SELECTING t-BEST OF SEVERAL

BIRNBAUM - SAUNDERS

POPULATIONS BASED

ON THE PARAMETERS

By

DESIREE' A. BUTLER - MCCULLOUGH

Master of Science
Oklahoma State University
Stillwater, Oklahoma
1998
Bachelor of Science
Southeastern Oklahoma State University
Durant, Oklahoma
1991

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of the requirements for the Degree of
DOCTOR OF PHILOSOPHY
May, 2001

SELECTING t-BEST OF SEVERAL

BIRNBAUM - SAUNDERS POPULATIONS BASED

ON THE PARAMETERS

Thesis Approved:

ACKNOWLEDGEMENTS

I would like to first thank my advisor, Dr. Jeanne S. Hill, for giving me the opportunity to learn and work with her, and for her supervision, guidance, and patience. I would also like to thank the members of my graduate committee, Dr. Mark Payton, Dr. Melinda McCann, Dr. P. Larry Claypool, and Dr. Douglas B. Aichele, for donating their time to serve on my committee. A special thanks goes to Dr. Payton for agreeing to serve as my committee chair, all of the proof reading and advice that he has given me. I would also like to thank Dr. McCann for all of her help whenever I needed it. I would especially like to thank Dr. Claypool for agreeing to join the committee on short notice to fill the vacancy and for all of his advice and help along my graduate career.

I would like to thank the OSU Department of Statistics, including faculty, staff, and fellow graduate students, past and present, for all of their encouragement, help, thoughts, prayers, and support while I have been affiliated with the department.

I would like to thank my parents, my life long best friends, George and JoAnn Butler Sr., and my brother, George Butler Jr., for all of their love, support, encouragement, and understanding not only while seeking my degree but my entire life. They have sacrificed much of their lives and happiness where I could follow my dream of achieving this degree. I will never be able to begin to repay them for all they have done for me. I would also like to thank my best friend, my husband, Jeffrey S. McCullough, for
his love, support, encouragement, desire for me to finish this degree, patience and understanding and his parents, Bill and Helen McCullough, for their encouragement.

Lastly, I would like to thank my Lord and Savior, Jesus Christ, for all of the strength and power that he has provided me to make it to this point in my life and in the future. Also, for all of the times that I was weak and doubted myself, he was there to pick me up and carry me until I was strong enough to go on again.

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION AND LITERATURE REVIEW 1
1.1 Introduction 1
1.2 Ranking and Selection 3
1.3 Birnbaum - Saunders Distribution 3
2. RANKING AND SELECTION ACCORDING TO THE PARAMETER β 5
2.1 Birnbaum - Saunders Background 5
2.2 Research Problem 11
2.3 Basic Results 11
2.4 Probability of Correct Selection and its Minimum 14
2.5 Properties of the Probability of Correct Selection 17
2.6 Simulations 18
3. ASYMPTOTIC RESULTS OF THE ESTIMATORS FOR THE PARAMETER β 21
3.1 Results for the Estimator $\hat{\beta}$ 21
3.2 Probability of Correct Selection for Normal Approximation of $\hat{\beta}$ 22
3.3 Large Sample Approximations 24
3.4 Results for the Estimator $\widetilde{\beta}$ 24
3.5 Probability of Correct Selection for Birnbaum -Saunders Approximation of $\widetilde{\beta}$ 26
3.6 Large Sample Approximations 26
3.7 Comparisons of the Simulations and Approximations 27
4. RANKING AND SELECTION ACCORDING TO THE PARAMETER α 28
4.1 Theory for "Best" Parameter α 28
4.2 Theory for Selection of α 29
4.3 Simulations. 31
5. ASYMPTOTIC RESULTS OF THE ESTIMATOR FOR THE PARAMETER α 33
5.1 Results for the Estimator $\hat{\alpha}$ 33
5.2 Probability of Correct Selection for Normal Approximation of $\hat{\alpha}$ 34
5.3 Large Sample Approximations 36
5.4 Comparisons of the Simulations and Approximations. 36
6. CONCLUSIONS AND FUTURE WORK 37
6.1 Conclusions 37
6.2 Future Work 38
BIBLIOGRAPHY 39
APPENDICES 43
A. Probability Tables for Estimator $\hat{\beta}$ 44
B. Probability Tables for Estimator β^{\prime} 55
C. Probability Tables for Estimator $\widetilde{\beta}$ 58
D. Probability Tables for Estimator $\tilde{\alpha}$ 77
E. Probability Tables for Estimator $\hat{\beta}$ Large Samples 80
F. Probability Tables for Estimator $\widetilde{\beta}$ Large Samples 93
G. Probability Tables for Estimator $\hat{\alpha}$ Large Samples 106
H. Fortran Programs for Simulations 109

LIST OF FIGURES

Figure Page
2.1.1 Birnbaum - Saunders Cumulative Distribution Functions 7
2.1.2 Birnbaum - Saunders Probability Distribution Functions 8
2.1.3 Birnbaum - Saunders Probability Distribution Functions 9
2.1.4 Birnbaum - Saunders Probability Distribution Functions 10

Chapter 1

Introduction and Literature Review

Section 1.1 Introduction

People everywhere everyday are faced with making choices or decisions at work and in their daily lives. Ranking and selection procedures can be used to make educated decisions. Ranking and selection procedures are used instead of traditional hypothesis testing on the population parameter of interest because traditional hypothesis testing only detects if there are differences between the populations and does not actually select the best populations as defined by some criterion. Applications of this theory in different disciplines are shown through the following examples :

- The owner of an automotive store is interested in carrying only two or three brands of automotive oil from the different possible brands. He will want to ensure that he selects the two best selling brands of oil.
- A store may also be interested in carrying the two best brands of spark plugs or serpentine belts based on which work the longest or most times until failure.
- A pharmaceutical company is interested in keeping only the three or four best pain relievers that they manufacture. They are interested in comparing the speed and / or length their pain relievers perform.
- A medical researcher may be testing the current treatments for a certain disease to determine the one, two or possibly three best treatments available on the market.

In some of the scenarios, the order of the t-best choices does not matter such as the automotive parts or the pain relievers. In the last scenario, order would in fact be important. You would be most interested in picking the one - best or possibly the two best treatment(s), if you or someone you knew was in need of the treatment. We can consider the different choices in each of the scenarios as populations; i.e. there are k different populations and we want to select the t-best.

In the last two scenarios, the lifetimes of the pain relievers and the survival times of the patients may follow the probability distribution that was developed in 1969 by Birnbaum and Saunders. The Birnbaum-Saunders distribution has many applications in survival analysis, reliability and life-testing. Therefore, engineering and medical fields are a few places where this distribution is of most interest. Desmond (1986) showed that the Birnbaum-Saunders distribution can be written as a mixture of the Inverse Gaussian distribution and its reciprocal with mixing probability equal to $\frac{1}{2}$. See Chhikara and Folks (1989) for more about the Inverse Gaussian distribution.

There have been many articles published separately on ranking and selection procedures and the Birnbaum-Saunders distribution; but there is currently no literature available on ranking and selection procedures for the Birnbaum-Saunders distribution.

Abstract

Bechhofer (1954) developed a procedure for selecting the t-best normal populations out of k independent normal populations with unknown variances. The method that he used is referred to as the indifference zone formulation. This procedure is the one that will be used in this dissertation. Other references on ranking and selection include Gibbons et al. (1977), Gupta and Panchapakesan (1979), and Bechhofer et al.

 (1995).
Section 1.3 Birnbaum - Saunders Distribution

Birnbaum and Saunders (1969 a, b) introduced a new fatigue life distribution. For complete samples, they derived properties and considered estimation of the parameters. Engelhardt et al. (1981) considered confidence intervals and tests of hypotheses and gave large sample approximations for the distributions of the maximum likelihood estimators. They also mentioned that the scale parameter β, which is the median of the distribution, corresponds to a typical number of cycles until failure occurs. Padgett (1986) considered Bayes estimation on reliability of the Birnbaum-Saunders distribution. Desmond (1986) looked at the relationship between the Inverse-Gaussian and the Birnbaum-Saunders distributions and introduced another derivation of the distribution. Chang and Tang (1993) discussed reliability bounds and critical time for the Birnbaum-Saunders distribution. Chang and Tang (1994 a,b) developed percentile bounds, tolerance limits and discussed a graphical analysis for the Birnbaum-Saunders distribution. Desmond
(1995) also developed shortest prediction intervals for the Birnbaum-Saunders distribution. Dupuis and Mills (1998) looked at the robust estimation for the BirnbaumSaunders distribution. McCarter (1999) considered estimation and prediction for the Birnbaum-Saunders distribution using Type II-censored samples.

Chapter 2

Ranking and Selection According to the Parameter β

Section 2.1 Birnbaum-Saunders Background

Birnbaum and Saunders (1969) developed a two-parameter fatigue life distribution to model failures due to fatigue-crack growth. This distribution was derived from considerations of the physical behavior of the material that was subjected to a cyclically repeated stress pattern. The resulting distribution models the number of cycles needed to force the length of the fatigue crack to grow past a critical length.

The cumulative distribution function (CDF) of the Birnbaum-Saunders distribution is given by :

$$
\begin{equation*}
F(t ; \alpha, \beta)=\Phi\left[\left(\frac{1}{\alpha}\right) \xi\left(\frac{t}{\beta}\right)\right] \tag{2.1.1}
\end{equation*}
$$

where $t>0, \beta>0$, and $\alpha>0$. Also, $\xi(t)=t^{\frac{1}{2}}-t^{-\frac{1}{2}}$ and $\Phi(z)$ is the standard normal CDF. Figure 2.1.1 shows the cumulative distribution functions for $\beta=50,100,200,500$ with $\alpha=1$. As β increases it takes longer for the cumulative distribution function to reach 1. Therefore, as β increases the probability that failure would occur at or before time, t, decreases. The probability density function (pdf) has the form :

$$
\begin{equation*}
f(t)=\frac{1}{\alpha \beta} \xi^{\prime}\left(\frac{t}{\beta}\right) \phi\left[\alpha^{-1} \xi\left(\frac{t}{\beta}\right)\right] \tag{2.1.2}
\end{equation*}
$$

where $t>0, \beta>0, \alpha>0, \xi^{\prime}(t)=\frac{\partial \xi(t)}{\partial t}$, and ϕ is the pdf of the standard normal distribution. The parameter α is a shape parameter. The scale parameter β corresponds, roughly, to a typical number of cycles to failure. β is the median of the distribution which also implies that β is a location parameter. The expected value and variance of T are given by $E(T)=\beta\left(1+\frac{1}{2} \alpha^{2}\right)$ and $\operatorname{var}(T)=(\alpha \beta)^{2}\left(1+\frac{5}{4} \alpha^{2}\right)$, respectively.

Figure 2.1.2 shows the probability density functions for $\beta=50,100,150,200,250$ with $\alpha=1$. For a fixed value of α, as β increases the distribution function becomes flatter. The peak of the probability density function moves to the right (i.e. a larger value of t). Figure 2.1.2 supports the same conclusion as Figure 2.1.1, as β increases the probability that failure would occur at or before time, t, decreases. Figure 2.1.3 shows the probability density functions for $\alpha=0.1,0.25,0.50,0.75,1.00,1.25$ with $\beta=100$. As alpha increases the peak of the probability density function moves closer towards 0 . Most of the probability is associated with t values closer and closer to 0 as α increases. Figure 2.1 .4 shows the probability density functions where α and β are both changing.

Figure 2.1.1. Birnbaum - Saunders Cumulative Distribution Functions

Figure 2.1.2. Birnbaum - Saunders Probability Distribution Functions

Figure 2.1.3. Birnbaum - Saunders Probability Distribution Function

Figure 2.1.4. Birnbaum - Saunders Probability Distribution Functions

Section 2.2 Research Problem

Given $k(k \geq 2)$ independent Birnbaum-Saunders Distributions, (BSD), $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$. Let $\pi_{(i)}$ denote the population having the ith scale parameter $\beta_{[i]}$, where $\beta_{[1]} \leq \beta_{[2]} \leq \cdots \leq \beta_{[k]}$. The population $\pi_{(i)}$ is defined to be better than $\pi_{(j)}$ if $i>j$. The goal is to select the t-best populations with the t largest β parameters, $1 \leq t<k$. Since β is approximately the number of cycles until the fatigue growth crack grows past a critical length then it makes sense to consider the largest β 's. In Chapter 4 , ranking the shape parameter, α is considered. The goal is to select a group of the t -best $(1 \leq t<k)$ populations in an unordered manner when α is assumed known. The choice of any t populations having the t largest parameters is regarded as a correct selection, (CS).

Section 2.3 Basic Results

Before proceeding with the selection procedure, it is useful to note the following results concerning estimators of the parameters for the Birnbaum-Saunders distribution. Let $T_{1}, T_{2}, \ldots, T_{n}$ be a random sample from a Birnbaum-Saunders population.

Theorem 2.3.1: (Birnbaum and Saunders (1969b)) The maximum likelihood estimator, $\hat{\beta}$, is the unique positive root of

$$
\begin{aligned}
& x^{2}-x\{2 H+K(x)\}+H\{\bar{T}+K(x)\}=0 \text { where } \bar{T}=n^{-1} \sum_{j=1}^{n} T_{j}, \\
& H=n^{-1} \sum_{j=1}^{n} T_{j}^{-1} \text { and } K(x)=\left[n^{-1} \sum\left(x+T_{j}\right)^{-1}\right]^{-1} .
\end{aligned}
$$

Theorem 2.3.2: (Engelhardt et al. (1969)) The distribution of $\frac{\hat{\beta}}{\beta}$ does not depend on β.

Theorem 2.3.3: (Birnbaum and Saunders (1969b)) The maximum
likelihood estimator, $\hat{\alpha}$, is $\hat{\alpha}=\left(\frac{\bar{T}}{\hat{\beta}}+\frac{\hat{\beta}}{H^{-1}}-2\right)^{\frac{1}{2}}$ where \bar{T}, H, and $\hat{\beta}$ are defined before.

Theorem 2.3.4: (Engelhardt et al. (1969)) The distribution of $\frac{\hat{\alpha}}{\alpha}$ does not depend on α and β.

There are at least two additional estimators that have been considered by Birnbaum and Saunders (1969) and Desmond (1995) due to the difficulty in computing the MLE's. The two estimators are $\beta^{\prime}=\frac{\sum T_{j}^{\frac{1}{2}}}{\sum T_{j}^{-\frac{1}{2}}}$ and $\widetilde{\beta}=\left(\frac{\sum T_{j}}{\sum T_{j}^{-1}}\right)^{\frac{1}{2}}$ and they are both very easy to compute since they are based only on the random sample. $\widetilde{\beta}$ is also known as the "mean mean" estimator.

Theorem 2.3.5: \quad The distribution of $\frac{\beta^{\prime}}{\beta}$ does not depend on β.

Proof: $\frac{\beta^{\prime}}{\beta}=\frac{\frac{\sum\left(T_{j}\right)^{\frac{1}{2}}}{\sum \frac{1}{\left(T_{j}\right)^{\frac{1}{2}}}}}{\beta}$

$$
=\frac{\sum\left(T_{j}\right)^{\frac{1}{2}}}{\beta^{\frac{1}{2}} \beta^{\frac{1}{2}} \sum \frac{1}{\left(T_{j}\right)^{\frac{1}{2}}}}=\frac{\sum\left(\frac{T_{j}}{\beta}\right)^{\frac{1}{2}}}{\sum\left(\frac{\beta}{T_{j}}\right)^{\frac{1}{2}}}=\frac{\sum\left(\frac{T_{j}}{\beta}\right)^{\frac{1}{2}}}{\sum\left[\frac{1}{\left(\frac{T_{j}}{\beta}\right)^{\frac{1}{2}}}\right]}
$$

Let $U_{j}=\frac{T_{j}}{\beta}$. The distribution of U_{j} does not depend on β since β is a scale parameter. So, the distribution of $\frac{\sum\left(U_{j}\right)^{\frac{1}{2}}}{\sum\left[\frac{1}{\left(U_{j}\right)^{\frac{1}{2}}}\right]}$ does not depend on β. Therefore, the distribution of $\frac{\beta^{\prime}}{\beta}$ does not depend on β as desired.

Theorem 2.3.6: \quad The distribution of $\frac{\widetilde{\beta}}{\beta}$ does not depend on β.

$$
\text { Proof: } \frac{\widetilde{\beta}}{\beta}=\frac{\left(\frac{\sum T_{j}}{\sum T_{j}^{-1}}\right)^{\frac{1}{2}}}{\beta}=\frac{\left(\sum T_{j}\right)^{\frac{1}{2}}}{\beta^{\frac{1}{2}} \beta^{\frac{1}{2}}\left(\sum T_{j}^{-1}\right)^{\frac{1}{2}}}=\frac{\left(\frac{\sum T_{j}}{\beta}\right)^{\frac{1}{2}}}{\frac{\left(\sum T_{j}^{-1}\right)^{\frac{1}{2}}}{\beta^{\frac{-1}{2}}}}
$$

$=\frac{\left(\frac{\sum T_{j}}{\beta}\right)^{\frac{1}{2}}}{\left(\frac{\sum T_{j}^{-1}}{\beta^{-1}}\right)^{\frac{1}{2}}}=\frac{\left(\sum \frac{T_{j}}{\beta}\right)^{\frac{1}{2}}}{\left(\sum\left(\frac{T_{j}}{\beta}\right)^{-1}\right)^{\frac{1}{2}}}$ Let $U_{j}=\frac{T_{j}}{\beta}$. The distribution of
U_{j} does not depend on β since β is a scale parameter. So,
$\frac{\widetilde{\beta}}{\beta}=\frac{\left(\sum U_{j}\right)^{\frac{1}{2}}}{\left(\sum U_{j}^{-1}\right)^{\frac{1}{2}}}=\left(\sum U_{j}\right)^{\frac{1}{2}}\left(\sum U_{j}^{-1}\right)^{-\frac{1}{2}}$ and the distribution of $\left(\sum U_{j}\right)^{\frac{1}{2}}\left(\sum U_{j}^{-1}\right)^{-\frac{1}{2}}$ does not depend on β since the distribution of U_{j} does not depend on β. Therefore, the distribution of $\frac{\widetilde{\beta}}{\beta}$ does not depend on β as desired.

Theorem 2.3.7: (Birnbaum and Saunders (1969b)) $\widetilde{\beta}$ is a consistent estimator for β. When $\alpha<\sqrt{2}, \widetilde{\beta}$ is the same as the MLE, $\hat{\beta}$.

Section 2.4 Probability of Correct Selection and its Minimum

Let $\hat{\beta}_{(i)}$ denote the statistic associated with population $\pi_{(i)}, i=1, \ldots, k$. (From this point forward, this dissertation will use the notation for the MLE, but all results hold for β^{\prime} and $\widetilde{\beta}$.) The ranked $\hat{\beta}$'s are denoted by $\hat{\beta}_{[1]} \leq \hat{\beta}_{[2]} \leq \ldots \leq \hat{\beta}_{[k]}$.

Let $\vec{\beta}=\left(\beta_{[1]}, \ldots, \beta_{[k]}\right)$ denote a point in the parameter space Ω that is partitioned into a 'preference zone', $\Omega\left(\delta^{*}\right)$, defined by $\Omega\left(\delta^{*}\right)=\left\{\vec{\beta}: \frac{\beta_{[k-t]}}{\beta_{[k-t+1]}} \leq \delta^{*}, 0<\delta^{*}<1\right\}$. The complement of $\Omega\left(\delta^{*}\right)$ is called the indifference zone. This dissertation uses the indifference zone approach of Bechhofer (1954). Now consider the following rule, R, for which the probability of correct selection, $P(C S \mid R)$, satisfies $P(C S \mid R) \geq p^{*}$ for all $\vec{\beta} \in \Omega\left(\delta^{*}\right)$ and fixed α.
$\underline{\text { Rule } \mathrm{R}}$: Select the populations associated with the t largest $\hat{\beta}$ as the t-best populations.
The experimenter specifies in advance the constants δ^{*} and p^{*} where $\binom{k}{t}^{-1}<p^{*}<1$. If
p^{*} is not assumed greater than $\binom{k}{t}^{-1}$ then the probability of correct selection can be
guaranteed by randomly selecting the t best populations.
Now using the results of Section 2.3, the probability of correct selection, $P(C S \mid R)$ is as follows :

$$
\begin{align*}
& P(C S \mid R)=P\left[\max _{1 \leq j \leq k-t} \hat{\beta}_{(j)} \leq \min _{k-t+1 \leq i \leq k} \hat{\beta}_{(i)}\right] \tag{2.4.1}\\
& \quad=P\left[\max _{\substack{1 \leq j \leq k-t \\
j \neq g}} \hat{\beta}_{(j)} \leq \hat{\beta}_{(g)} \leq \min _{k-t+1 \leq i \leq k} \hat{\beta}_{(i)} ; g=1, \ldots, k-t\right] \tag{2.4.2}\\
& \quad=P\left[\max _{\substack{1 \leq j \leq k-t \\
j \neq g}} \frac{\hat{\beta}_{(j)}}{\beta_{[j]}} \frac{\beta_{[j]}}{\beta_{[g]}} \leq \frac{\hat{\beta}_{(g)}}{\beta_{[g]}} \leq \min _{k-t+1 \leq i \leq k} \frac{\hat{\beta}_{(i)}}{\beta_{[i]}} \frac{\beta_{[i]}}{\beta_{[g]}} ; g=1, \ldots, k-t\right] \tag{2.4.3}
\end{align*}
$$

Define $V_{j}=\frac{\hat{\beta}_{(j)}}{\beta_{[j]}}$ and $G_{v}(v)$ to be the cumulative distribution function of V_{j}.

$$
\begin{equation*}
=P\left[\max _{\substack{\leq \leq \leq j k-t \\ j \neq g}} V_{j} \frac{\beta_{[[]}}{\beta_{[g]}} \leq V_{g} \leq \min _{k-l+1 \leq \leq \leq k} V_{i} \frac{\beta_{[i]}}{\beta_{[s]}} ; g=1, \ldots, k-t\right] . \tag{2.4.4}
\end{equation*}
$$

Interest is in finding the configuration of the parameters that minimizes $P(C S \mid R)$. This configuration of parameters is called the Least Favorable Configuration (LFC). Under the least favorable conditions $\beta_{[1]}=\beta_{[2]}=\cdots=\beta_{[k-t]}, \beta_{[k-t+1]}=\cdots=\beta_{[k]}$ and $\beta_{[k-t]} \leq \beta_{[k-t+1]}\left(\delta^{*}\right)$ which implies that $\frac{\beta_{[k-t+1]}}{\beta_{[k-t]}} \geq \frac{1}{\delta^{*}} \geq 1$.

Thus, $\quad P(C S \mid R) \geq P\left[\max _{\substack{1 \leq j \leq k-t \\ j \neq g}} V_{j}(1) \leq V_{g} \leq \min _{k-t+1 \leq i \leq k} V_{i}\left(\frac{1}{\delta^{*}}\right) ; g=1, \ldots, k-t\right]$

$$
\begin{align*}
& =\sum_{\beta=1}^{k-1} \int_{0}^{\infty}\left[\prod_{j=1}^{k-1} G_{v}(v) \prod_{i=k-t+1}^{k}\left(1-G_{v}\left(\nu \delta^{*}\right)\right)\right] d G_{v}(v) \tag{2.4.6}\\
& =\sum_{g=1}^{k-1} \int_{0}^{\infty} G_{v}^{(k-t-1)}(v)\left[1-G_{v}\left(\nu \delta^{*}\right)\right] d G_{v}(v) \tag{2.4.7}\\
& =(k-t) \int_{0}^{\infty} G_{v}^{(k-1)}(v)\left[1-G_{v}\left(v \delta^{*}\right)\right] d G_{v}(v)=P^{*}(C S \mid R), \tag{2.4.8}
\end{align*}
$$

where $G_{v}(v)$ is defined to be the cumulative distribution function of the $V_{j}=\frac{\hat{\beta}_{(j)}}{\beta_{[j]}}$.
So, $\quad P^{*}(C S \mid R)=P\left[\max _{1 \leq j \leq k-t} V_{j} \leq \frac{1}{\delta^{*}} \min _{k-t+1 \leq \leq \leq k} V_{i}\right]$.
Now given k, t, δ^{*}, and p^{*} - values, the solution can be obtained by setting $P^{*}(C S \mid R)$ equal to p^{*} and solving for n. However, this can not be done analytically
since the distribution of V_{i} cannot be obtained in closed form. Therefore, $P^{*}(C S \mid R)$ has been simulated for various cases in Section 2.6 and large sample approximations will be discussed in Chapter 3.

Section 2.5 Properties of the Probability of Correct Selection

$\begin{aligned} & \text { Property 2.5.1: } \text { As } \delta^{*} \rightarrow 1 \text {, show that the } P^{*}(C S \mid R) \rightarrow\binom{k}{t}^{-1} . \\ & \text { Proof: } \quad \text { The } P^{*}(C S \mid R)=(k-t) \int_{0}^{\infty} G_{v}^{(k-1-1)}(v)\left[1-G_{v}\left(v \delta^{*}\right)\right] d G_{v}(v) .\end{aligned}$
And further suppose that $\delta^{*} \rightarrow 1$ then that implies that the

$$
P^{*}(C S \mid R)=(k-t) \int_{0}^{\infty} G_{v}^{(k-t-1)}(v)\left[1-G_{v}(v)\right]^{t} d G_{v}(v)
$$

Now let $x=G_{v}(v)$ then that implies

$$
\begin{aligned}
& P^{*}(C S \mid R)=(k-t) \int_{0}^{1} x^{(k-t-1)}[1-x]^{7} d x \\
& =\frac{(k-t)(k-t-1)!t!}{k!}=\frac{(k-t)!t!}{k!}=\binom{k}{t}^{-1} \text { as desired. }
\end{aligned}
$$

Property $2.5 .2: \quad$ As $\delta^{*} \rightarrow 0$, show that the $P^{*}(C S \mid R) \rightarrow 1$.
Proof : \quad The $P^{*}(C S \mid R)=(k-t) \int_{0}^{\infty} G_{v}^{(k-t-1)}(v)\left[1-G_{v}\left(v \delta^{*}\right)\right] d G_{v}(v)$.
And further suppose that $\delta^{*} \rightarrow 0$ then that implies that the

$$
P^{*}(C S \mid R)=(k-t) \int_{0}^{\infty} G_{v}^{(k-1)}(v) d G_{v}(v) .
$$

Now let $x=G_{v}(v)$ then that implies $P^{*}(C S \mid R)=(k-t) \int_{0}^{1} x^{(k-t-1)}(1-x)^{0} d x$.

$$
=\frac{(k-t)(k-t-1)!}{(k-t)!}=\frac{(k-t)!}{(k-t)!}=1 \text { as desired. }
$$

Property 2.5.3: As $n \rightarrow \infty$, then $P^{*}(C S \mid R) \rightarrow 1$.
Proof: The proof of this property follows from the normal approximation to $P^{*}(C S \mid R)$ discussed in Section 2 of Chapter 3.

Property 2.5 .3 guarantees that there is a sample size, n, which will guarantee any probability of correct selection.

Section 2.6 Simulations

Fortran programs were written using Monte Carlo methods to simulate probability tables using the estimator, $\hat{\beta}$, for $\alpha=0.15,0.25,0.50,0.75,1.0, k=2(1) 5, t=1(1)(k-1)$, and $n=5$ (5) 30. From the literature on the Birnbaum-Saunders distribution reasonable choices for α are less than or equal to 2 and usually only those values less than or equal to $\sqrt{2}$ are used. The tables are located in Appendix A. The tables were constructed by performing 50,000 iterations to calculate the probabilities of correct selection. The

Birnbaum - Saunders populations were generated by an algorithm that was previously used by Desmond (1995). The complete program is located in Appendix H.

To illustrate how these tables are used then consider the following scenario: If a researcher is interested in choosing the 2 "best" populations from 5 populations with $\alpha=1$ and they further specify that $p^{*}=0.90$ and $\delta^{*}=0.500$ then according to the table found below from Appendix A they would need to sample 15 from each of the five populations in order to ensure the probability of correct selection to be 0.90 , since $k=5$, $t=2, p^{*}=0.90$ and $\delta^{*}=0.500$.

p^{*}	
k t n .80 .90 .95 .975 .99 .995 5 2 5 .380 .305 .255 .220 .185 .165 10 .515 .445 .395 .355 .310 .285 15 .570 .500 .450 .415 .370 .345 20 .610 .550 .500 .460 .420 .390 25 .640 .580 .540 .500 .470 .435 30 .660 .610 .570 .530 .490 .460	

The simulated probability tables using estimator, β^{\prime}, for $\alpha=1, k=2(1) 5, t=1$ (1) (k-1), and $n=5(5) 30$ are located in Appendix B.

The simulated probability tables using the estimator, $\widetilde{\beta}$, for $\alpha=0.15,0.25,0.50,0.75,1.0,2.0,3.0,4.0$, and $5.00, k=2(1) 5, \mathrm{t}=1(1)(k-1)$, and $n=5(5) 30$ are located in Appendix C.

The last two estimators gave very similar values for the probability of correct selection. Therefore, only $\widetilde{\beta}$ has been explored further.

A comparison of the estimators, $\hat{\beta}, \widetilde{\beta}, \beta^{\prime}$, is given below for the probability of correct selection, $P^{*}(C S \mid R)$, for the following specificed values : $\alpha=1, k=5, t=2, n=30$ and $\delta^{*}=0.400,0.500,0.650,0.750$.

	$\frac{P^{*}(C S \mid R)}{}$			
	$\frac{\delta^{*}=0.400}{\delta^{*}=0.500}$	$\frac{\delta^{*}=0.650}{}$		$\frac{\delta^{*}=0.750}{}$
$\widehat{\beta}$	0.9994	0.9862	0.8296	0.5894
$\widetilde{\beta}$	0.9999	0.9935	0.8703	0.6332
β^{\prime}	0.9998	0.9889	0.8603	0.6230

Chapter 3

Asymptotic Results of the Estimators for the Parameter β

Section 3.1 Results for the Estimator $\hat{\beta}$

From Chapter 2, Section 4, the probability of correct selection, $P^{*}(C S \mid R)$, was obtained but a closed form of the distribution of V_{i} does not exist. Therefore, the probability of correct selection, $P^{*}(C S \mid R)$, must be simulated or approximated. Simulations were discussed in Chapter 2 and the tables appear in Appendices A, B, and C. Large sample approximations for the parameter, β, will now be considered.

Before proceeding with the selection procedure, it is useful to note the following asymptotic results concerning the maximum likelihood estimator, $\hat{\beta}$.

Theorem 3.1.1 : (Engelhardt et al., 1981) For n sufficiently large,

$$
\begin{aligned}
& \hat{\beta} \dot{\sim} \mathrm{N}\left(\beta, \beta^{2} H^{2}\left(\alpha^{2}\right) / n\right) \text { where } H(u)=\left[\frac{1}{4}+\frac{1}{u}+\mathrm{I}\left(u^{\frac{1}{2}}\right)\right]^{\frac{-1}{2}}, \\
& \mathrm{I}(\alpha)=2 \int_{0}^{\infty}\left[\left(1+\xi^{-1}(\alpha z)\right)^{-1}-\frac{1}{2}\right]^{2} \Phi^{\prime}(z) d z \text { and } \xi(t)=t^{\frac{1}{2}}-t^{\frac{-1}{2}} .
\end{aligned}
$$

Theorem 3.1.2: For n sufficiently large, $\frac{\hat{\beta}}{\beta} \dot{\sim} \mathrm{N}\left(1, \frac{H^{2}\left(\alpha^{2}\right)}{n}\right)$ where $H(u)$ is defined as before.

Proof: \quad Suppose $\hat{\beta} \dot{\sim} \mathrm{N}\left(\beta, \beta^{2} H^{2}\left(\alpha^{2}\right) / n\right)$.
Let $X=\hat{\beta}$ and $Y=\frac{\hat{\beta}}{\beta}=\frac{X}{\beta}$ then

$$
\begin{equation*}
P(Y \leq y)=P\left(\frac{X}{\beta} \leq y\right)=P(X \leq \beta y) \tag{3.1.1}
\end{equation*}
$$

$$
\begin{equation*}
=P\left(Z \leq \frac{\beta y-\beta}{\sqrt{\beta^{2}\left(H^{2}\left(\alpha^{2}\right)\right) / n}}\right) \tag{3.1.2}
\end{equation*}
$$

$$
\begin{equation*}
=P\left(Z \leq \frac{\beta(y-1)}{\beta \sqrt{\left(H^{2}\left(\alpha^{2}\right)\right) / n}}\right) \tag{3.1.3}
\end{equation*}
$$

$$
\begin{equation*}
=P\left(Z \leq \frac{(y-1)}{\sqrt{\left(H^{2}\left(\alpha^{2}\right)\right) / n}}\right) \tag{3.1.4}
\end{equation*}
$$

Therefore, $\frac{\hat{\beta}}{\beta} \dot{\sim} \mathrm{N}\left(1, \frac{H^{2}\left(\alpha^{2}\right)}{n}\right)$ as desired.

Section 3.2 Probability of Correct Selection for Normal Approximation of $\hat{\beta}$

The probability of correct selection must be examined since the distribution of $\frac{\hat{\beta}}{\beta}$
is now being approximated by a normal distribution where $\frac{\hat{\beta}}{\beta} \dot{\sim} \mathrm{N}\left(1, \frac{H^{2}\left(\alpha^{2}\right)}{n}\right)$.
Therefore, from Equation 2.4.9 of Section 2.4 of Chapter 2, the probability of correct selection given the rule $\mathrm{R}, P^{*}(C S \mid R)$ is :

$$
\begin{align*}
& P^{*}(C S \mid R)=P\left[\max _{1 \leq \leq S k-1} V_{j} \leq \frac{1}{\delta^{*}} \min _{k=1+1 \leq \leq \leq k} V_{i}\right] \tag{3.2.1}\\
& =P\left[\delta^{*} \max _{1 \leq j \leq k-t} V_{j} \leq \min _{k-t+1 \leq i \leq k} V_{i}\right] \tag{3.2.2}\\
& =P\left[\max _{1 \leq \leq \leq k-t} \delta^{*} V_{j}-1 \leq \min _{k-t+1 \leq i \leq k} V_{i}-1\right] \tag{3.2.3}\\
& =P\left[\max _{1 \leq j \leq \leq k-t} \frac{\delta^{*} V_{j}-1}{\sqrt{\frac{H^{2}\left(\alpha^{2}\right)}{n}}} \leq \min _{k-t+1 \leq \leq i k k} \frac{V_{i}-1}{\sqrt{\frac{H^{2}\left(\alpha^{2}\right)}{n}}}\right] \tag{3.2.4}\\
& =P\left[\max _{1 \leq j \leq k-t} \frac{\delta^{*}\left(V_{j}-1\right)}{\sqrt{\frac{H^{2}\left(\alpha^{2}\right)}{n}}}+\frac{\delta^{*}-1}{\sqrt{\frac{H^{2}\left(\alpha^{2}\right)}{n}}} \leq \min _{k-t+1 \leq \leq \leq k} \frac{V_{i}-1}{\sqrt{\frac{H^{2}\left(\alpha^{2}\right)}{n}}}\right] \tag{3.2.5}\\
& =P\left[\max _{1 \leq j \leq k-1} \delta^{*} Z_{j}+\frac{\delta^{*}-1}{\sqrt{\frac{H^{2}\left(\alpha^{2}\right)}{n}}} \leq \min _{k-t+1 \leq \leq i k} Z_{i}\right] \tag{3.2.6}
\end{align*}
$$

$$
\begin{align*}
& =(k-t) \int_{-\infty}^{\infty}\left[\Phi\left(Z_{i}\right)\right]^{(k-t-1)}\left[1-\Phi\left(\delta^{*} Z_{j}+\frac{\delta^{*}-1}{\sqrt{\frac{H^{2}\left(\alpha^{2}\right)}{n}}}\right)\right]^{t} d \Phi(z) \tag{3.2.8}
\end{align*}
$$

where $\Phi(z)$ is defined to be the cumulative distribution function of the standard normal distribution. Now given k, t, δ^{*}, and p^{*} - values, the solution can be obtained by setting $P^{*}(C S \mid R)$ equal to p^{*} and solving for n.

From Section 2.5 of Chapter 2, Property 2.5 .3 states that as $n \rightarrow \infty$, then
$P^{*}(C S \mid R) \rightarrow 1$. From Equation 3.2.8, as $n \rightarrow \infty, \frac{\delta^{*}-1}{\sqrt{\frac{H^{2}\left(\alpha^{2}\right)}{n}}} \rightarrow-\infty$, since $\delta^{*}<1$.
Therefore, $P^{*}(C S \mid R) \rightarrow(k-t) \int_{-\infty}^{\infty}\left[\Phi\left(Z_{i}\right)\right]^{(k-t-1)}(1)^{t} d \Phi(z) \rightarrow 1$ as $n \rightarrow \infty$.

Section 3.3 Large Sample Approximations

Fortran programs were written using Monte Carlo methods to calculate probability tables using the estimator, $\hat{\beta}$, for $\alpha=0.25,0.50,0.75,1.0,1.25,1.5, k=2(1) 5$, $t=1(1)(k-1)$, and $n=30,40,50,75$. The tables are located in Appendix E.

Section 3.4 Results for the Estimator $\widetilde{\beta}$

Before proceeding with the selection procedure, it is useful to note the following asymptotic results concerning the mean - mean estimator, $\widetilde{\beta}$.

Theorem 3.4.1 : (Birnbaum and Saunders, 1969 b) For n sufficiently large,

$$
\begin{aligned}
& \widetilde{\beta} \dot{\sim} B S\left(\alpha \theta n^{\frac{-1}{2}}, \beta\right) \text { where } \theta^{2}=\left(1+\frac{3}{4} \alpha^{2}\right) /\left(1+\frac{1}{2} \alpha^{2}\right)^{2} . \text { Also, } \\
& E(\widetilde{\beta})=\beta\left[1+\frac{(\alpha \theta)^{2}}{2 n}\right] \text { and } \operatorname{Var}(\widetilde{\beta})=\frac{(\alpha \theta \beta)^{2}}{n}\left[1+\frac{5 \alpha^{2} \theta^{2}}{4 n}\right] .
\end{aligned}
$$

Theorem 3.4.2: For n sufficiently large, $\frac{\widetilde{\beta}}{\beta} \dot{\sim} B S\left(\alpha \theta n^{\frac{-1}{2}}, 1\right)$ where θ is as above.
Proof: \quad Suppose $\widetilde{\beta} \dot{\sim} B S\left(\alpha \theta n^{\frac{-1}{2}}, \beta\right)$. Let $X=\widetilde{\beta}$ and $Y=\frac{\widetilde{\beta}}{\beta}=\frac{X}{\beta}$

$$
\begin{equation*}
\text { then } \quad P(Y \leq y)=P\left(\frac{X}{\beta} \leq y\right)=P(X \leq y \beta) \tag{3.4.1}
\end{equation*}
$$

$$
\begin{equation*}
=P\left(X \leq \frac{n^{\frac{1}{2}}}{\alpha \theta} \xi\left(\frac{y \beta}{\beta}\right)\right) \tag{3.4.2}
\end{equation*}
$$

$$
\begin{equation*}
=P\left(X \leq \frac{n^{\frac{1}{2}}}{\alpha \theta} \xi\left(\frac{y}{1}\right)\right) \tag{3.4.3}
\end{equation*}
$$

Therefore, $\frac{\widetilde{\beta}}{\beta} \dot{\sim} B S\left(\alpha \theta n^{\frac{-1}{2}}, 1\right)$ as desired.

Section 3.5 Probability of Correct Selection for Birnbaum-Saunders Approximation

$$
\text { of } \widetilde{\beta}
$$

The probability of correct selection is examined for the distribution of $\frac{\widetilde{\beta}}{\beta}$ which is now being approximated by a Birnbaum-Saunders distribution. Therefore, $P^{*}(C S \mid R)=P\left[\max _{1 \leq j \leq k-t} Y_{j} \leq \frac{1}{\delta^{*}} \min _{k-t+1 \leq \leq \leq k} Y_{i}\right] \doteq(k-t) \int_{0}^{\infty} G_{Y}^{(k-t-1)}(y)\left[1-G_{Y}\left(y \delta^{*}\right)\right]^{k} d G_{Y}(y)$
where $G_{Y}(y)$ is the cumulative distribution function of $Y \dot{\sim} B S\left(\alpha \theta n^{\frac{-1}{2}}, 1\right)$. Now given k, t, δ^{*}, and p^{*} - values, the solution can be obtained by setting $P^{*}(C S \mid R)$ equal to p^{*} and solving for n.

Section 3.6 Large Sample Approximations

Fortran programs were written using Monte Carlo methods to calculate probability tables using the estimator, $\widetilde{\beta}$, for $\alpha=0.25,0.50,0.75,1.0,1.25,1.5, k=2(1) 5$, $t=1(1)(k-1)$, and $n=30,40,50,75$. The tables are located in Appendix F.

Section 3.7 Comparisons of the Simulations and Approximations

A comparison of the estimators, $\hat{\beta}, \widetilde{\beta}$, for simulated probabilities and the approximations is given next for the probability of correct selection, $P^{*}(C S \mid R)$, for the following specified values : $\alpha=1, k=5, t=2, n=30$ and $\delta^{*}=0.400,0.500,0.650,0.750$.

	$\frac{P^{*}(C S \mid R)}{}$			
	$\frac{\delta^{*}=0.400}{}$	$\frac{\delta^{*}=0.500}{}$	$\frac{\delta^{*}=0.650}{}$	
simulated $\hat{\beta}$	0.9994	0.9862	0.8296	0.5894
approximated $\hat{\beta}$	0.9988	0.9879	0.8554	0.6155
simulated $\widetilde{\beta}$	0.9999	0.9935	0.8703	0.6332
approximated $\widetilde{\beta}$	0.9999	0.9939	0.8726	0.6394

Chapter 4

Ranking and Selection According to the Parameter α

Section 4.1 Theory for "Best" Parameter α

When selecting populations according the parameter β, it is most logical to select the t populations with the largest β parameters since β is the median of the distribution. In the case of selection of the t "best" populations with fixed β, according to the parameter α, the choice is much less intuitive. In order to determine whether to choose the t populations with the smallest or largest parameters α, the reliability function, $R\left(t_{0}\right)$, has been investigated. $R\left(t_{0}\right)=P\left(X>t_{0}\right)=1-F\left(t_{0} ; \alpha, \beta\right)$ where $F\left(t_{0} ; \alpha, \beta\right)$ is defined as the cumulative distribution function in Section 2.1 of Chapter 2. If the reliability function were increasing then selecting the t populations with the largest α parameters would be most consistent with what is usually thought of as "best" populations. Conversely, selecting the t smallest α parameters would be considered "best" if the reliability function is decreasing.

It can be shown that the reliability function, $R(t)$, is increasing for $t>\beta$, decreasing for $\beta>t$ and is equal to 0.5 when $t=\beta$ for all α. Furthermore, the mean is an increasing function of α for fixed β, so selecting the populations with the largest parameters α would correspond to selecting the populations with the longest mean time until failure.

Section 4.2 Theory for Selection of α

Given $k(k \geq 2)$ independent Birnbaum-Saunders Distributions, (BSD), $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$. Let $\pi_{(i)}$ denote the population having the i th shape parameter $\alpha_{[i]}$, where $\alpha_{[1]} \leq \alpha_{[2]} \leq \ldots \leq \alpha_{[k-t+1]} \leq \alpha_{[k]}$. The population $\pi_{(i)}$ is defined to be better than $\pi_{(j)}$ if $i>$ j. Selecting the t-best populations with the t largest α parameters, $1 \leq t<k$ is considered. The goal is to select a group of the t-best $(1 \leq t<k)$ populations in an unordered manner. The choice of any t populations having the t largest parameters is regarded as a correct selection, (CS).

Let $\hat{\alpha}_{(i)}$ denote the maximum likelihood estimator (MLE) of $\alpha_{[i]}$ associated with population $\pi_{(i)}$. The maximum likelihood estimator is computed by the formula, $\hat{\alpha}=\left(\frac{\bar{T}}{\hat{\beta}}+\frac{\hat{\beta}}{H^{-1}}-2\right)^{\frac{1}{2}}$, where $\hat{\beta}, \bar{T}$ and H are defined as in Section 2.2. Define $W_{j}=\frac{\hat{\alpha}_{(j)}}{\alpha_{[j]}}$. Due to Engelhardt et al. (1981), the distribution of W_{j} does not depend on α or β. Let $\vec{\alpha}=\left(\alpha_{[1]}, \ldots, \alpha_{[k]}\right)$ denote a point in the parameter space Ω that is partitioned into a 'preference zone', $\Omega\left(\delta^{*}\right)$, defined by $\Omega\left(\delta^{*}\right)=\left\{\vec{\alpha}: \frac{\alpha_{[k-t]}}{\alpha_{[k-t+1]}} \leq \delta^{*}<1\right\}$. The complement of $\Omega\left(\delta^{*}\right)$ is called the indifference zone. Now consider the following rule, R , for which the probability of correct selection, $P(C S \mid R)$, satisfies $P(C S \mid R) \geq p^{*}$ for all $\vec{\alpha} \in \Omega\left(\delta^{*}\right)$.

Rule R2 : Select the populations associated with the t largest $\hat{\alpha}$ as the t-best populations.
The experimenter specifies in advance the constants δ^{*} and p^{*} where $\binom{k}{t}^{-1}<p^{*}<1$.
The probability of correct selection, $P(C S \mid R 2)$ is as follows :

$$
\begin{align*}
& P(C S \mid R 2)=P\left[\max _{1 \leq j \leq k-t} \hat{\alpha}_{(j)} \leq \min _{k-t+1 \leq i \leq k} \hat{\alpha}_{(i)}\right] \tag{4.2.1}\\
& =P\left[\max _{\substack{1 \leq j \leq k-t \\
j \neq g}} \hat{\alpha}_{(j)} \leq \hat{\alpha}_{(g)} \leq \min _{k-t+1 \leq i \leq k} \hat{\alpha}_{(i)} ; g=1, \ldots, k-t\right] \tag{4.2.2}\\
& =P\left[\max _{\substack{1 \leq j \leq k-t \\
j \neq g}} \frac{\hat{\alpha}_{(j)}}{\alpha_{[j]}} \frac{\alpha_{[j]}}{\alpha_{[g]}} \leq \frac{\hat{\alpha}_{(g)}}{\alpha_{[g]}} \leq \min _{k-t+1 \leq i \leq k} \frac{\hat{\alpha}_{(i)}}{\alpha_{[i]}} \frac{\alpha_{[i]}}{\alpha_{[g]}} ; g=1, \ldots, k-t\right] \tag{4.2.3}\\
& =P\left[\max _{\substack{\leq j \leq k-t \\
j \neq g}} W_{j} \frac{\alpha_{[j]}}{\alpha_{[g]}} \leq W_{g} \leq \min _{k-t+1 \leq i \leq k} W_{i} \frac{\alpha_{[i]}}{\alpha_{[g]}} ; g=1, \ldots, k-t\right] . \tag{4.2.4}
\end{align*}
$$

Interest is in finding the configuration of the parameters that minimizes $P(C S \mid R)$. This configuration of parameters is called the Least Favorable Configuration (LFC). Under the least favorable conditions $\alpha_{[1]}=\alpha_{[2]}=\cdots=\alpha_{[k-t]}, \alpha_{[k-t+1]}=\cdots=\alpha_{[k]}$ and $\alpha_{[k-t]} \leq \alpha_{[k-t+1]}\left(\delta^{*}\right)$ which implies that $\frac{\alpha_{[k-t+1]}}{\alpha_{[k-t]}} \geq \frac{1}{\delta^{*}} \geq 1$.

Thus,

$$
\begin{align*}
P(C S \mid R) & \geq P\left[\max _{\substack{1 \leq j \leq k-t \\
j \neq g}} W_{j}(1) \leq W_{g} \leq \min _{k-t+1 \leq i \leq k} W_{i}\left(\frac{1}{\delta^{*}}\right) ; g=1, \ldots, k-t\right] \tag{4.2.5}\\
& =\sum_{g=1}^{k-t} \int_{0}^{\infty}\left[\prod_{\substack{j=1 \\
j \neq g}}^{k-t} G_{w}(w) \prod_{i=k-t+1}^{k}\left(1-G_{w}\left(w \delta^{*}\right)\right)\right] d G_{w}(w) \tag{4.2.6}
\end{align*}
$$

$$
\begin{align*}
& =\sum_{g=1}^{k-t} \int_{0}^{\infty} G_{w}^{(k-t-1)}(w)\left[1-G_{w}\left(w \delta^{*}\right)\right]^{(t)} d G_{w}(w) \tag{4.2.7}\\
& =(k-t) \int_{0}^{\infty} G_{w}^{(k-t-1)}(w)\left[1-G_{w}\left(w \delta^{*}\right)\right]^{(t)} d G_{w}(w)=P^{*}(C S \mid R 2), \tag{4.2.8}
\end{align*}
$$

where $G_{w}(w)$ is defined to be the cumulative distribution function of the $W_{j}=\frac{\hat{\alpha}_{(j)}}{\alpha_{[j]}}$.
So, $\quad P^{*}(C S \mid R 2)=P\left[\max _{1 \leq j \leq k-t} W_{j} \leq \frac{1}{\delta^{*}} \min _{k-t+1 \leq i \leq k} W_{i}\right]$.
Now given k, t, δ^{*}, and p^{*} - values, the solution can be obtained by setting $P^{*}(C S \mid R 2)$ equal to p^{*} and solving for n. Since the distribution of W_{i} cannot be obtained in closed form, the $P^{*}(C S \mid R 2)$ has been simulated and approximated and large sample approximations will be discussed in Chapter 5.

Section 4.3 Simulations

Fortran programs were written using Monte Carlo methods to simulate probability tables for $\hat{\alpha}$ and for β unknown, $k=2$ (1) $5, t=1$ (1) ($k-1$), and $n=5$ (5) 30. Furthermore, instead of using $\hat{\beta}$ to estimate $\hat{\alpha}$, the estimator $\widetilde{\beta}$ has been used in place of $\hat{\beta}$ to compute the estimates for alpha. For all of the reasons mentioned in Chapter 2, the estimator is a reasonable choice to use and was also used previously by Desmond (1995) in his prediction intervals. The estimator from now on will be referred to as $\tilde{\alpha}$. These tables are located in Appendix D. These probability tables were constructed for selecting t
populations out of k populations with the largest parameters, α. But, these tables can also be used to select the t populations with the smallest parameters, α, since selecting the t populations with the smallest parameters, α, is equivalent to selecting the $k-t$ populations with the largest parameters α. For example, if the experimenter wants to select the two populations out of five with the smallest parameters, α, then the researcher would use the table in Appendix D for selecting the three populations with the largest parameters α out of five populations.

Chapter 5

Asymptotic Results of the Estimator for the Parameter α

Section 5.1 Results for the Estimator $\hat{\alpha}$

From Chapter 4, Section 2, the probability of correct selection, $P^{*}(C S \mid R 2)$, was obtained but a closed form of the distribution of W_{i} does not exist. Therefore, the probability of correct selection, $P^{*}(C S \mid R 2)$, must be simulated or approximated. Simulations were discussed in Chapter 4 and the tables appear in Appendix F. Large sample approximations for the parameter, α, will now be considered.

Before proceeding with the selection procedure, it is useful to note the following asymptotic results concerning the maximum likelihood estimator, $\hat{\alpha}$.

Theorem 5.1.1 : (Engelhardt et al., 1981) For n sufficiently large,

$$
\hat{\alpha} \dot{\sim} \mathrm{N}\left(\alpha, 2^{-1} \alpha^{2} / n\right)
$$

Theorem 5.1.2: For n sufficiently large, $\frac{\hat{\alpha}}{\alpha} \dot{\sim} \mathrm{N}\left(1, \frac{1}{2 n}\right)$.

Proof: \quad Suppose $\hat{\alpha} \dot{\sim} N\left(\alpha, 2^{-1} \alpha^{2} / n\right)$.

Let $X=\hat{\alpha}$ and $Y=\frac{\hat{\alpha}}{\alpha}=\frac{X}{\alpha}$ then

$$
\begin{align*}
& P(Y \leq y)=P\left(\frac{X}{\alpha} \leq y\right)=P(X \leq \alpha y) \tag{5.1.1}\\
& =P\left(Z \leq \frac{\alpha y-\alpha}{\sqrt{2^{-1} \alpha^{2} / n}}\right) \tag{5.1.2}\\
& =P\left(Z \leq \frac{\alpha(y-1)}{\alpha \sqrt{1 / 2 n}}\right) \tag{5.1.3}\\
& =P\left(Z \leq \frac{(y-1)}{\sqrt{1 / 2 n}}\right) . \tag{5.1.4}
\end{align*}
$$

Therefore, $\frac{\hat{\alpha}}{\alpha} \dot{\sim} \mathrm{N}\left(1, \frac{1}{2 n}\right)$ as desired.

Section 5.2 Probability of Correct Selection for Normal Approximation of $\hat{\alpha}$

The probability of correct selection must be examined since the distribution of $\frac{\hat{\alpha}}{\alpha}$ is now being approximated by a normal distribution where $\frac{\hat{\alpha}}{\alpha} \dot{\sim} \mathrm{N}\left(1, \frac{1}{2 n}\right)$. Therefore, from Equation 4.2.9 of Section 4.2 of Chapter 4, the probability of correct selection given the rule $\mathrm{R}, P(C S \mid R 2)$, is :

$$
\begin{equation*}
P(C S \mid R 2)=P\left[\max _{1 \leq j \leq k-t} W_{j} \leq \frac{1}{\delta^{*}} \min _{k-++1 \leq i \leq k} W_{i}\right] \tag{5.2.1}
\end{equation*}
$$

$$
\begin{align*}
& =P\left[\delta^{*} \max _{1 \leq j \leq k-t} W_{j} \leq \min _{k-t+1 \leq i \leq k} W_{i}\right] \tag{5.2.2}\\
& =P\left[\max _{1 \leq j \leq k-t} \delta^{*} W_{j}-1 \leq \min _{k-t+1 \leq i \leq k} W_{i}-1\right] \tag{5.2.3}\\
& =P\left[\max _{1 \leq j \leq k-t} \frac{\delta^{*} W_{j}-1}{\sqrt{\frac{1}{2 n}}} \leq \min _{k-t+1 \leq i \leq k} \frac{W_{i}-1}{\sqrt{\frac{1}{2 n}}}\right] \tag{5.2.4}\\
& =P\left[\max _{1 \leq j \leq k-t} \frac{\delta^{*}\left(W_{j}-1\right)}{\sqrt{\frac{1}{2 n}}}+\frac{\delta^{*}-1}{\sqrt{\frac{1}{2 n}}} \leq \min _{k-t+1 \leq i \leq k} \frac{W_{i}-1}{\sqrt{\frac{1}{2 n}}}\right] \tag{5.2.5}\\
& =P\left[\max _{1 \leq j \leq k-t} \delta^{*} Z_{j}+\frac{\delta^{*}-1}{\sqrt{\frac{1}{2 n}}} \leq \min _{k-t+1 \leq i \leq k} Z_{i}\right] \tag{5.2.6}\\
& \doteq \sum_{\substack{ \\
g=1}}^{\substack {-\infty \tag{5.2.7}\\
\begin{subarray}{c}{\infty \tag{5.2.8}\\
8 \neq 1{ - \infty \\
\begin{subarray} { c } { \infty \\
8 \neq 1 } }\end{subarray}} \prod_{\substack{k-1}}^{k-1} \Phi\left(Z_{i}\right) \prod_{\substack{i=k-t+1}}^{k}\left[1-\Phi\left(\delta^{*} Z_{j}+\frac{\delta^{*}-1}{\sqrt{\frac{1}{2 n}}}\right)\right] d \Phi(z) \\
& =(k-t) \int_{-\infty}^{\infty}\left[\Phi\left(Z_{i}\right)\right]^{(k-t-1)}\left[1-\Phi\left(\delta^{*} Z_{j}+\frac{\delta^{*}-1}{\sqrt{\frac{1}{2 n}}}\right)\right]^{t} d \Phi(z)=P^{*}(C S \mid R 2)
\end{align*}
$$

where $\Phi(z)$ is defined to be the cumulative distribution function of the standard normal distribution. Now given k, t, δ^{*}, and p^{*} - values, the solution can be obtained by setting $P^{*}(C S \mid R 2)$ equal to p^{*} and solving for n.

From Section 2.5 of Chapter 2, Property 2.5 .3 states that as $n \rightarrow \infty$, then
$P^{*}(C S \mid R 2) \rightarrow 1$. From Equation 3.2.8, as $n \rightarrow \infty, \frac{\delta^{*}-1}{\sqrt{\frac{1}{2 n}}} \rightarrow-\infty$, since $\delta^{*}<1$.
Therefore, $P^{*}(C S \mid R 2) \rightarrow(k-t) \int_{-\infty}^{\infty}\left[\Phi\left(Z_{i}\right)\right]^{(k-t-1)}(1)^{t} d \Phi(z) \rightarrow 1$ as $n \rightarrow \infty$. Also, Property
2.5.1 and Property 2.5.2 from Section 2.5 of Chapter 2 hold for α as they do for β.

Section 5.3 Large Sample Approximations

Fortran programs were written using Monte Carlo methods to calculate probability tables using the estimator, $\hat{\alpha}$, for $k=2(1) 5, t=1(1)(k-1)$, and $n=30,40,50,75$. The tables are located in Appendix G.

Section 5.4 Comparisons of the Simulations and Approximations

A comparison of the estimator, $\hat{\alpha}$, for simulated probabilities and the approximations is given next for the probability of correct selection, $P^{*}(C S \mid R 2)$, for the following specified values : $k=5, t=2, n=30$ and $\delta^{*}=0.400,0.500,0.650,0.750$.

| | $(C S \mid R 2)$ | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | $\frac{\delta^{*}=0.400}{}$ | $\frac{\delta^{*}=0.500}{}$ | $\frac{\delta^{*}=0.650}{}$ | $\frac{\delta^{*}=0.750}{}$ |
| simulated $\hat{\alpha}$ | 1.00000 | 0.99902 | 0.94616 | 0.75954 |
| approximated $\hat{\alpha}$ | 0.99996 | 0.99870 | 0.94894 | 0.77323 |

Chapter 6

Conclusions and Future Work

Section 6.1 Conclusions

In this dissertation, two main goals were accomplished. The first goal was ranking and selection of Birnbaum-Saunders populations according to the scale parameter, β. The indifference zone approach was used as the selection criteria for the 'best' populations due to Bechhofer (1954). Using this procedure, a probability of correct selection, $P(C S \mid R)$, was obtained and Monte Carlo simulations and large sample approximations tables were computed using Fortran 77 programs. These tables can be used to determine the size that would be needed from each population to sample to ensure a correct selection at a certain probability level.

The second goal was ranking and selection of Birnbaum-Saunders populations according to the shape parameter, α. The indifference zone approach again was used. Also, a statement regarding the probability of correct selection was obtained where Monte Carlo simulations and large sample approximations tables were computed using Fortran 77 programs. Again, tables for the determination of the smallest sample size needed from each of the populations to ensure a correct selection of a certain probability were obtained.

During the course of this dissertation, the author has found that the mean - mean estimator, $\widetilde{\beta}$, is preferred over the maximum likelihood estimator, $\hat{\beta}$, because of the ease in computation. Also, the simulated and approximated probabilities for the estimator are higher than those obtained from the maximum likelihood estimator.

Section 6.2 Future Work

There are many topics that can be explored further. First, with the BirnbaumSaunders distribution is to consider ranking and selection procedures with censored samples using Type-II censored samples estimators introduced by McCarter (1999). Gupta (1965) considered subset selection procedures that can possibly be applied to develop procedures for the Birnbaum-Saunders distribution and procedures from Tong (1969) on comparisons with a control can also be explored.

Bibliography

Bain, L. and Engelhardt, M., Statistical Analysis of Reliability and Life-Testing Models : Theory and Methods, Second Edition, Marcel Dekker, Inc., New York, (1991).

Bain, L. and Engelhardt, M., Introduction to Probability and Mathematical Statistics, Second Edition, PWS-KENT Publishing Company, Boston, (1992).

Barr, D.R. and Rizvi, M.H., An Introduction to Ranking and Selection Procedures, Journal of the American Statistical Association, 61 (1966), 640-646.

Bechhofer, R.E., A Single-Sample Multiple Decision Procedure for Ranking Means of Normal Populations with Known Variances, Annals of Mathematical Statistics, 25 (1954), 16-39.

Bechhofer, R.E. and Sobel, M., A Single-Sampled Multiple Decision Procedure for Ranking Variances of Normal Populations, Annals of Mathematical Statistics, 25 (1954), 273-289.

Bechhofer, R.E., Santner, T.J., and Goldsman, D.M., Design and Analysis of Experiments for Statistical Selection, Screening, and Multiple Comparisons, John Wiley \& Sons, Inc., New York, (1995).

Birnbaum, Z.W. and Saunders, S.C., A Statistical Model for Life-Length of Materials, Journal of the American Statistical Association, 53 (1958), 151-160.

Birnbaum, Z.W. and Saunders, S.C., A New Family of Life Distributions, Journal of Applied Probability, 6 (1969 a), 319-327.

Birnbaum, Z.W. and Saunders, S.C., Estimation for a Family of Life Distributions with Applications to Fatigue, Journal of Applied Probability, 6 (1969 b), 328-347.

Chang, Dong Shang, and Tang, Loon Ching, Reliability Bounds and Critical Time for the Birnbaum-Saunders Distribution, IEEE Transactions on Reliability, 42 (1993), 464-469.

Chang, Dong Shang, and Tang, Loon Ching, Percentile Bounds and Tolerance Limits for the Birnbaum-Saunders Distribution, Communications in Statistics, Part A - Theory and Methods, 23 (1994 a), 2853-2863.

Chang, Dong Shang and Tang, Loon Ching, Graphical Analysis for Birnbaum-Saunders Distribution, Microelectronics Reliability, 34 (1994 b), 17-22.

Chhikara, Raj. S., and Folks, J. Leroy, The Inverse Gaussian Distribution : Theory, Methodology, and Applications, M. Dekker, New York, (1989).

Desmond, Anthony, Stochastic Models of Failure In Random Environments, Canadian Journal of Statistics, 13 (1985), 171-183.

Desmond, A.F., On the Relationship Between Two Fatigue-Life Models, IEEE Transactions on Reliability, R-35 (1986), 167-169.

Desmond, Anthony F., and Yang, Zhenlin, Shortest Prediction Intervals for the Birnbaum - Saunders Distribution, Communications in Statistics, Part A - Theory and Methods, 24(6) (1995), 1383-1401.

Dupuis, Debbie J. and Mills, Joanna E., Robust Estimation of the Birnbaum-Saunders Distribution, IEEE Transactions on Reliability, 47 (1998), 88-95.

Engelhardt, Max, Bain, Lee J. and Wright, F.T., Inferences on the Parameters of the Birnbaum-Saunders Fatigue Life Distribution Based on Maximum Likelihood Estimation, Technometrics, 23 (1981), 251-256.

Gibbons, J., Olkin, I. And Sobel, J., Selecting and Ordering Populations: A New Statistical Methodology, John Wiley \& Sons, Inc., New York, (1977).

Gupta, S.S., On Some Multiple Decision (Selection and Ranking) Rules, Technometrics, 7 (1965), 225-245.

Gupta, S.S. and Panchapakesan, S., Multiple Decision Procedures: Theory and Methodology of Selecting and Ranking Populations, John Wiley and Sons, Inc., New York (1979).

Gupta, S.S. and Sobel, M., On Selecting a subset containing th epopulation with the Smallest Variance, Biometrika, 49(1962), 495-507.

Johnson, N.L., Kotz, S., and Balakrishnan, N., Continuous Univariate Distributions, John Wiley \& Sons, Inc., New York (1985).

Mann, N.R., Shafer, R.E., and Singpurwalla, N.D., Methods for Statistical Analysis of Reliability and Life Data, John Wiley \& Sons, (1974).

McCarter, Kevin, S., Estimation and Prediction for the Birnbaum-Saunders Distribution Using Type - II Censored Samples, With A Comparison to the Inverse Gaussian Distribution, Ph.D. Dissertation, Kansas State University, (1999).

Mulekar, Madhuri S., and Matejcik, Frank J., Determination of Sample Size for Selecting the Smallest of k Poisson Population Means, Communications in Statistics - Simulations, 29 (2000), 37-48.

Padgett, W.J., On Bayes Estimation of Reiability for the Birnbaum-Saunders Fatigue Life Model, IEEE Transactions on Reliability, (1986), 436-438.

Tang, Loon Ching and Chang, Dong Shang, Reliability Prediction Using Nondestructive Accelarated-Degradation Data:Case Study on Power Supplies, IEEE Transactions on Reliability, 44 (1995), 562-566.

Tang, L.C., Lu, Y., and Chow, E.P., Mean Residual Life of Lifetime Distributions, IEEE Transactions on Reliability, 48 (1999), 73-77.

Tong, Y.L., On Partitioning a Set of Normal Populations by Their Locations with Respect to a Control, The Annals of Mathematical Statistics, 40(1969), 1300-1324.

Appendices
Appendix A Probability Tables for Estimator $\hat{\beta}$ Appendix B Probability Tables for Estimator β^{\prime} Appendix C Probability Tables for Estimator $\widetilde{\beta}$ Appendix D Probability Tables for Estimator $\widetilde{\alpha}$ Appendix E Probability Tables for Estimator $\hat{\beta}$ Large Samples
Appendix $\boldsymbol{F} \quad$ Probability Tables for Estimator $\widetilde{\beta}$
Large Samples
Appendix G Probability Tables for Estimator $\hat{\alpha}$
Large Samples
Appendix H Fortran Programs for Simulations

Appendix A Probability Tables for Estimator $\hat{\beta}$

Table 1. A
For $\hat{\beta}$ Selecting the t-best : Complete Sample Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of k, t, δ, p^{*} and $\alpha=0.15$

p^{*}							
k	t	n	.80	.90	.95	.975	.99
2	1	5	.925	.885	.855	.830	.805
	10	.785					
	10	.945	.915	.895	.875	.855	.840
	15	.955	.930	.915	.900	.880	.865
	20	.960	.940	.925	.910	.900	.885
	25	.965	.945	.930	.920	.910	.895
	30	.965	.950	.935	.925	.915	.905

p^{*}							
$\mathrm{k} t$	n	.80	.90	.95	.975	.99	.995
4	1	5	.880	.850	.820	.800	.775
	10	.915	.890	.870	.855	.835	.820
	15	.930	.910	.895	.880	.865	.850
	20	.940	.920	.905	.895	.880	.870
	25	.945	.930	.915	.905	.890	.885
	30	.950	.935	.920	.910	.900	.890

p^{*}							
k	t	n	.80	.90	.95	.975	.99
3	1	5	.895	.860	.830	.810	.785
		.770					
	10	.925	.900	.880	.860	.845	.830
	15	.940	.915	.900	.885	.870	.860
	20	.945	.930	.915	.900	.890	.875
	25	.950	.935	.920	.910	.895	.885
	30	.955	.940	.925	.915	.905	.895

p							
k	t	.80	.90	.95	.975	.99	.995
4	2	5	.870	.835	.810	.790	.770
	10	.905	.885	.865	.850	.830	.820
	15	.920	.905	.885	.875	.860	.850
	20	.930	.915	.900	.890	.875	.865
	25	.940	.920	.910	.900	.890	.880
	30	.940	.930	.920	.910	.900	.885

kt	n	.80	.90	.95	.975	.99	.995
3	2	5	.895	.860	.830	.810	.785
	10	.925	.900	.880	.860	.840	.830
	15	.940	.915	.900	.885	.870	.860
	20	.945	.925	.915	.900	.890	.875
	25	.950	.935	.920	.910	.900	.885
	30	.955	.940	.925	.915	.900	.895

p							
k	t	n	.80	.90	.95	.975	.99
995							
4	3	5	.800	.845	.820	.800	.775
	10	.915	.890	.870	.855	.840	.825
	15	.930	.910	.890	.880	.870	.850
	20	.940	.920	.905	.895	.880	.870
	25	.945	.930	.915	.905	.890	.880
	30	.950	.935	.920	.910	.900	.890

Table 1. A
(continued)
For $\hat{\beta}$ Selecting the t-best : Complete Sample Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=0.15$

k	t	n	.80	.90	.95	.975	.99
.995							
5	1	5	.870	.840	.815	.790	.770
	10	.905	.885	.865	.850	.830	.815
	15	.925	.905	.890	.875	.860	.845
	20	.935	.915	.900	.890	.880	.865
	25	.940	.925	.910	.900	.890	.880
	30	.945	.930	.920	.910	.900	.885

		p					
k	t	n	.80	.90	.95	.975	.99
.995							
5	3	5	.855	.825	.800	.785	.760
	10	.895	.875	.855	.840	.825	.810
	15	.915	.895	.880	.870	.850	.845
	20	.925	.910	.895	.885	.870	.860
	25	.930	.915	.905	.895	.885	.875
	30	.935	.925	.910	.900	.895	.885

k	t	n	.80	.90	.95	.975	.99
595							
5	2	5	.855	.825	.800	.780	.760
.745							
	10	.895	.875	.855	.840	.820	.810
	15	.915	.895	.880	.870	.855	.845
	20	.925	.910	.895	.885	.870	.860
	25	.930	.915	.905	.895	.880	.875
	30	.935	.925	.910	.900	.895	.885

k	p	n	.80	.90	.95	.975	.99
.995							
5	4	5	.870	.840	.815	.795	.770
.750							
	10	.905	.885	.865	.850	.830	.815
	15	.925	.905	.890	.875	.860	.850
	20	.935	.915	.900	.890	.875	.865
	25	.940	.925	.910	.900	.890	.880
	30	.945	.930	.920	.910	.900	.890

Table 2. A
For $\hat{\beta}$ Selecting the \boldsymbol{t}-best : Complete Sample Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\mathbf{k}, \mathbf{t}, \delta, p^{*}$ and $\alpha=0.25$

p^{*}							
kt	n	.80	.90	.95	.975	.99	.995
2	1	5	.875	.820	.770	.735	.690
.665							
	10	.910	.865	.830	.805	.770	.745
	15	.920	.890	.860	.835	.805	.790
	20	.935	.905	.880	.855	.830	.815
	25	.940	.910	.885	.865	.845	.825
	30	.940	.915	.890	.870	.850	.835

p^{*}							
k	t	.80	.90	.95	.975	.99	.995
4	1	5	.810	.760	.725	.690	.650
.630							
	10	.860	.825	.790	.765	.740	.720
	15	.885	.855	.830	.805	.785	.765
	20	.900	.870	.850	.830	.810	.790
	25	.905	.880	.860	.845	.820	.810
	30	.910	.885	.865	.845	.830	.815

p^{\bullet}							
ktt	n	.80	.90	.95	.975	.99	.995
3	1	5	.830	.780	.740	.705	.670
	10	.840					
	15	.900	.865	.840	.815	.790	.775
	20	.910	.880	.855	.840	.815	.800
	25	.920	.890	.870	.850	.825	.815
	30	.920	.895	.875	.855	.840	.820

p^{\bullet}							
kt	n	.80	.90	.95	.975	.99	.995
4	2	5	.790	.745	.710	.680	.640
	10	.820					
	15	.810	.785	.765	.735	.715	
	15	.875	.845	.820	.800	.780	.760
	20	.890	.860	.840	.820	.800	.785
	25	.900	.875	.855	.835	.820	.800
	30	.900	.880	.860	.840	.820	.810

p^{\bullet}							
k	t	n	.80	.90	.95	.975	.99
.995							
3	2	5	.830	.780	.740	.700	.670
	.640						
	10	.880	.840	.805	.780	.750	.730
	15	.900	.865	.840	.815	.795	.775
	20	.910	.880	.860	.840	.815	.800
	25	.920	.890	.870	.850	.830	.815
	30	.920	.895	.875	.855	.835	.820

p		p					
$\mathrm{k} t$	n	.80	.90	.95	.975	.99	.995
4	3	5	.810	.760	.720	.685	.650
	10	.860	.825	.790	.770	.745	.725
	15	.885	.855	.830	.810	.785	.765
	20	.900	.870	.850	.825	.805	.790
	25	.905	.880	.860	.840	.820	.810
	30	.910	.885	.865	.850	.830	.815

Table 2. A
(continued)

For $\hat{\beta}$ Selecting the \boldsymbol{t}-best : Complete Sample Case

Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\mathbf{k}, \mathbf{t}, \delta, p^{*}$ and $\alpha=0.25$

k	t	n	.80	.90	.95	.975	.99
.995							
5	1	5	.790	.745	.710	.680	.650
	.625						
	10	.850	.810	.785	.765	.730	.715
	15	.875	.845	.820	.800	.775	.760
	20	.890	.865	.840	.825	.800	.785
	25	.905	.880	.860	.840	.825	.805
	30	.905	.880	.860	.840	.825	.805

k	t	n	.80	.90	.95	.975	.99
.995							
5	3	5	.770	.725	.690	.665	.630
.610							
	10	.830	.800	.770	.750	.725	.705
	15	.860	.830	.810	.790	.770	.750
	20	.875	.850	.830	.815	.795	.775
	25	.885	.865	.845	.830	.810	.795
	30	.890	.870	.850	.835	.815	.805

k	t	n	.80	.90	.95	.975	.99
.995							
5	2	5	.770	.725	.690	.665	.610
	10	.830	.800	.770	.750	.725	.705
	15	.860	.830	.810	.790	.770	.750
	20	.875	.850	.830	.815	.795	.780
	25	.885	.865	.845	.830	.810	.795
	30	.890	.870	.850	.835	.820	.800

k	t	n	.80	.90	.95	.975	.99	.995
5	4	5	.795	.750	.710	.685	.650	.625
	10	.850	.815	.785	.765	.730	.710	
	15	.875	.845	.820	.800	.775	.760	
	20	.890	.865	.840	.825	.800	.785	
	25	.900	.875	.855	.835	.815	.805	
	30	.905	.880	.860	.845	.825	.815	

Table 3. A
For MaximumLlikelihood Estimator Selecting the t-best : Complete Sample Case Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of k, t, δ, p^{*} and $\alpha=0.50$

p^{*}							
kt	n	. 80	. 90	. 95	. 975	. 99	. 995
21	5	. 770	. 670	. 600	. 545	. 490	. 450
	10	. 830	. 755	. 695	. 655	. 605	. 570
	15	. 860	. 795	. 750	. 705	. 660	. 630
	20	. 870	. 810	. 760	. 725	. 680	. 650
	25	. 875	. 825	. 780	. 735	. 700	. 675
	30	. 890	. 840	. 795	. 765	. 720	. 695

$\mathrm{k} t$	n	.80	.90	.95	.975	.99	.995
4	1	5	.660	.585	.530	.485	.440
.400							
	10	.750	.690	.640	.600	.560	.530
	15	.735	.730	.690	.655	.620	.590
	20	.800	.750	.710	.675	.640	.610
	25	.815	.780	.725	.695	.660	.610
	30	.835	.790	.755	.725	.690	.610

p^{*}							
k t	n	.80	.90	.95	.975	.99	.995
3	1	5	.695	.610	.550	.500	.450
.420							
	10	.775	.710	.660	.615	.575	.545
	15	.810	.755	.710	.675	.635	.605
	20	.825	.770	.725	.690	.650	.625
	25	.840	.785	.760	.725	.675	.645
	30	.855	.810	.770	.740	.700	.680

k	t	n	.80	.90	.95	.975	.99
.995							
4	2	5	.630	.565	.510	.465	.430
.400							
	10	.725	.665	.625	.585	.550	.520
	15	.765	.715	.675	.645	.610	.585
	20	.780	.730	.695	.660	.630	.600
	25	.800	.750	.705	.695	.655	.620
	30	.815	.775	.740	.710	.680	.660

kt	n	.80	.90	.95	.975	.99	.995
3	2	5	.695	.610	.550	.505	.450
.420							
	10	.775	.710	.660	.615	.575	.545
	15	.810	.755	.710	.675	.635	.605
	20	.825	.770	.725	.690	.650	.625
	25	.835	.790	.740	.715	.675	.660
	30	.850	.805	.765	.735	.700	.675

kt	n	.80	.90	.95	.975	.99	.995
4	3	5	.660	.580	.525	.480	.435
	10	.750	.690	.640	.605	.560	.535
	15	.785	.730	.690	.655	.620	.590
	20	.800	.750	.710	.675	.635	.610
	25	.810	.770	.735	.685	.655	.640
	30	.830	.785	.750	.720	.690	.670

Table 3. A
(continued)
For MaximumLlikelihood Estimator Selecting the t-best : Complete Sample Case Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=0.50$

k	t	n	.80	.90	.95	.975	.99
.995							
5	1	5	.635	.565	.510	.470	.425
	10	.730	.670	.620	.590	.550	.520
	15	.770	.720	.680	.645	.605	.580
	20	.785	.73	.695	.665	.625	.600
	25	.800	.765	.720	.680	.640	.625
	30	.820	.780	.745	.715	.680	.660

k	t	n	.80	.90	.95	.975	.99
.995							
5	3	5	.600	.535	.490	.450	.410
	10	.700	.645	.605	.570	.540	.510
	15	.745	.695	.660	.630	.595	.570
	20	.760	.715	.680	.650	.615	.590
	25	.785	.740	.725	.670	.640	.625
	30	.800	.760	.725	.700	.670	.645

$k \mathrm{t}$	n	.80	.90	.95	.975	.99	.995
5	2	5	.600	.530	.485	.450	.410
	10	.700	.645	.605	.570	.535	.510
	15	.745	.695	.660	.630	.595	.570
	20	.760	.715	.680	.645	.610	.590
	25	.780	.745	.700	.660	.635	.605
	30	.800	.760	.725	.700	.670	.645

k	t	n	.80	.90	.95	.975	.99
.995							
5	4	5	.640	.570	.515	.470	.430
.400							
	10	.730	.670	.625	.590	.545	.520
	15	.770	.720	.680	.645	.610	.585
	20	.785	.740	.700	.665	.630	.605
	25	.795	.755	.720	.690	.645	.620
	30	.815	.775	.740	.710	.680	.660

Table 4. A

For $\hat{\beta}$ Selecting the t-best : Complete Sample Case

Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of k, t, δ, p^{*} and $\alpha=0.75$

p^{*}							
kt t	n	.80	.90	.95	.975	.99	.995
2	1	5	.685	.560	.475	.415	.350
.315							
	10	.760	.670	.595	.540	.480	.450
	15	.785	.695	.630	.575	.515	.485
	20	.800	.710	.650	.600	.540	.500
	25	.840	.760	.710	.665	.620	.585
	30	.850	.780	.730	.690	.640	.615

k^{\bullet}							
k	n	.80	.90	.95	.975	.99	.995
4	1	5	.545	.455	.395	.345	.295
	10	.660	.580	.520	.475	.430	.400
	15	.680	.610	.560	.515	.470	.445
	20	.705	.630	.580	.540	.490	.465
	25	.760	.700	.655	.620	.580	.550
	30	.775	.720	.675	.640	.600	.580

p^{\bullet}							
ktt	n	.80	.90	.95	.975	.99	.995
3	1	5	.590	.490	.420	.370	.310
	10	.690	.610	.550	.500	.450	.420
	15	.715	.640	.580	.540	.485	.455
	15						
	20	.735	.660	.600	.560	.510	.480
	25	.785	.720	.675	.635	.590	.570
	30	.800	.740	.695	.660	.615	.590

p^{*}							
k	t	n	.80	.90	.95	.975	.99
	.995						
4	2	5	.510	.430	.375	.330	.285
	10	.630	.560	.505	.465	.420	.390
	15	.650	.590	.540	.500	.460	.430
	20	.675	.610	.560	.525	.480	.455
	25	.735	.680	.640	.605	.565	.540
	30	.755	.700	.660	.630	.590	.565

kt	n	.80	.90	.95	.975	.99	.995
3	2	5	.590	.490	.420	.370	.315
	10	.690	.610	.545	.500	.450	.415
	15	.710	.635	.580	.535	.480	.455
	20	.735	.660	.600	.560	.510	.480
	25	.790	.725	.670	.635	.590	.560
	30	.800	.740	.695	.660	.615	.590

p^{*}							
$\mathrm{k} t$	n	.80	.90	.95	.975	.99	.995
4	3	5	.545	.455	.390	.345	.295
	10	.660	.585	.525	.480	.435	.400
	15	.680	.610	.555	.515	.470	.440
	20	.700	.630	.580	.540	.490	.465
	25	.760	.700	.650	.615	.570	.545
	30	.775	.720	.675	.640	.605	.580

Table 4. A
(continued)
For $\hat{\beta}$ Selecting the t-best : Complete Sample Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of k, t, δ, p^{*} and $\alpha=0.75$

k	t	n	.80	.90	.95	.975	.99
5	1	595					
5	5	.515	.430	.375	.330	.290	.260
	10	.630	.560	.505	.465	.420	.390
	15	.660	.595	.540	.505	.460	.430
	20	.680	.615	.565	.525	.480	.455
	25	.740	.685	.640	.605	.560	.535
	30	.755	.700	.660	.630	.590	.565

k	t	n	.80	.90	.95	.975	.99
.995							
5	3	5	.470	.400	.350	.310	.270
	10	.595	.530	.480	.445	.400	.375
	15	.625	.565	.520	.485	.445	.420
	20	.645	.585	.540	.505	.465	.440
	25	.710	.660	.620	.590	.550	.530
	30	.730	.680	.645	.615	.575	.550

k	t	n	.80	.90	.95	.975	.99
.995							
5	2	5	.470	.400	.350	.310	.270
	10	.595	.530	.480	.445	.400	.375
	15	.625	.565	.520	.485	.440	.420
	20	.645	.590	.540	.505	.465	.440
	25	.710	.660	.620	.590	.550	.525
	30	.730	.680	.645	.615	.575	.550

k	t	n	.80	.90	.95	.975	.99
.995							
5	4	5	.520	.440	.380	.335	.290
	10	.630	.560	.505	.465	.420	.390
	15	.660	.590	.540	.505	.460	.435
	20	.680	.615	.565	.525	.480	.450
	25	.740	.680	.640	.605	.565	.540
	30	.760	.710	.665	.630	.590	.570

Table 5. A
For $\hat{\beta}$ Selecting the \boldsymbol{t}-best : Complete Sample Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of k, t, δ, p^{*} and $\alpha=1$

p^{*}							
kt	n	.80	.90	.95	.975	.99	.995
2	1	5	.610	.470	.380	.320	.260
	10	.720	.600	.520	.450	.390	.360
	15	.750	.650	.570	.510	.450	.410
	20	.780	.680	.610	.560	.510	.470
	25	.800	.710	.640	.590	.530	.490
	30	.810	.730	.670	.620	.570	.530

k	p	p	.80	.90	.95	.975	.99
995							
4	1	5	.460	.360	.300	.260	.210
		.180					
	10	.590	.500	.430	.390	.350	.310
	15	.630	.550	.500	.450	.400	.370
	20	.670	.600	.540	.490	.450	.410
	25	.700	.630	.570	.530	.490	.460
	30	.710	.650	.600	.560	.520	.480

p^{\bullet}							
$\mathrm{k} t$	n	.80	.90	.95	.975	.99	.995
3	1	5	.500	.400	.330	.270	.220
.200							
	10	.630	.530	.460	.430	.360	.320
	15	.670	.580	.520	.470	.420	.380
	20	.710	.630	.570	.510	.470	.430
	25	.730	.660	.600	.550	.510	.470
	30	.750	.680	.620	.580	.530	.500

p^{*}							
kt	n	.80	.90	.95	.975	.99	.995
4	2	5	.420	.340	.280	.240	.200
	10	.560	.480	.420	.380	.340	.300
	15	.600	.530	.470	.430	.390	.350
	20	.640	.570	.520	.480	.430	.390
	25	.670	.610	.560	.520	.470	.450
	30	.690	.630	.580	.540	.510	.480

p							
k	t	n	.80	.90	.95	.975	.99
395							
3	2	5	.500	.400	.330	.270	.230
	10	.630	.530	.460	.410	.360	.330
	15	.670	.580	.510	.470	.430	.380
	20	.710	.630	.560	.520	.470	.430
	25	.740	.660	.600	.550	.510	.480
	30	.750	.680	.630	.580	.530	.500

p							
k	n	.80	.90	.95	.975	.99	.995
4	3	5	.460	.360	.300	.250	.210
.180							
	10	.590	.500	.440	.390	.340	.320
	15	.630	.550	.490	.440	.400	.370
	20	.670	.600	.540	.490	.440	.410
	25	.700	.630	.570	.530	.490	.460
	30	.720	.650	.600	.560	.520	.490

Table 5. A
(continued)
For $\hat{\beta}$ Selecting the t-best : Complete Sample Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of k, t, δ, p^{*} and $\alpha=1$

k t	n	.80	.90	.95	.975	.99	.995
5	1	5	.420	.340	.280	.240	.200
	10	.560	.480	.420	.375	.330	.300
	15	.610	.530	.475	.430	.390	.360
	20	.650	.580	.530	.485	.430	.410
	25	.675	.610	.560	.520	.480	.450
	30	.695	.630	.585	.545	.510	.480

k	t	n	.80	.90	.95	.975	.99
.995							
5	3	5	.380	.310	.260	.220	.190
	10	.515	.445	.390	.355	.320	.280
	15	.560	.500	.450	.410	.370	.345
	20	.610	.550	.500	.460	.420	.390
	25	.640	.580	.535	.500	.470	.435
	30	.665	.610	.570	.530	.490	.455

p^{\bullet}							
k	n	.80	.90	.95	.975	.99	.995
5	2	5	.380	.305	.255	.220	.185
	10	.515	.445	.395	.355	.310	.285
	15	.570	.500	.450	.415	.370	.345
	20	.610	.550	.500	.460	.420	.390
	25	.640	.580	.540	.500	.470	.435
	30	.660	.610	.570	.530	.490	.460

k	t	n	.80	.90	.95	.975	.99
.995							
5	4	5	.430	.350	.290	.245	.205
	10	.560	.480	.420	.375	.340	.305
	15	.600	.530	.470	.435	.390	.355
	20	.650	.580	.520	.480	.435	.400
	25	.680	.610	.560	.520	.480	.455
	30	.700	.640	.590	.550	.510	.475

Appendix B Probability Tables for Estimator β^{\prime}

Table1.B

For Estimator β^{\prime} Selecting the t-best : Complete Sample Case
Finding the smallest n required for $P(C S \mid R) \geq p^{*}$ given values of k, t, δ, p^{*} and $\alpha=1$

K t	n	.80	.90	.95	.975	.99	.995
2	1	5	.615	.475	.390	.325	.260
	.220						
	10	.710	.595	.510	.450	.390	.355
	15	.755	.655	.580	.520	.455	.425
	20	.790	.695	.625	.575	.520	.485
	25	.805	.720	.655	.605	.550	.510
	30	.810	.745	.675	.635	.575	.550

k	t	n	.80	.90	.95	.975	.99
.995							
4	1	5	.460	.370	.300	.260	.215
	10	.580	.495	.430	.385	.355	.320
	15	.640	.565	.505	.460	.415	.380
	20	.685	.610	.555	.515	.470	.435
	25	.710	.640	.590	.555	.510	.475
	30	.730	.665	.620	.580	.535	.510

k	t	n	.80	.90	.95	.975	.99
.995							
3	1	5	.510	.405	.330	.260	.220
	10	.620	.530	.455	.405	.355	.330
	15	.680	.595	.530	.480	.430	.400
	20	.720	.640	.580	.535	.490	.450
	25	.745	.670	.615	.570	.520	.490
	30	.760	.690	.635	.595	.550	.520

k	t	n	.80	.90	.95	.975	.99
.995							
4	2	5	.425	.340	.280	.240	.205
	10	.550	.470	.415	.370	.340	.310
	15	.610	.540	.485	.445	.395	.375
	20	.655	.585	.535	.495	.450	.420
	25	.685	.620	.575	.535	.495	.465
	30	.705	.650	.600	.565	.530	.495

k	t	n	.80	.90	.95	.975	.99
.995							
3	2	5	.510	.405	.330	.260	.220
.210							
	10	.620	.530	.455	.405	.355	.330
	15	.680	.595	.530	.480	.430	.400
	20	.720	.640	.580	.535	.490	.450
	25	.745	.670	.615	.570	.520	.490
	30	.760	.690	.635	.595	.550	.520

k	t	n	.80	.90	.95	.975	.99
.995							
4	3	5	.460	.365	.300	.250	.220
.185							
	10	.585	.500	.435	.390	.345	.320
	15	.640	.560	.505	.460	.415	.380
	20	.680	.610	.555	.510	.460	.430
	25	.710	.640	.590	.545	.495	.475
	30	.730	.660	.615	.580	.535	.510

Table1.B (continued)

For Estimator β^{\prime} Selecting the t-best : Complete Sample Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of k, t, δ, p^{*} and $\alpha=1$

k	t	n	.80	.90	.95	.975	.99
5	1	5	.430	.345	.285	.240	.205
	10	.555	.470	.415	.370	.345	.310
	15	.620	.545	.490	.445	.405	.375
	20	.660	.595	.540	.495	.455	.420
	25	.695	.625	.575	.535	.495	.460
	30	.715	.655	.605	.575	.520	.495

k	t	n	.80	.90	.95	.975	.99
.995							
5	3	5	.385	.310	.260	.220	.195
	10	.510	.440	.390	.355	.330	.290
	15	.575	.515	.465	.425	.390	.355
	20	.620	.560	.515	.475	.435	.410
	25	.655	.600	.555	.515	.475	.450
	30	.680	.625	.580	.545	.510	.480

k t	n	.80	.90	.95	.975	.99	.995
5	2	5	.385	.305	.260	.220	.185
	10	.510	.440	.390	.360	.310	.285
	15	.575	.515	.465	.425	.375	.355
	20	.620	.560	.505	.480	.440	.410
	25	.655	.600	.550	.515	.475	.450
	30	.680	.625	.580	.550	.510	.460

k	t	n	.80	.90	.95	.975	.99
.995							
5	4	5	.435	.350	.295	.245	.205
	10	.555	.475	.415	.375	.345	.315
	15	.615	.540	.495	.445	.400	.375
	20	.655	.595	.535	.495	.455	.420
	25	.690	.620	.575	.535	.495	.470
	30	.715	.655	.605	.565	.530	.500

Appendix Crobability Tables for Estimator $\widetilde{\beta}$

Table 1.C
For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Sample Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of k, t, δ, p^{*} and $\alpha=0.15$

k	t	n	.80	.90	.95	.975	.99	.995
2	1	5	.925	.885	.855	.830	.805	.785
	10	.945	.915	.890	.875	.855	.840	
	15	.955	.930	.915	.900	.880	.870	
	20	.960	.940	.925	.910	.895	.885	
	25	.965	.945	.930	.920	.905	.895	
	30	.970	.950	.940	.925	.910	.900	

k	t	n	.80	.90	.95	.975	.99
.995							
4	1	5	.880	.850	.820	.800	.775
	10	.915	.890	.870	.850	.830	.820
	15	.930	.910	.895	.880	.865	.850
	20	.940	.920	.905	.895	.880	.870
	25	.945	.930	.915	.905	.890	.885
	30	.950	.935	.925	.915	.900	.895

k	t	n	.80	.90	.95	.975	.99	.995
3	1	5	.895	.860	.830	.810	.785	.770
	10	.925	.900	.880	.860	.840	.830	
	15	.940	.920	.900	.885	.870	.860	
	20	.945	.930	.910	.900	.885	.875	
	25	.950	.935	.920	.910	.895	.890	
	30	.955	.940	.930	.920	.905	.900	

k	t	n	.80	.90	.95	.975	.99	.995
4	2	5	.870	.835	.810	.790	.770	.750
	10	.905	.885	.865	.850	.830	.820	
	15	.920	.905	.885	.875	.860	.850	
	20	.930	.915	.900	.890	.875	.865	
	25	.940	.925	.910	.900	.890	.880	
	30	.945	.930	.920	.910	.900	.890	

k		t	n	.80	.90	.95	.975
.99	.995						
3	2	5	.895	.860	.830	.810	.785
	10	.925	.900	.880	.860	.840	.830
	15	.940	.920	.900	.885	.870	.860
	20	.945	.930	.910	.900	.885	.875
	25	.950	.935	.920	.910	.895	.890
	30	.955	.940	.930	.920	.905	.900

k		n	n	.80	.90	.95	.975
.99	.995						
4	3	5	.880	.845	.820	.800	.775
	10	.915	.890	.870	.855	.835	.820
	15	.930	.910	.890	.880	.865	.855
	20	.940	.920	.910	.895	.880	.870
	25	.945	.930	.915	.905	.890	.880
	30	.950	.935	.925	.915	.900	.895

Table 1.C
(continued)
For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Sample Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=0.15$

k	t	n	.80	.90	.95	.975	.99	.995
5	1	5	.870	.840	.810	.790	.770	.755
	10	.905	.885	.865	.850	.830	.815	
	15	.925	.905	.890	.875	.860	.850	
	20	.935	.915	.900	.890	.880	.865	
	25	.940	.925	.910	.900	.890	.880	
	30	.945	.930	.920	.910	.900	.890	

k	t	n	.80	.90	.95	.975	.99
.995							
5	3	5	.855	.825	.800	.780	.760
	10	.895	.875	.855	.840	.820	.810
	15	.915	.895	.880	.870	.850	.845
	20	.925	.910	.895	.885	.870	.860
	25	.930	.920	.905	.895	.885	.875
	30	.945	.925	.915	.905	.895	.885

k t	n	.80	.90	.95	.975	.99	.995
5	2	5	.855	.825	.800	.780	.760
.745							
	10	.895	.875	.855	.840	.825	.810
	15	.915	.895	.880	.870	.855	.845
	20	.925	.910	.895	.885	.870	.860
	25	.930	.920	.905	.895	.885	.875
	30	.940	.925	.915	.905	.895	.885

k	t	n	.80	.90	.95	.975	.99
.995							
5	4	5	.870	.840	.810	.795	.770
.750							
	10	.905	.885	.865	.850	.830	.815
	15	.925	.905	.890	.875	.860	.850
	20	.930	.915	.900	.890	.880	.870
	25	.940	.925	.910	.900	.890	.880
	30	.945	.930	.920	.910	.900	.890

Table 2. C

For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Sample Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=0.25$

		p					
k	t	n	.80	.90	.95	.975	.99
.995							
2	1	5	.875	.820	.770	.735	.695
	10	.905	.865	.830	.805	.770	.750
	15	.925	.890	.860	.840	.810	.790
	20	.935	.905	.880	.860	.835	.820
	25	.940	.915	.890	.870	.850	.835
	30	.945	.920	.900	.880	.860	.850

k	t	n	.80	.90	.95	.975	.99
.995							
4	1	5	.810	.760	.720	.690	.655
	10	.860	.825	.790	.770	.740	.725
	15	.885	.855	.830	.810	.785	.770
	20	.900	.875	.850	.830	.810	.795
	25	.910	.885	.865	.850	.830	.815
	30	.915	.895	.875	.860	.840	.830

k t	n	.80	.90	.95	.975	.99	.995
3	1	5	.835	.780	.740	.705	.670
	10	.880	.840	.810	.780	.750	.735
	15	.900	.865	.840	.820	.795	.775
	20	.915	.885	.860	.840	.820	.800
	25	.920	.895	.875	.855	.835	.820
	30	.930	.905	.885	.870	.850	.840

k	t	n	.80	.90	.95	.975	.99
.995							
4	2	5	.790	.745	.710	.680	.645
	10	.850	.815	.785	.760	.735	.720
	15	.875	.845	.820	.800	.780	.760
	20	.890	.865	.840	.825	.800	.790
	25	.900	.880	.860	.840	.820	.810
	30	.910	.885	.870	.855	.835	.825

k	t	n	.80	.90	.95	.975	.99
.995							
3	2	5	.830	.780	.740	.705	.670
.645							
	10	.880	.840	.810	.780	.750	.730
	15	.900	.865	.840	.820	.790	.775
	20	.915	.885	.860	.840	.820	.800
	25	.920	.895	.875	.855	.835	.820
	30	.925	.905	.880	.870	.850	.835

k	t	n	.80	.90	.95	.975	.99
.995							
4	3	5	.810	.760	.720	.690	.650
	10	.865	.825	.795	.770	.740	.725
	15	.885	.855	.830	.810	.785	.765
	20	.900	.870	.850	.830	.810	.795
	25	.910	.885	.865	.850	.825	.815
	30	.915	.895	.875	.860	.840	.830

Table 2. C (continued)

For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Sample Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of k, t, δ, p^{*} and $\alpha=0.25$

k	t	n	.80	.90	.95	.975	.99
.995							
5	1	5	.795	.750	.710	.680	.650
	10	.850	.815	.785	.760	.730	.715
	15	.875	.845	.820	.800	.780	.760
	20	.895	.865	.840	.825	.805	.790
	25	.905	.880	.860	.840	.820	.810
	30	.910	.890	.870	.855	.835	.825

k	t	n	.80	.90	.95	.975	.99
595							
5	3	5	.770	.725	.695	.665	.635
	10	.830	.800	.770	.750	.720	.705
	15	.860	.835	.810	.790	.770	.750
	20	.880	.855	.830	.815	.795	.780
	25	.890	.870	.850	.835	.815	.800
	30	.900	.880	.860	.850	.830	.815

k t	n	.80	.90	.95	.975	.99	.995
5	2	5	.770	.730	.695	.665	.635
	10	.830	.800	.770	.750	.720	.710
	15	.860	.830	.810	.790	.770	.755
	20	.880	.855	.835	.815	.795	.780
	25	.890	.870	.850	.835	.815	.800
	30	.900	.880	.860	.850	.830	.820

k	t	n	.80	.90	.95	.975	.99
5	4	5	.995				
	10	.850	.815	.790	.760	.735	.715
	15	.875	.845	.820	.800	.780	.760
	20	.890	.865	.840	.825	.800	.790
	25	.905	.880	.860	.840	.825	.810
	30	.910	.890	.870	.855	.840	.825

Table 3. C
For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Sample Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=0.50$

k	t	n	.80	.90	.95	.975	.99
.995							
2	1	5	.770	.670	.605	.550	.490
	10	.830	.755	.700	.650	.600	.570
	15	.860	.795	.745	.705	.660	.630
	20	.880	.820	.780	.745	.705	.680
	25	.890	.835	.795	.765	.725	.700
	30	.900	.850	.810	.780	.750	.725

k t	n	.80	.90	.95	.975	.99	.995
4	1	5	.665	.590	.530	.490	.435
	10	.750	.685	.635	.600	.560	.530
	15	.790	.735	.690	.660	.620	.600
	20	.815	.770	.730	.700	.665	.640
	25	.835	.790	.755	.730	.695	.670
	30	.845	.805	.770	.745	.715	.695

k	t	n	.80	.90	.95	.975	.99
.995							
3	1	5	.700	.615	.555	.505	.455
	10	.780	.710	.660	.620	.570	.545
	15	.815	.755	.710	.675	.635	.610
	20	.835	.785	.745	.715	.675	.650
	25	.850	.805	.770	.740	.705	.685
	30	.865	.820	.785	.760	.725	.705

k	t	n	.80	.90	.95	.975	.99
.995							
4	2	5	.630	.565	.510	.470	.425
	10	.725	.670	.620	.585	.550	.520
	15	.770	.720	.680	.650	.615	.590
	20	.795	.750	.715	.685	.650	.630
	25	.815	.775	.740	.715	.685	.665
	30	.830	.790	.760	.740	.710	.690

k t	n	.80	.90	.95	.975	.99	.995
3	2	5	.700	.615	.555	.505	.455
	10	.775	.710	.660	.620	.570	.545
	15	.815	.755	.710	.675	.635	.610
	20	.835	.785	.745	.710	.670	.650
	25	.850	.805	.770	.740	.705	.685
	30	.865	.820	.785	.760	.725	.705

k	t	n	.80	.90	.95	.975	.99
.995							
4	3	5	.660	.585	.530	.485	.435
	10	.750	.690	.640	.600	.560	.535
	15	.790	.735	.690	.660	.625	.600
	20	.815	.765	.730	.700	.660	.640
	25	.830	.790	.750	.725	.690	.670
	30	.845	.805	.770	.745	.720	.695

Table 3. C (continued)

For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Sample Case
Finding the smallest n required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=0.50$

k	n	n	.80	.90	.95	.975	.99
.995							
5	1	5	.640	.565	.515	.475	.430
	10	.730	.670	.625	.590	.550	.520
	15	.775	.720	.680	.650	.610	.590
	20	.800	.755	.720	.690	.655	.630
	25	.820	.780	.745	.715	.680	.660
	30	.835	.795	.760	.735	.710	.690

k t	n	.80	.90	.95	.975	.99	.995
5	3	5	.600	.540	.490	.455	.410
	10	.700	.645	.600	.570	.530	.505
	15	.745	.700	.660	.635	.600	.580
	20	.775	.735	.700	.670	.640	.620
	25	.800	.760	.730	.700	.670	.650
	30	.815	.780	.750	.725	.695	.675

k	n	n	.80	.90	.95	.975	.99
.995							
5	2	5	.600	.535	.490	.455	.415
	10	.700	.645	.600	.570	.530	.510
	15	.745	.700	.660	.635	.600	.575
	20	.775	.735	.700	.675	.640	.620
	25	.795	.760	.730	.700	.670	.650
	30	.815	.780	.750	.720	.695	.680

k	t	n	.80	.90	.95	.975	.99
.995							
5	4	5	.640	.570	.515	.475	.430
	10	.730	.670	.625	.590	.545	.520
	15	.770	.720	.680	.650	.610	.590
	20	.800	.755	.720	.690	.650	.630
	25	.820	.780	.745	.715	.685	.665
	30	.835	.795	.765	.740	.710	.690

Table 4. C
For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Sample Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=0.75$

k	t	n	.80	.90	.95	.975	.99
2	1.995						
2	5	.690	.565	.480	.420	.355	.320
	10	.770	.670	.595	.540	.475	.445
	15	.805	.720	.655	.610	.550	.515
	20	.830	.755	.700	.650	.600	.570
	25	.845	.770	.720	.680	.630	.600
	30	.855	.790	.740	.700	.655	.630

k		n	.80	.90	.95	.975	.99
995							
4	1	5	.550	.435	.380	.335	.295
	10	.660	.580	.520	.475	.430	.400
	15	.710	.640	.590	.550	.500	.475
	20	.745	.680	.635	.595	.550	.525
	25	.770	.710	.670	.635	.585	.560
	30	.785	.730	.690	.655	.620	.590

p^{*}							
kt	n	.80	.90	.95	.975	.99	.995
3	1	5	.595	.495	.425	.375	.320
.295							
	10	.695	.610	.550	.500	.445	.420
	15	.745	.670	.615	.570	.520	.490
	20	.770	.705	.655	.615	.570	.540
	25	.795	.730	.685	.650	.600	.580
	30	.810	.750	.710	.675	.630	.605

p^{*}							
k	t	.80	.90	.95	.975	.99	.995
4	2	5	.515	.440	.380	.335	.295
	10	.630	.560	.505	.465	.420	.390
	15	.680	.620	.570	.535	.490	.470
	20	.720	.660	.620	.580	.540	.510
	25	.745	.690	.650	.615	.580	.550
	30	.765	.715	.675	.645	.605	.585

p							
kt	n	.80	.90	.95	.975	.99	.995
3	2	5	.590	.500	.425	.375	.320
	10	.695	.610	.550	.495	.445	.415
	10	.405					
	15	.740	.670	.615	.565	.520	.500
	20	.770	.705	.655	.615	.565	.540
	25	.795	.730	.685	.645	.600	.580
	30	.810	.750	.710	.675	.630	.600

p^{*}							
k t	n	.80	.90	.95	.975	.99	.995
4	3	5	.550	.460	.395	.350	.300
.290							
	10	.660	.580	.525	.480	.435	.405
	15	.710	.640	.590	.550	.505	.475
	20	.745	.680	.630	.595	.550	.520
	25	.765	.710	.665	.630	.590	.560
	30	.785	.730	.690	.655	.620	.595

Table 4. C

(continued)

For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Sample Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of k, t, δ, p^{*} and $\alpha=0.75$

k	t	n	.80	.90	.95	.975	.99
.995							
5	1	5	.520	.440	.380	.340	.295
	10	.630	.560	.505	.465	.415	.390
	15	.690	.625	.575	.535	.500	.465
	20	.725	.665	.620	.585	.540	.515
	25	.750	.695	.650	.620	.575	.550
	30	.770	.720	.675	.645	.605	.580

k	t	n	.80	.90	.95	.975	.99
.995							
5	3	5	.480	.410	.360	.320	.290
	10	.595	.530	.480	.445	.400	.375
	15	.655	.595	.550	.520	.475	.450
	20	.690	.640	.600	.565	.525	.500
	25	.720	.670	.635	.600	.560	.540
	30	.745	.695	.660	.625	.590	.570

k	t	n	.80	.90	.95	.975	.99
.995							
5	2	5	.475	.405	.355	.315	.290
	10	.595	.530	.480	.445	.400	.375
	15	.655	.600	.550	.520	.475	.450
	20	.695	.640	.600	.565	.525	.500
	25	.720	.670	.630	.600	.560	.540
	30	.740	.695	.660	.625	.590	.570

k	t	n	.80	.90	.95	.975	.99
.995							
5	4	5	.525	.440	.380	.335	.295
	10	.630	.560	.510	.465	.420	.390
	15	.690	.625	.575	.535	.490	.465
	20	.725	.665	.620	.585	.540	.510
	25	.750	.695	.650	.620	.580	.555
	30	.770	.720	.680	.645	.605	.585

Table 5. C

For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Sample Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta$, and p^{*} and $\alpha=1$

k t	n	.80	.90	.95	.975	.99	.995
2	1	5	.620	.480	.390	.325	.270
	10	.710	.600	.515	.455	.390	.355
	15	.760	.660	.590	.530	.470	.430
	20	.790	.700	.630	.560	.520	.490
	25	.805	.720	.660	.610	.560	.520
	30	.815	.745	.680	.635	.590	.550

k	t	n	.80	.90	.95	.975	.99
4	1	5	.470	.375	.310	.265	.210
	10	.585	.500	.435	.390	.345	.320
	15	.650	.570	.510	.465	.420	.390
	20	.690	.605	.560	.515	.470	.435
	25	.715	.650	.595	.555	.515	.480
	30	.735	.670	.630	.585	.540	.510

k	t	n	.80	.90	.95	.975	.99
.995							
3	1	5	.515	.410	.345	.280	.235
	10	.630	.530	.460	.415	.360	.325
	15	.685	.600	.535	.485	.440	.400
	20	.720	.640	.580	.535	.490	.455
	25	.750	.670	.620	.575	.530	.495
	30	.760	.700	.645	.600	.560	.520

p							
k	n	.80	.90	.95	.975	.99	.995
4	2	5	.425	.345	.285	.245	.220
	10	.550	.475	.415	.375	.350	.310
	15	.620	.545	.495	.450	.410	.375
	20	.655	.590	.540	.500	.460	.425
	25	.690	.630	.575	.540	.495	.470
	30	.710	.650	.605	.575	.530	.500

k	t	n	.80	.90	.95	.975	.99
.995							
3	2	5	.510	.405	.335	.270	.230
	10	.625	.530	.460	.410	.355	.325
	15	.685	.600	.535	.485	.440	.400
	20	.720	.640	.580	.535	.485	.455
	25	.740	.675	.615	.575	.530	.500
	30	.760	.695	.645	.605	.555	.520

k	t	n	.80	.90	.95	.975	.99
.995							
4	3	5	.460	.370	.310	.250	.220
	10	.590	.500	.440	.390	.350	.335
	15	.650	.570	.515	.470	.420	.390
	20	.685	.615	.560	.515	.470	.435
	25	.715	.645	.595	.555	.510	.480
	30	.735	.670	.620	.585	.540	.515

Table 5. C
(continued)

For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Sample Case

Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $k, \boldsymbol{t}, \delta$, and p^{*} and $\alpha=1$

k t	n	.80	.90	.95	.975	.99	.995
5	1	5	.435	.345	.275	.240	.205
	10	.560	.475	.415	.375	.340	.315
	15	.620	.550	.495	.455	.400	.375
	20	.665	.595	.545	.505	.460	.430
	25	.695	.630	.575	.540	.495	.470
	30	.715	.655	.605	.575	.530	.500

k	t	n	.80	.90	.95	.975	.99
.995							
5	3	5	.385	.310	.260	.225	.195
	10	.515	.440	.395	.355	.330	.290
	15	.580	.520	.470	.435	.390	.355
	20	.630	.570	.520	.485	.440	.415
	25	.660	.600	.560	.525	.480	.455
	30	.685	.630	.585	.555	.515	.485

k t	n	.80	.90	.95	.975	.99	.995
5	2	5	.385	.300	.255	.220	.195
	10	.515	.440	.395	.355	.325	.290
	15	.580	.520	.475	.435	.390	.360
	20	.630	.570	.520	.485	.440	.410
	25	.660	.600	.560	.525	.480	.455
	30	.685	.630	.585	.550	.520	.490

k	t	n	.80	.90	.95	.975	.99	.995
5	4	5	.435	.350	.295	.245	.205	.200
	10	.555	.480	.415	.375	.355	.325	
	15	.625	.550	.495	.455	.410	.375	
	20	.665	.600	.545	.505	.455	.425	
	25	.695	.630	.580	.540	.495	.475	
	30	.715	.660	.615	.575	.535	.500	

Table 6. C
For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Sample Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of k, t, δ, p^{*} and $\alpha=2.0$

k	p	n	.80	.90	.95	.975	.99
.995							
2	1	5	.450	.295	.210	.155	.105
	10	.590	.440	.350	.280	.220	.190
	15	.650	.520	.430	.370	.300	.260
	20	.695	.570	.490	.430	.370	.330
	25	.720	.605	.525	.465	.400	.365
	30	.740	.635	.560	.495	.440	.400

k	t	n	.80	.90	.95	.975	.99
.995							
4	1	5	.285	.195	.140	.105	.075
	10	.425	.330	.260	.220	.180	.150
	15	.505	.410	.345	.300	.250	.220
	20	.560	.470	.405	.360	.310	.275
	25	.595	.510	.450	.405	.350	.320
	30	.620	.540	.485	.435	.385	.355

k	t	n	.80	.90	.95	.975	.99
.995							
3	1	5	.330	.225	.160	.120	.085
	10	.480	.365	.295	.240	.190	.165
	15	.555	.445	.375	.325	.270	.235
	20	.600	.500	.435	.380	.325	.290
	25	.640	.540	.475	.425	.365	.335
	30	.660	.575	.510	.455	.405	.370

k	t	n	.80	.90	.95	.975	.99	.995
4	2	5	.245	.170	.125	.095	.070	.055
	10	.390	.300	.245	.205	.170	.145	
	15	.470	.385	.330	.285	.245	.210	
	20	.525	.445	.385	.340	.285	.260	
	25	.560	.485	.430	.390	.340	.310	
	30	.595	.515	.465	.420	.375	.345	

p		n	.80	.90	.95	.975	.99
.995							
3	2	5	.330	.220	.160	.120	.085
	10	.475	.365	.295	.240	.190	.160
	15	.555	.450	.375	.320	.270	.235
	20	.600	.500	.435	.375	.325	.290
	25	.635	.540	.475	.420	.365	.340
	30	.660	.575	.510	.460	.405	.370

k		t	n	.80	.90	.95	.975
.99	.995						
4	3	5	.280	.190	.140	.105	.075
	10	.430	.335	.270	.220	.180	.150
	15	.505	.410	.345	.300	.260	.220
	20	.555	.470	.405	.355	.300	.270
	25	.595	.510	.445	.400	.350	.320
	30	.620	.540	.485	.435	.390	.360

Table 6. C (continued)

For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Sample Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of k, t, δ, p^{*} and $\alpha=2.0$

k	t	n	.80	.90	.95	.975	.99	.995
5	1	5	.250	.175	.125	.095	.070	.060
	10	.395	.305	.245	.205	.170	.140	
	15	.480	.390	.330	.285	.235	.210	
	20	.530	.450	.390	.345	.295	.265	
	25	.570	.490	.430	.385	.335	.310	
	30	.600	.520	.465	.420	.370	.340	

k	t	n	.80	.90	.95	.975	.99
.995							
5	3	5	.210	.145	.110	.085	.065
	10	.350	.270	.225	.190	.150	.130
	15	.430	.355	.305	.265	.225	.200
	20	.485	.415	.360	.320	.280	.250
	25	.530	.455	.405	.365	.325	.295
	30	.560	.490	.440	.400	.355	.330

k	t	n	.80	.90	.95	.975	.99
.995							
5	2	5	.205	.145	.110	.085	.065
	10	.350	.270	.225	.190	.150	.130
	15	.430	.355	.305	.265	.225	.200
	20	.485	.415	.360	.320	.280	.250
	25	.530	.455	.405	.365	.325	.295
	30	.560	.490	.440	.400	.355	.325

k	t	n	.80	.90	.95	.975	.99
.995							
5	4	5	.250	.170	.130	.100	.070
.060							
	10	.395	.310	.250	.205	.170	.145
	15	.475	.390	.330	.285	.240	.210
	20	.530	.450	.390	.340	.290	.260
	25	.570	.490	.430	.385	.340	.310
	30	.600	.525	.465	.425	.380	.350

Table 7. C
For Estimator $\widetilde{\beta}$ Selecting the \boldsymbol{t}-best : Complete Sample Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=3.0$

p^{*}							
k t	n	.80	.90	.95	.975	.99	.995
2	1	5	.375	.220	.140	.095	.060
.045							
	10	.530	.380	.280	.215	.160	.130
	15	.605	.465	.375	.305	.240	.200
	20	.655	.525	.435	.370	.310	.270
	25	.680	.560	.475	.410	.350	.310
	30	.710	.590	.510	.445	.380	.345

p^{*}							
k	t	n	.80	.90	.95	.975	.99
4995							
4	1	5	.205	.125	.085	.060	.035
	10	.365	.265	.200	.160	.120	.110
	15	.450	.350	.285	.240	.190	.160
	20	.510	.415	.350	.300	.250	.215
	25	.555	.460	.395	.345	.295	.265
	30	.580	.495	.430	.380	.330	.295

p^{\bullet}							
$\mathrm{k} \mathbf{t}$	n	.80	.90	.95	.975	.99	.995
3	1	5	.250	.155	.100	.070	.045
	10	.415	.300	.230	.175	.130	.105
	15	.500	.390	.315	.260	.205	.175
	20	.550	.450	.375	.315	.270	.235
	25	.595	.495	.425	.365	.310	.280
	30	.620	.525	.460	.405	.350	.310

k	t	n	.80	.90	.95	.975	.99
.995							
4	2	5	.170	.105	.070	.050	.035
	10	.325	.240	.190	.145	.110	.090
	15	.410	.325	.265	.225	.185	.150
	20	.425	.390	.330	.280	.230	.200
	25	.510	.430	.375	.330	.280	.255
	30	.545	.470	.410	.365	.315	.285

p^{*}							
kt	n	.80	.90	.95	.975	.99	.995
3	2	5	.250	.155	.100	.070	.040
.030							
	10	.415	.300	.230	.175	.130	.105
	15	.500	.390	.315	.260	.205	.175
	20	.550	.450	.375	.320	.270	.230
	25	.595	.490	.420	.365	.310	.280
	30	.620	.530	.460	.405	.350	.310

p							
kt	n	.80	.90	.95	.975	.99	.995
4	3	5	.200	.120	.080	.055	.035
	10	.365	.270	.205	.160	.120	.100
	15	.450	.350	.285	.240	.195	.160
	15						
	20	.505	.410	.345	.295	.245	.215
	25	.550	.460	.390	.345	.300	.260
	30	.580	.490	.430	.380	.330	.300

Table 7. C (continued)

For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Sample Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=3.0$

k	t	n	.80	.90	.95	.975	.99
.995							
5	1	5	.175	.110	.075	.050	.035
	10	.330	.240	.185	.145	.110	.090
	15	.420	.330	.270	.225	.180	.155
	20	.480	.390	.330	.285	.240	.210
	25	.525	.440	.375	.325	.280	.250
	30	.555	.470	.410	.365	.320	.280

k	t	n	.80	.90	.95	.975	.99
.995							
5	3	5	.140	.090	.060	.040	.030
.020							
	10	.285	.210	.160	.130	.100	.080
	15	.370	.295	.245	.205	.165	.140
	20	.430	.360	.305	.260	.220	.190
	25	.480	.400	.350	.305	.265	.240
	30	.510	.440	.385	.345	.300	.270

k	t	n	.80	.90	.95	.975	.99
.995							
5	2	5	.140	.085	.060	.040	.030
	10	.285	.210	.160	.130	.100	.080
	15	.370	.295	.245	.205	.165	.140
	20	.430	.360	.305	.260	.220	.190
	25	.480	.400	.350	.305	.265	.240
	30	.510	.440	.385	.345	.295	.270

k	t	n	.80	.90	.95	.975	.99	.995
5	4	5	.180	.110	.075	.050	.035	.025
	10	.330	.240	.185	.145	.110	.090	
	15	.420	.330	.270	.225	.180	.150	
	20	.480	.390	.330	.280	.230	.200	
	25	.520	.435	.375	.325	.280	.255	
	30	.555	.470	.415	.365	.320	.290	

Table 8. C
For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Sample Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of k, t, δ, p^{*} and $\alpha=4.0$

k	t	n	.80	.90	.95	.975	.99
.995							
2	1	5	.330	.175	.105	.065	.040
	10	.505	.345	.250	.185	.130	.100
	15	.585	.440	.340	.275	.210	.175
	20	.635	.500	.410	.345	.280	.240
	25	.665	.540	.450	.385	.320	.280
	30	.695	.570	.485	.425	.355	.320

k	t	n	.80	.90	.95	.975	.99
.995							
4	1	5	.165	.095	.055	.035	.020
	10	.335	.230	.170	.130	.090	.075
	15	.420	.320	.260	.205	.165	.135
	20	.485	.390	.320	.275	.215	.190
	25	.525	.435	.370	.320	.270	.240
	30	.560	.470	.410	.355	.300	.270

k		n	.80	.90	.95	.975	.99
.995							
3	1	5	.210	.115	.070	.045	.025
	10	.385	.270	.195	.145	.105	.080
	15	.475	.360	.285	.230	.180	.150
	20	.530	.420	.350	.295	.235	.210
	25	.575	.470	.395	.345	.285	.250
	30	.605	.505	.435	.380	.325	.290

k	t	n	.80	.90	.95	.975	.99
.995							
4	2	5	.135	.075	.045	.030	.020
.015							
	10	.290	.210	.155	.115	.085	.065
	15	.385	.295	.240	.195	.155	.130
	20	.445	.360	.300	.255	.205	.175
	25	.490	.410	.350	.305	.255	.225
	30	.525	.445	.385	.340	.290	.260

k	t	n	.80	.90	.95	.975	.99
.995							
3	2	5	.210	.115	.070	.045	.025
	10	.385	.270	.195	.145	.100	.080
	15	.475	.360	.285	.230	.180	.150
	20	.530	.420	.350	.295	.240	.210
	25	.575	.470	.395	.340	.285	.250
	30	.600	.505	.435	.380	.320	.290

k	t	n	.80	.90	.95	.975	.99
.995							
4	3	5	.165	.090	.055	.035	.020
.015							
	10	.335	.235	.175	.130	.090	.070
	15	.420	.325	.260	.210	.165	.135
	20	.480	.385	.320	.270	.215	.190
	25	.530	.430	.370	.320	.265	.235
	30	.560	.470	.405	.355	.305	.270

Table 8. C
(continued)
For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Sample Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=4.0$
${ }^{\text {p }}$

$\mathrm{k} \mathbf{t}$	n	.80	.90	.95	.975	.99	.995
5	1	5	.140	.080	.050	.030	.020
	10	.015					
	15	.295	.210	.150	.115	.085	.065
	15	.395	.300	.240	.195	.155	.130
	20	.455	.365	.305	.255	.205	.180
	25	.500	.410	.350	.300	.255	.230
	30	.535	.450	.390	.340	.290	.260

k	t	n	.80	.90	.95	.975	.99
.995							
5	3	5	.105	.060	.040	.025	.015
	10	.250	.180	.130	.105	.070	.055
	15	.345	.270	.215	.175	.140	.115
	20	.405	.330	.275	.235	.190	.170
	25	.450	.380	.320	.280	.235	.210
	30	.490	.415	.360	.320	.275	.245

k t	n	.80	.90	.95	.975	.99	.995
5	2	5	.105	.060	.040	.025	.015
		.010					
	10	.250	.180	.130	.105	.070	.055
	15	.345	.270	.215	.175	.140	.115
	20	.405	.330	.280	.235	.195	.170
	25	.450	.380	.320	.280	.235	.210
	30	.490	.415	.360	.320	.275	.245

$\mathrm{k} t$	n	.80	.90	.95	.975	.99	.995
5	4	5	.140	.080	.050	.030	.020
.015							
	10	.300	.210	.150	.115	.085	.065
	15	.390	.300	.240	.195	.150	.125
	20	.455	.365	.300	.255	.205	.180
	25	.500	.410	.350	.305	.255	.230
	30	.530	.450	.390	.345	.295	.265

Table 9. C
For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Sample Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of k, t, δ, p^{*} and $\alpha=5.0$

k t	n	. 80	. 90	. 95	. 975	. 99	. 995
21	5	. 305	. 150	. 080	. 050	. 025	. 015
	10	. 490	. 330	. 230	. 170	. 110	. 090
	15	. 570	. 425	. 330	. 265	. 195	. 160
	20	. 630	. 490	. 395	. 330	. 265	. 230
	25	. 655	. 530	. 440	. 370	. 305	. 270
	30	. 685	. 560	. 475	. 410	. 340	. 305

k	t	n	.80	.90	.95	.975	.99
.995							
4	1	5	.140	.075	.040	.025	.015
	10	.315	.215	.150	.115	.075	.060
	15	.405	.310	.240	.195	.145	.120
	20	.470	.375	.310	.260	.205	.180
	25	.520	.420	.360	.305	.255	.225
	30	.545	.460	.395	.345	.285	.255

p^{*}							
$\mathrm{k} t$	n	.80	.90	.95	.975	.99	.995
3	1	5	.180	.090	.055	.030	.020
.010							
	10	.365	.250	.175	.130	.090	.065
	15	.460	.345	.270	.215	.160	.130
	20	.520	.410	.335	.275	.225	.190
	25	.560	.460	.385	.330	.270	.240
	30	.595	.495	.420	.365	.305	.275

p^{*}							
k	t	.80	.90	.95	.975	.99	.995
4	2	5	.115	.060	.035	.020	.010
	10	.275	.190	.135	.100	.070	.050
	15	.370	.280	.220	.180	.135	.115
	20	.435	.350	.285	.240	.190	.160
	25	.475	.395	.335	.290	.240	.210
	30	.515	.430	.370	.325	.275	.250

p^{*}							
kt	n	. 80	. 90	. 95	. 975	. 99	. 995
32	5	. 180	. 090	. 050	. 030	. 020	. 010
	10	. 365	. 250	. 175	. 130	. 085	. 065
	15	. 460	. 350	. 270	. 215	. 160	. 130
	20	. 520	. 410	. 335	. 280	. 225	. 190
	25	. 560	. 460	. 385	. 325	. 270	. 240
	30	. 590	. 495	. 420	. 370	. 305	. 275

k	t	n	.80	.90	.95	.975	.99
$\mathbf{7 c \|}$.995						
4	3	5	.140	.070	.040	.025	.015
	10	.010					
	15	.315	.220	.160	.115	.080	.060
	15	.405	.310	.245	.195	.150	.120
	20	.470	.370	.305	.255	.200	.175
	25	.520	.420	.355	.305	.250	.220
	30	.550	.455	.390	.345	.290	.260

Table 9. C
(continued)
For Estimator $\widetilde{\beta}$ Selecting the \boldsymbol{t}-best : Complete Sample Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=5.0$

k t	n	.80	.90	.95	.975	.99	.995
5	1	5	.115	.060	.035	.020	.010
.005							
	10	.280	.190	.135	.100	.070	.050
	15	.380	.290	.225	.180	.135	.110
	20	.440	.350	.290	.245	.190	.165
	25	.490	.400	.340	.290	.240	.210
	30	.520	.440	.375	.325	.275	.245

k	t	n	.80	.90	.95	.975	.99
.995							
5	3	5	.085	.045	.025	.015	.010
	10	.235	.160	.115	.085	.060	.045
	15	.330	.255	.200	.165	.120	.100
	20	.390	.320	.260	.220	.175	.155
	25	.440	.365	.310	.265	.225	.200
	30	.480	.405	.350	.305	.260	.230

p^{*}							
k	n	.80	.90	.95	.975	.99	.995
5	2	5	.085	.045	.025	.015	.010
	10	.235	.160	.120	.085	.060	.045
	15	.330	.250	.200	.165	.120	.100
	20	.390	.320	.265	.220	.175	.150
	25	.440	.365	.310	.265	.225	.200
	30	.480	.405	.350	.305	.255	.230

k	t	n	.80	.90	.95	.975	.99
.995							
5	4	5	.115	.060	.035	.020	.010
	10	.280	.190	.135	.100	.070	.050
	15	.375	.285	.225	.180	.135	.110
	20	.440	.350	.290	.240	.190	.165
	25	.485	.400	.335	.290	.240	.215
	30	.520	.440	.375	.330	.280	.250

Appendix D Probability Tables for Estimator $\tilde{\alpha}$

Table1.D

δ^{*} values when using the estimator $\tilde{\alpha}$

k	t	n	.80	.90	.95	.975	.99
.995							
2	1	5	.630	.490	.390	.320	.250
	10	.745	.635	.555	.500	.430	.390
	15	.790	.700	.635	.575	.520	.480
	20	.820	.740	.675	.625	.570	.540
	25	.845	.765	.710	.665	.610	.580
	30	.850	.785	.730	.690	.640	.610

k	t	n	.80	.90	.95	.975	.99
.995							
4	1	5	.500	.395	.320	.260	.200
	10	.640	.550	.490	.435	.375	.345
	15	.700	.625	.570	.525	.470	.435
	20	.736	.670	.615	.575	.530	.500
	25	.765	.700	.655	.615	.570	.540
	30	.780	.725	.680	.645	.600	.570

k	t	n	.80	.90	.95	.975	.99
.995							
3	1	5	.540	.420	.340	.280	.220
	10	.670	.580	.510	.455	.400	.390
	15	.730	.650	.590	.540	.480	.480
	20	.760	.690	.640	.595	.540	.540
	25	.785	.720	.670	.630	.580	.580
	30	.805	.745	.695	.660	.615	.610

k	t	n	.80	.90	.95	.975	.99
.995							
4	2	5	.440	.355	.285	.240	.195
	10	.595	.530	.470	.420	.370	.340
	15	.660	.610	.555	.510	.460	.430
	20	.705	.655	.610	.565	.520	.490
	25	.735	.690	.640	.605	.565	.540
	30	.755	.715	.670	.640	.600	.570

k	t	n	.80	.90	.95	.975	.99
.995							
3	2	5	.510	.400	.320	.265	.210
	10	.655	.565	.500	.445	.385	.355
	15	.720	.640	.580	.530	.480	.445
	20	.750	.685	.630	.585	.540	.510
	25	.780	.715	.665	.625	.580	.550
	30	.800	.740	.690	.665	.610	.580

k	t	n	.80	.90	.95	.975	.99
.995							
4	3	5		.455	.355	.285	.240
.195	.175						
	10	.615	.530	.470	.420	.370	.340
	15	.680	.610	.555	.510	.460	.430
	20	.720	.655	.610	.565	.520	.490
	25	.750	.690	.640	.605	.565	.540
	30	.770	.715	.670	.640	.600	.570

Table1.D (continued)

δ^{*} values when using the estimator $\tilde{\alpha}$

k	t	n	.80	.90	.95	.975	.99
.995							
5	1	5	.475	.380	.305	.250	.195
	10	.620	.535	.470	.425	.370	.340
	15	.680	.610	.560	.510	.460	.430
	20	.720	.660	.610	.565	.520	.490
	25	.745	.690	.640	.605	.560	.530
	30	.765	.710	.670	.630	.590	.565

k t	n	.80	.90	.95	.975	.99	.995
5	3	5	.390	.310	.250	.210	.190
	10	.555	.480	.430	.390	.345	.310
	15	.625	.565	.520	.480	.430	.400
	20	.675	.620	.575	.540	.495	.470
	25	.705	.655	.610	.580	.540	.510
	30	.730	.680	.640	.610	.570	.550

k t	n	.80	.90	.95	.975	.99	.995
5	2	5	.405	.320	.260	.220	.190
	10	.565	.490	.440	.395	.345	.320
	15	.635	.570	.520	.485	.440	.410
	20	.680	.625	.580	.545	.500	.470
	25	.710	.660	.615	.580	.540	.510
	30	.730	.685	.645	.615	.575	.550

k t	n	.80	.90	.95	.975	.99	.995
5	4	5	.420	.330	.265	.220	.190
	10	.580	.505	.450	.405	.355	.325
	15	.655	.590	.540	.495	.450	.420
	20	.700	.640	.590	.555	.510	.480
	25	.730	.675	.630	.595	.550	.525
	30	.755	.700	.660	.625	.580	.560

Appendix E Probability Tables for Estimator $\hat{\beta}$
 Large Samples

Table 1.E
For Estimator $\hat{\beta}$ Selecting the t-best : Complete Large Sample Approximation Case Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=0.25$

k	t	.80	.90	.95	.975	.99	.995
2	1	30	.945	.920	.900	.880	.860
.845							
	40	.955	.930	.910	.895	.880	.865
	50	.960	.940	.920	.905	.890	.880
	75	.965	.950	.935	.925	.910	.900

k							
k	n	.80	.90	.95	.975	.99	.995
4	2	30	.910	.885	.870	.855	.835
	40	.920	.900	.885	.870	.855	.845
	50	.930	.910	.895	.885	.870	.860
	75	.940	.925	.915	.905	.890	.885

${ }^{\circ}$

k	t	.80	.90	.95	.975	.99	.995	
3	1	30	.930	.905	.885	.865	.850	.835
	40	.940	.915	.900	.885	.865	.855	
	50	.945	.925	.910	.895	.880	.870	
	75	.955	.940	.925	.915	.900	.890	

k	t	n	.80	.90	.95	.975	.99
995							
4	3	30	.915	.895	.875	.860	.840
	.825						
	40	.930	.905	.890	.875	.860	.850
	50	.935	.915	.900	.890	.875	.865
	75	.945	.930	.920	.910	.900	.890

k	t	n	.80	.90	.95	.975	.99
3	2	30	.925	.900	.880	.865	.845
	40	.935	.915	.900	.885	.865	.855
	50	.945	.920	.910	.895	.880	.870
	75	.950	.935	.925	.915	.900	.890

\boldsymbol{k}^{*}									n	.80	.90	.95	.975	.99	.995
5	1	30	.910	.890	.870	.855	.835								
.825															
	40	.925	.900	.885	.875	.855	.845								
	50	.930	.910	.900	.885	.870	.860								
	75	.945	.930	.915	.905	.890	.885								

p^{*}							
k	t	n	.80	.90	.95	.975	.99
4	1	30	.920	.895	.875	.860	.840
	40	.930	.910	.890	.875	.860	.855
	50	.935	.920	.900	.890	.875	.865
	75	.950	.930	.920	.910	.895	.885

$\mathrm{K}^{*} \mathrm{t}$							
n	.80	.90	.95	.975	.99	.995	
5	2	30	.900	.880	.860	.845	.830
	40	.910	.895	.880	.865	.850	.840
	50	.920	.905	.890	.880	.865	.855
	75	.935	.920	.910	.900	.890	.880

Table 1. E
(continued)
For Estimator $\hat{\beta}$ Selecting the \boldsymbol{t}-best : Complete Large Sample Approximation Case Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of k, t, δ, p^{*} and $\alpha=0.25$

k	t	n	.80	.90	.95	.975	.99
.995							
5	3	30	.900	.880	.860	.845	.830
	40	.910	.890	.880	.865	.850	.840
	50	.920	.900	.890	.880	.865	.855
	75	.935	.920	.910	.900	.890	.880

K	t	n	.80	.90	.95	.975	.99	.995
5	4	30	.910	.890	.870	.855	.835	.820
	40	.920	.900	.885	.870	.855	.845	
	50	.930	.910	.895	.885	.870	.860	
	75	.940	.925	.915	.905	.890	.880	

Table 2.E
For Estimator $\hat{\beta}$ Selecting the \boldsymbol{t}-best : Complete Large Sample Approximation Case Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=0.5$

p.								p.							
kt	n	. 80	. 90	. 95	. 975	. 99	. 995	kt	n	. 80	. 90	. 95	. 975	. 99	. 995
21	30	. 900	. 850	. 810	. 780	. 740	. 720	42	30	. 830	. 790	. 760	. 730	. 700	. 680
	40	. 910	. 870	. 835	. 805	. 775	. 750		40	. 850	. 815	. 790	. 765	. 735	. 715
	50	. 920	. 880	. 850	. 825	. 795	. 775		50	. 865	. 835	. 810	. 785	. 760	. 745
	75	. 935	. 900	. 880	. 855	. 830	. 815		75	. 890	. 860	. 840	. 820	. 800	. 785

p^{*}							
kt	n	.80	.90	.95	.975	.99	.995
3	1	30	.865	.820	.785	.755	.720
.700							
	40	.880	.840	.810	.785	.755	.735
	50	.895	.860	.830	.805	.780	.760
	75	.910	.880	.860	.840	.815	.800

k	t	n	.80	.90	.95	.975	.99
495							
4	3	30	.840	.800	.770	.740	.710
	40	.860	.825	795	.770	.740	.720
	50	.875	.840	.815	.790	.765	.750
	75	.900	.870	.850	.830	.805	.790

k	t	n	.80	.90	.95	.975	.99
.995							
3	2	30	.860	.815	.780	.755	.720
	40	.880	.840	.810	.785	.750	.735
	40	.700					
	50	.890	.855	.830	.805	.780	.760
	75	.910	.880	.860	.840	.810	.800

k	t	n	.80	.90	.95	.975	.99	.995
5	1	30	.840	.800	.765	.735	.700	.680
	40	.855	.820	.790	.770	.740	.720	
	50	.870	.840	.810	.790	.760	.745	
	75	.890	.865	.840	.825	.800	.790	

kt	n	.80	.90	.95	.975	.99	.995
4	1	30	.850	.805	.770	.745	.710
	.690						
	40	.865	.830	.800	.775	.740	.725
	50	.880	.845	.820	.795	.770	.750
	75	.900	.870	.850	.830	.810	.790

${ }^{*}$							
kt	n	. 80	. 90	. 95	. 975	. 99	. 995
52	30	. 815	. 775	. 745	. 720	. 690	. 670
	40	. 835	. 800	. 775	. 750	. 725	. 710
	50	. 850	. 820	. 800	. 775	. 750	. 735
	75	. 875	. 850	. 830	. 815	. 790	. 780

Table 2. E (continued)

For Estimator $\hat{\beta}$ Selecting the t-best : Complete Large Sample Approximation Case Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=0.5$

k	t	n	.80	.90	.95	.975	.99
595							
5	3	30	.810	.770	.740	.720	.690
.670							
	40	.835	.800	.775	.750	.725	.705
	50	.850	.820	.795	.775	.750	.735
	75	.875	.850	.830	.815	.790	.780

K	t	n	.80	.90	.95	.975	.99	.995
5	4	30	.830	.790	.755	.730	.700	.680
	40	.850	.815	.785	.760	.730	.715	
	50	.865	.830	.810	.785	.760	.740	
	75	.890	.860	.840	.820	.800	.785	

Table 3. E
For Estimator $\hat{\beta}$ Selecting the t-best : Complete Large Sample Approximation Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=0.75$

k							
k	n	.80	.90	.95	.975	.99	.995
2	1	30	.860	.790	.740	.695	.645
	40	.875	.815	.770	.730	.690	.660
	50	.890	.835	.790	.755	.715	.690
		75	.910	.860	.830	.795	.760
	7440						

p^{*}							
k t	n	. 80	. 90	. 95	. 975	. 99	. 995
42	30	. 760	. 710	. 675	. 635	. 590	. 560
	40	. 790	. 745	. 705	. 675	. 635	. 610
	50	. 810	. 770	. 735	. 705	. 670	. 650
	75	. 845	. 805	. 780	. 750	. 725	. 705

${ }^{\text {• }}$							
k t	n	. 80	. 90	. 95	. 975	. 99	. 995
31	30	. 810	. 750	. 705	. 665	. 620	. 590
	40	. 835	. 780	. 740	. 705	. 665	. 640
	50	. 850	. 800	. 765	. 735	. 695	. 670
	75	. 875	. 835	. 800	. 775	. 745	. 725

p^{*}							
k	n	.80	.90	.95	.975	.99	.995
4	3	30	.775	.720	.680	.640	.595
	40	.805	.755	.715	.685	.645	.620
	50	.825	.780	.740	.715	.680	.655
	75	.855	.815	.785	.760	.730	.710

p^{*}							
k	t	n	.80	.90	.95	.975	.99
3	2	30	.805	.745	.700	.660	.615
	40	.830	.775	.735	.700	.660	.630
	50	.845	.800	.760	.730	.690	.670
	75	.870	.830	.800	.775	.740	.720

k	t	n	.80	.90	.95	.975	.99
5	.995						
5	1	30	.775	.720	.680	.640	.600
	40	.800	.755	.715	.680	.640	.620
	40	.820	.775	.740	.710	.670	.650
	50						
	75	.850	.815	.780	.755	.730	.710

k		n	.80	.90	.95	.975	.99
995							
4	1	30	.790	.730	.690	.650	.605
	40	.815	.765	.725	.690	.650	.625
	40						
	50	.830	.790	.750	.720	.680	.660
	75	.860	.820	.790	.765	.730	.715

kt							
n	.80	.90	.95	.975	.99	.995	
5	2	30	.740	.690	.650	.620	.575
	40	.770	.730	.690	.660	.625	.600
	50	.795	.750	.720	.695	.660	.640
	75	.830	.795	.765	.740	.710	.695

Table 3. E
(continued)
For Estimator $\hat{\beta}$ Selecting the t-best : Complete Large Sample Approximation Case Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=0.75$

k	t	n	.80	.90	.95	.975	.99	.995
5	3	30	.735	.690	.650	.615	.575	.550
	40	.770	.725	.690	.660	.620	.600	
	50	.790	.750	.720	.690	.660	.635	
	75	.825	.790	.760	.740	.710	.695	

k	t	n	.80	.90	.95	.975	.99	.995
5	4	30	.760	.705	.660	.625	.585	.560
	40	.790	.740	.700	.670	.630	.610	
	50	.810	.765	.730	.705	.670	.645	
	75	.845	.805	.775	.750	.720	.705	

Table 4. E

For Estimator $\hat{\beta}$ Selecting the t-best : Complete Large Sample Approximation Case Finding the smallest n required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=1.00$

p^{*}							
k	t	n	.80	.90	.95	.975	.99
.995							
2	1	30	.825	.740	.680	.625	.570
.530							
	40	.845	.775	.715	.670	.620	.580
	50	.860	.795	.745	.700	.650	.620
	75	.885	.830	.785	.750	.710	.680

k	t	n	.80	.90	.95	.975	.99
.995							
4	2	30	.710	.645	.595	.555	.510
	40	.740	.685	.640	.605	.555	.530
	50	.765	.715	.670	.640	.600	.570
	75	.805	.760	.730	.695	.660	.640

k	t	n	.80	.90	.95	.975	.99
.995							
3	1	30	.770	.695	.640	.595	.540
.550							
	40	.795	.730	.680	.640	.590	.560
	50	.815	.760	.710	.675	.625	.600
	75	.845	.800	.760	.725	.685	.660

k	t	n	.80	.90	.95	.975	.99	.995
4	3	30	.720	.655	.605	.560	.510	.485
	40	.760	.700	.650	.610	.565	.535	
	50	.780	.725	.680	.645	.605	.580	
	75	.820	.770	.735	.705	.670	.645	

k	t	n	.80	.90	.95	.975	.99
.995							
3	2	30	.760	.685	.630	.585	.530
	40	.790	.725	.675	.635	.580	.550
	50	.810	.750	.705	.665	.620	.590
	75	.840	.790	.750	.720	.680	.660

k	t	n	.80	.90	.95	.975	.99
5	1	30	.730	.660	.610	.565	.510
	40	.760	.700	.650	.615	.565	.535
	50	.780	.725	.685	.645	600.	.575
	75	.815	.770	.730	.705	.665	.640

k	t	n	.80	.90	.95	.975	.99
.995							
4	1	30	.745	.675	.620	.575	.520
	40	.775	.710	.665	.625	.575	.545
	50	.790	.740	.695	.655	.610	.585
	75	.830	.780	.740	.710	.670	.650

k	t	n	.80	.90	.95	.975	.99
5	.995						
5	2	30	.685	.625	.580	.535	.490
	40	.720	.670	.625	.590	.545	.515
	50	.745	.700	.660	.625	.585	.560
	75	.790	.745	.710	.685	.650	.630

Table 4. E (continued)

For Estimator $\hat{\beta}$ Selecting the t-best : Complete Large Sample Approximation Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of k, t, δ, p^{*} and $\alpha=1.00$

k	t	n	.80	.90	.95	.975	.99
.995							
5	3	30	.675	.620	.570	.530	.490
	40	.715	.660	.620	.585	.540	.510
	50	.740	.690	.650	.620	.580	.555
	75	.785	.740	.710	.680	.650	.625

k	t	n	.80	.90	.95	.975	.99
5	.995						
5	30	.700	.635	.585	.545	.490	.480
	40	.740	.680	.635	.595	.550	.525
	50	.760	.710	.670	.635	.590	.565
	75	.805	.760	.725	.695	.660	.635

Table 5. E
For Estimator $\hat{\beta}$ Selecting the t-best : Complete Large Sample ApproximationCase
Finding the smallest n required for $P(C S \mid R) \geq p^{*}$ given values of k, t, δ, p^{*} and $\alpha=1.25$

k	t	n	.80	.90	.95	.975	.99	.995
2	1	30	.795	.705	.630	.575	.505	.465
	40	.820	.740	.675	.625	.565	.525	
	50	.840	.765	.705	.655	.600	.565	
	75	.870	.805	.755	.715	.665	.635	

k	t	n	.80	.90	.95	.975	.99
.995							
4	2	30	.670	.595	.540	.490	.440
	40	.705	.640	.590	.550	.495	.465
	50	.730	.675	.625	.585	.540	.510
	75	.775	.725	.685	.655	.610	.585

k	t	n	.80	.90	.95	.975	.99
.995							
3	1	30	.735	.655	.590	.540	.480
	40	.770	.695	.640	.590	.530	.500
	40	.735	.790	.720	.670	.625	.575
	50	.540					
	75	.825	.765	.720	.685	.640	.610

k	t	n	.80	.90	.95	.975	.99
.995							
4	3	30	.680	.605	.550	.500	.440
	40	.720	.650	.600	.555	.505	.470
	50	.745	.685	.635	.595	.550	.520
	75	.790	.740	.695	.660	.620	.590

k	t	n	.80	.90	.95	.975	.99
.995							
3	2	30	.720	.640	.575	.525	.460
.425							
	40	.755	.680	.625	.580	.525	.490
	50	.780	.710	.660	.615	.570	.535
	75	.815	.760	.715	.680	.640	.610

k	t	n	.80	.90	.95	.975	.99
.995							
5	1	30	.690	.615	.555	.510	.450
.410							
	40	.725	.660	.605	.560	.510	.475
	50	.750	.690	.640	.600	.550	.520
	75	.790	.735	.690	.660	.620	.590

k	t	n	.80	.90	.95	.975	.99
.995							
4	1	30	.710	.630	.570	.520	.460
	40	.740	.670	.620	.575	.520	.485
	50	.765	.705	.650	.610	.560	.530
	50	75	.805	.750	.705	.670	.625
	.600						

k	t	n	.80	.90	.95	.975	.99
595							
5	2	30	.640	.575	.520	.475	.420
	40	.680	.620	.570	.535	.485	.450
	50	.710	.655	.610	.575	.530	.500
	75	.755	.710	.670	.640	.600	.575

Table 5. E
(continued)
For Estimator $\hat{\beta}$ Selecting the t-best : Complete Large Sample Approximation Case Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of k, t, δ, p^{*} and $\alpha=1.25$

k	t	n	.80	.90	.95	.975	.99	.995
5	3	30	.630	.565	.515	.465	.415	.380
	40	.675	.615	.570	.525	.480	.445	
	50	.705	.650	.605	.565	.525	.495	
	75	.750	.705	.665	.635	.600	.570	

k	t	n	.80	.90	.95	.975	.99
5		.995					
5	30	.655	.585	.530	.480	.430	.375
	40	.695	.630	.580	.540	.490	.455
	50	.725	.670	.620	.580	.540	.505
	75	.770	.720	.680	.650	.610	.580

Table 6. E
For Estimator $\hat{\beta}$ Selecting the t-best : Complete Large Sample Approximation Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=1.5$

k	t	n	.80	.90	.95	.975	.99
2	1	30	.775	.675	.595	.535	.460
	40	.805	.715	.645	.585	.520	.480
	40						
	50	.820	.740	.675	.625	.560	.530
	75	.850	.780	.730	.685	.630	.600

k^{*}									n	.80	.90	.95	.975	.99	.995
4	2	30	.640	.560	.500	.445	.390								
	40	.680	.605	.550	.505	.450	.415								
	50	.705	.640	.590	.550	.500	.470								
	75	.755	.700	.655	.620	.575	.550								

p^{*}							
k t	n	. 80	. 90	. 95	. 975	. 99	. 995
31	30	. 710	. 620	. 555	. 495	. 430	. 390
	40	. 745	. 665	. 600	. 550	. 490	. 450
	50	. 765	. 695	. 640	. 590	. 540	. 500
	75	. 805	. 740	. 695	. 655	. 605	. 575

k							
t	n	.80	.90	.95	.975	.99	.995
4	3	30	.640	.560	.500	.445	.390
.345							
	40	.690	.615	.560	.515	.455	.420
	50	.720	.655	.600	.555	.505	.470
	75	.770	.710	.665	.630	.580	.555

p *							
kt	n	. 80	. 90	. 95	. 975	. 99	. 995
32	30	. 690	. 605	. 535	. 480	. 415	. 370
	40	. 730	. 650	. 590	. 540	. 480	. 440
	50	. 755	. 680	. 625	. 580	. 525	. 490
	75	. 800	. 735	. 685	. 650	. 600	. 570

k	t	n	.80	.90	.95	.975	.99
.995							
5	1	30	.660	.580	.520	.465	.410
.360							
	40	.700	.625	.570	.520	.465	.430
	50	.725	.660	.605	.565	.510	.480
	75	.770	.710	.665	.630	.580	.555

p^{*}							
k t	n	. 80	. 90	. 95	. 975	. 99	. 995
41	30	. 680	. 600	. 530	. 475	. 415	. 370
	40	. 715	. 640	. 585	. 535	. 475	. 440
	50	. 740	. 675	. 620	. 575	. 520	. 485
	75	. 780	. 725	. 675	. 640	. 590	. 575

p^{*}							
k	t	n	.80	.90	.95	.975	.99
5	2	30	.610	.535	.480	.430	.370
	40	.650	.585	.535	.490	.440	.400
	50	.680	.620	.575	.535	.490	.455
	75	.735	.680	.640	.605	.560	.540

Table 6. E (continued)

For Estimator $\hat{\beta}$ Selecting the t-best : Complete Large Sample Approximation Case Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of k, t, δ, p^{*} and $\alpha=1.5$

k	t	n	.80	.90	.95	.975	.99	.995
5	3	30	.595	.525	.470	.420	.360	.320
	40	.640	.580	.525	.485	.430	.395	
	50	.675	.615	.570	.525	.480	.450	
	75	.725	.675	.635	.600	.560	.530	

K	t	n	.80	.90	.95	.975	.99	.995
5	4	30	.620	.540	.480	.430	.370	.330
	40	.665	.595	.540	.495	.440	.410	
	50	.700	.635	.580	.540	.490	.460	
	75	.750	.690	.650	.615	.570	.540	

Appendix F Probability Tables for Estimator $\widetilde{\beta}$

Large Samples

Table 1. F
For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Large Sample Approximation Case Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $k, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=0.25$

k	t	n	.80	.90	.95	.975	.99	.995
2	1	30	.945	.920	.900	.880	.860	.850
	40	.955	.930	.910	.895	.880	.865	
	50	.960	.935	.920	.905	.890	.880	
	75	.965	.950	.935	.925	.910	.900	

k	t	n	.80	.90	.95	.975	.99	.995
4	2	30	.910	.885	.870	.855	.835	.825
	40	.920	.900	.885	.870	.855	.845	
	50	.930	.910	.895	.885	.870	.860	
	75	.940	.925	.915	.905	.890	.885	

k	t	n	.80	.90	.95	.975	.99
3	1	30	.925	.905	.885	.865	.845
	40	.935	.915	.900	.885	.865	.855
	50	.945	.925	.910	.895	.880	.870
	75	.950	.940	.925	.915	.900	.890

k	t	n	.80	.90	.95	.975	.99	.995
4	3	30	.910	.885	.870	.855	.835	.825
	40	.920	.900	.885	.870	.855	.845	
	50	.930	.910	.895	.885	.870	.860	
	75	.940	.925	.910	.905	.890	.885	

k		t	n	.80	.90	.95	.975	.99
3		.995						
3	30	.925	.905	.885	.865	.845	.835	
	40	.935	.915	.900	.885	.865	.855	
	50	.945	.925	.910	.895	.880	.870	
	75	.950	.940	.925	.915	.900	.890	

k	t	n	.80	.90	.95	.975	.99
.995							
5	1	30	.910	.890	.870	.855	.835
	40	.920	.905	.885	.875	.855	.845
	50	.930	.910	.900	.885	.870	.860
	75	.940	.930	.915	.905	.890	.885

k	t	n	.80	.90	.95	.975	.99	.995
4	1	30	.915	.895	.875	.860	.840	.830
	40	.930	.905	.890	.880	.860	.850	
	50	.935	.915	.900	.890	.875	.865	
	75	.945	.930	.920	.910	.895	.890	

k	t	n	.80	.90	.95	.975	.99	.995
5	2	30	.900	.880	.860	.845	.830	.820
	40	.910	.895	.880	.865	.850	.840	
	50	.920	.905	.890	.880	.865	.855	
	75	.935	.920	.910	.900	.890	.880	

Table 1. F
(continued)

For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Large Sample Approximation Case

 Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=0.25$| k | t | n | .80 | .90 | .95 | .975 | .99 | .995 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 3 | 30 | .900 | .880 | .860 | .845 | .830 | .820 |
| | 40 | .910 | .895 | .880 | .865 | .850 | .840 | |
| | 50 | .920 | .905 | .890 | .880 | .865 | .855 | |
| | 75 | .935 | .920 | .910 | .900 | .890 | .880 | |

k	t	n	.80	.90	.95	.975	.99	.995
5	4	30	.900	.880	.860	.845	.830	.820
	40	.910	.895	.880	.865	.850	.840	
	50	.920	.905	.890	.880	.865	.855	
	75	.935	.920	.910	.900	.890	.880	

Table 2. F
For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Large Sample Approximation Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of k, t, δ, p^{*} and $\alpha=0.50$

k	t	n	.80	.90	.95	.975	.99
2	.995						
2	1	30	.900	.850	.810	.785	.750
	40	.910	.870	.835	.810	.775	.755
	50	.920	.880	.850	.825	.790	.780
	75	.935	.900	.880	.855	.830	.815

k	t	n	.80	.90	.95	.975	.99
.995							
4	2	30	.830	.790	.760	.735	.705
	40	.890					
	50	.865	.835	.810	.790	.760	.750
	75	.890	.865	.840	.825	.805	.790

p^{\bullet}							
K	t	n	.80	.90	.95	.975	.99
3			.995				
3	10	.865	.820	.785	.760	.720	.705
	40	.880	.840	.810	.785	.755	.740
	50	.890	.860	.830	.810	.780	.760
	75	.910	.880	.860	.840	.815	.800

k	t	n	.80	.90	.95	.975	.99
.995							
4	3	30	.830	.790	.760	.735	.705
	40	.850	.815	.790	.765	.740	.720
	50	.865	.835	.810	.790	.760	.750
	75	.890	.865	.840	.825	.805	.790

p							
k		n	.80	.90	.95	.975	.99
.995							
3	2	30	.865	.820	.785	.760	.720
		.700					
	40	.880	.840	.810	.785	.755	.740
	50	.890	.860	.830	.810	.780	.760
	75	.910	.880	.860	.840	.815	.800

k	\mathbf{t}	.80	.90	.95	.975	.99	.995
5	1	30	.830	.790	.760	.735	.700
.690							
	40	.855	.820	.790	.765	.740	.720
	50	.870	.835	.810	.790	.760	.750
	75	.890	.865	.845	.825	.800	.790

		n	.80	.90	.95	.975	.99
.995							
4	1	30	.845	.805	.770	.745	.710
	40	.865	.830	.800	.775	.745	.730
	40						
	50	.880	.845	.820	.795	.770	.755
	75	.900	.870	.850	.830	.810	.795

p^{\bullet}							
k	t	n	.80	.90	.95	.975	.99
595							
5	2	30	.810	.775	.750	.725	.690
	40	.835	.805	.780	.755	.730	.710
	50	.855	.825	.800	.780	.760	.740
	75	.880	.855	.830	.815	.800	.780
	75						

Table 2. F (continued)

For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Large Sample Approximation Case Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=0.50$

k	t	n	.80	.90	.95	.975	.99	.995
5	3	30	.810	.775	.750	.725	.690	.675
	40	.835	.805	.780	.755	.730	.710	
	50	.850	.820	.800	.780	.755	.740	
	75	.880	.855	.830	.815	.800	.780	

k	t	n	.80	.90	.95	.975	.99	.995
5	4	30	.810	.775	.750	.725	.690	.675
	40	.835	.805	.780	.755	.730	.710	
	50	.850	.820	.800	.780	.755	.740	
	75	.880	.855	.830	.815	.800	.780	

Table 3. F
For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Large Sample Approximation Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=0.75$

p^{*}							
$\mathrm{k} \mathbf{t}$	n	.80	.90	.95	.975	.99	.995
2	1	30	.860	.790	.750	.705	.660
	.630						
	40	.875	.805	.765	.740	.695	.660
	50	.890	.835	.795	.760	.720	.700
	75	.910	.860	.830	.800	.770	.745

k	t	n	.80	.90	.95	.975	.99
4	.995						
4	2	30	.765	.715	.675	.645	.610
	40	.785	.745	.710	.670	.645	.630
	50	.810	.770	.735	.710	.680	.660
	50	75	.840	.810	.780	.755	.730
		.710					

p.							
kt	n	. 80	. 90	. 95	. 975	. 99	. 995
31	30	. 810	. 750	. 710	. 670	. 630	. 605
	40	. 830	. 775	. 730	. 700	. 685	. 640
	50	. 850	. 800	. 765	. 735	. 700	. 680
	75	. 875	. 835	. 800	. 775	. 750	. 725

p^{*}							
kt	n	.80	.90	.95	.975	.99	.995
4	3	30	.765	.715	.675	.645	.610
.580							
	40	.805	.765	.720	.700	.675	.620
	50	.830	.780	.750	.720	.690	.660
	75	.860	.820	.790	.735	.720	.665

${ }^{\text {. }}$							
k t	n	. 80	. 90	. 95	. 975	. 99	. 995
32	30	. 810	. 750	. 710	. 670	. 630	. 605
	40	. 830	. 770	. 740	. 715	. 680	. 650
	50	. 850	. 800	. 765	. 735	. 700	. 680
	75	. 875	. 835	. 800	. 775	. 750	. 730

k^{*}							
k	n	.80	.90	.95	.975	.99	.995
5	1	30	.770	.720	.680	.645	.610
585							
	40	.800	.745	.690	.675	.645	.630
	50	.815	.770	.740	.710	.680	.660
	75	.845	.810	.780	.755	.730	.710

k	t	n	.80	.90	.95	.975	.99
.995							
4	1	30	.785	.730	.690	.655	.620
	40	.795	.745	.720	.680	.645	.615
	50	.830	.780	.750	.720	.690	.665
	50						
	75	.860	.820	.790	.765	.735	.720

p							
k	n	.80	.90	.95	.975	.99	.995
5	2	30	.745	.700	.660	.630	.595
	40	.770	.745	.715	.680	.645	.620
	50	.795	.755	.720	.700	.670	.650
	75	.825	.795	.770	.745	.720	.700

Table 3. F
(continued)
For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Large Sample Approximation Case Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=0.75$

k	t	n	.80	.90	.95	.975	.99
.995							
5	3	30	.745	.700	.660	.630	.595
	40	.765	.715	.685	.660	.635	.620
	50	.795	.755	.720	.695	.670	.650
	75	.825	.795	.770	.745	.720	.700

k	t	n	.80	.90	.95	.975	.99
.995							
5	4	30	.745	.700	.660	.630	.595
	40	.775	.720	.690	.655	.620	.600
	50	.815	.770	.740	.710	.680	.660
	75	.845	.810	.780	.755	.730	.710

Table 4. F
For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Large Sample Approximation Case Finding the smallest n required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=1.0$

k	t	n	.80	.90	.95	.975	.99	.995
2	1	30	.825	.750	.685	.640	.590	.560
	40	.850	.775	.720	.680	.630	.600	
	50	.860	.795	.750	.710	.660	.635	
	75	.885	.830	.790	.755	.715	.690	

k	t	n	.80	.90	.95	.975	.99
4	2	30	.710	.655	.610	.575	.530
	40	.745	.690	.650	.615	.580	.550
	50	.770	.720	.680	.650	.610	.590
	75	.810	.765	.730	.705	.670	.650

k	t	n	.80	.90	.95	.975	.99
.995							
3	1	30	.765	.700	.645	.605	.560
	40	.795	.730	.685	.645	.600	.575
	50	.815	.760	.710	.675	.635	.610
	75	.845	.800	.760	.725	.690	.670

k	t	n	.80	.90	.95	.975	.99
.995							
4	3	30	.735	.675	.625	.585	.540
	40	.770	.710	.665	.630	.590	.560
	50	.790	.740	.695	.660	.620	.600
	75	.825	.780	.740	.710	.680	.660

k	t	n	.80	.90	.95	.975	.99
3		.995					
3	30	.765	.700	.645	.605	.560	.530
	40	.795	.730	.685	.645	.600	.575
	50	.815	.760	.710	.675	.635	.610
	75	.840	.795	.760	.725	.690	.670

k	t	n	.80	.90	.95	.975	.99
.995							
5	1	30	.720	.660	.610	.575	.530
	.510						
	40	.750	.690	.650	.620	.580	.555
	50	.775	.720	.680	.650	.610	.590
	75	.810	.770	.730	.705	.670	.650

k	t	n	.80	.90	.95	.975	.99
.995							
4	1	30	.735	.675	.625	.585	.540
	40	.770	.710	.665	.630	.590	.560
	50	.790	.740	.695	.660	.620	.600
	75	.825	.780	.740	.715	.680	.660

k	t	n	.80	.90	.95	.975	.99
.995							
5	2	30	.685	.630	.590	.555	.520
	40	.720	.670	.630	.605	.560	.540
	50	.745	.700	.660	.635	.600	.580
	75	.790	.750	.715	.690	.655	.635

Table 4. F
(continued)

For Estimator $\tilde{\beta}$ Selecting the t-best : Complete Large Sample Approximation Case

Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of k, t, δ, p^{*} and $\alpha=1.0$

k	t	n	.80	.90	.95	.975	.99
.995							
5	3	30	.685	.630	.590	.555	.520
.490							
	40	.720	.670	.630	.600	.560	.540
	50	.745	.700	.660	.635	.600	.580
	75	.790	.750	.715	.690	.655	.640

K	t	n	.80	.90	.95	.975	.99
.995							
5	4	30	.720	.660	.610	.575	.530
	40	.750	.695	.650	.620	.580	.550
	50	.770	.720	.680	.650	.610	.590
	75	.810	.770	.730	.705	.670	.650

Table 5. F
For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Large Sample Approximation Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=1.25$

${ }^{\text {a }}$							
k t	n	. 80	. 90	. 95	. 975	. 99	. 995
21	30	. 800	. 710	. 645	. 595	. 530	. 505
	40	. 820	. 745	. 680	. 635	. 585	. 550
	50	. 840	. 765	. 710	. 665	. 615	. 590
	75	. 870	. 805	. 760	. 720	. 675	. 650

kt	n	.80	.90	.95	.975	.99	.995
4	2	30	.670	.610	.560	.520	.475
	40	.710	.650	.605	.570	.525	.500
	40	.53					
	50	.735	.680	.640	.605	.560	.540
	75	.780	.730	.690	.660	.625	.600

p^{*}							
kt	n	.80	.90	.95	.975	.99	.995
3	1	30	.730	.655	.600	.555	.505
	40	.760	.695	.640	.600	.550	.525
	50	.785	.720	.670	.635	.590	.560
	75	.820	.765	.720	.690	.650	.625

p^{*}							
kt	n	. 80	. 90	. 95	. 975	. 99	. 995
43	30	. 700	. 630	. 580	. 535	. 490	. 460
	40	. 735	. 670	. 620	. 585	. 535	. 510
	50	. 760	. 700	. 650	. 615	. 575	. 550
	75	. 800	. 745	. 705	. 675	. 635	. 610

k	t	n	.80	.90	.95	.975	.99
3	2	30	.730	.655	.600	.555	.505
	40	.760	.695	.640	.600	.550	.525
	50	.785	.720	.670	.635	.590	.560
	75	.820	.765	.720	.690	.645	.620

k	t	n	.80	.90	.95	.975	.99
5	1	.995					
5	30	.680	.610	.560	.525	.475	.450
	40	.715	.655	.605	.570	.525	.500
	50	.740	.685	.640	.605	.565	.540
	75	.780	.730	.695	.665	.625	.600

k	t	n	.80	.90	.95	.975	.99
4	1	30	.700	.630	.575	.535	.490
	40	.735	.670	.620	.585	.535	.510
	50	.760	.700	.650	.615	.575	.550
	75	.800	.745	.705	.675	.630	.610

p^{*}							
k	n	.80	.90	.95	.975	.99	.995
5	2	30	.640	.585	.540	.505	.460
	40	.680	.630	.585	.550	.510	.490
	50	.710	.660	.620	.585	.550	.525
	75	.755	.710	.675	.645	.610	.590

Table 5. F (continued)

For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Large Sample Approximation Case Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=1.25$

| k | t | n | .80 | .90 | .95 | .975 | .99 | .995 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 3 | 30 | .640 | .585 | .540 | .505 | .460 | .440 | |
| | 40 | .680 | .630 | .630 | .550 | .510 | .460 | | |
| | 40 | n | .80 | .90 | .95 | .975 | .99 | .995 | |
| | 5 | 4 | 30 | .680 | .610 | .560 | .525 | .475 | .450 |
| | 50 | .710 | .660 | .650 | .585 | .550 | .525 | | |
| | 40 | .715 | .655 | .610 | .570 | .525 | .500 | | |
| | 75 | .755 | .710 | .675 | .645 | .610 | .590 | | |

Table 6. F
For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Large Sample Approximation Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=1.5$

$p^{*} \mathrm{t}$							
k	n	.80	.90	.95	.975	.99	.995
2	1	30	.775	.680	.610	.560	.500
.465							
	40	.805	.715	.655	.605	.545	.515
	50	.820	.740	.680	.635	.580	.550
	75	.850	.785	.730	.690	.640	.615

k	t	n	.80	.90	.95	.975	.99
4	.995						
4	2	30	.640	.575	.525	.485	.440
.410							
	40	.680	.620	.570	.530	.490	.460
	50	.710	.650	.605	.565	.525	.500
	75	.755	.700	.660	.630	.590	.570

p							
k	t	n	.80	.90	.95	.975	.99
3	1	30	.705	.625	.565	.520	.465
	40	.740	.665	.610	.565	.515	.485
	50	.760	.695	.640	.600	.550	.525
	75	.800	.740	.695	.660	.615	.590

k	t	n	.80	.90	.95	.975	.99
.995							
4	3	30	.670	.595	.540	.500	.450
	.420						
	40	.710	.640	.585	.545	.500	.470
	50	.730	.670	.620	.580	.535	.510
	75	.775	.720	.675	.645	.600	.580

k	t	n	.80	.90	.95	.975	.99
3	295						
3	30	.705	.625	.565	.520	.465	.435
	40	.740	.665	.610	.565	.520	.485
	50	.760	.695	.640	.600	.550	.525
	75	.800	.740	.695	.660	.615	.590

k	t	n	.80	.90	.95	.975	.99
5		.995					
5	30	.650	.580	.525	.485	.440	.410
	40	.690	.620	.570	.535	.490	.460
	50	.715	.655	.610	.570	.525	.500
	75	.760	.705	.665	.630	.590	.570

p							
k	n	n	.80	.90	.95	.975	.99
.995							
4	1	30	.670	.595	.540	.500	.450
	40	.710	.640	.585	.545	.500	.470
	50	.735	.670	.620	.580	.535	.510
	75	.775	.720	.680	.645	.600	.580
		75					

k	t	n	.80	.90	.95	.975	.99
5	295						
5	30	.610	.550	.500	.465	.420	.400
	40	.650	.595	.550	.515	.475	.450
	50	.680	.630	.585	.550	.510	.490
	75	.730	.680	.645	.615	.580	.555

Table 6. F
(continued)
For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Large Sample Approximation Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$ and $\alpha=1.5$

k	t	n	.80	.90	.95	.975	.99
.995							
5	3	30	.610	.550	.500	.465	.420
.400							
	40	.650	.595	.550	.515	.470	.450
	50	.680	.630	.585	.550	.510	.490
	75	.730	.680	.645	.615	.575	.555

k	t	n	.80	.90	.95	.975	.99
5	4	30	.650	.580	.525	.485	.440
	40	.690	.620	.570	.535	.490	.460
	50	.715	.650	.610	.570	.525	.500
	75	.760	.710	.665	.630	.590	.570

Appendix G Probability Tables for Estimator $\hat{\alpha}$

 Large SamplesTable 1. G
For Estimator $\hat{\alpha}$ Selecting the \boldsymbol{t}-best : Complete Large Sample Approximation Case Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$

p.							
kt	n	. 80	. 90	. 95	. 975	. 99	. 995
21	30	. 855	. 785	. 735	. 690	. 640	. 610
	40	. 870	. 815	. 770	. 725	. 685	. 655
	50	. 885	. 830	. 790	. 755	. 710	. 690
	75	. 905	. 860	. 825	. 795	. 760	. 740

k	t	n	.80	.90	.95	.975	.99
495							
4	2	30	.760	.710	.660	.630	.590
	.560						
	40	.790	.740	.700	.670	.630	.610
	50	.810	.765	.730	.700	.665	.645
	75	.840	.805	.775	.750	.720	.700

p^{*}							
k t	n	. 80	. 90	. 95	. 975	. 99	. 995
31	30	. 810	. 750	. 700	. 665	. 620	. 585
	40	. 830	. 780	. 740	. 700	. 660	. 630
	50	. 850	. 800	. 760	. 730	. 690	. 665
	75	. 875	. 830	. 800	. 775	. 740	. 720

k	t	n	.80	.90	.95	.975	.99	
4	.995							
4	3	30	.770	.720	.670	.635	.590	
	40	.800	.750	.710	.680	.640	.615	
	50	.820	.775	.740	.710	.670	.650	
	75	.850	.810	.780	.755	.730	.705	

${ }^{\text {• }}$							
k t	n	. 80	. 90	. 95	. 975	. 99	. 995
32	30	. 800	. 740	. 695	. 655	. 610	. 580
	40	. 825	. 770	. 730	. 695	. 660	. 630
	50	. 845	. 795	. 760	. 725	. 690	. 660
	75	. 870	. 830	. 800	. 770	. 740	. 720

p^{*}							
kt	n	.80	.90	.95	.975	.99	.995
5	1	30	.770	.720	.670	.635	.590
	40	.800	.750	.710	.675	.640	.610
	40						
	50	.820	.775	.740	.705	.670	.650
	75	.850	.810	.780	.755	.720	.700

kt	n	.80	.90	.95	.975	.99	.995	
4	1	30	.790	.730	.685	.645	.600	
	40	.810	.760	.720	.690	.645	.620	
	50	.830	.780	.750	.715	.675	.655	
	75	.860	.820	.790	.765	.730	.710	

k	t	n	.80	.90	.95	.975	.99
995							
5	2	30	.740	.690	.650	.615	.570
.545							
	40	.770	.725	.690	.660	.620	.600
	50	.790	.750	.720	.690	.650	.630
	75	.825	.790	.760	.740	.710	.690

Table 1. G
(continued)
For Estimator $\widetilde{\beta}$ Selecting the t-best : Complete Large Sample Approximation Case
Finding the smallest \boldsymbol{n} required for $P(C S \mid R) \geq p^{*}$ given values of $\boldsymbol{k}, \boldsymbol{t}, \delta, p^{*}$

k	t	n	.80	.90	.95	.975	.99	.995
5	3	30	.730	.680	.640	.610	.570	.540
	40	.765	.720	.685	.655	.620	.595	
	50	.790	.750	.710	.685	.650	.630	
	75	.825	.790	.760	.735	.710	.690	

k	t	n	.80	.90	.95	.975	.99
.995							
5	4	30	.755	.700	.660	.625	.580
	40	.785	.740	.700	.665	.630	.605
	50	.805	.760	.725	.695	.665	.640
	75	.840	.800	.770	.750	.720	.700

Appendix H Fortran Programs for Simulations

Comment : Small Sample Simulations using the maximum likelihood estimator for the parameter beta
integer iseed, nout, nz,num,itmax,n,k,ii,iter,tbest
integer d , count
double precision $z(1000)$,drnnor, $\mathrm{t}(1000), \operatorname{tpop}(1000,1000)$
double precision tsum(1000),hsum(1000), errel,xguess, x (2)
double precision tbar(1000),h(1000), fnorm, beta(10,50000)
double precision $\operatorname{mmax}(50000)$, $\operatorname{mmin}(50000)$, delta,prob
double precision zone(1000), alpha
external drnnor, rnset, umach, wrern,zplrc
external dneqnf,fen
parameter(num $=2, \mathrm{nn}=30, \mathrm{kk}=5, \mathrm{~mm}=50000$)
common $h(1000)$, tbar(1000), tpop(1000,1000),ii,n, alpha,zone
open(unit $=15$, file $=$ 'bsalpha25n30.out')
call umach (2 , nout $)$
c write($\left.15,{ }^{*}\right)$ 'This is a new program'
do $\mathrm{k}=2, \mathrm{kk}$
do tbest $=1, \mathrm{k}-1$
do $n=5, n n, 5$
write $\left(15,{ }^{*}\right)^{\prime} \mathrm{k}={ }^{\prime}, \mathrm{k},{ }^{\prime} \mathrm{n}={ }^{\prime}, \mathrm{n}, ~ ' \mathrm{t}=$ ', tbest
$n z=k$ * n

```
iseed=123457
call rnset(iseed)
do iter=1,mm
call drnnor(nz,z)
do j=1,nz
alpha=dble(0.25)
zone(j)=z(j)*alpha
t(j)=(zone(j)**2+zone(j)*sqrt(4.0+zone(j)**2)+2.00)/dble(2.0)
enddo
do j=1,k
do i=1,n
tpop(j,i)=t(i+(j-1)*n)
c write(15,*) 'tpop(',j,',',i,')=', tpop(j,i)
enddo
enddo
do j=1,k
tsum(j)=0.0
hsum(j)=0.0
```

```
    enddo
    do i=1,k
    do j=1,n
    tsum(i)=tsum(i)+tpop(i,j)
    hsum(i)=hsum(i)+dble(1.0)/tpop(i,j)
    enddo
    tbar(i)=tsum(i)/dble(n)
    h(i)=(dble(n)/hsum(i))
    enddo
    do i=1,k
c write( }15,991)\mathrm{ tbar(i),h(i)
enddo
do ii=1,k
xguess = sqrt(tbar(ii)*h(ii))
errel=. }00
itmax=2500
    call dneqnf(fcn,errel,num,itmax,xguess,x,fnorm)
    beta(ii,iter)=x(1)
c write(15,*) x(1), fnorm
```

enddo
c \quad do $\mathrm{i}=1, \mathrm{k}$
c write(15,*)'beta(',i,',',iter,')=', beta(i,iter),
c enddo
c the enddo below is for iteration
enddo
c Find the maximum and minimum
do iter $=1, \mathrm{~mm}$
$\operatorname{mmax}($ iter $)=$ beta(1, iter $)$
do $\mathrm{j}=2$,k-tbest
if (beta(j,iter) .gt. mmax(iter)) then $\operatorname{mmax}($ iter $)=$ beta(j,iter)
endif
enddo
$\operatorname{mmin}($ iter $)=$ beta(k-tbest +1 ,iter $)$
do $\mathrm{i}=\mathrm{k}$-tbest $+1, \mathrm{k}$
if (beta(i,iter) .lt. mmin(iter)) then
$\operatorname{mmin}($ iter $)=$ beta(i,iter)
endif
enddo
c write($15,{ }^{*}$) ' $\max =$ ', $\operatorname{mmax}($ iter $), ' \min =$ ', $\operatorname{mmin}($ iter $)$

enddo

```
do d=30,100,1
count=0
delta=dble(d)/100.0
do iter =1,mm
if(delta*mmax(iter).lt. mmin(iter)) then
count=count+1
endif
enddo
prob=dble(count)/dble(mm)
write(15,995)delta,prob
enddo
```

c The following are for the k, t, and n loops
enddo
enddo
enddo
991
format('tbar=', f8.4, ' hbar=',f8.4)

995 format('delta=', f5.3, ' prob=',f10.8)
end
subroutine fcn(x,f,num)
integer num,j
double precision bk,tpop(1000,1000$)$
double precision x (num),f(num), $\mathrm{h}(1000)$, tbar(1000)
common $h(1000)$, tbar(1000), tpop(1000,1000),ii,n
c common ii,k,h,tbar,tpop,n
$\mathrm{bk}=0.0$
do $\mathrm{j}=1, \mathrm{n}$
bk=bk+dble(1.0)/(x(1)+tpop(ii,j))
enddo
c write(15,*) 'ii=', ii,'h(ii)',h(ii), 'tbar(ii)',tbar(ii)
$\left.\mathrm{f}(1)=\mathrm{x}(1))^{* *} 2-\mathrm{x}(1)\right)^{*}(2 * \mathrm{~h}(\mathrm{ii})+10.00 / \mathrm{bk})+\mathrm{h}(\mathrm{ii}) *(\operatorname{tbar}(\mathrm{ii})+10.00 / \mathrm{bk})$
return
end

Comment : Small Sample Simulations using the estimator betaprime for the parameter beta
integer iseed, nout, nz, num, itmax,n,k,ii,iter,tbest
integer d, count
double precision $\mathrm{z}(1000)$, drnnor,t(1000),tpop(1000,1000$)$
double precision tsum(1000),hsum(1000),errel,xguess,x(2)
double precision btilda(10,50000), bprime $(10,50000)$
double precision tbar(1000),h(1000),fnorm, beta(10,50000)
double precision $\max (50000), \operatorname{mmin}(50000)$,delta, prob
external drnnor, rnset, umach, wrern,zplrc
external dneqnf,fon
parameter(num $=2, \mathrm{nn}=15, \mathrm{kk}=5, \mathrm{~mm}=10$)
common h(1000),tbar(1000)
common $\operatorname{tpop}(1000,1000)$,ii,n,btilda(10,50000),bprime(10,50000)
open(unit=15, file='bs2betas.out')
call umach(2, nout)
c
write $\left(15,{ }^{*}\right)$ 'This is a new program'
do $\mathrm{k}=2, \mathrm{kk}$
do tbest $=1, \mathrm{k}-1$
do $n=5, n n, 5$
write($\left.15,{ }^{*}\right)^{\prime} \mathrm{k}={ }^{\prime}, \mathrm{k},{ }^{\prime} \mathrm{n}=1, \mathrm{n}, \mathrm{t}=\mathrm{l}=$,tbest

```
nz=k*n
iseed=123457
call rnset(iseed)
do iter=1,mm
call drnnor(nz,z)
do j=1,nz
t(j)=(z(j)**2+z(j)*sqrt(4.0+z(j)**2)+2.00)/dble(2.0)
enddo
do j=1,k
do i=1,n
tpop(j,i)=t(i+(j-1)*n)
c write(15,*) 'tpop(',j,',',i,')=', tpop(j,i)
enddo
enddo
do j=1,k
tsum(j)=0.0
hsum(j)=0.0
enddo
```

```
    do i=1,k
    do j=1,n
    tsum(i)=tsum(i)+sqrt(tpop(i,j))
    hsum(i)=hsum(i)+dble(1.0)/sqrt(tpop(i,j))
    enddo
    tbar(i)=tsum(i)/dble(n)
    h(i)=(dble(n)/hsum(i))
    bprime(i,iter)=tbar(i)*h(i)
    enddo
    c do i=1,k
    c write(15,991) tbar(i),h(i)
    c enddo
    do ii=1,k
xguess = sqrt(tbar(ii)*h(ii))
btilda(ii,iter)= sqrt(tbar(ii)*h(ii))
errel=. 001
itmax=2500
call dneqnf(fcn,errel,num,itmax,xguess,x,fnorm)
beta(ii,iter)=x(1)
```

enddo

C
enddo
do $i=1, k$
enddo
enddo
write $(15, *) x(1)$, fnorm
write($15, *)^{\prime}$ 'beta(',, ',',',iter,') $=$ ', beta(i,iter),
write($\left.15,{ }^{*}\right)^{\prime}$ 'btilda(',i,',',iter,')=',btilda(i,iter),
write($\left.15,{ }^{*}\right)^{\prime}$ 'bprime(', i^{\prime}, ', iter, ') $)=$ ', bprime(i, iter),
the enddo below is for iteration

Find the maximum and minimum
do iter $=1, \mathrm{~mm}$
$\operatorname{mmax}($ iter $)=\mathrm{beta}(1$, iter $)$
do $\mathrm{j}=2, \mathrm{k}$-tbest
if (beta(j,iter) .gt. mmax(iter)) then $\operatorname{mmax}($ iter $)=\mathrm{beta}(\mathrm{j}$, iter $)$
endif
enddo
$\operatorname{mmin}($ iter $)=$ beta $(\mathrm{k}-\mathrm{tbest}+1$, iter $)$
do $\mathrm{i}=\mathrm{k}$-tbest $+1, \mathrm{k}$
if (beta(i,iter) .lt. mmin(iter)) then
$\operatorname{mmin}($ iter $)=$ beta(i,iter $)$
endif
enddo
c write $\left(15,{ }^{*}\right)$ ' $\max =$ ', $\operatorname{mmax}($ iter $), ' m i n=', \operatorname{mmin}($ iter $)$
enddo
do $\mathrm{d}=35,80,2$
count $=0$
delta=dble(d)/100.0
do iter $=1, \mathrm{~mm}$
if(delta*mmax(iter).lt. mmin(iter)) then
count=count +1
endif
enddo
prob=dble(count)/dble(mm)
write $(15,995)$ delta,prob
enddo

The following are for the k, t, and n loops
enddo

```
    enddo
    enddo
    format('delta=', f5.3, ' prob=',f10.8)
end
    subroutine fcn(x,f,num)
    integer num,j
    double precision bk,tpop(1000,1000)
    double precision x(num),f(num),h(1000),tbar(1000)
    common h(1000),tbar(1000), tpop(1000,1000),ii,n
c common k,h,tbar,tpop,ii,n
    bk=0.0
    do j=1,n
    bk=bk+dble(1.0)/(x(1)+tpop(ii,j))
    enddo
c write(15,*) 'ii=',ii,'h(ii)',h(ii), 'tbar(ii)',tbar(ii)
f(1)=x(1)**2-x(1)*(2*h(ii)+10.00/bk)+h(ii)*(tbar(ii)+10.00/bk)
return
end
```

Comment : Small Sample Simulations using the estimator betatilda for the parameter beta
integer iseed, nout, nz, num,itmax,n,k,ii,iter,tbest
integer d, count
double precision $\mathrm{z}(1000)$, drnnor, $\mathrm{t}(1000)$, tpop $(1000,1000)$
double precision tsum(1000), hsum(1000),errel,xguess, x (2)
double precision $\operatorname{tbar}(1000), \mathrm{h}(1000)$,fnorm,beta(10,50000)
double precision $\max (50000)$, mmin(50000), delta, prob
double precision zone(1000), alpha
external drnnor, rnset, umach, wrern,zplrc
external dneqnf,fcn
parameter(num $=2, \mathrm{nn}=30, \mathrm{kk}=5, \mathrm{~mm}=50000$)
common $h(1000), \operatorname{tbar}(1000), \operatorname{tpop}(1000,1000), i i, n$
open(unit=15, file='bs50smalltilda.out')
call umach(2 , nout)
c write $\left(15,{ }^{*}\right)$ 'This is a new program'
do $\mathrm{k}=2, \mathrm{kk}$
do tbest $=1, \mathrm{k}-1$
do $n=5, n n, 5$
write($\left.15,{ }^{*}\right)^{\prime} \mathrm{k}={ }^{\prime}, \mathrm{k},{ }^{\prime} \mathrm{n}=\mathrm{\prime}, \mathrm{n}, ~ ' \mathrm{t}=$ ', tbest

```
nz=k*n
iseed=123457
call rnset(iseed)
do iter=1,mm
call drnnor(nz,z)
do j=1,nz
    alpha=dble(0.5)
zone(j)=z(j)*alpha
t(j)=(zone(j)**2+zone(j)*sqrt(4.0+zone(j)**2)+2.00)/dble(2.0)
enddo
do j=1,k
do i=1,n
tpop(j,i)=t(i+(j-1)*n)
c write(15,*) 'tpop(',j,',',i,')=', tpop(j,i)
enddo
enddo
do j=1,k
```

```
        tsum(j)=0.0
        hsum(j)=0.0
        enddo
        do i=1,k
        do j=1,n
        tsum(i)=tsum(i)+tpop(i,j)
        hsum(i)=hsum(i)+dble(1.0)/tpop(i,j)
        enddo
        tbar(i)=tsum(i)/dble(n)
        h(i)=(dble(n)/hsum(i))
        beta(i,iter)=sqrt(tbar(i)*h(i))
        enddo
c do i=1,k
    c write(15,991) tbar(i),h(i)
    c enddo
    c do ii = 1,k
    c xguess = sqrt(tbar(ii)*h(ii))
    c errel=.01
    c itmax=2500
```

c call dneqnf(fon,errel, num,itmax, x guess, x ,fnorm)
c \quad beta(ii,iter $)=x(1)$
c write $\left(15,{ }^{*}\right) x(1)$, fnorm
c enddo
c \quad do $\mathrm{i}=1, \mathrm{k}$
c write($15,{ }^{*}{ }^{\prime}$ 'beta(',i,',',iter,')=', beta(i,iter),
c enddo
c the enddo below is for iteration
enddo
c Find the maximum and minimum

```
do iter=1,mm
mmax(iter)=beta(1,iter)
do j=2,k-tbest
if (beta(j,iter) .gt. mmax(iter)) then
    mmax(iter)=beta(j,iter)
endif
enddo
mmin(iter)=beta(k-tbest+1,iter)
do i=k-tbest+1,k
if (beta(i,iter) .lt. mmin(iter)) then
mmin(iter)=beta(i,iter)
```

```
    endif
    enddo
c write(15,*) 'max=', mmax(iter),'min=',mmin(iter)
    enddo
    do d=30,50,1
    count=0
    delta=dble(d)/100.0
    do iter =1,mm
    if(delta*mmax(iter).lt. mmin(iter)) then
    count=count+1
    endif
    enddo
    prob=dble(count)/dble(mm)
    write(15,995)delta,prob
    enddo
c The following are for the k,t, and n loops
    enddo
    enddo
    enddo
991 format('tbar=', f8.4, ' hbar=',f8.4)
995 format('delta=', f5.3, ' prob=',f10.8)
    end
```

Comment : Small Sample Simulations for the parameter alpha using betatilda in the mle expression
integer iseed, nout, nz,num,itmax,n,k,ii,iter,tbest
integer d, count
double precision $\mathrm{z}(1000)$, drnnor, $\mathrm{t}(1000)$,tpop $(1000,1000)$
double precision tsum(1000), hsum(1000), errel, xguess, x (2)
double precision $\operatorname{tbar}(1000), \mathrm{h}(1000)$,fnorm, $\mathrm{alp}(10,50000)$
double precision beta(10,50000), one $(10,50000)$,two(10,50000)
double precision $\max (50000), \operatorname{mmin}(50000)$, delta, prob
external drnnor, rnset, umach, wrern,zplrc
external dneqnf,fen
parameter(num $=2, \mathrm{nn}=30, \mathrm{kk}=5, \mathrm{~mm}=50000$)
common $h(1000), \operatorname{tbar}(1000)$, tpop(1000,1000),ii,n
open(unit=15, file='bsamle.out')
call umach(2 , nout)
c
write $\left(15,{ }^{*}\right)$ 'This is a new program'
do $\mathrm{k}=2, \mathrm{kk}$
do tbest $=1, \mathrm{k}-1$
do $n=5, n n, 5$

```
write(15,*)'k=',k,' n=',n, 't=',tbest
nz=k*n
iseed=123457
call rnset(iseed)
do iter=1,mm
call drnnor(nz,z)
do j=1,nz
t(j)=(z(j)**2+z(j)*sqrt(4.0+z(j)**2)+2.00)/dble(2.0)
enddo
do j=1,k
do i=1,n
tpop(j,i)=t(i+(j-1)*n)
c write(15,*) 'tpop(',j,',',i,')=', tpop(j,i)
enddo
enddo
do j=1,k
tsum(j)=0.0
hsum(j)=0.0
```

```
    enddo
    do i=1,k
    do j=1,n
    tsum(i)=tsum(i)+tpop(i,j)
    hsum(i)=hsum(i)+dble(1.0)/tpop(i,j)
    enddo
    tbar(i)=tsum(i)/dble(n)
    h(i)=(dble(n)/hsum(i))
    c alp(i,iter)=sqrt(dble(2.0)*sqrt(tbar(i)/h(i))-dble(2.0))
    enddo
    c do i=1,k
    c write(15,991) tbar(i),h(i)
    c enddo
do ii=1,k
xguess = sqrt(tbar(ii)*h(ii))
errel=. 01
itmax=2500
call dneqnf(fcn,errel,num,itmax,xguess,x,fnorm)
beta(ii,iter)=x(1)
```

one(ii,iter)=tbar(ii)/beta(ii,iter)two(ii,iter)=beta(ii,iter)/h(ii)alp(ii,iter)=sqrt(one(ii,iter)+two(ii,iter)-dble(2.0))
write($15,{ }^{*}$) $x(1)$, fnorm
enddo
c \quad do $i=1, k$
c write(15,*)'beta(',i,',',iter,')=', beta(i,iter),
c enddo
c the enddo below is for iteration
enddo
c Find the maximum and minimum
do iter $=1, \mathrm{~mm}$
$\operatorname{mmax}($ iter $)=\operatorname{alp}(1$, iter $)$
do $\mathrm{j}=2$, k -tbest
if (alp(j,iter) .gt. mmax(iter)) then $\operatorname{mmax}($ iter $)=a l p(j$, iter $)$

endif

enddo

$\operatorname{mmin}($ iter $)=$ alp(k-tbest +1 ,iter)

do $\mathrm{i}=\mathrm{k}$-tbest $+1, \mathrm{k}$
if (alp(i,iter) .lt. mmin(iter)) then
$\operatorname{mmin}($ iter $)=a l p(\mathrm{i}$, iter $)$
endif
enddo
c write($15,{ }^{*}$) 'max=', mmax(iter),'min=', mmin(iter)
enddo
do $\mathrm{d}=20,100,1$
count=0
delta=dble(d)/100.0
do iter $=1, \mathrm{~mm}$
if(delta*mmax(iter).lt. mmin(iter)) then
count=count +1
endif
enddo
prob=dble(count)/dble(mm)
write $(15,995)$ delta, prob
enddo

```
    subroutine fcn(x,f,num)
    integer num,j
    double precision bk,tpop(1000,1000)
    double precision x(num),f(num),h(1000),tbar(1000)
    common h(1000),tbar(1000), tpop(1000,1000),ii,n
c
c
c
common k,h,tbar,tpop
bk=0.0
do j=1,n
bk=bk+dble(1.0)/(x(1)+tpop(ii,j))
enddo
write(15,*) 'ii=',ii,'h(ii)',h(ii), 'tbar(ii)',tbar(ii)
f(1)=x(1)**2-x(1)*(2*h(ii)+10.00/bk)+h(ii)*(tbar(ii)+10.00/bk)
return
end
```

 The following are for the \(\mathrm{k}, \mathrm{t}\), and n loops
 enddo
 enddo
 enddo
 format('tbar=', f8.4, ' hbar=', f8.4)
 format('delta=', f5.3, ' prob=',f10.8)
 end
 Comment : Large Sample Normal Approximations for the parameter beta
integer nout
integer num,k,tbest,n,d,kmt,t
double precision delta,alpha
double precision A,B,ERRABS,ERRREL,RESULT,ERREST
double precision pstar,F,H,P,alp,low,high
parameter(alpha=1.0,low=-5.0,high=5.0)
common k,tbest,n,d,kmt,t,delta,alp

Intrinsic DABS,DEXP,SQRT
External umach,dqdags,F,H,P,dnordf
parameter (num $=2, \mathrm{nn}=75, \mathrm{kk}=5$)
call umach (2 , nout)
open(unit=15,file='bnoapp.out')
do $\mathrm{k}=2, \mathrm{kk}$
do tbest=1,k-1
do $\mathrm{n}=75, \mathrm{nn}, 5$
do $\mathrm{d}=30,90,1$
kmt=k-tbest
t=tbest
delta=dble(d)/100.0
alp=alpha
write $(15,990) \mathrm{k}, \mathrm{t}, \mathrm{n}, \mathrm{alp}$
A=low
$\mathrm{B}=$ high
ERRABS=0.0
ERRREL=0.001
call dqdags (F,A,B,ERRABS,ERRREL,RESULT,ERREST)
pstar=(k-t)*RESULT
write(15,995) delta,pstar,error
enddo
enddo
enddo
enddo

990 format('k= ',i2,' t= ',i2,' n= ',i3,' alpha= ',f9.3)
format(' delta=', f9.3, ' prob=',f20.8, ' error=', f10.8)
end

* Find the integral desired
double precision Function $\mathrm{F}(\mathrm{x})$
integer $\mathrm{k}, \mathrm{tbest}, \mathrm{kmt}, \mathrm{t}$
double precision delta
double precision $\mathrm{x}, \mathrm{DEXP}$,dnordf,H,P
common k,tbest,n,d,kmt,t,delta,alp
Intrinsic DEXP,DSQRT
External dnordf,H,P

```
xd=dble(x)*delta
F=(H(x-1))**(kmt-1)*(1-H((x-1)*delta+delta-1))**t*P(x)
return
end
double precision Function H(x)
double precision x
double precision dnordf
common k,tbest,n,d,kmt,t,delta,alp
Intrinsic DSQRT
External dnordf
H=dnordf(7.5452*x)
return
end
double precision Function P(x)
double precision DEXP,x,pi
common k,tbest,n,d,kmt,t,delta,alp
Intrinsic DSQRT,DEXP
pi=const("PI")
P}=3.010099*DEXP(-28.465*(x-1)**2)
return
end
```

Comment : Large Sample Birnbaum-Saunders Approximations for the parameter beta

```
integer nout,IRULE
integer num,k,tbest,n,d,kmt,t
double precision delta,alpha
double precision A,B,ERRABS,ERRREL,RESULT,ERREST
double precision DABS,DEXP,F,G,P,R
double precision dnordf,alp,low,hi
parameter(alp=0.25,low=0.00000000001,hi=500.00)
common k,tbest,n,d,kmt,t,delta,alpha,const
```

Intrinsic DABS,DEXP,DSQRT
External umach,dqdag,F,G,P,R,dnordf
parameter(num $=2, \mathrm{nn}=75, \mathrm{kk}=5$)
call umach(2, nout $)$
open (unit=15,file='appb4.out')
do $\mathrm{k}=2, \mathrm{kk}$
do tbest $=1, \mathrm{k}-1$

```
do n=75,nn,5
do d=40,100,1
kmt=(k-tbest)
t=tbest
delta=dble(d)/100.00
alpha=alp
write(15,990) k,tbest,n
A=low
B=hi
ERRABS=0.0
ERRREL=0.001
```


IRULE=6

```
call dqdag(F,A,B,ERRABS,ERRREL,IRULE,RESULT,ERREST) pstar=kmt*RESULT
```

write $(15,995)$ delta,pstar,ERREST
enddo
enddo
enddo
enddo

990 format(' $\mathrm{k}=$ ', i 2, ' $\mathrm{t}=$ ', i 2, ' $\mathrm{n}=$ ', i 3)
995 format('delta=',f9.3,'prob=',f25.8,'error=','f9.8)
end
double precision Function $\mathrm{F}(\mathrm{x})$
integer $\mathrm{k}, \mathrm{tbest}, \mathrm{kmt}, \mathrm{t}$
double precision x ,delta,xd
double precision DEXP, dnordf,G,P
common k,tbest,n,d,kmt,t,delta
Intrinsic DEXP,DSQRT
External dnordf,G,P,R
$x d=x$ *delta
$\mathrm{F}=(\mathrm{G}(\mathrm{x}))^{* *}(\mathrm{kmt}-1)^{*}\left(1-\mathrm{G}\left(\mathrm{x}^{*} \text { delta }\right)\right)^{* *} \mathrm{t} * \mathrm{P}(\mathrm{x})^{*} \mathrm{R}(\mathrm{x})$
return
double precision Function $G(x)$
double precision x
double precision dnordf
common k,tbest,n,d,kmt,t,delta
external dnordf,DSQRT
$\mathrm{G}=\operatorname{dnordf}\left(9.819805^{*}\left(\mathrm{x}^{* *}(0.5)-\mathrm{x}^{* *}(-0.5)\right)\right)$
return
end
double precision Function $\mathrm{P}(\mathrm{x})$
double precision DEXP, x, pi
common k,tbest,n,d,kmt,t,delta
intrinsic dexp,sqrt
pi=const("PI")
$\mathrm{P}=1.958768^{*}\left(\mathrm{x}^{* *}(-0.5)+\mathrm{x}^{* *}(-1.5)\right)$
return
end
double precision Function R(x)
double precision DEXP, x, pi
common k,tbest,n,d,kmt,t,delta
intrinsic dexp,sqrt
pi=const("PI")
$\mathrm{R}=\operatorname{DEXP}\left(-48.21429^{*}\left(\mathrm{x}+\mathrm{x}^{* *}(-1.0)-2.0\right)\right)$
return
end

Comment : Large Sample Normal Approximations for the parameter alpha

```
integer nout
integer num,k,tbest,n,d,kmt,t
```

double precision deltadouble precision A,B,ERRABS,ERRREL,RESULT,ERREST
double precision DABS,DEXP,F,H,P
double precision error,dnordf,low,hi
parameter(low=-100.00, $\mathrm{hi}=100.00$)
common k,tbest,n,d,kmt,t,delta
Intrinsic DABS,DEXP,SQRT
External umach,dqdags,F,H,P,dnordf
parameter(num $=2, \mathrm{nn}=75, \mathrm{kk}=5$)
call umach(2,nout)
open (unit=15,file='alpapprox1.out')
do $\mathrm{k}=2, \mathrm{kk}$
do tbest $=1, \mathrm{k}-1$

```
do n=30,nn,5
do d=40,100,1
kmt=(k-tbest)
t=tbest
delta=dble(d)/100.00
write(15,990) k,tbest,n
A=low
B=hi
ERRABS=0.0
ERRREL=0.001
call dqdags(F,A,B,ERRABS,ERRREL,RESULT,ERREST)
pstar=kmt*RESULT
write \((15,995)\) delta,pstar,error
enddo
enddo
enddo
enddo
```

```
990 format(' k= ',i2,' t= ',i2,' n= ',i3)
995 format('delta=',f9.3,'prob=',f25.8,'error=','f9.8)
end
double precision Function F(x)
integer k,tbest,kmt,t
double precision x,delta,xd
double precision DEXP,dnordf,H,P
common k,tbest,n,d,kmt,t,delta
Intrinsic DEXP,DSQRT
External dnordf,H,P
xd=x*delta
F=(H(x-1))**(kmt-1)*(1-H(delta*(x-1)+delta-1))**t*P(x)
return
end
```

double precision Function $\mathrm{H}(\mathrm{x})$
double precision x
double precision dnordf
common k,tbest,n,d,kmt,t,delta
external dnordf,SQRT
$\mathrm{H}=\operatorname{dnordf}\left((\mathrm{x})^{*} \operatorname{SQRT}\left(2.0^{*} \mathrm{n}\right)\right)$
return
end
double precision Function $\mathrm{P}(\mathrm{x})$
double precision DEXP, x,pi
common k,tbest,n,d,kmt,t,delta
intrinsic dexp,sqrt
pi=const("PI")
$\mathrm{P}=(\mathrm{sqrt}(\mathrm{n} / \mathrm{pi}))^{*} \operatorname{DEXP}\left(-1.0 * n^{*}(\mathrm{x}-1)^{* *} 2\right)$
return
end

VITA
 Desiree' Ann Butler - McCullough
 Candidate for the Degree of
 Doctor of Philosophy
 Thesis: SELECTING t-BEST OF SEVERAL BIRNBAUM - SAUNDERS POPULATIONS BASED ON THE PARAMETERS

Major Field: Statistics

Biographical:

Personal Data: Born in San Jose, California, on September 8, 1970, the daughter of George and JoAnn Butler and the sister of George Lee Butler Junior. Married in Reno, Nevada, on December 29, 1995, to Jeffrey Scott McCullough.

Education: Graduated from Durant High School, Durant, Oklahoma in May 1988, Valedictorian. Received Bachelor of Science degree in Mathematics Education from Southeastern Oklahoma State University, Durant, Oklahoma in July 1991, Cum Laude. Received Master of Science degree in Mathematics from Oklahoma State University, Stillwater, Oklahoma in December 1998. Completed the requirements for the Doctor of Philosophy degree with a major in Statistics at Oklahoma State University in May 2001.

Professional Experience: Graduate Teaching Assistant, Oklahoma State University, Fall 1993 to Spring 1998; Graduate Teaching Associate, Oklahoma State University, Summer 1998 to Present.

Professional Memberships: Sigma Xi, American Statistical Association, Mathematics Association of America, American Mathematical Society, American Association of Women in Mathematics, National Council of Teachers of Mathematics, National Education Association, Kappa Delta Pi Honor Society, Cardinal Key National Honor Sorority / Society

