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Section 1.1 

Chapter 1 

Introduction and Literature Review 

Introduction 

People everywhere everyday are faced with making choices or decisions at work 

and in their daily lives. Ranking and selection procedures can be used to make educated 

decisions. Ranking and selection procedures are used instead of traditional hypothesis 

testing on the population parameter of interest because traditional hypothesis testing only 

detects if there are differences between the populations and does not actually select the 

best populations as defined by some criterion. Applications of this theory in different 

disciplines are shown through the following examples : 

• The owner of an automotive store is interested in carrying only two or three 

brands of automotive oil from the different possible brands. He will want to 

ensure that he selects the two best selling brands of oil. 

• A store may also be interested in carrying the two best brands of spark plugs or 

serpentine belts based on which work the longest or most times until failure. 

• A pharmaceutical company is interested in keeping only the three or four best 

pain relievers that they manufacture. They are interested in comparing the speed 

and I or length their pain relievers perform. 
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• A medical researcher may be testing the current treatments for a certain disease to 

determine the one, two or possibly three best treatments available on the market. 

In some of the scenarios, the order of the t-best choices does not matter such as the 

automotive parts or the pain relievers. In the last scenario, order would in fact be 

important. You would be most interested in picking the one - best or possibly the two -

best treatment(s), if you or someone you knew was in need of the treatment. We can 

consider the different choices in each of the scenarios as populations; i.e. there are k 

different populations and we want to select the t-best. 

In the last two scenarios, the lifetimes of the pain relievers and the survival times 

of the patients may follow the probability distribution that was developed in 1969 by 

Birnbaum and Saunders. The Birnbaum-Saunders distribution has many applications in 

survival analysis, reliability and life-testing. Therefore, engineering and medical fields 

are a few places where this distribution is of most interest. Desmond (1986) showed that 

the Birnbaum-Saunders distribution can be written as a mixture of the Inverse Gaussian 

distribution and its reciprocal with mixing probability equal to ..!.. . See Chhikara and 
2 

Folks (1989) for more about the Inverse Gaussian distribution. 

There have been many articles published separately on ranking and selection 

procedures and the Birnbaum-Saunders distribution; but there is currently no literature 

available on ranking and selection procedures for the Birnbaum-Saunders distribution. 
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Section 1.2 Ranking and Selection 

Bechhofer (1954) developed a procedure for selecting the I-best normal 

populations out of k independent normal populations with unknown variances. The 

method that he used is referred to as the indifference zone formulation. This procedure is 

the one that will be used in this dissertation. Other references on ranking and selection 

include Gibbons et al. (1977), Gupta and Panchapakesan (1979), and Bechhofer et al. 

(1995). 

Section 1.3 Birnbaum - Saunders Distribution 

Birnbaum and Saunders (1969 a, b) introduced a new fatigue life distribution. For 

complete samples, they derived properties and considered estimation of the parameters. 

Engelhardt et al. (1981) considered confidence intervals and tests of hypotheses and gave 

large sample approximations for the distributions of the maximum likelihood estimators. 

They also mentioned that the scale parameter p , which is the median of the distribution, 

corresponds to a typical number of cycles until failure occurs. Padgett ( 1986) considered 

Bayes estimation on reliability of the Birnbaum-Saunders distribution. Desmond (1986) 

looked at the relationship between the Inverse-Gaussian and the Birnbaum-Saunders 

distributions and introduced another derivation of the distribution. Chang and Tang 

(1993) discussed reliability bounds and critical time for the Birnbaum-Saunders 

distribution. Chang and Tang ( 1994 a,b) developed percentile bounds, tolerance limits 

and discussed a graphical analysis for the Birnbaum-Saunders distribution. Desmond 
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(1995) also developed shortest prediction intervals for the Birnbaum-Saunders 

distribution. Dupuis and Mills (1998) looked at the robust estimation for the Birnbaum

Saunders distribution. McCarter (1999) considered estimation and prediction for the 

Birnbaum-Saunders distribution using Type II-censored samples. 
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Chapter 2 

Ranking and Selection According to the Parameter p 

Section 2.1 Birnbaum-Saunders Background 

Birnbaum and Saunders (1969) developed a two-parameter fatigue life 

distribution to model failures due to fatigue-crack growth. This distribution was derived 

from considerations of the physical behavior of the material that was subjected to a 

cyclically repeated stress pattern. The resulting distribution models the number of cycles 

needed to force the length of the fatigue crack to grow past a critical length. 

The cumulative distribution function (CDF) of the Birnbaum-Saunders 

distribution is given by : 

F ( t;a,P)- <I>[(~ H;)] (211) 

I I 

where t > 0 , f3 > 0, and a > O. Also, i;(t) = 12 - t 2 and <l>(z) is the standard normal 

CDF. Figure 2.1.1 shows the cumulative distribution functions for /3 = 50,100,200,500 

with a = 1. As f3 increases it takes longer for the cumulative distribution function to 

reach 1. Therefore, as p increases the probability that failure would occur at or before 

time, t , decreases. The probability density function (pdf) has the form : 
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where t > 0, /J > 0, a > 0, i;'(t) = ai;(t), and </J is the pdf of the standard normal a, 

distribution. The parameter a is a shape parameter. The scale parameter p 

(2.1 .2) 

corresponds, roughly, to a typical number of cycles to failure. /J is the median of the 

distribution which also implies that /J is a location parameter. The expected value and 

variance ofT are given by E(T) = /J(l + ~ a 2 ) and var(T) = (ap)2(1 + ! a 2 ), 

respectively. 

Figure 2.1.2 shows the probability density functions for /J = 50,100,150,200,250 

with a= 1. For a fixed value of a, as p increases the distribution function becomes 

flatter. The peak of the probability density function moves to the right ( i.e. a larger value 

oft ). Figure 2.1 .2 supports the same conclusion as Figure 2.1.1, as P increases the 

probability that failure would occur at or before time, t, decreases. Figure 2.1.3 shows 

the probability density functions for a = 0.1,0.25,0.50,0. 75,1.00,1.25 with p = 100 . As 

alpha increases the peak of the probability density function moves closer towards 0. 

Most of the probability is associated with t values closer and closer to Oas a increases. 

Figure 2.1.4 shows the probability density functions where a and P are both changing. 
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Section 2. 2 Research Problem 

Given k (k z 2) independent Birnbaum-Saunders Distributions, (BSD), 

TC 1 ,TC 2 , •• • ,TC k . Let TC(;) denote the population having the ith scale parameter fi[;J, where 

P[iJ ::::: P[iJ ::::: · • ·::::: /J[kJ. The population TC(;) is defined to be better than TC(J) if i > j . The 

goal is to select the t-best populations with the t largest p parameters, 1 :::; t < k . Since 

f3 is approximately the number of cycles until the fatigue growth crack grows past a 

critical length then it makes sense to consider the largest /3 's. In Chapter 4, ranking the 

shape parameter, a is considered. The goal is to select a group of the t-best (1::::: t < k) 

populations in an unordered manner when a is assumed known. The choice of any t 

populations having the t largest parameters is regarded as a correct selection, (CS). 

Section 2.3 Basic Results 

Before proceeding with the selection procedure, it is useful to note the following 

results concerning estimators of the parameters for the Birnbaum-Saunders distribution. 

Let I;, T2 , ••• , Tn be a random sample from a Birnbaum-Saunders population. 

Theorem 2.3.1 : ( Birnbaum and Saunders (1969b)) The maximum 

likelihood estimator, p , is the unique positive root of 
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x 2 - x{2H + K ( x) }+ H {f + K ( x) }= 0 where f = n-1 I. T1 , 

J=I 

Theorem 2.3 .2 : ( Engelhardt et al. (1969)) The distribution of /3 does 
p 

not depend on fJ . 

Theorem 2.3.3 : ( Birnbaum and Saunders (1969b) ) The maximum 

I 

likelihood estimator, a, is a=(;+!-, ~ 2 r where f,H , and jj are 

defined before. 

A 

Theorem 2.3.4 : ( Engelhardt et al. (1969) ) 
a 

The distribution of - does 
a 

not depend on a and fJ . 

There are at least two additional estimators that have been considered by 

Birnbaum and Saunders (1969) and Desmond (1995) due to the difficulty in computing 

I I 

- ( J-T2 - T i 

the MLE's. The two estimators are /J' = L ',. and /J = f' '., and they are both 
L~ 2 Tl 

very easy to compute since they are based only on the random sample. P is also known 

as the "mean mean" estimator. 

Theorem 2.3.5 : The distribution of P' does not depend on p . 
p 

12 



L(r1)i 
L - 1-, 

Proof: P' = (r1 ) 

p p 

= 
L(r1ri 

I I 

pzp2L_1_, 
(r1fi 

I 

~ L(1J' 
= 

I 

L(fJ' 1 L - , 

(;r 
T 

Let U1 = f3 . The distribution of U1 does not depend on p since 

p is a scale parameter. So, the distribution of L[; l does 

not depend on p . Therefore, the distribution of P' does not p 

depend on p as desired. 

Theorem 2.3.6: The distribution of p does not depend on P . 
p 

- 1 

p2 
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T 
Let U = - 1 The distribution of 

1 /J 

U1 does not depend on /3 since /3 is a scale parameter. So, 

~u if tut ri does not depend on /3 since the distribution of 

U1 does not depend on /J. Therefore, the distribution of ; does 

not depend on /3 as desired. 

Theorem 2.3.7: ( Birnbaum and Saunders (1969b) ) /J is a consistent 

estimator for /3 . When a < Jz , jJ is the same as the MLE, jJ . 

Section 2. 4 Probability of Co"ect Selection and its Minimum 

~ 

Let /J(;) denote the statistic associated with population Jr<;>, i = 1, ... ,k. ( From 

this point forward, this dissertation will use the notation for the MLE, but all results hold 

for /3' and jJ .) The ranked /3 's are denoted by fi[i] ~ fi[z] ~ .•. ~ JJ[k]. 

14 



Let /3 = (/J[i],···,/J[k]) denote a point in the parameter space n that is partitioned into a 

'preference zone', n(8• ), defined by n(8· )= {p: fJ[k- t] -::;, 8*, 0 < 8• < 1} . The 
/J[H+t] 

complement of n(8*) is called the indifference zone. This dissertation uses the 

indifference zone approach ofBechhofer (1954). Now consider the following rule, R, for 

which the probability of correct selection, P(CS IR), satisfies P(CS IR)~ p • for all 

p E n(8*) and fixed a. 

Rule R : Select the populations associated with the t largest /3 as the t-best populations. 

The experimenter specifies in advance the constants ,,. and p. where (: r < p. < I. If 

p • is not assumed greater than(:)-' then the probability of correct selection can be 

guaranteed by randomly selecting the t best populations. 

Now using the results of Section 2.3, the probability of correct selection, 

P( CS I R) is as follows : 

(2.4.1) 

= P[maxPui-::;, /J(gJ-::;, min /J(;J;g = 1, ... ,k-1] 
IS j Sk-t k-t+ISiSk 
jctog 

(2.4.2) 

(2.4.3) 
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~ 

Define Vi = flu) and Gv (v) to be the cumulative distribution function of Vi. 
P[il 

= P[ V fi[il < V < . V fl[i] · -1 k- j max i - g - min i , g - , ... , 1 . 
1sist-1 /J[g] k-1+1s;sk fl[g] 
J~g 

(2.4.4) 

Interest is in finding the configuration of the parameters that minimizes P(CS IR) . This 

configuration of parameters is called the Least Favorable Configuration (LFC). Under 

the least favorable conditions fi[i] = fl[2] = · · · = fl[H] , fl[t- t+I] = · · · = fi[tl and 

P P { s:•) h" h . 1· h fi[H+I] } 1 [H] ~ [H+I]\U W lC imp 1es t at 2 -. 2 . 
p[k-t] 8 

Thus, P(CS IR) 2 P['.!}!)x, V)I) s V, s ,~,!~.Vt•) g = I, ... ,k J 
J~g J 

(2.4.5) 

(2.4.6) 

k- t OO 

= Lf G~k-H)(vll-Gv(vo·)J dGJv) (2.4.7) 
g=I O 

= (k - t)f G~k+tl(vil - G,(vo·)J dG,(v) = P"(CS IR), (2.4.8) 
0 

~ 

where Gv(v) is defined to be the cumulative distribution function ofthe V = flu) 
1 fl[i] . 

So, p•(cS IR)= P[max.Vi ~ J. min V; ]. 
ISi Sk - t 8 k- t+1$i$ k 

(2.4.9) 

Now given k, t, o·, and p • - values, the solution can be obtained by setting 

p• (CS IR) equal to p • and solving for n. However, this can not be done analytically 
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since the distribution of Tl; cannot be obtained in closed form. Therefore, p* ( CS I R) has 

been simulated for various cases in Section 2.6 and large sample approximations will be 

discussed in Chapter 3. 

Section 2. 5 Properties of the Probability of Co"ect Selection 

Property 2.5.1: 
• • k ( J

-1 

As <5 -, 1 , show that the P ( CS I R) ~ 1 

Proof: The p· (CS IR)= (k- t)j G?-,-il(v 11-G, (v<5· )J dG,(v) . 

And further suppose that <5* -, 1 then that implies that the 

p· (CS IR)= (k - t)f G~k-,-il(v ]1 -G, (v )]' dG, (v) . 
0 

Now let x = Gv(v) then that implies 

1 

P*(CS IR)= (k-t)f x(k-,-iJ[1- xJ dx . 
0 

<k - 1Xk - 1 -1). 1, (k - 1). 1, (kJ-l . 
= = = as desrred. 

k! k! t 

Property 2.5.2 : As <5* -, 0, show that the p· (CS IR) -, 1 . 

Proof : The P * (CS IR)= (k - t)f G~k-,-i)(vXl- G}v<5·)J dG, (v ) . 

And further suppose that <5* -, 0 then that implies that the 

17 



«> 

p· (CS IR)= (k - t)f G~k+ 1l(v)1G, (v ). 
0 

Now let x = Gv(v) then that implies 
I 

p· (CS IR)= (k - t)f x(k-,-i)(I - x )0 dx . 

_ (k - 1 Xk - 1 - 1) _ (k - 1) _ 1 d . d 
- ( ) - ( ) - as eslfe . k-t. k-t. 

Property 2.5 .3 : As n ~ oo, then P*(CS IR)~ 1. 

Proof : The proof of this property follows from the normal approximation 

to p·(cs I R)discussed in Section 2 of Chapter 3. 

Property 2.5 .3 guarantees that there is a sample size, n, which will guarantee any 

probability of correct selection. 

Section 2. 6 Simulations 

Fortran programs were written using Monte Carlo methods to simulate probability 

~ 

tables using the estimator,p, for a = 0.15, 0.25, 0.50, 0.75, 1.0, k = 2 (1) 5, t = 1 (1) (k-1), 

and n = 5 (5) 30. From the literature on the Birnbaum-Saunders distribution reasonable 

choices for a are less than or equal to 2 and usually only those values less than or equal 

to Ji are used. The tables are located in Appendix A. The tables were constructed by 

performing 50,000 iterations to calculate the probabilities of correct selection. The 

18 



Birnbaum - Saunders populations were generated by an algorithm that was previously 

used by Desmond (1995). The complete program is located in Appendix H. 

To illustrate how these tables are used then consider the following scenario : If a 

researcher is interested in choosing the 2 "best" populations from 5 populations with 

a = 1 and they further specify that p • = 0.90 and o· = 0.500 then according to the table 

found below from Appendix A they would need to sample 15 from each of the five 

populations in order to ensure the probability of correct selection to be 0.90, since k = 5, 

t = 2 , p • = 0. 90 and o · = 0 .500 . 

p 

k t n .80 .90 .95 .975 .99 .995 

5 2 5 .380 .305 .255 .220 .185 .165 

10 .515 .445 .395 .355 .310 .285 

15 .570 .500 .450 .415 .370 .345 

20 .610 .550 .500 .460 .420 .390 

25 .640 .580 .540 .500 .470 .435 

30 .660 .610 .570 .530 .490 .460 

The simulated probability tables using estimator, P', for a = 1, k = 2 ( 1) 5, t = 1 

(1) (k-1), and n = 5 (5) 30 are located in Appendix B. 

The simulated probability tables using the estimator , p , for 

a = 0.15,0.25,0.50,0.75, l.0,2.0,3.0,4.0, and 5.00, k= 2 (1) 5, t = 1 (l)(k-1), and 

n = 5 (5) 30 are located in Appendix C. 

The last two estimators gave very similar values for the probability of correct 

selection. Therefore, only jJ has been explored further. 
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~ -
A comparison of the estimators, f3, f3, fl', is given below for the probability of 

correct selection, p* (CS IR), for the following specificed values : a = 1, k=5, t=2, n=30 

and 8* = 0.400,0.500,0.650,0.750 . 

p*(cs IR) 

5• = 0.400 8* = 0.500 5• = 0.650 5• = 0.750 

/3 0.9994 0.9862 0.8296 0.5894 

/3 0.9999 0.9935 0.8703 0.6332 

/3' 0.9998 0.9889 0.8603 0.6230 
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Chapter3 

Asymptotic Results of the Estimators for the Parameter p 

Section 3.1 Results/or the Estimator /J 

From Chapter 2, Section 4, the probability of correct selection, p· (CS IR), was 

obtained but a closed form of the distribution of~ does not exist. Therefore, the 

probability of correct selection, p· ( CS I R), must be simulated or approximated. 

Simulations were discussed in Chapter 2 and the tables appear in Appendices A, B, and 

C. Large sample approximations for the parameter, p, will now be considered. 

Before proceeding with the selection procedure, it is useful to note the following 

asymptotic results concerning the maximum likelihood estimator, P . 

Theorem 3.1.1 : (Engelhardt et al., 1981) For n sufficiently large, 

- 1 

,B~N(µ,p'H'(a')tn)where H(u) =[: +: +{ui)J', 

Theorem 3.1.2: For n sufficiently large, ! ~ N( I, H'fa' )) where H(u) is 

defined as before. 
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Proof: 

A 

Let X = /J and Y = p = X then 
p p 

P(Y,; y}= P(;,; y) = P(X,; PY) 

= P(z < p(y-1) J 
- p~(H2 (a 2 ))In 

= P(z < (y- I) J 
- ~(H2 (a2 )); n · 

Therefore, ! ~ N( I, H 2 fa')) as desired. 

Section 3. 2 Probability of Co"ect Selection for Normal Approximation of [3 

(3.1.1) 

(3.1.2) 

(3.1.3) 

(3.1.4) 

The probability of correct selection must be examined since the distribution of p 
p 

is now being approximated by a nonnal distribution where ! ~ N( I, H 'fa')) . 
Therefore, from Equation 2.4.9 of Section 2.4 of Chapter 2, the probability of correct 

selection given the rule R, p· ( CS I R) is : 
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P*(CS IR)= P[max V1 s ~ min v;J 
ISJ Sk- t O k - t+!S i,;k 

(3 .2.1) 

= P[o· max vis min v:J 
IS j Sk- t k - t+ISiS k 

(3.2.2) 

= P[max o·v1 - 1 s min v; - 1] 
IS j Sk- t k - t+ISiS k 

(3.2.3) 

o·v1 -1 v -1 
= P max ~ s min -J=-· 2=~=2=) 

1s 1s 1- 1 V 7 1-1+1s ;s 1 H na 
(3.2.4) 

o·(v1 -1) o·-1 v-1 
= P max ~ + ~ s min _J_,_2~-2-) 

IS j S /c-t v7 v7 k- t+ISiSk H na 
(3.2.5) 

P ~·z o· -1 . z 
= maxu j+ ~2 2 sm1n i 

IS ] Sk-t v+ k- t+ISJSk 

(3.2.6) 

(z) (3.2.7) 

d<l>(z) (3 .2.8) 
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where <t>(z) is defined to be the cumulative distribution function of the standard normal 

distribution. Now given k, t, o·, and p • - values, the solution can be obtained by setting 

p• (CS IR) equal to p • and solving for n. 

From Section 2.5 of Chapter 2, Property 2.5.3 states that as n ~ oo, then 

P- ( CS I R) ---+ I . From Equation 3 .2.8, as n ---+ oo, ~ ---+ -ao, since J' < I . 
H2 a2 

n 

Therefore, p· ( cs IR) ~ (k - t) 1 (<t>(Zj )r-t-l) (1 )' d<t>(z) ~ 1 as n ~ 00 . 

Section 3. 3 Large Sample Approximations 

Fortran programs were written using Monte Carlo methods to calculate 

probability tables using the estimator,p, for a= 0.25, 0.50, 0.75, 1.0,1.25,1.5, k= 2 (1) 5, 

t = 1 (1) (k-1), and n = 30,40,50,75 . The tables are located in Appendix E. 

Section 3. 4 Results for the Estimator P 

Before proceeding with the selection procedure, it is useful to note the following 

asymptotic results concerning the mean - mean estimator, P . 
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Theorem 3.4.1 : (Birnbaum and Saunders, 1969 b) For n sufficiently large, 

E(ft)= p[1 + (ae)2] and var{.s)= (aep)2 [1 + sa2e2] . 
2n n 4n 

Theorem 3 .4 .2 : F om sufficiently large, ! ~ BS( alh (1) where () is as above. 

=P[x<~q(1)] 

=P[x<~qmJ 
Therefore, ! ~ BS( alh T ,I) as desired. 

25 
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Section 3. 5 Probability of Co"ect Selection for Birnbaum-Saunders Approximation 

of p 

The probability of correct selection is examined for the distribution of p which 
p 

is now being approximated by a Birnbaum-Saunders distribution. Therefore, 

p·(CSIR)=P[maxYJ ~~ min r:]=(k-t)fat·-l)(y11-Gy(yo")JdGy(y) (3.5.1) 
J,;;j ,;;k - t 8 k-1+1 ,:;,;;k 0 

where G, (y) is the cumulative distribution function of Y ~ ss( afk/i ,I)- Now given k, 

t, 8 • , and p • - values, the solution can be obtained by setting p• ( CS I R) equal to p • 

and solving for n. 

Section 3. 6 Large Sample Approximations 

Fortran programs were written using Monte Carlo methods to calculate 

probability tables using the estimator,P , for a= 0.25, 0.50, 0.75, 1.0,1.25,1 .5, k = 2 (1) 5, 

t = 1 (1) (k-1), and n = 30,40,50,75. The tables are located in Appendix F. 
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Section 3. 7 Comparisons of the Simulations and Approximations 

A comparison of the estimators, /3, p , for simulated probabilities and the 

approximations is given next for the probability of correct selection, p* (CS IR), for the 

following specified values : a= 1, k=5, t=2, n=30 and 8* = 0.400,0.500,0.650,0.750. 

p*(cs IR) 

8* = 0.400 8* = 0.500 8* = 0.650 8* = 0.750 

~ 

simulated /3 0.9994 0.9862 0.8296 0.5894 

~ 

approximated /3 0.9988 0.9879 0.8554 0.6155 

simulated /3 0.9999 0.9935 0.8703 0.6332 

approximated /3 0.9999 0.9939 0.8726 0.6394 
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Chapter4 

Ranking and Selection According to the Parameter a 

Section 4.1 Theory for "Best" Parameter a 

When selecting populations according the parameter p , it is most logical to select 

the t populations with the largest p parameters since p is the median of the distribution. 

In the case of selection of the t "best" populations with fixed p, according to the 

parameter a , the choice is much less intuitive. In order to determine whether to choose 

the t populations with the smallest or largest parameters a , the reliability function, R(t0 ), 

has been investigated. R(t0 ) = P(X > t0 ) = 1- F(t0 ; a , P) where F(t0 ; a , P) is defined as 

the cumulative distribution function in Section 2.1 of Chapter 2. If the reliability function 

were increasing then selecting the t populations with the largest a parameters would be 

most consistent with what is usually thought of as "best" populations. Conversely, 

selecting the t smallest a parameters would be considered "best" if the reliability 

function is decreasing. 

It can be shown that the reliability function, R(t), is increasing for t > P , 

decreasing for p > t and is equal to 0.5 when t = p for all a. Furthermore, the mean is 

an increasing function of a for fixed p , so selecting the populations with the largest 

parameters a would correspond to selecting the populations with the longest mean time 

until failure. 
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Section 4.2 Theory for Selection of a 

Given k (k 2 2) independent Birnbaum-Saunders Distributions, (BSD), 

1C1, 1C 2 , ••• , 1C k . Let 1C(;) denote the population having the ith shape parameter a[; 1, where 

a[i] s a[z] s ... s a[k- t+I] s a[k]. The population 1C(;) is defined to be better than 1C(J) if i > 

j . Selecting the t-best populations with the t largest a parameters, 1 s t < k is 

considered. The goal is to select a group of the t-best ( 1 s t < k ) populations in an 

unordered manner. The choice of any t populations having the t largest parameters is 

regarded as a correct selection, (CS). 

Let a(;) denote the maximum likelihood estimator (MLE) of a[;J associated with 

population 1C<;>. The maximum likelihood estimator is computed by the formula, 

I 

12 ~ (~ + !, -2 r, where fJ, f and H are defined as in Section 2.2 . Define 

~ 

a( ) 
W1 = - 1 Due to Engelhardt et al. (1981 ), the distribution of W1 does not depend on 

a[J] 

a or f3. Let a= (a[iJ,···,a[.1:J) denote a point in the parameter space n that is 

partitioned into a 'preference zone', n(5• ), defined by n(5• )= {a: a[k- t] s 5• < 1}. 
a[k-t+I] 

The complement of n(8*) is called the indifference zone. Now consider the following 

rule, R, for which the probability of correct selection, P(CS IR), satisfies P(CS IR) 2 p • 

for all a E 0(8* ). 
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Rule R2 : Select the populations associated with the t largest a as the t-best populations. 

The experimenter specifies in advance the constants J' and p • where (: ) -, < p • < 1. 

The probability of correct selection, P ( CS I R 2 ) is as follows : 

(4.2.1) 

= Plmax aui ~ a(g) ~ min a(;J;g = 1, ... ,k-tl 
l$J$ k- t k-t+)$i$k 
j >'g 

(4.2.2) 

(4.2.3) 

= Pl W a[JJ < W < . ur a[;] . g - I k- tl max j - g - min rr i ' - ' .•• ' . 
1s Js k-1 a[gJ k-1+1,,;s .1: a[gJ 
J>'g 

(4.2.4) 

Interest is in finding the configuration of the parameters that minimizes P(CS IR). This 

configuration of parameters is called the Least Favorable Configuration (LFC). Under 

the least favorable conditions a[iJ = a[2J = · · · = a[.1:- iJ, a[H+iJ = · · · = a[k] and 

f s:•) h" h. 1· h a[H+1J I I a[HJ ~ a[.t-i+iJ\u w 1c imp 1es t at ~ -. ~ . 
a[k- 1] 8 

Thus, P(CS IR);,) m!!x. WiJ),;; w,,;; ,n.},!H. w,(;. }g = 1, ... ,k-tl (4.2.5) l J>'g 

(4.2.6) 
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k- t OO 

= If csk-t-l)(wX1-G)wo*)fldGJw) (4.2.7) 
g=I 0 

= (k-t)f c~-,-iJ(wX1-G)w8·)J'ldGjw)= P*(CS I R2), (4.2.8) 
0 

~ 

where GJw) is defined to be the cumulative distribution function of the W1 = a(J ) . 

a[J] 

So, (4.2.9) 

Now given k, t, 8*, and p * - values, the solution can be obtained by setting 

p· (CS I R2) equal to p * and solving for n. Since the distribution of tt1; cannot be 

obtained in closed form, the p· (CS I R2) has been simulated and approximated and large 

sample approximations will be discussed in Chapter 5. 

Section 4.3 Simulations 

Fortran programs were written using Monte Carlo methods to simulate probability tables 

for a and for p unknown, k=2 (1) 5, t=l (1) (k-1), and n=5 (5) 30. Furthermore, instead 

of using fJ to estimate a , the estimator p has been used in place of fJ to compute the 

estimates for alpha. For all of the reasons mentioned in Chapter 2, the estimator is a 

reasonable choice to use and was also used previously by Desmond (1995) in his 

prediction intervals. The estimator from now on will be referred to as ii . These tables 

are located in Appendix D. These probability tables were constructed for selecting t 
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populations out of k populations with the largest parameters, a . But, these tables can 

also be used to select the t populations with the smallest parameters, a , since selecting 

the t populations with the smallest parameters, a, is equivalent to selecting the k-t 

populations with the largest parameters a . For example, if the experimenter wants to 

select the two populations out of five with the smallest parameters,a , then the researcher 

would use the table in Appendix D for selecting the three populations with the largest 

parameters a out of five populations. 
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Chapter 5 

Asymptotic Results of the Estimator for the Parameter a 

Section 5.1 Results for the EstimaJor a 

From Chapter 4, Section 2, the probability of correct selection, p·(cs I R2), was 

obtained but a closed form of the distribution of ff; does not exist. Therefore, the 

probability of correct selection, p· ( CS I R2), must be simulated or approximated. 

Simulations were discussed in Chapter 4 and the tables appear in Appendix F. Large 

sample approximations for the parameter, a , will now be considered. 

Before proceeding with the selection procedure, it is useful to note the following 

asymptotic results concerning the maximum likelihood estimator, a . 

Theorem 5.1.1 : (Engelhardt et al., 1981) For n sufficiently large, 

a,.:,., N(a,Z-1a 2 In) . 

Theorem 5.1.2 : For n sufficiently large, a ,.:,., N(i,-1-). 
a 2n 

Proof: Suppose a ,.:,., N(a,Z-1 a 2 In) . 
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A dY a x h Let X=a an =-=-ten 
a a 

P(Y ::; y) = P( ! ::; y) = P(X ::; ay) (5.1.1) 

(5.1.2) 

(5.1.3) 

(5.1.4) 

Therefore, a ...:.. N(l, -1-) as desired. 
a 2n 

Section 5. 2 Probability of Co"ect Selection for Normal Approximation of a 

A 

The probability of correct selection must be examined since the distribution of a 
a 

is now being approximated by a normal distribution where a ...:.. N(l, -1-) . Therefore, 
a 2n 

from Equation 4.2.9 of Section 4.2 of Chapter 4, the probability of correct selection given 

the rule R, P(CS I R2) , is : 

P(CS I R2) = P[max wj ::; -;. min ~J 
l sJsk- t /J k- 1+lsisk 

(5.2.1) 
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= P[8· max w1 ~ min w;] 
]$ j $ k- t k - t+I SiSk 

(5 .2.2) 

= P[max g·~ - 1 ~ min w; - 1] 
l s j s k - t k - t+ISis k 

(5.2.3) 

8*W1 -1 . W -l 
= P max ~ min-'-

1s1s t - 1 [ k- 1+1,;;st [ 

(5.2.4) 

P 5·(w1 -1) 5·-1 . w;-1 
= max +--~ min--

1s1s t - 1 [ [ k- c+ls is k [ 

(5 .2.5) 

P 5:'*z 5• -1 . z = max.a j+--~ min i 

l$J$k- t [ k- t+l$i$k 

(5 .2.6) 

k - t "' k- t k = L f TI <1>(zJ TI 
g =I _ .., i=I i=k - t+I 

g i' j 

1- <1> g·z . + g· - l 
J fl 

v~ 
(z) (5 .2.7) 

d<l>(z)= p·(cs I R2) (5.2.8) 

where <l>(z) is defined to be the cumulative distribution function of the standard normal 

distribution. Now given k, t, 8* , and p • - values, the solution can be obtained by setting 

p· (CS I R2) equal to p • and solving for n. 

From Section 2.5 of Chapter 2, Property 2.5.3 states that as n ~ oo, then 
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r ( cs I R2) ----> I. From Equation 3. 2. 8, as n ----> 00, "~ ----> --0() , since ". < I . 

v~ 
Therefore, P*(CS I R2) ~ (k- t) f [<1>(Z;)r-,-ii(1)' d<l>(z) ~ 1 as n ~ oo. Also, Property 

2.5.1 and Property 2.5 .2 from Section 2.5 of Chapter 2 hold for a as they do for f3 . 

Section 5.3 Large Sample Approximations 

Fortran programs were written using Monte Carlo methods to calculate 

probability tables using the estimator,a, fork= 2 (1) 5, t = 1 (1) (k-1), and 

n = 30,40,50,75. The tables are located in Appendix G. 

Section 5. 4 Comparisons of the Simulations and Approximations 

A comparison of the estimator, a, for simulated probabilities and the 

approximations is given next for the probability of correct selection, p· (cs I R2), for the 

following specified values : k=5, t=2, n=30 and o· = 0.400,0.500,0.650,0.750. 

p·(cs IR2) 

8* = 0.400 o· = o.5oo o· = o.65o o· = 0.150 

simulated a 1.00000 0.99902 0.94616 0.75954 

approximated a 0.99996 0.99870 0.94894 0.77323 
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Chapter6 

Conclusions and Future Work 

Section 6.1 Conclusions 

In this dissertation, two main goals were accomplished. The first goal was 

ranking and selection of Birnbaum-Saunders populations according to the scale 

parameter, /3 . The indifference zone approach was used as the selection criteria for the 

'best' populations due to Bechhofer (1954). Using this procedure, a probability of 

correct selection, P( CS I R), was obtained and Monte Carlo simulations and large sample 

approximations tables were computed using Fortran 77 programs. These tables can be 

used to determine the size that would be needed from each population to sample to ensure 

a correct selection at a certain probability level. 

The second goal was ranking and selection of Birnbaum-Saunders populations 

according to the shape parameter, a . The indifference zone approach again was used. 

Also, a statement regarding the probability of correct selection was obtained where 

Monte Carlo simulations and large sample approximations tables were computed using 

Fortran 77 programs. Again, tables for the determination of the smallest sample size 

needed from each of the populations to ensure a correct selection of a certain probability 

were obtained. 
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During the course of this dissertation, the author has found that the mean - mean 

- ~ 

estimator, /3 , is preferred over the maximum likelihood estimator, /3 , because of the ease 

in computation. Also, the simulated and approximated probabilities for the estimator are 

higher than those obtained from the maximum likelihood estimator. 

Section 6.2 Future Work 

There are many topics that can be explored further. First, with the Birnbaum-

Saunders distribution is to consider ranking and selection procedures with censored 

samples using Type-II censored samples estimators introduced by McCarter (1999). 

Gupta (1965) considered subset selection procedures that can possibly be applied to 

develop procedures for the Birnbaum-Saunders distribution and procedures from Tong 

(1969) on comparisons with a control can also be explored. 
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Table 1. A 

~ 

For /3 Selecting the t-best: Complete Sample Case 

Finding the smallest n required for P(CS IR) 2 p' given values of k, t, t5, p • and a = 0 .15 

p p 
k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

2 1 5 .925 .885 .855 .830 .805 .785 4 1 5 .880 .850 .820 .800 .775 .755 

10 .945 .915 .895 .875 .855 .840 10 .915 .890 .870 .855 .835 .820 

15 .955 .930 .915 .900 .880 .865 15 .930 .910 .895 .880 .865 .850 

20 .960 .940 .925 .910 .900 .885 20 .940 .920 .905 .895 .880 .870 

25 .965 .945 .930 .920 .910 .895 25 .945 .930 .915 .905 .890 .885 

30 .965 .950 .935 .925 .915 .905 30 .950 .935 .920 .910 .900 .890 

. 
p p 

~ t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 1 5 .895 .860 .830 .810 .785 .770 4 2 5 .870 .835 .810 .790 .770 .750 

10 .925 .900 .880 .860 .845 .830 10 .905 .885 .865 .850 .830 .820 

15 .940 .915 .900 .885 .870 .860 15 .920 .905 .885 .875 .860 .850 

20 .945 .930 .915 .900 .890 .875 20 .930 .915 .900 .890 .875 .865 

25 .950 .935 .920 .910 .895 .885 25 .940 .920 .910 .900 .890 .880 

30 .955 .940 .925 .915 .905 .895 30 .940 .930 .920 .910 .900 .885 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 2 5 .895 .860 .830 .810 .785 .765 4 3 5 .800 .845 .820 .800 .775 .760 

10 .925 .900 .880 .860 .840 .830 10 .915 .890 .870 .855 .840 .825 

15 .940 .915 .900 .885 .870 .860 15 .930 .910 .890 .880 .870 .850 

20 .945 .925 .915 .900 .890 .875 20 .940 .920 .905 .895 .880 .870 

25 .950 .935 .920 .910 .900 .885 25 .945 .930 .915 .905 .890 .880 

30 .955 .940 .925 .915 .900 .895 30 .950 .935 .920 .910 .900 .890 
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k t 

5 1 

k t 

5 2 

Table I. A 
(continued) 

For /3 Selecti.ng the t-best: Complete Sample Case 

Finding the smallest n required for P(CS IR)~ p' given values of k, t, o, p * and a = 0. 15 

p p 

n .80 .90 .95 .975 .99 .995 kt n .80 .90 .95 .975 .99 .995 

5 .870 .840 .815 .790 .770 .755 5 3 5 .855 .825 .800 .785 .760 .745 

10 .905 .885 .865 .850 .830 .815 10 .895 .875 .855 .840 .825 .810 

15 .925 .905 .890 .875 .860 .845 15 .915 .895 .880 .870 .850 .845 

20 .935 .915 .900 .890 .880 .865 20 .925 .910 .895 .885 .870 .860 

25 .940 .925 .910 .900 .890 .880 25 .930 .915 .905 .895 .885 .875 

30 .945 .930 .920 .910 .900 .885 30 .935 .925 .910 .900 .895 .885 

p p 

n .80 .90 .95 .975 .99 .995 kt n .80 .90 .95 .975 .99 .995 

5 .855 .825 .800 .780 .760 .745 5 4 5 .870 .840 .815 .795 .770 .750 

10 .895 .875 .855 .840 .820 .810 10 .905 .885 .865 .850 .830 .815 

15 .915 .895 .880 .870 .855 .845 15 .925 .905 .890 .875 .860 .850 

20 .925 .910 .895 .885 .870 .860 20 .935 .915 .900 .890 .875 .865 

25 .930 .915 .905 .895 .880 .875 25 .940 .925 .910 .900 .890 .880 

30 .935 .925 .910 .900 .895 .885 30 .945 .930 .920 .910 .900 .890 
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Table 2.A 

~ 

For /3 Selecting the t-best: Complete Sample Case 

Finding the smallest n required for P(CS IR) ~ p • given values of k, t, t5 , p • and a = 0 .25 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

2 1 5 .875 .820 .770 .735 .690 .665 4 1 5 .810 .760 .725 .690 .650 .630 

10 .910 .865 .830 .805 .770 .745 10 .860 .825 .790 .765 .740 .720 

15 .920 .890 .860 .835 .805 .790 15 .885 .855 .830 .805 .785 .765 

20 .935 .905 .880 .855 .830 .815 20 .900 .870 .850 .830 .810 .790 

25 .940 .910 .885 .865 .845 .825 25 .905 .880 .860 .845 .820 .810 

30 .940 .915 .890 .870 .850 .835 30 .910 .885 .865 .845 .830 .815 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 1 5 .830 .780 .740 .705 .670 .645 4 2 5 .790 .745 .710 .680 .640 .620 

10 .880 .840 .805 .785 .760 .735 10 .850 .810 .785 .765 .735 .715 

15 .900 .865 .840 .815 .790 .775 15 .875 .845 .820 .800 .780 .760 

20 .910 .880 .855 .840 .815 .800 20 .890 .860 .840 .820 .800 .785 

25 .920 .890 .870 .850 .825 .815 25 .900 .875 .855 .835 .820 .800 

30 .920 .895 .875 .855 .840 .820 30 .900 .880 .860 .840 .820 .810 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 2 5 .830 .780 .740 .700 .670 .640 4 3 5 .810 .760 .720 .685 .650 .630 

10 .880 .840 .805 .780 .750 .730 10 .860 .825 .790 .770 .745 .725 

15 .900 .865 .840 .815 .795 .775 15 .885 .855 .830 .810 .785 .765 

20 .910 .880 .860 .840 .815 .800 20 .900 .870 .850 .825 .805 .790 

25 .920 .890 .870 .850 .830 .815 25 .905 .880 .860 .840 .820 .810 

30 .920 .895 .875 .855 .835 .820 30 .910 .885 .865 .850 .830 .815 

47 



k t n 

5 1 5 
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k t n 

5 2 5 
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Table 2. A 
(continued) 

For /3 Selecting the t-best: Complete Sample Case 

Finding the smallest n required for P(CS IR) :2: p" given values of k, t, <5, p • and a= 0.25 

p p 

.80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

.790 .745 .710 .680 .650 .625 5 3 5 .770 .725 .690 .665 .630 .610 

.850 .810 .785 .765 .730 .715 10 .830 .800 .770 .750 .725 .705 

.875 .845 .820 .800 .775 .760 15 .860 .830 .810 .790 .770 .750 

.890 .865 .840 .825 .800 .785 20 .875 .850 .830 .815 .795 .775 

.905 .880 .860 .840 .825 .805 25 .885 .865 .845 .830 .810 .795 

.905 .880 .860 .840 .825 .805 30 .890 .870 .850 .835 .815 .805 

p p 

.80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

.770 .725 .690 .665 .610 .610 5 4 5 .795 .750 .710 .685 .650 .625 

.830 .800 .770 .750 .725 .705 10 .850 .815 .785 .765 .730 .710 

.860 .830 .810 .790 .770 .750 15 .875 .845 .820 .800 .775 .760 

.875 .850 .830 .815 .795 .780 20 .890 .865 .840 .825 .800 .785 

.885 .865 .845 .830 .810 .795 25 .900 .875 .855 .835 .815 .805 

.890 .870 .850 .835 .820 .800 30 .905 .880 .860 .845 .825 .815 
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k t n 

2 1 5 

10 

15 

20 

25 

30 

k t n 

3 1 5 

10 
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20 

25 

30 

k t n 

3 2 5 

10 
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30 

Table 3. A 

For MaximumLlikelihood Estimator Selecting the t-best : Complete Sample Case 

Finding the smallest n required/or P(CS IR) :2: p' given values of k, t, <5, p * and a = 0.50 

p p 

.80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

.770 .670 .600 .545 .490 .450 4 1 5 .660 .585 .530 .485 .440 .400 

.830 .755 .695 .655 .605 .570 10 .750 .690 .640 .600 .560 .530 

.860 .795 .750 .705 .660 .630 15 .735 .730 .690 .655 .620 .590 

.870 .810 .760 .725 .680 .650 20 .800 .750 .710 .675 .640 .610 

.875 .825 .780 .735 .700 .675 25 .815 .780 .725 .695 .660 .610 

.890 .840 .795 .765 .720 .695 30 .835 .790 .755 .725 .690 .610 

p p 

.80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

.695 .610 .550 .500 .450 .420 42 5 .630 .565 .510 .465 .430 .400 

.775 .710 .660 .615 .575 .545 10 .725 .665 .625 .585 .550 .520 

.810 .755 .710 .675 .635 .605 15 .765 .715 .675 .645 .610 .585 

.825 .770 .725 .690 .650 .625 20 .780 .730 .695 .660 .630 .600 

.840 .785 .760 .725 .675 .645 25 .800 .750 .705 .695 .655 .620 

.855 .810 .770 .740 .700 .680 30 .815 .775 .740 .710 .680 .660 

p p 

.80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

.695 .610 .550 .505 .450 .420 4 3 5 .660 .580 .525 .480 .435 .405 

.775 .710 .660 .615 .575 .545 10 .750 .690 .640 .605 .560 .535 

.810 .755 .710 .675 .635 .605 15 .785 .730 .690 .655 .620 .590 

.825 .770 .725 .690 .650 .625 20 .800 .750 .710 .675 .635 .610 

.835 .790 .740 .715 .675 .660 25 .810 .770 .735 .685 .655 .640 

.850 .805 .765 .735 .700 .675 30 .830 .785 .750 .720 .690 .670 
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k t n 

5 1 5 

10 

15 

20 

25 

30 

li t n 

5 2 5 

10 

15 

20 

25 
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Table3.A 
(continued) 

For Maximumllikelihood Estimator Selecting the t-best : Complete Sample Case 

Finding the smallest n required for P(CS I R) ~ p' given values of k, t, '5, p • and a = 0. 50 

p p 

.80 .90 .95 .975 .99 .995 kt n .80 .90 .95 .975 .99 .995 

.635 .565 .510 .470 .425 .400 5 3 5 .600 .535 .490 .450 .410 .390 

.730 .670 .620 .590 .550 .520 10 .700 .645 .605 .570 .540 .510 

.770 .720 .680 .645 .605 .580 15 .745 .695 .660 .630 .595 .570 

.785 .73 .695 .665 .625 .600 20 .760 .715 .680 .650 .615 .590 

.800 .765 .720 .680 .640 .625 25 .785 .740 .725 .670 .640 .625 

.820 .780 .745 .715 .680 .660 30 .800 .760 .725 .700 .670 .645 

p p 

.80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

.600 .530 .485 .450 .410 .390 5 4 5 .640 .570 .515 .470 .430 .400 

.700 .645 .605 .570 .535 .510 10 .730 .670 .625 .590 .545 .520 

.745 .695 .660 .630 .595 .570 15 .770 .720 .680 .645 .610 .585 

.760 .715 .680 .645 .610 .590 20 .785 .740 .700 .665 .630 .605 

.780 .745 .700 .660 .635 .605 25 .795 .755 .720 .690 .645 .620 

.800 .760 .725 .700 .670 .645 30 .815 .775 .740 .710 .680 .660 
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Table4.A 

For /3 Selecti.ng the t-best: Complete Sample Case 

Finding the smallest n required for P( CS I R) ~ p' given values of k, t, t5 , p • and a = 0. 7 5 

p p 
k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

2 1 5 .685 .560 .475 .415 .350 .315 4 1 5 .545 .455 .395 .345 .295 .265 

10 .760 .670 .595 .540 .480 .450 10 .660 .580 .520 .475 .430 .400 

15 .785 .695 .630 .575 .515 .485 15 .680 .610 .560 .515 .470 .445 

20 .800 .710 .650 .600 .540 .500 20 .705 .630 .580 .540 .490 .465 

25 .840 .760 .710 .665 .620 .585 25 .760 .700 .655 .620 .580 .550 

30 .850 .780 .730 .690 .640 .615 30 .775 .720 .675 .640 .600 .580 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 1 5 .590 .490 .420 .370 .310 .290 4 2 5 .510 .430 .375 .330 .285 .260 

10 .690 .610 .550 .500 .450 .420 10 .630 .560 .505 .465 .420 .390 

15 .715 .640 .580 .540 .485 .455 15 .650 .590 .540 .500 .460 .430 

20 .735 .660 .600 .560 .510 .480 20 .675 .610 .560 .525 .480 .455 

25 .785 .720 .675 .635 .590 .570 25 .735 .680 .640 .605 .565 .540 

30 .800 .740 .695 .660 .615 .590 30 .755 .700 .660 .630 .590 .565 

p p 

kt n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 2 5 .590 .490 .420 .370 .315 .285 4 3 5 .545 .455 .390 .345 .295 .270 

10 .690 .610 .545 .500 .450 .415 10 .660 .585 .525 .480 .435 .400 

15 .710 .635 .580 .535 .480 .455 15 .680 .610 .555 .515 .470 .440 

20 .735 .660 .600 .560 .510 .480 20 .700 .630 .580 .540 .490 .465 

25 .790 .725 .670 .635 .590 .560 25 .760 .700 .650 .615 .570 .545 

30 .800 .740 .695 .660 .615 .590 30 .775 .720 .675 .640 .605 .580 
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k t n 

5 1 5 

10 

15 

20 

25 

30 

l t n 

5 2 5 
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Table4.A 
(continued) 

For p Selecting the t-best: Complete Sample Case 

Finding the smallest n required for P(CS IR):::: p" given valuesof k, t, t5, p • and a= 0. 75 

. 
p p 

.80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

.515 .430 .375 .330 .290 .260 5 3 5 .470 .400 .350 .310 .270 .250 

.630 .560 .505 .465 .420 .390 10 .595 .530 .480 .445 .400 .375 

.660 .595 .540 .505 .460 .430 15 .625 .565 .520 .485 .445 .420 

.680 .615 .565 .525 .480 .455 20 .645 .585 .540 .505 .465 .440 

.740 .685 .640 .605 .560 .535 25 .710 .660 .620 .590 .550 .530 

.755 .700 .660 .630 .590 .565 30 .730 .680 .645 .615 .575 .550 

p p 
.80 .90 .95 .975 .99 .995 ~ t n .80 .90 .95 .975 .99 .995 

.470 .400 .350 .310 .270 .250 5 4 5 .520 .440 .380 .335 .290 .260 

.595 .530 .480 .445 .400 .375 10 .630 .560 .505 .465 .420 .390 

.625 .565 .520 .485 .440 .420 15 .660 .590 .540 .505 .460 .435 

.645 .590 .540 .505 .465 .440 20 .680 .615 .565 .525 .480 .450 

.710 .660 .620 .590 .550 .525 25 .740 .680 .640 .605 .565 .540 

.730 .680 .645 .615 .575 .550 30 .760 .710 .665 .630 .590 .570 
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Table 5. A 

For /3 Selecting the t-best: Complete Sample Case 

Finding the smallest n required for P(CS \ R) ::::: p' given values of k, t, t5, p • and a= 1 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

2 1 5 .610 .470 .380 .320 .260 .220 4 1 5 .460 .360 .300 .260 .210 .180 

IO .720 .600 .520 .450 .390 .360 IO .590 .500 .430 .390 .350 .310 

15 .750 .650 .570 .510 .450 .410 15 .630 .550 .500 .450 .400 .370 

20 .780 .680 .610 .560 .510 .470 20 .670 .600 .540 .490 .450 .410 

25 .800 .710 .640 .590 .530 .490 25 .700 .630 .570 .530 .490 .460 

30 .810 .730 .670 .620 .570 .530 30 .710 .650 .600 .560 .520 .480 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 1 5 .500 .400 .330 .270 .220 .200 4 2 5 .420 .340 .280 .240 .200 .170 

10 .630 .530 .460 .430 .360 .320 10 .560 .480 .420 .380 .340 .300 

15 .670 .580 .520 .470 .420 .380 15 .600 .530 .470 .430 .390 .350 

20 .710 .630 .570 .510 .470 .430 20 .640 .570 .520 .480 .430 .390 

25 .730 .660 .600 .550 .510 .470 25 .670 .610 .560 .520 .470 .450 

30 .750 .680 .620 .580 .530 .500 30 .690 .630 .580 .540 .510 .480 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 2 5 .500 .400 .330 .270 .230 .200 4 3 5 .460 .360 .300 .250 .210 .180 

10 .630 .530 .460 .410 .360 .330 10 .590 .500 .440 .390 .340 .320 

15 .670 .580 .510 .470 .430 .380 15 .630 .550 .490 .440 .400 .370 

20 .710 .630 .560 .520 .470 .430 20 .670 .600 .540 .490 .440 .410 

25 .740 .660 .600 .550 .510 .480 25 .700 .630 .570 .530 .490 .460 

30 .750 .680 .630 .580 .530 .500 30 .720 .650 .600 .560 .520 .490 
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Table 5. A 
(continued) 

For P Selecting the t-best : Complete Sample Case 

Finding the smallest n required for P( CS I R) ;::: p' given values of k, t, o , p • and a = 1 

p p 
.80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 

.420 .340 .280 .240 .200 .180 5 3 5 .380 .310 .260 .220 .190 

.560 .480 .420 .375 .330 .300 10 .515 .445 .390 .355 .320 

.610 .530 .475 .430 .390 .360 15 .560 .500 .450 .410 .370 

.650 .580 .530 .485 .430 .410 20 .610 .550 .500 .460 .420 

.675 .610 .560 .520 .480 .450 25 .640 .580 .535 .500 .470 

.695 .630 .585 .545 .510 .480 30 .665 .610 .570 .530 .490 

p p 
.80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 

.380 .305 .255 .220 .185 .165 5 4 5 .430 .350 .290 .245 .205 

.515 .445 .395 .355 .310 .285 10 .560 .480 .420 .375 .340 

.570 .500 .450 .415 .370 .345 15 .600 .530 .470 .435 .390 

.610 .550 .500 .460 .420 .390 20 .650 .580 .520 .480 .435 

.640 .580 .540 .500 .470 .435 25 .680 .610 .560 .520 .480 

.660 .610 .570 .530 .490 .460 30 .700 .640 .590 .550 .510 
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Appendix B Probability Tables for Estimator P' 
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Tablel.B 

For Estimator /3' Selecting the t-best : Complete Sample Case 

Finding the smallest n required for P(CS IR) 2 p' given values of k, t, 8, p • and a = 1 

p p 
I< t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

2 1 5 .615 .475 .390 .325 .260 .220 4 1 5 .460 .370 .300 .260 .215 .185 

10 .710 .595 .510 .450 .390 .355 10 .580 .495 .430 .385 .355 .320 

15 .755 .655 .580 .520 .455 .425 15 .640 .565 .505 .460 .415 .380 

20 .790 .695 .625 .575 .520 .485 20 .685 .610 .555 .515 .470 .435 

25 .805 .720 .655 .605 .550 .510 25 .710 .640 .590 .555 .510 .475 

30 .810 .745 .675 .635 .575 .550 30 .730 .665 .620 .580 .535 .510 

p p 

k t n .80 .90 .95 .975 .99 .995 ~ t n .80 .90 .95 .975 .99 .995 

3 1 5 .510 .405 .330 .260 .220 .210 4 2 5 .425 .340 .280 .240 .205 .185 

10 .620 .530 .455 .405 .355 .330 10 .550 .470 .415 .370 .340 .310 

15 .680 .595 .530 .480 .430 .400 15 .610 .540 .485 .445 .395 .375 

20 .720 .640 .580 .535 .490 .450 20 .655 .585 .535 .495 .450 .420 

25 .745 .670 .615 .570 .520 .490 25 .685 .620 .575 .535 .495 .465 

30 .760 .690 .635 .595 .550 .520 30 .705 .650 .600 .565 .530 .495 

p p 

kt n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 2 5 .510 .405 .330 .260 .220 .210 4 3 5 .460 .365 .300 .250 .220 .185 

10 .620 .530 .455 .405 .355 .330 IO .585 .500 .435 .390 .345 .320 

15 .680 .595 .530 .480 .430 .400 15 .640 .560 .505 .460 .415 .380 

20 .720 .640 .580 .535 .490 .450 20 .680 .610 .555 .510 .460 .430 

25 .745 .670 .615 .570 .520 .490 25 .710 .640 .590 .545 .495 .475 

30 .760 .690 .635 .595 .550 .520 30 .730 .660 .615 .580 .535 .510 
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k t n .80 

5 1 5 .430 

10 .555 

15 .620 

20 .660 

25 .695 

30 .715 

k t n .80 

5 2 5 .385 

IO .510 

15 .575 

20 .620 

25 .655 

30 .680 

Tablel.B 
(continued) 

For Estimator /3 1 Seleding the t-best : Complete Sample Case 

Finding the smallest n required for P(CS IR)~ p 0 given val.ues of k,t,8, p • and a= 1 

p p 

.90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

.345 .285 .240 .205 .195 5 3 5 .385 .310 .260 .220 .195 .170 

.470 .415 .370 .345 .310 IO .510 .440 .390 .355 .330 .290 

.545 .490 .445 .405 .375 15 .575 .515 .465 .425 .390 .355 

.595 .540 .495 .455 .420 20 .620 .560 .515 .475 .435 .410 

.625 .575 .535 .495 .460 25 .655 .600 .555 .515 .475 .450 

.655 .605 .575 .520 .495 30 .680 .625 .580 .545 .510 .480 

p p 

.90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

.305 .260 .220 .185 .165 5 4 5 .435 .350 .295 .245 .205 .190 

.440 .390 .360 .310 .285 IO .555 .475 .415 .375 .345 .315 

.515 .465 .425 .375 .355 15 .615 .540 .495 .445 .400 .375 

.560 .505 .480 .440 .410 20 .655 .595 .535 .495 .455 .420 

.600 .550 .515 .475 .450 25 .690 .620 .575 .535 .495 .470 

.625 .580 .550 .510 .460 30 .715 .655 .605 .565 .530 .500 

57 



Appendix C Probability Tables for Estimator p 

58 



Table 1.C 

For Estimator p Selecting the t-best: Complete Sample Case 

Finding the smallest n required for P( CS I R) ~ p' given values of k,t, <5 , p • and a = 0. 15 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

2 1 5 .925 .885 .855 .830 .805 .785 4 1 5 .880 .850 .820 .800 .775 .755 

10 .945 .915 .890 .875 .855 .840 10 .915 .890 .870 .850 .830 .820 

15 .955 .930 .915 .900 .880 .870 15 .930 .910 .895 .880 .865 .850 

20 .960 .940 .925 .910 .895 .885 20 .940 .920 .905 .895 .880 .870 

25 .965 .945 .930 .920 .905 .895 25 .945 .930 .915 .905 .890 .885 

30 .970 .950 .940 .925 .910 .900 30 .950 .935 .925 .915 .900 .895 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 1 5 .895 .860 .830 .810 .785 .770 4 2 5 .870 .835 .810 .790 .770 .750 

10 .925 .900 .880 .860 .840 .830 10 .905 .885 .865 .850 .830 .820 

15 .940 .920 .900 .885 .870 .860 15 .920 .905 .885 .875 .860 .850 

20 .945 .930 .910 .900 .885 .875 20 .930 .915 .900 .890 .875 .865 

25 .950 .935 .920 .910 .895 .890 25 .940 .925 .910 .900 .890 .880 

30 .955 .940 .930 .920 .905 .900 30 .945 .930 .920 .910 .900 .890 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 2 5 .895 .860 .830 .810 .785 .770 4 3 5 .880 .845 .820 .800 .775 .760 

10 .925 .900 .880 .860 .840 .830 10 .915 .890 .870 .855 .835 .820 

15 .940 .920 .900 .885 .870 .860 15 .930 .910 .890 .880 .865 .855 

20 .945 .930 .910 .900 .885 .875 20 .940 .920 .910 .895 .880 .870 

25 .950 .935 .920 .910 .895 .890 25 .945 .930 .915 .905 .890 .880 

30 .955 .940 .930 .920 .905 .900 30 .950 .935 .925 .915 .900 .895 
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Table J.C 
( continued) 

For Estimator /3 Selecting the t-best: Complete Sample Case 

Finding the smallest n required for P(CS IR) ~ p · given values of k,t, o, p • and a = 0 .15 

p p 

k t n .80 .90 .95 .975 .99 .995 l< t n .80 .90 .95 .975 

5 1 5 .870 .840 .810 .790 .770 .755 5 3 5 .855 .825 .800 .780 

10 .905 .885 .865 .850 .830 .815 10 .895 .875 .855 .840 

15 .925 .905 .890 .875 .860 .850 15 .915 .895 .880 .870 

20 .935 .915 .900 .890 .880 .865 20 .925 .910 .895 .885 

25 .940 .925 .910 .900 .890 .880 25 .930 .920 .905 .895 

30 .945 .930 .920 .910 .900 .890 30 .945 .925 .915 .905 

p p 

l< t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 

5 2 5 .855 .825 .800 .780 .760 .745 5 4 5 .870 .840 .810 .795 

10 .895 .875 .855 .840 .825 .810 10 .905 .885 .865 .850 

15 .915 .895 .880 .870 .855 .845 15 .925 .905 .890 .875 

20 .925 .910 .895 .885 .870 .860 20 .930 .915 .900 .890 

25 .930 .920 .905 .895 .885 .875 25 .940 .925 .910 .900 

30 .940 .925 .915 .905 .895 .885 30 .945 .930 .920 .910 
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.99 .995 

.760 .740 

.820 .810 

.850 .845 

.870 .860 

.885 .875 

.895 .885 

.99 .995 
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.860 .850 

.880 .870 
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Table 2. C 

For Estimator /3 Selecting the t-best: Complete Sample Case 

Finding the smallest n required for P(CS IR) ~ p· given values of k, t, Ii, p * and a= 0.25 

. 
p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

2 1 5 .875 .820 .770 .735 .695 .665 4 1 5 .810 .760 .720 .690 .655 .630 

IO .905 .865 .830 .805 .770 .750 IO .860 .825 .790 .770 .740 .725 

15 .925 .890 .860 .840 .810 .790 15 .885 .855 .830 .810 .785 .770 

20 .935 .905 .880 .860 .835 .820 20 .900 .875 .850 .830 .810 .795 

25 .940 .915 .890 .870 .850 .835 25 .910 .885 .865 .850 .830 .815 

30 .945 .920 .900 .880 .860 .850 30 .915 .895 .875 .860 .840 .830 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 1 5 .835 .780 .740 .705 .670 .645 4 2 5 .790 .745 .710 .680 .645 .620 

10 .880 .840 .810 .780 .750 .735 IO .850 .815 .785 .760 .735 .720 

15 .900 .865 .840 .820 .795 .775 15 .875 .845 .820 .800 .780 .760 

20 .915 .885 .860 .840 .820 .800 20 .890 .865 .840 .825 .800 .790 

25 .920 .895 .875 .855 .835 .820 25 .900 .880 .860 .840 .820 .810 

30 .930 .905 .885 .870 .850 .840 30 .910 .885 .870 .855 .835 .825 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 2 5 .830 .780 .740 .705 .670 .645 4 3 5 .810 .760 .720 .690 .650 .630 

IO .880 .840 .810 .780 .750 .730 IO .865 .825 .795 .770 .740 .725 

15 .900 .865 .840 .820 .790 .775 15 .885 .855 .830 .810 .785 .765 

20 .915 .885 .860 .840 .820 .800 20 .900 .870 .850 .830 .810 .795 

25 .920 .895 .875 .855 .835 .820 25 .910 .885 .865 .850 .825 .815 

30 .925 .905 .880 .870 .850 .835 30 .915 .895 .875 .860 .840 .830 
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Table 2. C 
(continued) 

For Estimator /3 Selecting the t-best: Complete Sample Case 

Finding the smallest n required for P(CS IR):?: p · given values of k, t, <5, p • and a= 0.25 

p p 

.80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

.795 .750 .710 .680 .650 .625 5 3 5 .770 .725 .695 .665 .635 .615 

.850 .815 .785 .760 .730 .715 10 .830 .800 .770 .750 .720 .705 

.875 .845 .820 .800 .780 .760 15 .860 .835 .810 .790 .770 .750 

.895 .865 .840 .825 .805 .790 20 .880 .855 .830 .815 .795 .780 

.905 .880 .860 .840 .820 .810 25 .890 .870 .850 .835 .815 .800 

.910 .890 .870 .855 .835 .825 30 .900 .880 .860 .850 .830 .815 

p p 

.80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

.770 .730 .695 .665 .635 .615 5 4 5 .795 .750 .710 .680 .650 .625 

.830 .800 .770 .750 .720 .710 10 .850 .815 .790 .760 .735 .715 

.860 .830 .810 .790 .770 .755 15 .875 .845 .820 .800 .780 .760 

.880 .855 .835 .815 .795 .780 20 .890 .865 .840 .825 .800 .790 

.890 .870 .850 .835 .815 .800 25 .905 .880 .860 .840 .825 .810 

.900 .880 .860 .850 .830 .820 30 .910 .890 .870 .855 .840 .825 
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Table 3. C 

For Estimator /3 Selecting the t-hest: Complete Sample Case 

Finding the smallest n required for P(CS IR)~ p 0 given values of k, t, Ii, p • and a= 0.50 

p p 

l< t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

2 1 5 .770 .670 .605 .550 .490 .460 4 1 5 .665 .590 .530 .490 .435 .410 

10 .830 .755 .700 .650 .600 .570 10 .750 .685 .635 .600 .560 .530 

15 .860 .795 .745 .705 .660 .630 15 .790 .735 .690 .660 .620 .600 

20 .880 .820 .780 .745 .705 .680 20 .815 .770 .730 .700 .665 .640 

25 .890 .835 .795 .765 .725 .700 25 .835 .790 .755 .730 .695 .670 

30 .900 .850 .810 .780 .750 .725 30 .845 .805 .770 .745 .715 .695 

p p 

l< t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 1 5 .700 .615 .555 .505 .455 .425 4 2 5 .630 .565 .510 .470 .425 .400 

10 .780 .710 .660 .620 .570 .545 10 .725 .670 .620 .585 .550 .520 

15 .815 .755 .710 .675 .635 .610 15 .770 .720 .680 .650 .615 .590 

20 .835 .785 .745 .715 .675 .650 20 .795 .750 .715 .685 .650 .630 

25 .850 .805 .770 .740 .705 .685 25 .815 .775 .740 .715 .685 .665 

30 .865 .820 .785 .760 .725 .705 30 .830 .790 .760 .740 .710 .690 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 2 5 .700 .615 .555 .505 .455 .425 4 3 5 .660 .585 .530 .485 .435 .410 

10 .775 .710 .660 .620 .570 .545 10 .750 .690 .640 .600 .560 .535 

15 .815 .755 .710 .675 .635 .610 15 .790 .735 .690 .660 .625 .600 

20 .835 .785 .745 .710 .670 .650 20 .815 .765 .730 .700 .660 .640 

25 .850 .805 .770 .740 .705 .685 25 .830 .790 .750 .725 .690 .670 

30 .865 .820 .785 .760 .725 .705 30 .845 .805 .770 .745 .720 .695 
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Table 3. C 
(continued) 

For Estimator /3 Selecting the t-best: Complete Sample Case 

Finding the smallest n required/or P(CS IR) ~ p 0 given values of k, t, o, p • and a= 0.50 

p p 

.80 .90 .95 .975 .99 .995 kt n .80 .90 .95 .975 .99 .995 

.640 .565 .515 .475 .430 .400 5 3 5 .600 .540 .490 .455 .410 .380 

.730 .670 .625 .590 .550 .520 10 .700 .645 .600 .570 .530 .505 

.775 .720 .680 .650 .610 .590 15 .745 .700 .660 .635 .600 .580 

.800 .755 .720 .690 .655 .630 20 .775 .735 .700 .670 .640 .620 

.820 .780 .745 .715 .680 .660 25 .800 .760 .730 .700 .670 .650 

.835 .795 .760 .735 .710 .690 30 .815 .780 .750 .725 .695 .675 

p p 
.80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

.600 .535 .490 .455 .415 .385 5 4 5 .640 .570 .515 .475 .430 .400 

.700 .645 .600 .570 .530 .510 10 .730 .670 .625 .590 .545 .520 

.745 .700 .660 .635 .600 .575 15 .770 .720 .680 .650 .610 .590 

.775 .735 .700 .675 .640 .620 20 .800 .755 .720 .690 .650 .630 

.795 .760 .730 .700 .670 .650 25 .820 .780 .745 .715 .685 .665 

.815 .780 .750 .720 .695 .680 30 .835 .795 .765 .740 .710 .690 
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Table 4. C 

For Estimator p Selecdng the t-best: Complete Sample Case 

Finding the smallest n required for P(CS IR)~ p" given values of k, t, 6, p * and a= 0. 75 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

2 1 5 .690 .565 .480 .420 .355 .320 4 1 5 .550 .435 .380 .335 .295 .285 

10 .770 .670 .595 .540 .475 .445 10 .660 .580 .520 .475 .430 .400 

15 .805 .720 .655 .610 .550 .515 15 .710 .640 .590 .550 .500 .475 

20 .830 .755 .700 .650 .600 .570 20 .745 .680 .635 .595 .550 .525 

25 .845 .770 .720 .680 .630 .600 25 .770 .710 .670 .635 .585 .560 

30 .855 .790 .740 .700 .655 .630 30 .785 .730 .690 .655 .620 .590 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 1 5 .595 .495 .425 .375 .320 .295 4 2 5 .515 .440 .380 .335 .295 .285 

10 .695 .610 .550 .500 .445 .420 10 .630 .560 .505 .465 .420 .390 

15 .745 .670 .615 .570 .520 .490 15 .680 .620 .570 .535 .490 .470 

20 .770 .705 .655 .615 .570 .540 20 .720 .660 .620 .580 .540 .510 

25 .795 .730 .685 .650 .600 .580 25 .745 .690 .650 .615 .580 .550 

30 .810 .750 .710 .675 .630 .605 30 .765 .715 .675 .645 .605 .585 

. 
p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 2 5 .590 .500 .425 .375 .320 .305 4 3 5 .550 .460 .395 .350 .300 .290 

10 .695 .610 .550 .495 .445 .415 10 .660 .580 .525 .480 .435 .405 

15 .740 .670 .615 .565 .520 .500 15 .710 .640 .590 .550 .505 .475 

20 .770 .705 .655 .615 .565 .540 20 .745 .680 .630 .595 .550 .520 

25 .795 .730 .685 .645 .600 .580 25 .765 .710 .665 .630 .590 .560 

30 .810 .750 .710 .675 .630 .600 30 .785 .730 .690 .655 .620 .595 
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Table 4. C 
(continued) 

For Estimator P Selecting the t-best: Complete Sample Case 

Finding the smallest n required for P(CS IR):?: p' given values of k, t, o, p • and a= 0. 75 

p p 

.80 .90 .95 .975 .99 .995 l< t n .80 .90 .95 .975 .99 .995 

.520 .440 .380 .340 .295 .285 5 3 5 .480 .410 .360 .320 .290 .285 

.630 .560 .505 .465 .415 .390 10 .595 .530 .480 .445 .400 .375 

.690 .625 .575 .535 .500 .465 15 .655 .595 .550 .520 .475 .450 

.725 .665 .620 .585 .540 .515 20 .690 .640 .600 .565 .525 .500 

.750 .695 .650 .620 .575 .550 25 .720 .670 .635 .600 .560 .540 

.770 .720 .675 .645 .605 .580 30 .745 .695 .660 .625 .590 .570 

p p 

.80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

.475 .405 .355 .315 .290 .285 5 4 5 .525 .440 .380 .335 .295 .290 

.595 .530 .480 .445 .400 .375 10 .630 .560 .510 .465 .420 .390 

.655 .600 .550 .520 .475 .450 15 .690 .625 .575 .535 .490 .465 

.695 .640 .600 .565 .525 .500 20 .725 .665 .620 .585 .540 .510 

.720 .670 .630 .600 .560 .540 25 .750 .695 .650 .620 .580 .555 

.740 .695 .660 .625 .590 .570 30 .770 .720 .680 .645 .605 .585 
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Table 5. C 

For Estimator /3 Selecting the t-best: Complete Sample Case 

Finding the smallest n required for P( CS I R) ;::: p · given values of k, t, t5 , and p * and a = 1 

p p 

k t n .80 .90 .95 .975 .99 .995 kt n .80 .90 .95 .975 .99 .995 

2 1 5 .620 .480 .390 .325 .270 .225 4 1 5 .470 .375 .310 .265 .210 .190 

10 .710 .600 .515 .455 .390 .355 IO .585 .500 .435 .390 .345 .320 

15 .760 .660 .590 .530 .470 .430 15 .650 .570 .510 .465 .420 .390 

20 .790 .700 .630 .560 .520 .490 20 .690 .605 .560 .515 .470 .435 

25 .805 .720 .660 .610 .560 .520 25 .715 .650 .595 .555 .515 .480 

30 .815 .745 .680 .635 .590 .550 30 .735 .670 .630 .585 .540 .510 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 1 5 .515 .410 .345 .280 .235 .215 4 2 5 .425 .345 .285 .245 .220 .180 

10 .630 .530 .460 .415 .360 .325 10 .550 .475 .415 .375 .350 .310 

15 .685 .600 .535 .485 .440 .400 15 .620 .545 .495 .450 .410 .375 

20 .720 .640 .580 .535 .490 .455 20 .655 .590 .540 .500 .460 .425 

25 .750 .670 .620 .575 .530 .495 25 .690 .630 .575 .540 .495 .470 

30 .760 .700 .645 .600 .560 .520 30 .710 .650 .605 .575 .530 .500 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 2 5 .510 .405 .335 .270 .230 .210 4 3 5 .460 .370 .310 .250 .220 .190 

10 .625 .530 .460 .410 .355 .325 10 .590 .500 .440 .390 .350 .335 

15 .685 .600 .535 .485 .440 .400 15 .650 .570 .515 .470 .420 .390 

20 .720 .640 .580 .535 .485 .455 20 .685 .615 .560 .515 .470 .435 

25 .740 .675 .615 .575 .530 .500 25 .715 .645 .595 .555 .510 .480 

30 .760 .695 .645 .605 .555 .520 30 .735 .670 .620 .585 .540 .515 
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Table 5. C 
(continued) 

For Estimator P Selecting the t-best: Complete Sample Case 

Finding the smallest n required for P(CS IR) ~ p • given values of k, t, <5, and p * and a = 1 

p p 

.80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

.435 .345 .275 .240 .205 .190 5 3 5 .385 .310 .260 .225 .195 .170 

.560 .475 .415 .375 .340 .315 10 .515 .440 .395 .355 .330 .290 

.620 .550 .495 .455 .400 .375 15 .580 .520 .470 .435 .390 .355 

.665 .595 .545 .505 .460 .430 20 .630 .570 .520 .485 .440 .415 

.695 .630 .575 .540 .495 .470 25 .660 .600 .560 .525 .480 .455 

.715 .655 .605 .575 .530 .500 30 .685 .630 .585 .555 .515 .485 

p p 

.80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

.385 .300 .255 .220 .195 .175 5 4 5 .435 .350 .295 .245 .205 .200 

.515 .440 .395 .355 .325 .290 10 .555 .480 .415 .375 .355 .325 

.580 .520 .475 .435 .390 .360 15 .625 .550 .495 .455 .410 .375 

.630 .570 .520 .485 .440 .410 20 .665 .600 .545 .505 .455 .425 

.660 .600 .560 .525 .480 .455 25 .695 .630 .580 .540 .495 .475 

.685 .630 .585 .550 .520 .490 30 .715 .660 .615 .575 .535 .500 
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Table 6. C 

For Estimator /3 Selecting the t-best: Complete Sample Case 

Finding the smallest n required for P(CS IR) ::C: p 0 given values of k, t, o, p • and a= 2.0 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

2 1 5 .450 .295 .210 .155 .105 .090 4 1 5 .285 .195 .140 .105 .075 .060 

10 .590 .440 .350 .280 .220 .190 10 .425 .330 .260 .220 .180 .150 

15 .650 .520 .430 .370 .300 .260 15 .505 .410 .345 .300 .250 .220 

20 .695 .570 .490 .430 .370 .330 20 .560 .470 .405 .360 .310 .275 

25 .720 .605 .525 .465 .400 .365 25 .595 .510 .450 .405 .350 .320 

30 .740 .635 .560 .495 .440 .400 30 .620 .540 .485 .435 .385 .355 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 1 5 .330 .225 .160 .120 .085 .070 4 2 5 .245 .170 .125 .095 .070 .055 

10 .480 .365 .295 .240 .190 .165 10 .390 .300 .245 .205 .170 .145 

15 .555 .445 .375 .325 .270 .235 15 .470 .385 .330 .285 .245 .210 

20 .600 .500 .435 .380 .325 .290 20 .525 .445 .385 .340 .285 .260 

25 .640 .540 .475 .425 .365 .335 25 .560 .485 .430 .390 .340 .310 

30 .660 .575 .510 .455 .405 .370 30 .595 .515 .465 .420 .375 .345 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 2 5 .330 .220 .160 .120 .085 .070 4 3 5 .280 .190 .140 .105 .075 .060 

10 .475 .365 .295 .240 .190 .160 10 .430 .335 .270 .220 .180 .150 

15 .555 .450 .375 .320 .270 .235 15 .505 .410 .345 .300 .260 .220 

20 .600 .500 .435 .375 .325 .290 20 .555 .470 .405 .355 .300 .270 

25 .635 .540 .475 .420 .365 .340 25 .595 .510 .445 .400 .350 .320 

30 .660 .575 .510 .460 .405 .370 30 .620 .540 .485 .435 .390 .360 
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Table 6. C 
(continued) 

For Estimator /3 Selecting the t-best : Complete Sample Case 

Finding the smallest n required for P(CS IR) ~ p • given values of 1c, t, t5 , p • and a = 2. 0 

p p 

.80 .90 .95 .975 .99 .995 kt n .80 .90 .95 .975 .99 .995 

.250 .175 .125 .095 .070 .060 5 3 5 .210 .145 .110 .085 .065 .055 

.395 .305 .245 .205 .170 .140 10 .350 .270 .225 .190 .150 .130 

.480 .390 .330 .285 .235 .210 15 .430 .355 .305 .265 .225 .200 

.530 .450 .390 .345 .295 .265 20 .485 .415 .360 .320 .280 .250 

.570 .490 .430 .385 .335 .310 25 .530 .455 .405 .365 .325 .295 

.600 .520 .465 .420 .370 .340 30 .560 .490 .440 .400 .355 .330 

. 
p p 

.80 .90 .95 .975 .99 .995 kt n .80 .90 .95 .975 .99 .995 

.205 .145 .110 .085 .065 .055 5 4 5 .250 .170 .130 .100 .070 .060 

.350 .270 .225 .190 .150 .130 10 .395 .310 .250 .205 .170 .145 

.430 .355 .305 .265 .225 .200 15 .475 .390 .330 .285 .240 .210 

.485 .415 .360 .320 .280 .250 20 .530 .450 .390 .340 .290 .260 

.530 .455 .405 .365 .325 .295 25 .570 .490 .430 .385 .340 .310 

.560 .490 .440 .400 .355 .325 30 .600 .525 .465 .425 .380 .350 
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Table 7. C 

For Estimator /3 Selecting the t-best : Complete Sample Case 

Finding the smallest n required for P( CS I R) ~ p · given values of k, t, <5 , p * and a = 3. 0 

p p 

k t n .80 .90 .95 .975 .99 .995 kt n .80 .90 .95 .975 .99 .995 

2 1 5 .375 .220 .140 .095 .060 .045 4 I 5 .205 .125 .085 .060 .035 .030 

10 .530 .380 .280 .215 .160 .130 10 .365 .265 .200 .160 .120 .llO 

15 .605 .465 .375 .305 .240 .200 15 .450 .350 .285 .240 .190 .160 

20 .655 .525 .435 .370 .3 10 .270 20 .510 .415 .350 .300 .250 .215 

25 .680 .560 .475 .410 .350 .310 25 .555 .460 .395 .345 .295 .265 

30 .710 .590 .510 .445 .380 .345 30 .580 .495 .430 .380 .330 .295 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 1 5 .250 .155 .100 .070 .045 .035 4 2 5 .170 .105 .070 .050 .035 .025 

10 .415 .300 .230 .175 .130 .105 10 .325 .240 .190 .145 . llO .090 

15 .500 .390 .315 .260 .205 .175 15 .410 .325 .265 .225 .185 .150 

20 .550 .450 .375 .3 15 .270 .235 20 .425 .390 .330 .280 .230 .200 

25 .595 .495 .425 .365 .310 .280 25 .510 .430 .375 .330 .280 .255 

30 .620 .525 .460 .405 .350 .310 30 .545 .470 .410 .365 .315 .285 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 2 5 .250 .155 .100 .070 .040 .030 4 3 5 .200 .120 .080 .055 .035 .025 

10 .415 .300 .230 .175 .130 .105 10 .365 .270 .205 .160 .120 .100 

15 .500 .390 .315 .260 .205 .175 15 .450 .350 .285 .240 .195 .160 

20 .550 .450 .375 .320 .270 .230 20 .505 .410 .345 .295 .245 .215 

25 .595 .490 .420 .365 .310 .280 25 .550 .460 .390 .345 .300 .260 

30 .620 .530 .460 .405 .350 .310 30 .580 .490 .430 .380 .330 .300 
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Table 7. C 
(continued) 

For Estimator /3 Selecting the t-best : Complete Sample Case 

Finding the smallest n required for P( CS I R) ~ p · given values of k, t, t5 , p • and a = 3. 0 

p p 

.80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

.175 .110 .075 .050 .035 .025 5 3 5 .140 .090 .060 .040 .030 .020 

.330 .240 .185 .145 .110 .090 IO .285 .210 .160 .130 .100 .080 

.420 .330 .270 .225 .180 .155 15 .370 .295 .245 .205 .165 .140 

.480 .390 .330 .285 .240 .210 20 .430 .360 .305 .260 .220 .190 

.525 .440 .375 .325 .280 .250 25 .480 .400 .350 .305 .265 .240 

.555 .470 .410 .365 .320 .280 30 .510 .440 .385 .345 .300 .270 

p p 

.80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

.140 .085 .060 .040 .030 .020 5 4 5 .180 .110 .075 .050 .035 .025 

.285 .210 .160 .130 .100 .080 IO .330 .240 .185 .145 .110 .090 

.370 .295 .245 .205 .165 .140 15 .420 .330 .270 .225 .180 .150 

.430 .360 .305 .260 .220 .190 20 .480 .390 .330 .280 .230 .200 

.480 .400 .350 .305 .265 .240 25 .520 .435 .375 .325 .280 .255 

.510 .440 .385 .345 .295 .270 30 .555 .470 .415 .365 .320 .290 
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Tabl.e 8. C 

For Estimator /3 Selecting the t-best : Complete Sample Case 

Finding the small.est n required for P( CS I R) ?:. p • given values of k, t, t5 , p * and a = 4 . 0 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

2 1 5 .330 .175 .105 .065 .040 .025 4 1 5 .165 .095 .055 .035 .020 .015 

10 .505 .345 .250 .185 .130 .100 10 .335 .230 .170 .130 .090 .075 

15 .585 .440 .340 .275 .210 .175 15 .420 .320 .260 .205 .165 .135 

20 .635 .500 .410 .345 .280 .240 20 .485 .390 .320 .275 .215 .190 

25 .665 .540 .450 .385 .320 .280 25 .525 .435 .370 .320 .270 .240 

30 .695 .570 .485 .425 .355 .320 30 .560 .470 .410 .355 .300 .270 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 1 5 .210 .115 .070 .045 .025 .020 42 5 .135 .075 .045 .030 .020 .015 

10 .385 .270 .195 .145 .105 .080 10 .290 .210 .155 .115 .085 .065 

15 .475 .360 .285 .230 .180 .150 15 .385 .295 .240 .195 .155 .130 

20 .530 .420 .350 .295 .235 .210 20 .445 .360 .300 .255 .205 .175 

25 .575 .470 .395 .345 .285 .250 25 .490 .410 .350 .305 .255 .225 

30 .605 .505 .435 .380 .325 .290 30 .525 .445 .385 .340 .290 .260 

. 
p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 2 5 .210 .115 .070 .045 .025 .015 4 3 5 .165 .090 .055 .035 .020 .015 

10 .385 .270 .195 .145 .100 .080 10 .335 .235 .175 .130 .090 .070 

15 .475 .360 .285 .230 .180 .150 15 .420 .325 .260 .210 .165 .135 

20 .530 .420 .350 .295 .240 .210 20 .480 .385 .320 .270 .215 .190 

25 .575 .470 .395 .340 .285 .250 25 .530 .430 .370 .320 .265 .235 

30 .600 .505 .435 .380 .320 .290 30 .560 .470 .405 .355 .305 .270 
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Table 8. C 
(continued) 

For Estimator p Seleding the t-best : Complete Sample Case 

Finding the smallest n required/or P(CS IR) 2: p • given values of k, t, o, p • and a = 4 .0 

. 
p p 

.80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

.140 .080 .050 .030 .020 .015 5 3 5 .105 .060 .040 .025 .015 .010 

.295 .210 .150 .115 .085 .065 10 .250 .180 .130 .105 .070 .055 

.395 .300 .240 .195 .155 .130 15 .345 .270 .215 .175 .140 .115 

.455 .365 .305 .255 .205 .180 20 .405 .330 .275 .235 .190 .170 

.500 .410 .350 .300 .255 .230 25 .450 .380 .320 .280 .235 .210 

.535 .450 .390 .340 .290 .260 30 .490 .415 .360 .320 .275 .245 

. 
p p 

.80 .90 .95 .975 .99 .995 l< t n .80 .90 .95 .975 .99 .995 

.105 .060 .040 .025 .015 .010 5 4 5 .140 .080 .050 .030 .020 .015 

.250 .180 .130 .105 .070 .055 10 .300 .210 .150 .115 .085 .065 

.345 .270 .215 .175 .140 .115 15 .390 .300 .240 .195 .150 .125 

.405 .330 .280 .235 .195 .170 20 .455 .365 .300 .255 .205 .180 

.450 .380 .320 .280 .235 .210 25 .500 .410 .350 .305 .255 .230 

.490 .415 .360 .320 .275 .245 30 .530 .450 .390 .345 .295 .265 
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Table 9. C 

For Estimator /J Selecting the t-best: Complete Sample Case 

Finding the smallest n required for P( CS I R) ~ p · given values of k, t, /j , p • and a = 5. 0 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

2 1 5 .305 .150 .080 .050 .025 .015 4 1 5 .140 .075 .040 .025 .015 .010 

10 .490 .330 .230 .170 .llO .090 10 .3 15 .215 .150 .ll5 .075 .060 

15 .570 .425 .330 .265 .195 .160 15 .405 .310 .240 .195 .145 .120 

20 .630 .490 .395 .330 .265 .230 20 .470 .375 .310 .260 .205 .180 

25 .655 .530 .440 .370 .305 .270 25 .520 .420 .360 .305 .255 .225 

30 .685 .560 .475 .410 .340 .305 30 .545 .460 .395 .345 .285 .255 

p p 

k t n .80 .90 .95 .975 .99 .995 kt n .80 .90 .95 .975 .99 .995 

3 1 5 .180 .090 .055 .030 .020 .010 4 2 5 .ll5 .060 .035 .020 .010 .005 

10 .365 .250 .175 .130 .090 .065 10 .275 .190 .135 .100 .070 .050 

15 .460 .345 .270 .215 .160 .130 15 .370 .280 .220 .180 .135 .ll5 

20 .520 .410 .335 .275 .225 .190 20 .435 .350 .285 .240 .190 .160 

25 .560 .460 .385 .330 .270 .240 25 .475 .395 .335 .290 .240 .210 

30 .595 .495 .420 .365 .305 .275 30 .515 .430 .370 .325 .275 .250 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 2 5 .180 .090 .050 .030 .020 .010 4 3 5 .140 .070 .040 .025 .015 .010 

10 .365 .250 .175 .130 .085 .065 10 .315 .220 .160 .ll5 .080 .060 

15 .460 .350 .270 .215 .160 .130 15 .405 .310 .245 .195 .150 .120 

20 .520 .410 .335 .280 .225 .190 20 .470 .370 .305 .255 .200 .175 

25 .560 .460 .385 .325 .270 .240 25 .520 .420 .355 .305 .250 .220 

30 .590 .495 .420 .370 .305 .275 30 .550 .455 .390 .345 .290 .260 
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Table 9. C 
(continued) 

For Estimator p Selecting the t-best : Complete Sample Case 

Finding the smallest n required for P( CS I R) :?: p · given values of k, t, <5 , p • and a = 5. 0 

. 
p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 

5 .115 .060 .035 .020 .010 .005 5 3 5 .085 .045 .025 .015 .010 

IO .280 .190 .135 .100 .070 .050 IO .235 .160 .115 .085 .060 

15 .380 .290 .225 .180 .135 .110 15 .330 .255 .200 .165 .120 

20 .440 .350 .290 .245 .190 .165 20 .390 .320 .260 .220 .175 

25 .490 .400 .340 .290 .240 .210 25 .440 .365 .310 .265 .225 

30 .520 .440 .375 .325 .275 .245 30 .480 .405 .350 .305 .260 

. 
p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 

5 .085 .045 .025 .015 .010 .005 5 4 5 .115 .060 .035 .020 .010 

IO .235 .160 .120 .085 .060 .045 IO .280 .190 .135 .100 .070 

15 .330 .250 .200 .165 .120 .100 15 .375 .285 .225 .180 .135 

20 .390 .320 .265 .220 .175 .150 20 .440 .350 .290 .240 .190 

25 .440 .365 .3 10 .265 .225 .200 25 .485 .400 .335 .290 .240 

30 .480 .405 .350 .305 .255 .230 30 .520 .440 .375 .330 .280 
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Tablel.D 

8 • values when using the estimator a 

. 
p p 

kt n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

2 1 5 .630 .490 .390 .320 .250 .210 4 1 5 .500 .395 .320 .260 .200 .175 

10 .745 .635 .555 .500 .430 .390 10 .640 .550 .490 .435 .375 .345 

15 .790 .700 .635 .575 .520 .480 15 .700 .625 .570 .525 .470 .435 

20 .820 .740 .675 .625 .570 .540 20 .736 .670 .615 .575 .530 .500 

25 .845 .765 .710 .665 .610 .580 25 .765 .700 .655 .615 .570 .540 

30 .850 .785 .730 .690 .640 .610 30 .780 .725 .680 .645 .600 .570 

. 
p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 1 5 .540 .420 .340 .280 .220 .210 4 2 5 .440 .355 .285 .240 .195 .175 

10 .670 .580 .510 .455 .400 .390 10 .595 .530 .470 .420 .370 .340 

15 .730 .650 .590 .540 .480 .480 15 .660 .610 .555 .510 .460 .430 

20 .760 .690 .640 .595 .540 .540 20 .705 .655 .610 .565 .520 .490 

25 .785 .720 .670 .630 .580 .580 25 .735 .690 .640 .605 .565 .540 

30 .805 .745 .695 .660 .615 .610 30 .755 .715 .670 .640 .600 .570 

. 
p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 2 5 .510 .400 .320 .265 .210 .185 4 3 5 .455 .355 .285 .240 .195 .175 

10 .655 .565 .500 .445 .385 .355 10 .615 .530 .470 .420 .370 .340 

15 .720 .640 .580 .530 .480 .445 15 .680 .610 .555 .510 .460 .430 

20 .750 .685 .630 .585 .540 .510 20 .720 .655 .610 .565 .520 .490 

25 .780 .715 .665 .625 .580 .550 25 .750 .690 .640 .605 .565 .540 

30 .800 .740 .690 .665 .610 .580 30 .770 .715 .670 .640 .600 .570 
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p 

k t n .80 .90 .95 

5 1 5 .475 .380 .305 

10 .620 .535 .470 

15 .680 .610 .560 

20 .720 .660 .610 

25 .745 .690 .640 

30 .765 .710 .670 

. 
p 

k t n .80 .90 .95 

5 2 5 .405 .320 .260 

10 .565 .490 .440 

15 .635 .570 .520 

20 .680 .625 .580 

25 .710 .660 .615 

30 .730 .685 .645 

Tablel.D 
(continued) 

8 • values when using the estimator a 

.975 .99 .995 k t n .80 

.250 .195 .180 5 3 5 .390 

.425 .370 .340 10 .555 

.510 .460 .430 15 .625 

.565 .520 .490 20 .675 

.605 .560 .530 25 .705 

.630 .590 .565 30 .730 

.975 .99 .995 k t n .80 

.220 .190 .170 5 4 5 .420 

.395 .345 .320 10 .580 

.485 .440 .410 15 .655 

.545 .500 .470 20 .700 

.580 .540 .510 25 .730 

.615 .575 .550 30 .755 

79 

p 

.90 .95 .975 .99 .995 

.310 .250 .210 .190 .170 

.480 .430 .390 .345 .310 

.565 .520 .480 .430 .400 

.620 .575 .540 .495 .470 

.655 .610 .580 .540 .510 

.680 .640 .610 .570 .550 

p 

.90 .95 .975 .99 .995 

.330 .265 .220 .190 .170 

.505 .450 .405 .355 .325 

.590 .540 .495 .450 .420 

.640 .590 .555 .510 .480 

.675 .630 .595 .550 .525 

.700 .660 .625 .580 .560 
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k t 

2 1 

k t 

3 1 

kt 

3 2 

k t 

4 1 

Table 1. E 

For Estimator /3 Selecting the t-best : Complete Large Sample Approximation Case 

Finding the smallest n required for P(CS IR)~ p" given values of k, t, o, p • and a= 0.25 

p p 
n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .945 .920 .900 .880 .860 .845 4 2 30 .910 .885 .870 .855 .835 .825 

40 .955 .930 .910 .895 .880 .865 40 .920 .900 .885 .870 .855 .845 

50 .960 .940 .920 .905 .890 .880 50 .930 .910 .895 .885 .870 .860 

75 .965 .950 .935 .925 .910 .900 75 .940 .925 .915 .905 .890 .885 

. 
p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .930 .905 .885 .865 .850 .835 4 3 30 .915 .895 .875 .860 .840 .825 

40 .940 .915 .900 .885 .865 .855 40 .930 .905 .890 .875 .860 .850 

50 .945 .925 .910 .895 .880 .870 50 .935 .915 .900 .890 .875 .865 

75 .955 .940 .925 .915 .900 .890 75 .945 .930 .920 .910 .900 .890 

. 
p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .925 .900 .880 .865 .845 .835 5 1 30 .910 .890 .870 .855 .835 .825 

40 .935 .915 .900 .885 .865 .855 40 .925 .900 .885 .875 .855 .845 

50 .945 .920 .910 .895 .880 .870 50 .930 .910 .900 .885 .870 .860 

75 .950 .935 .925 .915 .900 .890 75 .945 .930 .915 .905 .890 .885 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .920 .895 .875 .860 .840 .830 5 2 30 .900 .880 .860 .845 .830 .820 

40 .930 .910 .890 .875 .860 .855 40 .910 .895 .880 .865 .850 .840 

50 .935 .920 .900 .890 .875 .865 50 .920 .905 .890 .880 .865 .855 

75 .950 .930 .920 .910 .895 .885 75 .935 .920 .910 .900 .890 .880 
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kt 

5 3 

Table I. E 
(continued) 

For Estimator p Selecting the t-best : Complete Large Sample Approximation Case 

Finding the smallest n required for P(CS IR)~ p' given values of k, t, c5, p • and a= 0.25 

p p 

n .80 .90 .95 .975 .99 .995 I< t n .80 .90 .95 .975 .99 .995 

30 .900 .880 .860 .845 .830 .815 5 4 30 .910 .890 .870 .855 .835 .820 

40 .910 .890 .880 .865 .850 .840 40 .920 .900 .885 .870 .855 .845 

50 .920 .900 .890 .880 .865 .855 50 .930 .910 .895 .885 .870 .860 

75 .935 .920 .910 .900 .890 .880 75 .940 .925 .915 .905 .890 .880 
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k t 

2 1 

k t 

3 1 

k t 

3 2 

k t 

4 1 

n 

Table 2. E 

For Estimator /3 Selecting the t-best : Complete Large Sample Approxi.mation Case 

Finding the smallest n required for P(CS IR) ~ p · given values of k, t, 8, p • and a = 0. 5 

p p 

.80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .900 .850 .810 .780 .740 .720 4 2 30 .830 .790 .760 .730 .700 .680 

40 .910 .870 .835 .805 .775 .750 40 .850 .815 .790 .765 .735 .715 

50 .920 .880 .850 .825 .795 .775 50 .865 .835 .810 .785 .760 .745 

75 .935 .900 .880 .855 .830 .815 75 .890 .860 .840 .820 .800 .785 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .865 .820 .785 .755 .720 .700 4 3 30 .840 .800 .770 .740 .710 .685 

40 .880 .840 .810 .785 .755 . 735 40 .860 .825 795 . .770 .740 .720 

50 .895 .860 .830 .805 .780 .760 50 .875 .840 .815 .790 .765 .750 

75 .910 .880 .860 .840 .815 .800 75 .900 .870 .850 .830 .805 .790 

p p 

n .80 .90 .95 .975 .99 .995 ~ t n .80 .90 .95 .975 .99 .995 

30 .860 .815 .780 .755 .720 .700 5 1 30 .840 .800 .765 .735 .700 .680 

40 .880 .840 .810 .785 .750 .735 40 .855 .820 .790 .770 .740 .720 

50 .890 .855 .830 .805 .780 .760 50 .870 .840 .810 .790 .760 .745 

75 .910 .880 .860 .840 .810 .800 75 .890 .865 .840 .825 .800 .790 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .850 .805 .770 .745 .710 .690 5 2 30 .815 .775 .745 .720 .690 .670 

40 .865 .830 .800 .775 .740 .725 40 .835 .800 .775 .750 .725 .710 

50 .880 .845 .820 .795 .770 .750 50 .850 .820 .800 .775 .750 .735 

75 .900 .870 .850 .830 .810 .790 75 .875 .850 .830 .815 .790 .780 
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Table 2. E 
(continued) 

For Estimator /3 Selecting the t-best : Complete Large Sample Approximation Case 

Finding the smallest n required for P( CS I R) :2: p' given values of k, t, t5 , p * and a = 0. 5 

p p 

.80 .90 .95 .975 .99 .995 I< t n .80 .90 .95 .975 .99 .995 

.810 .770 .740 .720 .690 .670 5 4 30 .830 .790 .755 .730 .700 .680 

.835 .800 .775 .750 .725 .705 40 .850 .815 .785 .760 .730 .715 

.850 .820 .795 .775 .750 .735 50 .865 .830 .810 .785 .760 .740 

.875 .850 .830 .815 .790 .780 75 .890 .860 .840 .820 .800 .785 
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Table 3. E 

~ 

For Estimator /J Selecting the t-best : Complete Large Sample Approximation Case 

Finding the smallest n required for P(CS IR)~ p" given values of k, t, o, p * and a= 0. 75 

. 
p p 

k t n .80 .90 .95 .975 .99 .995 kt n .80 .90 .95 .975 .99 .995 

2 1 30 .860 .790 .740 .695 .645 .615 4 2 30 .760 .710 .675 .635 .590 .560 

40 .875 .815 .770 .730 .690 .660 40 .790 .745 .705 .675 .635 .610 

50 .890 .835 .790 .755 .715 .690 50 .810 .770 .735 .705 .670 .650 

75 .910 .860 .830 .795 .760 .740 75 .845 .805 .780 .750 .725 .705 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 1 30 .810 .750 .705 .665 .620 .590 4 3 30 .775 .720 .680 .640 .595 .570 

40 .835 .780 .740 .705 .665 .640 40 .805 .755 .715 .685 .645 .620 

50 .850 .800 .765 .735 .695 .670 50 .825 .780 .740 .715 .680 .655 

75 .875 .835 .800 .775 .745 .725 75 .855 .815 .785 .760 .730 .710 

. 
p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

3 2 30 .805 .745 .700 .660 .615 .585 5 1 30 .775 .720 .680 .640 .600 .570 

40 .830 .775 .735 .700 .660 .630 40 .800 .755 .715 .680 .640 .620 

50 .845 .800 .760 .730 .690 .670 50 .820 .775 .740 .710 .670 .650 

75 .870 .830 .800 .775 .740 .720 75 .850 .815 .780 .755 .730 .710 

p p 

k t n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

4 1 30 .790 .730 .690 .650 .605 .580 5 2 30 .740 .690 .650 .620 .575 .550 

40 .815 .765 .725 .690 .650 .625 40 .770 .730 .690 .660 .625 .600 

50 .830 .790 .750 .720 .680 .660 50 .795 .750 .720 .695 .660 .640 

75 .860 .820 .790 .765 .730 .715 75 .830 .795 .765 .740 .710 .695 
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5 3 

~ 

Table 3. E 
(continued) 

For Estimator P Selecting the t-best : Complete Large Sample Approxi.mation Case 

Finding the smallest n required for P(CS IR) ~ p · given values of le, t, <5, p • and a = 0. 7 5 

p p 

n .80 .90 .95 .975 .99 .995 li t n .80 .90 .95 .975 .99 .995 

30 .735 .690 .650 .615 .575 .550 5 4 30 .760 .705 .660 .625 .585 .560 

40 .770 .725 .690 .660 .620 .600 40 .790 .740 .700 .670 .630 .610 

50 .790 .750 .720 .690 .660 .635 50 .810 .765 .730 .705 .670 .645 

75 .825 .790 .760 .740 .710 .695 75 .845 .805 .775 .750 .720 .705 

86 



k t 

2 1 

k t 

3 1 

k t 

3 2 

kt 

4 1 

Table 4. E 

For Estimator /3 Selecting the t-best : Complete Large Sample Approxi.mation Case 

Finding the smallest n required for P( CS I R) ::::: p · given values of k, t, t5 , p • and a = 1. 00 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .825 .740 .680 .625 .570 .530 42 30 .710 .645 .595 .555 .510 .485 

40 .845 .775 .715 .670 .620 .580 40 .740 .685 .640 .605 .555 .530 

50 .860 .795 .745 .700 .650 .620 50 .765 .715 .670 .640 .600 .570 

75 .885 .830 .785 .750 .710 .680 75 .805 .760 .730 .695 .660 .640 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .770 .695 .640 .595 .540 .550 4 3 30 .720 .655 .605 .560 .510 .485 

40 .795 .730 .680 .640 .590 .560 40 .760 .700 .650 .610 .565 .535 

50 .815 .760 .710 .675 .625 .600 50 .780 .725 .680 .645 .605 .580 

75 .845 .800 .760 .725 .685 .660 75 .820 .770 .735 .705 .670 .645 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .760 .685 .630 .585 .530 .500 5 1 30 .730 .660 .610 .565 .510 .490 

40 .790 .725 .675 .635 .580 .550 40 .760 .700 .650 .615 .565 .535 

50 .810 .750 .705 .665 .620 .590 50 . 780 .725 .685 .645 600 . .575 

75 .840 .790 .750 .720 .680 .660 75 .815 .770 .730 .705 .665 .640 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .745 .675 .620 .575 .520 .495 5 2 30 .685 .625 .580 .535 .490 .480 

40 .775 .710 .665 .625 .575 .545 40 .720 .670 .625 .590 .545 .515 

50 .790 .740 .695 .655 .610 .585 50 .745 .700 .660 .625 .585 .560 

75 .830 .780 .740 .710 .670 .650 75 .790 .745 .710 .685 .650 .630 
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Table 4. E 
(continued) 

For Estimator /J Selecting the t-best : Complete Large Sample Approximation Case 

Finding the smallest n required for P( CS I R) ;;:: p • given values of k, t, o , p * and a = 1. 00 

p p 

.80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

.675 .620 .570 .530 .490 .480 5 4 30 .700 .635 .585 .545 .490 .480 

.715 .660 .620 .585 .540 .510 40 .740 .680 .635 .595 .550 .525 

.740 .690 .650 .620 .580 .555 50 .760 .710 .670 .635 .590 .565 

.785 .740 .710 .680 .650 .625 75 .805 .760 .725 .695 .660 .635 
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k t 

2 1 

k t 

3 1 

kt 

3 2 

k t 

4 1 

Table 5. E 

For Estimator /3 Selecting the t-best : Complete Large Sample ApproximationCase 

Finding the smallest n required for P(CS IR)~ p · given values of k, t, <5, p • and a = 1.25 

. 
p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .795 .705 .630 .575 .505 .465 4 2 30 .670 .595 .540 .490 .440 .400 

40 .820 .740 .675 .625 .565 .525 40 .705 .640 .590 .550 .495 .465 

50 .840 .765 .705 .655 .600 .565 50 .730 .675 .625 .585 .540 .510 

75 .870 .805 .755 .715 .665 .635 75 .775 .725 .685 .655 .610 .585 

. 
p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .735 .655 .590 .540 .480 .435 4 3 30 .680 .605 .550 .500 .440 .400 

40 .770 .695 .640 .590 .530 .500 40 .720 .650 .600 .555 .505 .470 

50 .790 .720 .670 .625 .575 .540 50 .745 .685 .635 .595 .550 .520 

75 .825 .765 .720 .685 .640 .610 75 .790 .740 .695 .660 .620 .590 

. . 
p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .720 .640 .575 .525 .460 .425 5 1 30 .690 .615 .555 .510 .450 .410 

40 .755 .680 .625 .580 .525 .490 40 .725 .660 .605 .560 .510 .475 

50 .780 .710 .660 .615 .570 .535 50 .750 .690 .640 .600 .550 .520 

75 .815 .760 .715 .680 .640 .610 75 .790 .735 .690 .660 .620 .590 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .710 .630 .570 .520 .460 .420 5 2 30 .640 .575 .520 .475 .420 .395 

40 .740 .670 .620 .575 .520 .485 40 .680 .620 .570 .535 .485 .450 

50 .765 .705 .650 .610 .560 .530 50 .710 .655 .610 .575 .530 .500 

75 .805 .750 .705 .670 .625 .600 75 .755 .710 .670 .640 .600 .575 
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k t 

5 3 

~ 

Table 5. E 
(continued) 

For Estimator P Selecting the t-best : Complete Large Sample Approximation Case 

Finding the smallest n required for P(CS IR) ~ p • given values of k, t, o, p • and a = 1.25 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .630 .565 .515 .465 .415 .380 5 4 30 .655 .585 .530 .480 .430 .375 

40 .675 .615 .570 .525 .480 .445 40 .695 .630 .580 .540 .490 .455 

50 .705 .650 .605 .565 .525 .495 50 .725 .670 .620 .580 .540 .505 

75 .750 .705 .665 .635 .600 .570 75 .770 .720 .680 .650 .610 .580 
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k t 

2 1 

k t 

3 1 

k t 

3 2 

k t 

4 1 

n 

Table 6. E 

For Estimator /3 Selecting the t-best.: Complete Large Sample Approxi.mation Case 

Finding the smallest n required for P(CS IR)~ p 0 given values of k, t, i5, p * and a= 1.5 

p p 

.80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .775 .675 .595 .535 .460 .415 4 2 30 .640 .560 .500 .445 .390 .345 

40 .805 .715 .645 .585 .520 .480 40 .680 .605 .550 .505 .450 .415 

50 .820 .740 .675 .625 .560 .530 50 .705 .640 .590 .550 .500 .470 

75 .850 .780 .730 .685 .630 .600 75 .755 .700 .655 .620 .575 .550 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .710 .620 .555 .495 .430 .390 4 3 30 .640 .560 .500 .445 .390 .345 

40 .745 .665 .600 .550 .490 .450 40 .690 .615 .560 .515 .455 .420 

50 .765 .695 .640 .590 .540 .500 50 .720 .655 .600 .555 .505 .470 

75 .805 .740 .695 .655 .605 .575 75 .770 .710 .665 .630 .580 .555 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .690 .605 .535 .480 .415 .370 5 1 30 .660 .580 .520 .465 .410 .360 

40 .730 .650 .590 .540 .480 .440 40 .700 .625 .570 .520 .465 .430 

50 .755 .680 .625 .580 .525 .490 50 .725 .660 .605 .565 .510 .480 

75 .800 .735 .685 .650 .600 .570 75 .770 .710 .665 .630 .580 .555 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .680 .600 .530 .475 .415 .370 5 2 30 .610 .535 .480 .430 .370 .330 

40 .715 .640 .585 .535 .475 .440 40 .650 .585 .535 .490 .440 .400 

50 .740 .675 .620 .575 .520 .485 50 .680 .620 .575 .535 .490 .455 

75 .780 .725 .675 .640 .590 .575 75 .735 .680 .640 .605 .560 .540 
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Table 6. E 
(continued) 

For Estimator p Selecting the t-best : Complete Large Sample Approximation Case 

Finding the smallest n required for P( CS I R) ~ p • given values of k, t, t5 , p • and a = 1. 5 

p p 

.80 .90 .95 .975 .99 .995 I< t n .80 .90 .95 .975 .99 .995 

.595 .525 .470 .420 .360 .320 5 4 30 .620 .540 .480 .430 .370 .330 

.640 .580 .525 .485 .430 .395 40 .665 .595 .540 .495 .440 .410 

.675 .615 .570 .525 .480 .450 50 .700 .635 .580 .540 .490 .460 

.725 .675 .635 .600 .560 .530 75 .750 .690 .650 .615 .570 .540 
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k t n 
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k t n 
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k t n 

3 2 30 
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k t n 

4 1 30 

40 

50 

75 

Table 1. F 

For Estimator fJ Selecting the t-best : Complete Large Sample Approximation Case 

Finding the smallest n required for P(CS IR) :2: p' given values of k, t, o, p * and a= 0.25 

p p 
.80 .90 .95 .975 .99 .995 kt n .80 .90 .95 .975 .99 .995 

.945 .920 .900 .880 .860 .850 4 2 30 .910 .885 .870 .855 .835 .825 

.955 .930 .910 .895 .880 .865 40 .920 .900 .885 .870 .855 .845 

.960 .935 .920 .905 .890 .880 50 .930 .910 .895 .885 .870 .860 

.965 .950 .935 .925 .910 .900 75 .940 .925 .915 .905 .890 .885 

p p 
.80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

.925 .905 .885 .865 .845 .835 4 3 30 .910 .885 .870 .855 .835 .825 

.935 .915 .900 .885 .865 .855 40 .920 .900 .885 .870 .855 .845 

.945 .925 .910 .895 .880 .870 50 .930 .910 .895 .885 .870 .860 

.950 .940 .925 .915 .900 .890 75 .940 .925 .910 .905 .890 .885 

p p 

.80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

.925 .905 .885 .865 .845 .835 5 1 30 .910 .890 .870 .855 .835 .825 

.935 .915 .900 .885 .865 .855 40 .920 .905 .885 .875 .855 .845 

.945 .925 .910 .895 .880 .870 50 .930 .910 .900 .885 .870 .860 

.950 .940 .925 .915 .900 .890 75 .940 .930 .915 .905 .890 .885 

p p 

.80 .90 .95 .975 .99 .995 kt n .80 .90 .95 .975 .99 .995 

.915 .895 .875 .860 .840 .830 5 2 30 .900 .880 .860 .845 .830 .820 

.930 .905 .890 .880 .860 .850 40 .910 .895 .880 .865 .850 .840 

.935 .915 .900 .890 .875 .865 50 .920 .905 .890 .880 .865 .855 

.945 .930 .920 .910 .895 .890 75 .935 .920 .910 .900 .890 .880 
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Table I. F 
(continued) 

For Estimator /3 Selecting the t-best: Complete Large Sample Approximation Case 

Finding the smallest n required for P(CS IR) 2 p" given values of k, t, <5, p • and a= 0.25 

p p 

.80 .90 .95 .975 .99 .995 kt n .80 .90 .95 .975 .99 .995 

30 .900 .880 .860 .845 .830 .820 5 4 30 .900 .880 .860 .845 .830 .820 

40 .910 .895 .880 .865 .850 .840 40 .910 .895 .880 .865 .850 .840 

50 .920 .905 .890 .880 .865 .855 50 .920 .905 .890 .880 .865 .855 

75 .935 .920 .910 .900 .890 .880 75 .935 .920 .910 .900 .890 .880 
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Table 2. F 

For Estimator P Selecting the t-best : Complete Large Sample Approxi.mation Case 

Finding the smallest n required for P( CS I R) ;::: p • given values of k, t, '5 , p • and a = 0. 50 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .900 .850 .810 .785 .750 .720 42 30 .830 .790 .760 .735 .705 .690 

40 .910 .870 .835 .810 .775 .755 40 .850 .815 .790 .765 .740 .720 

50 .920 .880 .850 .825 .790 .780 50 .865 .835 .810 .790 .760 .750 

75 .935 .900 .880 .855 .830 .815 75 .890 .865 .840 .825 .805 .790 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .865 .820 .785 .760 .720 .705 4 3 30 .830 .790 .760 .735 .705 .690 

40 .880 .840 .810 .785 .755 .740 40 .850 .815 .790 .765 .740 .720 

50 .890 .860 .830 .810 .780 .760 50 .865 .835 .810 .790 .760 .750 

75 .910 .880 .860 .840 .815 .800 75 .890 .865 .840 .825 .805 .790 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .865 .820 .785 .760 .720 .700 5 1 30 .830 .790 .760 .735 .700 .690 

40 .880 .840 .810 .785 .755 .740 40 .855 .820 .790 .765 .740 .720 

50 .890 .860 .830 .810 .780 .760 50 .870 .835 .810 .790 .760 .750 

75 .910 .880 .860 .840 .815 .800 75 .890 .865 .845 .825 .800 .790 

p p 

n .80 .90 .95 .975 .99 .995 kt n .80 .90 .95 .975 .99 .995 

30 .845 .805 .770 .745 .710 .690 5 2 30 .810 .775 .750 .725 .690 .675 

40 .865 .830 .800 .775 .745 .730 40 .835 .805 .780 .755 .730 .710 

50 .880 .845 .820 .795 .770 .755 50 .855 .825 .800 .780 .760 .740 

75 .900 .870 .850 .830 .810 .795 75 .880 .855 .830 .815 .800 .780 
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Table 2. F 
(continued) 

For Estimator /3 Selecting the t-best: Complete Large Sample Approximation Case 

Finding the smallest n required for P(CS IR)~ p" given values of k, t, o, p * and a= 0.50 

p p 

.80 .90 .95 .975 .99 .995 kt n .80 .90 .95 .975 .99 .995 

.810 .775 .750 .725 .690 .675 5 4 30 .810 .775 .750 .725 .690 .675 

.835 .805 .780 .755 .730 .710 40 .835 .805 .780 .755 .730 .710 

.850 .820 .800 .780 .755 .740 50 .850 .820 .800 .780 .755 .740 

.880 .855 .830 .815 .800 .780 75 .880 .855 .830 .815 .800 .780 
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Table 3. F 

For Estimator /3 Selecting the t-best : Complete Large Sample Approxi.mation Case 

Finding the smallest n required for P( CS I R) :::: p · given values of k, t, o , p • and a = 0. 7 5 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .860 .790 .750 .705 .660 .630 4 2 30 .765 .715 .675 .645 .610 .580 

40 .875 .805 .765 .740 .695 .660 40 .785 .745 .710 .670 .645 .630 

50 .890 .835 .795 .760 .720 .700 50 .810 .770 .735 .710 .680 .660 

75 .910 .860 .830 .800 .770 .745 75 .840 .810 .780 .755 .730 .710 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .810 .750 .710 .670 .630 .605 4 3 30 .765 .715 .675 .645 .610 .580 

40 .830 .775 .730 .700 .685 .640 40 .805 .765 .720 .700 .675 .620 

50 .850 .800 .765 .735 .700 .680 50 .830 .780 .750 .720 .690 .660 

75 .875 .835 .800 .775 .750 .725 75 .860 .820 .790 .735 .720 .665 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .810 .750 .710 .670 .630 .605 5 1 30 .770 .720 .680 .645 .610 .585 

40 .830 .770 .740 .715 .680 .650 40 .800 .745 .690 .675 .645 .630 

50 .850 .800 .765 .735 .700 .680 50 .815 .770 .740 .710 .680 .660 

75 .875 .835 .800 .775 .750 .730 75 .845 .810 .780 .755 .730 .710 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .785 .730 .690 .655 .620 .590 5 2 30 .745 .700 .660 .630 .595 .570 

40 .795 .745 .720 .680 .645 .615 40 .770 .745 .715 .680 .645 .620 

50 .830 .780 .750 .720 .690 .665 50 .795 .755 .720 .700 .670 .650 

75 .860 .820 .790 .765 .735 .720 75 .825 .795 .770 .745 .720 .700 
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Table 3. F 
(continued) 

For Estimator /3 Selecting the t-best : Complete Large Sample Approximation Case 

Finding the smallest n required for P(CS IR) ;::: p · given values of k, t, Ii, p * and a = 0. 7 5 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .745 .700 .660 .630 .595 .570 5 4 30 .745 .700 .660 .630 .595 .570 

40 .765 .715 .685 .660 .635 .620 40 .775 .720 .690 .655 .620 .600 

50 .795 .755 .720 .695 .670 .650 50 .815 .770 .740 .710 .680 .660 

75 .825 .795 .770 .745 .720 .700 75 .845 .810 .780 .755 .730 .710 

99 



k t 

2 1 

k t 

3 1 

k t 

3 2 

kt 

4 1 

Table 4. F 

For Estimator /3 Selecting the t-best: Complete Large Sample Approximation Case 

Finding the smallest n required for P(CS IR) ~ p · given values of k, t, <5, p * and a = 1. 0 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .825 .750 .685 .640 .590 .560 4 2 30 .710 .655 .610 .575 .530 .505 

40 .850 .775 .720 .680 .630 .600 40 .745 .690 .650 .615 .580 .550 

50 .860 .795 .750 .710 .660 .635 50 .770 .720 .680 .650 .610 .590 

75 .885 .830 .790 .755 .715 .690 75 .810 .765 .730 .705 .670 .650 

. 
p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .765 .700 .645 .605 .560 .530 4 3 30 .735 .675 .625 .585 .540 .520 

40 .795 .730 .685 .645 .600 .575 40 .770 .710 .665 .630 .590 .560 

50 .815 .760 .710 .675 .635 .610 50 .790 .740 .695 .660 .620 .600 

75 .845 .800 .760 .725 .690 .670 75 .825 .780 .740 .710 .680 .660 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .765 .700 .645 .605 .560 .530 5 1 30 .720 .660 .610 .575 .530 .510 

40 .795 .730 .685 .645 .600 .575 40 .750 .690 .650 .620 .580 .555 

50 .815 .760 .710 .675 .635 .610 50 .775 .720 .680 .650 .610 .590 

75 .840 .795 .760 .725 .690 .670 75 .810 .770 .730 .705 .670 .650 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .735 .675 .625 .585 .540 .515 5 2 30 .685 .630 .590 .555 .520 .490 

40 .770 .710 .665 .630 .590 .560 40 .720 .670 .630 .605 .560 .540 

50 .790 .740 .695 .660 .620 .600 50 .745 .700 .660 .635 .600 .580 

75 .825 .780 .740 .715 .680 .660 75 .790 .750 .715 .690 .655 .635 
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Table 4. F 
(continued) 

For Estimator /3 Selecting the t-best : Complete Large Sample Approximation Case 

Finding the smallest n required for P( CS I R) ~ p • given values of k, t, t5 , p * and a = 1. 0 

p p 

n .80 .90 .95 .975 .99 .995 I< t n .80 .90 .95 .975 .99 .995 

30 .685 .630 .590 .555 .520 .490 5 4 30 .720 .660 .610 .575 .530 .500 

40 .720 .670 .630 .600 .560 .540 40 .750 .695 .650 .620 .580 .550 

50 .745 .700 .660 .635 .600 .580 50 .770 .720 .680 .650 .610 .590 

75 .790 .750 .715 .690 .655 .640 75 .810 .770 .730 .705 .670 .650 
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Table 5. F 

For Estimator /3 Selecting the t-best : Complete Large Sample Appro:dmation Case 

Finding the smallest n required for P(CS IR) 2 p · given values of k, t, 8, p • and a = 1.25 

p p 

D .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .800 .710 .645 .595 .530 .505 4 2 30 .670 .610 .560 .520 .475 .450 

40 .820 .745 .680 .635 .585 .550 40 .710 .650 .605 .570 .525 .500 

50 .840 .765 .710 .665 .615 .590 50 .735 .680 .640 .605 .560 .540 

75 .870 .805 .760 .720 .675 .650 75 .780 .730 .690 .660 .625 .600 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .730 .655 .600 .555 .505 .475 4 3 30 .700 .630 .580 .535 .490 .460 

40 .760 .695 .640 .600 .550 .525 40 .735 .670 .620 .585 .535 .510 

50 .785 .720 .670 .635 .590 .560 50 .760 .700 .650 .615 .575 .550 

75 .820 .765 .720 .690 .650 .625 75 .800 .745 .705 .675 .635 .610 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .730 .655 .600 .555 .505 .475 5 1 30 .680 .610 .560 .525 .475 .450 

40 .760 .695 .640 .600 .550 .525 40 .715 .655 .605 .570 .525 .500 

50 .785 .720 .670 .635 .590 .560 50 .740 .685 .640 .605 .565 .540 

75 .820 .765 .720 .690 .645 .620 75 .780 .730 .695 .665 .625 .600 

. 
p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .700 .630 .575 .535 .490 .460 5 2 30 .640 .585 .540 .505 .460 .440 

40 .735 .670 .620 .585 .535 .510 40 .680 .630 .585 .550 .510 .490 

50 .760 .700 .650 .615 .575 .550 50 .710 .660 .620 .585 .550 .525 

75 .800 .745 .705 .675 .630 .610 75 .755 .710 .675 .645 .610 .590 
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Table 5. F 
(continued) 

For Estimator /3 Selecting the t-best : Complete Large Sample Approxi.mation Case 

Finding the smallest n required for P(CS IR)~ p' given values of k, t, o, p * and a= 1.25 

p p 

.80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

.640 .585 .540 .505 .460 .440 5 4 30 .680 .610 .560 .525 .475 .450 

.680 .630 .630 .550 .510 .460 40 .715 .655 .610 .570 .525 .500 

.710 .660 .650 .585 .550 .525 50 .740 .685 .640 .605 .560 .540 

.755 .710 .675 .645 .610 .590 75 .785 .730 .695 .665 .625 .600 
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Table 6. F 

For Estimator /3 Selecting the t-best : Complete Large Sample Approxi.mation Case 

Fmding the smallest n required for P( CS I R) ~ p • given values of k, t, o , p * and a = 1. 5 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .775 .680 .610 .560 .500 .465 4 2 30 .640 .575 .525 .485 .440 .410 

40 .805 .715 .655 .605 .545 .515 40 .680 .620 .570 .530 .490 .460 

50 .820 .740 .680 .635 .580 .550 50 .710 .650 .605 .565 .525 .500 

75 .850 .785 .730 .690 .640 .615 75 .755 .700 .660 .630 .590 .570 

. 
p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .705 .625 .565 .520 .465 .435 4 3 30 .670 .595 .540 .500 .450 .420 

40 .740 .665 .610 .565 .515 .485 40 .710 .640 .585 .545 .500 .470 

50 .760 .695 .640 .600 .550 .525 50 .730 .670 .620 .580 .535 .510 

75 .800 .740 .695 .660 .615 .590 75 .775 .720 .675 .645 .600 .580 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .705 .625 .565 .520 .465 .435 5 1 30 .650 .580 .525 .485 .440 .410 

40 .740 .665 .610 .565 .520 .485 40 .690 .620 .570 .535 .490 .460 

50 .760 .695 .640 .600 .550 .525 50 .715 .655 .610 .570 .525 .500 

75 .800 .740 .695 .660 .615 .590 75 .760 .705 .665 .630 .590 .570 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .670 .595 .540 .500 .450 .420 5 2 30 .610 .550 .500 .465 .420 .400 

40 .710 .640 .585 .545 .500 .470 40 .650 .595 .550 .515 .475 .450 

50 .735 .670 .620 .580 .535 .510 50 .680 .630 .585 .550 .510 .490 

75 .775 .720 .680 .645 .600 .580 75 .730 .680 .645 .615 .580 .555 
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Table 6. F 
(continued) 

For Estimator /J Selecting the t-best: Complete Large Sample Approximation Case 

Finding the smallest n required for P(CS IR) ~ p · given values of k, t, t5, p • and a = 1. 5 

p p 

.80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

.610 .550 .500 .465 .420 .400 5 4 30 .650 .580 .525 .485 .440 .410 

.650 .595 .550 .515 .470 .450 40 .690 .620 .570 .535 .490 .460 

.680 .630 .585 .550 .510 .490 50 .715 .650 .610 .570 .525 .500 

.730 .680 .645 .615 .575 .555 75 .760 .710 .665 .630 .590 .570 
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Table I. G 

For Estimator a Selecting the t-best : Complete Large Sample Approximation Case 

Finding the smallest n required for P(CS I R) 2 p' given values of k, t, t5, p" 

p p 
n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .855 .785 .735 .690 .640 .610 4 2 30 .760 .710 .660 .630 .590 .560 

40 .870 .815 .770 .725 .685 .655 40 .790 .740 .700 .670 .630 .610 

50 .885 .830 .790 .755 .710 .690 50 .810 .765 .730 .700 .665 .645 

75 .905 .860 .825 .795 .760 .740 75 .840 .805 .775 .750 .720 .700 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .810 .750 .700 .665 .620 .585 4 3 30 .770 .720 .670 .635 .590 .565 

40 .830 .780 .740 .700 .660 .630 40 .800 .750 .710 .680 .640 .615 

50 .850 .800 .760 .730 .690 .665 50 .820 .775 .740 .710 .670 .650 

75 .875 .830 .800 .775 .740 .720 75 .850 .810 .780 .755 .730 .705 

. 
p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .800 .740 .695 .655 .610 .580 5 1 30 .770 .720 .670 .635 .590 .565 

40 .825 .770 .730 .695 .660 .630 40 .800 .750 .710 .675 .640 .610 

50 .845 .795 .760 .725 .690 .660 50 .820 .775 .740 .705 .670 .650 

75 .870 .830 .800 .770 .740 .720 75 .850 .810 .780 .755 .720 .700 

. 
p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .790 .730 .685 .645 .600 .570 5 2 30 .740 .690 .650 .615 .570 .545 

40 .810 .760 .720 .690 .645 .620 40 .770 .725 .690 .660 .620 .600 

50 .830 .780 .750 .715 .675 .655 50 .790 .750 .720 .690 .650 .630 

75 .860 .820 .790 .765 .730 .710 75 .825 .790 .760 .740 .710 .690 
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Table 1. G 
(continued) 

For Estimator P Selecting the t-best : Complete Large Sample Approximation Case 

Finding the smallest n required for P(CS IR) ~ p · given values of k, t, o, p * 

p p 

n .80 .90 .95 .975 .99 .995 k t n .80 .90 .95 .975 .99 .995 

30 .730 .680 .640 .610 .570 .540 5 4 30 .755 .700 .660 .625 .580 .550 

40 .765 .720 .685 .655 .620 .595 40 .785 .740 .700 .665 .630 .605 

50 .790 .750 .710 .685 .650 .630 50 .805 .760 .725 .695 .665 .640 

75 .825 .790 .760 .735 .710 .690 75 .840 .800 .770 .750 .720 .700 
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Comment : Small Sample Simulations using the maximum likelihood estimator for 

the parameter beta 

integer iseed, nout, nz,num,itmax,n,k,ii,iter,tbest 

integer d, count 

double precision z( 1000),drnnor,t( 1000),tpop( 1000, 1000) 

double precision tsum(l 000),hsum( 1 OOO),errel,xguess,x(2) 

double precision tbar( 1000),h( 1000),fnorm,beta( 10,50000) 

double precision mmax( 50000), mmin( 50000),delta,prob 

double precision zone(IOOO),alpha 

external drnnor, rnset, umach, wrcrn,zplrc 

external dneqnf,fcn 

parameter(num=2,nn=30,kk=5,mm=50000) 

common h( 1000 ), tbar( 1000 ), tpop( 1000, 1000),ii,n,alpha,zone 

open(unit=l5, file='bsalpha25n30.out') 

call umach(2, nout) 

c write(! 5, *) 'This is a new program' 

do k=2,kk 

do tbest=l,k-1 

do n=5,nn,5 

write(l5 *)'k=' k' n=' n, 't=' tbest 
' ' ' ' ' 

nz=k*n 
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iseed=123457 

call rnset(iseed) 

do iter=l,mm 

call drnnor(nz,z) 

do j=l,nz 

alpha=dble(0.25) 

zone(j)=zG)* alpha 

tG)= (zoneG)* *2+zone(j)*sqrt( 4. O+zone(j)* *2)+2. OO)/dble(2. 0) 

end do 

do j=l,k 

do i=l,n 

tpop(j,i)=t(i+(j-1 )*n) 

c write(} 5, *) 'tpop(',j,',',i,')=', tpop(j,i) 

enddo 

enddo 

do j=l,k 

tsum(j)=O.O 

hsum(j)=O.O 
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end do 

do i=l,k 

do j=l,n 

tsum(i)=tsum(i)+tpop(i,j) 

hsum(i)=hsum(i)+dble(l .0)/tpop(i,j) 

end do 

tbar(i)=tsum(i)/dble(n) 

h(i)=(dble(n)/hsum(i)) 

end do 

do i=l,k 

c write(IS,991) tbar(i),h(i) 

end do 

do ii=l,k 

xguess = sqrt(tbar(ii)*h(ii)) 

errel=.005 

itmax=2500 

call dneqnfl:fcn,errel,num,itmax,xguess,x,fnorm) 

beta(ii,iter )=x( 1) 

c write( 15, *) x( 1 ), fnorm 
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end do 

C do i=l,k 

c write(l 5, *)'beta(',i,',',iter,')=',beta(i,iter), 

c end do 

c the enddo below is for iteration 

enddo 

c Find the maximum and minimum 

do iter=l ,mm 

mmax(iter )=beta( 1,iter) 

do j=2,k-tbest 

if (beta(j,iter) .gt. mmax(iter)) then 

mmax(iter)=beta(j,iter) 

endif 

end do 

mmin(iter)=beta(k-tbest+ 1,iter) 

do i=k-tbest+ 1,k 

if (beta(i,iter) .It. mmin(iter)) then 

mmin(iter )=beta(i,iter) 

endif 

end do 

c write(l 5, *) 'max=', mmax(iter),'min=',mmin(iter) 
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end do 

do d=30,100,l 

count=O 

delta=dble(d)/100.0 

do iter = I ,mm 

i:f(delta*mmax(iter).lt. mmin(iter)) then 

count=count+ 1 

end if 

end do 

prob=dble(count)/dble(mm) 

write(l 5, 995)delta,prob 

enddo 

c The following are for the k,t, and n loops 

enddo 

enddo 

end do 

991 format('tbar=', f8.4, 'hbar=',f8.4) 
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995 format('delta=', f5.3, 'prob=',fl0.8) 

end 

subroutine fcn(x,f,num) 

integer num,j 

double precision bk,tpop(l 000, 1000) 

double precision x(num),f(num),h(l 000),tbar(l 000) 

common h( 1000), tbar( 1000), tpop( I 000, 1000),ii,n 

c common ii,k,h,tbar,tpop,n 

bk=O.O 

do j=l,n 

bk=bk+dble(l .0)/(x(l )+tpop(ii,j)) 

enddo 

c write(l 5, *) 'ii=',ii,'h(ii)',h(ii), 'tbar(ii)',tbar(ii) 

f(l )=x(l )**2-x(l )*(2*h(ii)+ 10.00/bk)+h(ii)*(tbar(ii)+ 10.00/bk) 

return 

end 
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Comment : Small Sample Simulations using the estimator betaprime for the 

parameter beta 

integer iseed, nout, nz,num,itmax,n,k,ii,iter,tbest 

integer d, count 

double precision z(l 000), drnnor,t(l 000),tpop(IOOO, I 000) 

double precision tsum( I 000),hsum( 1 OOO),errel,xguess,x(2) 

double precision btilda(l 0,50000),bprime(l 0,50000) 

double precision tbar(lOOO),h(lOOO),fnorm,beta(l0,50000) 

double precision mmax(50000), mmin(50000),delta,prob 

external drnnor, rnset, umach, wrcrn,zplrc 

external dneqnf,fcn 

parameter( num=2,nn= 15 ,kk=5 ,mm= 10) 

common h(l 000),tbar(l 000) 

common tpop( 1000, I 000),ii,n,btilda( I 0,50000),bprime(l 0,50000) 

open(unit=l 5, file='bs2betas.out') 

call umach(2, nout) 

c write(l 5, *) 'This is a new program' 

do k=2,kk 

do tbest= 1,k-1 

do n=5,nn,5 

write( 15 *)'k=' k ' n=' n 't=' tbest 
' ' ' '' ' 
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nz=k*n 

iseed=123457 

call mset(iseed) 

do iter-1,mm 

call dmnor(nz,z) 

do j=l ,nz 

tG)= (z(j)**2+z(j)*sqrt(4.0+z(j)**2)+2.00)/dble(2.0) 

enddo 

do j=l,k 

do i=l,n 

tpop(j,i)=t(i+(j-1 )*n) 

c write(l 5, *) 'tpop(',j,',',i,')=', tpop(j,i) 

enddo 

end do 

do j=l ,k 

tsum(j)=O. 0 

hsum(j)=O.O 

enddo 
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do i=l ,k 

do j=l,n 

tsum(i)=tsum(i)+sqrt( tpop(i,j)) 

hsum(i)=hsum(i)+dble( 1. 0)/sqrt(tpop(i,j)) 

end do 

tbar(i)=tsum(i)/dble(n) 

h(i)=( dble(n)/hsum(i)) 

bprime(i,iter)=tbar(i)*h(i) 

end do 

C do i=l ,k 

c write(l5,991) tbar(i),h(i) 

c end do 

do ii= l ,k 

xguess = sqrt(tbar(ii)*h(ii)) 

btilda(ii,iter)= sqrt(tbar(ii)*h(ii)) 

errel=.001 

itmax=2500 

call dneqn:Qfcn,errel,num,itmax,xguess,x,fnorm) 

beta(ii,iter)=x( 1) 
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c write( 15, *) x( 1 ), fnorm 

end do 

do i=l,k 

write( 15, *)'beta(',i,', ',iter,')=',beta(i,iter), 

write(l 5, *)'btilda(',i,',',iter,')=',btilda(i,iter), 

write( 15, *)'bprime(' ,i, ', ',iter,')=',bprime(i,iter), 

end do 

c the enddo below is for iteration 

enddo 

c Find the maximum and minimum 

do iter= l ,mm 

mmax(iter )=beta( l ,iter) 

do j=2,k-tbest 

if (beta(j,iter) .gt. mmax(iter)) then 

mmax(iter )=beta(j,iter) 

end if 

end do 

mmin(iter)=beta(k-tbest+ l,iter) 

do i=k-tbest+ 1,k 

if (beta(i,iter) .It. mmin(iter)) then 

mmin(iter )=beta(i,iter) 
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end if 

end do 

c write(l 5, *) 'max=', mmax(iter),'min=',mmin(iter) 

end do 

do d=35,80,2 

count=O 

delta=dble( d)/100. 0 

do iter = l ,mm 

if(delta*mmax(iter).lt. mmin(iter)) then 

count=count+ 1 

endif 

end do 

prob=dble(count)/dble(mm) 

write( 15,995)delta,prob 

end do 

c The following are for the k,t, and n loops 

end do 
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enddo 

end do 

991 format('tbar=', f8.4, 'hbar=',f8.4) 

995 format('delta=', f5.3, 'prob=',fl0.8) 

end 

subroutine fcn(x,f,num) 

integer num,j 

double precision bk,tpop(l 000, 1000) 

double precision x( num),f( num ),h( 1000 ), tbar( 1000) 

common h(l 000),tbar(IOOO), tpop(l 000, 1000),ii,n 

c common k,h,tbar,tpop,ii,n 

bk=O.O 

do j=l,n 

bk=bk+dble( 1. 0)/(x( 1 )+tpop(ii,j)) 

end do 

c write(! 5, *) 'ii=',ii,'h(ii)',h(ii), 'tbar(ii)',tbar(ii) 

f(l )=x(l )**2-x(l )*(2*h(ii)+ 10.00/bk)+h(ii)*(tbar(ii)+ 10.00/bk) 

return 

end 
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Comment : Small Sample Simulations using the estimator betatilda for the 

parameter beta 

integer iseed, nout, nz,num,itmax,n,k,ii,iter,tbest 

integer d, count 

double precision z(l 000), drnnor,t(l 000),tpop(l 000, 1000) 

double precision tsum(l 000),hsum(l OOO),errel,xguess,x(2) 

double precision tbar( 1000),h( 1000),fnorm,beta( 10,50000) 

double precision mmax(50000), mmin(50000),delta,prob 

double precision zone( 1000), alpha 

external drnnor, rnset, umach, wrcrn,zplrc 

external dneqnf,fcn 

parameter(num=2,nn=30,kk=5,mm=50000) 

common h(l 000),tbar(IOOO), tpop(IOOO, 1000),ii,n 

open( unit= 15, file='bs50smalltilda. out') 

call umach(2, nout) 

c write( 15, *) 'This is a new program' 

do k=2,kk 

do tbest=l ,k-1 

do n=5,nn,5 

write( 15 *)'k=' k ' n=' n 't=' tbest ' , , , , ' 
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nz=k*n 

iseed=l23457 

call mset(iseed) 

do iter= I ,mm 

call dmnor(nz,z) 

do j=l,nz 

alpha=dble(0.5) 

zoneG)=z(j)*alpha 

t(j)= (zone(j)* *2+zone(j)*sqrt( 4. O+zone(j)* *2)+2. OO)/dble(2. 0) 

enddo 

do j=l,k 

do i=l,n 

tpop(j,i)=t(i+(j-1 )*n) 

c write(} 5, *) 'tpop(',j,',',i,')=', tpop(j,i) 

enddo 

end do 

do j= l,k 
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tsum(j)=O. 0 

hsum(j)=O.O 

end do 

do i=l,k 

do j=l,n 

tsum(i)=tsum(i)+tpop(i,j) 

hsum(i)=hsum(i)+dble(l .0)/tpop(i,j) 

enddo 

tbar(i)=tsum(i)/dble(n) 

h(i)=( dble(n)/hsum(i)) 

beta(i,iter)=sqrt(tbar(i)*h(i)) 

end do 

C do i=l,k 

c write(l5,991) tbar(i),h(i) 

c end do 

C do ii=l,k 

c xguess = sqrt(tbar(ii)*h(ii)) 

c errel=.01 

c itmax=2500 
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c call dneqnf(fcn,errel,num,itmax,xguess,x,fnorm) 

c beta(ii,iter)=x( 1) 

c write(l 5, *) x(l ), fnorm 

c enddo 

C do i=l ,k 

c write(l 5, *)'beta(',i,',',iter,')=',beta(i,iter), 

c end do 

c the enddo below is for iteration 

enddo 

c Find the maximum and minimum 

do iter= l ,mm 

mmax(iter )=beta(l ,iter) 

do j=2,k-tbest 

if (betaG,iter) .gt. mmax(iter)) then 

mmax(iter)=betaG,iter) 

end if 

end do 

mmin(iter)=beta(k-tbest+ l ,iter) 

do i=k-tbest+ l ,k 

if (beta(i,iter) .It. mmin(iter)) then 

mmin(iter )=beta(i,iter) 
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endif 

end do 

c write(I 5, *) 'max=', mmax(iter),'min=',mmin(iter) 

enddo 

do d=30,50, 1 

count=O 

delta=dble( d)/100. 0 

do iter = l ,mm 

if"(delta*mmax(iter).lt. mmin(iter)) then 

count=count+ 1 

endif 

end do 

prob=db le( count)/ dble( mm) 

write(l 5,995)delta,prob 

enddo 

c The following are for the k,t, and n loops 

end do 

end do 

enddo 

991 format('tbar=', f8.4, 'hbar=',f8.4) 

995 format('delta=', f5.3, 'prob=',fl0.8) 

end 
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Comment : Small Sample Simulations for the parameter alpha using betatilda in 

the mle expression 

integer iseed, nout, nz,num,itmax,n,k,ii,iter,tbest 

integer d, count 

double precision z(IOOO), drnnor,t(lOOO),tpop(l000,1000) 

double precision tsum( 1000),hsum( 1 OOO),errel,xguess,x(2) 

double precision tbar( 1000),h(l 000),fnorm,alp(l 0,50000) 

double precision beta(l 0,50000),one( 10,50000),two( 10,50000) 

double precision mmax(50000), mmin(50000),delta,prob 

external drnnor, rnset, umach, wrcrn,zplrc 

external dneqnf,fcn 

parameter(num=2,nn=30,kk=5,mm=50000) 

common h(l 000),tbar(l 000), tpop(l 000, 1000),ii,n 

open(unit=l5, file='bsamle.out') 

call umach(2, nout) 

c write(! 5, *) 'This is a new program' 

do k=2,kk 

do tbest= l ,k-1 

do n=5,nn,5 
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write( 15 *)'k=' k ' n=' n 't=' tbest 
' ' ' ' ' ' 

nz=k*n 

iseed=123457 

call rnset(iseed) 

do iter= I ,mm 

call drnnor(nz,z) 

do j=l,nz 

tG)= (zG)**2+zG)*sqrt(4.0+zG)**2)+2.00)/dble(2.0) 

enddo 

do j=l,k 

do i=l,n 

tpopG,i)=t(i+G-1 )*n) 

c write(! 5, *) 'tpop(',j,',',i,')=', tpopG,i) 

end do 

end do 

do j=l,k 

tsumG)=O.O 

hsumG)=O.O 
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end do 

do i=l,k 

do j=l,n 

tsum(i)=tsum(i)+tpop(i,j) 

hsum(i)=hsum(i)+dble(l. 0)/tpop(i,j) 

end do 

tbar(i)=tsum(i )/ dble( n) 

h(i)=( dble(n)/hsum(i)) 

c alp(i,iter)=sqrt( dble(2.0)*sqrt(tbar(i)/h(i))-dble(2. 0)) 

end do 

C do i=l,k 

c write(15,991) tbar(i),h(i) 

c enddo 

do ii=l,k 

xguess = sqrt(tbar(ii)*h(ii)) 

errel=.01 

itmax=2500 

call dneqnf( fcn,errel,num,itmax,xguess,x,fnorm) 

beta(ii,iter)=x(l) 
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one(ii,iter )=tbar(ii)/beta(ii,iter) 

two(ii, iter )=beta(ii,iter )/h( ii) 

alp(ii,iter )=sqrt( one(ii,iter )+two(ii,iter )-dble(2. 0)) 

write(! 5, *) x(l ), fnorm 

end do 

C do i=l,k 

c write(! 5, *)'beta(',i,',',iter,')=',beta(i,iter), 

c end do 

c the enddo below is for iteration 

enddo 

c Find the maximum and minimum 

do iter= I ,mm 

mmax(iter)=alp(l,iter) 

do j=2,k-tbest 

if (alp(j,iter) .gt. mmax(iter)) then 

mmax(iter )=alp(j,iter) 

end if 

end do 

mmin(iter)=alp(k-tbest+ l ,iter) 

do i=k-tbest+ l ,k 
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if (alp(i,iter) .It. mmin(iter)) then 

mmin(iter )=alp(i,iter) 

endif 

end do 

c write(l 5, *) 'max=', mmax(iter),'min=',mmin(iter) 

enddo 

do d=20, 100, 1 

count=O 

delta=dble( d)/100. 0 

do iter = I ,mm 

iftdelta*mmax(iter).lt. mmin(iter)) then 

count=count+ 1 

endif 

enddo 

prob=dble(count)/dble(mm) 

write( 15 ,995)delta,prob 

enddo 
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c The following are for the k,t, and n loops 

end do 

end do 

end do 

991 format('tbar=', f8.4, 'hbar=',f8.4) 

995 format('delta=', f5.3, 'prob=',fl0.8) 

end 

subroutine fcn(x,f,num) 

integer num,j 

double precision bk,tpop(l 000, I 000) 

double precision x( num),f( num ),h( I 000),tbar( I 000) 

common h( I 000), tbar( I 000), tpop( I 000, I 000),ii,n 

c common k,h,tbar,tpop 

bk=O.O 

do j= l,n 

bk=bk+dble(l .0)/(x(l )+tpop(ii,j)) 

end do 

c write(l5, *) 'ii=',ii,'h(ii)',h(ii), 'tbar(ii)',tbar(ii) 

f(l )=x(l )**2-x(l )*(2*h(ii)+ I 0.00/bk)+h(ii)*(tbar(ii)+ 10.00/bk) 

return 

end 
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Comment : Large Sample Normal Approximations for the parameter beta 

integer nout 

integer num,k,tbest,n,d,kmt,t 

double precision delta,alpha 

double precision A,B,ERRABS,ERRREL,RESULT,ERREST 

double precision pstar,F,H,P,alp,low,high 

parameter(alpha= 1.0,low=-5 . O,high=5 .0) 

common k,tbest,n,d,kmt,t,delta,alp 

Intrinsic DABS,DEXP,SQRT 

External umach,dqdags,F ,H,P ,dnordf 

parameter (num=2,nn=75,kk=5) 

call umach (2,nout) 

open( unit= 15 ,file='bnoapp. out') 
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do k=2,kk 

do tbest= l ,k-1 

do n=75,nn,5 

do d=30,90, 1 

kmt=k-tbest 

t=tbest 

delta=dble( d)/100.0 

alp=alpha 

write(l 5,990) k,t,n,alp 

A=low 

B=high 

ERRABS=O.O 

ERRREL=O.001 

call dqdags (F,A,B,ERRABS,ERRREL,RESULT,ERREST) 

pstar=(k-t )*RESULT 
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write(l 5,995) delta,pstar,error 

end do 

end do 

end do 

end do 

990 format('k= ' i2 ' t= ' i2 ' n= ' i3 ' alpha= ' f9 3) '' ,, ,, , . 

995 format(' delta=',£9.3, 'prob=',£20.8,' error=',fl0.8) 

end 

* Find the integral desired 

double precision Function F(x) 

integer k,tbest,kmt,t 

double precision delta 

double precision x,DEXP,dnordf,H,P 

common k,tbest,n,d,kmt,t,delta,alp 

Intrinsic DEXP,DSQRT 

External dnordf,H,P 
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xd=dble(x)*delta 

F=(H(x-1 ))**(kmt-1 )*(l-H((x-1 )*delta+delta-1 ))**t*P(x) 

return 

end 

double precision Function H(x) 

double precision x 

double precision dnordf 

common k,tbest,n,d,kmt,t,delta,alp 

Intrinsic DSQR T 

External dnordf 

H=dnordfl:7.5452*x) 

return 

end 

double precision Function P(x) 

double precision DEXP,x,pi 

common k,tbest,n,d,kmt,t,delta,alp 

Intrinsic DSQRT,DEXP 

pi=const("PI") 

P=3 .010099*DEXP(-28.465*(x-1 )**2) 

return 

end 
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Comment : Large Sample Birnbaum-Saunders Approximations for the parameter beta 

integer nout,IRULE 

integer num,k,tbest,n,d,kmt,t 

double precision delta,alpha 

double precision A,B,ERRABS,ERRREL,RESUL T ,ERREST 

double precision DABS,DEXP,F,G,P,R 

double precision dnordf,alp,low,hi 

parameter(alp=0.25,low=0.0000000001,hi=500.00) 

common k,tbest,n,d,kmt,t,delta,alpha,const 

Intrinsic DABS,DEXP,DSQRT 

External umach,dqdag,F,G,P,R,dnordf 

parameter( num=2,nn=7 5 ,kk=5) 

call umach(2,nout) 

open (unit=l5,file='appb4 .out') 

do k=2,kk 

do tbest=l,k-1 
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do n=75,nn,5 

do d=40, 100, 1 

kmt=(k-tbest) 

t=tbest 

delta=dble( d)/100. 00 

alpha=alp 

write(l 5,990) k,tbest,n 

A=low 

B=hi 

ERRABS=O.O 

ERRREL=O.001 

IRULE=6 

call dqdag(F,A,B,ERRABS,ERRREL,IRULE,RESULT,ERREST) 

pstar=kmt*RESUL T 

write( 15,995) delta,pstar,ERREST 

enddo 
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end do 

end do 

end do 

990 format(' k= ' i2 ' t= ' i2 ' n= ' i3) 
' ' ' ' ' 

995 format('delta=' ,t'9. 3,'prob=',f25. 8, 'error=',f9. 8) 

end 

double precision Function F(x) 

integer k,tbest,kmt,t 

double precision x,delta,xd 

double precision DEXP,dnordf,G,P 

common k,tbest,n,d,kmt,t,delta 

Intrinsic DEXP,DSQRT 

External dnordf, G,P ,R 

xd=x*delta 

F=(G(x))* *(kmt-1 )*( 1-G(x*delta))* *t*P(x)*R(x) 

return 
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end 

double precision Function G(x) 

double precision x 

double precision dnordf 

common k,tbest,n,d,kmt,t,delta 

ex1:emal dnordf,DSQR T 

G=dnordf(9.8 l 9805*(x* *(O. 5)-x**(-0.5))) 

return 

end 

double precision Function P(x) 

double precision DEXP,x,pi 

common k,tbest,n,d,kmt,t,delta 

intrinsic dexp,sqrt 

pi=const("PI") 

P=l .958768*(x**(-0.5)+x**(-l .5)) 

return 

end 

double precision Function R(x) 

double precision DEXP ,x,pi 
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common k,tbest,n,d,kmt,t,delta 

intrinsic dexp,sqrt 

pi=const("PI") 

R=DEXP(-48.21429*(x+x**(-l .0)-2.0)) 

return 

end 
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Comment: Large Sample Normal Approximations for the parameter alpha 

integer nout 

integer num,k,tbest,n,d,kmt,t 

double precision delta 

double precision A,B,ERRABS,ERRREL,RESUL T,ERREST 

double precision DABS,DEXP,F,H,P 

double precision error,dnordf,low,hi 

parameter(low=-100. 00,hi= I 00. 00) 

common k, tbest,n,d,kmt,t,delta 

Intrinsic DABS,DEXP,SQRT 

External umach,dqdags,F ,H,P ,dnordf 

parameter( num=2,nn=7 5 ,kk=S) 

call umach(2,nout) 

open (unit= l 5,file='alpapproxl .out') 

do k=2,kk 

do tbest= l ,k-1 
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do n=30,nn,5 

do d=40, 100, 1 

kmt=(k-tbest) 

t=tbest 

delta=dble( d)/100. 00 

write(l5,990) k,tbest,n 

A=low 

B=hi 

ERRABS=O.O 

ERRREL=0.001 

call dqdags(F ,A,B,ERRABS,ERRREL,RESUL T ,ERREST) 

pstar=kmt*RESUL T 

write(l 5,995) delta,pstar,error 

enddo 

enddo 

enddo 

end do 
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990 format(' k= ' i2 ' t= ' i2 ' n= ' i3) 
' ' ' ' ' 

995 format('delta=',f9.3,'prob=',f25 .8,'error=',f9.8) 

end 

double precision Function F(x) 

integer k,tbest,kmt,t 

double precision x,delta,xd 

double precision DEXP ,dnordf,H,P 

common k,tbest,n,d,kmt,t,delta 

Intrinsic DEXP,DSQRT 

External dnordf,H,P 

xd=x*delta 

F==(H(x-1 ))**(kmt-1 )*(1-H( delta*(x-1 )+delta-I ))**t*P(x) 

return 

end 

double precision Function H(x) 
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double precision x 

double precision dnordf 

common k,tbest,n,d,kmt,t,delta 

external dnordf,SQRT 

H=dnordf((x)*SQRT(2.0*n)) 

return 

end 

double precision Function P(x) 

double precision DEXP ,x,pi 

common k,tbest,n,d,kmt,t,delta 

intrinsic dexp,sqrt 

pi=const("PI") 

P=(sqrt(n/pi))*DEXP(-1 .0*n*(x-1 )**2) 

return 

end 
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