SELECTING t – BEST OF SEVERAL BIRNBAUM – SAUNDERS POPULATIONS BASED

ON THE PARAMETERS

By

DESIREE' A. BUTLER - MCCULLOUGH

Master of Science Oklahoma State University Stillwater, Oklahoma 1998

Bachelor of Science Southeastern Oklahoma State University Durant, Oklahoma 1991

> Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 2001

SELECTING t – BEST OF SEVERAL BIRNBAUM – SAUNDERS POPULATIONS BASED

ON THE PARAMETERS

Thesis Advisor

of the Graduate College

Thesis Approved:

ACKNOWLEDGEMENTS

I would like to first thank my advisor, Dr. Jeanne S. Hill, for giving me the opportunity to learn and work with her, and for her supervision, guidance, and patience. I would also like to thank the members of my graduate committee, Dr. Mark Payton, Dr. Melinda McCann, Dr. P. Larry Claypool, and Dr. Douglas B. Aichele, for donating their time to serve on my committee. A special thanks goes to Dr. Payton for agreeing to serve as my committee chair, all of the proof reading and advice that he has given me. I would also like to thank Dr. McCann for all of her help whenever I needed it. I would especially like to thank Dr. Claypool for agreeing to join the committee on short notice to fill the vacancy and for all of his advice and help along my graduate career.

I would like to thank the OSU Department of Statistics, including faculty, staff, and fellow graduate students, past and present, for all of their encouragement, help, thoughts, prayers, and support while I have been affiliated with the department.

I would like to thank my parents, my life long best friends, George and JoAnn

Butler Sr., and my brother, George Butler Jr., for all of their love, support,

encouragement, and understanding not only while seeking my degree but my entire life.

They have sacrificed much of their lives and happiness where I could follow my dream of achieving this degree. I will never be able to begin to repay them for all they have done for me. I would also like to thank my best friend, my husband, Jeffrey S. McCullough, for

his love, support, encouragement, desire for me to finish this degree, patience and understanding and his parents, Bill and Helen McCullough, for their encouragement.

Lastly, I would like to thank my Lord and Savior, Jesus Christ, for all of the strength and power that he has provided me to make it to this point in my life and in the future. Also, for all of the times that I was weak and doubted myself, he was there to pick me up and carry me until I was strong enough to go on again.

TABLE OF CONTENTS

Cł	napter	Page
1.	INTRODUCTION AND LITERATURE REVIEW	1
	1.1 Introduction	1
	1.2 Ranking and Selection	3
	1.3 Birnbaum – Saunders Distribution	3
2.	RANKING AND SELECTION ACCORDING TO THE PARAMETER eta	5
	2.1 Birnbaum – Saunders Background	5
	2.2 Research Problem	
	2.3 Basic Results	11
	2.4 Probability of Correct Selection and its Minimum	14
	2.5 Properties of the Probability of Correct Selection	17
	2.6 Simulations.	
3.	ASYMPTOTIC RESULTS OF THE ESTIMATORS FOR THE PARAMETER $\hat{\beta}$	
	3.2 Probability of Correct Selection for Normal Approximation of $\hat{\beta}$	
	3.3 Large Sample Approximations	
	3.4 Results for the Estimator $\widetilde{\beta}$	
	3.5 Probability of Correct Selection for Birnbaum - Saunders Approximation of	
	3.6 Large Sample Approximations	
	3.7 Comparisons of the Simulations and Approximations	27
4.	RANKING AND SELECTION ACCORDING TO THE PARAMETER α	28
	4.1 Theory for "Best" Parameter α	28
	4.2 Theory for Selection of α	
	4.3 Simulations.	
5.	ASYMPTOTIC RESULTS OF THE ESTIMATOR FOR THE PARAMETER α	33
	5.1 Results for the Estimator $\hat{\alpha}$	33
	5.2 Probability of Correct Selection for Normal Approximation of $\hat{\alpha}$	

5.3 Large Sample Approximations	36
5.4 Comparisons of the Simulations and Approximations	36
6. CONCLUSIONS AND FUTURE WORK	37
6.1 Conclusions	37
6.2 Future Work	
BIBLIOGRAPHY	39
APPENDICES	43
A. Probability Tables for Estimator $\hat{\beta}$	44
B. Probability Tables for Estimator β'	55
C. Probability Tables for Estimator $\widetilde{m{eta}}$	58
D. Probability Tables for Estimator $\widetilde{\alpha}$	77
E. Probability Tables for Estimator $\hat{\beta}$ Large Samples	80
F. Probability Tables for Estimator $\widetilde{\beta}$ Large Samples	93
G. Probability Tables for Estimator $\hat{\alpha}$ Large Samples	106
H. Fortran Programs for Simulations	109

LIST OF FIGURES

Figure		Page
2.1.1	Birnbaum – Saunders Cumulative Distribution Functions	7
2.1.2	Birnbaum – Saunders Probability Distribution Functions	8
2.1.3	Birnbaum – Saunders Probability Distribution Functions	9
2.1.4	Birnbaum – Saunders Probability Distribution Functions	10

Chapter 1

Introduction and Literature Review

Section 1.1 Introduction

People everywhere everyday are faced with making choices or decisions at work and in their daily lives. Ranking and selection procedures can be used to make educated decisions. Ranking and selection procedures are used instead of traditional hypothesis testing on the population parameter of interest because traditional hypothesis testing only detects if there are differences between the populations and does not actually select the best populations as defined by some criterion. Applications of this theory in different disciplines are shown through the following examples:

- The owner of an automotive store is interested in carrying only two or three brands of automotive oil from the different possible brands. He will want to ensure that he selects the two best selling brands of oil.
- A store may also be interested in carrying the two best brands of spark plugs or serpentine belts based on which work the longest or most times until failure.
- A pharmaceutical company is interested in keeping only the three or four best pain relievers that they manufacture. They are interested in comparing the speed and / or length their pain relievers perform.

 A medical researcher may be testing the current treatments for a certain disease to determine the one, two or possibly three best treatments available on the market.

In some of the scenarios, the order of the *t*-best choices does not matter such as the automotive parts or the pain relievers. In the last scenario, order would in fact be important. You would be most interested in picking the one - best or possibly the two – best treatment(s), if you or someone you knew was in need of the treatment. We can consider the different choices in each of the scenarios as populations; i.e. there are *k* different populations and we want to select the *t*-best.

In the last two scenarios, the lifetimes of the pain relievers and the survival times of the patients may follow the probability distribution that was developed in 1969 by Birnbaum and Saunders. The Birnbaum-Saunders distribution has many applications in survival analysis, reliability and life-testing. Therefore, engineering and medical fields are a few places where this distribution is of most interest. Desmond (1986) showed that the Birnbaum-Saunders distribution can be written as a mixture of the Inverse Gaussian distribution and its reciprocal with mixing probability equal to $\frac{1}{2}$. See Chhikara and Folks (1989) for more about the Inverse Gaussian distribution.

There have been many articles published separately on ranking and selection procedures and the Birnbaum-Saunders distribution; but there is currently no literature available on ranking and selection procedures for the Birnbaum-Saunders distribution.

Section 1.2 Ranking and Selection

Bechhofer (1954) developed a procedure for selecting the t-best normal populations out of k independent normal populations with unknown variances. The method that he used is referred to as the indifference zone formulation. This procedure is the one that will be used in this dissertation. Other references on ranking and selection include Gibbons et al. (1977), Gupta and Panchapakesan (1979), and Bechhofer et al. (1995).

Section 1.3 Birnbaum - Saunders Distribution

Birnbaum and Saunders (1969 a, b) introduced a new fatigue life distribution. For complete samples, they derived properties and considered estimation of the parameters. Engelhardt et al. (1981) considered confidence intervals and tests of hypotheses and gave large sample approximations for the distributions of the maximum likelihood estimators. They also mentioned that the scale parameter β , which is the median of the distribution, corresponds to a typical number of cycles until failure occurs. Padgett (1986) considered Bayes estimation on reliability of the Birnbaum-Saunders distribution. Desmond (1986) looked at the relationship between the Inverse-Gaussian and the Birnbaum-Saunders distributions and introduced another derivation of the distribution. Chang and Tang (1993) discussed reliability bounds and critical time for the Birnbaum-Saunders distribution. Chang and Tang (1994 a,b) developed percentile bounds, tolerance limits and discussed a graphical analysis for the Birnbaum-Saunders distribution. Desmond

(1995) also developed shortest prediction intervals for the Birnbaum-Saunders distribution. Dupuis and Mills (1998) looked at the robust estimation for the Birnbaum-Saunders distribution. McCarter (1999) considered estimation and prediction for the Birnbaum-Saunders distribution using Type II-censored samples.

Chapter 2

Ranking and Selection According to the Parameter β

Section 2.1 Birnbaum-Saunders Background

Birnbaum and Saunders (1969) developed a two-parameter fatigue life distribution to model failures due to fatigue-crack growth. This distribution was derived from considerations of the physical behavior of the material that was subjected to a cyclically repeated stress pattern. The resulting distribution models the number of cycles needed to force the length of the fatigue crack to grow past a critical length.

The cumulative distribution function (CDF) of the Birnbaum-Saunders distribution is given by:

$$F(t;\alpha,\beta) = \Phi\left[\left(\frac{1}{\alpha}\right)\xi\left(\frac{t}{\beta}\right)\right]$$
 (2.1.1)

where t>0, $\beta>0$, and $\alpha>0$. Also, $\xi(t)=t^{\frac{1}{2}}-t^{-\frac{1}{2}}$ and $\Phi(z)$ is the standard normal CDF. Figure 2.1.1 shows the cumulative distribution functions for $\beta=50,100,200,500$ with $\alpha=1$. As β increases it takes longer for the cumulative distribution function to reach 1. Therefore, as β increases the probability that failure would occur at or before time, t, decreases. The probability density function (pdf) has the form:

$$f(t) = \frac{1}{\alpha \beta} \xi' \left(\frac{t}{\beta} \right) \phi \left[\alpha^{-1} \xi \left(\frac{t}{\beta} \right) \right]$$
 (2.1.2)

where t>0, $\beta>0$, $\alpha>0$, $\xi'(t)=\frac{\partial \xi(t)}{\partial t}$, and ϕ is the pdf of the standard normal distribution. The parameter α is a shape parameter. The scale parameter β corresponds, roughly, to a typical number of cycles to failure. β is the median of the distribution which also implies that β is a location parameter. The expected value and variance of T are given by $E(T)=\beta(1+\frac{1}{2}\alpha^2)$ and $var(T)=(\alpha\beta)^2\Big(1+\frac{5}{4}\alpha^2\Big)$, respectively.

Figure 2.1.2 shows the probability density functions for $\beta=50,100,150,200,250$ with $\alpha=1$. For a fixed value of α , as β increases the distribution function becomes flatter. The peak of the probability density function moves to the right (i.e. a larger value of t). Figure 2.1.2 supports the same conclusion as Figure 2.1.1, as β increases the probability that failure would occur at or before time, t, decreases. Figure 2.1.3 shows the probability density functions for $\alpha=0.1,0.25,0.50,0.75,1.00,1.25$ with $\beta=100$. As alpha increases the peak of the probability density function moves closer towards 0. Most of the probability is associated with t values closer and closer to 0 as α increases. Figure 2.1.4 shows the probability density functions where α and β are both changing.

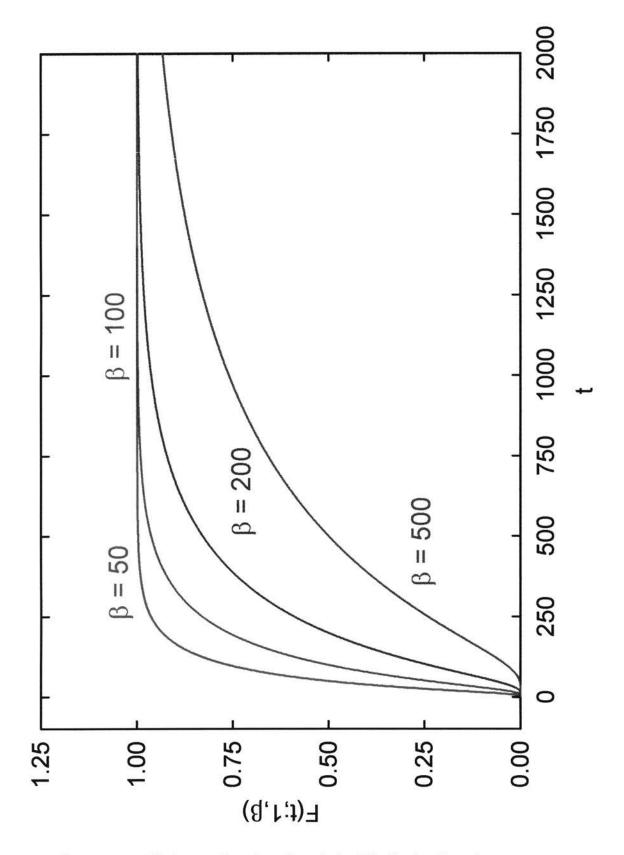


Figure 2.1.1. Birnbaum - Saunders Cumulative Distribution Functions

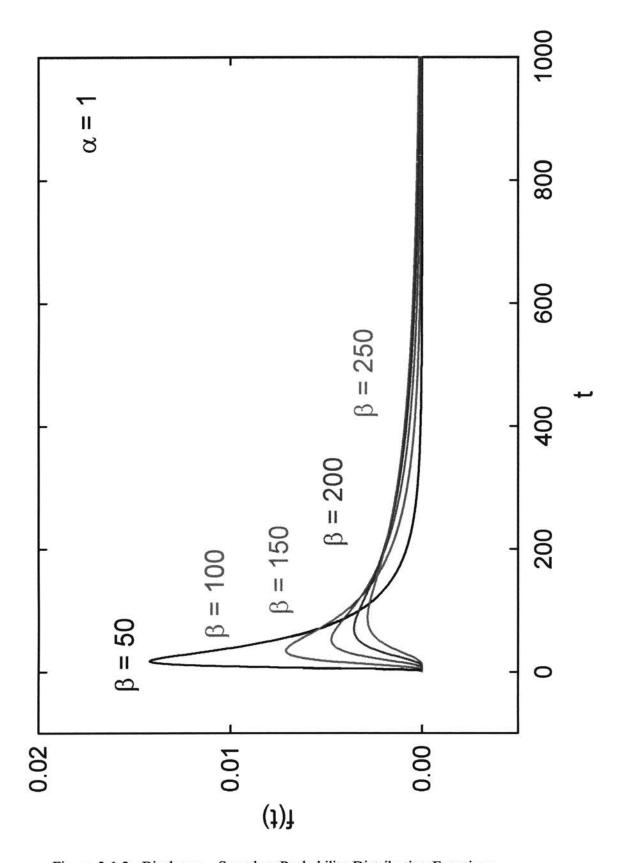


Figure 2.1.2. Birnbaum - Saunders Probability Distribution Functions

Figure 2.1.3. Birnbaum - Saunders Probability Distribution Function

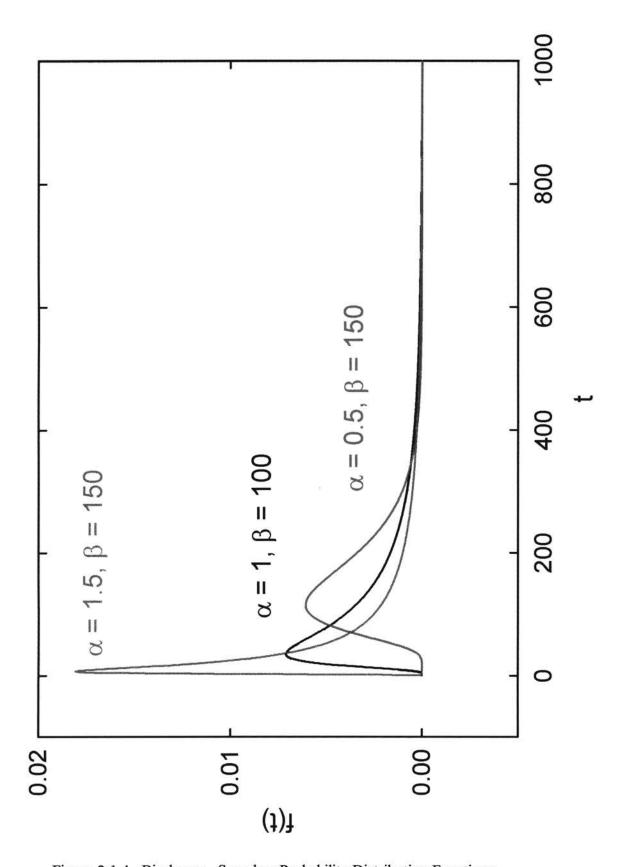


Figure 2.1.4. Birnbaum - Saunders Probability Distribution Functions

Section 2.2 Research Problem

Given k ($k \ge 2$) independent Birnbaum-Saunders Distributions, (BSD), $\pi_1, \pi_2, ..., \pi_k$. Let $\pi_{(i)}$ denote the population having the ith scale parameter $\beta_{[i]}$, where $\beta_{[i]} \le \beta_{[2]} \le \cdots \le \beta_{[k]}$. The population $\pi_{(i)}$ is defined to be better than $\pi_{(j)}$ if i > j. The goal is to select the t-best populations with the t largest β parameters, $1 \le t < k$. Since β is approximately the number of cycles until the fatigue growth crack grows past a critical length then it makes sense to consider the largest β 's. In Chapter 4, ranking the shape parameter, α is considered. The goal is to select a group of the t-best ($1 \le t < k$) populations in an unordered manner when α is assumed known. The choice of any t populations having the t largest parameters is regarded as a correct selection, (CS).

Section 2.3 Basic Results

Before proceeding with the selection procedure, it is useful to note the following results concerning estimators of the parameters for the Birnbaum-Saunders distribution. Let $T_1, T_2, ..., T_n$ be a random sample from a Birnbaum-Saunders population.

Theorem 2.3.1: (Birnbaum and Saunders (1969b)) The maximum likelihood estimator, $\hat{\beta}$, is the unique positive root of

$$x^{2} - x\{2H + K(x)\} + H\{\overline{T} + K(x)\} = 0 \text{ where } \overline{T} = n^{-1} \sum_{j=1}^{n} T_{j}$$
,

$$H = n^{-1} \sum_{j=1}^{n} T_{j}^{-1}$$
 and $K(x) = \left[n^{-1} \sum_{j=1}^{n} (x + T_{j})^{-1} \right]^{-1}$.

Theorem 2.3.2: (Engelhardt et al. (1969)) The distribution of $\frac{\hat{\beta}}{\beta}$ does not depend on β .

Theorem 2.3.3: (Birnbaum and Saunders (1969b)) The maximum likelihood estimator, $\hat{\alpha}$, is $\hat{\alpha} = \left(\frac{\overline{T}}{\hat{\beta}} + \frac{\hat{\beta}}{H^{-1}} - 2\right)^{\frac{1}{2}}$ where \overline{T} , H, and $\hat{\beta}$ are defined before.

Theorem 2.3.4: (Engelhardt et al. (1969)) The distribution of $\frac{\hat{\alpha}}{\alpha}$ does not depend on α and β .

There are at least two additional estimators that have been considered by Birnbaum and Saunders (1969) and Desmond (1995) due to the difficulty in computing

the MLE's. The two estimators are
$$\beta' = \frac{\sum T_j^{\frac{1}{2}}}{\sum T_j^{-\frac{1}{2}}}$$
 and $\widetilde{\beta} = \left(\frac{\sum T_j}{\sum T_j^{-1}}\right)^{\frac{1}{2}}$ and they are both

very easy to compute since they are based only on the random sample. $\widetilde{\beta}$ is also known as the "mean mean" estimator.

Theorem 2.3.5: The distribution of $\frac{\beta'}{\beta}$ does not depend on β .

Proof:
$$\frac{\sum (T_j)^{\frac{1}{2}}}{\sum \frac{1}{(T_j)^{\frac{1}{2}}}}$$

$$= \frac{\sum (T_{j})^{\frac{1}{2}}}{\beta^{\frac{1}{2}}\beta^{\frac{1}{2}}\sum \frac{1}{(T_{j})^{\frac{1}{2}}}} = \frac{\sum (\frac{T_{j}}{\beta})^{\frac{1}{2}}}{\sum (\frac{\beta}{T_{j}})^{\frac{1}{2}}} = \frac{\sum (\frac{T_{j}}{\beta})^{\frac{1}{2}}}{\sum \left[\frac{1}{(\frac{T_{j}}{\beta})^{\frac{1}{2}}}\right]}$$

Let $U_j = \frac{T_j}{\beta}$. The distribution of U_j does not depend on β since

 β is a scale parameter. So, the distribution of $\frac{\sum (U_j)^{\frac{1}{2}}}{\sum \left[\frac{1}{(U_j)^{\frac{1}{2}}}\right]}$ does

not depend on β . Therefore, the distribution of $\frac{\beta'}{\beta}$ does not depend on β as desired.

Theorem 2.3.6: The distribution of $\frac{\widetilde{\beta}}{\beta}$ does not depend on β .

Proof:
$$\frac{\widetilde{\beta}}{\beta} = \frac{\left(\frac{\sum T_{j}}{\sum T_{j}^{-1}}\right)^{\frac{1}{2}}}{\beta} = \frac{\left(\sum T_{j}\right)^{\frac{1}{2}}}{\beta^{\frac{1}{2}}\beta^{\frac{1}{2}}\left(\sum T_{j}^{-1}\right)^{\frac{1}{2}}} = \frac{\left(\frac{\sum T_{j}}{\beta}\right)^{\frac{1}{2}}}{\left(\sum T_{j}^{-1}\right)^{\frac{1}{2}}}$$

$$= \frac{\left(\frac{\sum T_j}{\beta}\right)^{\frac{1}{2}}}{\left(\frac{\sum T_j^{-1}}{\beta^{-1}}\right)^{\frac{1}{2}}} = \frac{\left(\sum \frac{T_j}{\beta}\right)^{\frac{1}{2}}}{\left(\sum \left(\frac{T_j}{\beta}\right)^{-1}\right)^{\frac{1}{2}}} \quad \text{Let } U_j = \frac{T_j}{\beta}. \text{ The distribution of }$$

 U_i does not depend on β since β is a scale parameter. So,

$$\frac{\widetilde{\beta}}{\beta} = \frac{\left(\sum U_j\right)^{\frac{1}{2}}}{\left(\sum U_j\right)^{\frac{1}{2}}} = \left(\sum U_j\right)^{\frac{1}{2}} \left(\sum U_j\right)^{\frac{1}{2}} \left(\sum U_j\right)^{\frac{1}{2}}$$
 and the distribution of

 $\left(\sum U_j\right)^{\frac{1}{2}} \left(\sum U_j^{-1}\right)^{\frac{1}{2}}$ does not depend on β since the distribution of U_j does not depend on β . Therefore, the distribution of $\frac{\widetilde{\beta}}{\beta}$ does not depend on β as desired.

Theorem 2.3.7: (Birnbaum and Saunders (1969b)) $\widetilde{\beta}$ is a consistent estimator for β . When $\alpha < \sqrt{2}$, $\widetilde{\beta}$ is the same as the MLE, $\hat{\beta}$.

Section 2.4 Probability of Correct Selection and its Minimum

Let $\hat{\beta}_{(i)}$ denote the statistic associated with population $\pi_{(i)}$, i=1,...,k. (From this point forward, this dissertation will use the notation for the MLE, but all results hold for β' and $\widetilde{\beta}$.) The ranked $\hat{\beta}$'s are denoted by $\hat{\beta}_{[1]} \leq \hat{\beta}_{[2]} \leq ... \leq \hat{\beta}_{[k]}$.

Let $\vec{\beta} = (\beta_{[1]}, ..., \beta_{[k]})$ denote a point in the parameter space Ω that is partitioned into a

'preference zone',
$$\Omega(\delta^*)$$
, defined by $\Omega(\delta^*) = \left\{ \vec{\beta} : \frac{\beta_{[k-t]}}{\beta_{[k-t+1]}} \le \delta^*, \ 0 < \delta^* < 1 \right\}$. The

complement of $\Omega(\delta^*)$ is called the indifference zone. This dissertation uses the indifference zone approach of Bechhofer (1954). Now consider the following rule, R, for which the probability of correct selection, $P(CS \mid R)$, satisfies $P(CS \mid R) \ge p^*$ for all $\vec{\beta} \in \Omega(\delta^*)$ and fixed α .

Rule R : Select the populations associated with the t largest $\hat{\beta}$ as the t-best populations.

The experimenter specifies in advance the constants δ^* and p^* where $\binom{k}{t}^{-1} < p^* < 1$. If

 p^* is not assumed greater than $\binom{k}{t}^{-1}$ then the probability of correct selection can be guaranteed by randomly selecting the t best populations.

Now using the results of Section 2.3, the probability of correct selection, $P(CS \mid R)$ is as follows:

$$P(CS \mid R) = P \left[\max_{1 \le j \le k - t} \hat{\beta}_{(j)} \le \min_{k - t + 1 \le i \le k} \hat{\beta}_{(i)} \right]$$
 (2.4.1)

$$= P \left[\max_{\substack{1 \le j \le k-t \\ j \ne g}} \hat{\beta}_{(j)} \le \hat{\beta}_{(g)} \le \min_{k-t+1 \le i \le k} \hat{\beta}_{(i)}; g = 1, ..., k-t \right]$$
(2.4.2)

$$= P \left[\max_{\substack{1 \le j \le k-t \\ j \ne g}} \frac{\hat{\beta}_{(j)}}{\beta_{[j]}} \frac{\beta_{[j]}}{\beta_{[g]}} \le \frac{\hat{\beta}_{(g)}}{\beta_{[g]}} \le \min_{k-t+1 \le i \le k} \frac{\hat{\beta}_{(i)}}{\beta_{[i]}} \frac{\beta_{[i]}}{\beta_{[g]}}; g = 1, \dots, k-t \right]$$
(2.4.3)

Define $V_j = \frac{\hat{\beta}_{(j)}}{\beta_{[j]}}$ and $G_v(v)$ to be the cumulative distribution function of V_j .

$$= P \left[\max_{\substack{1 \le j \le k-t \\ j \ne g}} V_j \frac{\beta_{[j]}}{\beta_{[g]}} \le V_g \le \min_{\substack{k-t+1 \le i \le k}} V_i \frac{\beta_{[i]}}{\beta_{[g]}}; g = 1, \dots, k-t \right]. \quad (2.4.4)$$

Interest is in finding the configuration of the parameters that minimizes $P(CS \mid R)$. This configuration of parameters is called the Least Favorable Configuration (LFC). Under the least favorable conditions $\beta_{[1]} = \beta_{[2]} = \cdots = \beta_{[k-t]}$, $\beta_{[k-t+1]} = \cdots = \beta_{[k]}$ and

$$\beta_{[k-t]} \leq \beta_{[k-t+1]} \left(\delta^* \right) \text{ which implies that } \frac{\beta_{[k-t+1]}}{\beta_{[k-t]}} \geq \frac{1}{\delta^*} \geq 1 \,.$$

Thus,
$$P(CS \mid R) \ge P \left[\max_{\substack{1 \le j \le k - t \\ j \ne g}} V_j(1) \le V_g \le \min_{\substack{k - t + 1 \le i \le k}} V_i\left(\frac{1}{\delta^*}\right); g = 1, ..., k - t \right]$$
 (2.4.5)

$$= \sum_{g=1}^{k-t} \int_{0}^{\infty} \left[\prod_{\substack{j=1\\g \neq j}}^{k-t} G_{\nu}(\nu) \prod_{i=k-t+1}^{k} (1 - G_{\nu}(\nu \delta^{*})) \right] dG_{\nu}(\nu)$$
 (2.4.6)

$$= \sum_{g=1}^{k-t} \int_{0}^{\infty} G_{\nu}^{(k-t-1)}(\nu) [1 - G_{\nu}(\nu \delta^{*})]^{t} dG_{\nu}(\nu)$$
 (2.4.7)

$$= (k-t) \int_{0}^{\infty} G_{\nu}^{(k-t-1)}(\nu) [1-G_{\nu}(\nu\delta^{*})]^{k} dG_{\nu}(\nu) = P^{*}(CS \mid R), \qquad (2.4.8)$$

where $G_{\nu}(\nu)$ is defined to be the cumulative distribution function of the $V_{j} = \frac{\hat{\beta}_{(j)}}{\beta_{[j]}}$.

So,
$$P^*(CS | R) = P \left[\max_{1 \le j \le k-t} V_j \le \frac{1}{\delta^*} \min_{k-t+1 \le i \le k} V_i \right].$$
 (2.4.9)

Now given k, t, δ^* , and p^* - values, the solution can be obtained by setting $P^*(CS \mid R)$ equal to p^* and solving for n. However, this can not be done analytically

since the distribution of V_i cannot be obtained in closed form. Therefore, $P^*(CS \mid R)$ has been simulated for various cases in Section 2.6 and large sample approximations will be discussed in Chapter 3.

Section 2.5 Properties of the Probability of Correct Selection

Property 2.5.1: As
$$\delta^* \to 1$$
, show that the $P^*(CS \mid R) \to \binom{k}{t}^{-1}$.

Proof: The
$$P^*(CS \mid R) = (k-t) \int_0^\infty G_v^{(k-t-1)}(v) [1 - G_v(v\delta^*)]' dG_v(v)$$
.

And further suppose that $\delta^* \to 1$ then that implies that the

$$P^{*}(CS \mid R) = (k-t) \int_{0}^{\infty} G_{v}^{(k-t-1)}(v) [1-G_{v}(v)]^{t} dG_{v}(v).$$

Now let $x = G_{\nu}(\nu)$ then that implies

$$P^*(CS \mid R) = (k-t) \int_0^1 x^{(k-t-1)} [1-x]^t dx.$$

$$= \frac{(k-t)(k-t-1)!t!}{k!} = \frac{(k-t)!t!}{k!} = {k \choose t}^{-1} \text{ as desired.}$$

Property 2.5.2: As $\delta^* \to 0$, show that the $P^*(CS \mid R) \to 1$.

Proof: The
$$P * (CS | R) = (k - t) \int_{0}^{\infty} G_{v}^{(k-t-1)}(v) [1 - G_{v}(v\delta^{*})]^{t} dG_{v}(v)$$
.

And further suppose that $\delta^* \to 0$ then that implies that the

$$P^{\bullet}(CS \mid R) = (k-t) \int_{0}^{\infty} G_{\nu}^{(k-t-1)}(\nu) dG_{\nu}(\nu).$$

Now let $x = G_v(v)$ then that implies $P^*(CS \mid R) = (k - t) \int_0^1 x^{(k-t-1)} (1-x)^0 dx$.

$$= \frac{(k-t)(k-t-1)!}{(k-t)!} = \frac{(k-t)!}{(k-t)!} = 1 \text{ as desired.}$$

Property 2.5.3: As $n \to \infty$, then $P^*(CS \mid R) \to 1$.

Proof: The proof of this property follows from the normal approximation to $P^*(CS \mid R)$ discussed in Section 2 of Chapter 3.

Property 2.5.3 guarantees that there is a sample size, n, which will guarantee any probability of correct selection.

Section 2.6 Simulations

Fortran programs were written using Monte Carlo methods to simulate probability tables using the estimator, $\hat{\beta}$, for $\alpha = 0.15, 0.25, 0.50, 0.75, 1.0$, k = 2 (1) 5, t = 1 (1) (k-1), and n = 5 (5) 30. From the literature on the Birnbaum-Saunders distribution reasonable choices for α are less than or equal to 2 and usually only those values less than or equal to $\sqrt{2}$ are used. The tables are located in Appendix A. The tables were constructed by performing 50,000 iterations to calculate the probabilities of correct selection. The

Birnbaum – Saunders populations were generated by an algorithm that was previously used by Desmond (1995). The complete program is located in Appendix H.

To illustrate how these tables are used then consider the following scenario: If a researcher is interested in choosing the 2 "best" populations from 5 populations with $\alpha = 1$ and they further specify that $p^* = 0.90$ and $\delta^* = 0.500$ then according to the table found below from Appendix A they would need to sample 15 from each of the five populations in order to ensure the probability of correct selection to be 0.90, since k = 5, t = 2, $p^* = 0.90$ and $\delta^* = 0.500$.

p

k	t	n	.80	.90	.95	.975	.99	.995
5	2	5	.380	.305	.255	.220	.185	.165
		10	.515	.445	.395	.355	.310	.285
		15	.570	.500	.450	.415	.370	.345
		20	.610	.550	.500	.460	.420	.390
-		25	.640	.580	.540	.500	.470	.435
		30	.660	.610	.570	.530	.490	.460

The simulated probability tables using estimator, β' , for $\alpha = 1$, k = 2 (1) 5, t = 1 (1) (k-1), and n = 5 (5) 30 are located in Appendix B.

The simulated probability tables using the estimator, $\widetilde{\beta}$, for $\alpha = 0.15, 0.25, 0.50, 0.75, 1.0, 2.0, 3.0, 4.0$, and 5.00, k = 2 (1) 5, t = 1 (1) (k-1), and n = 5 (5) 30 are located in Appendix C.

The last two estimators gave very similar values for the probability of correct selection. Therefore, only $\widetilde{\beta}$ has been explored further.

A comparison of the estimators, $\hat{\beta}$, $\tilde{\beta}$, β' , is given below for the probability of correct selection, $P^*(CS \mid R)$, for the following specificed values: $\alpha = 1$, k=5, t=2, n=30 and $\delta^* = 0.400, 0.500, 0.650, 0.750$.

	$P^*(CS \mid R)$						
	$\underline{\delta^*} = 0.400$	$\delta^* = 0.500$	$\underline{\delta^* = 0.650}$	$\underline{\delta^* = 0.750}$			
$\hat{oldsymbol{eta}}$	0.9994	0.9862	0.8296	0.5894			
$\widetilde{oldsymbol{eta}}$	0.9999	0.9935	0.8703	0.6332			
β'	0.9998	0.9889	0.8603	0.6230			

Chapter 3

Asymptotic Results of the Estimators for the Parameter β

Section 3.1 Results for the Estimator $\hat{\beta}$

From Chapter 2, Section 4, the probability of correct selection, $P^*(CS \mid R)$, was obtained but a closed form of the distribution of V_i does not exist. Therefore, the probability of correct selection, $P^*(CS \mid R)$, must be simulated or approximated. Simulations were discussed in Chapter 2 and the tables appear in Appendices A, B, and C. Large sample approximations for the parameter, β , will now be considered.

Before proceeding with the selection procedure, it is useful to note the following asymptotic results concerning the maximum likelihood estimator, $\hat{\beta}$.

Theorem 3.1.1: (Engelhardt et al., 1981) For n sufficiently large,

$$\hat{\beta} \sim N(\beta, \beta^2 H^2(\alpha^2)/n)$$
 where $H(u) = \left[\frac{1}{4} + \frac{1}{u} + I\left(u^{\frac{1}{2}}\right)\right]^{\frac{-1}{2}}$,

$$I(\alpha) = 2\int_{0}^{\infty} \left[\left(1 + \xi^{-1}(\alpha z)\right)^{-1} - \frac{1}{2} \right]^{2} \Phi'(z) dz \text{ and } \xi(t) = t^{\frac{1}{2}} - t^{\frac{-1}{2}}.$$

Theorem 3.1.2: For *n* sufficiently large,
$$\frac{\hat{\beta}}{\beta} \sim N\left(1, \frac{H^2(\alpha^2)}{n}\right)$$
 where $H(u)$ is defined as before.

Proof: Suppose
$$\hat{\beta} \sim N(\beta, \beta^2 H^2(\alpha^2)/n)$$
.

Let
$$X = \hat{\beta}$$
 and $Y = \frac{\hat{\beta}}{\beta} = \frac{X}{\beta}$ then

$$P(Y \le y) = P\left(\frac{X}{\beta} \le y\right) = P(X \le \beta y) \tag{3.1.1}$$

$$=P\left(Z \leq \frac{\beta y - \beta}{\sqrt{\beta^2 \left(H^2(\alpha^2)\right)/n}}\right)$$
(3.1.2)

$$=P\left(Z \leq \frac{\beta(y-1)}{\beta\sqrt{(H^2(\alpha^2))/n}}\right) \tag{3.1.3}$$

$$=P\left(Z\leq\frac{(y-1)}{\sqrt{\left(H^2\left(\alpha^2\right)\right)/n}}\right). \tag{3.1.4}$$

Therefore,
$$\frac{\hat{\beta}}{\beta} \sim N\left(1, \frac{H^2(\alpha^2)}{n}\right)$$
 as desired.

Section 3.2 Probability of Correct Selection for Normal Approximation of $\hat{\beta}$

The probability of correct selection must be examined since the distribution of $\frac{\hat{\beta}}{\beta}$

is now being approximated by a normal distribution where $\frac{\hat{\beta}}{\beta} \sim N\left(1, \frac{H^2(\alpha^2)}{n}\right)$.

Therefore, from Equation 2.4.9 of Section 2.4 of Chapter 2, the probability of correct selection given the rule $R, P^*(CS \mid R)$ is:

$$P^{\star}(CS \mid R) = P \left[\max_{1 \le j \le k-1} V_j \le \frac{1}{\delta^{\star}} \min_{k-t+1 \le j \le k} V_i \right]$$
(3.2.1)

$$=P\left[\delta^* \max_{1 \le j \le k-t} V_j \le \min_{k-t+1 \le i \le k} V_i\right]$$
(3.2.2)

$$=P\left[\max_{1\leq j\leq k-t}\delta^*V_j-1\leq \min_{k-t+1\leq i\leq k}V_i-1\right]$$
(3.2.3)

$$=P\left[\max_{1\leq j\leq k-t}\frac{\delta^*V_j-1}{\sqrt{\frac{H^2(\alpha^2)}{n}}}\leq \min_{k-t+1\leq i\leq k}\frac{V_i-1}{\sqrt{\frac{H^2(\alpha^2)}{n}}}\right]$$
(3.2.4)

$$=P\left[\max_{1\leq j\leq k-t}\frac{\delta^{*}(V_{j}-1)}{\sqrt{\frac{H^{2}(\alpha^{2})}{n}}}+\frac{\delta^{*}-1}{\sqrt{\frac{H^{2}(\alpha^{2})}{n}}}\leq \min_{k-t+1\leq i\leq k}\frac{V_{i}-1}{\sqrt{\frac{H^{2}(\alpha^{2})}{n}}}\right]$$
(3.2.5)

$$=P\left[\max_{1\leq j\leq k-t}\delta^*Z_j + \frac{\delta^*-1}{\sqrt{\frac{H^2(\alpha^2)}{n}}} \leq \min_{k-t+1\leq i\leq k}Z_i\right]$$
(3.2.6)

$$\doteq \sum_{g=1}^{k-t} \int_{-\infty}^{\infty} \prod_{i=1 \atop g \neq j}^{k-t} \Phi(Z_i) \prod_{i=k-t+1}^{k} \left[1 - \Phi \left(\delta^* Z_j + \frac{\delta^* - 1}{\sqrt{\frac{H^2(\alpha^2)}{n}}} \right) \right] d\Phi(z) \tag{3.2.7}$$

$$= (k-t) \int_{-\infty}^{\infty} [\Phi(Z_i)]^{(k-t-1)} \left[1 - \Phi \left(\delta^* Z_j + \frac{\delta^* - 1}{\sqrt{\frac{H^2(\alpha^2)}{n}}} \right) \right]^t d\Phi(z)$$
 (3.2.8)

where $\Phi(z)$ is defined to be the cumulative distribution function of the standard normal distribution. Now given k, t, δ^* , and p^* - values, the solution can be obtained by setting $P^*(CS \mid R)$ equal to p^* and solving for n.

From Section 2.5 of Chapter 2, Property 2.5.3 states that as $n \to \infty$, then

$$P^*(CS \mid R) \to 1$$
. From Equation 3.2.8, as $n \to \infty$, $\frac{\delta^* - 1}{\sqrt{\frac{H^2(\alpha^2)}{n}}} \to -\infty$, since $\delta^* < 1$.

Therefore,
$$P^*(CS \mid R) \to (k-t) \int_{-\infty}^{\infty} [\Phi(Z_i)]^{(k-t-1)} (1)^t d\Phi(z) \to 1 \text{ as } n \to \infty.$$

Section 3.3 Large Sample Approximations

Fortran programs were written using Monte Carlo methods to calculate probability tables using the estimator, $\hat{\beta}$, for $\alpha = 0.25, 0.50, 0.75, 1.0, 1.25, 1.5, k = 2 (1) 5, <math>t = 1$ (1) (k-1), and n = 30,40,50,75. The tables are located in Appendix E.

Section 3.4 Results for the Estimator $\widetilde{\beta}$

Before proceeding with the selection procedure, it is useful to note the following asymptotic results concerning the mean - mean estimator, $\widetilde{\beta}$.

Theorem 3.4.1: (Birnbaum and Saunders, 1969 b) For n sufficiently large,

$$\widetilde{\beta} \sim BS\left(\alpha\theta n^{\frac{-1}{2}}, \beta\right)$$
 where $\theta^2 = \left(1 + \frac{3}{4}\alpha^2\right) \left(1 + \frac{1}{2}\alpha^2\right)^2$. Also,

$$E(\widetilde{\beta}) = \beta \left[1 + \frac{(\alpha \theta)^2}{2n} \right] \text{ and } Var(\widetilde{\beta}) = \frac{(\alpha \theta \beta)^2}{n} \left[1 + \frac{5\alpha^2 \theta^2}{4n} \right].$$

Theorem 3.4.2: For n sufficiently large, $\frac{\widetilde{\beta}}{\beta} = BS\left(\alpha \theta n^{\frac{-1}{2}}, 1\right)$ where θ is as above.

Proof: Suppose
$$\widetilde{\beta} \sim BS\left(\alpha \theta n^{\frac{-1}{2}}, \beta\right)$$
. Let $X = \widetilde{\beta}$ and $Y = \frac{\widetilde{\beta}}{\beta} = \frac{X}{\beta}$

then
$$P(Y \le y) = P\left(\frac{X}{\beta} \le y\right) = P(X \le y\beta)$$
 (3.4.1)

$$=P\left(X \le \frac{n^{\frac{1}{2}}}{\alpha \theta} \xi \left(\frac{y\beta}{\beta}\right)\right) \tag{3.4.2}$$

$$=P\left(X \le \frac{n^{\frac{1}{2}}}{\alpha \theta} \xi\left(\frac{y}{1}\right)\right). \tag{3.4.3}$$

Therefore, $\frac{\widetilde{\beta}}{\beta} \sim BS\left(\alpha \theta n^{\frac{-1}{2}}, 1\right)$ as desired.

Section 3.5 Probability of Correct Selection for Birnbaum-Saunders Approximation $of \ \widetilde{\beta}$

The probability of correct selection is examined for the distribution of $\frac{\widetilde{\beta}}{\beta}$ which is now being approximated by a Birnbaum-Saunders distribution. Therefore,

$$P^{*}(CS \mid R) = P\left[\max_{1 \le j \le k-t} Y_{j} \le \frac{1}{\delta^{*}} \min_{k-t+1 \le i \le k} Y_{i}\right] \doteq (k-t) \int_{0}^{\infty} G_{Y}^{(k-t-1)}(y) [1 - G_{Y}(y\delta^{*})]^{t} dG_{Y}(y) \quad (3.5.1)$$

where $G_r(y)$ is the cumulative distribution function of $Y \sim BS\left(\alpha \theta n^{\frac{-1}{2}},1\right)$. Now given k, t, δ^* , and p^* - values, the solution can be obtained by setting $P^*(CS \mid R)$ equal to p^* and solving for n.

Section 3.6 Large Sample Approximations

Fortran programs were written using Monte Carlo methods to calculate probability tables using the estimator, $\widetilde{\beta}$, for $\alpha = 0.25, 0.50, 0.75, 1.0, 1.25, 1.5, k = 2 (1) 5, <math>t = 1$ (1) (k-1), and n = 30,40,50,75. The tables are located in Appendix F.

Section 3.7 Comparisons of the Simulations and Approximations

A comparison of the estimators, $\hat{\beta}$, $\tilde{\beta}$, for simulated probabilities and the approximations is given next for the probability of correct selection, $P^*(CS \mid R)$, for the following specified values: $\alpha = 1$, k=5, t=2, n=30 and $\delta^* = 0.400, 0.500, 0.650, 0.750$.

	$P^*(CS \mid R)$			
	$\delta^* = 0.400$	$\delta^* = 0.500$	$\delta^* = 0.650$	$\underline{\delta^*} = 0.750$
simulated $\hat{\beta}$	0.9994	0.9862	0.8296	0.5894
approximated \hat{eta}	0.9988	0.9879	0.8554	0.6155
simulated $\widetilde{oldsymbol{eta}}$	0.9999	0.9935	0.8703	0.6332
approximated $\widetilde{\beta}$	0.9999	0.9939	0.8726	0.6394

Chapter 4

Ranking and Selection According to the Parameter α

Section 4.1 Theory for "Best" Parameter \alpha

When selecting populations according the parameter β , it is most logical to select the t populations with the largest β parameters since β is the median of the distribution. In the case of selection of the t "best" populations with fixed β , according to the parameter α , the choice is much less intuitive. In order to determine whether to choose the t populations with the smallest or largest parameters α , the reliability function, $R(t_0)$, has been investigated. $R(t_0) = P(X > t_0) = 1 - F(t_0; \alpha, \beta)$ where $F(t_0; \alpha, \beta)$ is defined as the cumulative distribution function in Section 2.1 of Chapter 2. If the reliability function were increasing then selecting the t populations with the largest α parameters would be most consistent with what is usually thought of as "best" populations. Conversely, selecting the t smallest α parameters would be considered "best" if the reliability function is decreasing.

It can be shown that the reliability function, R(t), is increasing for $t > \beta$, decreasing for $\beta > t$ and is equal to 0.5 when $t = \beta$ for all α . Furthermore, the mean is an increasing function of α for fixed β , so selecting the populations with the largest parameters α would correspond to selecting the populations with the longest mean time until failure.

Section 4.2 Theory for Selection of α

Given k ($k \ge 2$) independent Birnbaum-Saunders Distributions, (BSD), $\pi_1, \pi_2, ..., \pi_k$. Let $\pi_{(i)}$ denote the population having the ith shape parameter $\alpha_{[i]}$, where $\alpha_{[1]} \le \alpha_{[2]} \le ... \le \alpha_{[k-t+1]} \le \alpha_{[k]}$. The population $\pi_{(i)}$ is defined to be better than $\pi_{(j)}$ if i > j. Selecting the t-best populations with the t largest α parameters, $1 \le t < k$ is considered. The goal is to select a group of the t-best ($1 \le t < k$) populations in an unordered manner. The choice of any t populations having the t largest parameters is regarded as a correct selection, (CS).

Let $\hat{\alpha}_{(i)}$ denote the maximum likelihood estimator (MLE) of $\alpha_{[i]}$ associated with population $\pi_{(i)}$. The maximum likelihood estimator is computed by the formula,

$$\hat{\alpha} = \left(\frac{\overline{T}}{\hat{\beta}} + \frac{\hat{\beta}}{H^{-1}} - 2\right)^{\frac{1}{2}}$$
, where $\hat{\beta}$, \overline{T} and H are defined as in Section 2.2. Define

 $W_j = \frac{\hat{\alpha}_{(j)}}{\alpha_{[j]}}$. Due to Engelhardt et al. (1981), the distribution of W_j does not depend on

 α or β . Let $\vec{\alpha}=(\alpha_{[1]},...,\alpha_{[k]})$ denote a point in the parameter space Ω that is

partitioned into a 'preference zone',
$$\Omega(\delta^*)$$
, defined by $\Omega(\delta^*) = \left\{ \vec{\alpha} : \frac{\alpha_{[k-t]}}{\alpha_{[k-t+1]}} \le \delta^* < 1 \right\}$.

The complement of $\Omega(\delta^*)$ is called the indifference zone. Now consider the following rule, R, for which the probability of correct selection, $P(CS \mid R)$, satisfies $P(CS \mid R) \ge p^*$ for all $\vec{\alpha} \in \Omega(\delta^*)$.

Rule R2: Select the populations associated with the t largest $\hat{\alpha}$ as the t-best populations.

The experimenter specifies in advance the constants δ^* and p^* where $\binom{k}{t}^{-1} < p^* < 1$.

The probability of correct selection, $P(CS \mid R2)$ is as follows:

$$P(CS \mid R2) = P \left[\max_{1 \le j \le k-t} \hat{\alpha}_{(j)} \le \min_{k-t+1 \le i \le k} \hat{\alpha}_{(i)} \right]$$
(4.2.1)

$$=P\left[\max_{\substack{1\leq j\leq k-t\\j\neq g}}\hat{\alpha}_{(j)}\leq \hat{\alpha}_{(g)}\leq \min_{k-t+1\leq i\leq k}\hat{\alpha}_{(i)}; g=1,\ldots,k-t\right]$$
(4.2.2)

$$= P \left[\max_{\substack{1 \le j \le k - t \\ j \ne g}} \frac{\hat{\alpha}_{(j)}}{\alpha_{[j]}} \frac{\alpha_{[j]}}{\alpha_{[g]}} \le \frac{\hat{\alpha}_{(g)}}{\alpha_{[g]}} \le \min_{k - t + 1 \le i \le k} \frac{\hat{\alpha}_{(i)}}{\alpha_{[i]}} \frac{\alpha_{[i]}}{\alpha_{[g]}}; g = 1, \dots, k - t \right]$$
(4.2.3)

$$= P \left[\max_{\substack{1 \le j \le k-t \\ j \ne g}} W_j \frac{\alpha_{[j]}}{\alpha_{[g]}} \le W_g \le \min_{k-t+1 \le i \le k} W_i \frac{\alpha_{[i]}}{\alpha_{[g]}}; g = 1, ..., k-t \right]. \tag{4.2.4}$$

Interest is in finding the configuration of the parameters that minimizes $P(CS \mid R)$. This configuration of parameters is called the Least Favorable Configuration (LFC). Under the least favorable conditions $\alpha_{[1]} = \alpha_{[2]} = \cdots = \alpha_{[k-r]}$, $\alpha_{[k-r+1]} = \cdots = \alpha_{[k]}$ and

$$\alpha_{[k-t]} \le \alpha_{[k-t+1]} \left(\delta^* \right)$$
 which implies that $\frac{\alpha_{[k-t+1]}}{\alpha_{[k-t]}} \ge \frac{1}{\delta^*} \ge 1$.

Thus,
$$P(CS \mid R) \ge P \left[\max_{\substack{1 \le j \le k-t \\ j \ne g}} W_j(1) \le W_g \le \min_{\substack{k-t+1 \le i \le k}} W_i\left(\frac{1}{\delta^*}\right); g = 1, ..., k-t \right]$$
 (4.2.5)

$$= \sum_{g=1}^{k-t} \int_{0}^{\infty} \left[\prod_{\substack{j=1\\j\neq g}}^{k-t} G_{w}(w) \prod_{i=k-t+1}^{k} (1 - G_{w}(w \delta^{*})) \right] dG_{w}(w)$$
(4.2.6)

$$= \sum_{g=1}^{k-t} \int_{0}^{\infty} G_{w}^{(k-t-1)}(w) [1 - G_{w}(w \delta^{*})]^{(t)} dG_{w}(w)$$
(4.2.7)

$$= (k-t) \int_{0}^{\infty} G_{w}^{(k-t-1)}(w) [1-G_{w}(w\delta^{*})]^{(t)} dG_{w}(w) = P^{*}(CS \mid R2), \quad (4.2.8)$$

where $G_{w}(w)$ is defined to be the cumulative distribution function of the $W_{j}=\frac{\hat{\alpha}_{(j)}}{\alpha_{[j]}}$.

So,
$$P^*(CS | R2) = P \left[\max_{1 \le j \le k-t} W_j \le \frac{1}{\delta^*} \min_{k-t+1 \le i \le k} W_i \right].$$
 (4.2.9)

Now given k, t, δ^* , and p^* - values, the solution can be obtained by setting $P^*(CS \mid R2)$ equal to p^* and solving for n. Since the distribution of W_i cannot be obtained in closed form, the $P^*(CS \mid R2)$ has been simulated and approximated and large sample approximations will be discussed in Chapter 5.

Section 4.3 Simulations

Fortran programs were written using Monte Carlo methods to simulate probability tables for $\hat{\alpha}$ and for β unknown, k=2 (1) 5, t=1 (1) (k-1), and n=5 (5) 30. Furthermore, instead of using $\hat{\beta}$ to estimate $\hat{\alpha}$, the estimator $\tilde{\beta}$ has been used in place of $\hat{\beta}$ to compute the estimates for alpha. For all of the reasons mentioned in Chapter 2, the estimator is a reasonable choice to use and was also used previously by Desmond (1995) in his prediction intervals. The estimator from now on will be referred to as $\tilde{\alpha}$. These tables are located in Appendix D. These probability tables were constructed for selecting t

populations out of k populations with the largest parameters, α . But, these tables can also be used to select the t populations with the smallest parameters, α , since selecting the t populations with the smallest parameters, α , is equivalent to selecting the k-t populations with the largest parameters α . For example, if the experimenter wants to select the two populations out of five with the smallest parameters, α , then the researcher would use the table in Appendix D for selecting the three populations with the largest parameters α out of five populations.

Chapter 5

Asymptotic Results of the Estimator for the Parameter α

Section 5.1 Results for the Estimator $\hat{\alpha}$

From Chapter 4, Section 2, the probability of correct selection, $P^*(CS \mid R2)$, was obtained but a closed form of the distribution of W_i does not exist. Therefore, the probability of correct selection, $P^*(CS \mid R2)$, must be simulated or approximated. Simulations were discussed in Chapter 4 and the tables appear in Appendix F. Large sample approximations for the parameter, α , will now be considered.

Before proceeding with the selection procedure, it is useful to note the following asymptotic results concerning the maximum likelihood estimator, $\hat{\alpha}$.

Theorem 5.1.1: (Engelhardt et al., 1981) For n sufficiently large, $\hat{\alpha} \sim N(\alpha, 2^{-1}\alpha^2/n)$.

Theorem 5.1.2: For *n* sufficiently large, $\frac{\hat{\alpha}}{\alpha} \sim N\left(1, \frac{1}{2n}\right)$.

Proof: Suppose $\hat{\alpha} \sim N(\alpha, 2^{-1}\alpha^2/n)$.

Let
$$X = \hat{\alpha}$$
 and $Y = \frac{\hat{\alpha}}{\alpha} = \frac{X}{\alpha}$ then

$$P(Y \le y) = P\left(\frac{X}{\alpha} \le y\right) = P(X \le \alpha y)$$
 (5.1.1)

$$=P\left(Z\leq \frac{\alpha y-\alpha}{\sqrt{2^{-1}\alpha^2/n}}\right) \tag{5.1.2}$$

$$=P\left(Z \le \frac{\alpha(y-1)}{\alpha\sqrt{\frac{1}{2}n}}\right) \tag{5.1.3}$$

$$=P\left(Z\leq\frac{(y-1)}{\sqrt{\frac{1}{2n}}}\right). \tag{5.1.4}$$

Therefore,
$$\frac{\hat{\alpha}}{\alpha} \sim N\left(1, \frac{1}{2n}\right)$$
 as desired.

Section 5.2 Probability of Correct Selection for Normal Approximation of $\hat{\alpha}$

The probability of correct selection must be examined since the distribution of $\frac{\hat{\alpha}}{\alpha}$ is now being approximated by a normal distribution where $\frac{\hat{\alpha}}{\alpha} \sim N\left(1,\frac{1}{2n}\right)$. Therefore, from Equation 4.2.9 of Section 4.2 of Chapter 4, the probability of correct selection given the rule R, $P(CS \mid R2)$, is:

$$P(CS \mid R2) = P\left[\max_{1 \le j \le k-1} W_j \le \frac{1}{\delta^*} \min_{k-l+1 \le i \le k} W_i\right]$$
 (5.2.1)

$$=P\left[\delta^* \max_{1 \le j \le k-t} W_j \le \min_{k-t+1 \le j \le k} W_i\right]$$
(5.2.2)

$$= P \left[\max_{1 \le j \le k-t} \delta^* W_j - 1 \le \min_{k-t+1 \le i \le k} W_i - 1 \right]$$
 (5.2.3)

$$=P\left[\max_{1\leq j\leq k-t} \frac{\delta^* W_j - 1}{\sqrt{\frac{1}{2n}}} \leq \min_{k-t+1\leq i\leq k} \frac{W_i - 1}{\sqrt{\frac{1}{2n}}}\right]$$
(5.2.4)

$$=P\left[\max_{1\leq j\leq k-t} \frac{\delta^{*}(W_{j}-1)}{\sqrt{\frac{1}{2n}}} + \frac{\delta^{*}-1}{\sqrt{\frac{1}{2n}}} \leq \min_{k-t+1\leq i\leq k} \frac{W_{i}-1}{\sqrt{\frac{1}{2n}}}\right]$$
(5.2.5)

$$=P\left[\max_{1\leq j\leq k-t}\delta^*Z_j+\frac{\delta^*-1}{\sqrt{\frac{1}{2n}}}\leq \min_{k-t+1\leq i\leq k}Z_i\right]$$
(5.2.6)

$$\doteq \sum_{g=1}^{k-t} \int_{-\infty}^{\infty} \prod_{i=1 \atop g \neq j}^{k-t} \Phi(Z_i) \prod_{i=k-t+1}^{k} \left[1 - \Phi \left(\delta^* Z_j + \frac{\delta^* - 1}{\sqrt{\frac{1}{2n}}} \right) \right] d\Phi(z)$$
 (5.2.7)

$$= (k-t) \int_{-\infty}^{\infty} [\Phi(Z_i)]^{(k-t-1)} \left[1 - \Phi \left(\delta^* Z_j + \frac{\delta^* - 1}{\sqrt{\frac{1}{2n}}} \right) \right]^t d\Phi(z) = P^* (CS \mid R2) \quad (5.2.8)$$

where $\Phi(z)$ is defined to be the cumulative distribution function of the standard normal distribution. Now given k, t, δ^* , and p^* - values, the solution can be obtained by setting $P^*(CS \mid R2)$ equal to p^* and solving for n.

From Section 2.5 of Chapter 2, Property 2.5.3 states that as $n \to \infty$, then

$$P^*(CS \mid R2) \to 1$$
. From Equation 3.2.8, as $n \to \infty$, $\frac{\delta^* - 1}{\sqrt{\frac{1}{2n}}} \to -\infty$, since $\delta^* < 1$.

Therefore, $P^*(CS \mid R2) \to (k-t) \int_{-\infty}^{\infty} [\Phi(Z_i)]^{(k-t-1)} (1)^t d\Phi(z) \to 1$ as $n \to \infty$. Also, Property 2.5.1 and Property 2.5.2 from Section 2.5 of Chapter 2 hold for α as they do for β .

Section 5.3 Large Sample Approximations

Fortran programs were written using Monte Carlo methods to calculate probability tables using the estimator, $\hat{\alpha}$, for k = 2 (1) 5, t = 1 (1) (k-1), and n = 30,40,50,75. The tables are located in Appendix G.

Section 5.4 Comparisons of the Simulations and Approximations

A comparison of the estimator, $\hat{\alpha}$, for simulated probabilities and the approximations is given next for the probability of correct selection, $P^*(CS \mid R2)$, for the following specified values: k=5, t=2, n=30 and $\delta^* = 0.400, 0.500, 0.650, 0.750$.

		$\frac{P'(CS \mid R2)}{}$		
	$\delta^* = 0.400$	$\underline{\delta^*} = 0.500$	$\underline{\delta^*} = 0.650$	$\delta^* = 0.750$
simulated $\hat{\alpha}$	1.00000	0.99902	0.94616	0.75954
approximated $\hat{\alpha}$	0.99996	0.99870	0.94894	0.77323

Chapter 6

Conclusions and Future Work

Section 6.1 Conclusions

In this dissertation, two main goals were accomplished. The first goal was ranking and selection of Birnbaum-Saunders populations according to the scale parameter, β . The indifference zone approach was used as the selection criteria for the 'best' populations due to Bechhofer (1954). Using this procedure, a probability of correct selection, $P(CS \mid R)$, was obtained and Monte Carlo simulations and large sample approximations tables were computed using Fortran 77 programs. These tables can be used to determine the size that would be needed from each population to sample to ensure a correct selection at a certain probability level.

The second goal was ranking and selection of Birnbaum-Saunders populations according to the shape parameter, α . The indifference zone approach again was used. Also, a statement regarding the probability of correct selection was obtained where Monte Carlo simulations and large sample approximations tables were computed using Fortran 77 programs. Again, tables for the determination of the smallest sample size needed from each of the populations to ensure a correct selection of a certain probability were obtained.

During the course of this dissertation, the author has found that the mean – mean estimator, $\tilde{\beta}$, is preferred over the maximum likelihood estimator, $\hat{\beta}$, because of the ease in computation. Also, the simulated and approximated probabilities for the estimator are higher than those obtained from the maximum likelihood estimator.

Section 6.2 Future Work

There are many topics that can be explored further. First, with the Birnbaum-Saunders distribution is to consider ranking and selection procedures with censored samples using Type-II censored samples estimators introduced by McCarter (1999).

Gupta (1965) considered subset selection procedures that can possibly be applied to develop procedures for the Birnbaum-Saunders distribution and procedures from Tong (1969) on comparisons with a control can also be explored.

Bibliography

Bain, L. and Engelhardt, M., Statistical Analysis of Reliability and Life-Testing Models: Theory and Methods, Second Edition, Marcel Dekker, Inc., New York, (1991).

Bain, L. and Engelhardt, M., *Introduction to Probability and Mathematical Statistics*, Second Edition, PWS-KENT Publishing Company, Boston, (1992).

Barr, D.R. and Rizvi, M.H., An Introduction to Ranking and Selection Procedures, Journal of the American Statistical Association, 61 (1966), 640-646.

Bechhofer, R.E., A Single-Sample Multiple Decision Procedure for Ranking Means of Normal Populations with Known Variances, *Annals of Mathematical Statistics*, 25 (1954), 16-39.

Bechhofer, R.E. and Sobel, M., A Single-Sampled Multiple Decision Procedure for Ranking Variances of Normal Populations, *Annals of Mathematical Statistics*, 25 (1954), 273-289.

Bechhofer, R.E., Santner, T.J., and Goldsman, D.M., Design and Analysis of Experiments for Statistical Selection, Screening, and Multiple Comparisons, John Wiley & Sons, Inc., New York, (1995).

Birnbaum, Z.W. and Saunders, S.C., A Statistical Model for Life-Length of Materials, Journal of the American Statistical Association, 53 (1958), 151-160.

Birnbaum, Z.W. and Saunders, S.C., A New Family of Life Distributions, *Journal of Applied Probability*, 6 (1969 a), 319-327.

Birnbaum, Z.W. and Saunders, S.C., Estimation for a Family of Life Distributions with Applications to Fatigue, *Journal of Applied Probability*, 6 (1969 b), 328-347.

Chang, Dong Shang, and Tang, Loon Ching, Reliability Bounds and Critical Time for the Birnbaum-Saunders Distribution, *IEEE Transactions on Reliability*, 42 (1993), 464-469.

Chang, Dong Shang, and Tang, Loon Ching, Percentile Bounds and Tolerance Limits for the Birnbaum-Saunders Distribution, *Communications in Statistics, Part A - Theory and Methods*, 23 (1994 a), 2853-2863.

Chang, Dong Shang and Tang, Loon Ching, Graphical Analysis for Birnbaum-Saunders Distribution, *Microelectronics Reliability*, 34 (1994 b), 17-22.

Chhikara, Raj. S., and Folks, J. Leroy, *The Inverse Gaussian Distribution: Theory, Methodology, and Applications*, M. Dekker, New York, (1989).

Desmond, Anthony, Stochastic Models of Failure In Random Environments, Canadian Journal of Statistics, 13 (1985), 171-183.

Desmond, A.F., On the Relationship Between Two Fatigue-Life Models, *IEEE Transactions on Reliability*, R-35 (1986), 167-169.

Desmond, Anthony F., and Yang, Zhenlin, Shortest Prediction Intervals for the Birnbaum - Saunders Distribution, *Communications in Statistics*, *Part A - Theory and Methods*, 24(6) (1995), 1383-1401.

Dupuis, Debbie J. and Mills, Joanna E., Robust Estimation of the Birnbaum-Saunders Distribution, *IEEE Transactions on Reliability*, 47 (1998), 88-95.

Engelhardt, Max, Bain, Lee J. and Wright, F.T., Inferences on the Parameters of the Birnbaum-Saunders Fatigue Life Distribution Based on Maximum Likelihood Estimation, *Technometrics*, 23 (1981), 251-256.

Gibbons, J., Olkin, I. And Sobel, J., Selecting and Ordering Populations: A New Statistical Methodology, John Wiley & Sons, Inc., New York, (1977).

Gupta, S.S., On Some Multiple Decision (Selection and Ranking) Rules, *Technometrics*, 7 (1965), 225-245.

Gupta, S.S. and Panchapakesan, S., Multiple Decision Procedures: Theory and Methodology of Selecting and Ranking Populations, John Wiley and Sons, Inc., New York (1979).

Gupta, S.S. and Sobel, M., On Selecting a subset containing th epopulation with the Smallest Variance, *Biometrika*, 49(1962), 495-507.

Johnson, N.L., Kotz, S., and Balakrishnan, N., Continuous Univariate Distributions, John Wiley & Sons, Inc., New York (1985).

Mann, N.R., Shafer, R.E., and Singpurwalla, N.D., Methods for Statistical Analysis of Reliability and Life Data, John Wiley & Sons, (1974).

McCarter, Kevin, S., Estimation and Prediction for the Birnbaum-Saunders Distribution Using Type – II Censored Samples, With A Comparison to the Inverse Gaussian Distribution, Ph.D. Dissertation, Kansas State University, (1999).

Mulekar, Madhuri S., and Matejcik, Frank J., Determination of Sample Size for Selecting the Smallest of k Poisson Population Means, *Communications in Statistics – Simulations*, 29 (2000), 37-48.

Padgett, W.J., On Bayes Estimation of Reiability for the Birnbaum-Saunders Fatigue Life Model, *IEEE Transactions on Reliability*, (1986), 436-438.

Tang, Loon Ching and Chang, Dong Shang, Reliability Prediction Using Nondestructive Accelarated-Degradation Data: Case Study on Power Supplies, *IEEE Transactions on Reliability*, 44 (1995), 562-566.

Tang, L.C., Lu, Y., and Chow, E.P., Mean Residual Life of Lifetime Distributions, *IEEE Transactions on Reliability*, 48 (1999), 73-77.

Tong, Y.L., On Partitioning a Set of Normal Populations by Their Locations with Respect to a Control, *The Annals of Mathematical Statistics*, 40(1969), 1300-1324.

Appendices

Appendix A	Probability Tables for Estimator $\hat{\beta}$
Appendix B	Probability Tables for Estimator β'
Appendix C	Probability Tables for Estimator \widetilde{eta}
Appendix D	Probability Tables for Estimator $\tilde{\alpha}$
Appendix E	Probability Tables for Estimator $\hat{\beta}$
	Large Samples
Appendix F	Probability Tables for Estimator \widetilde{eta}
	Large Samples
Appendix G	Probability Tables for Estimator â
	Large Samples
Appendix H	Fortran Programs for Simulations

Appendix A Probability Tables for Estimator $\hat{\beta}$

Table 1. A $For \ \hat{\beta} \ \ Selecting \ the \ t\text{-best}: Complete \ Sample \ Case$ Finding the smallest n required for $P(CS \mid R) \geq p^*$ given values of k, t, δ , p^* and $\alpha = 0.15$

k	t	n	.80	.90	.95	.975	.99	.995
2	1	5	.925	.885	.855	.830	.805	.785
		10	.945	.915	.895	.875	.855	.840
1	7	15	.955	.930	.915	.900	.880	.865
1	1	20	.960	.940	.925	.910	.900	.885
1	7	25	.965	.945	.930	.920	.910	.895
1	1	30	.965	.950	.935	.925	.915	.905

k	t	n	.80	.90	.95	.975	.99	.995
4	1	5	.880	.850	.820	.800	.775	.755
1		10	.915	.890	.870	.855	.835	.820
1		15	.930	.910	.895	.880	.865	.850
		20	.940	.920	.905	.895	.880	.870
1		25	.945	.930	.915	.905	.890	.885
7		30	.950	.935	.920	.910	.900	.890

				p			
t	n	.80	.90	.95	.975	.99	.995
1	5	.895	.860	.830	.810	.785	.770
	10	.925	.900	.880	.860	.845	.830
	15	.940	.915	.900	.885	.870	.860
	20	.945	.930	.915	.900	.890	.875
	25	.950	.935	.920	.910	.895	.885
\exists	30	.955	.940	.925	.915	.905	.895
	1	1 5 10 15 20 25	1 5 .895 10 .925 15 .940 20 .945 25 .950	1 5	1 5 .895 .860 .830 10 .925 .900 .880 15 .940 .915 .900 20 .945 .930 .915 25 .950 .935 .920	1 5 .895 .860 .830 .810 10 .925 .900 .880 .860 15 .940 .915 .900 .885 20 .945 .930 .915 .900 25 .950 .935 .920 .910	1 5 .895 .860 .830 .810 .785 10 .925 .900 .880 .860 .845 15 .940 .915 .900 .885 .870 20 .945 .930 .915 .900 .890 25 .950 .935 .920 .910 .895

k	t	n	.80	.90	.95	.975	.99	.995
4	2	5	.870	.835	.810	.790	.770	.750
		10	.905	.885	.865	.850	.830	.820
		15	.920	.905	.885	.875	.860	.850
		20	.930	.915	.900	.890	.875	.865
		25	.940	.920	.910	.900	.890	.880
		30	.940	.930	.920	.910	.900	.885

k	t	n	.80	.90	.95	.975	.99	.995
3	2	5	.895	.860	.830	.810	.785	.765
1		10	.925	.900	.880	.860	.840	.830
		15	.940	.915	.900	.885	.870	.860
1		20	.945	.925	.915	.900	.890	.875
1		25	.950	.935	.920	.910	.900	.885
1		30	.955	.940	.925	.915	.900	.895

k	t	n	.80	.90	.95	.975	.99	.995
4	3	5	.800	.845	.820	.800	.775	.760
		10	.915	.890	.870	.855	.840	.825
		15	.930	.910	.890	.880	.870	.850
		20	.940	.920	.905	.895	.880	.870
		25	.945	.930	.915	.905	.890	.880
		30	.950	.935	.920	.910	.900	.890

Table 1. A (continued)

For $\hat{\beta}$ Selecting the t-best: Complete Sample Case

Finding the smallest n required for $P(CS \mid R) \ge p^*$ given values of k, t, δ , p^* and $\alpha = 0.15$

k	t	n	.80	.90	.95	.975	.99	.995
5	1	5	.870	.840	.815	.790	.770	.755
1		10	.905	.885	.865	.850	.830	.815
1		15	.925	.905	.890	.875	.860	.845
1		20	.935	.915	.900	.890	.880	.865
1		25	.940	.925	.910	.900	.890	.880
7	1	30	.945	.930	.920	.910	.900	.885

k	t	n	.80	.90	.95	.975	.99	.995
5	3	5	.855	.825	.800	.785	.760	.745
1		10	.895	.875	.855	.840	.825	.810
1		15	.915	.895	.880	.870	.850	.845
1		20	.925	.910	.895	.885	.870	.860
1		25	.930	.915	.905	.895	.885	.875
+		30	.935	.925	.910	.900	.895	.885

k	t	n	.80	.90	.95	.975	.99	.995
5	2	5	.855	.825	.800	.780	.760	.745
1		10	.895	.875	.855	.840	.820	.810
1		15	.915	.895	.880	.870	.855	.845
1	1	20	.925	.910	.895	.885	.870	.860
1		25	.930	.915	.905	.895	.880	.875
1	1	30	.935	.925	.910	.900	.895	.885

k	t	n	.80	.90	.95	.975	.99	.995
5	4	5	.870	.840	.815	.795	.770	.750
1		10	.905	.885	.865	.850	.830	.815
		15	.925	.905	.890	.875	.860	.850
		20	.935	.915	.900	.890	.875	.865
1		25	.940	.925	.910	.900	.890	.880
1		30	.945	.930	.920	.910	.900	.890

Table 2. A For $\hat{\beta}$ Selecting the t-best: Complete Sample Case Finding the smallest n required for $P(CS \mid R) \geq p^*$ given values of k, t, δ , p^* and $\alpha = 0.25$

					p.										p.			
k	t	n	.80	.90	.95	.975	.99	.995		k 1	n	T	.80	.90	.95	.975	.99	.995
2	1	5	.875	.820	.770	.735	.690	.665		4	1 5	T	.810	.760	.725	.690	.650	.630
1	1	10	.910	.865	.830	.805	.770	.745		\dagger	10	Š	.860	.825	.790	.765	.740	.720
1	1	15	.920	.890	.860	.835	.805	.790		t	15	t	.885	.855	.830	.805	.785	.765
1	1	20	.935	.905	.880	.855	.830	.815		†	20	V.	.900	.870	.850	.830	.810	.790
1	1	25	.940	.910	.885	.865	.845	.825		T	25		.905	.880	.860	.845	.820	.810
1	1	30	.940	.915	.890	.870	.850	.835		Ť	30		.910	.885	.865	.845	.830	.815
	_			1														
					p.							_			p*			
k	t	n	.80	.90	.95	.975	.99	.995]	k 1	n		.80	.90	.95	.975	.99	.995
3	1	5	.830	.780	.740	.705	.670	.645	1	4	2 5	Ť	.790	.745	.710	.680	.640	.620
1	1	10	.880	.840	.805	.785	.760	.735		1	10		.850	.810	.785	.765	.735	.715
1	1	15	.900	.865	.840	.815	.790	.775		1	15	Ī	.875	.845	.820	.800	.780	.760
1	1	20	.910	.880	.855	.840	.815	.800		Ť	20		.890	.860	.840	.820	.800	.785
1	1	25	.920	.890	.870	.850	.825	.815		Ť	25	T	.900	.875	.855	.835	.820	.800
1	1	30	.920	.895	.875	.855	.840	.820		Ť	30	1	.900	.880	.860	.840	.820	.810
	_		•	•	•										•		•	
					p.										p.			
k	t	n	.80	.90	.95	.975	.99	.995		k	n		.80	.90	.95	.975	.99	.995
3	2	5	.830	.780	.740	.700	.670	.640		4	3 5		.810	.760	.720	.685	.650	.630
1	1	10	.880	.840	.805	.780	.750	.730	1	1	10	1	.860	.825	.790	.770	.745	.725
+	+	15	.900	.865	.840	.815	.795	.775	1	+	15		.885	.855	.830	.810	.785	.765
1	1	20	.910	.880	.860	.840	.815	.800		1	20		.900	.870	.850	.825	.805	.790
+	1	25	.920	.890	.870	.850	.830	.815	1	1	25	1	.905	.880	.860	.840	.820	.810

.820

.920

.895

.875 .855 .835

.885

.865

.850 .830

.815

.910

30

Table 2. A (continued)

For $\hat{\beta}$ Selecting the t-best: Complete Sample Case

Finding the smallest n required for $P(CS \mid R) \ge p^*$ given values of k, t, δ , p^* and $\alpha = 0.25$

					p.			
k	t	n	.80	.90	.95	.975	.99	.995
5	1	5	.790	.745	.710	.680	.650	.625
1		10	.850	.810	.785	.765	.730	.715
		15	.875	.845	.820	.800	.775	.760
1		20	.890	.865	.840	.825	.800	.785
		25	.905	.880	.860	.840	.825	.805
1		30	.905	.880	.860	.840	.825	.805
- 1	- 1							

k	t	n	.80	.90	.95	.975	.99	.995
5	3	5	.770	.725	.690	.665	.630	.610
		10	.830	.800	.770	.750	.725	.705
		15	.860	.830	.810	.790	.770	.750
		20	.875	.850	.830	.815	.795	.775
		25	.885	.865	.845	.830	.810	.795
		30	.890	.870	.850	.835	.815	.805

				p.			
t	n	.80	.90	.95	.975	.99	.995
2	5	.770	.725	.690	.665	.610	.610
	10	.830	.800	.770	.750	.725	.705
	15	.860	.830	.810	.790	.770	.750
	20	.875	.850	.830	.815	.795	.780
	25	.885	.865	.845	.830	.810	.795
	30	.890	.870	.850	.835	.820	.800
		2 5 10 15 20 25	2 5 .770 10 .830 15 .860 20 .875 25 .885	2 5 .770 .725 10 .830 .800 15 .860 .830 20 .875 .850 25 .885 .865	2 5 .770 .725 .690 10 .830 .800 .770 15 .860 .830 .810 20 .875 .850 .830 25 .885 .865 .845	2 5 .770 .725 .690 .665 10 .830 .800 .770 .750 15 .860 .830 .810 .790 20 .875 .850 .830 .815 25 .885 .865 .845 .830	2 5 .770 .725 .690 .665 .610 10 .830 .800 .770 .750 .725 15 .860 .830 .810 .790 .770 20 .875 .850 .830 .815 .795 25 .885 .865 .845 .830 .810

k	t	n	.80	.90	.95	.975	.99	.995
5	4	5	.795	.750	.710	.685	.650	.625
1		10	.850	.815	.785	.765	.730	.710
		15	.875	.845	.820	.800	.775	.760
		20	.890	.865	.840	.825	.800	.785
		25	.900	.875	.855	.835	.815	.805
		30	.905	.880	.860	.845	.825	.815

Table 3. A For MaximumLlikelihood Estimator Selecting the t-best: Complete Sample Case Finding the smallest n required for $P(CS \mid R) \ge p$ given values of k, t, δ , p and $\alpha = 0.50$

					p.									p.			
k	t	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
2	1	5	.770	.670	.600	.545	.490	.450	4	1	5	.660	.585	.530	.485	.440	.400
T	1	10	.830	.755	.695	.655	.605	.570	T		10	.750	.690	.640	.600	.560	.530
Ť	1	15	.860	.795	.750	.705	.660	.630			15	.735	.730	.690	.655	.620	.590
T	1	20	.870	.810	.760	.725	.680	.650			20	.800	.750	.710	.675	.640	.610
Ť		25	.875	.825	.780	.735	.700	.675			25	.815	.780	.725	.695	.660	.610
T	1	30	.890	.840	.795	.765	.720	.695		T	30	.835	.790	.755	.725	.690	.610
	_								_								
	0.00				p.									p.			
k 1	t	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
3	1	5	.695	.610	.550	.500	.450	.420	4	2	5	.630	.565	.510	.465	.430	.400
Ť	1	10	.775	.710	.660	.615	.575	.545	F		10	.725	.665	.625	.585	.550	.520
\dagger	†	15	.810	.755	.710	.675	.635	.605	r	T	15	.765	.715	.675	.645	.610	.585
\dagger	1	20	.825	.770	.725	.690	.650	.625			20	.780	.730	.695	.660	.630	.600
\dagger	†	25	.840	.785	.760	.725	.675	.645	T		25	.800	.750	.705	.695	.655	.620
1	1	30	.855	.810	.770	.740	.700	.680			30	.815	.775	.740	.710	.680	.660
	1		_						_		-						
					p.									p^{\bullet}	76		
k 1	t	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
3	2	5	.695	.610	.550	.505	.450	.420	4	3	5	.660	.580	.525	.480	.435	.405
+	+	10	.775	.710	.660	.615	.575	.545	T		10	.750	.690	.640	.605	.560	.535
+	+	15	.810	.755	.710	.675	.635	.605	F		15	.785	.730	.690	.655	.620	.590
\dagger	1	20	.825	.770	.725	.690	.650	.625			20	.800	.750	.710	.675	.635	.610
+	+	25	.835	.790	.740	.715	.675	.660			25	.810	.770	.735	.685	.655	.640
	1						1			1				1			

.675

.805 .765 .735 .700

.850

.785

.830

30

.750 .720 .690

.670

Table 3. A (continued)

For MaximumLlikelihood Estimator Selecting the t-best: Complete Sample Case Finding the smallest n required for $P(CS \mid R) \ge p^*$ given values of k, t, δ , p^* and $\alpha = 0.50$

					p.			
k	t	n	.80	.90	.95	.975	.99	.995
5	1	5	.635	.565	.510	.470	.425	.400
1		10	.730	.670	.620	.590	.550	.520
		15	.770	.720	.680	.645	.605	.580
1		20	.785	.73	.695	.665	.625	.600
		25	.800	.765	.720	.680	.640	.625
		30	.820	.780	.745	.715	.680	.660
_			1	1	1	1		1

k	t	n	.80	.90	.95	.975	.99	.995
5	3	5	.600	.535	.490	.450	.410	.390
1		10	.700	.645	.605	.570	.540	.510
		15	.745	.695	.660	.630	.595	.570
1		20	.760	.715	.680	.650	.615	.590
1		25	.785	.740	.725	.670	.640	.625
1		30	.800	.760	.725	.700	.670	.645

				p.			
t	n	.80	.90	.95	.975	.99	.995
2	5	.600	.530	.485	.450	.410	.390
	10	.700	.645	.605	.570	.535	.510
1	15	.745	.695	.660	.630	.595	.570
	20	.760	.715	.680	.645	.610	.590
	25	.780	.745	.700	.660	.635	.605
	30	.800	.760	.725	.700	.670	.645
		2 5 10 15 20 25	2 5 .600 10 .700 15 .745 20 .760 25 .780	2 5	t n .80 .90 .95 2 5 .600 .530 .485 10 .700 .645 .605 15 .745 .695 .660 20 .760 .715 .680 25 .780 .745 .700	t n	t n

k	+	n	.80	.90	.95	.975	.99	.995
^	٠	11	.60	.70	.,,,	.713	.,,	.,,,,
5	4	5	.640	.570	.515	.470	.430	.400
1		10	.730	.670	.625	.590	.545	.520
		15	.770	.720	.680	.645	.610	.585
1		20	.785	.740	.700	.665	.630	.605
1		25	.795	.755	.720	.690	.645	.620
1		30	.815	.775	.740	.710	.680	.660

Table 4. A For $\hat{\beta}$ Selecting the t-best: Complete Sample Case Finding the smallest n required for $P(CS \mid R) \geq p^*$ given values of k, t, δ , p^* and $\alpha = 0.75$

				p^{\cdot}									p.			
k t	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
2 1	5	.685	.560	.475	.415	.350	.315	4	1	5	.545	.455	.395	.345	.295	.265
t	10	.760	.670	.595	.540	.480	.450			10	.660	.580	.520	.475	.430	.400
T	15	.785	.695	.630	.575	.515	.485			15	.680	.610	.560	.515	.470	.445
T	20	.800	.710	.650	.600	.540	.500			20	.705	.630	.580	.540	.490	.465
T	25	.840	.760	.710	.665	.620	.585			25	.760	.700	.655	.620	.580	.550
T	30	.850	.780	.730	.690	.640	.615			30	.775	.720	.675	.640	.600	.580
				p.		W	V	19-45					<i>p</i> .			
k t	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
3 1	5	.590	.490	.420	.370	.310	.290	4	2	5	.510	.430	.375	.330	.285	.260
T	10	.690	.610	.550	.500	.450	.420			10	.630	.560	.505	.465	.420	.390
T	15	.715	.640	.580	.540	.485	.455			15	.650	.590	.540	.500	.460	.430
T	20	.735	.660	.600	.560	.510	.480			20	.675	.610	.560	.525	.480	.45
+	25	.785	.720	.675	.635	.590	.570		Г	25	.735	.680	.640	.605	.565	.540
	30	.800	.740	.695	.660	.615	.590			30	.755	.700	.660	.630	.590	.565
				p.									p.			
k t	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.99
3 2	5	.590	.490	.420	.370	.315	.285	4	3	5	.545	.455	.390	.345	.295	.27
T	10	.690	.610	.545	.500	.450	.415			10	.660	.585	.525	.480	.435	.400
T	15	.710	.635	.580	.535	.480	.455			15	.680	.610	.555	.515	.470	.44
T	20	.735	.660	.600	.560	.510	.480			20	.700	.630	.580	.540	.490	.46
\dagger	25	.790	.725	.670	.635	.590	.560			25	.760	.700	.650	.615	.570	.54:

.800

.740

.695

.660

.615

.590

.720

.775

.675

.640

.605

.580

Table 4. A (continued)

For $\hat{\beta}$ Selecting the t-best: Complete Sample Case Finding the smallest n required for $P(CS|R) \ge p^*$ given values of k, t, δ , p^* and $\alpha = 0.75$

				p.				
t	n	.80	.90	.95	.975	.99	.995	
1	5	.515	.430	.375	.330	.290	.260	
	10	.630	.560	.505	.465	.420	.390	ì
	15	.660	.595	.540	.505	.460	.430	
	20	.680	.615	.565	.525	.480	.455	
	25	.740	.685	.640	.605	.560	.535	
	30	.755	.700	.660	.630	.590	.565	
	1	1 5 10 15 20 25	1 5 .515 10 .630 15 .660 20 .680 25 .740	1 5 .515 .430 10 .630 .560 15 .660 .595 20 .680 .615 25 .740 .685	t n .80 .90 .95 1 5 .515 .430 .375 10 .630 .560 .505 15 .660 .595 .540 20 .680 .615 .565 25 .740 .685 .640	t n	t n	t n

k	t	n	.80	.90	.95	.975	.99	.995
5	3	5	.470	.400	.350	.310	.270	.250
1		10	.595	.530	.480	.445	.400	.375
		15	.625	.565	.520	.485	.445	.420
1		20	.645	.585	.540	.505	.465	.440
1		25	.710	.660	.620	.590	.550	.530
1		30	.730	.680	.645	.615	.575	.550

					p^{*}			
k	t	n	.80	.90	.95	.975	.99	.995
5	2	5	.470	.400	.350	.310	.270	.250
1		10	.595	.530	.480	.445	.400	.375
1	1	15	.625	.565	.520	.485	.440	.420
1	1	20	.645	.590	.540	.505	.465	.440
1		25	.710	.660	.620	.590	.550	.525
†		30	.730	.680	.645	.615	.575	.550

k	t	n	.80	.90	.95	.975	.99	.995
5	4	5	.520	.440	.380	.335	.290	.260
		10	.630	.560	.505	.465	.420	.390
		15	.660	.590	.540	.505	.460	.435
		20	.680	.615	.565	.525	.480	.450
1		25	.740	.680	.640	.605	.565	.540
1		30	.760	.710	.665	.630	.590	.570

Table 5. A For $\hat{\beta}$ Selecting the t-best : Complete Sample Case Finding the smallest n required for $P(CS \mid R) \geq p^*$ given values of k, t, δ , p^* and $\alpha = 1$

					p.			
k	t	n	.80	.90	.95	.975	.99	.995
2	1	5	.610	.470	.380	.320	.260	.220
1		10	.720	.600	.520	.450	.390	.360
1		15	.750	.650	.570	.510	.450	.410
1	1	20	.780	.680	.610	.560	.510	.470
1	1	25	.800	.710	.640	.590	.530	.490
1		30	.810	.730	.670	.620	.570	.530

k	t	n	.80	.90	.95	.975	.99	.995
4	1	5	.460	.360	.300	.260	.210	.180
1		10	.590	.500	.430	.390	.350	.310
1		15	.630	.550	.500	.450	.400	.370
1		20	.670	.600	.540	.490	.450	.410
		25	.700	.630	.570	.530	.490	.460
1	٦	30	.710	.650	.600	.560	.520	.480

					p.			
k	t	n	.80	.90	.95	.975	.99	.995
3	1	5	.500	.400	.330	.270	.220	.200
1		10	.630	.530	.460	.430	.360	.320
1	7	15	.670	.580	.520	.470	.420	.380
1		20	.710	.630	.570	.510	.470	.430
	1	25	.730	.660	.600	.550	.510	.470
1	1	30	.750	.680	.620	.580	.530	.500
_1								

k	t	n	.80	.90	.95	.975	.99	.995
4	2	5	.420	.340	.280	.240	.200	.170
		10	.560	.480	.420	.380	.340	.300
		15	.600	.530	.470	.430	.390	.350
		20	.640	.570	.520	.480	.430	.390
		25	.670	.610	.560	.520	.470	.450
		30	.690	.630	.580	.540	.510	.480

					p.			
k	t	n	.80	.90	.95	.975	.99	.995
3	2	5	.500	.400	.330	.270	.230	.200
		10	.630	.530	.460	.410	.360	.330
		15	.670	.580	.510	.470	.430	.380
		20	.710	.630	.560	.520	.470	.430
		25	.740	.660	.600	.550	.510	.480
		30	.750	.680	.630	.580	.530	.500
-0								

k	t	n	.80	.90	.95	.975	.99	.995
4	3	5	.460	.360	.300	.250	.210	.180
		10	.590	.500	.440	.390	.340	.320
		15	.630	.550	.490	.440	.400	.370
		20	.670	.600	.540	.490	.440	.410
		25	.700	.630	.570	.530	.490	.460
		30	.720	.650	.600	.560	.520	.490

Table 5. A (continued)

For $\hat{\beta}$ Selecting the t-best: Complete Sample Case Finding the smallest n required for $P(CS \mid R) \geq p^*$ given values of k, t, δ , p^* and $\alpha = 1$

.99	.995
.200	.180
.330	.300
.390	.360
.430	.410
.480	.450
.510	.480
ļ	

k	t	n	.80	.90	.95	.975	.99	.995
5	3	5	.380	.310	.260	.220	.190	.165
		10	.515	.445	.390	.355	.320	.280
1		15	.560	.500	.450	.410	.370	.345
		20	.610	.550	.500	.460	.420	.390
		25	.640	.580	.535	.500	.470	.435
1		30	.665	.610	.570	.530	.490	.455

					p.			
k	t	n	.80	.90	.95	.975	.99	.995
5	2	5	.380	.305	.255	.220	.185	.165
1		10	.515	.445	.395	.355	.310	.285
1	1	15	.570	.500	.450	.415	.370	.345
1	1	20	.610	.550	.500	.460	.420	.390
1	1	25	.640	.580	.540	.500	.470	.435
1		30	.660	.610	.570	.530	.490	.460

k	t	n	.80	.90	.95	.975	.99	.995
5	4	5	.430	.350	.290	.245	.205	.180
1	1	10	.560	.480	.420	.375	.340	.305
	1	15	.600	.530	.470	.435	.390	.355
1		20	.650	.580	.520	.480	.435	.400
1	7	25	.680	.610	.560	.520	.480	.455
1		30	.700	.640	.590	.550	.510	.475

Appendix B Probability Tables for Estimator β'

Table 1.B For Estimator β' Selecting the t-best: Complete Sample Case Finding the smallest n required for $P(CS \mid R) \geq p'$ given values of k, t, δ , p^* and $\alpha = 1$

					p.									p.			
K t		n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.99
2 1	1	5	.615	.475	.390	.325	.260	.220	4	1	5	.460	.370	.300	.260	.215	.18:
T	t	10	.710	.595	.510	.450	.390	.355			10	.580	.495	.430	.385	.355	.320
T	†	15	.755	.655	.580	.520	.455	.425			15	.640	.565	.505	.460	.415	.380
T	†	20	.790	.695	.625	.575	.520	.485	h	0	20	.685	.610	.555	.515	.470	.43:
T	1	25	.805	.720	.655	.605	.550	.510			25	.710	.640	.590	.555	.510	.47
T		30	.810	.745	.675	.635	.575	.550			30	.730	.665	.620	.580	.535	.510
	_		1						_								
					p.									p.			
k t	I	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.99:
3 1	ı	5	.510	.405	.330	.260	.220	.210	4	2	5	.425	.340	.280	.240	.205	.18:
t	t	10	.620	.530	.455	.405	.355	.330			10	.550	.470	.415	.370	.340	.310
\dagger	t	15	.680	.595	.530	.480	.430	.400			15	.610	.540	.485	.445	.395	.37:
t	1	20	.720	.640	.580	.535	.490	.450	T		20	.655	.585	.535	.495	.450	.420
T	1	25	.745	.670	.615	.570	.520	.490			25	.685	.620	.575	.535	.495	.46
T		30	.760	.690	.635	.595	.550	.520			30	.705	.650	.600	.565	.530	.495
-		12702							5				X				
					p^{\cdot}									p.			
k t		n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.99:
3 2	2	5	.510	.405	.330	.260	.220	.210	4	3	5	.460	.365	.300	.250	.220	.18
+	t	10	.620	.530	.455	.405	.355	.330			10	.585	.500	.435	.390	.345	.320
t	+	15	.680	.595	.530	.480	.430	.400			15	.640	.560	.505	.460	.415	.380
	1	20	.720	.640	.580	.535	.490	.450			20	.680	.610	.555	.510	.460	.43
+	1	25	.745	.670	.615	.570	.520	.490			25	.710	.640	.590	.545	.495	.47

.730 .660 .615 .580 .535

.510

.550 .520

.760 .690 .635 .595

Table1.B (continued)

For Estimator β' Selecting the t-best: Complete Sample Case Finding the smallest n required for $P(CS \mid R) \ge p$ given values of k, t, t, t and t are t and t and t are t and t and t are t are t and t are t are t and t are t are t are t and t are t are t are t are t are t and t are t are t are t and t are t are t are t are t and t are t are t are t are t and t are t are t are t are t are t are t and t are t are t are t are t and t are t are t are t and t are t and t are t

k	t	n	.80	.90	.95	.975	.99	.995
5	1	5	.430	.345	.285	.240	.205	.195
1		10	.555	.470	.415	.370	.345	.310
1		15	.620	.545	.490	.445	.405	.375
1		20	.660	.595	.540	.495	.455	.420
1		25	.695	.625	.575	.535	.495	.460
7		30	.715	.655	.605	.575	.520	.495

k	t	n	.80	.90	.95	.975	.99	.995
5	3	5	.385	.310	.260	.220	.195	.170
1		10	.510	.440	.390	.355	.330	.290
1		15	.575	.515	.465	.425	.390	.355
		20	.620	.560	.515	.475	.435	.410
1		25	.655	.600	.555	.515	.475	.450
1		30	.680	.625	.580	.545	.510	.480

					p.			
k	t	n	.80	.90	.95	.975	.99	.995
5	2	5	.385	.305	.260	.220	.185	.165
1		10	.510	.440	.390	.360	.310	.285
1		15	.575	.515	.465	.425	.375	.355
		20	.620	.560	.505	.480	.440	.410
		25	.655	.600	.550	.515	.475	.450
1		30	.680	.625	.580	.550	.510	.460
_								

		p^{*}												
k	t	n	.80	.90	.95	.975	.99	.995						
5	4	5	.435	.350	.295	.245	.205	.190						
		10	.555	.475	.415	.375	.345	.315						
		15	.615	.540	.495	.445	.400	.375						
		20	.655	.595	.535	.495	.455	.420						
		25	.690	.620	.575	.535	.495	.470						
		30	.715	.655	.605	.565	.530	.500						

Appendix C Probability Tables for Estimator $\tilde{\beta}$

Table 1.C For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Sample Case Finding the smallest n required for $P(CS \mid R) \geq p^*$ given values of k,t, δ , p^* and $\alpha = 0.15$

k	t	n	.80	.90	.95	.975	.99	.995
2	1	5	.925	.885	.855	.830	.805	.785
1		10	.945	.915	.890	.875	.855	.840
1		15	.955	.930	.915	.900	.880	.870
1		20	.960	.940	.925	.910	.895	.885
1		25	.965	.945	.930	.920	.905	.895
1		30	.970	.950	.940	.925	.910	.900

					p			
k	t	n	.80	.90	.95	.975	.99	.995
4	1	5	.880	.850	.820	.800	.775	.755
1		10	.915	.890	.870	.850	.830	.820
		15	.930	.910	.895	.880	.865	.850
		20	.940	.920	.905	.895	.880	.870
		25	.945	.930	.915	.905	.890	.885
1		30	.950	.935	.925	.915	.900	.895
_								

					p [*]			
k	t	n	.80	.90	.95	.975	.99	.995
3	1	5	.895	.860	.830	.810	.785	.770
1		10	.925	.900	.880	.860	.840	.830
		15	.940	.920	.900	.885	.870	.860
1		20	.945	.930	.910	.900	.885	.875
1		25	.950	.935	.920	.910	.895	.890
1	T	30	.955	.940	.930	.920	.905	.900

				p.			
t	n	.80	.90	.95	.975	.99	.995
2	5	.870	.835	.810	.790	.770	.750
	10	.905	.885	.865	.850	.830	.820
	15	.920	.905	.885	.875	.860	.850
	20	.930	.915	.900	.890	.875	.865
	25	.940	.925	.910	.900	.890	.880
	30	.945	.930	.920	.910	.900	.890
	t 2	2 5 10 15 20 25	2 5 .870 10 .905 15 .920 20 .930 25 .940	2 5	2 5 .870 .835 .810 10 .905 .885 .865 15 .920 .905 .885 20 .930 .915 .900 25 .940 .925 .910	2 5 .870 .835 .810 .790 10 .905 .885 .865 .850 15 .920 .905 .885 .875 20 .930 .915 .900 .890 25 .940 .925 .910 .900	2 5 .870 .835 .810 .790 .770 10 .905 .885 .865 .850 .830 15 .920 .905 .885 .875 .860 20 .930 .915 .900 .890 .875 25 .940 .925 .910 .900 .890

k	t	n	.80	.90	.95	.975	.99	.995
3	2	5	.895	.860	.830	.810	.785	.770
		10	.925	.900	.880	.860	.840	.830
		15	.940	.920	.900	.885	.870	.860
		20	.945	.930	.910	.900	.885	.875
		25	.950	.935	.920	.910	.895	.890
		30	.955	.940	.930	.920	.905	.900

k	t	n	.80	.90	.95	.975	.99	.995
4	3	5	.880	.845	.820	.800	.775	.760
1		10	.915	.890	.870	.855	.835	.820
		15	.930	.910	.890	.880	.865	.855
		20	.940	.920	.910	.895	.880	.870
		25	.945	.930	.915	.905	.890	.880
		30	.950	.935	.925	.915	.900	.895

Table 1.C (continued)

For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Sample Case Finding the smallest n required for $P(CS \mid R) \geq p$ given values of k,t, δ , p^* and $\alpha = 0.15$

k	t	n	.80	.90	.95	.975	.99	.995
5	1	5	.870	.840	.810	.790	.770	.755
1		10	.905	.885	.865	.850	.830	.815
1		15	.925	.905	.890	.875	.860	.850
1		20	.935	.915	.900	.890	.880	.865
		25	.940	.925	.910	.900	.890	.880
1		30	.945	.930	.920	.910	.900	.890

k	t	n	.80	.90	.95	.975	.99	.995
5	3	5	.855	.825	.800	.780	.760	.740
1		10	.895	.875	.855	.840	.820	.810
1		15	.915	.895	.880	.870	.850	.845
		20	.925	.910	.895	.885	.870	.860
		25	.930	.920	.905	.895	.885	.875
+		30	.945	.925	.915	.905	.895	.885

k	t	n	.80	.90	.95	.975	.99	.995	
5	2	5	.855	.825	.800	.780	.760	.745	
1		10	.895	.875	.855	.840	.825	.810	
1		15	.915	.895	.880	.870	.855	.845	
1	1	20	.925	.910	.895	.885	.870	.860	
1	1	25	.930	.920	.905	.895	.885	.875	
1		30	.940	.925	.915	.905	.895	.885	

k	t	n	.80	.90	.95	.975	.99	.995
5	4	5	.870	.840	.810	.795	.770	.750
		10	.905	.885	.865	.850	.830	.815
		15	.925	.905	.890	.875	.860	.850
		20	.930	.915	.900	.890	.880	.870
		25	.940	.925	.910	.900	.890	.880
		30	.945	.930	.920	.910	.900	.890

For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Sample Case

Finding the smallest n required for $P(CS \mid R) \geq p$ given values of k, t, δ , p^* and $\alpha = 0.25$

Table 2. C

				p.									p.			
k t	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.99
2 1	5	.875	.820	.770	.735	.695	.665	4	1	5	.810	.760	.720	.690	.655	.63
T	10	.905	.865	.830	.805	.770	.750			10	.860	.825	.790	.770	.740	.72
\dagger	15	.925	.890	.860	.840	.810	.790			15	.885	.855	.830	.810	.785	.770
T	20	.935	.905	.880	.860	.835	.820			20	.900	.875	.850	.830	.810	.79:
T	25	.940	.915	.890	.870	.850	.835			25	.910	.885	.865	.850	.830	.81
T	30	.945	.920	.900	.880	.860	.850		T	30	.915	.895	.875	.860	.840	.830
											-					
				p.				0,000					p^{\bullet}			
k t	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
3 1	5	.835	.780	.740	.705	.670	.645	4	2	5	.790	.745	.710	.680	.645	.620
T	10	.880	.840	.810	.780	.750	.735			10	.850	.815	.785	.760	.735	.720
T	15	.900	.865	.840	.820	.795	.775		T	15	.875	.845	.820	.800	.780	.76
T	20	.915	.885	.860	.840	.820	.800		T	20	.890	.865	.840	.825	.800	.79
T	25	.920	.895	.875	.855	.835	.820	r	T	25	.900	.880	.860	.840	.820	.810
T	30	.930	.905	.885	.870	.850	.840		T	30	.910	.885	.870	.855	.835	.825
•					Olar	•		1	•				7.05	11		
				p.			s						p.			
k t	n	.80	.90	.95	.975	.99	.995	1	t	n	.80	.90	.95	.975	.99	.995
3 2	5	.830	.780	.740	.705	.670	.645	4	1 3	5	.810	.760	.720	.690	.650	.630
\dagger	10	.880	.840	.810	.780	.750	.730		T	10	.865	.825	.795	.770	.740	.72
\dagger	15	.900	.865	.840	.820	.790	.775		T	15	.885	.855	.830	.810	.785	.76
+	20	.915	.885	.860	.840	.820	.800		T	20	.900	.870	.850	.830	.810	.79
+	25	.920	.895	.875	.855	.835	.820		T	25	.910	.885	.865	.850	.825	.81

.835

.850

.925

30

.905

.880

.870

30

.915

.895

.875

.860

.840

.830

Table 2. C (continued)

For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Sample Case Finding the smallest n required for $P(CS \mid R) \geq p$ given values of k, t, δ , p^* and $\alpha = 0.25$

					p.				
k	t	n	.80	.90	.95	.975	.99	.995	
5	1	5	.795	.750	.710	.680	.650	.625	
1		10	.850	.815	.785	.760	.730	.715	
1		15	.875	.845	.820	.800	.780	.760	
		20	.895	.865	.840	.825	.805	.790	
		25	.905	.880	.860	.840	.820	.810	
		30	.910	.890	.870	.855	.835	.825	

k	t	n	.80	.90	.95	.975	.99	.995
5	3	5	.770	.725	.695	.665	.635	.615
		10	.830	.800	.770	.750	.720	.705
1		15	.860	.835	.810	.790	.770	.750
		20	.880	.855	.830	.815	.795	.780
1		25	.890	.870	.850	.835	.815	.800
1		30	.900	.880	.860	.850	.830	.815

					p.			
k	t	n	.80	.90	.95	.975	.99	.995
5	2	5	.770	.730	.695	.665	.635	.615
1		10	.830	.800	.770	.750	.720	.710
		15	.860	.830	.810	.790	.770	.755
1	1	20	.880	.855	.835	.815	.795	.780
1		25	.890	.870	.850	.835	.815	.800
1		30	.900	.880	.860	.850	.830	.820
_1	_ 1							

k	t	n	.80	.90	.95	.975	.99	.995
5	4	5	.795	.750	.710	.680	.650	.625
		10	.850	.815	.790	.760	.735	.715
		15	.875	.845	.820	.800	.780	.760
		20	.890	.865	.840	.825	.800	.790
		25	.905	.880	.860	.840	.825	.810
		30	.910	.890	.870	.855	.840	.825

Table 3. C For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Sample Case Finding the smallest n required for $P(CS \mid R) \geq p^*$ given values of k, t, δ , p^* and $\alpha = 0.50$

				p.									p.			
k t	n	.80	.90	.95	.975	.99	.995	1	t	n	.80	.90	.95	.975	.99	.9
2 1	5	.770	.670	.605	.550	.490	.460	4	1 1	5	.665	.590	.530	.490	.435	.4
t	10	.830	.755	.700	.650	.600	.570			10	.750	.685	.635	.600	.560	.5
t	15	.860	.795	.745	.705	.660	.630		T	15	.790	.735	.690	.660	.620	.6
T	20	.880	.820	.780	.745	.705	.680		T	20	.815	.770	.730	.700	.665	.6
T	25	.890	.835	.795	.765	.725	.700			25	.835	.790	.755	.730	.695	.6
	30	.900	.850	.810	.780	.750	.725			30	.845	.805	.770	.745	.715	.6
				p.									p.			
k t	n	.80	.90	.95	.975	.99	.995	1	k t	n	.80	.90	.95	.975	.99	.9
3 1	5	.700	.615	.555	.505	.455	.425	4	1 2	5	.630	.565	.510	.470	.425	.4
\dagger	10	.780	.710	.660	.620	.570	.545			10	.725	.670	.620	.585	.550	.5
t	15	.815	.755	.710	.675	.635	.610		T	15	.770	.720	.680	.650	.615	.5
T	20	.835	.785	.745	.715	.675	.650			20	.795	.750	.715	.685	.650	.6
T	25	.850	.805	.770	.740	.705	.685		T	25	.815	.775	.740	.715	.685	.6
	30	.865	.820	.785	.760	.725	.705		T	30	.830	.790	.760	.740	.710	.6
				100									140			_
1.	I	.80	.90	p*	.975	.99	.995	Б			.80	.90	p* .95	.975	.99	.9
k t	n	.80	.90			.99			k t		.80					
3 2	2 5	.700	.615	.555	.505	.455	.425		4 3	5	.660	.585	.530	.485	.435	.4
	10	.775	.710	.660	.620	.570	.545			10	.750	.690	.640	.600	.560	.5
	15	.815	.755	.710	.675	.635	.610			15	.790	.735	.690	.660	.625	.6
	20	.835	.785	.745	.710	.670	.650			20	.815	.765	.730	.700	.660	.6
	25	.850	.805	.770	.740	.705	.685			25	.830	.790	.750	.725	.690	.(
1	30	865	820	785	760	725	.705			30	.845	.805	.770	.745	.720	.6

Table 3. C (continued)

For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Sample Case Finding the smallest n required for $P(CS \mid R) \ge p^*$ given values of k, t, δ , p^* and $\alpha = 0.50$

					p.			
k	t	n	.80	.90	.95	.975	.99	.995
5	1	5	.640	.565	.515	.475	.430	.400
1		10	.730	.670	.625	.590	.550	.520
1	1	15	.775	.720	.680	.650	.610	.590
1		20	.800	.755	.720	.690	.655	.630
1		25	.820	.780	.745	.715	.680	.660
1		30	.835	.795	.760	.735	.710	.690

k	t	n	.80	.90	.95	.975	.99	.995
5	3	5	.600	.540	.490	.455	.410	.380
1		10	.700	.645	.600	.570	.530	.505
1		15	.745	.700	.660	.635	.600	.580
		20	.775	.735	.700	.670	.640	.620
1		25	.800	.760	.730	.700	.670	.650
1		30	.815	.780	.750	.725	.695	.675

k	t	n	.80	.90	.95	.975	.99	.995
5	2	5	.600	.535	.490	.455	.415	.385
		10	.700	.645	.600	.570	.530	.510
1		15	.745	.700	.660	.635	.600	.575
	1	20	.775	.735	.700	.675	.640	.620
1		25	.795	.760	.730	.700	.670	.650
1	T	30	.815	.780	.750	.720	.695	.680

k	t	n	.80	.90	.95	.975	.99	.995
5	4	5	.640	.570	.515	.475	.430	.400
		10	.730	.670	.625	.590	.545	.520
		15	.770	.720	.680	.650	.610	.590
		20	.800	.755	.720	.690	.650	.630
1		25	.820	.780	.745	.715	.685	.665
1	Н	30	.835	.795	.765	.740	.710	.690

Table 4. C For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Sample Case Finding the smallest n required for $P(CS \mid R) \geq p^*$ given values of k, t, δ , p^* and $\alpha = 0.75$

k	t	n	.80	.90	.95	.975	.99	.995
2	1	5	.690	.565	.480	.420	.355	.320
1		10	.770	.670	.595	.540	.475	.445
		15	.805	.720	.655	.610	.550	.515
		20	.830	.755	.700	.650	.600	.570
1		25	.845	.770	.720	.680	.630	.600
1		30	.855	.790	.740	.700	.655	.630

k	t	n	.80	.90	.95	.975	.99	.995
4	1	5	.550	.435	.380	.335	.295	.285
		10	.660	.580	.520	.475	.430	.400
		15	.710	.640	.590	.550	.500	.475
		20	.745	.680	.635	.595	.550	.525
		25	.770	.710	.670	.635	.585	.560
		30	.785	.730	.690	.655	.620	.590

k	t	n	.80	.90	.95	.975	.99	.995
3	1	5	.595	.495	.425	.375	.320	.295
1		10	.695	.610	.550	.500	.445	.420
1		15	.745	.670	.615	.570	.520	.490
1		20	.770	.705	.655	.615	.570	.540
1		25	.795	.730	.685	.650	.600	.580
1		30	.810	.750	.710	.675	.630	.605

k	t	n	.80	.90	.95	.975	.99	.995
4	2	5	.515	.440	.380	.335	.295	.285
		10	.630	.560	.505	.465	.420	.390
		15	.680	.620	.570	.535	.490	.470
1		20	.720	.660	.620	.580	.540	.510
		25	.745	.690	.650	.615	.580	.550
+		30	.765	.715	.675	.645	.605	.585

p*								
k	t	n	.80	.90	.95	.975	.99	.995
3	2	5	.590	.500	.425	.375	.320	.305
1		10	.695	.610	.550	.495	.445	.415
1		15	.740	.670	.615	.565	.520	.500
1		20	.770	.705	.655	.615	.565	.540
1		25	.795	.730	.685	.645	.600	.580
1		30	.810	.750	.710	.675	.630	.600

k	t	n	.80	.90	.95	.975	.99	.995
4	3	5	.550	.460	.395	.350	.300	.290
1		10	.660	.580	.525	.480	.435	.405
		15	.710	.640	.590	.550	.505	.475
		20	.745	.680	.630	.595	.550	.520
		25	.765	.710	.665	.630	.590	.560
		30	.785	.730	.690	.655	.620	.595

Table 4. C (continued)

For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Sample Case Finding the smallest n required for $P(CS \mid R) \ge p^*$ given values of k, t, δ , p^* and $\alpha = 0.75$

				p.			
t	n	.80	.90	.95	.975	.99	.995
1	5	.520	.440	.380	.340	.295	.285
	10	.630	.560	.505	.465	.415	.390
	15	.690	.625	.575	.535	.500	.465
	20	.725	.665	.620	.585	.540	.515
	25	.750	.695	.650	.620	.575	.550
	30	.770	.720	.675	.645	.605	.580
	t 1	1 5 10 15 20 25	1 5 .520 10 .630 15 .690 20 .725 25 .750	1 5 .520 .440 10 .630 .560 15 .690 .625 20 .725 .665 25 .750 .695	1 5 .520 .440 .380 10 .630 .560 .505 15 .690 .625 .575 20 .725 .665 .620 25 .750 .695 .650	1 5 .520 .440 .380 .340 10 .630 .560 .505 .465 15 .690 .625 .575 .535 20 .725 .665 .620 .585 25 .750 .695 .650 .620	1 5 .520 .440 .380 .340 .295 10 .630 .560 .505 .465 .415 15 .690 .625 .575 .535 .500 20 .725 .665 .620 .585 .540 25 .750 .695 .650 .620 .575

k	t	n	.80	.90	.95	.975	.99	.995
5	3	5	.480	.410	.360	.320	.290	.285
		10	.595	.530	.480	.445	.400	.375
		15	.655	.595	.550	.520	.475	.450
1		20	.690	.640	.600	.565	.525	.500
		25	.720	.670	.635	.600	.560	.540
7		30	.745	.695	.660	.625	.590	.570

					p.			
k	t	n	.80	.90	.95	.975	.99	.995
5	2	5	.475	.405	.355	.315	.290	.285
1		10	.595	.530	.480	.445	.400	.375
1		15	.655	.600	.550	.520	.475	.450
1		20	.695	.640	.600	.565	.525	.500
1		25	.720	.670	.630	.600	.560	.540
1		30	.740	.695	.660	.625	.590	.570

k	t	n	.80	.90	.95	.975	.99	.995
5	4	5	.525	.440	.380	.335	.295	.290
1		10	.630	.560	.510	.465	.420	.390
1		15	.690	.625	.575	.535	.490	.465
1		20	.725	.665	.620	.585	.540	.510
		25	.750	.695	.650	.620	.580	.555
		30	.770	.720	.680	.645	.605	.585

Table 5. C For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Sample Case Finding the smallest n required for $P(CS \mid R) \geq p$ given values of k, t, δ , and p and $\alpha = 1$

k	t	n	.80	.90	.95	.975	.99	.995
2	1	5	.620	.480	.390	.325	.270	.225
1		10	.710	.600	.515	.455	.390	.355
1		15	.760	.660	.590	.530	.470	.430
1		20	.790	.700	.630	.560	.520	.490
1		25	.805	.720	.660	.610	.560	.520
1		30	.815	.745	.680	.635	.590	.550

t	n	.80	.90	.95	.975	.99	.995
1	5	.470	.375	.310	.265	.210	.190
	10	.585	.500	.435	.390	.345	.320
	15	.650	.570	.510	.465	.420	.390
	20	.690	.605	.560	.515	.470	.435
	25	.715	.650	.595	.555	.515	.480
	30	.735	.670	.630	.585	.540	.510
	1	1 5 10 15 20 25	1 5 .470 10 .585 15 .650 20 .690 25 .715	1 5 .470 .375 10 .585 .500 15 .650 .570 20 .690 .605 25 .715 .650	1 5 .470 .375 .310 10 .585 .500 .435 15 .650 .570 .510 20 .690 .605 .560 25 .715 .650 .595	1 5 .470 .375 .310 .265 10 .585 .500 .435 .390 15 .650 .570 .510 .465 20 .690 .605 .560 .515 25 .715 .650 .595 .555	1 5 .470 .375 .310 .265 .210 10 .585 .500 .435 .390 .345 15 .650 .570 .510 .465 .420 20 .690 .605 .560 .515 .470 25 .715 .650 .595 .555 .515

k	t	n	.80	.90	.95	.975	.99	.995
3	1	5	.515	.410	.345	.280	.235	.215
1		10	.630	.530	.460	.415	.360	.325
1		15	.685	.600	.535	.485	.440	.400
1		20	.720	.640	.580	.535	.490	.455
1		25	.750	.670	.620	.575	.530	.495
+		30	.760	.700	.645	.600	.560	.520

k	t	n	.80	.90	.95	.975	.99	.995
4	2	5	.425	.345	.285	.245	.220	.180
1		10	.550	.475	.415	.375	.350	.310
		15	.620	.545	.495	.450	.410	.375
		20	.655	.590	.540	.500	.460	.425
		25	.690	.630	.575	.540	.495	.470
		30	.710	.650	.605	.575	.530	.500

k	t	n	.80	.90	.95	.975	.99	.995
3	2	5	.510	.405	.335	.270	.230	.210
1		10	.625	.530	.460	.410	.355	.325
1		15	.685	.600	.535	.485	.440	.400
1		20	.720	.640	.580	.535	.485	.455
1	-0	25	.740	.675	.615	.575	.530	.500
1		30	.760	.695	.645	.605	.555	.520

k	t	n	.80	.90	.95	.975	.99	.995
4	3	5	.460	.370	.310	.250	.220	.190
1		10	.590	.500	.440	.390	.350	.335
		15	.650	.570	.515	.470	.420	.390
		20	.685	.615	.560	.515	.470	.435
+		25	.715	.645	.595	.555	.510	.480
		30	.735	.670	.620	.585	.540	.515

Table 5. C (continued)

For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Sample Case Finding the smallest n required for $P(CS \mid R) \ge p^*$ given values of k, t, δ , and p^* and $\alpha = 1$

					p.			
k	t	n	.80	.90	.95	.975	.99	.995
5	1	5	.435	.345	.275	.240	.205	.190
1		10	.560	.475	.415	.375	.340	.315
1		15	.620	.550	.495	.455	.400	.375
1		20	.665	.595	.545	.505	.460	.430
1		25	.695	.630	.575	.540	.495	.470
1		30	.715	.655	.605	.575	.530	.500
_ I					1	1	1	1

k	t	n	.80	.90	.95	.975	.99	.995
5	3	5	.385	.310	.260	.225	.195	.170
1		10	.515	.440	.395	.355	.330	.290
1		15	.580	.520	.470	.435	.390	.355
1		20	.630	.570	.520	.485	.440	.415
		25	.660	.600	.560	.525	.480	.455
		30	.685	.630	.585	.555	.515	.485

					p.			
k	t	n	.80	.90	.95	.975	.99	.995
5	2	5	.385	.300	.255	.220	.195	.175
1		10	.515	.440	.395	.355	.325	.290
		15	.580	.520	.475	.435	.390	.360
		20	.630	.570	.520	.485	.440	.410
		25	.660	.600	.560	.525	.480	.455
1		30	.685	.630	.585	.550	.520	.490
-1	-							

k	t	n	.80	.90	.95	.975	.99	.995
5	4	5	.435	.350	.295	.245	.205	.200
1		10	.555	.480	.415	.375	.355	.325
		15	.625	.550	.495	.455	.410	.375
		20	.665	.600	.545	.505	.455	.425
		25	.695	.630	.580	.540	.495	.475
		30	.715	.660	.615	.575	.535	.500

Table 6. C For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Sample Case Finding the smallest n required for $P(CS \mid R) \geq p$ given values of k, t, δ , p^* and $\alpha = 2.0$

					p			
k	t	n	.80	.90	.95	.975	.99	.995
2	1	5	.450	.295	.210	.155	.105	.090
1		10	.590	.440	.350	.280	.220	.190
1		15	.650	.520	.430	.370	.300	.260
		20	.695	.570	.490	.430	.370	.330
1	1	25	.720	.605	.525	.465	.400	.365
†		30	.740	.635	.560	.495	.440	.400
- 1								

k	t	n	.80	.90	.95	.975	.99	.995
4	1	5	.285	.195	.140	.105	.075	.060
		10	.425	.330	.260	.220	.180	.150
		15	.505	.410	.345	.300	.250	.220
1		20	.560	.470	.405	.360	.310	.275
+		25	.595	.510	.450	.405	.350	.320
+	П	30	.620	.540	.485	.435	.385	.355

					p.			
k	t	n	.80	.90	.95	.975	.99	.995
3	1	5	.330	.225	.160	.120	.085	.070
1		10	.480	.365	.295	.240	.190	.165
1		15	.555	.445	.375	.325	.270	.235
1		20	.600	.500	.435	.380	.325	.290
1		25	.640	.540	.475	.425	.365	.335
1		30	.660	.575	.510	.455	.405	.370
_ [- 1							

k	t	n	.80	.90	.95	.975	.99	.995
4	2	5	.245	.170	.125	.095	.070	.055
		10	.390	.300	.245	.205	.170	.145
		15	.470	.385	.330	.285	.245	.210
		20	.525	.445	.385	.340	.285	.260
		25	.560	.485	.430	.390	.340	.310
1		30	.595	.515	.465	.420	.375	.345

				p			
t	n	.80	.90	.95	.975	.99	.995
2	5	.330	.220	.160	.120	.085	.070
1	10	.475	.365	.295	.240	.190	.160
	15	.555	.450	.375	.320	.270	.235
	20	.600	.500	.435	.375	.325	.290
	25	.635	.540	.475	.420	.365	.340
	30	.660	.575	.510	.460	.405	.370
	t 2	2 5 10 15 20 25	2 5 .330 10 .475 15 .555 20 .600 25 .635	2 5 .330 .220 10 .475 .365 15 .555 .450 20 .600 .500 25 .635 .540	2 5 .330 .220 .160 10 .475 .365 .295 15 .555 .450 .375 20 .600 .500 .435 25 .635 .540 .475	2 5 .330 .220 .160 .120 10 .475 .365 .295 .240 15 .555 .450 .375 .320 20 .600 .500 .435 .375 25 .635 .540 .475 .420	2 5 .330 .220 .160 .120 .085 10 .475 .365 .295 .240 .190 15 .555 .450 .375 .320 .270 20 .600 .500 .435 .375 .325 25 .635 .540 .475 .420 .365

					p			
k	t	n	.80	.90	.95	.975	.99	.995
4	3	5	.280	.190	.140	.105	.075	.060
		10	.430	.335	.270	.220	.180	.150
		15	.505	.410	.345	.300	.260	.220
		20	.555	.470	.405	.355	.300	.270
		25	.595	.510	.445	.400	.350	.320
		30	.620	.540	.485	.435	.390	.360

Table 6. C (continued)

For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Sample Case Finding the smallest n required for $P(CS \mid R) \geq p$ given values of k, t, δ , p^* and $\alpha = 2.0$

k	t	n	.80	.90	.95	.975	.99	.995
5	1	5	.250	.175	.125	.095	.070	.060
1		10	.395	.305	.245	.205	.170	.140
1		15	.480	.390	.330	.285	.235	.210
1		20	.530	.450	.390	.345	.295	.265
1	٦	25	.570	.490	.430	.385	.335	.310
1		30	.600	.520	.465	.420	.370	.340

k	t	n	.80	.90	.95	.975	.99	.995
5	3	5	.210	.145	.110	.085	.065	.055
		10	.350	.270	.225	.190	.150	.130
		15	.430	.355	.305	.265	.225	.200
		20	.485	.415	.360	.320	.280	.250
1		25	.530	.455	.405	.365	.325	.295
1		30	.560	.490	.440	.400	.355	.330

				p^{\cdot}			
t	n	.80	.90	.95	.975	.99	.995
2	5	.205	.145	.110	.085	.065	.055
	10	.350	.270	.225	.190	.150	.130
	15	.430	.355	.305	.265	.225	.200
	20	.485	.415	.360	.320	.280	.250
	25	.530	.455	.405	.365	.325	.295
	30	.560	.490	.440	.400	.355	.325
		2 5 10 15 20 25	2 5 .205 10 .350 15 .430 20 .485 25 .530	2 5 .205 .145 10 .350 .270 15 .430 .355 20 .485 .415 25 .530 .455	t n .80 .90 .95 2 5 .205 .145 .110 10 .350 .270 .225 15 .430 .355 .305 20 .485 .415 .360 25 .530 .455 .405	t n .80 .90 .95 .975 2 5 .205 .145 .110 .085 10 .350 .270 .225 .190 15 .430 .355 .305 .265 20 .485 .415 .360 .320 25 .530 .455 .405 .365	t n

					p.			
k	t	n	.80	.90	.95	.975	.99	.995
5	4	5	.250	.170	.130	.100	.070	.060
		10	.395	.310	.250	.205	.170	.145
1		15	.475	.390	.330	.285	.240	.210
		20	.530	.450	.390	.340	.290	.260
		25	.570	.490	.430	.385	.340	.310
		30	.600	.525	.465	.425	.380	.350

Table 7. C For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Sample Case Finding the smallest n required for $P(CS \mid R) \geq p$ given values of k, t, δ , p^* and $\alpha = 3.0$

				p			
t	n	.80	.90	.95	.975	.99	.995
2 1	5	.375	.220	.140	.095	.060	.045
	10	.530	.380	.280	.215	.160	.130
	15	.605	.465	.375	.305	.240	.200
	20	.655	.525	.435	.370	.310	.270
1	25	.680	.560	.475	.410	.350	.310
	30	.710	.590	.510	.445	.380	.345
	t 1	1 5 10 15 20 25	1 5 .375 10 .530 15 .605 20 .655 25 .680	1 5 .375 .220 10 .530 .380 15 .605 .465 20 .655 .525 25 .680 .560	1 5 .375 .220 .140 10 .530 .380 .280 15 .605 .465 .375 20 .655 .525 .435 25 .680 .560 .475	1 5 .375 .220 .140 .095 10 .530 .380 .280 .215 15 .605 .465 .375 .305 20 .655 .525 .435 .370 25 .680 .560 .475 .410	1 5 .375 .220 .140 .095 .060 10 .530 .380 .280 .215 .160 15 .605 .465 .375 .305 .240 20 .655 .525 .435 .370 .310 25 .680 .560 .475 .410 .350

k	t	n	.80	.90	.95	.975	.99	.995
4	1	5	.205	.125	.085	.060	.035	.030
1		10	.365	.265	.200	.160	.120	.110
1		15	.450	.350	.285	.240	.190	.160
1		20	.510	.415	.350	.300	.250	.215
1		25	.555	.460	.395	.345	.295	.265
1		30	.580	.495	.430	.380	.330	.295

k	t	n	.80	.90	.95	.975	.99	.995
3	1	5	.250	.155	.100	.070	.045	.035
		10	.415	.300	.230	.175	.130	.105
1		15	.500	.390	.315	.260	.205	.175
		20	.550	.450	.375	.315	.270	.235
		25	.595	.495	.425	.365	.310	.280
1		30	.620	.525	.460	.405	.350	.310

k	t	n	.80	.90	.95	.975	.99	.995
4	2	5	.170	.105	.070	.050	.035	.025
		10	.325	.240	.190	.145	.110	.090
		15	.410	.325	.265	.225	.185	.150
		20	.425	.390	.330	.280	.230	.200
		25	.510	.430	.375	.330	.280	.255
1		30	.545	.470	.410	.365	.315	.285

					<i>p</i> •			
k	t	n	.80	.90	.95	.975	.99	.995
3	2	5	.250	.155	.100	.070	.040	.030
1		10	.415	.300	.230	.175	.130	.105
		15	.500	.390	.315	.260	.205	.175
		20	.550	.450	.375	.320	.270	.230
		25	.595	.490	.420	.365	.310	.280
1		30	.620	.530	.460	.405	.350	.310

k	t	n	.80	.90	.95	.975	.99	.995
4	3	5	.200	.120	.080	.055	.035	.025
	1	10	.365	.270	.205	.160	.120	.100
		15	.450	.350	.285	.240	.195	.160
		20	.505	.410	.345	.295	.245	.215
		25	.550	.460	.390	.345	.300	.260
		30	.580	.490	.430	.380	.330	.300

Table 7. C (continued)

For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Sample Case Finding the smallest n required for $P(CS \mid R) \geq p^*$ given values of k, t, δ , p^* and $\alpha = 3.0$

					p^{\bullet}			
k	t	n	.80	.90	.95	.975	.99	.995
5	5 1	5	.175	.110	.075	.050	.035	.025
1		10	.330	.240	.185	.145	.110	.090
1		15	.420	.330	.270	.225	.180	.155
		20	.480	.390	.330	.285	.240	.210
		25	.525	.440	.375	.325	.280	.250
1		30	.555	.470	.410	.365	.320	.280
- 1					1	1		-

k	t	n	.80	.90	.95	.975	.99	.995
5	3	5	.140	.090	.060	.040	.030	.020
		10	.285	.210	.160	.130	.100	.080
		15	.370	.295	.245	.205	.165	.140
		20	.430	.360	.305	.260	.220	.190
		25	.480	.400	.350	.305	.265	.240
		30	.510	.440	.385	.345	.300	.270

k	t	n	.80	.90	.95	.975	.99	.995
5	2	5	.140	.085	.060	.040	.030	.020
1		10	.285	.210	.160	.130	.100	.080
1		15	.370	.295	.245	.205	.165	.140
1		20	.430	.360	.305	.260	.220	.190
+		25	.480	.400	.350	.305	.265	.240
1		30	.510	.440	.385	.345	.295	.270

k	t	n	.80	.90	.95	.975	.99	.995
5	4	5	.180	.110	.075	.050	.035	.025
		10	.330	.240	.185	.145	.110	.090
		15	.420	.330	.270	.225	.180	.150
		20	.480	.390	.330	.280	.230	.200
Ĭ		25	.520	.435	.375	.325	.280	.255
		30	.555	.470	.415	.365	.320	.290

Table 8. C For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Sample Case Finding the smallest n required for $P(CS \mid R) \geq p$ given values of k, t, δ , p^* and $\alpha = 4.0$

k	t	n	.80	.90	.95	.975	.99	.995
2	1	5	.330	.175	.105	.065	.040	.025
1	T	10	.505	.345	.250	.185	.130	.100
1	T	15	.585	.440	.340	.275	.210	.175
1		20	.635	.500	.410	.345	.280	.240
1	T	25	.665	.540	.450	.385	.320	.280
1		30	.695	.570	.485	.425	.355	.320

					p			
k	t	n	.80	.90	.95	.975	.99	.995
4	1	5	.165	.095	.055	.035	.020	.015
1		10	.335	.230	.170	.130	.090	.075
1		15	.420	.320	.260	.205	.165	.135
1		20	.485	.390	.320	.275	.215	.190
1		25	.525	.435	.370	.320	.270	.240
1		30	.560	.470	.410	.355	.300	.270

					p.			
k	t	n	.80	.90	.95	.975	.99	.995
3	1	5	.210	.115	.070	.045	.025	.020
		10	.385	.270	.195	.145	.105	.080
		15	.475	.360	.285	.230	.180	.150
1		20	.530	.420	.350	.295	.235	.210
1		25	.575	.470	.395	.345	.285	.250
1		30	.605	.505	.435	.380	.325	.290
- 1				I	I	1	1	

k	t	n	.80	.90	.95	.975	.99	.995
4	2	5	.135	.075	.045	.030	.020	.015
		10	.290	.210	.155	.115	.085	.065
		15	.385	.295	.240	.195	.155	.130
1		20	.445	.360	.300	.255	.205	.175
		25	.490	.410	.350	.305	.255	.225
		30	.525	.445	.385	.340	.290	.260

k	t	n	.80	.90	.95	.975	.99	.995
3	2	5	.210	.115	.070	.045	.025	.015
		10	.385	.270	.195	.145	.100	.080
1	1	15	.475	.360	.285	.230	.180	.150
		20	.530	.420	.350	.295	.240	.210
1		25	.575	.470	.395	.340	.285	.250
1		30	.600	.505	.435	.380	.320	.290

k	t	n	.80	.90	.95	.975	.99	.995
4	3	5	.165	.090	.055	.035	.020	.015
		10	.335	.235	.175	.130	.090	.070
		15	.420	.325	.260	.210	.165	.135
-		20	.480	.385	.320	.270	.215	.190
		25	.530	.430	.370	.320	.265	.235
		30	.560	.470	.405	.355	.305	.270

Table 8. C (continued)

For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Sample Case Finding the smallest n required for $P(CS \mid R) \ge p$ given values of k, t, δ , p^* and $\alpha = 4.0$

k	t	n	.80	.90	.95	.975	.99	.995
5	1	5	.140	.080	.050	.030	.020	.015
1		10	.295	.210	.150	.115	.085	.065
1		15	.395	.300	.240	.195	.155	.130
		20	.455	.365	.305	.255	.205	.180
1		25	.500	.410	.350	.300	.255	.230
1		30	.535	.450	.390	.340	.290	.260

k	t	n	.80	.90	.95	.975	.99	.995
5	3	5	.105	.060	.040	.025	.015	.010
1		10	.250	.180	.130	.105	.070	.055
1		15	.345	.270	.215	.175	.140	.115
1	1	20	.405	.330	.275	.235	.190	.170
		25	.450	.380	.320	.280	.235	.210
1	1	30	.490	.415	.360	.320	.275	.245

k	t	n	.80	.90	.95	.975	.99	.995
5	2	5	.105	.060	.040	.025	.015	.010
1		10	.250	.180	.130	.105	.070	.055
1		15	.345	.270	.215	.175	.140	.115
		20	.405	.330	.280	.235	.195	.170
		25	.450	.380	.320	.280	.235	.210
1	7	30	.490	.415	.360	.320	.275	.245

k	t	n	.80	.90	.95	.975	.99	.995
5	4	5	.140	.080	.050	.030	.020	.015
		10	.300	.210	.150	.115	.085	.065
		15	.390	.300	.240	.195	.150	.125
		20	.455	.365	.300	.255	.205	.180
		25	.500	.410	.350	.305	.255	.230
		30	.530	.450	.390	.345	.295	.265

Table 9. C For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Sample Case Finding the smallest n required for $P(CS \mid R) \geq p^*$ given values of k, t, δ , p^* and $\alpha = 5.0$

k	t	n	.80	.90	.95	.975	.99	.995
2	1	5	.305	.150	.080	.050	.025	.015
1		10	.490	.330	.230	.170	.110	.090
1		15	.570	.425	.330	.265	.195	.160
1		20	.630	.490	.395	.330	.265	.230
1		25	.655	.530	.440	.370	.305	.270
+		30	.685	.560	.475	.410	.340	.305

k	t	n	.80	.90	.95	.975	.99	.995
4	1	5	.140	.075	.040	.025	.015	.010
1		10	.315	.215	.150	.115	.075	.060
1		15	.405	.310	.240	.195	.145	.120
1		20	.470	.375	.310	.260	.205	.180
	7	25	.520	.420	.360	.305	.255	.225
7	1	30	.545	.460	.395	.345	.285	.255

					p^{\bullet}			
k	t	n	.80	.90	.95	.975	.99	.995
3	1	5	.180	.090	.055	.030	.020	.010
		10	.365	.250	.175	.130	.090	.065
		15	.460	.345	.270	.215	.160	.130
		20	.520	.410	.335	.275	.225	.190
		25	.560	.460	.385	.330	.270	.240
		30	.595	.495	.420	.365	.305	.275
				1	1	1	I	1

				p			
t	n	.80	.90	.95	.975	.99	.995
2	5	.115	.060	.035	.020	.010	.005
	10	.275	.190	.135	.100	.070	.050
	15	.370	.280	.220	.180	.135	.115
	20	.435	.350	.285	.240	.190	.160
	25	.475	.395	.335	.290	.240	.210
	30	.515	.430	.370	.325	.275	.250
		2 5 10 15 20 25	2 5 .115 10 .275 15 .370 20 .435 25 .475	2 5 .115 .060 10 .275 .190 15 .370 .280 20 .435 .350 25 .475 .395	t n	t n	t n

					p.			
k	t	n	.80	.90	.95	.975	.99	.995
3	2	5	.180	.090	.050	.030	.020	.010
		10	.365	.250	.175	.130	.085	.065
		15	.460	.350	.270	.215	.160	.130
		20	.520	.410	.335	.280	.225	.190
		25	.560	.460	.385	.325	.270	.240
		30	.590	.495	.420	.370	.305	.275
				1	1	1	1	1

k	t	n	.80	.90	.95	.975	.99	.995
4	3	5	.140	.070	.040	.025	.015	.010
		10	.315	.220	.160	.115	.080	.060
		15	.405	.310	.245	.195	.150	.120
		20	.470	.370	.305	.255	.200	.175
		25	.520	.420	.355	.305	.250	.220
		30	.550	.455	.390	.345	.290	.260

Table 9. C (continued)

For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Sample Case Finding the smallest n required for $P(CS \mid R) \ge p^*$ given values of k, t, δ , p^* and $\alpha = 5.0$

k	t	n	.80	.90	.95	.975	.99	.995
5	1	5	.115	.060	.035	.020	.010	.005
1		10	.280	.190	.135	.100	.070	.050
1		15	.380	.290	.225	.180	.135	.110
1		20	.440	.350	.290	.245	.190	.165
		25	.490	.400	.340	.290	.240	.210
1		30	.520	.440	.375	.325	.275	.245

k	t	n	.80	.90	.95	.975	.99	.995
5	3	5	.085	.045	.025	.015	.010	.005
1		10	.235	.160	.115	.085	.060	.045
1		15	.330	.255	.200	.165	.120	.100
1		20	.390	.320	.260	.220	.175	.155
1		25	.440	.365	.310	.265	.225	.200
7		30	.480	.405	.350	.305	.260	.230

					p^{\bullet}			
k	t	n	.80	.90	.95	.975	.99	.995
5	2	5	.085	.045	.025	.015	.010	.005
1	7	10	.235	.160	.120	.085	.060	.045
1	1	15	.330	.250	.200	.165	.120	.100
1	7	20	.390	.320	.265	.220	.175	.150
1	1	25	.440	.365	.310	.265	.225	.200
1		30	.480	.405	.350	.305	.255	.230
- 1		5						

					p			
k	t	n	.80	.90	.95	.975	.99	.995
5	4	5	.115	.060	.035	.020	.010	.005
1		10	.280	.190	.135	.100	.070	.050
1		15	.375	.285	.225	.180	.135	.110
1		20	.440	.350	.290	.240	.190	.165
1		25	.485	.400	.335	.290	.240	.215
1		30	.520	.440	.375	.330	.280	.250

Appendix D Probability Tables for Estimator $\tilde{\alpha}$

Table 1. D $\delta^* \mbox{ values when using the estimator } \widetilde{\alpha}$

k	t	n	.80	.90	.95	.975	.99	.995
	_		100000			11222073307	-1-1-0	
2	2 1	5	.630	.490	.390	.320	.250	.210
		10	.745	.635	.555	.500	.430	.390
		15	.790	.700	.635	.575	.520	.480
		20	.820	.740	.675	.625	.570	.540
1		25	.845	.765	.710	.665	.610	.580
1	1	30	.850	.785	.730	.690	.640	.610

k	t	n	.80	.90	.95	.975	.99	.995
4	1	5	.500	.395	.320	.260	.200	.175
1		10	.640	.550	.490	.435	.375	.345
1		15	.700	.625	.570	.525	.470	.435
1		20	.736	.670	.615	.575	.530	.500
1		25	.765	.700	.655	.615	.570	.540
1	1	30	.780	.725	.680	.645	.600	.570

k	t	n	.80	.90	.95	.975	.99	.995
3	1	5	.540	.420	.340	.280	.220	.210
		10	.670	.580	.510	.455	.400	.390
		15	.730	.650	.590	.540	.480	.480
1		20	.760	.690	.640	.595	.540	.540
+		25	.785	.720	.670	.630	.580	.580
1		30	.805	.745	.695	.660	.615	.610

k	t	n	.80	.90	.95	.975	.99	.995
4	2	5	.440	.355	.285	.240	.195	.175
1		10	.595	.530	.470	.420	.370	.340
1		15	.660	.610	.555	.510	.460	.430
		20	.705	.655	.610	.565	.520	.490
		25	.735	.690	.640	.605	.565	.540
1		30	.755	.715	.670	.640	.600	.570

• 1	. 1		1 00	1 00	P 05	075	00	005
k	t	n	.80	.90	.95	.975	.99	.995
3	2	5	.510	.400	.320	.265	.210	.185
1		10	.655	.565	.500	.445	.385	.355
1		15	.720	.640	.580	.530	.480	.445
1		20	.750	.685	.630	.585	.540	.510
1		25	.780	.715	.665	.625	.580	.550
7		30	.800	.740	.690	.665	.610	.580

k	t	n	.80	.90	.95	.975	.99	.995
4	3	5	.455	.355	.285	.240	.195	.175
1		10	.615	.530	.470	.420	.370	.340
		15	.680	.610	.555	.510	.460	.430
		20	.720	.655	.610	.565	.520	.490
100		25	.750	.690	.640	.605	.565	.540
7		30	.770	.715	.670	.640	.600	.570

Table1.D (continued)

δ^* values when using the estimator \widetilde{lpha}

					p.			
k	t	n	.80	.90	.95	.975	.99	.995
5	1	5	.475	.380	.305	.250	.195	.180
		10	.620	.535	.470	.425	.370	.340
		15	.680	.610	.560	.510	.460	.430
1		20	.720	.660	.610	.565	.520	.490
1		25	.745	.690	.640	.605	.560	.530
1		30	.765	.710	.670	.630	.590	.565
						1		

k	t	n	.80	.90	.95	.975	.99	.995
5	3	5	.390	.310	.250	.210	.190	.170
		10	.555	.480	.430	.390	.345	.310
		15	.625	.565	.520	.480	.430	.400
		20	.675	.620	.575	.540	.495	.470
		25	.705	.655	.610	.580	.540	.510
1		30	.730	.680	.640	.610	.570	.550

k	t	n	.80	.90	.95	.975	.99	.995
5	2	5	.405	.320	.260	.220	.190	.170
1		10	.565	.490	.440	.395	.345	.320
1		15	.635	.570	.520	.485	.440	.410
1		20	.680	.625	.580	.545	.500	.470
+		25	.710	.660	.615	.580	.540	.510
+		30	.730	.685	.645	.615	.575	.550

k	t	n	.80	.90	.95	.975	.99	.995
5	4	5	.420	.330	.265	.220	.190	.170
1		10	.580	.505	.450	.405	.355	.325
1		15	.655	.590	.540	.495	.450	.420
1		20	.700	.640	.590	.555	.510	.480
1		25	.730	.675	.630	.595	.550	.525
1		30	.755	.700	.660	.625	.580	.560

Appendix E Probability Tables for Estimator $\hat{\beta}$ Large Samples

Table 1. E For Estimator $\hat{\beta}$ Selecting the t-best: Complete Large Sample Approximation Case Finding the smallest n required for $P(CS \mid R) \geq p^*$ given values of k, t, δ , p^* and $\alpha = 0.25$

					p^{\bullet}									p.			
4	t	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
2	1	30	.945	.920	.900	.880	.860	.845	4	2	30	.910	.885	.870	.855	.835	.825
1	1	40	.955	.930	.910	.895	.880	.865			40	.920	.900	.885	.870	.855	.845
t		50	.960	.940	.920	.905	.890	.880	ı		50	.930	.910	.895	.885	.870	.860
1	1	75	.965	.950	.935	.925	.910	.900			75	.940	.925	.915	.905	.890	.885
					p.			//	-					p.			
k	t	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
3	1	30	.930	.905	.885	.865	.850	.835	4	3	30	.915	.895	.875	.860	.840	.825
1	1	40	.940	.915	.900	.885	.865	.855	Ħ		40	.930	.905	.890	.875	.860	.850
+	1	50	.945	.925	.910	.895	.880	.870	T		50	.935	.915	.900	.890	.875	.86
			_		005	.915	.900	.890			75	.945	.930	.920	.910	.900	.890
		75	.955	.940	.925	.915	.900	.890	L		/5		.,,,	.,,,,			
	1	75	.955	.940	.925	.913	.900	.890	L		/5	1.7.10		<i>p</i> *			
k	t		.80	.940		.975	.99	.995	k	t		.80	.90		.975	.99	
-	t 2	n			p.				k		n			<i>p</i> .			.99:
-	-	n	.80	.90	p* .95	.975	.99	.995			n	.80	.90	p* .95	.975	.99	.99:
-	-	n 30	.80	.90	p* .95 .880	.975	.99	.995			n 30	.80	.90	p* .95 .870	.975	.99	.99:
-	-	n 30 40	.80 .925 .935	.90 .900	p* .95 .880 .900	.975 .865 .885	.99 .845 .865	.995 .835 .855			n 30 40	.80 .910 .925	.90 .890 .900	p* .95 .870 .885	.975 .855 .875	.99 .835 .855	.995 .825 .845 .860
-	-	n 30 40 50	.80 .925 .935	.90 .900 .915	p* .95 .880 .900 .910 .925	.975 .865 .885	.99 .845 .865	.995 .835 .855			n 30 40 50	.80 .910 .925 .930	.90 .890 .900	p* .95 .870 .885 .900 .915	.975 .855 .875	.99 .835 .855	.99: .82: .84:
-	2	n 30 40 50 75	.80 .925 .935	.90 .900 .915	p* .95 .880 .900 .910	.975 .865 .885	.99 .845 .865	.995 .835 .855	5		n 30 40 50 75	.80 .910 .925 .930	.90 .890 .900	p* .95 .870 .885 .900	.975 .855 .875	.99 .835 .855	.99: .82: .84:
3	2 t	n 30 40 50 75	.80 .925 .935 .945	.90 .900 .915 .920	95 .880 .900 .910 .925	.975 .865 .885 .895	.99 .845 .865 .880	.995 .835 .855 .870 .890	5	1 t	n 30 40 50 75	.80 .910 .925 .930 .945	.90 .890 .900 .910	95 .870 .885 .900 .915	.975 .855 .875 .885	.99 .835 .855 .870	.999 .822 .844 .866
3 . k	2 t	n 30 40 50 75	.80 .925 .935 .945 .950	.90 .900 .915 .920 .935	95 .880 .900 .910 .925 p*	.975 .865 .885 .895 .915	.99 .845 .865 .880 .900	.995 .835 .855 .870 .890	5 k	1 t	n 30 40 50 75	.80 .910 .925 .930 .945	.90 .890 .900 .910 .930	p* .95 .870 .885 .900 .915 .95	.975 .855 .875 .885 .905	.99 .835 .855 .870 .890	.995 .822 .844 .866 .888
3 . k	2 t	n 30 40 50 75 n 30	.80 .925 .935 .945 .950	.90 .900 .915 .920 .935	p* .95 .880 .900 .910 .925 .95 .875	.975 .865 .885 .895 .915	.99 .845 .865 .880 .900	.995 .835 .855 .870 .890	5 k	1 t	n 30 40 50 75 n 30	.80 .910 .925 .930 .945	.90 .890 .900 .910 .930	p* .95 .870 .885 .900 .915 .95 .860	.975 .855 .875 .885 .905	.99 .835 .855 .870 .890	.999 .822 .844 .866

Table 1. E (continued)

For Estimator $\hat{\beta}$ Selecting the t-best: Complete Large Sample Approximation Case Finding the smallest n required for $P(CS \mid R) \ge p$ given values of k, t, δ , p^* and $\alpha = 0.25$

k	t	n	.80	.90	.95	.975	.99	.995
5	3	30	.900	.880	.860	.845	.830	.815
		40	.910	.890	.880	.865	.850	.840
1		50	.920	.900	.890	.880	.865	.855
1		75	.935	.920	.910	.900	.890	.880

K	t	n	.80	.90	.95	.975	.99	.995
5	4	30	.910	.890	.870	.855	.835	.820
		40	.920	.900	.885	.870	.855	.845
		50	.930	.910	.895	.885	.870	.860
	П	75	.940	.925	.915	.905	.890	.880

Table 2. E For Estimator $\hat{\beta}$ Selecting the t-best: Complete Large Sample Approximation Case Finding the smallest n required for $P(CS \mid R) \geq p'$ given values of k, t, δ , p^* and $\alpha = 0.5$

					p.									p.			
k	t	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
2	1	30	.90	.850	.810	.780	.740	.720	4	2	30	.830	.790	.760	.730	.700	.680
1		40	.91	.870	.835	.805	.775	.750			40	.850	.815	.790	.765	.735	.715
1		50	.92	.880	.850	.825	.795	.775			50	.865	.835	.810	.785	.760	.745
		75	.93	.900	.880	.855	.830	.815			75	.890	.860	.840	.820	.800	.785
			74. YW		p.									p.			
k	t	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
3	1	30	.86:	.820	.785	.755	.720	.700	4	3	30	.840	.800	.770	.740	.710	.685
1		40	.88	.840	.810	.785	.755	.735			40	.860	.825	795.	.770	.740	.720
1		50	.89:	.860	.830	.805	.780	.760			50	.875	.840	.815	.790	.765	.750
1	П	75	.910	.880	.860	.840	.815	.800			75	.900	.870	.850	.830	.805	.790
1					n.			<u></u>						" '			
k	t	n	.80	.90	p*	.975	.99	.995	k	t	n	.80	.90	<i>p</i> *	.975	.99	.995
	t 2	n 30	.80	10.2000		.975	.99	.995	k 5	-		.80	.90		.975	.99	.995
				.815	.95		COMPAN.			-		100000000000000000000000000000000000000		.95	8987 CV 85		
		30	.860	.815	.95	.755	.720	.700		-	30	.840	.800	.765	.735	.700	.680
		30 40	.886	0 .815 0 .840 0 .855	.95 .780 .810	.755	.720	.700 .735		-	30	.840	.800	.95 .765 .790	.735	.700	.680
k 3		30 40 50	.860	0 .815 0 .840 0 .855	.95 .780 .810 .830	.755 .785 .805	.720 .750 .780	.700 .735 .760		-	30 40 50	.840 .855 .870	.800 .820 .840	.95 .765 .790 .810	.735 .770 .790	.700 .740 .760	.680 .720 .745
3		30 40 50 75	.860	0 .815 0 .840 0 .855	.95 .780 .810 .830	.755 .785 .805	.720 .750 .780	.700 .735 .760	5	-	30 40 50 75	.840 .855 .870	.800 .820 .840	.95 .765 .790 .810	.735 .770 .790	.700 .740 .760	.680 .720 .745
3	2 t	30 40 50 75	.866 .886 .890	0 .815 0 .840 0 .855 0 .880	.95 .780 .810 .830 .860	.755 .785 .805 .840	.720 .750 .780 .810	.700 .735 .760 .800	5	1 t	30 40 50 75	.840 .855 .870 .890	.800 .820 .840 .865	.95 .765 .790 .810 .840	.735 .770 .790 .825	.700 .740 .760 .800	.680 .720 .745 .790
3 k	2 t	30 40 50 75	.866 .886 .890 .910	9 .815 9 .840 9 .855 9 .880 9 .90	.95 .780 .810 .830 .860 p^*	.755 .785 .805 .840	.720 .750 .780 .810	.700 .735 .760 .800	5 	1 t	30 40 50 75	.840 .855 .870 .890	.800 .820 .840 .865	.95 .765 .790 .810 .840 p^{\star}	.735 .770 .790 .825	.700 .740 .760 .800	.680 .720 .745 .790
3 k	2 t	30 40 50 75 n	.860 .880 .890 .910	90 .815 0 .840 0 .855 0 .880 .90 0 .805 6 .830	.95 .780 .810 .830 .860 .95	.755 .785 .805 .840	.720 .750 .780 .810	.700 .735 .760 .800	5 	1 t	30 40 50 75 n 30	.840 .855 .870 .890	.800 .820 .840 .865	.95 .765 .790 .810 .840 p^{\star} .95	.735 .770 .790 .825	.700 .740 .760 .800	.680 .720 .745 .790

Table 2. E (continued)

For Estimator $\hat{\beta}$ Selecting the t-best: Complete Large Sample Approximation Case Finding the smallest n required for $P(CS \mid R) \ge p^*$ given values of k, t, δ , p^* and $\alpha = 0.5$

1.	+	n	.80	.90	.95	.975	00	.995
K	·	11	.00	.50	.93	.913	.99	.993
5	3	30	.810	.770	.740	.720	.690	.670
		40	.835	.800	.775	.750	.725	.705
		50	.850	.820	.795	.775	.750	.735
1		75	.875	.850	.830	.815	.790	.780

K	t	n	.80	.90	.95	.975	.99	.995
5	4	30	.830	.790	.755	.730	.700	.680
		40	.850	.815	.785	.760	.730	.715
		50	.865	.830	.810	.785	.760	.740
1		75	.890	.860	.840	.820	.800	.785

Table 3. E For Estimator $\hat{\beta}$ Selecting the t-best: Complete Large Sample Approximation Case Finding the smallest n required for $P(CS \mid R) \geq p^*$ given values of k, t, δ , p^* and $\alpha = 0.75$

					p.									p^{\cdot}			
k 1	t	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.99
2	1	30	.860	.790	.740	.695	.645	.615	4	2	30	.760	.710	.675	.635	.590	.56
t	1	40	.875	.815	.770	.730	.690	.660			40	.790	.745	.705	.675	.635	.61
	1	50	.890	.835	.790	.755	.715	.690			50	.810	.770	.735	.705	.670	.65
		75	.910	.860	.830	.795	.760	.740			75	.845	.805	.780	.750	.725	.70
					p.									p.			
k 1	t	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.99
3	1	30	.810	.750	.705	.665	.620	.590	4	3	30	.775	.720	.680	.640	.595	.57
t	1	40	.835	.780	.740	.705	.665	.640			40	.805	.755	.715	.685	.645	.62
t	1	50	.850	.800	.765	.735	.695	.670			50	.825	.780	.740	.715	.680	.65
_	+	75	.875	.835	.800	.775	.745	.725			75	.855	.815	.785	.760	.730	.71
									_								
					·				ــا ا			1		·			
k 1	t]	n	.80	.90	<i>p</i> *	.975	.99	.995	k	t	n	.80	.90	<i>p</i> *	.975	.99	.99
-	1	n			.95		100000						1200	.95			
1	1	n 30	.805	.745	.95 .700	.660	.615	.585	k		30	.775	.720	.95	.640	.600	.57
-	1	n 30 40	.805	.745	.95 .700 .735	.660	.615	.585			30 40	.775	.720 .755	.95 .680 .715	.640	.600	.57
-	1	n 30 40 50	.805 .830 .845	.745 .775 .800	.95 .700 .735 .760	.660 .700 .730	.615 .660 .690	.585 .630 .670			30 40 50	.775 .800 .820	.720 .755 .775	.95 .680 .715 .740	.640 .680	.600 .640 .670	.99
-	1	n 30 40	.805	.745	.95 .700 .735	.660	.615	.585			30 40	.775	.720 .755	.95 .680 .715	.640	.600	.57
-	1	n 30 40 50	.805 .830 .845	.745 .775 .800	.95 .700 .735 .760	.660 .700 .730	.615 .660 .690	.585 .630 .670			30 40 50	.775 .800 .820	.720 .755 .775	.95 .680 .715 .740	.640 .680	.600 .640 .670	.62
3 :	2	n 30 40 50	.805 .830 .845	.745 .775 .800	.95 .700 .735 .760	.660 .700 .730	.615 .660 .690	.585 .630 .670	5	1	30 40 50	.775 .800 .820	.720 .755 .775	.95 .680 .715 .740 .780	.640 .680	.600 .640 .670	.62
3 :	2 t	n 30 40 50 75	.805 .830 .845 .870	.745 .775 .800 .830	.95 .700 .735 .760 .800	.660 .700 .730 .775	.615 .660 .690 .740	.585 .630 .670 .720	5 5	1 t	30 40 50 75	.775 .800 .820 .850	.720 .755 .775 .815	.95 .680 .715 .740 .780	.640 .680 .710	.600 .640 .670 .730	.62
3 : k	2 t	n 30 40 50 75	.805 .830 .845 .870	.745 .775 .800 .830	.95 .700 .735 .760 .800 p^{\star}	.660 .700 .730 .775	.615 .660 .690 .740	.585 .630 .670 .720	5 5	1 t	30 40 50 75	.775 .800 .820 .850	.720 .755 .775 .815	.95 .680 .715 .740 .780 p^{\star}	.640 .680 .710 .755	.600 .640 .670 .730	.57
3 : k	2 t	n 30 40 50 75 n 30	.805 .830 .845 .870	.745 .775 .800 .830	.95 .700 .735 .760 .800 .95	.660 .700 .730 .775	.615 .660 .690 .740	.585 .630 .670 .720	5 5	1 t	30 40 50 75 n 30	.775 .800 .820 .850	.720 .755 .775 .815	.95 .680 .715 .740 .780 .95	.640 .680 .710 .755	.600 .640 .670 .730	.62

Table 3. E (continued)

For Estimator $\hat{\beta}$ Selecting the t-best: Complete Large Sample Approximation Case Finding the smallest n required for $P(CS \mid R) \geq p^*$ given values of k, t, δ , p^* and $\alpha = 0.75$

					p.			
k	t	n	.80	.90	.95	.975	.99	.995
5	3	30	.735	.690	.650	.615	.575	.550
		40	.770	.725	.690	.660	.620	.600
1		50	.790	.750	.720	.690	.660	.635
1		75	.825	.790	.760	.740	.710	.695
	- 1							

k	t	n	.80	.90	.95	.975	.99	.995
5	4	30	.760	.705	.660	.625	.585	.560
1		40	.790	.740	.700	.670	.630	.610
1		50	.810	.765	.730	.705	.670	.645
+		75	.845	.805	.775	.750	.720	.705

Table 4. E For Estimator $\hat{\beta}$ Selecting the t-best: Complete Large Sample Approximation Case Finding the smallest n required for $P(CS \mid R) \geq p$ given values of k, t, δ , p^* and $\alpha = 1.00$

					p.									p.			
k	t	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
2	1	30	.825	.740	.680	.625	.570	.530	4	2	30	.710	.645	.595	.555	.510	.485
t	1	40	.845	.775	.715	.670	.620	.580	F		40	.740	.685	.640	.605	.555	.530
t	1	50	.860	.795	.745	.700	.650	.620			50	.765	.715	.670	.640	.600	.570
İ	1	75	.885	.830	.785	.750	.710	.680			75	.805	.760	.730	.695	.660	.640
					p.									p.			
k 1	t	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
3	1	30	.770	.695	.640	.595	.540	.550	4	3	30	.720	.655	.605	.560	.510	.485
t	1	40	.795	.730	.680	.640	.590	.560			40	.760	.700	.650	.610	.565	.535
t	1	50	.815	.760	.710	.675	.625	.600			50	.780	.725	.680	.645	.605	.580
	+	75	.845	.800	.760	.725	.685	.660		T	75	.820	.770	.735	.705	.670	.645
		/3	Johnson	4.453320	330505		34505050							0.00000	10.1000		
			1	11.55										p·	100 100		
	t	n	.80	.90	<i>p</i> *	.975	.99	.995	k	t	n	.80	.90	p*	.975	.99	.995
1	+				p.				k 5			.80		90716	.975	.99	
k 1	+	n	.80	.90	p*	.975	.99	.995			n	-	.90	.95			.490
1	+	n 30	.80	.90	p* .95 .630	.975	.99	.995			n 30	.730	.90	.95 .610	.565	.510	.490
1	+	n 30 40	.80 .760 .790	.90 .685	p* .95 .630 .675	.975 .585 .635	.99 .530	.995 .500			n 30 40	.730	.90 .660	.95 .610 .650	.565	.510	.995 .490 .535 .575
1	+	n 30 40 50	.80 .760 .790 .810	.90 .685 .725	p* .95 .630 .675 .705 .750	.975 .585 .635	.530 .580	.995 .500 .550			n 30 40 50	.730 .760 .780	.90 .660 .700	.95 .610 .650 .685	.565 .615 .645	.510 .565 600.	.490 .535
3	2	n 30 40 50	.80 .760 .790 .810	.90 .685 .725	p* .95 .630 .675 .705	.975 .585 .635	.530 .580	.995 .500 .550	5		n 30 40 50	.730 .760 .780	.90 .660 .700	.95 .610 .650	.565 .615 .645	.510 .565 600.	.490 .535
3	2 t	n 30 40 50 75	.80 .760 .790 .810	.90 .685 .725 .750	p* .95 .630 .675 .705 .750	.975 .585 .635 .665	.530 .580 .620	.995 .500 .550 .590	5 S	1	n 30 40 50 75	.730 .760 .780 .815	.90 .660 .700 .725 .770	.95 .610 .650 .685 .730	.565 .615 .645 .705	.510 .565 600.	.490 .535 .575
3 k	2 t	n 30 40 550 75	.80 .760 .790 .810 .840	.90 .685 .725 .750 .790	p* .95 .630 .675 .705 .750 .750	.975 .585 .635 .665 .720	.99 .530 .580 .620 .680	.995 .500 .550 .590 .660	5 S	1 t	n 30 40 50 75	.730 .760 .780 .815	.90 .660 .700 .725 .770	.95 .610 .650 .685 .730 p^*	.565 .615 .645 .705	.510 .565 600. .665	.490 .535 .575 .640
3	2 t	n 30 40 50 75 n 30	.80 .760 .790 .810 .840	.90 .685 .725 .750 .790	p* .95 .630 .675 .705 .750 .750 .95 .620	.975 .585 .635 .665 .720	.99 .530 .580 .620 .680	.995 .500 .550 .590 .660	5 S	1 t	n 30 40 50 75	.730 .760 .780 .815	.90 .660 .700 .725 .770	.95 .610 .650 .685 .730 p^* .95	.565 .615 .645 .705	.510 .565 600. .665	.490 .535 .575 .640

Table 4. E (continued)

For Estimator $\hat{\beta}$ Selecting the t-best: Complete Large Sample Approximation Case Finding the smallest n required for $P(CS \mid R) \ge p$ given values of k, t, δ , p^* and $\alpha = 1.00$

					p.			
k	t	n	.80	.90	.95	.975	.99	.995
5	3	30	.675	.620	.570	.530	.490	.480
1		40	.715	.660	.620	.585	.540	.510
1		50	.740	.690	.650	.620	.580	.555
1		75	.785	.740	.710	.680	.650	.625
_								

k	t	n	.80	.90	.95	.975	.99	.995
5	4	30	.700	.635	.585	.545	.490	.480
		40	.740	.680	.635	.595	.550	.525
		50	.760	.710	.670	.635	.590	.565
1		75	.805	.760	.725	.695	.660	.635

Table 5. E For Estimator $\hat{\beta}$ Selecting the t-best: Complete Large Sample Approximation Case Finding the smallest n required for $P(CS \mid R) \geq p^*$ given values of k, t, δ , p^* and $\alpha = 1.25$

				p.									p.			
k t	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	
2	30	.795	.705	.630	.575	.505	.465	4	2	30	.670	.595	.540	.490	.440	
t	40	.820	.740	.675	.625	.565	.525		T	40	.705	.640	.590	.550	.495	
t	50	.840	.765	.705	.655	.600	.565			50	.730	.675	.625	.585	.540	
T	75	.870	.805	.755	.715	.665	.635			75	.775	.725	.685	.655	.610	
								_								
k t	n	.80	.90	p*	.975	.99	.995] [k	t	n	.80	.90	<i>p</i> *	.975	.99	
+								Ŀ								
3		.735	.655	.590	.540	.480	.435	4	3		.680	.605	.550	.500	.440	
	40	.770	.695	.640	.590	.530	.500			40	.720	.650	.600	.555	.505	
T	50	.790	.720	.670	.625	.575	.540			50	.745	.685	.635	.595	.550	
1			.765	.720	.685	.640	.610	1	T	75	.790	.740	.695	.660	.620	
	75	.825	.703	.720	.005	.040	.010	l L	_	,,,	100.000		33.0003964			
1			1	<i>p</i> .				l L				No. of the second	<i>p</i> .			
k t		.825	.90		.975	.99	.995		t		.80	.90		.975	.99	
+			1	<i>p</i> .] [I				No. of the second	<i>p</i> .			
+	n	.80	.90	p* .95	.975	.99	.995	-		n	.80	.90	p* .95	.975	.99	
+	n 2 30	.80	.90	p* .95 .575	.975	.99	.995	-		n 30	.80	.90	p* .95	.975	.99	
+	n 2 30 40	.80 .720 .755	.90 .640	p* .95 .575 .625	.975 .525 .580	.99 .460	.995 .425 .490	-		n 30 40	.80 .690 .725	.90 .615	p* .95 .555 .605	.975 .510	.99 .450	
+	n 2 30 40 50	.80 .720 .755 .780	.90 .640 .680	p* .95 .575 .625 .660 .715	.975 .525 .580	.99 .460 .525	.995 .425 .490	-		n 30 40 50	.80 .690 .725	.90 .615 .660	<i>p</i> * .95 .555 .605 .640 .690	.975 .510 .560	.99 .450 .510	
+	n 2 30 40 50 75	.80 .720 .755 .780	.90 .640 .680	p* .95 .575 .625 .660	.975 .525 .580	.99 .460 .525	.995 .425 .490		1	n 30 40 50	.80 .690 .725	.90 .615 .660	p* .95 .555 .605 .640	.975 .510 .560	.99 .450 .510	
3 2 k	n 2 30 40 50 75	.80 .720 .755 .780 .815	.90 .640 .680 .710	p* .95 .575 .625 .660 .715	.975 .525 .580 .615	.99 .460 .525 .570	.995 .425 .490 .535 .610		i 1	n 30 40 50 75	.80 .690 .725 .750	.90 .615 .660 .690	p* .95 .555 .605 .640 .690	.975 .510 .560 .600	.99 .450 .510 .550	
3 2 k	n 2 30 40 50 75	.80 .720 .755 .780 .815	.90 .640 .680 .710 .760	p* .95 .575 .625 .660 .715 p* .95	.975 .525 .580 .615 .680	.99 .460 .525 .570 .640	.995 .425 .490 .535 .610		i 1	n 30 40 50 75	.80 .690 .725 .750 .790	.90 .615 .660 .690 .735	p* .95 .555 .605 .640 .690 p* .95	.975 .510 .560 .600	.99 .450 .510 .550 .620	
3 2 k	n 2 30 40 50 75	.80 .720 .755 .780 .815	.90 .640 .680 .710 .760	p* .95 .575 .625 .660 .715 .95 .570	.975 .525 .580 .615 .680	.99 .460 .525 .570 .640	.995 .425 .490 .535 .610		i 1	n 30 40 50 75 n 30	.80 .690 .725 .750 .790	.90 .615 .660 .690 .735	p* .95 .555 .605 .640 .690 .95 .520	.975 .510 .560 .600 .660	.99 .450 .510 .550 .620	

Table 5. E (continued)

For Estimator $\hat{\beta}$ Selecting the t-best: Complete Large Sample Approximation Case Finding the smallest n required for $P(CS \mid R) \ge p^*$ given values of k, t, δ , p^* and $\alpha = 1.25$

.90	.95	.975	.99	.995
20 50		+	+	
30 .563	5 .515	.465	.415	.380
75 .61:	5 .570	.525	.480	.445
)5 .650	0 .605	.565	.525	.495
50 .70	5 .665	.635	.600	.570
֡	75 .61	75 .615 .570 05 .650 .605	75 .615 .570 .525 05 .650 .605 .565	30 .565 .515 .465 .415 75 .615 .570 .525 .480 05 .650 .605 .565 .525 50 .705 .665 .635 .600

					p			
k	t	n	.80	.90	.95	.975	.99	.995
5	4	30	.655	.585	.530	.480	.430	.375
		40	.695	.630	.580	.540	.490	.455
		50	.725	.670	.620	.580	.540	.505
1		75	.770	.720	.680	.650	.610	.580
_ I								

Table 6. E For Estimator $\hat{\beta}$ Selecting the t-best: Complete Large Sample Approximation Case Finding the smallest n required for $P(CS \mid R) \geq p^*$ given values of k, t, δ , p^* and $\alpha = 1.5$

					p.									p.			
k	t	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
2	1	30	.775	.675	.595	.535	.460	.415	4	2	30	.640	.560	.500	.445	.390	.345
t		40	.805	.715	.645	.585	.520	.480	l		40	.680	.605	.550	.505	.450	.415
1		50	.820	.740	.675	.625	.560	.530			50	.705	.640	.590	.550	.500	.470
		75	.850	.780	.730	.685	.630	.600			75	.755	.700	.655	.620	.575	.550
					p.									p.			
k 1	t	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.99:
3	1	30	.710	.620	.555	.495	.430	.390	4	3	30	.640	.560	.500	.445	.390	.34:
T	1	40	.745	.665	.600	.550	.490	.450			40	.690	.615	.560	.515	.455	.420
t	1	50	.765	.695	.640	.590	.540	.500			50	.720	.655	.600	.555	.505	.47
1	_	75	.805	.740	.695	.655	.605	.575			75	.770	.710	.665	.630	.580	.55:
		75	.003														
		13	.005						L								
k	t				<i>p</i> .				I L	t	n	.80	.90	p	.975	.99	995
K 1		n	.80	.90	p*	.975	.99	.995	-	t		.80	.90	.95	.975	.99	
k 1			.80	.90	p* .95	.975	.99	.995			30	.660	.580	.95	.465	.410	.360
-		n	.80	.90	p*	.975	.99	.995	-					.95			.36
-		n 30	.80	.90	p* .95	.975	.99	.995	-		30	.660	.580	.95	.465	.410	.360
-		n 30 40	.80 .690 .730	.90 .605	p* .95 .535 .590	.975 .480	.99 .415 .480	.995 .370 .440	-		30 40	.660	.580	.95 .520 .570	.465	.410	.99: .360 .430 .480
-		n 30 40 50	.80 .690 .730 .755	.90 .605 .650	p* .95 .535 .590 .625 .685	.975 .480 .540	.99 .415 .480	.995 .370 .440 .490	-		30 40 50	.660 .700 .725	.580 .625 .660	.95 .520 .570 .605	.465 .520	.410 .465 .510	.430
3	2	n 30 40 50	.80 .690 .730 .755	.90 .605 .650	p* .95 .535 .590 .625	.975 .480 .540	.99 .415 .480	.995 .370 .440 .490	5		30 40 50 75	.660 .700 .725	.580 .625 .660	.95 .520 .570 .605	.465 .520	.410 .465 .510	.430
3 : k	2 t	n 30 40 50 75	.80 .690 .730 .755 .800	.90 .605 .650 .680	p* .95 .535 .590 .625 .685	.975 .480 .540 .580	.99 .415 .480 .525	.995 .370 .440 .490	5	1	30 40 50 75	.660 .700 .725 .770	.580 .625 .660	.95 .520 .570 .605 .665	.465 .520 .565 .630	.410 .465 .510 .580	.360
3 : k	2 t	n 30 40 50 75	.80 .690 .730 .755 .800	.90 .605 .650 .680 .735	p* .95 .535 .590 .625 .685 .95	.975 .480 .540 .580 .650	.99 .415 .480 .525 .600	.995 .370 .440 .490 .570	5	t t	30 40 50 75	.660 .700 .725 .770	.580 .625 .660 .710	.95 .520 .570 .605 .665	.465 .520 .565 .630	.410 .465 .510 .580	.360
3 : k	2 t	n 30 40 50 75 n 30	.80 .690 .730 .755 .800	.90 .605 .650 .680 .735	p* .95 .535 .590 .625 .685 .95 .530	.975 .480 .540 .580 .650	.99 .415 .480 .525 .600	.995 .370 .440 .490 .570	5	t t	30 40 50 75 n 30	.660 .700 .725 .770	.580 .625 .660 .710	.95 .520 .570 .605 .665 .95	.465 .520 .565 .630	.410 .465 .510 .580	.360

Table 6. E (continued)

For Estimator $\hat{\beta}$ Selecting the t-best: Complete Large Sample Approximation Case Finding the smallest n required for $P(CS \mid R) \ge p^*$ given values of k, t, δ , p^* and $\alpha = 1.5$

					p.			
k	t	n	.80	.90	.95	.975	.99	.995
5	3	30	.595	.525	.470	.420	.360	.320
		40	.640	.580	.525	.485	.430	.395
		50	.675	.615	.570	.525	.480	.450
1		75	.725	.675	.635	.600	.560	.530
- 1								

					p			
K	t	n	.80	.90	.95	.975	.99	.995
5	4	30	.620	.540	.480	.430	.370	.330
		40	.665	.595	.540	.495	.440	.410
1		50	.700	.635	.580	.540	.490	.460
T		75	.750	.690	.650	.615	.570	.540
- 1								

Appendix F Probability Tables for Estimator $\widetilde{\beta}$ Large Samples

Table 1. F For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Large Sample Approximation Case Finding the smallest n required for $P(CS \mid R) \geq p$ given values of k, t, δ , p^* and $\alpha = 0.25$

					p.									p.			
k	t	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
2	1	30	.945	.920	.900	.880	.860	.850	4	2	30	.910	.885	.870	.855	.835	.825
1	1	40	.955	.930	.910	.895	.880	.865			40	.920	.900	.885	.870	.855	.845
1	1	50	.960	.935	.920	.905	.890	.880			50	.930	.910	.895	.885	.870	.860
		75	.965	.950	.935	.925	.910	.900			75	.940	.925	.915	.905	.890	.885
					p.									p*			
k	t	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
3	1	30	.925	.905	.885	.865	.845	.835	4	3	30	.910	.885	.870	.855	.835	.825
+	1	40	.935	.915	.900	.885	.865	.855	-		40	.920	.900	.885	.870	.855	.845
1	1	50	.945	.925	.910	.895	.880	.870			50	.930	.910	.895	.885	.870	.860
T		75	.950	.940	.925	.915	.900	.890			75	.940	.925	.910	.905	.890	.885
					n.									n'			
k	t	n	.80	.90	p* .95	.975	.99	.995	k	t	n	.80	.90	p*	.975	.99	.995
1	t 2	n 30	.80	.90		.975	.99	.995	5		n 30	.80	.90		.975	.99	.995
+					.95				L					.95			
+		30	.925	.905	.95 .885	.865	.845	.835	L		30	.910	.890	.95 .870	.855	.835	.825
+		30 40	.925	.905 .915	.95 .885 .900	.865	.845	.835 .855	L		30 40	.910	.890	.95 .870 .885	.855	.835	.825
+		30 40 50	.925 .935 .945	.905 .915 .925	.95 .885 .900 .910	.865 .885 .895	.845 .865 .880	.835 .855 .870	L		30 40 50	.910 .920 .930	.890 .905 .910	.95 .870 .885 .900	.855 .875 .885	.835 .855 .870	.825 .845 .860
+	2	30 40 50 75	.925 .935 .945	.905 .915 .925	.95 .885 .900 .910	.865 .885 .895	.845 .865 .880	.835 .855 .870	5	1	30 40 50	.910 .920 .930	.890 .905 .910	.95 .870 .885 .900	.855 .875 .885	.835 .855 .870	.825 .845 .860
3	2 t	30 40 50 75	.925 .935 .945 .950	.905 .915 .925 .940	.95 .885 .900 .910 .925	.865 .885 .895 .915	.845 .865 .880 .900	.835 .855 .870 .890	5 S	1 t	30 40 50 75	.910 .920 .930 .940	.890 .905 .910 .930	.95 .870 .885 .900 .915	.855 .875 .885 .905	.835 .855 .870 .890	.825 .845 .860 .885
3 k	2 t	30 40 50 75	.925 .935 .945 .950	.905 .915 .925 .940	.95 .885 .900 .910 .925 p^{\star}	.865 .885 .895 .915	.845 .865 .880 .900	.835 .855 .870 .890	5 S	1 t	30 40 50 75	.910 .920 .930 .940	.890 .905 .910 .930	.95 .870 .885 .900 .915 p^*	.855 .875 .885 .905	.835 .855 .870 .890	.825 .845 .860 .885
3 k	2 t	30 40 50 75 n 30	.925 .935 .945 .950	.905 .915 .925 .940	.95 .885 .900 .910 .925 p^{\star} .95	.865 .885 .895 .915	.845 .865 .880 .900	.835 .855 .870 .890	5 S	1 t	30 40 50 75 n 30	.910 .920 .930 .940	.890 .905 .910 .930	.95 .870 .885 .900 .915 .95	.855 .875 .885 .905	.835 .855 .870 .890	.825 .845 .860 .885

Table 1. F (continued)

For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Large Sample Approximation Case Finding the smallest n required for $P(CS \mid R) \ge p$ given values of k, t, δ , p^* and $\alpha = 0.25$

k	t	n	.80	.90	.95	.975	.99	.995
5	3	30	.900	.880	.860	.845	.830	.820
	,	40	.910	.895	.880	.865	.850	.840
		50	.920	.905	.890	.880	.865	.855
		75	.935	.920	.910	.900	.890	.880

					p			
k	t	n	.80	.90	.95	.975	.99	.995
5	4	30	.900	.880	.860	.845	.830	.820
1		40	.910	.895	.880	.865	.850	.840
1		50	.920	.905	.890	.880	.865	.855
1		75	.935	.920	.910	.900	.890	.880

Table 2. F For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Large Sample Approximation Case Finding the smallest n required for $P(CS \mid R) \geq p$ given values of k, t, δ , p^* and $\alpha = 0.50$

					p.									p			
4	t	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
2	1	30	.900	.850	.810	.785	.750	.720	4	2	30	.830	.790	.760	.735	.705	.690
t	1	40	.910	.870	.835	.810	.775	.755			40	.850	.815	.790	.765	.740	.720
t	†	50	.920	.880	.850	.825	.790	.780			50	.865	.835	.810	.790	.760	.750
T		75	.935	.900	.880	.855	.830	.815			75	.890	.865	.840	.825	.805	.790
					p.									p.			
4	t	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
3	1	30	.865	.820	.785	.760	.720	.705	4	3	30	.830	.790	.760	.735	.705	.690
t	1	40	.880	.840	.810	.785	.755	.740		T	40	.850	.815	.790	.765	.740	.720
┿	1	50	.890	.860	.830	.810	.780	.760		T	50	.865	.835	.810	.790	.760	.750
	- 1			-	-	0.40	015	000			75	.890	.865	.840	.825	.805	.790
		75	.910	.880	.860	.840	.815	.800			13	.070	.005	.010			
		75	.910	.880		.840	.815	.800			13	1.070	.005				
	1	75 n	.80	.90	p* .95	.975	.99	.995	k	t	n	.80	.90	p*	.975	.99	.995
d 1	t				<i>p</i> ·				E	t 1	n			p.			.995
+	t 2	n	.80	.90	p* .95	.975	.99	.995	E	L	n	.80	.90	p*	.975	.99	.995
+	t 2	n 30	.80	.90	p* .95 .785	.975	.99	.995	E	L	n 30	.80	.90	p* .95 .760	.975	.99	.995
+	t 2	n 30 40	.80 .865 .880	.90 .820 .840	p* .95 .785 .810	.975 .760	.99 .720 .755	.995 .700	E	L	n 30 40	.80 .830 .855	.90 .790 .820	p* .95 .760 .790	.975 .735 .765	.99 .700	
+	t 2	n 30 40 50	.80 .865 .880	.90 .820 .840	p* .95 .785 .810 .830 .860	.975 .760 .785	.99 .720 .755	.995 .700 .740 .760	E	L	n 30 40 50	.80 .830 .855 .870	.90 .790 .820	p* .95 .760 .790 .810 .845	.735 .765 .790	.99 .700 .740	.995 .690 .720
+	t 2	n 30 40 50	.80 .865 .880	.90 .820 .840	p* .95 .785 .810 .830	.975 .760 .785	.99 .720 .755	.995 .700 .740 .760	5	1	n 30 40 50	.80 .830 .855 .870	.90 .790 .820	p* .95 .760 .790 .810	.735 .765 .790	.99 .700 .740	.995 .690 .720
3 2	t 2	n 30 40 50 75	.80 .865 .880 .890	.90 .820 .840 .860	p* .95 .785 .810 .830 .860	.975 .760 .785 .810	.99 .720 .755 .780 .815	.995 .700 .740 .760 .800	5	1	n 30 40 50 75	.80 .830 .855 .870	.90 .790 .820 .835 .865	p* .95 .760 .790 .810 .845	.975 .735 .765 .790	.99 .700 .740 .760	.995 .690 .720 .750
3 2 k 1	t 2	n 30 40 50 75	.80 .865 .880 .890 .910	.90 .820 .840 .860 .880	p* .95 .785 .810 .830 .860 .860	.975 .760 .785 .810 .840	.99 .720 .755 .780 .815	.995 .700 .740 .760 .800	5	1 t	n 30 40 50 75	.80 .830 .855 .870 .890	.90 .790 .820 .835 .865	p* .95 .760 .790 .810 .845 .95	.975 .735 .765 .790 .825	.99 .700 .740 .760 .800	.999 .690 .720 .750
3 2 k 1	t 2	n 30 40 50 75 n 30	.80 .865 .880 .890 .910	.90 .820 .840 .860 .880	p* .95 .785 .810 .830 .860 .95 .770	.975 .760 .785 .810 .840	.99 .720 .755 .780 .815	.995 .700 .740 .760 .800	5	1 t	n 30 40 50 75	.80 .830 .855 .870 .890	.90 .790 .820 .835 .865	p* .95 .760 .790 .810 .845 .95 .750	.975 .735 .765 .790 .825	.99 .700 .740 .760 .800	.995 .690 .720 .750

Table 2. F (continued)

For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Large Sample Approximation Case Finding the smallest n required for $P(CS \mid R) \ge p$ given values of k, t, δ , p^* and $\alpha = 0.50$

				p.			
t	n	.80	.90	.95	.975	.99	.995
3	30	.810	.775	.750	.725	.690	.675
	40	.835	.805	.780	.755	.730	.710
	50	.850	.820	.800	.780	.755	.740
	75	.880	.855	.830	.815	.800	.780
		50	3 30 .810 40 .835 50 .850	3 30 .810 .775 40 .835 .805 50 .850 .820	3 30 .810 .775 .750 40 .835 .805 .780 50 .850 .820 .800	3 30 .810 .775 .750 .725 40 .835 .805 .780 .755 50 .850 .820 .800 .780	3 30 .810 .775 .750 .725 .690 40 .835 .805 .780 .755 .730 50 .850 .820 .800 .780 .755

k	t	n	.80	.90	.95	.975	.99	.995
5	4	30	.810	.775	.750	.725	.690	.675
		40	.835	.805	.780	.755	.730	.710
		50	.850	.820	.800	.780	.755	.740
1	Н	75	.880	.855	.830	.815	.800	.780

Table 3. F For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Large Sample Approximation Case Finding the smallest n required for $P(CS \mid R) \geq p$ given values of k, t, δ , p^* and $\alpha = 0.75$

					p.									p.			
k t	n		.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
2 1	30	0	.860	.790	.750	.705	.660	.630	4	2	30	.765	.715	.675	.645	.610	.580
t	40	0	.875	.805	.765	.740	.695	.660	F		40	.785	.745	.710	.670	.645	.630
\dagger	50	0	.890	.835	.795	.760	.720	.700			50	.810	.770	.735	.710	.680	.660
	75	5	.910	.860	.830	.800	.770	.745			75	.840	.810	.780	.755	.730	.710
					p.									p.			
k t	n	T	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
3 1	30	0	.810	.750	.710	.670	.630	.605	4	3	30	.765	.715	.675	.645	.610	.580
T	40	0	.830	.775	.730	.700	.685	.640			40	.805	.765	.720	.700	.675	.620
+	50	0	.850	.800	.765	.735	.700	.680			50	.830	.780	.750	.720	.690	.660
	-	-	.875	.835	.800	.775	.750	.725			75	.860	.820	.790	.735	.720	.665
	75	5	.075	03000	**************************************		300000		L	_							
	75	3	1.073											<i>p</i> .			
k t	75		.80	.90	p95	.975	.99	.995	k	t		.80	.90	p95	.975	.99	.995
\pm					<i>p</i> .				k 5			.80	.90		.975	.99	
\pm	n	0	.80	.90	p95	.975	.99	.995	E		n			.95			.58:
\pm	n 2 30	0	.80	.90	p* .95 .710	.975	.99	.605	E		n 30	.770	.720	.95	.645	.610	.585
\pm	n 2 30	0 0	.80 .810 .830	.90 .750	<i>p</i> * .95 .710 .740	.975 .670	.99 .630 .680	.995 .605	E		n 30 40	.770	.720 .745	.95 .680 .690	.645	.610	.995 .585 .630 .660
\pm	n 2 30 40 50	0 0	.80 .810 .830 .850	.90 .750 .770	95 .710 .740 .765	.975 .670 .715	.99 .630 .680	.995 .605 .650	E		n 30 40 50	.770 .800 .815	.720 .745 .770	.95 .680 .690 .740	.645 .675 .710	.610 .645 .680	.630
3 2	n 2 30 40 50	00 00 00 55	.80 .810 .830 .850	.90 .750 .770	p* .95 .710 .740 .765	.975 .670 .715	.99 .630 .680	.995 .605 .650	5	1	n 30 40 50	.770 .800 .815	.720 .745 .770	.95 .680 .690 .740	.645 .675 .710	.610 .645 .680	.630
3 2 k t	n 40 50 75	00 00 00 00 00 00 00 00 00 00 00 00 00	.80 .810 .830 .850	.90 .750 .770 .800	p* .95 .710 .740 .765 .800	.975 .670 .715 .735	.99 .630 .680 .700	.995 .605 .650 .680	5 k	t t	n 30 40 50 75	.770 .800 .815 .845	.720 .745 .770 .810	.95 .680 .690 .740 .780	.645 .675 .710 .755	.610 .645 .680 .730	.585
3 2 k t	n 2 30 40 50 75	0 0 0 0 55	.80 .810 .830 .850 .875	.90 .750 .770 .800 .835	p* .95 .710 .740 .765 .800 p* .95	.975 .670 .715 .735 .775	.99 .630 .680 .700 .750	.995 .605 .650 .680 .730	5 k	t t	n 30 40 50 75	.770 .800 .815 .845	.720 .745 .770 .810	.95 .680 .690 .740 .780 p^{\star}	.645 .675 .710 .755	.610 .645 .680 .730	.58:
3 2 k t	n 400 500 755	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.80 .810 .830 .850 .875	.90 .750 .770 .800 .835	p* .95 .710 .740 .765 .800 .95 .690	.975 .670 .715 .735 .775	.99 .630 .680 .700 .750	.995 .605 .650 .680 .730	5 k	t t	n 30 40 50 75 n 30	.770 .800 .815 .845	.720 .745 .770 .810	.95 .680 .690 .740 .780 .95	.645 .675 .710 .755	.610 .645 .680 .730	.58:

Table 3. F (continued)

For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Large Sample Approximation Case Finding the smallest n required for $P(CS \mid R) \ge p$ given values of k, t, δ , p^* and $\alpha = 0.75$

					p.			
k	t	n	.80	.90	.95	.975	.99	.995
5	3	30	.745	.700	.660	.630	.595	.570
1		40	.765	.715	.685	.660	.635	.620
		50	.795	.755	.720	.695	.670	.650
1		75	.825	.795	.770	.745	.720	.700
- 1								

k	t	n	.80	.90	.95	.975	.99	.995
5	4	30	.745	.700	.660	.630	.595	.570
		40	.775	.720	.690	.655	.620	.600
		50	.815	.770	.740	.710	.680	.660
1		75	.845	.810	.780	.755	.730	.710

For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Large Sample Approximation Case Finding the smallest n required for $P(CS \mid R) \ge p$ given values of k, t, δ , p^* and $\alpha = 1.0$

Table 4. F

				p.									p^{\cdot}			
1	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
2	30	.825	.750	.685	.640	.590	.560	4	2	30	.710	.655	.610	.575	.530	.505
t	40	.850	.775	.720	.680	.630	.600		T	40	.745	.690	.650	.615	.580	.550
T	50	.860	.795	.750	.710	.660	.635			50	.770	.720	.680	.650	.610	.590
	75	.885	.830	.790	.755	.715	.690			75	.810	.765	.730	.705	.670	.650
				p.									p*			
c 1	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.99
3	30	.765	.700	.645	.605	.560	.530	4	3	30	.735	.675	.625	.585	.540	.520
T	40	.795	.730	.685	.645	.600	.575			40	.770	.710	.665	.630	.590	.56
Ť	50	.815	.760	.710	.675	.635	.610			50	.790	.740	.695	.660	.620	.60
t	75	.845	.800	.760	.725	.690	.670		T	75	.825	.780	.740	.710	.680	.66
			2													
	11			p.	L			L		L	1		<i>p</i> .			
k t	n	.80	.90	<i>p</i> *	.975	.99	.995		t	n	.80	.90	<i>p</i> *	.975	.99	.99
k 1		.765	.90		.975	.99	.995		-	n 30	.80	.90		.975	.99	
+				.95				E	-				.95			.510
+	2 30	.765	.700	.95	.605	.560	.530	E	-	30	.720	.660	.95	.575	.530	.99: .510 .55:
+	30 40	.765	.700	.95 .645 .685	.605	.560	.530	E	-	30 40	.720	.660	.95 .610 .650	.575	.530	.510
+	2 30 40 50	.765 .795 .815	.700 .730 .760	.95 .645 .685 .710	.605 .645	.560 .600	.530 .575 .610	E	-	30 40 50	.720 .750 .775	.660 .690 .720	.95 .610 .650 .680	.575 .620 .650	.530 .580 .610	.510
+	2 30 40 50 75	.765 .795 .815	.700 .730 .760	.95 .645 .685	.605 .645	.560 .600	.530 .575 .610	E	5 1	30 40 50	.720 .750 .775	.660 .690 .720	.95 .610 .650	.575 .620 .650	.530 .580 .610	.55
3 2	2 30 40 50 75	.765 .795 .815 .840	.700 .730 .760 .795	.95 .645 .685 .710 .760	.605 .645 .675 .725	.560 .600 .635 .690	.530 .575 .610 .670	5	5 1	30 40 50 75	.720 .750 .775 .810	.660 .690 .720 .770	.95 .610 .650 .680 .730	.575 .620 .650 .705	.530 .580 .610	.51
3 Z	2 30 40 50 75	.765 .795 .815 .840	.700 .730 .760 .795	.95 .645 .685 .710 .760 p^*	.605 .645 .675 .725	.560 .600 .635 .690	.530 .575 .610 .670	5	5 1	30 40 50 75	.720 .750 .775 .810	.660 .690 .720 .770	.95 .610 .650 .680 .730 p^{\star}	.575 .620 .650 .705	.530 .580 .610 .670	.510 .55 .59 .65
3 2 k	2 30 40 50 75	.765 .795 .815 .840	.700 .730 .760 .795	.95 .645 .685 .710 .760 .95	.605 .645 .675 .725	.560 .600 .635 .690	.530 .575 .610 .670	5	5 1	30 40 50 75 n 30	.720 .750 .775 .810	.660 .690 .720 .770	.95 .610 .650 .680 .730 .95	.575 .620 .650 .705	.530 .580 .610 .670	.55

Table 4. F (continued)

For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Large Sample Approximation Case Finding the smallest n required for $P(CS \mid R) \geq p$ given values of k, t, δ , p^* and $\alpha = 1.0$

_	_,				P			
k	t	n	.80	.90	.95	.975	.99	.995
5	3	30	.685	.630	.590	.555	.520	.490
1		40	.720	.670	.630	.600	.560	.540
1	1	50	.745	.700	.660	.635	.600	.580
1	1	75	.790	.750	.715	.690	.655	.640

K	t	n	.80	.90	.95	.975	.99	.995
5	4	30	.720	.660	.610	.575	.530	.500
1		40	.750	.695	.650	.620	.580	.550
1		50	.770	.720	.680	.650	.610	.590
1		75	.810	.770	.730	.705	.670	.650

Table 5. F For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Large Sample Approximation Case Finding the smallest n required for $P(CS \mid R) \geq p$ given values of k, t, δ , p^* and $\alpha = 1.25$

					p.									p.			
t	n	.8	0	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
2]	30	.8	00	.710	.645	.595	.530	.505	4	2	30	.670	.610	.560	.520	.475	.450
t	40	.8.	20	.745	.680	.635	.585	.550	П		40	.710	.650	.605	.570	.525	.500
	50	.8	40	.765	.710	.665	.615	.590			50	.735	.680	.640	.605	.560	.540
	75	.8	70	.805	.760	.720	.675	.650			75	.780	.730	.690	.660	.625	.600
					p.									p.			
k t	n	.80	0	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
3 1	30	.7:	30	.655	.600	.555	.505	.475	4	3	30	.700	.630	.580	.535	.490	.460
t	40	.70	60	.695	.640	.600	.550	.525			40	.735	.670	.620	.585	.535	.510
		.73	85	.720	.670	.635	.590	.560			50	.760	.700	.650	.615	.575	.550
+	50	1 1							-	_							(1)
	75	.82	20	.765	.720	.690	.650	.625	L		75	.800	.745	.705	.675	.635	.610
		.8.	20	.765		.690	.650	.625	L		75	.800	.745		.675	.635	.610
k t	75	.83		.765	.720 p.	.690	.650	.995	k	t	75 n	.800	.745	.705 p*	.975	.99	.99:
+	75	.80	0	.90	p* .95	.975	.99	.995	-		n	.80	.90	p* .95	.975	.99	.99:
k t	75		0 30		<i>p</i> .				[k]					p.			.99:
+	75 n	.7:	0 30 60	.90	p* .95 .600	.975	.99	.995	-		n 30	.80	.90	p* .95 .560	.975	.99	
+	75 n 2 30 40	.70	0 30 60 85	.90 .655	p* .95 .600 .640	.975 .555	.99 .505	.995 .475 .525	-		n 30 40	.80 .680 .715	.90 .610	p* .95 .560 .605	.975 .525	.99 .475 .525	.99:
+	75 n 2 30 40 50	.70	0 30 60 85	.90 .655 .695	p* .95 .600 .640 .670 .720	.975 .555 .600	.99 .505 .550	.995 .475 .525	-		n 30 40 50	.80 .680 .715 .740	.90 .610 .655	p* .95 .560 .605 .640 .695	.975 .525 .570	.99 .475 .525	.99: .450 .500
3 2	75 n 2 30 40 50 75	.80	30 60 85 20	.90 .655 .695 .720	p* .95 .600 .640 .670 .720	.975 .555 .600 .635	.505 .550 .590	.995 .475 .525 .560	5	1	n 30 40 50 75	.80 .680 .715 .740	.90 .610 .655 .685	p* .95 .560 .605 .640 .695	.975 .525 .570 .605	.99 .475 .525 .565	.999 .450 .500
3 2	75 n 2 30 40 50	.70	30 60 85 20	.90 .655 .695	p* .95 .600 .640 .670 .720	.975 .555 .600	.99 .505 .550	.995 .475 .525	-	1	n 30 40 50 75	.80 .680 .715 .740	.90 .610 .655	p* .95 .560 .605 .640 .695	.975 .525 .570	.99 .475 .525	.99: .450 .500
3 2	75 n 2 30 40 50 75	.80	00 330 660 885 220	.90 .655 .695 .720	p* .95 .600 .640 .670 .720	.975 .555 .600 .635	.505 .550 .590	.995 .475 .525 .560	5 k	1 t	n 30 40 50 75	.80 .680 .715 .740	.90 .610 .655 .685	p* .95 .560 .605 .640 .695	.975 .525 .570 .605	.99 .475 .525 .565	.999 .450 .500
3 2 k	75 n 2 30 40 50 75	.80 .71 .70 .73 .83	00 330 330 360 3	.90 .655 .695 .720 .765	p* .95 .600 .640 .670 .720 p* .95	.975 .555 .600 .635 .690	.99 .505 .550 .590 .645	.995 .475 .525 .560 .620	5 k	1 t	n 30 40 50 75	.80 .680 .715 .740 .780	.90 .610 .655 .685 .730	p* .95 .560 .605 .640 .695 .95	.975 .525 .570 .605 .665	.99 .475 .525 .565 .625	.999 .450 .500 .544
3 2 k 1	75 n 2 30 40 50 75	.80 .73 .73 .83	0 30 60 85 20 0 00 335	.90 .655 .695 .720 .765	p* .95 .600 .640 .670 .720 .95 .575	.975 .555 .600 .635 .690	.99 .505 .550 .590 .645	.995 .475 .525 .560 .620	5 k	1 t	n 30 40 50 75 n 30	.80 .680 .715 .740 .780	.90 .610 .655 .685 .730	p* .95 .560 .605 .640 .695 .95 .540	.975 .525 .570 .605 .665	.99 .475 .525 .565 .625	.999. .450 .500 .544 .600

Table 5. F (continued)

For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Large Sample Approximation Case Finding the smallest n required for $P(CS \mid R) \ge p$ given values of k, t, δ , p^* and $\alpha = 1.25$

				p			
t	n	.80	.90	.95	.975	.99	.995
3	30	.640	.585	.540	.505	.460	.440
1	40	.680	.630	.630	.550	.510	.460
1	50	.710	.660	.650	.585	.550	.525
	75	.755	.710	.675	.645	.610	.590
		50	3 30 .640 40 .680 50 .710	3 30 .640 .585 40 .680 .630 50 .710 .660	3 30 .640 .585 .540 40 .680 .630 .630 50 .710 .660 .650	3 30 .640 .585 .540 .505 40 .680 .630 .630 .550 50 .710 .660 .650 .585	3 30 .640 .585 .540 .505 .460 40 .680 .630 .630 .550 .510 50 .710 .660 .650 .585 .550

k	t	n	.80	.90	.95	.975	.99	.995
5	4	30	.680	.610	.560	.525	.475	.450
		40	.715	.655	.610	.570	.525	.500
		50	.740	.685	.640	.605	.560	.540
		75	.785	.730	.695	.665	.625	.600

Table 6. F For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Large Sample Approximation Case Finding the smallest n required for $P(CS \mid R) \geq p$ given values of k, t, δ , p^* and $\alpha = 1.5$

				p.									p.			
k t	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
2 1	30	.775	.680	.610	.560	.500	.465	4	2	30	.640	.575	.525	.485	.440	.410
\dagger	40	.805	.715	.655	.605	.545	.515	T		40	.680	.620	.570	.530	.490	.460
	50	.820	.740	.680	.635	.580	.550	h		50	.710	.650	.605	.565	.525	.500
	75	.850	.785	.730	.690	.640	.615			75	.755	.700	.660	.630	.590	.570
				p.			van 4 6 17 3.	0 13-00					p.			
k t	n	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
3 1	30	.705	.625	.565	.520	.465	.435	4	3	30	.670	.595	.540	.500	.450	.420
	40	.740	.665	.610	.565	.515	.485			40	.710	.640	.585	.545	.500	.470
1	50	.760	.695	.640	.600	.550	.525			50	.730	.670	.620	.580	.535	.510
+	75	.800	.740	.695	.660	.615	.590			75	.775	.720	.675	.645	.600	.580
										_			-			
				p.									p.			
k t	n	.80	.90	p*	.975	.99	.995	k	t	n	.80	.90	p*	.975	.99	.995
k t		.80	.90		.975	.99	.995			n 30	.80	.90		.975	.99	.995
+				.95								CONTRACTOR OF THE PARTY OF THE	.95	N. S.	10000	
+	30	.705	.625	.95	.520	.465	.435			30	.650	.580	.95 .525	.485	.440	.410
+	30	.705	.625	.95 .565 .610	.520	.465	.435			30 40	.650	.580	.95 .525 .570	.485	.440	.410
+	30 40 50	.705 .740 .760	.625 .665 .695	.95 .565 .610 .640	.520 .565 .600	.465 .520 .550	.435 .485 .525			30 40 50	.650 .690 .715	.580 .620 .655	.95 .525 .570 .610	.485 .535 .570	.440 .490 .525	.410 .460 .500
3 2	30 40 50	.705 .740 .760	.625 .665 .695	.95 .565 .610	.520 .565 .600	.465 .520 .550	.435 .485 .525	5	1	30 40 50	.650 .690 .715	.580 .620 .655	.95 .525 .570 .610	.485 .535 .570	.440 .490 .525	.410 .460 .500
3 2	2 30 40 50 75	.705 .740 .760 .800	.625 .665 .695 .740	.95 .565 .610 .640 .695	.520 .565 .600	.465 .520 .550 .615	.435 .485 .525 .590	5 k	t	30 40 50 75	.650 .690 .715 .760	.580 .620 .655 .705	.95 .525 .570 .610 .665	.485 .535 .570 .630	.440 .490 .525 .590	.410 .460 .500 .570
3 2 k t	2 30 40 50 75	.705 .740 .760 .800	.625 .665 .695 .740	.95 .565 .610 .640 .695 p^*	.520 .565 .600 .660	.465 .520 .550 .615	.435 .485 .525 .590	5 k	t	30 40 50 75	.650 .690 .715 .760	.580 .620 .655 .705	.95 .525 .570 .610 .665 p^*	.485 .535 .570 .630	.440 .490 .525 .590	.410 .460 .500 .570
3 2 k t	2 30 40 50 75 n	.705 .740 .760 .800	.625 .665 .695 .740	.95 .565 .610 .640 .695 .95	.520 .565 .600 .660	.465 .520 .550 .615	.435 .485 .525 .590	5 k	t	30 40 50 75 n 30	.650 .690 .715 .760	.580 .620 .655 .705	.95 .525 .570 .610 .665 .95	.485 .535 .570 .630	.440 .490 .525 .590	.410 .460 .500 .570

Table 6. F (continued)

For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Large Sample Approximation Case Finding the smallest n required for $P(CS \mid R) \ge p^*$ given values of k, t, δ , p^* and $\alpha = 1.5$

• 1		Sec. T	100	100	0.5	075	00	005
K	t	n	.80	.90	.95	.975	.99	.995
5	3	30	.610	.550	.500	.465	.420	.400
1		40	.650	.595	.550	.515	.470	.450
		50	.680	.630	.585	.550	.510	.490
1		75	.730	.680	.645	.615	.575	.555

k	t	n	.80	.90	.95	.975	.99	.995
5	4	30	.650	.580	.525	.485	.440	.410
		40	.690	.620	.570	.535	.490	.460
		50	.715	.650	.610	.570	.525	.500
		75	.760	.710	.665	.630	.590	.570

Appendix G Probability Tables for Estimator $\hat{\alpha}$ Large Samples

 $\label{eq:table 1. G} \textit{For Estimator } \hat{\alpha} \quad \textit{Selecting the t-best} : \textit{Complete Large Sample Approximation Case}$ Finding the smallest n required for $P(CS \mid R) \geq p^*$ given values of k, t, δ , p^*

					p.									p^{\cdot}			
k t	n	1	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
2 1	30	30	.855	.785	.735	.690	.640	.610	4	2	30	.760	.710	.660	.630	.590	.560
t	40	10	.870	.815	.770	.725	.685	.655			40	.790	.740	.700	.670	.630	.610
\dagger	50	50	.885	.830	.790	.755	.710	.690			50	.810	.765	.730	.700	.665	.645
	7:	75	.905	.860	.825	.795	.760	.740			75	.840	.805	.775	.750	.720	.700
					p.									p.			
k t	n	1	.80	.90	.95	.975	.99	.995	k	t	n	.80	.90	.95	.975	.99	.995
3 1	30	30	.810	.750	.700	.665	.620	.585	4	3	30	.770	.720	.670	.635	.590	.565
T	40	10	.830	.780	.740	.700	.660	.630			40	.800	.750	.710	.680	.640	.61
+	50	50	.850	.800	.760	.730	.690	.665			50	.820	.775	.740	.710	.670	.650
			-	000	.800	.775	.740	.720		T	75	.850	.810	.780	.755	.730	.70:
	7:	75	.875	.830	.800	.773	.740	.720	L				3.5.5.5.5.	0.50.6.50	THE TABLE	1.10101030	
	7:	75	.875	.830		.773	.740	.720	L								
k t	7:		.875	.90	p* .95	.975	.99	.995	k	t	n	.80	.90	p*	.975	.99	.99:
+		1			p·				[k		n			p·			.99:
+	n	30	.80	.90	p* .95	.975	.99	.995			n	.80	.90	p*	.975	.99	.99:
+	n 2 30	1 30	.80	.90	p* .95 .695	.975	.99	.995			n 30	.80	.90	p* .95 .670	.975	.99	.56:
+	n 2 30	1 30 40	.800 .800	.90 .740 .770	p* .95 .695 .730	.975 .655	.99 .610	.995 .580 .630			n 30 40	.80 .770 .800	.90 .720 .750	<i>p</i> * .95 .670 .710	.975 .635 .675	.99 .590 .640	
+	n 2 30 40 50	1 30 40	.800 .825 .845	.90 .740 .770	p* .95 .695 .730 .760 .800	.975 .655 .695	.99 .610 .660	.995 .580 .630			n 30 40 50	.80 .770 .800	.90 .720 .750	p* .95 .670 .710 .740 .780	.975 .635 .675	.99 .590 .640	.99: .56:
+	n 40 40 7:	1000	.800 .825 .845	.90 .740 .770	p* .95 .695 .730 .760	.975 .655 .695	.99 .610 .660	.995 .580 .630	5	1	n 30 40 50	.80 .770 .800	.90 .720 .750	p* .95 .670 .710 .740	.975 .635 .675	.99 .590 .640	.99: .56:
3 2 k t	n 40 40 7:	10 30 40 50	.800 .825 .845 .870	.90 .740 .770 .795 .830	p* .95 .695 .730 .760 .800	.975 .655 .695 .725	.99 .610 .660 .690	.995 .580 .630 .660	5	t t	n 30 40 50 75	.80 .770 .800 .820 .850	.90 .720 .750 .775 .810	p* .95 .670 .710 .740 .780	.975 .635 .675 .705	.99 .590 .640 .670	.565 .610
3 2 k t	n 40 40 7:	1	.800 .825 .845 .870	.90 .740 .770 .795 .830	p* .95 .695 .730 .760 .800 p* .95	.975 .655 .695 .725 .770	.99 .610 .660 .690 .740	.995 .580 .630 .660 .720	5	t t	n 30 40 50 75	.80 .770 .800 .820 .850	.90 .720 .750 .775 .810	p* .95 .670 .710 .740 .780 p* .95	.975 .635 .675 .705 .755	.99 .590 .640 .670 .720	.999 .563 .610 .656 .700
3 2 k t	1 n 40 50 7:	1	.800 .825 .845 .870	.90 .740 .770 .795 .830	p* .95 .695 .730 .760 .800 .95 .685	.975 .655 .695 .725 .770	.99 .610 .660 .690 .740	.995 .580 .630 .660 .720	5	t t	n 30 40 50 75 n 30	.80 .770 .800 .820 .850	.90 .720 .750 .775 .810	p* .95 .670 .740 .780 .780 .95 .650	.975 .635 .675 .705 .755	.99 .590 .640 .670 .720	.995 .563 .610 .650

Table 1. G (continued)

For Estimator $\widetilde{\beta}$ Selecting the t-best: Complete Large Sample Approximation Case Finding the smallest n required for $P(CS \mid R) \ge p$ given values of k, t, δ , p^*

					p.			
k	t	n	.80	.90	.95	.975	.99	.995
5	3	30	.730	.680	.640	.610	.570	.540
		40	.765	.720	.685	.655	.620	.595
		50	.790	.750	.710	.685	.650	.630
1		75	.825	.790	.760	.735	.710	.690
- 1					1		1	1

k	t	n	.80	.90	.95	.975	.99	.995
5	4	30	.755	.700	.660	.625	.580	.550
		40	.785	.740	.700	.665	.630	.605
		50	.805	.760	.725	.695	.665	.640
7		75	.840	.800	.770	.750	.720	.700

Appendix H Fortran Programs for Simulations

Comment: Small Sample Simulations using the maximum likelihood estimator for the parameter beta

```
integer iseed, nout, nz,num,itmax,n,k,ii,iter,tbest
integer d, count
double precision z(1000),drnnor,t(1000),tpop(1000,1000)
double precision tsum(1000), hsum(1000), errel, xguess, x(2)
double precision tbar(1000),h(1000),fnorm,beta(10,50000)
double precision mmax(50000), mmin(50000), delta, prob
double precision zone(1000), alpha
external drnnor, rnset, umach, wrcrn, zplrc
external dneqnf,fcn
parameter(num=2,nn=30,kk=5,mm=50000)
common h(1000),tbar(1000), tpop(1000,1000),ii,n,alpha,zone
open(unit=15, file='bsalpha25n30.out')
call umach(2, nout)
write(15,*) 'This is a new program'
do k=2,kk
do tbest=1,k-1
do n=5,nn,5
write(15,*)'k=',k,' n=',n, 't=',tbest
nz=k*n
```

C

```
iseed=123457
       call rnset(iseed)
       do iter=1,mm
       call drnnor(nz,z)
       do j=1,nz
       alpha=dble(0.25)
       zone(j)=z(j)*alpha
       t(j) = (zone(j)**2+zone(j)*sqrt(4.0+zone(j)**2)+2.00)/dble(2.0)
       enddo
       do j=1,k
       do i=1,n
       tpop(j,i)=t(i+(j-1)*n)
       write(15,*) 'tpop(',j,',',i,')=', tpop(j,i)
c
       enddo
       enddo
       do j=1,k
       tsum(j)=0.0
       hsum(j)=0.0
```

```
do i=1,k
       do j=1,n
       tsum(i)=tsum(i)+tpop(i,j)
       hsum(i)=hsum(i)+dble(1.0)/tpop(i,j)
       enddo
       tbar(i)=tsum(i)/dble(n)
       h(i)=(dble(n)/hsum(i))
       enddo
       do i=1,k
       write(15,991) tbar(i),h(i)
C
       enddo
       do ii=1,k
       xguess = sqrt(tbar(ii)*h(ii))
       errel=.005
       itmax=2500
       call dneqnf(fcn,errel,num,itmax,xguess,x,fnorm)
       beta(ii,iter)=x(1)
c
       write(15,*) x(1), fnorm
```

enddo

```
enddo
       doi=1,k
C
       write(15,*)'beta(',i,',',iter,')=',beta(i,iter),
c
       enddo
c
       the enddo below is for iteration
c
       enddo
c
       Find the maximum and minimum
       do iter=1,mm
       mmax(iter)=beta(1,iter)
       do j=2,k-tbest
       if (beta(j,iter) .gt. mmax(iter)) then
              mmax(iter)=beta(j,iter)
       endif
       enddo
       mmin(iter)=beta(k-tbest+1,iter)
       do i=k-tbest+1,k
       if (beta(i,iter) .lt. mmin(iter)) then
       mmin(iter)=beta(i,iter)
       endif
       enddo
```

write(15,*) 'max=', mmax(iter), 'min=', mmin(iter)

c

```
enddo
```

```
do d=30,100,1

count=0

delta=dble(d)/100.0

do iter =1,mm

if(delta*mmax(iter).lt. mmin(iter)) then

count=count+1

endif

enddo

prob=dble(count)/dble(mm)

write(15,995)delta,prob

enddo
```

c The following are for the k,t, and n loops

enddo

enddo

enddo

991 format('tbar=', f8.4, ' hbar=', f8.4)

```
format('delta=', f5.3, ' prob=', f10.8)
995
       end
       subroutine fcn(x,f,num)
       integer num,j
       double precision bk,tpop(1000,1000)
       double precision x(num),f(num),h(1000),tbar(1000)
       common h(1000),tbar(1000), tpop(1000,1000),ii,n
       common ii,k,h,tbar,tpop,n
c
       bk=0.0
       do j=1,n
       bk=bk+dble(1.0)/(x(1)+tpop(ii,j))
       enddo
       write(15,*) 'ii=',ii,'h(ii)',h(ii), 'tbar(ii)',tbar(ii)
C
       f(1)=x(1)**2-x(1)*(2*h(ii)+10.00/bk)+h(ii)*(tbar(ii)+10.00/bk)
       return
       end
```

Comment: Small Sample Simulations using the estimator betaprime for the parameter beta

```
integer iseed, nout, nz,num,itmax,n,k,ii,iter,tbest
integer d, count
double precision z(1000), drnnor,t(1000),tpop(1000,1000)
double precision tsum(1000),hsum(1000),errel,xguess,x(2)
double precision btilda(10,50000),bprime(10,50000)
double precision tbar(1000),h(1000),fnorm,beta(10,50000)
double precision mmax(50000), mmin(50000), delta, prob
external drnnor, rnset, umach, wrcrn, zplrc
external dneqnf,fcn
parameter(num=2,nn=15,kk=5,mm=10)
common h(1000),tbar(1000)
common tpop(1000,1000),ii,n,btilda(10,50000),bprime(10,50000)
open(unit=15, file='bs2betas.out')
call umach(2, nout)
write(15,*) 'This is a new program'
do k=2,kk
do tbest=1,k-1
do n=5,nn,5
write(15,*)'k=',k,' n=',n, 't=',tbest
```

C

```
nz=k*n
       iseed=123457
       call rnset(iseed)
       do iter=1,mm
       call drnnor(nz,z)
       do j=1,nz
       t(j)=(z(j)**2+z(j)*sqrt(4.0+z(j)**2)+2.00)/dble(2.0)
       enddo
       doj=1,k
       do i=1,n
       tpop(j,i)=t(i+(j-1)*n)
       write(15,*) 'tpop(',j,',',i,')=', tpop(j,i)
C
       enddo
       enddo
       do j=1,k
       tsum(j)=0.0
       hsum(j)=0.0
       enddo
```

```
do i=1,k
       do j=1,n
       tsum(i)=tsum(i)+sqrt(tpop(i,j))
       hsum(i)=hsum(i)+dble(1.0)/sqrt(tpop(i,j))
       enddo
       tbar(i)=tsum(i)/dble(n)
       h(i)=(dble(n)/hsum(i))
       bprime(i,iter)=tbar(i)*h(i)
       enddo
       do i=1,k
c
       write(15,991) tbar(i),h(i)
c
       enddo
c
       do ii=1,k
       xguess = sqrt(tbar(ii)*h(ii))
       btilda(ii,iter)= sqrt(tbar(ii)*h(ii))
       errel=.001
       itmax=2500
       call dneqnf(fcn,errel,num,itmax,xguess,x,fnorm)
       beta(ii,iter)=x(1)
```

```
write(15,*) x(1), fnorm
C
        enddo
        do i=1,k
       write(15,*)'beta(',i,',',iter,')=',beta(i,iter),
       write(15,*)'btilda(',i,',',iter,')=',btilda(i,iter),
       write(15,*)'bprime(',i,',',iter,')=',bprime(i,iter),
        enddo
       the enddo below is for iteration
С
        enddo
       Find the maximum and minimum
С
        do iter=1,mm
       mmax(iter)=beta(1,iter)
       do j=2,k-tbest
       if (beta(j,iter) .gt. mmax(iter)) then
               mmax(iter)=beta(j,iter)
        endif
        enddo
        mmin(iter)=beta(k-tbest+1,iter)
        do i=k-tbest+1,k
       if (beta(i,iter) .lt. mmin(iter)) then
```

mmin(iter)=beta(i,iter)

```
endif
       enddo
       write(15,*) 'max=', mmax(iter), 'min=', mmin(iter)
C
       enddo
       do d=35,80,2
       count=0
       delta=dble(d)/100.0
       do iter =1,mm
       if(delta*mmax(iter).lt. mmin(iter)) then
       count=count+1
       endif
       enddo
       prob=dble(count)/dble(mm)
       write(15,995)delta,prob
       enddo
```

c The following are for the k,t, and n loops enddo

```
enddo
       enddo
991
       format('tbar=', f8.4, ' hbar=', f8.4)
       format('delta=', f5.3, 'prob=',f10.8)
995
       end
       subroutine fcn(x,f,num)
       integer num, j
       double precision bk,tpop(1000,1000)
       double precision x(num),f(num),h(1000),tbar(1000)
       common h(1000),tbar(1000), tpop(1000,1000),ii,n
       common k,h,tbar,tpop,ii,n
c
       bk=0.0
       do j=1,n
       bk=bk+dble(1.0)/(x(1)+tpop(ii,j))
       enddo
       write(15,*) 'ii=',ii,'h(ii)',h(ii), 'tbar(ii)',tbar(ii)
c
       f(1)=x(1)**2-x(1)*(2*h(ii)+10.00/bk)+h(ii)*(tbar(ii)+10.00/bk)
       return
       end
```

Comment: Small Sample Simulations using the estimator betatilda for the parameter beta

```
integer iseed, nout, nz,num,itmax,n,k,ii,iter,tbest
integer d, count
double precision z(1000), drnnor,t(1000),tpop(1000,1000)
double precision tsum(1000),hsum(1000),errel,xguess,x(2)
double precision tbar(1000),h(1000),fnorm,beta(10,50000)
double precision mmax(50000), mmin(50000), delta, prob
double precision zone(1000), alpha
external drnnor, rnset, umach, wrcrn, zplrc
external dneqnf,fcn
parameter(num=2,nn=30,kk=5,mm=50000)
common h(1000),tbar(1000), tpop(1000,1000),ii,n
open(unit=15, file='bs50smalltilda.out')
call umach(2, nout)
write(15,*) 'This is a new program'
do k=2,kk
do tbest=1,k-1
do n=5,nn,5
write(15,*)'k=',k,' n=',n, 't=',tbest
```

C

```
nz=k*n
       iseed=123457
       call rnset(iseed)
       do iter=1,mm
       call drnnor(nz,z)
       do j=1,nz
                       alpha=dble(0.5)
       zone(j)=z(j)*alpha
       t(j)=(zone(j)**2+zone(j)*sqrt(4.0+zone(j)**2)+2.00)/dble(2.0)
       enddo
       do j=1,k
       doi=1,n
       tpop(j,i)=t(i+(j-1)*n)
       write(15,*) 'tpop(',j,',',i,')=', tpop(j,i)
c
       enddo
       enddo
       do j=1,k
```

```
tsum(j)=0.0
```

$$hsum(j)=0.0$$

enddo

$$doi=1,k$$

$$doj=1,n$$

enddo

enddo

- c do i=1,k
- c write(15,991) tbar(i),h(i)
- c enddo
- c do ii=1,k
- c xguess = sqrt(tbar(ii)*h(ii))
- c errel=.01
- c itmax=2500

```
call dneqnf(fcn,errel,num,itmax,xguess,x,fnorm)
c
       beta(ii,iter)=x(1)
c
       write(15,*) x(1), fnorm
c
       enddo
C
c
       doi=1,k
       write(15,*)'beta(',i,',',iter,')=',beta(i,iter),
c
       enddo
c
       the enddo below is for iteration
c
```

c Find the maximum and minimum

enddo

```
do iter=1,mm

mmax(iter)=beta(1,iter)

do j=2,k-tbest

if (beta(j,iter) .gt. mmax(iter)) then

mmax(iter)=beta(j,iter)

endif

enddo

mmin(iter)=beta(k-tbest+1,iter)

do i=k-tbest+1,k

if (beta(i,iter) .lt. mmin(iter)) then

mmin(iter)=beta(i,iter)
```

```
endif
       enddo
       write(15,*) 'max=', mmax(iter), 'min=', mmin(iter)
c
       enddo
       do d=30,50,1
       count=0
       delta=dble(d)/100.0
       do iter =1,mm
       if(delta*mmax(iter).lt. mmin(iter)) then
       count=count+1
       endif
       enddo
       prob=dble(count)/dble(mm)
       write(15,995)delta,prob
       enddo
       The following are for the k,t, and n loops
c
       enddo
       enddo
       enddo
991
       format('tbar=', f8.4, ' hbar=', f8.4)
       format('delta=', f5.3, 'prob=',f10.8)
995
       end
```

Comment: Small Sample Simulations for the parameter alpha using betatilda in the mle expression

```
integer iseed, nout, nz,num,itmax,n,k,ii,iter,tbest
integer d, count
double precision z(1000), drnnor,t(1000),tpop(1000,1000)
double precision tsum(1000), hsum(1000), errel, xguess, x(2)
double precision tbar(1000),h(1000),fnorm,alp(10,50000)
double precision beta(10,50000), one(10,50000), two(10,50000)
double precision mmax(50000), mmin(50000), delta, prob
external drnnor, rnset, umach, wrcrn,zplrc
external dneqnf,fcn
parameter(num=2,nn=30,kk=5,mm=50000)
common h(1000),tbar(1000), tpop(1000,1000),ii,n
open(unit=15, file='bsamle.out')
call umach(2, nout)
write(15,*) 'This is a new program'
do k=2,kk
do tbest=1,k-1
do n=5,nn,5
```

c

```
write(15,*)'k=',k,' n=',n, 't=',tbest
       nz=k*n
       iseed=123457
       call rnset(iseed)
       do iter=1,mm
       call drnnor(nz,z)
       do j=1,nz
       t(j)=(z(j)**2+z(j)*sqrt(4.0+z(j)**2)+2.00)/dble(2.0)
       enddo
       do j=1,k
       do i=1,n
       tpop(j,i)=t(i+(j-1)*n)
       write(15,*) 'tpop(',j,',',i,')=', tpop(j,i)
C
       enddo
       enddo
       do j=1,k
       tsum(j)=0.0
       hsum(j)=0.0
```

```
do i=1,k
       do j=1,n
       tsum(i)=tsum(i)+tpop(i,j)
       hsum(i)=hsum(i)+dble(1.0)/tpop(i,j)
       enddo
       tbar(i)=tsum(i)/dble(n)
       h(i)=(dble(n)/hsum(i))
       alp(i,iter) = sqrt(dble(2.0)*sqrt(tbar(i)/h(i))-dble(2.0))
c
       enddo
       doi=1,k
С
       write(15,991) tbar(i),h(i)
c
       enddo
c
       do ii=1,k
       xguess = sqrt(tbar(ii)*h(ii))
       errel=.01
       itmax=2500
       call dneqnf(fcn,errel,num,itmax,xguess,x,fnorm)
       beta(ii,iter)=x(1)
```

enddo

```
one(ii,iter)=tbar(ii)/beta(ii,iter)

two(ii,iter)=beta(ii,iter)/h(ii)

alp(ii,iter)=sqrt(one(ii,iter)+two(ii,iter)-dble(2.0))

write(15,*) x(1), fnorm

enddo

c do i=1,k

c write(15,*)'beta(',i,',',iter,')=',beta(i,iter),

c enddo

c the enddo below is for iteration

enddo
```

c Find the maximum and minimum

```
do iter=1,mm

mmax(iter)=alp(1,iter)

do j=2,k-tbest

if (alp(j,iter) .gt. mmax(iter)) then

mmax(iter)=alp(j,iter)

endif

enddo

mmin(iter)=alp(k-tbest+1,iter)

do i=k-tbest+1,k
```

```
if (alp(i,iter) .lt. mmin(iter)) then
       mmin(iter)=alp(i,iter)
       endif
       enddo
       write(15,*) 'max=', mmax(iter), 'min=', mmin(iter)
С
       enddo
       do d=20,100,1
       count=0
       delta=dble(d)/100.0
       do iter =1,mm
       if(delta*mmax(iter).lt. mmin(iter)) then
       count=count+1
       endif
       enddo
       prob=dble(count)/dble(mm)
       write(15,995)delta,prob
       enddo
```

```
The following are for the k,t, and n loops
C
       enddo
       enddo
       enddo
991
       format('tbar=', f8.4, ' hbar=', f8.4)
995
       format('delta=', f5.3, 'prob=',f10.8)
       end
       subroutine fcn(x,f,num)
       integer num, j
       double precision bk,tpop(1000,1000)
       double precision x(num), f(num), h(1000), tbar(1000)
       common h(1000),tbar(1000), tpop(1000,1000),ii,n
       common k,h,tbar,tpop
C
       bk=0.0
       do j=1,n
       bk=bk+dble(1.0)/(x(1)+tpop(ii,j))
       enddo
       write(15,*) 'ii=',ii,'h(ii)',h(ii), 'tbar(ii)',tbar(ii)
c
       f(1)=x(1)**2-x(1)*(2*h(ii)+10.00/bk)+h(ii)*(tbar(ii)+10.00/bk)
       return
       end
```

Comment: Large Sample Normal Approximations for the parameter beta

```
integer nout
integer num,k,tbest,n,d,kmt,t
double precision delta, alpha
double precision A,B,ERRABS,ERRREL,RESULT,ERREST
double precision pstar,F,H,P,alp,low,high
parameter(alpha=1.0,low=-5.0,high=5.0)
common k,tbest,n,d,kmt,t,delta,alp
Intrinsic DABS, DEXP, SQRT
External umach,dqdags,F,H,P,dnordf
parameter (num=2,nn=75,kk=5)
call umach (2,nout)
open(unit=15,file='bnoapp.out')
```

do k=2,kk do tbest=1,k-1 do n=75,nn,5 do d=30,90,1 kmt=k-tbest t=tbest delta=dble(d)/100.0 alp=alpha write(15,990) k,t,n,alp A=low B=high ERRABS=0.0 ERRREL=0.001 call dqdags (F,A,B,ERRABS,ERRREL,RESULT,ERREST)

pstar=(k-t)*RESULT

```
enddo
enddo
enddo
enddo

format('k= ',i2,' t= ',i2,' n= ',i3,' alpha= ',f9.3)

format(' delta=',f9.3, ' prob=',f20.8, ' error=',f10.8 )

end
```

* Find the integral desired

```
double precision Function F(x)
integer k,tbest,kmt,t
double precision delta
double precision x,DEXP,dnordf,H,P
common k,tbest,n,d,kmt,t,delta,alp
Intrinsic DEXP,DSQRT
External dnordf,H,P
```

```
xd=dble(x)*delta
F=(H(x-1))**(kmt-1)*(1-H((x-1)*delta+delta-1))**t*P(x)
return
end
double precision Function H(x)
double precision x
double precision dnordf
common k,tbest,n,d,kmt,t,delta,alp
Intrinsic DSQRT
External dnordf
H=dnordf(7.5452*x)
return
end
double precision Function P(x)
double precision DEXP,x,pi
common k,tbest,n,d,kmt,t,delta,alp
Intrinsic DSQRT,DEXP
pi=const("PI")
P=3.010099*DEXP(-28.465*(x-1)**2)
return
end
```

Comment: Large Sample Birnbaum-Saunders Approximations for the parameter beta

```
integer nout, IRULE
integer num,k,tbest,n,d,kmt,t
double precision delta, alpha
double precision A,B,ERRABS,ERRREL,RESULT,ERREST
double precision DABS, DEXP, F, G, P, R
double precision dnordf,alp,low,hi
parameter(alp=0.25,low=0.000000001,hi=500.00)
common k,tbest,n,d,kmt,t,delta,alpha,const
Intrinsic DABS, DEXP, DSQRT
External umach,dqdag,F,G,P,R,dnordf
parameter(num=2,nn=75,kk=5)
call umach(2,nout)
open (unit=15,file='appb4.out')
do k=2,kk
do tbest=1,k-1
```

```
do n=75,nn,5
do d=40,100,1
kmt=(k-tbest)
t=tbest
delta=dble(d)/100.00
alpha=alp
write(15,990) k,tbest,n
A=low
B=hi
ERRABS=0.0
ERRREL=0.001
IRULE=6
call dqdag(F,A,B,ERRABS,ERRREL,IRULE,RESULT,ERREST)
pstar=kmt*RESULT
write(15,995) delta,pstar,ERREST
enddo
```

enddo

enddo

enddo

end

double precision Function F(x)

integer k,tbest,kmt,t

double precision x,delta,xd

double precision DEXP,dnordf,G,P

common k,tbest,n,d,kmt,t,delta

Intrinsic DEXP, DSQRT

External dnordf,G,P,R

xd=x*delta

$$F=(G(x))^{**}(kmt-1)^{*}(1-G(x^{*}delta))^{**}t^{*}P(x)^{*}R(x)$$

return

end

```
double precision Function G(x)
double precision x
double precision dnordf
common k,tbest,n,d,kmt,t,delta
external dnordf,DSQRT
G=dnordf(9.819805*(x**(0.5)-x**(-0.5)))
return
end
double precision Function P(x)
double precision DEXP,x,pi
common k,tbest,n,d,kmt,t,delta
intrinsic dexp,sqrt
pi=const("PI")
P=1.958768*(x**(-0.5)+x**(-1.5))
return
end
double precision Function R(x)
double precision DEXP,x,pi
```

```
common k,tbest,n,d,kmt,t,delta
intrinsic dexp,sqrt
pi=const("PI")
R=DEXP(-48.21429*(x+x**(-1.0)-2.0))
return
end
```

Comment: Large Sample Normal Approximations for the parameter alpha

```
integer nout
integer num,k,tbest,n,d,kmt,t
double precision delta
double precision A,B,ERRABS,ERRREL,RESULT,ERREST
double precision DABS, DEXP, F, H, P
double precision error, dnordf, low, hi
parameter(low=-100.00,hi=100.00)
common k,tbest,n,d,kmt,t,delta
Intrinsic DABS, DEXP, SQRT
External umach,dqdags,F,H,P,dnordf
parameter(num=2,nn=75,kk=5)
call umach(2,nout)
open (unit=15,file='alpapprox1.out')
do k=2,kk
do tbest=1,k-1
```

```
do n=30,nn,5
do d=40,100,1
kmt=(k-tbest)
t=tbest
delta=dble(d)/100.00
write(15,990) k,tbest,n
A=low
B=hi
ERRABS=0.0
ERRREL=0.001
call dqdags(F,A,B,ERRABS,ERRREL,RESULT,ERREST)
pstar=kmt*RESULT
write(15,995) delta,pstar,error
enddo
enddo
enddo
enddo
```

```
990 format(' k= ',i2,' t= ',i2,' n= ',i3)
```

end

double precision Function F(x)

integer k,tbest,kmt,t

double precision x,delta,xd

double precision DEXP, dnordf, H, P

common k,tbest,n,d,kmt,t,delta

Intrinsic DEXP, DSQRT

External dnordf,H,P

xd=x*delta

$$F=(H(x-1))**(kmt-1)*(1-H(delta*(x-1)+delta-1))**t*P(x)$$

return

end

double precision Function H(x)

```
double precision x

double precision dnordf

common k,tbest,n,d,kmt,t,delta

external dnordf,SQRT

H=dnordf((x)*SQRT(2.0*n))

return

end
```

double precision Function P(x)
double precision DEXP,x,pi
common k,tbest,n,d,kmt,t,delta
intrinsic dexp,sqrt
pi=const("PI")

P=(sqrt(n/pi))*DEXP(-1.0*n*(x-1)**2)

return

end

VITA

Desiree' Ann Butler - McCullough

Candidate for the Degree of

Doctor of Philosophy

Thesis: SELECTING t – BEST OF SEVERAL BIRNBAUM – SAUNDERS POPULATIONS BASED ON THE PARAMETERS

Major Field: Statistics

Biographical:

Personal Data: Born in San Jose, California, on September 8, 1970, the daughter of George and JoAnn Butler and the sister of George Lee Butler Junior. Married in Reno, Nevada, on December 29, 1995, to Jeffrey Scott McCullough.

Education: Graduated from Durant High School, Durant, Oklahoma in May 1988, Valedictorian. Received Bachelor of Science degree in Mathematics Education from Southeastern Oklahoma State University, Durant, Oklahoma in July 1991, Cum Laude. Received Master of Science degree in Mathematics from Oklahoma State University, Stillwater, Oklahoma in December 1998. Completed the requirements for the Doctor of Philosophy degree with a major in Statistics at Oklahoma State University in May 2001.

Professional Experience: Graduate Teaching Assistant, Oklahoma State University, Fall 1993 to Spring 1998; Graduate Teaching Associate, Oklahoma State University, Summer 1998 to Present.

Professional Memberships: Sigma Xi, American Statistical Association,
Mathematics Association of America, American Mathematical Society,
American Association of Women in Mathematics, National Council of
Teachers of Mathematics, National Education Association, Kappa Delta Pi
Honor Society, Cardinal Key National Honor Sorority / Society