches zero. For 

most assets, a concave age/efficiency function is used that features a slow decline during 

the first years. The stock of each asset for each sector at the end of period is equal to 

weighted sum of all past investments measured in real dollars. Capital price is constructed 

from the implicit rental values of services provided by each type of asset in each sector 
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using data on payments to capital. The rental price of an asset is equal to the rate of return 

on the asset plus the rate of depreciation minus the capital gains. 

Labor 

Labor input and price data are from Current Employment Statistics survey of 

establishments,· supplemented by the Current Survey of households. Data about the 

number of jobs, hours worked, and salary are available. Labor quantity is measured as 

paid hours of all persons engaged in the sector without making a distinction among 

workers with different skills or wages. 

Energy 

Energy input quantity and cost are primarily based on information from the 

Census of Manufactures taken from every five yeas. Quantities are interpolated between 

census years using Annual Survey of Manufacturing. Prices are constructed by using the 

survey data used to produce the Producer Price index. Tornqvist aggregation, which uses 

cost shares instead of BTU weights, is used to combine the different kinds of fuels. 

Description of Berndt and Wood (BW) Data 

Berndt and Wood (1975) construct data for KLEM for period 1947-1971. Below 

we present a brief description of how individual series for capital, labor, and energy were 

constructed. 

Capital 

Capital input is based on quantities of nonresidential structures and producer's 

durable equipment. A quantity index is constructed by Divisia aggregation of structures 

and equipment. The rental price of capital is constructed by following the steps outlined 
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in Christensen-Jorgenson (1969) taking into account variations in effective tax rates and 

rates of return, depreciation, and capital gains. 

Labor 

The quantity of labor input is Divisia index of production and nonproduction 

labor manhours, adjusted for quality changes using the educational attainment index. 

Measure of the value of the labor services is total compensation to employees in U.S. 

manufacturing , adjusted for the earnings of proprietors. Price of labor is constructed as 

adjusted total labor compensation divided by the quantity of labor input. 

Energy 

Annual quantity indexes of energy are calculated by using interindustry flow 

tables presented in Faucett (1973). These tables measure flows of goods and services 

from 25 producing sectors to 10 consuming sectors and five categories of final demand, 

in both current and constant dollars. Based on these tables, annual quantity indexes of 

energy as Divisia quantity indexes of coal, crude petroleum, refined petroleum products, 

natural gas, and electricity purchased by establishment in U.S. manufacturing. Value of 

energy purchases is computed as sum of current dollar purchases of these five energy 

types. The price of energy is computed as the value of total energy purchases divided by 

quantity of energy. 

Description of Berndt and Wood Extended (BWX) Data 

Most of the studies dealing with estimation of production function at the national 

level have used the Berndt and Wood (1975) annual manufacturing data for the years 

1947 through 1971. Recently, this data set has been extended by Berndt and Wood (1986) 
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to include the years through 1981. We consider this extended data set to be more relevant 

to be used in the formulation of national prior, as it matches most of time period for 

Oklahoma data under study: 1970-1989. The construction of individual data series is 

described in Berndt and Wood (1986a) and here we present a brief discussion of how 

individual series for capital, labor, and energy were constructed. 

Capital 

Capital input price and quantity inputs are based primarily on data from BEA, 

Capital Stock Study. The capital input quantities are based upon equipment and structures 

investment expenditures and prices from BEA capital stock study. Perpetual inventory 

method is used to construct the capital stock series. Capital service price is calculated by 

using the cost of capital approach of Christensen and Jorgenson (1969). Given estimates 

for capital stock and service price for equipment and structures, an aggregate price and 

quantity series is constructed by a Tornqvist price index of the equipment and structures 

components. 

Labor 

Labor input price and quantity series are based upon estimates of total 

compensation and manhours worked for production and non-production, respectively. 

Data for production workers is taken directly from, National Income and Product 

Accounts (NIP A). Data on compensation of non-production workers is also taken from 

NIP A sources, with manhours provided by the Bureau of Labor Statistics Monthly 

Review. Aggregate labor input price and quantity is calculated from a Tornqvist price 

index of production. 
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Energy 

Energy input prices and quantities include aggregate fuel and electricity used in 

Heat, Light, and Power (HLP) applications, and fuel (primarily crude oil, gases, and coke) 

used as feedstock input in the production process. The HLP input price and quantities are 

based on the Census Bureau's Census of Manufactures (CM) and Annual Surveys (AS), 

and the Producer Price Indices (PPI) for various fuel types. Further, the feedstock 

component of the total energy is calculated from data on refinery input of crude oil, 

natural gas liquids, and coke not reported as HLP. Crude oil input is taken from Energy 

Information Administration (EIA). Natural gas liquids are taken from American 

Petroleum Institute (API). Coke input quantities are taken from EIA. Price Data is taken 

from CM /ASM respectively. Total feedback price and quantity inputs are estimated by a 

Tomqvist price index of crude oil, natural gas liquids, and coke prices. Finally, total 

energy input prices and quantities are estimated by a Tomqvist price index of HLP and 

feedstock prices. 

Description of Oklahoma Data 

We estimate our model for manufacturing sector of Oklahoma over 1970-1989. 

Data from 1979-81 is not available and we don't include these three years in our sample. 

Data for input prices and cost shares of labor, energy and capital are constructed as 

follows. The price of labor per man-hour is computed as total labor cost (payroll) divided 

by total man-hours worked. Sources for cost of labor and total man-hours are different 

issues of the Annual Survey of Manufacturing (ASM) and the Census of Manufacturing 

(CM). The price of energy is calculated as total cost of fuels and electric energy divided 
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by gross millions of BTUs consumed. Energy consumption data is taken from Energy 

Information Administration (EIA). EIA collects this data by conducting various surveys 

and defines manufacturing consumption sector under the industrial sector which also 

include mining, construction, agriculture, fisheries and forestry. Manufacturing makes up 

the largest part of this sector. We are compelled to use this data as a proxy for energy 

consumption in manufacturing sector as ASM stopped reporting estimates for cost of fuel 

in 1980's. The price of capital is constructed following the approach of Christensen and 

Jorgenson (1969). We describe below the construction of price and capital stock series. 

Price of Capital. 

Unlike labor input, for which wage rate data are typically available, the one period 

user cost of capital is seldom observed. With a few exceptions, a firm usually purchases 

capital and consumes it entirely by itself. One typically infers indirectly,the user cost of 

capital that firm implicitly charge themselves to use their own capital inputs. If the 

secondhand market is assumed to be perfect and firms are indifferent between renting and 

owning capital, the implicit user cost of capital that firms charge themselves must equal 

the price that firms could fetch, were they to rent their capital to others. Jorgenson and 

Hall (1967), pioneering study on effects of taxes on investment, emphasized that the 

rental price of the capital must incorporate at least four effects. First, there is the 

opportunity effect of having funds tied up in plant and equipment. Let the asset price of 

capital be P t, and the current one-period interest rate yield be r t· The opportunity cost of 

capital in this context is given by rt* Pt· Second, assuming capital decays at a constant 

one-period rate of o %, the renter would need to compensate the owner for the 

44 



depreciation, and this will equal 8 * P t· Thirdly, durable goods experience price changes 

that can result in capital gains or losses to their owners. Following Jorgenson and Hall 

formulation, the user cost of capital is calculated as the sum of the above three effects, 

given by, 

(30) 

The above equation should also be adjusted to take into account the effects of various 

taxes. The implicit assumption being that, firms are unable to shift taxes forward to 

consumers and their user costs are affected by the taxes. One commonly used formulation 

used by researchers to incorporate taxes is a slightly revised version of the above equation 

given by, 

Ct= TX t [Pt r t-1 + 8. Pt - ~ P tl, (31) 

where TX tis the effective rate of taxation on capital income given by, 

TX t = 1 - y. Z t I 1- y, (32) 

where y is the effective corporate income tax rate, and Z1 is the present value of 

depreciation deductions for tax purposes on a dollar's investment over the lifetime of the 

good. 

Capital Stock. 

Data for Oklahoma capital stock is constructed using a variant of the perpetual 

inventory model. Perpetual inventory methodology requires an investment series that 

dates back to hundred or more years. Regional data sources are scant and usually do not 

go back that far. Schnorbus and Giese (1989) have developed a methodology suited for 

regional construction of capital stock. In this paper, we employ their methodology, and 
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present the details below. Capital stock as defined here implies fixed business investment 

which incorporates expenditures on nonresidential structures (plant) and producers' 

durable equipment. Further the focus is on construction of net capital stock which takes 

into account depreciation as opposed to gross capital stock, which does not deduct 

depreciation. 

The perpetual inventory method involves summing of past gross investments less 

depreciation. The sum is than adjusted by a price deflator, which converts historical 

, dollars to constant dollars. One works with real capital stock as it reflects more accurately 

the actual change in net capital stock. The net capital stock than involves the cumulative 

value of the past real gross investments less cumulative depreciation. Mathematically, one 

can represent the construction of net capital stock (RNK) as follows: 

n 

RNK, = L,((HGI-D) I PG/)1 (33) 
t=l 

The above is composed of three parts: firstly, a historical dollar gross investment time 

series (HGI); secondly, annual depreciation (D);.and thirdly, a price deflator which is a 

ratio of historical to constant dollars (PGI). 

The new methodology employs a variant of the perpetual inventory method as it 

avoids some problems one encounters when building a regional capital stock series. 

Specifically, the first problem is that perpetual inventory methodology assumes that no 

capital goods are purchased prior to the first year of investment used. Researchers' 

mitigate this problem by extending their gross investment series as far back as possible. 

The second problem is that the allocation of capital goods to specific 

manufacturing industries is permanent. No account is taken for transfers of capital goods 
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from one industry to another or for the reclassification of an establishment to a different 

industry. The capital stock series used in this paper are not disaggregated by industry, and 

avoids the above problem. 

The third problem has to do with the depreciation pattern. The primary source of 

the problem is that there are a wide variation in service lives and depreciation pattern 

among types of capital goods and paucity of data to determine these variations. The 

problem of estimating service lives is mitigated in part by disaggregating the capital stock 

series into different categories of asset types as BLS and BEA do. Because of lack of 

regional data, we separate the capital goods into plant and equipment and use average of 

the BEA service lives. 

The fourth problem is the uncertain magnitude of the "values" of the net capital 

stock series in constant dollars and their intertemporal comparability. Problems arise from 

two assumptions that are made when historical dollar values are converted into constant 

dollars. The first assumption called into question is that old and new capital goods are 

materially the same. Because of the potential differences in old and new capital goods, the 

accuracy of the use of 'value' as a proxy for quantity is uncertain. The second assumption 

called into question is that any changes in technology and productive capability is 

reflected only in changes in real cost. Thus costless improvements in capital goods are 

excluded. If these improvements are significant, the perpetual inventory method would 

underestimate the 'value' of capital stock in later years. Thus setting a benchmark against 

which constant dollar capital stock can be compared is made difficult. These problems, 

however, can and have been mitigated by adjusting price deflators for quality changes. 
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Our task of overcoming this problem was simplified as we used BLS historical and 

constant dollar series which have been adjusted for price differences among asset types 

and to extent possible, quality changes. 

Reverse Perpetual Inventory Methodology: Construction of Capital Stock 

The reverse perpetual inventory methodology for construction of capital stock 

differs from the traditional perpetual inventory methodology. Instead of building capital 

stock estimates from a gross investment series, Schnorbus and Giese (1989) recommend 

to begin by picking a base year and then using perpetual inventory methodology in 

reverse to calculate regional net capital stock. We pick 1986 as the base year and estimate 

regional net capital stock for this year and then use the perpetual inventory methodology 

in reverse to calculate 1985 to1970 estimates and forward to calculate 1987 to1989 

estimates. The reason for this different approach is that it overcomes some of the 

estimation problems with the standard perpetual inventory methodology. First, this 

approach does not require a regional gross investment series that extends back to the early 

1900s an.ct thus is not hampered by regional data limitations. Also, any estimation errors 

in this new method will accumulate over a relatively shorter period of time and will be 

compounded for earlier years. In contrast, with the perpetual inventory methodology, any 

estimation errors will be magnified over a relatively long time period and will be 

compounded for most recent years. The model used to implement the reverse perpetual 

inventory methodology is presented below. 
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Construction of Real Net Capital Stock (RNK). 

The construction of real net capital stock involves using equation (33) and (34) 

below to construct net capital stock series. Essentially, one starts off with estimated RNK 

for 1986 and than subtracts from it real gross investment less cumulative depreciation to 

get estimates of years 1970 to 1985. For years 1987 and beyond, one adds to the 1986 

RNK, gross investment less cumulative depreciation. The depreciation pattern, which 

accounts for capital consumption, is an essential element in calculating net capital stock 

estimates. We follow the straight-line depreciation pattern, which implies that physical 

deterioration of the capital good is linear, that is, equal dollar depreciation across the 

asset's service life. The depreciation rate used is .033 and .058 for plant and equipment, 

respectively. 

RNK. 86-t = real net capital stock in i for r for year 1986-t. 

For years 1970 to 1985 

16 

RNK[, 86-t = RNKi,s6 - L [RGI[, 86-t + 1-(d i * RBV[ 86-t)] (34) 
t = 1 

For years 1987 and beyond 

-3 

RNK[, 86-t = RNK[,s6 + L [RGI[,s6-t -(di* RBV[s6-t-1)] (35) 
t = -1 

where i = type of capital good (plant or equipment) 

r = region (Oklahoma) 

RNK[, 86 = 1986 estimated net capital stock of i in region r. 

RGI[ = HG![, I PG![ real gross investment of i in r . 
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HGir. = historical dollar gross investment of i in r. 

PGir = estimated regional gross investment price deflator. 

di = estimated depreciation rate for i. 

RBV[ = estimated real gross book value of in r. 

To make the above model operational, one needs the estimates of Oklahoma's net 

capital stock (RNK). Unfortunately, no government data is available at the regional level 

and one solution is to allocate real national :net capital stock data across the region. To 

estimate the regional share of national net capital stock, we use regional and national 

ASM I CM data on gross book value of depreciable assets. The implicit assumption is 

that the regional share of national gross book value and net capital stock are 

commensurate. 

Construction of Oklahoma Net Capital Stock 

In this section, we present the model used to estimate Oklahoma's RNK for 1986 

and the RBV time series which are needed to make equations (33) and (34) operational. 

The equation for construction of Oklahoma's RNK is given as follows: 

where 

RN.Kr - RN.Ku.s *(RBVr IRBVu.s.) 
i,86 - i,86 i, 86 i, 86 

39 
U.S. _ ~ [ r * U.S ] 

RNKi,86 - L.J Wj,86 RNKij,86 
j=20 

j = two-digit standard industrial classification (SIC) code. 

(36) 

EMP i, 86 = 1986 production worker employment in industry j (in r or in U.S.). 
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EMP 86 = 1986 total production worker employment (in r or in U.S.) 

RNK':/86 = 1986 BEA real national net capital stock of i in industry j. 

RBV/86 = 1986 estimated real gross book value of i in region r. 

16 

RBvr,10+1 = RBvr,10 + L[(NETDi,10+t * RGir, 70+t)] (37) 
i=l 

where RBV[ 10 = HBV[ 10 I PBV[ 10 

HBV[ 10 = ave[ HGir I HGir ]* HBV;o 

ave= average ratio between 1971-1973 

HGI[ = ASM I CM historical dollar gross investment of i in r. 

HG/ 7 = ASM I CM total historical dollar gross investment in r. 

HBv;0 = 1970 CM total historical dollar book value in r. 

PBV;~10 = 1970 estimated regional book value price deflator. 

% NETD i = (RGI':"s. - RDISC':"s.) I RGI':"s = Average % of real national gross 

investment in i remaining after discards. 

RGI':"s = BEA real national gross investment in i. 

RDISC':"s. = BEA real value of discards in i. 

RGI[ = HG!r I PGif 

HG![ = ASM I CM historical dollar gross investment in i in r. 

PGir = estimated regional gross investment price deflator for i. 

Construction of Real Book Value 
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39 

RBVt~6 = L [ w'i, s6 * RBVt.s86 ] = 1986 estimated real book value of i in (38) 
j=20 

the U.S. adjusted for r's industry's mix. 

where 

16 

RBV':/s6 = RBV':t10 + L [(% NETDi, 10+1* RGI ii, 10+1 )] = Estimated real 
i=l 

national gross book value of i in r. 

RBVU.S. - HBVU.S. I PBVU.S. 
ij,70- ij,70 ij,70 (39) 

HB"V;;,-;0 = 1970 estimated historical dollar national gross book value for i in industry j. 

PB"V;;,-;0 = 1970 estimated national book value price deflator for i in industry j. 

RG1;·,;0+1 = BEA real national gross investment of i inj. 

HBVt.s10 = ave( HGI'tt I HGI':'s. ) * HBV~t = estimated 1970 historical gross book 

value. 

ave= average 1971-73 

HG!':/· = ASM I CM historical national dollar gross investment of i inj. 

HGits. = ASM I CM historical national gross investment of i in U.S. 

% NETD i = same as before. 

Construction of Price Deflators 

The selection of deflators can pose some difficulty. As pointed out earlier, the 

major problem with national deflators is how to account for new assets and significant 

quality changes. Schnorbus and Giese (1989) recommend using BEA historical and 
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constant dollar series which have already been adjusted for price differences among asset 

types and to the extent possible, quality changes. Adjustments are made to account for 

regional differences in industry mix. Below we present the estimation procedure to 

calculate different price deflators. 

Gross Investment for years 1970-1986. Estimated regional gross investment 

price deflator for i. 

39 

PGJ;,86-t = L [ Vj,86-t * PGI'ti,1"6-t] = Vj, 86-t = EMPrs6-t I EMPs6-t 
j=20 

EMP;86_1 = BLS production worker employment in industry j in r. 

EMP86_1 = BLS total production worker in r. 

PGJ~-.~6_1 = HGl~'.~6_1 I RGI;~:~6_1 = estimated national gross investment price deflator. 

HGI'ti}6_1 = BEA historical national gross investment of i in industry j. 

RGI~:~6_1 = BEA real national gross investment of i in industry j. 

Gross Investment For years 1987 and beyond. 

PGJr, s6-1 = ave( PG!r I PG!u.s .. )*ave ( PG!u.s I DPG!u.s )* DPGit16-t 

ave= three year average of 1983- 1985 ratios. 

PGI[,s6-t same as before. 

DPG1t;6_1 = national industry implicit price deflator for non-residential fixed 

investment in i. 

Gross Book Value. Estimated regional gross book value price deflator for i. 
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39 

PBV[ 10 = Ll v'i, 10* PBV'!/10 ]= v'i. 70 = same as before. 
j= 20 

(42) 

PBV'/i,;o = HGK't:;0 I RGK't·.;0 = 1970 national book value price deflater of i in industry j. 

HGK'/i,~o = 1970 BEA historical dollar national gross capital stock in i inj. 

RGK't·.~0 = 1970 BEA real national gross capital stock in i inj. 

Procedure for Translog Model 

Description of the methodology is facilitated by first defining the data generating 

process. Assuming that input prices can be treated as exogenous, the input share 

equations are assumed to form a seemingly unrelated regression with normally distributed 

errors and a contemporaneous covariance matrix. The input equations can be written as a 

system as follows: 

(43) 

(3T x 1) (3T x 12) (12 X 1) (3T x 1) 

The matrix dimensions appear underneath each matrix. X's are a matrix of factor prices, 

e i's are the error vectors and Si are vectors of cost shares. Note that in the above system 

only n-1 of the share equations are independent since (Li Si = 1 ). Estimation is carried out 

by using n-1 share equations. To ensure regularity of the cost function homogeneity and 

symmetry conditions are imposed on the above system. 
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Share equations will be estimated as a system. We estimate share equations with 

homogeneity and symmetry restrictions imposed, at the national level. These estimates 

give us the prior mean and precision. We set up the model for informative priors by 

combining these national priors with Oklahoma data. Gibbs sampling is used to generate 

from conditional densities of mean and precision given in (12) and (14). Only those 

samples are accepted that meet the monotonicity and concavity restrictions. 

Procedure for Cobb Douglas Model 

To be consistent we estimate the CD cost function for Oklahoma based on an 

informative prior. This informative prior again is based on national data. This is the 

approach that was followed for modeling technology under the translog system. We use 

the constrained linear regression model for incorporating this prior information. To get 

the prior mean and precision based on the national data, one can resort to simple ordinary 

least square estimation of the CD cost function. The mean vector of coefficients and 

inverse of covariance matrix are the prior mean and precision. The CD cost function for 

our three inputs where we impose the returns to scale is given as follows: 

(44) 

We estimate the above model with ordinary linear regression and get highly implausible 

estimates for the coefficients and some of the estimates have the wrong sign. Labor and 

capital inputs are highly correlated leading to a multicollinearity problems, which can be 

attributed for the nonsensical results. One way to deal with the above problem is to 

introduce prior information of some sort. We have prior information about coefficients. 
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We know that O < f3k < 1 and O < f31 < 1. The Normal distribution is not able to handle 

these constraints as the range is from- oo to + oo We follow a simple procedure outlined in 

Judge et al (1988). Setting the prior variances of coefficients carefully, one can make the 

probability of them lying outside the range O to 1 very small. The first step is to specify 

our prior means for the coefficients. Then one sets a confidence interval around these 

priors. Using the BLS data as an example, our prior mean for coefficients, returns to 

scale, and a 50% confidence interval around theses priors are as follows: 

E [f31] = 2, E [f3k] = .27, E [f31] = .69 andE [f3k+ f31] =.96 

5 < '31 < 10 

(45) 

To calculate the individual elements in the covariance matrix Lb one resorts to properties 

of the normal distribution. For a standard normal variable z we know that 

P (-.67 < z < .67 ) =.5 

We can reformulate it in these terms 

P (-.67 < (/Jk --27)/ <.67 J= .5 
/ ~var(/Jk) 

(46) 

Substituting the values of our prior means in the above one solves for the variance of 

f31, f3k, and f3k + f31. To estimate the prior covariance's (cov) we assume that cov (f31. f3k) = 

cov (f31 , f31) = 0. To find covariance between f3k and f31, we use the following formulation: 

var (f3k + '31) = var(f3k ) + var ('31) + 2 cov (f3k, '31) (47) 
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From the above one can solve for cov (~k. ~1). The prior mean and covariance matrix with 

the individual elements derived above is as follows: 

E (~) = /3 = (2.0, .27, .69) L, - r:·98 
.1~24 .3~681 l O .3968 1.0604 J 

(48) 

Following similar procedure we get the prior covariance for BW national data. These are 

given as follow: 

E (~) = /3 = (5.0, .16, .70) l222.6 0 

Ip= o
0 

.056 

.242 

.2~21 
1.12 J 

(49) 

To obtain point estimates for the CD function, the following steps are followed. A prior 

mean and precision is posited. Constrained linear regression model setup is combined 

with Gibbs sampling to impose prior information that takes the form of inequality 

restrictions 
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CHAPTERV 

FINDINGS 

Results and Discussion 

A system of share equations based on the translog cost function is estimated for 

each of the three sets of national manufacturing data. These three data sets are BLS, BW 

and BWX. As noted earlier, in the above system only n-1 of share equations are 

independent. We estimate the system of share equations for capital and labor and drop the 

energy equation. The energy share coefficients are recovered using aggregation 

conditions. We impose homogeneity and symmetry restrictions on the system. The 

coefficient estimates from this exercise are presented in the first column of Table IX-XI 

under "US". 

Looking at the national estimates one finds that all the coefficients have correct 

signs. The capital share equation for all three sets of data has a positive own-price 

coefficient and the magnitude varies from a low of .04 for BLS data to a high of .09 for 

BWX data. A positive coefficient implies that as the price of capital rises, the share of 

capital in total cost also rises. The coefficient on price of labor is negative and the 
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magnitude ranges from -.01 to -.06. The negative coefficient implies that as the price of 

labor rises the share of capital in the total cost goes down. 

Looking at the labor share equation we see a similar pattern. The own-price 

coefficient is positive and ranges from .01 for BLS and .13 for BWX data. Again the 

interpretation is that a rise in price of labor will increase the share of labor in the total 

cost. The coefficient on price of capital is negative and its magnitude ranges from -.01 for 

BLS to -.06 for BWX data. The negative coefficient implies that as the price of capital 

rises the share of labor in the total cost will go down. 

The estimates from these three sets of national data are used as priors for the 

mean. Using these alternative priors will give us a way of checking the robustness of 

priors. For prior information to have any meaningful input in our modeling exercise, it 

should satisfy the monotonicity and concavity restrictions. We compute the national 

elasticities of substitution for the three sets of national data and check these elasticities to 

check their conformity with concavity restriction. We also evaluate predicted/ fitted 

shares to see if they conform with monotonicityrestriction. We find that data agree with 

these restrictions. The national elasticity of substitution estimates are presented in Table 

XIII. The estimated elasticities have correct signs and reasonable magnitudes. For all 

three datasets, capital and labor and labor and energy pair tend to be substitutes. Capital 

and energy pair tend to be complements for all the data sets. 

Next in our modeling exercise we use the Oklahoma manufacturing data and 

estimate a system of share equations. These estimates are termed the unrestricted 

estimates. Again capital and labor share equations are estimated and the energy equation 
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is dropped. Homogeneity and symmetry is imposed on the data. The estimates are 

presented in the second column under "Oklahoma" in Table IX- XI. These are the same 

for the three tables and are presented for comparison purposes. 

The unrestricted estimates based on Oklahoma data have incorrect signs, which 

makes the interpretation nonsensical. The own-price coefficient in the capital share 

equation has a negative sign. The interpretation would be that as capital price rises the 

share of capital in total cost goes down. Similarly, the coefficient on price of labor is 

positive. We see the same pattern for the labor share equation. Next we will like to test if 

these estimates meet the theoretical restriction of the production theory: monotonicity and 

concavity. We find that the Oklahoma model meets the monotonicity restriction but fails 

to meet the concavity restriction. Given the nonsensical coefficient estimates combined 

with violations of concavity, it is quite clear that using this data will give us nonsensical 

elasticity estimates. 

We have a very limited information set in terms of a small data set (17 

observations) collected at a very disaggregated level. With small samples prior 

information becomes important. To complete the modeling exercise we combine the 

model for incorporating an informative prior with the Bayesian approach to inequality 

restrictions, to impose monotonic and concavity restrictions. The priors means and 

precisions {/}_, Hp and ~) for BLS, BW and BWX national manufacturing data which 

cover the period 1949-1981,1947-1971, and 1947-1981 are estimated using the SUR 

estimator. The priors for (/}_, Hp and ~) are the estimated mean, inverse of the estimated 
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covariance matrix of the SUR estimator, and T times the contemporaneous variance

covariance matrix, respectively. 

Combining the above priors with Oklahoma data for the 1970-1989 sample 

period, the posterior distribution of the parameters is simulated using the Gibbs sampler. 

To simulate fl I H we draw from the conditional posterior mean in equation (12). The 

monotonic and concavity of the estimated equations are checked using the conditions 

described in (19) and (20). If satisfied, Sis computed and HI f3 is drawn from its 

conditional distribution using equation (14). Note, in the computations the concavity of 

the cost function was not verified for each combination of shares found in our data. 

Rather, it was checked at the sample means. A total of 100,000 successful draws are 

made and the first 20,000 of those are discarded. The sample means of the shares were 

used for the computations. We label models using prior information from BLS as Model 

1, ones based on BW and BWX as Model 2 and Model 3, respectively. The means of 

posterior for Model 1-3 are presented in the fourth column in Table IX-XI under 

"Informative Prior". The estimates of elasticity's of substitution and price elasticity's for 

Model 1-3 are presented in Table XIV and Table XV, respectively. 

As expected, we find that the means of the posterior for Model 1-3 have correct 

signs. These estimates are termed as restricted estimates. These restricted estimates, 

because they combine the information at the national level with unrestricted estimates, 

and give more weight to the national estimates by making the precision bigger, give us 

the correct expected signs. These are based on an informative prior, and are also forced to 

satisfy the monotonic and concavity restrictions. For example, looking at the capital share 
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equation the own-price coefficient is positive for all the models and ranges from .02 for 

BWX and .03 for BLS. Similarly, the coefficient on price of labor is negative for all the 

models. We see that the restricted estimates are much closer to the national estimates as 

opposed to unrestricted estimates. This is due to the shrinkage that occurs towards the 

national estimates when the Bayesian approach is used. For Model 2, which is based on 

BWX data, we find a peculiar result. Recovered energy estimates don't ever meet 

monotonic restrictions. BWX and Oklahoma data by themselves meet the monotonicity 

restriction for energy share equation, but when we combine the national and regional data 

using the Bayesian framework, the energy share equation predicts negative shares. We 

drop this model and from hereon focus on Models 1 and 3. 

Elasticities of substitution and price elasticities have correct signs and reasonable 

magnitudes. For example, the elasticity of substitution for the K-L pair ranges from .83 

for Model 2 to .99 for Model 3. K-L pair are substitutes for all the models, whereas, L-E 

pair are substitute in Model 1 and Model 3, but are a complement in Model 2. K-E pair 

are substitutes in Model 2 and Model 3, but are complements in Model 1. In terms of 

interpretation an elasticity of substitution of .83 for K-L pair implies that if the relative 

price of capital/labor rises by 1 % the rate of substitution between K and L will be .83 %. 

We carry out an another modeling exercise similar to the one discussed above, but 

where we use an "uninformative" or "diffuse" prior as opposed to an "informative" prior. 

Essentially, we are positing a scenario where we possess some prior information, but we 

are not very confident as to the accuracy of this information. To achieve this we set the 

precision to be very small in our model setup, and hence posterior is determined mostly 
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by the actual sample. The idea is to see if we can get good estimates for mean and 

elasticities if we just impose monotonicity and concavity restrictions on Oklahoma 

model. If that is the case, then we can disregard the model based on "informative" prior. 

The means of the posterior from this exercise are presented in the fifth column in Tables 

IX-XI under "Diffuse Prior". 

The estimates based on the "diffuse" prior have incorrect signs. For example, 

looking at the share equation for capital we see that the coefficient on own-price is 

negative and coefficient on price of labor is positive. Elasticity of substitution estimates 

under the "diffuse" prior have correct signs but unreasonable magnitudes. For example, 

the estimate for CTkk = -10.07 for the BWX and crkk = -10.36 for the BLS data sets. 

Similarly, the estimate for crkl = 2.10 and crk1 = 12.16 for the BWX and the BLS data sets, 

respectively. Based on the fact that under the "diffuse prior" setting, coefficient estimates 

have incorrect signs and elasticity's have unreasonable magnitudes, we conclude that the 

model under" informative prior" or the restricted model is far better. Information obtained 

from the national data is very helpful in getting elasticity estimates that are sensible. 

We also estimate an alternative CD functional form. The CD cost function for 

Oklahoma is estimated initially by just using the regional data. Estimates from this 

exercise, which are also the predicted shares, are presented in the third column of Table 

XII under " Model 6". The estimates have correct signs but the magnitudes are 

nonsensical. The capital share is predicted to be .11, and labor share is at .366. This will 

translate into an energy share of .52. One way to get better estimates for CD cost function 

for Oklahoma is to combine the prior information at the national level with the regional 
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data. We also have some prior information about magnitudes of shares. Using the 

Bayesian methodology described earlier, we estimate two sets of CD cost function. Model 

4 is based on BLS prior, and Model 5 is based on BW prior. Looking at these estimates 

we see that the predicted sharers have not really improved. This could be because we 

have used a small precision for national data. This embodies our belief that we are not 

very sure if the regional estimates are very close to national estimates. We use these set of 

estimates to carry out forecasting experiments which are discussed on the next page. 

We are also interested in seeing if the restrictions of monotonicity and concavity 

are supported by our data. We estimate posterior probabilities that the restrictions hold by 

computing the ratio of number of restrictions that meet the restrictions over total number 

of replications. For Model 1, the monotonicity restriction is met for all replications, and 

for concavity, 82047 replications out of 117953, meet the restriction. This translates into 

a posterior probability of .69 that the restrictions hold. For Model 3, all replications meet 

the concavity and monotonicity restrictions. These results suggest that these systems of 

equation are well behaved with respect to neoclassical restrictions, at least at the sample 

mean of the data. These results are tabulated in Table XVI. 

We are also interested in checking our specification of the functional form for our 

data. The translog flexible function form collapses to the Cobb-Douglas form for 

elasticities of substitution equal to unity for all input combinations. To see if our data 

matches the CD technology, we build a 95% confidence interval for cross elasticities of 

substitution. If the values of <Jk1, <Jke, and cr1e = 1 fall in the confidence interval, we 

conclude that data supports the CD representation of technology, otherwise, the 
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conclusion is that the translog function is supported by the data. Specifically, we take the 

80,000 simulated values of elasticities arranged in a column, and chop off 2.5 % of the 

top and bottom. We sort this column in an ascending order and this gives us the 95% 

confidence interval. We pick the first and the last value of the interval to specify the 

width of the interval. 

The results from this exercise are presented in Table XVII. Looking at this table 

one sees that for O'kJ the confidence interval is the range of .87 to 1.10 for Model 1. We 
' 

see that crk1 =1 falls in this interval. This is also true for the Model 3. The conclusion is 

that for capital and labor, the data seems to point out that CD is a better representation. 

For capital and energy, and labor and energy, we see'that for both models the confidence 

interval is such that the value of one does not fall in it. Also note that for both the models 

we see that cr1e confidence interval is very precise, and ranges from 1.075 to 1.097 and .49 

to .62 for Model 1 and Model 3, respectively. This lends support to the translog 

representation of the technology. Based on above analysis, we conclude that estimated 

translog specification is supported by our data. 

We perform a test of the predictive accuracy between the translog and the CD 

functional form, as a way of choosing among them. Estimation of the CD form is carried 

out by using Bayes method where we use diffuse and informative priors. Informative 

priors are based on BLS and BW national data sets. The models based on informative 

prior are labeled Model 4-5. Model 4 and 5 are based on BLS and BW respectively, 

whereas Model 6 is based on regional data. The coefficients of the CD form are estimated 

by imposing constant returns to scale. We use our posterior estimates from Model 1, 3, 4, 
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5 and 6 estimated now with 13 observations, to predict K, Land E shares. We calculate 

root mean square errors (RMSE) for out-of-sample forecast based on 4 observations. 

Results are tabulated in Table XVIII. 

The RMSE for Model 1 and 3 for capital share is .09 and .05, which is 

considerably smaller than .121 and .232 for Model 5 and 6. Model 4's RMSE for capital 

share is .06 and it the only predicted share that even comes close to beating RMSE of 

Model 1 and 3. When it comes to predicting labor and energy share, Model 1 and 3 again 

beat Model 5-6. The average RMSE for Model 1 and 3 is .072. Compare this to the 

average of .247, .281 and .438 for Models 4-6 respectively. Based on the predictive 

accuracy, we again find support for Tran slog functional form specification. Model 1 

beats Model 3 in predicting labor share, but Model 3 outperforms Model 1 in predicting 

capital and energy share. 

One of the motivations for this study was to provide the regional CGE modelers 

with a flexible functional form which could compete with the CD form, which is the 

default technology posited for modeling the production sector in many CGE models. A 

natural question that arises is, does it matter if you model your production sector using 

the CD or the translog technology? To really answer this question one would have to run 

a CGE model with the two alternative technologies and pick a criteria to compare their 

performance. One criteria could be the predicted level of impact on cost minimizing 

demands when input prices are increased separately. 

Since we don't have a CGE model at hand we propose a short-cut that gives us at 

least a perspective as to what to expect if we had one. The short-cut is to perform a 
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simulation in a partial equilibrium framework. The exercise involves tracing the impact 

of separate increases in input prices on the cost minimizing demands for inputs. This is 

done for the CD and the translog technology. We expect that we will get different impacts 

depending on functional form used. If we do, that implies that it matters as to what 

functional form is posited in the production sector. 

For the translog technology, the cost minimizing demand for capital, labor and 

energy are given as follows: 

(50) 

Pe 

(Pi (.5* a 22 ) ) In P1 * ( Pi a 23 ) In Pe * ( p e (.5 *a 33 ) ) In P0 ) 

In the above cost function all parameters except for the constant term are available from 

the estimated share equations. The constant term (ao) is recovered by using the OLS 

solution. 

For CD specification the cost minimizing demands are given as follows: 

X i = (~i * C ) I Pi (51) 

i = K, L, E and C = ~1 * ( Pk) P2 * ( P1) p3 * ( Pe) p 4 

For example to trace the effect of an increase in input prices (K, L, E) on demand 

for capital, we separately increase the price of each input and calculate the new demand 

for capital each time. Carrying out this exercise tells us how demand for capital responds 

in percentage terms to increases in price of capital, labor and energy. We calculate these 
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direct and cross effects of simulated input increase for all our models with the results 

tabulated in Table XIX. 

As expected, the effect of an increase in an input's own price is negative for all 

the simulations. We find that capital and labor are substitutes. Labor-energy and capital

energy pair are substitutes for all the models. For Model 1 capital-energy relationship is 

ambiguous. Further looking at the simulated impacts one sees that depending on the 

functional form the percentage of the impacts is different. These impacts are generally 

very small with one or two exceptions. For example comparing Model 1 and Model 4 we 

see that for energy demand there is big difference in impacts. A 1 % increase in price of 

capital input reduces energy demand by 32% in Model 1, whereas in Model 4 which is 

CD form based on BLS informative prior, we see this impact to be an increase of .29%. 

From above one draws the conclusion that the choice of functional form does 

matter in terms of the differences of impact. Our conclusion is based on simple 

simulations under a partial equilibrium framework. Further work will involve seeing if 

these results also hold for CGE models. 
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CHAPTER VI 

CONCLUSION 

Summary 

Regional CGE models have been criticized for employing restrictive production 

functions. Flexible functional forms such as the translog do not impose a priori 

restrictions on elasticities and are capable of modeling inputs as substitutes and 

complements. Further CGE models have also been attacked for using calibration. In 

calibration, one selects estimates of elasticities from literature at the national level. This 

may lead to specification problems. 

A researcher trying to estimate a regional translog production function at a state 

level faces two problems. First, there is paucity of data at the regional level. Second, it is 

possible that production function might not be well behaved at low levels of aggregation, 

which in turn, may lead to convergence problems for numerical solutions. 

This paper proposes a solution to the above problems. We estimate a regional 

translog cost function for Oklahoma manufacturing by ensuring that all theoretical 

properties of the function are imposed so it is well behaved. This implies that the 

production function meets monotonicity and concavity constraints. The latter involve 
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inequality constraints that are difficult to impose. A Bayesian approach is used to impose 

inequality constraints. 

The first step in the Bayesian approach involves positing a prior density function 

over the parameters of interest. The prior information can be informative e.g. magnitudes 

of elasticities at the national level or it can be uninformative or diffuse representing no 

prior information about parameters. The second step is to specify a likelihood function. 

Using Bayes theorem, one combines the likelihood function and the prior to obtain 

posterior distribution of the parameters. Following the steps outlined above, we carry out 

the estimation of translog cost function under three sets of prior information. 

We use the Bayesian procedure described above to estimate a system of share 

equations based.on translog cost function for Oklahoma Manufacturing. We impose 

homogeneity and symmetry on the data. The share equations for labor and capital are 

estimated and the energy estimates are recovered by using aggregation conditions. For 

prior information we use three sets of national data. The first data set is compiled by BLS, 

and second and third data sets are constructed by Berndt and Wood as described earlier. 

Estimation is carried out by simulating the posterior distribution of the parameters by 

using Gibbs sampler. To ensure regularity of the cost function, only those draws are 

accepted that meet the monotonic and concavity constraints. Results from models based 

on the above informative prior give us estimates with correct signs. The elasticities of 

substitution and price elasticities have correct signs and reasonable magnitudes. 

We also use a "diffuse prior" setup to simulate the posterior distribution of the 

parameters. Essentially, we put less weight on the national priors and just as before we 
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impose the monotonicity and concavity restrictions. The means of the posterior under this 

framework have incorrect signs and the elasticity magnitudes are unreasonable. The 

estimate for crkk = -10.07 for BWX and crkk = -10.36 for BLS data. Similarly, the estimate 

for crk1 = 2.101 and crk1 = 12.16 for BWX and BLS data set. 

In judging the adequacy of the above models, we used two types of criteria: 

internal and comparative. By internal criteria we mean that consistency of our data is 

checked with the econometric and theoretical assumption of our models. Tests based on 

comparing different models are referred to as comparative. To see if our data meets the 

internal criteria, we estimate posterior probabilities that monotonicity and concavity 

restrictions hold for our sample. We find strong evidence based on posterior probabilities, 

that these restrictions are supported by our data. Comparative criteria are used to compare 

our specification of production technology, translog versus the traditional CD form. 

Posterior probabilities again provide strong support for the translog specification. Again 

models can also be compared in terms of the forecast performance. A model may do well 

in meeting theoretical restrictions, but may give significantly poorer forecasts than a 

simple model may lead us to question the validity of the model accuracy. Predicitive 

accuracy between the translog and CD functional form is carried out and we find that the 

translog form outperforms the CD in predicting out-of-sample shares. We also perform a 

simulation where we compare the impact on cost minimizing demands of separate 

increases in input prices. We perform this for the translog and the CD technology. The 

conclusions that we draw from this exercise are that different functional forms give you 

different levels of impacts. It will be worthwhile to explore this issue in a CGE 
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framework. Based on the above internal and comparative criteria, we conclude that the 

translog specification is supported by the data. 

Given the paucity and disaggregated nature of the data at the state level, it is not 

surprising that there are hardly any attempts by researchers to estimate state level 

production functions. We have shown how a well-behaved regional production function 

can be estimated at a state level. Our primary motivation in estimating the translog cost 

function for Oklahoma was to provide regional CGE model builders access to FFF 

functional form with its associated elasticities. Besides the energy input, we find that 

using two sets of priors seems to give us similar results as far as elasticity of substitution 

and price elasticities are concerned. This can be taken as a rough proof that our 

specification of the Bayesian model is robust in terms of the subjective priors. 

Our results are also useful for a researcher in another state who might be 

interested in investigating the input substitution possibilities for his region. If the region 

has the same manufacturing mix as Oklahoma, he should be able to use our estimates as a 

proxy for elasticitiy estimates, or priors for elasticities for his state. If the manufacturing 

mix is very different the researcher can still use our results. In this paper we have 

essentially developed a new methodology to estimate elasticities at a regional level, where 

because of the disaggregated nature of the data it is not possible to derive meaningful 

conclusions about the relationships between the inputs. This new methodology combines 

the information available on the elasticities at the national level with the regional 

information using a Bayesian approach. The Bayesian approach essentially shrinks our 

regional estimates towards the national estimates. 
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We also compare the national elasticity of substitution estimates with the regional 

estimates. We find that Oklahoma elasticity estimates for capital and labor are close to 

their national counterparts. For labor and energy and capital and energy our estimates 

provide information about input substitution which is quite different from what is 

available at the national level. At the national level capital and energy are complements 

for all the models and labor energy are substitutes. At the Oklahoma level we find that 

capital and energy tend to be substitutes for Model 2 and Model 3, and complement for 

Model 1. Labor and energy pair tend to be substitutes for Model 1 and Model 3, and tend 

to be complements for Model 2. 

There is some conflicting information about the elasticities from the above 

models. One way to resolve the conflicting information about substitution relationships 

between capital and energy and labor and energy is to resort to model choice. We pick 

Model 1, based on BLS national prior, as our best model. We pick this model as the 

elasticities from this model closely match the national counterpart. Further prior 

information is more closely matched for Model 1. The sample for national prior in Model 

1 ranges from 1949-1981 which closely matches the Oklahoma sample ranging from 

1970-1989. Model 3 on the other hand is composed of national prior that ranges from 

1947-1971. Model 2 is based on the national prior ranging from 1947-1981, and it also 

had problems with meeting monotonicity restriction. 

Our results are also useful for policy analysis. Input substitution possibilities have 

major growth implications. If capital and energy are complements, higher energy prices 

will dampen demand for both capital and energy. Conversely, if energy and other inputs 
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are substitutes, then rising energy prices will stimulate demand for both capital and labor. 

Similarly, capital-labor substitutability facilitates a movement towards a more labor 

intensive, production process in the case of higher capital prices. Easier input substitution 

possibilities are more adaptable to changes in input mix brought about by resource price 

fluctuation. On the other hand, if the input substitutability is limited, reduced availability 

of one input, can slow growth in employment and output 
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Table I 

BLS KLEM Data 1949-1981. 

YEAR Capital Labor Price of Price of Price of 
Share Share Capital Labor Energy 

1949 0.283 0.683 30.8 8.0 15.1 
1950 0.299 0.669 36.8 8.5 15.6 
1951 0.298 0.671 39.1 9.2 15.9 
1952 0.272 0.696 36.0 9.9 16.2 
1953 0.259 0.709 36.0 10.6 17.5 
1954 0.259 0.710 34.0 11.0 16.0 
1955 0.286 0.683 41.0 11.4 15.6 
1956 0.266 0.701 38.4 12.1 16.1 
1957 0.263 0.704 37.9 12.8 16.7 
1958 0.252 0.714 34.2 13.5 16.3 
1959 0.273 0.694 41.9 14.2 16.9 
1960 0.257 0.710 38.8 14.7 17.1 
1961 0.260 0.706 38.6 15.0 17.1 
1962 0.270 0.697 42.5 15.5 17.1 
1963 0.280 0.687 45.5 16.1 17.1 
1964 0.282 0.686 47.3 16.8 16.5 
1965 0.298 0.671 52.1 17.1 16.3 
1966 0.290 0.680 52.0 17.9 16.3 
1967 0.275 0.694 47.0 19.0 16.3 
1968 0.275 0.695 48.5 20.4 16.1 
1969 0.255 0.715 45.3 21.9 16.3 
1970 .0.235 0.733 39.3 23.4 17.4 
1971 0.256 0.709 43.9 24.9 18.9 
1972 0.262 0.704 48.3 26.2 20.5 
1973 0.254 0.712 50.4 28.5 22.7 
1974 0.228 0.729 46.2 32.1 29.9 
1975 0.261 0.690 52.5 35.1 38.7 
1976 0.265 0.683 59.4 38.3 45.3 
1977 0.269 0.667 65.9 41.6 53.0 
1978 0.263 0.682 69.3 45.2 60.4 
1979 0.246 0.696 68.2 49.8 68.3 
1980 0.233 0.703 65.3 55.8 82.6 
1981 0.246 0.687 73.0 60.9 95.9 
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Table II 

Berndt and Wood KLEM Data 1947-1971. 

YEAR Capital Labor Price of Price of Price of 
Share Share Capital Labor Energy 

1947 0.150 0.725 1.0000 1.0000 1.0000 
1948 0.150 0.717 1.0027 1.1545 1.3025 
1949 0.129 0.728 0.7437 1.1558 1.1966 
1950 0.145 0.721 0.9249 1.2353 1.2144 
1951 0.144 0.728 1.0487 1.3378 1.2517 
1952 0.136 0.740 0.9974 1.3794 1.2791 
1953 0.132 0.747 1.0065 1.4345 1.2750 
1954 0.150 0.723 1.0875 1.4536 1.3035 
1955 0.145 0.730 1.1031 1.5112 1.3427 
1956 0.128 0.745 0.9960 1.5818 1.3715 
1957 0.136 0.734 1.0632 1.6464 1.3801 
1958 0.158 0.715 1.1561 1.6738 1.3933 
1959 0.163 0.718 1.3075 1.7343 1.3675 
1960 0.152 0.728 1.2541 1.7828 1.3802 
1961 0.154 0.725 1.2632 1.8197 1.3763 
1962 0.145 0.737 1.2652 . 1.8853 1.3768 
1963 0.147 0.735 1.3229 1.9337 1.3473 
1964 0.143 0.742 1.3279 2.0099 1.3896 
1965 0.145 0.745 1.4065 2.0553 1.3863 
1966 0.144 0.750 1.4510 2.1344 1.4010 
1967 0.143 0.751 1.3861 2.2061 1.3919 
1968 0.149 0.748 1.4990 2.3386 1.4338 
1969 0.141 0.756 1.4495 2.4641 1.4648 
1970 0.134 0.756 1.3246 2.6053 1.4590 
1971 0.123 0.759 1.2017 2.7602 1.6468 
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Table III 

Berndt and Wood KLEM Data 1947-1981. 

YEAR Capital Labor Price of Price of Price of 
Share Share Capital Labor Energy 

1947 0.150 0.733 0.510 0.324 0.575 
1948 0.133 0.738 0.419 0.361 0.743 
1949 0.150 0.717 0.427 0.372 0.690 
1950 0.196 0.683 0.647 0.390 0.705 
1951 0.131 0.745 0.438 0.426 0.733 
1952 0.152 0.732 0.544 0.447 0.750 
1953 0.159 0.728 0.610 0.471 0.753 
1954 0.174 0.708 0.635 ·0.483 0.770 
1955 0.156 0.725 0.592 0.501 0.796 
1956 0.163 0.721 0.652 0.528 0.816 
1957 0.154 0.724 0.609 0.553 0.827 
1958 0.176 0.705 0.660 0.569 0.830 
1959 0.185 0.703 0.767 0.592 0.818 
1960 0.161 0.727 0.668 0.609 0.819 
1961 0.166 0.721 0.690 0.620 0.822 
1962 0.158 0.732 0.698 0.635 0.824 
1963 0.150 0.740 0.670 0.657 0.816 
1964 0.149 0.744 0.690 0.680 0.833 
1965 0.160 0.738 0.775 0.697 0.798 
1966 0.156 0.746 0.781 0.723 0.800 
1967 0.154 0.748 0.745 0.746 0.807 
1968 0.168 0.738 0.838 0.799 0.808 
1969 0.147 0.758 0.743 0.850 0.831 
1970 0.148 0.752 0.731 0.904 0.889 
1971 0.156 0.740 0.779 0.952 0.958 
1972 0.179 0.721 1.000 1.000 1.000 
1973 0.173 0.721 1.073 1.061 1.154 
1974 0.164 0.668 1.152 1.167 2.152 
1975 0.153 0.656 1.054 1.291 2.558 
1976 0.174 0.637 1.377 1.404 2.748 
1977 0.159 0.643 1.368 1.525 3.063 
1978 0.159 0.651 1.468 1.652 3.282 
1979 0.152 0.632 1.552 1.807 4.316 
1980 0.165 0.583 1.831 2.005 6.287 
1981 0.147 0.586 1.653 2.200 7.749 
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YEAR Capital 
Share 

1970 0.166 
1971 0.171 
1972 0.162 
1973 0.154 
1974 0.158 
1975 0.165 
1976 0.168 
1977 0.162 
1978 0.165 
1982 0.164 
1983 0.162 
1984 0.159 
1985 0.154 
1986 0.173 
1987 0.189 
1988 0.246 
1989 0.237 

Variable 

Table N 

Oklahoma KLEM Data 1970-1989. 

Labor Price of Price of Price of Estimated 
Share Capital Labor Energy Capital Stock 

0.770 11.54 3.47 0.75 942.98 
0.761 12.21 3.38 0.80 968.53 
0.771 12.91 4.01 0.85 997.89 
0.776 13.40 4.31 . · 0.96 1036.11 
0.742 14.24 4.53 1.36 1094.31 
0.727 15.98 4.80 1.70 1131.38 
0.706 17.84 5.37 1.81 1167.93 
0.729 19.11 5.98 2.25 1210.89 
0.712 20.63 6.51 2.49 1376.52 
0.674 30.96 7.21 4.65 1562.52 
0.663 31.12 10.28 5.06 1534.29 
0.664 31.14 10.92 5.07 1538.14 
0.627 31.38 11.82 5.21 1493.00 
0.683 31.75 12.36 4.6 1555.69 
0.680 32.38 12.84 3.78 1626.31 
0.647 33.00 13.16 3.51 2285.31 
0.655 33.80 13.66 3.61 2310.03 

TableV 

Summary Statistics for BLS KLEM Data (N = 33). 

Mean 
.2707 
.686 
36.92 
52.44 
28.29 

S.D. 
.0211 
.0218 
29.45 
17.11 
20.37 

86 

Minimum 
.228 
.63 
8 
30.8 
15.1 

Maximum 
.326 
.733 
98.4 
94.4 
95.9 



Table VI 

Summary Statistics for BWX Data: 1947-1981 (N = 35). 

Variable Mean S.D . Minimum Maximum 
sk . 159 .013 .1308 .196 
S I .707 .046 .583 .758 
P1 .857 .49 .324 2.2 
pk .853 .364 .419 1.83 
Pe 1.54 1.64 .575 7.74 

Table VII 

Summary Statistics for BW Data: 1947-1971 (N = 25). 

Variable Mean S.D. Minimum Maximum 
sk .159 .013 .1308 .196 
S I .707 .046 .583 .758 
P1 .857 .49 .324 2.2 
pk .853 .364 .419 1.83 
Pe 1.54 1.64 .575 7.74 

TableVill 

Summary Statistics for Oklahoma KLEM Data (N = 17). 

Variable Mean S.D. Minimum Maximum 
sk .1738 .0267 .154 .246 
S1 .706 .047 .627 .776 
P1 7.947 3.182 3.47 13.66 
pk 23.14 8.88 11.54 33.8 
Pe 2.85 1.67 .75 5.21 
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Table IX 

Model 1. Estimates of the Share Equations for the U.S and Oklahoma using SUR, Bayes 
Estimates using Gibbs Sampling under Informative and Diffuse priors. Based on BLS 
Data: 1949-1981. 

Coefficient us Oklahoma Informative Diffuse Prior 
Prior 

Constant .2322 .2781 .2202 .346 
8kk .0445 -.1351 .0357 -.1696 

8k1 -.0174 .1754 -.0095 .1421 
Constant .711 .4136 .7266 .426 
8kl -.0174 .1754 -.0095 .1421 

811 .0101 -.0883 .0026 -.038 

Table X 

Model 2. Estimates of the Share Equations for the U.S and Oklahoma using SUR, Bayes 
Estimates using Gibbs Sampling under Informative and Diffuse priors. Based on BWX 
Data: 1947-1981. 

Coefficient us Oklahoma Informative Diffuse Prior 
Prior 

Constant .1681 .2781 .1794 .3365 
8kk .0919 -.1351 .0267 -.1608 

8k1 -.060 .1754 -.0208 .1350 
Constant .7402 .4136 .7538 .433 
8k1 -.060 .1754 -.0208 .1350 

811 .1302 -.0883 .1075 -.033 

88 



Table XI 

Model 3. Estimates of the Share Equations for the U.S and Oklahoma using SUR, Bayes 
Estimates using Gibbs Sampling under Informative and Diffuse priors. Based on BW 
Data: 1947-1971. 

Coefficient us Oklahoma Informative Diffuse Prior 
Prior 

Constant .1605 .2781 .1459 .2882 

8kk .0659 -.1351 .0202 -.0645 

8kl -.0323 .1754 -.0001 .0781 
Constant .7159 .4136 .7283 .6631 
8kl -.0323 .1754 -.0001 .0781 

8n .0644 -.0883 .0338 -.0644 

Table XII 

Model 4, 5 and 6: Bayes Estimates of Cobb-Douglas Cost Function for Oklahoma using 
Gibbs sampling under informative prior, based on BLS and BW data: 1949-1981 and 
1947-1971, and Diffuse Prior. 

Coefficient Model4 
7.07 
.094 
.363 
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Model 5 
6.94 
.158 
.351 

Model 6 
7.05 
.1101 
.366 



Table XIII 

Estimates of National Elasticities of Substitution for Different Models 

Elasticity Estimate BLS BWX BW 
(jkk -2.13 -1.68 -2.724 
(j ll -.45 -.177 -.287 
(j kl .90 .464 .712 
(j ee -5.24 -.87 -2.81 
(j ke -.50 .49 -.577 
(j le .785 .258 .66 

Table XIV 

Estimates of Oklahoma Elasticities of Substitution for Different Models 

Elasticity Estimate Model 1 Model2 Model3 
(j kk -3.571 -3.869 -4.084 
(j ll -.4128 -.2019 -.3401 
(j kl .9224 .8302 .999 
(j ee -5.940 -.9418 -3.589 
(j ke -.2451 .7196 .0448 
(j le 1.080 -.0156 .6052 
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Table XV 

Estimates of Price Elasticities for Different Models 

Elasticity Estimate Model 1 Model2 

t kk -.6204 -.6724 

t ll -.2911 -.1423 

t lk .1603 .1443 
t kl .6518 .5854 

tee -.7191 -.1140 

t ek -.0425 .1251 

t ke -.0296 .0871 

t le .1603 -.0018 

tel .7616 -.011 

Table XVI 

Posterior Probabilities that Concavity and Monotonicity Hold. 

Restrictions 
Model 1 
Model 3 

Concavity 
.69 
1 
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Monotonicity 
1 
1 

Model 3 
-.7097 
-.2398 
.1736 
.7045 
-.434 
.0077 
.0054 
.0732 
.4267 



Table XVII 

Confidence Interval for Cross Elasticities of Substitution: Choice between CD and 
Translog. 

Elasticities 
Model 1 
Model3 

-.28 to .12 
-.06 to .62 

CD vs Translog 

.87 to 1.10 

.90 to 1.07 
CD Translog 

1.07 to 1.09 
.49 to .62 
Translog 

Table XVIII 

Out of Sample Forecast Comparison: RMSE. 

Cost Share Model 1 Model 3 Model4 Model5 
K .090 .05 .06 .14 
L .012 .107 .315 .304 
E .115 .06 .368 .42 

Average .072 .072 .247 .281 
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Model6 
.232 
.656 
.426 

.438 



Table XIX 

Simulation of 1 % Increase in Input Prices and Their Impact on Input Demands: Translog 
and CD specifications. 

Model 1 Model3 Model4 Model5 Model6 

pk P1 Pe pk P1 Pe pk P1 Pe pk i>1 Pe pk P1 Pe 

xk -.40 .39 .61 -.42 .69 .06 -.74 .48 .78 -.69 .76 1.1 -1.14 .34 .68 

X1 .53 -.35 .67 .27 -.38 .19 .40 -.74 .39 .12-.61 .86 .12 -.64 .88 

Xe -32.3 3.07 -2 .3 .66 -1.2 .29 .44 -.58 .09 .33 -.58 .29 .50 -.50 
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