HETEROAROTINOIDS WITH TWO- AND THREEATOM LINKERS AS POTENTIAL

ANTICANCER AGENTS

By
 CHAD WAYNE BROWN

Bachelor of Science

University of Central Oklahoma
Edmond, Oklahoma

1996

Submitted to the Faculty of the
Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY

August, 2001

C OP Y R I G H T
By
Chad Wayne Brown
August, 2001

HETEROAROTINOIDS WITH TWO- AND THREE-

 ATOM LINKERS AS POTENTIAL
ANTICANCER AGENTS

Thesis Approved:

Richard A. Burse

ACKNOWLEDGEMENTS

First, I would like to extend my sincere thanks to Dr. Berlin for being a wonderful advisor throughout my studies at Oklahoma State. I thank you Dr. Berlin for your advice, encouragement and support through my time in graduate school. I also thank you for your patience with me as I have learned over these past few years. With your guidance I have certainly become a better scientist and hopefully a better writer.

I also wish to thank Dr. Bunce, Dr. Nelson, and Dr. El Rassi for being members of my advisory committee. I especially thank you Dr. Bunce for the helpful advice on reaction conditions and spectra work, and I express my special thanks to Dr. Nelson and Dr. El Rassi for writing so many letters of recommendation.

My gratitude is also extended to Dr. James Blair and the Department of Biochemistry and Molecular Biology for the Minorities in Biomedical Research Fellowship, which helped fund early work for this thesis. I also gratefully acknowledge the National Institutes of Health for the financial support of this work through the Minorities Access to Research Careers (MARC) Fellowship Program.

Special thanks is extended to my friends and colleagues in the Chemistry Department. My thanks goes out to Joe Klucik and Kevin Tran for their conversation and advice in the lab, and certainly to Dr. Liu for the help and advice as I was getting started on my research project. Tony Tegeler, thanks for the encouragement through the ever-dreaded quantum mechanics as well as the help with so many computer controversies. I wish to
thank Lara, Eric, and especially Darin for the friendship, encouragement, and help through the good and bad times. I also thank all of the secretaries and staff of the Chemistry Department for their help and support.

I would like to express my deepest gratitude and love to all of the members of the Oakwood Church of Christ at Edmond, Oklahoma. Although you may not have known, without your influence I could not have finished graduate school.

I certainly would like to express my deepest and most sincere love and appreciation to my mom and dad, Holly and Glen Brown. Thank you so much for the endless encouragement, support, and patience with me, and I thank you most of all for teaching and showing me God's Word. I love you both dearly.

Finally, I would thank my wonderful and loving wife Heather and our beautiful son Evan. Thank you Heather so much for your patience and love through it all. You have been so kind and supportive through so many trials and difficult times. I love you and respect you more than you could ever know, and without your love and encouragement I certainly could not have completed graduate school.

TABLE OF CONTENTS

Chapter Page
I. HISTORICAL 1
Introduction 1
Retinoid Receptors 4
Distribution of Retinoid Receptors in Organ Tissues 16
Metabolism and Action of Retinoids through Interaction and Activation of Retinoid Receptors 17
Classification of Retinoids Based on Their Interaction with Retinoid Receptors 27
Measurement of Retinoid Biological Activity 36
Toxicity of Retinoids 38
Heteroarotinoids and Other Reduced Toxicity Retinoids. 40
II. RESULTS AND DISCUSSION 44
Modified Oxygen and Sulfur Heteroarotinoids 44
Synthesis of Key Intermediates. 46
Synthesis of Heteroarotinoids Possessing Two-Atom Linker Groups 51
Synthesis of Heteroarotinoids Possessing Three- or Four-Atom Linker Groups. 54
Synthesis of Heteroarotinoids Possessing a 4-Hydroxyphenyl Amide Moiety 57
NMR Analysis of Select 8-isomer Oxygen Heteroarotinoids 62
Biological Activity 67
Summary 83
Suggestions for Future Work 84
III. EXPERIMENTAL SECTION. 92
General Information. 92
Methyl 4-\{[(2,2,4,4-Tetramethyl-3,4-dihydro-2H-chromen-6 yl)amino]- carbonyl\} benzoate (32) 93
4-\{[(2,2,4,4-Tetramethyl-3,4-dihydro-2H-chromen-6-yl)amino $]$ carbonyl $\}$ - benzoic acid (33) 94
Methyl 4-\{[(2,2,4,4-Tetramethyl-3,4-dihydro-2H-chromen-8-yl)amino]- carbonyl\} benzoate (34) 95
Chapter Page
4-\{[(2,2,4,4-Tetramethyl-3,4-dihydro-2H-chromen-8-yl)amino]- carbonyl $\}$ benzoic acid (35) 96
2,2,4-Trimethyl-2 H -chromen-7-yl 4-(methoxycarbonyl)benzoate (36) 97
[(2-Methoxy-4-nitrophenyl)amino][(2,2,4,4-tetramethylthiochroman-6- yl)amino]methane-1-thione (37) 98
[(4-Nitrobenzoyl)amino][(2,2,4,4-tetramethylthiochroman-6-yl)amino]- methane-1-thione (38) 99
Ethyl 4-\{[N-(2,2,4,4-Tetramethylchroman-6-yl)carbamoyl]amino\}- benzoate (39) 99
Ethyl 4-\{[N-(2,2,4,4-Tetramethylchroman-6-yl)thiocarbamoyl]amino $\}$ - benzoate (40) 100
[(4-Nitrophenyl)amino][(2,2,4,4-tetramethylchroman-6-yl)amino]- methane-1-thione (41) 101
Ethyl 4-\{[N-(2,2,4,4-Tetramethylchroman-8-yl)carbamoyl]amino \}- benzoate (42) 102
Ethyl 4-\{[N-(2,2,4,4-Tetramethylchroman-8-yl)thiocarbamoyl]amino \}- benzoate (43) 103
[(4-Nitrophenyl)amino][(2,2,4,4-tetramethylchroman-8-yl)amino]- methane-1-thione (44) 104
Ethyl 4-[(2,2,4-Trimethyl-2H-chromen-7-yloxy)carbonylamino]- benzoate (45) 104
\{4-[N -(4-Hydroxyphenyl)carbamoyl]phenyl $\}$ - N -(2,2,4,4-tetramethyl(3 H - benzo[3,4-e]thian-6-yl))carboxamide (46) 105
\{4-[N-(4-Hydroxyphenyl)carbamoyl]phenyl $\}$ - N-(2,2,4,4-tetramethyl- chroman-6-yl)carboxamide (47) 106
2,2,4,4-Tetramethyl-6-aminochroman (48a) 108
2,2,4,4-Tetramethyl-8-aminochroman (48b) 109
2,2,4-Trimethyl-2H-1-benzopyran-7-ol (49) 110
2,2,4,4-Tetramethyl-6-aminothiochroman (50a) 111
2,2,4,4-Tetramethyl-8-aminothiochroman (50b) 113
4-(2-Hydroxyphenyl)-2,4-dimethyl-2-pentanol (52) 114
2,2,4,4-Tetramethylchroman (53) 115
2,2,4,4-Tetramethyl-6-nitrochroman (54a) and
2,2,4,4-Tetramethyl-8-nitrochroman (54b). 116
2,2,4,4-Tetramethyl-6-nitrothiochroman (57a) and
2,2,4,4-Tetramethyl-8-nitrothiochroman (57b) 117
Mono-Methyl terephthaloyl chloride (58) 118
Determination of MICs 119
BIBLIOGRAPHY 206

LIST OF TABLES

Table Page

1. Growth Inhibition Against Various Cancerous Cell Types by Heteroarotinoids... 68
2. Anti-Bacterial Activity of Heteroarotinoids Against M. bovis............... 80

LIST OF FIGURES

Figure

1. Schematic representation of mouse Retinoic Acid Receptor (RAR)
isoforms 6
2. Schematic representation of the P-Box and D-Box of the RAR DNA- binding domain (DBD) 7
3. The human RAR- γ ligand-binding domain (LBD) crystallographic structure [co-crystallized with t-RA (3)] 9
4. Schematic representation of mouse Retinoid X Receptor (RXR) isoforms 12
5. Schematic relationship between the human retinoid receptors RAR- α RXR- α 12
6. The human RXR- α ligand-binding domain (LBD) crystal structure 14
7. Schematic representation of the human Retinoid Orphan Receptor (ROR) isoforms 15
8. Schematic representation of dietary retinoid metabolism 18
9. Schematic representation of retinoid metabolism within target cells 21
10. Schematic representation of dimers and their corresponding response element direct repeats (DRs) 24
11. Schematic representation of the RXR/RAR heterodimer with DNA and its transcriptional machinery 26
12. Schematic representation of minimum energy conformations of t-RA (3) and $9-c$-RA (4) within the RAR ligand-binding pockets 30
13. Schematic representation of a reporter plasmid for measuring transcriptional activity of a RAR or RXR after activation by a ligand 37
14. ${ }^{1} \mathrm{H}$ NMR spectra sections from spectroscopic experiments on 44 64

LIST OF PLATES

Plate Page
I. IR Spectrum of $\mathbf{3 2}$ 120
II. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 2}$ 121
III. ${ }^{13} \mathrm{C}$ NMR Spectrum 32 122
IV. IR Spectrum of $\mathbf{3 3}$ 123
V. ${ }^{1}$ H NMR Spectrum of 33 124
VI. ${ }^{13} \mathrm{C}$ NMR Spectrum 33 125
VII. IR Spectrum of $\mathbf{3 4}$ 126
VIII. ${ }^{1}$ H NMR Spectrum of $\mathbf{3 4}$ 127
IX. ${ }^{13} \mathrm{C}$ NMR Spectrum 34 128
X. IR Spectrum of $\mathbf{3 5}$ 129
XI. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 5}$ 130
XII. ${ }^{13} \mathrm{C}$ NMR Spectrum 35 131
XIII. IR Spectrum of $\mathbf{3 6}$ 132
XIV. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 6}$ 133
XV. ${ }^{13} \mathrm{C}$ NMR Spectrum 36 134
XVI. IR Spectrum of $\mathbf{3 7}$ 135
XVII. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 7}$ 136
XVIII. ${ }^{13} \mathrm{C}$ NMR Spectrum 37 137
XIX. IR Spectrum of $\mathbf{3 8}$ 138
Plate Page
XX. ${ }^{1} H$ NMR Spectrum of $\mathbf{3 8}$ 139
XXI. $\quad{ }^{13} \mathrm{C}$ NMR Spectrum 38 140
XXII. IR Spectrum of $\mathbf{3 9}$ 141
XXIII. ${ }^{1} \mathrm{H}$ NMR Spectrum of 39 142
XXIV. $\quad{ }^{13} \mathrm{C}$ NMR Spectrum of 39 143
XXV. IR Spectrum of $\mathbf{4 0}$. 144
XXVI. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4 0}$ 145
XXVII. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{4 0}$ 146
XXVIII. IR Spectrum of $\mathbf{4 0}$ 147
XXIX. ${ }^{1}$ H NMR Spectrum of 41 148
XXX. $\quad{ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{4 1}$ 149
XXXI. IR Spectrum of $\mathbf{4 2}$ 150
XXXII. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4 2}$ 151
XXXIII. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{4 2}$ 152
XXXIV. IR Spectrum of $\mathbf{4 3}$ 153
XXXV. ${ }^{1} \mathrm{H}$ NMR Spectrum of 43 154
XXXVI. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{4 3}$ 155
XXXVII. IR Spectrum of $\mathbf{4 4}$ 156
XXXVIII. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4 4}$ 157
XXXIX. ${ }^{13} \mathrm{C}$ NMR Spectrum of 44 158
XL. 2D NOESY NMR Spectrum of 44 159
XLI. 2D DQCOSY NMR Spectrum of 44 160
XLII. IR Spectrum of $\mathbf{4 5}$ 161
XLIII. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4 5}$ 162
XLIV. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{4 5}$ 163
XLV. IR Spectrum of $\mathbf{4 6}$ 164
XLVI. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4 6}$ 165
XLVII. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{4 6}$ 166
XLVIII. IR Spectrum of 47 167
XLIX. ${ }^{1} \mathrm{H}$ NMR Spectrum of 47 168
L. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{4 7}$ 169
LI. IR Spectrum of 48a. 170
LII. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4 8 a}$ 171
LIII. ${ }^{13} \mathrm{C}$ NMR Spectrum of 48 a 172
LIV. IR Spectrum of $\mathbf{4 8 b}$ 173
LV. ${ }^{1}$ H NMR Spectrum of $\mathbf{4 8 b}$ 174
LVI. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{4 8 b}$ 175
LVII. IR Spectrum of 49 176
LVIII. ${ }^{1} \mathrm{H}$ NMR Spectrum of 49 177
LIX. $\quad{ }^{13} \mathrm{C}$ NMR Spectrum of 49 178
LX. IR Spectrum of $\mathbf{5 0 a}$ 179
LXI. ${ }^{1} \mathrm{H}$ NMR Spectrum of 50a 180
LXII. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{5 0 a}$ 181
LXIII. IR Spectrum of 50b 182
LXIV. ${ }^{1} H$ NMR Spectrum of $\mathbf{5 0 b}$ 183
LXV. ${ }^{13} \mathrm{C}$ NMR Spectrum of 50b 184
LXVI. IR Spectrum of $\mathbf{5 2}$ 185
LXVII. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{5 2}$ 186
LXVIII. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{5 2}$ 187
LXIX. IR Spectrum of $\mathbf{5 3}$ 188
LXX. ${ }^{1} H$ NMR Spectrum of 53 189
LXXI. ${ }^{13} \mathrm{C}$ NMR Spectrum of 53 190
LXXII. IR Spectrum of 54a. 191
LXXIII. ${ }^{1}$ H NMR Spectrum of $\mathbf{5 4 a}$ 192
LXXIV. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{5 4 a}$ 193
LXXV. IR Spectrum of 54b 194
LXXVI. ${ }^{1}$ H NMR Spectrum of $\mathbf{5 4 b}$. 195
LXXVII. ${ }^{13}$ C NMR Spectrum of $\mathbf{5 4 b}$ 196
LXXVIII. IR Spectrum of $\mathbf{5 7 a}$ 197
LXXIX. ${ }^{1}$ H NMR Spectrum of $\mathbf{5 7 a}$ 198
LXXX. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{5 7 a}$ 199
LXXXI. IR Spectrum of 57b 200
LXXXII. ${ }^{1}$ H NMR Spectrum of 57b 201
LXXXIII. ${ }^{13}$ C NMR Spectrum of 57b 202
LXXXIV. IR Spectrum of 58 203
LXXXV. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{5 8}$ 204

CHAPTER I

HISTORICAL

Introduction

Retinoids can be described as a group of compounds, whether natural or synthetic, that are structurally similar to retinol (1, vitamin A) or 9-cis-retinol (2) and that "can elicit

1 [Retinol, Vitamin A]

2 [9-cis-Retinol]

13
specific biological responses by binding to and activating a specific receptor or set of receptors". ${ }^{1}$ Many retinoids have been produced and studied extensively for various therapeutic uses. ${ }^{1}$

Vitamin A (1) deficiency has been known to cause epithelial defects since the early 1800 's. ${ }^{2}$ However, in the 1960's Saffiotti and co-workers, as well as Chu and Malmgren, noted that vitamin A (1) had an inhibitory effect on the development of various carcinomas. ${ }^{3}$ Observations such as these have subsequently led to an explosion of research efforts. It has been found that all-trans-retinoic acid (3, t-RA), an oxidized

vitamin A, was probably responsible for much of the anti-cancer activity. Since that time, the term "retinoid" has been used to describe any analog of vitamin A regardless of the observed biological activity. All-trans-retinoic acid (3, t-RA), 9-cis-retinoic acid (4, 9-c-RA), 11-cis-retinoic acid (5, 11-c-RA), and 13-cis-retinoic acid (6, 13-c-RA) are some examples of naturally occurring retinoids. ${ }^{1}$

Intense studies of the natural retinoids spawned molecular modification thereof, which has ultimately led to the birth of a wide variety of synthetic retinoids including arotinoids and heteroarotinoids (for more on heteroarotinoids, see the section on Heteroarotinoids and Other Reduced Toxicity Retinoids). Arotiniods, such as Etretinate (7) ${ }^{4}$ and TTNPB (8), ${ }^{5}$ received the name 'arotinoids' because they have at least one aryl group in the basic structure. Several other types of retinoids are known. ${ }^{1}$

Early examples of synthetic retinoids, such as $\mathbf{7}$ and $\mathbf{8}$, have been the progenitors of a very large number of molecules that are now being synthesized and screened for potential pharmaceutical use. Natural and some synthetic retinoids are both powerful regulators of cell growth, differentiation, and homeostasis (relative state of equilibrium) in embryos and adult animals of several vertebrate species. ${ }^{6}$ Epidemiologic studies have suggested an inverse correlation between the development of cancer and dietary consumption of vitamin A (1) or beta-carotene. ${ }^{7,8}$ Histologic similarities between the epithelium of vitamin A-deficient organs and neoplastic tissue was first noted by Wolbach and Howe. ${ }^{7}$ In 1955, Lasnitski demonstrated that a pre-malignant phenotype of mouse prostate cancer that had had been induced with the carcinogen 3-methylcholanthrene could be altered by retinoid treatment. ${ }^{8}$ It was shown that in prostate cell cultures retinoid treatment caused the disappearance of atypical epithelial cells that had been induced by the carcinogen, and that the atypical cells were replaced by cells with a more normal morphology. Such epidemiologic studies and animal experiments have thus prompted researchers to test the efficacy of retinoids in the prevention and treatment of cancer in various organ tissues, including skin, stomach, lung, and breast, among several others. ${ }^{9}$

Retinoids have also been employed clinically for the treatment of various skin disorders such as acne, photo-damaged skin, hyperpigmentation, rosacea, actinic keratoses, wrinkles, superficial scarring, and epidermal atrophy. ${ }^{10-12}$ In addition, retinoids have found use in the treatment of acute promyelocytic leukemia, ${ }^{13,14}$ in the management of central nervous system tumors, ${ }^{15}$ and in the treatment of AIDS-related cutaneous Kaposi's sarcoma. ${ }^{16}$ Furthermore, retinoids may find use in proper immune system functioning, ${ }^{17}$ as anti-inflammatory agents for dealing with rheumatoid arthritis, ${ }^{18}$
and/or as an improved treatment for emphysema. ${ }^{19}$ In light of these studies and the ability of retinoids to regulate proliferation and differentiation in both normal and malignant cells in vitro and in vivo, future investigations and therapeutic applications of retinoids promises to be significant.

Retinoid Receptors

The activity of retinoids is thought to be due, at least in part, to the interaction with and activation of a group of nuclear receptors termed "retinoid receptors". ${ }^{20}$ Retinoid receptors were identified as being in cell nuclei in $1987,{ }^{21}$ and there are now known two distinct subfamilies of retinoid receptors, namely Retinoic Acid Receptors ${ }^{22}$ (RARs-RAR- α, RAR- β, and RAR- γ) and Retinoid X Receptors ${ }^{23}$ (RXRs-RXR- α, RXR- β, and RXR- γ), totaling six retinoid receptors. These receptors act as ligand-inducible, transcriptional regulators that transduce the effects of retinoids on cell growth, differentiation, and homeostasis during embryonic development and adult life. ${ }^{21}$ The discovery of the retinoid receptors has thus allowed for an intense investigation to elucidate their structure. Perhaps more importantly, it has provided an essential means that can provide insight into the complex molecular mechanisms by which retinoids influence developmental control of genes and cell differentiation.

Retinoic Acid Receptors (RARs). Chimeric-screening assays of orphan receptors

 allowed the functional identification of the first retinoic acid receptor, RAR- α, which is a polypeptide composed of 462 amino acid residues. ${ }^{22 \mathrm{~d}}$ In 1987, Petkovich and coworkers, ${ }^{21 a}$ as well as Giguere and co-workers, ${ }^{22 \mathrm{~d}}$ independently isolated a human orphan receptor complementary DNA (cDNA) and were able to show that it encoded the firstknown retinoic acid-activated transcription factor. This human retinoic acid (RA) receptor was called RAR- α, and it's discovery was pivotal to understanding the action of t-RA (3) because it simultaneously provided a mechanistic pathway for the activity of t RA (3), as well as a potential way to identify a set of downstream developmental control genes.

The discoveries of the several loci present in the human genome related to RARα, along with the discovery of a family of RAR- α-related genes, provided evidence that other subtypes of the RAR might exist. ${ }^{24}$ Subsequently, in 1988 a second receptor was found which responded to retinoic acid, and it was called RAR- β. ${ }^{25}$ Furthermore, in 1989, Chambon and co-workers ${ }^{26}$ reported the discovery of the third subtype of the RAR and named it RAR- γ. The genes encoding these three highly related RARs map on distinct chromosomes $17 \mathrm{q} 21.1,3 \mathrm{p} 24$, and 12 q 13 in the human genome. ${ }^{27}$ Each RAR gene generates multiple isoforms of the receptors, which differ from each other in the number of amino acids that constitute their amino-terminal region (Figure 1). ${ }^{28}$ Thus, RAR- α has isoforms - RAR- α_{1} and RAR- $\alpha_{2}{ }^{28 b}$ RAR- β has four isoforms - RAR- β_{1}, RAR- β_{2}, RAR- β_{3}, and RAR- $\beta_{4}{ }^{28 c}$ and RAR- γ has two isoforms - RAR- γ_{1} and RAR$\gamma_{2}{ }^{28 a}$ Each isoform of the RARs has a modular structure which can be divided into five distinct domains (A/B-F):

1) (domain $A / B)$ - ligand-independent activation function (AF-1),
2) (domain C) DNA-Binding Domain (DBD),
3) (domain D) hinge,
4) (domain E) ligand-binding domain (LBD) which contains the ligand-dependent activation function (AF-2), and
5) (domain F) C-terminus (functionally undefined). ${ }^{29}$

Figure 1. Schematic representation of mouse Retinoic Acid Receptor (RAR) isoforms. The DNA-binding domains (DBD, domain C) and the ligandbinding domains (LBD, domain E) are shown by shaded boxes to denote the highest conserved regions. The percentages within the shaded boxes specify the percent amino acid identity as compared to RAR- α. The numbers below the diagrams indicate domain length as well as the total length of the receptor in terms of amino acid residues. ${ }^{28}$

The N -terminal A / B domain is rich in proline, serine, and threonine (non-acidic amino acid residues) and is important for transcriptional regulation. ${ }^{30}$ The number and sequence of the amino acid residues within the A / B domain vary in each $R A R$ isoform, and the A / B domain is one of the lowest conserved regions of the receptor (Figure 1). ${ }^{29}$

Domain C of the RARs is the DNA-binding region, which is responsible for specific recognition of a DNA sequence called the hormone response element [HRE, or for retinoic acid-response element (RARE)]. ${ }^{31}$ This domain is comprised of two features called the 'zinc finger ${ }^{32}$ and the 'zinc twist' (Figure 2). ${ }^{33}$ The P-Box ('zinc finger') is

Figure 2. Schematic representation of the P-Box and D-Box of the RAR DNAbinding domain (DBD). The red-colored circles represent the amino acid residues that are thought to be responsible for specificity of binding to DNA hormone response element RARE. ${ }^{33}$
closest to the N -terminus and contains three amino acid residues, which are different in all isoforms of the RARs, and are responsible for the recognition and specificity of
binding the RAR to the RARE^{34} by making contact with DNA through insertion within the major groove of the DNA double helix. ${ }^{35}$ The 'zinc twist' (D-Box) is responsible for the formation of homo- or heterodimers with other nuclear receptors ${ }^{36}$ and determines the number of nucleotides which are allowed to separate the two half-sites of RARE. ${ }^{316,37}$ These fascinating characteristics of the RARs and other DNA-binding receptors are due to the interaction of two zinc ions with eight cysteine residues. ${ }^{32,33 \mathrm{~b}}$ The coordination of each zinc with a separate set of four highly conserved cysteine residues ${ }^{32,33 b}$ forms such 'zinc clusters' as illustrated in Figure 2. Domain D has been termed a hinge and contains a nuclear translocation signal. ${ }^{29,38}$

The E domain is the ligand binding domain (LBD) which contains an overlapping functional domain called the ligand-dependent transactivation function (AF-2). ${ }^{21,29}$ The LBD of the RARs resides at the C-terminus, spans approximately 220 amino acid residues, ${ }^{29}$ and fulfills multiple functions, ${ }^{39}$ one of which is to interact with retinoids, such as endogenous ligands t-RA (3) or $9-c$-RA (4). The latter "activates" the receptor (for more information about the interaction of retinoids with the LBD and the resulting activity, see the section on Metabolism and Action of Retinoids).

The human RAR- γ_{2} holo-LBD (receptor with ligand bound) crystal structure has been elucidated by Renaud and co-workers (Figure 3). ${ }^{40}$ The LBD of RAR- $\boldsymbol{\gamma}$ is made up of 220 amino acid residues, which comprise nine α-helical structures in helices 1-12 (H1 to H12), two omega (Ω) loops, and two beta (β) sheets (B1 and B2). ${ }^{40}$ This numbering system was continued from the crystal structure of apo-RXR- α (receptor without ligand bound $)^{41}$ which was reported shortly prior to that of $\operatorname{RAR}-\gamma$. The α-helices were numbered by their resemblance in comparison to RXR- α, but not sequentially. For

Figure 3. The human RAR- γ ligand-binding domain (LBD) crystallographic structure [co-crystallized with t-RA (3)]. ${ }^{40}$
instance, helices H2, H5, and H11 are omitted from the holo-LBD of the RAR- γ crystal structure because those helices do not exist within the structure after the receptor is bound to a ligand. ${ }^{40}$ The nine α-helices are organized in a three-layer structure with $\mathrm{H} 4, \mathrm{H} 5$, H6, H8, and H9 sandwiched between H 1 and H 3 on one side and $\mathrm{H} 7, \mathrm{H} 10$, and H 11 on
the other. ${ }^{40}$ Two topologically conserved β-strands (B1 and B2) form a β-turn inserted between loop 1-3 (connecting H 1 to H 3) and $\mathrm{H} 3 .{ }^{40}$

Twenty four amino acid residues of the LBD make up what is referred to as the ligand-binding pocket (LBP). ${ }^{40}$ These residues include Phe201, Thr227, Phe230, Ser231, Leu233, Ala234, Lys236, Cys237, Leu271, Met272, Arg274, Ile275, Arg278, Phe288, Ser289, Gly303, Phe304, Ala394, Arg396, Ala397, Leu400, Met408, Ile412, and Met 415 . 40 A sequence alignment of RAR- α, RAR- β, and RAR- γ was also done by Renaud and co-workers ${ }^{40}$ which, interestingly, showed that only three residues in the LBPs were variable. Variations were A234 for RAR- γ (S232 in RAR- α and A225 in RAR- β), M272 in RAR- γ (I270 in RAR- α and I263 in RAR- β), and A397 in RAR- γ (V395 in RAR- α and V388 in RAR- β). These different residues are certainly candidates that could potentially provide receptor isoform selectivity (for more information on receptor selectivity see the section on Toxicity of Retinoids).

The LBD not only contains the essential LBP, but it also contains the functionally important ligand-dependent transactivation function (AF-2, Figure 1) which is located at the C-terminal in α-helix $12(\mathrm{H} 12)^{42}$ of the ligand-binding domain. In addition, the LBD has a structural theme spanned by the amino terminal of H 7 , the amino terminal of H 10 , the loop between H9 and H10, and the carboxyl terminal of H9 which provides a dimerization surface for the formation of homo- or heterodimers with other nuclear receptors including the vitamin D_{3} receptor, the thyroid hormone receptor, the RXRs, and others. ${ }^{43}$

Retinoid X Receptors (RXRs). Through further screening assays of orphan receptors, another class of retinoid-responsive transcription factors was discovered, and it
was referred to as retinoid X receptors (RXRs). ${ }^{44}$ The family of RXRs consists of three subtypes, RXR $-\alpha$, RXR $-\beta$, and RXR- γ, as does the RAR group, and the RXRs are approximately 46 kDa in size and display the same structural organization as found in the RARs, that is, the former have a domain comprised of domains A/B-F ${ }^{45}$ The RXRs even have a 'zinc finger, zinc twist' feature as do the RARs. ${ }^{33 a}$ However, a striking observation that came from the cloning of RXR is the apparent dissimilarity of its sequence to that of the RARs. ${ }^{44}$ In fact, RAR is more similar to the thyroid hormone receptor than it is to $\mathrm{RXR}^{21 b}$

As is also true with the RAR family, the RXR proteins are closely related to each other in both their DNA-binding and ligand-binding domains and are encoded by separate genes at distinct chromosomal loci. ${ }^{2 \mathrm{lb}, 46}$ The RXR- α, RXR- β, and RXR- γ proteins map on chromosomes $9 \mathrm{q} 34.3,6 \mathrm{p} 21.3$, and 1q22-23, respectively, in the human genome, ${ }^{21 \mathrm{~b}, 47}$ and have sequence alignment homologies for DBDs of 92% and 95%, and LBDs of 89% and 86% for RXR- β and RXR- γ, respectively, as compared to RXR- α (Figure 4). ${ }^{46,48}$ In addition, each subtype of the RXR family has two isoforms, namely RXR- α_{1}, RXR- α_{2}, RXR $-\beta_{1}$, RXR $-\beta_{2}$, and RXR $-\gamma_{1}$ and RXR- $\gamma_{2}{ }^{48}$

Because of the low degree of homology between RARs and RXRs over their entire protein sequences, 61% in the DBDs (the highest similarity) of RAR- α and RXR- α and 27% in their LBDs (Figure 5), ${ }^{46}$ activation of the RXR family of receptors by t-RA (3) has not been observed. ${ }^{49}$ However, it was discovered that 9-c-RA (4) was a natural ligand for the RXRs ${ }^{49}$ and that 9-c-RA (4) could also activate the RARs with potencies comparable to that of t-RA (3). ${ }^{50}$ Thus, $9-c$-RA (4) has been termed a pan agonist, because of this ability to bind to more than one type of receptor subtype. ${ }^{46}$

Figure 4. Schematic representation of mouse Retinoic X Receptor (RXR) isoforms. The DNA-binding domains (DBD, domain C) and the ligand-binding domains (LBD, domain E) are shown by shaded boxes to denote the highest conserved regions. The percentages within the shaded boxes specify the percent amino acid identity as compared to RXR- α. The numbers below the diagrams indicate domain length in terms of amino acid residues. ${ }^{46}$

Figure 5. Schematic relationship between the human retinoid receptors RAR- α and RXR- α. The DNA-binding domains (DBD, domain C) and the ligandbinding domains (LBD, domain E) are shown by shaded boxes to denote the highest conserved regions. The percentages within the shaded boxes specify the percent amino acid identity as compared to RAR- α. The numbers below the diagrams indicate domain length in terms of amino acid residues. ${ }^{46}$

The crystallographic structure of the human apo-ligand-binding domain (apo-LBD, no ligand bound) of RXR- α has been reported by Bourget and co-workers ${ }^{41 a}$ and is shown in Figure 6. The RXR- α LBD has been described as an antiparallel α-helical sandwich with dimensions of $38 \times 74 \times 25 \AA$ organized in a three-layered structure. ${ }^{\text {4la }}$ Twelve α-helices account for 65% of the domain, with helices H4-H5, H8, H9, H11, and the N-terminal of H 12 sandwiched between $\mathrm{H} 1, \mathrm{H} 2$ and H 3 on one side and $\mathrm{H} 6, \mathrm{H} 7$ and H 10 on the other. ${ }^{40,41 \mathrm{a}}$ Two short β-strands (B1 and B2) form a β-hairpin and constitute the only β structure of the domain. The domain of RXR- α also has a dimerization surface comprised of helices $\mathrm{H} 10, \mathrm{H} 5$, and H 8 , the C-terminal activation function $\mathrm{AF}-2$ sequence (450-FLMEMLE-458), and two proposed ligand binding pocket locations. ${ }^{40,41 a}$ More recently, Egea and co-workers ${ }^{41 \mathrm{~b}}$ reported the crystal structure of the human RXR- α ligand-binding domain (holo-LBD) bound to its endogenous ligand 9-c-RA (4). It was reported that $9-c$-RA (4) was buried in an essentially hydrophobic pocket formed by residues located on helices $\mathrm{H} 3, \mathrm{H} 5, \mathrm{H} 7, \mathrm{H} 11$, and the β-turn (see Figure 6). These residues are conserved in all three RXR subtypes, suggesting difficulty in finding RXRα, RXR $-\beta$, or RXR- γ subtype selective ligands. ${ }^{41 b}$

Retinoid Orphan Receptors. When ligands for receptor-like proteins are initially unknown, the receptors are referred to as "orphan" receptors. Studies of orphan receptors led to the discovery of the two retinoid receptor families RAR and RXR ${ }^{21 b}$ A novel family of steroid hormone nuclear receptor superfamily related to the retinoic acid receptors have been identified by Giguere and co-workers. ${ }^{51}$ This family has been termed the ROR- α s. Three isoforms, namely ROR- α_{1}, ROR- α_{2}, and ROR- α_{3} have been

Figure 6. The human RXR- α ligand-binding domain (LBD) crystal structure. ${ }^{41 \mathrm{a}}$
reported as sharing common DNA- and putative ligand-binding domains, but are characterized by distinct amino-terminal domains (Figure 7). ${ }^{51}$ Distinct DNA-binding properties were observed for each of these isoforms, and these properties were governed by the specific amino-terminal domains. ${ }^{51}$ It is believed that the amino-terminal domain and the 'zinc finger' region in the DBD work concurrently to impart high affinity and

Figure 7. Schematic representation of the human Retinoid Orphan Receptor (ROR) isoforms. The DNA-binding domains (DBD, domain C) and the ligandbinding domains (LBD, domain E) are shown by shaded boxes to denote the highest conserved regions. The numbers below the diagrams indicate domain length in terms of amino acid residues. ${ }^{51}$
specific DNA-binding characteristics. ${ }^{51}$ Both ROR $-\alpha_{1}$ and ROR- α_{2} activate transcription and bind to DNA as monomers to the ROR hormone response elements (ROREs). ${ }^{51}$

Melatonin has been suggested as a natural ligand for the RORs because it is bound to and activates the RORs via concentrations in the low nanomolar range. ${ }^{52}$ Furthermore, melatonin has been shown to exhibit anti-stress and anti-aging properties, and influences various immunological and endocrinological functions. ${ }^{52 b}$ The RORs have also been implicated in cholesterol homeostasis ${ }^{53}$ and bone metabolism. ${ }^{54}$

More recently, another retinoid-related orphan receptor has been reported (ROR- γ), and it has been suggested as being essential for lymphoid organogenesis and controlling
apoptosis (programmed cell death) during thymopoiesis. ${ }^{55}$ In addition, a retinoid-related orphan receptor called RZR, whose name was given arbitrarily by its discoverers Carlberg and co-workers, ${ }^{56}$ has been identified. The RZR exhibits a highly restricted brain-specific expression pattern, ${ }^{57}$ and the exact role and function of the RZR has not been determined. ${ }^{56}$ Due to a high expression of RZR in the pineal, thalamus, and hypothalamus glands, it has been suggested that RZR is important for physiological and developmental regulation of the central nervous system and for possible regulation of the circadian rhythm. ${ }^{52 b}$ No natural ligand for RZR has yet been identified, but the synthetic thiazolidine diones $\mathbf{1 1}$ and $\mathbf{1 2}$ have proven to be RZR specific ligands and have shown potent antiarthritic activity. ${ }^{58}$

9

10

Distribution of Retinoid Receptors in Organ Tissues

The vast utility of retinoids in biological activities is partially due to the diverse expression of these RAR and RXR genes. The RAR- α isoform is found in most tissues, ${ }^{21}$ but has a major concentration in brain tissue, primarily in the hippocampus and cerebellum, indicating a possible importance in the development and maintenance of the central nervous system. ${ }^{24}$ RAR- β expression has been found predominantly in the kidney, spinal cord, prostate, pituitary gland, and adrenal gland, ${ }^{46,52 \mathrm{~b}}$ but small concentrations of RAR- β have been detected in the liver, spleen, brain, and genital tract. ${ }^{52 b}$ The RAR- γ isoform has been found in high concentration in skin and lung
tissue ${ }^{46,59}$ and in modest concentration in cardiovascular tissue. ${ }^{60}$ As a whole, the RXRs are widely expressed in the adult organism. ${ }^{48}$ RXR- α is abundant in the liver, kidney, spleen, and a variety of visceral tissues. ${ }^{48}$ RXR $-\beta$, like RAR- α, is expressed to some extent in nearly all tissues. ${ }^{1,25,46}$ RXR- γ has a more restricted expression, being present most abundantly in muscle and brain tissue. ${ }^{21}$ However, RXR- γ has been found to be coexpressed with RAR- β in the pituitary gland, ${ }^{21,46}$ suggesting a potential role for retinoids in the regulatory cascade associated with hypophyseal differentiation. ${ }^{21}$

Metabolism and Action of Retinoids through Interaction and Activation of Retinoid Receptors

Vitamin A (Retinol, 1) has no known biological activity, but rather serves as a source substrate for the biosynthesis of functional retinoids. ${ }^{61}$ Metabolism of β-carotene (11, Figure 8) or hydrolysis of retinyl esters obtained through dietary sources (both occur in the small intestine) ${ }^{61}$ provides endogenous retinol which is then shuffled through the living system by various binding proteins and enzymatic conversions to target cells, where it is ultimately oxidized to retinoic acid and other functional metabolites that are utilized and elicit various useful biological responses.

This metabolic pathway (Figure 8) begins with the central cleavage of β-carotene (occurs in the small intestine) which produces retinaldehyde (12, or simply retinal, Figure 8) that is then bound by cellular retinol-binding protein (CRBP-II) and thus protected from oxidation to retinoic acid $[t-\mathrm{RA}(3)] .{ }^{62}$ However, as Kakkad and Ong have shown, ${ }^{62}$ when bound to CRBP-II, retinal (RCHO) is readily reduced to retinol (ROH) by the

Figure 8. Schematic representation of dietary retinoid metabolism (see text for details). ${ }^{62-69}$
mucosal enzyme retinaldehyde reductase (MRR). Both retinol formed from the reduction of retinaldehyde and retinol absorbed as such by the intestinal mucosa is then converted to a retinyl ester [RE, (retinyl palmitate)] for storage in nascent chylomicrons. ${ }^{63}$ The esterification is accomplished by lecithin:retinol acyltransferase (LRAT), which requires retinol bound to CRBP as a substrate for the esterification reaction. ${ }^{63,64}$ The retinyl esters are then packaged in chylomicrons, along with triacylglycerol and other fat-soluble vitamins, and secreted into the lymphatic system, ${ }^{65}$ where the chylomicrons undergo lipolysis, catalyzed by lipoprotein lipase (LPL). ${ }^{66}$ This lipolysis removes triacylglycerol and gives rise to chylomicron remnants, where the retinyl esters remain to be delivered to the liver. ${ }^{62}$

In the liver, two different cell types are important for retinoid storage and metabolism, namely the parenchymal cells and the stellate cells. ${ }^{67}$ Parenchymal cells are responsible for the uptake, processing, and secretion of retinoids, while stellate cells store retinoids as retinyl esters (RE). ${ }^{67}$ After arriving at the liver, the chylomicron remnants initially undergo uptake by parenchymal cells, and the retinyl esters are quickly hydrolyzed to retinol by a bile-salt-insensitive retinyl ester hydrolase (REH, this hydrolase may likely provide support in separating the dietary retinoids from the remainder of the dietary lipids being internalized with the chylomicron remnant)..68 Depending on the dietary needs of the body, some of the dietary retinoid internalized by the parenchymal cells may be secreted directly into the circulation [bound to a retinol-binding protein (RBP), which is produced by parenchymal cells] or transferred to stellate cells for storage. ${ }^{62,67}$ For transport to stellate cells, the retinoid is transferred in the form of retinol and then reesterfied (by LRAT) to be stored for future use. ${ }^{62}$ Retinol (ROH), produced from retinyl
ester hydrolysis, is bound to a retinol-binding protein (RBP - which protects ROH from oxidation and isomerization) in parenchymal cells, which is the major site for synthesis of RBP. ${ }^{69}$ This RBP-ROH complex is then secreted into the plasma where it further complexes with transthyretin (TTR, a plasma transport protein), thus protecting retinol from degradation in the kidney ${ }^{62}$ and providing delivery support to target cells for utilization.

The exact mechanism of uptake of retinol (1) by a target cell is yet unknown, and is a matter of some controversy. ${ }^{70}$ The published work on this topic can be divided into two opposing views. One view and its supporting data proposes the involvement of a cellsurface receptor for RBP in the cellular internalization of retinol. The other, and more convincing argument, lies in the theory that a cell-surface receptor for RBP does not exist to assist the uptake of retinol (1) by cells (Figure 9)..70 It is believed that as the TTR-RBP-ROH complex moves in the blood circulation past the plasma membrane of a cell, retinol (1) dissociates from RBP and enters the membrane bilayer (Figure 9). ${ }^{70}$ Thus, this process is considered a "passive transport system". Once inside the bilayer, the retinol rapidly equilibrates between the outer and inner leaflets of the bilayer ("flip-flop"). ApoCRBP (cellular retinol-binding protein with no bound ligand) may then associate with the retinol in the inner leaflet of the plasma membrane, and, through mass action, may pull additional retinol from the TTR-RBP-ROH complex into the membrane. As retinol is extracted into the cell, it is bound by apo-CRBP (Figure 9), which is specific for retinol (1) and retinal (12) only, and a holo-CRBP-ROH complex is formed. ${ }^{71}$ The ratio of holo-CRBP/apo-CRBP controls the conversion of retinol to either retinoic acid or to a cellular retinyl ester via the inhibition of enzyme LRAT by apo-CRBP and the subsequent

Plasma (Bloodstream)

Figure 9. Schematic representation of retinoid metabolism within target cells. ${ }^{70-80}$
activation of retinyl ester hydrolase (REH). ${ }^{72,73}$ The holo-CRBP also serves as a substrate for microsomal retinol dehydrogenase (RDH) which oxidizes the retinol to retinal (12), that remains bound to CRBP, albeit with less affinity. ${ }^{74}$ It is thought that CRBP also mediates the transfer of retinal from RDH to retinal dehydrogenase (RALDH), which then converts retinal to trans-retinoic acid (t-RA, 3). ${ }^{75}$ The newly formed t-RA (3) is
then bound by cellular apo-retinoic acid-binding protein (apo-CRABP), resulting in holoCRABP, and the resulting complex has a major role in metabolism of retinoic acid and its delivery to the cell nucleus. ${ }^{76}$ Retinoic acid is metabolized oxidatively through dehydrogenation resulting in the formation of 4-oxo-retinoic acid or 18-hydroxyretinoic acid, which may then undergo further degradation (for more information on retinoic acid metabolites, see the section on Toxicity of Retinoids). ${ }^{77}$

All of the endogenous retinoic acids, t-RA (3), 9-c-RA (4), 11-c-RA (5), and 13-c-RA (6), arrive at cell nuclei via a similar route just described (Figures 8 and 9). That is, they originate from their corresponding dietary retinol or from the conversion of all-transretinyl esters. ${ }^{78}$ Although certain studies have suggested that t-RA (3) may be enzymatically isomerized to $9-c$-RA (4) in certain cells, ${ }^{49,79}$ later studies have illustrated that this likely is not the case. ${ }^{38 b}$ Rather it is thought that 9-c-RA (4) originates from dietary 9-cis-retinol (2) or from the conversion of all-trans-retinyl esters, as was just described. ${ }^{78}$

The retinoic acids transported to the nucleus dissociate from CRABP and bind to one of the retinoid receptors [RARs or RXRs - with t-RA (3), binding is restricted to the RAR isoforms, but with 9-c-RA (4), a pan agonist, binding can occur to RAR and RXR]. ${ }^{79,80}$ In RARs and RXRs that have no ligand bound, helix 12 (H12) of the LBD points away from the core of the LBD, thus forming an entry by which the ligand (retinoic acid) may enter the ligand-binding pocket (LBP) of the ligand-binding domain (LBD). ${ }^{40,41}$ It is thought that the carboxylate group of the retinoic acids enter the pocket first, being drawn in via an electrostatic field gradient induced by basic amino acid residues in the LBP. ${ }^{40}$ These residues and the carboxylate end are anchored together by
hydrophobic interactions of the ligand and receptor induced by a bend of H 11 , creating a continous loop between H 10 and H 12 and drawing the hydrophobic part of the ligand into the LBP ${ }^{40}$ Helix H12 then swings in and covers the ligand in the LBP through a "mouse trap" like mechanism, which also involves the formation of a salt bridge $\left(\mathrm{CO}_{2}{ }^{-}\right.$ $\cdots \cdot \mathrm{H}-\mathrm{N}^{+} \mathrm{H}_{2}$) between glutamic residues of AF-2 (part of H 12) and lysine residues in $\mathrm{H} 4 .^{40}$ The concomitant swinging of H 12 unleashes the Ω-loop which flips over underneath H6, carrying along the N -terminal part of H 3 . In its final position, H12 seals as a 'lid' or 'cap' on the LBP and further stabilizes ligand binding by contributing to the hydrophobic pocket. ${ }^{40}$

After binding the ligand (either retinoic acid or a synthetic retinoid possessing agonistic qualities), the receptors, which exist as tetramers ${ }^{80}$ in the nucleus in the absence of a ligand, dissociate into monomers. Once the tetramers dissociate into monomers due to retinoid binding, the ligand-inependent-transactivation function $\mathrm{AF}-1$ (A / B domain) complexes with transcriptional factors that are specific to the promoter of the target gene. ${ }^{81}$ In addition, the dissociation prompts dramatic conformational changes throughout the LBD and directs the receptor toward the formation of homo- or heterodimers via the D-Box (located in the DBD, Figures 1 and 2) and the newly formed dimerization surfaces at the LBD. ${ }^{37,40,43,82,83}$

The DBDs of the RARs and RXRs not only form homo- or heterodimers between themselves but also with the thyroid hormone receptor (THR) and the vitamin D_{3} receptor $\left(\mathrm{VD}_{3} \mathrm{R}\right)$, which are other nuclear hormone receptors (Figure 10). ${ }^{21 \mathrm{~b}}$ The formation of these various homo- or heterodimers allows for their binding to DNA at

Figure 10. Schematic representation of dimers and their corresponding response element direct repeats (DRs). The arrows below the receptors represent AGGTCA (or related) half-sites. ${ }^{21 b, 31 b, 46}$
specific half-site locations of the promoter region, called hormone response elements (HREs, or this case for retinoic acid, RAREs), thus allowing the mediation of DNA transcription. ${ }^{21 b, 31 b}$ RAREs are nucleotide sequences arranged in direct or inverted repeats spaced by one, two, four, or five nucleotides. ${ }^{21 b}$ For instance, a RARE DR-2 designation is assigned to direct polydrome repeats (AGGTCA) spaced by two nucleotides (AA), such as the DNA sequence AGGTC(AA)AGGTCA. ${ }^{46}$ The repeats are well conserved, usually as the sequence AGGTCA or AGTTCA. ${ }^{21 b}$ The RAR/RXR heterodimers bind to the direct repeat RAREs in an ordered manner, ${ }^{84}$ such that RXR occupies the 5' (up-stream) half-site and RAR occupies the 3' (down-stream) half-site in DR-2 and DR-5. ${ }^{83}$ However, the polarity of binding is reversed in the case of the RAR/RXR heterodimer association with DR-1, where the RAR occupies the 5' end and

RXR the 3^{\prime} end. ${ }^{83}$ The RXR/RXR homodimer also recognizes DR-1. ${ }^{46}$ The RXR/THR heterodimer recognizes the DR-4, ${ }^{85}$ and the $\mathrm{RXR} / \mathrm{VD}_{3} \mathrm{R}$ heterodimer recognizes DR-3. ${ }^{86}$

In addition to dimer formation, the agonist-induced conformational change in the transactivation function AF-2 (carboxyl-terminal of the LBD, Figure 1) causes it to bind and form complexes with transcriptional intermediary factors (TIFs), including the estrogen receptor associating protein 160 (ERAP 160), ${ }^{87}$ receptor interacting protein 140 (RIP 140), ${ }^{88}$ TIF $1,{ }^{89,90}$ unidentified protein profile/thyroid hormone receptor interacting protein 1 (SUG1/TRIP1), ${ }^{91}$ and the transcriptional recognition sequence TATA-binding protein (TBP). ${ }^{92}$ As a result of the complex formed between AF-2 and TIFs and the conformational change in the receptor, displacement of transcriptional silencing factors such as nuclear co-repressor (N -Cor), ${ }^{386,93}$ and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) ${ }^{94}$ in RARs occurs, which, in the absence of an agonist, are bound to the hinge domain (domain D, Figure 1) of the RAR (but not RXR). ${ }^{95}$ The release of the repressors (N -Cor, SMRT) from the hinge region not only depends upon binding of an agonist to the RAR member of a heterodimeric pair but also upon the binding polarity of the heterodimer to the DNA (if the RAR occupies the 3' end, the repressor is released, and if the RAR member of the dimeric pair occupies the 5 ' end, the repressor remains bound to the RAR). ${ }^{96}$ Retinoic acid receptor homo- or heterodimers are then directed toward DNA to initiate transcription. ${ }^{38 b, 78}$

The homo- or heterodimeric pair of receptors binds to the DNA at the corresponding RARE promoter region, where they may help moderate the transcription process. ${ }^{93,94}$ After binding of the dimeric pair to the RARE, the DNA makes a loop and is positioned in such a manner that interaction of the TIFs bound to RAR or RXR, with transcriptional
machinery (elements needed for initiation and specification of transcription) located upand down-stream from the TATA box, is possible (Figure 11). ${ }^{93,94}$

Figure 11. Schematic representation of the RXR/RAR heterodimer with DNA and its transcriptional machinery. ${ }^{44,71}$ After activation of the receptors by a ligand, the newly formed heterodimer binds to the promoter region (RARE), located upstream from the TATA box, via the DNA-binding domains (DBDs). Due to the loop formation assumed by DNA, the transcriptional intermediary factors (TIFs) bound to the ligand-binding domain (LBD) of the heterodimer are able to 'chemically communicate' with transcriptional machinery proteins, such as TATA binding protein (TBP), etc. The A / B domain, which also recruits TIFs, aids in specificity of DNA binding and 'cross-talk' with enhancers of transcription. ${ }^{86,93}$

In short, retinoids may effect a cell's homeostasis via this process and may interact with retinoid receptors as receptor agonists, inverse agonists, pan agonists, antagonists, or
as agents capable of inducing programmed cell death (apoptosis) (for more information on these classifications, see the following section on Classification of Retinoids). Retinoids clearly elicit their biological activities through a very complex pathway consisting of various mechanisms. Some aspects of these mechanisms and pathway are partially understood, but certainly further research is needed to fully comprehend retinoid function and potential medicinal uses.

Classification of Retinoids Based on Their Interaction with Retinoid Receptors

Since the discovery of the retinoid receptors and due to the known therapeutic uses of naturally occurring retinoids, ${ }^{1-16}$ and more specifically their anticancer properties, ${ }^{13-15}$ the interest in retiniods has grown astronomically. This interest has spawned the production and study of many new retinoid analogues (synthetic retinoids) to gain further insight into the biological activities manifested by interaction of these compounds with the retinoid receptors.

Synthetic retinoids can be divided into five categories described by their biological activities and interaction with retinoid receptors:

1) Agonists,
2) Inverse Agonists,
3) Pan agonists,
4) Antagonists, and
5) Agents that induce apoptosis (programmed cell death).

Agonists. Retinoid receptor agonists exhibit their characteristics through interaction and activation of the receptors as is described in the previous section on metabolism and
action of retinoids. Synthetic retinoids in this category act in a similar fashion as t-RA (3) by interacting with the LBP of the ligand-binding domain (LBD) and thus causing a conformational change of the receptor such that the transcriptional silencing factors ${ }^{38 b, 93,94}$ are displaced from the hinge region (domain D, Figures 1 and 2) of retinoic acid receptors (RARs). ${ }^{95}$ The displacement of the silencing factors thus allows the receptor to actively enhance DNA transcription. ${ }^{38,78,86}$

Synthetic retinoid agonists have likely received more scientific attention than any of the other categories thus far, and a large number of them have been synthesized and studied. Three such agents that are currently employed clinically are 13-cis-retinoic acid (6), ${ }^{1}$ which is also known as "Accutane" and is a prescription commonly issued by dermatologists for the treatment of severe acne, Etretinate (7), ${ }^{4}$ and TTNPB (8). ${ }^{5}$

Inverse Agonists. Another means by which retinoids can influence cell homoestasis is through inverse agonism. ${ }^{86}$ An inverse agonist has been described as a compound which, upon binding to a RAR, causes a shift of receptor activity toward that of an active repressor, as opposed to an active enhancer of transcription when the receptor is activated by an agonist. ${ }^{86}$ Unlike agonists, the conformational change of the receptor that is induced by an inverse agonist does not displace the co-repressor from the hinge region (domain D), and, as a result, the RAR is actively involved in the transcriptional repression of target genes. ${ }^{31 \mathrm{~b}}$ Examples of retinoids with inverse agonist properties are AGN193109 (13), which has been reported to exhibit inverse agonist activity in RAR$\gamma,{ }^{97 \mathrm{a}}$ and Tazarotene (AGN 190168), a RAR- $\beta /$ RAR- γ selective synthetic retinoid which has demonstrated anti-inflammatory effects ${ }^{97 \mathrm{~b}}$ and has found use in the treatment of facial acne vulgaris and psoriasis. ${ }^{97 b, c}$ Because of the transcriptional repression induced by
inverse agonists, these agents may be of value in reducing the propagation of cancerous tissues.

Pan Agonists. A retinoid which possesses agonist qualities is termed a pan agonist because of the ability to bind to more than one type of receptor subtype. ${ }^{46}$ A prime example of a pan agonist is 9-c-RA (4), which can bind to both RARs and RXRs. ${ }^{50}$

It is thought that an unusual conformational adaptation of 9-c-RA (4), along with the spatial arrangement of the RAR's binding pocket, allows for RAR binding of 9-c-RA (4) (Figure 12). ${ }^{40}$ However, the activation of RAR- γ by $9-c$-RA (4) was less than the activation of this receptor by t-RA (3), whereas with RAR- α and RAR- β, the activation by 9-c-RA (4) equaled, or in some instances surpassed, the activation of these two receptors by t-RA (3). ${ }^{98}$ From the crystallographic structures of RAR- γ [co-crystallized with t-RA (3) and $9-c-\mathrm{RA}$ (4)], it was pointed out that a possible reason for the activity difference is that RAR- γ binds $9-c-$ RA (4) less favorably than RAR- α and RAR- β due to the interaction of $9-c-$ RA (4) with amino acid residue M272 (which is in H5, see Figure 12). ${ }^{99}$ Supporting this view is the data reported by Renaud and co-workers, ${ }^{40}$ who performed energy minimization calculations to generate the most likely confirmation of 9-c-RA (4) in the LBP of RAR- γ. Renaud also suggested that the lower affinity of 9-cRA (4) for RAR- γ (as compared to RAR- α and RAR- β) could be explained by a steric

Figure 12. Schematic representation of minimum energy conformations of t-RA (3) and $9-c$-RA (4) within the retinoic acid receptor (RAR) ligand-binding pockets (LBPs). ${ }^{40}$
hindrance between the carbon in the 19 position (C19) of 9-c-RA (4) and M272 in H5, which corresponds to an isoleucine residue in RAR- α and RAR- $\beta{ }^{40}$ The interaction of the C 19 of $9-c-$ RA (4) with less bulky residues in RAR- α (I270) and RAR- β (I263)
results in a smaller distortion of the "active" conformation of the LBP. ${ }^{99}$ Interestingly, mutation of the amino acid residue phenylalanine 230 (P 230) by glycine (P 230 to G 230) in RAR- γ resulted in the inactivation of the receptor. ${ }^{31 b}$ Therefore, P230 may not be important for selectivity of ligand binding, yet it should be taken into consideration because of its function as a "switch" between activity and inactivity of the receptor and its close proximity to A234 and M272. ${ }^{50}$

In contrast, activation of the RXRs by t-RA (3) has not been observed ${ }^{46,49}$ One possible explanation for this is that homologues of the A397 (valines in RAR- α and RAR- β) are leucine residues in all RXRs. ${ }^{49}$ In RXRs, it is thought that these leucine residues interact with the C19 methyl group of $9-c$-RA (4) and, as a result, these bulkier residues impose size restrictions on ligands for the receptor. ${ }^{100}$ Moreover, isoleucine 275 (I275) in the LBP of RARs corresponds to the phenylalanine 313 (P313) in RXR, and the orientation of P313 sterically interferes with the binding of the more 'extended' t-RA (3). This problem may be overcome by $9-c$-RA (4) because it can adopt a low energy "curved" conformation (Figure 12), which will allow it to fit into the LBP. ${ }^{50}$ Moreover, in contrast to RARs, the amino acid sequence alignment of the LBD of RXRs does not reveal any significant differences within the RXR subtypes. ${ }^{100}$ This suggests potential difficulties in designing ligands that are RXR subtype selective.

Antagonists. While agonists enhance DNA transcription and inverse agonists repress transcription, retinoid antagonists may serve to deactivate certain oncogenic proteins such as activation protein-1 [(AP-1), c-fos and c-jun gene products], nuclear factor-kappaB[(NF-kB) activator for c-myc, egr-1, LRF-1 cancer genes], and nuclear factor-

IL6(NF-IL6), ${ }^{82}$ which are all associated with the malignant transformation of cells. ${ }^{101}$ Deactivation of such cancer genes would thus promote normal cell differentiation. ${ }^{82}$

The precise mechanism for the binding of an antagonist to the LBP of RARs or RXRs, and the subsequent receptor activity, is not well understood. It has been proposed that an antagonist enters the LBP in the same manner as an agonist. ${ }^{99}$ However, because of structural differences between agonists and antagonists, the AF-2 of the LBD in not able to establish the same salt bridge between H 12 and H 4 . The result is that the receptor undergoes a different conformational change than the one induced by an agonist. ${ }^{31 \mathrm{~b}}$ Induced conformational changes by ligands depend on the structure of the LBP, which in turn suggests that what is perceived as an antagonist in one receptor isoform may be perceived as an agonist in another. ${ }^{31 b, 85}$ The differences in conformational changes of the receptors' dimeric pair, induced by antagonist binding, may cause the receptors to be incapable of complex formation with RAREs. ${ }^{85,86}$ However, an antagonist-induced conformation of a receptor can bind the AP-1, NF- κ, or NF-IL6. ${ }^{82}$ The binding of a RAR/RXR heterodimer to AP-1, and/or NF-kB, and/or NF-IL6, or binding with transcriptional intermediary factors (TIFs), such as cyclic-AMP-binding protein (CBP), and competitively displacing these oncogenic proteins, protects DNA from such influence and essentially silences the activity of AP-1, NF-KB, or NF-IL6. ${ }^{82}$ Deactivation of oncogenic proteins (such as AP-1 or NF- kB), or reduction in their activity, reverses the action of the transcriptional machinery, and normal cell differentiation takes place. ${ }^{82}$ Examples of retinoid antagonists include LE $135(\mathbf{1 4}){ }^{102}$ which has been reported to bind with high affinity to RAR- β and have potent AP-1 activity inhibition, and BMS 614 (15), ${ }^{99}$ which was reported to possess highly specific RAR- α antagonistic effects.

14 [LE 135]

In addition, antagonists are also capable of competitively antagonizing both agonists and inverse agonists, ${ }^{103}$ which may provide the reduction of certain toxic side effects associated with high dosages of certain retinoids. ${ }^{104}$ For instance, studies have demonstrated ${ }^{105}$ that certain retinoid antagonists were not only able to block topical irritation induced by treatment with TTNPB (8) and t-RA (3), but they were also able to inhibit retinoid-induced weight loss. ${ }^{106}$ Furthermore, certain retinoid agonists have been shown to enhance replication of several viruses, including HIV-1 and human cytomegalovirus. ${ }^{107}$ Therefore, the effects of retinoid antagonists may be utilized as a means of suppressing viral replication.

Koch and co-workers ${ }^{108}$ have reported the synthesis and activity of a RXR homodimer antagonist 16 called LG100754. The data presented demonstrated that LG100754 (16) displayed high binding affinity for the RXRs and was a potent inhibitor of the known RXR agonist Targretin (17, LGD1069) at all three RXR subtypes. ${ }^{108}$ The structural

17 [LGD 1069, "Targretin"]
attributes of $\mathbf{1 6}$ necessary for RXR homodimer antagonist activity included the size for the 3-alkoxy group on the tetrahydronaphthyl moiety (longer groups providing higher antagonist activity) and the nature of the olefin geometry at C6 (cis geometry being essential for RXR antagonist activity). ${ }^{108}$ Such an RXR antagonist could certainly function as a versatile tool for deciphering specific components of transcriptional responses.

Apoptosis. Another use of retinoids in the control of cell homeostasis lies in the ability to induce programmed cell death, or apoptosis. ${ }^{109}$ Initiation of this process may be accomplished by the binding of an agonist and/or antagonist to a retinoid receptor and the receptor acting through mechanisms as described above for agonists and antagonists (Figure 11 and related descriptions). ${ }^{85,93,94,102}$ Apoptosis is a part of normal cell differentiation, ${ }^{82}$ and cells from multi-cellular organisms self-destruct when they are no longer needed or have become damaged. ${ }^{109}$ Ozato and co-workers ${ }^{110}$ reported that retinoids cause rapid and extensive apoptosis in P19 EC cells. It was indicated that apoptosis is a receptor mediated process and that RAR binding is essential for the cell death to occur. ${ }^{110}$ Furthermore, RXR selective ligands alone were unable to induce apoptosis but were cooperative when combined with a RAR specific ligand. ${ }^{110}$ Retinoids have also been shown by Nagy and co-workers ${ }^{111}$ to induce both differentiation and death
of HL-60 cells. In the study, RAR specific compounds were unable to induce apoptosis, but were able to induce normal cell differentiation. ${ }^{111}$ In contrast, receptor pan agonists induced differentiation which was followed by apoptosis of many of the differentiated cells. ${ }^{111}$ A study involving breast cancer cells provided evidence that vitamin D derivatives may promote active cell death, but that 9-c-RA (4) further enhanced apoptosis induction within this scenario. ${ }^{112}$ Perhaps this is an indication that the RXR/VD ${ }_{3} \mathrm{R}$ heterodimer is involved in the homeostasis of breast cells.

An example of an agent capable of inducing programmed cell death is the synthetic retinoid N-(4-hydroxyphenyl)retinamide (18, 4-HPR). Wang and Phang ${ }^{112 a}$ found that 4HPR (18) was able to induce apoptosis in breast cancer cells. It was reported that the

addition of 4 -HPR (18) to cultures resulted in a concentration- and time-dependent decrease in the mRNA level for $\mathrm{Bcl}-2$, an anti-apoptotic protein. ${ }^{112}$ In addition, studies have shown that 4-HPR (18) induced programmed cell death in a variety of human tumor cell types, including melanoma, ${ }^{113 a}$ head and neck, ${ }^{113 b}$ prostate, ${ }^{113 \mathrm{c}}$ leukemia, ${ }^{113 \mathrm{~d}}$ and ovarian carcinomas. ${ }^{113 \mathrm{e}}$ In addition, 4-HPR (18) has demonstrated the ability to inhibit cancer cell proliferation in various tissues, including the colon, ${ }^{114 \mathrm{a}}$ ovary, ${ }^{113 e, 114 \mathrm{~b}}$ and prostate. ${ }^{114 \mathrm{c}}$ However, there is some evidence which suggests that 4-HPR (18) acts independent of retinoid receptor activation. ${ }^{115}$ Guruswamy and co-workers ${ }^{113 e}$ reported that at lower concentrations ($\leq 1 \mu \mathrm{M}$) 4-HPR (18) acted like classic retinoids by inducing cell differentiation through a receptor-dependent mechanism. At higher concentrations
($\geq 1 \mu \mathrm{M}$, concentrations above those achieved in clinical chemoprevention trials) 4-HPR (18) appeared to induce apoptosis through retinoic acid, receptor-independent mechanisms. ${ }^{113 \mathrm{e}}$ Although, the exact mechanism by which 4-HPR (18) exhibits its action is a matter of some controversy, ${ }^{112 b, 113 e, 115,116}$ the enhanced anti-cancer properties of 4HPR (18), as compared to t-RA (3), appear to be due to a single structural modification as certain studies suggest. ${ }^{112 b, 113 e, 115,116}$ This modification pertains to the presence of a 4hydroxyphenylamide functionality on the polar end of molecule 18, which is not found in t-RA (3). Therefore, this particular functionality may be worth consideration for incorporation into new agents for potential apoptotic qualities.

Certainly there are many more retinoids that can be classified into the categories listed here. Madler ${ }^{117}$ and Klucik ${ }^{118}$ have each catalogued a good number of retinoids along with the corresponding retinoid receptor selectivities, biological activities, and toxic properties. These efforts serve to underscore the potential which retinoids have for therapeutic use in a variety of disorders. In addition, such studies illustrate the need for further examination of retinoids, which may help to elucidate structure-activity relationships, the complex mechanistic pathways initiated by retinoids, and ultimately provide more potent and selective treatments for various types of cancer.

Measurement of Retinoid Biological Activity

Several methods exist for the detection of RAR or RXR ligand-induced activities. One of the most frequently employed methods is the use of reporter assays to measure quantitatively the transcriptional activity of RAR and RXR homo- or heterodimers. ${ }^{119}$ The reporter plasmid construct (Figure 13) is comprised of a reporter gene, such as β -

Figure 13. Schematic representation of a reporter plasmid for measuring transcriptional activity of a RAR or RXR after activation by a ligand. ${ }^{119}$ The arrows represent AGGTCA (or related) half-sites and DR represents the direct repeat nucleotide spacing (see text for details).
galactosidase or luciferase, whose product can easily be detected and measured (detection, and the measurement is usually accomplished via methods such as isotopic labeling or fluoresence). ${ }^{119}$ The reporter gene is driven by a minimal promoter containing a TATA motif and a RARE. ${ }^{119}$ At the 5^{\prime} end immediately upstream from the RARE is a "silencer" (SIL) that acts to dampen spurious transcriptional read-through originating from upstream vector sequences. ${ }^{119}$ In addition, there are several antibiotic selective genes $\left(A B^{r}\right)$, restriction sites (RS), and an origin of replication (OR) to ensure proper functioning and analysis of the RAREs transcriptional influence on the reporter gene. ${ }^{119}$ Such assays have the advantage of detecting retinoid transcriptional activity directly after it is initiated, thus avoiding any potential measurement errors that could result from cascade events.

Toxicity of Retinoids

Retinoids do exhibit a variety of useful biological responses. However, certain retinoids can produce severe toxic side effects, and some retinoids are reported as having teratogenic properties (causing birth defects). ${ }^{120}$ The toxicity of retinoids is well documented, ${ }^{22 a, 117,120}$ and it has proven to be a significant problem following chronic administration of retinoids, resulting in a condition referred to as "hypervitaminosis A" (vitamin A toxicity). ${ }^{120}$ The general signs of hypervitaminosis A include reduced food intake, weight loss, weakness, reduced motor activity, bone and skin lesions, and, in extreme scenarios, possibly death. ${ }^{120}$ Both naturally occurring retinoids, such as t-RA (3) and 13-c-RA (6), as well as synthetic retinoids, such as the arotinoids etretinate (7) and TTNPB (8), have demonstrated at least some toxic and/or teratogenic properties. ${ }^{120}$ For instance, birth malformations in babies born to mothers exposed to isotretinoin (13-c-RA, 6) or etretinate (7) during pregnancy have been reported. ${ }^{120}$ The body parts most consistently affected by both drugs are the cranium and face, central nervous system, heart, and thymus. ${ }^{120}$ It is also suspected that $13-c-$ RA (6) may effect the intellectual performance of children whose mothers took the drug during pregnancy, even when no structural abnormalities were observed in the children. ${ }^{120}$

TTNPB (8), a conformationally restricted aromatic analogue of t-RA (3), is a more potent inducer of RAR transcriptional activity than t-RA (3) even though $\mathbf{8}$ has a binding concentration for RARs that is approximately 10 times lower that that of t-RA (3). ${ }^{121}$ However, TTNPB (8) is approximately 1000 times more toxic than t-RA (3). ${ }^{121}$ It has been suggested that the higher activity and toxicity of TTNPB (8) is due to an inability to complex with CRABP ${ }^{106}$ CRABP helps regulate the levels of retinoic acid in the cell
and its transport to the nucleus where t-RA (3) interacts with RARs. ${ }^{121}$ Since TTNPB (8) is not bound by CRABP as effectively as is t-RA (3), its concentration is unregulated, and thus its metabolism is slowed. Therefore, TTNPB (8) remains in the cell and nucleus for longer periods of time, allowing more interaction with RARs, which may be a contributing factor to the observed toxicity of TTNPB (8). ${ }^{121}$

Another factor attributed to retinoid toxicity (especially endogenous retiniods) is the oxidized metabolites resulting from retinoid degradation. ${ }^{120}$ For instance, some oxidized metabolites of t-RA (3), including 19-21, have been isolated, studied, and found to be toxic and/or teratogenic. ${ }^{120,122}$

Although the retinoids mentioned thus far possess toxic properties, they do exhibit quite useful qualities, especially in the treatment of various types of cancer. ${ }^{1}$ Furthermore, current studies on heteroarotinoids (another type of synthetic retinoid) ${ }^{50,123,113 \mathrm{e}}$ and other synthetic retinoids that may prove to be retinoid receptor subtype specific ${ }^{124}$ may help provide future, selective and less toxic treatments for certain types of cancer.

Heteroarotinoids and Other Reduced Toxicity Retinoids

The teratogenicity ${ }^{120}$ and/or toxic manifestations ${ }^{120,124}$ exhibited by endogenous retinoids, such as t-RA (3) and $9-c$-RA (4), as well as synthetic arotinoids, such as the clinically employed Etretinate (7) or TTNPB (8), have limited the use of such compounds. Thus, the study of heteroarotinoids originated as an attempt to mimic the anti-carcinogenic action of retinoids while at the same time reducing unwanted side effects. Heteroarotinoids (such as 22-26) constitute a class of synthetic retinoids that

$\mathrm{X}=\mathrm{O}, \mathrm{s}$

24

26
structurally resemble arotinoids (such as 7 and 8) in that at least one aryl moiety is present within the molecule. However, heteroarotinoids contain an aryl-fused, heterocyclic ring as a modification, and several studies have shown that some heteroarotinoids demonstrate promising inhibition of various cancers as well as reduced toxicity. ${ }^{20 a, 50,123,125,126}$ For instance, it has been reported that structure 22 (where $\mathrm{X}=\mathrm{S}$ or
O) demonstrated a toxicity approximately $\mathbf{3}$-fold less than that of t-RA (3) and $\mathbf{3 0 0 0}$-fold less than that of TTNPB (8). ${ }^{125}$ In addition, sulfur heterarotinoid $\mathbf{2 4}$ has been reported to possess excellent anti-cancer properties as well as reduced toxicity. ${ }^{113 e, 123}$ Compound 24 appeared to possess pan-agonist properties and showed powerful anticancer properties against SCC-38 head and neck squamous cell carcinoma lines in nude mice, as compared to t-RA (3). ${ }^{123}$ Complete tumor regression was noted in 3 of 5 mice treated with t-RA (3) and 4 of 5 mice treated with heteroarotinoid $\mathbf{2 4} .^{123}$

Another approach that can be taken for decreasing the toxicological effect of retinoids is the design of agents that are retinoid receptor subtype selective. As is discussed in a previous section on the distribution of retinoid receptors in organ tissues, the retinoid receptors have a diverse expression pattern throughout the tissues of the body, which may explain the vast array of effects exhibited by retinoids. ${ }^{21 c, 124}$ This diverse expression pattern may also help explain the various side effects attributed to some retinoids, especially those that are not receptor subtype selective.

Some studies ${ }^{99,124,127}$ suggest that the presence of a three-atom 'linker' group (a linker group is a moiety connecting the two aryl rings) within an arotinoid may increase specificity for the RARs. Other studies also demonstrated that a linker with an attached, non-bulky functionality capable of hydrogen bonding via proton donation (such as via an $-\mathrm{OH})$ enhances RAR- γ selectivity. ${ }^{99,124,127,128}$ Klaholz and co-workers ${ }^{124}$ have provided strong evidence that may explain RAR- γ selectivity of an agent possessing a linker group with an attached -OH . Through computer aided crystallopraphic studies, Klaholz and coworkers ${ }^{124}$ have clearly demonstrated that a hydrogen bond may exist between a hydroxyl group attached to the linker of a retinoid and the sulfur atom of M272 on α-helix 5 (H5,

Figure 12 and related text) of RAR- γ. The study was accomplished by separately cocrystallizing RAR- γ-selective agonists, such as BMS184394 (27) and BMS270394 (28) with the human RAR- γ LBD. It was shown that a hydrogen bond may exist between the hydroxyl group of such agents and M272 of RAR- γ. Thus, the amino acid residue M272 should be considered in designing potential RAR- γ-selective agents. Klaholz ${ }^{124}$ also

27 [BMS184394]

28 [BMS270394]
noted that steric hindrance involving the hydrophobic region of a ligand with S232 of H3 (Figure 12), which corresponds to A234 in RAR- γ and A225 in RAR- β, may also be considered in designing retinoid receptor subtype-selective compounds. Certainly, an agent with these structural characteristics could be useful for the specific treatment of disorders such as melanoma or vulvarian carcinomas, due to a high expression of RAR- γ in both skin ${ }^{59}$ and urogenital tissues. ${ }^{129}$

By combining these two approaches (heteroarotinoids with a three-atom linker that may aid in receptor subtype selectivity), an agent could potentially be produced that has much reduced toxicity and could be utilized for the treatment of select types of cancer. It is conceivable that by constructing an agent possessing a semi-flexible three-atom linker with self-capability of hydrogen bonding through proton donation, higher RAR- γ specificity may be achieved. This could further reduce the undesired side effects of retinoids. In fact, three heteroarotinoids (29-31) possessing a novel urea functionality as

a three-atom linker group were recently produced by this lab and demonstrated potentially useful results. ${ }^{113 e}$ The urea group was chosen as a three-atom linker due to its somewhat flexible nature which could accommodate a better fit into the RARs, and therefore enhance activation. Moreover, a urea group provides two - NH- groups capable of hydrogen bonding with the receptor, thus possibly improving RAR- γ selectivity. ${ }^{99,124,127,128}$ All three heteroarotinoids induced apoptosis in both monolayer and organotypic cultures of OVCAR-3, Caov-3, and SK-OV-3 ovarian carcinoma cell lines, with few toxic side effects. ${ }^{113 e}$ Moreover, programmed cell death was induced by heteroarotinoids 29-31 at clinically achievable concentrations [$\leq 1 \mu \mathrm{M}$, a trait that has not been observed with 4-HPR (18) which is employed clinically]. ${ }^{113 e}$ These results certainly suggest that further investigation of such compounds is warranted and demonstrate promise as effective chemoprevetion agents for ovarian cancer.

CHAPTER II

RESULTS AND DISCUSSION

Modified Oxygen and Sulfur Heteroarotinoids

The goal of this project was multi-faceted, being directed toward the production of various sulfur- and oxygen-containing heteroarotinoids, which were designed to be potentially RAR- γ selective, RXR subfamily selective, to possess pan agonist qualities, or possess the ability to induce programmed cell death (apoptosis). Heteroarotinoids 3247 (shown below), containing various structural features, which may provide these characteristics (for details on intended biological characteristics resulting from these structural features see the Biological Activity section in this chapter), were synthesized and have been classified under three categories based on structural similarities of the 'linker' groups between the aryl rings of the compounds:

1) Heteroarotinoids containing a two-atom linker group (32-36),
2) Heteroarotinoids containing a three- or four-atom linker group (37-45), and
3) Heteroarotinoids containing a 4-hydroxyphenylamide moiety as a 'polar tail' group (46-47).

32

33

38

40

Synthesis of Key Intermediates

Several synthetic intermediates were required for the production of the desired heteroarotinoids 32-47. Specifically, the target heteroarotinoids were constructed by utilizing four key intermediates $\mathbf{4 8 a}, \mathbf{b}-50 \mathrm{a}$, whose synthesis has been described below.

Amines 48a and 48b. It was visualized that the reaction sequence $51 \rightarrow \mathbf{5 2} \rightarrow \mathbf{5 3} \rightarrow \mathbf{5 4 a}$ and 54b $\rightarrow \mathbf{4 8} \mathbf{a}$ and 48b, as illustrated in Scheme 1, would provide the key intermediate

Scheme 1

1. $\mathrm{HNO}_{3} / \mathrm{Ac}_{2} \mathrm{O} /-5^{\circ} \mathrm{C}$
2. NaHCO_{3}

amines 48a and 48b. The 6 -isomer 48a could then be utilized to obtain the desired heteroarotiniods $32,33,39-41$, and 47 while the 8 -isomer 48 b could be used to synthesize compounds $\mathbf{3 4}, \mathbf{3 5}$, and $\mathbf{4 2 - 4 4}$. Therefore, lactone $\mathbf{5 1}$ was prepared by modification of a known method, ${ }^{130}$ and boiling 51 in dry THF with excess methylmagnesium bromide for 4 days led to crude diol 52 as a clear yellow solid. Upon recrystallization (petroleum ether) of the yellow solid, pure 52 was obtained in excellent yield (80\%). Dehydration-cyclization of diol 52 using phosphoric acid and phosphorous pentoxide $\left(\mathrm{H}_{3} \mathrm{PO}_{4} / \mathrm{P}_{2} \mathrm{O}_{5}\right)$ resulted in the generation of chroman 53 in reasonable yield (68\%) after purification by vacuum distillation. Nitration of $\mathbf{5 3}$ using a nitric acid/acetic anhydride $\left(\mathrm{HNO}_{3} / \mathrm{Ac}_{2} \mathrm{O}\right)$ mixture ${ }^{131}$ at $-5{ }^{\circ} \mathrm{C}$ afforded the two nitro compound isomers 54a (6-isomer) and 54b (8-isomer) in an overall yield of 69% (43% and 26%, respectively). The two resulting isomers (54a and 54b) were partially separable by flash column chromatography using the unusual solvent combination hexanesethyl ether (20:1).

A search for a clean, straightforward reduction procedure to accomplish the conversion of nitro compounds 54a and 54b to the corresponding amines 48a and 48b was initiated. Reduction of nitroarenes to the corresponding aniline derivatives is a common process and a useful tool for the production of key amines that can be utilized for the generation of a variety of desired products. However, many of the protocols required pressurizing reaction vessels with explosive H_{2} gas or employed expensive reagents such as tin/hydrochloric acid or tin (II) chloride/hydrochloric acid. ${ }^{132}$ Furthermore, many of these procedures provided modest yields at best. The reported
procedure for the synthesis of $\mathbf{5 0} \mathrm{a}^{123}$ using a solution of titanium (III) chloride in HCl was considered. However, the method required the use of a very large excess of $\mathrm{TiCl}_{3} / \mathrm{HCl}$, which was quite expensive, and the reaction workup was complicated and required the handling of titanium salts.

Finally, an assessment was made of the reduction of nitroarenes published by Owsley and Bloomfield. ${ }^{133}$ Some modifications of the method were instituted for the conversion of $\mathbf{5 4 a}$ and $54 b$ to the desired amines 48a and 48b (Scheme 1). The reaction was carried out by boiling a mixture of $\mathbf{5 4 a}$ or $\mathbf{5 4 b}$ in absolute EtOH for 12 hours using glacial acetic acid as a proton source and iron powder as the reducing agent. The reaction workup was simple, and the by-products were only $\mathrm{H}_{2} \mathrm{O}$ and iron (III) acetate, which were readily soluble in water and easily removed. It was found that the resulting amines 48a and 48b could be well separated (substantially better than the precursor nitro compounds) via flash chromatography [hexanes:ethyl ether (1:1)] and thus be obtained in high purity but in somewhat modest yields [6-isomer 48a (42\%) and 8-isomer 48b (31\%)]. Therefore, rather than purifying the nitro compounds 54a and 54b individually, immediate reduction of the crude mixture of the two isomers to the corresponding amines 48a and 48b was easily accomplished and separation of the latter via chromatography was very facile.

Phenol 49. It was reasoned that the use of known lactone $\mathbf{5 5}^{134}$ in the conversion $55 \rightarrow 49$ (Scheme 2) would provide phenol 49 that could be used for the synthesis of

Scheme 2

desired heteroarotiniods $\mathbf{3 6}$ and $\mathbf{4 5}$. Lactone $\mathbf{5 5}^{134}$ was stirred with excess methylmagnesium bromide in dry THF for 2 days at room temperature. Upon workup of the reaction with saturated, aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, the crude product obtained was then immediately dissolved in glacial acetic acid, and the resulting solution was heated gently with stirring for 2 hours. After aqueous workup, washing with saturated NaHCO_{3} solution, and subjecting the crude product to flash chromatography $\left[\mathrm{Et}_{2} \mathrm{O}\right.$:hexanes $\left.(5: 1)\right]$, pure phenol 49 was obtained (40\%).

Amines 50a and 50b. It was envisioned that the reaction sequence $\mathbf{5 6} \rightarrow \mathbf{5 7 a}$ and $\mathbf{5 7 b}$, as illustrated in Scheme 3, would provide the 6- and 8-isomeric nitro compounds 57a and

Scheme 3

$\mathbf{5 7 b}$, which could be used in the conversions $\mathbf{5 7 a} \rightarrow \mathbf{5 0 a}$ and $\mathbf{5 7 b} \rightarrow \mathbf{5 0 b}$ (Scheme 3) and thus provide key intermediate amines 50 a and $\mathbf{5 0 b}$. The 6 -isomer 50 a could then be utilized to obtain the desired heteroarotinoids $\mathbf{3 7}, \mathbf{3 8}$, and $\mathbf{4 6}$, and $\mathbf{5 0 b}$ could be used to synthesize other 8 -isomer heteroarotinoids. Although the conversion $\mathbf{5 6} \rightarrow \mathbf{5 7 a} \boldsymbol{\mathbf { 5 0 a }}$ a is known, ${ }^{123}$ different conditions were employed here.

The reaction sequence (Scheme 3) began with the nitration of known thiochroman $56{ }^{126 \mathrm{a}}$ using a $\mathrm{HNO}_{3} / \mathrm{Ac}_{2} \mathrm{O}$ mixture ${ }^{131}$ at $-5^{\circ} \mathrm{C}$ and stirring the reaction mixture for 1.5 hours. The two resulting isomers [57a (6-isomer) and 57b (8-isomer)] were partially separable by flash column chromatography using hexanes:ethyl acetate (5:1) and provided the nitro compounds $57 \mathbf{a}$ and $57 \mathbf{b}$ in modest yields (26% and 10%, respectively). However, in this case only 1 equivalent of the nitrating agent was used, as compared to 2 equivalents in the reported procedure, ${ }^{123}$ with essentially no reduction in the reaction yield of the desired nitro compound 57a (27% being reported previously). The reduced yield of $\mathbf{5 7}$ a can be partially explained by a competitive side reaction leading to sulfoxide 57c (the sulfoxide structure was suggested by $I R$ and NMR analyses). The sulfoxide 57 c was also separated from the crude reaction product mixture as a major component (57\%).

Reduction of the nitro groups in 57 a and 57b (Scheme 3) was achieved via a modification of the method ${ }^{133}$ described above (in the conversion 54a and/or 54b $\rightarrow \mathbf{4 8} \mathbf{a}$ and/or 48b). The nitro compound $\mathbf{5 7}$ a or $\mathbf{5 7} \mathbf{b}$ was placed in absolute EtOH , along with iron powder and glacial AcOH , and the resulting mixture was stirred at reflux for 12 hours. Again it was noted that the resulting amines 50a and 50b could be well separated (substantially better than the precursor nitro compounds, as was the case for 48a and 48b)
via flash chromatography [hexanes:ethyl acetate (2:1)] and thus be obtained pure, albeit in somewhat modest yields [6-isomer 50a (40\%) and 8-isomer 50b (30\%)]. Therefore, rather than purifying the nitro compounds $\mathbf{5 7 a}$ and $\mathbf{5 7 b}$, reduction of the crude mixture of these two isomers to the corresponding amines $\mathbf{5 0 a}$ and $\mathbf{5 0 b}$ (as in the production of 48a and 48b discussed above) was performed and separation of the isomeric amines by flash column chromatography was again accomplished easily. Although the previous method ${ }^{123}$ reported a yield of 50% for amine 50a from the reduction of the nitro group in 57a, our iron/acetic acid approach, provided a low cost and a simple reaction workup and resulted in only a slightly reduced yield.

Synthesis of Heteroarotinoids Possessing Two-Atom Linker Groups

Oxygen Heteroarotinoids with a Linker Group Placed at the 6-Position of a

 Tetramethylchroman Moiety (32 and 33). Amine 48a was first employed to produce desired heteroarotinoids $\mathbf{3 2}$ and $\mathbf{3 3}$ via the conversion $\mathbf{4 8 a} \rightarrow \mathbf{3 2} \rightarrow \mathbf{3 3}$ as demonstrated in Scheme 4. The conversion of $\mathbf{4 8} \mathbf{a} \rightarrow \mathbf{3 2}$ was completed by simply adding the monomethyl terephthaloyl chloride (58) in one portion to amine 48a which was dissolved in benzene containing a small amount of pyridine. After purification, amide 32 was thus obtained in reasonable yield (70\%). Interestingly, acid chloride 58 was first prepared via a modified procedure developed by this lab. ${ }^{135}$ The procedure required the addition of a large excess of thionyl chloride $\left(\mathrm{SOCl}_{2}\right)$, containing a few drops of DMF, to monomethyl terephthalate (59) and then stirring the resulting mixture in an ice bath. Continued stirring for an additional 12 hours followed while allowing the reaction mixture to warm slowly to room temperature. However, yields of $\mathbf{5 8}$ by this method only
Scheme 4

averaged approximately 50%. Therefore, a procedure by Yli-Kauhalouma and coworkers ${ }^{136}$ for synthesizing 58 was employed (Scheme 4) with slight modification. Commercially available mono-methyl terephthalate (59) was placed in a reaction flask along with an excess of $\mathrm{SOCl}_{2}(\sim 7 \mathrm{eq})$. The mixture was then stirred at reflux for 12 hours, and excess SOCl_{2} was removed under reduced pressure to give the desired acid chloride 58 (96\%). Furthermore, $\mathbf{5 8}$ could be characterized by IR and NMR analyses which indicated a high purity product.

Compound 33 was produced via a reported method ${ }^{135}$ that involved saponification of ester groups (as has 32) with 2 NaOH under mild conditions to avoid cleaving sensitive amide linkages present within the molecule (Scheme 4). Upon acidification of the
reaction mixture ($\mathrm{pH} \sim 2$) using $2 N \mathrm{HCl}$, acid 33 precipitated and was then filtered and recrystallized [ethyl acetate:hexanes (2:1)] to give the pure product $33(73 \%)$.

Oxygen Heteroarotinoids with a Linker Group Placed at the 8-Position of a Tetramethylchroman Moiety (34 and 35). Heteroarotinoids $\mathbf{3 4}$ and $\mathbf{3 5}$ were prepared from amine $\mathbf{4 8 b}$ in the conversion $\mathbf{4 8 b} \rightarrow \mathbf{3 4} \rightarrow \mathbf{3 5}$ (Scheme 5), following the same reaction conditions applied for $\mathbf{4 8} \mathbf{a} \rightarrow \mathbf{3 2} \rightarrow \mathbf{3 3}$ (Scheme 4). Amide $\mathbf{3 4}$ was obtained pure in a reasonable yield (60\%), and acid 35 was afforded in good yield (79\%, Scheme 5).

Scheme 5

Oxygen Heteroarotinoid with a Linker Group Placed at the 7-Position of a Trimethylchromen Moiety (36). Target compound 36 was afforded from key intermediate phenol 49 as demonstrated in Scheme 6. Phenol 49 was first treated with sodium hydride in THF at $0{ }^{\circ} \mathrm{C}$, and then acid chloride 58 was added to the resulting reaction mixture while maintaining the reaction temperature at $0{ }^{\circ} \mathrm{C}$ during the addition. After workup of the reaction and evaporation of the solvent, a white solid was obtained

Scheme 6

and recrystallized $\left[\mathrm{HCCl}_{3}\right.$:pentane (1:1)] to provide the desired di-ester $36(36 \%)$. Possibly, conversion of 49 to the intermediate sodium salt was in low yield, resulting in a moderate yield of $\mathbf{3 6}$.

Synthesis of Heteroarotinoids Possessing Three- or Four-Atom Linker Groups

Sulfur Heteroarotinoids with a Linker Group Placed at the 6-Position of a

 Tetramethylthiochroman Moiety (37 and 38). Amine 50a was used to synthesize the desired sulfur heteroarotinoids $\mathbf{3 7}$ and $\mathbf{3 8}$ via the conversion illustrated in Scheme 7.
Scheme 7

Compounds $\mathbf{3 7}$ and $\mathbf{3 8}$ were both prepared in a similar fashion and involved dissolving amine 50a in dry THF and coupling it with the required, commercially available isothiocyanate at room temperature (Scheme 7). Upon evaporation of the solvent, the crude products were recrystallized from an appropriate solvent system to afford the desired heteroarotinoids $\mathbf{3 7}$ and $\mathbf{3 8}$ with good yields (70% and 75%, respectively).

Oxygen Heteroarotinoids with a Linker Group Placed at the 6-Position of a Tetramethylchroman Moiety (39-41). Key amine 48a was also used to synthesize the desired compounds $\mathbf{3 9 - 4 1}$ in a similar manner as the conversion of $\mathbf{5 0 a} \rightarrow \mathbf{3 7}$ and $\mathbf{3 8}$ (Scheme 7). Amine 48a was dissolved in dry THF and then coupled with the appropriate, commercially available isocyanate or isothiocyanate at room temperature (Scheme 8) to yield the crude urea/thiourea derivatives 39-41. Upon evaporation of the solvent, the crude products were purified by flash column chromatography and/or

Scheme 8

recrystallization from an appropriate solvent system to afford heteroarotinoids 39-41 in good yields as shown. Of course, one conformation is drawn for 39-41, but others are possible.

Oxygen Heteroarotinoids with a Linker Group Placed at the 8-Position of a Tetramethylchroman Moiety (42-44). As with amine 48a, 48b was further utilized to obtain certain desired heteroarotinoids. Amine 48b (under similar conditions as in the conversions of 48a $\rightarrow \mathbf{3 9 - 4 1}$, Scheme 8), dissolved in dry THF, was coupled with the appropriate, commercially available isocyanate or isothiocyanate at room temperature (Scheme 9) to yield the crude compounds 42-44. Upon evaporation of the solvent, the

Scheme 9

products were purified by flash column chromatography and/or recrystallization from an appropriate solvent system to afford heteroarotinoids 42-44 in good yields.

Oxygen Heteroarotinoid with a Linker Group Placed at the 7-Position of a

 Trimethylchromen Moiety (45). The target carbamate-ester 45 was prepared from key phenol 49 via a reaction of 49 with commercially available 4-ethoxycarbonylphenyl isocyanate in THF (Scheme 10). The reactants were stirred at room temperature for 3
Scheme 10

days in the presence of a catalytic amount of triethylamine (TEA). Upon evaporation of the solvent, the resulting crude material was subjected to flash column chromatography [EtOAc:hexanes (2:1)], and the resulting residue was then recrystallized $\left[\mathrm{Et}_{2} \mathrm{O}\right.$:pentane (1:1)] to yield pure 45 (50\%).

Synthesis of Heteroarotinoids Possessing a 4-Hydroxyphenylamide Moiety

Sulfur Heteroarotinoid 46. Amine 50a was also utilized to produce target heteroarotinoid $\mathbf{4 6}$ via the conversion $\mathbf{5 0 a} \rightarrow \mathbf{2 4} \rightarrow \mathbf{6 0} \rightarrow \mathbf{4 6}$ as illustrated in Scheme 11. The procedure employed in the conversion of $\mathbf{5 0 a} \rightarrow \mathbf{2 4}$ (Scheme 11) was similar to that used in the preparation of $\mathbf{3 2}$ from $\mathbf{4 8}$ a (Scheme 4). Acid chloride $\mathbf{5 8}$ was added in one portion to amine 50a (dissolved in benzene containing pyridine). After workup and purification, amide $\mathbf{2 4}{ }^{123}$ was thus obtained in good yield (70\%).

Saponification of the ester group of 24, via the reported method ${ }^{135}$ which employed 2 $N \mathrm{NaOH}$ at room temperature (similar conditions as in the conversion $\mathbf{3 2} \rightarrow \mathbf{3 3}$), was

Scheme 11

performed to afford structure 60. Upon acidification of the reaction mixture $(\mathrm{pH} \sim 2)$ using 2 NHCl , crude acid $\mathbf{6 0}{ }^{135}$ precipitated and was then filtered and recrystallized (EtOAc:hexanes) to yield a pure sample of acid 60 (73%).

As can be noted (Scheme 11), the conversion of 60 to the desired structure 46 essentially involves conversion of a carboxylic acid (60) to an amide functionality (46). Such conversions are quite common in the literature and provide various useful products. However, this particular case proved to be somewhat problematic. Acid 60 contains functional groups such as the sulfur atom in the fused ring and the amide group
connecting the two aryl rings both of which can be vulnerable to degradation under certain conditions. Thus, several approaches were attempted before a procedure was developed that would successfully effect the desired conversion $\mathbf{6 0 \rightarrow 4 6}$.

The first attempt involved the conversion of acid $\mathbf{6 0}$ to the corresponding acid chloride (using SOCl_{2}) which could then be coupled with commercially available 4aminophenol to produce the desired product 46. However, the reaction of $\mathbf{6 0}$ and SOCl_{2} resulted in a complex mixture of products, even at ambient temperatures (this might be expected due to the presence of the amide function connecting the two aryl rings). It has been reported that the conversion of acid groups to the corresponding acid chlorides can be accomplished by the reaction of SOCl_{2} with molecules that may be vulnerable to such conditions (such as penicillins) by careful control of the reaction stoichiometry. ${ }^{137}$ However, the procedure ${ }^{137}$ required an addition of precise equivalents of pyridine and then maintaining cold temperatures $\left(-20^{\circ} \mathrm{C}\right)$ over several hours. Therefore, a more straightforward approach was sought to effect the conversion $\mathbf{6 0 \rightarrow 4 6}$.

The second approach used in producing 46 from $\mathbf{6 0}$ was to form the amide bond of $\mathbf{4 6}$ via the reaction of 4 -aminophenol with the corresponding acid bromide of $\mathbf{6 0}$ (generated in situ). Barstow and Hruby ${ }^{138}$ reported the synthesis of various amides from the corresponding amines and acid bromides, generated in situ from the actions of $\mathrm{Ph}_{3} \mathrm{P}$ and BrCCl_{3} on the corresponding carboxylic acid in THF. However, attempts to use this technique resulted in 46 being generated in low yields ($<10 \%$), and purification was very difficult by standard procedures.

It was found that isobutyl chloroformate had been employed in a mixed anhydride method to produce amides from the corresponding carboxylic acids containing a variety
of sensitive functional groups. ${ }^{139}$ Acid 60 was placed in dry THF along with triethylamine (TEA), and the resulting mixture was stirred at room temperature for 45 minutes. Isobutyl chloroformate was then added to the reaction mixture at room tempertaure, and the resulting mixture was heated at $59{ }^{\circ} \mathrm{C}$ for 1.5 hours. A solution of 4-aminophenol in pyridine was then added to the new reaction mixture, and the resulting mixture was stirred at $59^{\circ} \mathrm{C}$ for 4 hours. After reaction workup, purification by flash column chromatography [ethyl acetate:hexanes (2:1)] and recrystallization [methanol: $\mathrm{H}_{2} \mathrm{O}(13: 8)$] provided pure 46, albeit in modest yield (20\%).

The low yield of this reaction may be due, in part, to two factors, the first of which is the modest solubility of the starting acid $\mathbf{6 0}$ in the solvent (THF). The second, and perhaps less obvious reason for the low yield of 46, may be competitive processes leading to several products (Scheme 12). The reaction of isobutyl chloroformate with the acid group of $\mathbf{6 0}$ likely produces the mixed anhydride $\mathbf{6 1}$. The latter has two carbonyls that may undergo nucleophilic attack by the nitrogen atom of 4 -aminophenol. If the carbonyl closer to the aromatic ring of the anhydride reacts with 4-aminophenol, then the desired compound 46 is formed. However, if the carbonyl further away from the aromatic ring undergoes nucleophilic attack by 4 -aminophenol, then the starting acid $\mathbf{6 0}$ is reformed along with the production of a carbamate by-product 62. The carbonyl closer to the aryl ring should be the more reactive of the two. However, the carbonyl further from the aryl ring is apparently somewhat reactive due to the observed formation of the carbamate by-product 62 (structure suggested by NMR analysis), which was separated from the product mixture in a yield of 40%.

Scheme 12

Oxygen Heteroarotinoid 47. Once a protocol had been developed which provided 46, the same method was employed to obtain the oxygen analog 47 . Thus, 47 was synthesized (via a method essentially identical to that in the conversion of $60 \rightarrow 46$) from structure 33 (Scheme 13).

Scheme 13

Acid $\mathbf{3 3}$ was placed in a reaction vessel with isobutyl chloroformate (using the mixed anhydride method) ${ }^{139}$ and coupled with commercially available 4-aminphenol. After reaction workup and purification via flash column chromatography [EtOAc:hexanes (2:1)] and recrystallization $\left[\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(13: 8)\right]$, pure 47 was obtained (30%). The increased yield of $47(30 \%)$, as compared to that $46(20 \%$, Scheme 11), may be partially due to the increased solubility of acid 33 (the starting material in the production of 47) in the solvent (THF) as compared to the solubility of acid 60 (the starting material in the production of 46) in THF.

NMR Analysis of Select 8-isomer Oxygen Heteroarotinoids

Through ${ }^{1} \mathrm{H}$ NMR analysis of the target products (32-47), an interesting spectral feature was noted in the oxygen-containing heteroarotinoids that have a three-atom linker
attached at the 8-position of the tetramethylchroman group (42-44). More specifically, compounds 42-44 have a urea (42) or thiourea ($\mathbf{4 3}$ and $\mathbf{4 4}$) linker group attached at the 8 position. It was observed that the proton attached to carbon atom 7 (C7) of the tetramethylchroman ring system (Figure 14) in structures 43 and 44 (which both contain a thiourea linker group) demonstrated a broadened peak (see Plates XXXV and XXXVIII - Experimental section), while the same proton in 42 (which contained a urea linker group) showed a very sharp signal (see Plate XXXII - Experimental section). Therefore, further spectral investigation of these compounds was warranted to derive a possible explanation for the observation.

Since both 43 and 44 demonstrated a broadened signal ($\sim \delta 7.6$), 44 was chosen as a single model for the investigation. First, peak assignments were established for the hydrogen atoms at the $\mathrm{C} 5, \mathrm{C} 6$, and C 7 positions of the aromatic ring within the fused ring system via the use of two dimensional NOESY (2D NOESY) and 2D double-quantum COSY (2D DQCOSY) analysis. The 2D NOESY (Plate XL) spectrum showed a cross peak between the geminal dimethyl protons of $\mathrm{C} 4(\delta 1.36)$ and a proton at $\delta 7.22$, indicating that the signal at $\delta 7.22$ likely corresponded to the aromatic proton attached to C5. In addition, the 2D NOESY spectrum showed a somewhat strong cross peak between the C 5 proton ($\delta 7.22$) and the proton signal at $\delta 6.96$, and the 2D DQCOSY (Plate XLI) showed an intense cross peak between the C 5 proton ($\delta 7.22$) and the proton signal at $\delta 6.96$, indicating that the signal at $\delta 6.96$ likely corresponded to the proton attached to C6. Furthermore, the 2D DQCOSY demonstrated a cross peak between the C6 proton ($\delta 6.96$) and the broad signal at $\delta 7.62$. Considering each of these pieces of

Figure 14. ${ }^{1} \mathrm{H}$ NMR spectra sections (spectral regions $\sim \delta 7.4-\delta$ 9.0) from spectroscopic experiments conducted on heteroarotinoid 44: (a) $\mathrm{D}_{2} \mathrm{O}$ exchange at $22{ }^{\circ} \mathrm{C}$, (b) ${ }^{1} \mathrm{H}$ NMR at $22{ }^{\circ} \mathrm{C}$, (c) ${ }^{1} \mathrm{H}$ NMR at $30{ }^{\circ} \mathrm{C}$, (d) ${ }^{1} \mathrm{H}$ NMR at $40^{\circ} \mathrm{C}$. Spectra were obtained at 400 MHz using DCCl_{3} as the solvent and were referenced to TMS.
information, it was concluded that the broad signal at $\delta 7.62$ in the ${ }^{1} \mathrm{H}$ NMR spectrum of 44 likely arose from the hydrogen (H7) attached to C7 of the tetramethylchroman ring system.

To ensure that the signal at $\delta 7.62$ did not correspond to an -NH - proton, a deuterium exchange NMR experiment was conducted on 44. It was found that two signals ($\delta 8.30$ and $\delta 8.34$) were greatly reduced in height and the broad signal occurring at 7.62 ppm was not affected. This observation provided further support of the hydrogen atom position assignment established from the 2D NMR experiments by suggesting that the signal occurring at $\delta 7.62$ arose from a hydrogen attached to an aromatic carbon (C7) rather than a nitrogen atom of the thiourea linker group.

Finally an explanation for the H7 signal ($\delta 6.96$) broadening was sought. Structure 44 contains a quadrupole nucleus $\left({ }^{14} \mathrm{~N}\right)$, and its effect on H 7 cannot be eliminated from consideration. The signal broadening may also be due to a dynamic property inherent to the molecular structure of thioureas. Galabov and co-workers ${ }^{140}$ demonstrated, through IR and ${ }^{1} \mathrm{H}$ NMR spectroscopy, that N, N 'diaryl-substituted thioureas in organic solvents $\left(\mathrm{CCl}_{4}, \mathrm{C}_{2} \mathrm{Cl}_{4}, \mathrm{CHCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ at room temperature exist in a complex equilibrium between several rotational conformations of the $-\mathrm{C}(\mathrm{S})-\mathrm{NH}$ - group. In fact, it was reported that the substituted thioureas had several rotational isomers of the type cis-cis, cis-trans, trans-cis, and trans-trans, depending on the size of the substituents on the nitrogen atoms. Furthermore, Galabov noted that these various conformations apparently had relatively short lifetimes (and low concentrations), resulting in difficult conformational analysis by ${ }^{1} \mathrm{H}$ NMR at room temperature. ${ }^{140}$

Therefore, a temperature variation ${ }^{1} \mathrm{H}$ NMR experiment was conducted for 44 in an effort to resolve the rotational isomerism issue, and the results are illustrated in Figure 14. Figure 14 is comprised of small sections (spectral regions ranging $\sim \delta 7.4-\delta 9.0$) of four distinct spectra (a, b, c, and d) of compound 44. The spectra listed are a) deuterium exchange, b) ${ }^{1} \mathrm{H}$ NMR at room temperature $\left(22{ }^{\circ} \mathrm{C}\right)$, c) ${ }^{1} \mathrm{H}$ NMR at $30{ }^{\circ} \mathrm{C}$, and d) ${ }^{1} \mathrm{H}$ NMR at $40^{\circ} \mathrm{C}$. Interestingly, as the temperature was increased, the broadened signal (δ 7.62) at $22{ }^{\circ} \mathrm{C}$ (Figure 14b) split into two distinct peaks at $40^{\circ} \mathrm{C}$ (Figure 14d).

Thus, compounds $\mathbf{4 3}$ and $\mathbf{4 4}$ may exist in solution as a trans-cis form (as was drawn earlier and shown below - left) or as one of the others listed above, including possibly a cis-cis form (shown below - right). It is not intuitively obvious why H7 is a more

clearly defined doublet at $40^{\circ} \mathrm{C}$ as compared to a broad signal at room temperature. Possibly, the ${ }^{3} \mathrm{~J}_{\mathrm{H} 6-\mathrm{H} 7}$ coupling to H 7 at $40^{\circ} \mathrm{C}$ results from an average orientation of H 6 and H 7 which is more nearly a perfect cisoid arrangement. It is also conceivable that the equilibrium of rotational isomers, coupled with further interaction of H 7 with the electron orbitals of the bulkier sulfur atom within the thiourea group [as compared to the oxygen atom of the urea group (42)], arising due to the various structural conformations, could ultimately lead to broadening of the signal associated with H 7 at room temperature.

Biological Activity

Rationale for the Design of Target Heteroarotinoids. Compound 32 has an amide group as a two-atom linker and is an oxygen analog of sulfur heteroarotinoid $24,{ }^{123}$ another compound reported by our lab. As was discussed in Chapter 1 (Heteroarotinoids and Other Reduced Toxicity Retinoids section), structure 24 (Table 1) appeared to possess pan agonist properties and showed powerful anticancer properties against head and neck squamous cell carcinoma in nude mice, as compared to t-RA (3). ${ }^{123}$ The sulfur atom in the fused ring of $\mathbf{2 4}$ was replaced with an oxygen atom in 32. It was hoped that agent 32 would provide valuable insight into treatment for head and neck carcinomas.

Replacement of the sulfur atom in $\mathbf{2 4}$ with the less bulky oxygen atom in compound 32 was initiated because of the reported biological activity of certain oxygen heteroarotinoids. ${ }^{20 a, 123,125}$ Although heterarotinoids containing oxygen appear, in general, to exhibit slightly lower biological activity than the sulfur- or nitrogen-containing counterparts, ${ }^{123,141}$ the compounds reported here contain a geminal dimethyl group adjacent to the oxygen atom, unlike those reported previously. ${ }^{50,123,125,141}$ It was conceived that the compact size of oxygen may allow its lone pairs to be somewhat "screened" by the flanking geminal dimethyl group, thus increasing the hydrophobic character of one end of the molecules. Hence, these agents may have improved hydrophobic interaction with the interior of the retinoid receptors, ${ }^{118}$ thereby increasing receptor activation and ultimately leading to enhanced anti-cancer activity. Studies of compounds with such structural features as these may certainly provide vital information

Table 1. Growth Inhibition Against Various Cancerous Cell Types by Heteroarotinoids ${ }^{\text {a }}$

Compound	\% Inhibition of Seven Cancerous Cell Types ${ }^{\text {b }}$						
	SCC2	UMSC2	UMSC38	Skov3	CAOV3	sw954	SW962
	13	100	100	NA	NA	NA	NA
	64	$492^{\text {c }}$	370°	21	24	NA	48
	NA	NA	NA	85	98	NA	NA
	NA	NA	NA	92	95	NA	NA
	NA	NA	NA	94	97	NA	NA
	15	$115^{\text {c }}$	$-70^{\text {c }}$	NA	NA	83	84
	NA						
	NA						

Table 1. (Continued) ${ }^{\text {a }}$

Table 1. (Continued) ${ }^{\text {a }}$
NA Inhibition of Seven Cancerous Cell Types ${ }^{\text {b }}$
${ }^{\text {a }}$ The results presented are from biological assays performed by Dr. Doris Benbrook's group (Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma). ${ }^{\text {b }}$ The seven cell types listed are head and neck (SCC2, UMSC2, UMSC38), ovarian (SKOV3, CAOV3), and vulvar (SW954, SW962). ${ }^{\text {c }}$ Values listed are compared to $9-c-$ RA $(4,100 \%)$. NA $=$ Not Available at this time.
about the tolerated bulk size within the hydrophobic region of the ligand-binding pocket (LBP) of the retinoid receptors.

Heteroarotinoid 33, an oxygen analog of known acid $\mathbf{6 0}$, ${ }^{135}$ is similar to $\mathbf{3 2}$ but the former contains a carboxylic acid functionality as a polar tail instead of an ester as in $\mathbf{3 2}$. Historically, most retinoids found in the literature contain a carboxylic acid group as a polar tail [such as t-RA (3) or TTNPB (8)]. It is assumed that there are various esterase enzymes within the body that could cleave the ester group, and thus, within living systems, both the acid and ester may be converted to the carboxylate anion. It has been reported that the carboxylate anion $\left(\mathrm{CO}_{2}{ }^{*}\right)$ is required for receptor binding due to a "salt bridge" formation between the carboxylate group and glutamic and lysine amino acid residues of the retinoid receptors. ${ }^{40,50,142}$ Therefore, the carboxylic acid group was incorporated into $\mathbf{3 3}$ as a comparison with $\mathbf{3 2}$ to determine potency differences, or in the event one of these two polar end groups produced better retinoid receptor activation. In addition, the study of various tail groups, such as those that are non-ionizable, or groups that can or cannot hydrogen bond, may provide valuable insight into structural attributes necessary for reasonable bioavailability. ${ }^{143}$

Due to the large number of pharmaceuticals that are produced and screened today, concern is rising about drugs' bioavailability through intestinal uptake, resulting from oral administration (drugs may be administered via different routes, the oral route generally being the preferred for reasons of ease and compliance by the patient). ${ }^{143}$ It has been noted that factors to be considered in the design of drugs for oral absorption include lipophilicity, molecular size (molecular weights <500 generally having better absorption), and hydrogen-bonding (H-bonding) capability. ${ }^{143}$ Therefore, the study of
heteroarotinoids having tail groups differing in functionality (such as 32 and 33) may ultimately lead to anticancer agents which could be administered orally.

Compounds 34 and 35, respectively, are similar to 32 and 33 and have an amide linker and polar end groups. However, the linker is attached to the aryl ring at the C 8 position in $\mathbf{3 4}$ and $\mathbf{3 5}$ rather than at the C6 position as in $\mathbf{3 2}$ and 33. Since $\mathbf{2 4}$ had pan agonist qualities (was bound by both RARs and RXRs), and $\mathbf{3 2}$ may have similar properties, it was conceived that moving the linker moiety from the C 6 position to the C 8 position may enhance binding affinity for the RXRs over that for the RARs. Movement of the linker from the C6 position to the C8 position could allow the structures to adopt a somewhat "curved" conformation, similar to $9-c$-RA (4), ${ }^{40,118}$ which, in turn, might provide better interaction with the RXRs as compared to the RARs.

Heteroarotinoid $\mathbf{3 6}$ has a double bond incorporated into the fused ring. This addition to the heterocyclic ring certainly changes the hydrophobic portion of the ligands as compared to those just described, and therefore the interaction of these compounds with the hydrophobic region in the LBP of the receptors may be altered. It is uncertain what effect the unsaturation will actually produce, but a computer-aided study conducted by Klucik ${ }^{118}$ also indicated that the presence of such a group may have favorable interaction with the LBP of RAR- γ. Compound 36 contains an ester linker group (two-atom linker) placed in the C 7 position of the aryl ring. This placement between the C 6 and C 8 positions, coupled with the somewhat flexible nature of the linker [which could allow the structure to assume either an 'elongated' conformation similar to that of t-RA (3) or a 'curved' conformation similar to that of 9-c-RA (4)], ${ }^{40}$ may promote interaction with both RARs and RXRs, thus conveying 36 with pan agonist qualities, as has $9-c$-RA (4). ${ }^{46}$

Sulfur heteroarotinoids $\mathbf{3 7}$ and $\mathbf{3 8}$ are a continuation of the study of compounds 29-31 (Chapter 1 - Heteroarotinoids and Other Reduced Toxicity Retinoids section) which were also produced from earlier work in this lab. ${ }^{113 e}$ Like 29, structure 37 possesses a thiourea (three-atom) linker group. However, 37 has a methoxy group attached to the aryl ring containing the polar nitro end group. Such a modification has not been done previously and may help to "map" more accurately the area of the LBP within the receptor that provides H -bonding with the ligand. Compound $\mathbf{3 8}$ actually possesses a 4 -atom linker rather than a 3 -atom linker. The linker was extended one carbon atom by essentially inserting a carbonyl group between the thiourea linker and the second aryl ring. Some molecular modeling studies by Klucik ${ }^{118}$ have suggested that a 4 -atom linker may be slightly too long for receptor activation as agonists, but such agents could be useful as antagonists.

Heteroarotinoids 39-41 are oxygen analogs of compounds 29-31, which, as was discussed in the previous chapter, showed some profound anticancer characteristics (see Chapter 1, Heteroarotinoids and Other Reduced Toxicity Retinoids section). ${ }^{113 e}$ Compounds 39-41 possess a urea functionality as a three-atom 'linker' group (as do the reported structures 29-31). The urea and/or thiourea functionality was selected as a threeatom linker due to its somewhat enhanced flexible nature (compared to a pure amide), which could result in a better fit into the LBP of RARs, and therefore enhance activation. Moreover, a urea function provides two -NH- groups capable of hydrogen bonding with the receptors, which may improve $\operatorname{RAR}-\gamma$ selectivity, possibly via the formation of a hydrogen bond with the sulfur atom of the amino acid residue methionine 272 (M272) in RAR- $\gamma^{99,124,127,128}$ Due to the promising activity of heteroarotinoids 29-31, the study of
the urea group as a three-atom linker has been extended to the oxygen analogs 39-41, whose synthesis is described within this thesis.

The presence of a sulfur atom within the linker group (thiourea, 40), as opposed to an oxygen atom (urea, 39), may provide insight on the influence of size and electronegativity of the carbonyl or thiocarbonyl function within the linker group in terms of influence on receptor activation and/or selectivity. In addition, modulation of the polar "tails" of the compounds [as in the exchange of an ester functionality (40) for a nitro group (41)] was done to further explore the more polar region of the LBP of the retinoid receptors responsible for H -bonding ${ }^{21 \mathrm{~b}, 2 \mathrm{lc}, 22,23}$ and to determine potency differences in the event one of these two polar tail groups produced better retinoid receptor activation. It is expected that studies on agents with a urea or thiourea linker, such as 39-41, may ultimately lead to the production of compounds that are highly RAR- γ selective.

Heteroarotinoids 42-44 are 8 -isomer analogs of $\mathbf{3 9 - 4 1}$ (as $\mathbf{3 4}$ and $\mathbf{3 5}$ are 8 -isomer analogs of $\mathbf{3 2}$ and $\mathbf{3 3}$). This alignment of the linker group (attached in the 8 position of the tetramethylchroman group as in 34 and 35) with respect to the aryl moieties is expected to suppress the binding affinity for the RARs. Again, movement of the linker from the C 6 position to the C 8 position could allow the structures to adopt a somewhat "curved" conformation, similar to $9-c$-RA (4), ${ }^{40,118}$ and thus compounds $\mathbf{4 2 - 4 4}$ may be RXR family selective.

Heteroarotinoid 45 (like 36) has a double bond incorporated into the fused ring system. Unlike 36, however, 45 possesses a carbamate function as a three-atom linker group. Like the urea group (as in $\mathbf{3 9 - 4 1}$ or 29-31), the carbamate linker (as in 45) also possesses a -NH- group that may provide hydrogen bonding with amino acid residues
within the interior of the retinoid receptors. Furthermore, the carbamate linker group of 45 (like 36) was placed in the C 7 position of the aryl ring, which may promote interaction with both RARs and RXRs, thus endowing 45 with pan agonist qualities, as has $9-c-$ RA (4). ${ }^{46}$

The unusual heteroarotinoid 46 was produced with the intent of mimicking the apoptotic properties of $4-H P R$ (18). The synthesis of 46 was also spurred by the impressive anticancer properties of compound $24,{ }^{123}$ which is a synthetic precursor of 46 (see Scheme 11). As was discussed in Chapter 1 (Classification of Retinoids Apoptosis), clinically employed 4-HPR (18) is well known for the ability to induce programmed cell death (apoptosis) in a variety of tissues. ${ }^{113}$ This quality may be due to the 4-hydroxyphenylamide functionality on the polar end of the molecule's structure, as certain studies suggest. ${ }^{12 b, 113 e, 115,116}$ It was originally assumed that a study of heteroarotinoids possessing a 4-hydroxyphenylamide group would have already been performed, but none was found in the literature. Therefore, heteroarotinoid 46, which possesses a 4-hydroxyphenylamide group, was synthesized for exploration of the therapeutic potential of heteroarotinoids possessing this functionality.

Structure 47 is the oxygen analog of sulfur heteroarotinoid 46. The replacement of the sulfur atom in 46 by oxygen may aid to elucidate the pathways by which compounds structurally similar to 4-HPR (18) could mimic its action and exhibit apoptotic properties. As was discussed in Chapter 1 (Classification of Retinoids - Apoptosis), the exact mechanism by which 4-HPR (18) produces its apoptotic effects is a matter of some controversy. ${ }^{112 b, 113 e, 115,116}$ Certain studies suggest that 4-HPR (18) acts via retinoid receptor-dependent pathway, ${ }^{116}$ while other studies state that the action of 4-HPR (18)
results from retinoid receptor-independent mechanisms. ${ }^{115}$ Therefore, the study of sulfur and oxygen analogs 46 and 47 could provide valuable information regarding this matter, in the event that one of these compounds ($\mathbf{4 6}$ or 47) demonstrated better apoptotic characteristics than does 4-HPR (18).

As can be noted in Table 1, compounds 24, 29-31, and $\mathbf{6 3}$ produced from earlier work by our lab ${ }^{113 e, 123}$ demonstrated promising inhibition properties against various cancerous cell lines, including ovarian, vulvar, and head and neck carcinomas. Although the compounds reported in this thesis have not yet been tested for anticancer activity, several of the agents structurally resemble heteroarotinoids $24,29-31$, and $\mathbf{6 3}$. Thus it is anticipated that a study of such agents reported herein will provide valuable insight on structural characteristics required for optimum anticancer activity in these select types of cancer. Heteroarotinoids 32 and 33 resemble 24, compounds 39-41 are oxygen analogs of 29-31, and 36 is slightly similar to 63 (Table 1).

Anti-tuberculin Activity of Heteroarotinoids. Mycobacterium tuberculosis (M. tuberculosis, or Mtb) is a human pathogen causing tuberculosis (TB), is responsible for the death of millions of people each year, and continues to claim more lives than any other single infectious agent. ${ }^{144}$ Its pathogenicity arises from the ability to survive in host cells by colonizing macrophages and remaining quiescent for long periods of time, only to become active decades later. ${ }^{145}$ About one-third of the world's population is infected with Mtb, 10% of which will develop the disease at some point in their lives. ${ }^{146}$ The current treatment for active TB is a four-drug regimen comprised of isoniazid, rifampin, pyrazinamide, and ethambutol for a period of at least six months. ${ }^{147}$ The failure of patients to complete the therapy has led to the emergence of multi-drug-resistant (MDR)
tuberculosis. The growing number of cases of MDR tuberculosis has become such a public health threat that the World Health Organization (WHO) has declared TB a global public health emergency. ${ }^{148}$ Thus, greater efforts are needed in investigating the molecular basis of TB pathogenicity and in developing high efficacy drugs as key targets for Mtb treatment.

One approach that has been taken in the fight against TB is the development of drugs that will successfully inhibit the actions of the enzyme Dihydrofolate Reductase (DHFR). DHFR is essential for folate metabolism in both eukaryotic and prokaryotic cells. ${ }^{149}$ The enzyme catalyzes the NADPH-dependent reduction of dihydrofolate to tetrahydrofolate which is involved in a variety of biochemical functions involving single-carbon transfers. The reduced form of folate is a precursor of cofactors necessary for the synthesis of thymidylate, purine nucleotides, methionine, serine, and glycine required for DNA, RNA, and protein synthesis. Selective DHFR inhibitors are playing an important role in the treatment of bacterial, protozoal, and fungal infections. ${ }^{150}$ In addition, DHFR inhibitors have been shown to be useful in the treatment of patients infected both by HIV and Mtb. ${ }^{151}$

Because rapidly dividing cells have a great demand for DNA and protein synthesis and DHFR promotes such activity, inhibition of this enzyme by methotrexate (MTX, 64), an anti-inflammatory and immunosuppressive agent, has been exploited in cancer chemotherapy. ${ }^{152}$ Trimethoprim (TMP, 65) is a potent inhibitor of bacterial DHFR, but only a weak inhibitor of mammalian DHFRs. ${ }^{145}$ Agent Br-WR99210 (66), a bromine analog of Triazine (WR99210), has been instigated in the inhibition of malarial DHFR. ${ }^{145}$

64 [Methotrexate, MTX]

65 [Trimethoprim, TMP]

66 [$\mathrm{Br}-\mathrm{WR} 99210$]

A structural comparison study of human and tuberculosis DHFRs performed by Hol and co-workers ${ }^{145}$ provided some useful observations in the search for new TB drug treatments. Through a sequence alignment of the amino acids in human and Mtb DHFRs, Hol noted only a $\sim 26 \%$ sequence identity and indicated key differences that might be considered in the future development of selective Mtb DHFR inhibitors.

Isoxyl (67), a powerful inhibitor of bacterial DHFRs, has demonstrated potent activity against various Mycobacterium strains, including Mycobacterium tuberculosis (Mtb). ${ }^{153}$

As can be noted, 67 contains a thiourea group connecting two aryl rings and is somewhat similar in structure to several compounds (such as 39-44) reported in this thesis. This
striking structural resemblance thus prompted the screening of several heteroarotiniods produced by our lab for use as anti-bacterial agents.

The fifteen heteroarotinoids listed in Table 2 were tested for anti-bacterial activity against Mycobacterium bovis (BCG) and compared to that of Isoxyl (67). As can be noted in Table 2, the results are listed as MIC values (note the results in Table 2 are listed in order of decreasing activity - read from left to right, top to bottom). The MIC value has been defined as the lowest concentration (in $\mu \mathrm{g} / \mathrm{mL}$) of Isoxyl (67), or other standard agent, resulting in 99% reduction in the number of bacterial colonies on that plate compared to those on a plate free of the drug at the same suspension of the bacterial culture dilution (for assay details see Determination of MICs, Experimental section Chapter III). ${ }^{153}$ Isoxyl (67) demonstrated a MIC value of 0.5 against BCG (Table 2), indicating potent anti-bacterial activity. Most of the heteroarotinoids in the study demonstrated somewhat weak anti-bacterial activity with MIC values >20.0. However, compounds 41 and 69 exhibited reasonable activity, each having MIC values of 20.0, while $\mathbf{4 0}$ and $\mathbf{6 8}$ each displayed somewhat promising activity with MIC values of 10.0 . Interestingly, heteroarotinoid 36, which appears less structurally similar to 67 than other heteroarotinoids tested, such as $\mathbf{3 1}$ or $\mathbf{4 0}$, demonstrated the best activity (as compared to the other heteroarotinoids) against BCG with a MIC value of 2.0 .

A computer aided crystallographic study conducted by Hol and co-workers ${ }^{145}$ may help establish an explanation for the observed potent anti-bacterial activity of 36. Three crystal structures of M. tuberculosis DHFR, an enzyme quite structurally similar to BCG DHFR, ${ }^{153}$ bound to different inhibitors was reported. ${ }^{145}$ The three inhibitors of Mtb

Table 2. Anti-Bacterial Activity of Heteroarotinoids Against M. bovis ${ }^{\text {a,b }}$

>20.0
 >20.0

>20.0

>20.0

>20.0

20.0

>20.0

>20.0

Table 2. (Continued) ${ }^{\text {a,b }}$

Compound | $\mathrm{MIC}^{\mathrm{C}}$ |
| :---: |
| $(\mu \mathrm{g} / \mathrm{mL})$ |

Abstract

${ }^{a}$ Results are from Mycobacterium bovis (BCG) being treated with the agents listed. ${ }^{6}$ Results listed are from biological assays performed by Dr. Patrick Brennan's group (Department of Microbiology, Colorado State University, Fort Collins, Colorado). ${ }^{\circ}$ MIC is the lowest concentration of the agent (in $\mu \mathrm{g} / \mathrm{mL}$) resulting in 99% reduction in the number of colonies on that plate as compared to those on a plate free of the drug at the same suspension of the culture dilution.

DHFR studied were methotrextate (MTX, 64), trimethoprim (TMP, 65), and Br WR99210 (66), and Hol noted various structural modifications of the inhibitors which might be exploited to increase affinity and/or selectivity for the bacterial DHFR enzyme. Furthermore, Hol indicated various amino acid residues which appeared to be of some importance for interaction with inhibitors within the binding site of the enzyme. It was observed that all three inhibitors (64-66) were involved in hydrogen bond interactions with an aspartate residue (Asp27) and an ordered and conserved water molecule, both within the interior of the enzyme, via the nitrogen $1(\mathrm{~N} 1)$ atom of their respective ring systems. ${ }^{145}$ In addition, the nitrogen-containing rings of each inhibitor appeared to be situated within a mainly hydrophobic pocket and made Van der Waals contacts with various residues of the pocket, including Ile5, Ile94, Ala6, and Gln 28. ${ }^{145}$ The aromatic ring of each inhibitor, along with the 1,3-dioxypropyl linking group of Br-WR99210 (66), were observed to engage in hydrophobic interactions with several residues, such as Phe31, Leu50, Thr46, Ile54, and Ile57, which are slightly closer to the protein's surface than the amino acid residues listed above. ${ }^{145}$ Finally, it was noted that the α-carboxyl
group of MTX (64) engaged in strong "salt bridge" involving $-\mathrm{CO}_{2}{ }^{\circ}$ and two positively charged $-{ }^{+} \mathrm{NH}_{3}$ groups of Arg32 and Arg60, which are near the protein's surface. ${ }^{145}$

With these pieces of information, it is conceivable that a reasonable interaction between heteroarotinoid 36 and the bacterial DHFR enzyme could exist. The oxygen atom of the fused heterocyclic ring may engage in hydrogen bonding interactions with Asp27 and/or the conserved water molecule, both of which are toward the interior of the enzyme. ${ }^{145}$ In addition, the double bond within the fused aromatic ring system of $\mathbf{3 6}$ could allow a unique interaction with Phe31 or one of the other amino acid residues noted to interact with the nitrogen-containing ring systems of 64-66. ${ }^{145}$ The aromatic ring of $\mathbf{3 6}$ may also be involved in hydrophobic interactions with the various residues somewhat closer to the protein's surface, as did 64-66. ${ }^{145}$ Furthermore, if the ester group of $\mathbf{3 6}$ is indeed converted to the carboxylate anion within living systems as certain studies suggest, ${ }^{40,50,142}$ then the resulting carboxyl group could certainly be involved in "salt bridge" interactions with Arg32 and Arg60, as was the carboxyl group of MTX (64). ${ }^{145}$

It was also observed by Hol and co-workers ${ }^{145}$ that the three inhibitors (64-66) studied all adopted similar, curved, conformations, with the nitrogen-containing ring system oriented toward the interior of the enzyme binding site, and the aromatic ring closer to the surface. As can also be noted, $\mathbf{3 6}$ may have a slightly shorter "molecular length" than MTX (64) or Br-WR99210 (66). Therefore, it is conceivable that 36 may adopt a somewhat more linear conformation between the interior, hydrophobic amino acid residues and the more exterior $\operatorname{Arg} 32$ and Arg60 residues of the ligand binding site within the enzyme. Perhaps such a conformation would endow 36 with the observed antibacterial qualities. In any case, further research certainly needs to be conducted to
delineate the role of retinoids in the anti-bacterial venue. However, these observations may provide a new avenue for exploration of the therapeutic application of retinoids.

Summary

Sixteen new heteroarotinoids (32-47), which include oxygen-containing heteroarotinoids $\mathbf{3 2 - 3 6}, \mathbf{3 9 - 4 5}$, and 47 as well as sulfur-containing heteroarotinoids $\mathbf{3 7}$, 38, and 46, have been synthesized. Oxygen and sulfur were chosen as heteroatoms incorporated into the fused ring systems due to the promising anticancer activity of a few reported heteroarotinoids possessing these two heteroatoms. ${ }^{20 a, 113 e, 123,125}$ Compounds 3247 were designed with various structural characteristics, including two-, three-, or fouratom linker groups between the aryl rings, strategic placement of the linker groups relative to the aryl moieties, and varying polar 'tails', which may endow the agents with specific biological qualities, such as potential RAR- γ selectivity, RXR subfamily selectivity, pan agonist qualities, or the ability to induce programmed cell death (apoptosis).

The structures have not yet been tested for their anticancer activities, but it is expected that biological studies of these agents could certainly provide valuable information for the invention of potentially effective anticancer agents possessing high activity and relatively low toxicity. However, several of the heteroarotinoids reported here were tested for antibacterial activity due to their structural resemblance to the potent antibacterial agent Isoxyl (67). It was discovered that two heteroarotinoids (40 and 68) possessed reasonable antibacterial activities against Mycobacterium bovis and that compound 36 possessed promising activity against the same bacteria (Table 2). Of course, more research needs to
be conducted to establish the exact role of retinoids as antibacterial agents, but these observations may ultimately lead to a new therapeutic application of retinoids.

Finally, a new and improved synthetic route to known amine $\mathbf{5 0} \mathrm{a}^{123}$ from thiochroman $56^{126 a}$ was developed. The new method was more straightforward, efficient, and costeffective than the reported procedure ${ }^{123}$ for the production of $\mathbf{5 0 a}$.

Suggestions for Future Work

Structures 74-77 are suggested as target heteroarotinoids for future synthesis and study as potential anticancer agents. The compound series 74 is similar to $\mathbf{3 9 - 4 1}$, whose synthesis is described in this thesis, while the series 75 resembles structures 29-31 which

have demonstrated powerful anticancer properties, ${ }^{113 e}$ as discussed in Chapter I. Unlike 39-41 and 29-31, 74 and 75 each contain two methyl groups placed at the C5 and C7 positions of the chroman ring systems. The production of such compounds is encouraged due to the reported success of compounds $\mathbf{6 3},{ }^{123}$ which contain two methyl groups positioned in the same manner, and the fact that very few compounds of this type are even reported. The study of agents with these characteristics may provide valuable information about the best tolerated bulk within the hydrophobic portion of the LBP of the retinoid receptors. Furthermore, because 39-41 and 29-31 may likely be RAR subtype selective, introducing two methyl groups in the C5 and C7 positions could serve to help "fine tune" the structural features needed for selectivity between the three isoforms (RAR- α, RAR- β, and $\operatorname{RAR}-\gamma$) of the RAR subtype.

Structure(s) 76 are modified continuations of compounds 46 and 47 (which are reported in this thesis). Addition of the two methyl groups at the C5 and C7 positions may further aid in the delineation of the mechanism by which retinoids that are structurally similar to 4-HPR (18) induce apoptosis. The presence of the two methyl groups could help establish how or why compounds similar to 4-HPR (18) induce programmed cell death through retinoid receptor-dependent and/or receptor-independent pathways.

Compounds 77 and 78 are methylbutyrate derivatives of acids 33 and $\mathbf{6 0}$, respectively. Structures 77 and 78 are suggested for future study for multiple reasons, including the reported success of compound 24 , which would be a synthetic precursor of 78 . In addition, the incorporation of the methylbutyrate moiety within the heteroarotinoid backbone may endow structures 77 and 78 with enhanced anticancer activity via prodrug
properties, which could arise from the coupled anticancer actions of 33 and/or 60 and butyric acid (BA). ${ }^{154}$

Compound BA has been reported as an effective inhibitor of cell proliferation and inducer of cytodifferentiation. ${ }^{155}$ In addition, BA is known to inhibit specifically the enzyme histone deacetylase (HDAC), and thus many of its biological effects may be attributed to this activity. ${ }^{156}$ Recent studies may have established a link between oncogene-mediated suppression of transcription and recruitment of HDAC into a nuclear complex. ${ }^{157}$ Furthermore, it has been suggested that resistance to t-RA (3) by human acute promyelocytic leukemia (APL) cell lines could be overcome by addition of HDAC inhibitors. ${ }^{158}$ The inhibition of HDAC leads to histones hyperacetylation and relaxation of the chromatin structure. The chromatin conformational change allows the access of transcription factors and upregulation of gene expression. ${ }^{159}$ Therefore, the combination of BA with a retinoid, such as t-RA (3), could possibly provide enhanced anticancer activity. However, BA displays low potency in vivo due to rapid metabolism. ${ }^{160}$ Thus, Nudelman and Raphaeli ${ }^{154}$ combined of BA and t-RA (3) in the form of a prodrug by producing an acyloxyalkyl ester of retinoic acid, all-trans-retinoyloxymethyl butyrate (79), in hopes of coupling the therapeutic potential of each. Compound 79 was tested for differentiation induction activity in the human myeloid leukemic cell line HL-60. ${ }^{154}$ It was observed that the effective dose $\left(\mathrm{ED}_{50}\right)$ of 79 was $0.031 \mu \mathrm{M}$, which was 40 -fold

79
lower than that of t-RA (3) and over 9000 -fold lower than that of BA. ${ }^{154}$ Therefore, by combining the therapeutic potential of BA and heteroarotinoids through incorporation of BA into the heteroarotiniod backbone in the form of a acyloxyalkyl ester (as in 76 or 77), an agent possessing a very low ED_{50} may be produced, thus providing further reduction of unwanted side effects associated with retinoid treatment.

The preparation of compound(s) 74 involves the synthesis of key amine 86a (Scheme 14). The procedure could start with commercially available 3,5-dimethylphenol (80) and follow the steps as shown in Scheme 14 (and described by Dawson and co-workers ${ }^{130}$ in the synthesis of lactone 51) for the production of intermediate lactone $\mathbf{8 2}$. Once lactone 82 was obtained, the steps illustrated should be similar to those employed in the production of amine 48a to yield the key amine 86a. As shown in Scheme 14, an isomeric mixture of nitro compounds $\mathbf{8 5 a}$ and $\mathbf{8 5 b}$ is expected [as was the case for $\mathbf{5 4 a}$ and 54b (Scheme 1)] from the nitration of chroman 84. The resulting 8 -isomer amine 86b could also be utilized for the production of various heteroarotinoids. Amine 86a could be converted to the desired compound(s) 74 (Scheme 14) in a similar fashion as described for the synthesis of 39-41 from amine 48a (Scheme 8 and related description).

Amine 92a is needed as a starting material to acquire heteroarotinoid(s) 75. The reaction sequence could begin with commercially available 3,5-dimethylthiophenol (87) and follow the steps outlined in Scheme 15 (the reaction sequence is similar to that reported ${ }^{126 a}$ in the synthesis of thiochroman 56) for the production of unknown thiochroman 90. Amine 92a could then be produced from 91a via a procedure similar to that described for the synthesis of $\mathbf{5 0 a}$ from 56 (Scheme 3 and related text). Generation

Scheme 14

of the corresponding 8 -isomer amine $\mathbf{9 2 b}$ could also be expected (as was the case with 50a and 50b).

Once amines 86a and 92a have been afforded, each may be utilized to obtain heteroarotinoid(s) 76 via a synthetic method as outlined in Scheme 16. The procedure

Scheme 15

should be essentially the same as that employed in the production of compounds 46 and 47, described above (see Schemes 11 and 13 and related text). As can be noted in Scheme 16, the production of structure(s) 76 would also provide intermediates 93 and $\mathbf{9 4}$,

Scheme 16

which are a similar in structure to heteroarotinoids 24 and 32 and 33 and 60 , respectively. Hence, 93 and 94 could also be utilized for study as possible anticancer agents, and may provide further insight into structural characteristics required for optimum retinoid receptor interaction.

A possible synthetic route to $\mathbf{7 7}$ and $\mathbf{7 8}$ is illustrated in Scheme 17. Acids $\mathbf{3 3}$ and $\mathbf{6 0}$ may be utilized, respectively, for the production of 77 and 78 via a procedure similar to that reported herein and by Nudelman and Raphaeli. ${ }^{154}$ The process would involve the

Scheme 17

coupling of acid 33 or $\mathbf{6 0}$ with commercially available chloromethyl butyrate in the presence of triethylamine (TEA), using DMF as the solvent.

CHAPTER III

EXPERIMENTAL SECTION

General Information

When performing the synthesis of each of the intermediates and final compounds, various conditions of synthesis and techniques of purification and analysis were used in their production. Each reaction was done using magnetic stirring for thorough mixing of reagents, and each was carried out under N_{2} unless otherwise stated. Commercial reagents and solvents were used as received unless otherwise noted, and anhydrous THF was obtained by distillation from a purple solution of sodium and benzophenone. All of the isocyanates and isothiocyanates used were commercially available and were obtained from Carbolabs, Inc., Bethany, CT 06524-3065, Sigma-Aldrich Corporation, Milwaukee, WI 53233, or Transworld Chemicals, Inc., Rockville, MD 20850.

Evaporation of solvents was accomplished in vacuo via the use of a BUCHI Rotovapor ${ }^{\circledR}$ R-3000 and water aspirator unless otherwise specified. For those intermediates that were liquids and required distillation for purification, vacuum distillation was employed using a Welch ${ }^{\circledR}$ Chemstar $^{\mathrm{TM}} 1402 \mathrm{~N}$ vacuum pump with a Thomas ${ }^{\circledR}$ Welch vacuum gauge. For those intermediates and compounds that were solids and required purification, in addition to recrystallization, flash column chromatography was used. The chromatography was performed using J. T. Baker flash chromatography silica gel packing, $40 \mu \mathrm{~m}$ mesh.

In addition to the synthesis and purification techniques, each product was analyzed for structure and purity using IR spectroscopy, ${ }^{1} \mathrm{H}$ NMR spectroscopy, ${ }^{13} \mathrm{C}$ NMR
spectroscopy, and TLC. Melting points of all solids were measured using a ThomasHoover melting point apparatus and were uncorrected. IR spectra were obtained using a Perkin Elmer 2000 Ft -IR spectrometer as films or KBr pellets, and some ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained using a ${ }^{\text {UNITY }}$ INOVA 400 BB NMR spectrometer operating at 399.99 MHz and 100.01 MHz , respectively. In addition, some ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded using a broadband Gemini 2000 High-Resolution NMR (300 MHz) spectrometer operating at 300.09 MHz and 75.46 MHz , respectively. All NMR signals were referenced to TMS. Furthermore, DCCl_{3} was used as the solvent for all NMR spectra unless otherwise stated. Elemental analyses were performed by Atlantic Microlab, Inc., Norcross, GA 30091.

Methyl 4-\{[(2,2,4,4-Tetramethyl-3,4-dihydro-2H-chromen-6-yl)amino]carbonyl\}-

 benzoate (32). Amine 48a ($0.350 \mathrm{~g}, 1.70 \mathrm{mmol}$), dissolved in dry benzene (20 mL), was placed in a $50-\mathrm{mL}$, three-necked, round-bottomed flask equipped with an N_{2} inlet. To this solution was added dry pyridine ($1.75 \mathrm{~g}, 1.79 \mathrm{~mL}, 22.16 \mathrm{mmol}, 13 \mathrm{eq})$, and the resulting mixture was stirred at RT (10 min). Mono-methyl terephthaloyl chloride (58) $(0.381 \mathrm{~g}, 1.82 \mathrm{mmol}, 1.07 \mathrm{eq})$ was then rinsed into the reaction mixture in one portion with dry benzene $(14 \mathrm{~mL})$. The resulting reaction mixture was then allowed to stir at RT (12 h), during which time pyridinium hydrochloride precipitated as a flaky white solid. The reaction mixture was then poured into $\mathrm{H}_{2} \mathrm{O}(85 \mathrm{~mL})$, and the precipitate immediately redissolved in the water layer. The resulting mixture was extracted with EtOAc (4 x 35 $\mathrm{mL})$, and the combined organic layers were washed successively with $\mathrm{HCl}(2 N, 4 \times 35$ $\mathrm{mL}), \mathrm{H}_{2} \mathrm{O}(3 \times 35 \mathrm{~mL}), \mathrm{Na}_{2} \mathrm{CO}_{3}(40 \%, 35 \mathrm{~mL})$, saturated, aqueous $\mathrm{NaHCO}_{3}(35 \mathrm{~mL})$,$\mathrm{H}_{2} \mathrm{O}(35 \mathrm{~mL})$, and brine (35 mL). The organic layer was then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 12 \mathrm{~h}\right)$, and the solvent was removed in vacuo to give the crude amide-ester 32 as a viscous orange oil. The oil was subjected to flash chromatography [hexanes:EtOAc (3:1)], and, after the solvent was evaporated (rotovap), the pure amide-ester $32(0.440 \mathrm{~g}, 70 \%)$ was afforded as a bright white solid: mp $148-150^{\circ} \mathrm{C}$; IR (KBr pellet) $3308[\mathrm{NH}], 1727[\mathrm{C}=\mathrm{O}], 1650$ $[\mathrm{HNC}=\mathrm{O}] \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.34\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.35\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $1.83\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right], 3.94\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right], 6.77[\mathrm{~d}, J=7.92 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}], 7.29$ [dd, $J=$ $7.91,2.01 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.63[\mathrm{~d}, J=1.99 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.89[\mathrm{~d}, J=8.02 \mathrm{~Hz}, 2 \mathrm{H}$, Ar-H], $8.07[\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H], 8.12[\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-H] ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 28.38$ $\left.\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right], 31.06\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 32.67\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 48.95\left[\mathrm{CH}_{2}\right], 52.38\left[\mathrm{OCH}_{3}\right], 74.54$ $\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 118.19-149.75[\mathrm{Ar}-\mathrm{C}], 164.73[\mathrm{HNC}=\mathrm{O}], 166.25\left[\mathrm{CO}_{2} \mathrm{Me}\right]$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{4}: \mathrm{C}, 71.91 ; \mathrm{H}, 6.86 ; \mathrm{N}, 3.81$. Found: C, $71.73 ; \mathrm{H}, 6.92 ; \mathrm{N}, 3.76$.

4-\{[(2,2,4,4-Tetramethyl-3,4-dihydro-2H-chromen-6-yl)amino]carbonyl\}benzoic

Acid (33). Amide-ester $32(0.270 \mathrm{~g}, 0.73 \mathrm{mmol})$, along with $95 \% \mathrm{EtOH}(13 \mathrm{~mL})$, was placed in a $25-\mathrm{mL}$, three-necked, round-bottomed flask equipped with a spiral condenser. The resulting mixture was stirred vigorously for 10 min , but a small amount of $\mathbf{3 2}$ remained undissolved. To the reaction mixture was added, dropwise, 2 N NaOH (3.67 $\mathrm{mL}, 7.35 \mathrm{mmol}, 10 \mathrm{eq})$ at RT, and the resulting mixture was allowed to stir at RT (4 h). After approximately 30 min , the reaction mixture turned from slightly cloudy to completely clear. After stirring 4 h , the reaction mixture was filtered, and the filtrate was chilled to $0^{\circ} \mathrm{C}$ (ice bath) and acidified $(\mathrm{pH} \sim 2)$ with $\mathrm{HCl}(2 N)$. At $\mathrm{pH} \sim 2$ a white precipitate formed, which was filtered, washed with cold $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, dried under
reduced pressure ($12 \mathrm{~h}, 0.75 \mathrm{~mm} \mathrm{Hg}, 80^{\circ} \mathrm{C}$), and recrystallized [EtOAc:hexanes (2:1)] to provide amide-acid $33(0.190 \mathrm{~g}, 73 \%)$ as a bright white solid: $\mathrm{mp} 183-185^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}$ pellet) $3450\left[\mathrm{CO}_{2} \mathrm{H}\right], 3303[\mathrm{NH}], 1701[\mathrm{C}=\mathrm{O}], 1686[\mathrm{HNC}=\mathrm{O}]_{\mathrm{cm}}{ }^{-1},{ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}\right) \delta 1.30\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.31\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.82[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH} 2], 3.36[\mathrm{bs}, 1 \mathrm{H}$, $\mathrm{O}-H], 6.71[\mathrm{~d}, J=8.01 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.50[\mathrm{dd}, J=7.99,2.03 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.73[\mathrm{~d}, J$ $=1.99 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 8.06[\mathrm{~s}, 4 \mathrm{H}, \mathrm{Ar}-H], 10.23[\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-H] ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) ppm $\left.28.10\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right], 30.62\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 32.65\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 48.24\left[\mathrm{CH}_{2}\right], 74.05$ $\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 117.23-148.49[\mathrm{Ar}-\mathrm{C}], 164.21[\mathrm{HNC}=\mathrm{O}], 166.78\left[\mathrm{CO}_{2} \mathrm{H}\right]$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4}: \mathrm{C}, 71.37 ; \mathrm{H}, 6.56 ; \mathrm{N}, 3.96$. Found: C, $71.73 ; \mathrm{H}, 6.70 ; \mathrm{N}, 3.89$.

Methyl 4-\{[(2,2,4,4-Tetramethyl-3,4-dihydro-2H-chromen-8-yl)amino]carbonyl\}-

 benzoate (34). The amine $\mathbf{4 8 b}(0.770 \mathrm{~g}, 3.75 \mathrm{mmol})$ was dissolved in dry benzene (44 mL) and placed in a $100-\mathrm{mL}$, three-necked, round-bottomed flask equipped with an N_{2} inlet. To this solution was added dry pyridine ($3.86 \mathrm{~g}, 3.95 \mathrm{~mL}, 48.76 \mathrm{mmol}, 13 \mathrm{eq}$), and the resulting mixture was stirred at RT (10 min). Mono-methyl terephthaloyl chloride (58) $(0.840 \mathrm{~g}, 4.01 \mathrm{mmol}, 1.07 \mathrm{eq})$ was then rinsed into the reaction mixture in one portion with dry benzene $(30 \mathrm{~mL})$. The resulting reaction mixture was then allowed to stir at RT (12 h), during which time pyridinium hydrochloride precipitated as a flaky white solid. The reaction mixture was then poured into $\mathrm{H}_{2} \mathrm{O}(187 \mathrm{~mL})$, and the precipitate immediately dissolved in the water layer. The resulting mixture was extracted with EtOAc ($4 \times 77 \mathrm{~mL}$), and the combined organic layers were washed successively with $\mathrm{HCl}(2 \mathrm{~N}, 4 \times 77 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(3 \times 77 \mathrm{~mL}), \mathrm{Na}_{2} \mathrm{CO}_{3}(40 \%, 77 \mathrm{~mL})$, saturated, aqueous $\mathrm{NaHCO}_{3}(77 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(77 \mathrm{~mL})$, and brine $(77 \mathrm{~mL})$. The organic layer was then dried$\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 12 \mathrm{~h}\right)$, and the solvent was removed in vacuo to give the crude amide-ester 34 as pink, clumpy solid. The solid was purified by flash chromatography [hexanes:EtOAc (3:1)], and the white solid obtained thereby was recrystallized (hexane) to give the 34 $(0.800 \mathrm{~g}, 60 \%)$ as a white solid: $\mathrm{mp} 124-125^{\circ} \mathrm{C}$; IR (KBr pellet) $3366[\mathrm{NH}], 1713$ $[\mathrm{C}=\mathrm{O}], 1668[\mathrm{HNC}=\mathrm{O}] \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.36\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.41[\mathrm{~s}, 6 \mathrm{H}$, $\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}$], $1.89\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right], 3.96\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right], 6.97[\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}], 7.07$ [dd, 8.0, $1.99 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.94[\mathrm{~d}, 7.98 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H], 8.17[\mathrm{~d}, 8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H], 8.35$ [dd, $\left.8.01,2.01 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}], 8.70[\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-H] ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 28.66\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right]$, $31.00\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 32.52\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 48.95\left[\mathrm{CH}_{2}\right], 52.37\left[\mathrm{OCH}_{3}\right], 75.94\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right]$, 117.05-141.07 [Ar-C], $163.99[\mathrm{HNC}=\mathrm{O}], 166.22\left[\mathrm{CO}_{2} \mathrm{Me}\right]$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{4}$: C, $71.91 ;$ H, 6.86; N, 3.81. Found: C, $72.13 ; H, 6.95 ;$ N, 3.84.

4-\{[(2,2,4,4-Tetramethyl-3,4-dihydro-2H-chromen-8-yl)amino]carbonyl\}benzoic

Acid (35). The amide-ester $34(0.38 \mathrm{~g}, 1.03 \mathrm{mmol})$, along with $95 \% \mathrm{EtOH}(17 \mathrm{~mL})$, was placed in a $50-\mathrm{mL}$, three-necked, round-bottomed flask equipped with a spiral condenser. The resulting mixture was stirred vigorously (10 min), but a small amount of 34 remained undissolved. To the reaction mixture was added, dropwise, $2 \mathrm{~N} \mathrm{NaOH}(5.17 \mathrm{~mL}, 10.34$ $\mathrm{mmol}, 10 \mathrm{eq})$ at RT, and the resulting mixture was allowed to stir at RT (4 h). After approximately 30 min , the reaction mixture turned from slightly cloudy to completely clear. After stirring 4 h , the reaction mixture was filtered, and the filtrate was chilled to 0 ${ }^{\circ} \mathrm{C}$ (ice bath) and acidified $(\mathrm{pH} \sim 2)$ with $\mathrm{HCl}(2 \mathrm{~N})$. At $\mathrm{pH} \sim 2$ a white precipitate formed and was filtered, washed with cold $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$, dried under reduced pressure (12 h , $\left.0.75 \mathrm{~mm} \mathrm{Hg}, 80^{\circ} \mathrm{C}\right)$. Thus, amide-acid $35(0.190 \mathrm{~g}, 73 \%)$ was obtained pure as a white
solid: mp 225-227 ${ }^{\circ} \mathrm{C}$; IR (KBr pellet) $3415[\mathrm{NH}], 3352\left[\mathrm{CO}_{2} \mathrm{H}\right], 1701[\mathrm{C}=\mathrm{O}], 1672$ $[\mathrm{HNC}=\mathrm{O}] \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right) \delta 1.32\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.34\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $1.85\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right], 3.38[\mathrm{bs}, 1 \mathrm{H}, \mathrm{O}-\mathrm{H}], 6.92[\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}], 7.20[\mathrm{dd}, 7.96,1.91 \mathrm{~Hz}, 1$ H, Ar- H], 7.75 [dd, $7.99,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 8.02[\mathrm{~d}, 7.96 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H], 8.10[\mathrm{~d}, 7.99$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}], 9.33[\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-H] ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) ppm $\left.27.98\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right], 30.67$ $\left[C\left(\mathrm{CH}_{3}\right)_{2}\right], 32.49\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 48.30\left[\mathrm{CH}_{2}\right], 75.22\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 119.80-143.70[\mathrm{Ar}-\mathrm{C}]$, $164.25[\mathrm{HNC}=\mathrm{O}], 166.71\left[\mathrm{CO}_{2} \mathrm{H}\right]$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4}: \mathrm{C}, 71.13 ; \mathrm{H}, 6.56 ; \mathrm{N}$, 3.96. Found: C, $70.76 ; \mathrm{H}, 6.58 ; \mathrm{N}, 3.93$.

2,2,4-Trimetyl- 2 H -chromen-7-yl 4-(methoxycarbonyl)benzoate (36). In a $25-\mathrm{mL}$, three-necked, round-bottomed flask, equipped with two addition funnels and a N_{2} inlet, was placed $\mathrm{NaH}(0.054 \mathrm{~g}, 2.14 \mathrm{mmol}, 1.02 \mathrm{eq})$ and dry THF (1 mL). The resulting suspension was chilled to $0{ }^{\circ} \mathrm{C}$ (ice bath), and then the phenol $49(0.400 \mathrm{~g}, 2.10 \mathrm{mmol})$, in THF (3 mL), was added dropwise (5 min). After the addition was complete, the resulting mixture was allowed to stir (5 min), and then acid chloride $58(0.464 \mathrm{~g}, 2.33 \mathrm{mmol}, 1.1$ eq) in THF (2 mL) was added dropwise. The resulting mixture was allowed to warm to RT slowly and was then stirred for an additional 12 h . The final mixture was then poured into $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ containing 3 drops of glacial acetic acid. Two layers were then separated, and the aqueous layer was extracted with EtOAc ($4 \times 15 \mathrm{~mL}$). The combined organic layers were washed with $10 \% \mathrm{NaOH}(2 \times 15 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$, and brine (15 $\mathrm{mL})$ and then were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 12 \mathrm{~h}\right)$. The solvent was removed in vacuo to give a white solid that was recrystallized $\left[\mathrm{HCCl}_{3}\right.$:pentane (1:1)] to afford di-ester $36(0.270 \mathrm{~g}$, 36%) as a shiny white solid: $\mathrm{mp} 94-95^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}\right.$ pellet) $1740[\mathrm{C}=\mathrm{O}], 1731[\mathrm{C}=\mathrm{O}] \mathrm{cm}{ }^{-}$

[^0]
[(2-Methoxy-4-nitrophenyl)amino][(2,2,4,4-tetramethylthiochroman-6-yl)amino]-

 methane-1-thione (37). Amine $\mathbf{5 0 a}(0.110 \mathrm{~g}, 0.50 \mathrm{mmol})$, dissolved in dry THF (3 mL), was placed in a $25-\mathrm{mL}$, three-necked, round-bottomed flask equipped with an N_{2} inlet and addition funnel. The reaction mixture was then cooled to $0{ }^{\circ} \mathrm{C}$ (ice bath), and 2-methoxy-4-nitrophenyl isothiocyanate ($0.108 \mathrm{~g}, 0.52 \mathrm{mmol}, 1.04 \mathrm{eq}$) in dry THF (5 mL) was then added dropwise (5 min). After the addition, the reaction mixture was allowed to warm to RT and was then stirred for 24 h . The solvent was removed in vacuo to give a yellow solid which was recrystallized $\left[\mathrm{HCCl}_{3}\right.$:pentane (1:3)] to give $37(0.150 \mathrm{~g}, 70 \%)$ as a light yellow solid: $\mathrm{mp} 155-157{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}\right.$ pellet) $3330[\mathrm{NH}], 3190[\mathrm{NH}] \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ $\operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.40\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.45\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.99\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2}\right], 3.82$ [s, 3 H, OCH ${ }_{3}$], $7.03[\mathrm{~d}, J=7.69 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.22[\mathrm{~d}, J=7.97 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.35$ [s, $1 \mathrm{H}, \operatorname{Ar}-H], 7.69[\mathrm{~s}, 1 \mathrm{H}, \operatorname{Ar}-H], 7.89[\mathrm{~d}, J=8.38 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-H], 8.46[\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-H]$, $8.49[\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-H], 9.09[\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}] ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 31.49$ $\left.\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right], 32.48\left[\mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}\right], 35.83\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 42.45\left[\mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}\right], 53.88\left[\mathrm{CH}_{2}\right], 56.43$$\left[\mathrm{OCH}_{3}\right], 105.25-148.66[\mathrm{Ar}-\mathrm{C}], 179.81[\mathrm{C}=\mathrm{S}]$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}: \mathrm{C}, 58.44$; H, 5.84 ; N, 9.74 ; S, 14.86. Found: C, 58.20 ; H, 5.94 ; N, 9.61 ; S, 14.99.

[(4-Nitrobenzoyl)amino][(2,2,4,4-tetramethylthiochroman-6-yl)amino]methane-1-

 thione (38). Amine $\mathbf{5 0 a}(0.110 \mathrm{~g}, 0.50 \mathrm{mmol})$, dissolved in dry THF (3 mL), was placed in a $25-\mathrm{mL}$, three-necked, round-bottomed flask equipped with a N_{2} inlet and an addition funnel. The reaction mixture was then cooled to $0^{\circ} \mathrm{C}$ (ice bath), and 4-nitrobenzoyl isothiocyanate ($0.107 \mathrm{~g}, 0.52 \mathrm{mmol}, 1.04 \mathrm{eq}$) in dry THF (5 mL) was then added dropwise (5 min). After the addition, the reaction mixture was allowed to warm to RT and was then stirred for 24 h . The solvent was removed in vacuo to give a dark orange solid which was recrystallized $\left[\mathrm{HCCl}_{3}\right.$:pentane (1:1)] to give $38(0.160 \mathrm{~g}, 75 \%)$ as a bright orange solid: $\mathrm{mp} 215-217{ }^{\circ} \mathrm{C}$; IR (KBr pellet) $3289[\mathrm{NH}], 1677[\mathrm{C}=\mathrm{O}] \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.d_{6}\right) \delta 1.36\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.39\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.94[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}$] , $7.11[\mathrm{~d}, J=8.51 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-H], 7.23[\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.86[\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-H]$, $8.15[\mathrm{~d}, J=8.65 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}-H], 8.34[\mathrm{~d}, J=8.34 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H], 11.89[\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-H]$, $12.18[\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-H] ;{ }^{13} \mathrm{C}$ NMR (DMSO-d d_{6}) ppm $\left.31.20\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right], 32.25\left[\mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $35.30\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 42.05\left[\mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}\right], 53.27\left[\mathrm{CH}_{2}\right], 121.12-149.80[\mathrm{Ar}-\mathrm{C}], 166.58[\mathrm{C}=\mathrm{O}]$, $178.19[C=S]$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}: \mathrm{C}, 58.72 ; \mathrm{H}, 5.40 ; \mathrm{N}, 9.78 ; \mathrm{S}, 14.93$. Found: C, $58.50 ; \mathrm{H}, 5.34 ; \mathrm{N}, 9.66 ; \mathrm{S}, 14.70$.Ethyl 4-\{[N-(2,2,4,4-Tetramethylchroman-6-yl)carbamoyl]amino\}benzoate (39). Amine 48a ($0.150 \mathrm{~g}, 0.73 \mathrm{mmol}$), dissolved in dry THF (3 mL), was placed in a $25-\mathrm{mL}$, three-necked, round-bottomed flask equipped with a N_{2} inlet and an addition funnel. The
reaction mixture was cooled to $0^{\circ} \mathrm{C}$ (ice bath), and 4-ethoxycarbonylphenyl isocyanate $(0.145 \mathrm{~g}, 0.76 \mathrm{mmol}, 1.04 \mathrm{eq})$ in dry THF (4 mL) was then added dropwise (5 min). After the addition, the reaction mixture was allowed to warm to RT and was then stirred for 24 h . The solvent was removed in vacuo to give a clumpy white solid which was recrystallized (EtOAc) to give $39(0.190 \mathrm{~g}, 65 \%)$ as a bright-white cotton-like solid: mp $234-235^{\circ} \mathrm{C}$; IR (KBr pellet) $3346[\mathrm{NH}], 3195[\mathrm{NH}], 1713[\mathrm{C}=\mathrm{O}], 1655[\mathrm{HNC}=\mathrm{O}] \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{-}\right) \delta 1.28\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.30\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.31[\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right], 1.80\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right], 4.29\left[\mathrm{q}, J=7.09 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right], 6.65[\mathrm{~d}, J=7.99$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.09[\mathrm{dd}, J=7.97,1.98 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.44[\mathrm{~d}, J=2.01 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H]$, $7.58[\mathrm{~d}, J=8.08 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H], 7.88[\mathrm{~d}, J=8.06 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H], 8.52[\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-H]$, $8.99[\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-H] ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) ppm $\left.14.23\left[\mathrm{OCH}_{2} \mathrm{CH}_{3}\right], 28.10\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right]$, $30.61\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 32.50\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 48.35\left[\mathrm{CH}_{2}\right], 60.20\left[\mathrm{OCH}_{2} \mathrm{CH}_{3}\right], 73.84\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right]$, 117.10-147.48 [Ar-C], $152.33[C=O], 165.43[C=O]$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$: C , 69.67; H, 7.12; N, 7.07. Found: C, 69.48; H, 7.11; N, 7.05.

Ethyl 4-\{[N-(2,2,4,4-Tetramethylchroman-6-yl)thiocarbamoyl]amino\}benzoate

 (40). Amine 48a ($0.150 \mathrm{~g}, 0.73 \mathrm{mmol}$), dissolved in dry THF (3 mL), was placed in a 25 mL , three-necked, round-bottomed flask equipped with a N_{2} inlet and an addition funnel. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ (ice bath), and 4-ethoxycarbonylphenyl isothiocyanate ($0.157 \mathrm{~g}, 0.799 \mathrm{mmol}, 1.04 \mathrm{eq}$) in dry THF (4 mL) was then added dropwise (5 min). After the addition, the reaction mixture was allowed to warm to RT and was then stirred (24 h). The solvent was removed in vacuo to give a tan, viscous oil. The oil was subjected to flash chromatography [$\mathrm{Et}_{2} \mathrm{O}$:hexanes (1:1)], and, after thesolvent was removed in vacuo, $40(0.210 \mathrm{~g}, 69 \%)$ was afforded as a flaky white solid: mp 102-104 ${ }^{\circ} \mathrm{C}$; IR (KBr pellet) $3351[\mathrm{NH}], 3289[\mathrm{NH}], 1714[\mathrm{C}=\mathrm{O}] \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta 1.34\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.36\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.38\left[\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right], 1.85$ [s, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right], 4.35\left[\mathrm{q}, ~ J=7.16 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right], 6.85[\mathrm{~d}, J=8.07 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}]$, $7.04[\mathrm{dd}, J=7.98,2.07 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.24[\mathrm{~d}, J=2.04 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.57[\mathrm{~d}, J=$ $8.12 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H], 7.81[\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-H], 8.01[\mathrm{~d}, J=8.05 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H], 8.09[\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{N}-\mathrm{H}] ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DCCl}_{3}\right)$ ppm $\left.14.28\left[\mathrm{OCH}_{2} \mathrm{CH}_{3}\right], 28.45\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right], 31.06\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $32.70\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 48.47\left[\mathrm{CH}_{2}\right], 60.96\left[\mathrm{OCH}_{2} \mathrm{CH}_{3}\right], 75.09\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 119.39-152.35$ [Ar-C], $165.85[C=O], 179.47[C=S]$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 66.96 ; \mathrm{H}, 6.84$; N, 6.79; S, 7.77. Found: C, 67.24; H, 6.98; N, 6.88; S, 7.73.

[(4-Nitrophenyl)amino][(2,2,4,4-tetramethylchroman-6-yl)amino]methane-1-

thione (41). Amine 48a ($0.150 \mathrm{~g}, 0.73 \mathrm{mmol}$), dissolved in dry THF (3 mL), was placed in a $25-\mathrm{mL}$, three-necked, round-bottomed flask equipped with an N_{2} inlet and addition funnel. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ (ice bath), and 4-nitrophenyl isothiocyanate ($0.137 \mathrm{~g}, 0.76 \mathrm{mmol}, 1.04 \mathrm{eq}$) in dry THF (4 mL) was then added dropwise (5 min). After the addition, the reaction mixture was allowed to warm to RT and was then stirred for 24 h . The solvent was removed in vacuo to give a dark yellow, clumpy solid. The solid was subjected to flash chromatography $\left[\mathrm{Et}_{2} \mathrm{O}\right.$:hexanes (2:1)], and, after the solvent was evaporated in vacuo, $41(0.240 \mathrm{~g}, 85 \%)$ was obtained as a fluffy, bright-yellow solid: $\mathrm{mp} 166-168^{\circ} \mathrm{C}$; IR (KBr pellet) $3346[\mathrm{NH}], 3215[\mathrm{NH}] \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.35\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.38\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.86\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2}\right]$, $6.87[\mathrm{~d}, J=8.06 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.04[\mathrm{dd}, J=8.01,2.06 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.23[\mathrm{~d}, J=$
$2.01 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.74[\mathrm{~d}, J=8.03 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H], 7.87[\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-H], 8.18[\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}], 8.35[\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}] ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DCCl}_{3}\right)$ ppm $\left.28.45\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right], 31.09$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 32.72\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 48.38\left[\mathrm{CH}_{2}\right], 75.21\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 119.66-152.71[\mathrm{Ar}-\mathrm{C}]$, $179.15[C=\mathrm{S}]$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 62.32 ; \mathrm{H}, 6.01 ; \mathrm{N}, 10.90 ; \mathrm{S}, 8.32$. Found: C, $62.50 ;$ H, 6.07 ; N, 10.63; S, 8.16.

Ethyl 4-\{[N-(2,2,4,4-Tetramethylchroman-8-yl)carbamoyl]amino\}benzoate (42). Amine 48b ($0.130 \mathrm{~g}, 0.63 \mathrm{mmol}$), dissolved in dry THF (3 mL), was placed in a $25-\mathrm{mL}$, three-necked, round-bottomed flask equipped with an N_{2} inlet and addition funnel. The reaction mixture was then cooled to $0{ }^{\circ} \mathrm{C}$ (ice bath), and 4-ethoxycarbonylphenyl isocyanate ($0.26 \mathrm{~g}, 0.66 \mathrm{mmol}, 1.04 \mathrm{eq}$) in dry THF (3 mL) was then added dropwise (5 $\mathrm{min})$. After the addition, the reaction mixture was allowed to warm to RT and was then stirred (24 h). The solvent was removed in vacuo to give a clumpy white solid which was subjected to flash chromatography $\left[\mathrm{Et}_{2} \mathrm{O}\right.$:hexanes $\left.(8: 1)\right]$, and, after the solvent was evaporated (rotovap), $\mathbf{4 2}(0.210 \mathrm{~g}, 84 \%)$ was obtained as a fluffy white, cotton-like solid: $\mathrm{mp} 174-176{ }^{\circ} \mathrm{C}$; IR (KBr pellet) $3348[\mathrm{NH}], 3201[\mathrm{NH}], 1715[\mathrm{C}=\mathrm{O}], 1675[\mathrm{HNC}=\mathrm{O}]$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.27\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.31\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.36[\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right], 1.78\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right], 4.34\left[\mathrm{q}, J=7.21 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right], 6.87[\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-$ $H], 6.97[\mathrm{dd}, J=8.03,1.98 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.44[\mathrm{~d}, J=8.07 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H], 7.74[\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{N}-H], 7.91[\mathrm{~d}, J=7.98 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H], 7.95[\mathrm{~d}, J=1.99 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 8.03[\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{N}-\mathrm{H}] ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DCCl}_{3}\right)$ ppm $\left.14.28\left[\mathrm{OCH}_{2} \mathrm{CH}_{3}\right], 28.41\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right], 30.97\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $32.53\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 49.02\left[\mathrm{CH}_{2}\right], 60.282\left[\mathrm{OCH}_{2} \mathrm{CH}_{3}\right], 75.45\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right]$, 117.31-143.39
[Ar-C], $152.80[C=\mathrm{O}], 166.66[C=\mathrm{O}]$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 69.67 ; \mathrm{H}, 7.12 ; \mathrm{N}$, 7.07. Found: C, 69.81; H, 7.18; N, 7.01.

Ethyl 4-\{[N-(2,2,4,4-Tetramethylchroman-8-yl)thiocarbamoyl]amino\}benzoate

(43). Amine 48b ($0.130 \mathrm{~g}, 0.63 \mathrm{mmol}$), dissolved in dry THF (3 mL), was placed in a 25mL , three-necked, round-bottomed flask equipped with a N_{2} inlet and an addition funnel. The reaction mixture was then cooled to $0^{\circ} \mathrm{C}$ (ice bath), and 4-ethoxycarbonylphenyl isothiocyanate ($0.136 \mathrm{~g}, 0.66 \mathrm{mmol}, 1.04 \mathrm{eq}$) in dry THF (3 mL) was then added dropwise (5 min). After the addition, the reaction mixture was allowed to warm to RT and was then stirred for 24 h . The solvent was removed in vacuo to give a tan, viscous oil. The oil was subjected to flash chromatography $\left[\mathrm{Et}_{2} \mathrm{O}\right.$:hexanes (1:1)], and, after the solvent was removed in vacuo, $43(0.230 \mathrm{~g}, 88 \%)$ was afforded as a fluffy, white solid: $\mathrm{mp} 56-58{ }^{\circ} \mathrm{C}$; IR (KBr pellet) $3325[\mathrm{NH}], 3199[\mathrm{NH}], 1715[\mathrm{C}=\mathrm{O}] \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta 1.29\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.34\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.39\left[\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right], 1.83$ [s, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right], 4.38\left[\mathrm{q}, \mathrm{J}=7.12 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right], 6.94[\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}], 7.15$ [dd, $J=$ $7.91,1.98 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.51[\mathrm{~d}, J=7.99 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H], 7.98[\mathrm{bs}, 1 \mathrm{H}, \mathrm{Ar}-H], 8.07[\mathrm{~d}$, $J=8.02 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H], 8.30[\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-H], 8.40[\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-H] ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm}$ $\left.14.26\left[\mathrm{OCH}_{2} \mathrm{CH}_{3}\right], 28.47\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right], 31.02\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 32.57\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 48.71\left[\mathrm{CH}_{2}\right]$, $61.02\left[\mathrm{OCH}_{2} \mathrm{CH}_{3}\right], 75.98\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 120.14-143.91[\mathrm{Ar}-\mathrm{C}], 165.73[\mathrm{C}=\mathrm{O}], 177.83$ $\left[C=S\right.$]. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 66.96 ; \mathrm{H}, 6.84 ; \mathrm{N}, 6.79 ; \mathrm{S}, 7.77$. Found: C, 67.34; H, 7.02; N, 6.60; S, 7.50.

[(4-Nitrophenyl)amino][(2,2,4,4-tetramethylchroman-8-yl)amino]methane-1-

thione (44). Amine $48 \mathrm{~b}(0.130 \mathrm{~g}, 0.63 \mathrm{mmol})$, dissolved in dry THF (3 mL), was placed in a $25-\mathrm{mL}$, three-necked, round-bottomed flask equipped with an N_{2} inlet and addition funnel. The reaction mixture was then cooled to $0^{\circ} \mathrm{C}$ (ice bath), and 4-nitrophenyl isothiocyanate ($0.120 \mathrm{~g}, 0.66 \mathrm{mmol}, 1.04 \mathrm{eq}$) in dry THF (3 mL) was then added dropwise (5 min). After the addition, the reaction mixture was allowed to warm to RT and was then stirred (24 h). The THF was then removed in vacuo to give a dark yellow, thick oil. The oil was subjected to flash chromatography [$\mathrm{Et}_{2} \mathrm{O}$:hexanes (2:1)], and, after the solvent was evaporated in vacuo, $44(0.200 \mathrm{~g}, 82 \%)$ was obtained as a fluffy, brightyellow solid: mp $160-161^{\circ} \mathrm{C}$; IR (KBr pellet) $3327[\mathrm{NH}], 3232[\mathrm{NH}] \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta 1.35\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.36\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.87\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2}\right], 6.96[\mathrm{~m}, 1$ $\mathrm{H}, \mathrm{Ar}-H], 7.22[\mathrm{dd}, J=8.02,2.04 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.62[\mathrm{bs}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.68[\mathrm{~d}, J=8.07$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}-H], 8.21[\mathrm{~d}, J=8.07 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H], 8.30[\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-H], 8.34[\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-H]$; $\left.{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 28.51\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right], 31.09\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 32.61\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 48.67$ $\left[\mathrm{CH}_{2}\right], 76.26\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 120.48-144.80[\mathrm{Ar}-\mathrm{C}], 178.21[\mathrm{C}=\mathrm{S}]$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 62.32 ; \mathrm{H}, 6.01 ; \mathrm{N}, 10.90 ; \mathrm{S}, 8.32$. Found: C, $62.40 ; \mathrm{H}, 5.92 ; \mathrm{N}, 10.84$; S, 8.11.

Ethyl 4-[(2,2,4-Trimethyl-2H-chromen-7-yloxy)carbonylamino]benzoate

Phenol 49 ($0.600 \mathrm{~g}, 3.15 \mathrm{mmol}, 1.05 \mathrm{eq}$), 4-ethoxycarbonylphenyl isocyante $(0.570 \mathrm{~g}$, 3.00 mmol), and 5 mL of dry THF were placed in a $25-\mathrm{mL}$, three-necked, round bottomed flask equipped with a N_{2} inlet. To this stirred solution was added 4 drops of triethylamine (TEA), and the resulting mixture was stirred (3 days) at RT. The solvent
was then evaporated (rotovap) to give a white, clumpy solid. This solid was subjected to flash column chromatography [EtOAc:hexanes (2:1)]. Upon evaporation of the solvent in vacuo, a white solid was obtained which was recrystallized $\left[\mathrm{Et}_{2} \mathrm{O}\right.$ pentane (1:1)] to afford carbamate-ester $45(0.560 \mathrm{~g}, 50 \%)$ as a white solid: $\mathrm{mp} 138.5-140{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}$ pellet) $3314[\mathrm{NH}], 1756[\mathrm{EtOC}=\mathrm{O}], 1694[\mathrm{HNC}=\mathrm{O}] \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta 1.39[\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right], 1.40\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.98\left[\mathrm{~d}, J=1.97 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{HC}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right], 4.36[\mathrm{q}$, $\left.J=7.23 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right], 5.39\left[\mathrm{~m}, 1 \mathrm{H}, H \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right], 6.63[\mathrm{~d}, J=1.97 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-$ $H], 6.69[\mathrm{dd}, J=7.98,2.01 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.12[\mathrm{~d}, J=8.02 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.31[\mathrm{bs}, 1$ $\mathrm{H}, \mathrm{N}-H], 7.51[\mathrm{~d}, J=8.03 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H], 8.01[\mathrm{~d}, J=8.04 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H] ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 14.19\left[\mathrm{OCH}_{2} \mathrm{CH}_{3}\right], \quad 17.81 \quad\left[\mathrm{HC}=\left(\mathrm{CH}_{3}\right)\right], \quad 28.06 \quad\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], \quad 60.81$ $\left[\mathrm{OCH}_{2} \mathrm{CH}_{3}\right], 76.50\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 109.80\left[\mathrm{HC}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right], 113.38\left[\mathrm{HC}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right]$, 117.81151.27 [$\mathrm{Ar}-\mathrm{C}], 154.02[\mathrm{HNC}=\mathrm{O}], 166.31\left[\mathrm{CO}_{2} \mathrm{Et}\right]$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{5}: \mathrm{C}, 69.28$; H, 6.08; N, 3.67. Found: C, 69.31; H, 6.06; N, 3.72.
\{4-[N -(4-Hydroxyphenyl)carbamoyl]phenyl\}-N-(2,2,4,4-tetramethyl(3H-benzo[3,4e]thian-6-yl))carboxamide (46). Acid $\mathbf{6 0}^{135}(0.710 \mathrm{~g}, 1.92 \mathrm{mmol})$, along with dry THF $(8 \mathrm{~mL})$, was placed in a $100-\mathrm{mL}$, three-necked, round-bottomed flask equipped with a spiral condenser, N_{2} inlet, and an addition funnel. To this stirred cloudy, yellow solution was added triethylamine $(0.222 \mathrm{~g}, 2.19 \mathrm{mmol}, \sim 1.14 \mathrm{eq})$ dropwise, using a pipette for the addition through a sidearm of the flask. The resulting, almost clear mixture was stirred at RT (45 min), and isobutyl chloroformate $(0.300 \mathrm{~g}, 0.28 \mathrm{~mL}, 2.20 \mathrm{mmol}, \sim 1.14 \mathrm{eq})$ was added at RT to the reaction mixture through a septum in a sidearm of the flask via a syringe. The resulting yellow, cloudy mixture was then heated to $59^{\circ} \mathrm{C}$ via hand control
of the variac, stirred for 1.5 h , and 4-aminophenol ($0.356 \mathrm{~g}, \sim 1.7 \mathrm{eq}$) in pyridine (3.5 mL) was added dropwise to the reaction mixture via the addition funnel. During the addition of the aminophenol, the reaction mixture turned to a yellow-orange color, and this resulting solution was stirred $(4 \mathrm{~h})$ at $59{ }^{\circ} \mathrm{C}$. The resulting yellowish, cloudy mixture was allowed to cool to RT, and $\mathrm{H}_{2} \mathrm{O}(65 \mathrm{~mL})$ was added. The resulting cloudy mixture was placed in a separatory funnel and extracted (EtOAc, $4 \times 50 \mathrm{~mL}$). The combined organic layers were successively washed with $2 \mathrm{NHCl}(2 \times 40 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$, and brine $(40 \mathrm{~mL})$. The organic solution was then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 12 \mathrm{~h}\right)$, and the solvent was removed in vacuo to give a tan foam. This foam was subjected to flash chromatography [EtOAc:hexanes (2:1)], and, upon removal of the solvent, a yellow solid was obtained, which was then recrystallized $\left[\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(13: 8)\right]$ to give $46(0.177 \mathrm{~g}, 20 \%)$ as a light yellow solid: $\mathrm{mp} 280-282^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}\right.$ pellet) $3405[\mathrm{OH}], 3324[\mathrm{NH}], 1642[\mathrm{C}=\mathrm{O}] \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 1.37\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.38\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.93\left[\mathrm{CH}_{2}\right], 6.76$ [d, 2 H, $J=7.98 \mathrm{~Hz}, \mathrm{Ar}-H], 7.05[\mathrm{~d}, 1 \mathrm{H}, J=7.93 \mathrm{~Hz}, \mathrm{Ar}-H], 7.56[\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, $\operatorname{Ar}-H], 7.63[\mathrm{dd}, 1 \mathrm{H}, J=8.03,1.98 \mathrm{~Hz}, \mathrm{Ar}-H], 7.91[\mathrm{~d}, 1 \mathrm{H}, J=2.02 \mathrm{~Hz}, \mathrm{Ar}-H], 8.09[\mathrm{~s}$, $4 \mathrm{H}, \operatorname{Ar}-H], 9.32[\mathrm{~s}, 1 \mathrm{H}, \mathrm{O} H], 10.20[\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H], 10.32[\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H] ;{ }^{13} \mathrm{C}$ NMR $\left(\begin{array}{lllllllll}(D M S O-d\end{array}\right) \quad$ ppm $\quad 31.10 \quad\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], ~ 32.25 \quad\left[\mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}\right], ~ 35.21 \quad\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], \quad 41.83$ $\left[\mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}\right], 53.45\left[\mathrm{CH}_{2}\right], 114.92-153.77[\mathrm{Ar}-\mathrm{C}], 164.08,164.47[\mathrm{C}=\mathrm{O}]$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 69.70 ; \mathrm{H}, 6.13 ; \mathrm{N}, 6.08 ; \mathrm{S}, 6.96$. Found: C, $69.37 ; \mathrm{H}, 6.19 ; \mathrm{N}, 5.91 ; \mathrm{S}$, 6.72.
\{4-[N-(4-Hydroxyphenyl)carbamoyl]phenyl\}- N-(2,2,4,4-tetramethylchroman-6-
yl)carboxamide (47). Acid $33(0.400 \mathrm{~g}, 1.13 \mathrm{mmol})$, along with dry THF (5 mL), was
placed in a $50-\mathrm{mL}$, three-necked, round-bottomed flask equipped with a spiral condenser, N_{2} inlet, and an addition funnel. To this stirred, cloudy yellow solution was added triethylamine $(0.131 \mathrm{~g}, 1.29 \mathrm{mmol}, \sim 1.14 \mathrm{eq})$ dropwise, using a pipette for the addition through a sidearm. The resulting, almost clear mixture was stirred at RT (45 min), and isobutyl chloroformate $(0.177 \mathrm{~g}, 0.17 \mathrm{~mL}, 1.29 \mathrm{mmol}, \sim 1.14 \mathrm{eq})$ was added at RT to the reaction mixture through a septum in a sidearm of the flask, using a syringe. The resulting cloudy, yellow mixture was then heated to $59^{\circ} \mathrm{C}$ via hand control of the variac and was stirred for 1.5 h . 4-Aminophenol $(0.210 \mathrm{~g}, \sim 1.7 \mathrm{eq})$ in pyridine (2 mL) was added dropwise to the reaction mixture via the addition funnel. During the addition of the aminophenol, the reaction mixture turned to a yellow-orange color, and this resulting solution was stirred (4 h) at $59^{\circ} \mathrm{C}$. The resulting cloudy, yellowish mixture was allowed to cool to RT , and $\mathrm{H}_{2} \mathrm{O}(39 \mathrm{~mL})$ was added. The resulting cloudy mixture was placed in a separatory funnel and extracted (EtOAc, $4 \times 30 \mathrm{~mL}$). The combined organic layers were successively washed with $2 N \mathrm{HCl}(2 \times 25 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$, and brine (25 $\mathrm{mL})$. The organic solution was then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 12 \mathrm{~h}\right)$, and the solvent was removed in vacuo to give a yellow foam. This foam was subjected to flash chromatography [EtOAc:hexanes (2:1)], and, upon removal of the solvent, a pink solid was isolated and recrystallized $\left[\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(13: 8)\right]$ to give $47(0.150 \mathrm{~g}, 30 \%)$ as a white solid: mp 232 $234{ }^{\circ} \mathrm{C}$; IR (KBr pellet) $3431[\mathrm{OH}], 3352[\mathrm{NH}], 1663[\mathrm{C}=\mathrm{O}], 1647[\mathrm{C}=\mathrm{O}] \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO- $\left.d_{6}\right) \delta 1.30\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.32\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.82\left[\mathrm{CH} \mathrm{H}_{2}\right], 6.71[\mathrm{~d}, 1 \mathrm{H}, J$ $=7.96 \mathrm{~Hz}, \mathrm{Ar}-H], 6.76[\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}-H], 7.50[\mathrm{dd}, 1 \mathrm{H}, J=7.99,2.01 \mathrm{~Hz}, \mathrm{Ar}-$ $H], 7.55[\mathrm{~d}, 2 \mathrm{H}, J=8.01 \mathrm{~Hz}, \mathrm{Ar}-H], 7.74[\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{Ar}-H], 8.07[\mathrm{~s}, 4 \mathrm{H}, \mathrm{Ar}-H]$, $9.31[\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}], 10.18[\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H], 10.20[\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H] ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) ppm
$28.12\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 30.64\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 32.62\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 48.24\left[\mathrm{CH}_{2}\right], 74.05\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right]$, 115.02-153.87 [Ar-C], 164.22, $164.26[C=O]$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 72.85 ; \mathrm{H}$, 6.35 ; N, 6.30. Found: C, 72.50 ; H, 6.38; N, 6.29.

2,2,4,4-Tetramethyl-6-aminochroman (48a). A mixture of nitro compound 54a (1.0 $\mathrm{g}, 4.2 \mathrm{mmol}$), iron powder ($0.850 \mathrm{~g}, 15.2 \mathrm{mmol}, 3.6 \mathrm{eq}$, Sigma-Aldrich Chemical Co. $)$, glacial acetic acid ($1.80 \mathrm{~g}, 30 \mathrm{mmol}, 7 \mathrm{eq}$), and absolute $\mathrm{EtOH}(11 \mathrm{~mL})$ was placed in a $25-\mathrm{mL}$, three-necked, round-bottomed flask equipped with a spiral condenser and N_{2} inlet and was stirred at reflux $(12 \mathrm{~h})$. Within approximately 15 min , the reaction mixture turned from clear yellow to a dark maroon color. The reaction was allowed to cool to RT and was poured into $\mathrm{H}_{2} \mathrm{O}(45 \mathrm{~mL})$. The resulting brown emulsion was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 40 \mathrm{~mL})$ and $\mathrm{HCCl}_{3}(3 \times 40 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 12 \mathrm{~h}\right)$, and concentrated in vacuo to give a dark oil. This crude mixture was then dissolved in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$, and the resulting solution was extracted with $2 N \mathrm{HCl}(2 \times 30 \mathrm{~mL})$. The acid solution was neutralized with 40% $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{pH} \sim 8)$, and the resulting cloudy solution was extracted $\left(\mathrm{Et}_{2} \mathrm{O}, 2 \times 30 \mathrm{~mL}\right)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 12 \mathrm{~h}\right)$, and the solvent was removed in vacuo to afford amine 48a as a very light tan oil which solidified upon standing overnight in the freezer. Amine $48 \mathrm{a}(0.370 \mathrm{~g}, 42 \%)$ was thus obtained as an off-white solid: mp $40-42{ }^{\circ} \mathrm{C}$. However, it should be noted that it was discovered that a crude mixture of the isomeric nitro-compounds $\mathbf{5 4 a}$ and $\mathbf{5 4 b}$, resulting from the conversion of $\mathbf{5 3} \boldsymbol{\mathbf { 5 4 a }}$ a and 54b, could be co-reduced by this method. The final mixture of amines 48a and 48b was more easily separated by flash column chromatography [hexanes: $\mathrm{Et}_{2} \mathrm{O}$ (1:1)] than the
corresponding mixture of nitro compounds (fractions 4-10 yielded 48b and fractions 1725 yielded 48a). Data for 48a: IR (neat) 3433 [NH], $3357[\mathrm{NH}] \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right)$ $\delta 1.30\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.31\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.78\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH} \mathrm{C}_{2}\right], 3.29[\mathrm{bs}, 2 \mathrm{H}$, $\left.\mathrm{N} H_{2}\right], 6.46[\mathrm{dd}, J=8.03,1.99 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 6.61[\mathrm{~d}, J=1.80 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 6.63[\mathrm{~d}, J$ $=7.89 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}] ;{ }^{13} \mathrm{C}$ NMR $\left.\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 28.35\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right], 30.96\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 32.57$ $\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 49.32\left[\mathrm{CH}_{2}\right], 73.81\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 113.41-145.35[\mathrm{Ar}-\mathrm{C}]$. Data for 48b: IR (neat) $3455[\mathrm{NH}], 3360[\mathrm{NH}] \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta 1.32\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.36[\mathrm{~s}, 6$ $\left.\mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.83[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}$], $3.54[\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}$], $6.54[\mathrm{dd}, J=7.94,2.02 \mathrm{~Hz}, 1 \mathrm{H}$, Ar- $H], 6.70[\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}] ;{ }^{13} \mathrm{C}$ NMR $\left.\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 28.63\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right], 30.96\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $32.58\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 49.34\left[\mathrm{CH}_{2}\right], 74.48\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 112.37-140.07[\mathrm{Ar}-\mathrm{C}]$. Amines 48a and 48b were used immediately without further purification.

2,2,4,4-Tetramethyl-8-aminochroman (48b). A mixture of nitro compound 54b $(1.60 \mathrm{~g}, 6.8 \mathrm{mmol})$, iron powder $(1.36 \mathrm{~g}, 24.3 \mathrm{mmol}, 3.6 \mathrm{eq}$, Sigma-Aldrich Chemical Co.), glacial acetic acid ($2.86 \mathrm{~g}, 47.6 \mathrm{mmol}, 7 \mathrm{eq}$), and absolute EtOH (17 mL) was placed in a $25-\mathrm{mL}$, three-necked, round-bottomed flask equipped with a spiral condenser and N_{2} inlet and was stirred at reflux $(12 \mathrm{~h})$. Within approximately 15 min , the reaction mixture turned from clear yellow to a dark maroon color. The reaction was allowed to cool to RT and was poured into $\mathrm{H}_{2} \mathrm{O}(68 \mathrm{~mL})$. The resulting brown emulsion was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 40 \mathrm{~mL})$ and $\mathrm{HCCl}_{3}(3 \times 40 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 65 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 12 \mathrm{~h}\right)$, and concentrated in vacuo to give a dark oil. This crude mixture was then dissolved in $\mathrm{Et}_{2} \mathrm{O}(45 \mathrm{~mL})$, and the resulting solution was extracted with $2 N \mathrm{HCl}(2 \times 55 \mathrm{~mL})$. The acid solution was neutralized with
$40 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{pH} \sim 8)$, and the resulting cloudy solution was extracted $\left(\mathrm{Et}_{2} \mathrm{O}, 2 \times 55\right.$ $\mathrm{mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 12 \mathrm{~h}\right)$, and the solvent was removed in vacuo to afford amine 48b as a light pink oil which crystallized upon standing at RT. Amine $\mathbf{4 8 b}(0.430 \mathrm{~g}, 31 \%)$ was thus obtained as a pink solid: $\mathrm{mp} 40-42$ ${ }^{\circ} \mathrm{C}$. However, it should be noted that it was discovered that a crude mixture of the isomeric nitro compounds $\mathbf{5 4 a}$ and $\mathbf{5 4 b}$, resulting from the conversion of $\mathbf{5 3} \boldsymbol{\rightarrow} \mathbf{5 4 a}$ and 54b, could be co-reduced by this method. The final mixture of amines 48a and 48b was more easily separated by flash column chromatography [hexanes: $\mathrm{Et}_{2} \mathrm{O}(1: 1)$] than the corresponding mixture of nitro compounds (fractions 4-10 yielded 48b and fractions 1725 yielded 48a). Spectral data for $\mathbf{4 8 b}$ was the same as stated above (in the description of 48a). Amines 48a and 48b were used immediately without further purification.

2,2,4-Trimethyl-2H-1-benzopyran-7-ol (49). A solution of 3.0 M methylmagnesium bromide in diethyl ether ($30 \mathrm{~mL}, 90.8 \mathrm{mmol}, 4 \mathrm{eq}$), along with dry THF (60 mL), was placed in a $250-\mathrm{mL}$, three-necked, round-bottomed flask equipped with a spiral condenser, N_{2} inlet, and an addition funnel. Known lactone $\mathbf{5 5}^{134}(4.00 \mathrm{~g}, 22.7 \mathrm{mmol})$, dissolved in dry THF (25 mL), was added dropwise, with stirring, to the reaction flask at RT. During the addition, some heat evolved, and a yellow precipitate formed. After the addition was complete, the resulting yellow mixture was stirred (2 days) at RT and the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(250 \mathrm{~mL})$. The resulting mixture was placed in a separatory funnel, and the two layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($5 \times 50 \mathrm{~mL}$), and the combined organic layers were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 12 \mathrm{~h}\right)$. The solvent was evaporated (rotovap) to give a dark orange oil which
was immediately dissolved in glacial acetic acid $(20 \mathrm{~mL})$ and placed in a 50 mL , singlenecked, round-bottomed flask equipped with a spiral condenser and N_{2} inlet. The resulting solution was stirred and heated gently (2 h -slightly below the boiling point of acetic acid, or at approximately $110^{\circ} \mathrm{C}$). The reaction mixture was allowed to cool to RT and poured into $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The resulting dark emulsion was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (5 x 50 mL), and the combined organic layers were washed with saturated, aqueous $\mathrm{NaHCO}_{3}(3 \times 50 \mathrm{~mL})$ and brine $(2 \times 50 \mathrm{~mL})$ and were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 12 \mathrm{~h}\right)$. The solvent was removed in vacuo to give a dark brown, viscous oil. The oil was subjected to flash column chromatography [$\mathrm{Et}_{2} \mathrm{O}$:hexanes $\left.(5: 1)\right]$, and, upon evaporation of the solvent (rotovap), pure phenol $49(1.51 \mathrm{~g}, 40 \%)$ was obtained as a white solid: $\mathrm{mp} 128-130{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}\right.$ pellet) $3330[\mathrm{OH}] \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.38\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.96[\mathrm{~d}, J$ $\left.=2.09 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{HC}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right], 5.17[\mathrm{bs}, 1 \mathrm{H}, \mathrm{O}-H], 5.28\left[\mathrm{~m}, 1 \mathrm{H}, H \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right], 6.32[\mathrm{~d}, J$ $=2.01 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 6.35[\mathrm{dd}, J=8.01,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 6.99[\mathrm{~d}, J=8.03 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{Ar}-\mathrm{H}] ;{ }^{13} \mathrm{C} \cdot \mathrm{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 17.92 \quad\left[\mathrm{HC}=\left(\mathrm{CH}_{3}\right)\right], 28.03 \quad\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)\right], 76.38$ $\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 103.67\left[\mathrm{HC}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right], 107.42\left[\mathrm{HC}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right], 116.62-156.34$ [$\left.\mathrm{Ar}-\mathrm{C}\right]$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}: \mathrm{C}, 75.60 ; \mathrm{H}, 7.42$; N . Found: $\mathrm{C}, 75.30 ; \mathrm{H}, 7.32$.

2,2,4,4-Tetramethyl-6-aminothiochroman (50a). A mixture of nitro compound 57a $(1.0 \mathrm{~g}, 3.97 \mathrm{mmol})$, iron powder $(0.803 \mathrm{~g}, 14.4 \mathrm{mmol}, 3.6 \mathrm{eq}$, Sigma-Aldrich Chemical Co.), glacial acetic acid ($1.67 \mathrm{~g}, 27.8 \mathrm{mmol}, 7 \mathrm{eq}$), and absolute $\mathrm{EtOH}(10 \mathrm{~mL})$ was placed in a $25-\mathrm{mL}$, three-necked, round-bottomed flask equipped with a spiral condenser and N_{2} inlet and was stirred at reflux $(12 \mathrm{~h})$. Within approximately 15 min , the reaction mixture turned from clear yellow to a dark maroon color. The reaction was allowed to
cool to RT and was poured into $\mathrm{H}_{2} \mathrm{O}(42 \mathrm{~mL})$. The resulting brown emulsion was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 37 \mathrm{~mL})$ and $\mathrm{HCCl}_{3}(3 \times 37 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 37 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 12 \mathrm{~h}\right)$, and concentrated in vacuo to give a dark oil. This crude mixture was then dissolved in $\mathrm{Et}_{2} \mathrm{O}(28 \mathrm{~mL})$, and the resulting solution was extracted with $2 N \mathrm{HCl}(2 \times 28 \mathrm{~mL})$. The acid solution was neutralized with $40 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{pH} \sim 8)$, and the resulting cloudy solution was extracted $\left(\mathrm{Et}_{2} \mathrm{O}, 2 \times 28\right.$ $\mathrm{mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 12 \mathrm{~h}\right)$, and the solvent was removed in vacuo to afford amine $\mathbf{5 0 a}$ as a tan oil which solidified upon standing at RT. Amine 50a ($0.352 \mathrm{~g}, 40 \%$) was obtained as an off-white solid: $\mathrm{mp} 63-65^{\circ} \mathrm{C}\left(\mathrm{lit}{ }^{123} \mathrm{mp}\right.$ $57-59{ }^{\circ} \mathrm{C}$). However, it should be noted that it was discovered that a crude mixture of the isomeric nitro-compounds $\mathbf{5 7 a}$ and $\mathbf{5 7 b}$, resulting from the conversion of $\mathbf{5 6 \rightarrow 5 7}$ a and $\mathbf{5 7 b}$, could be co-reduced by this method. The final mixture of amines 50a and 50b was more easily separated by flash column chromatography [hexanes:EtOAc (2:1)] than the corresponding mixture of nitro compounds (fractions 11-15 yielded 50b and fractions 2128 yielded 50a). Data for 50a: IR (KBr) $3450[\mathrm{NH}], 3360[\mathrm{NH}] \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right)$ $\delta 1.35\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.38\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.89[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH} 2], 3.57[\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}$] , $6.45[\mathrm{dd}, J=8.01,1.97 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 6.75[\mathrm{~d}, J=1.85 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 6.92[\mathrm{~d}, J=$ $\left.7.93 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}] ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 31.57\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right], 32.25\left[\mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}\right], 35.73$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 41.90\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 54.73\left[\mathrm{CH}_{2}\right], 113.41-144.18[\mathrm{Ar}-\mathrm{C}]$. Spectral data has been reported for 50a: ${ }^{123} \mathrm{IR}(\mathrm{KBr}) 3450,3360[\mathrm{NH}] \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.36[\mathrm{~s}, 6 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2}\right], 1.39\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.90\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right], 3.50\left[\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right], 6.44[\mathrm{~d}, \mathrm{H}, \mathrm{Ar}-$ $H], 6.75$ [s, $1 \mathrm{H}, \mathrm{Ar}-H], 9.92$ [d, $1 \mathrm{H}, \mathrm{Ar}-H]$. Data for 50b: IR (neat) $3416[\mathrm{NH}], 3358$ $[\mathrm{NH}] \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.38\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.41\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.91[\mathrm{~s}, 2$
$\mathrm{H}, \mathrm{CH}_{2}$], $3.64\left[\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH} \mathrm{H}_{2}\right], 6.54[\mathrm{dd}, J=6.18,1.37 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$], 6.85 [dd, $J=6.45$, $\left.1.37 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}], 6.92[\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}] ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 31.95\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right]$, $32.04\left[\mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}\right], 36.11\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 42.36\left[\mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}\right], 54.46\left[\mathrm{CH}_{2}\right], 112.32-144.35[\mathrm{Ar}-$ C]. Amine 50a was used immediately without further purification.

2,2,4,4-Tetramethyl-8-aminothiochroman (50b). A mixture of nitro compound 57b $(1.0 \mathrm{~g}, 3.97 \mathrm{mmol})$, iron powder $(0.803 \mathrm{~g}, 14.4 \mathrm{mmol}, 3.6 \mathrm{eq}$, Sigma-Aldrich Chemical Co.), glacial acetic acid ($1.67 \mathrm{~g}, 27.8 \mathrm{mmol}, 7 \mathrm{eq}$), and absolute EtOH (10 mL) was placed in a $25-\mathrm{mL}$, three-necked, round-bottomed flask equipped with a spiral condenser and N_{2} inlet and was stirred at reflux $(12 \mathrm{~h})$. Within approximately 15 min , the reaction mixture turned from clear yellow to a dark maroon color. The reaction was allowed to cool to RT and was poured into $\mathrm{H}_{2} \mathrm{O}(42 \mathrm{~mL})$. The resulting brown emulsion was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 37 \mathrm{~mL})$ and $\mathrm{HCCl}_{3}(3 \times 37 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 37 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 12 \mathrm{~h}\right)$, and concentrated in vacuo to give a dark oil. This crude mixture was then dissolved in $\mathrm{Et}_{2} \mathrm{O}(28 \mathrm{~mL})$, and the resulting solution was extracted with $2 N \mathrm{HCl}(2 \times 28 \mathrm{~mL})$. The acid solution was neutralized with $40 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{pH} \sim 8)$, and the resulting cloudy solution was extracted $\left(\mathrm{Et}_{2} \mathrm{O}, 2 \times 28\right.$ $\mathrm{mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 12 \mathrm{~h}\right)$, and the solvent was removed in vacuo to afford amine $\mathbf{5 0 b}$ as a light tan oil which crystallized upon standing overnight in the freezer. Amine $\mathbf{5 0 b}(0.264 \mathrm{~g}, 30 \%)$ was obtained as a cream-colored solid: $\mathrm{mp} 58.5-60^{\circ} \mathrm{C}$. However, it should be noted that it was discovered that a crude mixture of the isomeric nitro compounds $\mathbf{5 7 a}$ and $\mathbf{5 7 b}$, resulting from the conversion of $\mathbf{5 6} \rightarrow \mathbf{5 7 a}$ and $\mathbf{5 7 b}$, could be co-reduced by this method. The final mixture of amines $\mathbf{5 0 a}$
and 50b was more easily separated by flash column chromatography [hexanes:EtOAc (2:1)] than the corresponding mixture of nitro compounds (fractions 11-15 yielded 50b and fractions 21-28 yielded 50a). Spectral data for $\mathbf{5 0 b}$ was the same as stated above (in the description of 50a). Amine 50b was used immediately without further purification.

4-(2-Hydroxyphenyl)-2,4-dimethyl-2-pentanol (52). A solution of 3.0 M methylmagnesium bromide in diethyl ether ($121 \mathrm{~mL}, 363.20 \mathrm{mmol}, 4 \mathrm{eq}$), along with dry THF (240 mL), was placed in a 1-L three-necked, round-bottomed flask equipped with a spiral condenser, N_{2} inlet, and an addition funnel. Lactone $\mathbf{5 1}^{130}(16.00 \mathrm{~g}, 90.80 \mathrm{mmol})$, in dry THF (10 mL), was added dropwise to the reaction flask at RT. The resulting mixture was then stirred at reflux (4 days). The reaction mixture was allowed to cool to RT and was then cooled to $0^{\circ} \mathrm{C}$ (ice bath). Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (820 mL) was then added to the reaction mixture dropwise, via the addition funnel. The resulting mixture was poured into a separatory funnel, and the two layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 150 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ and brine $(150 \mathrm{~mL})$ and then were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 12 \mathrm{~h}\right)$. The solvent was removed in vacuo to give a pale yellow oil, which, on standing at RT for $\sim 5 \mathrm{~min}$, crystallized. The resulting yellow solid was recystallized (petroleum ether) to give diol $52(16.00 \mathrm{~g}, 84 \%)$ as clear, needle-like crystals: $\mathrm{mp} 88-90^{\circ} \mathrm{C}\left(\mathrm{lit}^{161} \mathrm{mp} 91{ }^{\circ} \mathrm{C}\right)$; IR $(\mathrm{KBr}$ pellet) $3406[\mathrm{OH}], 1731[\mathrm{OH}] \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.17\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.41[\mathrm{~s}, 6$ $\left.\mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.24\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2}\right], 6.58[\mathrm{dd}, J=7.21,1.56 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}], 6.87[\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{Ar}-H], 7.04[\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.35[\mathrm{dd}, J=7.18,1.59 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H] ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right)$ ppm $\left.30.89\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 30.94\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)\right], 37.50\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 52.31\left[\mathrm{CH}_{2}\right], 73.43$
$\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right]$, 117.15-155.04 [$\left.\mathrm{Ar}-\mathrm{C}\right]$. The only other information given on 52 was an elemental analysis. ${ }^{161}$

2,2,4,4-Tetramethylchroman (53). A mixture of diol 52 (45.02 g, 0.22 mol), 85% $\mathrm{H}_{3} \mathrm{PO}_{4}(21.21 \mathrm{~mL}, 0.18 \mathrm{~mol})$, and benzene $(225 \mathrm{~mL})$ was placed in a 1-L, three-necked, round-bottomed flask equipped with a spiral condenser and N_{2} inlet, and was heated (80 $\left.{ }^{\circ} \mathrm{C}\right)$. After $\sim 5 \mathrm{~min}$, the first of 3 portions of $\mathrm{P}_{2} \mathrm{O}_{5}(25.42 \mathrm{~g}, 0.54 \mathrm{~mol}, 2.5 \mathrm{eq}$ of diol 31$)$ was added, all at once via the side arm of the flask with the aid of a funnel. The other 2 portions of $\mathrm{P}_{2} \mathrm{O}_{5}$ were added at $\sim 7 \mathrm{~h}$ intervals for a total of $76.26 \mathrm{~g}(3 \times 25.42 \mathrm{~g})$. From just after the first portion of $\mathrm{P}_{2} \mathrm{O}_{5}$ was added, the reaction mixture was allowed to stir at reflux for 24 h . The reaction mixture was then allowed to cool to RT and the benzene solution was decanted from a dark, purple residue in the bottom of the flask. The residue was rinsed in the flask with $\mathrm{Et}_{2} \mathrm{O}(3 \times 150 \mathrm{~mL})$, and the ether layers were combined with the benzene solution. The combined organic layers were then washed with $5 \% \mathrm{NaHCO}_{3}$ $(3 \times 100 \mathrm{~mL})$ and brine $(3 \times 100 \mathrm{~mL})$, and were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 12 \mathrm{~h}\right)$. The solvent was removed in vacuo to give a pale yellow oil, which was subsequently vacuum distilled to afford chroman $\mathbf{5 3}(21.5 \mathrm{~g}, 54 \%)$ as a colorless oil: bp $69-71{ }^{\circ} \mathrm{C} / 1.5 \mathrm{~mm} \mathrm{Hg}$, (lit ${ }^{161} \mathrm{bp}$ $\left.102-104{ }^{\circ} \mathrm{C}, \mathrm{n}^{21.5} 1.5152\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.34\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.35[\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.84\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right], 6.79[\mathrm{dd}, J=7.68,1.79 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}], 6.85[\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-$ $H], 7.08[\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.31[\mathrm{dd}, J=7.76,1.83 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H] ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm}$ $28.45\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 30.74\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 32.70\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 49.20\left[\mathrm{CH}_{2}\right], 74.30\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right]$, 117.97-152.62 [Ar-C]. The only other information given on 53 was an elemental analysis. ${ }^{161}$

2,2,4,4-Tetramethyl-6-nitrochroman (54a) and 2,2,4,4-Tetramethyl-8-nitrochroman (54b). A mixture of $\mathrm{Ac}_{2} \mathrm{O}\left(4.78 \mathrm{~g}, 46.8 \mathrm{mmol}, 1.6 \mathrm{eq}\right.$ of $\left.\mathrm{HNO}_{3}\right)$ and HNO_{3} $\left(1.89 \mathrm{~mL}, 30 \mathrm{mmol}, 1.1 \mathrm{eq}\right.$ of chroman) was first prepared by chilling $\mathrm{Ac}_{2} \mathrm{O}$ to $0^{\circ} \mathrm{C}$ (ice bath) and adding HNO_{3} to it, dropwise using a pipette. Chroman $53(5.0 \mathrm{~g}, 26.3 \mathrm{mmol})$, dissolved in freshly distilled $\mathrm{Ac}_{2} \mathrm{O}(5 \mathrm{~mL})$, was then placed in a $50-\mathrm{mL}$, three-necked, round-bottomed flask equipped with an addition funnel and N_{2} inlet. The reaction flask was then chilled to $-5{ }^{\circ} \mathrm{C}$ (ice/salt bath). The $\mathrm{HNO}_{3} / \mathrm{Ac}_{2} \mathrm{O}$ mixture was then added dropwise (5 min), via the addition funnel, and the resulting dark blue reaction mixture was allowed to stir at $-5{ }^{\circ} \mathrm{C}(90 \mathrm{~min})$. The reaction mixture was then poured into saturated, aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and the resulting dark brown emulsion was extracted with $\mathrm{H}_{2} \mathrm{CCl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ $(45 \mathrm{~mL})$ and brine $(45 \mathrm{~mL})$ and were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 12 \mathrm{~h}\right)$. The solvent was removed in vacuo to give a dark brown liquid, which was subjected to flash chromatography [hexanes: $\mathrm{Et}_{2} \mathrm{O}(20: 1)$] to provide the two isomers $\mathbf{5 4 a}$ and $\mathbf{5 4 b}$ (6-isomer 54a was collected in fractions 5-12, and 8-isomer 54b was collected in fractions 15-20). The 6-isomer 54a ($2.67 \mathrm{~g}, 43 \%$) was thus isolated as a pale yellow solid: $\mathrm{mp} 56-58{ }^{\circ} \mathrm{C}$; spectral data for 54a: IR $(\mathrm{KBr}) 1581,1341\left[\mathrm{NO}_{2}\right] \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.39[\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.41\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.89\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right], 6.85[\mathrm{~d}, J=7.93 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}]$, $7.98[\mathrm{dd}, J=7.01,1.98 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 8.22[\mathrm{~d}, J=1.97 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H] ;{ }^{13} \mathrm{C}$ NMR $\left.\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 28.48\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right], 31.12\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 32.69\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 48.07\left[\mathrm{CH}_{2}\right], 76.39$ $\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 118.45-158.46[\mathrm{Ar}-\mathrm{C}]$. The 8 -isomer $\mathbf{5 4 b}(1.61 \mathrm{~g}, 26 \%)$ was thus isolated as a creamy white solid: $\mathrm{mp} 52-54{ }^{\circ} \mathrm{C}$; spectral data for $\mathbf{5 4 b}$: $\mathrm{IR}(\mathrm{KBr}) 1582,1341\left[\mathrm{NO}_{2}\right]$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.37\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.39\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.91[\mathrm{~s}, 2 \mathrm{H}$,
$\left.\mathrm{CH}_{2}\right], 6.94[\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.48[\mathrm{dd}, J=7.63,1.87 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.57[\mathrm{dd}, J=7.59$, $\left.1.83 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}] ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 28.35\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right], 31.30\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 32.55$ $\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 48.33\left[\mathrm{CH}_{2}\right], 76.86\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 118.45-146.89[\mathrm{Ar}-\mathrm{C}]$. A melting point of a mixture of the two isomers 54a and $\mathbf{5 4 b}$ was measured, and the result was $\mathrm{mp} 46-48{ }^{\circ} \mathrm{C}$.

2,2,4,4-Tetramethyl-6-nitrothiochroman (57a) and 2,2,4,4-Tetramethyl-8-nitro-

 thiochroman (57b). A mixture of $\mathrm{Ac}_{2} \mathrm{O}\left(13.20 \mathrm{~g}, 0.129 \mathrm{~mol}, 1.6 \mathrm{eq}\right.$ of $\left.\mathrm{HNO}_{3}\right)$ and $\mathrm{HNO}_{3}\left(5.21 \mathrm{~mL}, 82.9 \mathrm{mmol}, 1.1 \mathrm{eq}\right.$ of chroman) was first prepared by chilling $\mathrm{Ac}_{2} \mathrm{O}$ to 0 ${ }^{\circ} \mathrm{C}$ (ice bath) and adding HNO_{3} to it, dropwise using a pipette. Known thiochroman $56^{126 \mathrm{a}}(15.00 \mathrm{~g}, 72.7 \mathrm{mmol})$, dissolved in freshly distilled $\mathrm{Ac}_{2} \mathrm{O}(14 \mathrm{~mL})$, was then placed in a $100-\mathrm{mL}$, three-necked, round-bottomed flask equipped with an addition funnel and N_{2} inlet. The reaction flask was then chilled to $-5^{\circ} \mathrm{C}$ (ice/salt bath). The $\mathrm{HNO}_{3} / \mathrm{Ac}_{2} \mathrm{O}$ mixture was then added dropwise (5 min), via the addition funnel, and the resulting dark blue reaction mixture was allowed to stir at $-5^{\circ} \mathrm{C}(90 \mathrm{~min})$. The reaction mixture was then poured into saturated, aqueous $\mathrm{NaHCO}_{3}(140 \mathrm{~mL})$, and the resulting dark brown emulsion was extracted with $\mathrm{H}_{2} \mathrm{CCl}_{2}(3 \times 83 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(125 \mathrm{~mL})$ and brine $(125 \mathrm{~mL})$ and were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 12 \mathrm{~h}\right)$. The solvent was removed in vacuo to give a dark brown liquid, which was subjected to flash chromatography [hexanes:EtOAc (5:1)] to provide isomers 57a and 57b (6-isomer 57a was collected in fractions 8 -15, and 8 -isomer $\mathbf{5 7 b}$ was collected in fractions 18-21). The 6-isomer $57 \mathrm{a}(4.75 \mathrm{~g}, 26 \%)$ was isolated as a pale yellow solid: $\mathrm{mp} 64-66^{\circ} \mathrm{C}\left(\mathrm{lit}^{123} \mathrm{mp}\right.$ $103-107^{\circ} \mathrm{C}$). The apparent discrepancy between the reported ${ }^{123} \mathrm{mp}$ and the mp measured here is likely because the data reported ${ }^{123}$ for $\mathbf{5 0 a}$ corresponded to another compound. Ascan be seen below, the spectral data for 50a reported here clearly matches what would be expected, while the data reported ${ }^{123}$ before does not. Spectral data for $57 a$: IR (KBr) 1519, $1345\left[\mathrm{NO}_{2}\right] \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.45\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.46[\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.00[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}$] $, 7.21[\mathrm{~d}, J=8.65 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.88[\mathrm{dd}, J=6.32,2.33$ $\mathrm{Hz}, 1 \mathrm{H}, \operatorname{Ar}-H], 8.26[\mathrm{~d}, J=2.33 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H] ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 31.64$ $\left.\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right], 32.43\left[\mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}\right], 35.85\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 43.04\left[\mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}\right], 53.24\left[\mathrm{CH}_{2}\right], 120.90-$ 143.07 [Ar-C]. Spectral data has been reported for $\mathbf{5 7 a}:{ }^{123}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta 1.10[\mathrm{~s}, 3$ $\left.\mathrm{H},\left(\mathrm{CH}_{3}\right)_{2}\right], 1.37\left[\mathrm{~s}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2}\right], 1.52\left[\mathrm{~s}, \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.56\left[\mathrm{~s}, \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.03[\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right], 8.01[\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}], 8.24$ [d, $\left.2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right]$. No further information was provided for 57a. Previously unknown 8 -isomer $\mathbf{5 7 b}(1.83 \mathrm{~g}, 10 \%)$ was isolated as a creamy white solid: mp 105-108 ${ }^{\circ} \mathrm{C}$; spectral data for $\mathbf{5 7 b}$: IR (KBr) 1516 , $1338\left[\mathrm{NO}_{2}\right] \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta 1.37\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.44\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.05\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2}\right], 7.19[\mathrm{~m}, 1$ $\mathrm{H}, \mathrm{Ar}-H], 7.62[\mathrm{dd}, J=6.89,1.37 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.87[\mathrm{dd}, J=6.59,1.51 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-$ H]; $\left.{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 30.64\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right], 33.30\left[\mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}\right], 35.91\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 40.87$ $\left[\mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}\right], 53.89\left[\mathrm{CH}_{2}\right], 123.37-146.20[\mathrm{Ar}-\mathrm{C}]$.

Mono-methyl Terephthaloyl Chloride (58). Commercially available mono-methyl terephthalate $\mathbf{(5 9}, 1.0 \mathrm{~g}, 5.5 \mathrm{mmol}$, Sigma-Aldrich Chemical Co.), along with SOCl_{2} (4.89 g, $41.1 \mathrm{mmol}, 7 \mathrm{eq}$, was placed in a $25-\mathrm{mL}$, single-necked, round-bottomed flask equipped with a spiral condenser. The resulting mixture was stirred at reflux (12 h). After approximately 2 h , the white solid dissolved. The resulting solution was allowed to cool to RT, and excess SOCl_{2} was removed in vacuo to give a white solid which was placed under high vacuum ($3 \mathrm{~h}, \mathrm{RT} / 0.75 \mathrm{~mm} \mathrm{Hg}$) to remove any residual SOCl_{2}. Acid
chloride $58(1.06 \mathrm{~g}, 96 \%)$ was obtained as a white solid: $\mathrm{mp} 53-55^{\circ} \mathrm{C}\left(\mathrm{mp} 53-55^{\circ} \mathrm{C}\right.$, Acros Organics); IR (KBr pellet) 1773 [ClC=O], $1770[\mathrm{MeOC}=\mathrm{O}] \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta 3.98\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right], 8.17[\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}] ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 52.69$ $\left[\mathrm{OCH}_{3}\right], 129.95-136.59[\mathrm{Ar}-\mathrm{C}], 165.56[\mathrm{C}=\mathrm{O}], 167.87[\mathrm{C}=\mathrm{O}] .{ }^{1} \mathrm{H}$ NMR data has been recorded for 58: ${ }^{136}{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DCCl}_{3}\right) \delta 3.98[\mathrm{~s}, 3 \mathrm{H}], 8.03-8.24[\mathrm{~m}, 4 \mathrm{H}]$. No further data was reported on this compound.

Determination of MICs. The MICs of the agents on solid medium were determined by the microdrop agar proportion test by the method of McClatchy ${ }^{162}$ as modified by Phetsuksiri and co-workers. ${ }^{153}$ Briefly, a series of 10 -fold dilutions of culture of Mycobacterium bovis (BCG) were prepared by using phosphate-buffered saline as a diluent. An aliquot ($5 \mu \mathrm{~L}$) of each dilution was spotted on plates of 7 H 11 agar (Difco) containing oleic acid-albumin-dextrose-citric acid (OADC) as a supplement and $0.1,0.5$, $1.0,2.0,2.5,5.0,10.0$, and $20.0 \mu \mathrm{~g}$ of each tested drug per mL . The plates were incubated at $37^{\circ} \mathrm{C}$ for 14 days, and the number of viable bacteria was scored by counting colonies.

Plate I

Plate II

Plate III

Plate IV

Plate V

Plate VI

Plate VII

${ }^{1}$ H NMR Spectrum of 34

Plate IX

Plate X

Plate XII

Plate XIII

Plate XV

Plate XVI

Plate XVII
sulfar-athoxy-6-zhlourea

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 7}$

Plate XVIII

Plate XIX

Plate XX

Plate XXI

Plate XXII

Plate XXIII

${ }^{1}$ H NMR Spectrum of 39

Plate XXIV

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 9}$

Plate XXVI

Plate XXVII

Plate XXVIII

Plate XXIX

Plate XXX

Plate XXXI

Plate XXXII

Plate XXXIII

Plate XXXV

Plate XXXVI

Plate XXXVII

IR Spectrum of 44

Plate XXXVIII

Plate XL

Plate XLI

Plate XLII

Plate XLIII

Plate XLIV

Plate XLV

Plate XLVI

Plate XLVII

Plate XLVIII

Plate XLIX

${ }^{1}$ H NMR Spectrum of 47

Plate L

Plate LII

Plate LIII

Plate LVI

Plate LVII

'H NMR Spectrum of 49

GAMMA-H2 TESTMECOUPLINO
expl s2pul

Plate LIX

49

Plate LXI

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{5 0 a}$

Plate LXII

Plate LXIV

Plate LXV

Plate LXVI

Plate LXVII

${ }^{13} \mathrm{C}$ NMR Spectrum of 52

Plate LXIX

Plate LXX

Plate LXXI

Plate LXXIII

Plate LXXVI

Plate LXXVIII

Plate LXXIX

Plate LXXX

Plate LXXXII

Plate LXXXIII

IR Spectrum of 58

Plate LXXXV

BIBLIOGRAPHY

1. Sporn, M. B.; Roberts, A. B. In The Retinoids-Biology, Chemistry, and Medicine, $2^{\text {nd }}$ Ed., Raven Press Ltd.: New York, 1994, pp 1-3.
2. Budd, G. Disorders Resulting from Defective Nutriment. London Med. Gazette 1842, 2, 632-749.
3. (a) Saffiotti, U.; Montesano, R.; Sellakumar, A. R.; Borg, S. A. Experimental Cancer of the Lung. Cancer 1967, 20, 857-864. (b) Chu, E. W.; Malmgren, R. A. An Inhibitory Effect of Vitamin A on the Induction of Tumors of Forestomach and Cervix in the Syrian Hamster by Carcinogenic Polycyclic Hydrocarbons. Cancer Res. 1965, 25, 884-895.
4. Bollag, W.; Ruegg, R.; Ryser, G. (Hoffmann-La Roche, F. und Co., A.-G.)(1974): Polyene Compounds. German Patent 2,414,619 (October 17, 1974); Chem. Abstr. 1975, 82, 111778.
5. Loeliger, P.; Bollag, W.; Mayer, H. Arotinoids, A New Class of Highly Active Retinoids. Eur. J. Med. Chem.-Chim. Ther, 1980, 15, 9-15.
6. (a) Kastner, P.; Mark, M.; Chambon, P. Non Steroid Nuclear Receptors: What are Genetic Studies Telling Us About Their Role in Real Life? Cell 1995, 83, 859-869. (b) Means, A. L.; Gudas, L. J. The Roles of Retinoids in Vertebrate Development. Annu. Rev. Biochem. 1995, 64, 201-233.
7. Wolbach, S. D.; Howe, P. R. Tissue Changes Following Deprivation of Fat Soluble Vitamin A. J. Exp. Med. 1925, 42, 753-761.
8. Lasnitzki, I. The Influence of a Hyper-vitaminosis on the Effect of 3Methylcholanthrene on Mouse Prostate Glands Grown In Vitro. Br. J. Cancer 1955, 9, 434-441.
9. Itri, L. M.; Moon, R. C. Retinoids and Cancer. The Retinoids-Biology, Chemistry, and Medicine, $2^{\text {nd }}$ Ed., Raven Press Ltd.: New York, 1994, pp 357-386.
10. Orfanos, C. E.; Zouboulis, C. C.; Almod-Roesler, B.; Geilen, C. C. Current Use and Future Potential Role of retinoids in Dermatology. Drugs 1997, 53, 358-388.
11. Kligman, D. E.; Kligman, A. M. Use of High Dose Retinoids for the Treatment of Skin Disorders. PCT Int. Appl., 28 pp, WO 9850023 A1 19981112; Chem. Abstr. 1998, 130, 524.
12. Lachgar, S.; Charveron, M.; Gall, Y.; Bonafe, J. L. Inhibitory Effects of Retinoids on Vascular Endothelial Growth Factor Production by Cultured Human Skin Keratinocytes. Dermatology (Basel) 1999, 199 (Suppl. 1), 25-27.
13. Takeuchi, M.; Yano, T.; Omoto, E.; Takahashi, K.; Kibata, M.; Shudo, K.; Harada, M.; Ueda, R.; Ohno, R. Relapsed Acute Promyelocytic Leukemia Previously Treated with All-Trans-Retinoic Acid: Clinical Experience with a New Synthetic Retinoid, Am-80. Leuk. Lymphoma 1998, 31, 441-451.
14. Munker, R.; Koeffler, P.; Haas, R.; Wilmanns, W. Modulation of CD95 in Leukemia and Lymphoma Cells by Retinoids. Eur. J. Med. Res. 2000, 5, 273276.
15. Westarp, M. E. Retinoids in the Management of Central Nervous System (CNS) Tumors. Adv. Organ Biol. 1997, 3, 231-260.
16. Walmsley, S.; Northfelt, D. W.; Melosky, B.; Conant, M.; Friedman-Kien, A. E.; Wagner, B. Treatment of AIDS-Related Cutaneous Kaposi's Sarcoma with Topical Alitretinoin (9-cis-Retinoic Acid) Gel. J. Acquired Immune Defic. Syndr. 1999, 22, 235-246.
17. Hayes, C. E.; Nashold, F. E.; Gomez, F. E.; Hoag, K. A. Retinoids and Immunity. Handb. Exp. Pharmacol. 1999, 139, 589-610.
18. Zusi, F. C.; Reczek, P. R.; Ostrowski, J. Preparation of Retinoid-like Compounds as Antitumor and Antiinflammatory Agents. (Bristol-Myers Squibb Company, USA), U. S., 8 pp, US 6008251 A 19991228; Chem. Abstr. 1999, 132, 35518.
19. Giembycz, M. Retinoids Offer Hope for the Treatment of Emphysema. Trends Pharmacol. Sci. 2000, 21, 292.
20. (a) Benbrook, D. M.; Subramanian, S.; Gale, J. B.; Liu, S.; Brown, C. W.; Boehm, M. F.; Berlin, K. D. Synthesis and Characterization of Heteroarotinoids Demonstrate Structure Specificity Relationships. J. Med. Chem. 1998, 41, 37533757. (b) See (1), pp 319-321. (c) Dawson, M. I. Burger's Medicinal Chemistry and Drug Discovery, $5^{\text {th }}$ Edition, Wolff, M. E., Ed.; John Wiley \& Sons, Inc.: New York, 1996, p 579. (d) Jong, L.; Lehmann, J. M.; Hobbs, P. D.; Harlev, E.; Huffman, J. C.; Pfahl, M.; Dawson, M. I. Conformational Effects on Retinoid Receptor Selectivity. 1. Effect of 9-Double Bond Geometry on Retinoid X Receptor Activity. J. Med. Chem. 1993, 36, 2605-2613. (e) Lehmann, J. M.; Jong, L.; Fanjul, A.; Cameron, J. F.; Lu, X. P.; Haefner, P.; Dawson, M. I.; Pfahl, M. Retinoids Selective for Retinoid X Receptor Response Pathways. Science 1992, 258, 1944-1946.
21. (a) Petkovich, M.; Brand, N. J.; Krust, A.; Chambon, P. A Human Retinoic Acid Receptor which Belongs to the Family of Nuclear Receptors. Nature 1987, 330,

444-450. (b) Mangelsdorf, D. J.; Umesono, K.; Evans, R. M. The Retinoid Receptors. In The Retinoids-Biology, Chemistry, and Medicine, $2^{\text {nd }}$ Ed., Sporn, M. B.; Roberts, A. B.; Goodman, D. S.; Eds., Raven Press: New York, 1994, pp 319-350. (c) Gale, J. B. Recent Advances in the Chemistry and Biology of Retinoids. Progress Med. Chem. 1993, 30, 1-55.
22. (a) Giguere, V. M.; Shago, R.; Zirngibl, P.; Tate, P.; Rossant, J.; Varmuza, S. Identification of a Novel Isoform of the Retinoic Acid Receptor Gamma Expressed in the Mouse Embryo. Mol. Cell. Biol. 1990, 10, 2335-2340. (b) See (20c), pp 579-583. (c) See (1), pp 322-323. (d) Giguere, V.; Ong, E. S.; Segui, P.; Evans, R. M. Identification of a New Class of Steroid Hormone Receptors. Nature 1987, 330, 624-629.
23. (a) Manglesdorf, D.J.; Borgmeyer, U.; Heyman, R. A.; Zhou, J. Y.; Ong, E. S.; Oro, A. E.; Kakizuka, A.; Evans, R. M. Characterization of Three RXR Genes that Mediate the Action of 9-cis-Retinoic Acid. Genes Dev. 1992, 6, 329-344. (b) See (20c), pp 579-583. (c) See (1), pp 323-324. (d) Leid, M.; Kastner, P.; Lyons, R.; Nakshatri, H.; Saunders, M.; Zacharewski, T.; Chen, J.-Y.; Staub, A.; Garnier, J.-M.; Mader, S.; Chambon, P. Purification, Cloning, and RXR Identity of the HeLa Cell Factor with which RAR or TR Heterodimerizes to Bind Target Sequences Efficiently. Cell 1992, 68, 377-395.
24. Marchio, A.; Tiollais, P.; Dejean, A.; de The, H. A Novel Steroid Thyroid Hormone Receptor-Related Gene Inappropriately Expressed in Human Hepatocellular Carcinoma. Nature 1987, 330, 667-670.
25. (a) Brand, N.; Petkovich, M.; Krust, A.; Chambon, P.; de The, H.; Marchio, A.; Tiollais, P.; Dejean, A. Identification of a Second Human Retinoic Acid Receptor. Nature 1988, 332, 850-853. (b) Benbrook, D.; Lernhardt, E.; Pfahl, M. A New Retinoic Acid Receptor Identified from a Hepatocellular Carcinoma. Nature 1988, 333, 669-672.
26. Chambon, P.; Krust, A.; Petkovich, M.; Kastner, P.; Zelent, A. Cloning of Murine α and β Retinoic Acid Receptors and a Novel Receptor γ Predominately Expressed in Skin. Nature 1989, 339, 714-717.
27. (a) Ishikawa, T.; Umesono, K.; Manglesdorf, D. J.; Aburatani, H.; Stanger, B. Z.; Shibasaki, Y.; Imawari, M.; Evans, R. M.; Takaku, F. A Functional Retinoic Acid Receptor Encoded by the Gene on Human Chromosome 12. Mol. Endocrinol. 1990, 4, 837-844. (b) Mattei, M.-G.; Petkovich, M.; Mattei, J.-F.; Brand, N. Chambon, P. Mapping of the Human Retinoic Acid Receptor to the q21 Band of Chromosome 17. Hum. Genet. 1988, 80, 186-188. (c) Mattei, M.G.; de The, H.; Mattei, J. F.; Marchio, A.; Tiollais, P.; Dejean, A. Assignment of the Human Hap Retinoic Acid Receptor RAR β Gene to the p24 Band of Chromosome 3. Hum. Genet. 1988, 80, 189-190.
28. (a) Krust, A.; Kastner, P.; Petkovich, M.; Zelent, A.; Chambon, P.; Leroy, P.; Garnier, J. Murine Isoforms of Retinoic Acid Receptor γ with Specific Pattern of Expression. Proc. Natl. Acad. Sci. U. S. A. 1990, 87, 2700-2704. (b) Leroy, P.; Krust, A.; Zelent, A.; Mendelsohn, C.; Garmier, J. M.; Kastner, P.; Dierich, A.; Chambon, P. Multiple Isoforms of Mouse Retinoic Acid Receptor α are Generated by Alternative Splicing and Differential Induction by Retinoic Acid. EMBO J. 1991, 10, 59-69. (c) Zelent, A.; Leroy, P.; Krust, A.; Mendelsohn, C.; Garnier, J.M.; Kastner, P.; Chambon, P. Differentially Expressed Isoform of the Mouse Retinoid Acid Receptor β are Generated by Usage of Two Promoters and Alternative Splicing. EMBO J. 1991, 10, 71-81.
29. Evans, R. M. The Steroid and Thyroid Hormone Receptor Superfamily. Science 1988, 240, 889-895.
30. Mitchell, P. J.; Tijian R. Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Protein. Science 1989, 245, 371-378.
31. (a) Freedman, L. P.; Luisi, B. F.; Korzsun, R.; Basavapa, R.; Sigler, P. B.; Yamamoto, K. R. The Function and Structure of Metal Coordination Sites within the Glucocorticoid Receptor DNA Binding Domain. Nature 1988, 334, 543-546. (b) Rastinejad, F.; Perlmann, T.; Evans, R. M.; Sigler, P. B. Structural Determinants of Nuclear Receptor Assembly on DNA Direct Repeats. Nature 1995, 375, 203-211.
32. Evans, R. M.; Hollenberg, S. M. Zinc Fingers: Guilt by Association. Cell 1988, 52, 1-3.
33. (a) Perlmann, T.; Rangarajan, P. N.; Umesono, K.; Evans, R. M. Determinants for Selective RAR and TR Recognition of Direct Repeat HREs. Genes Dev. 1993, 7, 1411-1422. (b) Valee, B. L.; Coleman, J. E.; Ault, D. S. Zinc Fingers, Zinc Clusters, and Zinc Twists in DNA-Binding Protein Domains. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 999-1003.
34. Green, S.; Kumar, V.; Theulas, I.; Wahli, W.; Chambon, P. The N-Terminal DNA-Binding 'Zinc-Finger' of the Estrogen and Glucocorticoid Receptors Determines Target Gene Specificity. EMBO J. 1988, 7, 3037-3044.
35. Tsai, S. Y.; Tsai, M. J.; O'Malley, B. W. Cooperative Binding of Steroid Hormone Receptors Contributes to Transcriptional Synergism at Target Enhancer Element. Cell 1989, 57, 1139-1146.
36. Hard, T.; Kellembach, E.; Boelens, R.; Maler, B. A.; Dahler, K.; Freedman, L. P.; Carlstedt-Duke, J.; Yamamoto, K. R.; Gustafonn, J. A.; Kaptein, R. Solution Structure of the Glucocorticoid Receptor DNA-Binding Domain. Science 1990, 249, 157-160.
37. Umesono, K.; Evans, R. M. Determination of Target Gene Specificity for Steroid/Thyroid Hormone Receptor. Cell 1988, 57, 1139-1146.
38. (a) Laudet, V.; Hanni, C.; Coll, J.; Catzeflis, F.; Stehelin, D. Evolution of the Nuclear receptor Gene Superfamily. EMBO J. 1992, 11, 1003-1013. (b) Napoli, J. L. Biochemical Pathways of Retinoid Transport, Metabolism, and Signal Transduction. Clin. Immun. Immunopath. 1996, 80, S52-S62.
39. Gaub, M. P.; Lutz, Y.; Ruberte, E.; Petkovich, M.; Brand, M.; Chambon, P. Antibodies Specific to the Retinoic Acid Human Nuclear Receptors α and β. Proc. Natl. Acad. Sci. U. S. A. 1989, 86, 3089-3093.
40. Renaud, J. P.; Rochel, N.; Ruff, M.; Vivat, V.; Chambon, P.; Gromemeyer, H.; Moras, D. Crystal Structure of the RAR- γ Ligand-Binding Domain Bound to all-trans-Retinoic Acid. Nature 1995, 378, 681-689.
41. (a) Bourget, W.; Ruff, M.; Chambon, P.; Gronemeyer, G.; Moras, D. Crystal Structure of the Ligand-Binding Domain of the Human Nuclear Receptor RXR α. Nature 1995, 375, 377-382. (b) Egea, P. F.; Mitschler, A.; Rochel, N.; Ruff, M.; Chambon, P.; Moras, D. Crystal Structure of the Human RXR α Ligand-Binding Domain Bound to its Natural Ligand: 9-cis-Retinoic Acid. EMBO J. 2000, 19, 2592-2601.
42. Leid, M.; Kastner, P.; Chambon, P. Multiplicity Generates Diversity in the Retinoic Acid Pathways. Trends Biochem. Sci. 1992, 17, 427-433.
43. Fawell, S. E.; Lees, J. A.; White, R.; Parker, M. G. Characterization and Colocalization of Steroid Binding and Dimerization Activities. Cell 1990, 60, 953962.
44. Manglesdorf, D. J.; Ong, E. S.; Dyck, J. A.; Evans, R. M. Nuclear Receptor that Identifies a Novel Retinoic Acid Response Pathway. Nature 1990, 345, 224-229.
45. Cheng, L.; Norris, A. W.; Tate, B. F.; Rosenberger, M.; Grippo, J. F.; Li, E. Charaterization of the Ligand Binding Domain of Human Retinoid X Receptor α Expressed in Escherichia Coli. J. Biol. Chem. 1994, 269, 18662-18667.
46. Giguere, V. Retinoic Acid Receptors and Cellular Retinoid Binding Proteins: Complex Interplay in Retinoid Signaling. Endocr. Rev. 1994, 15, 61-79.
47. Hoopes, C. W.; Taketo, M.; Ozato, K.; Liu, Q.; Howard, T. A.; Linney, E., Seldin, M. F. Mapping of the RXR Loci Encoding Nuclear Retinoid X Receptors RXRα, RXR- β, and RXR- γ. Genomics 1992, 14, 611-617.
48. Mangelsdorf, D. J.; Borgmeyer, U.; Heyman, R. A.; Zhou, J. Y.; Ong, E. S.; Oro, A. E.; Kikazuka, A.; Evans, R. M. Characterization of Three RXR Genes that Mediate the Action of 9-cis-Retinoic Acid. Genes Dev. 1992, 6, 329-344.
49. Heyman, R. A.; Mangelsdorf, D. J.; Dyck, J. A.; Stein, R. B.; Eichele, G.; Evans, R. M.; Thaller, C. 9-cis-Retinoic Acid is a High Affinity Ligand for the Retinoid X Receptor. Cell 1992, 68, 397-406.
50. Dhar, A.; Liu, S.; Klucik, J.; Berlin, K. D.; Madler, M. M.; Lu, S.; Ivey, T. R.; Zacheis, D.; Brown, C. W.; Nelson, E. C.; Birckbichler, P. J.; Benbrook, D. M. Synthesis, Structure-Activity Relationships, and RAR γ-Ligand Interactions of Nitrogen Heteroarotinoids. J. Med. Chem. 1999, 42, 3602-3614.
51. Giguere, V.; Tini, M.; Flock, G.; Ong, E.; Evans, R. M.; Otulakowsji, G. Isoform-Specific Amino-Terminal Domains Dictate DNA-Binding Properties of ROR α, a Novel Family of Hormone Nuclear Receptors. Genes Dev. 1994, 8, 538-553.
52. (a) Smirnov, A. N. Nuclear Melatonin Receptors. Biochemistry 2001, 66, 19-26. (b) Becker-Andre, M.; Wiesenberg, I.; Scaeren-Wiemers, N.; Andre, E.; Missbach, M.; Saurat, J. H.; Carlberg, C. Pineal Gland Hormone Melatonin Binds and Activates an Orphan of the Nuclear Receptor Superfamily. J. Biol. Chem. 1994, 269, 28531-28534. (c) Wiesenberg, I.; Missbach, M.; Kahlen, J. P.; Schrader, M.; Carlberg, C. Transcriptional Activation of the Nuclear Receptor RZR α by the Pineal Gland Hormone Melatonin and Identification of CGP 52608 as a Synthetic Ligand. Nucl. Acids Res. 1995, 23, 327-333.
53. Repa, J. J.; Mangelsdorf, D. J. The Role of Orphan Nuclear receptors in the Regulation of Cholesterol Homeostasis. Annu. Rev. Cell Dev. Biol. 2000, 16, 459-481.
54. Meyer, T.; Kneissel, M.; Mariani, J.; Fournier, B. In Vitro and in Vivo Evidence for Orphan Nuclear Receptor ROR α Function in Bone Metabolism. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 9197-9202.
55. Kurebayashi, S.; Ueda, E.; Sakaue, M.; Patel, D. D.; Medvedev, A.; Zhang, F.; Jetten, A. M. Retinoid-Related Orphan Receptor γ (ROR γ) is Essential for Lymphoid Organogenesis and Controls Apoptosis During Thymopoiesis. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 10132-10137.
56. Becker, A. M.; Delamarter, J. F.; Staple, J. K.; Hooft, H.; Carlberg, C. RZR, a New Family of Retinoid-Related Orphan Receptors that Function as Both Monomers and Homodimers. Mol. Endocrin. 1994, 8, 757-770.
57. Greiner, E. F.; Kirfel, J.; Greschik, H.; Dorflinger, U.; Becker, P.; Mercep, A.; Schule, R. Functional Analysis of Retinoid Z Receptor, a Brain-Specific Nuclear Orphan Receptor. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 10105-10110.
58. Missbach, M.; Jagher, B.; Sigg, I.; Nayeri, S.; Carlberg, C.; Wiesenberg, I. Thiazolidine Diones, Specific Ligand of the Nuclear Z Receptor/Retinoic Acid Related Orphan Receptor α with Potent Antiarthritic Activity. J. Biol. Chem. 1996, 271, 13515-13522.
59. Morriss-Kay, G. M.; Sokolova, N. Embryonic Development and Pattern Formation. FASEB J. 1996, 10, 961-968.
60. Joore, J.; Gerald, B. L. J.; Lans, P.; Lanser, J.; Vervaart, J. M. A.; Zitkovic, D.; Kruijer, W. Effect of Retinoic Acid on the Expression of Retinoic Acid Receptors during Zebrafish Embryogenesis. Mechanism of Development 1994, 46, 137-150.
61. (a) Budowski, P.; Gross, J. Conversion of Carotinoids to 3-Dihydroretinol (Vitamin A2) in the Mouse. Nature 1965, 206, 1254-1255. (b) Goodman, D. S.; Huang, H. S. Biosynthesis of Vitamin A with Rat Intestinal Enzymes. Science 1965, 149, 879-880. (c) Olson, J. A.; Hayaishi, O. The Enzymatic Cleavage of β-Carotene into Vitamin A by Soluble Enzymes of rat Liver and Intestine. Proc. Natl. Acad. Sci. U. S. A. 1965, 54, 164-1369. (d) Buck, J.; Myc, A.; Garbe, A.; Cathomas, G. Differences in the Action and Metabolism Between Retinol and Retinoic Acid in B-Lymphocytes. Cell Biol. 1991, 115, 851-859.
62. Kakkad, B.; Ong, D. E. Reduction of Retinaldehyde Bound to Cellular RetinolBinding Protein (Type II) by Microsomes from Rat Small Intestine. J. Biol. Chem. 1988, 263, 12916-12919.
63. Ong, D. E.; Kakkad, B.; MacDonald, P. N. Acyl-CoA-Independent Esterification of Retinol in Rat Liver Bound to Cellular Retinol-Binding Protein (Type II) by Microsomes from Rat Small Intestine. J. Biol. Chem. 1987, 262, 2729-2736.
64. Quick, T. C.; Ong, D. E. Vitamin A Metabolism in the Human Intestinal Caco-2 Cell Line. Biochemistry 1990, 29, 11116-11123.
65. Blomhoff, R.; Green, M. H.; Green, J. B.; Berg, T.; Norum, K. R. Vitamin A Metabolism: New Perspective on Absorption, Transport, and Storage. Physiol. Rev. 1991, 71, 951-990.
66. Goodman, D. S.; Blaner, W. S. Biosynthesis, Absorption, and Hepatic Metabolism of Retinol. In The Retinoids, Vol. 2, Sporn, M. B.; Roberts, A. B.; Goodman, D. S.; Eds., Academic Press: Orlando, FL, 1984, pp 1-40.
67. (a) Blaner, W. S.; Hendriks, H. F. J.; Brouwer, A.; de Leeuw, A. M.; Knook, D. L.; Goodman, D. S. Retinoids, Retinoid-Binding Proteins, and Retinyl Palmitate Hydrolase Distributions in Different Types of Rat Liver Cells. J. Lipid Res. 1985, 26, 1241-1251. (b) Blomhoff, R.; Rasmussen, M.; Nilsson, A.; Norum, K. R.; Berg, T.; Peterson, P. A. Hepatic Retinol Metabolism: Distribution of Retinoids, Enzymes and Binding Proteins in Isolated Rat Liver Cells. J. Biol. Chem. 1985, 260, 13560-13565. (c) Hendriks, H. F. J.; Brekelmans, P. J. A. M.; Buytenhek, R.; Brouwer, A.; de Leeuw, A. M.; Knook, D. L. Liver Parenchymal Cells Differ from the Fat-Storing Cells in Their Lipid Composition. Lipids 1987, 22, 266-273. (d) Batres, R.O.; Olson, J. A. A Marginal Vitamin A Status Alters the Distribution of Vitamin A Among Parenchymal and Stellate Cells in Rat Liver. J. Nutr. 1987, 117, 874-879.
68. (a) Gad, M. Z.; Harrison, E. H. Neutral and Acid Retinyl Ester Hydrolases Associated with Rat Liver Microsomes: Relationships to Microsomal Cholesteryl Ester Hydrolases. J. Lipid Res. 1991, 32, 685-693. (b) Harrison, E. H.; Gad, M. Z. Hydrolysis of Retinyl Palmitate by Enzymes of Rat Pancreas and Liver. J. Biol. Chem. 1989, 264, 17142-17147.
69. Yamada, M.; Blaner, W. S.; Soprano, D. R., Dixon, J. L.; Kjeldbye, H. M., Goodman, D. S. Biochemical Characteristics of Isolated Rat Liver Stellate Cells. Hepatology 1987, 7, 1224-1229.
70. Soprano, D. R.; Blaner, W. S. Plasma Retinol-Binding Protein. In The Retinoids, Biology, Chemistry, and Medicine, $2^{\text {nd }}$ Ed., Sporn, M. B.; Roberts, A. B.; Goodman, D. S.; Eds., Raven Press, Ltd.: New York, 1994, pp 257-281.
71. Levin, M. S. Cellular Retinol-Binding Proteins are Determinants of Retinol Uptake and Metabolism in Stably Transfected Caco-2 Cells. J. Biol. Chem. 1993, 268, 8267-8276.
72. Boerman, M. H. E.; Napoli, J. L. Cholate-Independent Retinyl Ester Hydrolysis: Stimulation by Apo-Retinol Binding Protein. J. Biol. Chem. 1991, 266, 2227322278.
73. Herr, F. M.; Ong, D. E. Differential Interaction of Lecithin-Retinol Acyltransferase with Cellular Retinol Binding Protein. Biochemistry 1992, 31, 6748-6755.
74. Posch, K. C.; Boerman, M. H. E.; Burns, R. D.; Napoli, J. L. Holo-Cellular Retinol Binding Protein as a Substrate for Microsomal Retinal Synthesis. Biochemistry 1991, 30, 6224-6230.
75. Posch, K. C.; Burns, R. D.; Napoli, J. L. Biosynthesis of All-Trans-Retinoic Acid from Retinal: Recognition of Retinal Bound to the Cellular Retinol Binding

Protein (type I) as a Substrate by Purified Cytosolic Dehydrogenase. J. Biol. Chem. 1992, 267, 19676-19682.
76. (a) Boylan, J. F.; Gudas, L. J. The level of CRABP-I Expression Influences the Amounts and Types of All-Trans-Retinoic Acid in F9 Teratocarcinoma Stem Cells. J. Biol. Chem. 1992, 267, 21486-21491. (b) Norris, A. W.; Cheng, L.; Giguere, V.; Rosenberg, M.; Li, E. Measurements of Subnanomolar Retinoic Acid Binding Affinities for Cellular Retinoic Acid Binding Proteins by Fluorometric Titration. Biochem. Biophys. Acta 1994, 109, 10-18.
77. Fiorella, P. D.; Napoli, J. L. Microsomal Retinoic Acid Metabolism: Effects of Cellular Retinoic Acid Binding Protein (Type I) and C18-Hydroxylation as an Initial Step. J. Biol. Chem. 1994, 269, 10538-10544.
78. (a) Stahl, W.; Sundquist, A. R.; Hanusch, M.; Schwarz, W.; Sies, H. Separation of β-Carotene and Lycopene Geometrical Isomers in Biological Samples. Clin. Chem. 1993, 39, 810-814. (b) Canada, F. J.; Law, W. C.; Rando, R. R.; Yamamoto, T.; Derguini, F.; Nakanishi, K. Subsdtrate Specificities and Mechanism in the Enzymatic Processing of Vitamin A into 11-cis-Retinol. Biochemistry 1990, 29, 9690-9697. (c) Horst, R. L.; Reinhardt, T. A.; Goff, J. P.; Nonnecke, B. J.; Gambhir, V. K.; Fiorella, P. D.; Napoli, J. L. Identification of 9,13-di-cis-Retinoic Acid as a Major Circulating Retinoid in Plasma. Biochemistry 1995, 34, 1203-1209.
79. Levin, A. A.; Sturzenbecker, L. J.; Kazmer, S.; Bosakowski, T.; Huselton, C.; Alenby, G.; Speck, J.; Kratzeisen, C. L.; Rosenberger, M.; Lovey, A.; Grippo, J. F. 9-Cis-Retinoic Acid Stereoisomer Binds and Activates the Nuclear Receptor RXR α. Nature 1992, 355, 359-361.
80. Chambon, P. The Retinoid Signaling Pathway: Molecular and Genetic Analysis Semin. Cell. Biol. 1994, 5, 115-125.
81. Kersten, S.; Pan, L.; Noy, N. The Role of Ligand in Retinoid Signaling: Positive Cooperativity in the Interaction of 9-cis-Retinoic Acid with Tetramers of the Retinoid X Receptor. Biochemistry 1995, 34, 14263-14269.
82. Meyer, M. E.; Gronemeyer, H.; Turcotte, B.; Bocquel, M. T.; Tasset, D.; Chambon, P. Steroid Hormone, Receptors Compete for Factors that Mediate Their Enhancer Function. Cell, 1989, 57, 433-442.
83. Minucci, S.; Ozato, K. Retinoid Receptors in Transcriptional Regulation. Curr. Opinions Genet. Dev. 1996, 6, 567-574.
84. Predki, P. F.; Zamble, D.; Sarkar, B.; Giguere, V. Ordered Binding of Retinoic Acid and Retinoid X Receptors to Asymmetric Response Elements Involves

Determinants Adjacent to the DNA-Binding Domain. Mol. Endocrin. 1994, 8, 31-39.
85. Mangelsdorf, D. J.; Evans, R. M. The RXR Heterodimers and Orphan Receptors. Cell 1995, 83, 841-850.
86. Forman, B. M.; Umesono, K.; Chen, J.; Evans, R. M. Unique Response Pathway Established by Allosteric Interaction Among Nuclear Hormone Receptors. Cell, 1995, 81, 541-550.
87. Halachmi, S.; Merden, E.; Martin, G.; MacKay, H.; Abbodanza, C.; Brown, M. Oestrogen Receptor-Associated Proteins: Possible Mediation of HormoneInduced Transcription. Science 1994, 264, 1455-1458.
88. Cuvailles, V.; Dauvois, S.; L’Horset, F.; Lopez, G.; Hoare, S.; Kusner, P. J.; Parker, M. G. Nuclear Factor RIP 140 Modulates Transcription Activation. EMBO J. 1996, 16, 3741-3751.
89. Cooper, R. J.; von Baur, E.; Zachel, C.; Heery, D.; Heine, M. J.; Garnier, J. M.; Vivat, V.; Le Douarin, B.; Gronemeyer, H.; Chambon, P.; Losson, R. Differential Ligand-Dependent Interaction Between the AF-2 Activating Domain of Nuclear Receptors and the Putative Transcriptional Intermediary Factors mSUG1 and TIF 1. $E M B O J .1996,16,3241-3247$.
90. Le Dourin, B.; Zechel, C.; Garnier, J. M.; Lutz, Y.; Tora, L.; Pierrat, P.; Heery, D.; Gronemeyer, H.; Chambon, P.; Losson, R. The N-Terminal Part of TIF 1, a Putative Mediator of the Ligand-Dependent Activation Function (AF-2) of Nuclear Receptor is Fused to B-raf in the Oncogenic Protein T18. EMBO J. 1995, 14, 2020-2033.
91. Lee, J. W.; Ryan, F.; Swafield, J. C.; Johnston, S. A.; Moore, D. A. Interaction of Thyroid Hormone Receptor with a Conserved Transcriptional Mediator. Nature 1995, 374, 91-94.
92. Schulman, I. G.; Chakravarti, D.; Juguilon, H.; Romo, A.; Evans, R. M. Interaction Between the Retinoid X Receptor and a Conserved Region of the TATA-Binding Protein Mediates Hormone Dependent Transactivation. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 8288-8292.
93. Horlein, A. J.; Naar, A. M.; Heinzel, T.; Gloss, B.; Kurokawa, R.; Ryan, A.; Glass, C. K. Ligand-Independent Repression by the Thyroid Hormone Receptor Mediated by Nuclear Receptor Co-repressor. Nature 1995, 377, 397-404.
94. Kurokawa, R.; Soderstrom, M.; Horlein, A.; Halachni, S.; Brown, M.; Rosenfeld, M. G.; Glass, C. K. Polarity-Specific Activities of Retinoic Acid Receptors Determined by a Co-repressor. Nature 1995, 377, 451-454.
95. Chen, J. D.; Evans, R. M. A Transcriptional Co-repressor that Interacts with Nuclear Hormone Receptors. Nature 1995, 377, 454-457.
96. Glass, C. K. Differential Recognition of Target Genes by Nuclear Receptor Monomers, Dimers, and Heterodimers. Endocr. Rev. 1994, 15, 391-407.
97. (a) Klein, E. S.; Wang, J. W.; Khalifa, B.; Gavigan, S. A.; Chandraratna, R. A. S. Recruitment of Nuclear Receptor Corepressor and Coactivator to the Retinoic Acid Receptor by Retinoid Ligands. J. Biol. Chem. 2000, 275, 19401-19408. (b) Foster, R. H.; Brogden, Rex. N.; Benfield, P. Tazarotene. Drugs 1998, 55, 705711. (c) Nagpal, S.; Chandraratna, R. A. S. New Dermatological Agents for the Treatment of Psoriasis. In Annual Reports in Medicinal Chemistry, Bristol, J. A.; Ed., Academic Press: San Diego, CA, 1997, pp 201-210.
98. Klaholtz, B. P.; Renaud, J. P.; Mitschler, A.; Zusi, C.; Gronemeyer, H.; Chambon, P.; Moras, D. Conformational Adaptations of Agonists in the Nuclear Receptor RAR Gamma. Nat. Struct. Biol. 1998, 5, 100-202.
99. Gehin, M.; Vivat, V.; Wurtz, J. M.; Losson, R.; Chambon, P.; Moras, D.; Gronemeyer, H. Structural Basis for Engineering of Retinoic Acid Receptor Isotype-Selective Agonists and Antagonists. Chem. Biol. 1999, 6, 519-529.
100. Wurtz, J. M.; Bourget, W.; Renaud, J. P.; Vivat, V.; Chambon, P.; Moras, D.; Gronemeyer, H. A Conical Structure for the Ligand-Binding Domain of Nuclear Receptors. Nat. Struct. Biol. 1996, 3, 87-94.
101. Fisher, G. J.; Voorhees, J. J. Molecular Mechanism of Retinoids in Skin. FASEB J. 1996, 10, 1002-1013.
102. Li, Y.; Hashimoto, Y.; Agador, A.; Kagechika, H.; Zhang, X. Identification of a Novel Class of Retinoic Acid Receptor β-Selective Retiniod Antagonists and Their Inhibitory Effects on AP-1 Activity and Retinoic Acid-Induced Apoptosis in Human Breast Cancer Cells. J. Biol. Chem. 1999, 274, 15360-15366.
103. Klein, E. S.; Pino, M. E.; Johnson, A. T.; Davies, P. J. A.; Nagpal, S.; Thacher, S.; M.; Krasinski, G.; Chandraratna, R. A. S. Identification and Functional Separation of Retinoic Acid receptor Neutral Antagonists and Inverse Agonists. J. Biol. Chem. 1996, 271, 22692-22696.
104. Yoshimura, H.; Nagai, M.; Hibi, S.; Kikuchi, K.; Abe, S.; Hida, T.; Higashi, S.; Hishinuma, I.; Yamanaka, T. A Novel Type of Retinoic Acid Receptor Antagonist: Synthesis and Structure-Activity Relationahips of Heterocyclic RingContaining Benzoic Acid Derivatives. J. Med. Chem. 1995, 38, 3163-3173.
105. Johnson, A. T.; Klein, E. S.; Wang, L.; Song, T. K.; Pino, M. E.; Chandraratna, R. A. S. Synthesis and Characterization of a Highly Potent and Effective Antagonist of Retinoic Acid Receptors. J. Med. Chem. 1995, 38, 4764-4767.
106. Standeven, A. M.; Johnson, A. T.; Escobar, M.; Chandraratna, R. A. S. Specific Antagonist of Retiniod Toxicity in Mice. Tox. Appl. Pharm. 1996, 138, 169-175.
107. (a) Mario, J.; Brown, F. Regulation of Expression Driven by Human Immunodeficiency Virus Type I and Human T-Cell Lukemia Virus Type I Long Terminal Repeats in Pluripotential Human Embryonic Cells. J. Virol. 1988, 62, 1398-1407. (b) Turpin, J.; Vargo, M.; Meltzer, M. Enhanced HIV-1 Replication in Retinoid-Treated Monocytes. Retinoid Effects Mediated Through Mechanisms Related Cell Differentiation and to a Direct Transcriptional Action on Viral Gene Expression. J. Immunol. 1992, 148, 2539-2546. (c) Zeichner, S.; Kirka, G.; Andrews, P.; Alwine, J. Differentiation-Dependent Human Immunodeficiency Virus Long Terminal Repeat Regulatory Elements Active in Human Teratocarcinoma Cells. J. Virol. 1992, 66, 2268-2273.
108. Koch, S. S. C.; Dardashti, L. J.; Hebert, J. J.; White, S. K.; Croston, G. E.; Flatten, K. S.; Heyman, R. A.; Nadzan, A. M. Identification of the First Retinoid X Receptor Homodimer Antagonist. J. Med. Chem. 1996, 39, 3229-3234.
109. (a) Ameisen, J. C. The Origin of Programmed Cell Death. Science 1996, 272, 1278-1279. (b) Miller, D. K. Regulation of Apoptosis by Members of the ICE Family and the Bcl-2 Family. Annu. Repts. Med. Chem. 1996, 31, 249-268.
110. Horn, V.; Minucci, S.; Orgyzko, V. V.; Adamson, E. D.; Howard, B. H.; Levin, A. A.; Ozato, K. RAR and RXR Selective Ligands Cooperatively Induce Apoptosis and Neuronal Differentiation in P19 Embryonal Carcinoma Cells. FASEB J. 1996, 10, 1071-1077.
111. Nagy, L.; Thomazy, V. A.; Sipley, G. L.; Fesus, L.; Lamph, W.; Heyman, R. A.; Chandraratna, R. A. S.; Davies, P. J. A. Activation of Retiniod X Receptors Induces Apoptosis in HL-60 Cell Lines. Mol. Cell. Biol. 1995, 15, 3540-3551.
112. (a) Wang, T. T. Y.; Phang, J. M. Effect of N-(4-Hydroxyphenyl)retinamide on Apoptosis in Human Breast Cancer Cells. Cancer Lett. 1996, 107, 65-71. (b) Fanjul, A. N.; Delia, D.; Peiriotti, M. A.; Rideout, D.; Qiu, J.; Pfahl, M. 4Hydroxyphenyl Retinamide is a Highly Selective Activator of Retinoid Receptors. J. Biol. Chem. 1996, 271, 22441-22446.
113. (a) Montaldo, P. G.; Pagnan, G.; Postorino, F.; Chiesa, V.; Raffaghello, L.; Kirchmeier, M.; Allen, T. M.; Ponzoni, M. N-(4-Hydroxyphenyl)retinamide is cytotoxic to Melanoma Cells in vitro through the Induction of Programmed Cell Death. Int. J. Cancer 1999, 81, 262-267. (b) Scher, R. L.; Saito, W.; Dodge, R. K.; Richtsmeier, W. J.; Fine, R. L. Fenretinide-Induced Apoptosis in Human

Head and Neck Squamous Carcinoma Cell Lines. Otolaryngol. Head Neck Surg. 1998, 118, 464-471. (c) Hsieh, T. C.; Wu, J. M. Effects of Fenretinide (4-HPR) on Prostate LNCaP Cell Growth, Apoptosis, and Prostate-Specific Gene Expression. Prostate 1997, 33, 97-104. (d) Deliaq, D.; Aiello, A.; Formelli, F.; Fontanella, E.; Costa, A.; Miyashita, T.; Reed, J. C.; Pierotti, M. A. Regulation of Apoptosis Induced by the Retinoid N-(4-Hydroxyphenyl)retinamide and Effect of Deregulated Bcl-2. Blood 1995, 85, 359-367. (e) Guruswamy, S.; Lightfoot, S.; Gold, M. Hassan, R.; Berlin, K. D.; Ivey, T. R.; Benbrook, D. M. Effects of Retinoids on Cancerous Phenotype and Apoptosis in Organotypic Cultures of Ovarian Carcinoma. J. Natl. Cancer Inst. 2001, 93, 516-525.
114. (a) Merritt, G.; Aliprandis, E. T.; Prada, F.; Rigas, B.; Kashfi, K. The Retinoid Fenretinide Inhibits Proliferation and Downregulates Cyclooxygenase-2 Gene Expression in Human Colon Adenocarcinoma Cell Lines. Cancer Lett. 2001, 164, 15-23. (b) Formelli, F.; Cleris, L. Therapeutic Effects of the Combination of Fenretinide and All-trans-Retinoic Acid and of the Two Retinoids with Cisplatin in a Human Ovarian Carcinoma Xenograft and in a Cisplatin-Resistant Sub-line. Eur. J. Cancer 2000, 36, 2411-2419. (c) Pollard, M.; Luckert, P. H.; Sporn, M. B. Prevention of Primary Prostate Cancer in Lobund-Wistar Rats by N -(4Hydroxyphenyl)retinamide. Cancer Res. 1991, 51, 3610-3611.
115. (a) Lippman, S. M.; Lotan, R. Advances in the Development of Retinoids as Chemopreventive Agents. J. Nutr. 2000, 130, 479S-482S. (b) Hsieh, T.-C.; Wu, J. M. Apoptosis and Restriction of $\mathrm{G}_{1} / \mathrm{S}$ Cell Cycle by Fenretinide in Burkitt's Lymphoma Mutu I Cell Line Accessed with Bcl-6 Down Regulation. Biochem. Biophys. Res. Commun. 2000, 276, 1295-1301. (c) Kitareewa, S.; Spinella, M. J.; Allopenna, J.; Reczek, P. R.; Dmitrovsky, E. 4HPR Triggers Apoptosis but not Differentiation in Retinoid Sensitive and Resistant Human Embrhyonal Carcinoma Cells through an RAR γ Independent Pathway. Oncogene 1999, 18, 5747-5755. (d) Sheikh, M. S.; Shao, Z.-M.; Li, X.-S.; Ordonez, J. V.; Conley, B. A.; Wu, S.; Dawson, M. I.; Han, Q.-X.; Chao, W.-R. N-(4Hydroxyphenyl)retinamide (4-HPR)-Mediated Biological Actions Involve Retinoid Receptor-Independent Pathways in Human Breast Carcinoma. Carcinogenesis 1995, 16, 2477-2486.
116. (a) Clifford, J. L.; Menter, D. G.; Wang, M.; Lotan, R.; Lippman, S. M. Retinoid Receptor-Dependent and Receptor-Independent Effects of N -(4-Hydroxyphenyl)retinamide in F9 Embryonal Carcinoma Cells. Cancer Res. 1999, 59, 14-18. (b) Liu, G.; Wu, M.; Levi, G.; Ferrari, N. Inhibition of Cancer Cell Growth by All-trans-Retinoic Acid and its Analog N-(4-Hydroxyphenyl)retinamide: A Possible Mechanism of Action Via Regulation of Retinoid Receptors Expression. Int. J. Cancer 1998, 78, 248-254. (c) Sabichi, A. L.; Hendricks, D. T.; Bober, M. A.; Birrer, M. J. Recetinoic Acid Receptor β Expression and Growth Inhibition of Gynecologic Cancer Cells by the Synthetic Retinoid N-(4Hydroxyphenyl)retinamide. J. Natl. Cancer Inst. 1998, 90, 597-605.
117. Madler, M. M. Ph D. Dissertation. Flexible Heteroarotinoids as Potential Anticancer Agents. Oklahoma State University, 1997.
118. Klucik, J. Ph. D. Dissertation. Modification of Heteroarotinoids to Enhance Their Retinoic Acid Receptor Binding Specificity and Anti-Cancer Activity. Oklahoma State University, 2000.
119. Wagner, M. In Retinoid Protocols: Methods in Molecular Biology, Redfern, C. P. F.; Ed., Humana Press: Totowa, NJ, 1998, vol. 89, pp. 41-53.
120. Armstrong, R. B.; Ashenfelter, K. O.; Eckhoff, C.; Levin, A. A.; Shapiro, S. S. General and Reproductive Toxicology of Retinoids. In The Retinoids-Biology, Chemistry, and Medicine, $2^{\text {nd }}$ Ed., Sporn, M. B.; Roberts, A. B.; Goodman, D. S., Eds., Raven Press Ltd.: New York, 1994, pp 545-572.
121. Pignatello, M. A.; Kauffman, F. C.; Levin, A. A. Multiple Factors Contributing to the Toxicity of the Aromatic Retinoid TTNPB: Interaction with Retinoic Acid Receptors. Tox. Appl. Pharm. 1999, 159, 109-116.
122. Hani, R.; Bigler, F. Isolation and Identification of Three Major Metabolites of Retinoic Acid from Rat Feces. Helv. Chim. Acta. 1977, 60, 881-887.
123. Zacheis, D.; Dhar, A.; Lu, S.; Madler, M. M.; Klucik, J.; Brown, C. W.; Liu, S.; Clement, F.; Subramanian, S.; Weerasekare, G. M.; Berlin, K. D.; Gold, M. A.; Houck, Jr., J. R.; Fountain, K. R.; Benbrook, D. M. Heteroarotinoids Inhibit Head and Neck Cancer Cell Lines in Vitro and in Vivo Through Both RAR and RXR Retinioc Acid Receptors. J. Med. Chem. 1999, 42, 4434-4445.
124. Klaholz, B. P.; Mitschler, A.; Moras, D. Structural Basis for Isotype Selectivity of the Human Retinoic Acid Nuclear Receptor. J. Biol. Chem. 2000, 302, 155170.
125. Benbrook, D. M.; Madler, M. M.; Spruce, L. W.; Birckbichler, P. J.; Nelson, E. C.; Subramanian, S.; Weerasekare, G. M.; Gale, J. B.; Patterson, Jr., M. K.; Wang, B.; Wang, W.; Lu, S.; Rowland, T.; DiSivestro, P.; Lindamood III, C.; Hill, D. L; Berlin, K. D. Biologically Active Heteroarotinoids Exhibiting Anticancer Activity and Decreased Toxicity. J. Med. Chem. 1997, 40, 35673583.
126. (a) Spruce, L. W.; Gale, J. B.; Berlin, K. D.; Verma, K. A.; Breitman, T. R.; Ji, X.; van der Helm, D. Novel Heteroarotinoids: Synthesis and Biological Activity. J. Med. Chem. 1991, 34, 430-439. (b) Spruce, L. W.; Rajadhyaksha, S. N.; Berlin, K. D.; Gale, J. B.; Miranda, E. T.; Ford, W. T.; Blossey, E. C.; Verma, A. K.; Hossain, M. B.; van der Helm, D.; Breitman, T. R. Heteroarotinoids. Synthesis, Characterization, and Biological Activity in Terms of an Assessment of These Systems to Inhibit Induction of Ornithine Decarboxylase Activity and to

Induce Terminal Differentiation of HL-60 Cells. J. Med. Chem. 1987, 30, 14741482. (c) Waugh, K. M.; Berlin, K. D.; Ford, W. T.; Holt, E. M.; Carroll, J. P.; Schomber, P. R.; Schiff, L. J. Synthesis and Characterization of Selected Heteroarotinoids. Pharmacological Activity as Assessed in Vitamin A Deficient Hamster Tracheal Organ Cultures. Single-Crystal X-ray Diffraction Analysis of 4,4-Dimethylthiochroman-6-yl Methyl Ketone 1,1-Dioxide and Ethyl(E)-4-[2-(4,4-Dimethylthiochroman-6-yl)-1-propenyl]benzoate. J. Med. Chem. 1985, 27, 116-124.
127. Bernard B. A.; Bernardon, J.-M.; Delescluse, C.; Martin, B.; Lenoir, M.-C.; Maigan, J.; Charpentier, B.; Pilgrim, W. R.; Reichert, U.; Shroot, B. Identification of Synthetic Retinoids with Selectivity for Human Nuclear Retinoic Acid Receptor Gamma. Biochem. Biophys. Res. Commun. 1992, 186, 977-983.
128. (a) Klaholz, B. P.; Mitschler, A.; Belema, M.; Zusi, C.; Moras, D. Enantiomer Discrimination Illustrated by High Resolution Crystal Structures of the Human Nuclear Receptor hRAR γ. Proc. Natl. Acad. Sci. USA 2000, 97, 6322-6327. (b) Yu, K.-L.; Spinazze, P.; Ostrowski, J.; Currier, S. J.; Pack, E. J.; Hammer, L.; Roalsvig, T.; Honeyman, J. A.; Tortolani, D. R.; Reczek, P. R.; Mansuri, M. M.; Starrett Jr., J. E. Retinoic Acid Receptor Beta, Gamma-Selective Ligands: Synthesis and Biological Activity of 6-Substituted 2-Napthoic Acid Retinoids. J. Med. Chem. 1996, 39, 2411-2421.
129. Kato, S.; Mano, H.; Kumazawa, T.; Yoshizawa, Y.; Kojima, R.; Masushige, S. Effect of Retinoid Status on Alpha, Beta, and Gamma Retinoic Acid Receptors mRNA in Various Rat Tissues. Biochem. J. 1992, 286, 755-760.
130. Dawson, M. I.; Hobbs, P. D.; Derdzinski, K.; Chan, R. L.-S.; Gruber, J.; Chao, W.; Smith, S.; Thies, R. W.; Schiff, L. J. Conformationally Restricted Retinoids. J. Med. Chem. 1984, 27, 1516-1531.
131. Sparks, A. K. Solvent Effects in Aromatic Nitration. Nitration by Acyl Nitrates. J. Org. Chem. 1966, 31, 2299-2302.
132. Schroter, R. In Houben-Weyl, Methoden der Organiscen Chemie, $4^{\text {th }}$ Edition, Vol. X1, Muller, E., Ed., Georg Thieme Verlag: Stuttgart, 1957, pp. 422-436.
133. Owsley, D. C.; Bloomfield, J. J. The Reduction of Nitroarenes with Iron/Acetic Acid. Synth. Comm. 1977, 118-120.
134. Kappe, J.; Ziegler, E. Modification of the Pechmann Reaction. Org. Prep. Proc. 1969, 1, 61-62.
135. Subramanian, S. Ph. D. Dissertation. Modified Heteroarotinoids: Potential AntiCancer Agents. Oklahoma State University, 1993.
136. Yli-Kauhaluoma, J. T.; Ashley, J. A.; Lo, C. H.; Tucker, L.; Wolfe, M. M.; Janda, K. D. Anti-Metallocene Antibodies: A New Approach to Enantioselective Catalysis of the Diels-Alder Reaction. J. Am. Chem. Soc. 1995, 117, 7041-7047.
137. Wolfe, S.; Godfrey, J. C.; Holdrege, C. T.; Perron, Y. G. Rearrangement of Penicillins to Anhydropenicillins. Can. J. Chem. 1968, 46, 2549-2559.
138. Barstow, L. E.; Hruby, V. J. A Simple Method for the Synthesis of Amides. J. Org. Chem. 1971, 36, 1305-1306.
139. (a) Wei, Z.-Y.; Brown, W.; Takasaki, B.; Plobeck, N.; Delorme, D.; Zhou, F.; Yang, H.; Jones, P.; Gawell, L.; Gagnon, H.; Schmidt, R.; Yue, S.-Y.; Walpole, C.; Payza, K.; St-Onge, S.; Labarre, M.; Godbout, C.; Jakob, A.; Butterworth, J.; Kamassah, A.; Morin, P.-E.; Pjean, D.; Ducharme, J.; Roberts, E. N,N-Diethyl-4-(phenylpiperidin-4-ylidenemethyl)benzamide: A Novel Exceptionally Selective, Potent δ Opioid Receptor Agonist with Oral Bioavailability and Its Analogues. J. Med. Chem. 2000, 43, 3895-3905. (b) Deady, L. W.; Kaye, A. J.; Finlay, G. J.; Baguley, B. C.; Denny, W. A. Synthesis and Antitumor Properties of N-[2(Dimethylamino)ethyl]carboxamide Derivatives of Fused Tetracyclic Quinolines: A new Class of Putative Topoisomerase Inhibitors. J. Med. Chem. 1997, 40, 2040-2046. (c) Walter, M. Substituted Phenyl Esters of PGA2. (Upjohn Co., USA), U. S., 8 pp, US 4042606 19770816; Chem. Abstr. 1977, 88, 6404.
140. Galabov, B.; Vassilev, G.; Koleva, V.; Ilieva, M. Spectra and Conformations of Substituted Thioureas. J. Mol. Struct. 1982, 82, 35-41.
141. (a) Lindamood, III, C.; Dillehay, D. L.; Lamon, E. W.; Giles, H. D.; Shealy, Y. F.; Sani, B. P.; Hill, D. L. Toxicologic and Immmunologic Evaluations of N -(All-trans-Retinoyl)-d,l-Leucine and N-(All-trans-Retinoyl)glycine. Toxicol. Appl. Pharmacol. 1988, 96, 279-295. (b) Lindamood, III, C.; Giles, H. D.; Hill, D. L. Preliminary Profile of Arotinoids SMR-2 and SMR-6 in Male B6D2F1 Mice. Fundam. Appl. Toxiciol. 1987, 8, 517-530.
142. Kagechika, H.; Kawachi, E.; Hashimoto, Y.; Himi, T.; Shudo, K. Retinobenzoic Acids. 1. Structure-Activity Relationships of Aromatic Amides with Retinoidal Activity. J. Med. Chem. 1988, 31, 2182-2192.
143. Van de Waterbeemd, H.; Smith, D. A.; Beaumont, K.; Walker, D. K. PropertyBased Design: Optimization of Drug Absorption and Pharmacokinetics. J. Med. Chem. 2001, 44, 1312-1333.
144. (a) Rouhi, A. M. Tuberculosis: A Tough Adversary. Chem. Eng. News 1999, 77, 52-69. (b) Dolin, P. J.; Raviglione, M. D., Kochi, A. Global Tuberculosis Incident and Mortality During 1990-2000. Bull. World Health Org. 1994, 72, 213-220.
145. Li, R.; Sirawaraporn, R.; Chitnumsub, P.; Sirawaraporn, W.; Wooden, J.; Athappilly, F.; Turley, S.; Hol, W. G. Three-Dimensional Structure of M. Tuberculosis Dihydrofolate Reductase Reveals Opportunities for the Design of Novel Tuberculosis Drugs. J. Biol. Chem. 2000, 295, 307-323.
146. Nunn, P.; Kochi, A. A Deadly Duo - TB and AIDS. World Health 1993, 46, 7-8.
147. (a) Bass, J. B.; Farer, L. S.; Hopewell, P. C.; O'Brien, R.; Jacobs, R. F.; Ruben, F.; Dixie, E.; Snider, J.; Thornton, G. Treatment of Tuberculosis Infection in Adults and Children. Am. J. Respir. Crit. Care Med. 1994, 149, 1359-1374. (b) Bloom, B. R.; Murray, C. J. L. Tuberculosis: Commentary on a Reemergent Killer. Science 1992, 257, 1055-1064.
148. Nakahima, H. Tuberculosis: A Global Emergency. World Health 1993, 46, 3.
149. (a) Kuyper, L. F.; Baccanari, D. P.; Jones, M. L.; Huner, R. N.; Tansik, R. L.; Joyner, S. S.; Boytos, C. M.; Rudolph, S. K.; Knick, V.; Wilson, H. R.; Caddell, J. M.; Friedman, H. S.; Comley, J. C.; Stables, J. N. High-Affinity Inhibitors of Dihydrofolate Reductase: Antimicrobial and Anticancer Activities of 7,8-Dialkyl-1,3-diaminopyrrolo[3,2-f]quinazolines with Small Molecular Size. J. Med. Chem. 1996, 39, 892-903. (b) Blakeley, R. L. Eukaryotic Dihydrofolate Reductase. Advan. Enzymol. Relat. Areaqs Mol. Biol. 1995, 70, 23-102.
150. (a) Zuccotto, F.; Martin, A. C.; Laskowski, R. A.; Thornton, J. M.; Gilbert, I. H. Dihydrofolate Reductase: A Potential Drug Target in Trypanosomes and Leishmania. J. Comput. Aided Mol. Des. 1998, 12, 241-257. (b) Roth, B.; Stammers, D. K. Drug Interactions with Target Enzymes of Known Structure. In The Design of Drugs to Macromolecular Targets, Beddell, C. R.; Ed., Wiley: Chichester, 1992, pp 85-118.
151. Wiktor, S. Z.; Sassan-Morokro, M.; Grant, A. D.; Abouya, L.; Karon, J. M.; Marice, C.; Djomand, G.; Ackah, A.; Domoua, K.; Kadio, A.; Yapi, A.; Cobe, P.; Tossou, O.; Roels, T. H.; Lackritz, E. M. Efficacy of Trimethoprimsulphamethoxazole Prophylaxis to Decrease Morbidity and Mortality in HIV-1-Infected Patients with Tuberculosis in Abijian Cote d'Ivoire: A Radomized Controlled Trial. Lancet 1999, 353, 1469-1475.
152. Schweitzer, B. I.; Dicker, A. P.; Bertino, J. R. Dihydrofolate Reductase as a Therapeutic Target. FASEB J. 1990, 4, 2441-2452.
153. Phetsuksiri, B.; Baulard, A. R.; Cooper, A. M.; Minnikin, D. E.; Douglas, J. D.; Besra, G. S.; Brennan, P. J. Antimycobacterial Activities of Isoxyl and New Derivatives Through the Inhibition of Mycolic Acid Synthesis. Antimicrob. Agents Chemother. 1999, 43, 1042-1051.
154. Nudelman, A.; Raphaeli, A. Novel Mutual Prodrug of Retinoic and Butyric Acids with Enhanced Anticancer Activity. J. Med. Chem. 2000, 43, 2962-2966.
155. Raphaeli, A.; Nordenberg, J.; Aviram, A.; Rabizadeh, E.; Zimrah, Y.; Nudelman, A.; Novogrodsky, A.; Shaklai, M. Butyrate Induced Differentiation in Leukemic Myeloid Cells in Vitro and in Vivo Studies. Oncol. Rep. 1994, 1, 481-487.
156. (a) Kruh, J. Effects of Sodium Butyrate, A New Pharmacological Agent, On Cells in Culture. Mol. Cell. Biochem. 1982, 42, 65-82. (b) Candido, E. P.; Reeves, R.; Davie, J. R. Sodium Butyrate Inhibits Histone Deacetylation in Cultured Cells. Cell 1978, 14, 105-113.
157. (a) Lin, R. J.; Nagy, L.; Inoue, S.; Shao, W.; Miller, W. H., Jr.; Evans, R. M. Role of Histone Deacetylase Complex in Acute Promyelocytic Leukemia. Nature 1998, 39, 811-814. (b) Fenrick, R.; Hiebert, S. W. Role of Histone Deacetylases in Acute Leukemia. J. Cell. Biochem. Suppl. 1998, 30-31, 194-202. (C) Wolffe, A. A Sinful Repression. Nature 1997, 387, 16-17.
158. (a) Warrell, R. P., Jr.; He, L. Z.; Richon, V.; Calleja, E.; Pandolfi, P. P. Therapeutic Targeting of Transcription in Acute Promyelocytic Leukemia by Use of an Inhibitor of Histone Deacetylase. J. Natl. Cancer Inst. 1999, 90, 1621-1625. (b) Grignani, F.; De Matteis, S.; Nervi, C.; Tomassoni, L.; Gelmetti, V.; Cioce Fanelli, M.; Ruthardt, M.; Ferrara, F. F.; Zamir, I.; Seiser, C.; Grignani, F.; Lazer, M. A.; Minucci, S.; Pelicci, P. G. Fusion Proteins of the Retinoic Acid Receptorα Recruit Histone Deacetylase in Promyelocytic Leukemia. Nature 1998, 391, 815-816.
159. (a) Chen, T. A.; Allfrey, V. G. Rapid and Reversible Changes in Nucleosome Structure Accompany the Activation, Repression, and Superinduction of Murine Fibroblast Protooncogenes c-fos and c-myc. Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 5252-5256. (b) Thorne, A. W.; Kmiciek, D. K.; Mitchelson, K.; Sautiere, P.; Crane-Robinson, C. Patterns of Histone Acetylation. Eur. J. Biochem. 1990, 193, 701-713.
160. Miller, A. A.; Kurschel, E.; Osieka, R.; Schmidt, C. Clinical Pharmacology of Sodium Butyrate in Patients with Acute Leukemia. Eur. J. Cancer Clin. Oncol. 1987, 23, 1283-1287.
161. Cologne, J.; Le Sech, E.; Marey, R. Recherches sur les Dihydrocoumarines et sur les Chromannes. Bull. Soc. Chim. Fr. 1957, 776-779.
162. McClatchy, J. K. Antimycobacterial Drugs: Mechanism of Action, Drug Resistance, Susceptibility Testing, and Assay of Activity in Biological Fluids. In Antibiotics in Laboratory Medicine, Lorian, V.; Ed., The Williams and Wilkins Company: Baltimore, MD, 1986, pp 181-222.

VITA
 Chad Wayne Brown
 Candidate for the Degree of
 Doctor of Philosophy

Thesis: HETEROAROTINOIDS WITH TWO- AND THREE-ATOM LINKERS AS POTENTIAL ANTICANCER AGENTS

Major Field: Chemistry
Biographical:

Personal Data: Born in Ardmore, Oklahoma, on September 9, 1972, as the son of Glen D. and Holly J. Brown.

Education: Received primary education from Fox High School, Fox, Oklahoma, and received a Bachelor of Science degree from the University of Central Oklahoma, Edmond, Oklahoma, in December, 1996. Completed requirements for the Doctor of Philosophy degree at Oklahoma State University in August, 2001.

Experience: Teaching Assistant, Department of Chemistry, Oklahoma State University, January, 1997, through August, 1997; Graduate Research Assistant, Department of Chemistry, Oklahoma State University, September, 1997, to present.

Honors: Graduate Research Fellow in the NIH Biomedical Research Program, Department of Biochemistry and Molecular Biology, Oklahoma State University, September, 1997, through August, 1999; NIH MARC Fellow, September, 1999, to present.

Professional Memberships: American Chemical Society, Sigma Xi Scientific Research Society.

[^0]: ${ }^{1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.41\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.01\left[\mathrm{~d}, J=1.89 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{HC}=\mathrm{C}\left(\mathrm{C} \mathrm{H}_{3}\right)\right]$, $3.96\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right], 5.41\left[\mathrm{~m}, 1 \mathrm{H}, H \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right], 6.68[\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}], 6.74$ [dd, $J=7.97,2.01 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 7.17[\mathrm{~d}, 7.98 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H], 8.16[\mathrm{~d}, 8.01 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{Ar}-H], 8.24[\mathrm{~d}, 8.02 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}] ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 17.94\left[\mathrm{OCH}_{3}\right], 28.15$ $\left.\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)\right], 52.46\left[\mathrm{HC}=\left(\mathrm{CH}_{3}\right)\right], 76.48\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 109.76\left[\mathrm{HC}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right], 113.25$ $\left[\mathrm{HC}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right]$, 121.08-153.94 [Ar-C], $164.17[\mathrm{C}=\mathrm{O}], 166.14[\mathrm{C}=\mathrm{O}]$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{5}: \mathrm{C}, 71.58 ; \mathrm{H}, 5.72$. Found: C, $71.61 ; \mathrm{H}, 5.79$.

