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CHAPTER 1
THE RESEARCH PROBLEM
Introduction

Control charts have been ﬁsed since their i;ltroduction by Shewhart (1925, 1926, 1927,
1931) to monitor both products and processés to determine if ana whén action should be
takeh to adjust a process because of changes in centerihg and/or spread of the quality
characferiétic being méasured. Shewhart cohtrol chéﬁs are constructed using estimates of
the process mean and standard deviation obtained from subgrbuped data, as well as
conventional control chaﬁ consténts that aré Widely available iﬁ table form. These
conventional control chart constants assﬁme fhat an infinite number of subgroups are
available to estimate the process mean and standard deviation.

Hillier (1969) presents three situations iﬁ which this assumption is invalid. The first is
in the initiation of a new process. The second is during the startup of a process just
brought into statistical control again. The third is for a process whosé total output is not
large endugh. to use convenﬁonal cohtrol chart constants. Each of these is an example of
a short run situation. A short run situation is one in which little or no historical
information is available about a process in order to estimate process parameters to begin
control charting. Consequently, the initial data obtained from the early run of the process
must be used for this purpose.

In recent years, manufacturing companies have increasingly faced each of these short
run situations. One reason is the widespread application of the just-in-time (JIT)

philosophy, which has caused much shorter continuous runs of products. Other reasons



-are frequently changing product lines and product characteristics caused by shorter-lived
products, fast-paced product innovation, and changing consumer dem;'md. Fortunately,
flexible manufacturing technology has provided companies with the ability to alter their
processes in order to face these challenges. Unfortunately, existing statistical process
control‘ (SPC) methodologies in general have not provided companies with the ability to
reliably monitor quality in each of the previously mentioned short run situations.

One of these methodologies for short run control charting is from Hillier (1969). It is
implemented in exactly the same way as Shewhart control charting, but with control chart
factors that are based on a finite number of subgroups. As the number of subgroups

- grows to infinity, Hillier’s (1969) control chart factors converge to the respective

conventional control chart constants uéed to construct Shewhart control charts. Two

- problems exist with this methodology that limit its applicetion. This research effort

solves these pfoblems by investigating, extending, and generalizing Hillier’s (1969)

theory, resulting in a comprehensive,.theoretically sound, easy-to-implement, and

effective methodology that is immediately applicable in industry due to the creation of

computer programs that implement the research.

Problem

In Shewhart control charting, m subgroups of size n consisting of measurements of a
quality characteristic of a part or process are collected. The mean ()—() in combination
with the range (R), variance (v), or standard deviation (\/; or s) is calculated for each

subgroup. When the subgroup size is one, individual values (denoted by X) are used in

combination with moving ranges (denoted by MR) of size two. The mean of the



subgroup means (i) and subgroup ranges (ﬁ) , variances (‘; ), or standard deviations

(g) are calculated and used to determine estimates of the process mean and standard
deviation, respectively. When the subgroup size is one, the mean of the individual values
(X) and moving ranges (MR) are calculated and used to determine estimates of the

process mean and standard deviation, respectively. These parameter estimates are then
used to construct control limifts using conventional cvontrol chart constants for monitoring
the performance of the process. | |

A common rule of thumb, which hés been widely accepted despite evidence that it
may be incorrect, states that twenty to thirty subgroups of size four or five are necessary
before parameter estimates ﬁay be obtained to construct control linﬁts using
conventional control chart constants. This is a difficult if not ifnpossible rule to satisfy in
a short run situation. As a result, pépers appear in the literature starting several decades
ago detailing methodologies‘that allow for control charting when it is not possible to
collect enough data to satisfy the rule.

- The prevalent methodologies focus on pooling data from different parts onto a single
~ control chart combination (i.e., onto (X,R), (X,v), (X,/v), (X,s), and (X, MR)
control charts) in order to have enough data to satisfy the rule. It should be noted that the

difference between (—)Z, \/; ) and (i s) control charts is that the former are constructed

using the statistic \/_;_ and the latter are constructed using the statistic s. Pooling data is
advantageous because it reduces the number of control charts in use, which greatly
simplifies control chart management programs. Also, in most cases, control charting can

begin almost immediately after the startup of a process because control limits are known



and constant. However, pooling data has several disadvantages. One is that few
situations in industry allow for its application. Another is that the values used as
-estimates of the process parameters (i.e., estimates of the process mean and standard
deviation) are either not representative of the process or violate the original motivations
for pooling data. A final disadvantage is that some of the methodologies are difficult to
implement.

A second approach to control charting in a short run situation is using control charts
with greater sensitivity (i.e., more statistical power) than Shewhart control charts. An
advantage of this approach is that it allows for the quick detection of special cause
signals, which takes on added importance in a short run situation where the total output of
the process is not large. - A disadvantage is that initial estimates of the process parameters
must be close to their true values in order for the control charts to perform well. Also, the
methodologies that comprise this approach are difficult to implement.

A third approach to control charting in a short run situation is to monitor and control
process inputs rather than process outputs. The assumption upon which this approach is
based is that, by correctly selecting and monitoring critical input variables, one can
control the output of the process. An advantage of this approach is that, since large
amounts of process input data may be available even in a short run situation, Shewhart
control charting may be used. A disadvantage of this approach is that few situations in
industry allow for its application.

A fourth approach to control charting in a short run situation is using control charts
with modified limits. Control limits are modified in order to achieve a specified Type I

error probability (i.e., the probability of a false alarm). Quesenberry’s (1991) Q chart



methodology falls under this approach. Q charts are advantageous in that, not only do
they allow for the pooling of data from different parts, but different statistics may be
plotted on the same Q chart. Also, control charting can begin almost immediately after
the start-up of a process because control limits are known and constant. Disadvantages of
Q charts are their inability to detect a process that starts out-of-control and their general
lack of sensitivity in detecting process changes. Also, process standard deviation
estimates used to calculate Q statistics to be plotted on Q charts are uﬁreliable.

Hillier’s (1969) methodology also falls under the fourth approach. It has significant
advantages over Quesenberry’s (1991) methodology as well as the methodologies from
the other appreaches. It overcomes their endemic problems of relying on the common
rule of thumb, using parameter estimates that are not representative of the process,
assuming the process starts in-control, and complex implementation.

An integral part of Hillier’s (1969) methodology ‘is its two stage procedure, which is
used to determine both the initial state of the process and the control limits for testing
future performance of the process. In the first stage, the initial subgroups drawn from the
process are used to determine the control limits. The initial subgroups are plotted against
the control limits to retrospectively test if the process was in—contrel while the initial
subgroups were being drawn. Any out-of-control initial subgroups are deleted using a
delete and revise (D&R) procedure. Once control is established, the procedure moves to
the second stage, where the initial subgroups that were not deleted in the first stageJ are
used to determine the control limits for testing if the process remains in-control while
future subgroups are drawn. Each stage uses a different set of control chart factors called

first stage short run control chart factors and second stage short run control chart



factors.

Two problems exist with Hillier’s (1969) methodology that present research

opportunities. The first one is that it has been applied to only (X,R) control charts (see

Hillier (1969)) and to (X, v) and (X,/v) control charts (see Yang and Hillier (1970)).

Additionally, limited and in some cases incorrect results are presented in the literature for
these charts. A particularly important deficiency of Hillier’s (1969) methodology is that
it has not been applied to (X, MR) control charts (see Del Castillo and Montgomery
(1994) and Quesenberry (1995b)).

The second problem is that the process of establishing control in the first stage of the
two stage procedure is not clear (see Faltin, Mastrangelo, Runger, and Ryan (1997)).
Several D&R procedures exist in the literature with no evidence to suggest which one
establishes the most reliable control limits for monitoring the future performance of a
process. In a short run situation, the D&R process takes on added importance. The
reason is that deleting subgroups is equivalent to throwing away information about a
process, which, in a short run situation, is limited even before the D&R process begins.
Since the reliability of control limits for monitoring the future performance of a process is
. directly related to the amount of information from the process that is used to construct
them, the choice of the D&R procedure used in a short run situation would seem to have
serious implications.

From these problems it is clear that opportunities exist not only to correct and

generalize results currently available in the literature, but also to extend and generalize
Hillier’s (1969) methodology to other control chart combinations, namely (-)-(—, s) and

(X, MR) charts. Also, an opportunity exists to develop a methodology to determine the



appropriate execution (i.e., the appropriate D&R procedure to use to establish control in

the first stage) of the two stage procedure.

Research Objective

The objective of this research is to investigate, extend, and generalize a methodology

for two stage short run variables control charting.

Research Sub;Obieﬁ:tives and Tasks

The research objective is achieved by accomplishing the following five research sub-

objectives (in order of appearance) and their respective tasks:

1. Generalize Hillier’s (1969) theory so that it can be used for (_)Z, R) control charts

regardless of the subgroup size, number of subgroups, alpha for the X control chart,
alpha for the R control chart above the upper control limit, and alpha for the R control
chart below the lower control limit (alpha is the probability of a Type I error). Asa

part of this generalization, correct previous results in the literature for two stage short

run control chart factors for (i, R) charts.

The first research sub-objective is achieved by accomplishing the following tasks:
a. Develop a computer program using the software Mathcad 8.03 Professional

(1998) with the Numerical Recipes Extension Pack (1997) that accurately

calculates first and second stage short run control chart factors for (X,R) charts.



.~ Use exact equations for the probability integral of the range, the expected values
of the first and second powers of the distribution of the range, the probability
integral of the studentized range, degrees of freedom calculations, short run
calculations, and conventional control ché.rt calculations in the program.

Use numerical routines provided by the software in the program.

. Have the program accept values for subgroup size, number of subgroups, alpha .

for the X chart, and alpha for the R chart both above the upper control limit and
below the lower control limit.

Use the program to generate tables for specific values of these inputs.

Compare the tabulated results to legitimate results in the literature to validate the
program.

.. Use the tables to correct and extend previous.results in the literature.

. Generalize Yang and Hillier’s (1970) theory so that it can be used for (i, v) and

(i Jv ) control charts regardless of the subgroup size, number of subgroups, alpha

for the X control chart, alpha for the v and v control charts above the upper

control limit, and alpha for the v and v control charts below the lower control limit.

As a part of this generalization, correct Yang and Hillier's (1970) results for two stage

short run control chart factors for (i, v) and (_}Z, Jv ) -charts.

The second research sub-objective is achieved by accomplishing the following tasks:

a. Develop a computer program using the software Mathcad 8.03 Professional

(1998) with the Numerical Recipes Extension Pack (1997) that accurately



calculates first and second stage short run control chart factors for (i, v) and

(i, «/; ) charts.

b. Use exact equations for the disfributions of the variance and the studentized
variance, degrees of freedom calculations, short run calculations, and
conventional control chart calculations in the program.

c. Use numerical routines pfovided by the software in the program.

d. Have the program accept values for subgroup size, number of subgroups, alpha

for the X chart, aﬁd alpha for the v or v chart both above the upper control
limit and below the lower control limit.

e. Use the program to génerate tables for specific values of these inputs.

f. Compare the tabulated results to legitimate results in the literature to validate the
program.

g. Use the tables to correct and extend previous results in the literature.

. Extend and generaIize Hillier’s (1969) theory so that it can be used for (_}Z, s) control

charts regardless of the subgroup size, number of subgroups, alpha for the X control
chart, alpha for the s control chart above the upper control limit, and alpha for the s

control chart below the lower control limit.

The third research sub-objective is achieved by accomplishing the following tasks:

a. Extend Hillier’s (1969) theory to allow for the derivation of equations to calculate

first and second stage short run control chart factors for (X, s) charts.



b. Derive equations to calculate first and second stage short run control chart factors,
.as well as conventional control chart constants, for (_)Z, s) charts.

c. Develop a computer program using the software Mathcad 8.03 Professional
+(1998) with the Numerical Recipes Extension Pack (1997) that accurately
calculates the factors using the derived equations.

d. Use exact equations for the distribution of the standard deviatidn, the mean and
standard deviation of the distribution of the standard deviation, the distribution of
the studentized standard deviation, and degrees of freedom calculations in the
program.

e. Use numerical routines provided by the software in the program.

f. Have the program accept values for subgroup size, number of subgroups, alpha

for the X chart, and alpha for the s chart both above the upper control limit and
below the lower control limit.

g. Use the program to generate tables for specific values of these inputs.

h. Compare the tabulated results to legitimate results in the literature to validate the

program.

. Extend and generalize Hillier’s (1969) theory so that it can be used for (X, MR)
control charts regardless of the number of subgroups, alpha for the X control chart,
alpha for the MR contro] chart above the upper control limit, and alpha for the MR
control chart below the lower control limit. As a part of this extension and
generalization, correct previous results in the literature for two stage short run control

chart factors for (X, MR) charts.
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5.

The fourth research sub-objective is achieved by accomplishing the following tasks:
a. Extend Hillier’s (1969) theory to allow for the derivation of equations to calculate
“first and second stage short run control chart factors for (X, MR) charts.

b. Derive equations to calculate first and second stage short run control chart factors,
as well as conventional control chart constants, for (X, MR).charts.

c. Develop a computer program using the software Mathcad 8.03 Professional
(1998) with the Numerical Rec‘ipestxtelnsion Pack (1997) that accurately
calculates the factors using these derived equations.

d. Use exact equations for the probability integral of the range, the mean of the
distribution of the range, the probability integral of the studentized range (all three

for subgroup size two), and degrees of freedom calculations in the program.

e. Use nufnerical routines pfovided by the software in the program.

f. Have the program accept values for number of subgroups, alpha for the X chart,
and alpha for the MR chart both above the upper control limit and below the
lo.wer control limit.

g. Use the program to generate tables for specific values of these inputs.

h. Compare the tabulated results to legitimate results in the literature to validate the
program.

i. Use the tables to correct and extend previous results in the literature.

Develop a methodology to determine the appropriate execution of the two stage

procedure.
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The fifth research sub-objective is achieved by accomplishing the following tasks:
a. Develop a computer program using FORTRAN (1999) and the Marse-Roberts
~ Uniform (0, 1) random variate generator (see Marse and Roberts (1983)) to
simulate two stage short run control charting for (i R), (i, V), (i, \/V) , (i, s),
and (X, MR) charts for in-control and various out-of-control conditions in both
stages.

b. Determine the delete and revise (D&R) procedures to include in the program by
reviewing the relevant literaturé. Also, develop reasonable hybrids of existing
procedures.

c. Determine the measurements (i.e., the information) that the program needs to
provide so that one can choose the appropriate D&R procedure to use. This is
accomplished by reviewing the literature concerning measurements to use when
contro] charting in a short run situation.

d. Determine any additional information that the program needs to provide. This is

- accomplished by studying sample runs of the program to detect occurrences of
events that need to be recorded.

e. Use sample runs from the program to show how to interpret its output.

Research Contributions

This research makes important contributions to the statistical process control body of

knowledge. The application of Hillier’s (1969) theory to (i, s) and (X, MR) control
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charts is a new contribution. It is important because two stage short run’ (X,s) control

charts provide another alternative to two stage short run (i R) control charts that use a
‘more efficient estimate of thebprocess' standard deviation and that may be easier to use in
vinduétry than two stage short run ()—(, x/; ) éontrol charts. It is also important because two
stage short run.(X, MR) control charts provide a rﬁeans by whic‘h two stage short run
control chartiﬁg can occur in situations whefe subgrouping is infeasible. It should be
noted that‘two stage short run (X, s) and (X7 MR) coﬁtrol charts pfeviously did not exist.
The computer programs are important contributions because they calculate

theoretically precise control chart factors to determine control limits for (i, R), (i, V),

(i, Jv ), (i, s), and (X, MR) charts regardless of the subgroup size, number of
subgroups, and alpha values. Previously these capabilities did not exist. This flexibility
is valuable in that process monitoring in industry will no longer have to be adjusted to use

the limited, and in some cases incorrect, results previously available in the literature for
two stage short run (i, R), (i, v), and (i, \/; ) control charts.

The development of a methodology for determining the appropriate execution of the
two stage procedure is another new contribution. This methodology is important
because, in a short run situation, the implications of choosing different D&R procedures
for establishing control in the first stage can now be investigated. The information
provided by the methodology allows one to choose the D&R procedure that most closely
balances two competing issues. The first is avoiding losing too much important
information about a process by deleting an already limited number of subgroups in stage

one. The second is having control limits to start stage two control charting that have both

13



the desired probability of a false alarm (i.e., the desired probability of signaling a change
in the process when there is none) and a high probability of detecting a special cause
signal (i.e., a high probability of detecting a signal indicating a change in the process).

Another contribution is two new equations to calculate unbiased estimates of a
population variance. The first equation uses the average standard deviation calculated
from m standard deviations, each of which is based on a subgroup of size n. The second
equation uses the average moving range calculated from (m-1) moving ranges, each of
which is based on a subgroup of size two.

It is evident that the contributions of this research result in the development of a

comprehensive, theoretically sound, easy-to-implement, and effective methodology for
two stage short run control charting using (i, R), (_)Z, v), (i, \/; ), (i, s), and (X, MR)
charts. Additionally, the programs allow for the immediate use of this methodology in

industry.
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-~ CHAPTER I
LITERATURE REVIEW
Introduction

For several decades and with much higher frequency in recent years, different

methods of monitoring procesSes in a short run situation with (-)Z, R), (i, v), (i, \/;) ,

(X, s), and (X, MR) control charis have appeared in the literature. These methods belong
to at least one of four general approaches to control charting in a short run situation (see

Woodall, érowder, and Wade (1995) and Crowder and Héilbleib (2000)).

| The first approach is pooling data from different parts onto 'a'single control chart
combination (i.e., onto (i, R), (i, v), (i, \/; ), (i, s), and (X, MR) control charts).
The second is using control charts that have greater sensitivity (i.e., more statistical
power) than Shewhart control charts. The third is emphasizing the monitoﬁng and
controlling of process inputs rather than pfoduct characteristics (i.e., process outputs).
The fourth is modifying control chart limits to achieve the desired Type I error
probability (i.e., the desired probability of a false alarm).

This chapter first reviews the literature comprising each of these approaches as they
concern (i, R), (i, v), (i, \/; ), (5(—, s), and (X, MR) control charts. Next, this chapter

reviews the different ways of executing the two stage procedure. The last topic this
chapter reviews is the different metrics used to determine control chart performance in a

short run situation.

15



.Pooling Data

In a short run situation it is ﬁot likely that enough-data will be available to estimate
process parameters to construct control charts for single parts. The widely accepted
- guideline for how much data is enough is the common rule of thumb. This rule states that
twenty to thirty subgroups of size four or five are necessary before process parameters
‘may be estimated and conventional control chart constants used to construct control
limits. By pooling data from different parts, it is hoped that enough data is available to
satisfy this rule. |

Pooling data is the procedure-of taking measurements of quality characteﬁstics from
different parts, performing a transformation on the measurements, and plotting the
transformed measurements from the different parts on the same control chart. Typically,
all of the part numbers on the same control chart are produced by one machine or
process. Hence, control charting using pooled data is often termed a process-focused

approach rather than a product-focused approach to control charting.

Transformations for Pooling Data

Early attempts at pooling data on a single control chart focused on using the deviation-
from-nominal transformation (see Grubbs (1946) and Occasione (1956)). Bothe (1988)
calls this a Nom-i-nal (i.e., Nominal) transformation and applies it to a short run situation.
Each measurement X of a quality characteristic on a given part number is adjusted using

the transformation given as equation (2.1) (see Bothe (1988)):
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X’ = X — Nominal 2.1
where
Nominal: the blueprint specification for the measurement taken from that given part

number

Shewhart control chart téchniques are then applied to these adjusted values to construct

control charts using conventional control chart constants. Both Occasione (1956) and

N

" Bothe (1988) give' examples of fap‘plying the deviation-from-nominal transformation to

~ construct pobled (i R) control ‘charts. Kbons and Luner (1988, 1991) give an example

of applying it to construct pooled (X, V) control charts with varying subgroup sizes.

When expressed in terms of averages, equdtion (2.1) becomes equation (2.2) (see

Bothe (1989)):

X PLOT POINT = X - TARGET X (2.2)

where

X: the average of m values of X fora specific part number

The transformation given as equation (2.2) is not suitable in the situation where the
standard deviation estimates for different part numbers are not close to each other (this
can be determined using the range test (see Griffith (1996)) or Hartley’s F-max test (see
Nelson (1987))). Consequently, Bothe (1989) suggests the use of his Short Run X and R

chart.

The control chart statistic for the Short Run R (Range) chart is given as equation
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(2.3a):

R PLOT POINT = R (2.3a)

TARGETR

where

R : the average of m values of R for a specific part number

~ Equation (2.3a) standardizes the range from any part number so that it fits on the same
Short Run Range chart as long as the subgroup sizes remain constant. The upper control

1imit (UCL) for the Short Run Range chart is the conventional control chart constant D, .

The lower control limit (LCL) is the conventional control chart constant D;.

The control chart statistic for the Short Run X chart is given as equation (2.3b):

X — TARGET X

— (2.3b)
TARGETR

X PLOT POINT =

Equation (2.3b) standardizes the average from any part number so it fits on the same
‘Short Run X chart as long as the subgroup sizes remain constant. The UCL for the Short
Run X chart is the conventional control chart constant A,. The LCLisequalto —A,.
The TARGETR value in equations (2.3a) and (2.3b) and the TARGET§ value in
equation (2.3b) are determined in one of four different ways (see Bothe (1989)). The first

is by using prior control charts for the specific part number. The second is by using

historical data for the specific part number. The third is by using prior experience on
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similar part numbers. The fourth is by using specification limits.
Bothe (1989) states several advantages to his Short Run X and R charts. The first is
that the Short Run X chart is independent of both ; and R and the Short Run Range

chart is independent of R . This means that part numbers with significantly different ;
and R values may be plotted on the. same Short Run X and R charts. The second is that

the control limits for the Short Run X and R chart can be used when beginning the first
control chart with the first plot point. The tﬁird is that the control limits do not need to be
calculated or recalculated unless process changes are detected. |

Quesenberry (1998) and Crowder and Halbleib (2000) point out two problems with
Bothe’s (1989) transformations, which are similar to many of the transformations used for
pooling data: Quesenberry (1998) states that Bothe’s (1989) Short Run X and R chart is
not valid since point patterns on them are not predictable, even for a stable process.
Crowder and Halbleib (2000) state that the distribution of Bothe’s (1989) transformation
given as equation (2.3b) depends on m (the number of subgroups) as well as the subgroup

size n. Consequently, plotting it against the conventional control chart constants — A,

and A, (which do not depend on m) for the X chart is problematic.

Burr (1989) applies his deviation-from-tolerance transformation (similar to equation
(2.1) except Tolerance is used instead of Nominal) to construct pooled (X, MR) control
charts when the tolerance widths for the measured quality characteristics of different
products to be pooled are close. When they are not (i.e., when they differ by a factor of
two), Burr (1989) recommends the Q-statistic control chart. The Q-statistic is given as

equation (2.4):
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0= X — Nominal
0.5 (Tolerance)

2.4
The motivation for the Q-statistic is similar to that used by Bothe (1989) to derive his plot
ppoints given earlier as equations (2.3a) and (2.3b).

Similar to Burr (1989), Wheeler (1991) shows how to construct pooled (X, MR)
control charts, except with the deviation-from-nominal transformation given as equation
(2.1). Shewhart control chart techniques are applied to the adjusted values to construct
control éharts using conventional control chart constants. The resulting control charts are
called Difference Charts.

As a test to determine if the Difference Charts are adequate to display the process
data, Wheeler (1991) suggests plotting average moving ranges for each product on a chart

for Mean Ranges. The control limits for this chart are given as equations (2.52)-(2.5¢):

ucL, =R + & R (2.52)
d, -k
CL. =E (2.5b)
= H.d,-R
LCL, =R - ——2 (2.5¢)
d, vk
where

E : the average of m average moving ranges (m is also the number of different products)

H: a tabled constant that depends on m
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d,, d,: the mean and standard deviation, respectively, of the distribution of the range
(these are tabled constants that depend on n (see Table M in the appendix of Duncan
(1974)))

k: the number of moving ranges (i.e., the number of subgroups) for each product

CL: the center line for the chart for Mean Ranges

~ If an average moving range for a product is not within the control limits, then there is
evidence to suggest that variation between products is too inconsistent to use Difference

Charts. In this case, Wheeler (1991) recommends the use of Zed Charts (also called Z-

Charts) or Z" charts. The transformations for the Z-Chart are given as equations (2.6a)

and (2.6b):
7 - X~ Nominal (2.62)
R/d,
w=MR (2.6b)
~ R/d,
where

Nominal: the target value for the product specific quality characteristic being measured

R : the mean of k moving ranges determined from the initial subgroups for a specific

product drawn from the process.

The control chart for the Z statistic has UCL=3.0, CL=0.0, and LCL=-3.0. The control

chart for the W statistic has UCL =d, +3-d, =3.686 and CL=d, =1.128.
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The transformations for the Z~ chart are exactly like those for the Z-Chart, except the
denominators are R instead of —R—/ d, . The control chart for the Z~ statistic has UCL,
CL, and LCL equal to 2.660, 0.0, and -2.660, respectively. . The control chart for the A
- statistic has UCL =D, =3.268 and CL=1.0.

Equations (2.6a) and (2.6b) differ from equations (2.3a), (2.3b), and (2.4) in that the
standard deviation used is-an estimate from initial subgroups drawn from the process; it is
- not target or tolerance values. It should be noted that Wheeler (1991) also gives
equations to calculate Difference Charts, Zed charts (called Zed-Bar charts), and Z°
charts (called 2_ charts) for subgrouped data (i.e., pooled (i R) control charts).

 Farnum (1992), like Bothe (1989), Burr (1989), and Wheeler (1991), proposes a
modification of the deviation-from-nominal (which he calls DNOM) procedure in the
case where variances are not constant among different parts. For processes with an
approximately constant coefficient of variation, together with measurement systems

whose errors are reported as percentages of the instrument’s reading, Farnum (1992)

recommends a DNOM chart that monitors how much X; / T, deviates from one. The
value X; is the average of a subgroup for parti. The value T; is the nominal dimension

for the quality characteristic being measured for parti. The ratio X / T, is interpreted as
percent of nominal.

The control chart for the ratio i;/Ti has UCL =1+ ((3 ‘ s)/s/;), CL~=1.0, and
LCL =1- ((3 . s)/ Jn ) The value s is the square root of the average of m values of

(s, /T, )?, where s, is the standard deviation of a subgroup for part i.

Pyzdek (1993) presents a variation on Bothe’s (1988) Nom-i-nal transformation (see
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-equation (2.1)). It is given as equation (2.7):

X —target 27

k= Unit of measure
Dividing by the unit.of measure allows for integer values of f( to be plotted on pooled
(X,R) control charts using Hillier’s (1969) methodology, ‘which is reviewed later in the
Two Stage Short Run Control Charts subsection of the Control Charts with Modified
Limits section of this chapter.

Pyzdek (1993) also presents a methodology called Stabilized control charts that is

similar to Bothe’s (1989) Short Run X and R chart. The difference is that, instead of
using target values to estimate the process avérage and standard deviation for a specific
part, a grand average and an average range, respectively, are used from initial subgroups
drawn from the process for that specific part. Conventional control chart constants are

then used to construct control limits as in Bothe’s (1989) approach.

Advanced Methodoiogies for Pooling Data

‘Al-Salti and Statham (1994) present a more comprehensive approach to determine
which parts should be pooled. It is called the group technology (GT) concept. The main
idea is to group péﬂs together into component families based on design and

| manufacturing similarities. When a new part is scheduled for production, the component
family in which it belongs is determined. Historical information obtained from this

component family is used to estimate process parameters for the new part.
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The most important part of applying the GT concept is the use of a suitable
Classification and Coding (C&C) system. This system determines the similarity structure
in component machining as a basis for family formation. ‘A C&C system for statistical
process control consists of two main codes. The first is a primary code that is based on
an existing design-oriented system. A secondary code incorporates the manufacturing
similarities of machined components.

The formation of the component families involves identifying the most important
variables affecting the quality characteristic of the process output. As part of the primary
code, examples of such variables are the basic shape, size, material, and the initial form
of the component. As part of the secondary code, examples.of such variables are the
machine tool used, the machining process monitored, the quality characteristic, the
measuring device used, the dimensional class and accuracy of the machined surface, the
cutting tool, and the component and tool holding methods.

The procedure for estimating the process parameters for a new cbmponent using the
GT concept is as follows. First, determine the code number for the component to be
machined. Second, identify the important variables affecting the quality characteristic of
the process output. Third, use the results of step two to establish the family in which the
component belongs. Fourth, retrieve from the family any data that is related to the
measurements taken from the component. Fifth, calculate the transformed values of the
retrieved data using appropriate upper and lower specification limits. Sixth, estimate the
‘process mean and standard deviation using the transformed retrieved data. Seventh,
establish target values to use as estimates of the process parameters for the component to

be machined using the estimated process parameters from step six and appropriate upper
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and lower specification limits.

The process parameter estimates from step seven in the previous paragraph are used to
| transform component measurements, which are then plotted on pooled (5(—, R) control
charts for the machining process being monitored.

Lin, Lai, and Chang (1997) propose a multicriteria part family formation to improve
upon the group technology‘concept for placing parts into families. In this methodology,.
deviations—from-nominal for each part type are calculated using equation (2.1). The
standard deviation of the deviatiops—from-nominal for each part type are calculated and
ranked in ascending order. Ratios of these standard deviations are formed and different
part types are placed in the same family if the ratios satisfy certain ‘cdte‘ria.

Once families are formed, control chart statistics for each family are calculated using

equation (2.2). The family-specific control charts have UCL =3- (Sp(r) / \/; ) CL=0.0,
and LCL =-3- (S-p(r) / vn ), where S, "is the family-specific pooled standard deviation

for a family with r péns. The resulting control charts are pooled X charts.

Lin, Lai, and Chang (1997) state two advantages of their methodology over the group
technology concept. First, it is simpler to implement for small manufacturers with
inadequate statistical staffs. Second, a multicriteria part family formation methodology
improves process variation estimates based on pooled observations from different quality
characteristics. Statistics calculated from poorly pooled observations tend to be
underestimated for some quality characteristics and overestimated for others. This can
create pooled control charts that for some parts will have a higher false alarm rate and for

others will have less sensitivity to detect special cause signals.
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. Conclusions for Pooling Data

Several problems exist with each of these methodologies for pooling data. In a true

~ short run situation, one will often find it difficult to even proceed to pool data (Crowder
and Halbleib (2000)). The reason is that, in order to construct control limits from pooled
data, many part types or operations with similar characteristics must be produced or
performed, respectively, by the same.procéss.

Another problem is process parameters for each part number are estimated using
target or nominal values, tolerances, specification limits, initial subgroups drawn from the
‘process, or historical data. Quesenberry (1991) states that using target or nominal values
is equivalent to using specification limits instead of statistical control limits on control
charts, which Deming (1986) asserts is a serious mistake. The same can be said for
tolerances and specification limits. The reason is that the process target (what you want),
the process aim (what you set), and the process average (what you get) are never the
same. The magnitude of the differences depends.on how well the process is performing.
The result is a control chart that in general will be useless in delineating special cause
variation from common cause variation (i.e., variation that is the result of an in-control
process).

Using initial subgroups drawn from the process to obtain parameter estimates for part
numbers begs the original short run problem that motivates the use of pooled data. If one
has enough data (as defined by the common rule of thumb) from a process for a single
part to estimate its process parameters, then pooling data is not necessary in the first
place.

When one has historical data to estimate process parameters for part numbers, then by
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definition one is not in a short run situation. Consequently, pooling data is not even
necessary, other than to reduce the number of controj charts in use.

Finally, an original motivation for pooling data was to satisfy the common rule of
thumb. However, Ng and Case (1992) and Quesenberry (1993).show in detail that
satisfying the rule does not guarantee control limits that result in a low false alarm rate

and have a high probability of detecting a special cause signal.

Control Charts with Greater Sensitivity

In a short run situation where the total output of the process is not large, the quick
detection of special causé signals takes on added importance. It is well known that
cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control
schemés are fnore sensitive to detecting small process shifts than Shewhart control charts
(é. g., see Lucas and Saccucci (1990) and Ch.22, p.464 in Duﬁcan (1974), respectively).
Also, eéonomically designed control charts have greater senéitivity (see Woodall,
Crowder, and Wade (1995) and Crowder and Halbleib (2000)). Consequently, these have

been adapted for use in short run situations.

CUSUM and EWMA Control Schemes

Hawkins (1987) introduces a short run CUSUM control scheme called self-starting
CUSUM charts in which process parameters are estimated using the running mean and
standard deviation of all of the data obtained since the startup of the process. This

scheme has increased sensitivity in detecting shifts at the startup of a process over using
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parameter estimates obtained from initial subgroups drawn from the process. This
sensitivity improves as more data are used in the calculation of the running mean and
standard deviation.

Del Castillo and Montgomery (1994) show results originally given in a 1992 Arizona
State University technical report that adapts the EWMA control scheme to short run
situations. The methodology is called the adaptive Kalman filtering method. Other
names given to this methodology are the dynamic EWMA, the adaptive EWMA, and a
first-order, constant variance, dynamic linear model (Wasserman (1994)).

Wasserman'’s (1994) dynamic EWMA control chart is a generalization of the EWMA |
control chart. It allows for prior information about the process to be incorporated into the
model in the form of a prior distribution. Prior information may consist of engineering
judgment, expert knowledge, engineering specifications, or information obtained from
similar processes: This prior information is updated as individual observations are
obtained from the process. Initial estimates of the process mean and standard deviation
are obtained using the prior information along with a Bayesian estimation scheme.
Updated estimates of these two process parameters are obtained using the updated prior
information.

The dynamic EWMA control chart statistic is calculated using equation (2.8):

m, =AY, +1-A,)-m_ (2.8)
where

m, : mean level of the process at time t

A, : adaptive weighting factor at time t (adaptive means that the variance terms are
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estimated)

Y, : individual observation at time t

Since individual observations are used to determine the control chart statistic, this is a
short run application of the X chart.

Wasserman and Sudjianto (1993) present a second order, constant variance, dynamic
linear model version of the dynamic EWMA. This model also performs well in detecting
small process shifts in a short run situation.

The methodologies of Del Castillo and Montgomery (1994), Wasserman (1994), and
Wasserman and Sudjianto (1993) have a common problem. Initial estimates of the
process mean and standard deviation must be close to their true values. If not, the ability
of the control mechanisms to detg:ct shifts is significantly hampered.

Chan (1994) uses simulation techniques to determine control chart parameter values

for the usual EWMA control chart (where A, = A is constant in equation (2.8)) that allow

for the application of this chart to short run situations. Chan’s (1994) two assumptions
that the process starts in-control and the process mean and standard deviation are known
undermine his results. If process parameters are known, then by definition one is not in a
short run situation. Also, it is possible for a process to start out-of-control.

Consequently, Chan’s results (1994) may not be applicable in a short run situation.

Combined Methodologies

Quesenberry (1995a) applies EWMA and CUSUM monitoring schemes to his Q chart

(this Q is different from Burr’s (1989) Q-statistic given earlier as equation (2.4))
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- methodology, which is reviewed later in the Q Charts subsection of the Control Charts
with Modified Limits section of this chapter, to improve the detection of small process
shifts. The Q statistic is used to calculate the EWMA control chart statistic as shown in

equation (2.9):

Z =A-Q +(1-N)-Z, (29

" - where

Z,:the EWMA control chart statistic at time t, t: 1,2, ... (Z, =0.0)

A : constant weighting factor

Q, : the Q statistic at time t

The Q statistic is used to calculate the CUSUM statistics as shown in equations

(2.10a) and (2.10b):

Sr =max{0,S}, +Q, -k, } (2.10a)
S; =min{0,S], +Q, +k,} (2.10b)
where

S!,S; : the CUSUM control chart statistics at time t, t: 1,2, ... (S} =0.0,S; =0.0)

k, : reference value (Quesenberry (1995a) uses k, =0.75)

Problems with Quesenberry's (1995a) methodology are given later in-the Issues with Q

Charts subsection of the Control Charts with Modified Limits section of this chapter.
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Doganaksoy and Vandeven (1997) apply an EWMA monitoring scheme to control
charts for pooled data. Charting pooled data in this manner results in earlier notification

- of process changes. The transformation used to allow for pooling is given as equation

(2.11):

_ ygcl;! - ygc

chl;t -

(2.11)

Sgc

where
g, ¢, l: product grade, Color, and line, respectiVely

Z,,,, : pooled control chart statistic for product gcl at time t

Y g1, - heasured quality characteristic for product gcl at time t

Y, : historical mean of the measured quality characteristic for product gc

8, * historical standard deviation of the measured quality characteristic for product gc

The historical mean and standard deviation for each product can be estimated using data
collected from a previous production period.
- The EWMA control chart statistic is calculated using equation (2.12):

EWMA, =A-z . +(1—-A)-EWMA (2.12)

gelst
where

EWMA, : the EWMA control chart statistic at time t, t: 1, 2, ... (EWMA =0.0)

A : constant weighting factor
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Problems with Doganaksoy and Vandeven’s (1997) methodology are the same as those

given earlier in the Pooling Data section of this chapter.

Economic. Design

" Del Castillo and Montgomery (1996) develop a model for the optimal economic

design of X charts for short run situations. It assumes a finite production run whose

- length is determined separately from the model. Incorporated in the model is the
consideration of the effect the setup operation has on the chart design. An imperfect
setup corresponds to a process that has a nonzero probability of starting out-of-control.
As the production run lengthens to infinity and as the probability of a perfect setup
converges to one, the model converges to Duncan’s (1956) model.

Del Castillo and Montgomery (1996) use designed experiments to conclude that the
length of the production run, the probability of having a correct setup, and the power of
the chart design are related. Another conclusion is that the model is sensitive to the value
of the parameter that represents the probability of a perfect setup.

Del Castillo and Montgomery (1996) give several examples illustrating these
conclusions. As the setup improves or as the production run increases, charts with higher
power are needed. If there is a high probability of an incorrect setup, then a high power
chart is not recommended because there is no point in stopping the process for a setup
that will not bring a process to an in-control state. If the setup is perfect and the
production run length is short, a low power chart can be used because an out-of-control

state will reset to an in-control state through the perfect setup operation.
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- Del Castillo (1996b) presents an algorithm for the constrained optimization of Del
Castillo and Montgomery’s (1996) model. For the situation in which cost and parameter
estimation is impractical, Del Castillo (1996b) presents a graphical method for finding a
feasible chart design. The constraints, which are statistical and production-related in
nature, link the chart design variables with the production process to make the model

more realistic and to obtain chart designs with better statistical properties.

Process Inputs

The third approach to applying (i, R), (i, v), (X, Jv ), (X,s), and (X, MR) control
charts to short run situations is the fnohitoring anci controlling of process inputs (e.g.,
temperature, pressure, rpms) rather than product characteristics (e.g., diameter, thickness,
number of defects). By controlling the process inputs, one can control the quality of the
process output. This approach is applicable when large amounts of process input data are
available.

Foster (1988) gives a three-phase model for monitoring process inputs. The first step
of phase one is the creation of a Master Process Requirements List. This is a compilation
of all the individual specification requirements for a particular process. When separate
specification requirements overlap, the most stringent requirement is used. The second
step is to flowchart the process. The third step is to select and rank critical inputs. The
last step of phase one is to perform a capability analysis on each critical input parameter.
If aﬁy are ﬁot capable, the process should be adjusted and the last step repeated.

Phase two is the evaluation of the process output. If the output is unaqceptable, then

the selection and/or capability of the critical input parameters should be re-evaluated.
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This phase should be repeated until the output is acceptable.
In phase three, the focus is on maintaining control, establishing and refining

relationships between critical input parameters, and- improving process requirements.
Monitoring of the process inputs in this phase is done with (5(-, R), (—)Z, V), (i, \/; ),

(5(-, s), or (X, MR) charts constructed using conventional control chart constants.

A problem with this approach is that critical input parameters for a new part to be
produced in a short run may not match: all of the critical input parameters for which large
amounts of data are available. Also, Foster (1988) assumes that the process input
nominal values are the same for all product fabricated on that process. If nominal values

are different, a transformation of the process input data may be required (Crowder and

Halbleib (2000)).

Control Charts with Modified Limits

In a true short run situation, the process mean and standard deviation are unknown and
must be estimated from a small number of subgroups with only a few samples each

drawin from the startup of a process. ‘When these estimates are used with conventional
control chart constants to construct control limits for (i R), (i V), (5(_, \/; ), (i s),
and (X, MR) control charts, the Type I error probability (i.e., the probability of a false
alarm) becomes distorted. Consequently, modified control chart factors need to be used
to achieve the desired Type I error probability.

Two methodologies exist that use control charts with modified limits for short run

- control charting. This section first reviews Quesenberry’s (1991) Q chart methodology.
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This section then reviews Hillier’s (1969) two stage short run control chart methodology.

Q Charts

QueSénberry (1991) introduées Q chafts (this Q is different from Burr’s (1989) Q-
statistic given earlier as equation (2.4)) for short run situations that allow for the
specification of the desired Type I error probability as well as the plotting of
measurements of quality characteristics from multiple part types on a single chart. This
second characteristic establishes a relationship between Q charts and the pooled control
charts presented earlier in the Pooling Data section of this chapter. The Q chart
methodology is for measurements of quality charaqften'stics that are independent and
.iden.tically distn'buted Normal random variablés. |

Qhesenberry (1991) derives equations to calculate Q-chart complements of (X, MR)
and (X, v) control charts. These equations convert a measurement of a quality
characteristic into a standard Normal variable called a Q statistic. These equations also
update the estimated process mean andvstandard deviation as measurements are made and
subgroups are formed. The Q statistic is plotted on a control chart that has control limits
in a standardized Normal scale. These known, constant control limits on Q charts allow
for meaningful control charting to begin almost at the start-up of a process, even if the
process mean and standard deviation are unknown.

The Q statistic for the X control chart when the process mean and standard deviation

are unknown is calculated using equation (2.13):
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Q,(X;)=0" {G,_zﬁrzl]oj (Xs_%l m (2.13)

- where

r =3, 4, ...: the number of the individual measurement
Q, : the rth Q statistic
- X, : the rth individual measurement

®™': the inverse of the standard normal distribution function

'G,_,: the Student t distribution with v = (r —2) degrees of freedom

2%

X =22 I : the average of the first (r-1) measurements
r —
r—1
- 2
(Xj - Xr—l )
S, = 2 3 : the standard deviation of the first (r-1) measurements
r —

The Q statistic for the MR control chart when the process mean and standard deviation

are unknown is calculated using equation (2.14):

QR,)="{F VR, 2.14)
i "I R2Z+R2+---+R2, '

where

r =4,6,...: the number of the moving range

R, =X, — X, : the rth moving range
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F , : the F distribution with v, =1 numerator degrees of freedom and v, =v = ((x/2)-1)

denominator degrees of freedom

Equation (2.14) avoids overlapping moving ranges to maintain independence among the

Q statistics.

The Q statistic for the X control chart when the process mean and standard deviation

are unknown is calculated uAsing eQu:atiori (2.15):

n, '(I'l1 '|'1’12 +"'+I'1i_l) ) Xi “‘Xi—l
"n,+n, +---+n, S

o R)=0|G, ... \/ (2.15)

p,i
where

i =2,3,...: the number of the subgroup

X : the average of the ith subgroup

;. = n, - X, +n, - X2 +--n,, - Xia
o] =

: the average of the first (i-1) subgroup averages
n, +n, +--n,

S, ; :\/(nl _1)"’1 +(n2 —1)'V2.+"'(ni —D'Vi

n,+n,+--n, —i

: the squafe root of the pooled variance

of the first i subgroup variances

The Q statistic for the v control chart when the process mean and standard deviation are

unknown is calculated using equation (2.16):
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Qi (Vi):q)_l[Fni—1,n1+ng+.,_n,_1-i+l(( (nl +n2 +.“ni_1 —-i+1)'Vi B )} (216)

n, _1>'V1 +(nz '1)’V2 +"'(ni—1 _1)'Vi—1
where

v, : the variance of the ith subgroup

It should be noted that equations (2.15) and (2.16) allow for unequal subgroup sizes.

The upper and lower control limits for the Q chart are q, and q,_,_ , where q,, is the

(1-o)th fractile of the standard Normal distribution. The center line is zero. Since each
of the Q statistics given in equations (2.13), (2.14), (2.15), and (2.16) are standard
Normal variables, each may be plotted on the same Q chart, even though each is for a

different statistic.

Issues with Q Charts

Quesenberry (1991) gives two precautions when using Q charts. Both affect the
sensitivity of Q charts to detect changes in a process. Consider the situation when the
process mean W shifts to a larger value. Because the Q statistic calculated using equation
(2.13) utilizes all of the information prior to the rth observation to calculate estimates for
u, the Q statistics following the shift will eventually settle into an in-control pattern. The
reason is that, as more data are collected following the shift, the parameter estimates will
reflect the shifted value for u. A similar problem occurs when the process standard
deviation o shifts to a larger value. Wade (1992) investigates this issue further and

concludes that Q charts for individual measurements can be insensitive to large shifts in
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the estimated process parameters when the shifts occur early in the production run.

The second precaution given by Quesenberry (1991) is that data from processes that
start out-of-control and need time to settle into an in-control state should not be used in
the calculations of the process parameter estimates for Q statistics. Wasserman and
Sudjianto (1993) state that if Q charts are used at the start-up of an out-of-control process,
then they would be useless because the Q statistics would be formed from a running
process average .of the process parameter which has existed solely in an out-of-control
state. The resulting Q chart would not detect the out-of-control state. They conclude that
Q charts cénnot be used prior to the establishment of an in-control state. Woodall,
Crowder, and Wade (1995) Suggest the usé of a two stage pfocedure to overcome
Quesenberry’s (1991) impliéit éssumption that the process being monitored starts in-
control. Otherwise, when a process starts out-of-control, the Q chart results would be
difficult to intérpret. Crowder and Halbleib (2000) also state that Q charts will not detect
the situation where a process commences with an off target mean.

In general, when control charts with modified limits are used in short run situations,
sensitivity issues are inherent because of the tradeoff between having a low false alarm
rate and a high probability of detecting a special cause signal (Del Castillo (1995)). To
deal with these sensitivity issues, Quesenberry (1991) suggests using the tests for special
causes given by Nelson (1984) with Q charts. Also, as mentioned earlier in the
Combined Methodologies subsection of the Control Charts with Greater Sensitivity
section of this chapter, Quesenberry (1995a) applies his Q statistics to EWMA and
CUSUM control schemes to improve detection capabilities.

Problems exist with the Q statistics in equations (2.13) and (2.15). According to Del
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Castillo and Montgomery (1994), the standard deviation estimate S, in equation (2.13)

is biased and should be divided by the factor ¢, forn equal to (r—1). The factor c, is

the mean of the distribution of the standard deviation and is tabled for several values of n
- (e.g., see Table M in the appendix of Duncan (1974)). Del Castillo and Montgomery
(1994) investigate the performance of Q charts using equation (2.13) and conclude that

using S_, /c, instead of S_, improves the sensitivity of Q charts. In equation (2.15), the
standard deviation estimate S, ; is biased and should be divided by the factor c, fora

subgroup size of ((n, +n, +...+n,)—i+1) (see Nelson (1990)).
Del Castillo (1995) states an additional problem with the standard deviation estimate
will

S,_; in equation (2.13). When the process shifts to an out-of-control state, S

r-1

overestimate the process standard deviation 6. The reason is that S__| combines within

-1
subgroup variability and between subgroup variability. The result is that, when a small
amount of data from a process is used to obtain parameter estirﬁates, the probability of
detecting a shift in the observations immediately following the shift may decrease as the
- shift size increases. Del Castillo and Montgomery (1994) and Quesenberry (1995a) also
- investigate this problem and arrive at identicai conclusions.

It should be noted that, instead of using the Q statistics in equations (2.13) and (2.14),
Wade (1992) suggests the use of a sequential X-chart in a short run situation. This is
similar to (X, MR) control charts, except the process parameters are re-estimated as each
measurement is obtained from the process (as with Quesenberry’s (1991) Q statistics
given as equations (2.13) and (2.15)). Also, as explained earlier in the CUSUM and

EWMA Control Schemes subsection of the Control Charts with Greater Sensitivity

section of this chapter, Hawkins (1987) uses running estimates of process parameters in

40



his short run CUSUM control scheme. .Wade (1992) states that the sequential X-chart is
more sensitive than the Q chart for individual values and moving ranges for a broad range

of process shifts, especially those occurring after only a few in-control observations.

~ Two Stage Shdrt Run Control Charts

Hillier (1969) presents a methodology for two stage short run control charting for

(X,R) charts that allows for the specification of the desired Type I error probability. It

includes the methodology for second stage short run control charting for X charts and R
charts presented by Hillier in his 1964 and 1967 papers, respectively. Earlier papers by
King (1954) and Proéchan and Savage (1960) also consider only one of the two stages.

King (1954) investigates the probability of a Type I error during retrospective testing

(stage oﬁe) wheﬁ only a small number of subgroups are available to construct X control
charts. Proschan and Savage (1960) do the same when tésting for future subgroups (stage
two). The results of both papers indicate that control chart factors different from
conventional control chart constants need to be used in both stages to prevent distortion
of the Type I error probability.

Hillier (1964) shows that the probability of a Type I error is exceedingly high when

estimates of the process mean and standard deviation based on a small number of

subgroups are used together with conventional control chart constants to construct X

charts for future testing (stage two). To resolve this issue, Hillier (1964) derives an
equation for A’ the second stage short run control chart factor for the X chart. Using

this factor, which depends on m (the number of subgroups) as well as the subgroup size
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n, instead of the conventional control chart constant A, results in control limits that give
the desired Type I error probability. The value A; is related to A, in that, as m—oo,
A, — A, . Second stage short run X control charts are constructed by following the
same procedure for constructing Shewhart control charts, except A} ‘is used instead of
A,.

The derivation for A; proceeds as follows (see Hillier (1964) and (1969)). Consider a

- Normal population with mean p and standard deviation 6. Suppose that m subgroups of

size n are sampled from this population. - Denote the average of the subgroup averages as

; and the average of the subgroup ranges as R. Suppose again that an additional

- subgroup of size n is sampled from the same population. Denote the average and range
of this subgroup as X andR, respectively. In order to achieve the desired Type I error

probability for future testing, we need to determine the value A’ such that equation

(2.17a) holds:
P(?—A’; R<X<X+A} -§)=1—alphaMean : (2.17a)

alphaMean: probability of a Type I error on the X control chart

Rearranging equation (2.17a) results in equation (2.17b):

P{— A} s.XR:X < A;]= 1- alphaMean (2.17b)
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It is necessary to determine the distribution of |X ( ) R . First consider (X i)

Both X and X are normally distributed, hence their difference is normally distributed.
The expected value of (i - i) is equal to zero and is derived in- Appendix A of this
dissertation. The standard deviation of (i —?) is equal to ((W) 0') and is
also derived in Appendix A.

Now consider the distribution of R . Patnaik (1950) shows that (v . (ﬁ)z )/((d; )2 -0‘2)
has approximately a * distribution with v degrees of freedom, where v and d are both
functions of m and n. ' This means that, since (i —?) and R are independent for a

Normal distribution, the ratio given as (2.18a) has approximately a Student’s t distribution

with v degrees of freedom: -

)

(2.18a)
[ E 2 }/
Simplifying the ratio in (2.18a) results in (2.18b):
- 2 [EZ—X] | (2.18b)
m+1 R
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~Since equation (2.18b) has approximately a Student’s t distribution with v degrees of

freedom, we have the probability relationship given as equation (2.19a):

X-X

ik [ ] < tpmanseany)w | = 1~ alphaMean (2.192)

m+1

- t(alphaMean/Z),v < dZ :

R
where

¥ phaMean/2),v - the critical value for an area of (alphaMean/2) in each tail of the Student’s t-

distribution with v degrees of freedom

Rearranging equation (2.19a) results in equation (2.19b):

_ta aMean/2}, v + -;—_: ta aMean/2}, v
ey HL ) RX | Sy MLy b aMean (2.190)
d2 n-m R d2 mn-m

Comparing equation (2.19b) with equation (2.17b) reveals the equation for A}, which is

given as equation (2.20):

* ta avican, v ‘
A = o2y ] (2.20)
d, n-m

Hillier (1967) shows that the probability of a Type I error is exceedingly high when

estimates of the process standard deviation based on a small number of subgroups are

used together with conventional control chart constants to construct R charts for future
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testing (stage two). To resolve this issue, Hillier (1967) derives equations for D} and

D;, the second stage short run upper and lower control chart factors, respectively, for the
R chart. Using these factors, which depend on m as well as n, instead of the
c.orresponding alpha-baséd (i.e., probability based) conventional upper and lower control
chart cénstants D, and D, ,'respectively, results in control limits that give the desired
Type I error probability. The value D;, is related to D, in that, as m—e, D} — D,
S‘ir‘nilarly, the value D; is related to D, fn that, as m—soo, D, > D,.

Thé derivation for Dz proceeds as féllows (see I;Iillier (1967) and (1969)). Consider a

Normal population with mean p and standard deviation 6. Suppose that m subgroups of

size n are sampled from this population. Denote the average of the subgroup ranges as

R. Suppose again that an additional subgroup of size n is sampled from the same

population. Denote the range of this subgroup as R. In order to achieve the desired Type
I error probability for future testing, we need to determine the value D), such that

equation (2.21a) holds:

P(R <D} R )=1-alphaRangeUCL (2.21a)
where

alphaRangeUCL.: probability of a Type I error on the R control chart above the upper

control limit (UCL)

Rearranging equation (2.21a) results in equation (2.21b):
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||

1

<D, J = 1-alphaRangeUCL (2.21b)

It is necessary to determine the distribution of R/ R . Consider first the distribution of
the range R/c. Through the application of Patnaik’s (1950) theory, 6 may be replaced
with the independent estimate of the population standard deviation denpted by ﬁ/ d,,

- which is basedf on v degrees of freedom (v and d; are both functions of m and n). The

resulting ratio (d; R)/ R is by definition the distribution of the studentized range with v
degrees of freedom.

Consequently, we have the probability relationship given as equation (2.22a):

d;-R
P( 2E < Q.aiphaRangeUCL, v ] < l-alphaRangeUCL (2.22a)

where
4 .aipharangeuce, v - the critical value for a cumulative area of (1-alphaRangeUCL) under the

curve of the distribution of the studentized range with v degrees of freedom

Rearranging equation (2.22a) results in equation (2.22b):

P{% < Mz—g—”a‘—} <1-alphaRangeUCL (2.22b)
2

Comparing equation (2.22b) with equation (2.21b) reveals the equation for D}, which is
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given as equation (2.23):

D: - ql-a]phaRangeUCL,v o ‘ v (223)

4
The equation for D;, is derived in exactly the same way as the equation for D,

except alphaRangeL.CL replaces (1-alphaRangeUCL) (alphaRangeLL.CL is the probability
of a Type I error on the R control chart below the lower control limit (LCL)). It is given

as equation (2.24): -

D’ = q aiphaRangeLCL, v (2.24)

3 *

d 2
where

QapharangercL,y - the critical value for a cumulative area of alphaRangeL.CL under the curve

of the distribution of the studentized range with v degrees of freedom

Hillier (1969) incorporates the two stage procedure with his (1964) and (1967) results

and derives equations to calculate first and second stage short run control chart factors for
(i, R) charts. Using these factors when process parameter estimates come from a small
number of subgroups results in control chart limits that reliably indicate when a process
has gone out of control. The first stage short run control chart factor for the X chart is

denoted by A . It depends on m as well as n. The value A} isrelated to A, in that, as

m—eo, A5 — A,. First stage short run X control charts are constructed by following
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the same procedure for constructing Shewhart control charts, except A’ is used instead
of A,.

The derivation for A;* proceeds as follows (see Hillier (1969)). Consider a Normal
population with mean p and standard deviation 6. Suppose that m subgroups of size n
are sampled from this population. Denote the average of the subgroup averages as ;
-and the average of the subgroup ranges as R . Denote one of the initial subgroup
averages used to calculate ; as X (k: 1,2, ..., m). In order to achieve the desired Type

- T error probability for retrospective testing, we need to determine the value A} such that

equation (2.25) holds:

P{— AT < in_ X< A7 ) =1 —alphaMean (2.25)
where

alphaMean: probability of a Type I error on the X control chart

The expected value and standard deviation of (-Xk - X) are derived in Appendix A.

Using these in place of the expected value and standard deviation, respectively, of

(i —_—)Z) in equations (2.18a), (2.18b), (2.19a), and (2.19b) results in equation (2.26):

t —_
A:* - (alphaMian/Z),V . m-1 (226)

; d, n-m
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The first stage short run upper and lower cqntrol chart factors for the R chart are
denoted by D} and D7, respectively. Each of these factors depends on m as well as n.
Asm—e, Dy - D, and D] — D,.

The derivation for D proceeds as follows (see Hillier (1969)). Consider a Normal
population with mean W and standard deviation 6. Suppose that m subgroups of size n
are sampled from this population. Denote the average of the subgroup ranges as R.
Denote one of the initial subgroup ranges used to calculate R as R, k:1,2,...,m). In

order to achieve the desired Type I error probability for retrospective testing, we need to

determine the value D such that equation (2.27) holds:

PR, <D -R)=l-alphaRangeUCL 2.27)
where

alphaRangeUCL.: probability of a Type I error on the R control chart above the UCL
“When equation (2.27) is eXpressed in terms of D}, equation (2.28a) is the result:

P[R <D, -(%) } = l-alphaRangeUCL (2.282)

where

D, ... the second stage short run upper control chart factor for the R chart based on

(m-1) subgroups
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&_IR“ the average (based on R) of (m-1) subgroup ranges
m—

Collecting R, on the left side of the inequality in equation (2.28a) results in equation

(2.28b):

m—1+D4'm_1

’ m'D; m-1 =
R, <| —— 4™ |} |=]-alphaRangeUCL (2.28b)

Comparing equation (2.28b) to equation (2.27) reveals the equation for D} , which is

given as equation (2.29):

*
> m- D4, m-1

4 = *
m-1+D,

(2.29)

The equation for D is derived in exactly the same way as the equation for D,

except alphaRangeLCL replaces (1-alphaRangeUCL) (alphaRangeL.CL is the probability

of a Type I error on the R control chart below the LCL). It is given as equation (2.30):

" m-D; .
Dy =—— 2% (2.30)
m-1+ Ds,m-1
where

D; .. : the second stage short run lower control chart factor for the R chart based on
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(m-1) subgroups

Hillier (1969) gives tables of two stage short run control chart factors for (i, R)

charts for the following values:

e n:5

m: 1 (for second stage only), 2-10; 15, 20, 25, 50, 100, o

. alphaMean: 0.001, 0.0027, 0.01, 0.025, 0.05

alphaRangeUCL, alphaRangel.CL: 0.001, 0.005, 0.01, 0.025, 0.05

- These values give limited results that have two consequences. First, further study of two

stage short run (i, R) control charts is hindered. Second, in order to use the limited
* results, those involved with quality control in industry would most likely have to adjust
their process monitoring to the above values. Otherwise, they would have to incorrectly
use conventional control chart constants.
..~ To allow for the use of more efficient estimates of the process variance and standard
deviation, Yang and Hilliér (1970) use exact distributional results to derive equations to
calculate two stage short run control chart factors for (i, v) and (i, «/; ) using Hillier’s
- (1969) methodology. Using these factors when process parameter estimates come from a
- small number of subgroups results in control chart limits that reliably indicate when a
process has gone out of control.

The first and second stage short run control chart factors for the X chart are denoted

by A} and A}, respectively. These factors depend on m as well as n. As m—>eo, both
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=k

A7 and A converge to A,, the conventional control chart constant for the X chart.
First and second stage short run X control charts are constructed by following the same
procedure for constructing Shewhart control charts, except A, and A}, respectively, are
used instead of A,.

The derivation for A} proceeds as follows (see Yang and Hillier (1970)). Consider a
Normal population with mean p and standard deviation 6. Suppose that m subgroups of
size n are sampled from this population. . Denote the average of the subgroup averages as
; and the average of the subgroup variances as v. Suppose again that an additional
subgroup of size n is sampled from the same population. Denote the average and
variance of this subgroup as X and v, respectively. In order to-achieve the desired Type
I error probability for future testing, we need to determine the value A} such that

equation (2.31a) holds:

+A]- \/j)= 1 - alphaMean (2.31a)

><II

PX-A; Vv <X<

Rearranging equation (2.31a) results in equation (2.31b):

>l

i

-A) < <A) |=1-alphaMean (2.31b)

$|

It is necessary to determine the distribution of |X ( )/ \/— First consider (X _3(_—)
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- It was determined earlier that (i - X) is normally distributed with mean zero and

standard deviation ((w/(m + 1) (n-m )) cs) (see Appendix A).

Now consider the distribution of v. The ratio ((rn -(n-1))- v)/ (02) has a %*

distribution with (m-(n —1)) degrees of freedom. This means that, since (X —i) and v
are independent for a Normal distribution, the ratio given as (2.32a) has approximately a

Student’s t distribution with (m . (n ~1)) degrees of freedom:

((%_i) ( r::; GD (2.322)

nm .(X‘X) (2.32b)

Since equation (2.32b) has a Student’s t distribution with (m-(n —1)) degrees of freedom,

we have the probability relationship given as equation (2.33a):

X-X
[ \/: J S arphaMean/2), m (1) =1-alphaMean (2.33a)
v

- t(alphaMean/Z),m-(n—l) <
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where

U (aiphaMean/2), m{n-1) - the critical value for an area of (alphaMean/2) in each tail of the

‘Student’s t distribution with (m-(n —1)) degrees of freedom

Rearranging equation (2.33a) results in equation (2.33b):

m+l

n-m v n-m

+1)_X-X
o JS : ]=1—alphaMean

[_ t(alphaMean/2), m-(n-1) ’ < [t(alphaMean/z),m-(n—l) )

(2.33b)

Comparing equation (2.33b) with equation (2.31b) reveals the equation for A}, which is

given as equation (2.34):

. m+1
' A4 = t'(alphaMean/Z), m(n-1) ° V

(2.34)
n-m

The deriifation for AZ* proceedé as fol.lo'ws (see Yang and Hillier (1970)). Consider a

Normal population with mean u and standard deviation 6. Suppose that m subgroups of

size n are sampled from this population. Denote the average of the subgroup averages as
X and the average of the subgroup variances as v. Denote one of the initial subgroup

averages used to calculate ; as X (k: 1,2, ..., m). In order to achieve the desired Type

I error probability for retrospective testing, we need to determine the value A} such that
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equation (2.35) holds:

>

*k i - *k -
~AD <2 < AT |=1-alphaMean (2.35)
A\

The expected value and standard deviation of (ik - X) are derived in Appendix A.

Using these in place of the expected value and standard deviation, respectively, of

(i —?) in equations (2.32a), (2.32b), (2.33a), and (2.33b) results in equation (2.36):

*ke m-— 1
A4 = t(alphaMean/Z),m.(n_l) *

(2.36)
n-m

The first stage short run upper and lower control chart factors for the v chart are
denoted by B; and B, respectively. The second stage short run upper and lower
control chart factors for the v chart are denoted by B; and B}, respectively. These
factors depend oﬁ m as well as n. As m—eo, both B} and Bj converge fo By, the alpha-
based conventional upper control chart constant for the v chart. Similarly, as m—eo, both
B and B; converge to B, thé alpha-based conventional lower control chart constant

for the v chart.

The derivation for B; proceeds as follows (see Yang and Hillier (1970)). Consider a

Normal population with mean u and standard deviation 6. Suppose that m subgroups of

size n are sampled from this population. Denote the average of the subgroup variances as
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V. Suppose again that an additional subgroup of size n is sampled from the same

population. Denote the variance of this subgroup as v. In order to achieve the desired

Type I error probability for future testing, we need to determine the value B, such that

equation (2.37a) holds:

P{v<B; -V )=1l-alphaVarUCL (2.37a)

where

alphaVarUCL.: probability of a Type I error-on the v and JJv control charts above the

UCL

Rearranging equation (2.37a) results in equation (2.37b):

P(l <B ] = l-alphaVarUCL (2.37b)

v

The ratio v/ v is the F distribution with (n-1) degrees of freedom for v and

(m . (n —-1)) degrees of freedom for v. Consequently, Bj is calculated using equation

(2.38):

(2.38)

*

BS = Fl—alphaVarUCL, n-1,m-{n-1)
where

FphavarucL. o, m{a-1) - the critical value for a cumulative area of (1-alphaVarUCL) under
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the curve of the F distribution with (n-1) numerator degrees of freedom and (m-(n —1))

denominator degrees of freedom

The equation for B is derived in exactly the same way as the equation for By, except
alphaVarLCL replaces (1-alphaVarUCL) (alphaVarLCL is the probability of a Type I

error on the v and /v control charts below the LCL). Itis given as equation (2.39):

B; = FalphaVarLG,,n-l, m:(n-1) (239)
where

F,phavarict, o1, m(n1) - the critical value for a cumulative area of alphaVarLCL under the

curve of the F distribution with (n-1) numerator degrees of freedom and (m-(n —1))

denominator degrees of freedom

The derivation for B;* proceeds as follows (see Yang and Hillier (1970)). Consider a

‘Normal population with mean pi and standard deviation 6. Suppose that m subgroups of

size n are sampled from this population. Denote the average of the subgroup variances as
v. Denote one of the initial subgroup variances used to calculate v as v (ke 1,2, ..,
m). In order to achieve the desired Type I error probability for retrospective testing, we

need to determine the value Bj such that equation (2.40) holds:

P(v, <BJ -V)=1-alphaVarUCL (2.40)
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When equation (2.40) is expressed in terms of Bj, equation (2.41a) is the result:

P(vk <B,, [%} J: -alphaVarUCL (2.41a)
where

B;,md = Fl—alphaVarUCL,n-l,(m-l)»(n—l)

m . v —

Vi : the average (based on ;) of (m-1) subgroup variances

Collecting v, on the left side of the inequality in equation (2.41a) results in equation

(2.41b):

8, m-1

In'B)i;,m-l -
v, £{ ——————|-v |=1-alphaVarUCL (2.41b)
m-1+B

Comparing equation (2.41b) to equation (2.40) reveals the equation for B; , which is

given as equation (2.42):

*

*x m'BB m-1
By =———+— 2.42)
m-1+B;

The equation for B is derived in exactly the same way as the equation for B, ,

except alphaVarLCL replaces (1-alphaVarUCL). It is given as equation (2.43):
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*

L m.B7,m-l

- 2.43
7 m-1+B (243)

*

7, m-1

where

*

7,ml FalphaVarLCL, n-1,{m-1}{n~1)

B

The first stage short run upper and lower control chart factors for the Jv chart are the

square roots of B; and B, respectively. The second stage short run upper and lower

control chart factors for the 4/v chart are the square roots of B; and B}, respectively.

These factors, which depend on m as well as n, result in control limits that give the
desired Type I error probability. As m—ee, both \/B_;: and \/l—i converge to \/B— , the
alpha-based conventional upper control chart constant for the Vv chart. Similarly, as
m—>ec, both J;? and \/1_37 converge to \/E' , the alpha-based conventional lower

control chart constant for the \/; chart.

Yang and Hillier (1970) give tables of two stage short run control chart factors for

(i, v) and (i, \/; ) charts for the following values:

e n:5

m: 1 (for second stage only), 2-10, 15, 20, 25, 50, 100, o

alphaMean: 0.001, 0.002, 0.01, 0.05

alphaVarUCL, alphaVarLCL: 0.001, 0.005, 0.025
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These values give limited results that have two consequences. First, further study of two
stage short run (i, v) and (i, Jv ) control charts is hindered. Second, in order to use

the limited results, those involved with quality control in industry would most likely have
to adjust their process monitoring to the above values. Otherwise, they would have to
incorrectly use conventional control chart constants.

Additionally, Yang and Hillier (1970) neglect to include appropriate bias correction

factors in their two stage short run control chart factor equations that involve \/3 , which

1s a biased estimate of the population standard deviation. This omission renders much of

their tables as incorrect. Also, some of their results calculated using the correct equations
are incorrect in the last decimal place shown by one and in some cases two digits. These

issues are explained in complete detail in Chapter V of this dissertation.

Two attempts appear in the literature to expand Hillier’s (1969) results for two stage

short run (i, R) charts. Pyzdek (1993) gives two stage short run control chart factors for

(i, R) charts using Hillier’s (1969) theory for the following values:

e n:2-5

m: 1 (for second stage only), 2-10, 15, 20, 25

alphaMean: 0.0027

alphaRangeUCL: 0.005

In addition to these values offering even more limited results for m, alphaMean, and

alphaRangeUCL (with no alphaRangel.CL) than those presented by Hillier (1969),

60



several of Pyzdek’s values are incoirect (see Chapter IV of this dissertation).
Yang (1995) gives two stage short run control chart factors for (X,R) charts using

" Hillier’s (1969) theory for the following values:

n: 2-25 for the i chart and 2-20 for the R chart

m: 1 (for second stage only), 2-25

alphaMean: 0.0027, 0.01, 0.05

alphaRangeUCL: 0.00135 and 0.0027

Similar to Pyzdek (1993), Yang (1995) does not give two stage short run control chart
factors fofthe R chart below the}w lower control limit. Many of the values given by Yang
- (1995) are incorrect because inaccurate equations and numerical techniques are used to
calculate the results (see Chapter IV). It should be ﬁoted that Yang (1999 and 2000)
contain some of the results from Yang (1995).

Elam and Case (2001) describe the development and execution of a computer program
that overcomes the problems associated with Hillier’s (1969), Pyzdek’s (1993), and

Yang’s (1995, 1999, 2000) efforts to present two stage short run control chart factors for

(X,R) charts. Chapter IV and Appendix B of this dissertation include the entire contents

of Elam and Case (2001).

Other than Yang and Hillier (1970), one attempt appears in the literature to extend
Hillier’s (1969) methodology to other control chart combinations. Pyzdek (1993)
attempts to present two stage short run control chart factors for (X, MR) charts for the

following values (alphalnd is the probability of a Type I error on the X chart and
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alphaMRUCL is the probability of a Type I error on the MR chart above the UCL):

e m: 1 (for second stage only), 2-10, 15,20, 25
¢ - alphalnd: 0.0027

e alphaMRUCL: 0.005
However, all of Pyzdek’s (1993) Table 1 results for subgroup size one are incorrect
because he uses invalid theory (this is explained in complete detail in Chapter VII of this

dissertation).

Sensitivity Issues with Two Stage Short Run Control Charts

As with Quesenberry’s (1991) Q charts, two stage short run control charts based on
Hillier’s (1969) theory, in general, are not very sensitive in detecting process changes (see
Del Castillo (1996a) and Crowder and Halbleib (2000)). Using the average run length
(ARL), which is the average number of subgroups that must be plotted on a control chart

~ before an out-of-control condition is indicated, Del Castillo (1996a) evaluates Yang and

Hillier’s (1970) second stage short run X control chart. For an in-control situation, Del
Castillo (1996a) concludes that fewer short runs and more very long runs occur between
false alarms. This is a desirable situation. However, for an out-of-control situation,
fewer short runs and more very long runs occur until detection. This is clearly an
undesirable situation.

In order to deal with these sensitivity issues, one may use the tests for special causes

given by Nelson (1984), which Quesenberry (1991) suggests for his Q charts, or runs
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rules (i.e., the four tests for instability in Western Electric Co., Inc. (1956)). However,
using techniques to increase the sensitivity of two stage short run control charts based on
Hillier’s (1969) methodology increases the probability of a false alarm. This is because
of the inherent tradeoff between these two issues when control charts with modified

limits are used in short run situations (Del Castillo (1995)).

The Two Stage Procedure

A two stage (i.e., two phase, delete and revise) procedure for initiating control
charting serves two distinct purposes. The first is retrospective testing. The second is
future testing. In the first stage of the two stage procedure, the initial subgroups drawn
from the process are used to determine the control limits. The initial subgroups are
plotted against the control limits to retrospectively test if the process was in control while
the initial subgroups were being drawn. Once control is established, the procedure moves
to the second stage, where»the subgroups that were not deleted in the first stage are used
to determine the control limits for testing if the process remains in control while future

- subgroups are drawn.

Stage One Control Limits

Two approaches are given in the literature for setting up control limits in stage one.
Hillier (1969) uses each of the initial subgroups to estimate parameters to determine stage
one control limits, which only have to be calculated once. All of the initial subgroups are

tested simultaneously against these control limits (Yang and Hillier (1970)). Roes, Does,
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and Schurink (1993) suggest an approach by which the initial subgroup that is going to be

tested is not used to estimate parameters to determine stage one control limits. This

~ requires that stage one control limits be recalculated for each initial subgroup. It should

be noted that Yang and Hillier (1970) also mention the procedure suggested by Roes,
Does, and Schurink (1993), but do not use it. Also, King (1954) seems to have suggested

this approach.

Establishment of Control

A point of contention with the two stage procedure in the literature has been how to
establish control in the first stage; i.e., how to make the transition from stage one to stage
two. Faltin, Mastrangelo, Runger, and Ryan (1997) state that there is a failure to
distinguish between these two stages in much of the relevant literature. The tendency is
to focus on stage one without considering the ramifications for stage two.

Several approaches (i.e., delete and revise (D&R) procedures) have been suggested for
establishing control in stage one. The first approach, and the one that seems to appear
most often in the literature, is to repeat the following procedure until no subgroups show

out-of-control on either the control chart for centering or the control chart for spread:

1. Delete the out-of-control initial subgroups on either control chart entirely (i.e., if a
subgroup shows out-of-control on either the control chart for centering or spread, it
should be deleted from both charts).

2. Recalculate the control limits.
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Hillier (1969), Ryan (1989), and Montgomery (1997) all advocate this approach. Ryan
(1989) states that a subgroup should be deleted only if an assignable (special) cause is
detected and removed. Since an assignable cause that affects the standard deviation

. estimate does not necessarily affect the average estimate, it may not be necessary to
delete a subgroup from the chart for centering that shows out-of-control only on the chart
for spread. However, for the sake of simplicity, Ryan (1989) recommends deleting the
out-of-control subgroup entirely, stating that the exclusion of such points will not make a
difference in the end result. unless they are near one of the control limits.

Montgomery (1997) states that it may not be possible to find an assignable cause for a
subgroup that plots out-of-control on either chart. In this case, one option is to eliminate
the subgroup anyway. The other option is to keep the subgroup, which is a risk because
if the subgroup is really out-of-control because of an assignable cause, then the control
limits will be distorted.

When many subgroups plot out-of-control and each is subsequently deleted, an
undesirable situation arises because few subgroups will remain to estimate process
parameters to construct control limits. The fewer the initial subgroups, the less
information one has about the process. Less information results in less reliable control
limits. In this situation, Montgomery (1997) suggests that one should not search for an
assignable cause for each out-of-control subgroup, but should instead determine the
pattern of the out-of-control subgroups and determine the assignable cause associated
with the pattern.

Pyzdek (1993) suggests an approach for establishing control in the first stage that uses

the following procedure:
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1. Delete the out-of-control initial subgroups on the control chart for spread.
2. Recalculate the control limits.
3. Repeat steps 1 and 2 until no initial subgroups show out-of-control on the control
chart for spread.
4. Using the parameter estimate for spread obtained after completing steps 1-3 and the
overall average obtained from all of the initial subgroups, determine the control limits
~ for the control chart for centering.

5. Perform steps 1-3 for the control chart for centering.

Except for the fact that the deletion of subgroups is performed on the charts for centering
and spread separately, Pyzdek’s (1993) approach is exactly like the one advocated by
Hillier (1969), Ryan (1989), and Montgomery (1997).

A third approach is to delete out-of-control subgroups only on the chart for spread just
once (Case (1998)). The resulting parameter estimate for spread is used with the overall
average from all of the initial subgroups to determine control limits for the control chart
for centering. This approach has the advantage of requiring recalculation of control
limits just once on only one chart.

A fourth approach is to not perform any revision of the control chart limits regardless
of whether or not initial subgroups plot out-of-control. Doty (1997) bases his
justification for supporting this approach on two assumptions. The fifst is that trial
control charts constructed from all of the initial subgroups are perfectly adequate for

controlling the process. The second is that, since control chart limits are periodically
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revised anywayi, it is not necessary to establish control using the initial subgroups. For
additional justification, Doty (1997) also states that much of the statistical process control

computer programs do not recognize revised charts.

Control Chart Factors for the Two Stage Procedure

As was shown in the Two Stage Short Run Control Charts subsection of the Control -
Charts with Modified Limits section earlier in this chapter, Hillier (1969) expresses
analytically the two distinct purposes of two stage control charting in a short run
situation. Even bif no subgroups are deleted in stage one when establishing contrbl, stage
one control limits are still different from stage two control limits. This means that the
values for the control chart factors depend upon the two distinct purposes of two stage
control charting when in a short run situation (i.e., when only a finite number of
subgroups is available).

The approaches by Ryan (1989), Montgomery (1997), and Case (1998) use
conventional control chart constants for each stage. This means that, if no subgroups are
deleted in stage one when establishing control, then stage one control limits are equal to
stagei two control limits. This implies that values for the control chart factors do not
depend upon the two distinct purposes of two stage control charting when operating
under the assumption that an infinite number of subgroups is available. This statement is
theoretically validated when one considers that, for a specific control chart, Hillier’s
(1969) and Yang and Hillier’s (1970) first stage and second stage short run control chart
factors converge to the same conventional control chart constant as the number of

subgroups approaches infinity.
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Performance Evaluation of Short Run Control Charts

The one performance metric that is used extensively to evaluate the performance of
short run control charts is the average run length (ARL). The ARL is the average number
of subgroups that must be plotted on a control chart before an out-of-control condition is
indicated. It is desirable to have a large value for the ARL when a process is in-control.
When a process is out-of-control, a small ARL is preferred.

By its very definition, the ARL would seem difficult to apply in a short run situation.
The reason is that, in a short run situation, a process may not run long enough in order to
draw enough subgroups to even come close to equaling the ARL. Nevertheless, the ARL
seems to be the metric of choice for those evaluating thé performance of short run control
charts in the literature (see Quesenberry (1993), Wasserman and Sudjianto (1993), Del
Castillo and Montgomery (1994), Del Castillo (1996a), Doganaksoy and Vandeven
(1997), and Lin, Lai, and Chang (1997)).

A more meaningful performance metric for short run control charts is the probability
of detection: (POD). This is the probability that a control chart will signal, within a given
number of subgroups following a shift, that a process is out-of-control (see Woodall,
Crowder, and Wade (1995) and Crowder and Halbleib (2000)). Wade (1992) uses the
POD within ten subgroups following a shift. Quesenberry (1995a) and Del Castillo
(1995) use the POD within thirty subgroups following a shift. It should be noted that

determining the POD is the same thing as characterizing the run length distribution.
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Summary

It is clear from this literature review that Hillier’s (1969) methodology overcomes the

endemic problems associated with the other methodologies that apply (i, R), (X, V),

(X, Jv ), (i, s), and (X, MR) control charts to short run situations. These problems

include relying on the common rule of thumb, using target or nominal values, tolerances,
or specification limits to estimate process parameters, assuming the process starts in-
control, and complex implementation. However, Hillier’s (1969) methodology has its

own problems that present research opportunities.
The first problem is that Hillier’s (1969) methodology is limited to (i, R) control

charts (see Hillier (1969)) and to (i, v) and (X, \/; ) control charts (see Yang and Hillier
(1970)). Additionally, limited and in some cases incorrect results are presented in the
literature for these charts. A particularly important deficiency of Hillier’s (1969)
methodology is that it has not been applied to (X, MR) control charts (see Del Castillo
and Montgomery (1994) and Quesenberry (1995b)).

The second problem is that the execution of the two stage procedure is not clear (see
Faltin, Mastrangelo, Runger, and Ryan (1997)). Using the approach advocated by Hillier
(1969), Ryan (1989), and Montgomery (1997) is problematic because, in a short run
situation, one does not have a lot of initial data to estimate process parameters. By
continually deleting subgroups from both control charts in the first stage, one is creating a
situation in which an even more limited amount of data will be available to initially
estimate process parameters for stage two. This is a problem because the reliability of the

control limits decreases as the amount of data used to obtain initial estimates of the
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process parameters decreases. However, control limits are also less reliable if subgroups
reflecting process changes are used in their calculation. A methodology is required that

can provide information to investigate this tradeoff.
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. CHAPTER III .
TWO STAGE SHORT RUN VARIABLES CONTROL CHARTING
Introduction

The purpose of this chapter is to describe the process required to perform two stage
short run variables control charting, with reference to the research in Chapters IV-VIII of
this dissertation. Tables are presented that indicate, based on the choice of the two stage
short run control chart ((i, R), (i, V), (i \/_\7 ), (i s.) , or (X, MR)), the appropriate

program to use from Chapters IV-VII, the output to use from these programs, and the

equations to use to construct Stage 1 and Stage 2 control limits. Additionally, a table is
presented that indicates, based on the choice of the statistic (f{— , ;, \/z , g, or —Mi), the
appropriate program to use from Chapters IV-VII, the output to use from these programs,

and the equations to use to calculate unbiased estimates of the process variance and

standard deviation.

Stage One Control Charting

In the first stage of the two stage procedure, initial subgroups are collected from the
process. Tables 3.1 and 3.2 have, based on the choice of the two stage short run control
chart ((i, R), (i V), (i \/_\7 ), (i, s), or (X, MR)), the appropriate program to use from
Chapters IV-VII, the output to use from these programs (the last three columns of each

table), and the equations to use to construct upper (Table 3.1) and lower (Table 3.2) Stage

1 control limits. It should be noted that the notation in these tables is explained in
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~ Table 3.1. Upper Control Limit (UCL) Calculations for Two Stage
-Short Run (X, R) , (X, v), (X, «/;) , (X,s), and (X, MR) Control Charts

Mathcad Center General Stage | Stage .
Control | Program . Conventional
Chart | (extension Line Form 1 2 ccf
(CL) | for the UCL ccf - ccf '
.mcd) ‘
X cefsR _i_ i+ccf_.§ A21 A22 | A2(e., A,)
R R ccf ‘R D41 D42 | D4 (e., D,)
X ooy X | XtcefAfv | A4l | A42 | Ad(e., A,)
v v cef - v B8l B82 | BS(i.e., By)
X X | XtccfAflv | A4l | A42 | Ad(e, A,)
ccfsv - _ B8sqrt
Jv \/; © cef - J; B81sqrt | B82sqrt (.. \/1_3: )
X cofiss 7_( i+ccf_ s A31 A32 | A3 (e, A,)
s s ccf - s B41 B42 | B4(ie., B,)
X | X+ccf-MR E2 (ie.,
X cofsMR | X | Xrecf MR | E2l | E22 Ge., E,)
MR MR cef -MR D41 D42 | D4 (e, D,)

Chapters IV-VIL

For example, suppose one wants to construct first stage control limits for (i, R)

charts. Referring to the first two rows of the fourth columns of Tables 3.1 and 3.2, three

pieces of information are required: X, R , and ccf (ccf stands for control chart factor).

; and R are, respectively, the average of the initial subgroup averages (which are

denoted by i) and the average of the initial subgroup ranges (which are denoted by R).

The value for ccf is from the output of the Mathcad (1998) program ccfsR.mcd, which

is in Chapter IV and Appendix B.2 of this dissertation. For the X control chart, ccf is

equal to A21 for both the upper and lower Stage 1 control limits. For the R control chart,

ccf is equal to D41 for the upper Stage 1 control limit and it is equal to D31 for the lower
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Table 3.2. Lower Control Limit (LCL) Calculations for Two Stage
Short Run (X,R), (X, V), (i, \/;), (X,s), and (X, MR) Control Charts

Mathcad
Control | Program Ceflter General Stage | Stage Conventional
Chart | (extension Line Form 1 2 ccf
: (CL) | forthe LCL | ccf | ccf’
.mcd)
X % X—-ccf -R | A21 A22 | A2(ie., A
X ccfsR X X —ccf -R / (. 2)
R R cef -R D31 D32 | D3(.e., D,)
X ‘ X | X-ccf v | A4l | A42 | Ad(ie, A)
ccfsy 2 _ _
v v cef-v - B71 B72 B7 (i.e., B,)
X | X | Xocet v | A4l | A2 | Adde., A,)
cefsv o _ B7sqrt
Jv N Ccof v | B7lsart | B72sqrt e JBT)
X X X —ccf -5 A31 A32 | A3(e., A,)
ccfss SR 4 — :
s S ccf -s B31 B32 B3 (ie., B;)
X | X | X~ccf-MR | E21 E22 | E2(e., E,)
ccfsMR — po— e
MR MR ccf -MR D31 D32 | D3(ie., D,)

Stage 1 control limit.

After constructing Stage 1 control limits, the initial subgroups are plotted against them
to retrospectiyely test if the process was in-control while the initial subgroups were being
drawn. If all of the subgroups are in-control, then one is ready to conéfruct Stage 2
control limits using all of the initial subgroups. The construction of Stage 2 control limits
is explained later in the Stage Two Control Charting section of this chapter. If any
subgroups are out-of-control, then one needs tb determine which bdelete and revise (D&R)

procedure to use to establish control of the process. This is explained in the next section.
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The Delete and Reviseé (D&R) Process

Six D&R procedures are described in detail in the Delete and Revise (D&R)
Procedures section of Chapter VIII of this dissertation. Chapter VIII also presents a
methodology that provides information to assist one in determining which D&R
procedure to use. The methodology consists of three elements, each of which is
described in complete detail in Chapter VIII. The main element is the computer program
that simulates two stage short run variables control charting. The next element, which is
included in the operation of the,program,' is the measurements that one may use to

-determine which D&R procedure establishes the most reliable second stage control
limits.. The third element is the interpretation of the results from the program.

Once a D&R procedure has been chosen and completed, then one is ready to construct

Stage 2 control limits.

Stage Two Control Charting

- In the second stage of the two stage procedure, the initial subgroups that remain after

completing Stage 1 control charting are used to construct Stage 2 control limits. Tables
3.1 and 3.2 have, based on the choice of the two stage short run control chart ((i, R),
(i, V), (—)Z, \/-\7 ), (i, s), or (X, MR)), the appropriate program to use from Chapters IV-
VII, the output to use from these programs (the last three columns of each table), and the
equations to use to construct upper (Table 3.1) and lower (Table 3.2) Stége 2 control
limits.

For example, suppose one wants to construct second stage control limits for (X,R)
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charts. . Referring to the first two rows of the fourth columns of Tables 3.1 and 3.2, three

pieces of information are required: ; R , and ccf. ; and R are, respectively, the

average of the remaining initial subgroup averages (which are denoted by X ) and the
averége of the remaining initial subgroup ranges (which are denoted by R).

The value for ccf is from the output of the Mathcad (1998) program ccfsR.mcd. For

the 3(— control chart, ccf is 'equal to A22 for both the upper and lower Stage 2 control
limits. For the R control chart, ccf is equal to D42 for the upper Stage 2 control limit and
it is equal to D32 for the lower Stage 2 control limit.

After constructing Stage 2 controi lirrlif[s, one is ready to monitor the future
performance of the process. If one is interestéd in updating Stage 2 control limits as
more subgroups are accumulated, then 'an apﬁroach to do this may be found in Hillier’s
(1969) example. However, no methodology is presented in this dissertation that
determines the approach for updating that results in Stage 2 control limits that perform

the best.

Unbiased Estimates of the Process Variance and Standard Deviation

Table 3.3 presents equations to calculate unbiased estimates of the process variance

(o0?) and standard deviation (6) based on _Ii, _\;, \/j , 5, and MR . For any one of these

statistics calculated from m subgroups of size n, the table gives the appropriate Mathcad
(1998) program from Chapter IV, V, VI, or VII that must be used to determine the value

for the bias correction factor. Using the notation from the programs, the tables then give

the equations to calculate unbiased estimates of ¢ and ¢° using the bias correction
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Table 3.3. Unbiased Estimates of the Process Variance ( 6°) and Standard Deviation ()

"Mathcad

Unbiasing Factor Unbiased Estimate
. .. | Program
Statistic .
(extension . 2 G 2
.mcd) o °
— d2 d2star — — 2
R ccfsR Ge. d,) Ge., d)) R/d2 (R/d2star)-
cd(v2+1)
- (ie., ¢, with = —
ccfs M
v cfsv tbgmoup Vv [caw2+1) v
size (v2+1))
— — —\2
J5 cofsy | c4v2+D) | Avjeaw2+1) \5)
c4
- (i.e., c, with cdstar - - 2
f . .
S ccfss subgroup (e ) s/c4 (s/c4star)
size n)
- | d2starMR
MR | ccfsMR | d2(e,d,) | (e, MR/d2 | (MR/d2starMR |
| d;(MR))

factors. It should be noted that columns three and four of Table 3.3 represent output from

the respective programs. Also, the notation in this table is explained in Chapters IV-VII.

For example, suppose one wants to determine unbiased estimates of ¢ and ¢° based

onR. Referring to the first row of Table 3.3, three pieces of information are required:

R,d2(.e., d,), and d2star (i.e., d). R is the average of m subgroup ranges (which are

denoted by R), each of which is based on a subgroup of size n. Values for the unbiasing

factors d2 and d2star are from the output of the Mathcad (1998) program ccfsR.mcd.

The equations to calculate the unbiased estimates of ¢ and ¢° based on R are in the first

rows of the last two columns, respectively, of Table 3.3.

As will be explained in Chapters VI and VII, the unbiasing factors c4star (i.e., c:) and

76




d2starMR (i.e., d;(MR)), respectively, in Table 3.3 are new developments from the
research presented in this dissertation. This means that, for the first time, one may obtain

an unbiased estimate of 67 based on's and MR using the equations in the last two rows,

respectively, of the last column of Table 3.3.

- Conclusions

The descri.ption’. of the proceés réquired to perform two stage short run varnables
control charting together with the notation and equation‘s présented in this chapter is
meant to indicate where and how to use fhe research presented in Chapters IV-VIII of this
dissertation in this process. By addressing the tasks associated with research sub-
objectives 1, 2, 3, 4, and 5 from Chapter I of this dissertation, the research presented in
Chapters IV, V, VI, VII, and VIII, respectively, results in a comprehensive, theoretically

sound, easy-to-implement, and effective methodology for two stage short run control

charting using (X,R), X, V), (X,+/v), (X,s), and (X, MR) charts.
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CHAPTER IV

TWO STAGE SHORT RUN (X,R) CONTROL CHARTS
AND A COMPUTER PROGRAM TO CALCULATE THE FACTORS

Introduction

‘Hillier (1969) presents equatioﬁs to calculate two stage short run control chart factors .
for (X,R) ch.arts and gives extensive tabulated results, but for subgroup size five only.
Using Hillier’s (1969) theory, Pyzdek (1993) gives two stage short run control chart
factors for (X,R) charts for subgroup sizes 2-5, but with less numbers of subgroups than
Hillier (1969) and only one set of values for alpha for the X chart and alpha for the R
chart above the upper control limit (alpha is the probability of a Type I error). Unlike
Hillier’s (1969) results, Pyzdek (1993) does not give two stage short run control chart
~ factors for the R chart below the lower control limit.

Also using Hillier's (1969) theory, Yang (1995) presents two stage short run control
chart factors fqr (X,R) charts for subgroup sizes 2-25 for the X chart and 2-20 for the R
chart, number of subgroups 1 (for second stage only) and 2-25, alpha values of 0.05,
0.01, and 0.0027 for the X chart, and alpha values of 0.00135 and 0.0027 for the R chart
above the upper control limit. Similar to Pyzdek (1993), Yang (1995) does not give two
stage short run control chart factors for the R chart below the lower control limit. It

should be noted that Yang (1999 and 2000) contain some of the results from Yang

(1995).
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Problem

Hillier (1969), Pyzdek (1993), and Yang (1995, 1999, 2000) represent the only
attempts in the literature to present two stage short run control chart factors for (i, R)

charts based on Hillier’s (1969) theory. In addition to the limitations already presented,
Pyzdek’s Table 1: Exact Method Control Chart Factors contains some incorrect values.
Also, many of the values in Yang’s (1995) Tables 2.1-2.7 and 3.1-3.4 are incorrect
because inaccurate equations and dufﬁen’cal techniques are used to calculate the results.
It should be noted that Tables 1 and 2 in Yang (1999) are exact replications of Tables 3.4
and 3.2, respectively, in Yang (1995). Also, Tables 1 and 2 in Yang (2000) are exact

replications of Tables 2.4 and 2.7, respectively, in Yang (1995).

Solution

This chapter describes the develépment and execution of a computer program that
overcomes these limitations. It will accurately calculate first and second stage short run
control chart factors for (X,R) charts. The program uses exact equations for the
probability integral of the range, the expected values of the first and second powers of the
distribution of the range, the probability integral of the studentized range, degrees of
freedom calculations, short run calculations, and conventional control chart calculations.
The program accepts values for subgroup size, number of subgroups, alpha for the X
chart, and alpha for the R chart both above the upper control limit and below the lower

control limit. Tables are generated for specific values of these inputs. Comparison of the

tabulated results to legitimate results in the literature validates the program. The tables
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correct and extend previous results in the literature.
The software used for the program is Mathcad 8.03 Professional (1998) with the
Numerical Recipes Extension Pack (1997). The program uses numerical routines

provided by the software.

QOutline

. This chapter first presents the probability integrals of the range and the studentized
range. These are essential in the application of Hillier’s (1969) theory to (5(-, R) control

charts and are required for the program to perform accurate calculations. Next, the
computer program is described. Tables generated by the program are then presented and
compared with legitimate results in the literature. Also, implications of the tabulated
results are discussed. Following a numerical example that illustrates the use of the
program, final conclusions describing the impact of the program on industry and research

are given.

Note

Results from the program are for processes generating parts with independent

measurements that follow.a Normal distribution.

The Probability Integral of the Range

The probability integral (or cumulative distribution function (cdf)) of the range for

subgroups of size n sampled from a standard Normal population is given by Pachares

80



(1959) as equation (4.1) (with some modifications in notation):

oo

P(W) = n’-J. X)) (F(x+W) —.F(x))“_1 dx ' 4.1

W repfesents the (standardized) range w/c, where w is the range of a subgroup and © is
thé population standard deviation. Throughout this chapter, F(x) is the cdf of the
standard Normal probability density function (pdf) f(x).

- The expected values of the first and second powers (or moments) of the distribution of

the range W = (w/o) for subgroups of size n sampled from a Normal population with

mean W and variance equal to one given by Harter (1960) are equations (4.2) and (4.3),

respectively (with some modifications in notation):

Wl=n-(n—1)-Jm D‘m W - (F(x + W)=F(x))" % -f(x +W)dW:|-f(x)dx 4.2)
—co 0

W2=n-(n —1)-I ) U ) W2 (Fx+W)=Fx)"? - f(x + W) dW]f(x)dx (4.3)
—oo 0

The mean of the distribution of the range (E(W)) is W1 and is the control chart constant
denoted by d, (see Table M in the appendix of Duncan (1974)). The variance of the

distribution of the range (Var(W)) is calculated using equation (4.4):

Var = W2 -W1? 4.4)
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The control chart constant d, (see Table M in the appendix of Duncan (1974)) is the

square root of the variance.

The values d,, d,, and m (the number of subgroups) are used to generate the degrees

of freedom (v) and d; (d2star) values for Table D3 in the appendix of Duncan (1974).

The value d2star is calculated using the exact equation (equation (4.5)) from David

(1951) (note: d2=d, and d3=d,):

2 0.5
d2star =(d22 +£] 4.5)
m

The value v has two possible calculations. The first calculation is an estimate. It is given

by David (1951) as equation (4.6): |

e e
41 116 64

where A is determined using equation (4.7) (with some modifications in notation):

2)(d3)
So

This estimate is also given by Pearson (1952) and Prescott (1971). However, this

estimate for v is highly inaccurate for small m (e.g., for m=1 and n less than 11, the
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inaccuracy is in the third place or less to the right of the decimal). As m—eo for any n,
the accuracy of the estimate for v improves.
Consequently, the program presented by this chapter uses the second calculation for v,

which is exact. Two equations are involved. The first equation (equation (4.8)) is

derived in Appendix B.1 of this dissertation from results given by David (1951) and

Prescott (1971):
d3?
r= 4.8
m-d2* *+8)

The second équation (equation (4.9)) is derived in Appendix B.1 from results given by

Prescott (1971):

X - e2-(gammln(0.5-x)--gammln(0.5-)(+0.5)) _ 2

h(x) = 3 4.9)

where gammiln is a numerical recipe in the Numerical Recipes Extension Pack (1997) that
calculates the natural logarithm of the gamma function. Using gammln in equation (4.9)

allows for large values of v (hence large values for m and n) in the program. The exact

value for v is the value of x such that equation (4.10) holds:

h(x)=r ' (4.10)
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The Probability Integral of the Studentized Range

The probability integral of the studentized range for subgroups of size n sampled from

a Normal population is given by Harter, Clemm, and Guthrie (1959) as equation (4.11a):

P3(z) = (EJ e - (Pl(z) + P2(2))
z

where

ov=1n(2) +(§J'“‘[§]‘G)"gamn@

1 W 2oasw? IV 2osw?
Pl(z) = f [5 __} e 22 e 27 .P(W)dW
0 Z

(4.11a)

(4.11b)

(4.11c)

(4.11d)

The variable z is equal to 5-Q. Q represents the studentized range w/s, where w is the

range of a subgroup and s is an independent estimate (based on v degrees of freedom) of

the population standard deviation. The equation for cv (equation (4.11b)) is the natural

logarithm of the equation for C(v) given by Harter, Clemm, and Guthrie (1959). Itis

derived in Appendix B.1. Using gammlin in equation (4.11b) allows for large values of v

(hence large values for m and n) in the program. The equation to calculate v is given

‘earlier as equation (4.10). In equation (4.11c), P(W) is the probability integral of the

range W = (w/0) (see equation (4.1)).

As v—eo (i.e., as m—eo) for any n, the distribution of the studentized range Q = (w/s)
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converges to the distribution of the range W = (w/0) (see Pearson and Hartley (1943)).

This fact is used to calculate alpha-based conventional control chart constants for the R

chart.

The Computer Program

This section of the chapter presents the computer prégram, which is in Appendix B.2
of this dissertation. The program has seven pages, each of which is further divided into

sections.

Mathcad (1998) Note

It is possible for a section of code in the program to turn red and have the error
message "Unknown Error". To correct this, delete one character in the red code and type
it back in. Click the mouse arrow outside of the code. The code should turn black,
indicating that the error has been eliminated. If not, repeat the procedure (it will

eventually correct the problem).

Page 1

The first page of the program begins with the data entry section. The program

requires the user to enter the following values: alphaMean (alpha for the X chart),

alphaRangeUCL (alpha for the R chart above the UCL), alphaRangeLLCL (alpha for the R
chart below the LCL), m (number of subgroups), and n (subgroup size for the (i, R)

charts). If no lower control limit on the R chart is desired, the entry for alphaRangeLCL
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should be left blank (do not enter zero). Before a value can be entered, the cursor must
be moved to the right side of the appropriate equal sign. This may be done using the
arrow keys on the keyboard or by moving the mouse arrow to the right side of the equal
sign and clicking once with the left mouse button. The program is activated by paging
down once the last entry is made. When using Mathcad 8.03 Professional (1998), paging
-down is not allowed while a calculation is taking place. However, Mathcad 2000
Professional (1999) allows the user to page down to the output section of the program
(explained later) after the last entry is made.

The next part of page 1 is section 1.1 of the program. The value TOL is the tolerance.
The calculations that use this value will be accurate to ten places to the right of the
decimal. The functions dnorm(x, 0, 1) and pnorm(x, 0, 1) in Mathcad (1998) are the pdf
and cdf, respectively, of the standard Normal distribution. The equations for the pdf and
cdf are also given in case the dnorm or pnorm function fails to calculate a result. In
Mathcad (1998), an equation turns red if it does not calculate a result due to an error. If
the dnorm function gives an error, type f(x) on the left side of the equal sign in equation

- (4.12):

=[(2~n)’°'5]~e% (4.12)

If the pnorm function gives an error, type F(x) on the left side of the equal sign in

equation (4.13):
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‘:f " fd | | . (4.13)

W1, W2, and Var, which depend only on n, are given earlier as equatioﬁs (4.2), (4.3), and
(4.4), respectively. The value d2 is used to calculate the conventional control chart

constant for the X chart. It is also used to calculate alpha-based conventional control

chart constants for the R chart. Both d2 and d3 are used to calculate two stage short run

control chart factors for the X chart as well as the R chaift.

Page 2

Page 2 of the program begins with section 2.1. P(W) is given earlier as équation 4.1).
The remainder of the code in this section determines wD4 and wD3, the
(1-alphaRangeUCL) and alphaRangel.CL percentage points, respectivély, of the
distribution of the range W = (w/o) for a given n and infinite v (i.e., infinite m) (recall
the earlier statement that as v—ee (i.e., as m—><o) for any n, the distribution of the
studentized range Q = (w/s) converges to the distribution of the range W = (w/0)).
The values wD4 and wD3 are used to calculate alpha-based conventional upper and
lower control chart constants, respectively, for the R chart. The roots of the equations
DUCL(W) and DLCL(W) are wD4 and wD3, respectively, and are determined using
zbrent (a numerical recipe in the Numerical Recipes Extension Pack (1997) that uses
Brent’s method to find the roots of an equation). The subprograms Wseedl and Wseed2
generate seed values seedD4 and seedD3, respectively, for Brent’s method.

The subprogram Wseed1 works as follows. Initially, W; and W, are set equal to 0.01
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and 0.02, respectively. A, and A, result from evaluating DUCL(W) at W; and W,,
respectively. The while loop begins by checking if the product of A, and A, is
negative. If so, the root for DUCL(W) lies between 0.01 and 0.02. If not, W, and W,
are incremented by 0.01. A, and A, are recalculated and if their product is negative, the
root for DUCL(W) lies between 0.02 and 0.03. Otherwise, the while loop repeats. Once
a root for DUCL(W) is bracketed, the bracketing values are passed out of the subprogram
- into the 2X1 vector seedD4 to be used by Brent’s method to determine wD4. The
subprogram Wseed2 works similarly to cbnstruct the 2x1 vector seedD3 to be used by
Brent’s method to determine wD3, except the starting value is 0.001.

The next part of page 2 is section 2.2 of the program. The two stage short run control
chart factor calculations require v and vprevm (i.e., v for (m-1) subgroups). The value
rprevm has the same meaning as r (given earlier as equation (4.8)), except it is for (m-1)
subgroups. The equation for h(x) is described earlier (see equation (4.9)). Brent’s
method is used to find the root v of d(x) using the seed value x. Similarly, Brent’s
method is used to find the root vprevm of dprevm(x) using the seed value xprevm. The

equations for x and xprevm are from the footnote to Table D3 in the appendix of Duncan

(1974). Patnaik (1950) also gives a form for these equations.

Page 3

Page 3 of the program begins with section 3.1. P3(z), cv, P1(z), and P2(z) are all
given earlier as equations (4.11a), (4.11b), (4.11c), and (4.11d), respectively. Section 3.2

contains the calculations required to determine qD4, the (1-alphaRangeUCL) percentage
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point of the distribution of the studentized range Q = (w/s) with v degrees of freedom

(which is calculated earlier in the program). The value qD4 is used to calculate the
second stage short run upper control chart factor for the R chart. The subprogram Zseedl
generates the seed value seedlv for Brent’s method or for roof (root is a numerical routine
in Mathcad (1998) that uses the Secant method for determinin g the roots of an equation).
Either root-finding method detérmines the root of D(x). The result of dividing this root
by five is gD4. Both Brent’s method ‘and the Secant method are given because one may
not work when the.other one does. If Brent;s method fails, type gD4 on the left side of

the equal sign in equation (4.14):

B root[ |P3(seed1) -({1- alphaRangeUCL)I , seedl]
= : ram

4.14)

The subprogram Zseed1 begins by geherating values for Z, and Z,. A, and A,
result from evaluaﬁng P3(z)at Z, ‘and Z,, respectively. The while loop continually
increments Z, and Z, by 5.0 and evaluates P3(z) at these two values until A, becomes
greater than (l—alphaRangeUCL) for the/ first time, at which point A, will be less than

(1-alphaRangeUCL). When this occurs, P3(z) is equal to (1-alphaRangeUCL) for some

value z between Z; and Z,. An initial guess for this value is determined using linterp (a

numerical routine in Mathcad (1998) that performs linear interpolation) and stored in

Zguess. The initial guess is passed out of the subprogram as seedl.
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- Page 4

Page 4 of the program is section 4.1. The code in this section is used to determine

qD3, the alphaRangel.CL percentage point of the distribution of the studentized range
Q = (w/s) with v degrees of freedom (which is calculated earlier in the program). The

value gD3 is used to calculate the second stage short run lower control chart factor for the
R chart. The subprogram Zseed2 generates the value seed2 that is used to determine an
initial value for qD3. An impfoved value for qD3 is then calculated by determining the
root of the equaﬁion (P3(z)-alphaRangel.CL) using the Secant method with the seed value
seed2 and dividing this root by five.

For some vaiues of n in combination with mostly large m, the Secant method fails to
work (Brent’s method should not be used). This is not a problem because the initial value
for gD3 and the improved value match to severai places to the right of the decimal. This
phenomenon is discussed in more detail when the tabulated results of the program are
presented later in this chapter. The Monitor Results area in the bottom right hand corner
of section 4.1 indicates how closely the two values for gD3 match until the root routine
- fails. This will dictate the number of decimal places that can be used to display ciD3 and
the second stage short run lower control chart factor for the R chart.

The code in the subprogram Zseed2 that begins with the first line of code and includes
the while loop and the two for loops constructs 21x1 vectors Zv for z and Av for P3(z).

. The first row of each vector is zero. The while loop determines the first value Z where
P3(Z) is greater than alphaRangelL.CL. This Z and the corresponding value P3(Z) are
stored in the second rows of Zv and Av, respectively. The two for loops generate values

for the remaining rows of Zv and Av. Two different for loops are used because P3(z)
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may encounter an error for some i (i: 1, 2, ..., 20). The value for i where the error occurs
can be skipped using the dual for loop construction. When the execution of this section
of code is ;:omplete, P3(z) is equal to alphaRangel.CL for some value z between Zv, and
Zv,.

The code in the subprogram Zseed? that starts in the line where the variable Zguess
first appears to the last line of the subprogram is derived from Harter, Clemm, and
Guthrie (1959). This code seafches for and estimates the value z where P3(z) is equal to
alphaRangel.CL. Zguess is the initial guess for this value z. It is determined using
linterp, the 211 vectors for P3(z) and z previously determined, and alphaRangeLCL.
The 2x1 vector A is determined using ratint (a numerical recipe in the Numerical
Recipes Extension Pack (1997) that performs rational interpolation); the 21.x1 vectors
for z and P3(z), and Zguess. Aguess is the entry in the first row of A and is the estimated

value for P3(Zguess). The while loop first checks if Aguess is an accurate estimate

(within 107™7) of alphaRangeL.CL. If so, Zguess is passed out of the subprogram as the
value seed2. If not, Aguess and Zguess are entered into the second rows of the
previously determined vectors Av and Zv, respectively, if Aguess is more than 107"
larger than alphaRangeL.CL. If Aguess is more than 107" smaller than alphaRangeL.CL,
Aguess and Zguess are entered into the first rows of the vectors Av and Zv, respectively.
New values for Zguess and Aguess are determined using the same procedure as before

and execution is returned to the beginning of the while loop.
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Page 5

Page 5 of the program contains sections 5.1 and 5.2. These sections correspond to
sections 3.1 and 3.2, respectively, described earlier. The only difference is that the
calculations in sections 5.1 and 5.2 use vprevm instead of v. The calculations are for

gD4prevm, which is used to determine the first stage short run upper control chart factor

for the R chart.

Page 6

Page 6 of the program is section 6.1. This section corresponds to section 4.1
‘described earlier. The only difference is that the calculations in section 6.1 use vprevm
instead of v. The calculations are for qD3prevm, which is used to determine the first

stage short run lower control chart factor for the R chart.

Page 7

Page 7 of the program begins with section 7.1. It has the equations for d2star (given
earlier as equation (4.5)) and d2starprevm (d2star for (m-1) subgroups). The value d2star
is used to calculate first and second stage short run control chart factors for the X chart.
It is also used to calculate second stage short run control chart factors for the upper and
lower control limits for the R chart. The value d2starprevm is used to calculate first stage
short run control chart factors for the upper and lower control limits for the R chart. The
function qt(adj_alpha, V) in Mathcad (1998) determines the critical value crit_t for a

cumulative area of adj_alpha under the Student’s t curve with v degrees of freedom. The

92



value crit_t is used to calculate first and second stage short run control chart factors for

the X chart. The function gnorm(adj_alpha, 0, 1) in Mathcad (1998) determines the
critical value crit_z for a cumulative area of adj_alpha under the standard Normal curve.
The value crit_z is used to calculate the conventional control chart constant for the X
“chart.

Section 7.2 of the program has the two stage short run control chart factor equations
from Hillier (1969). A21 and A22:are, respectively, the first and second stage short run
control chart factors for the X chart. D41 and D42 are, respectively, the first and second
stage short run upper control chart factors for the R chart. D31 and D32 are, respectively,
the first and second stage short run lower control chart factors for the R chart. Table 4.1
compares the notation for these factors from Hillier (1969), Pyzdek (1993); and this
chapter (Yang (1995, 1999, 2000) uses the same notation as Pyzdek (1993)).

Section 7.2 also has the conventional control chart equations for A2 and alpha-based
D4 and D3. A2 is the conventional control chart constant for the X chart. The equation
for A2 is a generalization of the equation for A, from Table M in the appendix of
Duncan (1974) to allow for different values of alphaMean. It is obtained by taking the
limit of either A21 or A22 as m—e (i.e., as v—e0) for any n. D4 is the conventional
upper control chart constant for the R chart. It is obtained by taking the limit of either

D41 as m—eo (i.e., as vprevim—oo) or D42 as m—eo (i.e., as v—eo) for any n. D3 is the

Table 4.1. Comparison of Two Stage Short Run Control Chart Factor Notation

A21 D41 D31 A22 D42 D32
Hillier (1969) A7 D D; A D, D;
Pyzdek (1993) AcF Dar | - Azs Dss | --—---
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conventional lower control chart constant for the R chart. It is obtained by taking the
limit of either D31 as m—»ee (i.e., as vprevm—eo) or D32 as m—e» (i.e., as v—oo) for any
n.

The last part of page 7 is the output section of the program. The five values entered at
the beginning of the program are given. The control chart factors are broken down into
first stage, second stage, and conventional. The mean, standard deviation, and variance
of the distribution of the range W = (w/0), Duncan’s (1974) Table D3 results, and
Harter, Clemm, and Guthrie’s (1959) Table 11.2 results complete the output of the
program. To copy results into another software package (like Excel), follow the
directions from Mathcad’s (1998) help menu or highlight a value and copy and paste it
into the other software package. ‘When highlighting a value with the mouse arrow, place
the arrow in the middle of the value, depress fhe left mouse button, and drag the arrow to

the right. This will ensure just the numerical value of the result is copied and pasted.

Tabulated Results of the Program
The four tables (Tables B.3.1-B.3.4) in Appendix B.3 of this dissertation were

generated using the program with the following input values:

e alphaMean=0.0027, alphaRangeUCL=0.005, alphaRangeLCL.=0.001
e m: 1-20, 25, 30, 50, 75, 100, 150, 200, 250, 300
e n:2-8,10,25,50

* The values v, d2star, vprevm, d2starprevm, d2, d3, and d3* (Var.) are in Table B.3.1.
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The results in this table compare favorably to Duncan’s (1974) Table D3. If the values in
Table B.3.1 are rounded as in Duncan’s Table D3, some values differ from those in
Duncan’s Table D3 by one digit in the last decimal place. A possible explanation is that
the Table B.3.1 calculations were performed with more places to the right of the decimal
and with v determined exactly. Nelson (1975) uses the exact calculation for v
(referenced from Pearson (1952)) for some combinations of subgroup size and number of
subgroups in his re-creation of Duncan’s (1958) Table 548 (a separate publication
equivalent to Duncan’s (1974) Table D3). Nelson also encountered differences between

his results and Duncan’s (1958) similar to the differences found here. It should be noted
that the program eliminates the need for the estimations for v and d, given by Duncan

(1974) in the footnote to his Table D3.

The values qD4, gD4prevm, and wD4 are in Table B.3.2. The values qD3,
gD3prevm, and wD3 are in Table B.3.3. The results in these tables compare favorably to
Harter, Clemm, and Guthrie’s (1959) Table I1.2. The blanks in Table B.3.3 indicate
where Zseed2 was not able to generate an initial value for gD3. This problem may be
- attributable to the low value used for alphaRangeL.CL (0.001).

As explained ‘eﬁrlier in this chapter, in the calculations for gD3 and gD3prevm, the
Secant method fails to work for some values of n in combination with mostly large m.
For Table B.3.3, this is true for n=2 (m>2), n=3 (m=>50), n=5 (m>150), n=6 (m=250), n=7
(m=200), n=10 (m=200), and n=25 (m>150). This problem may also be attributable to
the low value used for alphaRangeL.CL. As mentioned previously, this is not a serious
issue, especially for n less than seven. For these values of n, the initial value for qD3

matches the improved value for qD3 (before the Secant method fails) to at least six places
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to the right of the decimial. For n=7 and n=10, the match is five places to the right of the
decimal. This is why the values for m=200 when n=7 and n=10 are displayed with four
places to the right of the decimal in Table B.3.3. For n=25, the match is four places to
the right of the decimal. Consequently, the values for m>150 when n=25 are displayed

- with three places to the right of the decimal in Table B.3.3.

The entry for n=50 and m=300 in Table B.3.3 is blank because the initial value for
qD3 was incorrect. The Secant method also failed to work. Again, this is probably
attributable to the low value for alphaRangeLCL. This brings up the important point that
the results from the program should converge smoothly to their respective infinite values.
If not, the program may have performed an incorrect calculation.

Values for A21, D41, D31, A22, D42, D32, A2, D4, and D3 are in Table B.3.4.

Results from Table B.3.4 for n=5 compare favorably to Hillier’s (1969) results. Any
differences may be attributable to Hillier using v and d;, from Duncan’s (1974) Table D3,

which shows fewer places to the right of the decimal than the results used in the program.
The blanks in Table B.3.4 are where Zseed2 and Zseed4 were not able to generate initial
values for qD3 and qD3prevm, respectively. D31 and D32 for m=200 when both n=7
and n=10 are displayed to four places to the right of the decimal for reasons previously
explained. Similarly, D31 and D3é for n=25 and m=150 are displayed to three places to
the right of the decimal. It should be noted that the values wD4, wD3, and D4 and D3 in
Tables B.3.2, B.3.3, and B.3.4, respectively, may differ in the ninth or tenth decimal
place for different root routines used to calculate wD4 and wD3.

These favorable comparisons validate the program. Consequently, Table B.3.4 results

for n: 2-5 and m: 1-10, 15, 20, 25 may be considered corrections to Pyzdek’s (1993)
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Table 1. Table 4.2 illustrates a smaller magnitude correction and a larger magnitude
correction to Pyzdek’s Table 1.

Also, results in Tables B.3.1 and B.3.4 for n: 1-8, 10, 25 and m: 1-20, 25 may be
éonsidered corrections to Yang”sv (1995) Tébles 2.1,2.4,and 2.7. Resultsin Yang’s
(1995) Table 2.1 for V (i.e., v) are inaccurate regardless of the values for m >and n.
However, for many values of n, the'inéccuracies of the results in Yang’s (1995) Tables
2.1,2.4, aﬁd 2.7 for C (i.e., d;), AZF (i.e., A21), and A (i.e., A22), respect_ively,
decrease as m—oee.

Yang’s (1995) results are inaccurate for several reasons. Yang (1995) uses equations
that give estimates for v and d;,. Additionally, Yang’s (1995) equation for the cdf of the
standard Normal distribution gives estimated resulté. Also, the numerical techniques
used by Yang (1995) do not give accurate results.

It should be noted that Tables 2.2-2.4 in Yang (1995) incorrectly show zeroes as the
value of A,. (i.e., A21) when m=1. A21 does not exist when m=1. This does not mean
the same thing as having a value of zero. Also, Yang (1999 and 2000) incorrectly states
~ that Pyzdek (1993) uses an alpha value of 0.0027 for both the X control chart and the R

control chart above the upper control limit. Pyzdek (1993) uses an alpha value of 0.005

for the R control chart above the upper control limit.

Table 4.2. Examples of Corrections to Pyzdek’s (1993) Table 1

B n | m | Factor | Table B.3.4 | Pyzdek
Smaller Magnitude Correction | 2 | 2 A21 8.27583 8.49
Larger Magnitude Correction | 4 | 1 D42 7.13456 13
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Implications of the Tabulated Results

Values in Table B.3.4 show some interesting properties. Consider Table 4.3, which
contains selected A22 and corresponding A2 values from Téble B.3.4. As nincreases for
a particular m, the A22 values.decrease. For larger values of m, the difference between
A22 for n=2 and n=50 decreases. Of more interest is that as m increases for a particular
n, the A22 values converge in a decreasing manner to their respective A2 values. For
larger values of n, the difference between A22 for m=1 and the respective A2 value
decreases. This means that as m increases the convergence of A22 to A2 is faster for
larger values of n. Thesé results make sense because more information about the process
is at hand for larger n and m. |

Further investigation of Table B.3.4 reveals that, as m increases for a particular n, the
D31 and D42 values also converge to their respective D3 and D4 values in a decreasing
manner. The convergence pattern for D41 and D32 differs in that as m increases for a
particular n, the D41 and D32 values converge in an increasing manner to their respective
D4 and D3 values. The convergence pattern for A21 is unique. For n equal to 2, 3, and

4, A21 converges in a decreasing manner to A2 as m increases. For n=5, A21 also

Table 4.3. Selected A22 and Corresponding A2 Values from Table B.3.4

A22 A2
n m=1 m=2 m=20 m=30 m=100 m=300 m=co
2 ] 166.72424 | 14.33417 | 2.20516 | 2.08810 | 1.93901 | 1.89934 | 1.87996
3 8.35221 2.70257 | 1.11739 | 1.08487 | 1.04132 | 1.02927 | 1.02332
4 3.01070 1.43980 | 0.77844 | 0.76144 | 0.73829 | 0.73181 | 0.72859
5 1.76214 1.00199 | 0.60994 | 0.59872 | 0.58331 | 0.57897 | 0.57681
10 | 0.61168 0.44314 | 0.32071 | 0.31654 | 0.31074 | 0.30909 | 0.30826
25 | 0.25204 0.20157 | 0.15757 | 0.15593 | 0.15363 | 0.15297 | 0.15265
50 { 0.14716 0.12122 | 0.09711 | 0.09618 | 0.09488 | 0.09451 | 0.09432
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converges in a decreasing manner to A2, but starting at m=3. For n equal to 6,7, §, 10,
25, and 50, A21 converges in an increasing manner to A2 as m increases.

These results have major implications. A common rule of thumb is that 20 to 30
subgroups’of size 4 or 5 are necessary to use conventional éontrol éhart constants for
constrﬁcting control limits. The results m Table B.3.4 indicate that this may be an
incorrect rule. Consider again tﬁe A22 and corresponding A2 values in Table 4.3. When

n=4, A2 is 6.404% smaller than A22 for m=20. When n=5, A2 is 3.659% smaller than

A22 for m=30. These results indicate that if one were to construct X charts using
conventional control chart constants when only 20 to 30 subgroups of size 4 or 5 are
available to eétimate the process mean and étandard deviation, the upper and lower
control limits would not be wide enough, resulting in a higher false alarm rate.

D42 and corresponding D4 values, as well as D32 and corresponding D3 values, in
Table B.3.4 also indicate that the common rule of thumb may be an incorrect rule. When
n=4, D4 is 4.748% smaller than D42 for m=20 and D3 is 0.896% larger than D32 for
m=20. When n=5, D4 is 2.581% smallér than D42 for m=30 and D3 is 0.663% larger
than D32 for m=30. Consequently, if one were to construct R charts using conventional
control chart constants when only 20 to 30.subgroups of size 4 or 5 are available to
estimate the process standard deviation, the upper and lower control limits would not be
wide enough, resulting in a higher false alarm rate.

Quesenberry (1993) also investigated the validity of the common rule of thumb and
concluded that 400/(n —1) subgroups are needed for the X chart before conventional

control chart constants may be used. However, for all practical purposes, the program

presented by this chapter eliminates the need for these rules.
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A Numerical Example

Consider the data in Table 4.4 obtained from a process requiring short run control
charting techniques (assume alphaMean=0.0027, alphaRangeUCL=0.005, and
alphaRangel.CL=0.001). For m=5 and n=4, the following first stage short run control

chart factors are obtained from Table B.3.4: A21=0.77660, D41=2.11840, and

D31=0.11338. UCL(R), LCL(R), UCL( X ), and LCL(X ) are calculated as follows:

UCL(R) =D41-R =2.11840-0.21600 = 0.45757

LCL(R) = D31-R =0.11338-0.21600 = 0.02449
UCL(X) = X+ A21-R =1.28600 +0.77660 -0.21600 = 1.45375

LCL(X) = X — A21-R =1.28600—0.77660-0.21600 = 1.11825

R for subgroup five (R=0.49000) is above UCL(R). Find, investigate, and remove from
the process the special cause (or causes) that created this out of control point, delete

subgroup five, recalculate averages (shown as the Revised Averages in Table 4.4), and

Table 4.4. A Numerical Example

Subgroup | X, X, X, X, X R

1 1.17 | 1.14 | 1.20 | 1.18 | 1.17250 | 0.06000
2 1.38 | 1.29 | 1.36 | 1.44 | 1.36750 | 0.15000
3 1.20 | 1.21 | 1.30 | 1.14 | 1.21250 | 0.16000
4 140 | 140 | 1.21 | 1.43 | 1.36000 | 0.22000
5 1.12 | 1.20 | 1.61 | 1.34 | 1.31750 | 0.49000

Averages 1.28600 | 0.21600

Revised Averages 1.27813 | 0.14750
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‘reconstruct first stage control limits (this approach is from Hillier’s (1969) example). For
m=4 and n=4, the following first stage short run control chart factors are obtained from

Table B.3.4: A21=0.78832, D41=2.07041, and D31=0.11848. Revised UCL(R),

LCL(R), UCL(X ), and LCL( X ) are calculated as follows:

UCL(R) = D41-R = 2.07041-0.14750 = 0.30539
LCL(R) =D31-R =0.11848-0.14750 = 0.01748
UCL(X) = X+ A21-R =1.27813+0.78832-0.14750 = 1.39441

LCL(X) =X - A21-R =1.27813~0.78832-0.14750 = 1.16185

Since none of the remaining values plot out of control (i.e., control has been established),
the next step is to construct second stage control limits using the following second stage

* short run control chart factors from Table B.3.4 (for m=4 and n=4): A22=1.01772,

D42=2.94060, and D32=0.09281. UCL(R), LCL(R), UCL(X ), and LCL(X) are

calculated as follows:

UCL(R) = D42 R = 2.94060 - 0.14750 = 0.43374

LCL(R) = D32-R =0.09281-0.14750 = 0.01369
UCL(X) = X + A22-R = 1.27813+1.01772-0.14750 = 1.42824

LCL(X) = X - A22-R = 1.27813 - 1.01772-0.14750 = 1.12802
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These control limits may be used to monitor the future performance of the process.

Conclusions

This chapter and the program it presents make important contributions to both
industry and research. Those involved with quality control in industry will, for the first
“time, be able to use thedretically precise control chart factors to determine control limits
for (_)Z, R) charts regardless of the subgroup size, number of subgroups, and alpha

values. This flexibility is valuable in that process monitoring will no longer have to be
adjusted to use the limited, and in some cases incorrect, results previously available in the

literature. Concerning research, this chapter provides a valuable reference for anyone
interested in anything having to do with (3(_, R) control charts. Also, as already

mentioned, the program eliminates the need for the research question of how many

subgroups are enough before conventional control chart constants may be used.
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CHAPTER V

TWO STAGE SHORT RUN (X, v) AND (X,+/v) CONTROL CHARTS
AND A COMPUTER PROGRAM TO CALCULATE THE FACTORS

Introduction

Yang and Hillier (1970) follow Hillier’s (1969) theory to derive equations to calculate
two stage short run control chart factors for (i v) and .(i, \/; ) charts. The tables
presented by Yang and Hillier (1970) are for several values for number of subgroups,
alpha for the X chart, and alpha for the v and Vv charts both above the upper control

limit and below the lower control limit (alpha is the probability of a Type I error).

However, as in Hillier’s 1969 paper, the results are for subgroup size five only.

Problem

- Yang and Hillier (1970) represent the only attempt in the literature to present two
stage short run control chart factors for (—)Z, v) and (i, \/; ) charts based on Hillier’s

(1969) theory. In addition to the limitations already presented, Yang and Hillier (1970)
neglect to include appropriate bias correction factor calculations in some of their two
stage short run control chart factor equations, rendering much of their tables as incorrect.
Also, some of the results that were calculated using the correct equations are inaccurate

in the last decimal place shown by one and in some cases two digits.
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Solution

This chapter describes the development and execution of a computer program that
overcomes these limitations. It will accurately calculate first and second stage short run
control chart factors for (X,v) and (—)Z, v ) éharts using the appropriate bias correction
factor calculations. Thé program uses exact equations for the distributions of the
variance and the studentized variance, degrees of freedom calculations, short run
‘ calculations (which are corrected for bias), and conventional control chart calculations.

The program accepts values for subgroup size, number of subgroups, alpha for the X

chart, and alpha for the v or +/v ‘chart both above the upper control limit and below the
lower control limit. Tables are generated for specific values of these inputs. Comparison
of the tabulated results to legitimate results in the literature validates the program. The
tables correct and extend previous results in the literature.

The software used for the program is Mathcad 8.03 Professiqnal (1998) with the
Numerical Recipes Extension Pack (1997). The program uses numerical routines

provided by the software.

Outline

This chapter first presents the distributions of the variance and the studentized
variance. These are essential in the application of Hillier’s (1969) theory to (i, v) and

(i, Jv ) control charts and are réquired for the program to perform accurate calculations.

Next, the equation to calculate the bias correction factors is presented, as well as

justification for its use. From this, corrected equations to calculate two stage short run
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control chart factors for (i, v) and (_)_(_, «,/—\7 ) charts are given. Next, the computer

program is described. Tables generated by the program are then presented and compared
with legitimate results in the literature. Also, implications of the tabulated results are
discussed. Following a numerical example that illustrates the use of the program, final
- conclusions describing the impact of the program on industry and research are given.
Note

‘Results from the program are for processes generating parts with independent
measurements that follow a Normal distribution.

The Distribution of the Variance

The distribution of the variance for subgroups of size n sampled from a Normal
population with mean u and variance ¢’ is given by Pearson and Hartley (1962) as

equation (5.1a) (with some modifications in notation):

p(v) :(VTIY HX;D oMy e (5.1a)

The value v (the variance) is an independent estimate of 6* based on vl =(n—1) degrees

of freedom. Equation (5.1a) may also be represented as equation (5.1b) (see Appendix

C.1 of this dissertation):
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p(v)= ( clvl j {;e[%l}l“[v?ljgamm“‘[v?lj*[%]1}1n<v>—zv_i§ (5.1b)

Equation (5.1b) is the form used in the program. The function gammln is a numerical
recipe in the Numerical Recipes Extension Pack (1997) that calculates the natural
logarithm of the gamma function. Using gammln in equation (5.1b) allows for large
values of v1 (hence large values for n) in the program. The cumulative distribution

function (cdf) of the variance v with v1 degrees of freedom is equation (5.2):
v

P(V) =I p(v)dv (5.2)
0

The program uses equation (5.2) (with 6=1.0) to determine alpha-based conventional

control chart constants for the v and «/-\_/- charts.

The Distribution of the Studentized Variance

The distribution of the studentized variance (i.e., the F distribution) for subgroups of
size n sampled from a Normal population with mean W and variance ¢° is given by Bain

and Engelhardt (1992) as equation (5.3a) (with some modiﬁcations in notation):

- vl -
2 -[V—l)z £ 1-(1+V—1-f) ’ (5.32)
o Vv2 v2 v2
%)
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The value f (the studentized variance) is equal to v/v’, where v’ is a second independent
q p

estimate of 6° based on v2=m-(n~1) degrees of freedom (m is the number of

subgroups). Equation (5.3a) may also be represented as equation (5.3b) (see Appendix

C.1):

p3(f) = PP . (5.3b)

where

pl= gammln( vi ;V2 } - gamrnln(l;l) - gammln(ngj (5.3¢)

p2(f) = ["—IJ (in(v1)— 111(\;2))+("—1 —1)-1n(f) —["1 tv2 J-ln(l LY fj (5.3d)
2 2 2 v2

Equations (5.3b)-(5.3d) are used in the program. Using gammlin in equation (5.3c) allows
for large values of v1 (hence large values for n) and large values of v2 (hence large

values for m and n) in the program. The cdf of the studentized variance f = (v/v’) with

v1 degrees of freedom for v and v2 degrees of freedom for v is equation (5.4):

P3(F) =J ' p3(f) df 5.4

The program uses equation (5.4) to determine two stage short run control chart factors for

the v and \/V charts.
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As v2—eo (1.e.,-as m—>e0) for any n, the distribution of the studentized variance

f =(v/Vv’) converges to the distribution of the variance v (when 6=1.0). This fact is used

to calculate alpha-based conventional control chart constants for the v and Jv charts.

The Equation to Calculate the Bias Correction Factors

As mentioned earlier in the Problem subsection, Yang and Hillier (1970) neglect to

include appropriate bias correction factor calculations in some of their two stage short run
control chart factor equations. The :equations that involve v are correct (Vv is the average
of m values of v, each of which is based on a subgroup of size n), since v is an unbiased

estimate of 6 (see Appendix C.1). The problem occurs in those equations that involve

\/—;- , which is a biased estimate of . This bias is revealed when one considers the fact

that Vv = s,, where s 1s the pooled standard deviation (this equivalency is shown in

Appendix C.1). King (1953), Burr (1969), Nelson (1990), and Wheeler (1995) all state

that s, is'a biased estimate of 0, and that this bias is corrected by dividing s, by c,,

where ¢, is Calculated using equation (S.Sa) from Mead (1966) (with 6=1.0):

(v2+1) '
2 0.5 2
C, = 0-(—) . v_2 (5.5a)

2

Wheeler (1995) also gives this equation as his ¢/, (with 6=1.0). The control chart

- 108



constant ¢, is the mean of the distribution of the standard deviation. The equation for v2
is given earlier in relation to equation (5.3a). Equation (5.5a) may also be represented as

equation (5.5b) (see Appendix C.1) (note: c4=c,):

c4(x)=G- [—Z—IJOS - {egamm}"(%)gm"(%] ] (5.5b)

where X is the appropriate value for subgroup size (in the case of \/—;- , X=(v2+1)).
Equation (5.5b) is the form used in the program. Using gammlin in equation (5.5b) allows

for large values of v2 (hence large values for m and n) in the program.

Corrected Two Stage Short Run Control Chart Factor Equations

Since \/—i /c4(v2 +1) is an unbiased estimate of o, six of Yang and Hillier’s (1970)
equations to calculate two stage short run control chart factors for (i, v) and (i, \/; )
charts require.correcting. The first one is the equation for A}, the second stage short run
control chart factor for the X chart. Yan g and Hillier (1970) calculate second stage short
run upper and lower control limits for the X chart using equations (5.6) and (5.7),

respectively:

UCL=X+A, v (5.6)
LCL=X-A] v (5.7)
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Consequently, the bias correction factor calculated using equation (5.5b) with

x = (v2+1) should be incorporated into the equation for A;. The resultis given as

equation (5.8) (note: A42=A)):

A4 = crit _t ) (m+l o » | (5.8)
\eav2+) ) {nm ) '

where crit_t is the critical value for a cumulative area of (1- (alphaMean/2)) under the
Student’s t curve with v2 degrees of freedom (alphaMean is the probability of a Type I
error on the X control chart). Similarly, the correct equation for A:* , the first stage

short run control chart factor for the X chart, is given as equation (5.9) (note:

Adl=A7):

Adl= crit _t (m-1 02 (5.9)
- c4(v2+1) n-m '

The value crit_t has the same meaning here as in equation (5.8).

The next two equations that require correcting are for 1/B; and +/B; , the second

stage short run upper and lower control chart factors, respectively, for the Jv chart.

Yang and Hillier (1970) calculate second stage short run upper and lower control limits

for the /v chart using equations (5.10) and (5.11), respectively:
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UCL =4B; Vv (5.10)
LCL=4B; Vv 5.11)

. Consequently, the bias correction factor calculated using equation (5.5b) with

X = (v2 +1) should be incorporated into the equations for the control chart factors used in

equations (5.10) and (5.11). The results are given as equations (5.12) and (5.13),

respectively (note: B82%° = /B; and B72%° =B; )
P 8 7

B82°%3

B82sqrt = ————— 5.12
s c4(v2+1) .12
: » 0.5
B72sqrt = _Br2” (5.13)
c4(v2+1)

B82sqrt replaces /B, in equation (5.10) and B72sqrt replaces /B in equation (5.11).
- B82 is the second stage short run upper control chart factor for the v chart. It is equal to
fB8, the (1-alphaVarUCL) percentage point of the distribution of the studentized variance

f = (v/v) with v1 degrees of freedom for v and v2 degrees of freedom for v’

(alphaVarUCL is the probability of a Type I error on the v and Vv charts above the
upper control limit). B72 is the second stage short run lower control chart factor for the v
chart. It is equal to fB7, the alphaVarLCL percentage point of the distribution of the

studentized variance f =(v/v") with v1 degrees of freedom for v and v2 degrees of
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freedom for v’ (alphaVarLCL is the probability of a Type I error on the v and Jv charts
below the lower control limit).

Similarly, the correct equations for the first stage short run upper and lower control

chart factors for the \/\_/ chart are given as equations (5.14) and (5.15), respectively (note:

B81%* = /By and B71°° =yB7 )

, 05
B8Isqrt = — Bsl (5.14)
c4(v2prevm +1)
0.5
B71sqrt = B71 (5.15)
c4{v2prevm +1)

B81sqrt and B71sqrt replace 4/B; and /B , respectively. The value v2prevm has the

same meaning as v2, except it is for (m-1) subgroups (i.e., v2prevm=(m—-1)-(n—1)).
B81, the first stage short run upper control chart factor for the v chart, is calculated using

equation (5.16):

m - fB8prevm

B81= (5.16)

m —1+fB8prevm

The value fB8prevm is the (1-alphaVarUCL) percentage point of the distribution of the

studentized variance f = (v/v") with v1 degrees of freedom for v and v2prevm degrees

of freedom for v’. B71, the first stage short run lower control chart factor for the v chart,

is calculated using equation (5.17):
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B71= fB7prevm

(5.17)
m -1+ fB7prevm

The value fB7prevm is the alphaVarLCL percentage point of the distribution of the
studentized variance f = (v/v’) with v1 degrees of freedom for v and v2prevm degrees
of freedom for v’.

Since c4(x)—1.0 as x—eo (i.e.,; as m—eo) for any n, Yang and Hillier’s (1970) results
for infinite m are calculated using the correct equations. The equation for A4, the
conventional control chart constant for the X chart, may be obtained by taking the limit
of either A41 or A42 as m—eo (i.e., as vV2—oo) forany n. The resulting equation for A4

is given as equation (5.18):

Ad= (5.18)

The value crit_z is the critical value for a cumulative area of (1— (alphaMean/2)) under
the standard Normal curve.

The equation for B8, the alpha-based conventional upper control chart constant for the
v chart, may be obtained by taking the limit of either B81 as m—o= (i.€., as v2prevm—oo)
or B82 as m—»o (i.e., as v2—o0) for any n. The resulting equation for B8 is given as

equation (5.19):

B8 = vB8 (5.19)
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The value vB8 is the (1-alphaVarUCL) percentage point of the distribution of the
variance v with v1 degrees of freedom.

The equation for B7, the alpha-based conventional lower control chart constant for the
v chart, may be obtained by taking the limit of either B71 as m—»ee (i.e., as v2prevm—seo)
§r B72 as m—eo (i.e., as v2—>e0) fdr any n. The resﬁlting equation for B7 is given as

equation (5.20):
B7 = vB7 ' (5.20)

The value vB7 is the alphaVarL.CL percentage point of the distribution of the variance v
with v1 degrees of freedom.

The equation for B8sqrt, the alpha-based conventional upper control chart constant for

the /v chart, may be obtained by taking the limit of either B81sqrt as m—eo (i.e., as

v2prevm—oo) or B82sqrt as m—o= (i.e., as v2—oo) for any n. The resulting equation for

B8sqrt is given as equation (5.21):
B8sqrt = B§** v (5.21)

The equation for B7sqrt, the alpha-based conventional lower control chart constant for
the /v chart, may be obtained by taking the limit of either B71sqrt as m—ee (i.e., as

v2prevm—eo) or B72sqrt as m—eo (i.e., as v2—oo) for any n. The resulting equation for

B7sqrt is given as equation (5.22):
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B7sqgrt = B7%° (5.22)

The Computer Program

This section of the chapter presents the computer program, which is in Appendix C.2
of this dissertation. The program has seven pages, each of which is further divided into

sections.

Mathcad (1998) Note

It is possible for a section of code in the program to turn red and have the error
message "Unknown Error”. To correct this, delete one character in the red code and type
it back in. Click the mouse arrow outside of the code. The code should turn black,
indicating that the error has been eliminated. If not, repeat the procedure (it will

eventually correct the problem).

Page 1

The first page of the program begins with the data entry section. The program
requires the user to enter the following values: alphaMean (alpha for the X chart),
alphaVarUCL (alpha for the v or /v chart above the UCL), alphaVarLCL (alpha for the
v or Vv chart below the LCL), m (number of subgroups), and n (subgroup size for the

(i, V) or (i, x/;) charts). If no lower control limit on the v or JV chart is desired, the
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entry for alphaVarLCL should be left blank (do not enter zero). Before a value can be
entered, the cursor must be moved to the right side of the appropriate equal sign. This
_may be done using the arrow keys on the keyboard or by moving the mouse arrow to the
right side of the equal sign and clicking once with the left mouse button. The program is
activated by paging down once the last entry is made. When using Mathcad 8.03
Professional (1998), paging down is not allowed while a calculation is taking place.

However, Mathcad 2000 Professional (1999) allows the user to page down to the output
section of the proéram (explained"later) after the last entry is made.

The next part of page 1 is sectioﬁ 1.1 of the program. The value TOL is the tolerance.
The calculations that use this value will be accurate to twelve places to the right of the
decimal. The population standerd deviatioﬁ o is set equal .to one for two reasons. The
first is to achieve the coﬁvergence of the distribution of the étudentized variance
f=(v/V) with vl degrees of freedom for v and v2 degrees of freedom for v’ to the
distribution of the variance v with v1 degrees of freedom as v2—>e (i.e., as m—>ee) for
any n. The second is to have the appropri‘ate calculation for the bias correction factors.
As mentioned earlier in relation to equation (5.1a), the degrees of freedom v1 for the

variance v is equal to (n —1). The equation for c4(x) is given earlier as equation (5.5b).

Page 2

Page 2 of the program begins with section 2.1. The equations for p(v) and P(V) are
given earlier as equations (5.1b) and (5.2), respectively. The next part of page 2 is
section 2.2 of the program. The code in this section determines vB8 and vB7, the

(1-alphaVarUCL) and alphaVarLCL percentage points, respectively, of the distribution

116



-of the variance v with vl degrees of freedom and infinite v2 (i.e., infinite m) (recall the
earlier statement that as v2—ee (i.e., as m—eo) for any n, the distribution of the
studentized variance f = (v/v’) converges to the distribution of the variance v (when
6=1.0)). As shown earlier in equations (5.19) and (5.20), vB8 is equal to B8 and vB7 is
equal to B7, respectively. The roots of the equations DUCL(V) and DLCL(V) are vB8
and vB7, respectively, and are determined using zbrent (a numerical recipe in the
Numerical Recipes Extension Pack (1997) that uses Brent’s method to find the roots of an
equation). The subprograms Vseedl and Vseed2 generate seed values seedB8 and
seedB7, respectively, for Brent’s-method.

The subprograrh Vseedl works as follows. -Initially, V,, and V, are set equal to 0.01
and 0.02, respectivély. A, and A; result from evaluating DUCL(V) at VO‘ and V,,
respectively. The while loop begins by checking if the product of A, and A, is
negative. If so, the root for DUCL(V) lies between 0.01 and 0.02. If not, V, and V, are
incremented by 0.01. A, and A, are recalculated and if their product is negative, the

root for DUCL(V) lies between 0.02 and 0.03. Otherwise, the while loop repeats. Once
é root for DUCL(V) is bracketed, the bracketing values are passed out of the subprogram
into the 2x1 vector seedB8 to be used by Brent’s method to determine vB8. The
subprogram Vseed2 works similarly to construct the 2x1 vector seedB7 to be used by
Brent’s method to determine vB7, except the starting value 1s 0.000001.

The last part of page 2 is section 2.3 of the program. As shown earlier, the two stage

short run control chart factor calculations require v2 and v2prevm. The equation for v2 is

given earlier in relation to equation (5.3a). The equation for v2prevm is given earlier in
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relation to equations (5.14) and:(5.15).

Page 3

Page 3 of the program begins with section 3.1. The equations for p3(f), pl, p2(f), and
P3(F) are given earlier as equations (5.3b), (5.3¢), (5.3d), and (5.4), respectively. Section
3.2 contains the calculations required to determine fB8, the (1-alphaVarUCL) percentage

point of the distribution of the studentized variance f = (v/v’) with v1 degrees of

freedom for v and v2 degrees of freedom for v” (both v1 and v2 are calculated earlier in
the program). As explained earlier in relation to equation (5.12), fB8 is equal to B82.
The subprogram Fseed1 generates the seed value. seedl for Brent’s method or for root
(root is a numerical routine in Mathcad (1998) that uses the Secant method to determine
the roots of an equation). Either root-finding method determines the root fB8 of D1(x).
Both Brent’s method and the Secant method are given because one may not work when
the other one does. If Brent’s method fails (which is signified in Mathcad (1998) by the

- code turning red), type B8 on the left side of the equal sign in equation (5.23):

= root| [P3(seed!) — (1 - alphaVarUCL)|, seedl] (5.23)

The subprogram Fseed1 begins by generating values for F, and F,. A, and A, result
from evaluating P3(F) at F, and F,, respectively. The while loop continually increments
F, and F, by deltal and evaluates P3(F) at these two values until A becomes greater

than (1-alphaVarUCL) for the first time, at which point A will be less than
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. (1-alphaVarUCL). When this occurs, P3(F) is equal to (1-alphaVarUCL) for some value
F between F, and F,. An initial guess for this value is determined using linterp (a

numerical routine in Mathcad (1998) that performs linear interpolation) and stored in

Fguess. The initial guess is passed out of the subprogram as seedl.

Page 4

Page 4 of the program is section 4.1. The code in this section is used to determine

fB7, the alphaVarLCL percentage point of the distribution of the studentized variance

~f =(v/v’) with v1 degrees of freedom for v and v2 degrees of freedom for v’ (both v1

and v2 are calculated earlier in the program). As explained earlier in relation to equation
(5.13), fB7 is equal to B72. The subprogram Fseed2 generates the seed value seed2 for
Brent’s method or for root. Either root-finding method determines the root fB7 of D2(x).
Both Brent’s method and the Secant method are given because one may not work when
-the other one does. If Brent’s method fails, type fB7 on the left side of the equal sign in
equation (5.24):

= root( |P3(seed2) - alphaVarLCL , seed2) (5.24)

The subprogram Fseed2 begins by generating values for F, and F,. A, and A, result
from evaluating P3(F) at F, and F,, respectively. The while loop continually increments
F, and F; by delta2 and evaluates P3(F) at these two values until A, becomes greater

than alphaVarL.CL for the first time, at which point A, will be less than alphaVarL.CL.
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When this occurs, P3(F) is equal to alphaVarL.CL for some value F between F, and F,.

An initial guess for this value is determined using linterp and stored in Fguess. The

initial guess is passed out of the subprogram as seed?2.

Page 5

Page 5 of the program contains sections 5.1 and 5.2. These sections correspond to
sections 3.1 and 3.2, respectively, described earlier. The only difference is that the
calculations invsections 5.1 and 5.2 use v2prevm instead of v2. The calculations are for

fBSpfevm, which is used in the equétion for B81 (given earlier as equation (5.16)).

Page 6

Page 6 of the program is section 6.1. This section cofresponds to section 4.1
described earlier. The only difference is that the calculations in section 6.1 use v2prevm
instead of v2. The calculations are for fB7prevm, which is used in the equation for B71

(given earlier as equation (5.17)).

Page 7

Page 7 of the program begins with section 7.1. The function qt(adj_alpha, v2) in
Mathcad (1998) determines the critical value crit_t for a cumulative area of adj_alpha
under the Student’s t curve with v2 degrees of freedom. The value crit_t is used in the

equations for A42 and A41, both of which are given earlier as equations (5.8) and (5.9),
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respectively. The function gnorm(adj_alpha, 0, 1) in Mathcad (1998) determines the
critical value crit_z for a cumulative area of adj_alpha under the standard Normal curve.
The value crit_z is used in the equation for A4 (given earlier as equation (5.18)).

Section 7.2 of the program has the equations to calculate two stage short run control
chart factors and conventional control chart constants given earlier in the Corrected Two

Stage Short Run Control Chart Factor Equations section of this chapter. A41, B&81, B71,

A42, B&2, B72, A4, B8, and B7 are for the (i, v) control charts. A41, B81sqrt, B71sqrt,

A42, B82sqrt, B72sqrt, A4, B8sqgrt, and B7sqrt are for the (i Jv ) control charts.
The last part of page 7 is the output section of the program. The five values entered at
the beginning of the program are given. The control chart factors are broken down into

first stage, second stage, and conventional. Values for v1, v2, c4(v2 + 1), v2prevm, and
c4(v2prevm + 1) , and the (1-alphaVarUCL) and alphaVar.CL percentage points of the
distributions of the studentized variance f = (v/v’) with v1 degrees of freedom for v and

v2 degrees of freedom for v’ and the variance v with v1 degrees of freedom complete the
output of the program. To copy results into another software package (like Excel), follow
the directions from Mathcad’s (1998) help menu or highlight a value and copy and paste
it into the other software package. When highlighting a value with the mouse arrow,
place the arrow in the middle of the value, depress the left mouse button, and drag the
arrow to the right. This will ensure just the numerical value of the result is copied and

pasted.
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Tabulated Results of the Program

The four tables (Tables C.3.1-C.3.4) in Appendix C.3 of this dissertation were

generated using the program with the following input values:

e alphaMean=0.0027, alphaVarUCL=0.005, alphaVarL.C1.=0.001
o m 1-20, 25, 30, 50, 75, 100, 150, 200, 250, 300

e n:2-8, 10,25, 50

The values v2, c4(v2+1), v2prevm, and c4(v2pre\(m+ 1) are in Table C.3.1. The

c4(v2 + 1) values compare favorably to thé c, values in Table M in the appendix of
Duncan (1974) and TaBles 1 and 20 in the appendi); of Wheeler (1995).

Tﬁe valueé fB8, fB8prevm, and vB8 are in Table C.3.2. The values fB7, fB7prevm,
and vB7 are in Table C.3.3. The distribution of the studentized variance f = (v/v’) with
v1 degrees of freedom for v and v2 degrees of freedom for v’ is equivalent to the F
distribution with v1 numerator degrees of freedom and v2 denominator degrees of
freedom. Results in Table C.3.2 compare favorably to thé upper 0.005 percentage points
of the F distribution in Table 18 from Appendix II of Pearson and Hartley (1962).

The distribution of the variance v with vi degrees of freedom is equivalent to a second

distribution as shown in equation (5.25):

p(v) :c[ '2"]-—2 (5.25)
(9 (9
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where c is the x? distribution with v1 degrees of freedom (this equivalency is shown in
Appendix C.1). Also, percentage points of the distribution of the variance v with v1
degrees of freedom are equivalent to percentage points of the % distribution with v1
degrees of freedom divided by v1.

Values for A41, B81, B71, A42, B82, B72, B81sqrt, B71sqrt, B82sqrt, B72sqrt, A4,
B8, B7, B8sqrt, and B7sqrt are in. Table C.3.4. Results from Table C.3.4 for B81, B71,
B82, B72, B8, B7, B8sqrt, and B7sqrt when n=5 compare favorably to Yang and Hillier’s
(1970) results. Any differences are attributable to the accuracy issues concerning Yang
and Hillier’s (1970) results mentioned earlier in the Problem subsection. It should be
noted that the values vB8, vB7, and B8 and B7 in Tables C.3.2,C.3.3,and C.3 4,
respectively, may differ in the ninth or tenth decimal place for different root routines used
to calculate vB§ and vB7.

These favorable comparisons validate the program. Consequently, Table C.3.4 results
for n=5, m: 1-10, 15, 20, 25, 50, 100, o, alphaVarUCL=0.005, and alphaVarLCL=0.001

may be considered corrections to Yang and Hillier’s (1970) Tables 3-6.

Implications of the Tabulated Results

Values in Table C.3.4 show some interesting properties. Consider Table 5.1, which
contains selected A42 and corresponding A4 values from Table C.3.4. As n increases for
a particular m, the A42 values decrease. For larger values of m, the difference between
A42 for n=2 and n=50 decreases. Of more interest is that as m increases for a particular
n, the A42 values converge in a decreasing manner to their respective A4 values. For

larger values of n, the difference between A42 for m=1 and the respective A4 value
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Table 5.1 Selected A42 and Corresponding A4 Values from Table C.3.4
A42 A4
m=1 m=2 m=2( m=3( m=100 m=300 m=oo
295.51103 | 18.76822 | 2.51074 | 2.37035 | 2.19190 | 2.14447 | 2.12130
17.69484 | 4.97997 | 190426 | 1.84459 | 1.76489 | 1.74290 | 1.73204
7.07531 3.13025 | 1.61030 | 1.57260 | 1.52140 | 1.50709 | 1.49999
445422 | 2.41654 | 1.42343 | 1.39568 | 1.35765 | 1.34695 | 1.34163
1.88245 1.36485 | 0.98715 | 0.97427 | 0.95633 | 0.95122 | 0.94868
0.95593 | 0.77906 | 0.61835 | 0.61225 | 0.60368 | 0.60122 | 0.60000
0.63533 | 0.53455 | 0.43596 | 0.43208 | 0.42662 | 0.42505 | 0.42426

A AT
=lth|js (s iw|iNB

decreases. This means that as m increases the convergence of A42 to A4 is faster for
larger values of n. These results make sense because more information about the process
is at hand for larger n and m.

Further investigation of Table C.3.4 réveals that, as m increases for a particular n, the
B71, B82, B71sqrt, and B82sqrt values converge to B7, B8, B7sqrt, and B8sqrt,
respectively, in a decreasing manner. The convergence pattern for B81 and B81sqrt
differs in that as m increases for a particular n, the B81 and B81sqrt values converge in
an increasing manner to B8 and B8sqrt, respectively.

The convergence patterns for A41, B72, and B72sqrt are unique. For n equal to 2, 3,
and 4, A41 converges in a decreasing manner to A4 as m increases. For n=5; A41
converges in a decreasing manner to A4, but starting at m=3. For n=6, A41 also
converges in a decreasing manner to A4, but starting at m=7. For n equal to 7, §, 10, 25,
and 50, A41 converges in an increasing manner to A4 as m increases. For n equal to 2
and 3, B72 converges in a decreasing manner to B7 as m increases. However, for n equal
to 4-8, 10, 25, and 50, B72 converges in an increasing manner to B7 as m increases. For

n equal to 2-4, B72sqrt converges in a decreasing manner to B7sqrt as m increases. For n

124




equal to 5-8, 10, 25, and 50, B72sqrt converges in an increasing manner to B7sqrt as m
increases.

These results have major implications. A common rule of thumb is that 20 to 30
subgroups of size 4 or 5 are necessary to use conventional control chart constants for
constructing control limits. The results in Table C.3.4 indicate that this may be an
incorrect rule. Consider again the A42 and corresponding A4 values in Table 5.1. When

n=4, A4 is 6.850% smaller than A42 for m=20. When n=5, A4 is 3.873% smaller than

A42 for m=30. These results indicate that if one were to construct X charts using
conventional control chart constants when only 20 to 30 subgroups of size 4 or 5 are
available to estimate the process mean and standard deviation, the upper and lower

- control limits would not be wide enough, resulting in a higher false alarm rate.

- B82 and corresbonding B8 values, as well as B72 and corresponding B7 values, in
Table C.3.4 also indicate that the common rule of thumb may be an‘incorrect rule. When
n=4, B8 is 9.507% smaller than B82 for m=20 and B7 is 0.872% larger than B72 for
m=20. When n=5, B8 is 5.244% smaller than B82 for m=30 and Bi is 0.799% larger
than B72 for m=30. Consequently, if one were to construct v charts using conventional
controi chart constants when only 20 to 30 subgroups of size 4 or 5 are available to
estimate the process variance, the upper and lower control limits would not be wide
enough, resulting in a higher false alarm rate.

Lastly, B82sqrt and corresponding B8sqrt values, as well as B72sqrt and
corresponding B7sqrt values, in Table C.3.4 indicate that the common rule of thumb may
be an incorrect rule. When n=4, B8sqrt is 5.268% smaller than B82sqrt for m=20 and

B7sqrt is 0.0111% smaller than B72sqrt for m=20. Consequently, if one were to
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construct /v charts using conventional control chart constants when only 20 subgroups
of siz¢ 4 are available to estimate the process étandard deviation, the upper control limit
would not be wide enough, resulting in a higher false alarm rate. Also, the lower control
limit would be too tight, resulting in a decrease in the sensitivity of the chart. When n=5,
B8sqrt is 2.86,0% smaller than B_82sqrt for m=30.and B7sqft is 0.186% larger than
B72sqrt for m=30. Consequently, if one were to construct Jv charts using conventional

control chart constants when only 30 subgroups of size 5 are available to estimate the
process standard deviation, the upper and lower control limits would not be wide enough,
resulting in a higher false alarm rate. =

Quesenberry (1993) also investigated the validity of the common rule of thumb and
concluded that 400/(n —1) subgroups are needed for the X chart before conventional

control chart constants may be used. However, for all practical purposes, the program

presented by this chapter eliminates the need for these rules.

A Numerical Example

Consider the data in Table 5.2 obtained from a process requiring short run control

charting techniques (assume alphaMean=0.0027, alphaVarUCL=0.005, and

alphaVarL.CL=0.001). This example will be worked two ways, the first with (-)Z, V)
control charts and the second with (i \/; ) control charts.

For m=5 and n=4, the following first stage short run control chart factors for (X, v)
charts are obtained from Table C.3.4: A41=1.63082, B81=3.21838, and B71=0.00972.

UCL(v), LCL(v), UCL(X ), and LCI( X ) are calculated as follows:
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* Table 5.2. A Numerical Example

Subgroup | X, | X, X, X, X \4 Jv
1 1.17 | 1.14 | 1.20 | 1.18 | 1.17250 | 0.00063 | 0.02500
2 1.38 | 1.29 | 1.36 | 1.44 | 1.36750 | 0.00382 | 0.06185
3 1.20 | 1.21 | 1.30 | 1.14 | 1.21250 | 0.00436 | 0.06602
4 140 | 140 | 1.21 | 1.43 | 1.36000 | 0.01020 | 0.10100
5 1.12 | 1.20 | 1.61 | 1.34 | 1.31750 | 0.04629 | 0.21515
Averages 1.28600 | 0.01306 | -----
Revised Averages 1.27813 | 0.00475 | -----

UCL(v) = B8l .v =3.21838-0.01306 = 0.04203
LCL(v) = B71-v =0.00972-0.01306 = 0.00013
UCL(X) = ; +A41- \/: =1.28600 +1.63082-/0.01306 =1.47237

LCL(X) = ; - A4i . \/: =1.28600 -1.63082-+/0.01306 =1.09963

The variance for subgroup five (v=0.04629) is above UCL(v). Find, investigate, and
remove from the process the special cause (or causes) that created this out of control
point, delete subgroup five, recalculate averages (shown as the Revised Averages in
Table 5.2), and reconstruct first stage control limits (this approach is from Hillier’s
(1969) example). For m=4 and n=4, the following first stage short run control chart

factors are obtained from Table C.3.4: A41=1.66424, B81=2.97585, and B71=0.01024.

Revised UCL(v), LCL(v), UCL(X ), and LCL( X ) are calculated as follows:

UCL(v) =B81- v =2.97585-0.00475 = 0.01414

LCL(v)=B71- v =0.01024 -0.00475 = 0.000049
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UCL(X) = X + Ad41-4/v = 1.27813+1.66424 - 4/0.00475 = 1.39283

LCL(X) = X -~ A41-4v = 1.27813~1.66424 - 4/0.00475 = 1.16343

Since none of the remaining values plot out of control (i.e., control has been established),
the next step is to construct second stage control limits using the following second stage

short run control chart factors from Table C.3.4 (for m=4 and n=4): A42=2.14852,

B82=7.22576, and B72=0.00779. UCL(v), LCL(v), UCL(X ), and LCL(X ) are

calculated as follows:

UCL(v) = B82-v = 7.22576 -0.00475 = 0.03432
LCL(v)=B72- v =0.00779 -0.00475 = 0.000037
UCL(X) = ; +A42- \/: =1.27813+2.14852-4/0.00475 =1.42621

LCL(X) = X - A42 \/: =1.27813 ~ 2.14852-4/0.00475 =1.13005

These control limits may be used to monitor the future performance of the process.
For m=5 and n=4, the following first stage short run control chart factors for (i, Jv )

charts are obtained from Table C.3.4: A41=1.63082, B81sqrt=1.83171, and

B71sqrt=0.10068. UCL(+/v ), LCL(+/v ), UCL(X ), and LCL( X ) are calculated as

follows:

UCL(/v) = B81sqrt-v/v = 1.83171-4/0.01306 = 0.20933
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LCL(J/v) = B71sqrt -+ v = 0.10068 -/0.01306 = 0.01151
UCL(X) = X + Ad1-+/v =1.28600+1.63082 - /0.01306 = 1.47237

' LCL(i) = §— A41-\/j =1.28600 —1.63082 -/0.01306 =1.09963

The standard deviation for subgroup five («/_ =0.21515) is above UCL( \/; ). Find,
investigate, and remove from the process the special cause (or causes) that created this
out of control point, delete subgroup five, recalculate averages (shown as the Revised
Averages in Table 5.2), and reconstruct first stage control limits (this approach is from
Hillier’s (1969) example). For m=4 and n=4, the following first stage short run control

chart factors are obtained from Table C.3.4: A41=1.66424, B81sqrt=1.77356, and

B71sqrt=0.10404.  Revised UCL(+/v ), LCL(+/v ), UCL(X ), and LCL(X ) are calculated

as follows:

UCL(W/v) = B81sqrt -v/v = 177356 -/0.00475 = 0.12223
LCL(/V) = B71sqrt - Vv = 0.10404 - 0.00475 = 0.00717
UCL(X) = X + Ad1-y/v = 1.27813 +1.66424 - 1/0.00475 = 1.39283

LCL(X) = ; - A41- \/t =1.27813-1.66424-/0.00475 =1.16343

Since none of the remaining values plot out of control (i.e., control has been established),
the next step is to construct second stage control limits using the following second stage

short run control chart factors from Table C.3.4 (for m=4 and n=4): A42=2.14852,
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B82sqrt=2.74460, and B72sqrt=0.09014. UCL(+/v ), LCL(+/v ), UCL(X ), and LCL(X )

are calculated as follows:

UCL(/V) = B82sqrt Vv = 2.74460 - J0.00475 = 0.18916
LCL(/v) = B72sqrt /v = 0.09014-~/0.00475 = 0.00621
UCL(X) = X + A42-Vv = 1.27813 + 2.14852-4/0.00475 = 1.42621

LCL(X) = ; - A42. \/-;— =1.27813-2.14852-/0.00475 =1.13005

These control limits may be used to monitor the future performance of the process.

Conclusions

This chapter and the program it presents make important contributions to both
industry and research. Those involved with quality control in industry will, for the first

time, be able to use theoretically precise control chart factors to determine control limits
for (i, v) and (i, \/—\7 ) charts regardléss of the subgroup size, number of subgroups, and
alpha values. This ﬂexii)ility is valuable in that process monitoring will no longer have to
be adjusted to use the limited, and in some cases incorrect, results previously available in
the literature. Concerning research, this chapter provides a valuable reference for anyone
interested in anything having to do with (i, v) and (i x/; ) control charts. Also, as

already mentioned, the program eliminates the need for the research question of how

many subgroups are enough before conventional control chart constants may be used.

130



- CHAPTER VI

TWO STAGE SHORT RUN (X,s) CONTROL CHARTS AND
A COMPUTER PROGRAM TO CALCULATE THE FACTORS

Introduction

* Hillier (1969) and Yang and Hillier (1970) represent the only attempts in the literature

to develop two stage short run control charts based on Hillier’s (1969) theory. Hillier
(1969) derives equations to calculate two stage short run control chart factors for (i, R)
charts. Yang and Hillier (1970) derive equations to calculate two stage short run control

chart factors for (i, V) and (i, \/;) charts.

Problem

‘Yang and Hillier (1970) mention that, for theoretical reasons, it does not appear to be

possible to derive equations to calculate two stage short run control chart factors for
()_(, s) charts, where s is the standard deviation of a subgroup. It.seems that no

subsequent work appears in the literature that attempts to overcome this problem.

Solution

This chapter presents a solution to this problem, consequently allowing for the

derivation of equations to calculate first and second stage short run control chart factors
for (X,s) charts. It also describes the development and execution of a computer program

that will accurately calculate the factors using these derived equations. Other exact
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equations that the program uses are the distribution of the standard deviation, the mean
and standard deviation of the distribution of the standard deviation, the distribution of the
studentized standard deviation, equations to calculate degrees of freedom, and derived

conventional control chart equations. The program accepts values for subgroup size,

number of subgroups, alpha for the X chart, and alpha for the s chart both above the
upper control limit and below the lower control limit (alpha is the probability of a Type I
error). Tables are generated for specific values of these inputs. Comparison of the
tabulated results to legitirhaté results in the litefature validates the program.

The software used for the:prbobgram i1s Mathcad 8.03 Professional (1998) with the
Numerical Recipes Extension Pack (1997). The program uses numerical routines

provided by the software.

Qutline

This chapter first presents the distributions of the standard deviation and the

studentized standard deviation. These are essential in the application of Hillier’s (1969)
theory to (X, s) control charts and are required for the program to perform accurate

calculations. Next, Patnaik's (1950) theory is used to develop an approximation to the

distribution of the mean standard deviation. From this result, equations to calculate two
stage short run control chart factors for (X,s) charts are derived by following the work in
the appendix of Hillier (1969). Also, equations to calculate conventional control chart

constants for (X, s) charts are derived. Next, the computer program is described. Tables

generated by the program are then presented and compared with legitimate results in the
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- literature. Also, implications of the tabulated results are discussed. A numerical example

illustrates the use of the program. Following a discussion of the advantages of two stage
short run (_X_, s) control charts, unbiased estimates of 6 and 6> using s are given, as well

as final conclusions describing the impact of the program on industry and research.

Note
Results from the program are for processes generating parts with independent
measurements that follow a Normal distribution.
The Distribution of the Standard Deviation

The distribution of the standard deviation for subgroups of size n sampled from a
Normal population with mean W and standard deviation ¢ is given by Lord (1950) as

equation (6.1a) (with some modifications in notation):

Vg 20 (6.1a)

This equation may also be found in Irwin (1931). The value s (the standard deviation) is

an independent estimate of 6 based on vl =(n—1) degrees of freedom. Equation (6.1a)

may also be represented as equation (6.1b) (see Appendix D.1 of this dissertation):
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. o =[ 1 ).[e[‘;}mwn‘(";—l}]n(z)gamnﬂn[vzl]+fv11)tm(s)‘;:ZZ : (6.15)

Equation (6.1b) is the form used in the program. The function gammln is a numerical
recipe in the Numerical Recipes Extension Pack (1997) that calculates the natural
logarithm of the gamma function. Using gammln in equation (6.1b) allows for large

values of v1 (hence large values for n) in the program. The cumulative distribution

function (cdf) of the standard deviation s with v1 degrees of freedom is equation (6.2):
P@S) = J. p(s)ds ’ (6.2)
o .

The program uses équation ("6‘.2) (with 6:1.0) to determine alpha-based conventional
control chart constants for the s chart.
The mean of the distribution of the standard deviation s with v1 degrees of freedom is

given by Mead (1966) as equation (6.3a) (with some modifications in notation):

(6.3a)

E(s) is the control chart constant denoted by ¢, (when 6=1.0) (see Table M in the

appendix of Duncan (1974) and Tables 1 and 20 in the appendix of Wheeler (1995)).
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Equation (6.3a) may also be represented as equation (6.3b) (see Appendix D.1) (note:

cd=c,):

vl

A=0 .(3}05 .[J”‘“’““[V?Jg"’“’"’“(i;)] (6.3b)

Equation (6.3b) is the form used in the program:  Using gammln in equation (6.3b) allows

for large values of v1 (hence large values for n) in the program.

The variance of the distribution of the standard deviation s with v1 degrees of freedom

is also given by Mead (1966) as equation (6.4a) (with some modifications in notation):

l_(v1+2)‘ -l,[vm] 2
__2 - 2 (6.4a)
v

var(s) =[2'0’2 J
vl

The value 4/var(s) is the control chart constant denoted by ¢, (when 6=1.0) (see

Wheeler’s (1995) Table 20). It is also equal to 4/1 - ci (when 6=1.0). The square root

of equation (6.4a) may be represented as equation (6.4b) (see Appendix D.1) (note:

cS=cy)

12+1J_gammln(v7ln (6.4b)
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Equation (6.4b) is the form used in the program. Using gammlin in equation (6.4b) allows

for large values of v1 (hence large values for n) in the program.

The Distribution of the Studentized Standard Deviation

The distribution of the studentized standard deviation for subgroups of size n sampled
from a Normal population with mean p and standard deviation & is given by Irwin (1931)

as equation (6.5a) (with some modifications in notation):

vl v2 :
. 2.v12 -y22 .r(v'l';vzj..tvl-l : :
p3(t) = (6.53)

\‘(EJ : r(g) (vi-t* + vz)mévz
2 2

The value t (the studentized standard deviation) is equal to s/s’, where s’ is a second

independent estimate of ¢ based on v2 degrees of freedom. Equation (6.5a) may also be

represented as equation (6.5b) (see Appendix D.1):

p3(t) = ePHOP2® (6.5b)
where

vli+v2

pl(t) =In(2) +(V?l) -In(vl) + (%2) -In(v2) + gammln[ )+ (vl—=1)-In(%) (6.5¢)

p2(t) = gamml\\(%l]+ gamnﬂn[v—22)+("l ;"ZJ-ln(vl 4% +v2) (6.5d)
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Equations (6.5b)-(6.5d) are used in the program. Using gammln in equations (6.5¢) and
(6.5d) allows for large values of v1 (hence large values for n) and large values of v2
(hence large values for n and m (the number of subgroups)) in the program. The cdf of

- the studentized standard deviation t = (s/s”) with v1 degrees of freedom for s and v2

degrees of freedom for s” is equation (6.6):
T

P3(T) = J‘ p3(t)dt (6.6)
0

The program uses equation (6.6) to determine two stage short run control chart factors for

the s chart.
As v2—oo (i:e., as m—eo) for any n, the distribution of the studentized standard
~ deviation t =(s/s") converges to the distribution of the standard deviation s (when

6=1.0). This fact is used to calculate alpha-based conventional control chart constants

for the s chart.

The Distribution of the Mean Standard Deviation

Consider the situation in which the mean of a statistic is calculated by averaging m
values of the statistic, each of which is based on a subgroup of size n. Patnaik (1950)

investigates this situation when the statistic is the range and develops an approximation to
the distribution of the mean range ﬁ/ 6. The resulting distribution is the (x -d; )/ W

distribution, which is a function of the y distribution with v degrees of freedom (the %
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distribution with v degrees of freedom and its moments about zero may be found in
Johnson and Welch (1939)). Equations for v and d; are derived from results obtained by
equating the squared means as well as the variances of the distribution of the mean range
ﬁ/ o and the (x . d;)/ Jv distribution with v degrees of freedom. Hillier (1964 and
1967) uses Patnaik’s (1950) theory to derive equations to calculate short run control chart
factors for X and R charts, respecti\}ely. Hillier (1969) then incorporates the two stage
procedure into his short run control chart factor calculations for ()_(, R) ichaﬂs.

| Considef the situétion in which the statistic is the stanvc‘iard deviation and the
distribution of interest is thevdistn'bution of the mean standard deviation g/ o . Inorder to
be able to use Hillier’s (1969) fheory to deﬁve equafions to calculate two stage short run
control chart factors for ()_(, s) charts, we apply Patnaik’s (1950) theory to approximate
E/ o by the (x -c, )/ Jv2 distribution with v2 degrees of freedom (this v2 is the same as
the one given earlier in equation (6.5a)). The equation for ¢ is derived in Appendix D.1

and is given as equation (6.7) (note: c4star = cZ):

‘ o N\0S
c4star =(c42 +,—05 j ' 6.7)
m

The equations for the control chart constants c4 and c¢5 are given earlier as equations
(6.3b) and (6.4b), respectively.
Using results from Prescott (1971), the equation for v2 is determined by equating the

ratio of the variance to the squared mean, both of the  distribution with v2 degrees of
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- freedom, to the ratio of the variance to the squared mean, both of the distribution of the

mean standard deviation g/ ¢ . The resulting equation for v2 is equation (6.8):

d(x) =h(x) -t (6.8)

The exact value for v2 is the value of x such that d(x) is equal to zero. The function h(x)
is the ratio of the variance to the squared mean, both of the 7 distribution with x degrees
of freedom (x replaces v2). The mean and variance of the ¥ distribution with v2 degrees
of freedom are given in Appendix D.1. The equation for h(x), which is derived in

Appendix B.1 of this dissertation, is given as equation (6.9):

X - e2v(gammln(0.5-x)—gammln(O.S-x+0.5)) - 2

h(x) = 3 ‘ (6.9)

The value r is the ratio of the variance to the squared mean, both of the distribution of

the mean standard deviation g/ 6. The mean and the variance of the distribution of the

mean standard deviation g/ o are derived in Appendix D.1. The equation for r is given as

equation (6.10):

(6.10)

An equivalent form (also based on Patnaik’s (1950) theory) of equation (6.8) may be
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found in Palm and Wheeler (1990), who use their result to calculate equivalent degrees of
freedom for population standard deviation estimates based on subgroup standard
deviations..

Table D.3.1 (the creation of which is explained in the Tabulated Results of the
Program section later in this chapter) in Appendix D.3 of this dissertation has v2 and ¢
values for m: 1-20, 25, 30, 50, 75, 100, 150,200, 250, 300 and n: 2-8, 10, 25, 50, as well

as ¢, values. When m=1 for any n, cz is equal to one. As m—»ee (i.e., as v2—oo) for any
n, ¢, convergesto c,.

Approximating the distribution of the mean standard deviation g/ G by the
(x -, )/ V2 distribution with v2 degrees of freedom works well. In fact, bésed on how

c, is derived in Appendix D.1, the means and variances of these two distributions are

equal.

Derivation of the Control Chart Factor Equations

Since the (x -y )/ vJv2 distribution with v2 degrees of freedom approximates the
distribution of the mean standard deviation g/ o, the derivation of equations to calculate

first and second stage short run control chart factors for (i, s) charts follows the work in
the appendix of Hillier (1969). A32, the second stage short run control chart factor for
the X chart, is derived in almost fhe same manner as Hillier’s (1969) A;. Differences
are that A32, g, v2, and c: in this chapter replace A;, R , V, and ¢, respectively, in

Hillier (1969). The resulting equation for A32 is given as equation (6.11) (note:
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cdstar =c},):

crit _t m+1 03
A32=( = J[ ' ) (6.11)
c4star n-m

The value crit_t is the critical value for a cumulative area of (1 (alphaMean /2)) under '
the Student’s t curve with v2 degrees of freedom (alphaMean is the probability of a Type
I error on the X control chart).

- A31, the first stage short run control chart factor for the X chart, is derived in almost

the same manner as Hillier’s (1969) A;*. Differences are that A31, g, v2, and cz in this

chapter replace A’ , R,v,andc, respectively, in Hillier (1969). The resulting equation

for A31 is given as equation (6.12):

: crit _t m-—1 0
A3l = . (6.12)
c4star n-m

The value crit_t has the same meaning here as in equation (6.11).
B42, the second stage short run upper control chart factor for the s chart, is derived in

Appendix D.1. Other than differences in notation and distributions, this derivation
follows that for Hillier’s (1969) D;,. The resulting equation for B42 is given as equation

(6.13):
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tB4
cdstar

B42 =

(6.13)

The value tB4 is the (1-alphaStandUCL) percentage point of the distribution of the

- studentized standard deviation t = (s/s”) with v1 degrees of freedom for s and v2 degrees

of freedom for s” (alphaStandUCL is the probability of a Type I error on the s chart
above the upper control limit).

B32, the second stage short run lower control chart factor for the s chart, is derived in
a manner similar to B42. Differences are that B32, tB3, and alphaStandLCL replace B42,
tB4, and (l-alpﬁaStandUCL), respectively (alphaStandLCL is the probability of a Type I
errof on the s chart below the nger cc;ntrol li’mit). The resulting equation for B32 1s

given as equation (6.14):

tB3
cdstar

B32=

(6.14)

The yalue tB3 is the alphaStandLCL percentage point of the distribution of the
studentized standard deviation t = (s/s”) with v1 degrees of freedom for s and v2 degrees
of freedom for> s’.

B41, the first stage short run upper control chart factor for the s chart, is derived in

almost the same manner as Hillier’s (1969) Df . Differences are that B41, s,, B42, and

*

s in this chapter replace Dy, R., D}, and R, respectively, in Hillier (1969). The

resulting equation for B41 is given as equation (6.15):
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m-tB4prevm

. B41= (6.15)

- c4starprevm- (m —1) + tB4prevm

The value tB4prevm has the same meaning as tB4 (given earlier in equation (6.13)),

except-it is for v2prevm (i.e:, v2 for (m-1) subgroups). The value c4starprevm has the

same equation as c4star (given earlier-as equation (6.7)), except m is replaced with (m-1).
The equation for B31, the first stage short run lower control chart factor for the s

chart, is derived in almost the same manner as Hillier’s (1969) D; . Differences are that

*

B31, s,, B32, and s in this chapter replace D;, R,, D}, and R, respectively, in Hillier

(1969). The resulting equation for B31 is given as equation (6.16):

B31= m-tB3prevm

: (6.16)
- c4starprevm- (m —1) + tB3prevm

The value tB3prevm has the same meaning as tB3 (given earlier in equation (6.14)),
except it is for v2prevm instead of v2.

The equation for A3, the conventional control chart constant for the X chart, may be
obtained by taking the limit of either A31 or A32 as m—ee (i.e., as v2—oo) for any n.

The resulting equation for A3 is given as equation (6.17):

A3 =§‘i;—6_25— 6.17)
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The value crit_z is the critical value for a cumulative area of (1- (alphaMean/2)) under
the standard Normal curve. The equation for the control chart constant c4 is given earlier
as equation (6.3b). |

The equation for B4, the albha—based conventional upper control chart constant for the
s chart, may be obtained by taking the limit of either B41 as m—eo (i.e., as v2prevm—oo)
or B42 as m—eo (i.e., as v2—o) for any n. The resulting equation for B4 is given as

equation (6.18):

B4 = ﬁ (6.18)
c4

- The value sB4 is the (1-alphaStandUCL) percentage point of the distribution of the
standard deviation s with v1 degrees of freedom.
The equation for B3, the alpha-based conventional lower control chart constant for the
s chart, may be obtained by taking the limit of either B31 as m—ee (i.€., as v2prevm —o)
or B32 as m—eo (i.e., as v2—eo) for any n. The resulting equation for B3 is given as

equation (6.19):

_sB3
c4

B3 (6.19)

The value sB3 is the alphaStandL.CL percentage point of the distribution of the standard

deviation s with v1 degrees of freedom.
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* . The Computer Program

This section of the chapter presents the computer program, which is in Appendix D.2
of this dissertation. The program has seven pages, each of which is further divided into

sections.

Mathcad (1998) Note

It is possible for a section of code in the program to turn red and have the error
message "Unknown Error”. To correct this, delete one character in the red code and type
it back in. Click the mouse arrow outside of the code. The code should turn black,

- indicating that the error has been eliminated. If not, repeat the procedure (it will

eventually correct the problem).

Page 1

The first page of the program begins with the data entry section. The program

- requires the user to enter the following values: alphaMean (alpha for the X chart),
alphaStandUCL (alpha for the s chart above the UCL), alphaStandLCL (alpha for the s
chart below the LCL), m (number of subgroups), and n (subgroup size for the (-)_(—, s)
charts). If no lower control limit on the s chart is desired, the entry for alphaStandL.CL
should be left blank (do not enter zero). Before a value can be entered, the cursor must
be moved to the right side of the appropriate equal sign. This may be done using the
arrow keys on the keyboard or by moving the mouse arrow to the right side of the equal

sign and clicking once with the left mouse button. The program is activated by paging
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down once the last entry is made. When using Mathcad 8.03 Professional (1998), paging
down is not allowed while a calculation is taking place. However, Mathcad 2000
Professional (1999) allows the user to page down to the output section of the program
(explained later) after the last entry is made.

The next part of page 1 is section 1.1 of the program. The value TOL is the tolerance.
The calculations that use this value will be accurate to twelve places to the right of the
decimal. The population standard deviation G is set equal to one for two reasons. The
first is to achieve the convergence of the distribution of the studentized standard

deviation t = (s/s”) with v1 degrees of freedom for s and v2 degrees of freedom for s” to

- the distribution of the standard deviation s with v1 degrees of freedom as v2—ee (i.e., as

_ m—oo) for any n. The second is to have the correct calculations for ¢4 and c5. As
mentioned earlier in relation to equation (6.1a), the degrees of freedom v1 for the
standard deviation s is equal to (n-1). The equations for p(s), c4, and c5 are given earlier

as equations (6.1b), (6.3b), and (6.4b), respectively.

Page 2

Page 2 of the program begins with section 2.1. P(S) is given earlier as equation (6.2).
The remainder of the code in this section determines sB4 and sB3, the
(1-alphaStandUCL) and alphaStandLCL percentage points, respectively, of the
distribution of the standard deviation s with v1 degrees of freedom and infinite v2 (i.e.,
infinite m) (recall the earlier statement that as v2—oe (i.e., as m—oo) for any n, the

distribution of the studentized standard deviation t = (s/ s’) converges to the distribution
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-of the standard deviation s (when 6=1.0)). The value sB4 is used in the equation for B4,
which is given earlier as equation (6.18). The value sB3 is used in the equation for B3,
which is given earlier as equation (6.19). The roots of the equations DUCL(S.) and
DLCL(S) are sB4 and sB3, respectively, and are determined using zbrent (a numerical
recipe in the Numerical Recipes Extension Pack (1997) that uses Brent’s method to find
the roots of an equation). The subprograms Sseedl and Sseed2 generate seed values
seedB4 and seedB3, respectively, for Brent’s method.

The subprogram Sseedl works as follows. Initially, S, and S, are set equal to 0.01
and 0.02, respectively. A, and A, result from evaluating DUCL(S) at S, and S|,
respectively. The while loop begins by checking if the product of A, and A, is
negative. If so, the root for DUCL(S) lies between 0.01 and 0.02. If not, S, and S, are
incremented by 0.01. A, and A, are recalculated and if their product is negative, the
root for DUCL(S) lies between 0.02 and 0.03. Otherwise, the while loop repeats. Once a
root for DUCL(S) is bracketed, the bracketing values are passed out of the subprograrn‘
into the 2x1 vector seedB4 to be used by Brent’s method to determine sB4. The
subprogram Sseed2 works similarly to cionstruct the 2x1 vector seedB3 to be used by
Brent’s method to determine sB3, except the starting value is 0.001.

The next part of page 2 is section 2.2 of the program. As shown earlier, the two stage
short run control chart factor calculations require v2 and v2Zprevm. The equation for h(x)
is described earlier (see equation (6.9)). The value rprevm has the same meaning as r
described earlier (see equation (6.10)), except it is for (m-1) subgroups. The equation for
dprevm(x) is the same as that for d(x) (given earlier as equation (6.8)), except rprevm

replaces r. The equation for v(A) is from Prescott (1971). Brent’s method is used to find
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the root v2 of d(x) using the seed value v(A), where A is given as equation (6.20):

A=(2_).(E§j (6.20)
m/|c4

This equation for A is the distribution of the mean standard deviation counterpart of the

equation for A from Prescott (1971). Similarly, Brent’s method is used to find the root

vZprevm of dprevm(x) using the seed value V(A), where A is given as equation (6.21):

=y
Page 3

Page 3 of the program begins with section 3.1. The equations for p3(t), p1(t), p2(t),
and P3(T) are given earlier as equations (6.5b), (6.5¢), (6.5d), and (6.6), respectively.
Section 3.2 contains the calculations required to determine tB4, the (1-alphaStandUCL)

percentage point of the distribution of the studentized standard deviation t = (s/ s”) with

v1 degrees of freedom for s and v2 degrees of freedom for s” (both v1 and v2 are
calculated earlier in the program). The value tB4 is used in the equation for B42, which
is given earlier as equation (6.13). The subprogram Tseedl generates the seed value
seed] for Brent's method or for root (root is a numerical routine in Mathcad (1998) that
uses the Secant method to determine the roots of an equation). Either root-finding

method determines the root tB4 of D1(x). Both Brent's method and the Secant method
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are given because one may not' work when the other one does. If Brent’s method fails
(which is signified in Mathcad (1998) by the code turning red), type tB4 on the left side

of the equal sign in-equation (6.22):

= root| [P3(seedl) - (1 - alphaStandUCL)|, seedi] (6.22)

The subprogram Tseed1 begins by generating values for T, and T,. A, and A,
result from evaluating P3(T) at T and T,, respectively. The while loop continually
increments T, and T, by 0.1 and evaluates P3(T) at these two values until A, becomes
greater than (1-alphaStandUCL) for the first time, at which point A, will be less than

(1-alphaStandUCL). When this occurs, P3(T) is equal to (1-alphaStandUCL) for some

value T between T, and T,. An initial guess for this value is determined using linterp (a

numerical routine in Mathcad (1998) that performs linear interpolation) and stored in

Tguess. The initial guess is passed out of the subprogram as seedl.

Page 4

Page 4 of the program is section 4.1. The code in this section is used to determine
tB3, the alphaStandLCL percentage point of the distribution of the studentized standard

deviation t = (s/s”) with v1 degrees of freedom for s and v2 degrees of freedom for s’

(both v1 and v2 are calculated earlier in the program). The value tB3 is used in the
equation for B32, which is given earlier as equation (6.14). The subprogram Tseed2

generates the seed value seed2 for Brent’s method or for root. Either root-finding method
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determines the root tB3 of D2(x). Both Brent’s method and the Secant method are given
because one may not work when the other one does. If Brent’s method fails, type tB3 on

the left side of the equal sign in equation (6.23):
= root(|P3(seed2) - alphaStandL.CL] , seed2) (6.23)

The subprogram Tseed2 begins by generating values for T, and T,. A, and A,
result from evaluating P3(T) at T, and T,, respectively. The while loop continually
increments T, and T, by 0.001 and evaluates P3(T) at these two values until A,
becomes greater than alphaStandLéL for the first time, at which point A, will be less

than alphaStandL.CL. When this occurs, P3(T) is equal to alphaStandL.CL for some value

T between T, and T,. An initial guess for this value is determined using linterp and

stored in Tguess. The initial guess is passed out of the subprogram as seed2.

Page 5

Page 5 of the program contains sections 5.1 and 5.2. These sections correspond to
sections 3.1 and 3.2, respectively, described earlier. The only difference is that the
calculations in sections 5.1 and 5.2 use v2prevm instead of v2. The calculations are for

tB4prevm, which is used in the equation for B41 (given earlier as equation (6.15)).
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- Page 6

Page 6 of the program is section 6.1. This section corresponds to section 4.1
- described earlier. The only difference is that the calculations in section 6.1 use v2prevm
- instead of v2. The calculations are for tB3prevm, which is used in the equation for B31

(given earlier as.equation (6.16)).

Page 7

Page 7 of the program begins with section 7.1. It has the equations for c4star (given
earlier as equation (6.7)) and c4starprevm (c4star for (m-1) subgroups). The value c4star
is used in the equations for A32, A31, B42, and B32, all of which are given earlier as
equations (6.11), (6.12), (6.13), and (6.14), respectively. The value c4starprevm is used
in the equations for B41 and B31, which are given earlier as equations (6.15) and (6.16),
respectively. The function qt(adj_alpha, v2) in Mathcad (1998) determines the critical
value crit_t for a cumulative area of adj_alpha under the Student’s t curve with v2 degrees
of freedom. The value crit_t is used in the equations for A31 and A32. The function
gnorm(adj_alpha, 0, 1) in Mathcad (1998) déterrnines the critical value crit_z fora
cumulative area of adj_alpha under the standard Normal curve. The value crit_z is used
in the equation for A3 (given earlier as equation (6.17)).

Section 7.2 of the program has the equations to calculate two stage short run control
chart factors and conventional control chart constants given earlier in the Derivation of
the Control Chart Factor Equations section of this chapter. The equation for A3 is a

generalization of the equation for A; from Duncan’s (1974) Table M to allow for
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different values of alphaMean.

The last part of page 7 is the output section of the program. The five values entered at
the beginning of the program are given. The control chart factors are broken down into
first stage, second stage, and conventional. The mean, standard deviation, and variance
of the distribution of the standard deviation s with v1 degrees of freedom, the values for
vl, v2, cdstar, Y2prevm, and c4starprevm, and the (l-alphaStandUCL) and
alphaStandL.CL percentage points of the distributions of the studentized standard
deviation t = (s/s”) with v1 degrees of fref:dom for s and v2 degrees of freedom for s’
and the standard deviation s with v1 degrees of freedom complete the output of the
program. To copy results into another software package (like Excel), follow the
directions »from Mathcad’s (1998) help menu or highlight a value and copy and paste it
into the other software package. When highlighting a value with the mouse arrow, place
»the arrow in the middle of the value, depress the left mouse button, and drag the arrow to

the right. This will ensure just the numerical value of the result is copied and pasted.

Tabulated Results of the Program

~ The four tables (Tables D.3.1-D.3.4) in Appendix D.3 were generated using the

program with the following input values:

e alphaMean=0.0027, alphaStandUCL=0.005, alphaStandLCL=0.001
e m: 1-20, 25, 30, 50, 75, 100, 150, 200, 250, 300

e n:2-8,10, 25,50
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- The values v2, c4star, v2prevm, c4starprevm, c4, c5, and c5? (the variance of the
distribution of the standard deviation s with v1 degrees of freedom) are in Table D.3.1.
The v2 and v2prevm values compare favorably to the equivalent degrees of freedom in
Table 2 of Palm and Wheeler (1990) and Table 25 in the appendix of Wheeler (1995).
The c4 values compare favorably to the ¢, values in Duncan’s (1974) Table M and
Wheeler’s (1995) Tables 1 and 20. The c¢5 values compare favorably to the c, values in
Wheeler’s (1995) Table 20.

The values tB4, tB4prevm, and sB4 are in Table D.3.2. The values tB3, tB3prevm,

and sB3-are in Table D.3.3. The distribution of the studentized standard deviation
t = (s/s”) with v1 degrees of freedom for s and v2 degrees of freedom for s’ is equivalent

to a second distribution as shown in equation (6.24):

p3(t) =f(t2)-2-t (6.24)

where f is the F distribution with v1 numerator degrees of freedom and v2 denominator
degrees of freedom (this equivalency is shown in Appendix D.1). - Also, percentage
points of the distribution of the studentized standard deviation t = (s/s”) with v1 degrees
of freedom for s and v2 degrees of freedom for s’ are equivalent to the square root of

percentage points of the F distribution with v1 numerator degrees of freedom and v2
denominator degrees of freedom. Hartley (1944) also gives distributions that are

transformations of the distribution of the studentized standard deviation t = (s/s").

The distribution of the standard deviation s with v1 degrees of freedom is equivalent
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to a second distribution as shown in equation (6.25):

p(s)=c("1'252)-2'v§'s ‘ o o | (6.25)
‘ c o) : v
where ¢ is the % distribution with v1 degrees of freedom (this equivalency is shown in
Appendix D.1). Also, percentage points of the distribution of the standard deviation s
with v1 degrees of freedom are equivalent to the square root of the percentage points of
the xz distfibution‘ with v1 degrees of freedom divided by v1.

v Values for A31, B41,. B31, A32,B42, B32, A3, B4, and B3 are in Tabl¢ D.3.4. The
~ A3 values compare favorably to the A, values in Duncan’s (1974) Table M. It should be
noted that the values sB4, sB3, and B4 and B3 in Tables D.3.2, D.3.3, and D.3.4,

respectively, may differ in the ninth or tenth decimal place for different root routines used

to calculate sB4 and sB3.

- Implications of the Tabulated Results

| Values in Table D.3.4 show some interesting properties. Consider Table 6.1, which
coﬁtains selected A32 and corresponding A3 values from Table D.3.4. As n increases for
a particular m, the A32 values decrease. For larger values of m, the difference between
A32 for n=2 and n=50 decreases. Of more interest is that as m increases for a particular
n, the A32 values converge in a decreasing manner to their respective A3 values. For
larger values of n, the difference between A32 for m=1 and the respective A3 value

decreases. This means that as m increases the convergence of A32 to A3 is faster for
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Table 6.1. Selected A32 and Corresponding A3 Values from Table D.3.4

A32 A3
n m=1 m=2 m=20 m=30 m=100 m=300 m=o0
2 | 235.78369 | 20.27157 | 3.11857 | 2.95302 | 2.74218 | 2.68607 | 2.65866
3 15.68165 | 5.12390 | 2.13293 | 2.07124 | 1.98856 { 1.96570 | 1.95440
4 6.51861 3.17444 | 1.73764 | 1.70031 | 1.64942 | 1.63517 | 1.62809
5 4.18690 2.43647 | 1.50709 | 1.48008 | 1.44296 | 1.43250 | 1.42729
10 | 1.83098 1.36718 | 1.01240 | 1.00001 | 0.98273 | 0.97780 | 0.97534
25 | 0.94603 0.77925 | 0.62420 | 0.61825 | 0.60988 | 0.60748 | 0.60628
50 | 0.63210 0.53458 | 0.43797 | 0.43415 | 0.42876 | 0.42721 | 0.42643

larger values of n. These results make sense because more information about the process
is at hand for larger n and m.

.Further investigation of Table D.3.4 reveals that, as m increases for a particular n, the
B31 and B42 values also converge to their respective B3 and B4 values in é decreasing
manner. The convergence pattern for B41 and B32 differs in that as m increases for a
particular n, the B41 and B32 values converge in an increasing manner to their respective
B4 and B3 values. The convergence pattern for A31 is unique. For n equal to 2, 3, and
4, A31 converges in a decreasing manner to A3 as m increases. For n=5, A31 also
converges in a decreasing manner to A3, but starting at m=4. For n equal to 6, 7, 8, 10,
25, and 50, A31 converges in an increasing manner to A3 as m increases.

These results have major implications. A common rule of thumb is that 20 to 30
subgroups of size 4 or 5 are necessary to use conventional control chart constants for
constructing control limits. The results in Table D.3.4 indicate that this may be an
incorrect rule. Consider again the A32 and corresponding A3 values in Table 6.1. When

n=4, A3 is 6.305% smaller than A32 for m=20. When n=5, A3 is 3.567% smaller than

A32 for m=30. These results indicate that if one were to construct X charts using
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conventional control chart constants when only 20 to 30 subgroups of size 4 or 5 are
available to estirhafe the process mean and 'staridard deviation, the ﬁpper and lower
contrcﬂ limits would not be wvide enough, resulting in a _higher false' alarm rate.

B42 and ciorresponding B4 values, as Weil as B32 and cofresponding B3 values, in
Table D.3.4 also indicate that the common rule of thumb may be an incorrect rule. When
n=4, B4 is 4.758% smaller fhan. B42 for m=20 and B3 is 0.878% 1arger than B32 for
m=20. When n=5, B4 is 2.580% smaller than B42 for m=30 and B3 is 0.634% larger
than B32 for m=30. Consequently, if one were to construct s charts using conventional
control chart constants when only 20 to 30 subgroups of size 4 or 5 are available to
¢stimate the process standard deviation, the upper and lower control limits would not be
wide enough, resulting in ;1 higher false alarm fate.

Quesenberry (1993) also investigated the validity of the common rule of thumb and
concluded that 400/(n —1) subgroups are needed for the X chart before conventional

control chart constants may be used. However, for all practical purposes, the program

presented by this chapter eliminates the need for these rules.

A Numerical Example

Consider the data in Table 6.2 obtained from a process requiring short run control
charting techniques (assume alphaMean=0.0027, alphaStandUCL=0.005, and
alphaStandl.CL=0.001). For m=5 and n=4, the following first stage short run control

chart factors are obtained from Table D.3.4: A31=1.72737, B41=2.09812, and

B31=0.11441. UCL(s), LCL(s), UCL(X ), and LCL(X ) are calculated as follows:
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- Table 6.2. A Numerical Example

Subgroup | X, X, X, X, X s

1 1.17 | 1.14 | 1.20 | 1.18 | 1.17250 | 0.02500

2 138 | 1.29 | 1.36 | 1.44 | 1.36750 | 0.06185

3 0120 | 1.21 |1 1.30 | 1.14 | 1.21250 | 0.06602

4 140 | 140 | 1.21 | 1.43 | 1.36000 | 0.10100

5 1.12 | 1.20 | 1.61 | 1.34 | 1.31750 | 0.21515
Averages 1.28600 | 0.09380

| Revised Averages 1.27813 | 0.06346

UCL(s) = B41-s = 2.09812-0.09380 = 0.19680
LCL(s) = B31-s =0.11441-0.09380 = 0.01073
UCL(X) = X + A31-5 = 1.28600 + 1.72737 - 0.09380 = 1.44803

LCL(X) = X — A31-5 = 1.28600 —1.72737 - 0.09380 = 1.12397

The standard deviation for subgroup five (s=0.21515) is above UCL(s). Find,
investigate, and remove from the process the special cause (or causes) that created this
out of control point, delete subgroup five, recalculate averages (shown as the Revised
Averages in Table 6.2), and reconstruct first stage control limits (this approach is from
Hillier’s (1969) example). For m=4 and n=4, the following first stage short run control
chart factors are obtained from Table D.3.4: A31=1.75114, B41=2.05256, and
B31=0.11958. Revised UCL(s), LCL(s), UCL(i ), and LCL(i ) are calculated as

follows:

UCL(s) = B41-s = 2.05256 - 0.06346 = 0.13026
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" LCL(s) = B31-s = 0.11958-0.06346 = 0.00759
UCL(X) = ; +A31-5=127813+1.75114-0.06346 = 1.38926

LCL(X) = ;— A31-5=1.27813-1.75114-0.06346 = 1.16700

Since none of the remaining values plot out of control (i.e., control has been established),
the next step is to construct second stage control limits using the following second stage

short run control chart factors from Table D.3.4 (for m=4 and n=4): A32=2.26072,

B42=2.89208, and B32=0.09367. UCL(s), LCL(s), UCL(X), and LCL(X) are

calculated as follows:

UCL(s) = B42-s = 2.89208 -0.06346 = 0.18353
- LCL(s) = B32-s = 0.09367 - 0.06346 = 0.00594
UCL(X) = ; +A32-5=1.27813 +2.26072-0.06346 = 1.42160

LCL(X) = X — A32-5 =1.27813— 2.26072 - 0.06346 = 1.13466
These control limits may be used to monitor the futhre performance of the process.

Advantages of Two Stage Short Run (X,s) Control Charts

Several advantages exist to using two stage short run (X, s) control charts. A
significant advantage is that there is a smaller loss in degrees of freedom from using the

Patnaik (1950) approximation than with two stage short run (—)Z, R) control charts. This
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is illustrated in Table 6.3, which has selected values for degrees of freedom for both ¢,

(from Table D.3.1 in Appendix D.3) and d; (from Table B.3.1 in Appendix B.3 of this
dissertation).

As expected,’when n=2, the degrees of freedom for both ¢} and d; are equal. When
“m=1 for each value of n given, ¢ suffers no loss in degrees of freedom, at least to the
accuracy shown (the exact degrees of freedom is equal to (m-(n—1)) (see Yang and
Hillier (1970))). However, as n increases when m=1, d, loses degrees of freedom at an
increasing rate to the point that, when n=50, the degrees of freedom for d; is less than

half of that for ¢} . Even when m=300 and n=2, the degrees of freedom for c,, is still

approximately 88% of the exact value of 300 degrees of freedom. As expected, this
percentage increases as n increases.

Many authors suggest that when n gets large (i.e., in the case of Duncan (1974), when
n>12), the loss in efficiency (which is related to a loss in degrees of freedom) becomes

too great to use the range to estimate process variability. The results in Table 6.3 seem to

Table 6.3. Comparison of Degrees of Freedom for ¢ and d;

n 2 5

m c, d c, d;
1 1.00000 1.00000 4.00000 3.82651
2 1.91952 1.91952 7.81543 7.47105
5 4.59060 4.59060 19.21294 18.35417
10 8.98907 8.98907 38.19043 36.47359
25 | 22.14078 22.14078 95.11138 90.81974
50 | 44.04420 44.04420 189.9757 181.3926
100 | 87.84479 87.84479 | 379.7029 362.5367
200 | 175.4428 175.4428 759.1566 724.8242
300 | 263.0400 263.0400 1138.610 1087.112
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Table 6.3 continued. Comparison of Degrees of Freedom for ¢, and d;
10 25 50
cy d; Cs d, - cq ‘ d;

9.00000 | 7.68007 | 24.00000 | 15.62977 | 49.00000 | 24.02990
17.78069 | 15.14589 | 47.76168 | 31.02740 | 97.75573 | 47.82145
44.09875 | 37.51556 | 119.0374 | 77.20616 | 244.0184 | 119.1869
87.95388 | 74.78859 | 237.8272 | 154.1660 | 487.7879 | 238.1261
219.5142 | 186.6017 | 594.1947 | 385.0424 | 1219.095 | 594.9419
438.7796 | 372.9550 | 1188.140 | 769.8356 | 2437.941 | 1189.634
100 | 877.3099 | 745.6608 | 2376.030 | 1539.422 | 4875.632 | 2379.019
200 | 1754.370 | 1491.072 | 4751.810 | 3078.593 | 9751.014 | 4757.787
300 | 2631.430 | 2236.483 | 7127.590 | 4617.765 | 14626.39 | 7136.556

U -
LIS |nle=|8 |z

agree with this statement, even when compared to the degrees of freedom for ¢, (when

n=10, the degrees of freedom for d is approximately 85% of that for ¢ ).

These results are significant when one considers the fact that degrees of freedom is
equivalent to infoﬁnation about the process. The more (less) degrees of freedom retained
in relation to the exact value when estimating the process variability, the more (less)
information is obtained from the process. The more (less) information obtained from the

process, the more (less) reliable are the control limits calculated using this information.
Another possible 'advantage to using.two stage short run (X, s) control charts relates
to Yang and Hillier’s (1970) (i, \/; ) control charts (which is mentioned earlier in the
Introduction). Both sets of charts may be used for plotting means and standard deviations
of subgroups. However, two stage short run (i, s) control charts may be easier to
implement and maintain in a production environment. Control limits for two stage short

run (i, Jv ) charts must be constructed using subgroup variances. This means that both

the variance and the standard deviation of each subgroup must be recorded. If just
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subgroup standard deviations are recorded after control limits are set, then one must

perform additional calculations to get the variances from past subgroups when it is time

to update the control limits. Considering the small loss in degrees of freedom for c,
compared to the exact degrees of freedom (which is used in two stage short run (X, «/; )
control charts), two stage short run (5(_, s) control charts may have an advantage since
one only has to calculate and record the subgroup standard deviation.

A final advantage to using two stage short run (5(_, s) control charts relates to Yang
and Hillier’s (1970) (i v) control charts (which is mentioned earlier in the Introduction).

“Yang and Hillier (1970) state that s is less affected proportionally than v if the process
has gone out-of-control with increased dispersion when any of the initial subgroups are

. drawn. Burr (1976) states two objections to using v control charts instead of s control
~charts. The first objection is that v , the center line on a v control chart, will be more

affected by a single large v than will s by the square root of this single large v. The end
result would be a more highly inflated center line on the v control chart, creating a
situation in which a special cause signal may not b¢ detected. The second objection is
that the distribution of v is far more unsymmetrical than that for s. The notes under Table
17 in the appendix of Wheeler (1995) state that this extreme skewness of the distribution

of v makes the v control chart somewhat unsatisfactory.

Unbiased Estimates of ¢ and ¢ Using s

It 1s well known that 5/ c, is an unbiased estimate of 6 (see Wheeler’s (1995) Tables
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3.6, 3.7, and 4.2). A proof of this is given in Appendix D.1. It is also shown in Appendix

=7 2. - - . . * .
D.1 that (s/ C 4) is an unbiased estimate of 6. Since the value c; is a new result from

this chapter, this means that, for the first time, an unbiased estimate of the population

variance may be obtained from the average of m standard deviations, each based on a

subgroup of size n. Also, since ¢, retains increasingly more degrees of freedom as n gets
larger when compared to the degrees of freedom for d; , the variability in (g/ C, )2 will be

increasingly smaller than that for (E/ d; )2 as n gets larger ((ﬁ/ d; )2 is also an unbiased

estimate of 6 (see Duncan (1955a, 1955b, 1955c) and Ott (1990))).

Conclusions

This chapter and the program it presents make important contributions to both
industry and research. Those involved with quality control in industry will, for the first

time, be able to use theoretically precise control chart factors to determine control limits
for (X, s) charts regardless of the subgroup size, number of subgroups, and alpha values.
Concerning research, this chapter provides a valuable reference for anyone interested in
anything having to do with (—)Z,ls) -control charts. Also, as already mentioned, the

program eliminates the need for the research question of how many subgroups are

enough before conventional control chart constants may be used.

162



CHAPTER VII

TWO STAGE SHORT RUN (X, MR) CONTROL CHARTS
AND A COMPUTER PROGRAM TO CALCULATE THE FACTORS

Introduction

Hillier (1969) and Yang and Hillier (1970) represent the only attempts in the literature

to develop two stage short run control charts based on Hillier’s (1969) theory. Hillier

(1969) derives equations to calculate two stage short run control chart factors for (5(—, R)
charts. Yang and Hillier (1970) derive equations to calculate two stage short run control

chart factors for (X, V) and (i, \/;) charts.

Problem

It seems that no attempt appears in the literature to derive equations to calculate two
stage short run control chart factofs for (X, MR) charts. Del Castillo and Montgomery
(1994) and Quesenberry (1995) both point out this deficiency. The application of
(X, MR) control charts is desirable because in a short run situation, it may be difficult to
form subgroups (Del Castillo and Montgomery (1994)).

Pyzdek (1993) attempts to present two stage short run control chart factors for
(X, MR) charts for several values for numbers of subgroups and one value each for alpha
for the X chart and alpha for the MR chart above the upper control limit (alpha is the
probability of a Type I error). However, all of Pyzdek’s (1993) Table 1 results for
subgroup size one are incorrect because he uses invalid theory (this is explained in detail

in the Tabulated Results of the Program section later in this chapter).
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Solution

This chapter presents a solution to this problem, consequently allowing for the
derivation of equations to calculate first and second stage short run control chart factors
~ for (X, MR) charts. It also describes the development and execution of a computer
program that will accurately calculate the factors using these derived equations. Other
exact equations that the program uses are the probability integral of the range, the mean
of the distribution of the range, the probability integral of the studentized range (all three
for subgroup size two), equations to calculate degrees of freedom, and derived
conventional control chart equations. The program accepts values for number of
subgroups, alpha for the X chart, and alpha for the MR chart both above the upper control
limit and below the lowe; éontrol lirnit.r Tables are generated for specific values of these
inputs. Comparison of the tabulated results to legitimate results in the literature validates
thé program. The tables correct and extend previous results in the literature.

The software used for the program is Mathcad 8.03 Professional (1998) with the
Numerical Recipes Extension Pack (1997). The progfam uses numerical routines

‘provided by the software.

Qutline

This chapter first presents the probability integrals of the range and the studentized
E range, both for subgroup size two. These are essential in the application of Hillier’s

(1969) theory to (X, MR) control charts and are required for the program to perform

164



accurate calculations. Next, Patnaik’s (1950) theory is used to develop an approximation
to the distribution of the mean moving range. Fromn this result, equations to calculate two
stage short run control chart factors for (X, MR) charts are derived by following the work
in the appendix of Hillier (1969). Also, equations to calculate conventional control chart
constants for (X, MR) charts are derived. Next, the computer program is described.

Tables generated by the program are then presented and compared with legitimate results

in the literature. Also, implications of the tabulated results are discussed. Following a

numerical example that illustrates the.use of the program, unbiased estimates of 6 and 6°

using MR are given, as well as final conclusions describing the impact of the program
_on industry and research.
Note
Results from the program are for processes generating parts with independent
measurements that follow a Normal distribution.
The Probability Integral of the Range for Subgroup Size Two

The probability integral (or cumulative distribution function (cdf)) of the range for
subgroups of size two sampled from a standard Normal population is given by Pachares

(1959) as equation (7.1) (with some modifications in notation):

P(W) =‘2-J‘ i f(x)-(F(x+W)—F(x))dx (7.1)
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W represents the (standardize‘d) range w/c, where w 1s the range of a subgroup and ¢ is
the population standard deviation. Throughout this chapter, F(x) is the cdf of the
standard Normal probability density function (p-df)‘ f(x).

The mean of the distribution of the range W = (w/o) for subgroups of size two
sampled from a Normal population with mean W and variance equal to one given by
Harter (1960) is equation (7.2) (with some modifications in notation):

2

TCO.S

d2 = (7.2)

The value d2 is the control chart constant denoted by d, (see Table M in the appendix of

Duncan (1974)). The equation for d2 for subgroup size two for any value of ¢ is given
by Johnson, Kotz, and Balakrishnan (1994).
The Probability Integral of the Studentized Range for Subgroup Size Two

The probability integral of the studentized range for subgroups of size two sampled

from a Normal population is given by Harter, Clemm, and Guthrie (1959) as equation

(7.3a):

P3(z) = (EJ-e“ -(PI(z) +P2(2)) (7.3a)
z

where

166



(v v) (v) v ;
cv =In(2) {5)- 1{5)—(5J— gammlu(EJ (7.3b)

" W 25w ' 2oasw?
P1(z)=f (5-—]-e 22’ e 22 LP(W)dW (7.3¢c)
0 \ Z

™ 1-x2 vl 1-x2
z 2 2
P2(z) =(§J . .[2 [x -e' J e dx (7.3d)

z

The variable z is equal to 5-Q. Q represents the studentized range w/s, where w is the
range of a subgroup and s is an independent estimate (based on v degrees of freedom) of
the population standard deviation. The equafion fér cv (equation (7.3b)) is the natural
logarithm of the equation for C(v) given by Harter, Clemm, and Guthrie (1-959). Itis
derived in Appendix B.1 of this dissertétion. The function gammln is a numerical recipe
in the Numerical Recipes Extension Pack (1997) that calculates the natural logarithm of
the gamma function. Using gammln in equation (7.3b) allows for large vélues of v
(hence large values for m (the number of subgroups)) in the program. In equation (7.3c),
“P(W) js the probability integral of the range W = (w/c) for subgroup size two (see
equation (7.1)).

As v—oo (i.e., as m—>o0), the distribution of the studentized range Q = (w/s) for
subgroup size two converges to the distribution of the range W = (w/c) for subgroup

size two (see Pearson and Hartley (1943)). This fact is used to calculate alpha-based

conventional control chart constants for the MR chart.
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The Distribution of the Mean Moving Range

Consider the situation in which the mean of a statistic is calculated by averaging m
values of the statistic, each of which is based on a subgroup of size n. Patnaik (1950)

investigates this situation when the statistic is the range and'develdps an approximation to
the distribution of the mean range ﬁ/ o. The resulting distribution is the (x -d; )/ W
distribution, which is a function of the 7 distribution with v degrees of freedom (the )
distribution with v degrees of freedom and its moments about zero may be found in
Johnson and Welch (1939)). Equations for v and d; are derived from results obtained by
equating the squared means as well as the variances of the distribution of the mean range
—R—/ 6 and the (x -d; )/ Vv distribution with v degrees of freedom. Hillier (1964 and

1967) uses Patnaik’s (1950) theory to derive equations to calculate short run control chart
factors for X and R charts, respectively. Hillier (1969) then incorporates the two stage
procedure into his short run control chart factor calculations for (i, R) charts.

Consider the situation in which the statistic is the moving range of size two and the
distribution of interest is the distribution of the mean moving range _M_R—/ o . Evidence
exists in the literature that T\/Tﬁ/c may be approximated by a distribution that is a
function of eithér the x> or thé X distribution. Sathe and Kamat (1957) use results given
by Cadwell (1953, 1954) to approximate the distribution of the mean successive
difference (i.e., the distribution of the mean moving range VIR_/ o ) by a distribution that
is a function of a power of the x> distribution. Roes, Does, and Schurink (1993) use

theory that is similar to Patnaik’s (1950) theory to approximate the distribution of the
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mean moving range' ﬁ/ o (with 0=1.0) by a distribution that is a function of the

distribution.
In order to be able to use Hillier’s (1969) theory to derive equations to calculate two

stage short run control chart factors for (X, MR) charts, we apply Patnaik’s (1950) theory
to approximate the distribution of the mean moving range _Mi/ G by the

(X . d; (MR))/ \/; ~distribution with v degrees of freedom (this v is the same as the‘one
given earlier in equation (7.3a)). The equation for d; (MR) is derived in Appendix E.1

of this dissertation and is given as equation (7.4) (note: d2starMR =d;(MR) ):

d2starMR = (d22 +d2? 1) (7.4)

The equation for the control chart constant d2 for subgroup size two is given earlier as
equation (7.2). The value r represents the variance of _M—R—/d2. Its equation is given later
as equation (7.7a).

Using results from Prescott (1971), the equation for v is determined by equating the

ratio of the variance to the squared mean, both of the ) distribution with v degrees of

freedom, to the ratio of the variance to the squared mean, both of the distribution of the

mean moving range ﬁ/ 6 . The resulting equation for v is equation (7.5):
d(x) =h(x)~r (7.5)

- The exact value for v is the value of x such that d(x) is equal to zero. The function h(x) is
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the ratio of the variance to the squared mean, both of the % distribution with x degrees of
freedom (x replaces v). The mean and variance of the ) distribution with v degrees of

freedom are given in Appendix E.1. The equation for h(x), which is derived in Appendix

B.1, is given as equation (7.6):

. In{0.5-x)~ .5-x+0. ‘"
X .CZ(gammn(OSx) gammIn(0.5-x+0.5)) _2

h(x)»= 5 (7.6)

The value r is the ratio of the variance to the squared mean, both of the distribution of

the mean moving range MR/ 6. The mean and the variance of the distribution of the

mean moving range ﬁ/ ¢ are derived in Appendix E.1. The equation for r is given by

Palm and Wheeler (1990) as equation (7.7a):

L b(m-H-c

(7.7a)
(m-1)>?
where
b =2—;‘-—3+3°~5 v (7.7b)
c= %— 24308 (7.7¢)

Cryer and Ryan (1990) give an equivalent form for equation (7.7a). Hoel (1946) gives an
equation for the variance of MR which, when multiplied by 1/ d2?, gives the same

results as those obtained by using equation (7.7a). It should be noted that an equivalent
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form (also based on Patnaik’s (1950) theory) of equation (7.5) may be found in Palm and
Wheeler (1990), who use their result to calculate equivalent degrees of freedom for
population standard deviation estimates based on consecutive overlapping moving ranges
of size two.

Table E.3.1 (the creation of which is explained in the Tabulated Results of the

. Program section later in this chapter) in Appendix E.3 of this dissertation has v and

d; (MR) values for m: 2-20, 25, 30, 50, 75, 100, 150, 200, 250, 300, as well as d, for

subgroup size two. As m—ee (i.e:, as V—)oo),‘d; (MR) converges to d, for subgroup size
two.

Approximating the distribution of the mean moving range —ME/ G by the
: (x -d; (MR))/ Jv distribution with v degrees of freedom works well. In fact, based on

how d,(MR) is derived in Appendix E.1, the means and variances of these two |

distributions are equal.

: Derivatidn of the Control Chart Factor Equations

Since the (x -d; (MR))/ \Jv distribution with v degrees of freedom approximates the

distribution of the mean moving range MR/ o, the derivation of equations to calculate

first and second stage short run control chart factors for (X, MR) charts follows the work

in the appendix of Hillier (1969). E22, the second stage short run control chart factor for

the X chart, is derived in almost the same manner as Hillier’s (1969) A;. Differences are

that n=1 and X, X, E22, MR, and d,(MR) in this chapter replace X, i, A, R,and
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c, respectively, in Hillier (1969). The resulting equation for E22 is given as equation

(7.8) (note:ﬁ d2starMR = d, (MR) ):

cn'vt t m+l - |
CE22= - . . (7.8)
d2starMR m

The value crit_t is the critical value for a cumulative area of (1— (alphaInd/ 2)) under the
Student’s t curve with v degrees 6f freedom (élphalnd is the probability of a Type Ierror
on the X control chart).

E21, the first stage short run control chart factor for the X chart, is derived in almost

the same manner as Hillier’s (1969) A’ . Differences are that E21, X, il, MR, and

d;(h/[R) in this chapter replace A;*, ii s -;, ﬁ, and c, respectively, in Hillier (1969).

The resulting equation for E21 is given as equation (7.9):

. 0.5
B2 = cit_t ) (m-l (7.9)
. d2starMR m ,

The value crit_t has the same meaning here as in equation (7.8).
D42, the second stage short run upper control chart factor for the MR chart, is derived

in Appendix E.1. Other than differences in notation, this derivation follows that for

Hillier’s (1969) D}. The resulting equation for D42 is given as equation (7.10):
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42 = _gb4 ©(7.10)
d2starMR

The value gD4 is the (1-alphaMRUCL) percentage point of the distribution of the
studentized range Q = (w/s) .for subgroup size two with v degrees of freedom
(alphaMRUCL is the probability of a Type I error on the MR chart above the upper
control limit).

D32, the second stage short run lower control chart factor for the MR chart, is derived
in a manner similar to D42. Differences are that D32, qD3, and alphaMRLCL replace
D42, gD4, and (1-alphaMRUCL), respectively (alphaMRLCL is the probability of a Type
I error on the MR chart below the lower control limit). The resulting equation for D32 is

given as equation (7.11):

qD3

32 =17 (7.11)
d2starMR

The value qD3 is the alphaMRLCL percentage point of the distribution of the studentized

range Q = (w/s) for subgroup size two with v degrees of freedom.
D41, the first stage short run upper control chart factor for the MR chart, is derived in

almost the same manner as Hillier’s (1969) DZ* . Differences are that D41, MR, D42,

and MR in this chapter replace D}, R,, D}, and R , respectively, in Hillier (1969).

The resulting equation for D41 is given as equation (7.12):
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m -qD4prevm

1= - | | ' (7.12)
d2starMRprevm - (m — 1) + qD4prev

The value qb@revm has the same meaning as qD4 (given earlier in equation (7.10)),
except it is fér vprevm (i.e., v for (m-1) subgroups). The value d2starMRprevm has the
same equation és d2starMR (given earlief #s equation (7.4)), except m is replaced with
(m-1). |

The equation for D31, the first stage short run lower control chart factor for the MR

chart, is derived in almost the same manner as Hillier’s (1969) D . Differences are that

D31, MR,, D32, and MR in this chapter replace D; , R,, D, and R, respectively, in

Hillier (1969). The resulting equation for D31 is given as equation (7.13):

D31 m - gD3prevm

= (7.13)
d2starMRprevm - (m — 1) + gD3prevm

The value gD3prevm has the same meaning as qDé) (given earlier in equation (7.11)),
except it is for vprevm instead of v. |

The equation for E2, the conventional control chart constant for the X chart, may be
obtained by taking the limit of either E21 or E22 as m—eo (i.e., as v—0). The resulting

equation for E2 is given as equation (7.14):

_crit_z

14
) (7.14)

E2
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The value crit_z is the critical value for a cumulative area of (1- (alphalnd/2)) under the
standard Normal curve. The equation for the control chart constant d2 for subgroup size
two is given earlier as equation (7.2).

- The equation for D4, the alpha-based conventional upper control chart constant for the
MR chart, may be obtained by taking the limit of either D41 as m—o (i.e., as
vprevm—>o0) or D42 as m—><» (i.e., as v—>0). The resulting equation for D4 is given as

equation (7.15):

_wDh4
d2

D4 (7.15)

The value wD4 is the (1-alphaMRUCL) percentage point of the distribution of the range
W = (w/o) for subgroup size two.

The equation for D3, the alpha-based conventional lower control chart constant for the
MR chart, may be obtained by taking the limit of either D31 as m—e (i.e., as
vprevm —e9) or D32 as m—eo (i.e., as v—o0). The resulting equation for D3 is given as

equation (7.16):

_wD3
d2

D3 (7.16)

The value wD3 is the alphaMRLCL percentage point of the distribution of the range

W = (w/o) for subgroup size two.
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‘The Computer Program

This section of the chapter presents the computer program, which is in Appendix E.2
of this dissertation. The program has seven pages, each of which is further divided into

sections.

Mathcad (1998) Note

It is- possible for a section of code in the program to turn red and have the error
message "Unknown Error". To correct this, delete one character in the red code and type
it back in. Click the mouse arrow outside of the code. The code should turn black,
indicating that the error has been eliminated. If not, repeat the procedure (it will

eventually correct the problem).

Page 1

The first page of the program begins with the data entry section. The program
requires the user to enter the following values: alphalnd (alpha for the X chart),
alphaMRUCL (alpha for the MR chart above the UCL), alphaMRLCL (alpha for the MR
chart below the LCL), and m (number of subgroups (i.e., the number of MRs plus one)).
If no lower control limit on the MR chart is desired, the entry for alphaMRLCL should be
left blank (do not enter zero). Before a value can be entered, the cursor must be moved to
the right side of the appropriate equal sign. This may be done using the arrow keys on
the keyboard or by moving the mouse arrow to the right side of the equal sign and

clicking once with the left mouse button. The program is activated by paging down once

176



“the last entry is made. When using Mathcad 8.03 Professional (1998), paging down is
not allowed while a calculation is taking place. However, Mathcad 2000 Professional
(1999) allows the user to page down to the output section of the program (explained later)
after the last entry is made.

The next part of page 1 is section 1.1 of the program. The value TOL is the tolerance.
The calculations that use this value will be accurate to ten places to the right of the
decimal. The functions dnorm(x, 0, 1).and pnorm(x, 0, 1) in Mathcad (1998) are the pdf
and cdf, respectively, of the standard Normal distribution. The equations for the pdf and
cdf are also given in case the dnorm or pnorm function fails to calculate a result. In
Mathcad (1998), an equation turns red if it does not calculate a result due to an error. If

the dnorm function gives an error, type f(x) on the left side of the equal sign in equation

(7.17):

2
-X

=le-m*s]e | (7.17)

-If the pnorm function gives an error, type F(x) on the left side of the equal sign in

equation (7.18):
=J ' f(t)dt (7.18)

The equations for P(W) and d2 are given earlier as equations (7.1) and (7.2), respectively.
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Page 2

Page 2 of the program begins with section 2.1. The code in this section determines
wD4 and wD3, the (l-alphaMRUCL) and alphaMRLCL percentage points, respectively,
of the distribution of the range W = (w/c) for subgroup size two and infinite v (i.e.,
infinite m) (recall the earlier statement that as v—oo (i.e., as m;—>oo), the distribution of
the studentized range Q = (w/ s) for subgroup size two converges to the distribution of
the range W = (w/c) for subgroqp size two). The value wD4 is used in the equation for

- D4, which is given earlier as equation (7.15). The value wD3 is used in the equation for
D3, which is given earlier as equation (7.16}).1 The roots of the equations DUCL(W) and
DLCL(W) are wD4 and WD3, respectively, ahd are determined using zbrent (a numerical
recipe in the Numerical Recipes Extension Pack (1997) that uses Brent’s method to find
the roots of an equation). The subprograms Wseedi and Wseed2 generaté seed values
seedD4 and seedD3, respectively, for Brent’s method.

The subprogram Wseed1 works as foilowé. Initially, W, and W, are set equal to 0.01
and 0.02, respectively. A, and A, result from evaluating DUCL(W) at W, and W,,
respectively. The while loop begins by checking if the product of A, and A, is
negative. If so, the root for DUCL(W) lies between 0.01 and 0.02. If not, W, and W,
are incremented by 0.01. A, and A, are recalculated and if their product is negative, the

root for DUCL(W) lies between 0.02 and 0.03. Otherwise, the while loop repeats. Once
a root for DUCL(W) is bracketed, the bracketing values are passed out of the subprogram
into the 2x1 vector seedD4 to be used by Brent’s method to determine wD4. The

subprogram Wseed2 works similarly to construct the 2X1 vector seedD3 to be used by
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Brent’s method to determine wD?3, except the starting value is 0.001.

The next part of page 2 is section 2.2 of the program. As shown earlier, the two stage
short run control chart factor calculations require v and vbrevm. The equation for h(x) is
described earlier (see equation (7.6))." The value rprevm has the same meaning as r
described earlier (see equation (7.7a)), except it is for (m-1) subgroups. The equations
for b and c are given earlier as equations (7.7b) and (7.7¢), respectively. The equation for
dprevm(x) is the same as that for d(x) (given earlier as equation (7.5)), except rprevm
replaces r. The value v is the root of the equation d(x) and is determined using zbrent
with seed value seedv. The value vprevm is the root of the equation dprevm(x) and is
determined using zbrent with seed value seedvprevm. The subprogram dfseed generates
the seed values seedv and seedvprevm for Brent’s method.

The subprogram dfseed works as follows. Initially, df, and df, are set equal to 0.9
and 1.1, respectively. A, and A, result from evaluating y(x) (which is equal to either
d(x) or dprevm(x)) at df 0 and df, respectively. The while loop begins by checking if
the product of A, and A, is negative. If so, the root for y(x) lies between 09 and 1.1. If
not, df, and df, are incremented by 0.5. A, and Avl are recalculated and if their product

1s negative, the root for y(x) lies between 1.1 and 1.6. Otherwise, the while loop repeats.
Once a root for y(x) is bracketed, the bracketing values are passed out of the subprogram
into the 2X1 vector seedv (if y(x) is equal to d(x)) or seedvprevm (if y(x) is equal to

dprevm(x)) to be used by Brent’s method to determine v or vprevm, respectively.
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Page 3

Page 3 of the program begins with section 3.1. The equations for P3(z), cv, P1(z), and
P2(i) are given earlier as equations (7.3a), (7.3b), (7.3c), and (7.3d), respectively.
Section 3.2 contains the calculations required to determine gD4, the (1-alphaMRUCL)

percentage point of the distribution of the studentized range Q = (w/s) for subgroup size

two with v degrees of freedom (which is calculated earlier in the program). The value
qD4 is used in the equation for D42, which is given earlier as equation (7.10). The
subprogram Zseedl generates the seed value seed1 for Brent’s method or for root (root is
a numerical routine in Mathcad (1998) that uses the Secant method for determining the
roots of an equation). Either root-finding method determines the root of D(x). The result
of dividing this root by five is gD4. Both Brent’s method and the Secant method are
given because one may not work when the other one does. If Brent’s method fails, type

qD4 on the left side of the equal sign in equation (7.19):

__root| [P3(seedl) - (1 - alphaMRUCL)|, seed1]

7.19
5 (7.19)

The subprogram Zseed1 begins by generating values for Z, and Z,. A, and A,
result from evaluating P3(z) at Z, and Z,, respectively. The while loop continually
increments Z, and Z, by 5.0 and evaluates P3(z) at these two values until A, becomes
greater than (1-alphaMRUCL) for the first time, at which point A, will be less than

(1-alphaMRUCL). When this occurs, P3(z) is equal to (1-alphaMRUCL) for some value
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z between Z, and Z,. An initial guess for this value is determined using linterp (a

numerical routine in Mathcad (1998) that performs linear interpolation) and stored in

Zguess. The initial guess is passed out of the subprogram as seed1.

Page 4

Page 4 of the program is section 4.1. The code in this section is used to determine
qD3, the alphaMRLCL percentage point of the distribution of the studentized range

Q = (w/s) for subgroup size two,with' v degrees of freedom (which is calculated earlier

in the program). The value qD3 is used in the equation for D32, which is given earlier as
equatioﬁ (7.11). The subprogram Zseed2 generates the value seed2 that is used to
determine an initial value for gD3. An improved value for gD3 is then calculated by
determining the root of the equation (P3(z)-alphaMRLCL) using the Secant method with
the seed value seed2 and dividing this root by five.

The ability of the Secant method to calculate a result depends upon the values for
alphaMRLCL and m (Brent’s method should not be used). It is not a problem if it does
not calculate a result because the initial value for gD3 and the improved value match to
several places to the right of the decimal. This phenomenon is discussed in more detail
when the tabulated results of the program are presented later in this chapter. The Monitor
Results area in the bdttom right hand corner of section 4.1 indicates how closely the two
values for gD3 match until the root routine fails. This will dictate the number of decimal
places that can be used to display gD3 and the second stage short run lower control chart
factor for the MR chart.

The code in the subprogram Zseed?2 that begins with the first line of code and includes
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the while loop and the two for loops constructs 21x1 vectors Zv for z and Av for P3(z).
The first row of each vector is zero. The while loop determines the first value Z where
P3(Z) is greater than alphaMRLCL. This Z and the corresponding value P3(Z) are stored
in the second rows of Zv and Av, respectively. The two for loops generate values for the
remaining rows of Zv and Av. Two different for loops are used because P3(z) may
encounter an error for some i (i: 1, 2, ..., 20). The value féri wﬁere the error occurs can
be skippéd using the dual for loop constructibn. When the execution of this section of
code is complete, P3(z) is equal to alphaMRLCL for some value z between Zv, and
- :

The code in the subprogram Zseed?2 that starts in the line where the variable Zguess
first appears to the last line of the subprogram is derived from Harter, Clerhm, and
Guthrie (1959). This code searches for and estimates the value z where P3(z) is equal to
" alphaMRLCL. Zguess is the initial guess for this value z. It is determined using linterp,

the 21x1 vectors for P3(z) and z previously determined, and alphaMRLCL. The 2x1
vector A is determined using ratint (a numerical recipe in the Numerical Recipes
Extension Pack (1997) that performs rational interpolation), the 21x1 vecvtors for z and
P3(z), and Zguess. »Aguess is the entry in the first row of A and is the estimated value for
P3(Zguess). The while loop first checks if Aguess is an accurate estimate (within 107°)
of alphaMRLCL. If so, Zguess is passed out of the subprogram as the value seed2. If
not, Aguess and Zguess are entered into the second rows of the previously determined
vectors Av and Zv, respectively, if Aguess is more than 107 larger than alphaMRLCL.

If Aguess is more than 107 smaller than alphaMRLCL, Aguess and Zguess are entered

into the first rows of the vectors Av and Zv, respectively. New values for Zguess and
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Aguess are determined using the same procedure as before and execution is returned to

the beginning of the while loop.

Page 5

Page 5 of the program contains sections 5.1 and 5.2. These sections correspond to
sections 3.1 and 3.2, respectively, described earlier. The only difference is that the
calculations in sections 5.1 and 5.2 use vprevm instead of v. The calculations are for

gD4prevm, which is used in the equation for D41 (given earlier as equation (7.12)).

Page 6

Page 6 of the program is section 6.1. This section corresponds to section 4.1
described earlier. The only difference is that the calculations in section 6.1 use vprevm
instead of v. The calculations are for gD3prevm, which is used in the equation for D31

(given earlier as equation (7.13)).

Page 7

Page 7 of the program begins with section 7.1. It has the equations for d2starMR
(given earlier as equation (7.4)) and d2starMRprevm (d2starMR for (m-1) subgroups).
The value d2starMR is used in the equations for E22, E21, D42, and D32, all of which
are given earlier as equations (7.8), (7.9), (7.10), and (7.11), respectively. The value
d2starMRprevm is used in the equations for D41 and D31, which are given earlier as

equations (7.12) and (7.13), respectively. The function qt(adj_alpha, v) in Mathcad
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(1998) determines the critical value crit_t for a cumulative area of adj_alpha under the
Student’s t curve with v degrees of freedom. The value crit_t is used in the equations for
E21 and E2‘2. Thé function qnorm(adj_;cllpha, 0, 1) in Mathcad (1998) determines the
criticél value crit_z for a cumulaﬁve area of adj_alpha under the standard Normal cﬁrve.
The value crit_z is used in the equation for E2 (given earlier as equation (7.14)).

Section 7.2 of the program has the equations to calculate two stage short run control
chart factors and conventibnal ‘control chart constants given earlier in the Derivation of
the Control Chart Factor Equations section of this chapter. The equation for E2 is a
generalization of the equation for E, from Wheeler’s (1995 ) Tables 3 and 4 to allow for
different values of alphalnd.

The last part of page 7 is fhe output sectioﬁ of the program. The four valués entered at
tﬁe b‘eginniﬁg of the program are given. The control chart factors are broken down into
first stage, second stage, and conventional. The values for v, d2starMR, vprevm, and

d2starMRprevm, the mean of the distribution of the range W = (w/c) for subgroup size

two and the varjance of the distribution of the mean moving range _MR?/ o, and Harter,
Clemm, and Guthrie’s (1959) Table I1.2 results for n=2 (i.e., for subgroup size two)
complete the output of the program. To copy results into another software package (like
Excel), follow the directions from Mathcad’s (1998) help menu or highlight a value and
copy and paste it into the other software package. When highlighting a value with the
mouse arrow, place the arrow in the middle of the value, depress the left mouse button,
and drag the arrow to the right. This will ensure just the numerical value of the result is

copied and pasted.
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Tabulated Results of the Program

The three tables (Tables E.3.1-E.3.3) in Appendix E.3 were generated using the

program with the following input values:

e alphalnd=0.0027, alphaMRUCL=0.005, alphaMRLCL=0.001

e m: 2-20, 25, 30, 50, 75, 100, 150, 200, 250, 300

The values v, d2starMR, vprevm, d2starMRprevm, and d2 are in Table E.3.1. The v and
vprevm values compare favorably to the equivalent degrees of freedom in Table 3 of
Palm and Wheeler (1990) and Table 23 in the appendix of Wheeler (1995). The d2 value
.compares favorably to the d, value for subgroup size two in Duncan’s (1974) Table M

and Wheeler’s (1995) Tables 1 and 18.

The values qD4, qD4prevm, and wD4, as well as qD3, qD3prevm, and wD3, are in
Table E.3.2. The results in these tables compare favorably to Harter, Clemm, and
Guthrie’s (1959) Table II.2 results for n=2 (i.e., for subgroup size two).

As explained earlier in the Page 4 subsection of The Computer Program section of this
chapter, in the calculations for gD3 and qD3prevm, the ability of the Secant method to
calculate a result depends upon the values for alphaMRLCL and m. For Table E.3.2, the
Secant method fails to work for m>3. As mentioned previously, this is not a serious
issue. The reason is that the initial value for gD3 matches the improved value for gD3
(before the Secant method fails) to eight places to the right of the decimal.

Values for E21, D41, D31, E22, D42, D32, E2, D4, and D3 are in Table E.3.3. The
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E2 value compares favorably to the E, value for n=2 in Wheeler’s (1995) Table 4. It

should be noted that the values wD4 and wD?3 in Table E.3.2 and D4 and D3 in Table
E.3.3 may differ in the ninth or tenth decimal place for different root routines used to
calculate wD4 and wD3.

These favorable comparisons validate the program. Consequently, Table E.3.3 results
for m: 2-10, 15, 20, 25 may be considered corrections to Pyzdek’s (1993) Table 1 for
su‘bgroup size one. All of Pyzdek’s (1993) Table 1 results for subgroup size one are
incorrect for two ;éasons. The first is that he uses degrees of freedom based on Patnaik’s
(1950) approximation applied to the distribution of the mean range E/ o, where R is the
average of m values of R (the range),.each Based on a subgroup of size two, not the
distribution of the mean moving range ﬁ/ o . In the latter case, the degrees of freedom

reflect the fact that serial correlation exists among consecutive overlapping moving
ranges of size two, which means that the average of these overlapping MRs reflects that

serial correlation. The result is that degrees of freedom based on Patnaik’s (1950)
approximétion applied tb the distribution of the mean moving range —MT{—/ C is less than
that from applying Patnaik’s (1950) ‘arpproximation to the distribution of the mean ra;lge
ﬁ/ c, wh¢re R is the range of a subgroup of size two.

The second is that Pyzdek (1993) uses the equation for d; (i.e., d2star) instead of that

for d2starMR (given earlier as equation (7.4)). The equation for d; is given as equation

(7.20):
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d2 0.5
. d; =(df +_3_J (7.20)

where d, and d, are the mean and standard deviation, respectively, of the distribution of
the range W = (w/c). Equations to calculate d, and d, for any subgroup size as well as
the equation for d, may be found in Chapter IV of this dissertation.

The difference between equations (7.4) and (7.20) is that equation (7.4) has d2%-r,

which is the variance of the distribution of the mean moving range MR/ G, instead of
- d?/m, which is the variance of the distribution of the mean range E/ 6. The equation

forrin d2* -r reflects the fact that serial correlation exists among consecutive
overlapping moving ranges of size two, which means that the average of these
overlapping MRs reflects that serial correlation. The result is that values for d2starMR
are less than those for d2star for subgroup size two; but, as m—eo, both converge to d2.
It should be noted that d2starMR for m=2 is equal to d2star for n=2 and m=1 (see Table
B.3.1 in Appendix B.3 of this dissertation).

Oﬁe last issue regarding Pyzdek’s (1993) Table 1 results is that he gives second stage
short run control chart factors for number of subgroups equal to one. This is clearly an
impossibility because one must have two subgroups in order to calculate one moving
range. The results in Table E.3.3 show that for stage one short run control chart factors
for the individuals and moving range charts, m must be at least two and three,
respectively. For stage two short run control chart factors for the individuals and moving

range charts, m must be at least two.
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Implications of the Tabulated Results

Values in Table E.3.3 show some interesting properties. As m increases, the E22 and
D42 valués converge in a decreasing manner to E2 and D4, respectively. The D32 values
élso converge in a decreasing mannér to D3, though it is not evident from the accuracy
shown. This convergeﬁce makés seﬁse becaﬁse more information about the process is at
hand for ‘lavrg'er m.

These properties have major implications. A common rule of thumb is that 20 to 30
subgroups of size 4 or 5 are rieceésary fo use conventional éontrol chart constants for
éonstructing control limits. The results in Table E.3.3 indicate that this may be an
incorrecf rule when appliéd to constructing (X, MR) control charts. Consider again the
E22 values and E2 in Table E.3.3. E2 is 20.709% smaller than E22 for m=20 and
13.915% smaller than E22 for m=30. These results indicate that if one were to construct
X charts using the conventional control chart constant E2 when oniy 20 to 30 subgroups
of size one are available to estimate the process mean and standard deviation, the upper
and lower control limits would not be wide enough, resulting in a higher false alarm rate.

D42 values and D4 in Table E.3.3 also indicate that the common rule of thumb, when
applied to constructing (X, MR) control charts, may be an incorrect rule. D4 is 16.513%
smaller than D42 for m=20 and 10.975% smaller than D42 ‘for m=30. Consequently, if
one were to construct the upper control limit of MR charts using the conventional control
chart constant D4 when only 20 to 30 subgroups of size one are available to estimate the
process standard deviation, the upper control limit would not be wide enough, resulting in

a higher false alarm rate.
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To the accuracy shown in Table E.3.3, there is little difference between D32 for any m
and D3. If increased accuracy is used, then D3 is slightly less than D32 for any m.
Consequently, if one were to construct the lower control limit of MR charts using the
conventional control chart constant D3 when only 20 to 30 subgroups of size one are
available to estimate the process standard deviation, the lower control limit would be
slightly too wide, possibly creating a situation in which the probability of detecting a
special cause signal is slightly diminished.

Quesenberry (1993) also investigated the validity of the common rule of thumb when
applied to constructing (X, MR) control charts and concluded that 300 individual values
are needed for the X chart before conventional control chart constants may be used.
However, for all practical purposes, the program presented by this chapter eliminates the

need for these rules.

A Numerical Example

Consider the data in Table 7.1 obtained from a process requiring short run control
charting techniques (assume alphalnd=0.0027, alphaMRUCL~0.005, and
alphaMRLCL=0.001). For m=5, the following first stage short run control chart factors
for the MR chart are obtained from Téble E.3.3: D41=3.83736 and D31=0.00196.

UCL(MR) and LCL(MR) are calculated as follows:

UCL(MR) = D41-MR = 3.83736-0.03875 = 0.14870

LCL(MR) = D31- MR = 0.00196 -0.03875 = 0.000076
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Table 7.1. A Numerical Example

Subgroup X MR
1 1280 | -----
2 1.129 0.151
3 1.130 0.001
4 1.131 0.001
S 1.133 0.002
Averages 1.16060 | 0.03875
Revised Average 0.00133

The first moving raﬁge (.MR.=O.Y 151) is above UCL(MR). Find, investigate, and remove
from the process the special causeb(-or causes) that created this out of control point, delete
the first moving range, recalculate the average moving range (shown as the Revised
Average in Table 7.1), and construct second stage control limits for the (X, MR) charts
(this approach is from Case (1998)). For m=4, the following second stage short run
control chart factors for the MR chart are obtained from Table E.3.3: D42=13.20218 and
D32=0.00157. For m=5, the following second stage short run control chart factor for the
X chart is obtained from Table E.3.3: E22=9.00182. UCL(MR), LCL(MR), UCL(X),

and LCL(X) are calculated as follows:

UCL(MR) = D42-MR =13.20218-0.00133 = 0.017559
LCL(MR) =D32-MR =0.00157-0.00133 = 0.0000021
UCL(X) = X+ E22-MR =1.16060 +9.00182-0.00133 =1.17257

LCL(X) = X —E22-MR =1.16060-9.00182 -0.00133 = 1.14863

These control limits may be used to monitor the future performance of the process.
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Unbiased Estimates of 6 and ¢ Using MR

It is. well known tha‘t'ﬁ/d2 is-an unbiased estimate of & (e.g., see Wheeler’s (1995)

Table 3.7). A proof of this is given in Appendix E.1. It is also shown in Appendix E.1

that (ﬁ/d; (MR))2 is an unbiased estimate of ¢”. Since the value d,(MR) is a new

result from this chapter, this' means that, for the first time, an unbiased estimate of the
population variance may be obtained from the average of m moving ranges, each based

on a subgroup of size two.

Conclusions

This chapter and.the program it presents make important contributions to both
industry and research. Those involved with quality control in industry will, for the first
time, be able to use theoretically precise control chart factors to determine control limits
for (X, MR) charts regardless of the number of subgroups and alpha values. This is
valuable in that process monitoring will no longer have to be adjusted to use the incorrect
and limited results previously available in the literature. Concerning research, this
chapter provides a valuable reference for anyone interested in anything having to do with
(X, MR) control charts. Also, as already mentioned, the program eliminates the need for
the research question of how many subgroups are enough before conventional control

chart constants may be used.
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CHAPTER VIII

A METHODOLOGY FOR THE DETERMINATION OF THE
APPROPRIATE EXECUTION OF THE TWO STAGE PROCEDURE

Introduction

Several approaches appear in the literature for establishing control of a process during
the retrospective stage of control charting. No research has been put forth that provides a
means by which ,oné may determine the delete and revise procedure that will establish
control limits for.future testing.that have beth the desired Type I error probability and a
high probability of detecting a special cause signal. This chapter presents a methodology
. that determines, when one is using two stage short run (3(_, R), (i, v), (X, \/—\;) R (5(-, s),
_and (X, ,MR.) control charts as presented in Chapters IV, V, VI, and VII, respectively, of

this dissertation, the appropriate execution of the two stage procedure.

Delete and Revise (D&R) Procedures

’This.chapter considers six different D&R procedures for establishing control of a
process in the first stage of the two stage procedure. Four of them are given in the
Establishment of Control subsection of The Two Stage Procedure section of Chapter II of
this dissertation. Detailed descriptions of all six follow.

D&R 1 -

The first D&R procedure is from Hillier (1969), Ryan (1989), and Montgomery
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(1997). Itis executed as follows:

1. Deletes out-of-control (OOC) initial subgroups on either the control chart for
centering or spread entirely (i.e., if a subgroup shows OOC on either control

chart, it'is deleted from both charts).

1i. Recalculates the control limits for both charts using the subgroups remaining after
step 1.

iii. Determines OOC subgroups.

iv. - Repeats steps i-iii until no initial subgroups show OOC on either chart.

D&R 2

The second D&R procedure is from Pyzdek (1993). It is executed as follows:

1. Deletes out-of-control (OOC) initial subgroups on the control chart for spread.
ii. - Recalculates the control limits for the control chart for spread using the subgroups

remaining after step i.

iii. Determines OOC subgroups.

iv. Repeats steps i-iii until no initial subgroups show OOC on the control chart for
spread.

V. Determines the control limits for the chart for centering using the parameter

estimate for spread obtained after completing steps i-iv and the overall average
obtained from all of the initial subgroups.

Vi. Repeats steps i-ii for the control chart for centering until no initial subgroups
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show OOC.

D&R 3

The third D&R procedure is from Case (1998). It deletes out-of-control (OOC) initial
subgroups on the control chart for spread just once. No D&R is performed on the control

chart for centering.

The fourth D&R procedure is from Doty (1997). It does not perform D&R. This
means all of the initial subgroups will be used to determine second stage control limits

for both the control charts for centering and spread.

D&R 5

The fifth D&R procedure is a hybrid of D&R 1 in that it iterates only once. It deletes
out-of-control (OOC) initial subgroups on either the control chart for centering or spread
entirely (i.e., if a subgroup shows OOC on either control chart, it is deleted from both

charts). D&R is performed just once.

D&R 6

The sixth D&R procedure is a hybrid of D&R 2 in that it iterates only once. It is

executed as follows:
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i. Deletes out-of-control (OOC) initial subgroups on the control chart for spread just
once.

ii. - Determines the control limits for the chart for centering using the parameter
estimate for spread obtained after completing step 1 and the overall average
obtained from all of the initial subgroups.

1ii. Performs step i for the control chart for centering.

Any of the above six D&R procedures may be used on two stage short run (i, R),

(i, V), (i, JV ), and (i, s) control charts. However, only D&Rs 2, 3, 4, and 6 may be

used on two stage short run (X, MR) control charts. The reason is that, since the MR
values are calculated from two consecutive X values, no single MR value can be
associated with a éingle X value. Consequently, D&Rs 1 and 5, which delete out-of-
control (OOC) initial subgroups on either the control chart for centering or spread
entirely (i.e., if a subgroup shows OOC on either control chart, it is deleted from both

charts), cannot be used on two stage short run (X, MR) control charts.

The Methodology

The methodology for the determination of the appropriate execution of the two stage
procedure as presented in this chapter consists of three elements. The main element is the
computer program that simulates two stage short run variables control charting. The next
element, which is included in the operation of the program, is the measurements that one

may use to determine which delete and revise (D&R) procedure establishes the most
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reliable second stage control limits. The third element, which is explained using sample

runs from the program, is the interpretation of the results from the program.

Measurements

The computer ‘program in this chapter uses two sets of measurements to provide
informatioﬁ that one may use to determine the reliability of second stage control limits.
The first set of measurements is thE; probability of detection (POD), the average run
length (ARL), and the standard deviation of the run length (SDRL). The second set of
.measurements is the probability of a false alarm (P(false alarm)), the average probability
of a false alarm (APFL), and the standard deviation of the probability of a false alarm

(SDPFL).

POD, ARL, and SDRL

As mentioned in the Performance Evaluation of Short Run Control Charts section of
Chapter II, the POD is the probability that a control chart will signal, within a given
number of subgroups following a shift, that a process is out-of-control (OOC).
Additionally, if a process is in-control (IC), fhe POD may be interpreted as the
probability of a Type I error (i.e., the probability of a false alarm) within a given number
of subgroups starting with the first subgroup drawn from the process.

Using the POD allows for the characterization of the run length (RL) distribution.
This is particularly useful in a short run situation because it is desirable to know, for

small numbers of subgroups, the probability of detecting a special cause signal or the
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probability of a false alarm.. Using the ARL, which'is the average number of subgroups
that must be plotted on a control chart before an OOC condition is indicated, in a short
run situation is not appropriate because a short run may not last long enough to even
achieve the ARL. Additionally, as will be shown in the Interpretation of Results from the
Computer Program section later in this chapter, the ARL can mislead one in choosing the
appropriate D&R procedure.

The POD may be expressed mathematically as equation (8.1):

POD =P(RL<t) (8.1
where

RL: run length (in number of subgroups)

t: the subgroup number

P(RL <t): the i)robability that the run length (RL) is less than or equal to subgroup

number t

As calculated by the computer program in this chapter, for an OOC situation in the
second stage of the two stage procedure, the subgroup count starts at one at the first OOC
subgroup. For an IC situation, the subgroup count starts at one with the first subgroup
drawn from the process in the second stage.

Each time the program simulates two stage short run variables control charting, an RL
value is determined. As the simulation is repeated, RL and RL’ values are summed, and
counts for thé number of RLs less than or equal to each integer value in the interval

[1, 50000] are kept. Once the repeating of the simulation is complete, the two sums are
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used to calculate the ARL and the SDRL, which is the standard deviation of the number
of subgroups that must be plotted on a control chart before an OOC condition is
| indicated. The counts are used to determine the POD values.
For an OOC situation in the second stage of thé two stage procedure, it is desirable to
ha;/e fhe highest possible POD valueé and the lowest possible ARL. For an IC situation
in the second stage, it is desirable to have the lowest possible POD values and the highest

possible ARL.

P(false alarm), APFL, and SDPFL

The probability of a false alarm (i.e., P(false alarm)) is the probability of a control
.chart indicating an OOC condition when none exists. As mentioned in the Two Stage
Short Run Control Charts subsection of the Control Charts with Modified Limits section
of Chapter II, Hillier’s (1969) methodology, upon which the two stage short run variables
control charts presented in Chapters IV-VII are based, allows for the specification of the
desired probability of a false alarm (i.e., the desired Type I error probability).

The cofnputer program in this chapter calculates the probability of a false alarm when
an OOC situation occurs beyond the first subgroup drawn from the process in the second
stage of the two stage procedure. Each time the program simulates two stage short run

variables control charting under these conditions, a value for P(false alarm) is
determined. As the simulation is repeated, P(false alarm) and (P(false alarm))® values

are summed. Once the repeating of the simulation is complete, these two sums are used
to calculate the APFL and the SDPFL. It is desirable for the P(false alarm) values, and

consequently the APFL, to be as low as possible.
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The Computer Program

The computer program that simulates two stage short run variables control charting is
in Appendix F.1 of this dissertation. It is coded in FORTRAN (1999). The program is
meant to simulate two stage short run variables control charting of a process before
~ initiating it so that one can decide which D&R procedure to use when performing two
stage short run variables control charting during the early run of the process. The D&R
procedures that the program provides are described earlier in the Delete and Revise
(D&R) Procedures section of this -ch‘apter.

The layout of the segments of the simulation program is illustrated in Figure 8.1.
Each segment of the program and its operation is described in this section in reverse

order of appearance in Figure 8.1 (i.e., in the order in which the program operates).

Main Program cc

The main program cc (cc stands for control charting) includes the data entry, file
setup, subroutine calls, summations-of various values determined by the subroutines, final
ARL, SDRL, P(false alarm), APFL, and SDPFL calculations, and the output of
information to a file. It is the only segment of the program requiring user interaction.

The following inputs (in order of appearance in the program) are requested from the

user in main program cc:

e The process mean and standard deviation.
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module random_mod )
subroutine random

module Stage_2 subroutine Xbar R_2

subroutine Xbar_v_2

subroutine Xbar_sqrtv_2

subroutine Xbar_s_2

subroutine X_MR_2

module D_and_R subroutine D_and_R_1

subroutine D_and_R_2

subroutine D_and_R_3

subroutine D_and_R_5

subroutine D_and_R_6

module Stage_1 subroutine Xbar_R_1

subroutine Xbar_v_1

subroutine Xbar_sqrtv_1

subroutine Xbar s 1

subroutine X_MR_1

main program cc

Figure 8.1. Layout of the Segments of the Computer Program

200




The number of times to replicate the two stage short run control charting procedure.
The control chart combination ((X,R), (X, V), (X,vV), (X,s), or (X, MR)).

The subgroup size (not applicable to (X, MR) control charts).

The number of subgroups for Stage 1.

The choice of simulating the process in Stage 1 as IC or OOC. If OOC is chosen,
then the user is requested to enter the choice of a sustained shift in the mean, the
standard deviation, or both. Once the user chooses a:shift type, the program prompts
for the shift size (in the same units as the parameter that has shifted) and the number
~of the first subgroup after the shift in Stage 1.

The choice of simulating the process in Stage 2 as IC or OOC. If OOC is chosen,
then the user is requested to enter the choice of a sustained shift in the mean, the
- standard deviation, or both.. Once the user chooses a shift type, the program prompts
for the shift size (in the same units as the parameter that has shifted) and the number
of the first subgroup after the shift in Stage 2.

The choice of using a different starting value for seed for the Marse-Roberts Uniform
(0, 1) random variate generator (see Marse and Roberts (1983)) coded as subroutine
random in ‘module random;mod.
The D&R procedure (entered as 1, 2, 3, 4, 5, or 6). The program describes the
execution of each D&R procedure in detail for the user.
The name (including the location) of the text file (extension .txt) that has the two
stage short run control chart factors for the control chart combination entered earlier.
The name (including the location) of the text file (extension .txt) that will store the

results from the program.
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The second to last bullet point above requires further explanation. Appendix F.2 of
this dissertation has the five input files that wererused td generate the results in the
Interpretation of Results from the Computer Program section later in fhis chapter. The
first inpﬁt filé contains the first ﬁnd second stage short run control chart factors for
(X,R) charts from Table B.3.4 in Appendix B.3 of this dissertation for n=3 and m: 1-5.
The second input file contains the first and second stage short run control chart factors for
X, v) ‘charts from Table C.3.4 in Appendix C.3 of this dissertation for n=3 and m: 1-5.

The third input file contains the first and second stage short run control chart factors for

(X,~/v) charts, also from Table C.3.4 in Appendix C.3 for n=3 and m: 1-5. The fourth

input file contains the first and second stage short run control chart factors for (X,s)

charts from Table D.3.4 in Appendix D.3 of this dissertation for n=3 and m: 1-5. The
fifth input file contains the first and second stage short run control chart factors for
(X, MR) charts from Table E.3.3 in Appendix E.3 of this dissertation for m: 2-15.

The only difference between the appearance of the input files and their corresponding
tables in the appepdices is that the first stage short run control chart factors in the first
row of each input file are set to zero. This is required in order for the program to

correctly read the second stage short run control chart factors from these input files when
m=1 (in the case of (i, R), (i, v), (i \/; ), and (i, s) control charts) or m=2 (in the

case of (X, MR) control charts).
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Module Stage 1

When the data entry is complete, the first replication of the two stage short run control
charting procedure begins as program execution proceeds from main program cc to
module Stage_1 and the subroutine for the control chart combination entered by the user.

Each-of the five subroutines for Stage 1 control charting performs the following tasks:

e Reads first stage short run control chart factors from the input file.
¢ . Generates first stage subgroups.
e Constructs first stage control limits.

‘e Determines OOC subgroups. '

The tasks in the last two bullet points use Hillier’s (1969) approach. When Stage 1

control charting is complete, program execution returns to main program cc.

~Module D&R

Once program execution returns to main program cc, it immediately proceeds to
module D_and_R and the subroutine for the D&R procedure entered by the user. All six
D&R procedures are described earlier in the Delete and Revise (D&R) Procedures
section of this chapter. When the D&R procedure is complete, program execution returns
to main program cc. At this point, the program assumes that control of the process has

been established.
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Module Stage 2

Once program execution returns to main program cc, required summations are
calculated and required variable assignments are made. Program execution then proceeds
to module Stage_2 and the subroutine for the control chart combination entered by the
user. Each of the five subroutines for Stage 2 control charting performs the following

‘tasks:

e Reads second stage short run control chart factors from the input file.
e Constructs second stage control limits.
e Generates second stage subgroups.

e Determines the run length (RL) and, if applicable, if a false alarm occurs.

The calculations in the last bullet point are based on the signaling capabilities of
combined control charts for centering and spread; i.e., a signal occurs if a subgroup plots
0OO0C on either the control chart for centering or the control chart for spread. The number
of the first subgroup that signals is the RL value. The second stage control limits are not
updated as subgroups are accumulated. Whén an RL value is determined, Stage 2 control

charting is complete and program execution returns to main program cc.

Replications

In main program cc after Stage 2 control charting, required summations are calculated.

When this is complete, execution returns to the location in main program cc immediately
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before the five subroutine calls for Stage 1 control charting to begin the second
replication. The entire procedure for two stage short run control charting just described

repeats for the amount of times entered by the user.

Output

After the last replication, program execution in main program cc proceeds to writing

the following information to the output file:

e The process mean aﬁd standard deviation.

e The number of replications of the two stage short run control charting procedure that
were carried out.

e The control chart combination ((X,R), (i, V), (i, N ), ()_(, s), or (X, MR)).

e The subgroup size (not applicable to (X, MR) control charts).

e The number of subgroups for Stage 1.

¢ The D&R procedure.

e The state of the process in Stage 1: IC or OOC. If it is OOC, then the type of
sustained shift, the shift size (in the same units as the parameter that has shifted), and
the number of the first subgroup after the shift in Stage 1 are given.

e The state of the process in Stage 2: IC or OOC. If it is OOC, then the type of
sustained shift, the shift size (in the same units as the parameter that has shifted), and
the number of the first subgroup after the shift in Stage 2 are given.

e The ARL and SDRL.

e The APFL and SDPFL (if applicable).
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o A tableof POD values.

The information in the first eight bullet points was entered by the user. The values in the
last three bullet points are calculated by-the program. -

In addition to these calculated values, which are explained in the Measurements
section of this chapter, the corﬁputer program determines counts of the number of

occurrences of certain events (when applicable). These events are as follows:

e The number of times out of the total number of replications that D&R 1 iterated more

than once.

e The number of times out of the total number of replications that D&R 2 iterated more
than once for the contrél chart for spread as well as for the control chart for centering.

e The number of ﬁmes éut of the total nu;nber of replications the program skipped a
replication Because the number of subgroups dropped to iero (for two stage short run
(—)Z, R), (i, V), (i, \/; ), (i s), and (X, MR) control charts) or one (for two stage
short run (X, MR) control charts) after OOC subgroups were deleted in a D&R
procedure. |

¢ The number of times out of the total number of replications a D&R procedure was
stopped because the number of subgroups dropped to one (for two stage short run
(i, R), (i, V), (_)Z, Jv ), and (i, s) control charts) or two (for two stage short run

(X, MR) control charts) after OOC subgroups were deleted.

These counts, if applicable, are also written to the output file.
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Once the above information, applicable calculations, and applicable counts have been

written to the output file, execution of the computer program is complete.

Interpretation of Results from the Computer Program

- The fourteen pairs of tables (Tables 8.1a-8.14b) that appear in this section were
constructed from output files generated from sample runs of the computer program. For
example, Tables 8.12a and 8.12b were constructed from the six output files in Appendix
F.3 of this dissertation. In addiition- to the notation already introduced in this chapter,

Tables 8.1a-8.14b use the following notation:

MN - a sustained shift in the mean

e SD - a sustained shift in the standard deviation

e MS - a sustained shift in both the mean and the standard deviation

e Replications (skipped) - the number of replications carried out and, in parentheses,
the number of replications skipped because the number of subgroups dropped to zero
(for two stage short run (X,R), (X, V), (X,/v), (X,s), and (X, MR) control charts)
or one (for two stage short run (X, MR) control .charts) after OOC subgroups were
deleted in éD&R procedure.

e Stops - the number of times out of the total number of replications carried out that a

D&R procedure was stopped because the number of subgroups dropped to one (for

two stage short run (i, R), (i, V), (i, \/-\7 ), and (i, s) control charts) or two (for

two stage short run (X, MR) control charts) after OOC subgroups were deleted.
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The sample runs of the program that generated the information in Tables 8.1a-8.14b

assumed the following:

¢ The process mean and standard deviation are always 0.0 and 1.0, respectively.

e The planned number of replications is always 5000.

e The subgroup size n is always 3 (not applicable to (X, MR) control charts).

¢ The number of'Stage 1 subgfoups (denoted byi m) is always 5 for two stage short run
(i, R), (i, V), ()—(, \/V) , aﬁd (i s) coritrol charts and if is always 15 for two stage
short run (X, MR) control charts This is why the first fouf sample inpﬁt filesin

Appendix F.2 héve two ‘stage short run control chart factors for (i, R), (i, V),

(}—(, \/_v_ ), and (_}Z, s) charts for m up to and including m=5 and the fifth sample input
file in Appendix F.2 has two stage short run control chart factors for (X, MR) charts
for m up to and including m=15.

e A shift in the mean is always of size 1.5 (same units as the mean).

¢ A shift in the standard deviation is always of size 1.0 (same ﬁnits as the standard
deviation).

e A shift in Stage 1 always occurs between subgroups 2 and 3.

e A shift in Stage 2 always occurs between subgroups 10 and 11.

e The process is IC immediately before Stage 2 control charting begins.
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Sample Runs for an IC Process in Stages. 1 and 2

The first 28 sample runs of the program are for the process being IC during both Stage

1 and Stage 2 control charting. Two stage short run control charting for (—)Z, R), (i, V),

(i \/—\7 ), (i s), and (X, MR) charts was simulated using all six D&R procedures for
each control chart combination. The results of these simulations appear in Tables 8.1a-
8.5b.

Since the process is being simulated as IC in Stage 2, it is desirable for the ARL
values in Tables 8.1a-8.5a to be as high as possible. Also, it is desiréble for the P(RL<t)
values in Tables 8.1b-8.5b to be as low as possible (since they correspond to probabilities
of false alarms within t or less subgroups after starting Stage 2 control charting),
especially for small numbers of subgroups (since a short run situation is in effect).

Based on both of these criterié, the information in Tables 8.1a-8.5b indicates that
D&R 4 is, for the most part, the delete and revise procedure of choice. The only
exception is in Table 8.3a, where D&R 1 is the delete and revise procedure of choice
based on the ARL. This implies that, under the assumptions of this simulation, it is
preferable to use subgroups that signal false alarms in the construction of second stage
control limits. The cost, in terms of the loss in reliability of second stage control limits, is
higher by throwing out subgroups that signal false alarms than it is by including them in

the construction of second stage control limits.
Comparing results in Tables 8.1a-8.5a reveals that two stage short run (X, s) control
charts have the highest ARL for D&R 4. Comparing results in Tables 8.1b-8.5b reveals

that two stage short run X, V) control charts have, for most of the shown values of t,
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Table 8.1a. ARL, SDRL, Replications, and Stops for Two Stage
Short Run (X, R) Control Charts with Stage 1: IC and Stage 2: IC

D&R Replications
Procedure ARL SDRL (Spkipped) Stops
1 552.89 701.12 5000 (0) 0
2 550.10 702.51 4999 (1) 1
3 . 552.87 701.72 5000 (0) 0
4 560.49 702.22 5000 (-----) | = --—--
5 552.08 700.49 5000 (0) 0
6 552.03 700.61 5000 (0) 0
# of Times D&R 1 Iterated More Than Once: 22
# of Times D&R 2 Iterated More Than Once for the R Control Chart: 8
# of Times D&R 2 Iterated More Than Once forthe X Control Chart: 70

Table 8.1b. P(RL <t) for Two Stage Short Run

(i, R) Control Charts with Stage 1: IC and Stage 2: IC

¢ Delete and Revise (D&R) Procedure
1 2 3 4 5 6

1 0.00940 | 0.01000 | 0.00900 | 0.00740 | 0.00820 | 0.00860
2 0.01640 | 0.01760 | 0.01600 | 0.01260 | 0.01520 | 0.01560
3 1-0.02540 | 0.02741 | 0.02520 | 0.02040 | 0.02440 | 0.02500
4 0.03360 | 0.03561 | 0.03300 | 0.02700 | 0.03260 | 0.03300
5 0.03820 | 0.04061 | 0.03760 | 0.03140 | 0.03700 | 0.03760
6 0.04400 | 0.04721 | 0.04400 | 0.03580 | 0.04320 | 0.04420
8 0.05380 | 0.05761 | 0.05460 | 0.04520 | 0.05320 | 0.05480
10 0.06400 | 0.06721 | 0.06480 | 0.05420 | 0.06380 | 0.06500
15 0.08880 | 0.09182 | 0.08880 | 0.07820 | 0.08840 | 0.08920
20 0.11040 | 0.11462 | 0.11100 | 0.09960 | 0.11000 | 0.11180
30 0.14040 | 0.14423 | 0.14100 | 0.12980 | 0.13960 | 0.14180
40 0.16480 | 0.16863 | 0.16520 | 0.15360 | 0.16420 | 0.16620
50 0.19180 | 0.19584 | 0.19160 | 0.17980 | 0.19120 | 0.19320
100 0.27440 | 0.27806 | 0.27460 | 0.26480 | 0.27440 | 0.27520
200 0.40740 | 0.41148 | 0.40800 | 0.40060 | 0.40820 | 0.40820
300 0.50200 | 0.50630 | 0.50340 | 0.49600 | 0.50360 | 0.50380
400 0.57760 | 0.58192 | 0.57900 | 0.57320 | 0.57900 | 0.57940
500 0.63500 | 0.63773 | 0.63640 | 0.63120 | 0.63600 | 0.63680
750 0.74900 | 0.75075 | 0.74840 | 0.74560 | 0.74920 | 0.74860
1000 | 0.82100 | 0.82156 | 0.82060 | 0.81840 | 0.82120 | 0.82080
2000 | 0.95460 | 0.95479 | 0.95460 | 0.95280 | 0.95460 | 0.95480
3000 | 0.98480 | 0.98480 | 0.98480 | 0.98440 | 0.98500 | 0.98500
5000 | 0.99840 | 0.99840 | 0.99840 | 0.99860 | 0.99840 | 0.99840
7500 1.00000 | 1.00000 { 1.00000 | 1.00000 | 1.00000 { 1.00000
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Table 8.2a.  ARL, SDRL, Replications, and Stops for Two Stage
Short Run (X, v) Control Charts with Stage 1: IC and Stage 2: IC

D&R Replications
Procedure ARL SDRL (Skipped) Stops
1 543.47 699.56 5000 (0) 1
2 540.76 698.13 5000 (0) 0
3 543.47 699.98 - 5000 (0) 0
4 557.40 705.40 5000 (-----) | = -----
5 542.93 699.56 5000 (0) 0
, 6 543.01 ~ 699.50 5000 (0) 0
# of Times D&R 1 Iterated More Than Once: 14
# of Times D&R 2 Iterated More Than Once for the v Control Chart: 5
# of Times D&R 2 Iterated More Than Once for the X Control Chart: 71

Table 8.2b. P(RL <t) for Two Stage Short Run
(X, v) Control Charts with Stage 1: IC and Stage 2: IC

-

- Delete and Revise (D&R) Procedure

1 2 3 4 5 6
1 0.00900 | 0.01000 | 0.00860 | 0.00640 | 0.00880 | 0.00880
2 0.01580 | 0.01740 | 0.01660 | 0.01080 | 0.01620 | 0.01660
3 0.02460 | 0.02680 | 0.02560 | 0.01780 ! 0.02480 | 0.02580
4 10.03200 | 0.03520 | 0.03340 | 0.02380 | 0.03240 | 0.03400
5 0.03740 | 0.04060 | 0.03860 | 0.02800 | 0.03760 | 0.03940
6 0.04440 | 0.04660 | 0.04460 | 0.03360 | 0.04400 | 0.04560
8 0.05320 | 0.05640 | 0.05400 | 0.04180 | 0.05300 | 0.05520
10 0.06380 | 0.06680 | 0.06520 | 0.05080 | 0.06420 | 0.06600
15 0.09140 | 0.09420 | 0.09220 | 0.07640 | 0.09180 | 0.09300
20 0.11180 | 0.11520 | 0.11340 | 0.09840 | 0.11220 | 0.11340
30 0.14180 | 0.14520 | 0.14340 | 0.12740 | 0.14220 | 0.14360
40 0.16640 | 0.17020 | 0.16760 | 0.15060 | 0.16680 | 0.16840
50 0.19260 | 0.19640 | 0.19360 | 0.17700 | 0.19300 | 0.19440
- 100 0.28300 | 0.28740 | 0.28400 | 0.26980 | 0.28380 | 0.28420
200 0.40940 | 0.41140 | 0.40900 | 0.39440 | 0.41020 | 0.40940
300 0.50240 | 0.50420 | 0.50280 | 0.49080 | 0.50320 | 0.50380
400 0.58040 | 0.58260 | 0.58100 | 0.57040 | 0.58140 | 0.58120
500 0.64260 | 0.64360 | 0.64220 | 0.63180 | 0.64320 | 0.64300
750 0.75760 | 0.75800 | 0.75720 | 0.75060 | 0.75800 | 0.75700
1000 | 0.82920 | 0.83040 | 0.82880 | 0.82460 | 0.82960 | 0.82920
2000 | 0.95560 | 0.95620 | 0.95580 | 0.95420 | 0.95560 | 0.95580
3000 | 0.98440 | 0.98460 | 0.98420 | 0.98340 | 0.98440 | 0.98440
5000 | 0.99860 | 0.99860 | 0.99860 | 0.99860 | 0.99860 | 0.99860
7500 | 1.00000 | 1.00000 | 1.00000 | 1.00000 ; 1.00000 | 1.00000
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‘Table 8.3a. ARL; SDRL, Replications, and Stops for Two Stage
-Short Run (i, \/;) Control Charts with Stage 1: IC and Stage 2: IC

D&R Replications
Procedure ARL SDRL (Skipped) Stops
1 :566.68 758.05 5000 (0) 8
2 550.63 675.26 5000 (0) 3
3 555.38 683.76 5000 (0) 0
4 561.88 682.24 5000 (-==---) | -—--
5 555.38 682.22 5000 (0) 0
6 555.38 - 683.51 5000 (0) 0
# of Times D&R 1 Iterated More Than Once: 93
# of Times D&R 2 Iterated More Than Once for the \/; Control Chart: 28
# of Times D&R 2 Iterated More Than Once for the X Control Chart: 60

Table 8.3b. P(RL < t) for Two Stage Short Run

(X,/v) Control Charts with Stage 1: IC and Stage 2: IC

¢ Delete and Revise (D&R) Procedure
1 2 3 4 5 6

1 0.00680 | 0.00800 | 0.00760 | 0.00620 | 0.00740 | 0.00720
2 | 0.01060 | 0.01260 | 0.01240 | 0.00980 | 0.01160 | 0.01200
3 0.01740 | 0.02020 | 0.01900 | 0.01600 | 0.01780 | 0.01880
4 0.02260 | 0.02580 | 0.02460 | 0.02080 | 0.02380 | 0.02520
5 0.02660 | 0.03020 | 0.02860. | 0.02480 | 0.02760 | 0.02920
6 0.03240 | 0.03580 | 0.03420 | 0.03020 | 0.03320 | 0.03480
8 0.04100 | 0.04400 | 0.04240 | 0.03800 | 0.04140 | 0.04280
10 0.05040 | 0.05340 | 0.05180 | 0.04660 | 0.05080 | 0.05220
15 0.07520 | 0.07780 | 0.07560 | 0.06960 | 0.07440 | 0.07600
20 0.09680 | 0.09920 | 0.09720 | 0.09020 | 0.09580 | 0.09720
30 | 0.12340 | 0.12520 | 0.12360 | 0.11660 | 0.12220 | 0.12320
40 0.14660 | 0.14800 | 0.14620 | 0.13900 | 0.14520 | 0.14640
50 0.17040 | 0.17180 | 0.17040 | 0.16280 | 0.16900 | 0.17040
100 0.25760 | 0.26100 | 0.25900 | 0.25220 | 0.25760 | 0.25880
200 0.38660 | 0.39080 | 0.38820 | 0.38140 | 0.38720 | 0.38760
300 0.48040 | 0.48540 | 0.48380 | 0.47780 | 0.48320 | 0.48380
400 0.56220 | 0.56560 | 0.56560 | 0.55920 | 0.56540 | 0.56560
500 0.62380 | 0.62800 | 0.62760 | 0.62140 | 0.62760 | 0.62800
750 0.74480 | 0.74920 | 0.74820 | 0.74380 | 0.74860 | 0.74820
1000 | 0.82080 | 0.82440 | 0.82400 | -0.82020 | 0.82400 | 0.82400
2000 | 0.95520 | 0.95800 | 0.95680 | 0.95620 | 0.95680 | 0.95680
5000 | 0.99800 | 0.99900 | 0.99900 | 0.99900 | 0.99900 | 0.99900
10000 | 0.99980 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000
30000 ;| 1.00000 |} 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000
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. Table:8.4a. ARL, SDRL, Replications, and Stops for Two Stage
Short Run (X,s) Control Charts with Stage 1: IC and Stage 2: IC

D&R Replications
Procedure ARL SDRL (Skipped) Stops
1 562.52 709.58 5000 (0) 0
2 561.89 .709.13 ~ 5000 (0) 1
3 561.99 706.56 5000 (0) 0
4 566.35 702.87 5000 (~----) | = --—-
5 562.51 - 709.61 5000 (0) 0
6 56199 | 70742 5000 (0) 0
# of Times D&R 1 Tterated More Than Once: 17
# of Times D&R 2 Iterated More Than Once for the s Control Chart: 8
# of Times D&R 2 Tterated More Than Once for the X Control Chart: 65

Table 8.4b. P(RL <t) for Two Stage Short Run
(X,s) Control Charts with Stage 1: IC and Stage 2: IC

¢ Delete and Revise (D&R) Procedure
1 2 3 4 5 6

1 0.00940 | 0.01000 | 0.00860 | 0.00800 | 0.00860 | 0.00840
2 | 0.01700 | 0.01780 | -0.01580 | 0.01280 | 0.01600 | 0.01580
3 0.02520 | 0.02640 | 0.02420 | 0.02120 | 0.02420 | 0.02420
4 0.03120 | 0.03260 | 0.03020 | 0.02600 | 0.03020 | 0.03040
5 | 0.03640 | 0.03820 { 0.03560 | 0.03040 | 0.03540 | 0.03560
6 0.04320 | 0.04560 | 0.04320 | 0.03680 | 0.04260 | 0.04320
8 0.05260 | 0.05560 | 0.05320 | 0.04540 | 0.05200 | 0.05320
10 0.06220 | 0.06500 | 0.06260 | 0.05420 | 0.06140 | 0.06240
15 0.08540 | 0.08800 | 0.08600 | 0.07680 | 0.08480 .| 0.08560
20 0.10620 - { 0.11000 { 0.10780 | 0.09800 | 0.10560 | 0.10760
30 0.13460 | 0.13780 | 0.13600 | 0.12660 | 0.13380 | 0.13580
40 0.15960 | 0.16340 | -0.16100 | 0.15080 | 0.15900 | 0.16120
50 -0.18800 | 0.19180 | 0.18900 | 0.17840 | 0.18740 | 0.18960
100 0.27540 | 0.27800 | 0.27640 | 0.26680 | 0.27520 | 0.27600
200 0.40340 | 0.40480 | 0.40380 | 0.39780 | 0.40300 | 0.40320
300 0.49200 | 0.49400 | 0.49280 | 0.48880 | 0.49240 | 0.49300
400 0.57040 | 0.57160 | 0.57100 | 0.56640 | 0.57100 | 0.57140
500 0.62740 | 0.62860 | 0.62800 | 0.62420 | 0.62780 | 0.62840
750 0.74240 | 0.74200 | 0.74160 | 0.74020 | 0.74240 | 0.74200
1000 | 0.81700 | 0.81660 | 0.81640 | 0.81620 | 0.81700 | 0.81660
2000 | 0.95400 | 0.95420 | 0.95400 | 0.95380 | 0.95400 | 0.95400
3000 0.98380 | 0.98380 | 0.98420 | 0.98420 | 0.98380 | 0.98400
5000 | 0.99840 | 0.99860 | 0.99860 | 0.99880 | 0.99840 | 0.99860
7500 1.00000 1.00000 | 1.00000 1.00000 1.00000 1.00000
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Table 8.5a. ARL, SDRL, Replications, and Stops for Two Stage
Short Run (X, MR) Control Charts with Stage 1: IC and Stage 2: IC

D&R Replications
Procedure ARL SDRL (Spkipped) Stops
2 539.78 705.27 5000 (0) 0
3 540.46 705.74 5000 (0) 0
4 544.85 -709.22 5000 (-=---) | . -----
6 540.76 705.61 5000 (0) 0

# of Times D&R 2 Iterated More Than Once for the MR Control Chart: 13

# of Times D&R 2 Iterated More Than Once for the X Control Chart: 51

Table 8.5b. P(RL <t) for Two Stage Short Run

(X, MR) Control Charts with Stage 1: IC and Stage 2: IC

¢ Delete and Revise (D&R) Procedure
2 3 4 6

1 0.00340 | 0.00300 | 0.00220 | 0.00260

2 0.01200 | 0.01120 | 0.01000 | 0.01080

3 0.01840 | 0.01740 | 0.01620 | 0.01700

4 0.02500 | 0.02380 | 0.02260 | 0.02360

5 0.02940 | 0.02820 | 0.02680 | 0.02800

6 0.03540 | 0.03360 | 0.03180 | 0.03340

8 0.04440 | 0.04260 | 0.03960 | 0.04220
10 0.05480 | 0.05320 | 0.04940 | 0.05260
15 0.07660 | 0.07560 | 0.07080 | 0.07520
20 0.09580 | 0.09480 | 0.08940 | 0.09440
30 0.12960 | 0.12800 | 0.12160 | 0.12780
40 0.16020 | 0.15860 | 0.15320 | 0.15820
50 0.18460 | 0.18320 { 0.17760 | 0.18280
100 0.28000 | 0.27940 | 0.27380 | 0.27880
200 0.42000 | 0.41960 | 0.41580 | 0.41920
300 0.51940 | 0.51940 | 0.51540 | 0.51920
400 0.59560 | 0.59560 | 0.59200 | 0.59540
500 0.65620 | 0.65600 | 0.65280 | 0.65620
750 0.76240 | 0.76220 | 0.76060 | 0.76200
1000 | 0.83240 | 0.83220 | 0.83120 | 0.83200
2000 | 0.95000 | 0.94980 | 0.94940 | 0.94960
3000 | 0.98380 | 0.98380 | 0.98340 | 0.98380
5000 | 0.99860 | 0.99860 | 0.99840 | 0.99860
7500 | 0.99980 | 0.99980 | 0.99980 | 0.99980
10000 | 1.00000 | 1.00000 | 1.00000 | 1.00000
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the lowest P(RL < t) values for D&R 4. These results imply that, under the assumptions
of this simulation, different control chart combinations are preferable depending on the ‘
measurement used.

The information in-Tables 8.1b-8.4b also indicates that the P(RL < t) values when t=1
are reasonably close to the theoretical probability of a false alarm. Assuming
. independence between the control charts for centering and spread, the theoretical

probability of a false-alarm (i.e.; P(false alarm)) may be calculated using equation (8.2):

P(false alarm) = a’Cen + (aSpreadUCL + a’SpreadLCL ) - a’Cen ) (a’SpreadUCL + aSpreadLCL) (82)
where

Olc., : P(false alarm) on the control chart for centering

Olgresqucy, - P(false alarm) on the control chart for spread above the upper control limit

(UCL)

Olgpreaace - P(false alarm) on the control chart for spread below the lower control limit

(LCL)

For the sample runs of the program, o, =0.0027, o, g, =0.005, and

Qlgpreaace = 0-001. This means that P(false alarm), as calculated by equation (8.2), is

equal to 0.0086838.
For example, the P(RL. < t) value from Table 8.1b for D&R 1 and t=1 is 0.00940. The
fact that this value is reasonably close to the theoretical probability of a false alarm is not

surprising. As was mentioned in the P(false alarm), APFL, and SDPFL subsection of the

215



Measurements section of this chapter, Hillier’s (1969) methodology, upon which the two
stage short run variables control charts preseﬁted ih Chapters Iv-vIl aré based, allows for
the specificatibn of the desired probability of a false alarm.

In Table 8.5b, each of the P(RL<?t) Qalues for t=1 are much lower than 0.0086838.
The closest one is 60.847% smaller than 0.0086838. However, these lower P(RL < t)
values for t=1 come at the pn'ce of having the lowest ARL for D&R 4 among Tables
8.1a—8.5a7 This is an exar‘nplelof the tradeoff ment’ionedvby Del Castillo (1995) between
having a low probability of a false alarm and a high probability of detecting a special
cause signal inherent with two stage short‘run control charts. -

It should be noted that thé information'in Tables 8.1>a-8.5a7 also indicates that D&R 1
and D&R 2 are iterating more than once. These multiple iterations seem to create
conditions causing ‘replications to b‘e skipped and the chosen D&R procedure to be
stopped. Also, if one were té construct confidence inter_vals using the ARL and SDRL
values in Tables 8;1a-8.5a, then, depending on the confidence level chosen, the ARL

results in Tables §8.1a-8.5a may not be statistically significantly different.

Sample Runs for an OOC Process in Stage 1 and an IC Process in Stage 2

The next 18 sample runs of the program are for the process being OOC during Stage 1
control charting and IC during Stage 2 control charting. Two stage short run control
charting for (X,R) charts was simulated using all six D&R procedures for each OOC

condition (MN, SD, MS). The results of these simulations appear in Tables 8.6a-8.8b.
As in the previous subsection, since the process is being simulated as IC in Stage 2, it

is desirable for the ARL values in Tables 8.6a-8.8a to be as high as possible. Also, it is
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“Table 8.6a. ARL, SDRL, Replications, and Stops for Two Stage
Short Run (X, R) Control Charts with Stage 1: OOC (MN) and Stage 2: IC

D&R Replications
Procedure ARL SDRL (Spkipped) Stops
‘ 1 332.74 833.38 4996 (4) 10
2 314.33 515.14 4996 (4) 10
3 299.30 48734 | 5000 (0) 0
4 302.32 492.05 5000 (-----) | = ==-e-
5 309.47 508.73 4999 (1) 0
6 303.24 492.75 5000 (0) 0
# of Times D&R 1 Iterated More Than Once: 108
# of Times D&R 2 Iterated More Than Once for the R Control Chart: 7
# of Times D&R 2 Iterated More Than Once for the X Control Chart: 626

Table 8.6b. P(RL < t) for Two Stage Short Run (5(-, R)
Control Charts with Stage 1: OOC (MN) and Stage 2: IC

. Delete and Revise (D&R) Procedure

t 1 2 3 4 5 6

1 | 0.03883 | 003823 | 0.03860 | 0.03440 | 0.03841 | 0.03640
2 1 006385 | 0.06485 | 0.06840 | 0.06140 | 0.06601 | 0.06540
3 | 008527 | 0.08667 | 0.09080 | 0.08220 | 0.08882 | 0.08660
4 | 010248 | 0.10388 | 0.10960 | 0.09980 | 0.10582 | 0.10440
5 ] 011209 | 0.11629 | 0.12160 | 0.10980 | 0.11522 | 0.11600
6 | 0.12830 | 0.13151 | 0.13840 | 0.12620 | 0.13263 | 0.13380
8 | 0.15753 | 0.15073 | 0.16660 | 0.15580 | 0.16343 | 0.16420
10 | 0.17734 | 0.17974 | 0.18840 | 0.17720 | 0.18344 | 0.18600
15 | 0.22778 | 0.23058 | 024360 | 0.22980 | 023365 | 0.23580
20 | 026301 | 026821 | 0.28000 | 0.26680 | 0.26885 | 0.27440
30 | 030885 | 0.31405 | 032520 | 031500 | 0.31546 | 0.31820
40 | 034783 | 0.35488 | 0.36600 | 035640 | 035547 | 0.35860
50 | 038131 | 039071 | 040180 | 039260 | 038968 | 0.39560

100 0.49420 | 0.50420 } 0.51020 | 0.50620 | 0.50050 | 0.50480

200 0.61489 | 0.62470 | 0.62760 | 0.62480 | 0.62252 | 0.62520

300 0.69456 | 0.69936 | 0.70520 | 0.70260 | 0.70214 | 0.70540

400 0.75120 | 0.75600 | 0.76400 | 0.76240 | 0.75995 | 0.76480

500 0.79223 | 0.79664 | 0.80820 | 0.80660 | 0.80096 | 0.80480

750 0.86649 | 0.87050 | 0.87960 | 0.87860 | 0.87297 | 0.87700

1000 | 091173 | 0.91273 | 0.91920 | 091820 | 0.91518 | 0.91820

2000 | 0.98159 | 0.98199 | 0.98480 | 0.98460 -| 0.98380 | 0.98420

5000 | 0.99860 | 0.99980 | 0.99980 | 0.99960 | 0.99920 | 0.99980

10000 | 0.99960 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000

50000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000
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Table 8.7a. ARL, SDRL, Replications, and Stops for Two Stage
Short Run (X, R) Control Charts with Stage 1: OOC (SD) and Stage 2: IC

D&R Replications
Procedure ARL SDRL - (Skipped) Stops
1 463.12 561.26 5000 (0). 5
2 455.32 549.20 5000 (0) 4
3 -453.95 546.51 5000 (0) 0
4 453.07 533.20 5000 (-—---) | = -
5 460.32 554.43 5000 (0) 0
6 455.49 549.37 5000 (0) 0
# of Times D&R 1 Iterated More Than Once: 68
# of Times D&R 2 Iterated More Than Once for the R Control Chart: 29
# of Times D&R 2 Iterated More Than Once for the X Control Chart: 196

Table 8.7b. P(RL < t) for Two Stage Short Run (X, R)
Control Charts with Stage 1: OOC (SD) and Stage 2: IC

¢ Delete and Revise (D&R) Procedure
1 2 3 4 5 6

1 0.00260- | 0.00360 | 0.00320 | 0.00200 | 0.00200 | 0.00240
2 -0.00540 | 0.00740 | 0.00580 | 0.00420 | 0.00480 | 0.00480
3 '0.01000 | 0.01340 | 0.01120 | 0.00860 | 0.01000 | 0.01020
4 -0.01420 | 0.01760 | 0.01460 | 0.01220 | 0.01380 | 0.01400
5 0.01680 | 0.02080 | 0.01740 | 0.01420 | 0.01620 | 0.01640
6 0.02060 | 0.02400 | 0.02080 | 0.01640 | 0.01940 | 0.01960
8 0.02740 | 0.03140 | 0.02780 | 0.02240 | 0.02600 | 0.02660
10 0.03460 | 0.03760 | 0.03400 | 0.02740 | 0.03300 | 0.03280
15 0.04960 | 0.05260 | 0.04900 | 0.04040 | 0.04780 | 0.04740
20 0.06260 | 0.06540 | 0.06180 | 0.05300 | 0.06100 | 0.06020
30 0.08660 | 0.09000 | 0.08720 | 0.07660 | 0.08540 | 0.08520
40 0.11300 | 0.11700 | 0.11500 | 0.10340 | 0.11320 | 0.11240
50 0.13860 | 0.14080 | 0.13940 | 0.12720 | 0.13800 | 0.13680
100 0.23880 | 0.24300 | 0.24300 | 0.22720 | 0.23800 | 0.23980
200 0.40080 | 0.40600 | 0.40600 | 0.39440 | 0.40000 | 0.40460
300 0.52000 | 0.52200 | 0.52300 | 0.52000 | 0.52020 | 0.52260
400 0.61660 | 0.62120 | 0.62060 | 0.61940 | 0.61600 | 0.62080
500 0.69160 | 0.69600 | 0.69780 | 0.69860 | 0.69260 | 0.69740
750 0.81100 | 0.81400 | 0.81620 | 0.81600 | 0.81160 | 0.81640
1000 | 0.87980 | 0.88220 | 0.88280 | 0.88600 | 0.88140 | 0.88320
2000 | 0.97400 | 0.97580 | 0.97540 | 0.97600 | 0.97540 | 0.97540
3000 | 0.99220 | 0.99360 | 0.99320 | 0.99400 | 0.99280 | 0.99340
5000 | 0.99920 | 0.99920 | 0.99920 | 0.99940 | 0.99920 | 0.99920
7500 1.00000 | 1.00000 | 1.00000 | 1.00000 { 1.00000 1.00000
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Table 8.8a. ARL, SDRL, Replications, and Stops for Two Stage
Short Run (X, R) Control Charts with Stage 1: OOC (MS) and Stage 2: IC

D&R Replications
Procedure ARL SDRL (Spkipped) Stops

1 431.11 610.46 4992 (8) 9
2 407.63 494.82 4997 (3) 13
3 384.80 469.57 5000 (0) 0
4 401.66 480.23 5000 (-----) ———-
5 407.99 491.72 5000 (0) 0
6 400.00 488.78 5000 (0) 0

# of Times D&R 1 Iterated More Than Once: 126

# of Times D&R 2 Iterated More Than Once for the R Control Chart: 29

# of Times D&R 2 Iterated More Than Once for the X Control Chart: 427

Table 8.8b. P(RL <t) for Two Stage Short Run (i, R)
Control Charts with Stage 1: OOC (MS) and Stage 2: IC

Delete and Revise (D&R) Procedure

t 1 2 3 4 5 6
1| 000501 | 0.00981 | 0.01240 | 0.00700 | 0.00580 | 0.00840
2 | 001062 | 001701 | 0.02000 | 0.01100 | 0.01180 | 0.01440
3 | 001643 | 002341 | 0.02920 | 0.01760 | 0.01880 | 0.02160
4 | 001983 | 0.02802 | 0.03440 | 002120 | 0.02280 | 0.02620
5 1002284 | 003262 | 0.03940 | 0.02460 | 0.02680 | 0.03040
6 | 002704 | 003662 | 0.04500 | 0.02880 | 0.03180 | 0.03560
8 | 003466 | 0.04623 | 0.05580 | 0.03700 | 0.03980 | 0.04500
10 | 0.03986 | 0.05483 | 0.06400 | 0.04260 | 0.04680 | 0.05360
15 | 005560 | 0.07324 | 0.08540 | 0.05880 | 0.06360 | 0.07320
20| 007031 | 0.08905 | 0.10100 | 0.07300 | 0.07760 | 0.08900
30 | 0.10076 | 0.11847 | 0.13000 | 0.09980 | 0.10700 | 0.11800
40 | 0.12881 | 0.14509 | 0.15900 | 0.12800 | 0.13520 | 0.14640
50 | 0.15625 | 0.17150 | 0.18720 | 0.15580 | 0.16240 | 0.17340
100 | 026342 | 028177 | 0.29860 | 027000 | 0.27200 | 0.28580
200 | 042808 | 044187 | 0.45960 | 043540 | 0.43980 | 0.45000
300 | 0.54868 | 056234 | 0.58080 | 0.56100 | 0.55980 | 0.57060
400 | 064744 | 0.65799 | 0.67560 | 0.65960 | 0.65640 | 0.66500
500 | 072135 | 072964 | 0.74580 | 0.73360 | 0.73060 | 0.73760 |
750 | 0.83373 | 0.83910 | 0.85300 | 0.84640 | 0.84120 | 0.84520
71000 | 0.89724 | 0.90014 | 0.90960 | 090700 | 0.90240 | 0.90380
2000 | 0.97897 | 0.98239 | 0.08560 | 0.98420 | 0.98280 | 0.98260
5000 | 0.99840 | 0.99980 | 0.99980 | 0.99960 | 0.99980 | 0.99980
10000 | 0.99980 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000
20000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000
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desirable for the P(RL < t) values in Tables 8.6b-8.8b to be as low as possible (since they
correspond to probabilities of false alarms within t or less subgroups after starting Stage 2
control charting), especially for small numbers of subgroups (since a short run situation is
in effect). -

Based on the ARL, Tables 8.6a-8.8a indicate that D&R 1 is the delete and revise
procedure of choice, regardless of the OOC condition in Stage 1. However, the SDRL
values for D&R 1 are higher than those for the other D&R procedures. The ARL for
D&R 1 in Table 8.7a is higher than the ARL values for D&R 1 in Tables 8.6a and 8.8a.
The ARL for D&R 1 in Table 8.6a is the lowest of the three. These results imply that,
under the assumptions of this simulation, the type of OOC condition in Stage 1 has an
-affect on the IC ARL in Stage 2. Additionally, the ARL values for éach of the six D&R
procedures in Table 8.1a are higher than the respective ARL values in Tables 8.6a-8.8a.
This result implies that, under the assumptions of this simulation, an OOC condition in
Stage 1 causes a reduction in the IC ARL in Stage 2, regardless of the D&R procedure
used.

The choice of the appropriate D&R procedure based on the P(RL < t) values in Tables
8.6b-8.8b varies dépgnding on the OOC cc.mditionvas well as the subgroup number t. In
Table 8.6b, D&R 4 results in the lowest P(RL < t) values for shown values of t < 10. For
shown values of t > 10, D&R 1 is the delete and revise procedure of choice. In Table
8.7b, D&R 4 again results in the lowest P(RL < t) values, but for shown values of t < 300.
For most of the shown values of t 2 300, D&R 1 is the delete and revise procedure of
choice. In Table 8.8b, D&R 1 results in the lowest P(RL < t) values for each of the

shown values of t except t: 30, 40, 50. Since D&R 1 is not the delete and revise
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procedure of choice in Tables 8.6b and 8.7b for shown values of t < 10 and t < 200,
respectively, this is an example of how the ARL can be misleading in choosing the
appropriate D&R procedure to use in a short run situation.

The results from Tables 8.6b and 8.7b imply that, under the assumptions of this
- simulation, it is preferable tc use subgroups that signal shifts in either the mean or the
standard deviation in the construction of second stage contrél limits. The cost, in terms
of the loss in reliability of second stage control limits, is higher by throwing out
subgroups that signal shifts in either the mean or the standard deviation than it is by
including them in the construction of second stage control limits.

The P(RL < t) values for shown values of t <300 for D&R 4 and for shown values of
t 2 300 for D&R 1 in Table 8.7b are lower than the lowest P(RL. < t) values in Tables
8.6b and 8.8b. The lowest P(RL < t) values in Table 8.6b are higher than those in Tables
8.7b and 8.8b. These results imply that, under the assumptions of this simulation, the
type of OOC condition in Stage 1 has an affect on the P(RL <t) values in Stage 2.
Additionally, the lowest P(RL < t) values in Table 8.1b are higher than those in Table
8.7b for shown values of t <200 and in Table 8.8b for shown values of t < 100. These
results imply that, under the assumptions of this simulation, having Stage 1 IC does not
necessarily result in Stage 2 control limits with the lowest P(RL < t) values.

An issue of concern is the P(RL <t) values when t=1. In Table 8.6b, each of these
values is much larger than 0.0086838, the theoretical probability of a false alarm. The
closest one is 396.140% larger than 0.0086838. In Table 8.7b, each of these values is
much smaller than 0.0086838. The closest one is 241.217% smaller than 0.0086838. In

Table 8.8b, some of these values are reasonably close to 0.0086838, while others are not.
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These results are in contrast to the P(RL < t) values when t=1 in Table 8.1b. Clearly,
uﬁgler the assumptions of fﬁis simulation, an‘OOC condition as"well as the type of OOC
condition in Stage 1 has a significant effect on the P(RL <t) values‘ when t=1 in Stage 2.
Again, as in»th.e'previous subsection, the informatibon in Tables 8.6a-8.8a indicates that
D&R 1 and D&R 2 are iterating more than once. These multip}e iterations seem to create
~ conditions causing replications to be skjppedvand the chosen D&R procedure to be
stopped. Also, if one‘were to construct confidence intervals using the ARL and SDRL
values in Tables 8.6a-8.8a, then, depending on the confidence level chosen, the ARL

results in Tables 8.6a-8.8a may not be statistically significantly different.

Sarriple Runs for an IC Process in Stage 1 and an OOC Process in Stage 2

‘The next 18 sample runs of the program are for the process being IC during Stage 1
control charting and OOC during Stage 2 control charting. Two stage short run control
charting for (X,R) charts was simulated using all six D&R procedures for each OOC
condition (MN, SD, MS). The results of these simulations appéar in Tables 8.9a-8.11b.

Since the process is being simulated as OOC in Stage 2, it is desirable» for the ARL
and, as always, the APFL lvalues in Tables 8.9a-8.11a to be as low as possible. Also, it is
desirable for the P(RL < t) values in Tables 8.9b-8.11b to be as high as possible (since
they correspond to probabilities of detecting special causes within t or less subgroups
after the shift in Stage 2), especially for small numbers of subgroups (since a short run
situation is in effect).

Based on the ARL, D&R 2 (in Tables 8.9a and 8.11a) and D&R 4 (in Table 8.10a) are

the delete and revise procedures of choice. The ARL for D&R 2 in Table 8.11a is lower



Table 8.9a. ARL, SDRL, APFL, SDPFL, Replications, and Stops for Two
Stage Short Run (X, R) Control Charts with Stage 1: IC and Stage 2: OOC (MN)

D&R Replications

Procedure | ARL SDRL | APFL | SDPFL (Spkippe a | Stops

1 95.01 241.02 | 0.01116 | 0.05639 | _ 5000 (0) 1

2 9439 | 24051 | 0.01252 | 0.06003 | 5000 (0) 1

3 95.08 | 241.31 | 0.01098 | 0.05263 | 5000 (0) 0

4 9500 | 240.54 | 0.00738 | 0.03638 | 5000 (—-) | —

5 95.01 24149 | 0.01064 | 0.05253 | 5000 (0) 0

6 94.63 | 24054 | 0.01092 | 0.05120 | 5000 (0) 0

# of Times D&R 1 Iterated More Than Once: 19
# of Times D&R 2 Iterated More Than Once for the R Control Chart: 10

| # of Times D&R 2 Tterated More Than Once for the X Control Chart: 82

Table 8.9b. P(RL <t) for Two Stage Short Run (X, R)

Control Charts with Stage 1: IC and Stage 2: OOC (MN)

¢ Delete and Revise (D&R) Procedure
1 2 3 4 5 6

1 0.14340 | 0.14800 | 0.14600 | 0.13480 | 0.14320 | 0.14620
2 0.22360 | 0.22600 | 0.22500 | 0.21380 | 0.22360 | 0.22560
3 - 0.27540 | 0.27960 | 0.27940 | 0.26720 | 0.27600 | 0.27900
4 0.31760 | 0.32120 | 0.32160 | 0.31060 | 0.31800 | 0.32040
5 0.35140 | 0.35580 | 0.35540 | 0.34480 | 0.35300 | 0.35440
6 0.38120 | 0.38520 | 0.38500 | 0.37500 | 0.38300 | 0.38380
8 0.42780 | 0.43200 | 0.43160 | 0.42160 | 0.43040 | 0.43000
10 0.46400 | 0.46840 |- 0.46720 | 0.45820 | 0.46600 | 0.46580
15 0.52920 | 0.53380 | 0.53160 | 0.52700 | 0.53120 | 0.53140
20 | 0.57820 | 0.58260 | 0.58080 | 0.57800 | 0.58000 | 0.58060
30 0.64700 | 0.65020 | 0.64720 | 0.64600 | 0.64760 | 0.64760
40 0.68480 | 0.68740 | 0.68480 | 0.68400 | 0.68540 | 0.68540
50 0.71320 | 0.71500 | 0.71320 | 0.71240 | 0.71360 | 0.71400
100 0.80120 | 0.80180 | 0.80140 | 0.80180 | 0.80180 | 0.80160
- 200 0.87360 | 0.87500 | 0.87340 | 0.87340 | 0.87420 | 0.87380
300 091100 | 0.91200 | 0.91100 | 0.91240 | 091120 | 0.91160
400 0.93520 | 0.93600 | 0.93580 | 0.93580 | 0.93500 | 0.93620
500 0.95180 | 0.95200 | 0.95180 | 0.95180 | 0.95160 | 0.95220
750 0.97420 | 0.97400 | 0.97340 | 0.97380 | 0.97360 | 0.97400
1000 | 0.98500 | 0.98540 | 0.98520 | 0.98540 | 0.98500 | 0.98540
2000 | 0.99780 | 0.99780 | 0.99780 | 0.99780 | 0.99780 | 0.99780
3000 | 0.99920 | 0.99920 | 0.99920 | 0.99920 | 0.99920 | 0.99920
4000 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000
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Table 8.10a.- ARL, SDRL, APFL, SDPFL, Replications, and Stops for Two
Stage Short Run (X, R) Control Charts with Stage 1: IC and Stage 2: OOC (SD)

D&R : Replications

Procedure | ARL SDRL | APFL | SDPFL (Spkippe a | Stops

1 23.24 9378 | 0.01100 | 0.05779 | 5000 (0) 1

2 22.38 89.05 | 0.01178 | 0.05779 | 5000 (0) 2

3 22.56 89.39 | 0.01056 | 0.04953 | 5000 (0) 0

4 22.16 86.67 | 0.00736 | 0.03421 | 5000 (---—) | -

5 22.84 9274 | 0.00994 | 0.04787 | 5000 (0) 0

6 22.57 89.39 | 0.01052 | 0.04839 | 5000 (0) 0

# of Times D&R 1 Iterated More Than Once: 28
# of Times D&R 2 Iterated More Than Once for the R Control Chart: 10

| # of Times D&R 2 Iterated More Than Once for the X Control Chart: 96

Table 8.10b. P(RL <t) for Two Stage Short Run
(X,R) Control Charts with Stage 1: IC and Stage 2: OOC (SD)

¢ - Delete and Revise (D&R) Procedure

1 2 3 4 5
1 0.18840 | 0.18860 | 0.18760 | 0.17680 | 0.18860 | 0.18880
2 0.31400 | 0.31380 | 0.31300 | 0.30000 | 0.31460 | 0.31380
3 0.40000 | 0.39980 | 0.39960 | 0.38880 | 0.40160 | 0.40040
4 0.46680 | 0.46780 | 0.46620 | 0.45780 | 0.46800 | 0.46720
5 0.51900 | 0.52000 | 0.51980 | 0.51160 | 0.52140 | 0.52040
6 0.56100 | 0.56200 | 0.56140 | 0.55500 | 0.56320 | 0.56200
8 0.62960 | 0.63080 | 0.62980 | 0.62600 | 0.63100 | 0.63020
10 0.67980 | 0.68040 |. 0.67920 | 0.67500 | 0.68080 | 0.67940
15 0.75680 | 0.75940 | 0.75940 | 0.75680 | 0.75900 | 0.75920
20 0.80380 | 0.80800 | 0.80620 | 0.80480 | 0.80480 | 0.80600
30 0.86120 | 0.86340 | 0.86320 | 0.86060 | 0.86200 | 0.86280
40 0.89240 | 0.89460 | 0.89440 | 0.89260 | 0.89380 | 0.89420
50 0.91340 | 0.91640 | 0.91500 | 0.91420 | 0.91460 | 0.91500
100 0.96120 | 0.96260 | 0.96220 | 0.96220 | 0.96220 | 0.96220
200 0.98220 | 0.98300 | 0.98280 | 0.98400 | 0.98280 | 0.98280
300 0.98940 | 0.99000 | 0.98960 | 0.99080 | 0.98980 | 0.98960
400 0.99280 | 0.99340 | 0.99320 | 0.99400 | 0.99320 | 0.99320
500 0.99520 | 0.99540 | 0.99540 | 0.99620 | 0.99540 | 0.99540
750 0.99680 | 0.99720 | 0.99720 | 0.99760 | 0.99700 | 0.99720
1000 | 0.99780 | 0.99800 | 0.99800 | 0.99800 | 0.99780 | 0.99800
2000 0.99940 | 0.99940 | 0.99940 | 0.99940 | 0.99940 | 0.99940
3000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

224




Table 8.11a. ARL, SDRL, APFL, SDPFL, Replications, and Stops for Two
Stage Short Run (X, R) Control Charts with Stage 1: IC and Stage 2: OOC (MS)

D&R Replications
Procedure ARL SDRL APFL | SDPFL (Spkippe d) Stops
1 8.88 130.78 0.01072 | 0.05435 4999 (1)
2 6.63 17.56 0.01086 | 0.05166 | 5000 (0)
3 6.76 18.00 0.01082 | 0.05077 5000 (0)
4 6.64 15.57 0.00724 | 0.03515 | 5000 (-----) | ---—--
5 6.78 17.58 0.01000 | 0.04863 5000 (0) 0
6 6.75 17.98 0.01052 | 0.04835 5000 (0) 0
| # of Times' D&R 1 Iterated More Than Once: 20
# of Times D&R 2 Iterated More Than Once for the R Control Chart: 4
| # of Times D&R 2 Iterated More Than Once for the X Control Chart: 89
Table 8.11b. P(RL <t) for Two Stage Short Run
(X, R) Control Charts with Stage 1: IC and Stage 2: OOC (MS)
¢ - Delete and Revise (D&R) Procedure
1 2 3 4 5 6
1 0.31026 | -0.31540 | 0.31680-| 0.30540 | 0.31320 | 0.31520
2 - 0.47650 | 0.48620 | 0.48520 | 0.47760 | 0.48140 | 0.48540
3 0.59492 | 0.60440 | 0.60220 | 0.59960 | 0.60120 | 0.60260
4 0.67013 | 0.67980 | 0.67720 | 0.67260 | 0.67620 | 0.67760
5 0.72334 | 0.73500 | 0.73240 | 0.72880 | 0.73120 | 0.73320
6 0.76215 | 0.77460 | 0.77120 | 0.76960 | 0.77000 | 0.77180
8 0.81716 | 0.82680 | 0.82380 | 0.82280 | 0.82320 | 0.82400
10 0.85437 | 0.86500 | 0.86140 | 0.86140 | 0.86100 | 0.86160
15 | 091158 | 091700 | 091440 | 0.91340 { 091500 | 0.91480
20 0.93599 | 0.94160 | 0.93980 | 0.93920 | 0.93980 | 0.94020
30 0.96179 | 0.96540 | 0.96400 | 0.96420 | 0.96340 | 0.96460
40 0.97680 | 0.97980 | 0.97900 | 0.97960 | 0.97900 | 0.97920
50 0.98260 | 0.98480 | 0.98440 | 0.98460 | 0.98400 | 0.98440
100 0.99420 | 0.99560 | 0.99540 | 0.99560 | 0.99500 | 0.99540
200 0.99760 | 0.99840 | 0.99800 | 0.99840 | 0.99800 | 0.99800
300 0.99920 | 0.99940 | 0.99940 | 0.99980 | 0.99960 | 0.99940
400 0.99960 | 0.99960 | 0.99960 1.00000 | 0.99980 | 0.99960
500 0.99960 | 0.99980 | 0.99980 1.00000 | 0.99980 | 0.99980
750 0.99980 1.00000 | 1.00000 1.00000 1.00000 1.00000
1000 | 0.99980 1.00000 } 1.00000 1.00000 1.00000 1.00000
2000 0.99980 1.00000 | 1.00000 1.00000 1.00000 1.00000
5000 | 0.99980 1.00000 { 1.00000 1.00000 | 1.00000 1.00000
10000 | 1.00000 1.00000 | 1.00000 1.00000 | 1.00000 1.00000

225



than the ARL values for D&Rs 2 and 4 in Tables 8.9a and 8.10a, respectively. The ARL
for D&R 2 in Table 8.9a is the highest of the three (it is 1423.680% larger than the ARL

- for D&R 2 in Table 8.11a). These results imply that, under the assumptions of this
simulation, the type of OOC condition in Stage 2 has an affect on the OOC ARL in Stage
2. As expected, the ARL values for each of the six D&R procedures in Tables 8.92-8.11a
are much lower than the respective ARL values in Table 8.1a.

Based on the APFL, Tables 8.9a-8.11a indicate that D&R 4 is the delete and revise
procedure of .c,hoice regardless of the OOC condition in Stage 2. This reaffirms the
statement made in the first subsection of this section that, in terms of the APFL, it is
preferable to use subgroups that signal false alarms in the construction of second stage
control limits. Also, the APFL values for D&R 4 are reasonably close to 0.0086838, the
theoretical probability of a false alarm. Héwever, the APFL values for the other D&R
procedures are slighitly inflated.

The choice of the appropriate D&R procedure based on the P(RL <t) values varies
depending on the OOC condition as well as the subgroup number t. In Table 8.9b, D&R
2 resglts in the highest P(RL <t) values for shown values of t < 200 (except t=4). In
Table 8.10b, D&Rs 5 (for shown values of t £ 10 (except t=1)), 2 (for shown values of
t> 15 and t < 100), and 4 (for shown values of t = 200) result in the highest P(RL <t)
values. In Table 8.11b, D&Rs 2 (for shown values of t <200 (except t=1)) and 4 (for
shown values of t > 100) result in the highest P(RL < t) values. Since the ARL value in
. Table 8.10a is not the lowest for D&R 2 or D&R 5, this is another example of how the
ARL can be misleading in choosing the appropriate D&R procedure in a short run

situation.

226



The largest P(RL < t) values in Table 8.11b are larger than the largest P(RL <t) values
in Tables 8.9b and 8.10b. The largest P(RL < t)-values in Table 8.9b are lower than those
in Tables 8.10b and 8.11b. These results imply that, under the assumptions of this
simulation, the type of OOC condition in Stage 2 has an affect on the P(RL <t) values in
Stage 2. As expected, the P(RL <'t) values for each of the six D&R procedures in Tables
8.9b-8.11b are much higher than the respective P(RL < t) values in Table 8.1a.

The information in Tables 8.92-8.11b presents-another example of the tradeoff
mentioned by Del Castillo (1995) between having a low probability of a false alarm and a
high probability of detecting a special cause signal inherent with two stage short run
control charts. While D&R 4 results in the lowest APFL values regardless of the OOC
condition in Stage 2, it also results in the lowest P(RL < t) values for many of the shown
values of t in Tables 8.9b and 8.10b.

Again, as in the two previous subsections, the information in Tables 8.9a-8.11a
- indicates that D&R 1 and D&R 2 are iterating more than once. These multiple iterations
seem to create conditions causing replications to be skipped and the chosen D&R
- procedure to be stopped. Also, if one were to construct confidence intervals using the
ARL and SDRL values in Tables 8.9a-8.11a, then, depending on the confidence level
chosen, the ARL results in Tables 8.9a-8.11a may not be statistically significantly

different.

Sample Runs for an OOC Process in Stages 1 and 2

The final 18 sample runs of the program are for the process being OOC during both
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Stage 1 and Stage 2 control charting. - Two stage short run control charting for (X,R)

charts Wés simulated usihg all six D&R procedures for each OOC condition (MN, SD,
' MS) in Stage 1 and one OOC conditiqn (MN) in Stage 2. The results of these simulations
appear in Tables 8.12a-8.14b.

Asin the previous subsection, since the process is being simulated as OOC in Stage 2,
it is desirable for the ARL and, as always, the APFL values in Tables 8.12a-8.14a to be as
low as possiblle. Also, ‘it> is desirable for the P(RL <t) values in Tables 8.12b-8.14b to be

as hiigh as possible (since they correspond to probabilities of detecting special causes
within t or less subgroups after the shift in Stage 2), especially for small numbers of
subgroups (since a short run situafion is in effect).

Based on the ARL, D&R 2 (in Tables 8.12a and 8.14a) and D&R 3 (in Table 8.13a)
are the delete gmd revise procedures of chbice. The ARL for D&R 3 in Table 8.13ais
lower than the ARL' values fof D&R 2 in Tables 8.i2a and 8.14a. The ARL for D&R 2
in Table 8.14a is the highest of the three. These results imply that, under the assumptions
of this simulation, the type of OOC condition in Stage 1 has an affect on the OOC (MN)
ARL in Stage 2. Additionally, the ARL values for each of the six D&R procedures in
Table 8.9a are much‘ lower than the respective ARL values in Tables 8.12a-8.14a. This
resulf implies that, under the assumptions of this simulation, an OOC condition in
Stage 1 causes an increase in the OOC (MN) ARL in Stage 2, regardless of the D&R
procedure used.

Based on the APFL, Tables 8.12a-8.14a indicate that D&R 4 is the delete and revise
procedure of choice regardless of the OOC condition in Stage 1. This implies ’that, under

the assumptions of this simulation, it is preferable to use subgroups that signal shifts in



Table 8.12a. ARL, SDRL, APFL, SDPFL, Replications, and Stops for Two Stage
Short Run (X, R) Control Charts with Stage 1: OOC (MN) and Stage 2: OOC (MN)

D&R Replications
Procedure | ARL SDRL | APFL | SDPFL (Spkippe a) | Stops
1 464.86 693.88 0.03813 | 0.11174 4996 (4) 12
2 . 393.96 584.75 - | 0.03465 | 0.09819 4995 (5) 11
3 415.52 596.73 0.03844 | 0.10604 5000 (0) 0
4 422.42 603.49 0.03208 | 0.08711 | 5000 (-----) | ==---
5 450.38 654.57 0.03823 | 0.10840 4999 (1) 0
6 425.71 603.89 - | 0.03441 | 0.09416 4998 (2) 0
# of Times D&R 1 Iterated More Than Once: 111
# of Times D&R 2 Iterated More Than Once for the R Control Chart: 2
# of Times D&R 2 Iterated More Than Once for the X Control Chart: 644
Table 8.12b. P(RL <'t) for Two Stage Short Run (X, R)
Control Charts with Stage 1: OOC (MN) and Stage 2: OOC (MN)
¢ Delete and Revise (D&R) Procedure
1 2 3 4 5 6
1 0.01801 0.03003 | 0.02220 | 0.01700 { 0.01760 | 0.01741
2 0.03243 | 0.05005 | 0.04120 | 0.03280 | 0.03181 | 0.03201
3 0.04724 | 0.06647 | 0.05700 | 0.04660 | 0.04701 | 0.04522
4 0.05805 | 0.08028 | 0.06860 | 0.05680 | 0.05741 | 0.05482
5 0.06805 | 0.09329 | 0.07920 | 0.06700 | 0.06841 | 0.06603
6 | 0.07686 | 0.10430 | 0.08820 | 0.07640 | 0.07682 | 0.07383
8 0.09267 | 0.12513 | 0.10860 | 0.09620 | 0.09382 | 0.09284
10 0.10969 -| . 0.14234 | 0.12460 | 0.11220 | 0.11082 | 0.10944
15 0.13491 0.17137 | 0.15420 | 0.14100 | 0.13703 | 0.13906
20 0.15873 | 0.20180 | 0.18520 | 0.17100 | 0.16363 | 0.16847
30 0.20056 | 0.25185 | 0.22920 | 0.21560 | 0.20664 | 0.21449
40 0.23259 | 0.28529 | 0.26240 | 0.24940 | 0.23785 | 0.24790
50 0.25560 | 0.31051 | 0.28600 | 0.27340 | 0.26025 | 0.27231
100 0.35649 | 0.41622 | 0.38660 | 0.37580 | 0.36067 | 0.37675
200 | 0.48679 | 0.54234 | 0.51780 | 0.51100 | 0.49210 | 0.50900
300 0.57906 | 0.63023 | 0.60820 | 0.60360 | 0.58312 | 0.60124
400 0.65232 | 0.69530 | 0.67640 | 0.67200 | 0.65673 | 0.66967
500 0.70136 | 0.74374 | 0.72640 | 0.72160 | 0.70734 | 0.71929
750 0.80004 | 0.82943 | 0.82000 | 0.81800 | 0.80436 | 0.81453
1000 | 0.85989 | 0.88308 | 0.87720 | 0.87580 | 0.86377 | 0.87275
2000 | 0.96357 | 097337 | 097160 | 0.97060 | 0.96699 | 0.97099
5000 | 0.99760 | 0.99920 | 0.99920 | 0.99900 | 0.99800 | 0.99920
10000 | 0.99980 1.00000 | 1.00000 1.00000 1.00000 | 1.00000
20000 | 1.00000 1.00000 | 1.00000 1.00000 1.00000 1.00000
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Table 8.13a. ARL, SDRL, APFL, SDPFL, Replications, and Stops for Two Stage
Short Run (X, R) Control Charts with Stage 1: OOC (SD) and Stage 2: OOC (MN)

"D&R Replications
Procedure | ARL SDRL | APFL | SDPFL (Spkippe a | Stops
1 - 308.94 783.30 | 0.00468 | 0.02977 4999 (1) 4
2 288.91 391.09 0.00490 | 0.02909 | - 5000 (0) 6
3 288.71 - 389.04 | 0.00452 | 0.02675 5000 (0) 0
4 306.79 39570 | 0.00298 | 0.01901 | 5000 (-----) | -----
5 295.94 391.20 0.00426 | 0.02668 5000 (0) 0
6 291.88 393.77 0.00374 | 0.02218 5000 (0) 0
# of Times D&R 1 Iterated More Than Once: 85
# of Times D&R 2 Iterated More Than Once for the R Control Chart: 30 -
# of Times D&R 2 Iterated More Than Once for the X Control Chart: 192
Table 8.13b. P(RL <t) for Two Stage Short Run (X, R)
Control Charts with Stage 1: OOC (SD) and Stage 2: OOC (MN)
¢ Delete and Revise (D&R) Procedure
1 2 3 4 5 6
1 0.03021 | 0.03240 | 0.03200 | 0.01840 | 0.02800 | 0.02720
2 0.04921 | 0.05480 | 0.05420 | 0.03200 | 0.04860 | 0.04860
3 0.06401 | 0.06820 | 0.06660 | 0.04280 | 0.06260 | 0.06160
4 0.07361 | 0.07840 | 0.07700 | 0.05140 | 0.07220 | 0.07120
5 0.08382 | 0.09040 | 0.08720 | 0.05940 | 0.08260 | 0.08280
6 0.09322 | 0.09960 | 0.09640 | 0.06680 | 0.09200 | 0.09140
8 0.10762 | 0.11840 | 0.11480 | 0.08000 | 0.10720 | 0.10960
10 0.12102 | 0.13120 | 0.12700 | 0.09100 | 0.12020 ; 0.12200
15 0.14923 | 0.16000 | 0.15600 | 0.11720 | 0.14760 | 0.15220
20 0.17223 | 0.18380 | 0.17920 | 0.13860 | 0.17100 | 0.17620
30 | 0.21264 | 0.22400 | 0.22140 | 0.18060 | 0.20980 | 0.21860
40 0.24625 | 0.25840 | 0.25600 | 0.21520 | 0.24380 | 0.25280
50 0.27305 | 0.28680 | 0.28380 | 0.24380 | 0.27100 | 0.28120
100 0.38908 | 0.40520 | 0.40320 | 0.36740 | 0.39000 | 0.40020
200 0.55931 | 0.57000 | 0.56940 | 0.54400 | 0.56200 | 0.56640
300 0.66813 | 0.68120 | 0.67940 | 0.65880 | 0.67080 | 0.67740
400 | 0.75195 | 0.76240 | 0.76260 | 0.74580 | 0.75560 | 0.76160
500 0.80576 | 0.81780 | 0.81900 | 0.80480 | 0.80980 | 0.81560
750 0.89858 | 0.90520 | 0.90480 | 0.89740 | 0.90100 | 0.90400
1000 | 094179 | 0.94420 | 0.94400 | 0.94220 | 0.94280 | 0.94320
2000 | 0.99060 | 0.99120 | 0.99140 | 0.99060 | 0.99140 | 0.99080
5000 | 0.99940 | 0.99980 | 0.99980 | 0.99980 | 0.99980 | 0.99980
10000 | 0.99980 1.00000 | 1.00000 1.00000 | 1.00000 1.00000
50000 | 1.00000 1.00000 | 1.00000 1.00000 | 1.00000 | 1.00000
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Table 8.14a. ARL, SDRL, APFL, SDPFL, Replications, and Stops for Two Stage
Short Run (X, R) Control Charts with Stage 1: OOC (MS) and Stage 2: OOC (MN)

D&R Replications
Procedure | ARL SDRL | APFL | SDPFL (Spkippe a) | Stops
1 429.83 640.60 0.00615 | 0.04033 4993 (7) 11
2 405.27 504.02 0.00788 | 0.04529 4998 (2) 14
3 420.65 511.23 0.01102 | 0.05815 5000 (0) 0
4 428.56 506.37 0.00580 | 0.03254 | 5000 (-----) | =-----
5 421.66 - 529.70 0.00688 | 0.04451 5000 (0) 0
6 415.90 508.27 | 0.00716 | 0.03900 5000 (0) 0
# of Times D&R 1 Iterated More Than Once: 120
# of Times D&R 2 Iterated More Than Once for the R Control Chart: 30
# of Times D&R 2 Tterated More Than Once for the X Control Chart: 411
Table 8.14b. P(RL <t) for Two Stage Short Run (X, R)
. Control Charts with Stage 1: OOC (MS) and Stage 2: OOC (MN)
¢ Delete and Revise (D&R) Procedure
1 2 3 4 5 6
1 0.00841 0.00960 | 0.00500 | 0.00240 | 0.00600 | 0.00460
2 0.01682 | 0.01961 | 0.01160 | 0.00700 | 0.01240 | 0.01140
3 0.02223 | 0.02601 | 0.01780 | 0.01000 | 0.01900 | 0.01780
4 0.02704 | 0.03061 | 0.02280 | 0.01400 | 0.02460 | 0.02240
5 0.03265 | 0.03842 | 0.02940 | 0.01780 | 0.02940 | 0.02900
6 0.03685 | 0.04462 | 0.03440 | 0.02140 | 0.03380 | 0.03420
8 0.04506 | 0.05442 | 0.04120 | 0.02660 | 0.04140 | 0.04300
10 0.05327 | 0.06343 | 0.04920 | 0.03360 | 0.04900 | 0.05140
15 0.07090 | 0.08123 | 0.06680 | 0.05020 .| 0.06560 | 0.06780
20 | 0.08412 | 0.09664 | 0.08080 | 0.06260 | 0.08020 | 0.08240
30 0.11376 | 0.12745 | 0.11160 | 0.08880 | 0.10960 | 0.11340
40 0.14240 | 0.15606 | 0.13760 | 0.11560 | 0.13880 | 0.14120
50 0.16663 | 0.18327 | 0.16320 | 0.14040 | 0.16500 | 0.16720
100 0.27278 | 0.29192 | 0.27060 | 0.24780 | 0.26960 | 0.27440
200 0.43221 0.44798 | 0.42940 | 0.41480 | 0.43340 | 0.43500
300 0.55257 | 0.56623 | 0.54780 | 0.54080 | 0.55200 | 0.55380
400 0.64991 | 0.66246 | 0.64780 | 0.63940 | 0.65180 | 0.65380
500 0.71841 0.72929 | 0.71640 | 0.71100 | 0.71760 | 0.72140
750 | 0.83457 | 0.84174 | 0.83560 | 0.83180 | 0.83400 | 0.83600
1000 | 0.89625 | 0.90276 | 0.89860 | 0.89540 | 0.89640 | 0.90040
2000 | 0.97877 | 0.98159 | 0.97980 | 0.97940 | 0.97920 | 0.98040
5000 | 0.99840 | 0.99940 | 0.99940 | 0.99960 | 0.99920 | 0.99940
10000 | 0.99960 1.00000 | 1.00000 1.00000 | 1.00000 | 1.00000
20000 | 1.00000 1.00000 | 1.00000 1.00000 | 1.00000 1.00000




the mean, the standard deviation, or both in the construction of second stage control
limits. The cost, in terms of the loss in reliability of second stage control limits, is higher
by throwing out subgroups that signal shifts in the mean, the standard deviation, or both
than it is by including them in the construction of second stage control limits.
Additionally, comparing the APFL results in Table 8.9a with those in Tables 8.12a-8.14a
reveals that, under the assumptions of this simulation, an MN in Stage | has the effect of
increasing the APFL (see Table 8.12a) and an SD in Stage 1 has the effect of decreasing
the APFL (see Table 8.13a).

An issue of concemn is the differenées in the APFL values from 0.0086838, the
theoretical probability of a false alarm. The APFL value for D&R 4 in Table 8.12a is
369.424% larger than 0.0086838. The APFL values for D&R 4 in Tables 8.13a and
8.14a are 65.683% and 33.209%, respectively, smaller than 0.0086838. These results are
somewhat consistent with those regarding the P(RL < t) values when t=1 in Tables 8.6b-
8.8b. Clearly, under the assumptions of this simulation, the type of OOC condition in
Stage 1 has a significant effect on the APFL values before the shift in Stage 2.

Based on the P(RL <'t) values, D&R 2 is the appropriate delete and revise procedure
for most of the shown values of t regardless of the OOC covndition in Stage 1. Since
Table 8.13a indicates that D&R 3 is the delete and revise procedure of choice, this is
another example of how the ARL can be misleading in choosing the appropriate D&R
procedure in a short run situation. The fact that the largest P(RL < t) values in Table
8.14b are lower than those in Tables 8.12b and 8.13b for most of the shown values of t
implies that, under the assumptions of this simulation, the type of OOC condition in

Stage 1 has an affect on the P(RL < t) values in Stage 2.
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Additionally, the largest P(RL < t) values in Table 8.9b are larger than those in Tables
8.12b-8.14b. This result implies that, under the assumptions of this simulation, an OOC
condition in Stage 1 decreases the P(RL < t) values in Stage 2. This is not desirable
because of the MN in Stage 2. However, this is desirable for Stage 2 IC as was the case
in comparing results in Table 8.1b to those in Tables 8.6b-8.8b earlier. Clearly, under the
assumptions of this simulation, when one is interested in detecting MN in Stage 2, it is
highly desirable to have the process IC when drawing first stage subgroups.

The iﬁformation in Tables 8.12a-8.14b presents another example of the tradeoff
mentiohed by Del Castillo (1995) between having a low probability of a false alarm and a
high probability of detecting a special cause signal inherent with two stage short run
control charts. While D&R 4 results in the lowest APFL values regardless of the OOC
condition in Stage 1, it also results in the lowest P(RL < t) values for many of the shown
values of tin Tables 8.13b and 8.14b.

Again, as in the three previous subsections, the information in Tables 8.12a-8.14a
indicates that D&R 1 and D&R 2 are iterating more than once. These multiple iterations
seem to create conditions causing replications to be skipped and the chosen D&R
procedure to be stopped. Also, if one were to construct confidence intervals using the
ARL and SDRL values in Tables 8.12a-8.14a, then, depending on the confidence level
chosen, the ARL results in Tables 8.12a-8.14a may not be statistically significantly

different.

Conclusions from the Sample Runs

The interpretation of the sample runs of the computer program in this section establish
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the fact that no hard and fast rules can be developed regarding which D&R procedure is
appropriate when performing two stage short run variables control charting. Under the
assumptions of the simulations performed in this section, the choice of the appropriate
D&R procedure varies both among and within measurements, among control chart
combinations, among IC and various OOC conditions in both stages, and among numbers
of subgroups plotted in Stage 2. It may even be possible that the choice of the
appropriate D&R procedure varies among shift sizes and the timing of shifts, though this
is not investigated here.

If no decisions can be made regarding values for these variables, then extensive
sample runs similar to the ones in thié section need to be performed. However, if certain
values for these variables are desired, then the process of making sample runs and

interpreting their results is much simpler.

Conclusions

This chapter and the methodology it presents make important contributions. For the
first time, the appropriate D&R procedure to use when performing two stage short run
variables control charting may be determined. The importance of the computer program
is evident because the choice of the appropriate D&R procedure varies depending on the
values of many variables. Tables would only be able to provide very limited results.
Additionally, the computer program can be expanded to include other variable values

(e.g., other types of OOC conditions).
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" CHAPTER IX
SUMMARY
Introduction

This chapter serves three purposes. The first is to briefly summarize Chapters I-VIII
of this dissertation in order to provide an overall perspective of the process undertaken to
develop and solve the research problem,v which is stated in Chapter I and will be restated
in this chapter. ' The second is to -provide final conclusions based on the research in
Chapters IV-VIIL. The third is to present areas for future research within the realm of

two stage short run control charting.

Summary of Chapters

Chapter I includes the following: background information on and the statement of the
research problem; the research objective, sub-objectives, and tasks; and the research

contributions. The research problem has two parts.” The first part is that Hillier’s (1969)

methodology is limited to (i, R) control charts (see Hillier (1969)) and to (i, v) and

(i, Jv ) control charts (see Yang and Hillier (1970)). Additionally, limited and in some

cases incorrect results are presented in the literature for these charts. The second part is
that the process of establishing control in the first stage of the two stage procedure is not
clear (see Faltin, Mastrangelo, Runger, and Ryan (1997)).

The research objective, which is a statement of the resolution of the research problem,

is to investigate, extend, and generalize a methodology for two stage short run variables
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control charting.  The "investigate" part of the research objective involves the entire
process of developing the research problem, the research objective, the five sub-
objectives and their respective tasks; learning and applying relevant theory; developing
,meth{o_dologi('as; examining the res_ults frpm the impleme»ntation of the methodologies; and

drawing conclusions based on the results. The "extend" part involves extending Hillier’s
(1969) two stage short run theory to (i, s) and (X, MR) control charts. It also involves

extending it to allow for the determination of the appropriate execution of the two stage
procedure. - The "generalize" part involves the development of the computer programs to
calculate two stage short run control chart factors for (i, R), (_)Z, v), (_)Z, «/; ), (-)Z, s),
and (X, MR) charts. It also involves the development of the computer program that
provides information that one rﬁay use to determine which delete and revise (D&R)
procedure to use to establish control in the first stage of the two stage procedure.

Chapter II is a literature review of the three main topics that are essential to
understanding the development and resolution of the research problem. The first topic is
the different approaches to applying (i, R), (i, V), (i, Vv ), (i, s), and (X, MR)
control charts to short run situations. The second topic is the different ways of executing
-the two stage procedure. The third topic is the different metrics used to determine control
chart performance in a short run situation.

Chapter III describes the process required to perform two stage short run variables
;ontrol charting in order to indicate where and how to use the research presented in

Chapters IV-VIII in this process. Included in this description are tables that indicate,

based on the choice of the two stage short run control chart ((i, R), (i, V), (i, \/; ),

(X, s), or (X, MR)), the appropriate program to use from Chapters [V-VII, the output to
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~ . use from these programs, and the equations to use to construct Stage 1 and Stage 2

control limits. Additionally, a table is presented that indicates, based on the choice of the

statistic (ﬁ v, \/j ,'S,0r ﬁ), the appropriate program to use from Chapters IV-VII,
the output to use from these programs, and the equations to use to calculate unbiased
estimates of the process variance and standard deviation.

The research in Chapter IV accomplishes the tasks associated with research sub-
- objective 1, which is stated in Chapter I. The Mathcad (1998) program in Chapter IV
accurately calculates, using exact equations, two stage short run control chart factors for
(X,R) charts regardless of the subgroup size, number of subgroups, alpha for the X
control chart, alpha for the R control chart above the upper control limit, and alpha for the
R control chart below the lower control limit (alpha is the probability of a Type I error
(i.e., the probability of a false alarm)).

The research in Chapter V accomplishes the tasks associated with research sub-
objective 2, which is stated in Chapter I. ‘The Mathcad (1998) program in Chapter V

accurately calculates, using exact equations, two stage short run control chart factors for

(5(_, v) and (i \[\7) charts regardless of the subgroup size, number of subgroups, alpha
for the X control chart, alpha for the v and JV control charts above the upper control

limit, and alpha for the v and \[\7 control charts below the lower control limit.
The research in Chapter VI accomplishes the tasks associated with research sub-
objective 3, which is stated in Chapter I. The Mathcad (1998) program in Chapter VI

accurately calculates, using exact equations, two stage short run control chart factors for

(i, s) charts regardless of the subgroup size, number of subgroups, alpha for the X
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-control chart, alpha fof the s control chart above the upper control limit, and alpha for the
s control chart below the lower control limit. |

The research in Chapter VII accomplishes the tasks assoéiated with research sub-
objective 4, which is stated in Chapter I. The Mathcad (1998) program in Chapter VII
accurately calculates, using exact equations, two stage short run control chart factors for
(X, MR) charts regardless of the number of subgroups, alpha for the X control chart,
alpha for the MR control chart above the uppver control limit, and alpha for the MR
contro] chart below the lower control limit.

The research in Chapter VIII accomplishes the tasks associated with research sub-

objective 5, which is stated in Chapter I. The FORTRAN (1999) prdgram in Chapter
VIII simulates two stage short run control charting for (i, R), (i, v), (i, \/—\7 ), (i, s),

and (X, MR) charts for in-control and various out-of-control conditions in both stages
using six different D&R procedures.

The accomplishment of the tasks associated with the five research sub-objectives
means that the research objective is met. Consequently, the research problem as stated in

Chapter I of this dissertation and restated in this chapter is solved.

Conclusions

The research in this dissertation results in a comprehensive, theoretically sound, easy-

to-implement, and effective methodology for two stage short run control charting using
(X,R), (X,v), (X,vv), (X,s), and (X, MR) charts. The application of this research is

immediate because of the computer programs in Chapters IV—VIII that implement the

research. Also, the application of this research is not limited because of the inputs
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accepted by the programs. Additionally, the program in Chapter VIII can be expanded to
accept more varied inputs.
As a result of the research and computer programs in Chapters IV-VII, those involved

with quality control in industry will, for the first time, be able to use theoretically precise
control chart factors to determine control limits for (i, R), (—)Z, V), (i, \/—\7 ), (i, s), and

(X, MR) charts regardless of the subgroup size, number of subgroups, and alpha values.
This flexibility is valuable in that process monitoring will no longer have to be adjusted
to use the limited, and in some cases incorrect, results previously available in the
literature. Also, the programs put an end to the erroneous use of conventional control
chart constants when in a short ruﬁ situation.

It is recommended that the computer programs in Chapters IV, V, and VII replace the
use of the tables of two stage short run control chart factors in Hillier (1969), Yang and
Hillier (1970), Pyzdek (1993), and Yang (1995, 1999, 2000) because. of the limited, and
in some cases incorrect, results given in these papers. The corrections provided by the
tables in the appendices of this dissertation are given in detail in Chapters IV, V, and VIL
Any other corrections can be made by the appropriate program from these chapters.

As aresult of the research and computer program in Chapter VIII, a methodology is
available that, for the first time, provides information that one may use to determine

which D&R procedure is most appropriate to use when performing two stage short run
control charting with (X,R), (X, V), (X,+/v), (X.s), and (X, MR) charts. The program
is important because, based on the sample runs in Chapter VIII, the choice of the

appropriate D&R procedure varies depending on the values of many variables.

Concerning academia, Chapters IV, V, VI, and VII provide a valuable reference for
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anyone interested in anything having to do with (—)Z, R), ‘(i‘v), ()_(, \/V ), (i $), and
(X, MR) control charts, respectively. Furthermore, the programs in these chapters
eliminate the need for the research question of how many subgroups are enough before
conventional control chart constants may be used. Also, the research in Chapter VIII
advances the study of the control chart revision Process.

In addition to the above contributions, the research in Chapters VI and VII provides

results that may be useful beyond the realm of quality control. These results are two new

equations to calculate unbiased estimates of a process variance based on the statistics s

(Chapter VI) and MR (Chapter VII). -

Areas for Future Research

Several areas for future research exist within the realm of two stage short run control

charting. One area is to continue developing multivariate counterparts to two stage short

run (i R), (i, V), (i, \/; ), ()—(, s), and (X, MR) control charts. This has already been

done for Yang and Hillier’s (1970) two stage short run X control chart (see Alt, Goode,
and Wadsworth (197_6)). This is desirable because situations may exist in which it is
beneficial to use multivariate control charting when in a short run situation.

Another area is to continue developing two stage short run attributes control charts.
This has already been done for p control charts (see Nedumaran and Leon (1998)), which
are based on the Binomial distribution. This is desirable because situations may exist in
which it is beneficial to chart classification or count data when in a short run situation.

A third area concerns the updating of Stage 2 control limits when in a short run

240



- -situation. The issue is what to do with previous in-control subgroups that plot out-of-
control after an update. If they are deleted so that they will not be used in the next
update, then important information about the process is being thrown away. Since
information is already limited in a short run situation, this may result in less reliable
Stage 2 control limits. However, keeping these out-of-control subgroups so that they will
be used in the next update may also result in less reliable control limits. It is desirable to

develop a methodology that will provide information to examine this tradeoff.

A fourth area is to study the performance of two stage short run '(5(-, R), (i, v),

(i, «/\7 ), (i, s), and (X, MR) control charts When data obtained from a process are non-
normal and/or non-independent. The computer program in Chapter VIII may be
modified to do this.

Final areas for future research concern extensions of the computer program in Chapter
VIII. One extension is to include the approach by Roes, Does, and Schurink (1993) (see
the Stage One Control Limits Subsection of The Two Stage Procedure section of Chapter
II) for determining out-of-control subgroups in Stage 1. Another extension is to include
the option of not deleting false alarms before a shift in Stage 1. A third extension is to
include an out-of-control condition caused by a trend in one or both of the population
parameters. A fourth extension is to include the option of performing Stage 2 control
charting with any desired combination of Nelson’s (1984) tests for special causes or runs

rules (i.e., the four tests for instability in Western Electric Co., Inc. (1956)).
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APPENDIX A - Analytical Results for Chapter 2
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APPENDIX B.1 — Analytical Results for Chapter 4
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From David (1951), the variance of the mean of m ranges, each based on n observations,
is d3%/m , which implies M_/V, from Prescott (1971) is equal to:

2 d2-m

d3? d3?
m

(d2 is also the mean of the distribution of the mean range -R—/ o).

2%5.100.5-x+0.5) )’ 2-(0(0.5-x +0.5))’
422 m _{ TO5x) _ (C(0.5-x))
d3* <, [T05:x+05) 2 (x-(0©05 %)) =2+ (005 x +0.5))°
I(0.5-x) (r0.5-x))*

d2%-m _ 2-(0(0.5-x+0.5))*

= = : '
d3*  x-(1©0.5-x))*-2-(0(0.5-x +0.5))

2
_(ros-x)
(r(0.5-x+0.5))*

-2

2

[ (F(0.5-x))2 }
F'(0.5-x+0.5))>
X-e (r( X-+ » _ 2

2
- 2_ . 2
X - e1n(l‘(0.5-x)) In(F'(0.5-x+0.5)° _ 2
2
X - eZ-gammln(O.S-x)—2~gz|mn'1ln(0.5-x+0.5) _ 2
2
- X - e2-(,cv,z|mm1n(0.5~x)-gammln(O.S-x+0.5)) _ 2
d32 B X - e2-(gammln(0.5-x)—garm'nln(O.S-x+0.5)) _ 2
— =
m-d2° 2
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From Harter, Clemm, and Guthrie (1959):

Let cv =In(C(v)).

_[L
2
=cv=In

v

=In|2 }
w it
2
=In(2)+ ll{ } - oamml \Z}J
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APPENDIX B.2 - Computer Program ccfsR.mcd for Chapter 4
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Page 1 of program: ccfsR.mcd

ENTER the following 5 values:

{1): alphaMean’= 00027 alphaMean - alphafor the X chart.

(2) . elphaRangeUCL = 0.005 _ alphaRangeUCL - alpha for the R chart above the UCL.
{3) alphaRangeLCL := 0,001 -alphaRangel CL - alpha for the R chart below the LCL =
@) m=5 m - number of subgroups.

) n=5 n - subgroup size for the (X,R) charts.

*Note - if no LCL is desired, leave alphaRangelLCL blank {do not enter zero).

Please PAGE DOWN to begqin the program.

(1.1) TOL=10""

2
£() = dnotm(x,0,1) =2 %) e 2 F(X) = pnotm(x,0,) 1 :=J £(t) dt
0

L=-1

Wl=n(n-1) | [J. W-(Flx+ W) - F(x))n-g-f(x + W) dWilf(x) dx
0

-0

{=-]

W2=n(n- 1) U WR(F(x+ W) - FOO)™ f(x + W) dw}f(x) dx
0

-0

Var = W2 - Wi? 42 = Wi 43 = Var”
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Page 2 of program: ccisR.mcd

2.1

2.2)

0

PWy=n | -(F(x+ W) - Fo)™ dx

-0

DUCL(W) = P(W) — (1 - alphaRangeUCL)
Wseedl(start) = Wy « start
W) & start + 001
Ag « DUCL(W,)
A) « DUCL(W))
while Ag-Ay >0
Wy « W
Wy« W, +001
Ag e~ Ay
A) « DUCL{W))

seedD4 = Wseedl(0.01)

wD4 = zbrent[:DUCL, seedDdy,seedD4, ,TOL)
-1
0.5
2
el ()T
m d2
0.5
2+ 21+ 2 (CB ’ jl
revm = | — . —_— | —
P m-1 d2

d =h(x) -r

v = zbrent(d,x - 0.5,x + 0.5,TOL)

-1

DLCL(W) = P(W) - alphaRangel CL
Wseed2(start) = | Wy < start
W, « start + 0.01
Ap < DLCL{W,p)
Ay ¢ DLCL(Wy)
while Ag-A;>0
Wy« W)
W, « W + 001
Ag e A
A) < DLCL{W)
W

seedD3 = Wseed2(0.001)
wD3 = zbrent(DLCL, seedD3y, seedD3;, TOL)

d32

(m~1)-d2°

tprevin =

% e?-(gmh(ﬂ.ix)-—gmh(ﬂ.s-xm.s)) -2
2

(% =

dprevm(x) = h(x%) — rprevim

vprevm = zbrent(dprevm, xprevm — 0.5, xprevm + 0.5, TOL)
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Page 3 of program: ccfsR.mcd

11

Faswt ' Rasw?
3.1 Pi@@= (5.-W-)-e 22 o 37 “P(W) dW
z

I—x2 vl l—x2
P22 = @ (x-e : J NERP oy = kmz)+(§)m(§)[§)—gm(§)
55

P3(2) = (E)ew-(Pl(z) + P2(2)
z

B.2) Zseedi(start) = |Zy ¢ stant
12y ¢ start + 50
14g « P3(2))
Ay« P3(Z))
while A; < (1 - alphaRangeUCL)
2o <2,
21 2,+50
Ag ¢ A
A« P3(Z))
Zguess ¢ linterp(A,Z,1 —- aﬂphaRangeUCL)
Zguess

seedl = Zseedl(5.0) ‘D = P3(x) - (1 - alphaRangeUCL)

zbrent(D,seedl - 5.0,seedl + 5.0, TOL)
5 .

gD4 =

_ root] |[P3(seedl) - (1 - alphaRangeUCL)|,seedl]
5
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Page 4 of program: ccfsR.mcd

@.1)

Zseed(start) = |Zwvg < 00

Avy <00

Z & start

while (P3(Z) < alphaRangeLCL)
Z«Z+10

for 1e1..6

Zyie—=Z2+(1O(1- 1)

Av; « P3(Zv)

for ie7.20

Zvy e Z+ (LD~ 1)

Av; P3(Zvi)

Zguess '« lintetp(Av,2v, alphaRangeLCL)

A « ratint(Zv, Av_ Zguess)

Aguess « Ay

while |Aguess — slphaRengeLCL| > 1077
if (Aguess - alphaRangelCL) > 107 13
Av) < Aguess

Zv) ¢ Zguess

if (Aguess — alphaRangelCL) < —107"
Avy « Aguess

Zvy < Zguess

Zguess « linterp(Av,Zv, slphaRangel CL)
A & ratint(Zv, Av,2guess)

Aguess « Ay

Zguess

seed2 = Zseed2(1.0)

Monitor Results

seed2

qD3 =
qD3 = 0.3584551343

root( |P3(seed?) - alphaRangeLCL| ,seed)
5 qD3 = 0.3534551342

qD3 =
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Page 5 of program: ccfsR.mcd

61)

5.2)

11
vprevin-1
xz—QS-Wz 52—25~W1

7 7
Plprevm(z) = (5-E)ve 13 e T Pp(W) dW
z

0

Plprevm(z) = (%)

cuprevm = In(2) + (upr;vmjlln( upr;vm) _ ( vpr;vm) g (_vpr;vm)

P3prevm(z) = (—5-)~ecm~(Plprevm(z) + P2prevm(z))
z

Zseed3(start) = |Zg ¢ start
2y stat+ 50
Ay« P3prévm(Zg)
Al & P3prevm(21)
while &) < (1 - alphaRangeUCL)
AR AR
2121+ 50
Ay A
A e P3prevm(21)
Zguess « linterp(A ,Z,1 — alphaRangeUCL)
Zguess

seed3 = Zseed3(5.0) Dprevim(x) = P3prevm(x) - (1 - alphaRangeUCL)

zhrent( Dprevm,seed3 — 50,seed3 + 5.0,TOL)
5

gDdprevm =

_root[ [P3prevm(seedd) - (1 - alphaRangeUCL)l ,seed3]
1=
5
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1 Page & of program: ccfsR.mcd

6.1} Zseedd(star) = |Zvy < 00

Avy« 00

Z < start

while (P3prevm(Z) < alphaRangeLCL)
Z«2Z2+10

for 1e1..6

2y Z+ (1O~ 1)

Av; & P3prevm(2vi)

for 1i€7..20 )

Zvi =2+ (10-(-1

Avy & P3prevm(2vi)

Zguess « linterp(Av,Zv,alphaRangelCL)

A « ratint(Zv Av, Zguess)

Aguess « Ay

while |Aguess - alphaRangeLCL| > 1070

if (Aguess - alphaRangeLCL) > 1075
Avy - Aguess

Zv) <= Zguess

if (Aguess - alphaRangelCL) < 10" 1
Avy < Aguess

Zvy - Zguess

Zguess < linterp(Av,Zv, alphaRangelCL)
A & ratint(Zv,Av,Zguess)

Aguess ¢ Ay

Zguess

seedd = Zseedd(1.0)

Monitor Results

seedd

gD3prevm =
gD3prevm = 03564225553

root( [P3prevm(seedd) — alphaRangeLCL|, seedd)
5 gD3prevm = 03564225551

gD3prevm =
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Page 7 of program: ccfsR.mcd

0.5
2
7 e (2 o _igha = 1 - SeMes
m 2
. 2 0.5
d3
d2starprevm = (cﬁz + 1] ctit_t = qt(adj__alpha,u) crit_z:= gnorm(adj_alpha,0,1)
m—
. ; 0.5 . 0.5 .
@2) axn-= ot ¢y fm-1 AT = it £} fm+1 A2= ctit_z
d2star n-m d2star n-m d2-n0'5
DAl = . mgDdprevim D42 = gqD4 D4= wD4
- d2starprevm-(m - 1) + gDdprevm d2star d2
-gD
D3l = m-gD3prevm , D32 = qD3 D3 = wD3
d2starprevim-(m — 1) + gD3prevm © o ddstar d2

EINAL RESULTS:

(1) apheMean = 00027 Control Chart Factors
' (@) alphaRangeUUCL = 0,005 First Stage Second Stage - Conventional
@) elphaRangeLCL = 0.001 A21=058784  A22=071995 A2 = 05763149104
@) m=5
D41 = 195711 D42 = 2.46759 D4 = 21004874391
) n=3
D31 =0.18149 D32 =0.15203 D3 = 0.1579549576
Mean, Stand. Dev., Duncan's {1974) Table D3 Harter, Clemm, and Guthrie’s (1959) Table II.2
and Variance of the
Dist. of the Range v = 183541743541 gqD4 = 581811 ’ D3 = 0.35846
d2 = 2.3259289473 d2star = 235781 gDdprevin = 6 08629 gD3previm = 0.35642
d3 = 0.8640819411 vprevin = 1472881 wD4 = 48855845381 wD3 = 0.3673920082
Var = 0.7466376009 d2starprevm = 2.36571
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Table B.3.1. Partial Re-creation of Table D3 in the Ap
. )

pendix of Duncan (1974)
s

n 2 3 6
m v dz' v dz' v d{ v dz' v dz'
1 1.00000_ | 141421 | 198463 | 191154 | 202916 | 2.23887 | 382651 | 2.48125 | 467716 | 2.67253
2 191952 | 127930 | 3.83372 | 180538 | 5.69354 | 2.15069 | 747105 | 240484 | 9.16121 | 2.60439
3 281729 | 123105 | 566278 | 176857 | 844146 | 2.12049 | 11.10185 | .2.37883 | 13.63350 | 258127
4 3.70617_| 120620 | 748535 | 174988 | 11.18455 | 210522 | 1472881 | 236571 | 18.10259 | 2.56964
5 459060 | 1.19105 | - 930506 | 173857 | 1392559 | 2.09601 | 1835417 | 2.35781 | 2257035 | -2.56263
6 547253 | 118083 | 1112327 | 173099 | 1666558 | 2.08985 | 21.97872 | 2.35253 | 21.03745 | 2.55795
7 635201 | 117348 | 1294060 | 172555 | 1040495 | 2.08543 | 25.60279 | 2.34875 | 31.50415 | 2.55460
8 723227 | 1.16794 | 1475735 | 172146 | 22.14304 | 2.08212 | 29.22657 | 2.34591 | 35.07062 | 2.55209
9 811092 | 116361 | 1657373 | 171838 | 2488267 | 207953 | 3285015 | 234369 | 4043692 | 255013
10 898907 | 116014 | 1838984 | 171572 | 27.62121 | 207747 | 3647359 | 234192 | 4490311 | 254856
11 986684 | 1.15720 | 2020575 | 171363 | 3035962 | 207577 | 4009692 | 234047 | 49.36922 | 254728
12 1074432 | 1.15490 | 2202151 | 171189 | 3300793 | 2.07436 | 43.72018 | 2.33927 | 53.83526 | 2.54621
13 11.62158 | 1.15280 | 2383716 | 171041 | . 3583616 | 2.07316 | 47.34338 | 233824 | 58.30126 | 2.54530
14 1249866 | 115115 | 2565271 | 170914 | 3857433 | 2.07214 | 5096654 | 233737 | 6276721 | 2.54453
15 1337559 | 114965 | 2746810 | 170804 | 4131245 | 2.07125.] 54.58065 | 233660 | 67.23314 | 2.54385
16 1425241 | 1.14833 | 2928362 | 170708 | 44.05053_| 2.07047 | 5821274 | 2.33594 | 7169904 | 2.54326
17 1512913 | 1.14717 | 3109899 | 170623 | 46.78857 | 2.06978 | 61.83580 | 2.33535 | 76.16493 | 2.54274
18 1600577 | 114613 | 3291432 | 170547 | 49.52650 | 206917 | 6545884 | 2.33483 | 80.63079 | 2.54228
19 1688234 | 114520 | 3472962 | 1.70479 | 5226450 | 206862 | 69.08186 | 233436 | 8500664 | .2.54187
20 17.75886_| 114437 | 36.54489 | 170419 | 5500257 | 2.06813 | 72.70487 | 2.33304 | 80.56248 | 2.54150
25 22.14078 | 114119 | 4562091 | 170187 | 68.60224 | 206626 | 0031574 | 2.33234 | 111.8915 | 2.54008
30 26.52202_| 1.13906 | 54.69660 | 1.70032 | 82.38160 | 206501 | 108.9344 | 233127 | 134.2205 | 2.53914
50 4404420 | 113480 | 90.99798 | 169723 | 137.1386 | 206251 | 1813926 | 232014 | 2235356 | 2.53725
75 6594485 | 113266 | 1363737 | 1.69567 | 2055840 | 2.06126 | 271.9647 | 2.32807 | 3351791 | 2.53630
100 87.84479 | 113159 | 181.7490 | 1.69490 | 2740292 | 2.06063 | 362.5367 | 232753 | 4468224 | 2.53383
150 131,640 | 113052 | 272.4954 | 160412 | 4109194 | 206000 | 543.6805 | 232700 | 670.1090 | 2.53536
200 1754428 | 1.12099 | 365.2496 | 160373 | 547.8094 | 205060 | 7248242 | 232673 | 8933955 | 2.53512
250 2192414 | 1.12967 | 453.9998 | 169350 | 684.6994 | 2.05650 | 905.9679 | 2.32657 | 1116.682 | 2.53498
300 263.0400 | 1.12945 | 5447499 | 160335 | 821.5894 | 205938 | 1087.112 | 232646 | 1339.068 | 2.53489
d; 1.1283791671 1.6925687506 20587507460 23259280473 25344127212
d; 0.8525024664 0.8883680040 0.8798082028 0.8640819411 0.8480396861

;% (Var.) 07267604553 0.7891977106 0.7740624738 0.7466376009 0.7191713092

Table B.3.1 continued. Partial Re-creation of Table D3 in the Appendix of Duncan (1974)

n 7 8 i0 25 50
m v dz' v d; v d,: v d, v d;
1 548415 1 2.82980 | 625123 | 296288 | 7.68007 | 3.17905 | 1562977 | 3.09396 | 24.02990 | 4.54518
2 1076747 | 2.76779 | 12.29504 | 2.90562 | 15.14580 | 3.12869 | 31.02740 | 3.06242 | 47.82145 | 4.52172
3 16:04046_| 2.74681 | 1833145 | 2.88628 | 22.60405 | 3.11172 | 4642111 | 3.95185 | 71.61044 | 4.51388
4 2131070 | 2.73626 | 2436452 | 2.87656 | 3006021 | 3.10320 | 61.81384 | 3.94656 | 95.39878 | 4.50995
5 2657981 | 272991 | 30.39659 | 2.87071 | 37.51556 | 3.00808 | 77.20616 | 3.94338 | 119.1869 | 4.50759
6 3184834 | 272561 | 3642816 | 2.86681 | 44.97049 | 3.09466 | 9259828 | 3.94126 | 142.9748 | 4.50602
7 3711655 | 2.72263 | 42.45944 | 286401 | 5242520 | 3.09222 | 107.9903 | 3.93974 | 166.7627 | 4.50490
8 4238454 | 2.72035 | 48.49054_| 2.86192 | 59.87975 | 309038 | 123.3822 | 3.93860 | 190.5505 | 4.50403
9 4765240 | 271858 | 5452152 | 2.86029 | 67.33421 | 308895 | 138.7741 | 3.93772 | 214.3383 | 4.50340
10 5292017 | 271716 | 6055241 | 2.85898 | 74.78859 | 3.08781 | 154.1660 | 3.93701 | 238.1261 | 4.50287
11 58.18786_| 271600 | 66.58324 | 285791 | 82.24203 | 3.08687 | 169.5578 | 3.93643 | 2619138 | 450244
12 6345540 | 271503 | 72.61402 | 2.85702 | 80.60723 | 3.08609 | 184.9496 | 3.93595 | 285.7016 | 4.50209
13 68.72300 | 271421 | 7864477 | 2.85627 | 97.15150 | 308543 | 200.3414 | 3.93554 | 309.4803 | 4.50178
14 7399066 _| 2.71351 | 8467549 | 2.85562 | 104.6057 | 308487 | 215.7332 | 3.93519 | 333.2771 | 4.50152
i3 79.25820 | 271290 | ©00.70610 | 2.85506 | 112.0600 | 3.08438 | 231.1249 | 3.93488 | 357.0648 | 4.50130
16 8452571 | 271237 | 9673687 | 285457 | 1195142 | 3.08395 | 2465167 | 3.93462 | 380.8525 | 450110
17 89.79321 | 271190 | 102.7675 | 2.85414 | 1269684 | 3.08357 | 2619085 | 3.93438 | 404.6402 | 4.50093
18 9506070 | 271148 | 108.7982 | 285375 | 1344226 | 3.08323 | 277.3002 | 3.93417 | 4284279 | 450077
19 1003282 | 271110 | 1148288 | 285341 | 141.8768 | 3.08293 | 292.6020 | 3.93399 | 452.2156 | 4.50063
20 1055056 | 271077 | 120.8595 | 285310 | 1493309 | 3.08266 | 308.0837 | 3.93382 | 476.0033 | 4.50051
25 131.9328 | 270949 | 1510125 | 285192 | 1866017 | 3.08163 | 3850424 | 3.93318 | 594.9419 | 4.50004
30 158.2699 | 2.70863 | 181.1655 | 285113 | 223.8725 | 3.08094 | 4620011 | 3.93276 | 713.8803 | 4.49972
50 263.6178_| 2.70602 | 3017769 | 2.84956 | 3729550 | 3.07957 | 769.8356 | 3.93191 | 1189.634 | 4.49909
75 3953023 | 270607 | 4525409 | 284877 | 559.3679 | 3.07888 | 1154629 | 3.03148 | 1784.326 | 449878
100 5269867 | 270564 | 603.3047 | 284838 | 7456608 | 3.07854 | 1539.422 | 393127 | 2379019 | 4.49862
150 7003554 | 270521 | 004.8323 | 2.84799 | 1118366 | 3.07810 | 2309.007 | 3.93105 | 3568.403 | 4.49846
200 1053.724_| 270500 | 1206360 | 2.84779 | 1491.072 | 3.07802 | 3078593 | 3.93095 | 4757.787 | 4.49838
250 1317.093_| 270487 | 1507.887 | 2.84767 | 1863777 | 307792 | 3848.179 | 3.93088 | 5947.172 | 4.49834
300 1580461 | 2.70478 | 1B09.415 | 2.84759 | 2236483 | 307785 | 4617.765 | 3.93084 | 7136556 | 4.49830
d; 27043567512 2.8472006121 30775054617 3.9306292195 44081472588
d, 08332053356 0.8198314898 0.7970506735 0.7084407659 06521425884

d, (Var) 0.6942311313 0.6721236717 0.6352897762 05018883188 0.4252899557
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Table B.3.2. Partial Re-creation of Table II.2 for P=0.995

(alphaRangeUCL=0.005) in Harter, Clemm, and Guthrie (1959)

n

m 2 3 . 4 5 6
1 180.05956 27.42040 15.97331 12.55293 10.99826
2 21.69172 10.21636 8.35496 7.67754 7.35145
3 11.39731 7.55702 6.82575 6.56813 6.45828
4 8.45485 6.54888 6.19062 6.08629 6.05995
5 7.13703 ©6.02643 5.84535 5.81811 5.83514
6 6.40423 5.70854 5.62895 5.64756 5.69092
7 5.94176 5.49523 5.48079 5.52962 5.59060
8 5.62475 5.34238 5.37305 -5.44323 5.51680
9 5.39447 5.22756 5.29121 5.37725 5.46025
10 5.21988 5.13817 5.22694 5.32521 5.41553
11 5.08308 5.06664 5.17514 5.28312 5.37929
12 4.97307 5.00810 5.13251 5.24838 5.34932
13 4.88272 -4.95932 5.09681 5.21922 5.32413
14 . 4.80722 4.91805 5.06648 5.19439 5.30266
15 4.74320 4.88268 - 5.04040 5.17300 5.28414
16 4.68823 4.85203 - 5.01772 5.15439 5.26801
17 4.64053 4.82522 4.99784 5.13803 5.25382
18 4.59875 4.80156 - 4.98025 5.12355 5.24126
19 4.56186 4.78054 4.96459 5.11064 5.23004
20 4.52904 4.76174 4.95055 5.09906 ©5.21998
25 4.40761 4.69126 4.89771 5.05537 5.18197
30 4.32945 4.64512 - 4.86292 5.02652 5.15682
50 4.17954 4.55483 4.79437 4.96949 5.10701
75 4.10766 4.51067 4.76061 4.94131 5.08235
100 4.07246 4.48882 4.74385 4.92729 5.07007
150 4.03775 446714 4.72718 4.91334 5.05783
200 4.02057 445635 4.71888 4.90638 5.05173
250 4.01032 4.44990 4.71390 4.90221 5.04807
300 4.00351 4.44561 4.71059 4.89943 5.04564
oo 3.9697452252|4.4242351777| 4.6940874592 | 4.88558453811 5.0334791352
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Table B.3.2 continued. Partial Re-creation of Table I1.2 for

P=0.995 (alphaRangeUCL=0.005) in Harter, Clemm, and Guithrie (1959)

n
m 7 8 10 25 50
1 10.13317 9.59128 8.96259 7.99977 7.91156
2 7.17114 7.06337 6.95315 6.95639 7.15747
3 6.40976 6.39095 6.39383 6.63514 1 6.91715
4 6.06422 6.08197 .6.13253 6.47939 6.79913
5 5.86739 5.90480 5.98139 6.38750 - 6.72903
6 5.74040 :5.79002 5.88293 6.32690 6.68261
7 5.65171 5.70964 5.81372 6.28394 6.64959
8 5.58628 5.65022 5.76241 6.25190 6.62492
9 5.53603 5.60451 5:.72287 6.22708 6.60578
10 5.49623 5.56826 5:69146 6.20730 6.59050
11 5.46392 5.53882 5.66590 6.19115 6.57801
12 5.43719 5.51442 5.64471 6.17773 6.56763
13 5.41469 5.49388 5.62685 6.16639 6.55885
14 5.39549 5.47634 5.61159 6.15669 6.55133
15 5.37893 5.46120 5.59841 6.14830 6.54482
16 5.36449 5.44800 5.58690 6.14096 6.53913
17 5.35178 5.43638 5.57677 |~ 6.13449 6.53411
18 5.34052 542607 . 5.56779 - 6.12875 6.52966
19 5.33047 5.41688 5.55976 6.12362 6.52567
20 5.32145 5.40861 5.55255 6.11900 6.52208
25 5.28733 5.37736 5.52525 6.10149 6.50847
30 5.26474 . 5.35664 5.50713 6.08984 6.49941
50 5.21993 5.31551 547111 6.06662 6.48132
75 5.19770 5.29509 5.45321 6.05504 6.47229
100 5.18663 5.28492 5.44429 6.04925 6.46778
150 5.17560 5.27471 5.43538 6.04348 6.46328
200 5.17009 - 5.26971 5.43093 6.04059 6.46102
250 5.16679 5.26667 5.42827 6.03886 6.45967
300 5.16459 5.26465 5.42649 6.03771 6.45877
oo 5.1536133124 5.2545498162| 5.4176160146 | 6.0319395194 | 6.4542688862
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Table B.3.3. Partial Re-creation of Table I1.2 for P=0.001
(alphaRangel.CL=0.001) in Harter, Clemm, and Guthrie (1959)

n
m 2 3 4 5 6
1 0.00222 | = 0.06026 0.18632 0.33245 0.47538
2 0.00201 0.06025 10.19194 0.34723 0.50030
3 0.00193 0.06025 0.19418 0.35319 0.51042
4 0.00189 0.06025 0.19539 0.35642 0.51594
5 0.00187 0.06025 0.19614 0.35846 0.51941
6 0.00185 0.06025 0.19666 035985 | 0.52180
7 0.00184 0.06025 0.19704 0.36087 0.52354
8 0.00183 0.06025 0.19733 0.36165 0.52487
9 0.00183 0.06025 0.19755 0.36226 10.52592
10 0.00182 0.06025 0.19773 0.36275 0.52676
11 0.00182 0.06025 0.19789 0.36316 0.52746
12 0.00181 0.06025 0.19801 0.36350 0.52805
13 0.00181 0.06025 0.19812 0.36379 0.52854
14 0.00181 0.06025 0.19821 0.36404 -0.52897
15 0.00181 0.06025 0.19829 0.36426 0.52935
16 0.00180 0.06025 0.19836 10.36445 0.52967
17 0.00180 0.06025 0.19842 0.36462 0.52996
18 0.00180 0.06025 0.19848 0.36477 0.53022
19 0.00180 0.06025 - 0.19853 0.36490 ©0.53046
20 0.00180 0.06025 0.19857 0.36503 | 0.53067
25 0.00179 0.06025 0.19875 0.36549 0.53147
30 0.00179 | 0.06025 0.19886 0.36580 0.53200
50 0.00178 0.06025 0.19909 0.36643 0.53309
75 0.00178 0.06024 0.19921 0.36675 0.53363
100 0.00178 0.06024 0.19927 -0.36691 0.53391
150 0.00178 0.06024 0.19933 0.36707 0.53418
200 0.00177 0.06024 0.19936 0.36715 - 0.53432
250 0.00177 0.06024 0.19938 0.36720 0.53440
300 0.00177 0.06024 0.19939 0.36723
o |0.00177245430.0602447314 | 0.1994460628 | 0.3673920082 | 0.5347362725
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Table B.3.3 c‘ontinued. Partial Re-creation of Table 11.2 for
P=0.001 (alphaRangel.CL=0.001) in Harter, Clemm, and Guthrie (1959)

n
m 7 8 10 25 50
1 0.60798 0.72902 0.93957 1.82816 | 2.46937
2 0.64281 0.77307 0.99964 '1.94858 2.62247
3 0.65703 0.79110 1.02434 ' 1.99857 2.68617
4 0.66478 0.80096 '1.03788 2.02614 2.72141
5 0.66968 0.80719 1.04644 2.04365 2.74386
6 0.67304 0.81148 1.05234 2.05577 2.75942
7 0.67551 0.81461 1.05666 © 2.06466 2.77086
8 0.67738 0.81700 - 1.05996 - 2.07146 2.77962
9 0.67886 0.81889 -1.06256 2.07683 2.78655
10 0.68006 0.82041 1.06467 2.08118 2.79216
11 0.68105 0.82167 1.06640 2.08478 2.79680
12 . 0.68187 0.82273 1.06786 2.08780 - 2.80071
13 0.68258 10.82363 1.06910 2.09037 2.80404
14 0.68319 0.82440 1.07017 2.09259 2.80691
15 0.68371 0.82508 1.07110 2.09453 2.80941
16 0.68418 0.82567 1.07192 2.09623 2.81162
17 0.68459 0.82619 1.07265 2.09773 2.81357
18 0.68496 - 0.82666 1.07329 |  2.09908 2.81531
19 0.68528 0.82708 1.07387 2.10028 2.81687
20 0.68558 0.82746 1.07439 2.10137 2.81829
25 0.68671 0.82891 1.07639 2.10554 2.82369
30 0.68747 0.82988 1.07774 2.10834 2.82733
50 0.68901 0.83184 1.08045 2.11400 2.83469
75 0.68978 0.83283 1.08182 2.11687 2.83841
- 100 0.69017 0.83333 1.08251 2.11831 2.84029
150 0.69056 0.83382 - 1.08320 - 2,120 - 2.84217
200 0.6908 0.83407 1.0835 2.120 2.84311
250 0.83422 2.121 - 2.84368
300 2.121
oo 0.6913468703|0.8348258291 | 1.08458265392.1226552123 | 2.8459534386
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Table B.3.4. Two Stage Short Run Control Chart Factors for

alphaMean=0.0027, alphaRangeUCL=0.005, and alphaRangel.CL=0.001
2

n
m AZ1 D41 D31 A22 D42 D32
1 [ 166.72424 127.32134 0.00157
2 8.27583 1.98441 0.00314 1433417 16.95587 0.00157
3 473208 2.68348 0.00235 6.69217 9.25818 0.00157
4 362681 302106 0.00209 468219 7.00946 0.00157
s 3.11850 3.18338 0.00196 381937 5.09224 0.00157
6 283285 3.27080 0.00188 335187 5.42349 0.00157
7 265175 3.32336 0.00183 3.06197 506335 0.00157
8 252736 335784 0.00179 286575 4.81596 0.00157
9 2.43693 3.38200 0.00177 272457 4.63598 0.00157
10 236837 339981 0.00175 261833 4.49937 0.00157
11 2.31466 3.41346 0.00173 253558 439225 000157
12 227143 342435 000171 2.46936 430605 0.00157
13 223604 3.43300 0.00170 2.41520 423522 0.00157
14 220643 3.44023 0.00169__ 2.37009 417601 0.00157
15 218135 3.44631 0.00168 233196 4.12579 0.00157
16 215982 "3.45150 0.00163 2.29930 408265 0.00157
17 214114 345597 0.00167 227102 4.04522 0.00157
18 _2.12479 3.45988 0.00166 224630 401242 0.00157
19 2.11036 3.46331 0.00166 222451 3.08345 0.00157
20 209753 3.46636 __0.00165 220516 3.95768 0.00157
25 205010 3.47759 0.00164 213381 3.86230 0.00157
30 201962 3.48479 0.00162 208810 3.80088 0.00157
50 1.96128 3.49858 000160 2.00090 3.68305 0.00157
75 1.93337 3.50522 0.00159 1.95932 3.62654 0.00157
100 191972 3.50849 0.00159 1.93901 3.59887 0.00157
150 1.90627 3.51172 0.00158 1.91902 357157 0.00157
200 1.89962 3.51333 0.00158 1.90914 355806 0.00157
250 1.89565 3.51429 0.00158 1.90325 3.55000 0.00157
300 1.89302 3.51492 0.00158 1.89934 3.54465__ 0.00157
= 1.8799567883 | 3.5180951058 | 0.0015707967 | 18799567883 | 3.5180951058 | 0.0015707967
Table B.3.4 continued. Two Stage Short Run Control Chart Factors
for alphaMean=0.0027, alphaRangeUCL=0.005, and alphaRangel.CL=0.001
n 3
m A1 D41 D31 A2 D42 D32
1 — 1T 835221 1434466 0.03152
2 1.56033 1.86966 0.06112 270257 5.65885 0.03337
3 1.35226 2.21659 0.04924 1.91239 427205 0,03407
4 125601 2.35005 0.04491 1.62151 374247 0.03443
5 1.20246 2.41685 0.04267 147271 3.46631 0.03465
6 1.16868 2.45655 0.04130 1.38280 329785 0.03481
7 114551 2.43283 0.04037 132272 3.18462 0.03491
8 1.12866 2.50151 0.03970 127978 3.10340 0.03500
9 1.11588 251550 0.03920 1.24759 3.04233 0.03506
10 1.10584 2.52636 0.03881 _ 1.22255 2.99476 0.03511_
11 109776 2.53505 003849 1.20254 295667 0.03516
12 100112 2.54215 0.03823 118617 2.92549 0.03519
13 1.08556 2.54808 003801 1.17254 2.89950 0.03522
14 1,08085 2.55310 0.03783 1.16101 2.87750 003525
15 1.07679 255740 0.03767 115114 285864 0.03527
16 107327 256113 0.03754 1.14258 2.84230 0.03529
17 1.07018 2.56440 0.03741 1.13510 2.82800 003531
18 1.06745 2.56728 0.03731 1.12850 2.81539 0.03532
19 1,06503 2.56985 0.03721 1.12264 2.80417 0.03534
20 1.06285 2.57215 0.03713 1.11739 279414 0.03535
25 1.05467 2.58078 0.03681 109774 2.75653 0.03540
30 1.04930 2.58645 0.03660 _1.08487 2.73191 0.03543
50 1.03872 259760 0.03619 1.05971 268370 0.03550
75 1.03353 2.60309 003599 1.04740 2.66010 0.03553
100 1.03095 2.60582 0.03589 1.04132 264843 003554
150 1.02839 2.60853 0.03579 1.03527 2.63684 0.03556
200 102712 2.60988 0.03574 1.03227 263108 003557
250 1.02636 2.61069 0.03571 1,03047 2.62763 003557
300 1.02585 261123 003569 102927 262534 0.03558
= 10233188600 | 2.6139175503 | 0.0355936687 | 10233188600 | 2.6139175593 | 0.0355936687
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Table B.3.4 continued. Two Stage Short Run Control Chart Factors

for alphaMean=0.0027, alphaRangeUCL=0.005, and alphaRangeL. CL=0.001
1

n

m A21 D41 D31 A22 D42 D32
| S R e 3.01070 7.13456 0.08322
2 . 083127 1.75414 0.15366 1.43980 3.88477 0.08923
‘3 0.80653 1.98042 0.12815 1.14060 3.21895 0.09157
4 - 0.78832 2.07041 0.11848 1.01772 2.94060 0.09281
5 0.77660 ~_ 211840 0.11338 ~ 095113 2.78880 0.09358
6 0.76860 2.14831 0.11023 0.90943 2.69347 0.09410
7 0.76283 2.16879 0.10809 0.88087 2.62813 0.09448
8 0.75853 2.18371 0.10654 0.86009 2.58057 0.09477
9 0.75517 2.19507 0.10537 0.84430 2.54442 0.09500
10 0.75248 2.20403 0.10445 0.83190 2.51602 0.09518
11 0.75028 2.21126 0.10371 0.82189 249312 0.09533
12 0.74845 221723 ~_0.10310 0.81365 2.47426 0.09546
13 0.74691 2.22225 0.10260 0.80675 2.45847 0.09556
14 0.74558 2.22652 0.10216 0.80088 2.44505 0.09566
15 0.74444 2.23020 0.1017% 0.79584 2.43351 0.09574
16 - 0.74344 12.23341 0.10147 0.79145 2.42347 0.09581
17 - 0.74255 2.23623 0.10119 0.78760 2.41467 0.09587
18 0.74177 2.23872 0.10094 0.78419 2.40688 0.09592
19 0.74107 2.24095 0.10071 0.78116 2.39993 0.09597
20 0.74044 2.24295 0.10052 0.77844 2.39373 0.09602
25 0.73805 2.25050 P 0.09977 0.76819 2.37033 0.09619
30 0.73647 2.25550 0.09927 0.76144 2.35491 0.09630
50 0.73330 2.26540 0.09830 0.74812 2.32453 0.09653
75 0.73173 2.27031 0.09782 0.74155 2.30957 0.09665
100 0.73094 2.27276 0.09758 0.73829 2.30214 0.09670
150 0.73016 2.27520 0.09735 0.73504 2.29474 0.09676
200 0.72977 227642 0.09723 0.73342 2.29106 0.09679
250 0.72953 2.27715 0.09716 0.73245 2.28886 0.09681
300 0.72937 2.27764 0.09711 0.73181 2.28739 0.09682
oo 0.7285915982 2.2800659421 0.0968772267 0.7285915982 2.2800659421 0.0968772267

Table B.3.4 continued. Two Stage Short Run Control Chart Factors

for alphaMean=0.0027, alphaRangeUCL=0.005, and alphaRangeLCL=0.001
5

n
m A21 D41 D31 A22 D42 D32
O - et 1.76214 5.05912 0.13395
2 0.57850 1.66992 0.23631 1.00199 3.19254 0.14439
3 0.58948 1.84450 0.20200 0.83366 2.76108 0.14847
4 0.58920 1.91706 0.18863 0.76066 2.57271 0.15066
5 0.58784 195711 0.18149 0.71995 2.46759 0.15203
6 0.58654 :1.98264 0.17705 - 0.69400 2.40063 0.15296
7 0.58545 2.00038 0.17402 0.67602 2.35428 0.15364
8 0.58455 2.01344 0.17182 0.66282 2.32031 0.15416
9 0.58381 2.02347 0.17015 0.65272 2.29435 0.15457
10 0.58319 2.03141 0.16884 0.64475 2.27386 0.15489
11 0.58267 2.03786 0.16778 0.63829 2.25729 0.15516
12 0.58223 2.04321 0.16692 - 0.63295 2.24360 0.15539
13 0.58184 2.04771 _0.16619 0.62846 2.23211 0.15558
14 0.58151 2.05156 0.16557 0.62464 2.22233 0.15575
15 0.58122 2.05488 0.16504 0.62135 2.21390 0.15589
16 0.58096 2.05778 0.16457 0.61848 2.206356 0.15602
17 0.58073 2.06033 0.16417 0.61596 2.20011 0.15613
13 0.58052 2.06259 0.16381 0.61372 2.19440 0.15623
19 0.58034 2.06461 0.16349 0.61173 2.18931 0.15632
20 0.58017 2.06643 0.16320 0.60994 2.18474 0.15640
25 0.57952 2.07331 0.16212 0.60319 2.16751 0.15671
30 0.57908 2.07787 0.16141 0.59872 2.15613 0.15691
50 0.57819 2.08696 0.16001 0.58987 2.13362 0.15733
75 0.57774 2.09148 0.15932 0.58549 2.12249 0.15753
100 0.57751 2.09374 0.15898 0.58331 2.11696 0.15764
150 0.57728 2.09599 0.15863 0.58114 2.11145 0.15774
200 057716 2.09712 0.15846 0.58006 2.10870 0.15780
250 0.5770%9 2.09779 0.15836 0.57941 2.10705 0.15783
300 0.57705 2.09824 0.15829 0.57897 2.10596 0.15785
s 0.5768149104 2.1004874391 0.1579549576 0.5768149104 2.1004874391 0.1579549576
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Table B.3.4 continued. Two Stage Short Run Control Chart Factors

for alphaMean=0.0027, alphaRangeUCL=0.005, and alphaRangel.CL=0.001
3

n
m A21 D41 D31 A22 D42 D32
L N e e e 1.25023 4.11530 0.17788
. 2 0.45107 1.60902 0.30203 0.78128 2.82272 0.19210
-3 0.47212 1.75589 0.26290 0.66767 2.50197 0.19774
4 0.47776 1.81896 0.24735 0.61679 2.35829 0.20078
-5 0.48003 1.85450 0.23898 0.58792 2.27701 0.20269
6 048116 1.87743 0.23375 0.56932 2.22480 0.20399
7 '0.48180 1.89349 0.23016 0.55634 2.18844 0.20494
8 0.48220 1.90539 0.22755 0.54676 2.16168 0.20566
9 ~0.48245 1.91456 0.22557 0.53940 2.14117 0.20623
;10 0.48263 1.92185 0.22401 0.53357 2.12494 0.20669
11 0.48276 1.92779 0.22275 0.52884 2.11178 0.20707
12 048286 - 1.93272 0.22172 . 0.52492 2.10090 0.20738
13 0.48293 1.93687 0.22085 0.52162 2.09175 0.20765
14 0.48298 1.94043 0.22011 0.51881 2.08395 0.20789
15 0.48303 1.94350 0.21948 0.51638 2.07722 0.20809
16 0.48306 - 1.94619 0.21892 0.51426 2.07136 0.20827
17 0.48309 1.94856 0.21844 0.51239 2.06620 0.20842
18 0.48311 1.95066 0.21801 0.51074 2.06163 0.20856
19 0.48313 1.95253 . 0.21763 0.50927 2.05756 0.20869
20 0.48315 1.95422 0.21728 0.50794 2.05390 0.20880
25 0.48320 1.96063 0.21599 0.50293 2.04008 0.20923
30 0.48322 1.96488 0.21514 0.49961 2.03093 0.20952
50 0.48325 1.97337 0.21346 0.49301 2.01282 0.21010
75 0.48325 1.97761 0.21263 0.43974 2.00384 0.21040
100 0.48325 1.97972 0.21222 0.48811 1.99937 0.21055
150 0.48325 1.98183 0.21181 0.48648 1.99492 0.21069
200 0.48325 1.98289 0.21160 0.48567 1.99270 0.21077
250 0.48325 1.98352 0.21148 0.48519 1.99137 0.21081
300 0.48325 1.98394 0.48486 1.99048
o0 0.4832423182 1.9860534526 0.2109902101 0.4832423182 19860534526 0.2109902101

Table B.3.4 continued. Two Stage Short Run Control Chart Factors

for alphaMean=0.0027, alphaRangeUCL=0.005, and alphaRangel .C1.=0.001
7

n
. m A2l D41 D31 A22 D42 D32
| S N I R 0.97756 3.58088 0.21485
2 0.37394 1.56340 0.35370 0.64769 2.59093 0.23225
3 0.39800 1.69307 0.31213 0.56286 2.33353 0.23920
4 0.40591 1.75008 0.29538 0.52403 2.21625 0.24295
5 0.40968 1.78262 0.28630 0.50175 2.14930 0.24531
6 0.41184 1.80379 0.28061 0.48730 2.10603 0.24693
7 0.41323 1.81869 0.27670 0.47716 2.07583 0.24811
8 041419 1.82976 0.27385 0.469635 2.05351 0.24901
9 0.41490 1.83832 0.27168 0.46387 2.03637 0.24971
10 0.41543 1.84514 0.26997 0.45928 2.02278 0.25028
11 0.41585 1.85070 0.26859 0.45554 201175 0.25075
12 041619 1.85533 0.26743 0.45245 2.00262 0.25115
13 0.41647 1.85923 0.26650 0.44984 1.99494 0.25148
14 0.41670 1.86257 0.26569 0.44761 1.98838 0.25177
15 0.41690 1.86546 0.26499 0.44569 1.98272 0.25202
16 041707 1.86799 0.26438 0.44401 1.97779 0.25224
17 0.41722 1.87022 0.26385 0.44253 1.97343 0.25244
18 041735 1.87220 0.26338 0.44122 1.96960 0.25261
19 0.41746 1.87397 0.26296 0.44004 1.96616 0.25277
20 0.41756 1.87556 0.26258 0.43899 1.96308 0.25291
25 0.41794 1.88160 0.26116 0.43500 1.95142 0.25345
30 041818 1.88562 0.26022 0.43236 1.94369 0.25381
50 0.41864 1.89365 0.25837 0.42710 1.92836 0.25454
75 0.41886 1.89766 0.25743 0.42448 1.92076 0.25490
100 0.41897 1.89966 0.25700 0.42318 1.91697 0.25509
150 0.41907 1.90167 0.25654 0.42188 1.91319 0.25527
200 0.41913 1.90267 0.2563 0.42123 1.91131 0.2554
250 0.41916 1.90327 0.42084 1.91018
300 0.41918 1.90367 0.42058 1.90943
oo 0.4192807486 1.9056706590 0.2556418897 0.4192807486 1.9056706590 0.2556418897
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Table B.3.4 continued. Two Stage Short Run Control Chart Factors

for alphaMean=0.0027, alphaRangeUCL=0.005, and alphaRange.CL=0.001
8

n
m A21 D4l D31 A22 D42 D32
1| 0.80906 323715 0.24605
2 0.32197 1.53798 0.39493 055767 2.43094 0.26606
3 0.34663 1.64588 0.35223 0.49020 221426 0.27409
4 0.35542 1.69862 0.33486 0.45884 211432 0.27844
5 0.35983 1.72899 0.32540 0.44070 2.05691 0.28118
6 0.36246 1.74885 031945 0.42886 2.01968 0.28306
7 0.36419 7176288 0.31536 0.42053 1.99358 0.28443
8 0.36543 177334 0.31237 0.41435 1.97428 0.28547
9 0.36634 1.78143 0.31009 0.40958 195942 0.28630
10 0.36705 1.78789 0.30830 0.40579 1.94764 0.28696
11 036761 1.79316 0.30685 0.40270 1,93806 0.28751
12 0.36807 1.79755 0.30566 0.40014 1.93013 0.28797
13 0.36845 1.80125 0.30465 0.39798 1.92345 0.28836
14 0.36878 . 1.80443 0:30380 039613 191774 0.28870
15 0.36905 1.80718 0.30307 0.30453 1.91282 0.28899
16 0.36929 1.80058 0.30243 0.39314 1.90852 0.28925
17 0.36949 181170 0.30187 0.39191 1.90474 0.28947
18 0.36968 1.81358 0.30137 0.39082 1.90138 0.28968
19 0.36984 1.81527 0.30093 0.38984 1.80839 0.28986
20 0.36998 1.81678 0.30053 0.38897 1.89570 0.20002
25 0.37052 1.82254 "~ 0.29903 0.38565 1.88552 0.25065
30 0.37087 1.82637 0.29804 0.38345 1.87878 0.29107
50 0.37155 1.83403 0.29609 0.37906 1.86538 0.29192
75 0.37188 1.83786 029512 0.37687 1.85873 0.29235
100 0.37204 1.83077 0.29464 0.37578 1.85541 0.20256
150 0.37221 1.84169 0.29416 0.37470 1.85211 0.29278
200 0.37229 1.84264 0.29392 0.37415 1.85045 0.29288
250 0.37233 184322 0.29378 0.37383 1.84047 0.26295
300 | 037237 1.84360 0.37361 _1.84881
- 0.3725245186 | 18455144305 | 0.2932093259 | 0.3725245186 | 1.8455144305 | 0.2932093459
Table B.3.4 continued. Two Stage Short Run Control Chart Factors
for alphaMean=0.0027, alphaRangeUCL=0.005, and alphaRangel.CL=0.001
n 10
m A21 D4l D31 A22 D42 D32
T 0.61168 281927 0.29555
2 0.25585 1.47634 0.45626 0.44314 222238 0.31951
3 0.27949 1.57900 041324 0.39526 205476 0.32919
4 0.28856 1.62600 0.39552 0.37253 1.97619 0.33445
5 0.29331 1.65339 0.38581 0.35923 1.93068 0.33777
6 0.20623 1.67142 037968 0.35050 1.90099 0.34005
7 0.29820 1.68421 0.37545 0.34433 1.88011 034172
8 0.29961 1.60377 0.37236 033973 1.86463 0.34299
9 0.30068 1.70120 0.37000 0.33617 185269 0.34399
10 0.30152 1.70712 0.36814 0.33334 1.84320 0.34480
il 0.30219 1.71197 0.36663 033103 1.83548 0.34546
12 0.30273 1.71601 036539 0.32911 1.82908 0.34602
13 0.30319 1.71942 0.36435 0.32748 1.82368 0.34650
14 0.30358 1.72235 0.36347 0.32610 1.81907 0.34691
15 0.30391 1.72488 036270 0.32490 1.81508 0.34727
16 0.30420 1.72710 0.36204 0.32385 181161 0.34758
17 0.30445 1.72906 0.36145 0.32292 1.80854 0.34786
18 0.30468 1.73080 0.36093 0.32210 1.80583 0.34811
19 0.30488 1.73235 036047 032137 1.80340 0.34833
20 0.30505 173375 0.36006 0.32071 1.80122 0.34853
25 030572 1.73908 0.33850 0.31820 1.79296 0.34929
30 0.30616 1.74263 035747 031654 1.78748 0.34981
50 - 0.30702 1.74973 0.35543 0.31322 1.77658 0.35084
75 0.30744 1.75328 70.35442 031156 1.77117 035137
100 0.30764 1.75506 0.35392 0.31074 1.76847 0.35163
150 0.30785 1.75684 035342 0.30991 1.76577 0.35189
200 0.30795 1.75772 03532 0.30950 1.76442 0.3520
250 0.30802 1.75826 0.30925 1.76362
300 0.30806 1.75861 030900 1.76308
o 03082613611 | 1.7603920065 | 0.3524226577 | 03082613611 | 1.7603920065 | 0.3524226577
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Table B.3.4 continued. Two Stage Short Run Control Chart Factors
for alphaMean=0.0027, alphaRangeUCL=0.005, and alphaRangeLCL=0.001

n 25
m A21 D41 D31 A22 D42 D32
[ s 0.25204 2.00297 0.45773
2 0.11638 1.33399 0.62800 0.20157 1.75559 0.49177
3 0.13099 1.40238 0.59207 0.18524 1.67900 0.50573
4 0.13719 1.43535 0.57703 0.17711 1.64178 0.51339
5 0.14063 1.45502 0.56874 0.17224 1.61980 0.51825
6 0.14282 1.46814 0.56349 0.16898 1.60530 0.52160
7 0.14433 1.47754 0.55986 0.16666 1.59501 0.52406
8 0.14544 1.48459 0.55721 0.16491 1.58734 0.52594
9 0.14629 1.49010 " 0.55518 0.16356 1.58139 0.52742
10 0.14696 1.49450 0.55358 0.16247 1.57665 0.52862
11 0.14750 1.49812 0.55229 0.16158 1.57278 0.52961
12 0.14795 1.50113 0.55122 0.16084 1.56957 0.53044
13 0.14832 1.50369 0.55032 0.16021 1.56685 0.53115
14 0.14864 1.50588 0.54956 0.15967 1.56452 0.53176
15 0.14892 1.50778 0.54890 0.15920 1.56251 0.53230
16 0.14916 1.50944 0.54833 0.15879 1.56075 0.53276
17 0.14937 1.51091 0.54782 0.15843 1.55920 0.53318
18 0.14956 1.51222 0.54738 0.15811 1.55782 0.53355
19 0.14973 1.51339 0.54698 0.15783 1.55659 0.53388
20 0.14988 1.51445 0.54662 0.15757 1.55549 0.53418
25 0.15044 1.51846 0.54527 0.15658 1.55129 0.53533
30 0.15082 1.52114 0.54438 0.15593 1.54849 0.53610
50 0.15155 1.52651 0.54262 0.15462 1.54292 0.53765
75 0.15192 1.52920 0.54175 0.15396 1.54014 0.53844
100 0.15210 1.53055 0.54132 0.15363 1.53875 0.53884
150 0.15228 1.53190 0.541 0.15330 1.53737 0.539
200 0.15238 1.53257 0.541 0.15314 1.53667 0.539
250 0.15243 1.53298 0.541 0.15304 1.53626 0.540
300 0.15247 1.53325 0.541 0.15297 1.53598 0.540
oo 0.1526461452 1.5345989618 | 0.5400293677 0.1526461452 1.5345989618 0.5400293677

Table B.3.4 continued. Two Stage Short Run Control Chart Factors

for alphaMean=0.0027, alphaRangeUCL=0.005, and alphaRangel.C1=0.001
50

n

m A21 D41 D31 A22 D42 D32

1 - ----- - 0.14716 1.74065 0.54329

2 0.06999 1.27025 0.70407 0.12122 1.58291 0.57997

3 0.07951 1.32538 0.67439 0.11244 1.53242 0.59509

4 0.08366 1.35241 0.66212 0.10800 1.50758 0.60342

5 0.08599 1.36864 0.65541 0.10531 1.49282 0.60872

6 0.08748 1.37951 0.65119 0.10351 1.48304 0.61239

7 0.08852 1.38731 0.64828 0.10221 1.47608 0.61508

8 0.08928 1.39317 0.64617 0.10124 1.47088 0.61714

9 0.08987 1.39775 0.64456 . 0.10048 1.46684 0.61877
10 0.09033 1.40142 0.64329 0.09987 1.46362 0.62008
11 0.09071 1.40443 0.64227 0.09937 1.46099 0.62117
12 0.09102 1.40694 0.64142 0.09895 1.45880 0.62209
13 0.09128 1.40907 0.64072 0.09860 1.45694 0.62287
14 0.09151 1.41089 0.64012 0.09829 1.45536 0.62355
15 0.09170 1.41248 0.63960 0.09803 1.45399 0.62413
16 0.09187 1.41387 0.63915 0.09780 1.45279 0.62465
17 0.09201 1.41509 0.63875 0.09760 145173 0.62511
i8 0.09215 141619 0.63840 0.09742 1.45079 0.62552
19 0.09226 1.41716 0.63809 0.09725 1.44994 0.62588
20 0.09237 1.41804 0.63781 0.09711 1.44919 0.62621
25 0.09276 1.42139 0.63676 0.09655 1.44632 0.62748
30 0.09303 1.42363 0.63607 0.09618 1.44440 0.62833
50 0.09355 1.42811 0.63470 0.09544 1.44058 0.63006
75 0.09381 1.43036 0.63403 0.09507 1.43868 0.63093
100 0.09394 1.43149 0.63369 0.09488 143773 0.63137
150 0.09406 1.43262 0.63336 0.0946% 143677 0.63181
200 0.09413 1.43318 0.63319 0.09460 1.43630 0.63203
250 0.09417 1.43352 0.63309 0.09454 1.43601 0.63216
300 0.09419 1.43374 0.09451 1.43582

o0 0.0943190142 1.4348727409 0.6326945907 0.0943190142 1.4348727409 0.6326945907
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"APPENDIX C.1 — Analytical Results for Chapter 5
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Show: The distribution of the variance v with v1 degrees of freedom may be represented

as follows:
p(v) = (Elvl-j l:e(v?l)ln(vzl)‘g"m‘“m(\;}(%lq)ln(v)—% :|

From Pearson and Hartley (1962),

v—l -1 vl —v‘l-v
vl )2 (vl B
v)=| — . _— -0 Y e -G
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Show: The distribution of the studeritized variance f = (v/v’) with v1 degrees of freedom

for v and v2 degrees of freedom for v’ may be represented as follows:
p3(f) = ep+p2(H)

where

pl= gammln( vitvz ] - gammln[ﬂ) - gammln[v—zj
2 2 2
- (vl vl L [ v1i+v2 vl
p2(f) _[7)- (In(v1)- 1n(v2))+(—2——1)-1n(f) _( > ).IH(1+V_2.f]

From Bain and Engelhardt (1992),

vli+v2
V_I vl 1 _vl+v2
R .
p3(f) = 2_) (MLt [ M
Vi) {v2) | v2 v2
2 2

vl vi+v2

J’LL AR
GHEﬂJ () }

AN o)
2 e Sl 2 52

Let pl = gammln( vi ;Vz J - gammln(yz—l} - gammlr(y;—j

p2(f) :("71) (n(v1)- 1n(v2))+(y2—1—1]- In(f) —(Vl”;"z}-ln(n"—l-f)

v2

= p3(f) = e?*?2
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* Show: v is an unbiased estimate of 62;i.e., show E(V) =G>

i=1 i=1

E(v)=E —in— =($)'E(ivi}[é)'ZE(WF(i)zmlﬁz
since E(v) =62.

:>E(V)=[i)-(m-cz) o?
m .

Show: \/7 =s,, where S, is the pooled standard deviation

From Burr (1969) and Nelson (1990), s, = i=1m

Z(Hi)_m

i=l1

Since the subgroup size n is the same for each of the m subgroups,

Z[(n—l)-sf] (n—l)-ZS? -1 Zsf Zvl
% = F]i(n)—-m - (m n):lm B m(nrll) - l_m

since v, =s’.

=>sp=\/$
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Show: The mean of the distribution of the standard deviation s with (x-1) degrees of

freedom may be represented as follows:

c4(x)=0 ( 2 )0~5.(egﬂmln[%]_gaml{%—l]J

x—1

From Mead (1966),
n
2

2 0.5
2

where n is the size of the subgroup from which the statistic that is used to estimate G is

calculated.

where c4=c,.

ol | S ()
= cd4(x) =0 (_2_1} .(;m*ﬂiél-mn(—])
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Show: p(v) = c( vi -2v
9

j'v—i, where p(v) is the distribution of the variance with v1
c

degrees of freedom and c is the ” distribution with v1 degrees of freedom.

Bain and Engelhardt (1992) give the x* distribution as follows:

1 V_I_l X
c(X)=———-x? -e?
7.

2
Letx—v'v
o’

Y - v v
= .V_ljz . _V_l_ .O'—Vl 'V?' ! _elcrz dV
2 2
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APPENDIX C.2 - Computer Program ccfsv.med for Chapter 5
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Page 1 of program: ccfsv.mcd

ENTER the following 5 values:

(1) alphalMean = 0.0027 alphaMean - alphafor the X chart.

@) alphaVerUCL = 0.005 alphaVarUCL - alphafor the v or +/¥ chart above the uctL.
3) alphaVarlCL = 0.001 alphaVarl CL - alphafor the v or +¥ chart below the LCL *.
) m=3 m - number of subgroups.

B) n=5 n - subgroup size for the (X,v) or (X, Jv) charts.

* Note - If no LCL is desired, leave alphaVarLCL bhlank (do not enter zero).

Please PAGE DOWN to begin the program.

-12

(1.1) TOL:=10 c=10 vli=n-1

cd(x) = c~( 2

x-1
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Page 2 of program: ccfsv.mcd

p(v) = (_I_)L(?l] () e 31+

2.1)
v
P(V) = j p(¥) dv
]
{2.2)  DUCL(Y) = F(V) - (1 - alphaVarlUCL)
Vseedl(start) = |Vg < start
V, « statt + 001
Ag « DUCL{Vy)
Ay « DUCL{V,)
while Ag-Ay>0
Vo €« Vl
VeV, +001
Ao « A
A < DUCL(V))
v
seedB8 = Vseedl(0.01)
vB8 := zbrent{DUCL, seedB8;, seedB8;, TOL)
23) v2=m@m-D

viprevm = (m- )-(n- 1)

h(v)_i}}

25

DLCL(V) = P(¥). - alphaVal CL

Vseed(statt) = | Vg < start

V, ¢ start + 001

Ag « DLCL{Vy)

A1 « DLCL{V))

while Ag-A;>0
VoV
V<V, +001
Ag e Ay
Ay« DLCL{V,)

- seedB7 = Vseed2(0.000001)

vB7 = zbrent(DLCL, seedB7,,seedB7,; ,TOL)
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Page 3 of program: ccfsv.mcd

3.1)

3-2)

3
e e 252 g 2 o2

p2(f) = (%l)-(m(ﬂ) - in(yg)) + (%1 _ 1)'1’1@ _ (vl +v2)

p3(f) = eP1+P2(f)

F .
P3(F) = f p3) df
0

Fseedl(start,deltal) .= |Fy ¢ start
F & start + deltal
Ag ¢ P3(Fy) |
A « P3(F)
while A < (1 - alphaVerlUCL)
FpeFy
F, ¢« F; + deltal
Ag e A,y
Ay « P3(F))

Fguess

seed] := Fseedl(0.1, deltal) deltal =

DI(x) = P3(x) - (1 - alphaVerUCL)

B8 = zbrent(D1,seed]l — deltal ,seedl + deltal ,TOL)

1 = root] |P3(seedl) — (1 - alphaVarUCL)|,seed!]

Fguess < linterp(A,F,1 - alphaVaUCL)

1000 f (n=H-(m=1)

0.1 otherwise
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Page 4 of program: ccifsv.mcd

(4.1) Fseed2(start,deltad) = |Fp ¢ start

Fy & start + delta2

Ag ¢« P3(Fy)

Ay ¢ P3(F))

while A; < alphaVatILCL
Foe«F
F1 ¢ F; + delta2
Ap ¢ A

Ay« P3(Fy)

Fguess

seed2 = Fseed2(0.000001 , delta?)

-D2(x) = P3(x) ~ alphaVarl.CL

Fguess « linterp(A F, alphaVarl.CL)

delta? = [0.0000001 if (n=32)
0.001 otherwise

fB7 = zhrent(D2,seed2 - deltaZ,seed2 + deltaZ, TOL)

1 = root( |P3(seed) - alphaVarLCL|,seed2)
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Patje 5 of program: ccfsv.mcd

5.1)

5.2)

2 2
plprevm = g (ul + vzpreva —g (U?l) g (u p;evm)

p2previn(f) = (—?]-(M(vl) — tnv2prevm)) + (”?1 - 1)-1n(f) —‘(Mm]-m(1 P

2 v2prevm

p3prevn(f) = ef lpremns papren(f)

F
P3prevm(F) = J p3prevm(f) df
0

Fseed3(start,delta?) = |Fg < statt
F; « start + delta3
Ay« P3prevm(FD)
A« P3prevm(F 1)
while A; < (1 - alphaVefUCL)
Fo«F,
Fy « F + delta3
Ag — A
Ay« P3prevm(F1)
Fguess « linterp(A,F,1 - alphaVaUCL)
Fguess

delta3 = |1000 if (h=D-(m<)

seed3 = Fseed3(0.1, delta3)
' 0.1 otherwise

Dlprevm(z) = P3prevm(x) — (1 ~ alphaVarUCL)

B8prevm = zbrent(Dlprevin,seed3 — delta3, seed3 + delta3, TOL)

» = toot] [P3prevm(seed3) - (1 - alphaVarUCL) | ,seed3]

;
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Page'6 of program: ccfsv.mcd

6.1) Fseed4(sta:t,delta4)‘:= Fy ¢ start
F1 « start + deltad
Ay £~ P3prevm(Fu)
Ay P3prevm(F1)
while &) < alphaVarl.CL
Fy « F;
Fy <= F + deltad
Ap ¢ A
A & P3prevm(F1)

Fguess

seedd = Fseedd(0.000001, deltad)

D2prewﬁ(x) :='P3prevm(x) - alphaVarLCL

Fguess ¢ linterp(AF, alphaVarlCL)

deltad = |0.0000001 if (n=32)
0.001 otherwise

fB7previn = zbhrent(D2previm, seedd — deltad,seedd + deltad, TOL)

1 = root( |P3previn(seedd) — alphaVarlCL|,seedd)
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Page 7 of program: ccfsv.mcd

alphal
@) adj_alpha=1- p—z-ﬂl crit_t = gt{adi_alpha, v2) otit,_z = gnosm(adj_alpha,0,1)
. 0.5 . 0.5 .
-1
@.2) ad=| it (m ] Adg o | Citt _(m + 1) ag o L
ca(v2+1) )\ nm ca{v2+1) )\ nm 05
B = — TIDOpTEVIL BS2 = B8 BS = vBS
m— 1 + fB8prevm :
£B7
g7 = T Eprevm B72 = {B7 B7 = vB7
m - | + fB7prevm
0.5 0.5
Bg1 BS2
BSlsqt= —— B82sqrt = ———— B8sqrt = B8™>
c4(v2prevm + 1) c4(v2 + l)
0.5 0.5
7
B7lsqrt = BT B72sqtt = Bz B7sqrt = g7’
c4(02prevm + l) c4(u2 + 1)
FINAL RESULTS:
(1) alphadMean = 0.0027 Control Chart Factors
(2) alphaVeUCL = 0.005 First Stage Second Stage Conventional
) alpheVar CL = 0.001 Adl = 138606 AL2 = 169757 Ad = 13416304973
) m=5
BS1 = 2.92485 BR2 = 5.17428 BR = 3.7150647501
9 n=5
B7i = 00266826472  B72 = 00216918527  B7 = 0.0227010089
BS1sgrt = 1.73713 BS2sgrt = 2.3033 BSsqrt = 1.9274503237
vl=4 B7isqrt = 0.16592 B72sqet = 0.14913 B7sqrt = 0.1506685398
v2 =20

c4(v2 + 1) = 098758
viprevm = 16

c4(v2prevm + 1) = 0.98451

(1 - alphaVarUCL) and alphaVarL.CL Percentage Points of
the Distributions of the Studentized Variance and the Variance

B8 = 5.17428

fB7 = 0.0216918527

fB8prevm = 5.63785

fB7prevm = 0.0214606431

vB8 = 3.7150647501

vB7 = 0.0227010089
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APPENDIX C.3 — Tables Generated from ccfsv.mcd
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Table C.3.1. v2 (Degrees of Freedom) and c4(v2+1) Values (v2=m: (n- 1))
n 2 ‘ 3 4 5 6
m v2 Cy(v2+1) v2 cy(v2+1) v2 cs(v2+1) v2 c4(v2+1) v2 cy(v2+1)
1 1.0 0.79788 2.0 0.88623 3.0 0.92132 4.0 0.93999 5.0 0.95153
2 20 0.88623 4.0 0.93999 6.0 0.95937 8.0 0.06931 10.0 0.97535
3 3.0 0.92132 6.0 0.95937 90 | 0.97266 12.0 0.97941 15.0 0.98348
4 4.0 0.93999 8.0 0.96931 - | 120 0.97941 16.0 0.98451 20.0 0.98758
5 5.0 0.95153 10:0 0.97535 15.0 0.98343 20.0 0.98758 25.0 0.99005
6 6.0 0.95937 12,0 0.97941 18.0 0.98621 24.0 0.98964 300 | . 099170
7 7.0 0.96503 14.0 0.98232 21.0 0.98817 280 0.99111 350 0.99288
3 8.0 0.96931 16.0 0.98451 . 240 0.98964 320 0.99222 40.0 0.99377
9 9.0 0.97266 18.0 0.98621 27.0 0.99079 36.0 0.99308 450 0.99446
10 10.0 0.97535 200 0.98758 30.0 0.99170 40.0 0.99377 50.0 0.99501
11 11.0 0.97756 220 0.98870 33.0 0.99245 44.0 0.99433 55.0 0.99547
12 12.0 0.97941 24.0 0.98964 36.0 0.99308 | 48.0 0.99481 60.0 0.99584
13 13.0° 0.93097 26.0 ~0.99043 39.0 0.99361 52.0 0.99520 65.0 0.99616
14 14.0 0.98232 280 0.99111 420 0.99407 56.0 0.99555 70.0 0.99644
15 15.0 0.98348 30.0 0.99170 45.0 0.99446 60.0 0.99584 75.0 0.99667
16 16.0 0.98451 320 0.99222 48.0 0.99481 64.0 0.99610 80.0 0.99688
17 17.0_| _ 0.98541 34.0 0.99268 51.0 0.99511 68.0 0.99633 85.0 0.99706
18 18.0 0.98621 36.0 0:99308 54.0 0.99538 72.0 0.99653 0.0 0.99723
19 19.0 0.98693 38.0 0.99344 57.0 0.99562 76.0 0.99672 95.0 0.99737
20 20.0. | 0.98758 40.0 0.99377 60.0 0.99584 80.0 0.99688 100.0 0.99750
25 25.0 0.95005 50.0 0.99501 75.0 0.99667 100.0 0.99750 125.0 0.99800
30 30.0 0.99170 60.0 0.99584 90.0 0.99723 120.0 0.99792 150.0 0.99833
50 50.0 0.99501 100.0 0.99750 150.0 0.99833 200.0 0.99875 250.0 0.99900
75 750 _|._ 0.99667 150.0 0.99833 225.0 0.99889 300.0 0.99917 375.0 0.99933
100 100.0 0.99750 200.0 0.99875 300.0 0.99917 400.0 0.99938 500.0 0.99950
150 150.0° | 099833 300.0 0.99917 450.0 0.99944 600.0 0.99958 750.0 0.99967
200 200.0 0.99875 400.0 0.99938 600.0 0.99958 800.0 099969 | 1000.0 | 0.99975
250 250.0 0.99900 5000 | . 0.99950 750.0 0.99967 | 10000 | 0.99975 12500 | 0.99980
300 3000 | . 0.99917 600.0 0.99958 900.0 0.99972_ | 12000 | 099979 | 1500.0 | 0.99983
c4(=) 1.00000 1.00000 1.00000 1.00000 1.00000
Table C.3.1 continued. v2 (Degrees of Freedom) and c,(v2+1) Values (v2=m- (n - 1))
n 7 3 10 25 50
m v2 cy(v2+1) v2 c4(v2+1) v2 c4(v2+1) v2 cy(v2+1) v2 Cy(v2+1)
1 6.0 0.95937 7.0 0.96503 9.0 0.97266_ 240 0.58964 49.0 0.99491
2 12.0 0.97941 14.0 0.98232 18.0 0.98621 43.0 0.95481 98.0 0.99745
3 18.0 0.98621 21.0 0.98817 27.0 0.95079 72.0 0.99653 147.0 0.99830
4 24.0 0.98964 28.0 0.99111 36.0 0.99308 96.0 0.99740 196.0 0.99873
5 30.0 0.99170 350, 0.99288 45.0 0.99446 120.0 0.99792 245.0 0.99898
6 36.0 0.99308 42.0 0.99407 540 0.99538 144.0 0.99827 294.0 0.99915
7 42.0 0.99407 - | - 49.0 0.99491 63.0 0.99604 | .168.0 0.99851 343.0 0.99927
3 430 0.99481 56.0 0.99555 72.0 0.99653 192.0 0.99870 392.0 0.99936
9 54.0 0.99538 63.0 0.99604 810 0.99692 216.0 0.99884 241.0 0.99943
10 60.0 0.99584 70.0 0.09644 90.0 0.99723 240.0 0.59896 490.0 0.95549
11 66.0 10.99622 71.0 0.99676 99.0 0.99748 264.0 0.99905 539.0 0.99954
12 72.0 0.99653 84.0 0.99703 108.0 0.99769 288.0 0.99913 588.0 0.99957
13 78.0 0.99680 91.0 0.99726 117.0 0.99787 312.0 0.99920 637.0 0.99961
14 84.0 0.99703 98.0 0.99745 126.0 0.99802 336.0 0.99926 636.0 0.99964
15 90.0 0.99723 105.0 0.99762 135.0 0.99815 360.0 0.99931 7350 0.99966
16 96.0 0.99740 112.0 0.99777 144.0 0.99827 384.0 0.99935 784.0 0.99968
17 102.0 0.99755 119.0 0.99790 153.0 0.99837 408.0 0.99939 833.0 0.99970
18 108.0 0.99769 126.0 0.99802 162.0 0.99846 432.0 0.99942 882.0 0.99972
19 114.0 0.99781 133.0 0.99812 171.0 0.99854 456.0 0.99945 931.0 0.99973
20 120.0 0.99792 140.0 0.99822 180.0 0.99861 480.0 0.99943 980.0 0.99974
25 150.0 0.99833 175.0 0.99857 225.0 0.99889 600.0 0.99958 12250 | 0.99980
30 180.0 0.99861 210.0 0.99881 270.0 0.99907 720.0 0.99965 1470.0 | 0.99983
50 300.0 0.99917 350.0 0.99929 450.0 0.99944 | 12000 | 0099979 | 24500 | 0.99990
75 450.0 0.99944 525.0 0.99952 675.0 0.99963 18000 | 099986 | 36750 | 0.99993
100 600.0 0.99958 700.0 0.99964 900.0 009972 | 24000 | 099990 | 4900.0 | 0.99995
150 900.0 099972 | 10500 | 0.99976 13500 | 0.09981 36000 | 099993 | 73500 | 0.99997
200 12000 | 0.99979 14000 | 099982 | 18000 | 0099986 | 48000 | 099995 | 9800.0 | 0.99997
250 1500.0 | 0.99983 17500 | 0.99986 | 22500 | 0099980 | 60000 | 099996 | 122500 | _0.99998
300 1800.0 | 0.99986 | 21000 | 099988 | 27000 | 0.99991 72000 | 099997 | 147000 | 0.99998
C4(e0) 1.00000 1.00000 1.00000 1.00000 1.00000 -




Table C.3.2. (1 - alphaVarUCL) Percentage

Points of the Studentized Variance (alphaVarUCL = 0.005)

n

m 2 3 4 5 6
1 16210.72272 | 199.00000 | 47.46723 23.15450 14.93961
2 198.50125 | 26.28427 12.91660 8.80513 6.87237
3 55.55196 14.54411 8.71706 6.52114 5.37214
4 31.33277 11.04241 7.22576 5.63785 4.76157
5 | 2278478 9.42700 6.47604 5.17428 4.43267
6 | 18.63500 - ~8:50963 6.02777 4.88978 4.22758
7 - 16.23556 7.92164 '5.73039 4.69771 4.08760
8 - 14.68820 7.51382 5.51900 4.55943 3.98605
9 . 13.61361 7.21483 = 5.36113 4.45517 3.90902
10 12.82647 - 6.98646 5.23879 4.37378 3.84860
11 - 12.22631 6.80645 5.14124 4.30848 3.79996
12 11.75423 6.66095 5.06165 - 4.25494 3.75995
13 11.37354 6.54095 4.99548 4.21025 3.72647
14 11.06025 | - 6.44030 - 4.93962 4.17239 3.69803
15 -10.79805 6.35469 4.89182 4.13989 3.67359
16 10.57546 6.28098 4.85047 4.11171 3.65236
17 . 10.38418 6.21687 4.81434 4.08703 3.63373
18 10.21809 6.16059 . 4.78251 4.06524 3.61727
19 10.07253 6.11079 4.75425 4.04586 3.60261
20 9.94393 6.06643 4.72899 4.02851 3.58947
25 9.47531 5.90162 4.63452 3.96338 3.54005
30 © 9.17968 5.79499 4.57284 3.92065 3.50753
50 8.62576 5.58922 4.45252 -3.83683 3.44350
75 8.36627 5.48995 4.39385 3.79572 3.41198
100 8.24064 5.44119 4.36488 3.77536 3.39634
150 | 8.11767 5.39300 4.33614 3.75513 3.38079
200 8.05716 5.36912 4.32187 3.74507 3.37304
250 8.02116 5.35486 4.31333 3.73905 3.36840
300 7.99729 5.34538 4.30765 3.73504 3.36531
oo 7.8794385766|5.2983173665 | 4.2793854889 [ 3.7150647501 | 3.3499204687
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Table C.3.2 continued. (1 - alphaVarUCL) Percentage
Points of the Studentized Variance (alphaVarUCL = 0.005)

n
m 7 8 10 25 50
1 ~11.07304 -8.88539 | 6.54109 2.96674 2.11305
2 5.75703 5.03134 4.14098 2.39439 1.85121
3 4.66274 4.17893 3.55707 2.22167 1.76595
4 420189 | --3.81099 3.29645 2.13823 1.72354
5 3.94921 3.60665 3.14915 - 2.08904 1.69813
6 3.78993 3.47681 - 3.05454 2.05660 1.68121
7 3.68042 3.38706 298864 | 2.03359 1.66912
8 3.60053 - 3.32133 +°2.94013 $2.01642 1.66005
9 3.53970 ‘3.27113 . 2:.90292 2.00312 1.65300
10 3.49183 3.23154 |  2.87348 1.99251 1.64736
11 3.45319 - 3.19951 2.84960 - 1.98385 . 1.64274
12 342134 | 3.17308 2.82985 1.97665 1.63890
13 339464 | 3.15089 2.81324 1.97057 1.63564
14 3.37194 3.13200 2.79908 1.96536 | 1.63285
15 3.35239. 3.11572 2.78686 1.96085 1.63043
16 3.33539 3.10155 2.77621 1.95691 1.62832
17 3.32046 3.08910 2.76685 1.95344 1.62645
18 3.30726 3.07808 275855 | 1.95036 1.62479
19 3.29549 3.06825 275114 1.94760 - 1.62330
20 3.28494 3.05943 2.74449 1.94512 1.62197
25 3.24518 3.02617 2.71937 1.93571 1.61688
30 3.21896 3.00420 2.70274 1.92944 1.61350
50 3.16721 2.96076 2.66978 1.91695 1.60672
75 3.14167 2.93929 2.65344 1.91071 1.60333
100 | 3.12899 2.92861 2.64530 1.90760 1.60163 -
150 3.11636 2.91797 2.63719 1.90449 1.59994
200 ~3.11006 2.91267 2.63314 . 1.90293 1.59909
250 3.10629 2.90949 2.63072 1.90200 1.59858
300 3.10378 2.90738 2.62910 1.90138 1.59824
) 3.0912640298 | 2.8968199821] 2.6210389757] 1.8982713307] 1.5965450633
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Table C.3.3. alphaVarLCL Percentage Points
of the Studentized Variance (alphaVarLLCL = 0.001)

I

m o2 3 4 5 6
1 '0.00000247 | 0.00100100 0.00709 0.01871 0.03361
2 -0.00000200 | 0.00100075 0.00753 0:02041 0.03715
3 0.00000185 | 0.00100067 0.00770 0.02109 0.03859
4 0:00000178 | 0.00100063 0.00779 0.02146 0.03938
S . 0.00000173 | 0.00100060 | - 0.00785 0.02169 0.03987
6 0.00000171 | 0.00100058 0.00789 0.02185 0.04021
7 .0.00000169 | 0.00100057 0.00792 0.02197 0.04046
8 0.00000167 | 0.00100056 0.00794 10.02205 0.04065
9 0.00000166 | 0.00100056 0.00796 0.02212 0.04080
10 0.00000165 | 0.00100055 | - 0.00797 0.02218 0.04092
11 0.00000164 | 0.00100055 -0.00798 0.02222 0.04101
12 0.00000164 | 0.00100054 0.00799 0.02226 0.04110
13 0.00000163 | 0.00100054 0.00800 0.02230 0.04117
14 0.00000163 | 0.00100054 |  0.00801 0.02232 0.04123
15 0.00000162 | 0.00100053 0.00801 0.02235 0.04128
16 0.00000162 | 0.00100053 -] 0.00802 0.02237 0.04133
17 0.00000162 | 0.00100053 0.00802 0.02239 0.04137
18 | 0.00000162 -} 0.00100053 0.00803 0.02241 0.04141
19 0.00000161 | 0.00100053 0.00803 0.02242 0.04144
20 0.00000161 | -0.00100053 0.00803 0.02244 0.04147
25 | 0.00000160 | 0.00100052 0.00805 0.02249 0.04158
30 0.00000160 { 0.00100052 0.00806 0.02252 0.04166
S0 0.00000159 | 0.00100051 0.00807 0.02259 0.04181
75 0.00000158 | 0.00100051 0.00808 0.02263 0.04189
100 0.00000158 | 0.00100051 0.00809 0.02265 0.04193
150 -0.00000158 | 0.00100050 0.00809 0.02266 0.04196
200 0.00000157 | 0.00100050 0.00809 0.02267 0.04198
250 0.00000157 | 0.00100050 0.00809 0.02268 0.04200
300 0.00000157 { 0.00100050 0.00809 0.02268 0.04200
oo 0.0000015708} 0.0010005003 | 0.0080991953 | 0.0227010089 | 0.0420425205
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Table C.3.3 cohtinﬁed. aiphaVarLCL Percentage
Points of the Studentized Variance (alphaVarLCL = 0.001)

n .
m 7 8 10 25 50
1 0.04993 0.06658 - |  0.09894 10.26771 0.40576
2 0.05559 10.07444 | 0.11096 0.29660 0.44132
3 0.05791 | 007767 | 0.11593 ~0.30841 0.45558
4 .0.05918 0.07944 0.11864 0.31484 0.46331
5 0.05998 - 0.08055 0.12036 0.31890 0.46816
6 0.06053 | 0.08132 0.12155 0.32170 0.47149
7 0.06093 - 0.08189 | - 0.12241 0.32374 0.47392
8 0.06124 0.08231 0.12307 |- 0.32530 0.47577
9 - 0.06148 10.08265 0.12359 0.32652 0.47722
10 0.06167 0.08292 | - 0.12402 . 0.32752 0.47840
11 0.06183 0.08315 0.12436 0.32833 0.47937
12  0.06197 0.08334 0.12466 0.32902 0.48018
13 0.06208 | 0.08350 0.12490 | 0.32960 0.48087
14 0.06218 0.08364 - | 0.12512 0.33011 0.48147
15 0.06227 | 0.08376 0.12530 0.33055 0.48198
16 0.06235 0.08386 0.12547. 0.33093 0.48244
17 0.06241 0.08396 | 0.12561 0.33127 0.48284
18 0.06247 0.08404 0.12574 0.33157 0.48320
19 0.06253 | 0.08412 0.12586 0.33185 0.48352
20 0.06257 | 0.08418 0.12596 0.33209 0.48381
25 0.06276 0.08444 0.12636 0.33303 0.48492
30 0.06288 0.08462 | 0.12663 0.33366 0.48567
50 0.06313 0.08497 0.12717 0.33493 0.48716
75 0.06326 0.08514 0.12744 0.33558 0.48792
100 0.06332 0.08523 0.12758 0.33590 0.48830
150 0.06338 0.08532 0.12772 0.33622 0.48868
200 0.06342 0.08537 0.12779 0.33638 0.48887
250 0.06343 - 0.08539 0.12783 0.33648 0.48899
300 0.06345 0.08541 0.12786 0.33655 0.48906
o |0.0635111259]0.08549910750.1279943940 | 0.3368700659 | 0.4894454026
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- Table C.3.4. Two Stage Short Run Control Chart Factors for

alphaMean=0.0027, alphaVarUCL=0.005, and alphaVarL.CL=0.001
2

n

m Adl BS1 B71 __A42 BS2 B72

T = 20551103 16210.72272_| _ 0.00000247
2 10.83583 1.99988 0.00000493 18.76822 198.50125 0.00000200
3 5.77696 2.97008 0.00000300 8.16986 55.55106 0.00000185
4 431278 379505 0.00000247 556777 31.33277 0.00000178
5 3.66033 443395 —0.00000222 4.48297 2278478 0.00000173
6 329958 4.92027 0.00000208 390411 18.63500 0.00000171
7 307298 529511 0.00000159 354838 1623556 0.00000169
8 291825 5.58990 0.00000193 330898 14.68820 0.00000167
9 2.80619 5.82654 0.00000188 313742 13.61361 0.00000166
10 272145 6.02010 0.00000184 3.00867 12.82647 0.00000165
11 2.65518 6.18103 0.00000182 -+ 2.00861 12.22631 0.00000164
12 2.60199 ~ 631679 0.00000179 2.82866 11.75423 0.00000164
13 255836 643275 0.00000177 276335 11.37354 0.00000163
14 252195 6:53280 0.00000176 270901 " 11.06025 0.00000163
15 249111 6.62020 0.00000174 266311 10.79805 0.00000162
16 2.46466 6.69697 0.00000173 2.62383 10.57546 0.00000162
17 244172 6.76499 0.00000172 2.58084 1033418 0.00000162
18 242165 _6.82567 0.00000171 256014 1021809 0.00000162
19 2.40393 6.88011 0.00000170 —2.53397 10.07253 0.00000161
20 238819 6.92924 - 0.00000170 251074 9.94393 0.00000161
25 2.33000 7.11692 0.00000167 243514 9.47531 0.00000160
30 229261 7.24284 0.00000165 2.37035 9.17968 0.00000160
50 2.22106 7.49628 0.00000162 2.26594 8.62576 0.00000159
75 2.18683 7.62366 0.00000160 221619 8.36627 0.00000158
100 2.17009 7.68749 0.00000159 " 215190 8.24064 0.00000158
150 215359 775141 0.00000159 2.16800 8.11767 000000158
200 2.14543 7.78339 0.00000158 2.15618 805716 0.00000157
250 2.14056 7.80259 0.00000158 2.14914 8.02116 0.00000157
300 213733 7.81539 ~0.00000158 214447 7.99729 0.00000157
= 21213040749 | 7.8794385766 | 0.0000015708 | 2.1213040745 | 7.8794385766 | 0.0000015708

Table C.3.4 continued. Two Stage Short Run Control Chart Factors
for alphaMean=0.0027, alphaVarUCL=0.005, and alphaVar.CL=0.001

n 2

m A4l B81sqrt B71sqrt A42 B82sqrt B72sqrt
i - 20551103 159.57363 0.00197

2 1083583 1.77240 0.00278 18.76822 15.89779 0.00160
3 5.77696 1.04464 0.00195 816986 8.08985 0.00148
4 4.31278 2.11446 0.00170 556777 5.95495 0.00142

5 3.66033 224014 0.00159 448297 ~ 501647 0.00138
6 3.29958 233115 0.00152 3.90411 4.49965 0.00136

7 3.07298 239857 0.00147 3.54838 117535 0.00135
8 291825 3.44997 0.00124 3.30898 395386 0.00133
9 - 2.80619 249025 0.00141 313742 379338 0.00132
10 272145 2.52256 0.00140 3.00867 3.67192 0.00132
i 2.65518 2.54900 0.00138 2.90861 3.57688 0.00131
12 2.60199 257102 0.00137 2.82866 3.50034 0.00131
i3 255836 2.58962 0.00136 276335 3.43789 0.00130
14 2.52195 2.60553 0.00135 270901 338537 0.00130
15 249111 2.61929 0.00134 2.66311 334122 0.00130
16 2.46466 2.63131 0.00134 2.62383 330317 0.00129
17 2.44172 264189 0.00133 2.58984 327016 0.00129
18 242165 2.65128 0.00133 256014 324126 0.00129
19 2.40393 2.65966 0.00132 2.53397 321574 0.00129
20 238819 2.66719 0.00132 251074 3.19305 0.00129
25 2.33000 2.69568 0.00131 242514 3.10913 0.00128
30 2.29261 271455 0.00130 2.37035 3.05515 0.00127
50 __2.22106 275194 0.00128 2.26594 2.95168 0.00127
75 2.18683 2.77044 0.00127 2.21619 2.90211 0.00126
100 2.17009 277964 0.00127 219150 387784 0.00126
150 3.15359 2.78881 0.00126 2.16800 2.85390 0.00126
200 2.14543 3.79338 0.00126 215618 7.84206 0.00126
250 2.14056 279612 0.00126 2.14914 2.83500 0.00126
300 213733 2.79794 0.00126 214447 3.83031 0.00126
= 2.1213040749 | 28070337683 | 0.0012533145 | 2.1213040749 | 28070337683 | 0.0012533145
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Table C.3.4 continued. Two Stage Short Run Contrel Chart Factors

for alphaMean=0.0027, alphaVarUCL=0.005, and alphaVarl.CL=0.001
3

n
m Adl BS1 B71 A42 BS2 B72
1 | T 17.69484 199.00000 0.00100100
2 2.87519 1.99000 0.00200000 497997 26.28427 0,00100075
3 2.40967 278787 0.00150038 3.40779 1454411 0.00100067
4 220599 3.31601 0.00133378 284792 11.04241 0.00100063
5 209497 3.67043 0.00125047 2.56580 9.42700 0.00100060
6 2.02564 3.92057 0.00120048 239677 8.50963 0.00100058
7 1.97838 4.10537 0.00116715 228444 7.92164 0.00100057
8 1.94415 424706 0.00114335 220446 7.51382 0.00100056
9 1.91823 4.35898 000112549 2.14465 7.21483 0.00100056
10 1.89794 4.44953 0.00111161 2.09825 6.98646 0.00100055
11 1.88162 4.52426 0.00110050 2.06121 6.80645 0.001000535
12 1.86822 4.58695 0.00109141 203097 6.66095 0.00100054
13 1.85702 4.64030 0.00108383 2.00381 6.54095 0.00100054
14 1.84751 4.68623 0.00107742 1.98455 ~6.44030 0.00100054
15 1.83935 4.72618 0.00107193 1.96635 635469 0.00100053
16 1.83226 476125 0.00106716 1.95059 6.28098 0.00100053
17 1.82605 4.79228 ~_0.00106300 1.93682 6.21687 0.00100053
18 1.82057 4.81993 0.00105932 1.92468 6.16059 0.00100053
19 1.81569 4.84472 000105605 1.91390 6.11079 0.00100053
20 1.81132 4.86707 -0.00105313 1.90426 6.06643 0.00100053
25 1.79489 4.95234 0.00104217 186818 3.90162 0.00100052
30 1.78410 5.00947 0.00103493 1.84459 579499 0.00100052
50 1.76290 5.12441 0.00102091 1.79852 5.58922 0.00100051
75 1.75249 5.18218 0.00101401 1.77601 5.48995 0.00100051
100 1.74733 521115 ~_0.00101060 1.76489 5.44119 0.00100051
150 1.74220 5.24016 0.00100721 1.75386 5.39300 0.00100050
200 1.73965 5.25468 0.00100553 1.74837 5.36912 0.00100050
250 173812 5.26340 0.00100452 1,74509 5.35486 0.00100050
300 1.73710 5.26921 0.00100384 1.74290 5.34538 0.00100050
= 1.7320375243 | 5.2983173665 | 0.0010005003 | 1.7320375243 | 5.2083173665_| 0.0010005003
Table C.3.4 continued. Two Stage Short Run Control Chart Factors
for alphaMean=0.0027, alphaVarUCL=0.005, and alphaVarL.C1.=0.001
n 3
m Ad1 B81sqrt B71sqrt Ad42 B82sqrt B72sqrt
T T 17.69484 1591775 0.03570
2 287519 1.59177 0.05046 497997 5.45415 0.03365
3 240967 1.77629 0.04121 3.40779 3.97519 0.03297
4 220599 1.89811 0.03807 2.84792 3.42822 0.03263
5 2.09497 1,97649 0.03648 2.56580 3.14794 0.03243
3 2.02564 203008 0.03552 2.39677 — 297847 0.03230
7 1.97838 2.06878 0.03488 228444 2.86521 0.03220
8 1.94415 2.09794 0.03442 220446 278427 0.03213
9 1.91823 212067 0.03408 2.14465 272359 0.03207
10 1.89794 2.13888 0.03381 2.09825 2.67643 0.03203
11 1.88162 215377 0.03359 206121 2.63872 0.03195
12 1.86822 216619 0.03341 2.03097 2.60790 0.03196
13 1.85702 2.17668 0.03327 2.00581 2.58223 0.03194
14 1.84751 2.18568 0.03314 1.98455 2.56053 0.03191
15 1.83935 219347 0.03303 1.96635 2.54194 0.03190
16 1.83226 2.20029 0.03294 1.95059 2.52584 0.03188
17 1.82605 2.20629 0.03286 1.93682 2.51176 0.03186
18 1.82057 231163 0.03279 1.92468 2.49935 0.03185
19 1.81569 2.21641 0.03272 1.9139%0 2.48832 0.03184
20 181132 222070 0.03267 1.90426 2.47845 0.03183
25 1.79489 2.23700 0.03245 1.86818 244150 0.03179
30 1.78410 2.24785 0.03231 1.84459 241733 0.03176
50 1.76290 226950 0.03203 1.79852 237007 0.03171
75 1.75249 2.28029 0.03190 1.77601 2.34697 0.03168
100 1.74733 2.28568 0.03183 1.76439 233555 0.03167
150 1.74220 2.20106 0.03176 1.75386 232422 0.03166
200 1.73965 229375 0.03173 1.74837 231859 0.03165
250 1.73812 2.29536 0.03171 1.74509 231521 0.03165
300 1.73710 2.29644 0.03170 1.74290 231267 0.03164
o 17320375243 | 2.3018074130 | 0.0316306866 | 1.7320375243 | 23018074130 | 0.0316306866
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Table C.3:4 continued. Two Stage Short Run Control Chart Factors

for alphaMean=0.0027, alphaVarUCL=0.005, and alphaVar.CL=0.001
4

n
_m A4l BS1 B71 Ad2 B82 B72
R 7.07531 47.46723 0.00709
2 1.80725 1.95874 0.01407 3.13025 12.91660 0.00753
3 1.71844 2.59776 0.01125 243023 8.71706 0.00770
4 1.66424 2.97585 0.01024 2.14852 7.22576 0.00779
5 1.63082 3.21838 0.00972 1.99733 6.47604 0.00785
[3 1.60849 3.38586 0.00941 1.90319 602777 0.00789
7 1.59255 3.50808 10.00919 1.83897 5.73039 0.00792
8 1.58073 3.60108 0.00904 1.79237 5.51900 0.00794
9 1.57154 3.67416 0.00892 1.75703 _ 536113 0.00796
10 1.56422 3.73308 0.00883 1.72931 5.23879 0.00797
11 1.55825 3.78158 0.00876 1.70698 5.14124 0.00798
12 1.55330 3.82219 0.00870 1.68862 5.06165 0.00799
13 1.54912 3.85669 0.00865 1.67324 4.99548 0.00800
14 154555 3.88635 0.00861 1.66018 493962 0.00801
15 1.54246 391213 0.00857 1,64896 4.89182 0.00801
16 1.53976 3.93474 0.00854 1.63920 4.85047 0.00802
17 1.53738 3.95473 0.00852 1.63064 4.81434 0.00802
18 1.53527 3.97253 0.00849 1.62307 478251 0.00803
19 1.53339 3.98849 0.00847 1.61634 475425 0.00803
20 1.53170 4.00286 0.00845 1.61030 4.72899 0.00803
25 1.52528 4.05766 0.00838 1.58757 4.63452 0.00805
30 1.52103 4.00434 0.00833 _1.57260 4.57284 0.00806
50 1.51256 4.16804 0.00824 1.54312 4.45252 0.00807
75 1.50836 4.20505 0.00819 1.52860 439385 0.00808
100 _ 1.50626 4.22360 000817 1.52140 4.36488 0.00809
150 1.50416 424217 0.00814 1.51422 4.33614 0.00809
200 1.50312 425146 0.00813 1.51065 432187 0.00809
250 1.50249 4.25704 0.00813 1.50851 431333 0.00809
300 1.50207 426076 0.00812 —1.50709 430765 0.00809
= 1.4999884964 | 4.2793854889 | 0.0080991953 | 1.4999884964 | 4.2793854880 | 0.0080991953
Table C.3.4 continued. Two Stage Short Run Control Chart Factors
for alphaMean=0.0027, alphaVarUCL=0.005, and alphaVarl.CL=0.001
n 4
m Adl B81sqrt B71sqrt A42 B82sqrt B72sqrt
1 7.07531 7.47804 0.09137
2 1.80725 151907 0.12876 3.13025 374618 0.09044
3 1.71844 1.68002 0.11055 243023 3.03546 0.09022
4 1.66424 1.77356 0.10404 2.14852 2.74460 0.09014
5 1.63082 1.83171 0.10068 1.99733 2.58754 0.05009
6 1.60849 1.87097 0.09862 1.90319 248947 0.09007
7 1.59259 1.89517 0.09722 1.83897 242248 0.09005
8 1.58073 1.92037 0.09622 1.79237 2.37385 — 0.09004
9 1.57154 1.93688 0.09546 1.75703 233694 0.05004
10 1.56422 1.95009 0.09486 1.72931 230799 0.05003
11 1.55825 1.96090 0.09439 1.70698 2.28467 0.05003
12 1.55330 1.96991 0.09399 1.68862 226549 0.09002
13 1.54912 1.97753 0.09367 1.67324 224943 0.09002
14 1.54555 1.98406 0.09339 1.66018 2.23579 0.09002
15 1.54246 198972 0.09315 1.64896 2.22407 0.09001
16 1.53976 1.99467 0.09294 1.63920 221388 0.05001
17 1.53738 1.99903 0.09276 1,63064 2.20494 0.09001
18 1.53527 2.00292 0.09260 1.62307 219704 009001
19 1.53339 2.00639 0.09246 1.61634 2.19001 0.09001
20 1.53170 2.00951 0.09233 1.61030 2.18370 0.09001
25 1.52528 202137 0.09185 1.58757 2.15998 0.09001
30 1.52103 2.02927 0.09153 1.57260 2.14437 0.09000
50 1.51256 2.04505 0.09091 1.54312 2.11362 0.09000
75 1.50836 2.05293 0.09060 1.52860 209848 0.09000
100 1.50626 2.05687 0.09045 1.52140 2.09097 005000
150 1.50416 2.06080 0.09030 1.51422 2.08350 0.09000
200 1.50312 2.06277 0.09022 1.51065 2.07978 0.09000
250 1.50249 2.06395 0.09018 1.50851 207755 0.09000
300 1,50207 2.06474 0.09015 1.50709 2.07606 0.09000
= 14990884964 | 2.0686675636 | 0.0809955292 | 14999884964 | 2.0686675636 | 0.0899955392
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Table C.3.4 continued. Two Stage Short Run Control Chart Factors

for alphaMean=0.0027, alphaVarUCL=0.005, and alphaVarL.CL=0.001
5

n
m Adl B8l B71 A42 BS2 B72
1 T T _4.45422 23.15450 0.01871
2 1.39519 1.91720 0.03674 241654 8.80513 0.02041
3 1.40341 244471 0.03031 1.98472 6.52114 0.02109
4 1.39422 273965 0.02793 1.79993 5.63785 0.02146
5 1.38606 2.92485 0.02668 1.69757 5.17428 0.02169
[3 1.37977 3.05139 0.02592 1.63257 4.88978 0.02185
7 1.37493 3.14317 0.02540 1.58764 4.69771 0.02197
8 1.37114 321274 0.02503 1.55473 455943 0.02205
9 1.36810 326726 0.02474 1.52958 445517 0.02212
10 1.36562 331112 0.02452 1.50975 4.37378 0.02218
11 1.36355 334717 0.02434 1.49370° 4.30848 0.02222
12 1.36181 3.37733 0.02420 1.48045 4.25494 0.02226
13 1.36033 3.40292 0.02407 1.46932 421025 0.02230
14 1.35904 3.42491 0.02397 1.45984 417239 0.02232
15 1.35792 3.44400 0.02388 1.45168 4.13989 0.02235
16 1.35694 3.46075 0.02380 1.44457 411171 0.02237
17 1.35606 3.47554 0.02374 143832 4.08703 0.02239
18 1.35528 348871 0.02367 1.43279 406524 0.02241
19 1.35458 350051 0.02362 1.42785 4.04586 0.02242
20 1.35395 351113 0.02357 1.42343 4.02851 0.02244
25 1.35153 355162 0.02339 1.40672 3.96338 0.02249
30 1.33990 3.57870 0.02327 1.39568 3.92065 0.02252
50 1.34662 3.63305 0.02304 1.37383 3.33683 0.02259
75 1.34497 3.66033 0.02293 1.36302 3.79572 0.02263
100 1.34414 3.67399 002287 1.35765 3.77536 0.02265
150 1.34330 368767 0.02281 1.35229 375513 0.02266
200 1.34289 3.69451 0.02279 1.34962 3.74507 0.02267
250 1.34264 369862 0.02277 1.34802 3.73905 0.02268
300 1.34247 3.70136 0.02276 - 1.34695 373504 0.02268
o 1.3416304973 ] 3.7150647501 | 0.0227010089 | 1.3416304973 | '3.7150647501 | 0.0227010089
Table C.3.4 continued. Two Stage Short Run Control Chart Factors
for alphaMean=0.0027, alphaVarUCL=0.005, and alphaVarLLC1.=0.001
n 5
m Adl B81sqrt B71sqrt Ad2 B82sqrt B72sqrt
1 — | 4.45422 511913 0.14553
2 1.39519 1.47303 0.20392 241654 3.06129 0.14739
3 1.40341 1.61306 0.17960 1.98472 2.60735 0.14828
4 1.39422 1.68999 0.17062 1.79993 241178 0.14880
5 —1.38606 1.73713 0.16592 1.66757 230330 0.14913
3 1.37977 1.76879 0.16301 1.63257 2.23443 0.14937
7 1.37493 1.79146 0.16104 1.58764 2.18685 0.14954
3 1.37114 1.80848 0.15961 "1.55473 2.15203 0.14967
9 1.36810 1.82173 0.15853 1.52958 " 2.12543 0.14977
10 1.36562 1.83233 0.15768 1.50975 2.10447 0.14986
11 1.36355 1.84100 0.15700 1.49370 2.08751 0.14993
12 1.36181 1.84822 0.15644 1.48045 207352 0.14999
13 1.36033 1.85433 0.15597 1.46932 2.06178 0.15004
14 1.35904 1.85957 0.15557 1.45984 205178 0.15008
15 1.35792 1.86411 0.15522 1.45168 2.04317 0.15012
16 1.35694 1.86807 0.15493 1.44457 203567 0.15015
17 1.35606 1.87158 0.15466 1.43832 2.02509 0.15018
18 1.35528 1.87469 0.15443 1.43279 202326 015021
19 1.35458 1.87747 0.15423 1.42785 201806 0.15023
20 1.35395 1.87998 0.15404 1.42343 2.01340 0.15025
25 135153 1.88949 0.15335 1.40672 1.99581 0.15033
30 1.34990 1.89583 0.15289 1.36568 1.98419 0.15039
50 1.34662 1.90849 0.15199 1.37383 1.96123 0.15050
75 134497 1.91481 015154 1.36302 1.94989 0.15056
100 1.34414 1.91798 0.15132 1.35765 1.94424 0.15058
150 1.34330 1.92114 0.15110 1.35229 1.93862 0.15061
200 1.34289 1.92271 0.15100 1.34562 1.93582 0.15063
250 1.34264 1.92366 0.15093 1.34802 1.93414 0.15063
300 1.34247 1.2429 0.15089 1.34695 1.93303 0.15064
= 13416304973 | 15274503237 | 0.1506685398 | 1.3416304973 | 19274503237 | 0.1506685398
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Table C.3.4 continued. - Two Stage ‘Short Run Control Chart Factors

for alphaMean=0.0027, alphaVarUCL=0.005, and alphaVarLCL=0.001
6

n
m Adl B8l B71 A42 B82 B72
T = D" 334141 14.93961 0.03361
2 1.17112 1.87453 0.06504 2.02845 6.87237 0.03715
3 1.21554 2.32374 0.05471 1.71903 537214 0.03859
4 1.22511 2.56667 0.05080 1.58162 476157 0.03938
5 1.22802 2.71731 0.04874 1.50401 4.43267 0.03987
6 1.23897 281957 0.04747 1.45413 422758 0.04021
7 1.22922 2.39346 0.04660 1.41938 4.08760_ 0.04046
8 1.22920 2.94932 0.04597 1.39378 3.98605 0.04065
9 1.22906 2.99301 0.04550 1.37413 3.90902 0.04080
10 1.22888 3.02813 0.04512 1.35857 3.84860 0.04092
11 1.22868 3.05696 0.04482 1.34595 379996 0.04101
12 1.22849 308106 0.04458 133551 3.75995 0.04110
13 1.22830 3.10145 0.04437 1.33672 372647 0.04117
14 1.22813 3.11904 0.04419 1.31923 3.69803 0.04123 _
15 1.22797 3.13428 0.04404 131276 3.67359 0.04128
16 1.22782 3.14763 0.04391 1.30712 3.65236 0.04133
17 1.22768 315942 0.04380 1.30216 3.63373 0.04137
18 1.22756 316992 0.04370 129776 361727 0.04141
19 1.22744 3.17931 0.04361 1.29383 3.60261 0.04144
20 1.22733 318778 0.04352 1.29031 3.58947 0.04147
25 1.22689 322002 0.04322 1.27699 3.54005 . 0.04158
30 1.22657 3.24156 0.04302 1.26816 3.50753 0.04166
S0 1.22589 3.28478 0.04262 1.25066 3.44350 0.04181
75 1.22552 330645 0.04243 1.24197 341198 0.04189
100 1.22533 331731 0.04233 _ 1.23765 3.39634 0.04193
150 1.22514 332817 0.04223 1.23333 338079 0.04196
200 1.22504 333360 0.04219 123118 3.37304 0.04198
250 1.22498 333686 0.04216 1.23989 336840 0.04200
300 1.22494 . 333904 0.04214 1.22903 336531 0.04200
= 1.2247354787 | 3.3499204687 | 0.0420425205 | 1.2247354787 | 3.3409204687 | 0.0420425305
Table C.3.4 continued. Two Stage Short Run Control Chart Factors
for alphaMean=0.0027, alphaVarUCL=0.005, and alphaVarLCL=0.001
n 6
m Adl B81sqrt B71sqrt Ad2 B82sqrt B72sqrt
i 334141 4.06205 0.19267
2 117112 1.43887 ~ 026801 202845 2.68777 0.19762
3 1:21554 1.56291 0.23982 1.71903 235671 0.19975
4 1.22511 1.62899 0.22918 1.58162_ 220954 0.20093
5 1.22802 1.66915 0.22355 1.50401 2.12655 0.20169
6 1.22897 1.69603 0.22006 1.45413 2.07331 0.20220
7 1.22022 1.71525 021768 1.41938 203627 0.20258
8 1.22920 1.72967 0.21595 1.39378 2.00902__ — 0.20288
9 1.22506 1.74088 0.21464 1.37413 1.98814 0.20310
10 1.22838 1.74985 0.21361 1.35857 1.97162 0.20329
11 1.22868 1.75718 021278 1.34595 1.95823 0.20344
12 1.22849 1.76329 0.21209 1.33551 1.94715 0.20357
13 1.22830 1.76846 021152 1.32672 1.93784 0.20368
14 1.22813 1.77289 0.21103 1.31923 1.92991 0.20377
15 1.22797 1.77672 0.21062 1.31276 1.92306 0.20386
16 1.22782 1,78008 0.21025 130712 1.91710 0.20393
17 1.22768 1.78304 0.20993 1.30216 1.91185 0.20399
18 1.22756 1.78567 0.20965 1.29776 1.90720 0.20405
19 1.22744 1.78802 0.20940 1.29383 1.90306 0.20410
20 1.22733 1.79014 0.20917 1.29031 1.89933 0.20415
25 1.22689 1.79813 0.20833 1.27699 1.88527 0.20432
30 1.22657 1.80354 0.20777 1.26816 1.87596 0.20444
50 1.22589 1.81425 0.20666 1.25066 1.85752 0.20468
75 1.22552 1.81959 0.20612 1.24197 1.84839 0.20480
100 1.22533 1.82237 0.20585 1.23765 1.84384 0.20486
150 1.22514 1.82494 0.20558 1.23333 1.83930 0.20492
200 1.22504 1.82627 0.20544 1.23118 1.83704 0.20495
250 1.22498 1.82708 0.20536 1.22989 1.83569 0.20497
300 1.22494 1.82761 0.20531 1.22903 1.83478 0.20498
= 12247354787 | 1.8302787954_| 02050427285 | 1.2247354787 | 1.8302787954 | 0.2050427285
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Table C.3.4 continued. Two Stage: Short Run Control Chart Factors

for alphaMean=0.0027, alphaVarUCL=0.005, and alphaVar.CL=0.001
7

n
m A4l B8l B71 Ad2 B82 BT2
T N — 273231 1107304 0.04993
2 1.02719 1.83434 0.09510 1.77914 5.75703 0.05559
3 108754 222631 0.08113 1.53801 466274 0.05791
a 1.10628 2.43398 0.07575 " 1.42820 420189 0.05918
5 1.11481 2.56154 0.07290 1.36536 3.94921 0.05998
6 1.11954 2.64775 0.07112 1.32466 3.78993 ~0.06053
7 1.12249 270988 0.06991 1.29614 3.68042 0.06093
3 1.12448 275676 0.06904 1.27504 3.60053 0.06124
9 1.12591 279339 0.06837 1.25880 353970 0.06148
10 1.12697 2.82279 0.06785 1.24592 349183 0.06167
i1 1.12780 2.84692 0.06743 1.23544 345319 0.06183
12 1.12845 2.86707 0.06708 1.22676 342134 0.06197
13 1.12898 2.88415 0.06679 121944 339464 0.06208
14 1.12942 2.89881 0.06654 121319 33719 0.06218
15 1.12979 291154 0.06633 1.20780 3.35239 0.06227
16 1.13011 2.92268 0.06615 —_1.20309 333539 0.06235
17 1.13038 293253 0.06598 "1.19805 332046 0.06241
18 113061 254129 0.06584 1.19527 330726 0.06247
19 1.13082 2.94913 0.06571 1.19199 3.29549 0.06253
20 1.13100 . " 2.95620 0.06560 1.18504 3.28494 0.06257
25 1.13166 2.98308 0.06517 1.17787 324518 0.06276
30 1.13208 3.00104 0.06489 1.17047 3.21896 0.06288
50 1.13286 3.03705 0.06433 1.15575 3.16721 0.06313
75 1.13322 305509 0.06405 "1.14843 3.14167 0.06326
160 1.13339 3.06412 0.06392 1.14478 3.12899 0.06332
150 1.13356 3.07316 0.06378 114114 3.11636 0.06333
200 1.13364 "3.07769 0.06371 1.13933 3.11006 0.06342
350 1.13369 308040 0.06367 1.13824 3.10629 0.06343
300 1.13372 308221 006365 | 113751 3.10378 0.06345
- 1.1338847231 | 3.0912640298 | 0.0635111259 | 1.1338847231 | 3.0912640298 | 0.0635111259
Table C.3.4 continued. Two Stage Short Run Control Chart Factors
for alphaMean=0.0027, alphaVarUCL=0.005, and alphaVarl.CL=0.001
n 7
m Ad1 B81sqrt B71sqrt A42 B82sqrt B72sqrt
1 — 1 = 273231 3.46855 0.23290
2 1.02719 141174 0.32145 1.77914 244983 0.24073
3 1.08754 1.52352 0.29082 1.53801 2.18952 0.24401
4 1.10628 1.58193 0.27908 1.42820 207131 0.24382
5 1.11481 161723 0.27282 1.36536 2.00389 0.24696
6 111954 1.64080 0.26892 1.32466 1.96034 0.24774
7 112249 1.65764 0.26625 1.29614 1.92589 0.24832
8 1.12448 1.67026 0.26431 1.27504 1.90741 0.24876
9 1.12591 1.68007 0.26284 1.25880 1.89014 0.24910
10 1.12697 1.68791 026168 1.24592 1.87645 0.24938
11 1.12780 1.60433 0.26075 1.23544 1.86533 0.24961
12 1.12845 1.69967 0.25998 1.22676 1.85612 0.24980
13 1.12898 1.70418 0.25933 1.21944 1.84837 0.24997
14 1.12042 1.70806 0.25879 1.21319 1.84176 0.25011
15 1.12979 171141 0.25831 1.20780 1.83605 0.25023
16 1.13011 1.71434 0.25790 1.20309 1.83107 0.25034
17 1.13038 1.71693 0.25754 1.19895 1.82669 0.25044
18 1.13061 1.71523 0.25723 1.19527 1.82280 0.25052
19 1.13082 1.72128 0.25694 1.19199 181933 0.25060
20 113100 1.72313 0.25669 1.18504 1.81622 0.25067
25 113166 1.73016 0.25573 1.17787 1.80444 0.25093
30 1.13208 1.73484 0.25510 1.17047 1.79664 0.25111
50 1.13286 174419 025385 1.15575 1.78115 0.25147
75 1.13322 1.74887 0.25323 1.14843 1.77346 0.25165
100 1.13339 1.75120 0.25202 1.14478 1.76963 0.25174
150 1.13356 175353 0.25262 1.14114 1.76581 0.25183
200 1.13364 1.75470 0.25247 1.13933 1.76390 0.25188
250 1.13369 1.75540 0.25238 1.13824 1.76276 0.25190
300 1.13372 1.75587 0.25232 1.13751 1.76200 0.25192
oo 1.1338847231_| 1.7581990871 | 0.2520141382 | 1.1338847231 | 1.7581990871 | 0.2520141382
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“Table C.3.4 continued. Two Stage Short Run Control Chart Factors

for alphaMean=0.0027, alphaVarUCL=0.005, and alphaVarLCL=0.001
8

n
m Adl BS1 B71 A42 BS2 B72
T 1 234703 8.88539 0.06658
2 0.92530 1.79768 0.12486 1.60267 5.03134 0.07444
3 0.99316 _ 2.14668 0.10765 1.404353 417893 0.07767
4 1.01678 2.32844 0.10095 1.31265 3.31099 ~0.07944
5 1.02844 2.43950 0.09737 1.25958 3.60665 0.08055
6 1.03531 251432 0.09513 ~1.22499 3.47681 0.08132
7 1.03980 256813 70.09361 1.20066 3.38706 0.08189
8 1.04296 2.60868 0.09250 1.18261 3.32133 0.08231
9 1.04530 2.64032 0.09166 1.16868 327113 0.08265
10 1.04710 266571 0.09100 1.15762 323154 0.08292
11 1.04853 2.68653 0.05047 1.14860 3.19951 0.08315
12 1.04968 270391 0.09003 114113 3.17308 0.08334
13 1.05064 2.71863 0.08966 1,13482 3.15089 0.08350
14 1.05144 273127 0.08935 1.12943 3.13200 0.08364
15 1.05213 274223 0.08908 1.12477 3.11572 0.08376
16 1.05272 275184 0.08885 1.12071 310155 0.08386
17 1.05323 2.76032 0.08864 1.11712 3.08010 0.08396
18 1.05369 276786 “0.08846 111395 3.07808 0.08404
19 1.05409 2.77461 ~0.08830 L11111 3.06825 0.08412
20 1.05444 278069 0.08815 1.10855 305943 0.08418
25 1.05577 2.80383 0.08761 1.09888 302617 0.08244
30 1.05663 2.81928 0.08725 1.09246 3.00420 0.08462
50 1.05830 —2.85024 0.08654 1.07968 2.96076 0.08497
75 1.05910 2.86574 0.08619 1.07332 2.93929 0.08514
100 1.05950 2.87351 0.08602 1.07014_ 2.92861 0.08523
150 1.05989 2.88127 0.08584 1.06697 291797 0.08532
200 1.06008 2.88516 0.08576 1.06539 291267 0.08537
250 1.06019 2.88749 0.08570 1.06444 2.90949 0.08539
300 1.06027 2.88904 0.08567 1.06381 2.90738 0.08541
o 1.0606520375 | 2.8968199821 | 0.0854991075_| 1.0606520375 | 2.8968199821 | 0.0854991075
Table C.3.4 continued. Two Stage Short Run Control Chart Factors
for alphaMean=0.0027, alphaVarUCL=0.005, and alphaVarL.CL=0.001
n 8
m A4l B81sqrt B71sqrt A42 B82sqrt B72sqrt
1 — | o T 2.34703 3.08885 0.26739
2 0.92530 1.38936 0.36615 1.60267 228344 0.27774
3 0.99316 1.49153 0.33401 1.40453 2.06872 0.28203
4 1.01678 1.54419 032153 1.31265 1.96968 0.28438
5 1.02844 1.57590 0.31483 1.25958 1.91273 0.28586
6 1.03531 1.59703 0.31065 1.22499 1.87575 0.28688
7 1.03680 161210 0.30778 1.20066 1.84981 0.28762
8 1.04296 1,62340 0.30570 1.18261 1.83061 0.28819
9 1.04530 1.63218 0.30411 1.16868 1.81582 0.28363
10 1.04710 1.63919 0.30286 1.15762 1.80408 0.28900
11 1.04853 1.64493 0.30185 1.14860 1.79453 0.28929
12 1,04968 1.64970 030102 1.14113 1.78662 0.28954
13 1.05064 1.65374 030033 1.13482 1.77996 0.28976
14 1.05144 1.65720 0.20973 1.12943 1.77426 0.28994
15 1.05213 1.66020 0.29922 1.12477 1.76933 0.20010
16 1.05272 1.66282 0.20878 1.12071 1.76506 0.29024
17 1.05323 1,66513 0.20839 111712 1.76128 0.29036
18 1.05369 1.66719 0.29803 1.11395 1.75793 0.26047
19 1.05409 1.66902 0.29774 111111 1,75494 0.29057
20 1.05444 1.67068 0.29746 1,10855 1.75225 0.20066
25 1.05577 1.67696 0.20643 1.09888 1.74208 0.29101
30 1.05663 1.68114 0.20574 1.09246 1.73533 0.20123
50 1.05830 1,68950 0.29439 1.07968 1.72192 0.29170
75 1.05910 1.69367 0.29372 1.07332 1.71525 0.29193
100 1.05950 1.69575 0.29339 1.07014 1.71193 0.26205
150 1.05989 1,69784 0.29306 1.06697 1.70861 0.20217
200 1.06008 1.69888 0.26289 1.06539 1.70696 0.26223
250 1.06019 1.69951 0.29280 1.06444 1.70597 0.20226
300 1.06027 1.69992 0.29273 1.06381 1.70531 0.29228
- 1.0606520375_| 17020046951 | 0.2924023042_| 1.0606520375 | 1.7020046951 | 0.2024023042

303




Table C.3.4 continued. Two Stage Short Run Control Chart Factors
for alphaMean=0.0027, alphaVarUCL=0.005, and alphaVarLCL=0.001

n 10
m A4l BS1 B71 Ad2 BS2 BT2
1| T 1.88245 6.54109 0.09894
2 0.78799 1.73479 0.18007 1.36485 4.14098 0.11096
3 0.86077 2.02296 0.15769 121731 355707 0.11593
-4 0.88861 2.16991 0.14882 1.14719 3.29645 0.11864
5 0.90317 2.25894 0.14403 ~1.10615 3.14915 0.12036
6 0.91209 231864 0.14104 1.07920 3.05454 0.12155
7 0.91810 236144 0.13899 1.06013 2.98864 0.12241
8 0.92242 239363 0.13750 1.04593 294013 0.12307
9 0.92568 241872 0.13636 1.03494 2.90292 0.12359
10 0.92822 2.43883 0.13547 1.02618 2.87348 0.12402
11 0.93025 2.45530 0.13475 1.01904 2.84960 0.12436
12 0.93192 2.46904 0.13415 101311 2.82985 0.12466
13 0.93331 248068 0.13365 1.00809 2.81324 0.12490
14 0.93449 2.49066 0.13323 1.00381 279908 0.12512
15 0.93550 2.49932 0.13287 1.00010 2.78686 0.12530
16 0.93638 2.50689 0.13255 " 0.99685 277621 0.12547
17 093715 251358 0.13227 0.99400 276685 0.12561
18 0.93783 251953 0.13203 0.99146 275855 0.12574
19 0.93843 2.52486 0.13181 0.98919 275114 0.12586
20 0.93897 252965 0.13161 098715 274449 0.12596
25 0.94099 2.54789 0.13087 0.97941 271937 0.12636
30 0.94231 2.56005 0.13038 0.97427 270274 0.12663
50 094451 2.58442 0.12941 0.96400 2.66978 0.12717
75 0.94618 2.59662 0.12894 0.05888 2.65344 0.12744
100 0.94681 2.60272 0.12870 0.95633 2.64530 0.12758
150 0.94744 2.60882 0.12846 0.95378 263719 0.12772
200 0.94775 261188 0.12835 0.95250 263314 0.12779
250 0.94794 261371 0.12828 0.95173 263072 0.12783
300 0.94806 2.61493 0.12823 0.95122 262910 0.12786
o 0.9486760225 | 2.6210380757 | 0.1279943940 | 0.9486760225 | 2.6210389757 | 0.1279943940
Table C.3.4 continued. Two Stage Short Run Control Chart Factors
for alphaMean=0.0027, alphaVarUCL=0.0035, and alphaVarLCL=0.001
n 10
m A4l B81sqrt B71sqrt Ad2 B82sqrt B72sqrt
T N R 1.88245 262945 0.32340
2 0.78799 1.35414 0.43628 1.36485 206339 0.33777
3 0.86077 1.44219 0.40266 121731 1.90356 0.34364
4 0:88861 1.48676 0.38936 1.14719 1.82826 0.34685
5 0.90317 1.51345 0.38216 1.10615 1.78447 0.34887
6 0.91209 1.53119 037765 1.07920 1.75583 0.35025
7 091810 1.54383 0.37454 1.06013 1.73564 0.35127
8 092242 1.55329 0.37228 1.04593 1.72064 0.35204
9 0.92568 1.56063 0.37055 1.03494 1.70906 0.35265
10 0.92822 1.56650 0.36920 — 1.02618 1.69985 035314
11 0.93025 1.57130 0.36810 —1.01504 1.69234 0.35354
12 093192 1.57529 0.36719 1.01311 1.68611 0.35388
13 0.93331 1.57867 0.36644 1.00809 1.68086 035417
14 0.93449 1.58156 0.36579 1.00381 1.67637 0.35442
15 0.93550 1.58406 0.36523 1.00010 1.67248 0.35464
16 0.93638 1.58625 0.36475 0.99685 1.66909 0.35483
17 0.93715 1.58818 0.36432 0.99400 1.66610 0.35500
18 0.93783 1.58990 0.36395 0.99146 1.66345 0.35515
19 0.93843 1.59143 0.36361 0.98919 1.66108 0.35528
20 0.93897 1.59282 036331 0.98715 1.65895 0.35540
25 0.94099 1.59806 0.36218 0.97941 1.65088 035587
30 0.94231 1.60155 0.36143 0.97427 1.64552 0.35618
50 0.94491 1.60852 0.35994 0.96400 1.63485 0.35681
75 0.94618 1.61201 0.35921 0.95888 1.62054 0.35712
100 0.94681 1.61375 0.35885 0.95633 1.62689 0.35728
150 0.94744 1,61549 0.35848 0.95378 1.62424 0.35744
200 0.94775 1.61636 0.35830 0.95250 1.62292 035752
250 0.94794 1.61688 0.35820 0.95173 1.62213 035757
300 0.94806 1.61722 0.35812 0.95122 1.62160 035760
- 0.9486760225 | 1.6189623145 | 0.3577630417 | 0.0486760225 | 1.6189623145 | 0.3577630417
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Table C.3.4 continued. Two Stage Short Run Control Chart Factors
for alphaMean=0.0027, alphaVarUCL=0.003, and alphaVarLCL=0.001

n 25
m Adl BS1 B71 A42 BS2 B72
T N - 0.95593 2.96674 026771
2 0.44979 1.49581 0.42235 0.77906 2.39439 0.29660
3 0.50923 1.63462 0.38745 0.72015 2.22167 0.30841
4 0.53486 170183 0.37288 0.69051 2.13823 031484
5 0.54919 1.74173 0.36484 0.67262 2.08904 031890
6 0.55835 1.76812 0.35974 0.66065 2.05660 032170
7 0.56471 1.78688 0.35622 0.65207 2.03359 0.32374
8 0.56938 1.80091 0.35363 0.64562 2.01642 032530
9 0.57296 1.81180 0.35166 0.64059 2.00312 0.32652
10 0.57579 " 1.82050 0.35010 0.63656 1.99251 0.32752
11 0.57809 1.82761 0.34884 0.63326 1.08385 032833
12 0.57993 1.83353 0.34780 0.63051 1.97665 032902
13 0.58158 1.83853 0.34693 0.62817 1.97057 0.32960
14 0.58294 1.84281 0.34618 0.62617 1.96536 033011
15 0.58411 "1.84652 0.34554 0.62444 1.96085 0.33055
16 0.58513 1.84977 0.34498 0.62292 1.95691 0.33093
17 0.58603 1.85263 0.34449 0.62158 1.95344 0.33127
18 0.58682 185517 ~0.34405 0.62038 1.95036 033157
19 0.58753 1.85745 0.34366 0.61931 1.94760 033185
20 0.58817 1.85950 0.34332 0.61835 1.94512 0.33209
25 0.59058 1.86727 0.34200 0.61469 1.93571 0.33303
30 0.59217 1.87244 0.34113 0.61225 1.02944 0.33366
50 0.59533 1.88279 0.33941 " 0.60736 1.91695 033493
75 0.59689 1.88795 0.33856 0.60491 1.91071 0.33558
100 0.59767 1.89053 0.33813 0.60368 1.90760 0.33590
150 0.59845 1.89311 033771 0.60245 1.90449 0.33622
200 0.59884 1.89440 0.33750 0.60134 1.90293 0.33638
250 0.59907 1.89518 0.33737 0.60147 1.90200 0.33648
300 0.59922 1.89569 ~ 0.33729 _0.60122 1.90138 0.33655
o 0.5969953985 | 1.8982713307 | 0.3368700659 | 0.5999953985 | 1.8982713307 | 0.3368700659
Table C.3.4 continued. Two Stage Short Run Control Chart Factors
for alphaMean=0.0027, alphaVarUCL=0.005, and alphaVarLCL=0.001
n 25
m Adl B81sqrt B71sqrt Ad2 B82sqrt B72sqrt
1| e 0.95593 1.74045 0.52282
2 0.44579 1.23584 0.65669 0.77906 1.55546 0.54746
3 0.50523 1.28520 0.62570 0.72015 1.49571 0.55727
4 0.53436 1.30910 0.61276 0.69051 1.46608 0.56257
5 0.54519 1.32319 0.60559 067262 1.44837 0.56589
3 0.55835 1.33248 0.60103 0.66065 1.43658 0.56817
7 0.56471 1.33907 0.59788 0.65207 1.42816 0.56983
8 0.56938 1.34398 0.59556 0.64562 1.42186 0.57109
9 0.57296 1.34779 0.59378 0.64059 1.41696 0.57208
10 0.57579 1.35082 0.59238 0.63656 1.41303 0.57289
11 0.57809 1.35330 0.59124 0.63326 1.40983 0.57355
12 0.57998 1.35536 0.59031 0.63051 1.40716 0.57410
13 0.58158 135710 0.58952 0.62817 1.40489 0.57457
14 0.58294 1.35859 0.58884 0.62617 1.40296 0.57498
15 0.58411 1.35988 0.58826 0.62444 1.40128 0.57533
16 0.58513 1.36101 0.58776 0.62292 1.39981 0.57564
17 0.58603 1.36200 0.58731 0.62158 1.39851 0.57591
18 0.58682 1.36288 0.58692 0.62033 1.39736 0.57616
19 0.58753 1.36367 0.58657 0.61931 1.39633 0.57638
20 0.58817 1.36438 0.58625 0.61835 1.39540 0.57658
25 0.59058 1.36707 0.58506 0.61469 1.39188 0.57733
30 0.59217 1.36886 0.58427 0.61225 1.38953 0.57784
50 0.59533 1.37244 0.58271 0.60736 1.38483 0.57886
75 0.59689 1.37422 0.58104 0.60491 1.38248 0.57937
100 0.59767 1.37511 0.58155 0.60368 1.38130 0.57963
150 0.59845 1.37600 058117 0.60245 138013 0.57989
200 0.59884 1.37645 0.58098 0.60184 1.37954 0.53002
250 0.59907 137671 0.58086 0.60147 137919 0.58009
300 0.59922 137689 0.58079 0.60122 1.37895 0.58015
o 0.5999953085 | 1.3777776783 | 0.5804050877 | 0.5999953985 | 1.3777776783 | 0.5804050877
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Table C.3.4 continued. Two Stage Short Run Control Chart Factors
for alphaMean=0.0027, alphaVarUCL=0.005, and alphaVarl.CL=0.001

n 50
m Adl B31 BT1 A42 B82 B72
T I = 0.63533 211305 0.40576
2 030862 1.35754 057728 0.53455 1.85121 044132
3 035299 1.44205 0.54231 049921 1.76595 0.45558
4 0.37264 1.43314 052736 0.48107 1.72354 0.46331
5 038377 1.50566 0.51902 0.47002 1.69813 0.46816
3 0.39093 152114 051369 0.46257 168121 0.47149
7 0.39596 153211 0.50999 0.45722 1.66912 0.47392
8 0.39966 1.54029 0.50728 045317 1.66003 0.47577
9 0.40250 1.54662 0.50519 045001 1,65300 047722
10 0.40476 155168 0.50355 0.44743 1.64736 0.47840
1 0.40659 1.55580 0.50221 044530 164274 0.47937
12 0.40811 1.55923 050111 0.44366 1.63890 048018
13 0.40938 1.56213 050018 044218 1.63564 0.48087
14 0.41047 1.56460 0.49939 0.44002 1.63285 0.48147
15 041141 1.56675 0.49871 0.43982 1.63043 0.48198
16 0.41223 1.56863 0.49811 0.43886 1.62832 0.43244
17 0.41296 1.57028 0.49759 0:43801 1.62645 0.48284
18 0.41360 157175 049712 043725 1.62479 0.48320
19 0.41417 1.57306 0.49671 0.43657 1.62330 0.48352
20 041468 1.57424 0.49634 043506 1.62197 0.43381
25 0.41662 1.57872 0.49494 0.43364 1.61688 0.48492
30 0.41791 1.58170 0.49401 043208 1.61350 0.48567
50 043047 1.58765 0.49217 0.42896 1.60672 0.48716
75 0.42174 1.59062 0.49125 0.42740 1.60333 048792
100 0.43237 1.59210 0.49080 0.42662 1.60163 0.43830
150 0.42300 1.59359 0.45035 042583 1.59954 0.48863
200 0.42332 1.59433 0.49012 0.42544 1.59900 0.43887
250 042351 1.59477 0.43999 0.42520 1.50858 0.48899
300 0.42363 1.59507 0.48990 043505 1.598324 0.48906
= 0.4242608150 | 1.5965450633 | 0.4894454026 | 0.4242608150 | 1.5965450633 | 0.4894454026
Table C.3.4 continued. Two Stage Short Run Control Chart Factors
for alphaMean=0.0027, alphaVarUCL=0.005, and alphaVarl.CL=0.001
n 50
m Adl B81sqrt B71sqrt A42 B82sqrt B72sqrt
T T 0.63533 1.46107 0.64025
2 0.30862 1.17110 0.76368 0.53455 1.36407 0.66602
3 0.35299 1.20392 0.73830 049931 1.33115 0.67612
3 037264 1.21950 0.72743 0.48107 131451 0.68154
5 038377 1.23862 072135 0.47002 1.30445 0.63492
6 039005 1.23460 0.71746 0.46257 1.20772 0.68723
7 0.39596 1.23882 071475 ~ 0:45722 1.29289 0.68892
3 0.39966 1.24199 071273 045317 1.28925 0.69020
9 0.40250 1.24443 0.71122 045001 1.28642 0.69120
10 0.40476 1.24637 0.71001 0.44748 1.28415 0.69202
11 0406359 1.24795 0.70903 0.44540 1.28229 0.69268
12 0.40811 1.24927 0.70822 0.44366 1.28074 0.69324
13 0.40938 1.25038 0.70753 0.44218 1.27942 0.69372
14 0.41047 1.25133 0.70693 0.44092 1.27830 0.69413
15 041141 1.25216 0.70643 0.43982 1.27732 0.69449
16 0.41223 1.25287 0.70601 0.43886 1.27646 0.69480
17 0.41296 1.25351 0.70562 043801 127571 0.69508
13 0.41360 1.25407 0.70528 043725 1.27503 0.69532
19 0.41417 1.25457 0.70498 0.43657 1.27443 0.60554
20 0.41468 1.25502 0.70470 043596 1.27389 0.69574
25 0.41662 1.25674 0.70367 0.43364 1.27183 0.69650
30 0.41791 1.25788 0.70298 0.43208 1.27045 0.60702
50 0.42047 1.26015 0.70162 0.42596 1.26769 0.69804
75 0.42174 1.26129 0.70094 0.42740 1.26631 0.69836
100 042237 1.26185 0.70061 0.42662 1.26562 0.69882
150 0.42300 1.26242 0.70027 0.42583 1.26493 0.69908
200 0.42332 1.26270 0.70010 0.42544 1.26458 0.69921
250 042351 1.26287 0.70000 0.42520 1.26438 0.69929
300 0.42363 1.26298 0.69994 0.42505 126424 0.69934
= 04242608150 | 1.2635446424 | 0.6996037468 | 04242608150 | 1.2635446424 | 0.6996037463
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Show: The distribution of the standard deviation s with v1 degrees of freedom may be

represented as follows:

1 [%}m(vl){V?l—l}Ln(2)~gammm[v?1]+(v1—1)-1n(s)-‘;1'52_
PO =] —7 || e °
(o]

Ey —vls?
. vl? - 5
From Lord (1950), p(s) = — g e 20
' -1 vl
22 . . O_VI
2 )
-‘—’l —vl-s2
Inj —5 vt V1l 207
2 I V_l}u"‘
=p(s)=e '
" 2
_ 1 . e[lzl}ln(v.l){%—l}lna)—m[r["?l]}(vl—l).ln(s)—‘;:z
- 'o.vl

2
1 [l’l}ln(vl)«(31—1}m(z)—gammln["—1]+(v1—1)~1n(s)—"1'5,
— Jel? 2 2 2067
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Show: The mean of the distribution of the standard deviation s with v1 degrees of

freedom may be represented as follows:
0.5 : vira ammin| v
04‘:6.(_2_) .[egm[ 2 ) ’ 1(2)J
vl

From Mead (1966), E(s)=c4 =06 .(i

g
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~ - . Show: The standard deviation of the distribution of the standard deviation s with v1

degrees of freedom may be represented as follows:

=c¢5=0- (i)
vl
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Show: The distribution of the studentized standard deviation t = (s/s") with v1 degrees of

freedom for s and v2 degrees of freedom for s’ may be represented as follows:
p3(t) - epl(!)—PL’(l)

“where

pl(t) =In(2) + [V?l) : 1n(v1)+[-v—;j-1n(v2) + gammln(Vl ;V2)+ (v1=1)-In(t)

p2(t) = 0ammlr{ 21)+gammlr{v22j+(V12V2]-ln(\/l-t2 +V2)

vl v2
2-v1% -v2?2 -r(—*"lzvzj-t““‘
From Irwin (1931), p3(t) =

TEE TR
2 2

iz v2 r(”;"z)

vitv2

r(";) (Vz)(vn wal 7

= p3(t)=e

e bl

vl v2
Let pl(t) = ln[Z-vl 2 .v22 .r(ll%%).tw—l}
vI+v2
p2(t)—ln|:1‘(\)21) r(";) (vi-t?+v2) 2 }

(continued on the next page)
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[y

= pl(t) = In(2) +(l;-j In(v1) +£32%] ‘In(v2)+ h{r(“ ;‘vz)J +(v1=1)-In(t)

p2(t) = 1'n[r(%)}1n(r(l'§n+(” ;Vz)-ln(vl 12 +v2)

vl+v2

-In(v2)+ gammln ]+ (vI-1)-In(t)

p2(t) = gammlu(!zl) + gamrnln{v—zz—] +(V1 ;sz -In (vl e v2>

= p3(t) = e PIO-p2(t)
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0.5
7 c5°
Derive: c4star={c42 + ]
m

We first need to determine the mean and variance of the distribution of the mean standard

deviation 5/ c.
Note: By definition, E(i) =c4

o)

:[lJ-E(s) =c4=E()=c4-0
o

since E(s)=c4-0.

=>E@:(é).[ﬂ.(m.ﬂﬂ)ﬂzx

(continued on the next page)
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Note: By definition, Var(i) =c5°
c

= [‘—lz—j-Var(s) =c5% = Var(s) =c5° -o*
o

B e

since the s,’s are independent.

2] () e o

since Var(s) =c5% -6°.

i

(continued on the next page)
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52"
Derive: c4star=(c42 + J
m

According to Johnson and Welch (1939), the mean of the x distribution with v2 degrees
of freedom is calculated using the following equation (with some modifications in

notation):

\_ 5 T(05-v2+0.5)
Bly)=+2 T'(0.5-v2)

X - c4star c4star c4star ) [ ['(0.5-v2+0.5)
- - () (e

Equating the squared means of the distribution of the mean standard deviation 5/ 6 and

the (X . c4star)/ \v2 distribution with v2 degrees of freedom results in the following:

4o .(c4star2 ]O[I‘(O.S v2+0.5) Jz

v2 I'(0.5-v2)

2
= C4star2 = 042 . _V_2_ . F(OS -V2)
2 )1 T(05-v2105)

(continued on the next page)
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Using results obtained from Johnson and Welch (1939) (with some modifications in
notation), the equation to calculate the variance of the ) distribution with v2 degrees of

freedom may be determined as follows:

, . T(05-v2+1) r0.5-v2+0.5) Y
VvV = - = T .
)= - et =2 L (V7 G

= Var(x) =

I'0.5-v2) I'0.5-v2) I'(0.5-v2)
X -cdstar | _( cdstar? . [ c4star? 1us_ 5 [T(0.5-v2+0.5) :
:Va:( T2 )-[ ) ) Var(x)—[ " J {\Q 2 ( T05v2) ) }

Equating the variances of the distribution of the mean standard deviation g/ ¢ and the

,.(05-v2)-T(0.5-v2) _2'(1“(0.5-\»2+0.5))2 =V2_2.{I‘(0.5-v2+0.5))2

(x- c4star)/ vv2 distribution with v2 degrees of freedom results in the following:

c5? =(C4Star2 J-{Vz_z ,[r(0-5'\’2+0-5)}2ji
m v2 I'0.5-v2)

c5%-v2
N I'05-v2+0.5) }  m-.c4star®
I'(0.5-v2) -2
2
I'(0.5-v2) 2
=> - =
I'0.5-v2+0.5) c5?
v2- 1—~————2
m - c4star

(continued on the next page)
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Substituting
I'(0.5-v2) _ 2
I'(0.5-v2+0.5) c52
v2- | l-—m
m-cdstar”
- 1nto

: 2
cdstar® = ca? | Y2 ).[__T05-v2)
2 J{T(0.5-v2+0.5)

gives the following equation:

2
cdstar’ = c4? (V?} 2 =
v2 .(1__2__2)
m - c4star
— cdstar® = c4? _ cdstar’ -c4?
c5® , c5?
1-————  cdstar’ ——
m - c4star m
2 52
=1 :__84_'__2 = cdstar? = c4? + <2
cdstar® — <2 m
m
0.5
52
= c4star = (042 +£——]
m
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Show: s/c4 is an unbiased estimate of o; i.e., show E(§/04)=

MR S

since E(s) =c4-o (aresult shown earlier in this appendix (Appendix D.1)).
g |- [ L)L (m c4-0)=0
c4 c4

Note: This result may also be obtained as follows. It is shown earlier in this appendix

(Appendix D.1) that the following holds:

-
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Derive: B42 = (tB4/c4star), where tB4 is the (1-alphaStandUCL) percentage point of the
distribution of the studentized standard deviation t = (s/s’) with v1 degrees of freedom

for s and v2 degrees of freedom for s (alphaStandUCL is the probability of a Type I

error on the s chart above the upper control limit).

Notes: The ensuing derivation is based on the derivation of D), in the appendix of Hillier

(1969). The value s denotes the standard deviation of a subgroup drawn while in the

second stage of the two stage procedure.

We need to determine the value B42 such that the following holds:

P(s <B42-5 )=1-alphaStandUCL
- P[—i < B42) = 1-alphaStandUCL
S

We know s/ is the statistic for the distribution of the standard deviation s with v1
degrees of freedom. We now need an independent estimate of ¢, denoted by s”, based on

5.» Replacing o with this independent estimate results in the statistic for the distribution

of the studentized standard deviation t = (s/ s”y, which has v1 degrees of freedom for s

and v2 degrees of freedom for s”. The equation to calculate v2 is based on the fact that

we have applied the Patnaik (1950) approximation to the distribution of the mean
standard deviation. If we were to use 5/04 (which is an unbiased estimate of ©, a result

(continued on the next page)
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. (continued from the previous page)

shown earlier in this appendix (Appendix D.1)) as this independent estimate, then we
would not have the appropriate equation for v2. As a result, we need to use 5/ c4star .
S S _ s-cdstar

(e) B S - S
c4star

where (s- c4star)/ s is the statistic for the distribution of the studentized standard

deviation t = (s/s") with v1 degrees of freedom for s and v2 degrees of freedom for s’.

= 1—alphaStandUCL = P(S odstar tB4j = P(i <B4 j

S g cdstar

where tB4 is defined above.

Setting B42 = B4

= 1-alphaStandUCL = P(
c4star

7R,

< B42) =Ps<B425)
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Show: p3(t‘) =f (tZ)- 2-t, where p3(t) is the distribution of the studentized standard
deviation t = (s/s") with v1 degrees of freedom for s and v2 degrees of freedom for s’

and f is the F distribution with v1 numerator degrees of freedom and v2 denominator
degrees of freedom.

Bain and Engelhardt (1992) give the F distribution as follows:

r(v1+v2)
V_l v _v1+v2
2 =
f(x)= 2 [ X2 -1+—\£-x :
VI {2
2 2
Let x =t°

=dx=2-tdt=fx)dx =f(t*)-2-tdt

‘_(Vl + VZ] vi vi+v2
v ol _viv2
=>f(t2)"2-tdt= 2 '(l}l}z'(tz)7_l~[l+—vl~t2) ©2etdt
) ({v2) (v2
22 (vI+v2
2-v12-v22-1‘( 5 ) . _L;VE
= Lot = (V24 viet?) dt
V1) (v2
2 2

v2
vl -vl viiv2
PRVERZE ~v2[ 2 )-r("l";"z)

r(v—ljr(l’z] .(v2+v1-t2)&2vz
2 2

tvl-—l

dt

(continued on the next page)
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vl v2
2.\)17 V22 vi+v2 g
—_ 2 . . tv dt
- vl ‘V2 R v1+v2
~ 15 (vi-t?+v2) 2

= p3(t) dt

_=>p3(t)=f(t2)-2-t
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1-s*) 2-vl-
Show: p(s) = c[v zs ) Vz > , where p(s).is the distribution of the standard deviation s
o] o]

with v1 degrees of freedom and ¢ is the % distribution with v1 degrees of freedom.

Bain and Engelhardt (1992) give the x2 distribution as follows:

. vi, =
c(x)=-vl—1—-——~x2 e ?
22. v :
5 v
2
Let x = lzs
o
. - . 2 * .
=>dx=2 Vi Sds=>c(x)dx~=c(VIZS }-2 V21 Sds
o (0] o
vl VI',SZ
vi-s?) 2-vl-s 1 vi-s? )2 A2 gl
=cC — |’ s—ds = —; . > - . ——ds
o o 27.1,(\;_1) o o
2
vl
viz vl v ~vis®
2\5- o
= ” . (s )2 -s-e 29 ds
22 .27 -l‘(——)-(az) o’
2
il L
2 -vls®
= vl Ve 20 dg
2?—1. _\_}1 .le
2
=p(s)ds
vl-s?) 2-vl-s
=p(s) =¢ p . -
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~ Show: (s/c ) is'an unbiased estimate of 67; i.e., show El(s c )J o

since the s,’s are independent.

] M B

since Var(s)=c>-c” and E(s)=c, G

(results shown earlier in this appendix (Appendix D.1)).

-5 2] | (e s o vt

(continued on the next page)
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2 0.5
since ¢, =| c2 + ES—) (a result shown earlier in this appendix (Appendix D.1)).
m

_\2
:E{( 5 }=02-(l)=c2
Cy4

325



APPENDIX D.2 — Computer Program ccfss.mcd for Chapter 6

326



Page 1 of program: ccfss.mcd

ENTER the following 5 values:

(1) alphaMean := 0.0027
(2) alphaStandUCL = 0.005
(3) alphaStandLCL = 0.001
@ m=35

) n=5

alphaMean - alphafor the X chart.

alphaStandUCL - aipha for the s chart above the UCL.
alphaStandLCL - alpha for the s chart helow the LCL *,
m - number of subgroups.

n - subgroup size for the {X,s) charts.

*Note - If no LCL is desired, leave alphaStandLCL blank (do not enter zero).

Please PAGE DOWN to begin the program.

- 12

{(1.1) TOL:=10

a3

c=10

[ Gt
p(s) = [-—UIJ e

vl=n-~1

2
) .mgj-gammln(%l—) +(V1-1)Ings)- “1"2 }
2.6
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Page 2 of program; ccfss.mcd

5
2.1 P = J’ p(s) ds
0

DUCL(S) = P(S) - (1 - alphaStandUCL)
Sseedi(statt) == |S) < start

Sl « statt + 0.01
Ag « DUCL(S,)
Aj < DUCL(S))

A < DUCL(s;)

seedB4 = Sseed](0.01)

sB4 := zbrent(DUCL, seedBdy, seedB4; , TOL)

DLCL(S) := P(S) - alphaStandlCL
Sseedd(start) = |3y « start

S1 ¢ start + 0.01
Ag « DLCL{S)
Aj < DLCL(Sy)

while Ag-Ay>0 while Ag-Ay>0
Sp e 5 Se e S
S1¢9;+001 S¢S, +001
Ag e A Age— Ay

A « DLCL(S,)

seedB3 = Sseed2(0.001)

sB3 := zbrent(DLCL, seedB3;, seedB3;, TOL)

2

_2(geamin(0.5-x)~garenn(0.5-x+0.5)) _
2.2} nx = i 2 = © tprevm = —
2 : meod? (m- 1)‘042
-1 1 3 3 2 33 3 1255 4
A=A "+|1—-|-|—[A+|—=]A+]| — A - | — 1A V=h(x) -t
YA (4) (16) (64) (256) (4096] 9 =hH

oo Q)] AR 0
a2 2T ()

dpreven() = h(x®) - rprevim

flors
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Page 3 of program: ccfss.mcd

3.1 i) = In(2) + ("%)m{ﬂ) + (323)»111(@) + ga.mrrﬂn( iz ; "2) + (w1 = 1)-in(t)

p2(t) = gamrrdn(i;—j + ga:mn]n(iz%] + (11;—"2]411[\!1-1,2 + v2)

p3(t) = epl(t)—pQ(t)

T
P = '[ 3 dt
0

3.2) Tseedl(start) = |Tp < start
T, < start+ 0.1
Ag < P3{Ty)
A « P3(Ty)
while A) < (1 - alphaStandUCL)
Ty T,
Ty« Ty + 01
Ag e Ay
Ay« P3(Ty)
Tguess « linterp(A,T,1 - alphaStandUCL)
Tguess

seed! = Tseedl(0.1) DI(x) = P3(x) - (1 - alphaStandUCL)

tB4 = zhrent(D1 ,seedl — 0.1,seedl + 0.1, TOL)

1 = root[ |P3(seedl) - (1 - alphaStandUCL)| ,seedl]
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Page 4 of program: ccfss.mcd

(3.1} Tseed2(start) =

Ty ¢ start
T, ¢ start + 0001
Ag ¢ P3(Ty) -
Ay« P3(Ty)
while A; < alphaStandDCL
Ty« T,
T, < T, + 0001
Ap e Ay
Ay« P3(Ty)
Tguess ¢ linterp(&,T, alﬁhaStandLCL)
Tguess

seed2 ;= Tseed2(0.00001)

D2(®) = P3(¥) — alphaStandLCL

B3 = zbrent(D2,5¢ed2 ~ 0.001,s5eed2 + 0.001,TOL)

1 = root( |P3(seed?) - alphaStandLCL|, seed2)
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Page 5 of program: ccfss.mcd

0.1 plprevm(t) = In(D + (u?l)ln[ul) + [uzp;emJ-M(UZprevm) + gammh(}ii—?mJ + (vl =1)-In(t)

1
p2prevm(t) = gm(%) +3 ammm( u2prevm) + (ul + v2prem

2 2

p3prevm(l) = ef Iprevin(t)-p2previn(t)

T
P3prevm(T) = J " p3prevm(t) dt
0

(9.2) Tseed3(start) = [Ty < start
Ty ¢ start + 0.1
Ag < P3prevm{To)
A« P3prevm(T1)
while Aj < (1 - alphaStandUCL)
Ty« Ty
Ty < T;+01
Ag ¢ A
Ay < P3prevm{T,)
Tguess < linterp(A,T,1 — alphaStandUCL)
Tguess

J-]n(ul-tz + v2prevm)

seed3 = Tseed3(0.1) Dlprevm(x) = P3prevm(¥) — (1 ~ alphaStandUCL)

tBdprevm = zhrent(Dlprevm, seed3 — 0.1,5¢ed3 + 0.1, TOL)

1 = root[ |P3previn(seed3) — (1 - alphaStandUCL)| ,seed3)
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Page 6 of program: ccfss.mcd

6.1)

Tseedd(start) =

Ty ¢ start
T, ¢« start + 0.001
Ag &« P3prevm(TD)
Ay & P3prevm(T))
while A; < alphaStandlCL
Toe Ty
T, « T, +0.00!
Ay A
Ay« P3prevm(T1)
Tguess « linterp(A, T, elphaStandlCL)
Tguess

seedd = Tseed4(0.00001)

D2prevm(x) = P3prevm(x) — alphaStandJ.CL

tB3prevm = zbrent(D2prevm, seedd ~ 0.001,seedd + 0.001 ,TOL)

1 = root( |[P3prevm(seedd) — alphaStandLCL]|,seedd)
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Page 7 of program; ccfss.mcd

7.1

0.5
052
. m

cdstar = [042 +

cdstarprevm = (c42 +

’ 0.5
052
m-1

adj_alpha =1 -

alphalMean

crit_t= qt( adj_alpha, v2)

: 0.5 .
t -
72) A3 = crit t ) fm 1 AT2 = crit t ) m+1
cdstar fn-m : c4star frm
B4l = - m-tBdprevm B2 = iB4
c4starprevm-(m - 1) + tBdprevm c4star
B3] m-tB3prevm B B3
c4starprevm-(m ~ 1) + tB3prevm c4star

FINAL RESULTS:

(1)
@)
3)
@)
)

alphalean = 0.0027
alphaStandUCL = 0.005
alphaStandLCL = 0.001
m=35

n=>5

Mean, Stand. Dev.,
and Variance of the
Dist. of the Stand. Dev.

c4 = 0.939985603
c5 = 03412141061

o5 = 0.1164270662

Control Chart Factors

First Stage Second Stage

A3l = 144561 A32 =177051

B4l = 192584 B42 = 2.40542

B31 =0.18442 B32 =0.15452
vi=4

.

crit_z = gnorm(adj_alpha,0,1)

A3 = crt z
c4-n0'5

B4 = sB4
c4

B3 = ﬂ
c4

Conventional
A3 = 14272883468
B4 = 2.0505104733

B3 = 0.1602881356

(1 - alphaStandUCL) and alphaStandLCL

Percentage Points of the Distributions of the

v2 = 192129357766
c4star = 0.95229
v2prevm = 15.41602

cdstarprevm = 095534

tB4 = 2.29066
tBdprevm = 239394

sB4 = 1.9274503237

Studentized Stand. Dev. and the Stand. Dev.

B3 = 0.14715
tB3prevm = 0.14635

sB3 = 0.1506685398
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Table D.3.1. v2 (Degrees of Freedom) and c4' (cdstar) Values

n 2 3 3 5 6
m vl ¢y vl ¢ vl ¢, vl oy v2 ¢,
1 1.00000_| 1.00000 | 200000 | 100000 | 300000 | 100000 | 400000 | 100000 | 500000 | 1.00000
2 191952 | 090460 | 386384 | 094483 | 583358 | 096146 | 7.81543 | 097046 | 9.80353 | 0.97607
3 281729 | 087049 | 570771 | 092571 | 865095 | 0.94827 | 11.61757 | 096041 | 14.59593 | 0.9679
4 370617 | 0.85292 | 7.54512 | 001600 | 1136358 | 094160 | 1541602 | 0.95534 | 19.38531 | 0.96388
5 459060 | 0.84220 | 937970 | 091012 | 1427420 | 0.93758 | 19.21204 | 0.95229 | 24.173d5 | 096142
6 547253 | 0.83397 | 11.21278 | 0.00618 | 17.08379 | 0.93489 | 23.00907 | 0095025 | 28.96096 | 0.05978
7 635201 | 0.82978 | 13.04498 | 090336 | 10.89278 | 093296 | 26.80475 | 094879 | 3374812 | 095861
8 723227 | 0.82586 | 14.87662 | 090123 | 2270140 | 093152 | 30.60015 | 094770 | 3833505 | 095773
9 8.11092 | 082280 | 1670788 | 089958 | 2550976 | 0.93039 | 34.39536 | 0.94684 | 4332182 | 095704
10 898907 | 082034 | 1853888 | 089825 | 2831794 | 092949 | 38.19043 | 094616 | 48.10849 | 095649
11 086684 | 081832 | 20.36967 | 0.89717 | 31.12599 | 0.92875 | 4198541 | 004560 | 52.89508 | 0.95604
12 1074432 | 0.81664 | 2220032 | 0.89626 | 33.933904 | 0092813 | 45.78031 | 0.94513 | 57.68161 | 0.95567
13 1162158 | 0.81521 | 24.03086 | 0.89540 | 36.74182 | 092761 | 49.57516 | 0.94474 | 62.36810 | 0.95535
14 1249866 | 0.81399 | 2586131 | 089483 | 39.54963 | 092716 | 5336996 | 0.94440 | 67.25455 | 0.95508
i3 13.37559 | 0.81292 | 27.69168 | 0.89426 | 4235740 | 0.92677 | 57.16473 | 094411 | 7204098 | 0.95484
16 1425241 | 0.81199 | 2952199 | 0.89376 | 45.16513 | 092643 | 60.95947 | 0.94385 | 76.82738 | 0.95463
17 1512913 | 081117 | 31.35226 | 0.89332 | 47.07283 | 0.92613 | 64.75418 | 094362 | 81.61376 | 0.05445
18 1600577 | 0.810a4 | 33.18249 | 0.89203 | 50.78050 | 0.92586 | 68.54888 | 0.94342 | 86.40012 | 0.95429
19 1688234 | 0.80978 | 3501268 | 0.89258 | 53.58815 | 0092563 | 72.34356 | 0.04324 | 0118648 | 0.95415
20 17.75886 | 0.80910 | 3684284 | 0.89226 | 56.39578 | 0092541 | 76.13822 | 0.94308 | 95.97282 | 0.95401
25 2214078 | 0.80694 | 4599333 | 0.89106 | 7043371 | 092459 | 9511138 | 0.94246 | 110.9044 | 0.95352
30 26.52202 | 0.80544 | 5514340 | 0.89025 | 84.47143 | 0092405 | 1140844 | 0.94205 | 143.8350 | 0.95319
50 4404420 | 0.80243 | 01.74277 | 0.88865 | 140.6214 | 002206 | 189.9757 | 0.04122 | 239.5611 | 0.95253
75 65.04485 | 080002 | 137.4909 | 0.88784 | 210.8082 | 002241 | 284.8394 | 0.94081 | 359.2174 | 0.95220
100 87.84479 | 0.80016 | 183.2386 | 0.88744 | 280.0948 | 002214 | 379.7029 | 0.04060 | 478.8735 | 0.95203
150 131.6440 | 0.79940 | 274.7337 | 0.88703 | 421.3678 | 092186 | 569.4298 | 0.94040 | 718.1855 | 0.95186
200 175.4428 | 0.79902 | 366.2287 | 0.88683 | 3561.7407 | 092173 | 759.1566 | 0.98030 | 957.4975 | 0.95178
250 219.2414 | 0.79879 | 457.7236 | 0.88671 | 702.1135 | 0.92165 | 948.8833 | 0.94023 | 1196.809 | 0.95173
300 263.0400 | 0.79864 | 549.2185 | 0.88663 | 842.4863 | 092159 | 1138610 | 094019 | 1436.121 | 0.95170
Cy 0.7978845608 0.8862269255 0.9213177319 0.9399856030 0.9515328619
s 0.6028102750 0.4632513752 0.3888105411 0.3412141061 0.3075470901
¢’ (Var.) 0.3633802276 0.2146018366 0.1511736368 0.1164270662 0.0945852126
Table D.3.1 continued. v2 (Degrees of Freedom) and c.,,' (cdstar) Values
n 7 8 10 25 50
m v2 ¢y v2 s v2 cy v2 ¢, v2 oy
1 500000 | 1.00000 | 7.00000 | 100000 | 9.00000 | 100000 | 24.00000 | 100000 | 49.00000 | 1.00000
2 11.79520 | 097990 | 1378907 | 098267 | 17.78069 | 098642 | 47.76168 | 099483 | 97.75573 | 0.99746
3 17.58086_| 0.97310 | 2056981 | 097683 | 26.55475 | 098186 | 71.52078 | 0.09311 | 146.5102 | 0.9966]
F] 2336398 | 0.96969 | 27.3d836 | 007389 | 3532710 | 0.97957 | 05.27923 | 099224 | 195.2643 | 0.99619
s 20.14606_| 096763 | 34.12602 | 097213 | 4409875 | 0.07819 | 119.0374 | 099172 | 2440184 | 0.99593
6 3492762 | 096626 | 40.90323 | 097095 | 5287006 | 0.97727 | 142.7955 | 0099137 | 2927723 | 099576
7 40.70888 | 0.96528 | 4768019 | 097010 | 61.64117 | 097661 | 166.5535 | 099113 | 341.5262 | 0.99564
3 4648995 | 006454 | 54.45698 | 0.06947 | 7041214 | 097612 | 190.3114 | 0.99004 | 390.2801 | 0.99555
9 5227089 | 096397 | 61.23366 | 096898 | 79.18304 | 0.97573 | 214.0693 | 099080 | 439.0340 | 0.99548
10 5805175 | 006351 | 6801027 | 0.06858 | 8795388 | 0.07543 | 237.8272 | 0.99068 | 487.7879 | 0.09542
11 63.83254 | 0.06313 | 74.78682 | 0.06826 | 96.72467 | 007518 | 261.5851 | 0.09059 | 536.5417 | 0.99537
12 69.61328 | 096282 | 8156333 | 096799 | 1054954 | 097497 | 2853429 | 0.99051 | 585.2956 | 0.99534
13 7530398 | 0.96256 | 88.33981 | 0.96777 | 114.2662 | 0.97479 | 309.1008 | 0.99044 | 6340494 | 0.99530
14 81.17466 | 0.96233 | 9511627 | 0.96757 | 123.0369 | 0.07464 | 332.8586 | 0.99038 | 682.8033 | 0.99528
15 8605531 | 0.96213 | 101.8927 | 0.96740 | 131.8076 | 0.97451 | 356.6165 | 0.99033 | 731.5571 | 0.99525
16 92.73594 | 0.06196 | 108.6691 | 0.06725 | 140.5783 | 0.07439 | 380.3743 | 0.99029 | 780.3110 | 0.99523
17 08.51655 | 0.06181 | 1154455 | 006712 | 149.3390 | 097420 | 404.1321 | 0.09025 | 829.0648 | 0.99521
18 104.2972 | 096167 | 1222219 | 096701 | 158.1196 | 097420 | 4278900 | 0.99022 | 8778186 | 0.99519
19 1100777 | 0.96155 | 128.9983 | 0.96690 | 166.8903 | 0.97412 | 451.6478 | 0.99019 | 9265725 | 0.99518
20 115.8583 | 096144 | 1357747 | 096681 | 175.6610 | 097404 | 4754056 | 0.99016 | 9753263 | 0.99517
25 1447611 | 096103 | 169.6565 | 006645 | 219.5142 | 007377 | 594.1947 | 0.09006 | 1219.095 | 0.09512
30 173.6638 | 096075 | 2035382 | 096622 | 263.3673 | 097358 | 7129837 | 0.98999 | 1462865 | 0.99508
50 2892742 | 096020 | 339.0646 | 0.96574 | 4387796 | 0.97321 | 1188.140 | 008985 | 2437.941 | 0.99501
75 3337869 | 095992 | 508.4723 | 0.96551 | 658.0448 | 0.07303 | 1782.085 | 098978 | 3656.787 | 0.99498
100 578.2094 | 095978 | 677.8800 | 0.96530 | 8773009 | 0.97204 | 2376.030 | 098974 | 4875.632 | 0.99496
150 8673242 | 095965 | 1016.695 | 0.96527 | 1315840 | 0.07284 | 3563.920 | 098971 | 7313.324 | 0.99495
200 1156339 | 095958 | 1355510 | 0.96521 | 1754.370 | 0.97280 | 4751810 | 0.98969 | ©751.014 | 0.99493
250 1435374 | 095953 | 1694.326 | 0.96517 | 2192000 | 097277 | 5939.700 | 008968 | 12188.71 | 099493
300 1734399 | 095951 | 2033141 | 096515 | 2631430 | 097275 | 7127.590 | 0.08968 | 14626.39 | 0.09493
3 0.9503687887 0.9650304561 0.9726592741 0.0896403756 0.9949113047
s 0.2821551475 0.2621377857 0.2322368112 0.1435685446 0.1007546319
¢’ (Var.) 0.0796115273 0.0687162187 0.0539339365 0.0206119270 0.0101514958
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Table D.3.2. (1 - alphaStandUCL) Percentage Points
of the Studentized Standard Deviation (alphaStandUCL = 0.005)

n
m 2 3 : 4 5. 6
1 127.32134 14.10674 - 6.88965 4.81191 - 3.86518
2 15.33836 5.29746 3.65688 2.99975 2.64128
3 -8.05912 3.92624 2.99837 2.57854 . 2.33344
4 5.97848 3.40499 :2.72320 2.39394 2.19458
5 5.04664 3.13442 2.57307 2.29066 2.11568
6 4.52848 - 2.96960 2.47875 222474 2.06484
7 4.20146 2.85892 2.41406 2.17904 2.02936
8 - 3.97730 2.77957 2.36696 2.14550 2.00320
9 3.81447 2.71993 2.33114 - 2.11985 1.98311
10 3.69101 2.67348 2.30299 2.09959 1.96720
11 3.59428 2.63629 2.28029 2.08319 1.95429
12 3.51649 2.60586 2.26159 2.06964 1.94360
13 3.45261 2.58049 2.24592 2.05825 1.93461
14 - 3.39922 2.55902 2.23261 2.04856 1.92694
15 3.35395 2.54062 2.22116 2.04020 1.92032
16 - 3.31508 2.52467 2.21120 2.03292 1.91455
17 - 3.28135 2.51072 2.20246 - 2.02653 1.90947
18 3.25181 2.49841 2.19473 2.02086 1.90497
19 3.22572 2.48747 2.18784 2.01581 1.90096
20 3.20252 2.47768 2.18167 2.01127 ~ 1.89735
25 - 3.11665 2.44098 2.15842 1.99416 1.88372
30 3.06138 2.41695 2.14311 1.98285 1.87469
50 2.95538 2.36990 2.11291 1.96046 1.85678
75 2.90455 2.34688 2.09802 1.94938 1.84790
- 100 2.87966 2.33549 2.09063 1.94387 . 1.84348
150 2.85512 2.32418 2.08327 1.93838 1.83907
200 2.84297 2.31856 2.07961 1.93564 1.83686
250 2.83572 2.31519 2.07742 1.93400 1.83555
300 2.83091 2.31295 2.07595 1.93290 1.83467
oo 2.807033768312.3018074130( 2.0686675636| 1.9274503237| 1.8302787954
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Table D.3.2 continued. (I - alphaStandUCL) Percentage
Points of the Studentized Standard Deviation (alphaStandUCL = 0.005)

n
m 7 8 10 25 50
1 3.32762 298084 ~.2.55756 1.72242 1.45363
2 241271 2.25269 - 2.04067 1.54824 1.36083
3 2.17013 2.05216 1.89083 1.49129 1.32910
4 2.05855 1.95860 .1.81957 1.46291 1.31302
5 1.99448 1.90448 1.77791 1.44590 1.30328
6 1.95293 -1.86921 1.75058 1.43456 1.29675
7 1.92380 1.84440 1.73127 1.42646 1.29206
8 1.90224 .1.82600 1.71690 - 1.42038 1.28854
9 - 1.88565 1.81181 1.70579 1.41565 1.28579
10 1.87249 1.80053 1.69694 '1.41187 1.28359
11 1.86179 1.79136 -~ 1.68973 1.40878 1.28178
12 1.85292 1.78374 1.68375 1.40620 1.28027
13 1.84545 177733 1.67869 1.40401 1.27899
14 1.83907 1.77184 1.67437 1.40214 1.27790
15 1.83356 1.76710 1.67063 1.40052 1.27695
16 1.82876 1.76297 1.66736 1.39910 1.27611
17 1.82453 1.75933 1.66448 1.39785 1.27538
18 1.82078 1.75609 1.66193 1.39673 1.27472
19 1.81743 1.75321 1.65965 1.39574 -1.27414
20 1.81442 1.75061 1.65759 1.39484 1.27361
25 1.80303 1.74079 1.64981 1.39143 1.27161
30 1.79547 1.73427 1.64464 1.38915 1.27027
S50 1.78047 1.72129 1.63433 1.38461 1.26758
75 1.77301 - 1.71484 1.62919 1.38233 1.26624
- 100 1.76930 1.71162 1.62663 1.38119 1.26557
- 150 1.76559 1.70841 1.62407 1.38005 1.26489
200 1.76374 1.70681 - . 1.62279 1.37949 1.26456
250 - 1.76263 1.70585 - 1.62203 - 1.37914 1.26435
300 1.76189 1.70521 1.62152 1.37892 1.26422
oo 1.7581990871| 1.7020046951 | 1.6189623145| 1.3777776783 | 1.2635446424
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Table D.3.3. alphaStand.CL Percentage Points of
the Studentized Standard Deviation (alphaStandLCL =0.001)

n

m 2 3 4 S , 6

1 0.00157 0.03164 0.08418 0.13680 0.18333
2 0.00142 - 0.03163 0.08668 0.14270 0.19254
3 0.00137 0.03163 0.08767 0.14507 0.19624
4 0.00134 0.03163 0.08820 0.14635 0.19825
5 0.00132 0.03163 1 0.08854 0.14715 0.19951
6 0.00131 0.03163 10.08877 0.14770 0.20037
7 - 0.00130 0.03163 0.08893 0.14810 0.20101
8 ~0.00130 0.03163 0.08906 0.14841 0.20149
9 0.00129 0.03163 0.08916 0.14865 0.20186
10 0.00129 0.03163 '0.08924 0:14884 0.20217
11 ~0.00129 - 0.03163 0.08931 0.14900 0.20242
12 0.00128 |  0.03163 0.08936 0.14914 0.20263
13 0.00128 - 0.03163 | 0.08941 0.14925 0.20281
14 '0.00128 0.03163 0.08945 0.14935 0.20297
15 0.00128 - 0.03163 0.08949 0.14944 0.20310
16 0.00128 0.03163 ~ 0.08952 0.14951 0.20322
17 0.00127 0.03163 - 0.08955 0.14958 0.20333
18 0.00127 0.03163 0.08957 0.14964 0.20342
19 0.00127 0.03163 0.08959 0.14969 0.20350
20 0.00127 0.03163 0.08961 0.14974 0.20358
25 -0.00127 0.03163 0.08969 0.14992 0.20387
30 0.00127 0.03163 0.08974 0.15004 0.20406
50 0.00126 0.03163 0.08984 0.15029 0.20445
75 0.00126 0.03163 0.08989 0.15042 0.20465
100 0.00126 0.03163 0.08992 0.15048 0.20475
150 0.00126 0.03163 0.08994 0.15054 - 0.20484
200 0.00126 0.03163 - 0.08996 0.15057 0.20489
250 0.00125 0.03163 0.08996 0.15059 0.20492
300 0.00125 0.03163 0.08997 0.15061 0.20494
oo 0.0012533145]0.0316306866 | 0.089995529210.1506685398 0.2050427285
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Table D.3.3 continued. alphaStandL.CL Percentage Points

of the Studentized Standard Deviation (alphaStandLCL = 0.001)

n

m 7 8 10 25 .50

1 0.22344 0.25804 - 0.31456 0.51741 0.63699
2 0.23553 0.27258 0.33285 0.54446 0.66424
3 - 0.24041 0.27844 0.34022 0.55519 0.67490
4 0.24305 0.28162 0.34422 0.56098 0.68060
5 0.24471 0.28362 0.34673 0.56460 0.68416
6 0.24585 0.28499 0.34845 0.56708 0.68660
7 0.24669 0.28599 0.34971 0.56889 0.68837
8 0.24732 0.28675 0.35067 "~ 0.57026 0.68972
9 0.24782 0.28736 0.35142 0.57135 0.69077
10 - 0.24822 0.28784 0.35203 0.57222 0.69163
11 0:.24856 . 0.28824 0.35254 0.57294 0.69233
12 0.24884 0.28858 0.35296 0.57354 0.69292
13 - 0.24907 0.28886 0.35332 0.57405 0.69342
14 0.24928 0.28911 + 0.35362 0.57450 0.69385
15 0.24945 0.28932 0.35389 0.57488 '0.69423
16 0.24961 0.28951 0.35413 0.57522 0.69455
17 0.24975 0.28968 0.35434 0.57552 0.69485
18 0.24987 0.28982 0.35452 0.57578 0.69511
19 0.24998 0.28996 0.35469 0.57602 0.69534
20 0.25008 0.29008 0.35484 0.57624 0.69555
25 0.25046 0.29053 0.35542 0.57706 - 0.69635
30 0.25072 0.29084 0.35580 0.57761 0.69688
50 0.25123 0.29146 0.35658 0.57872 0.69796
75 0.25149 0.29177 0.35697 0.57928 0.69851
100 0.25162 0.29193 0.35717 0.57956 0.69878
150 0.25175 0.29209 0.35737 0.57984 0.69905
200 0.25182 0.29217 0.35747 0.57998 0.69919
250 0.25186 0.29221 - 0.35752 0.58007 0.69927
300 0.25188 0.29224 0.35756 0.58012 0.69933
oo 0.2520141382}0.2924023042} 0.3577630417 | 0.5804050877 | 0.6996037468
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Table D.3.4. Two Stage Short Run Control Chart Factors for

alphaMean=0.0027, alphaStandUCL=0.005, and alphaStandLLCL=0.001
z

n
m A31 BA1 B3l A32 B42 B2
T = 235.78369 127.32134 0.00157
) 11.70380 1.98441 0.00314 2027157 16.95587 0.00157
3 6.69217 2.68348 000235 9.46416 925818 0.00157
4 5.12908 3.02106 0.00209 6.62162 7.00946 0.00157
5 441023 3.18338 0.06196 546140 559224 0.00157
6 4.00626 3.27080 0.00188 474027 5.42349 0.00157
7 375013 332336 0.00183 433028 5.06335 0.00157
8 357422 335784 0.00179 405278 4.81596 0.00157
9 344634 3.38200 0.00177 385313 463598 0.00157
10 334938 339981 0.00175 3.70287 4.49937 0.00157
11 327342 3.41346 0.00173 358585 439225 0.00157
12 321236 3.42425 0.00171 " 3.49220 4.30605 0.00157
13 316224 343300 0.00170 341560 423522 0.00157
14 312037 344023 0.00169 335182 4.17601 0.00157
15 3.08489 3.44631 0.00168 329788 412579 0.00157
16 305444 345150 0.00168 325170 408365 0.00157
17 3.02803 345597 0.00167 321171 404522 0.00157
18 3.00491 345088 " 0.00166 317675 401242 0.00157
19 2.98450 346331 —0.00166 314594 3.98345 0.00157
20 ~3.96635 3.46636 0.00165 311857 395768 0.00157
25 2.89928 347759 0.00164 301766 3.86230 0.00157
30 285617 3.48479 0.00162 295302 3.80088 0.00157
50 277366 3.49858 0.00160 2.82970 368303 0.00157
75 373419 3.50522 0.00159 2.77090 3.62654 0.00157
100 271489 3.50849 0.00159 274218 3.59887 0.00157
150 2.69587 351172 0.00158 271300 3.57157 0.00157
200 2.68646 351333 0.00158 2.69993 3.55806 0.00157
250 2.68085 351429 0.00158 2.69160 3.55000 0.00157
300 267713 351492 0.00158 2.68607 3.54465 —_0.00157
- 26586603867 | 35180951058 | 0.0015707967 | 2.6586603867 | 3.5180951058 | 0.0015707967
Table D.3.4 continued. Two Stage Short Run Control Chart Factors
for alphaMean=0.0027, alphaStandUCL=0.005, and alphaStandL.CL=0.001
n 3
m A3l B4l B3I A32 B42 B33
i 15.68165 14.10674 0.03164
2 295838 1.86761 0.06134 5.12390 5.60680 0.03348
3 257119 221123 0.04940 363621 434135 0.03417
4 239128 234285 004505 3.08713 371725 0.03453
5 225099 240840 0.04280 2.80588 3.44396 0.03476
6 222764 244716 0.04142 263578 3.37705 0.03491
7 2.18416 247210 0.04049 253205 3.16478 0.03502
8 2.15253 2.49078 0.03982 244074 3.08418 0.03510
9 212851 2.50426 0.03931 337975 302355 0.03516
10 2.10966 2.51469 0.03802 2.33232 3.97631 0.03521
11 2.09448 2.52301 0.03860 2.20438 2.03847 0.03526
12 208199 252981 0.03834 2.26336 2.90743 0.03529
13 2.07154 253545 0.03812 233152 288164 0.03532
14 2.06267 254023 0.03754 221566 285977 0.03535
15 2.05504 254432 0.03778 219693 2.84102 0.03537
16 2.04342 254786 0.03764 2.18071 282471 0.03539
17 2.04261 255095 0.03752 2.16652 2.81055 0.03541
18 203748 355368 0.03741 2.15400 279799 003542
19 203251 255611 0.03732 214288 2.78684 0.03544
20 202882 255828 0.03723 213203 2.77685 0.03545
25 201343 2.56641 0.03691 2.09564 2.73942 0.03550
30 200331 257173 0.03670 2.07124 2.71490 003553
50 1.98341 2.58216 0.03629 202348 2.66687 0.03559
75 1.97363 2.58728 0.03609 2.00012 2.64336 0.03563
100 1.96878 258981 0.03599 1.98856 263173 0.03564
150 1.96306 ~2.50233 0.03589 1.97709 2.62017 0.03566
200 1.96156 259358 0.03584 1.97139 2.61243 0.03567
250 1.96012 259433 0.03581 1.96757 2.61099 0.03567
300 1.95916 2.59483 0.03579 1.96570 2.60870 0.03568
- 1.9543050590 | 2.5973115315 | 0.0356914078 | 1.9543950590 | 25973115315 | 0.0356914078
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Table D.3.4 continued. Two Stage Short Run Cortrol Chart Factors

for alphaMean=0.0027, alphaStandUCL=0.005, and alphaStandLCL=0.001
3

n
m A31 Bdl B31 A32 B42 B3z
T T 651861 6.88965 0.08418
2 1.83276 1.74650 0.15529 3.17444 380345 0.09015
3 1.78740 1.96613 0.12940 - 2.52776 3.16194 0.00245
4 175114 205256 0.11958 2.26072 289208 0.09367
5 1.73737 2.09812 0.11441 211558 274437 0.00443
6 1.71103 212622 011122 2.02452 2.65138 0.09495
7 1.69922 2.14528 0.10903 1.96209 238752 0.09532
8 1.69032 215907 0.10748 1.91664 254007 0.09561
9 1.68337 2.16951 0.10629 1.88207 250555 0.09583
10 167781 2.17769 0.10536 1.85489 247770 0.09601
11 1.67326 218427 0.10461 1.83297 245523 0.09616
12 1.66947 2.18969 0.10399 1.81491 243672 0.09628
13 1.66627 219422 0.10348 1.79977 242120 ~0.09639
14 1.66352 . 2.19307 0.10304 1.78691 2.40801 0.09648
15 1.66114 220137 0.10266 1.77583 230666 0.09656
16 1.65906 220425 0.10234 1.76620 2.38679 0.09663
17 1.65723 230677 0.10205 175775 237813 0.09669
18 1.65560 2.20900 0.10180 1.75028 2.37046 0.09674
19 1.65414 221099 0.10157 1.74361 236364 0.09679
20 1.65283 221277 0.10137 1.73764 235752 0.09683
25 1.64785 221947 0.10061 171514 233446 0.09700
30 1.64454 222388 0.10011 1.70031 2.31926 0.09711
50 1.63794 323258 0.09912 1.67103 2.28928 0.09734
75 1.63465 2.23687 0.09864 1.65659 327450 0.09745
100 1.63301 2.23500 0.09840 1.64942 226116 0.09751
150 1.63137 224112 0.09816 1.64228 2.25985 0.09757
200 1.63055 224218 0.09804 1.63872 225621 0.09760
250 1.63005 2.24281 0.09797 __1.63659 2.25403 0.09761
300 1,62973 2.24323 0.09792 ~1.63517 225258 0.09762
= _1.6280903367 | 2.2453356665 | 0.0976813167 | 1.6280903367 | 2.2453356665 | .0.0976813167
Table D.3.4 continued. Two Stage Short Run Control Chart Factors
for alphaMean=0.0027, alphaStandUCL=0.005, and alphaStandL.CL=0.001
n 5
m A3l B4l B31 A32 B42 B32
il T 4.18690 481191 0.13680
2 1.40670 1.65588 0.24067 2.43647 3.09107 0.14705
3 1.44282 1.82147 0.20546 2.04046 2.68484 0.15105
4 1.44648 1.88012 0.19174 1.86740 250585 0.15319
5 1.44561 1.92584 0.18442 1,77051 2.40542 0.15452
6 1.44401 1.04891 0.17987 1.70858 234121 0.15543
7 1.44244 1.96476 0.17676 1.66559 2.29665 0.15610
] 1.44105 1.97632 0.17451 1.63400 2.26392 0.15660
9 1.43985 1.98513 0.17279 1,60980 2.23886 0.15700
10 1.43882 1.99207 017145 1.55068 2.21907 0.15731
i1 1.43794 1.09768 0.17037 1.57518 220303 0.15758
12 143717 2.00230 0.16947 1.56237 2.18979 0.13780
i3 1.43651 2.00618 0.16873 1.55161 2.17865 0.15798
14 1.43502 2.00948 0.16809 1.54243 216917 0.15814
15 143541 701232 0.16755 1.53451 2.16099 0.15828
16 1.43495 201479 0.16707 1.52762 2.15387 0.15841
17 1.43453 201607 0.16666 152155 214760 0.15852
18 1.43416 2.01889 0.16629 1.51618 2.14206 0.15861
19 1.43383 2.02060 0.16506 151139 213711 0.15870
20 1.43352 202214 0.16567 —_1.50709 213267 0.15878
25 1.43234 2.02794 0.16456 1.49083 211591 0.15908
30 1.43154 203178 0.16383 1.48008 210482 0.15928
50 1.42088 2.03935 0.16239 1.45877 2.08288 0.15968
75 1.42903 2.04310 0.16169 1.44321 2.07202 0.15988
100 1.42860 2.04496 0.16133 1.44296 206661 0.15998
150 1.42817 204682 0.16098 143772 206123 0.16008
200 1.42795 2.04774 0.16081 1.43511 —2.05854 0.16013
250 1.42782 2.04830 0.16070 1.43354 2.05693 0.16017
300 1.42773 2.04867 0.16064 1.43250 2.05586 0.16010
= 14272883468 | 2.0505104733 | 0.1602881356 | 1.4272883468 | 2.0505104733 | 0.1602881356
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Table D.3.4 continued. Two Stage Short Run Control Chart Factors

for alphaMean=0.0027, alphaStandUCL=0.005; and alphaStandLCL=0.001
5

n
m A31 B4l B31 A32 B42 B32
1 — 3.17946 3.86518 0.18333
2 1.17743 1.58892 0.30986 2.03936 270604 0.19726
3 1.24158 1.72504 0.26932 1.75586 241068 0.20274
4 1.26077 1.78217 0.25320 1.62765 2.27682 0.20568
5 1.26929 1.81368 0.24452 1.55456 2.20058 0.20751
6 1.27352 1.83367 0.23909 1.50732 215137 0.20877
7 1.27676 1.84749 0.23538 1.47428 2.11699 0.20968
8 1.27866 1.85762 0.23267 1.44986 2.00162 0.21038
9 1.28000 1.86537 0.23061 1.43108 207213 0.21093
10 1.28099 1.87148 " 0.22900 141619 2.05668 021137
i1 1.28176 1.87643 -~ 0.22769 1.40400 2.04415 021173
12 1.28236 1.88052 0.22662 1.39407 203376 0.21203
13 1.28284 1.88395 0.22572 1.38563 202503 0.21229
14 128324 1.88688 0.22495 1.37842 2.01758 0.21252
15 1.28358 1.88040 0.22425 1.37220 201114 0.21271
i6 1.28386 1.85160 022372 1.36677 2.00553 0.21288
17 1.28410 1.89353 022321 1.36199 2.00060 0.21303
18 1.28431 1.89524 0.22277 1.35776 1.99622 021316
19 1.38449 1.89677 0.22237 1.35397 1.99231 0.21328
20 1.28465 1.80814 0.22202 1.35058 1.988381 0.21339
25 1.28524 1.90331 — 0.22068 133772 1.97554 0.21380
30 1.28560 1.90673 021979 _ 1.32919 1.96676 0.21408
50 1.28626 1.91350 0.21805 1.31225 1.04932 0.21464
75 128657 1.91686 021710 1.30384 1.94067 0.21492
100 128671 1.91853 0.21676 1.29964 1.93636 0.21506
150 1.28685 1.92019 0.21633 1.29546 1.93207 0.21520
200 1.28602 1.92102 021612 1.20337 1.92692 0.21527
350 1.28696 1.92152 0.21599 120212 1.92864 0.21532
300 1.28699 1.92185 0.21591 1.20128 1.92778 0.21534
= 1.2871184251 | 1.9235056072 | 0.2154867548 | 1.2871184251 | 109235056072 | 0.2154867548
, (
Table D.3.4 continued. Two Stage Short Run Control Chart Factors
for alphaMean=0.0027, alphaStandUCL=0.005, and alphaStand.CL=0.001
n 7
m A3l B4l B31 A32 B42 B32
T N N 2.62129 3.32762 0.22344
2 1.03107 1.53785 036527 1.78587 246221 0.24037
3 1.10629 1.65538 0.32187 1.56453 223012 0.24705
4 1.13254 1.70560 0.30434 1.46210 212290 0.25065
5 1.14554 1.73357 0.29484 1.40300 2.06120 ™ 0.25290
6 1.15322 1.75143 0.28387 1.36451 202112 0.25444
7 1.15826 1.76382 0.28477 1.33745 1.99300 0.25556
3 116182 1.77293 0.28178 131737 1.97217 0.25641
9 1.16445 1.77991 0.27951 1.30185 1.95614 0.25708
10 1.16648 1.78543 0277712 1.28959 . 1.94341 025762
il 1.16809 1.78590 0.27627 1.27958 1.93305 0.25807
12 1.16940 1.79359 0.27508 1.27127 1.92447 0.25844
13 1.17048 1.79670 0.27408 1.26426 1.91724 0.25876
4 1.17139 1.79935 0.27323 1.25828 1.91107 0.25903
15 1.17217 1.80164 0.27250 1.25310 1.90573 0.25927
16 1.17284 1.80363 0.27186 1.24858 1.90108 0.25948
17 1.17342 1.80538 0.27130 1.24461 1.80698 0.25967
13 1.17394 1.80694 0.27080 1.24107 1.89335 0.25983
15 1.17439 1.80832 0.27036 1.23792 1.86010 0.25998
20 1.17480 1.80956 0.26997 1.23509 1.88718 026011
25 1.17631 1.81426 0.26848 1.22435 1.87614 0.26062
30 1.17730 1.81737 0.26749 121722 1.86882 0.26096
50 1.17920 1.82354 0.26555 1.20303 1.85427 026165
75 1.18012 1.82660 0.26459 1.19596 1.34704 0.26199
100 1.18058 1.82812 0.26311 1.19244 1.84343 0.26216
150 1.18102 1.82964 0.26363 1.18892 1.83984 026234
200 1.18125 1.83040 0.26340 118717 1.83804 0.26243
250 118138 1.83085 0.26325 1.18611 1.83696 0.26248
300 1.18147 1.83115 0.26316 118541 1.83625 0.26251
= 1.1819070377 | 1.8326623794 | 0.2626874474 | 1.1810070377 | 1.8326623794 | 0.2626874474
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Table D.3.4 continued. Two Stage Short Run Control Chart Factors

for alphaMean=0.0027, alphaStandUCL=0.005, and alphaStandLCL=0.001
3

n
m A3l B4l B31 A32 B42 B32
T = = 2.26496 298084 0.25804
2 0.92789 1.49759 0.41022 1.60716 2.29241 037738
3 1.00745 160218 0.36540 1.42475 2.10084 0.28504
4 1.03713 1.64745 0.34708 1.33893 201111 0.28917
5 1.05244 167283 0.33709 1.28897 ~ 1.95909 029175
6 1.06174 1.68909 0.33080 1.25627 1.92514 0.20352
7 1.06797 1.70041 032647 1.23318 190124 0.29481
3 1.07242 1.70874 0.32330 1.21601 1.88350 0.26578
9 107577 171513 0.32089 1.20275 1.86981 0.20656
10 1.07837 1.72019 0.31899 1.19218 1.85893 0.29718
11 1.08045__ 1.72429 031746 1.18358 1.85007 0.29769
i2 1.08216 1.72769 0.31619 1.17643 1.84272 029812
13 1.08357 1.73054 031513 1.17039 1.83653 0.25848
14 1.08477 1.73298 031423 1.16523 1.83123 0.29880
15 1.08580 1.73508 0.31345 1.16077 1.82665 0.20907
16 1.08669 1.73691 031277 1.15687 1.82265 039931
17 1.08747 1.73852 0.31218 1.15344 1.81913 0.29952
18 1.08816 1.73995 —0.31165 1.15039 1.81601 0.20971
19 1.08877 174123 031118 1.14766 1.81322 0.20988
20 1.08931 174237 031076 1.14521 1.81071 0.30003
25 1.09136 1.74670 0.30917 1.13592 1.80121 0.30062
30 1.09269 1.74957 0.30812 1.12975 1,79490 0.30101
50 1.09531 1.75526 0.30605 1.11744 1.78235 030180
75 1.09659 1.75808 0.30502 111131 1.77611 0.30220
100 1.09722 1.75948 030451 1.10825 1.77299 0.30240
150 1.09785 1,76089 030401 1.10519 1.76988 030260
200 1,09816 1.76159 0.30375 1.10366 1.76833 030270
250 1.09834 1.76201 030360 1.10275 1.76740 030276
300 1,00847 1.76229 030350 110214 1.76678 0.30280
o 1.0990865943 | 1.7636797722 | 0.3029980062 | 1.0090865943 | 1.7636797722_] 0.3029980062
Table D.3.4 continued. Two Stage Short Run Control Chart Factors
for alphaMean=0.0027, alphaStandUCL=0.005, and alphaStandL.CL=0.001
n 10
m A31 B4l B31 A32 B42 B32
1 1.83098 2.55756 031456
2 0.78934 1.43782 0.47857 1.36718 2.06875 0.33743
3 0.87005 1.52535 0.43308 1.23044 1.92577 0.34651
4 090213 1.56383 041417 1.16465 1.85752 0.35140
5 0.91929 1.58559 0.40377 1.12589 1.81755 0.35446
6 0.92995 1.56959 0.39719 1.10033 1.79129 0.35656
7 0.93721 1.60937 0.39265 1.08220 177273 0.35809
8 0.94247 1.61658 0.38932 1.06867 1.75890 035925
9 0.94646 1.62212 0.38679 1.05818 1.74821 036016
10 0.94959 1.62651 0.38478 1.04981 1.73969 0.36090
11 0.95211 1.63008 0.38316 1.04298 1.73215 036151
12 0.95418 1.63303 0.38183 1.03730 1.72698 036202
13 0.95591 1.63552 0.38070 1.03250 172311 0.36245
14 0.95738 1.63764 0.37975 1.02839 1.71794 0.36283
15 0.95864 1.63947 0.37892 1.02483 171433 0.36315
16 095974 1.64107 0.37820 1.02172 171118 0.36344
17 0.96070 1.64247 - 0.37757 1.01897 1.70841 036369
18 0.96155 1.64372 0.37702 1.01654 1.70595 0.36391
19 0.96230 1.64483 0.37652 1.01436 1.70374 0.36411
20 0.96208 1.64583 0.37607 1.01240 1.70176 0.36430
25 0.96553 1.64961 0.37439 1.00496 1.60425 0.36499
30 0.96721 1,65212 037321 1.00001 1.68926 0.36546
50 0.97052 1,65709 037107 0.99013 1.67931 0.36639
75 097214 1.65956 0.36998 0.98519 1.67435 0.36687
100 0.97295 1.66079 036944 0.98273 1.67188 0.36710
150 0.97375 1.66202 0.36889 0.98026 1.66941 0.36734
200 0.97415 1.66264 0.36863 0.97903 1.66817 0.36746
250 0.97439 1.66300 0.36846 0.97830 1.66743 0.36753
300 0.97455 1.66325 0.36836 0.97780 1.66694 036758
= 0.9753425071 | 1.6644701362_|_0.3678194937 | 09753425971 | 1.6644701362 | 0.3678194937
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Table D.3.4 continued. Two Stage Short Run Control Chart Factors
for alphaMean=0.0027, alphaStandUCL=0.005, and alphaStand.CL.=0.001

n 25
m A3l B4l B31 A32 B42 B32
i 0.94603 1.72242 0.51741
2 0.44990 1.26536 0.63196 0.77925 1.55628 0.54729
3 051111 1.31284 0.64455 0.72281 1.50164 0.55905
4 0.53775 1.33430 0.62831 0.69424 1.47435 0.56536
5 0.55272 1.32660 0.61919 0.67694 145797 0.56931
6 0.56231 1.35458 0.61334 0.66534 1.44704 0.57201
7 0.56899 1.36018 0.60926 0.65701 1.43923 0.57398
3 0.57391 1.36432 0.60627 0.65075 1.43337 0.57548
9 0.57768 1.36752 0.60397 0.64586 1.42880 057665
10 0.58066 1.37006 0.60214 0.64194 1.42515 0.57760
11 0.53308 1.37212 0.60067 0.63873 1.42216 0.57838
12 0.58508 1.37383 0.59944 0.63605 1.41967 0.57904
13 0.58676 1.37527 0.59842 0.63378 1.41756 0.57959
14 0.58820 1.37651 0.59754 0.63183 1.41576 058007
15 0.58944 1.37757 0.59678 0.63014 141419 0.58049
16 0.59052 1.37850 0.59612 0.62865 1.41282 0.58086
17 0.59147 1.37932 0.59554 0.62735 141161 058118
18 0.59231 1.38005 0.59503 0.62618 1.41053 058147
19 0.59306 1.38070 0.50457 0.62514 1.40957 0.58173
20 0.59374 1.38128 0.59415 0.62420 1.40870 0.58196
25 0.59628 1.38349 0.59260 0.62063 1.40540 058285
30 0.59797 1.38495 0.59156 0.61825 1.40320 0.58345
50 0.60132 1.38787 0.58951 0.61347 1.39881 0.58465
75 0.60298 1.38932 0.58850 0.61108 1.39660 0.58526
100 0.60381. 1.35004 0.58799 0.60988 1.39550 0.58556
150 0.60463 1.39076 0.58749 0.60868 1.35440 0.58587
200 0.60505 139112 0.58723 0.60808 1.39385 0.58602
250 0.60529 1.39134 0.58708 0.60772 1.39352 0.58611
300 0.60546 1.39148 0.58698 0.60748 1.39330 0.58617
= 0.6062761022 | 1.3922003510 | 0.5864808086 | 0.6062761922 | 1.3922003510 | _0.5864808086
Table D.3.4 continued. Two Stage Short Run Control Chart Factors
for alphaMean=0.0027, alphaStandUCL=0.005, and alphaStandL.CL=0.001
n 50
m A31 B4l B31 A33 B42 B32
T T 0.63210 1.45363 0.63699
2 0.30864 1.18488 0.77825 "0.53458 1.36429 0.66594
3 0.35361 1.21656 0.74938 0.50008 1.33362 0.67719
4 0.37361 1.23096 0.73664 0.48232 1.31805 0.68321
5 0.38496 1.23922 0.72942 0.47148 1.30861 0.68696
6 0.39229 1.24459 0.72477 0.46417 1.30227 0.68952
7 0.39742 1.24336 0.72152 0.45890 1.29772 0.69139
[} 0.40120 125116 0.71913 0.45492 1.20430 0.69280
9 0.40411 1.25332 0.71728 0.45181 1.29163 0.69391
10 0.40642 1.25503 0.71582 0.44932 1.28949 0.60481
11 0.40830 1.25642 0.71464 0.44727 "~ 1.28773 0.69555
12 0.40985 1.25758 0.71365 0.44556 1.28627 0.69617
13 041116 1.25856 0.71283 0.44410 1.28503 0.69669
14 0.41228 1.25939 071212 0.44286 1.28396 0.69714
15 041324 1.26011 071151 044177 1.28304 0.69754
16 0.41408 1.26074 0.71098 0.44083 1,28223 0.69788
17 0.41482 1.26129 0.71051 0.43999 1.28152 0.69819
18 0.41548 1.26178 0.71010 0.43924 1.28088 0.69846
19 0.41607 1.26222 0.70973 0.43857 1.28031 0.69871
20 0.41659 1.26261 0.70939 0.43797 1.27980 0.69893
25 0.41859 1.26411 0.70813 0.43568 1.27785 0.69977
30 0.41991 1.26510 0.70730 0.43415 1,27655 0.70033
50 0.42253 1.26707 0.70564 0.43107 1.27394 0.70146
75 0.42384 1.26805 0.70482 0.42953 1.27263 0.70203
100 0.42449 1.26854 0.70441 0.42876 1.27197 0.70232
150 0.42514 1.26903 0.70400 0.42798 1.27132 0.70261
200 0.42546 1.26928 0.70379 0.42759 1.27099 0.70275
250 0.42566 1.26942 0.70367 0.42736 1.27079 0.70284
300 0.42578 1.26952 0.70359 0.42721 1.27066 0.70289
= 0.4264307914_|_1.2700073227_|_0.7031820259 | 04264307914 | 1.2700073227 | 0.7031820259
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APPENDIX E.1 — Analytical Results for Chapter 7
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. . 0.
Derive; d2starMR = (d2? +d2? -r)”’
We first need to determine the mean and variance of the distribution of the mean moving

vrange MR/o.

Note: By definition, E(—M—Ri—] =d2
' c

Q(é—)-E(MR):dZ: E(MR)=d2-c

since E(MR) =d2-6.

:>E(——Ngkz]=(—cl;]-(r—n—l_—l)-((m—l)-d2-0)=d2

(continued on the next page)
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-(continued from the previous page)

ST

From Palm and Wheeler (1990), Var(MR/d2)=

where
_b-(m-1)-c
(m-1)°
with
b=2"_34+3
3
c=£—2+«/§
6
=r= —12—»0Var—M5 = —12— . 12 -Var(ﬁ)
o d2 o d2
:»dﬁr:(l2 -Var(MR )
o

= Vm{h—ﬂ;): d2*-r
()

(continued on the next page)
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(continued from the previous page)

Derive: d2starMR = (d2? +d2? -r)
According to Johnson and Welch (1939), the mean of the x distribution with v degrees of
freedom is calculated using the following equation (with some modifications in notation):

_ 5 D(05-v+0.5)
E(0)=+2 I'0.5-v)

% -d2starMR | [ d2starMR d2starMR I'(0.5-v+0.5)
> E = -E =42 .
o e el G ol

Equating the squared means of the distribution of the mean fnoving range K’fﬁ/ 6 and the

(x - d2starMR )/ Jv distribution with v degrees of freedom results in the following:

107 o [d2starMR? ) (T(0.5-v+0.5) :
Y I'i0.5-v)

. 2
— d2starMR? = @22 | Y |.[ _LO3-V)
21 T05-v+05)

(continued on the next page)
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(continued from the previous page)

Using results obtained from Johnson and Welch (1939) (with some modifications in
notation), the equation to calculate the variance of the  distribution with v degrees of

freedom may be determined as follows:

Var(z) = Eft

) (B =2 FO3 VD (5 TO5v+05))
I'0.5-v) T(0.5-v)

= Var(x)=

,.(05:v) TO5v) _, (T(05-v+05) 2=V_2_ r0.5-v+0.5)Y
T0.5-v) T(0.5-v) T(0.5-v)

. . 2
— vad X dZStarMRjz(dZStarMR J-Var(x)

Jv v

L, vy 2-42starMR ) _(d2starMR? ) | (T(05-v+05)Y
W v (0.5-v)

Equating the variances of the distribution of the mean moving> range —Nfﬁ/ 6 and the

(x - d2starMR )/+/v distribution with v degrees of freedom results in the following:

@aﬁ{éﬁgﬁi}ﬁ_zgmzxﬂﬁq}
v r(0.5-v)

, 2frv
_[L0.5-v+05)) _ dostarMR’
I'(0.5-v) =2

(continued on the next page)
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(continued from the previous page)

vl

( (0.5 v) ) 2
= =
I'0.5-v+0.5)] [ d2?-r ]

~ d2starMR
Substituting
ros-vy ) _ 2
I'0.5-v+0.5) 'V' : d2?-r
-~ d2starMR 2
into
2
d2starMR? = d2? | L |- LO2Y)
2 || T(0.5-v +0.5)

gives the following equation:

d2starMR ? = d2? (%] (

o d2%r
d2starMR *

2 2 2 s 22
— dostarMR? = d22 _ d starl\/[lzl d 2
- d2°-r d2starMR“ —-d2° -r
d2starMR 2
d2?

= d2starMR* =d2% +d2*-r

=1= 2 2
d2starMR“ —-d2° -r

= d2starMR = (d2? +d2? 1)
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Show: MR/d2 is an unbiased estimate of o i.e., show E(ﬁ/d2)= o

m-—1 t

MR,

o () o () 8 S () () o S

-6 ) (a) Seomi{ar (7] S

since E(MR) =d2-o (aresult shown earlier in this appendix (Appendix E.1)).
MR) (1)( 1
= =l — || ——|'{(m-1)-d2-0)=
E[ dZJ (dZ) ( IJ ( 4 )=0

Note: This result inay also be obtained as follows. It is shown earlier in this appendix

(Appendix E.1) that the following holds:

{=)-.

:(%-E(ﬁ%&:(é)-}i(ﬁ%o=>E{%]= o
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Derive: D42 = (qD4/ d2starMR) , where qD4 is the (1-alphaMRUCL) percentage point of
the distribution of the studentized range Q = (w/s) for subgroup size two with v degrees

of freedom (alphaMRUCL is the probability of a Type I error on the MR chart above the

upper control limit).

- Notes: The ensuing derivation is based on the derivation of D} in the appendix of Hillier

(1969). The value MR denotes the moving range of a subgroup of size two drawn while

in the second stage of the two stage procedure.

We need to determine the value D42 such that the following holds:

P(MR <D42-MR )= 1-alphaMRUCL
= P(=M§ < D42) =1-alphaMRUCL
MR

We know MR/c is the statistic for the distribution of the range W = (w/o) for subgroup

size two. We now need an independent estimate of ¢ based on MR . Replacing ¢ with
this independent estimate results in the statistic for the distribution of the studentized

range Q = (w/s) for subgroup size two, which has v degrees of freedom. The equation
to calculate v is based on the fact that we have applied the Patnaik (1950) approximation
to the distribution of the mean moving range. If we were to use ﬁ/ d2 (which is an

unbiased estimate of G, a result shown earlier in this appendix (Appendix E.1)) as this

(continued on the next page)
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independent estimate, then we would not have the appropriate equation for v. As a result,

we need to use —l\Zﬁ/ d2starMR .

- MR MR _ MR -d2starMR
c MR MR
d2starMR

where (MR - d2starMR )/ MR is the statistic for the distribution of the studentized range

Q = (w/s) for subgroup size two with v degrees of freedom.

= 1-alphaMRUCL =

MR - d2starMR
MR MR ~ d2starMR

SqD4)= MR _  gD4 j

where qD4 is defined above.

__ab4

Setting D42 =
' d2starMR

= 1-alphaMRUCL = P(% < D42) = P(MR < D42 MR)
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2

Show: (MR/d;(MR))" is an unbiased estimate of 67 i.c., show E[MR/d;(MR)) |= o?

E{[%}Hm}ﬁkm>2]=[m].[w(—mﬁ>+<E<M—»zl

_5
m-1 2

—_— 2 ZMRx
=E '—;1\—/[—R— = —1——2- |d2-r-6* +|F =
d,(MR) (a5 vr)) m -1

since Var(ﬁR-/c)= d; r= (I/GZ)fVar»(W): d r= Var(—lvfﬁ)z d}-r-oc’

(the fact that Var(ﬁ/ 0‘)= d2 -r is shown earlier in this appendix (Appendix E.1)).

PR TAR

1 , 1 = i
[ o [ ) S

1

1) [ i
= |4 d?® - r.-G> . d. .
wom) |7 +[<m—l>2J 2( G)H

since E(MR) =d, -6 (aresult shown earlier in this appendix (Appendix E.1)).

] Mo e

(continued on the next page)
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MR Y| [ 1 ST
E{[m} :!—(Zm]'(dz'r'ﬁ +d2'0 )

= m -02~(d§+d§-r)
= (d——(—l@)— 6% -(d; (MR))

since d;(MR) = (d; +d2 -r)o'5 (a result shown earlier in this appendix (Appendix E.1)).

e}
d;(MR)
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APPENDIX E.2 — Computer Program ccfsMR.mcd for Chapter 7
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Page 1 of program; ccfsMR.med

ENTER the following 4 values:

(1) alphalnd = 0.0027 alphalnd - alpha for the X chart.

) alphalMRUCL := 0.005 alphaMRUCL - alpha for the MR chart ébove the UCL.

3) alphalMRICL := 0.001 alphaMRLCL - alpha for the MR chart below the LCL *.

@ m=53 m - number of subgroups (i.e., the number of MRs plus one).

* Note - If no LCL is desired, leave alphaMRLCL blank (do not enter zero).

Please PAGE DOWHN to begin the program.

(1.) TOL=10"""

?
f(x) = dnom(x,0,1) = [(Z-n)—u's:l-eT F() = pnom(x,0,1) [ :=J. f(H) dt
0

P(W) = 2~J’ (0 -(Flx + W) - F(0) dx

-co
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| Page 2 of program: ccfsMR.mecd

2.1

2.2)

DUCL(W) = P(W) - (1 - alphaMRUCL)
Wseedl(start) = | Wq < start
W, <« start + 001
Ay < DUCL{W,)
Ay « DUCL{Wy)
while Ag-A; >0
Wy < W,
Wy« W+ 001
Ay A
A « DUCL{Wy)

seedD4 = Wseedl(0.01)

wD4 = zbrent{DUCL, seedDdy, seedD4; , TOL)

4. g3 (Euzin0 5-%)-guzmnIn(0.5-x+0.5)) _ 2

DLCL(W) = P(W) - alphaMRLCL
Wseed2(star) = | Wy < start
W, < start + 0.01
Ag < DLCL{W,)
A < DLCL{Wy)
while Ag-A;>0
Wy « W,
W, « W, + 001
Ag « A
A « DLCL(W))

seedD3 = Wseed2(0.001)

wD3 = zbrent(DLCL, seedD3y, seedD3; ,TOL)

h(x) = - ;=%“--3+3°'5 c:=§—2+30'5
dfseed(y) = |dfp < 0.9 1= bm-D-c rprevm = bm-3-c
df, « 1.1 - (- 2
Ag « yldfp)
A« Y( dfl) d® =h(® -1 dprevm(x) = h(x) ~ tprevm
while Ag-&A;>0
dfp < dfy seedv = dfseed(d seedvprevm = dfseed(dprevmy)
df; « df; + 035 ‘ :
Ag — Ay
&« y(dfl) = szent(d,seedvg,seedvl,TOL)
df

vprevin = zbrent(dprevm, seedvprevmyg, seedvprevin ,TOL)

358




Paqé 3J of program: ccfsMR.mcd

G.1

G-2)

11

Foaswt |1 Aoaswt
W 2 )
PI(z) = [.‘5-——)& 3% e 2T P(W) dW
z

P3(2) = (Z)ew-(Pl(z) + P2(2)
z

Zseedl(start) = |Z; ¢ start
2y« stat + 50
Ag « P3(Zy)
Ay« P3(Z,)
while A, < (1 - alphaMRUCL)
AR SA
2y« 21+ 350
Ay Ay
Ay« P3(2Z))
Zguess « linterp(A,Z,1 ~ alphaMRUCL)
Zguess |

seedl = Zseed1(5.0) D(%) = P3(x) - (1 - alphaMRUCL)

- zbrent(D, seedl ~ 5.0,seedl + 5.0,TOL)

D4 :
4 5

root[ |P3(seedl) - (1 - alphaMRUCL)|,seed!]
1=
5
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Page 4 of program: ccfsMR.med

@.1)

ZseedZ(statt) =

seed2 = Zseed2(1.0)

oD3 = seed2

Zvg < 00

Avyg< 00

Z < start

while (P3(Z) < alphaMRILCL)
Z2«2+10

for 1ie1..6

Zvi ¢~ Z+ (10— 1)
Av; « P3(Zw)

for ie7.20

Zvi ¢ Z+ (10pG- 1)
Avy ¢« P3(2v)

Zguess < linterp(Av,Zv,alphaMRICL)
A & ratint(Zv, Av,Zguess)
Aguess « Ay

while |Aguess — alphaMRLCL| > 107

if (Aguess - alphaMRLCL) > 1072
Avy ¢ Aguess "

Zvy & Zguess

if (Aguess — alphaMRLCL) < -107"

Avy & Aguess

2wy < Zguess

Zguess ¢ linterp(Av,Zv, alphaMRLCL)
A & ratint(Zv,Av,Zguess)

Aguess <— Ay

Zguess

Monitor Results

D3 = 1.9340341866 x 10°°

_ root(|P3(seed2) - alphaMRLCL| ,seed2)

gD3 =

5 D3 = 1.9340341866 x 107°
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Page 5 of program: ccfsMR.mcd

11

vprevm-1
25wt £-25.97
W

(5.1) Plprevm(z) = (5-—j~e 24 e 24 P(W) dW
Z

P2prevmn(z) = (%)

i () (25) 5

P3prevm(z) = (z)etm-(Plprevm(z) + P2prevm(z)
Z ,

8.2) Zseed3(start) = |Z; ¢« start
Z) ¢ stat + 50
Ag & P3prévm(20)
Al e P3prevm(21)
while A; < (1 - alphaMRUCL)
VAR WA
21621+ 50
Ag e Ay
Ay & P3prevm(21)
Zguess < linterp(A,Z,1 - alphaMRUCL)
Zguess

seed3 = Zseed3(5.0) Dyprevm(x) = P3prevn(x) - (1 — alphaMRUCL)

zbrent(Dprevm,seed3 — 5.0,seed3 + 50,TOL)
5

gD4prevm =

_ root[ |P3prevm(seed3) - (1 - alphaMRUCL) | ,seed3]
5
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Page 6 of program: ccfsMR.mcd

6.1

Zseedd(start) =

Zvy <00

Avg¢« 00

Z ¢ start

while (P3prevm(Z) < alphalMRLCL)
2« 2+1D0

for iel.6

Zvi < Z+ (1O~ 1

Av; & P3prevm(2vi)

for ie7.20

v <2+ (1O-G-1)

Av; P3prevm(2vi)

Zguess < linterp(Av,2Zv, alphaMRLCL)

A  ratint(Zv,Av Zguess)

Aguess « Ay

while |Aguess — alphaMRLCL]| > 107

if (Aguess - alphaMRLCL) > 1075

Av) ¢ Aguess

Zv) < Zguess

if (Aguess - alphaMRLCL) < -107
Avy ¢ Aguess

Zvy < Zguess

Zguess < linterp(Av,Zv, alphaMRLCL)
A « ratint(Zv Av,Zguess)

Aguess & Ay

Zguess

seedd = Zseedd(1.0)

seedd

gD3prevm =

root lP3prevm(seed4) - alphaMRlCLl ,seedd)

gD3prevm =

5

Monitor Results

gD3prevm = 1.9793483369 x 1073

¢D3prevm = 19793483369 x 1073
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Page 7 of program: ccfsMR.mcd

7.1  d2starMR = (d22 + d22-r)0.5

0.5
d2startMRprevm = (c122 + d22‘:prevm)

alphalnd
adj_alpha =1 - e e

ctit ti= qt[ adj_alpha, u)

crit_z = gnorm(adj_alpha,0,1}

. 0.5 . 0.5 :
tt -1 t
72) Ex=|—= |2 Eyp o [ citt Y m+l o o
d2statMR m d2starMR m d2
-qD4
D4l = Sl e i Dz = —324 D4 .= 724
d2statMRprevm-(tm — 1) + gDdprevm d2starMR d2
D31 = m oD3prove D32= 5 __ D3 .= 223
d2starMRprevm-(m ~ 1) + gD3prevm d2starthMR d2

FINAL RESULTS:

(1) alphalnd = 0.0027 Control Chart Factors
(2) alphaMRUCL = 0.005 First Stage ‘Second Stage Conventional
@) alphaMRLCL = 0.001 E21 = 7.34996 E22 =9.00182 E2 = 26586603867
@) m=5
D41 = 3.83736 D42 = 9.2788 D4 = 3.5180951058
D31 = 0.00196 D32 =0.00157 D3 = 0.0015707967
For:

RofMRsj= m-1=4

v = 2.8121232012

d2starMR = 1.23124

#of MRSi= (m-1)-1=3
vprevm = 2.19944

d2statMRprevm = 1.26009

Mean of the Distribution of the Range for Subgroup Size Two
and the Yariance of the Distribution of the Mean Moving Range

d2 = 1.1283791671 d2.r = 02427219561

Harter, Clemm, and Guthrie's {1959} Table 1I.2 Results for h=2

oqD4 = 11.42447

D3 = 0.00193

gDdprevm = 16.63594

gD3prevm = 000198

wD4 = 39697452252

wD3 = 0.0017724543
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APPENDIX E.3 — Tables Generated from ccfsMR.mcd
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Table E.3.1. v (Degrees of Freedom) and dz*(MR) (d2starMR) Values

m v d, (MR) m v d, (MR)
2 1.00000 1.41421 16 9.49655 1.15842
3 1.58682 131072 17 10.10245 1.15660
4 2.19944 1.26009 18 10.70825 1.15499
5 2.81212 1.23124 19 11.31397 1.15356
6 3.42328 1.21271 20 11.91962 1.15227
7 4.03312 1.19982 25 14.94711 1.14740
8 4.64196. 1.19034 30 17.97377 1.14418
9 5.25006 1.18308 50 30.07712 1.13780
10 5.85761 1.17734 75 45.20381 1.13464
11 6.46473 1.17269 100 60.32965 . | 1.13306
12 7.07152 1.16885 150 90.58051 1.13150
13 7.67805 1.16562 200 120.83094 | 1.13072
14 8.28438 1.16287 250 151.08121 | 1.13025
15 8.89053 1.16049 300 181.33139 | 1.12994

1.1283791671
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Table E.3.2. Partial Re-creation of Table I1.2
for P=0.995 (alphaMRUCL=0.005) and P=0.001
(alphaMRLCL=0.001) in Harter, Clemm, and Guthrie (1959)

m gD4 qD3 m qD4 qD3

2 180.05956 0.00222 16 5.13700 0.00182
3 34.23460 0.00206 17 5.05126 0.00182
4 16.63594 0.00198 18 497717 0.00181
5 .11.42447 0.00193 19 491251 0.00181
6 9.12057 -0.00190 20 4.85560 0.00181
7 7.86303 0.00188 25 4.64991 0.00180
8 7.08300 0.00187 30 452154 0.00180
9 6.55624 0.00186 50 4.28392 0.00179
10 6.17842 0.00185 75 4.17390 0.00178
11 5.89503 0.00184 100 4.12094 0.00178
12 5.67501 0.00184 150 4.06929 0.00178
13 5.49947 0.00183 200 4.04394 0.00178
14 5.35628 0.00183 250 4.02888 0.00178
15 523734 0.00182 300 4.01890 0.00177

oo 3.9697452252 | 0.0017724543
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Table E.3.3. Two Stage Short Run Control Chart Factors for

alphalnd=0.0027, alphaMRUCL=0.005, and alphaMRLCL=0.001

m E21 DAl D31 E22 Daz D32
2 117.89134 — p— 204.19466 12732134 0.00157
3 2223670 2.95360 0.00235 31.46159 26.11886 0.00157
r 10.72641 3.58790 0.00200 13.84773 13.20218 0.00157
5 7.34996 3.83736 0.00196 5.00182 .27880 0.00157
G 5.87022 3.30898 0.00188 6.94574 7.52080 0.00157
7 5.06862 3.80368 0.00183 5.85274 5.55349 0.00157
3 457470 3.86822 0.00179 5.18723 5.95038 0.00157
5 424308 3.83885 0.00177 4.74391 5.54166 0.00157
10 4.00644 3.81088 0.00175 242928 524776 0.00157
11 3.82972 3.78583 0.00173 4.19525 5.02691 0.00157
12 369307 3.76385 0.00171 201479 4.85521 0.00157
13 3.58441 374470 0.00170 337161 2.71806 0.00157
14 3.40606 3.72300 0.00169 3.75557 4.60610 0.00157
15 342087 3.71338 0.00168 3.65020 251303 0.00157
16 336128 3.70053 0.00168 3.57836 443343 0.00157
17 330877 3.68916 0.00167 3.50948 436732 0.00157
18 3.26348 3.61906 0.00166 345012 2.30926 0.00157
19 3.20404 367004 0.00166 3.39843 3.25857 0.00157
20 3.18037 3.66194 0.00165 3.35304 4.21395 0.00157
25 3.06450 3.63141 0.00164 3.18072 4.05258 0.00157
30 2.98713 3.61141 0.00162 3.08841 3.95179 0.00157
50 284471 3.51258 0.00160 2.90218 3.76510 0.00157
75 277924 3.55387 0.00159 2.31655 3.67863 0.00157
100 274785 3.54471 0.00150 277545 3.63699 0.00157
150 271730 3.53570 0.00158 273548 3.50637 0.00157
200 2.10034 353124 0.00158 2.71588 3.57644 0.00157
250 2.69346 3.52850 0.00158 2.70425 3.56460 0.00157
300 2.68758 3.52682 0.00158 2.69655 3.35673 0.00157
o 2.6586603867 | _ 3.5180951058 3.6586603867 | 3.5180951058 | 0.0015707967

0.0015707967
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APPENDIX F.1 — Simulation Program cc.f90 for Chapter 8
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! Last ‘change: C 23 Apr 2001 10:13 pm
!

module random_mod

R R R R R EREREREESEEEEERE RS EREREEEEREEEREEREREEEEEREEREEREEREEEEEEEEREREEERERESS

***%x% This module contains the subroutine that generates * kKoK ok
***** code (see Marse and Roberts (1983)) * KKKk

1
!
!
I **xxx Uniform (0, 1) random variates using the Marse-Robertg *****
!
! ERE R SRR S RS R R R I EE R R R R R R R R R R R R
1

implicit none

contains

— e 4 e e

subroutine random(uniran, seed)

IR R R R RS RS EREEEEEEEEEEEEEREEEREEEEEEREERESER SR EREEEEREEEEEESEE]

***%* This subroutine generates Uniform (0, 1) ol

**x*+* random variates using the Marse-Roberts code *****
R S R R R R R R EREEER S S EEERER SRR S EEEREEREEEEEEEEREESERSEEREEEEESERSES]

e s dm e e

implicit none

INTEGER, parameter :: DOUBLE=SELECTED_REAI,_KIND (p=15)
REAL (KIND=DOUBLE), INTENT(OUT) :: uniran :
INTEGER, INTENT(IN OUT) :: seed

INTEGER :: hilb5, hi3l, lowl5, lowprd, ovflow

INTEGER, PARAMETER :: multl = 24112, mult2 = 26143, &
b2el5 32768, b2elb 65536, &
modlus = 2147483647

hil5 = seed / blelsb

lowprd = (seed - hilb5 * b2el6) * multl

lowl5 = lowprd / b2elé6

hi31l = hil5 * multl + lowl5

ovflow = hi3l / b2el5

seed = (((lowprd - lowl5 * b2elf) - modlus) + &
(hi31l - ovflow * b2el5) * b2el6) + ovilow

if (seed < 0) seed = seed + modlus

hil5 = seed / b2elé6

lowprd = (seed - hil5 * b2el6) * mult2

lowl5 = lowprd / b2elé6

hi3l = hil5 * mult2 + lowl5

ovflow = hi3l / b2elb

seed = (((lowprd - lowl5 * b2el6) - modlus) + &
(hi31l - ovflow * b2el5) * b2el6) + ovilow

if (seed < 0) seed = seed + modlus

uniran = (2 * (seed / 256) + 1) / 16777216.0

return
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end subroutine random

end module random_mod
i
)

1
]
I
|
i
1
i
1

module Stage_?2
!
LR SR RS E SR SR EEERESEEEESEEREEREREEEEREREXEEREREEREEEREEEES

i
I ***%% Thigs module contains the subroutines ****xx
i

**xx*% that perform Stage 2 control charting ***=*=*

I ****%* for each control chart combination i

IR SRS EREE R LRSS LR RE R R R R R EERE R RN EREEREEREEEEEERSE X

USE random_mod
implicit none

contains

= e bem e e

subroutine Xbar_R_ 2 (mean, sd, n, m_Xbar, m_R, Xbar2, Range2, &
answer?2, shifttype2, shiftsize2mean, &
shiftsize2sd, shifttime2, falsealarm, RL, seed)
i
! I E SR RS SRR EEE SR EESREE SR ER LSS EEEEREEESESERSEREESEEEEREREESEEZSESREIEIZ
1 ***x* GStage 2 Control Charting for (Xbar, R) Charts ****x
!‘ I E S EEEEE RS A S EREEES S SR EEE ST EEEEESESE R REEREEEEEEREESESESEREXZESE/
!
implicit none ,
INTEGER, parameter DOUBLE=SELECTED_REAL_KIND(p=15)
INTEGER i, 3, subgroup
INTEGER, INTENT (IN) n, m_Xbar, m_R, shifttime2
INTEGER, INTENT(IN OUT) seed
REAL (KIND=DOUBLE) :: UCCFR2, LCCFR2, CCFXbar2, pi
REAL (KIND=DOUBLE) Xbarsum, Rsum, Xbarbar, Rbar
REAL (KIND=DOUBLE) UCLR2, LCLR2, UCLXbar2, LCLXbar?2
REAL (KIND=DOUBLE) Xsum, rl, r2, X, large, small, Xbar, R
REAL (KIND=DOUBLE) :: templ, temp2, temp3, temp4, temp5
REAL (KIND=DOUBLE), INTENT (IN) mean, sd
REAL (KIND=DOUBLE), INTENT(IN) Xbar2 (m_Xbar), Range2 (m_R)
REAL (KIND=DOUBLE), INTENT (IN) shiftsize2mean, shiftsize2sd
REAL (KIND=DOUBLE), INTENT(OUT) falsealarm, RL
CHARACTER (LEN=1), INTENT (IN) answer?2
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bom e aem e

CHARACTER(LEN=2), INTENT(IN) :: shifttype2

REWIND(1)
falsealarm =
subgroup = 0
Xbarsum = 0
Rsum = 0

0

Read second stage short run control chart factors from input file

do i =1, (m_R - 1)
READ(1, *)
end do

READ(1, *) templ, temp2, temp3, temp4, UCCFR2, LCCFR2
REWIND (1)

do i =1, {(m_Xbar - 1)

READ(1, *) -
end do

READ(1, *) templ, temp2, temp3, CCFXbar2, temp4, temp5

templ = templ * temp2 * temp3 * temp4 * tempb
pi = ACOS(-1.0)

Construct second stage control limits

do i = 1, m Xbar
Xbarsum = Xbarsum + Xbar2 (i)
end do

do i =1, m R

Rsum Rsam + Range2 (i)
end do

Xbarbar = Xbarsum / m_Xbar

Rbar = Rsum / m_R

UCLR2 UCCFR2 * . Rbar

LCLR2 LCCFR2 * Rbar

UCLXbar2 = Xbarbar + CCFXbar2 * Rbar
LCLXbar2 = Xbarbar - CCFXbar2 * Rbar.

If a shift occurs in Stage 2, then determine the
number of false alarms before the shift occurs

if (answer2 == ‘Y’) then
do i =1, (shifttime2 - 1)
do j=1, n
call random(rl, seed)

call random(r2, seed)

X = mean + sd * ((SQRT{-2. * LOG(rl))) * (COS(2. * pi * r2)))
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Xsum = Xsum + X

if (j == 1) then
large X
small X

else

v

if (X

"
>

large) large

if (X

A
1l
o]

small) small
end if
. end do

Xbar = Xsum / n
R = large - small

if *({(Xbar > UCLXbar2) .or. (Xbar < LCLXbar2)) .or. &
((R > UCLR2) .or. (R < LCLR2))) &
" falsealarm = falsealarm + 1

end do
end if
Determine run length (RL)

do _
Xsum = 0

do 3 =1, n
call random(rl, seed)
call random(r2, seed)

if (answer2 == ’'Y’) then

if (shifttype2 == 'MN’). then
X = (mean + shiftsize2mean) + sd * &
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
else if (shifttype2 == ’SD’) then
X = mean + (sd + shiftsize2sd) * &
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))

else if (shifttype2 == 'MS’) then
X = (mean + shiftsize2mean) + (sd + shiftsize2sd)
((SQRT(-2. * LOG(rl)}) * (COS(2. * pi * r2)))
end if
. else

X = mean + sd * ((SQRT(-2. * LOG(rl))) * &
(COS(2. * pi * r2)))
end 1if

Xsum = Xsum + X

if (j == 1) then
large = X
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G bt e re

Il
>

‘small
else

if (X > large)

if (X < small) small

end if

end do

large

I
e

1]
>

subgroup = subgroup + 1

Xbar = Xsum / n
R = large - small
- 1f ({((Xbar > UCLXbar2)
({R > UCLR2) .or.
RL = subgroup
exit
end if

end. do

return
end subroutine Xbar_R_2

subroutine Xbar_v_2(mean, sd, n, m_Xbar, m_v, Xbar2, v2, &
‘ answer2, shifttype2, shiftsize2mean,

.or. (Xbar < LCLXbar2))
(R < LCLR2))) then

.0r.

shiftsize2sd, shifttime2, falsealarm, seed)
KA A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A AKX A KA KA hhhhhhhkhhkhkhkhkhkhkhkx
**x**x Stage 2 Control Charting for (Xbar, v) Charts *****
KA KA KA A A A A A A A A AR A A A A A A A A A A A A A A A A A A A AT A A AT AT AR A AKX KA A AKX AN
implicit none
INTEGER, parameter DOUBLE=SELECTED_REAL_KIND(p=15)
INTEGER :: 1, 3j, subgroup
INTEGER, INTENT(IN) :: n, m_Xbar, m_v, shifttime2
INTEGER, INTENT{(IN OUT) seed
REAL (KIND=DOUBLE) UCCFv2, LCCFv2, CCFXbar2, pi
REAL (KIND=DOUBLE) Xbarsum, wvsum, Xbarbar, vbar
REAL (KIND=DOUBLE) UCLv2, LCLv2, UCLXbar2, LCLXbar2
REAL (KIND=DOUBLE) :: Xsum, X2sum, rl, r2, X, Xbar, v
REAL (KIND=DOUBLE) templ, temp2, temp3, temp4, tempb
REAL (KIND=DOUBLE), INTENT (IN) mean, sd
REAL (KIND=DOUBLE), INTENT(IN) Xbar2 {m_Xbar), v2{m_v)
REAL (KIND=DOUBLE), INTENT (IN) shiftgsize2mean, shiftsize2sd
REAL (KIND=DOUBLE), INTENT{(OUT) falsealarm, RL
CHARACTER(LEN=1), INTENT(IN) answer?
CHARACTER (LLEN=2), INTENT (IN) shifttype2

REWIND(1)
falsealarm = 0
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subgroup = 0
Xbarsum = 0
vsum = 0

Read second stage short run control chart factors from input file

do i =1, (mv - 1)
READ(1, *)
end do

READ(1, *) templ, temp2, temp3, tempd4, UCCFv2, LCCFv2
REWIND (1)

do i =1, (m_Xbar - 1)
READ(1, *)
end do

.READ(1, *) templ, temp2, temp3, CCFXbar2, temp4, temp5

templ = templ * temp2 * temp3 * tempd * tempb
pi = ACOS(-1.0)

Construct second stage control limits

do i = 1, m_Xbar
Xbarsum = Xbarsum + Xbar2 (i)
end do

doi=1, mwv

vsum stm_+ v2 (i)
end do

Xbarbar = Xbarsum / m_Xbar

vbar = vsum / m_v

UCLv2 = UCCFv2 * vbar

LCLwv2 LCCFv2 * vbar

UCLXbar2 = Xbarbar + CCFXbar2 * SQRT(vbar)
LCLXbar2 = Xbarbar - CCFXbar2 * SQRT(vbar)

If a shift occurs in Stage 2, then determine the
number  -of false alarms before the shift occurs

if (answer2 == ‘Y’) then

do i =1, (shifttime2 - 1)
Xsum = 0
X2sum = 0

do j =1, n
call random(rl, seed)
call random(r2, seed)

X = mean + sd * ((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
Xsum = Xsum + X
X2sum = X2sum + (X**2)

end do
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Xbar = Xsum / n

v = {(n * X2sum - (Xsum**2)) / (n * (n - 1.))
if (((Xbar > UCLXbar2) .or. (Xbar < LCLXbar2)) .or. &
((v > UCLv2) .or. (v < LCLv2))) &

falsealarm = falsealarm + 1
end do
end if
! Determine run length (RL)
do
Xsum = 0
X2sum = 0
doj=1,n

call random(rl, seed)
call random(r2, seed)

if (answer2 == ‘Y’) then
if (shifttype2 == ’‘MN’) then
X = (mean + shiftsize2mean) + sd * &
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
else if (shifttype2 == ‘SD’) then
X = mean + (sd + shiftsize2sd) * &
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
else if (shifttype2 == ’'MS’) then
X = (mean + shiftsize2mean) + (sd + shiftsizel2sd) * &
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
end if
else
X = mean + sd * ((SQRT(-2. * LOG(rl))) * &

(COS(2. - * pi * r2)))
end if

Xsum = Xsum + X
X2sum = X2sum + (X**2)
end do

subgroup = subgroup + 1
Xbar = Xsum / n

v = (n * X2sum - (Xsum**2)) / (n * (n - 1.))
if (((Xbar > UCLXbar2) .or. (Xbar < LCLXbar2)) .or. &
((v > UCLwv2) .or. (v < LCLv2))) then
RL = subgroup
exit
end if
end do
return
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end. subroutine Xbar v_2

subroutine Xbar_sqgrtv_2(mean, sd, n, m_Xbar, m_v, Xbar2, v2, &
- answer2, shifttype2, shiftsizel2mean, &
shiftsize2sd, shifttime2,. falsealarm, RL,
seed)

LR RS A S SRS EREERSELESERSEREESESSEEEEEEREESESERSEREEEEEEEEEERS]

***%x* Stage 2 Control Charting for (Xbar, sqgrtv) Chartsg *****
LR AR E RS S EEREEE LSS EEE RS EEESSESENSESEEEREEEEEESEEEREEEEEEEEEEREEEES]

implicit none

INTEGER, parameter :: -DOUBLE=SELECTED_REAL_KIND(p=15)
INTEGER :: 1, Jj, subgroup
INTEGER, INTENT(IN) :: n, m_Xbar, m_v, shifttime2
INTEGER, INTENT(IN OUT) :: seed
REAL (KIND=DOUBLE) ::{ UCCFsgrtv2, LCCFsgrtv2, CCFXbar2, pi

- REAL (XKIND=DOUBLE) :: Xbarsum, vsum, Xbarbar, vbar
REAL (KIND=DOUBLE) ':: UCLsqgrtv2, LCLsqgrtv2, UCLXbar2, LCLXbar2
REAL (KIND=DOUBLE) :: Xsum, X2sum, rl, r2, X, Xbar, sqgrtv
REAL(XIND=DOUBLE) :: templ, temp2, temp3, temp4, temp5
REAL (KIND=DOUBLE), INTENT(IN) :: mean, sd
REAL (KIND=DOUBLE), INTENT(IN) :: Xbar2(m Xbar), v2{m_v)
REAL (KIND=DOUBLE), INTENT(IN) :: shiftsize2mean, shiftsize2sd
REAL (KIND=DOUBLE), INTENT(OUT) :: falsealarm, RL
CHARACTER(LEN=1), INTENT(IN) :: answer?2
CHARACTER (LEN=2), INTENT(IN) :: shifttype?2
REWIND(1)
falsealarm 0

subgroup = 0
Xbarsum = 0
vsum = 0
Read second stage short run control chart factors from input file

doi=1, (m_v - 1)

READ(1, *)
end do
READ(1, *) templ, temp2, temp3, temp4, UCCFsqgrtv2, LCCFsqrtv2
REWIND (1)
do i =1, (m_Xbar - 1)

READ(1, *)
end do

READ(1, *) templ, temp2, temp3, CCFXbar2, temp4, temp5

templ = templ * temp2 * temp3 * temp4 * temp5
pi = ACOS(-1.0)
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Construct second stage control limits

Xbarbar + CCFXbar2 * SQRT(vbar)

do i = 1, m Xbar
Xbarsum = Xbarsum + Xbar2 (i)
end do :
do i =1, mv
vsum = vsum + v2 (i)
end do
Xbarbar = Xbarsum / m_Xbar
vbar = vsum / m_v
UCLsgrtv2 = UCCFsqgrtv2 * SQRT(vbar)
LCLsqgrtv2 = LCCFsqrtv2 * SQRT(vbar).
UCLXbar2 =
LCLXbar2 =

If a shift occurs in Stage 2,
number of false alarms before the shift occurs

if |

do

answer2 ==

i
Xsum
X2sum

=0
= 0

do j 1, n
call random(ril,

call random(r2,

X

Xsum

X2sum
end do

mean + sd *
Xsum +
X2sum

Xbar
sqgrtv

Xsum / n
SQRT((n *

if

X
+

(({(Xbar > UCLXbar2)

'Y’) then

1, (shifttime2 - 1)

seed)
seed)

Xbarbar - CCFXbar2 * SQRT(vbar)

then determine the

((SQRT(-2.

(X**2)

X2sum

((sgrtv > UCLsgrtv2)

falsealarm

end do

end

Determine run length

do

Xsum

X2

do j

if

=0

sum = 0

1, n
call random(rl,
call random(r2,

if (answer2 ==

IYI)

(RL)

seed)
seed)

then

.0r.

(Xsum**2)) /

.0r.

falsealarm + 1

377

* LOG(rl))) *

(Xbar < LCLXbar2))

(Cos (2.

(n * (n - 1.

.or.
(sgqrtv < LCLsqQrtv2)))

* pi * r2)))

}))

&
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if (shifttype2 == 'MN’) then

X = (mean + shiftsize2mean) + sd * &
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
else if (shifttype2 == ’'SD’) then
X = mean + (sd + shiftsize2sd) * &
"({SQRT(-2. * LOG(rl))) .* (COS(2. * pi * r2)))
else 1f (shifttype2 == 'MS’) then
X = (mean + shiftsize2mean) + (sd + shiftsize2sd) *
((SQRT (-2. * LOG(rl))) * (COS(2. * pi * r2)))
end if
else
X = mean + sd * ((SQRT(-2. * LOG(rl))) * &
(COS(2. * pi * r2)))
end if

Xsum = Xsum + X
X2sum = X2sum + (X**2)
end do

subgroup = subgroup + 1
Xbar = Xsum '/ n
sgrtv = SQRT((n * X2sum - (Xsum**2)) / (n * (n - 1.)))

if (((Xbar > UCLXbar2) .or. (Xbar < LCLXbar2)) .or. &
((sartv > UCLsgrtv2) .or. (sgrtv.< LCLsqrtv2))) then
RL = subgroup
exit
end if

end do

return
end subroutine Xbar_sqgrtv_2

subroutine Xbar_s_2(mean, sd, n, m_Xbar, m_s, Xbar2, s2, &
answer2, shifttype2, shiftsize2mean, &
shiftsize2sd, shifttime2, falsealarm, RL,

K hh kK kK KKK K kK Kk ok ok ok ok Kk ok k Kk ok ok ok ok ko dkokdk ok k ok ok ok ok kok ok ok ok ok ko ok ok ok ok ok ok ok ok ok

***** Gtage 2 Control Charting for (Xbar, s) Chartsg xx**x*x
KA A A AR A KK KA AR KA AR KR AR KA AR A A A A A AR A A A AT A AR A IR RN A A A A A A A A *kh Kk k*k

implicit none

INTEGER, parameter :: - DOUBLE=SELECTED_REAL_KIND(p=15)
INTEGER :: i, j, subgroup

INTEGER, INTENT(IN) :: n, m_Xbar, m_s, shifttime2
INTEGER, INTENT(IN OUT) :: seed

REAL (KIND=DOUBLE) :: UCCFs2, LCCFs2, CCFXbar2, pi
REAL (KIND=DOUBLE : Xbarsum, ssum, Xbarbar, sbar

)
REAL (KIND=DOUBLE) :: UCLs2, LCLs2, UCLXbar2, LCLXbar2
REAL (KIND=DOUBLE) : Xsum, X2sum, rl, r2, X, Xbar, s
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REAL (KIND=DOUBLE templ, temp2, temp3, temp4d, tempb

)
REAL (KIND=DOUBLE), INTENT(IN) :: mean, sd
REAL (KIND=DOUBLE), INTENT(IN) :: Xbar2(m_Xbar), s2(m_s)
_ REAL(KIND=DOUBLE), INTENT(IN)} :: shiftsize2mean, shiftsize2sd
REAL(KIND=DOUBLE), INTENT(OUT) :: falsealarm, RL
CHARACTER (LEN=1), INTENT(IN) :: answer?2
CHARACTER(LEN=2), INTENT(IN) :: shifttype?2
REWIND(1)
falsealarm 0

subgroup = 0
Xbarsum =.0
ssum = 0

Read second stage short run control chart factors from input file

doi=1, (m_s - 1)
READ(1, *)
end do

READ(1, *) templ, temp2, temp3, temp4, UCCFs2, LCCFs2
REWIND(1)

do i =1, (m_Xbar - 1)
READ (1, *)
end do

READ(1l, *) templ, temp2, temp3, CCFXbar2, temp4, temp5

templ = templ * temp2 * temp3 * temp4d * temp5
pi = ACOS(-1.0)

Construct second stage control limits

do 1 = 1, m_Xbar
Xbarsum = Xbarsum + Xbar2(i)
end do

do i =1, m_s
ssum = ssum + S2 (i)
end do

Xbarbar = Xbarsum / m_Xbar

sbar = ssum / m_s

UCLs2 = UCCFs2 * sbar

ICLs2 = LCCFs2 * sbar

UCLXbar2 = Xbarbar + CCFXbar2 * sbar
ILCLXbar2 = Xbarbar - CCFXbar2 * sbar

If a shift occurs in Stage 2, then determine the
number of false alarms before the shift occurs

if (answer2 == ‘Y’) then

do i =1, (shifttime2 - 1)
Xsum = 0
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X2sum = 0

do.j =1, n
call random(rl, seed)
call random(r2, seed)

X = mean + sd * ((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))

Xsum = Xsum + X
X2sum = X2sum + (X**2)
end do

Xbar = Xsum / n

s = SQRT((n * X2sum - (Xsum**2)) / (n * (n - 1.)))
i
if (((Xbar. > UCLXbar2) .or. (Xbar <.LCLXbar2)) .or. &
({(s > UCLs2) .or. (s < LCLs2))) &

falsealarm = falsealarm + 1
end do
end if
! Determine run length (RL)

do
Xsum = 0
X2sum = 0

do j=1,n
call random(rl, seed)
call random(r2, seed)

if (answer2 == ‘Y’) then

if (shifttype2 == ’'MN’) then
X = (mean + shiftsize2mean) + sd * &
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
else if (shifttype2 == ’'SD’) then
X = mean + (sd + shiftsize2sd) * &
({SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))

else if (shifttype2 == 'MS’) then
X = (mean + shiftsize2mean) + (sd + shiftsize2sd)
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
end if
!
else

X = mean + sd * ((SQRT(-2. * LOG(rl))) * &
(COS(2. * pi * r2)))
end if

Xsum = Xsum + X
X2sum = X2sum + (X**2)
end do

subgroup = Subgroup + 1

Xbar = Xsum / n
s = SQRT((n * X2sum - (Xsum**2)) / (n * (n - 1.}))
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if (((Xbar > UCLXbafZ) .or. (¥Xbar < LCLXbar2)) .or. &

({(s > UCLs2) .or. (s < LCLs2))) then
RL = subgroup
exit
end if
end do
return

end subroutine Xbar_s_2

subroutine X_MR_2 (mean, sd, m_X, m_MR, X2, MR2, &
answer2, shifttype2, shiftsize2mean, &
shiftsize2sd, shifttime2, falsealarm, RL, seed)

KA KK A KE KA KK E KK A KA KA KK AR KAKR AR AR KA AR ARk A,k Ak kA hkhkhkkhkhkkkkKhk*kk

****¥*x Gtage 2 Control Charting for (X, MR) Charts **x*x**

KKK A E KA KK A KK E KA A K KA K AKRAKR AR KRR R R KRk hkkhkhkhk kA hkkKh* k%

Note: m MR IS THE NUMBER OF SUBGROUPS, NOT THE NUMBER OF MRs

implicit none ‘
INTEGER, parameter :: DOUBLE=SELECTED_REAL KIND(p 15)

INTEGER :: 1, flag, subgroup

INTEGER, INTENT(IN) :: m_X, m MR, shifttime2
INTEGER, INTENT(IN OUT) :: seed

REAL (KIND=DOUBLE) :: UCCFMR2, LCCFMR2, CCFX2, pi

REAL (KIND=DOUBLE) :: Xsum, MRsum, Xbar, MRbar

REAL (KIND=DOUBLE) : UCLMR2, LCLMR2, UCLX2, LCLX2

REAL (KIND=DOUBLE) rl, r2, X_1, X_2, MR

REAL (KIND=DOUBLE) :: templ, temp2, temp3, tempd, tempb
REAL (KIND=DOUBLE) , INTENT(IN) :: mean, sd
)
)
)

REAL (KIND=DOUBLE), INTENT(IN) :: X2(m_X), MR2(m_MR - 1)
REAL (KIND=DOUBLE), INTENT(IN) :: shiftsize2mean, shiftsize2sd
REAL (KIND=DOUBLE), INTENT(OUT) :: falsealarm, RL
CHARACTER(LEN=1), INTENT(IN) :: answer?2
CHARACTER(LEN=2), INTENT(IN) :: shifttype2

REWIND(1)

falsealarm = 0

subgroup = 0

Xsum = 0

MRsum = 0

flag = 0

Read second stage short run control chart factors from input file
doi =2, (m_MR - 1)
READ (1, *)

end do

READ(1l, *) templ, temp2, temp3, tempd4, UCCFMR2, LCCFMR2
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REWIND(1)

doi =2, (mX-1)
READ(1, *)
end do

READ(1, *) templ, temp2, temp3, CCFX2, temp4, tempb

templ = templ * temp2 * temp3 * tempd * tempb
pi = ACOS(-1.0)

Construct second stage control limits

do i =1, mX
Xsum = Xsum + X2 (i)
end do

doi=1, (mMR - 1)
MRsum = MRsum + MR2 (i)
end do

Xbar = Xsum / m_X
MRbar = MRsum / (m_MR - 1)

UCLMR2 = UCCFMR2 * MRbar
LCLMR2 = LCCFMR2 * MRbar
UCLX2 = Xbar + CCFX2 * MRbar

LCLX2 = Xbar - CCFX2 * MRbar

If a shift occurs in Stage 2, then determine the
- number of false alarms before the shift occurs

if ((answer2 == ‘Y’) .and. (shifttime2 == 2)) then
call random(rl, seed)
call random(r2, seed)

X 1 = mean + sd * ((SQRT(-2..* LOG(rl))) * &
(COS(2. * pi * r2)))

if ((X_1 > UCLX2) .or. (X_1 < LCLX2)) &
falsealarm = falsealarm + 1

flag = 1
end if
if ((answer2 == ’'Y’) .and. (shifttime2 > 2)) then

do i = 1, (shifttime2 - 2)
if (i == 1) then
call random(rl, seed)

call random(r2, seed)

X 1 = mean + sd * ((SQRT(-2. * LOG(rl))) * &
(COS(2. * pi * r2)))

if ((X_1 > UCLX2) .or. (X_1 < LCLX2)) &
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falsealarm = falsealarm + 1
end if

call random(rl, seed)
call random(r2, seed)

X_2 =mean + sd * ((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
MR = ABS(X_2 - X_1)

if (((X_2 > UCLX2) .or. (X 2 < LCLX2)) .or. &
((MR > UCLMR2) .or. (MR < LCILMR2))) &
falsealarm = falsealarm + 1
X 1 =X_2
flag = 1
end do

end if

Determine run length (RL)

do
if (flag == 0) then
call random(rl, seed)
call random(r2, seed)
if (answer2 == ‘Y’) then
if (shifttype2 == 'MN’) then
X_1 = (mean + shiftsize2mean) + sd * &
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
else if (shifttype2 == 'SD’) then
X_1 = mean + (sd + shiftsize2sd) * &
({SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
else if (shifttype2 == 'MS’) then
X_1l = (mean + shiftsize2mean) + (sd + shiftsize2sd) * &
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
end if
else
X_1 = mean + sd * ((SQRT(-2. * LOG(rl))) * &
(COS(2. * pi * r2)))
end if
subgroup = subgroup + 1
flag = 1
if ((X_1 > UCLX2) .or. (X_1 < LCLX2)) then
RL = subgroup
exit
end if
end if

call random(rl, seed)
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call random(r2, seed)

if (answer2 == 'Y’) then
1
if (shifttype2 == 'MN’) then
X_2 = (mean + shiftsize2mean) + sd * &
{(SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
else if (shifttype2 == ’'SD’) then
X_2 = mean + (sd + shiftsize2sd) * &
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
else if (shifttype2 == 'MS’) then
X_2 = {(mean + shiftsize2mean) + (sd + shiftsize2sd) * &
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
end if
i
else
X_2 = mean + sd * ((SQRT(-2. * LOG(rl))) * &

(COS(2. * pi * r2)))
end if

subgroup = subgroup + 1
MR = ABS(X_2 - X_1)

if (((X_2 > UCLX2) .or. (X_2 < LCLX2)) .or. &
“((MR > UCLMR2) .or. (MR < LCLMR2))) then
RL = subgroup
exit
end if
1
X 1 =2X2
end do
1
return

end subroutine X_MR_2
]
1
i
1
]

end module Stage_2
1
!
!
!
1
1
1
i
i
i

module D_and_R

I E R EREE R LR EEEEEREEEEEEEEEEEEREESERESESEREESEEEEEESEEEEEREEEREEESEREESSE]

**x*xx* egch of the six Delete and Revise (D&R) procedures ****+*

i
i
t **x*xx*x Thig module contains the subroutines that perform ***x*x
!
] Ak hkhkhkhkhkhkhkhkhdkhhkhhkhhkhkhkhkhkhkhhkhkhkhkhkhkhhhhkhhhhkhkhkhkhkhhhhkhhkhkhdkhhdhhhkhhxx
i
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implicit none

contains

subroutine D_and_R_1(m, save_m, choicel, Cenl, Spreadl, &
Cenlstatus, Spreadlstatus, new_m, &
Cen2, Spread2, countl, stops)

R R R RS R RS RS RS ESEESEEEEEESES]

**x** D&R Procedure 1 *****
Ahkhk kA hhkhkhkhkdkdhkhkhkhkhhhkdhdhddxk

implicit  none
INTEGER, parameter :: DOUBLE=SELECTED_REAL_KIND (p=15)

INTEGER :: i, flag

INTEGER, INTENT(IN) :: save_m, choicel

INTEGER, INTENT(OUT) :: new_m, countl, stops

INTEGER, INTENT(IN OUT) :: m

REAL (KIND=DOUBLE) :: Spreadltemp(save_m), Cenltemp(save_m)

REAL (KIND=DOUBLE) :: Spreadlsum, Cenlsum, Spreadlbar, Cenlbar
REAL (KIND=DOUBLE) :: CCFCenl, UCCFSpreadl, LCCFSpreadl

REAL (KIND=DOUBLE) :: UCLSpreadl, LCLSpreadl, UCLCenl, LCLCenl
REAL (KIND=DOUBLE), INTENT(OUT) :: Spread2(save_m), Cen2(save_m)
REAL (KIND=DOUBLE), INTENT(IN OUT) :: Spreadl(save_m), Cenl (save_m)
CHARACTER(LEN=1) :: Spreadlstatustemp (save_m)

CHARACTER(LEN=1) :: Cenlstatustemp(save_m)

.CHARACTER(LEN=1), INTENT(IN OUT) :: Spreadlstatus(save_m)
CHARACTER(LEN=1), INTENT(IN OUT) :: . Cenlstatus(save_m)

m = save_m
countl = 0

do
REWIND(1)
new_m = 0
Spreadltemp = 0
Cenltemp = 0
Spreadlstatustemp = ' '’
Cenlstatustemp = ' ’ :
Spreadlsum = 0 ‘
Cenlsum = 0
flag = 0

Delete out-of-control (0O0C) subgroups

doi=1, m
if ((Spreadlstatus(i) == 'I’) .and. &
(Cenlstatus(i) == ‘I’)) then
new_m = new_m + 1
Spreadltemp{new_m) = Spreadl(i)
Spreadlsum = Spreadlsum + Spreadltemp(new_m)
Cenltemp(new_m) = Cenl(i)
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.Cenlsum = Cenlsum + Cenltemp(new_m)
else

cycle
end if

end do

_1f (new_m == 0) then
WRITE(*, *)
WRITE(*, *) "(# of subgroups) = .0 in D&R procedure 1"
WRITE(*, *) "- replication does not count®
return
end if

if (new_m == m) exit

if (new_m == 1) then
WRITE(*, *)
WRITE(*, *) "D&R procedure 1 stopped"
WRITE(*, *) "- (# of subgroups) = 1"
stops = stops + 1
exit

end if

! Read first stage short run control chart factors from input file

doi =1, (new.m - 1)
READ (1, *)
end do

READ(1, *) CCFCenl, UCCFSpreadl, LCCFSpreadl
! Construct first stage control limits

Cenlbar = Cenlsum / new_m
Spreadlbar = Spreadlsum ./ new_m

if (choicel == 2) then
UCLSpreadl = UCCFSpreadl * Spreadlbar
LCLSpreadl = LCCFSpreadl * Spreadlbar
UCLCenl = Cenlbar + CCFCenl * SQRT(Spreadlbar)
LCLCenl = Cenlbar - CCFCenl * SQRT(Spreadlbar)
else if (choicel == 3) then .
UCLSpreadl = UCCFSpreadl * SQRT(Spreadlbar)
LCLSpreadl = LCCFSpreadl * SQRT{Spreadlbar)
UCLCenl = Cenlbar + CCFCenl * SQRT(Spreadlbar)
LCLCenl = Cenlbar - CCFCenl * SQRT(Spreadlbar)
else
UCLSpreadl = UCCFSpreadl * Spreadlbar
LCLSpreadl LCCFSpreadl * Spreadlbar
UCLCenl = Cenlbar + CCFCenl * Spreadlbar
LCLCenl = Cenlbar - CCFCenl * Spreadlbar
end if

i

! Determine out-of-control (OOC) subgroups
1
do 1 =1, new m
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if ((Spreadltemp(i) > UCLSpreadl) .or. & .
(Spreadltemp(i) < LCLSpreadl)) then

Spreadlstatustemp(i) = ‘0O
flag =1
else ,
Spreadlstatustemp(i) =.'1I"
end if-

if ((Cenltemp(i) > UCLCenl) .or. &
i (Cenltemp(i) < LCLCenl)) then
Cenlstatustemp(i) = ‘0O
flag = 1
else
Cenlstatustemp(i) = ‘I’
end if

end do
if (flag == 0) exit

m = new_m
Spreadl = 0
Cenl =0
Spreadl = Spreadltemp
Cenl = Cenltemp :
Spreadlstatus = ‘
Cenlstatus = '
Spreadlstatus = Spreadlstatustemp
Cenlstatus = Cenlstatustemp
countl = 1

end do

Cen2 = 0

Spread2 = 0

Cen2 = Cenltemp
Spread2 = Spreadltemp

return
end subroutine D_and _R_1

subroutine D_and_R_2(m, save_m, choicel, Cenl, Spreadl, &
Spreadlstatus, mCen, mSpread, Cen2, &
Spread2, count2Spread, count2Cen, stops)

LR R SRR SRR R SRR SRR EEEEEEEEEER,]

***x%* DER Procedure 2 *****
ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

implicit none

INTEGER, parameter :: DOUBLE=SELECTED_REAL_KIND(p=15)
INTEGER :: i, flag
INTEGER, INTENT(IN) :: save_m, choicel
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INTEGER, INTENT (OUT) :: mSpread, mCen

INTEGER, INTENT(OUT) :: count2Spread, count2Cen, stops
INTEGER, INTENT(IN OUT) :: m
REAL (KIND=DOUBLE) :: Spreadltemp(save_m), Cenltemp (save_m)
REAL (KIND=DOUBLE) :: Spreadlsum, Cenlsum, Spreadlbar, Cenlbar

- REAL (KIND=DOUBLE) :: CCFCenl, UCCFSpreadl, LCCFSpreadl, templ
REAL (KIND=DOUBLE) :: UCLSpreadl, LCLSpreadl, UCLCenl, LCLCenl
REAL (KIND=DOUBLE), INTENT(OUT) :: Spread2(save_m), Cen2 (save_m)
REAL (KIND=DOUBLE}), INTENT (IN OUT) :: Spreadl (save_m), Cenl (save_m)
CHARACTER(LEN=1) :: Spreadlstatustemp(save_m)
CHARACTER(LEN=1), INTENT(IN OUT) :: Spreadlstatus(save_m)

D&R procedure 2 for the control chart for spread

m = save_m
count2Spread = 0

do

" REWIND(1)
mSpread = 0
Spreadltemp = 0

Spreadlstatustemp = *
Spreadlsum = 0
flag = 0

Delete out-of-control (0O0OC) subgroups
if (choicel /= 5) then
doi=1, m
if (Spreadlstatus(i) == ’'I’) then
mSpread = mSpread + 1
Spreadltemp (mSpread) = Spreadl (i)
Spreadlsum = Spreadlsum + Spreadltemp (mSpread)
else

cycle
end if

end do
else if (choicel == 5) then
doi=1, (m - 1)

if (Spreadlstatus(i) == ’'I’) then

mSpread = mSpread + 1
Spreadltemp (mSpread) = Spreadl (i)
Spreadlsum = Spreadlsum + Spreadltemp (mSpread)
else
cycle
end if

end do

end if
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if (mSpread == 0) then

WRITE (*, *) -
WRITE(*, *) "(# of subgroups for the control chart"
WRITE(*, *) " for spread) = 0 in D&R procedure 2"
WRITE(*, *) "- replication does not count"
return

end if

Spreadlbar = Spreadlsum / mSpread

if (choicel == 5) mSpread = mSpread + 1

if (mSpread == m) exit

if ((choicel /= 5) .and. (mSpread == 1)) then
: WRITE(*, *)

WRITE(*, *) "D&R procedure 2 for the control”
WRITE(*, *) "chart for spread stopped"

WRITE(*, *) "- (# of subgroups) = 1"
stops = stops + 1
exit
end if
if ((choicel:- == 5) .and. (mSpread == 2)) then
WRITE(*, *)

WRITE(*, *) "D&R procedure 2 for the control"
WRITE(*, *) "chart for spread stopped"

WRITE(*, *) "- (# of subgroups) = 2"
stops = stops + 1
exit

end if

Read first stage short run control chart factors from input file
if (choicel /= 5) then

do i =1, (mSpread - 1)

READ (1, *)
‘end do
else if (choicel == 5) then

do i = 2, (mSpread - 1)
READ(1, *)

end do
end if
READ(1, *) templ, UCCFSpreadl, LCCFSpreadl

Construct first stage control limits

templ = templ * 1
if (choicel == 3) then

UCLSpreadl UCCFSpreadl * SQRT(Spreadlbar)
LCLSpreadl LCCFSpreadl * SQRT(Spreadlbar)

f
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else

UCLSpreadl = UCCFSpreadl * Spreadlbar
LCLSpreadl = LCCFSpreadl * Spreadlbar
end if
if (choicel == 5) mSpread = mSpread - 1
Determine out-of-control (0O0C) subgroups
do i = 1, mSpread
. if ((Spreadltemp(i) > UCLSpreadl) .or.
(Spreadltemp (i) < LCLSpreadl)) then
Spreadlstatustemp (i) = ‘0O’
flag = 1
else
Spreadlstatustemp (i) = 'I”
end if
end do
if (choicel =='5) mSpread = mSpread + 1
if (flag == 0) exit
m = mSpread
Spreadl = 0
Spreadl = Spreadltemp
Spreadlstatus = ' '
Spreadlstatus = Spreadlstatustemp
count2Spread =1
end do
Spread2 = 0
Spread2 = Spreadltemp

&

D&R procedure 2 for the control chart for centering

m = save_m
count2Cen = 0

do
REWIND(1)
mCen = 0
Cenltemp = 0
Cenlsum = 0

3

do i =1,
Cenlsum =
end do

Read first stage short run control chart factor fro

if (choicel /= 5) then

(m - 1)

*)

do i =

11
READ(1,

Cenlsum + Cenl (i)
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~end do
else if

do i = 2,
READ(1,
" end do

end if

READ(1, *)

Construct first
Cenlbar =

if ((choice
UCLCenl =
LCLCenl =

else
UCLCenl
LCLCenl

end if

I

(choicel

5) then

(m ~ 1)
*)

CCFCenl

stage control limits

Cenlsum / m

}) then
* SQRT(Spreadlbar)
* SQRT(Spreadlbar)

.or. (choicel ==
CCFCenl
CCFCenl

1 == 2)
Cenlbar +
Cenlbar

+

CCFCenl
CCFCenl

Cenlbar
Cenlbar

* Spreadlbar
* Spreadlbar

Delete out-of-control (00C) subgroups

do i = 1,

if ((Cenl
mCen =
end do

if ==

(mCe
WRITE(™*,
WRITE (™,
WRITE(*,
WRITE(*,
return
end if
if ((choice
WRITE(*,
WRITE(*,
WRITE(*,
WRITE (™,
return
end if

if (mCen

if ((choice
WRITE (™,
WRITE (™,
WRITE(*,
WRITE(*,

m

(i) > UCLCenl) .or. (Cenl(i) < LCLCenl)) cycle

mCen + 1
Cenltemp (mCen) =

Cenl (i)

0)
*)
*) "(# of subgroups for the control chart"
*) " for centering) = 0 in D&R procedure 2"
*) v replication does not count*

then

1 == )‘.and. (mCen == 1)) then
*)
*) " (# of subgroups for the control chart®
*) " for centering) = 1 in D&R procedure 2"

*) "- replication does not count"

°

) exit

1 /= 5) .and. (mCen )) then

*
"D&R procedure 2 for the control”
*chart for centering stopped"

)
*)
*)
*) "— (# of subgroups) = 1"

391



- b bem b bem

b tem = b e

i

stops = 'stops + 1
exit
end if

if ({(choicel == 5) .and. (mCen == 2)) then
WRITE(*, *)
WRITE(*, *) "D&R procedure 2 for the control®
WRITE(*, *) "chart for centering stopped"
WRITE(*, *) "- (# of subgroups) = 2"
stops = stops + 1
exit

end if

m = mCen

Cenl = 0

Cenl - = Cenltemp

count2Cen = 1
end do

Cen?2
Cen2

0
Cenltemp

return
end subroutine D_and_R_2

subroutine D_and_R_3(m, choicel, Cenl, Spreadl, Spreadlstatus, &
mCen, mSpread, Cen2, Spreadl2)

LR R R R R R AR R R R EEEEEEEEEES]

***x*x% DLR Procedure 3 ****xx*
kkkkkhkkkkhkkkkhkkhkkkkkkkkkkhkkxkkx*x

implicit none

INTEGER, parameter :: DOUBLE=SELECTED_REAL_KIND(p=15)
- INTEGER :: i

“INTEGER, INTENT(IN) :: m,. choicel

INTEGER, INTENT(OUT) - :: mCen, mSpread

REAL (KIND=DOUBLE), INTENT(IN) :: Cenl(m), Spreadl(m)
REAL (KIND=DOUBLE), INTENT(OUT) :: Cen2(m), Spread2(m)
CHARACTER(LEN=1), INTENT(IN) :: Spreadlstatus(m)

mSpread = 0
mCen = m
Spread2 = 0
Cen2 = Cenl
Delete out-of-control (00C) subgroups
if (choicel /= 5) then

doi=1, m

if (Spreadlstatus(i) == 'I’) then
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mSpread = mSpread + 1

Spread? (mSpread) = Spreadl (i)

else
cycle
end 1if
end do

else if (choicel == 5) then

doi=1, (m - 1)

if (Spreadlstatus(i) == ‘I’) then

mSpread = mSpread + 1

Spread?2 (mSpread) = Spreadl(i)

else
cycle
-end 1if
end do

end 1if

if (mSpread
WRITE(~*,

= 0) then

WRITE(*,

WRITE(*,

return
end if

" for spread) =

if (choicel == 5) mSpread = mSpread + 1

return
end subroutine D_and_R_3

subroutine D_and_R_5(m, Cenl, Spreadl,

0 in D&R procedure 3"

*)

WRITE(*, *) " (# of subgroups for the control chart®
*)
*) "- replication does not count"

Cenlstatus, Spreadlstatus,

new_m, Cen2, Spread2)
KA E KA A AT AKE A AKRKKKAXTRKK KKK ) KK KK
**x*% D&R Procedure 5 *x**x
KKK KK KK KKk Kk Kk k ok ke kR ok k ok ok ok ok ok ok ok
implicit none
INTEGER, parameter :: DOUBLE=SELECTED_REAI,_KIND (p=15)
INTEGER :: 1
INTEGER, INTENT(IN) :: m
INTEGER,  INTENT(OUT) :: new_m

REAL (KIND=DOUBLE), INTENT (IN)
REAL (KIND=DOUBLE), INTENT (OUT)
CHARACTER(LEN=1), INTENT(IN)

new m = 0

Cenl (m), Spreadl (m)

Cen2 (m), Spread2(m)

Cenlstatus(m),

393

Spreadlstatus (m)

&



i
1
i

Spread2 = 0
. Cen2 =0
Delete out-of-control (0OO0OC) subgroups
doi=1,m
if ((Spreadlstatus(i) == ‘I’) .and. (Cenlstatus(i) == 'I'))
new_m = new_m + 1
Spread? (new_m) = Spreadl (i)
Cen2 (new_m) = Cenl (i)
else
cycle
end if
end do
if (new_m == 0) then
WRITE(*, *)
WRITE(*, *) "(# of subgroups) = 0 in D&R procedure 5"
WRITE(*, *) "-:replication does not count"
return
end if
return

end subroutine D_and_R_5

subroutine D_and_R_6.(m,

khkhkhkhkhkhkhkkhkhkhhkkhkhkhkhkhhhkhkkhkkhkhkhkhkhkxk

***x%x% D&R Procedure 6 ****x*
IR S A SRS S S EESEEEEEEEEEEEESE RS

implicit none
INTEGER, parameter

choicel, Cenl,
mCen,  mSpread, Cen2,

Spreadl, Spreadlstatus,
Spread2)

DOUBLE=SELECTED_REAL_KIND(p=15)

INTEGER i

INTEGER, INTENT (IN) m, choicel

INTEGER, INTENT (OUT) mCen, mSpread

REAL (KIND=DOUBLE) Spread2sum, Cenlsum, Spread2bar, Cenlbar
REAL (KIND=DOUBLE) CCFCenl, UCLCenl, LCLCenl

REAL (KIND=DOUBLE), INTENT(IN) Cenl (m), Spreadl(m)

REAL (KIND=DOUBLE), INTENT (OUT) Cen2 {(m), Spread?2 (m)
CHARACTER(LEN=1), INTENT(IN) Spreadlstatus (m)

D&R procedure 6 for the control chart for spread

REWIND (1)
mSpread
mCen
Spread2 =
Cen2 0
Spread2sum

0

0

0

0
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Cenlsum = 0
Delete out-of-control (00C) subgroups
if (choicel /= 5) then
doi=1, m

if (Spreadlstatus(i) == 'I’) then
mSpread = mSpread + 1
Spread? (mSpread) = Spreadl (i)
Spread2sum = Spread2sum + Spread2 (mSpread)
else
cycle
end if
end do
else if (choicel == 5) then
doi=1, (m- 1)
if (Spreadlstatus(i) == 'I’) then
mSpread = mSpread + 1
Spread? (mSpread) = Spreadl(i)
Spread2sum = Spread2sum + Spread?2 (mSpread)
else
cycle
end if
end do

end if

if (mSpread == 0) then

WRITE(*, *)
WRITE(*, *) "(# of subgroups for the control chart".
WRITE(*, *) " for spread) = 0 in D&R procedure 6"
WRITE(*, *) "- replication does not count"
return :

end if

D&R procedure 6 for the control chart for centering
Read first stage short run control chart factor from input file
if (choicel /= 5) then

do i =1, (m- 1)

READ(1, *)
end do
else 1f (choicel == 5) then

do i =2, (m-1)
READ(1, *)
end do

395



end if
READ(1, *) CCFCenl
Construct first stage control limits
doi=1, m
Cenlsum = Cenlsum + Cenl (i)
end do
Spread2bar = Spread2sum / mSpread
if (choicel == 5) mSpread = mSpread + 1

Cenlbar = Cenlsum / m

if ((choicel == 2) .or. (choicel == 3)) then

UCLCenl = Cenlbar + CCFCenl * SQRT(Spread2bar)
LCLCenl = Cenlbar - CCFCenl. * SQRT(Spread2bar)

else
UCLCenl = Cenlbar + CCFCenl * Spread2bar
LCLCenl = Cenlbar - CCFCenl * Spread2bar
end if

Delete out-of-control (0OOC) subgroups

doi =1, m

if ((Cenl(i) > UCLCenl) .or. (Cenl(i) < LCLCenl)) cycle
mCen = mCen + 1
Cen2 (mCen) = Cenl(i)

end do

if (mCen == 0) then
WRITE(*, *) . '
WRITE(*, *) "(# of subgroups for the control chart"
WRITE(*, *) " for centering) = 0 in D&R procedure 6"
WRITE(*, *) "- replication does not count"
return

end if

if ((choicel == 5) .and. (mCen == 1)) then
WRITE(*, *)
WRITE(*, *) " (# of subgroups for the control chart"
WRITE(*, *) " for centering) = 1 in D&R procedure 6"
WRITE(*, *) "- replication does not count"
return

end if

return

end subroutine D_and R_6
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end module D_and_R

I
|
!
!
1
!
!
!
I
|

module Stage_1

Ahkhkhkhkhkhkkhhhkhhdkhkxhkhh ik dhhdhhkdhhdhhkh gk hdhkodkdhhk ok hkokdkdkhdkhkhhkokkok ko dkkodkdkkodkdkk

***x*% This module contains the subroutines that perform Stage 1 ****x*

khhkhkhhkhkhkhhkhkhkhkhkhhkhkhkhkhkkhkhkhrhhrhrxhhhkhhhdkhhhdohkhdhhkhkhhkhkhkrhkdhhkhkhkkhkkkkdhkkhkkhxk

1
1
1
! ***** control charting for each control chart combination
i
!

USE random_mod
implicit none

contains

subroutine Xbar_R_1(mean, sd, n, m, answerl, shifttypel, &

shiftsizelmean, shiftsizelsd, shifttimel, &
Xbar, R, Xbarstatus, Rstatus, seed)
, )
! RS RS SRR SR REEREREERRREREREEREEE R EREERSEEREEREEREEEEESEREREEER]
I *»**%%x gStage 1 Control Charting for (Xbar, R) Charts *****
! IR R SRR R R EERE RS R R R RS S SRR R RS R EREEREEEEEREREEEEEEEREEEEEEEE R R R R R
!
implicit none
INTEGER, parameter DOUBLE=SELECTED_REAL,_KIND(p = 15)
INTEGER i, J '
INTEGER, INTENT (IN) n, m, shifttimel
INTEGER, INTENT (IN OUT) seed
REAL (KIND=DOUBLE) UCCFR1, LCCFR1l, CCFXbarl, pi
REAL (KIND=DOUBLE) Xsum, rl, r2, X, large, small
REAL (KIND=DOUBLE) :: Xbarsum, Rsum, Xbarbar, Rbar
REAL (KIND=DOUBLE) UCLR1, LCLR1l, UCLXbarl, LCLXbarl
REAL (KIND=DOUBLE) , INTENT (IN) mean, sd
REAL (KIND=DOUBLE) , INTENT (IN) shiftsizelmean, shiftsizelsd
REAL (KIND=DOUBLE) , INTENT (OUT) Xbar (m), R(m)
CHARACTER (LEN=1), INTENT (IN) answerl
CHARACTER(LEN=2), INTENT (IN) shifttypel
CHARACTER(LEN=1), INTENT(OUT) Xbarstatus(m), Rstatus (m)
]
REWIND (1)
Xbarsum = 0
Rsum = 0

! Read first stage short run control chart factors from input file
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READ(1, *) CCFXbarl, UCCFR1l, LCCFR1
pi = ACOS(-1.0)
Generate first stage subgroups

doi=1, m
Xsum = 0

do j =1, n
call random(rl, seed)
call random(r2, seed)

if ((answerl == ’Y’') .and. (i >= shifttimel)) then
if (shifttypel == ‘MN’) then
X = (mean + shiftsizelmean) + sd * &
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
.else if (shifttypel == ’'SD’) then
X = mean + (sd + shiftsizelsd) * &
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
else if (shifttypel == 'MS’) then
X = (mean + shiftsizelmean) + (sd + shiftsizelsd) * &
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
end if
else
X =mean + sd * ((SQRT(-2. * LOG(rl))) * &

(COS(2. * pi * r2)))
end if

Xsum = Xsum + X

if (j == 1) then
large = X
small = X
else
if (X > large) large = X
if (X < small) small = X
end if
end do
Xbar(i) = Xsum / n
R(i) = large - small

Xbarsum = Xbarsum + Xbar(i)
Rsum = Rsum + R(1)
end do
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i

e b e g

Construct first stage control limits

Xbarbar = Xbarsum / m

Rbar = Rsum / m

UCLR1 = UCCFR1 * Rbar

LCLR1 = LCCFR1l * Rbar

UCLXbarl = Xbarbar + CCFXbarl * Rbar
LCLXbarl = Xbarbar - CCFXbarl * Rbar

Determine out-of-control (00C) subgroups
doi=1, m

if ((R(i) > UCLR1l) .or. (R(i) < LCLR1l)) then

Rstatus(i) = 0O’
else

Rstatus (i) = 'I°
end if

if ((Xbar(i) > UCLXbarl) .or. (Xbar(i) < LCLXbarl)) then
Xbarstatus(i) = 0O’

else
Xbarstatus(i) = "I’

end if

end do

return
end subroutine Xbar_R_1

subroutine Xbar_v_1(mean, sd, n, m, answerl, shifttypel, &
shiftsizelmean, shiftsizelsd, shifttimel, &
Xbar, v, Xbarstatus, vstatus, seed)

RS R AR R EEEEER RS EEEEREREESEEREEEREEREEREEEEEREREEEEEEEEEEEEEEERESES]

***x** Stage 1 Control Charting for (Xbar, v) Chartg ****=*
AKkhkkkkkhkkkhkkkhkhkkkhkkkkrkkhkhhkkkkhkhkkhhhkkkhkhkhkhkkhkhkhkkhkkhkhkkhkhhkkhkhhkkhkkhx

implicit none

INTEGER, parameter :: DOUBLE=SELECTED_REAL_KiND(p = 15)
INTEGER :: i, j

INTEGER, INTENT(IN) :: n, m, shifttimel

INTEGER, INTENT(IN OUT) :: seed

REAL (KIND=DOUBLE) :: UCCFvl, LCCFvl, CCFXbarl, pi

REAL (KIND=DOUBLE) :: Xsum, X2sum, rl, r2, X

REAL (KIND=DOUBLE) Xbarsum, wvsum, Xbarbar, vbar

REAL (KIND=DOUBLE) UCLvl, LCLvl, UCLXbarl, LCLXbarl

REAL (XKIND=DOUBLE), INTENT(IN) :: mean, sd

REAL (KIND=DOUBLE), INTENT(IN) :: shiftsizelmean, shiftsizelsd
REAL (KIND=DOUBLE), INTENT(OUT) :: Xbar(m), v(m)
CHARACTER(LEN=1), INTENT(IN) :: answerl

CHARACTER (LEN= 2) INTENT (IN) :: shifttypel

CHARACTER (LEN=1 INTENT(OUT) :: Xbarstatus(m), vstatus(m)
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REWIND (1)

Xbarsum = 0

vsum = 0
1
! Read first stage short run control chart factors from input file
I

doi=1, (m - 1)

READ (1, *)
end do

READ(1, *) CCFXbarl, UCCFvl, LCCFvl
pi = ACOS(-1.0)

! Generate first stage subgroups

doj=1, n
call random(rl, seed)
call random(r2, seed)

if ((answerl == ‘Y’) .and. (i >= shifttimel)) then
1 ‘
if (shifttypel == 'MN’) then »
X = (mean + shiftsizelmean) + sd * &
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
else if (shifttypel == ’SD’) then

X = mean + (sd + shiftsizelsd) * &
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))

else if (shifttypel == 'MS‘’) then
X = (mean + shiftsizelmean) + (sd + shiftsizelsd) * &
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
end if
!
else

X = mean + sd * ((SQRT(-2. * LOG(rl))) * &
(COS(2. * pi * r2)))
end if

Xsum = .Xsum + X
X2sum = X2sum + (X**2)

end do
!
Xbar(i) = Xsum / n
v(i) = (n * X2sum - (Xsum**2)) / (n * (n - 1.))

Xbarsum = Xbarsum + Xbar (i)
vsum = vsum + v(i)
end do

! Construct first stage control limits

Xbarbar = Xbarsum / m
vbar = vsum / m
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UCLvl = UCCFvl * wvbar

LCLvl = LCCFvl * vbar

UCLXbarl = Xbarbar + CCFXbarl * SQRT (vbar)

LCLXbarl = Xbarbar - CCFXbarl * SQRT (vbar)
Determine out-of-control (0O0C) subgroups

do i =1, m-

if ((v(i) » UCLvl) .or. (v(i) < LCLvl)) then

vstatus (i) = ‘0’
else

vstatus (i) = "I’
end if

if ((Xbar(i) > UCLXbarl) .or. (Xbar(i) < LCLXbarl)) then
Xbarstatus(i) = "0’

else
Xbarstatus(i) = "I’

end if -

end do

return
end subroutine Xbar_v_1

subroutine Xbar_sqrtv_l(mean, sd, n, m, answerl, shifttypel, &
shiftsizelmean, shiftsizelsd, shifttimel,
Xbar, v, Xbarstatus, sgrtvstatus, seed)

R R R R R I T L T

**x%x*x* GStage 1 Control Charting for (Xbar, v~0.5) Chartg ****=*

hkhkxkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkAhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhhkkxxk

implicit none

INTEGER, parameter :: DOUBLE=SELECTED_REAL_KIND(p = 15)
INTEGER :: 1, 3]

INTEGER, INTENT(IN) :: n, m, shifttimel

INTEGER, INTENT(IN OUT) :: seed

REAL (KIND=DOUBLE) :: UCCFsqgrtvl, LCCFsgrtvl, CCFXbarl, pi
REAL (KIND=DOUBLE) :: Xsum, X2sum, rl, r2, X

REAL (KIND=DOQUBLE) Xbarsum, vsum, Xbarbar, vbar

REAL (KIND=DOUBLE) UCLsgrtvl, LCLsqgrtvl, UCLXbarl, LCLXbarl
REAL (KIND=DOUBLE)}, INTENT(IN) :: mean, sd

REAL (KIND=DOUBLE), INTENT(IN) :: shiftsizelmean, shiftsizelsd
REAL (KIND=DOUBLE) , INTENT(OUT) :: Xbar(m), v(m)
CHARACTER{LEN=1), INTENT(IN) :: answerl

CHARACTER(LEN=2), INTENT(IN) :: shifttypel

CHARACTER(LEN=1), INTENT(OUT) :: Xbarstatus(m), sqgrtvstatus{(m)
REWIND(1)

Xbarsum = 0

vsum = 0
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doi=1, (m - 1)
READ(1, *)
end do

READ(1, *) CCFXbarl, UCCFsqgrtvl, LCCFsqgrtvl
pl = ACOS(-1.0)
Generate first stage subgroups
doi=1, m
Xsum = 0
X2sum = 0
do j=1,n

call random(rl, seed)
call random(r2, seed)

if ((answerl == 'Y’). .and. (i >= shifttimel))
if (shifttypel == 'MN’) then
X = (mean +, shiftsizelmean) + sd * &

. ((SQRT (-2. * LOG(rl))) * (COS(2. * pi * r2)))

else if (shifttypel == ’SD’) then
X = mean + (sd + shiftsizelsd) * &

((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))

else if (shifttypel == 'MS’) then
X = (mean + shiftsizelmean) + (sd + shiftsizelsd)
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
end if
else
X =mean + sd * ((SQRT(-2. * LOG(rl))) * &

(COS(2. * pi * r2)))
end if

Xsum = Xsum + X
X2sum = X2sum + (X**2)

end do
Xbar(i) = Xsum / n
v({i) = (n * X2sum - (Xsum**2)) / (n * (n - 1.))

Xbarsum = Xbarsum + Xbar (i)
vsum = vsum + v{(i)
end do

Construct first stage control limits

Xbarbar = Xbarsum / m

vbar = vsum / m

UCLsgrtvl = UCCFsqgrtvl * SQRT(vbar)
LCLsgrtvl = LCCFsgrtvl * SQRT(vbar)
UCLXbarl = Xbarbar + CCFXbarl * SQRT(vbar). _
LCLXbarl = Xbarbar - CCFxbarl * SQRT(vbar)
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Determine out-of-control (00C)

doi =1, m

if {((SQRT(v(i)) > UCLsqgrtvl) .or. (SQRT(v(i))

sqgrtvstatus (i) = "0’
else s
sgrtvstatus(i) = I’
end if
if ((Xbar(i) > UCLXbarl) .or. (Xbar(i) < LCLXbarl)) then
Xbarstatus (i) = "0’
else
Xbarstatus (i) = *'I°
end if
end do
return
end subroutine Xbar_sqrtv_1
subroutine Xbar_s_1(mean, sd, n, m, answerl, shifttypel, &
shiftsizelmean, shiftsizelsd, shifttimel,
Xbar, s, Xbarstatus, sstatus, seed)

subgroups

< LCLsqgrtvl))
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***** Stage 1 Control Charting for (Xbar,
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implicit none

s)

Charts *****

shiftsizelsd

INTEGER, parameter :: DOUBLE=SELECTED_REAL_KIND(p = 15)
INTEGER :: i, 7

INTEGER, INTENT(IN) :: n, shifttimel

INTEGER, INTENT(IN OUT) seed

REAL (KIND=DOUBLE) :: UCCFsl, LCCFsl, CCFXbarl, pi
REAL (KIND=DOUBLE) :: Xsum, X2sum, rl, r2, X

REAL (KIND=DOUBLE) :: Xbarsum, ssum, Xbarbar, sbar
REAL (KIND=DOUBLE) :: UCLsl, LCLs1, UCLXbarl, LCLXbarl
REAL (KIND=DOUBLE), INTENT(IN) mean, sd

REAL (KIND=DOUBLE) , INTENT (IN) shiftsizelmean,

REAL (KIND=DOUBLE) , INTENT (OUT) Xbar(m), s(m)
CHARACTER (LEN=1), INTENT(IN) answerl
CHARACTER(LEN=2), INTENT(IN) shifttypel

CHARACTER (LEN=1), INTENT(OUT)

REWIND (1)
Xbarsum = 0
ssum = 0

Read first stage short run control chart factors from input file

doi=1, (m - 1)

Xbarstatus (m) ,
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READ(1, *)
end do

READ(1l, *) CCFXbarl, UCCFsl, LCCFsl
pi = ACOS(-1.0)
Generate first stage subgroups
doi=1,m
Xsum = 0
X2sum = 0
do j=1,n

call random(rl, seed)
call random(r2, seed)

if ((answerl == 'Y’) .and. (i >= shifttimel)) then
if (shifttypel == 'MN’) then
X = (mean + shiftsizelmean) + sd * &
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
else if (shifttypel == ’'SD’) then
X = mean + (sd + shiftsizelsd) * &
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
else if (shifttypel == 'MS’) then
X = (mean + shiftsizelmean) + (sd + shiftsizelsd)
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
end if
else
X = mean + sd * ((SQRT(-2. * LOG(rl))) * &

(COS(2. * pi * r2)))
end if ‘

Xsum = Xsum + X
X2sum = X2sum + (X**2)

end do
Xbar(i) = Xsum / n
s{i) = SQRT((n * X2sum - (Xsum**2)) / (n * (n - 1.)))
Xbarsum = Xbarsum + Xbar(i)
ssum = gsum + s(i)
end do

Construct first stage control limits

Xbarbar = Xbarsum / m

sbar = ssum / m

UCLsl ‘UCCFsl * sbar

ILCLsl = LCCFsl * sbar

UCLXbarl = Xbarbar + CCFXbarl * sbar
ILCLXbarl = Xbarbar - CCFXbarl * sbar

I Determine out-of-control (00C) subgroups

doi=1, m
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if {((s(i) > UCLsl) .or. (s(i) < LCLsl)) then

sstatus (i) = 'O’
else

sstatus(i) = "I”
end if

if ((Xbar(i) > UCLXbarl) .or. (Xbar(i) < LCLXbarl)) then
Xbarstatus(i) = ‘0O’

else
Xbarstatus (i) = 'I’

end if

end do

return
end subroutine Xbar_s_1

‘subroutine X_MR_1(mean, sd, m, answerl, shifttypel, &
shiftsizelmean, shiftsizelsd, shifttimel, &
X, MR, Xstatus, MRstatus, seed)

hkhkkkkhkhkhkhkkkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkkhkhkhkdbhhdbhhhbhhhkhkhkhkhkkhkkhkkkkkkxkk

***x*x* Stage 1 Control Charting for (X, MR) Charts *****

hhkhkhkhkkkhkkkhkXkkXkKXkXKNhkhkhkhhkhkhkhkhkhkhkhkkhkhkkkhkhhhkhhhkhkhkkhkkhkkkkkhkkhkkkh*x

implicit none

INTEGER, parameter :: DOUBLE=SELECTED_REAIL_ KIND(p = 15)
INTEGER :: i _

INTEGER, INTENT(IN) :: m, shifttimel

INTEGER, INTENT(IN OUT) :: seed

REAL (KIND=DOUBLE) :: UCCFMR1l, LCCFMR1l, CCFX1l, pi

REAL (KIND=DOUBLE) :: rl, r2

REAL (KIND=DOUBLE) :: Xsum, MRsum, Xbar, MRbar

REAL (KIND=DOUBLE) :: UCLMR1l, LCLMR1l, UCLX1l, LCLX1

REAL (KIND=DOUBLE), INTENT(IN) :: mean, sd

REAL (KIND=DOUBLE) , INTENT(IN) :: shiftsizelmean, shiftsizelsd
REAL (KIND=DOUBLE) , INTENT(OUT) :: X(m), MR(m ~ 1)

CHARACTER (LEN=1), INTENT(IN) :: answerl

CHARACTER (LEN=2), INTENT(IN) :: shifttypel

CHARACTER (LEN=1), INTENT(OUT) :: Xstatus(m), MRstatus(m - 1)
REWIND (1)

Xsum = 0

MRsum = 0

Read first stage short run control chart factors from input file
doi=2, (m-1)
READ (1, *)

end do

READ(1, *) CCFX1l, UCCFMR1l, LCCFMR1
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pi = ACOS(-1.0)
Generate first stage subgroups

call random(rl, seed)
call random(r2, seed)

if ({answerl == 'Y’) .and. (shifttimel == 1)) then
if (shifttypel == 'MN’) then
X(1l) = (mean + shiftsizelmean) + sd * &
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
else if (shifttypel == ’'SD’) then
X(l) = mean + (sd + shiftsizelsd) * &
~ ((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
else if (shifttypel == 'MS") then
X(l) = (mean + shiftsizelmean) + (sd + shiftsizelsd) * &
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
end if
else
X(l) = mean + sd * ((SQRT(-2. * LOG(rl))) * &
(COS(2. * pi * r2)))
end if
Xsum = Xsum + X(1)

doi=2,m
call random(rl, seed)
call random(r2, seed)

if ((answerl == ‘Y’) .and. (i >= shifttimel)) then
if (shifttypel == 'MN’) then
X(i) = (mean + shiftsizelmean) + sd * &
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
else if (shifttypel == 'SD’) then
- X(1i) = mean + (sd. + shiftsizelsd) * &
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
else if (shifttypel == ’'MS’) then
X(i) = (mean + shiftsizelmean) + (sd + shiftsizelsd) * &
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2)))
end if
else
X(1i) = mean + sd * ((SQRT(-2. * LOG(rl))) * &
(COS(2. * pi * r2)))
end if
MR(i - 1) = ABS(X(i) - X(i - 1))

Xsum = Xsum + X (i)
MRsum = MRsum + MR(i - 1)
end do

Construct first stage control limits
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Xbar = Xsum / m

MRbar = MRsum / {(m - 1)
UCLMR1 = UCCFMR1 * MRbar
LCLMR1 = LCCFMR1 * MRbar
UCLX1l = Xbar + CCFX1l * MRbar
LCLX1 = Xbar - CCFX1l * MRbar

! Determine out-of-control (OOC). subgroups
doi=1, (m - 1)

if ((MR(i) > UCLMR1l) .or. (MR{i) < LCLMR1l)) then

MRstatus (i) = 'O’
else ’
MRstatus (i) = "I’
end 1if i
!
end do
1 . . .
doi=1, m

if ((X{i) > UCLX1l) .or. (X(i) < LCLX1l)) then
Xstatus({i) = "0’

else
Xstatus{i) = ‘I’

end if

end do

return
end subroutine X_MR_1

1
i
1
!
!

end module Stage_1l
! .
!

!

!

!

!

!

1

!

1

khkkkkkhkkhkhhkkkhAkhkkkhkhhkhrhhhkkhbhkrhhkhkhhkkhkhhkhkhhdhhkkdhkhkhdhhkkkkxkk

**x*xk* Two Stage Short Run Variables Control Charting ***x**
ok k ok ok ok ok ok ok ok ko k ok ok ok k ok ok ok ok ok ok ok ok ok ok k ke ke ok sk ok ke ok ok ke ek ek ok ke ke ke ok ok ok ke ke ok ke ok ke ok ke ok

program cc

)

i

!

1

!
USE Stage_1
USE D_and_R
USE Stage_2
implicit none
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INTEGER, parameter :: DOUBLE=SELECTED_REAL_KIND(p = 15)

INTEGER :: k, 1, rep, n, m, save_m, new_m, -mCen, mSpread
INTEGER :: choicel, choice2, shifttimel, shifttime2

INTEGER :: seed = 1973272912, maxRL = 50000

INTEGER :: countl, count2Spread, count2Cen, skips = 0, stops = 0
INTEGER :: sumcountl = 0, sumcount2Spread = 0, sumcount2Cen = 0
REAL (KIND=DOUBLE) :: mean, sd

REAL (KIND=DOUBLE
REAL (KIND=DOUBLE
REAL (KIND=DOUBLE
REAL (KIND=DOUBLE

shiftsizelmean = 0, shiftsizelsd = 0
shiftsize2mean = 0, shiftsize2sd = 0
RL, sumRL = 0, sumRL2 = 0, ARL, SDRL

)
)
)
) falsealarm, Pfalsealarm, APFL, SDPFL

REAL (KIND=DOUBLE) :: sumPfalsealarm = 0, sumPfalsealarm2 = 0
REAL, ALLOCATABLE, DIMENSION(:) :: RunL, RLnum

REAL (KIND=DOUBLE) , ALLOCATABLE, DIMENSION(:) :: Cenl, Spreadl
REAL (KIND=DOUBLE) , ALLOCATABLE, DIMENSION(:) ::. Cen2, Spread2
CHARACTER (LEN=13) :: text

CHARACTER(LEN=1) :: answerl, answer2, answer3

CHARACTER (LEN=2) :: shifttypel, shifttype2

CHARACTER(LEN=50) :: filenamein, filenameout

CHARACTER (LEN=1), ALLOCATABLE, DIMENSION (:) :: Cenlstatus
CHARACTER(LEN=1), ALLOCATABLE, DIMENSION (:) :: Spreadlstatus

WRITE(*, *) "Enter mean --> "

READ(*, *) mean

WRITE(*, *) "Enter .standard deviation --> ™

READ(*, *) sd

WRITE(*, *) "Enter number of times to replicate two stage"
WRITE(*, *) " short run control charting procedure --> "
READ(*, *) rep

Enter control chart combination choice

WRITE (%, *) Moo oo "
WRITE(*, *) " Enter 1, 2, 3, 4, or 5 for the"
WRITE(*, *) "control chart combination you wish to use:"
WRITE (*, *) " ommm oo m oo "
WRITE(*, *) "1. (Xbar, R)"
WRITE(*, *) "2. (Xbar, v)*
WRITE(*, *) "3. (Xbar, v*0.5)"
WRITE(*, *) "4 (Xbar, s)*"
WRITE(*, *) "5 (X, MR)"
WRITE(*, *)
WRITE(*, *) "Enter choice --> "
READ(*, *) choicel
do

if ((choicel == 1) .or. (choicel == 2) .or. (choicel == 3) .or. &

(choicel == 4) .or. (choicel == 5)) exit

WRITE(*, *) "Invalid choice - please enter 1, 2, 3, 4, or 5 --> "
READ(*, *) choicel

end do

if (choicel == 1) then
text = "(Xbar, R)"
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else if (choicel == 2) then

text = " (Xbar, v)"

else if (choicel == 3) then
text = "(Xbar, v*0.5)"

else if {choicel == 4) then
text = "(Xbar, s)"

else if (choicel == 5) then
text = "(X, MR)"

.end if

if (choicel /= 5) then
WRITE(*, *) "Enter n, the subgroup size --> "
READ(*, *) n

end if

Enter data for Stage 1

WRITE(*, *) "Enter m, the number of subgroups, for Stage 1:"

WRITE(*, *)

if (choicel /= 5) then

WRITE(*, *) " (Note: m cannot be smaller than 2 for ",
else if (choicel == 5) then

WRITE(*, *) "  (Note: m cannot be smaller than 3 for "',
end if
WRITE(*, *) " control charts.)"
WRITE(*, *)
WRITE(*, *) " Enter m --> "

READ(*, *) m
do

if (((choicel /= 5) .and. (m >= 2)) .or. &
((choicel == 5) .and. (m >= 3))) exit

WRITE(*, *) "The value for m, the number of subgroups,"
WRITE(*, *) "is too small." :
WRITE(*, *)
WRITE(*, *) "Enter a value for m --> "
READ(*, *) m

end do

save_m = I

ALLOCATE (Cenl (m), Spreadl(m))

ALLOCATE (Cen2 (m) , Spread2{(m))

‘ALLOCATE (Cenlstatus (m), Spreadlstatus(m))
ALLOCATE (RunL (rep) )

ALLOCATE (RLnum{maxRL) )

RunL = 0
RLnum = 0

WRITE(*, *) "Would you like to force a sustained shift"

WRITE(*, *) " in the mean, the standard deviation, or"
WRITE(*, *) " Dboth in Stage 1 (Y or N)? —--> "
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READ{*, *) answerl
do
if ((answerl == ‘Y’) .or. {answerl == 'N’)) exit

WRITE(*, *) "Invalid choice - please enter Y or N --> "
READ(*, *) answerl

cycle

end do

if (answerl == ’‘Y’) then
WRITE(*, *) "Enter MN for a sustained shift in the mean,®
WRITE(*, *) " SD for a sustained shift in the standard"
WRITE(*, *) " deviation, or MS for a sustained shift"
WRITE(*, *) "™ 1in both in Stage 1 ~-> "

READ(*, *) shifttypel
do

Af ((shifttypel == 'MN’) .or. (shifttypel == ’SD’) .or. &
(shifttypel == 'MS’)) exit

WRITE(*, *) "Invalid choice - please enter MN, SD, or MS --> "
READ(*, *) shifttypel

cycle
. end do

if (shifttypel == 'MN’) then
WRITE(*, *) "Enter shift size in mean using the same®
WRITE(*, *) " units as the mean --> "
READ(*, *) shiftsizelmean

else if (shifttypel == ‘SD’) then
WRITE(*, *) "Enter shift size in standard deviation using the"
WRITE(*, *) " same units as the standard deviation --> *
READ(*, *) shiftsizelsd

else if (shifttypel == 'MS’) then
WRITE(*, *) "Enter shift size in mean using the same"
"WRITE(*, *) "™ wunits as the mean --> " '

READ(*, *) shiftsizelmean
WRITE(*, *) "Enter shift size in standard deviation using the"

WRITE(*, *) " same units as the standard deviation --> "
READ(*, *) shiftsizelsd
end if

WRITE(*, *) "Enter the number of the first subgroup after the"
WRITE(*, *) " ghift in Stage 1 --> "
READ(*, *) shifttimel

end if

Enter data for Stage 2

WRITE(*, *) "Would you like to force a sustained shift"
WRITE(*, *) " in the mean, the standard deviation, or"

WRITE(*, *) " both in Stage 2 (Y or N)? --> "
READ(*, *) answer?2
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do
if ((answer2 == ‘Y’) .or. (answer2 == 'N’)) exit

WRITE(*, *) "Invalid choice - please enter Y or N --> "
READ(*, *) answer?2
cycle

end do

if (answer2 == 'Y’) then
WRITE(*, *) "Enter MN for a sustained shift in the mean,"

WRITE(*, *) " SD for a sustained shift in the standard"
WRITE(*, *) " deviation, or MS for a sustained shift"
WRITE(*, *) " 1in both in Stage 2 --> " '

READ(*, *) shifttype2
‘ido

if ((shifttype2 == 'MN’) .or. (shifttype2 == ’SD’) .or. &
(shifttype2 == 'MS’)) exit

WRITE(*, *) "Invalid choice - please enter MN, SD, or MS --> "
READ(*, *) shifttype2

‘cycle

end do

if (ghifttype2 == 'MN’) then :
WRITE(*, *) "Enter shift size in mean using the same"
WRITE(*, *) " units as the mean --> "
READ(*, *) shiftsize2mean

else if (shifttype2 == ’SD’) then
WRITE(*, *) "Enter shift size in standard deviation using the"
WRITE(*, *) " same units as the standard deviation --> "
READ(*, *) shiftsize2sd

else if (shifttype2 == 'MS’) then »
WRITE(*, *) "Enter shift size in mean using the same"
WRITE(*, *) " units as the mean --> "

READ(*, *) shiftsizeZmean
WRITE(*, *) "Enter shift size in standard deviation using the"

WRITE(*, *) " same units as the standard deviation --> "
READ(*, *) shiftsize2sd
end if

WRITE(*, *) "Enter the number of the first subgroup after the"

WRITE(*, *) " shift in Stage 2 (the first subgroup drawn in"
WRITE(*, *) " Stage 2 is subgroup number one) --> "
READ(*, *) shifttime2

end if

WRITE(*, *) "Would you like to use a different starting value"
WRITE(*, *) "™ for seed (Y or N)? --> "

READ(*, *) answer3

do

if ((answer3 == ‘Y’) .or. (answer3 == 'N’)) exit
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WRITE(*, *) "Invalid choice - please enter Y or N --> "
READ(*, *) answer3
cycle

end do

if (answer3 == ’'Y’) then
WRITE(*, *) "Enter a value for seed --> "
READ(*, *) seed

end if

Enter D&R procedure choice

WRITE(*, *) Moo oo m e oo "

if (choicel /= 5) then

WRITE(*, *) " Enter 1, 2, 3, 4, 5, or 6 for the"
else
‘WRITE(*, *) " Enter 2, 3, 4, or 6 for the"
end if
WRITE(*, *) " Delete and Revise (D&R) procedure you wish to use:"
WRITE (%, *) Mmoo "

if (choicel /= 5) then

WRITE(*, *) 1. (i) Deletes out-of-control (OOC) initial"
WRITE(*, *) " " subgroups on either the control chart for®
WRITE(*, *) " centering or spread entirely (i.e., if a"
WRITE(*, *) ° subgroup shows 00C on either control chart,®
WRITE(*, *) " it is deleted from both charts).*
WRITE(*, *) " (1i) Recalculates the control limits for both"
WRITE(*, *) " charts using the subgroups remaining after"
WRITE(*, *) * -step (i)."
WRITE(*, *) * (iii) Determines OOC subgroups.®
WRITE(*, *) " (iv) Repeats steps (1)-(iii) until no initial™"
WRITE(*, *) * subgroups show 00C on either chart.®
WRITE(*, *)
WRITE(*, *) "Press the Enter key to continue..."
READ(*, *)
end if
WRITE(*, *) "2. (1) Deletes out-of-control (OOC) initial™®
WRITE(*, *) " subgroups on the control chart for spread.”
WRITE(*, *) * (ii) Recalculates the control limits for the"
WRITE(*, *) * control chart for spread using the subgroups®
WRITE(*, =*) " remaining after step (i)."
WRITE(*, *) " (1iii) Determines OOC subgroups."
WRITE(*, *) " (iv) Repeats steps (i)-(iii) until no initial*"
WRITE(*, *) " subgroups show 00C on the control chart for"
WRITE(*, *) " spread.”
WRITE(*, *) " (v) Determines the control limits for the chart"
WRITE(*, *) " for centering using the parameter estimate"
WRITE(*, *) " for spread obtained after completing steps”
WRITE(*, *) " (i)-(iv) and the overall average obtained"
WRITE(*, *) " from all of the initial subgroups.*®
WRITE(*, *) " (vi) Repeats steps (i)-(ii) for the control chart"
WRITE(*, *) " for centering until no initial subgroups”
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if
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WRITE(*, *) " show OOC."
WRITE(*, *) ) :
WRITE(*, *) "Press the Enter key to continue..."
READ(*, *)
WRITE(*, *) "3. Deletes out-of-control (OOC) initial subgroups on*
WRITE(*, *) " the control chart for spread just once. No D&R is"
WRITE(*, *) " performed on the control chart for centering."
WRITE(*, *)
WRITE(*, *) "Press the Enter key to continue..."
READ(*, *)
WRITE(*, *) "4. Does not perform D&R. This means all of the"
WRITE(*, *) initial subgroups will be used to determine second"
WRITE(*, *) " stage control limits for both the control charts"
WRITE(*, *) for centering and spread."
WRITE(*, *) ’
WRITE(*, *) "Press the Enter key to continue..."
READ(*, *)
if (choicel /= 5) then
WRITE(*, *) "5. Deletes out-of-control (OOC) initial subgroups*
WRITE(*, *) " on either the control chart for centering or"
WRITE(*, *) " spread entirely (i.e., if a subgroup shows 0OOC"
WRITE(*, *) * on either control chart, it is deleted from both"
WRITE(*, *) *® charts). D&R is performed just once."
WRITE(*, *)
WRITE(*, *) "Press the Enter key to continue..."
READ(*, *) ‘
end if
WRITE(*, *) "6. (i) Deletes out-of-control (OOC) initial"
WRITE(*, *) * subgroups on the control chart for spread"
WRITE(*, *) " just once."
WRITE(*, *) " (ii) Determines the control limits for the chart®
WRITE(*, *) " for centering using the parameter estimate”
WRITE(*, *) *© for spread obtained after completing step i*
WRITE(*, *) * and the overall average obtained from all of"
- WRITE(*, *) * the initial subgroups.®
- WRITE(*, '*) * (iii) Performs step (i) for the control chart for®
WRITE(*, *) " centering."
WRITE(*, *)
(choicel /= 5) then
WRITE(*, *) "Enter 1, 2, 3, 4,.5, or 6 --> "
else
WRITE(*, *) " (Note: D&R procedures 1 and 5 are not valid for”
WRITE(*, *) " (X, MR) control charts)"
WRITE(*, *)
WRITE(*, *) "Enter 2, 3, 4, or 6 —--> "
end if
READ(*, *) choice2
do
if ((choicel == 5) .or. ((choice2 == 1) .or. (choice2 == 2) .or.
(choice2 == 3) .or. {(choice2 == 4) .or. (choice2 == 5) .or. &
(choice2 == 6))) exit
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WRITE(*, *) "Invalid choice - please enter"
WRITE(*, *) » 1, 2, 3, 4, 5, or 6 —--> "
READ(*, *) choice2
end do
do
if ({(choicel /= 5) .or. ((choice2 == 2) .or. (choice2 == 3) .or.
(choice2 == 4) .or. (choice2 == 6))) exit
if ((choice2 == 1) .or. (choice2 == 5)) then
WRITE(*, *) "Invalid D&R procedure for (X, MR) control charts."
WRITE(*, *)
WRITE(*, *) "Enter 2, 3, 4, or 6 --> "
READ(*, *) choice2
else
WRITE(*, *) "Invalid choice - please enter 2, 3, 4, or 6 --> "
READ(*, *) choice2
end if
end do

Enter input

OPEN (UNIT=1,

file name

WRITE(*, *) oo m oo e u
WRITE(*, *) "Enter the name (including the location) of the"
WRITE(*, *) " text file (extension .txt) that has the two"
WRITE(*, *) " stage short run control chart factors for"
if (choicel /=5) then

WRITE(*, 10) TRIM(text), " charts forn =", n, ":"
else

WRITE(*, *) " ", TRIM(text), " charts:"
end if
WRITE(*, *) .

" WRITE(*, *) " (Note 1l: the file should have at least the"
WRITE(*, *) " factors for all values of m up to and"
WRITE(*, 20) " includingm =", m, ".)"

WRITE(*, *) :

WRITE(*, *) " (Note 2: the name (including the location)"
WRITE(*, *) " of the text file must be no longer than"
WRITE(*, *) " 50 characters.)"

WRITE(*, *)

WRITE(*, *) " Enter file name --> "

READ(*, *) filenamein

WRITE (%, *) Moo oo oo oo oo "
WRITE(*, *)

FILE=TRIM(filenamein), STATUS="old",

Enter output file name

WRITE(*,
WRITE(*,
WRITE(*,

*)
*)
*)

(including the location) of the"
.txt) that will store"

"Enter the name
" text file (extension
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WRITE(*, *) " . the results from this program:"®

WRITE(*, *) .

WRITE(*, *) " (Note:. the name (including the location) of"
WRITE(*, *) " the text file must be no longer than 50"
WRITE(*, *) " characters.)"

WRITE(*, *)

WRITE(*, *) " Enter file name --> "

READ(*, *) filenameout .

WRITE (%, %) ™o "
WRITE(*, *)

OPEN(UNIT=2, FILE=TRIM(filenameout), STATUS="unknown", &
ACTION="write")

WRITE(*, *) "The program is running..."
do k.= 1, rep
Subroutines for Stage 1 control charting

if (choicel == 1) then
call Xbar_R_1(mean, sd, n, m, answerl, shifttypel, &
shiftsizelmean, shiftsizelsd, shifttimel, &
Cenl, Spreadl, Cenlstatus, Spreadlstatus, seed)
else if (choicel == 2) then
call Xbar_v_1(mean, sd, n, m, answerl, shifttypel, &
shiftsizelmean, shiftsizelsd, shifttimel, &
: Cenl, Spreadl, Cenlstatus, Spreadlstatus, seed)
else if (choicel == 3) then
call Xbar_sqrtv_1(mean, sd, n, m, answerl, shifttypel, &
shiftsizelmean, shiftsizelsd, shifttimel, &
Cenl, Spreadl, Cenlstatus, Spreadlstatus, seed)
else if (choicel == 4) then
call Xbar_s_1{(mean, sd, n, m, answerl, shifttypel, &
shiftsizelmean, shiftsizelsd, shifttimel, &
Cenl, Spreadl, Cenlstatus, Spreadlstatus, seed)
else if {(choicel == 5) then
call X MR _1{(mean, sd, m, answerl, shifttypel, &
shiftsizelmean, shiftsizelsd, shifttimel, &
Cenl, Spreadl, Cenlstatus, Spreadlstatus, seed)
end if

Subroutines for Delete and Revise (D&R) procedures

if (choice2 == 1) then ‘
call D_and _R_1(m, save_m, choicel, Cenl, Spreadl, &
Cenlstatus, Spreadlstatus, new_m, &
Cen2, Spread2, countl, stops)

if (new_m == 0) then
skips = skips + 1
cycle

end if

mCen = new_m
mSpread = new_m
else if (choice2 == 2) then
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call D_and_R_2{m,. save_m, choicel, Cenl, Spreadl, &
Spreadlstatus, mCen, mSpread, Cen2, &
Spread2, count2Spread, count2Cen, stops)
if ((mSpread == 0) .or. (mCen == 0)) then
skips = skips + 1
cycle
else if ((choicel == 5) .and. (mCen == 1)) then
skips = skips + 1
cycle
end if
else if (choice2 == 3) then
‘call D_and_R_3(m, choicel, Cenl, Spreadl, Spreadlstatus, &

&

mCen, mSpread, Cen2, Spread2)
if (mSpread ==.0) then
. skips = skips + 1
cycle
end if
else if (choice2 == 4) then
mCen = m
mSpread = m
Cen2 = Cenl
Spread2 = Spreadl
else if (choice2 == 5) then
call D_and_ R _5(m, Cenl, Spreadl, Cenlstatus, Spreadlstatus,
new_m, Cen2, Spread2)
if (new_m == 0) then
skips = skips + 1
cycle
end if
mCen = new_m
mSpread = new_m
else if (choice2 == 6) then
call D_and_R_6(m, choicel, Cenl, Spreadl, Spreadlstatus, &
mCen, mSpread, Cen2, Spread2)
if ((mSpread == 0) .or. (mCen == 0)) then
skips = skips + 1
cycle
else if ((choicel == 5) .and. (mCen == 1)) then
skips = skips + 1
cycle
end if
end if
Subroutines for Stage 2 control charting
if (choicel == 1) then
call Xbar_R_2(mean, sd, n, mCen, mSpread, Cen2, Spread2, &
answer?2, shifttype2, shiftsize2mean, &
shiftsize2sd, shifttime2, falsealarm, RL, seed)
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else if (choicel == 2) then :
call Xbar_v_2(mean, sd, n, mCen, mSpread, Cen2, Spread2, &
answer2, shifttype?2, shiftsizelmean, &
shiftsize2sd, shifttime2, falsealarm, RL, seed)
else if (choicel == 3) then
call Xbar_sqrtv_2 (mean, sd, n, mCen, mSpread, Cen2, Spread2, &
answer?2, shifttype2, shiftsize2mean, &
shiftsize2sd, shifttime2, falsealarm, RL, seed)
else if (choicel == 4) then
call Xbar_s_2(mean, sd, n, mCen, mSpread, Cen2, Spread2, &
answer2, shifttype2, shiftsize2mean, &
shiftsize2sd, shifttime2, falsealarm, RL, seed)
else if (choicel == 5) then

Note: mSpread IS THE NUMBER OF SUBGROUPS, NOT THE NUMBER OF MRs
call X_MR;2(mean, sd, mCen, mSpread, Cen2, Spread2, &
answer2, shifttype2, shiftsize2mean, &
shiftsize2sd, shifttime2, falsealarm, RL, seed)

end if

Store run length (RL) results to a vector
and calculate appropriate sums

RunL (k) = RL

sumRL = sumRL + RL

sumRL2 = sumRL2 + (RL**2)

Determine counts for POD calculations

do 1 = 1, maxRL

if (RunL(k) <= 1) then
RLnum(l) = RLnum(l) + 1

end if

end do

Calculate applicable sums

if ((answer2 == 'Y’) .and. (shifttime2 > 1)) then
Pfalsealarm = falsealarm / (shifttime2 - 1)
sumPfalsealarm = sumPfalsealarm + Pfalsealarm
sumPfalsealarm2 = sumPfalsealarm2 + (Pfalsealarm ** 2)

end if

if (choice2 == 1) sumcountl = sumcountl + countl

if (choice2 == 2) then
sumcount2Spread = sumcount2Spread + count2Spread
sumcount2Cen = sumcount2Cen + count2Cen

end if

end do

Write input information to output file
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WRITE(2, *) Mmoo mm o e mm oo "

WRITE(2, 30) "meamn: ......uuirininnenenn ", mean
WRITE(2, 30) "standard deviation: ...... ", sd
WRITE(2, *) "# of replications of"

“WRITE(2, 40) " two stage procedure: ... ", (rep - skips)
WRITE(2, *) "Control chart combination: ", TRIM(text)

if (choicel /= 5) then

WRITE (2, 40) "N ..ttt ettt ",on
end if
WRITE(2, 40) "m (Stage 1): ............. ", save_m
WRITE(2, 50) "D&R procedure: ........... ", choice?2
S WRITE(2, *) Memm e "

Write Stage 1 input information to output file

if (answerl == ’'Y’) then
WRITE(2, *)
WRITE (2, *) Moo= oo o oo "
if (shifttypel == *‘MN’) then
" WRITE(2, 60) "Stage 1l: shift size of ", shiftsizelmean, &
" (same" :
WRITE(2, *) " units as the mean) in the mean"
. WRITE(2, 70) " between subgroups ", (shifttimel - 1),
" and ", shifttimel, "."
else if (shifttypel == ’SD’) then
WRITE(2, 60) "Stage 1: shift size of ", shiftsizelsd, &
" (same"
WRITE(2, *) " units as the standard deviation)"
WRITE(2, *) " in the standard deviation between"
WRITE (2, 70) " subgroups ", (shifttimel -~ 1), " and °*,
shifttimel, "."
else if (shifttypel == 'MS’) then
WRITE(2, 60) "Stage 1: shift size of ", shiftsizelmean, &
" (same"
WRITE(2, *) * units as the mean) in the mean"
WRITE(2, 80) " and a.shift size of", shiftsizelsd
WRITE(2, *) " (same units as the standard"
WRITE(2, *) " deviation) in the standard deviation"
WRITE(2, 70) ™ between subgroups ", (shifttimel - 1),
" and ", shifttimel, "."
end if
else
WRITE(2, *)
WRITE(2, *) Moo e e "
WRITE(2, *) "Stage 1: No shifts in either the mean or the"
WRITE(2, *) " . standard deviation."
end if

Write Stage 2 input information to output file

if (answer2 == ‘Y'’) then
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WRITE(2, *)

if (shifttype2 == ‘MN’) then

WRITE(2, 60) "Stage 2: shift size of ", shiftsizeZ2mean, &
. " (same"
WRITE(2, *) * units as the mean) in the mean"
WRITE(2, 70) * . between subgroups ", (shifttime2 - 1), &
" and *, shifttime2, *."
else if (shifttype2 == ’'SD’) then
WRITE(2, 60) "Stage 2: shift size of ", shiftsize2sd, &
" (same"
WRITE(2, *) " units as the standard deviation)*®
WRITE (2, *) " in the standard deviation between®
WRITE(2, 70) " . subgroups ", (shifttime2 - 1), " and ", &
shifttime2, "*.n"
else if (shifttype2 == ’'MS’) then
WRITE(2, 60) "Stage 2: shift size of ", shiftsize2mean, &
: " (same"
WRITE(2, *) " units as the mean) in the mean®
WRITE(2, 80) " - = - and a shift size of", shiftsize2sd
WRITE(2, *) " (same units as the standard"®
WRITE (2, *) * deviation) in the standard deviation"
WRITE(2, 70) " between subgroups ", (shifttime2 - 1), &
" and ", shifttime2, "."
end if
WRITE(2, *) Moo "
else
WRITE(2, *) :
WRITE(2, *) "Stage 2: No shifts in either the mean or the"
WRITE(2, *) " standard deviation."
WRITE(2, *) "rmmmmm o e e e e "
end if

I Write ARL and SDRL results to output file

WRITE(2, *)
WRITE(2, *) "—-—--—- e "

if (answer2 == ‘Y’) then

WRITE(2, *) "Out-of-Control (0O0OC) Average Run Length (ARL) and"
else

WRITE(2, *) "In-Contrxol (IC) Average Run Length (ARL) and"
end if

WRITE(2, *) “Standard Deviation of the Run Length (SDRL) results®
WRITE (2, *) Momomom oo oo m o m e m oo e e e e e "

ARL = sumRL / (rép - skips)

SDRL = SQRT(((rep - skips) * sumRL2 - (sumRL**2)}) / &
({rep - skips) * ((rep - skips) - 1)))
WRITE(2, 80) "ARL (in number of subgroups): ", ARL
WRITE(2, 80) "SDRL (in number of subgroups): ", SDRL
WRITE(2, *) Mmmmmm e e m o e e v
WRITE (2, *)
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! Write APFL and SDPFL results to output file
1
if ((answer2 == ‘Y’) .and. (shifttime2 > 1)) then
WRITE (2, *) Mmoo mmmmmm o m o mmm e "
WRITE(2, *) "The Average Probability of a False Alarm (APFL)"
WRITE(2, *) ."and the Standard Deviation of the Probability of"

if (shifttime2 == 2) then
WRITE(2, *) "a False Alarm (SDPFL) on the subgroup before the"
WRITE(2, *) "shift in Stage 2:"

else if (shifttime2 > 2) then

WRITE(2, 90) "a False Alarm (SDPFL) in the first ", &
(shifttime2 - 1), " subgroups"
WRITE(2, *) "before the shift in Stage 2:*"
end if

WRITE (2, *) "om oo mm oo e e e e e "

-APFL ‘= jsumPfalsealarm / (rep - skips)
SDPFL = SQRT(((rep - skips) * sumPfalsealarm2 - &

(sumPfalsealarm**2)) / &
((rep - skips) * ((rep - skips) - 1)))
WRITE(2, 100) "APFL: ", APFL
WRITE(2, 100) "SDPFL: ", SDPFL
WRITE(2, *) "—————mmmmm——— oo e "
WRITE(2, *)
end if
1 .
! Write POD results to output file
I
if (answer2 == ’Y’) then
WRITE (2, *) Mmoo oo oo "
WRITE(2, 90) " Starting at subgroup ", shifttime2, &
* in Stage 2:"
WRITE (2, *) Mmoo oo "
else
WRITE(2, %) Mo m e e e e e e o "
WRITE (2, *) * Starting at subgroup 1 in Stage 2:"
WRITE(2, *) Memm e e e oo e o "
end if
!
WRITE(2, *) " t Number of RLs <= t P(RL <= t)*"
WRITE (2, *) "=-===  —m—m—mmmmmmmmmmoem oo "
1
do 1 =1, 10
WRITE(2, 110) 1, INT(RLnum(l)), RLnum(l) / (rep - skips)
end do
!
WRITE(2, 110) 15, INT(RLnum(l1l5)), RLnum(l5) / (rep - skips)
H
do 1 = 20, 50, 10
WRITE(2, 110) 1, INT(RLnum(l)), RLnum(l) / (rep - skips)
end do
1
WRITE(2, 110) 75, INT(RLnum(75)), RLnum(75) / (rep - skips)
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"do 1. =-100, 500,.100

WRITE(2, 110) 1, INT(RLnum(l)), RLnum(l) / (rep - skips)
end do
WRITE(2, 110) 750, INT(RLnum(750)), RLnum(750) / (rep - skips)

do 1 = 1000, 5000, 1000

WRITE(2, 110) 1, INT(RLnum(l)), RLnum(l) / (rep -~ skips)
end do
WRITE(2, 110) 7500, INT(RLnum(7500)), RLnum(7500) / (rep - skips)

do 1 = 10000, 50000, 10000
WRITE(2, 110) 1, INT(RLnum(l)), RLnum(l) / (rep - skips)
end do

WRITE(2, *) Moo oo mm oo "

! Write applicable counts to output file

if (choice2 == 1) then
WRITE(2, *)
WRITE(2, *) "The first D&R procedure iterated more than"
WRITE(2, 90) " once a total of ", sumcountl, " time(s)."
end if
if (choice2 == 2) then

WRITE(2, *)
WRITE(2, *) "The second D&R procedure iterated more than"

WRITE(2, 90) " once a total of ", sumcount2Spread, &
" time(s) for the"
WRITE(2, *) " control chart for spread and a total of "
WRITE(2, 120) sumcount2Cen, " time(s) for the control chart
WRITE(2, *) " centering."
end if

if (skips > 0) then
WRITE(2, *)
WRITE(2, 90) "Replications skipped ", skips, " time(s)"
WRITE(2, *) " Dbecause the number of subgroups dropped"”

if (choicel /= 5) then

WRITE(2, *) " to zero after out-of-control (0OC)"
WRITE(2, *) " subgroups were deleted."
else if (choicel == 5) then
WRITE(2, *) " to zero or to one after out-of-control"
WRITE(2, *) " (O0C) subgroups were deleted."
end if
end if

if (stops > 0) then
WRITE (2, *)

WRITE(2, 130) "D&R procedure ", choice2, " stopped ", stops,
" time(s)"
WRITE(2, *) " Dbecause the number of subgroups dropped"
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if {(choicel /= 5) then
WRITE(2, *) * to one-after out-of-control
else if (choicel == 5) then
WRITE(2, *) " to two after out-of-control
end if
!
WRITE(2, *) "  subgroups were deleted."
end if

i

10 FORMAT (T4, A, A, I3,
20 FORMAT (T2, A, I4, A)

30 FORMAT (A, F9.5)
40 FORMAT(A, I4)
50 FORMAT (A, Il)

60 FORMAT (A, F11.5, A)
70 FORMAT (A, I3, A, I3,

80 FORMAT(A, F12.5)
90 FORMAT(A, I3, A)
100 FORMAT(A, F7.5)

A)

A)

110" FORMAT (I5, Il16, F21.5)

120 FORMAT (T3, I3, A)
130 FORMAT (A, I1, A,
!

stop
end program ccC

I3, A)

422

(00C) "

(ooc) "



APPENDIX F.2 — Sample Input Files for cc.f90
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Sample Input File Containing First and Second Stage Short

Run Control Chart Factors for (i, R) Charts for n=3 and m: 1-5
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=)

.00000
.56033
.35226
.25601
.20246

NMNNNNEPE O

.00000
.86966
.21659
.35005
.41685

OO OO O

.00000
.06112
.04924
. 04491
.04267

e )

425

.35221
.70257
.91239
.62151
.47271

14.34466
5.65885
4.27295
3.74247
3.46631

O OO OO

.03152
.03337
.03407
.03443
.03465



Sample Input File Containing First and Second Stage Short

Run Control Chart Factors for (5(-, v) Charts for n=3 and m: 1-5
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NN O

.00000
.87519
.40967
.20599
.09497

W w N o

.00000
.99000
.78787
.31601
.67043

[N eNelNe RNl

.00000

.00200000
.00150038
.00133378
.00125047

17.69484
4.97997
3.40779
2.84792
2.56580

427

159.00000

26.28427
14.54411
11.04241
9.42700

[oNeNolNeNe)

.00100100
.00100075
.00100067
.00100063
.00100060



Sample Input File Containing First and Second Stage Short

Run Control Chart Factors for (i, Jv ) Charts for n=3 and m: 1-5
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NDNNDNDO

.00000
.87519
.40967
.20599
.09497

PR PP o

.00000
.59177
.77629
.89811
.97649

OO0 OOo

.00000
. 05046
.04121
.03807
.03648

17.69484
4.97997
3.40779
2.84792
2.56580

429

15.91775
5.45415
3.97519
3.42822
3.14794

.03570
.03365
.03297
.03263
.03243



Sample Input File Containing First and Second Stage Short

Run Control Chart Factors for (i, s) Charts for n=3 and m: 1-5
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NN O

.00000
.95828
.57119
.39128
.29099

NN O

.00000
.86761
.21123
.34285
.40840

OO0 OO0

.00000
.06134
.04940
. 04505
.04280

15.68165
5.12390
3.63621
3.08713
2.80588
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14.10674

5.60680
4.24135
3.71725
3.44396

(o B o B en B an i }

.03164
.03348
.03417
.03453
.03476



Sample Input File Containing First and Second Stage

Short Run Control Chart Factors for (X, MR) Charts for m: 2-15
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0.00000 0.00000 0.00000 204.19466 127.32134 0.00157
22.24670 2.95360 0.00235 31.46159 26.11886 0.00157
10.72641 3.58790 0.00209 13.84773 13.20218 0.00157
7.34996 3.83736 0.00196 9.00182 9.27880 0.00157
5.87022 3.89898 0.00188 6.94574 7.52080 0.00157
5.06862 3.89368 0.00183 5.85274 6.55349 0.00157
4.57470 3.86822 0.00179 5.18723 5.95038 0.00157
4.24308 3.83885 0.00177 4.74391 5.54166 0.00157
4.00644 3.81088 0.00175 4.42928 5.24776 0.00157
3.82972 3.78583 0.00173 4.19525 5.02691 0.00157
3.69307 3.76385 0.00171 4.01479 4.85521 0.00157
3.58441 3.74470 0.00170 3.87161 4.71806 0.00157
3.49606 3.72800 0.00169 3.75537 4.60610 0.00157
3.42287 3.71338 0.00168 3.65920 4.51303 0.00157
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APPENDIX F.3 - Sample Output Files from cc.f90
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Sample Output File #1
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MEAIN: v v vt v et meneeesennnnns 0.00000

standard deviation: ...... 1.00000
# of replications of
two stage procedure: ... 4996
Control chart combination: (Xbar, R)
o 1N 3
m (Stage 1): ......c.c.o... 5
D&R procedure: ........... 1
Stage 1: shift size of ©1.50000 (same

units as the mean) in the mean
between subgroups 2 and 3.

Stage 2: shift size of +1.50000 (same
units as the mean) .in the mean
between subgroups - 10 and 11.

Out-of-Control (0OOC) Average Run Length (ARL) and
Standard :Deviation of the Run Length (SDRL) results
ARL (in number of subgroups): 464-.85809

SDRL (in number of subgroups): 693.88171

The Average Probability of a False Alarm (APFL)
and the Standard Deviation of the Probability of
a False Alarm (SDPFL) in the first 10 subgroups
before the shift in Stage 2:

APFL: 0.03813

SDPFL: .0.11174

t Number of RLs <= t P(RL <= t)
1 90 0.01801
2 162 0.03243
3 236 0.04724
4 290 0.05805
5 340 0.06805
6 384 0.07686
7 422 0.08447
8 463 0.09267
9 508 0.10168

10 548 0.10969
15 674 0.13491
20 793 0.15873
30 1002 0.20056
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40 1162 0.23259

50 1277 0.25560

75 1550 0.31025
100 1781 0.35649
200 2432 0.48679
300 2893 0.57906
400 3259 0.65232
500 3504 0.70136
750 3997 0.80004
1000 4296 0.85989
2000 4814 0.96357
3000 4934 0.98759
4000 4973 0.99540
5000 4984 0.99760
7500 4994 0.99960
10000 4995 0.99980
20000 4996 1.00000
30000 4996 1.00000
40000 4996 1.00000
50000 4996 1.00000

The first D&R procedure iterated more than
once a total of 111 time(s).

Replications skipped 4 time(s)
because the number of subgroups dropped
to zero after out-of-control (OCC)
subgroups were deleted.

D&R procedure 1 stopped 12 time(s)
because the number of subgroups dropped
to one after out-of-control (0O0C)
subgroups were deleted.
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Sample Output File #2
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MEAILL 4 i vttt e s seneenennns 0.00000

standard deviation: ...... 1.00000
# of replications of
two stage procedure: ... 4995
Control chart combination: (Xbar, R)
o Y-S 3
m (Stage 1): ............. 5
D&R procedure: ........... 2
Stage 1: shift size of 1.50000 (same

units as the mean) in the mean
between subgroups 2 and. 3.

Stage 2: shift size of 1.50000 (same
units as the mean) in the mean
between subgroups 10 and 11.

Out-of-Control (0O0OC) Average: Run Length (ARL) and
Standard Deviation of the Run Length (SDRL) results
ARL (in number of subgroups): 393.95576

SDRL (in number of subgroups): 584.75096

The Average Probability of a False Alarm (APFL)
and the Standard Deviation of the Probability of
a False Alarm (SDPFL) in the first 10 subgroups
before the shift in Stage 2:

APFL: 0.03465

SDPFL: 0.09819

t Number of RLs <= t P(RL <= t)
1 150 0.03003
2 250 0.05005
3 332 0.06647
4 401 0.08028
5 466 0.09329
6 521 0.10430
7 573 0.11471
8 625 0.12513
9 672 0.13453

10 711 0.14234
15 856 0.17137
20 1008 0.20180
30 1258 0.25185

439



40 1425 0.28529

50 1551 0.31051

75 1836 0.36757
100 2079 0.41622
200 2709 0.54234
300 3148 0.63023
400 3473 0.69530
500 3715 0.74374
750 4143 0.82943
1000 4411 0.88308
2000 4862 0.97337
3000 4954 0.99179
4000 4984 0.99780
5000 4991 0.99920
7500 4995 1.00000
10000 4995 1.00000
20000 4995 1.00000
30000 4995 1.00000
40000 4995 1.00000
50000 4995 1.00000

The second D&R procedure iterated more than
once a total of 2- time(s) for the
control chart for spread and a total of
644 time(s) for the control chart for
centering.

Replications skipped 5 time(s)
because the number of subgroups dropped
to zero after out-of-control (0OC)
subgroups were deleted.

D&R procedure 2 stopped 11 time(s)
because the number of subgroups dropped
to one after out-of-control (0OOC)
subgroups were deleted.
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Sample Output File #3
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MEATL: vt e e e e e eee s enesannes 0.00000

standard deviation: ...... 1.00000
# of replications of
two stage procedure: ... 5000
Control chart combination: (Xbar, R)
o 3
m (Stage 1): ............. 5
D&R procedure: ........... 3
Stage 1: shift size of 1.50000 (same

units as. the mean) in the mean
between subgroups 2 and 3.

Stage 2: shift size of 1.50000 (same
units as the mean) in the mean
between subgroups 10 and 11.

Out-of-Control (0O0OC) Average Run Length (ARL) and
Standard Deviation of the Run Length (SDRL) results
ARL (in number of subgroups): 415.51700

SDRL (in number of subgroups): 596.72832

The Average Probability of a False Alarm (APFL)
and the Standard Deviation of the Probability of
a False Alarm (SDPFL) in the first 10 subgroups
before the shift in Stage 2:

APFL: 0.03844

SDPFL: 0.10604

t Number of RLs <= t P(RL <= t)
1 111 0.02220
2 206 0.04120
3 285 0.05700
4 343 0.06860
5 396 0.07920
6 441 0.08820
7 490 0.09800
8 543 0.10860
9 589 0.11780

10 623 0.12460
15 771 0.15420
20 926 0.18520
30 1146 0.22920
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40 1312 0.26240

50 1430 0.28600

75 1706 0.34120
100 1933 0.38660
200 2589 0.51780
300 3041 0.60820
400 3382 0.67640
500 3632 0.72640
750 4100 0.82000
1000 4386 0.87720
2000 4858 0.97160
3000 4958 0.99160
4000 4989 0.99780
5000 4996 0.99920
7500 5000 1.00000
10000 5000 1.00000
20000 5000 1.00000
30000 5000 1.00000
40000 5000 1.00000
50000 5000 1.00000
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Sample Output File #4

444



MEATIL: v ittt ittt eeeeenns 0.00000

standard deviation: ...... 1.00000
# of replications of
two stage procedure: ... 5000
Control chart combination: (Xbar, R)
o U 3 ‘
m (Stage 1): ............. 5
D&R procedure: ........... 4
Stage 1: shift size of 1.50000 (same

units as the mean) in the mean
between subgroups 2 and 3.

Stage 2: shift size of 1.50000 (same
units as the mean) in the mean
between subgroups 10 and 11.

Out-of-Control (00C) Average Run Length (ARL) and
Standard Deviation of the Run Length (SDRL) results
ARL (in number of subgroups): 422 .41960

SDRL (in number of subgroups): 603.47804

The Average Probability of a False Alarm (APFL)
and the Standard Deviation of the Probability of
a False Alarm (SDPFL) in the first 10 subgroups
before the shift in Stage 2:

APFL: 0.03208

SDPFL: 0.08711

t Number of RLs <= t P(RL <= t)
1 85 0.01700
2 164 0.03280
3 233 0.04660
4 284 0.05680
5 335 0.06700
6 382 0.07640
7 427 0.08540
8 481 0.09620
9 523 0.10460

10 561 0.11220
15 705 0.14100
20 855 0.17100
30 1078 0.21560
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40 1247 0.24940

50 . 1367 0.27340

75 1647 0.32940
100 1879 0.37580
200 2555 0.51100
300 3018 0.60360
400 3360 0.67200
500 3608 0.72160
750 4090 0.81800
1000 4379 0.87580
2000 4853 0.97060
3000 4956 0.99120
4000 4986 0.99720
5000 4995 0.99900
7500 5000 1.00000
10000 5000 1.00000
20000 5000 1.00000
30000 5000 1.00000
40000 5000 1.00000
50000 5000 1.00000
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Sample Output File #5
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MEATIL: v v v e et me e menesnnnnns 0.00000

standard deviation: ...... 1.00000
# of replications of
two stage procedure: ... 4999
Control chart combination: (Xbar, R)
n: «eue.on.. . 3
m (Stage 1): ...... e e 5
D&R procedure: ........... 5
Stage 1: shift size of 1.50000 (same

units. as the mean) in the mean
between subgroups 2 and 3.

Stage 2: shift size of - 1.50000 (same
units as the mean)' in the mean
- between subgroups 10 and 11.

Out-of-Control (0O0OC) Average Run Length (ARL) and
Standard Deviation of the Run Length (SDRL). results
ARL (in number of subgroups): 450.38248

SDRL (in number of subgroups): 654.56502

The Average Probability of a False Alarm (APFL)
and the Standard Deviation of the Probability of
a False Alarm (SDPFL) in the first 10 subgroups
. before the shift in Stage 2:

APFL: 0.03823

SDPFL: 0.10840

t Number of RLs <= t P(RL <= t)
1 88 0.01760
2 159 0.03181
3 235 0.04701
4 287 0.05741
5 342 0.06841
6 384 0.07682
7 423 0.08462
8 469 0.09382
9 516 0.10322

10 554 0.11082
15 685 0.13703
20 818 0.16363
30 1033 0.20664
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40 1189 0.23785

50 1301 0.26025

75 1580 0.31606
100 1803 0.36067
200 2460 0.49210
300 2915 0.58312
400 3283 0.65673
500 3536 0.70734
750 4021 0.80436
1000 4318 0.86377
2000 4834 0.96699
3000 4945 0.98920
4000 4980 0.99620
5000 4989 0.99800
7500 4998 0.99980
10000 4999 1.00000
20000 4999 1.00000
30000 4999 1.00000
40000 4999 1.00000
50000 4999 1.00000

Replications skipped 1 time(s)
because the number of subgroups dropped
to zero after out-of-control (0OOC)
subgroups were deleted. o
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Sample Output File #6
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MEATIL: t ittt e tm e et e e nnenens 0.00000

standard deviation: ...... 1.00000
# of replications of
two stage procedure: ... 4998
Control chart combination: (Xbar, R)
o 0 3.
m (Stage 1): ............. 5
D&R procedure: ........... 6
Stage 1: shift size of 1.50000 (same

units as the mean) in the mean
between subgroups 2 and - 3.

Stage 2: shift size of 1.50000 (same
units as the mean) in the mean
between subgroups 10 and 11.

Out-of-Control (0O0OC) Average Run Length (ARL) and
Standard Deviation of the Run Length (SDRL) results
ARL (in number of subgroups): 425.71108

SDRL (in number of subgroups): 603.88839

The Average Probability of a False Alarm (APFL)
and the Standard Deviation of the Probability of
a False Alarm (SDPFL) in the first 10 subgroups
before the shift in Stage 2:

APFL: 0.03441

SDPFL: (0.09416

t Number of RLs <= t P(RL <= t)
1 87 0.01741
2 160 0.03201
3 226 0.04522
4 274 0.05482
5 330 0.06603
6 369 0.07383
7 416 0.08323
8 464 0.09284
9 508 0.10164

10 547 0.10944
15 695 0.13906
20 842 0.16847
30 1072 0.21449
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40 1239 0.24790

50 1361 0.27231

75 1641 0.32833
100 1883 0.37675
200 2544 0.50900
300 3005 0.60124
400 3347 0.66967
500 3595 0.71929
750 4071 0.81453
1000 4362 0-.87275
2000 4853 0.97099
3000 4952 0.99080
4000 4986 0.99760
5000 4994 0.99920
7500 4998 1.00000
10000 4998 1.00000
20000 4998 1.00000
30000 4998 .1.00000
40000 4998 :1.00000
50000 4998 1.00000

Replications skipped 2 time(s)
because the number of subgroups dropped
to zero -after out-of-control (00OC)
subgroups were deleted.
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