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Abstract 

A case study of the Great Arctic Cyclone 2012 (AC12) is used to understand the role of 

initial condition errors and model physics errors in the 2-3-day range predictability of high-

impact summer Arctic Cyclones (ACs).  The control forecasts initialized with analyses 

assimilating conventional in-situ observation demonstrate improved skills in predicting the peak 

intensity with less than 3 hPa difference from the verifying reanalysis. However, the forecasted 

AC12 reaches its peak intensity 18 hours earlier than in the verifying reanalysis and the cyclone 

track is biased towards the southwest.  Using ensemble sensitivity analysis (ESA), the upstream 

trough, downstream ridge, and the tropopause polar vortex (TPV) to the northeast (NE TPV) of 

the AC12 are identified to be correlated with the deepening trend and the cyclone track error, but 

they are not well observed by current in-situ observation networks. Pseudo-observations are 

constructed from reanalysis and are added to the three features separately to study the impact of 

the initial condition error in each feature on the predictability of AC12. The cyclone deepening 

trend error and track error are greatly reduced when the initial condition is better constrained in 

either the NE TPV or the jet stream wind along the trough and ridge, as the former leads to a 

southward expansion of the NE TPV and the latter leads to successfully capturing of a shortwave 

trough at the 2PVU surface above the AC12. Varying the choice of model physics 

parameterization schemes does not further improve the cyclone track prediction. The cyclone 

intensity prediction is sensitive to the choice of longwave radiation schemes and planetary 

boundary layer (PBL) schemes. Varying longwave radiation schemes creates a large ensemble 

spread (~5 hPa) in the cyclone intensity prediction as the longwave cooling gradient near the 

tropopause affects the strength of TPVs. The Yonsei University (YSU) PBL scheme further 

improves the prediction of the deepening trend and sustained intensity of AC12, as it reduces the 
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PBL model physics error of the convection in the lower-tropopause front areas compared to the 

Mellor–Yamada–Nakanishi–Niino scheme widely used for Arctic. The choice of shortwave 

radiation schemes and microphysics schemes is found to have little impact on the predictability 

of AC12. These results have implications for further improvements in the intensity and track 

prediction of ACs at shorter time scales to better serve the growing human activity in the Arctic.
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1.  Introduction  

The scientific interest in the predictability of Arctic Cyclones (ACs) is increasing in 

recent years. New shipping opportunities emerging in the Arctic due to decreased sea ice 

coverage require skillful AC prediction to avoid safety risks. The complex interactions between 

ACs and the sea ice on multiple time scales (e.g., Koyama et al. 2017, Luckovich et al. 2021, 

Clancy et al. 2022) also play a critical role in assessing the availability and risks of the ship 

routes. Moreover, the dynamical linkages between the Arctic and the midlatitude atmosphere 

have been revealed in recent studies that improving AC prediction may also lead to the practical 

predictability improvement in midlatitudes on weather time scales (e.g., Jung et al. 2014, Jung et 

al. 2015, Sato et al. 2018). The prediction of ACs faces two great challenges which are distinct 

from tropical and extratropical cyclone prediction. The poor coverage of observation networks in 

the Arctic presents a challenge to data assimilation (DA) to reduce the initial condition error 

(Yamazaki et al. 2015, Johnson and Wang 2021). Furthermore, understanding is relatively 

lacking of how errors in the physical process parameterization (Bromwich et al. 2009, Hines et 

al. 2011, Hines and Bromwich 2017) in the Arctic contribute to limited predictability of ACs, 

which presents a challenge to model development and ensemble design for AC prediction. 

With the goal of improving the AC predictability, numerous efforts have been made to 

understand the mechanisms associated with the development and maintenance of summer ACs.  

Same as in extratropical cyclones, baroclinicity has been shown to play a key role in the genesis 

and evolution of Summer ACs (Inoue and Hori 2011, Tao et al. 2018).  The Eurasian continent 

interior and the Arctic coastline, featuring strong temperature gradients between land and the 

ocean, known as the Arctic frontal Zone (AFZ), have been shown to be one of the main regions 

for AC genesis (Crawford and Serreze 2015, Crawford and Serreze 2016). However, ACs 
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demonstrate a longer lifetime than extratropical cyclones (Tanaka et al. 2012, Aizawa and 

Tanaka 2016, Yamagami et al. 2016, Tao et al. 2018), implying ACs have unique dynamical 

properties from extratropical cyclones.  Simmonds and Rudeva (2012) suggested a tropopause 

polar vortex (TPV) vertically stacked with the Great Arctic Cyclone 2012 (AC12) plays a strong 

role in the evolution of the storm. Aizawa and Tanaka (2016) revealed the vertical structure of 

long-lasting summer ACs in their mature stage, featuring the deep barotropic cyclonic 

circulation, downward intrusion of the stratosphere, coupled warm core in the stratosphere and 

cold core in the troposphere, suggesting the lifetime of ACs is extended by their coupling with 

TPVs. Tao et al. (2018) found the increased static stability created by vertical coupling with TPV 

strengthens and sustains AC12. Besides the increased stability, the merging of TPVs has also 

been shown to extend ACs’ lifetime (Yamagami et al. 2016). TPV, as a PV anomaly at the jet 

stream level, may also trigger Rossby wave initiation events and lead to cyclone genesis 

(Röthlisberger et al. 2018, Johnson and Wang 2021). The intensification and sustaining 

mechanisms of TPVs have also been studied for their close interaction with ACs. Cavallo and 

Hakim (2009) applied the Ertel PV diagnostics to quantify the impact of the diabatic mechanisms 

on a TPV and showed that the cloud-top radiational cooling dominates the Ertel PV generation 

near the tropopause. Cavallo and Hakim (2013) demonstrated the water vapor gradient resulting 

from stratosphere dry air intrusion enhances the cloud-top radiative cooling and PV generation in 

the vicinity of the TPV.  While these studies focus on features that explain AC evolution, there is 

a need to understand how errors in the initial condition or evolution of these features are 

contributing to AC forecast errors.  

While physical understanding of the development of ACs progresses, previous studies on 

their predictability are still limited. Yamagami et al. (2018) studied the predictability of 10 high-
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impact summer ACs at medium-range timescales using ensemble forecasts from five operational 

prediction centers, showing that the operational ensemble forecasts can predict the cyclone 

center position error of less than 469km at a lead time of 2.5 days, which is a shorter lead time 

than tropical cyclones and extratropical cyclones. Yamagami et al. (2019) further examined the 

predictability of 26 high-impact summer ACs from 1986 to 2016 in Global Ensemble Forecast 

System, showing only at forecast lead times shorter than 3 days, most ensemble members are 

able to predict the formation of the cyclone, with <=433.1km track error and ~6.9 hPa center 

SLP error, suggesting the mid-range predictability of ACs are worse than extratropical cyclones.. 

The Great Arctic Cyclone 2012 (AC12), with its record-breaking center SLP and sea ice 

reduction, was studied by Yamagami et al. (2016). They found the predictability of AC12 is 

around 2-3 days with five operational ensemble forecast products, and successfully predicting 

the merging of two warm cores at 250 hPa is the common feature of top performance ensemble 

members. Their study also found that the cyclone tracks are commonly biased towards the 

southeast in all ECMWF and NCEP ensemble members, suggesting systematic errors are present 

in the IC and/or model physics at the 3-day lead time in these ensembles. While these studies 

have mainly emphasized predicting the formation of the ACs in the mid-range time scale >3 

days, factors that impact the track and intensity prediction at shorter lead times have not been 

emphasized in previous studies 

Further AC practical predictability improvements can come from either IC or physics 

improvements. Previous DA studies supported the potential to further improve AC forecasts by 

assimilating additional observations. Yamazaki et al. (2015) conducted an observing system 

experiment (OSE) to study the impact of an Arctic radiosonde observation on the predictability 

of AC12. Although the location of the extra observation is far from the cyclone center at the 
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mature stage, the forecast initialized with the analysis assimilating the extra observation predicts 

a much stronger cyclone than the forecast initialized by the analysis without the extra 

observation.  Further diagnostics shows that the reproduction of upper tropospheric circulation is 

improved and the location of the TPV leading to the cyclogenesis is better predicted with the 

extra observation. Johnson and Wang (2021) conducted an OSE of the July 2018 AC case and 

found that the denial of three well-placed temperature observations sampling the TPV and the 

upper-level jet degrades the TPV amplitude and its interaction with the waveguide. The degraded 

forecast of this interaction leads to a substantial increase of the cyclone track error. Both studies 

demonstrated that even a few additional observations can improve the prediction of ACs if they 

are well placed to sample dynamically relevant features. However, due to limited observation 

facilities in the Arctic, features potentially concerning the AC development, such as troughs, 

ridges, and TPVs, may not be well observed. To guide future observation network designs, 

further studies are needed to investigate the impact of the initial condition error on the AC 

development of each feature of interest in order to guide the decision on which feature should be 

prioritized for additional observations.  

The studies of the impact of model physics on the predictability of ACs, are even more 

limited.  Past studies focus on diagnosing and optimizing model physics in Numerical Weather 

Prediction (NWP) models to match the Arctic environment in general. Wilson et, al. (2012) 

examined Polar WRF (PWRF, details in Section 2) performance in forecasts of the atmospheric 

hydrological cycle in the Arctic, revealing an underprediction of cloud cover, which leads to an 

excess in incident shortwave radiation and longwave radiation. Hines and Bromwich (2016) 

improve the short-term cloud and radiation forecast in the Arctic by reducing specified liquid 

cloud droplet concentration in Morrison 2 microphysics scheme.  These results suggest that 
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model physics schemes and parameters performing well in the tropical or extratropical regions 

may not be the best option for the Arctic. It is also possible that model physics schemes and 

parameters performing well in forecasts of the Arctic in general may not be the best option for 

the AC prediction. Based on the previous studies of the mechanisms of the AC development and 

maintenance, the choice of longwave and shortwave radiation schemes can affect the diabatic 

cooling and heating near the tropopause, which in turn affects the intensity of TPVs and ACs. 

The choice of microphysics schemes has the potential to affect the AC structure by varying the 

cloud structure and latent heat patterns. The choice of Planetary Boundary Layer (PBL) schemes, 

which model the surface heat and moisture flux and convection differently (Hu et al. 2010), may 

be of great importance in improving the prediction of the baroclinic phase of the AC evolution. 

What’s more, if initial condition is not well-constrained, the performance of model physics is 

also affected. For example, bias in moisture near the tropopause can lead to bias in longwave 

cooling, thus affects the TPV’s intensity (Cavallo and Hakim, 2013). Therefore, there is a need 

to understand the sensitivity of AC forecast performance to different physical parameterization 

schemes on top of well-constrained initial conditions.   

The present study aims to investigate the impact of initial condition error and model 

physics error on the predictability of the great AC12. This work complements the past studies in 

several aspects. First, this paper focuses on addressing the AC prediction at a short 2-to-3-day 

lead time. Second, an ensemble sensitivity analysis (ESA) is used to identify key features and 

processes affecting the prediction of AC12.  By adding pseudo-observations (details in Section 

2) into each key feature, the impact of initial condition error on the predictability of AC12 of 

each feature is isolated and studied. Third, sensitivity experiments are conducted for different 

physics parameterization schemes initialized with the best analysis created from virous pseudo-
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observation experiments to investigate whether and how different parameterization schemes can 

improve the AC12 prediction on top of reduced initial condition error.  

The rest of this thesis is organized as follows. Sections 2 includes a description of the DA 

system and NWP models used for forecasting experiments, an overview of AC12, and 

experiment designs for the baseline forecast, pseudo-observation experiments, and model physics 

sensitivity experiments. The results of the experiments are discussed in Section 3. The main 

conclusions are summarized and suggestions for future work are provided in section 4. 
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2. Methods 

2.1 Case Overview  

AC12 is chosen for this study because of two reasons. AC12 is one of the strongest 

Arctic cyclones on the record since 1979 (Simmonds and Rudeva 2012), and the sea ice coverage 

in the Arctic broke the lowest record after its impact (Koyama et al. 2017). Understanding the 

predictability of AC12 will therefore benefit the prediction of extreme AC events and associated 

sea ice reduction. Secondly, the mechanisms critical to the formation of AC12 and its mid-range 

predictability have been relatively well studied compared to other AC cases (Yamagami et al. 

2018), giving us precious insights when studying its 2-to-3-day predictability.  

AC12 formed over Siberia on Aug 2nd according to Simmonds and Rudeva (2012). At 

1200UTC 3Aug (fig 1a), it deepened below 995 hPa to the east of a trough and a TPV (‘SW 

TPV’ in later parts of the paper). To the northeast of AC12 on the east Siberian Sea, there was 

another AC vertically stacked with a TPV (‘NE TPV’ in the later parts of the paper). AC12 

continued to progress to the northeast and reached the coastline with stronger troposphere 

baroclinicity while the other AC traveled to the west with the TPV above it. Meanwhile, a 

trough-ridge structure became well defined in the upper troposphere (fig 1b). At 1200UTC 5 

Aug (fig 1c), the two ACs merged into one at the edge of the lowered tropopause, and the center 

SLP reached below 980 hPa, while NE TPV moved to the southwest and SW TPV moved to the 

east. The TPVs merged on the next day, which has been shown to significantly affect the 

predictability of AC12 (Yamagami et al. 2018). At 1200UTC 6 Aug (fig 1d), the north-moving 

AC12 was close to its maximum intensity (~962 hPa in GFS-ANL at 1800UTC 6Aug), and it 

was superimposed with the upper-level high PV air. AC12 nearly stopped moving for one day, 
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maintaining its strength (fig 1e), before moving to the east and weakening. It dissipated on Aug 

15th with a lifespan of 13 days.       

2.2 Data Assimilation and Forecast System Configuration  

For the DA system, the Gridpoint Statistical Interpolation (GSI)-based EnKF (Whitaker 

and Hamill 2002, Wang et al. 2013, Wang and Lei 2014) coupled with the Advanced Research 

version of the Weather Research and Forecasting model (Shamrock et al. 2008) with Polar 

modifications (PWRF, Hines and Bromwich 2008, Bromwich et al. 2009, Hines et al. 2011) 

version 4.1 is used. In-situ conventional surface and upper-air observations from the operational 

GTS data stream are assimilated. Satellite observations are not assimilated because of the 

presence of unique challenges related the effective satellite data retrieval in the Arctic (e.g., 

Kwok et al. 2009) that are not the focus of this work. Since conventional observations are sparse 

in the Arctic compared to mid-latitude and tropical regions, enhancing the understanding of the 

effect of conventional observations on the predictability of AC12 will potentially benefit future 

observation infrastructure development in the Arctic.  

PWRF modifies WRF physics parameterization in three aspects. It improves the surface 

energy balance and heat transfer of the Noah Land Surface Model to fit the ice-covered surface 

in the Arctic (Hines et al. 2011). It reduces the specified liquid cloud droplet concentration in 

Morrison 2-moment (Morrison et al. 2009) microphysics to match the observed cloud structure 

in the Arctic (Hines and Bromwich 2017). PWRF also allows the sea ice quantities and 

associated land masks to update during the simulation, though in this preliminary study the sea 

ice remains constant as the interactions between ACs and sea ice are not the focus of this work.    

Using the above systems, a 40-member cycled ensemble DA and forecast experiment is 

run from 0600UTC 3 Aug to 0000UTC Aug 8, covering the deepening, maximum intensity, and 
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weakening of AC12 (fig 2a). Twenty of the ensemble members are initialized from NCEP 

Global Ensemble Forecast System analyses at 0600UTC 3 Aug and the other twenty members 

are from 6-hour ensemble forecasts of GEFS initialized at 0000UTC 3 Aug. 3-hour DA cycles 

from 0600UTC 3 Aug to 1200UTC 5 Aug are applied, with Relaxation to Prior Spread posterior 

inflation (Gaspari and Cohn 1999) set to 0.95, horizontal and vertical localization parameter 

(Whitaker and Hamill 2012) set to 1000km and 0.35 scale height units for moisture observations, 

1.1 scale height units for other observations. This is the same configuration as in Johnson and 

Wang (2021). A deterministic forecast is initialized from the ensemble mean analysis every 12 

hours starting from 1200UTC 3 Aug to 0000UTC 5 Aug, and ends at 0000UTC 8 Aug. The 

model domain consists of 371*371 grid points centered at the North Pole (Fig 2b) with 27-km 

spacing and 90 vertical levels are used with the model top set at 10 hPa. Following the Arctic 

System Reanalysis (Bromwich et al. 2018), the rapid radiative transfer model (RRTMG, Ianoco 

et al. 2008) is chosen for both longwave and shortwave radiation parameterization, Mellor–

Yamada Nakanishi Niino (MYNN, Nakanishi and Niino 2009) Level 2.5 scheme is chosen for 

PBL parameterization,  Kain-Fritsch Cumulus Potential Scheme (Berg et al. 2013) is chosen for 

cumulus parameterization, the modified Noah Land Surface Model (Hines et al. 2011) is chosen 

for land surface, and the modified Morrison 2-moment Scheme (Hines and Bromwich 2017) is 

chosen for microphysics parameterization. 

This experiment is referred to as the Control experiment in later sections. The Control 

forecasts are verified against the Global Forecast System Model Analysis (GFS-ANL), which is 

considered as the reanalysis. However, the forecast skill of Control is not satisfactory since 

available rawinsonde observations does not cover the TPVs and ACs mentioned in Section 2.1.  

The detailed results are shown in Section 3.1.  
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2.3 Experiment Designs 

2.3.1 Pseudo-observation Experiments and Ensemble Sensitivity Analysis (ESA) 

The control experiment (Section 3.1) shows that the initial condition in synoptic features 

related to the evolution of AC12 is not well constrained because of the lack of in-situ 

conventional observations in the Arctic. Therefore, pseudo-observations are introduced to the 

features that lack observations. By adding pseudo-observations in different features to make 

them ‘well observed’, the impact of the initial condition error in each feature can be isolated and 

studied. This experiment is to address questions including what features need to be prioritized to 

be observed to improve short-term predictability of AC12, and how the improved initial 

condition in each feature benefits the prediction of AC12.     

One pseudo-observation includes vertical profiles of pressure, geopotential height, virtual 

temperature, water vapor mixing ratio, and U V wind at one grid point in GFS-ANL, which are 

pre-processed by PWRF to have the exact same vertical levels as in ensemble mean analyses (an 

example is shown in the appendix). The six vertical profiles are then formatted to a rawinsonde 

observation with default observation error variance in GSI. This pseudo rawinsonde is then 

converted into PREPBUFR (Keyser 2013) format and assimilated into the analysis together with 

real observations. GFS-ANL is chosen because at various forecast lead times, PWRF forecasts 

initialized with GFS-ANL outperform PWRF forecasts initialized with the ensemble mean 

analysis in the Control, in both cyclone intensity and track prediction (not shown), which implies 

that GFS-ANL constrains the initial condition better than the control analysis. Both model 

difference between GFS and PWRF and data assimilation difference, including data assimilation 

algorithms and setting difference and difference in observations assimilated, are contributing to 

the advantage of GFS-ANL over the Control ensemble mean analysis.    
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ESA has been widely used to analyze the impact of initial conditions to the forecast 

(Ancell and Hakim 2007, Torn and Hakim 2008). For an ensemble of size M, the ensemble 

sensitivity is defined as the linear regression coefficient between a scalar forecast metric J and an 

analysis state variable x, where J and x are 1 × M ensemble estimates of the metric and the state 

(Torn and Hakim 2008): 

𝜕𝐽

𝜕𝑥
=  

𝐶𝑜𝑣(𝐽, 𝑥)

𝑉𝑎𝑟 (𝑥)
  

 

 It reflects how much the forecast metric is likely to change given a unit increase of the 

state variable in the analysis. An ensemble forecast is run initialized with analyses assimilating 

real in-situ conventional observations at 1200UTC 4 Aug and ESA (Ancell and Hakim 2007, 

Torn and Hakim 2008) is used to identify features at the analysis time that are correlated with 

evaluation metrics, which include the cyclone track error at 1200UTC 6 Aug, and the time that 

cyclone reaches its peak intensity (referred as ‘phase’ in later sessions). Based on the result of 

the ESA, which is discussed in detail in Section 3.2, six pseudo-observation experiments are 

designed and shown in table 1. 

2.3.2 Model Physics Sensitivity Experiments 

The analysis with best forecasts of AC12 produced by assimilating different 

combinations of pseudo-observations is used to initialize a set of model physics sensitivity 

experiments. The experiments are to answer the questions including whether AC12 prediction 

can be further improved by tuning model physics schemes on top of the improved initial 

condition, what group of physics schemes create the largest spread in intensity and track forecast 

of AC12 and whether there are schemes outperforming others in AC prediction. 
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Four longwave radiation schemes are selected for their potential to affect TPV intensity 

through cloud-top cooling near the tropopause. RRTMG longwave scheme is the default. RRTM 

longwave scheme (Mlawer et al. 1997), Goddard longwave scheme (Chou et al. 2001) and CAM 

longwave scheme (Collins et al. 2004) are selected for the sensitivity experiments as they have 

been used in related studies for Arctic regions or other regions.  Four shortwave radiation 

schemes are also selected for their difference in modeling the cloud top heating and surface 

heating. RRTMG shortwave Schemes is the default.  Dudhia shortwave scheme (Dudhia 1989), 

Goddard shortwave scheme (Chou et al. 2001) and CAM shortwave scheme (Collins et al. 2004) 

are selected as they have been used in related studies for Arctic regions or other regions (e.g., 

Chandrasekar and Balaji 2012, Wilson 2012 et al). Three PBL schemes are selected for their 

differences in modeling surface fluxes and convection. MYNN Level 2.5 Schemes is the default. 

Mellor-Yamada-Janic scheme (MYJ, Janjic 1994) is selected as a representative of local closure 

schemes, which may not perform well when simulating convection (Hu et al. 2010). Yonsei 

University scheme (YSU) is selected as it has been proven to outperform MYNN in the previous 

study (Johnson and Wang 2021). Four microphysics schemes are selected for their differences in 

modeling cloud structure and latent heating, as the resulting difference in diabatic heating may 

affect the generation or destruction of the Ertel PV. Morrison 2 is the default. Purdue Lin scheme 

(Chen and Sun 2002) is selected as a representative of one-dimensional microphysics models. 

WRF Single-moment 6-class scheme (WSM6, Hong and Lim 2006) and Thompson scheme 

(Thompson et al. 2008) are selected as they have been used in related studies for Arctic regions 

(Wilson et al. 2012, Hines and Bromwich 2017).  The impact of cumulus schemes and land 

surface schemes is beyond the scope of this study. The physics sensitivity experiment groups are 

summarized in Table 2.  
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3. Results  

3.1 The Control Experiment 

Figure 3 shows the cyclone center SLP and tracks of the forecasted AC12 in the five 

deterministic forecasts initialized from the ensemble mean analysis at 1200UTC 3 Aug, 0000 

UTC 4 Aug, 1200UTC 4 Aug, and 0000UTC 5 Aug (referred to as ‘0312’, ‘0400’, ‘0412’, 

‘0500’).   0312 predicts a minimum SLP around 960 hPa, with less than 1 hPa difference 

compared to the reanalysis. However, the forecasted AC12 in 0312 reaches its maximum 

intensity at around 0000UTC 6 Aug, which is 18 hours earlier than the reanalysis. The cyclone is 

forecasted to deepen rapidly after 0900UTC 4 Aug, whereas in the verifying reanalysis, the 

cyclone deepens less than 5 hPa in 24 hours from 0900UTC 4 Aug to 0900UTC 5 Aug. For the 

track prediction, 0312 is biased towards the southwest compared to reanalysis, which is 

consistent with the cyclone track forecasts of the GEFS and EMCWF ensembles studied in 

Yamagami et. al (2018). The AC12 in 0400, after assimilating four cycles of surface 

observations and one cycle of rawinsonde observations, is forecasted with almost the same SLP 

and track as in 0312. This reflects the limitation of the sparse conventional in-situ observation 

network, as only few rawinsonde observations are available near the cyclone-related features 

such as the upper-level trough and the TPVs (locations of rawinsondes are shown in Fig 4). In 

0412, the AC12 is forecasted to be weaker than in 0312 and 0400 for 2 hPa. However, just as in 

the forecasts of previous cycles, it starts to rapidly deepen after initialization from analysis and 

reaches its maximum intensity at 0000UTC 6 Aug. The track shifts slightly to the northeast, 

showing improvement compared to 0312 and 0400. 0500 further shift the cyclone track to the 

northeast, demonstrating significant improvement compared to 0412, the center SLP at analysis 
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time is also improved, but the AC12 still reaches its maximum intensity too early at 0000UTC 6 

Aug.  

While all four experiments have demonstrated good skills in predicting minimum center 

SLP prediction (<5 hPa error), two biases are consistently observed. Firstly, for the cyclone 

intensity prediction, experiments predict a faster cyclone deepening rate and shorter deepening 

time, implying the cyclone reaches its mature stage earlier than in the verifying reanalysis. 

Assimilating conventional observations only corrects the cyclone center SLP error at analysis 

time but cannot improve the deepening trends and the cyclone stage prediction. Secondly, for the 

track prediction, all groups are biased towards the southwest, though the DA process is fixing the 

track error cycle by cycle, with the most significant improvement in 0500. These two biases can 

be contributed by either the initial condition error or the model physics error, or both. Whether 

and how improved initial condition and model physics can help to reduce the two biases, will be 

the focus of the pseudo-observation experiments and model physics experiments.  

The initial condition error is assumed to be the major contributor to the deepening trend 

bias and cyclone track bias because the coverage of conventional observations is poorer in the 

Arctic compared to the midlatitudes and tropics. Since previous studies (Yamazaki et al. 2015, 

Johnson and Wang 2021) have demonstrated that upper-air observations have a dominant effect 

on the cyclone evolution for a longer forecast lead time compared to lower levels, the 300 hPa 

geopotential height background error and analysis increments errors is examined for the four 

experiments from 0312 to 0500.  The analysis at 1200UTC 3 Aug and 0000UTC 4 Aug shows 

little increment because the cyclone and TPVs are not covered by the available radiosonde 

observations (not shown). At 1200UTC 4 Aug, the trough axis in the background is negatively 

tilted (Fig 4a, black thick line) while in reanalysis the trough is neutrally tilted trough, indicated 
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by the dipole on both sides of the trough axis. This implies the low pressure (AC12 in this case) 

associated with the trough is closer to its mature stage (Schultz et al. 2019) in the background 

than in the verifying reanalysis, which explains why the forecasted AC12 deepens faster and 

reaches its maximum intensity earlier. The dipole color shading near the ridge axis (Fig 4a, black 

dash line) indicates the initial condition error of the location of the ridge, with the background to 

the west and the reanalysis to the east. This difference in ridge locations is potentially related to 

the location difference of the 300 hPa cyclone center to the north of the ridge. The cyclone 

center, which is vertically stacked with the NE TPV (fig 1c), moves further to the west in the 

background than in the verifying reanalysis.  The trough, the ridge, and the cyclone center are 

not well-observed at 1200UTC Aug 4, although there are a few rawinsonde observations (Fig 4b, 

blue dots) to the east of the trough, creating a small and localized analysis increment. However, 

as the trough propagates further east at 0000UTC 5 Aug, there are more available observations, 

and the tilting angle error of the tough is fixed (not shown), which can contribute to the track 

forecast improvement shown in Fig 3b. But the initial condition error at the 300 hPa cyclone 

center and the ridge grows larger as they are not observed, which could be the contributor to the 

deepening trend bias and unsolved track bias.    

Since most upper-level features potentially related to the development of AC12 are not 

observed, the widely used data denial approach (Johnson and Wang 2021) to study the 

observations’ impact on the forecast error is not a good fit for this case study. Instead, a pseudo-

observation approach is proposed with details described in Section 2.3.1. Pseudo-observations is 

added at 1200UTC 4 Aug for two reasons. Firstly, the initial condition error grows larger at 

1200UTC 4 Aug compared to at 1200UTC 3 Aug and 0000UTC 4 Aug. With larger initial 

condition errors comes greater improvement potential for pseudo-observations. Secondly, the 
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initial condition error at 1200UTC 4 Aug can be separated into each feature including the trough, 

the ridge, the 300 hPa cyclone, etc., which allows us to study the impact of the initial condition 

error in each feature on the short-term predictability of AC12.  

3.2 Pseudo-observation Experiments 

3.2.1 Using ESA to Identify Critical Features 

ESA is conducted using the cyclone track error at 48-h forecast lead time (T48, 1200UTC 

6 Aug) and the time cyclone reaches its maximum intensity (referred to as ‘phase’)  as forecast 

metrics following the equation defined in Torn and Hakim (2008). A 40-member ensemble 

forecast is initialized from ensemble analyses at 1200UTC 4 Aug described in Section 2.2. The 

linear regression coefficients between the 300 hPa geopotential field, zonal wind field, and 

meridional wind field and the two metrics (cyclone track error and phase) are calculated, and 

coefficients with a p-value smaller than 0.05 (i.e., the 95% confidence level) are plotted in Fig5, 

together with the initial condition error of the ensemble mean (Fig 5g-5i).  

Three features are identified by the ESA to be of importance to the cyclone track and 

phase prediction, the NE TPV, the upstream trough, and the downstream ridge. The positive 

correlation between the initial geopotential height at 300 hPa and the cyclone track error in the 

vicinity of the upper-level cyclone center (also the NE TPV center) and the ridge to the northeast 

of it, suggests a stronger upper-level cyclone, or a stronger TPV, is correlated with less cyclone 

track error, while the negative correlation with phase suggests a stronger TPV correlating with 

extended cyclone deepening time.  A less tilted trough is correlated with less track error, inferred 

from the sensitivity to the southeast and southwest of the V-wind maximum (Fig 5c). An east 

shift of the ridge axis correlates with reduced track error and extended cyclone deepening time, 

inferred from the sensitivity dipole at both sides of the ridge axis (Fig 5a) and the V-wind 
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maximum (Fig 5c, 5f). The cyclone track sensitivity patterns of the 300 hPa wind field (Fig 5b, 

5c) agree with the initial condition error patterns (Fig 5h, 5i) in all the three features identified to 

be important, suggesting reducing initial condition error in the 300 hPa wind field (Fig 5h, 5i) 

can plausibly lead to improved cyclone track prediction. This agreement leads to the design of an 

additional experiment group that only assimilates wind observation along the jet stream, aiming 

to isolate and study the impact of the initial condition error of the jet wind on the track and 

deepening trend prediction of AC12. The 500 hPa and 850 hPa sensitivity patterns mostly agree 

with 300 hPa and are shown in the appendix.   

Pseudo-observations are added to the NE TPV and its northeast edge (Fig 5g, green dots), 

the trough (Fig 5g, cyan dots), and the ridge (Fig 5g, dark blue dots) based on the results of the 

ESA, covering the area that is not observed by available in-situ rawinsonde observations and has 

considerable initial condition error in either the geopotential height field or the wind field (Fig 

5g-5i). The location of each pseudo-observation is subjectively picked, and the distance between 

two pseudo-observations is approximately 400 km, close to the distance between real rawinsonde 

observations along the Eurasian coastline. Three experiments (ROUGH, RIDGE and NETPV) 

including pseudo-observations in only one feature are designed to isolate and investigate the 

impact of the initial condition error on AC12 prediction in each feature. Two experiments (T&R 

and T&R_wind) combining the pseudo-observations in both the trough and the ridge are 

designed to study the impact of the jet stream on the predictability of AC12. And one additional 

experiment (ALL) assimilating all the pseudo-observations is designed to study the ‘what-if’ 

scenario in which all the synoptic features closely related to the development of the AC12 are 

well observed.       

3.2.2 Pseudo-observation Experiments Results 
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The cyclone center SLP and track error for all pseudo-observation experiments are shown 

in Figure 6. At the analysis time, the initial condition error of cyclone center SLP and location is 

reduced for all experiments. AC12 is forecasted to have extended deepening time with peak 

intensity reached at 0600UTC 6 Aug compared to 0000UTC 6 Aug in Control with reduced track 

error. This verifies the ESA result that the trough, the ridge, and the NETPV are features closely 

correlated with the cyclone deepening trend prediction and track prediction. Among the three 

experiments with pseudo-observations in only one feature, THOUGH, RIDGE, and NETPV, 

NETPV (Fig 6c) outperforms the other groups (Fig 6a, 6b) as it predicts a slower deepening rate 

before 0000UTC 6 Aug and greater track error reduction, which further verifies the strong 

sensitivity in ESA in the vicinity of the NE TPV. T&R (Fig 6d) outperforms both Trough and 

Ridge but has a larger track error (around 300km) compared to NETPV (<300km) in most of the 

forecast lead time. However, if only wind pseudo-observations are assimilated, a weaker, slower-

deepening AC12 is forecasted with track error reduced to around 200km, letting T&R_Wind be 

the best analysis created by assimilating pseudo-observations. The difference between T&R and 

T&R_wind will be discussed in detail in Section 3.2.3.  The ALL experiment, assimilating 

pseudo-observations from all three features, demonstrates comparable intensity and track 

prediction skills as NETPV. This implies the NE TPV should be prioritized for additional 

observations, because once it is well-observed, additional observations in the tough and the ridge 

will not further benefit the forecast.  

While the pseudo-ops impact on forecast track error varied greatly among the 

experiments, all experiments consistently showed a similar impact on the cyclone forecast 

deepening rate. All experiments show a maximum intensity around 0600 UTC 6 Aug while the 

control forecast reaches maximum intensity at 0000 UTC 6 Aug and the verifying reanalysis 
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reaches maximum intensity around 1800 UTC 6 Aug. Diagnostics of the vertical profiles 

averaged over a 400km diameter circle with cyclone SLP minimum as the center reveals that the 

delayed superimposition of the AC12 with the TPV is the reason for the extended deepening 

time. As shown in Fig 7, all the experiments experience delayed stratosphere intrusion as the 

black thick line deepens to around 500 hPa later than the red thick line (the Control). This agrees 

with the reanalysis, in which the superimposition with high PV air also happens later than in the 

Control forecast (Fig 7a). The delayed superimposition leads to delayed tropopause level relative 

vorticity advection (Fig 7g, using NETPV as an example), resulting in the extended deepening of 

the surface cyclone. NETPV, T&R, and ALL delay the TPV superimposition more than 

TROUGH and RIDGE, which agrees with the predicted slower deepening trend shown in Fig 5. 

The geopotential height difference between experiments and the Control reveals that the 

magnitude difference of the surface cyclone originates from the tropopause level and propagates 

into the lower troposphere, reflecting the decisive role of the upper-level dynamics on the 

evolution of AC12.  There is also a geopotential height difference in the 3-hour forecast for all 

experiments except for the NETPV, which is suspected to be the model imbalance caused by 

assimilating vertical profiles from another model, as the difference quickly dissipates in a longer 

forecast lead time.  

In addition to the vertical profile difference above the cyclone center, the 2PVU-level 

potential temperature difference between experiments and the Control at 1200UTC 5 Aug is 

shown in Fig 8. In the Control forecast, the surface cyclone (the black circle) is already 

superimposed with the high PV air (black contours). In TROUGH (Fig 8b) and RIDGE (Fig 8c), 

the surface cyclone is right below the tight gradient of the potential temperature, while in 

NETPV (Fig 8d), T&R (Fig 8e) and ALL (Fig 8f), the surface cyclone is still to the east of the 
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gradient of the potential temperature. These are in agree with Fig 7 that the superimposition 

process is further delayed in NETPV, T&R, and ALL compared to TROUGH and RIDGE.  The 

three experiments with the more delayed superimposition are also the three experiments with less 

track error, implying that the deepening trend and the track prediction of AC12 are correlated, 

and the upper-level dynamics play the decisive roles in both. 

Since it is already demonstrated that the delay of superimposition is the likely cause of 

the extended deepening, we further verify that the reduced error at the dynamic tropopause leads 

to reduced cyclone track error. The high PV region, including the NE TPV and SW TPV, is 

tracked and the RMSE is calculated. For each experiment, a grid point is accounted in the RMSE 

calculation if first, it is within a certain distance from the surface cyclone center, and second, its 

potential temperature is lower than 315K at 2PVU surface in either reanalysis or in the 

experiment. The RMSE of potential temperature is shown in Fig 9d with three TPV tracking 

examples (Fig 9a-9c) to illustrate the effectiveness of the tracking method – the grid points inside 

the outmost red contours (315K) are accounted for in the RMSE calculation.  At analysis time, 

all groups, except for NETPV, have a larger initial condition error compared to the Control. 

Since all the groups except for NETPV contain observation of the jet stream near the trough or 

the ridge, the spatial correlation of the temperature between the TPVs and the jet stream may not 

be well captured by the ensemble spread. In NETPV experiment, observations inside the NE 

TPV reduce the initial condition error without involving the correlation between TPVs and the 

jet. It implies that assimilating observations inside a TPV better constrains the initial condition of 

the TPV, compared to assimilating observations outside of it. The RMSE of potential 

temperature grows larger with a longer forecast lead time for all experiments. TROUGH, 

RIDGE, and T&R have a 0.5K to 1K reduction of RMSE compared to Control. And at most 
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forecast lead times, NETPV and ALL outperform other experiments, which is consistent with 

their better forecasting skills of the cyclone track. The linear regression (Fig 10c) between 

RMSE of potential temperature at 0000UTC 5 Aug (12-hour forecast lead time) with cyclone 

track error at 1200UTC 6 Aug (48-hour forecast lead time) further illustrates the positive 

correlation between the error in TPVs and the error of cyclone tracks.  

Despite the positive correlation, it is still unclear which feature inside the high PV region, 

if better forecasted, leads to the cyclone track prediction improvement. Therefore, the ensemble 

correlations between the potential temperature at the 2PVU surface at T12 and the forecasted 

cyclone track error at T48 (Fig 11) are examined. The ensemble includes 6 deterministic 

forecasts, Control, TOUGH, RIDGE, NETPV, T&R, and ALL. While signals are present in 

various features including the trough and the SW TPV, the positive correlation between the 

trough and ridge axis is the strongest. The signal suggests that the colder potential temperature in 

this region is correlated with less track error.  In the verifying reanalysis, (Fig 12a), a shortwave 

trough (red contours in the yellow square) is present at the same region of the strong positive 

correlation, while the Control (black contours) predicts much higher potential temperature than 

the reanalysis with the presence of a ridge axis at the region. Therefore, in order to explain the 

cyclone track prediction improvement, there is a need to examine how pseudo-observation 

experiments reduce the potential temperature error in the shortwave trough region.   

For NETPV (Fig 12d), lower potential temperature is forecasted in the shortwave region 

at T12, but the shortwave structure is not captured. The NE TPV is forecasted to be less stretched 

in shape and expand further south compared to the Control, consistent with the reanalysis.  The 

southward expansion of NE TPV is likely to be the cause of the potential temperature decrease in 

the shortwave region. The same is for RIDGE (Fig 12c), but the magnitude of potential 
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temperature decrease is smaller compared to NETPV.  For experiments with pseudo-

observations in the upstream trough, the shortwave structure is better captured (the outmost red 

contours in Fig 12b,e,f). The initial condition error reduction in near the trough is likely to be the 

cause of the predicted shortwave trough. The NE TPV is also forecasted to shift to the southeast 

compared to Control. The potential temperature error reduction in TROUGH, T&R and ALL can 

be contributed to either the better capturing of the shortwave trough or the southeastward shift of 

the NE TPV, or both. Since NETPV outperforms other groups in track prediction, the initial 

condition error reduction with pseudo-observation in the NE TPV, which leads to the southward 

expansion of the NE TPV, is examined in this section. The initial condition error reduction that 

leads to the successful prediction of the shortwave trough will be studied in the next subsection.     

By tracing the forecast difference between NETPV and Control from T12 to T0 (Fig13), 

it is verified that the vertical structure of the NE TPV is better constrained in analysis with 

pseudo-observations, which results in the southward expansion of the NETPV, leading to 

improvement of the cyclone track prediction.  At the tropopause, the yellow squared lowered 

potential temperature in Fig 13d is hard to trace back, while a potential temperature decrease 

near the southwest edge of the NE TPV at the analysis time (Fig 13a) is still observed.  The 

initial condition improvement of the temperature at 250 hPa is more outstanding compared to the 

2PVU potential temperature. The southward expansion of the 250 hPa warmcore is observed at 

T12 (Fig 13h) and can be traced back to T0 (Fig 13e). The southward displacement of the warm 

front at the 850 hPa (Fig 13i-13l, yellow squared) is consistent with the southward expansion of 

the upper-level warmcore, leading to more east-west orientated temperature gradient contours 

compared to more northeast-southwest orientated in Control.  The track of the developing 
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cyclone, following the temperature contours, shifts more to the east in NETPV compared to the 

north in Control (Fig 12d, the yellow circle), resulting in reduced track error.       

3.2.3. T&R_wind v.s. T&R 

The T&R_wind experiment demonstrates the best forecast skills of the cyclone track 

(track error ~ 200km) among all experiments, including T&R. It would appear counterintuitive 

that T&R_wind outperforms T&R, which assimilates not only wind profiles from reanalysis but 

also temperature and moisture profiles. A careful investigation of this experiment is therefore 

conducted in this section to clarify this result. In particular, this discussion focuses on revealing 

what initial condition error is fixed that results in significant track prediction improvement, and 

why assimilating only wind from pseudo-observations creates a better analysis than assimilating 

wind, temperature, and moisture. It should be noted that, assimilating only wind in NE TPV (not 

shown) does not outperform NETPV, meaning that only temperature observations near the jet 

stream degrade the analysis.   

According to the correlation calculated from the previous subsection (Fig 11), with the 

least track error, we expect the lowest potential temperature in the shortwave trough region. The 

T&R_wind forecasts a more established shortwave trough (Fig 14h, yellow dashed line) than 

T&R (Fig14d, and also than all other groups, Fig11) at T12 with a much lower potential 

temperature in that area, and the shortwave trough can be traced back to the analysis time (Fig 

14e, yellow dashed line) to the east of the SW TPV. As the shortwave propagates faster than 

longwaves, the cyclone associated with it also moves further to the northeast, resulting in 

reduced cyclone track error.  

To understand why T&R_wind captures the shortwave trough better than T&R, two 

hypotheses are made. Firstly, assimilating only pseudo wind observations inside the jet stream 
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creates a better initial condition of the jet stream than assimilating both wind, temperature, and 

moisture, due to imperfect cross-variable correlation in the ensemble backgrounds. Secondly, 

since physically the jet streak is collocated with a strong potential temperature gradient at 2PVU, 

a better initial condition of the jet stream results in less initial condition error in the area with a 

strong potential temperature gradient, including the shortwave to the east of the SW TPV. 

Further diagnoses are conducted to verify the hypotheses.  

Using the tracking method described in the previous section, the RMSE of the jet stream 

wind speed is calculated. Any grid with windspeed larger than 30 m/s at 2PVU surface (color 

shading in Fig 9a-9c) in either the reanalysis or in the analysis is counted into the calculation of 

the RMSE of jet stream windspeed. The result is shown in Fig 15. T&R_wind reduces the initial 

condition error in the jet wind speed by 0.7 m/s, while T&R increases the initial condition error 

by 0.3 m/s (Fig 15a). T&R_wind also outperforms T&R in almost all forecast lead times (the 

RMSE of windspeed grows wild as the track error of the cyclone increases, so it is only plotted 

to T24). This verifies the first hypothesis that assimilating temperature and moisture pseudo-

observations degrades the initial condition of the jet stream compared to only assimilating the 

wind. It is to be noticed that the moisture observations have minimal impact on the 2PVU 

surface potential temperature (not shown) and thus will not be mentioned in later paragraphs.  

A qualitative diagnosis of the jet stream wind and potential temperature gradient at 2PVU 

surface is conducted to verify the second hypothesis. At the analysis time, the jet wind speed to 

the east of the cyclone in T&R_wind (Fig 16i) is stronger than in T&R, along with temperature 

contours spread over the jet streak, agreeing more with the verifying reanalysis. However, in 

T&R, the temperature contours are denser at the west side of the jet stream (Fig 16e). This 

verifies the second hypothesis, that improving jet stream wind will also benefit the temperature 
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gradient analysis. At T3, T6, and T12, compared to T&R, T&R_wind has better jet stream 

forecasts with stronger jet wind above the AC12, and the stronger jet stream wind is also the 

reason for the cyclone to move further to the northeast.  

Besides increasing initial condition error of the jet stream wind, assimilating temperature 

observation near the jet stream is also likely to cause the degradation of the potential temperature 

gradient analysis through an imperfect spatial background error covariance of temperature across 

the edge of the TPV. At analysis time, assimilating both temperature and wind observations leads 

to an increased RMSE of potential temperature in the high PV region compared to only 

assimilating wind (Fig 15b). The increase in the RMSE itself does not necessarily mean the 

potential temperature gradient is not well captured. However, a detailed look at the potential 

temperature contours in various forecast lead times in Fig 16 suggests that the TPV centers are 

better constrained and forecasted in T&R. For example, at T0, the SW TPV center in T&R is 

constrained to the bottom of the trough (Fig 16e) as in the verifying reanalysis (Fig 16a), while 

the SW TPV center in T&R_wind is split into two weaker ones and located at further north (Fig 

16i). At T12, the SW TPV in T&R and the SW TPV in the reanalysis are almost at the same 

locations (Fig 16d, 16h), while in T&R_wind it shifts to the north and becomes much weaker 

than the verifying reanalysis. T&R also forecasts a stronger NE TPV than T&R_wind (Fig 16f-

16h, 16j-16l), which is more consistent with the reanalysis. Since T&R predicts the TPVs center 

locations and magnitudes better than T&R_wind, the location error of the edge of TPVs is more 

likely to be the major contributor to its higher RMSE.  

A detailed investigation of the background error covariance further verifies that 

assimilating temperature observations near the jet stream can cause an initial condition error 

increase of both wind speed and potential temperature along the jet, while assimilating wind 
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observations constrains the initial condition better. The covariance between temperature or 

windspeed at each pseudo-observation location and the temperature or wind speed of the whole 

domain at the 2PVU surface is examined and one pseudo-observation to the east of the SW TPV 

stands out (the green dot in Fig 17). Increasing the wind speed at its location is correlated with 

lowered temperature to the northwest of it, which results in the strong temperature gradient 

shifting to the east, capturing the shortwave trough. The background covariance of wind speed 

within the jet stream is also well captured (Fig 17d) as the positive correlation matches the shape 

of the wind speed error shown in Fig 17f. However, the covariance between the temperature at 

the observation location and the potential temperature and wind fields is not well captured. It 

could cause degradation of the analysis if temperature observation is assimilated. The positive 

correlation to the west and the negative correlation to the southwest of the observation (Fig 17a), 

does not match the negative potential temperature error spreading around at the southeast edge of 

the SW TPV (Fig 17e). It can lead to a westward shift of the temperature gradient, which could 

be the reason why T&R does not capture the shortwave trough. And the correlation between the 

potential temperature at the observation location and the wind speed field (Fig 17c) does not 

match the wind speed error pattern (Fig 17f) either, explaining the increased initial condition 

error of jet wind speed in Fig 16a.  Whether the poor spatial correlation of the potential 

temperature across the edge of the TPV and the poor cross-variable correlation between the 

potential temperature and jet stream wind speed are just for this case or for more general 

scenarios needs further study to confirm, but attention is needed when assimilating temperature 

observation near the jet stream with a strong temperature gradient in future studies.  

The above results give insights into what features should be prioritized for additional 

observations. With the improved initial condition of the jet wind, T&R_wind scores a lower 
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RMSE of both jet stream wind and potential temperature (Fig 16) than T&R throughout all 

forecast lead times. With the failure in forecasting the location of magnitude TPV centers, the 

RMSE reduction of TPV potential temperature in T&R_wind is likely contributed from the 

improved forecast of the edge of TPVs collocated with jet streaks. This implies the upper-level 

dynamics are driven more by the jet stream dynamics than TPV center location and magnitudes. 

The jet stream structure should thus be prioritized for additional observations to improve the 

short-term predictability of ACs   

Section 3.3 Model Physics Sensitivity Experiments  

Figure 18 shows the cyclone center SLP prediction and track error of model physics 

sensitivity experiments. Compared to improving the initial condition (Fig 6, black curve vs. cyan 

curve), varying model physics schemes have a negligible impact on cyclone track prediction 

(other curves vs. cyan curve). As for the deepening trend error, in all experiment groups, the 

forecasted AC12 reaches its maximum intensity at the same time, 0600UTC 6 Aug, except for 

YSU, which further extends the period of deepening for around 3 hours (Fig 18c). The sustaining 

of AC12 is also better predicted in YSU with the lowest Center SLP (~970 hPa) valid at 

0000UTC 8 Aug. Initial condition error is therefore the main contributor to the forecasting error 

in the cyclone developing stages, while the model physics errors in the PBL, such as in the 

vertical mixing of heat, moisture, and momentum associated with turbulent eddies, play a minor 

role.  For the cyclone intensity prediction, varying LW radiation schemes and PBL schemes 

creates a ~5 hPa spread on the minimum Center SLP of AC12, while for SW and MP schemes 

there is little spread. RRTMLW and MYJ overpredict the cyclone intensity and GoddardLW 

underpredicts the cyclone intensity. To summarize, the 2-to-3-day PWRF forecast is more 

sensitive to the choice of LW and PBL schemes, and less sensitive to SW and MP. The 
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sensitivity of model physics on the related features is further examined to understand how model 

physics can affect AC prediction.   

According to previous studies on the intensification and sustaining of TPV (Cavallo and 

Hakim, 2009, 2012, 2013), the strong radiative cooling gradient below the tropopause is the main 

contributor to the PV generation that sustains a TPV. Therefore, we examine the impact of 

diabatic cooling caused by the longwave radiation on the magnitude of the TPV for different 

schemes. Fig 19 shows the vertical profile of diabatic cooling due to longwave radiation 

changing with time-averaged near the AC center. To be noticed, only after 1200UTC 5 Aug the 

vertical profile captures the vertical structure TPV. However, the cloud top cooling intensity are 

in consistent before and after 1200UTC 5 Aug, for example, RRTM has stronger cooling 

compared to RRTMG at both 0000UTC 5 Aug and 1200UTC 6 Aug (Fig 19f).  RRTM (Fig 19e) 

has the strongest cloud-top cooling due to longwave radiation and the strongest diabatic cooling 

gradient near the dynamic tropopause (the dipole patterns in Fig 19f). Goddard LW is less 

sensitive to the cloud top (Fig 19c), resulting in a weaker cooling gradient near the tropopause 

(Fig 19d). CAM has little difference with RRTM (Fig 19b). Fig 20a shows the mean potential 

temperature of the TPVs identified with the same tracking method of Fig 9 described in Section 

3.2.2. The spatially averaged intensity of the TPV in reanalysis (the red curve) remains the same 

before 1200UTC 5 Aug, and slowly deepens after 1200UTC 5 Aug as it becomes vertically 

stacked with the surface cyclone. RRTM forecasts the strongest TPV while GLW forecasts the 

weakest, agreeing with the diabatic cooling gradient shown in Fig 19. With high PV air intruding 

further into the troposphere in a stronger TPV, the surface cyclone also gets stronger (Tao et al. 

2018), which explains why RRTM predicts a much stronger AC12 than RRTMG and CAM, 

while GoddardLW predicts a weaker surface cyclone. Based only on this result it is not clear 
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which scheme performs best or worst, as there is no observation of the cloud top cooling 

available. Even for GoddardLW, which unrealistically does not predict a cooling maximum at 

the cloud top, it predicts the deepening trend of the TPV better than other schemes in which the 

TPV deepens much faster than in reanalysis.   

The same method described in the previous paragraph is applied to SW schemes. The 

difference in shortwave heating between schemes (Fig 21b,d,f) is of a much smaller magnitude 

(< 2K/day) than the difference in longwave cooling (~ 5K/day in Fig 18f). As a result, SW 

schemes create a much smaller spread in cyclone intensity than LW schemes in the 2-3 day 

forecast range. However, SW schemes do create larger spreads of cyclone intensity at a longer 

lead time (not shown), suggesting the model physics error in shortwave heating at the cloud top 

needs a longer time to accumulate and grow before having an impact on the AC. 

For PBL schemes, the YSU scheme is found to further reduce the model physics error 

compared to MYNN and MYJ. From 1200UTC 4Aug to 1200UTC 5 Aug there is PV generation 

near the surface warm and cold front (horizontal plots not shown) due to latent heat release, PBL 

processes and friction. YSU predicts weaker PV generation (Fig 22d), reducing the model 

physics error (Fig 22f) while MYJ predicts stronger PV generation (Fig 22e). For an upper-level 

positive PV anomaly, upward motion to its downstream is expected (Bluestein 1992).  As the 

high PV air superimposed with the AC12, the upward motion above the surface cyclone advects 

the high PV air from the surface to around 700 hPa (black thick lines in Fig22f), For MYNN, this 

results in a positive PV bias in the lower troposphere (blue shading in Fig 22f), YSU reduces this 

bias (blue shading in Fig 22d) while MYJ enlarges this bias.  The choice of PBL also affects the 

temperature at the lower troposphere, especially in the frontal area. Fig 23 shows the temperature 

difference at 900 hPa at T36. Both YSU and MYJ predict a warmer cold front and warm front 



   30 

associated with the AC12 compared to MYNN. However, MYJ predicts a colder cyclone center 

while YSU predicts a warmer center, which agrees more with the verifying reanalysis (Fig 22j). 

In the relative vorticity perspective, YSU also predicts higher relative vorticity maximized at the 

surface persisting from T24 to the end of the forecast (Fig 22l), sustaining the intensity of the 

AC12. The connection between PBL parameterization formulation and the PV generation, 

temperature, and relative vorticity near the surface fronts is beyond the scope of this study. 

Future studies, including process-level observations, are needed to further explore the impact of 

the PBL parameterization on AC predictabilities.  

The choice of microphysics schemes affects the cloud structure and precipitation near the 

center of AC12 (Fig 24). However, there is minimal sensitivity to the intensity and track 

prediction of AC12 observed for the four schemes in this experiment. The microphysics scheme 

impact is therefore not investigated further in the present study.  
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4. Conclusions 

4.1 Summary 

This study aims to understand the impact of initial condition and model physics errors on 

the track and deepening trend prediction of the AC12 on the 2-3-day time scale. Using EnKF to 

assimilate conventional in-situ observations, AC12 simulated by the control experiments reaches 

its peak intensity 18 hours earlier than in the verifying reanalysis and that the cyclone track is 

biased towards the southwest. Pseudo-observation experiments and model physics sensitivity 

experiments were designed to study initial condition error and model physics error contributions 

to the two primary forecast errors.  

ESA using ensemble analyses at 1200UTC 4 Aug showed that reduced initial condition 

error in three synoptic features, including the upstream trough, the downstream ridge, and the NE 

TPV, is correlated with reduced cyclone track error and deepening trend error. However, an 

investigation of analysis increment in the control experiments shows that assimilating 

conventional observations did not reduce the initial condition error in the three features since 

those features are not covered by the rawinsonde observation network. To overcome the poor 

coverage of observations and study the impact of initial condition error in each feature of interest 

on the predictability of AC12, pseudo-observations were added to the three features separately at 

1200UTC 4 Aug. As ESA suggested, the forecasted AC12 with analyses assimilating both real 

observations and pseudo-observations had reduced track error and reached its peak intensity 6 

hours later than in the control experiment, more consistent with the reality. The delayed 

superimposition with the upper-level high PV air and resulted delayed vorticity advection 

correspond to the extended cyclone deepening time, suggesting the initial condition error at the 

upper troposphere contributes to the deepening trend forecast error. The positive correlation 
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between RMSE of TPVs and the cyclone track error further revealed that the upper-level 

dynamics also govern the cyclone track prediction.  

Assimilating pseudo-observation in the NE TPV reduced more initial condition error in 

the TPV and resulted in the best cyclone track error compared to assimilating pseudo-

observation in the trough and the ridge. By tracing back the forecast error of the potential 

temperature at the 2PVU surface, the shortwave trough to the north of the AC12 at 0000UTC 5 

Aug was found to be the most sensitive area of the cyclone track error. Although assimilating 

pseudo-observations in the NE TPV did not help to capture the shortwave trough, it reduced the 

forecast error in that area by predicting a southward expansion of the NE TPV. This result agrees 

with a previous study which found that the accurate prediction of the location and shape of the 

NE TPV is critical for predicting the AC12 track and magnitude (Yamagami et al, 2016). 

Tracing back to the analysis time, assimilating additional pseudo-observations in the NE TPV on 

top of the real conventional observations led to reduced track error in a stronger NE TPV that 

expands further southward and northeastward. Correspondingly at 850 hPa, the baroclinic zone 

was shifted further south, leading to the surface cyclone moving further to the east, resulting in 

improved cyclone track prediction.  As the same synoptic pattern, an upstream trough with an 

SW TPV and a downstream ridge with a NE TPV, has been observed in many intense summer 

AC cases, such as the Aug 2016 case (Yamagami et al. 2017) and July 2018 case (Johnson and 

Wang 2021), the contribution of reducing initial condition error in the NE TPV to the AC 

predictability found in the AC12 case likely characterizes ACs in general, though more case 

studies are needed to verify this hypothesis.     

An additional experiment assimilating pseudo-wind-observations along the jet stream 

outperformed the analysis with pseudo-observations in the NE TPV. Tracing back to the analysis 
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time, it was the only analysis that captured the upper-level shortwave trough to the northeast of 

the surface cyclone. It is seemingly counter-intuitive that this analysis better constrains the 

shortwave trough than the analysis assimilating wind, temperature and moisture at the same 

locations. However, the RMSE of jet wind at the 2PVU surface revealed that while assimilating 

wind reduced the initial condition error, assimilating temperature (moisture does not have much 

impact) increased the error, implying that the cross-variable covariance between temperature and 

the wind was not well captured along the jet by the ensemble. Assimilating temperature also 

increased the RMSE of potential temperature near the TPVs, implying the spatial covariance of 

temperature across the edge of the TPV was not well captured either. This result suggests that 

cautions are needed when assimilating temperature observations along the jet stream for future 

studies.  Compared to assimilating pseudo-observations in the NE TPV, assimilating jet wind 

increased the RMSE of TPVs at analysis time but reduced it at longer forecast lead times. Given 

that the intensity and center location of TPVs were not well captured when assimilating jet wind, 

it is speculated that a better constraint of the initial condition at the edge of TPVs with strong 

potential temperature gradients benefits the predictability of the AC more than the strength and 

the center locations of TPVs, and that the vertical wind profile, which reflects the temperature 

gradient, should be prioritized for additional observations along the jet stream.    

On top of reduced initial condition errors, varying model physics schemes did not lead to 

substantial improvement of the cyclone track prediction, though some physics configurations did 

have an impact on the cyclone intensity prediction. Longwave radiation schemes and PBL 

schemes created the largest spread in peak intensity of the AC12 while shortwave radiation and 

microphysics schemes had little impact. Different longwave radiation schemes created different 

cloud-top cooling patterns, which affect the PV generation near the tropopause, leading to 
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intensity differences in TPVs and the AC12, with RRTM Longwave Scheme predicting the 

strongest TPVs and AC12 and Goddard Longwave Scheme predicting the weakest. The 

shortwave heating gradients near the tropopause were affected by the choice of the shortwave 

radiation schemes. However, the shortwave heating difference was of a much smaller magnitude 

than the longwave cooling difference, implying a longer forecast lead time is needed for the 

shortwave schemes to create a spread in the cyclone intensity. On the choice of PBL schemes, 

YSU outperforms MYJ and MYNN as it better simulates the convection near the fronts. YSU is 

also the only scheme that can further improve the cyclone deepening trend prediction and 

cyclone sustaining on top of reduced initial condition error. The choice of microphysics schemes 

had little impact on the strength of the AC12, but it did create spread in cloud structure and 

precipitation, which could be critical to studies of the interaction between the sea ice and ACs.  

4.2 Limitations and Future work 

Since this study only considers the AC12 case, the major findings in this study are 

subjected to further verification with other cases. The validity of the pseudo-observation 

observation approach also needs further quantification, as it borrows the idea of the observing 

system simulation experiment (OSSE) (Zeng et al. 2020) but draws ‘observations’ from a 

different model (GFS in this case) with different dynamics cores and model physics, and signs of 

model imbalance due to this model difference were found during the assimilation process. 

Targeting the features identified by this OSSE-like framework in future field campaigns on 

multiple cases is recommended to further refine the quantitative impacts and their variation 

across different cases. 

On the data assimilation side, there are several opportunities for future studies. Besides 

conventional observations, satellite observations and sea ice observations have the potential to 
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further reduce initial condition error in the features of interest. Employment of advanced DA 

algorithms, such as MLGETKF (Wang et al. 2021) and 4DEnVar (Wang and Lei 2014) may also 

help better constrain the initial condition given a certain set of observations, resulting in 

improvement of the AC predictability.  

On the model physics side, different radiation schemes created spreads in TPV and 

cyclone intensity, but it is hard to decide whether one scheme outperforms others unless more 

observations of radiation at the tropopause level are available. Field campaign observations 

aimed at validating model physics processes are therefore also recommended. A detailed 

investigation of PBL schemes is needed to reveal how different PBL parameterizations affect the 

convection near the fronts of ACs.  The choice of microphysics schemes should be of concern 

for sea-ice-related studies of ACs given they create a spread in precipitation. For ensemble 

prediction employing perturbed physics ensembles, microphysics schemes need to be involved 

for their potential interaction with radiation schemes and PBL schemes.  
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Tables 

Table 1. Experiment groups in with pseudo-observations 

Name Pseudo-observation locations 

Control No pseudo-observation. 

TROUGH Pseudo-observations along the jet stream near 

the trough to the west of AC12 

RIDGE Pseudo-observations along the jet stream near 

the ridge to the northeast of AC12 

NETPV Pseudo-observations on the north edge of NE 

TPV and in the NE TPV.  

T&R Containing pseudo-observations in TROUGH 

and RIDGE. 

T&R_wind Containing pseudo-observations in TROUGH 

and RIDGE, without temperature and 

moisture information. 

ALL Containing pseudo-observations in 

TROUGH, RIDGE, and NE TPV.  
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Table 2. Physics sensitivity experiment groups, the default schemes, and sensitivity experiment 

names. 

 

Groups Name Default Experiment names 

Longwave Radiation (LW) RRTMG LW RRTM, Goddard LW, CAM 

LW 

Shortwave Radiation (SW) RRTMG SW Dudhia, Goddard SW, CAM 

SW 

PBL MYNN MYJ, YSU 

Microphysics (MP) Morrison2 LIN, WSM6, Thompson 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   46 

 

Figures 

 

Fig1. Potential temperature (K, red contours), geopotential height (m, color filling) and Sea 

Level Pressure (SLP, hPa, black contours) of AC12 from a)1200UTC Aug3 to e)1200UTC Aug7 

from GFS-ANL. Blue cycles show the location of surface cyclones. The thick red contours show 

the area with potential temperature at 2 PVU lower than 315K. 
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Fig 2. The experiment design of the control experiment. a) Initialization time and end time of the 

control forecasts. b) Same as in figure 1, at 1200UTC 4 Aug. The outmost red contour shows the 

boundary of the model domain. 
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Figure 3. Cyclone center SLP(a) and tracks(b) of five deterministic forecasts initialized from the 

ensemble mean analysis assimilating conventional surface and upper-air observations.  
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Figure 4. Background error (a) and analysis increment (b) at 1200UTC 4 Aug of 300hPa 

geopotential height (m, color shading). Black contours are geopotential height contours (m) of 

the background. The black thick lines are the location of the trough axis in the background, and 

the black dash lines are the location of the ridge axis in the background (d). Blue dots are 

locations of rawinsonde observations.  
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Fig 5. The ensemble sensitivity analysis (a-f) and initial condition error (g-i). Color shading are 

the sensitivity with p-value <0.05 (a-f) and the difference between the Control analysis and the 

valid reanalysis of 300 hPa geopotential height (g), U wind speed (h) and V wind speed (i). The 

black contours show 300 hPa geopotential height (m). The green contours show 300 hPa U or V 

wind speed (m/s). Grey dots in g) to i) are locations of in-situ rawinsonde observations. Cyan 

dots are locations of pseudo-observations of TROUGH, dark blue dots are of RIDGE, and green 

dots are of NETPV.  
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Fig 6. Cyclone center SLP forecasts and the forecasted track error of pseudo-observation 

experiments. 
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Figure 7. (a) The mean vertical profile with in 200km radius of cyclone center of the 

geopotential height difference (hPa, color shading) between the reanalysis (red thin contours) 

and Control (black thin contours). (b)-(f) The geopotential height difference between the pseudo-

observation experiments (red thin contours) and Control (black thin contours). (g) The relative 

vorticity advection difference (10−9 𝑠−2,color shading) between NETPV and Control (red 

contours: relative vorticity in NETPV, black contours: relative vorticity in Control). Thick lines 

are the 2PVU surface 
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Figure 8. The potential temperature difference on the 2PVU surface between the reanalysis (K, 

red contours) and Control (black contours) (a) and between the pseudo-observation experiments 

(red contours) and the Control (black contours) at 1200UTC 5 Aug (b-d). Orange cycles are the 

cyclone center location of AC12 in the reanalysis (a) and pseudo-observation experiments (b-f), 

black cycles are the cyclone center location of the Control forecast.  
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Figure 9. The RMSE of TPVs (d) and three examples of the TPV tracking method (a-c). The 

grids circled by the outmost red contours (315 K contours of the potential temperature at the 

2PVU surface) are taken into account when calculating the RMSE of TPVs (a-c), the grids 

covered by the color shading (windspeed larger than 30 m/s at the 2PVU surface) are taken into 

account when calculating the RMSE of jet stream windspeed (a-c). 
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Figure 10. (a)The RMSE of potential temperature in the high PV region (b) The cyclone track 

error at T48 (c) The scatter plot between the two.  
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Figure 11. Covariance between the potential temperature field at T12 and cyclone track error at 

T24. 
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Figure 12. Same as Fig. 8 but at 0000UTC 5 Aug 
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Figure 13. The potential temperature difference at 2PVU (a-d), temperature difference at 250hPa 

(e-h) and at 850hPa (i-l) between NETPV (K, red contours) and Control (black contours) 
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Figure 14.  The potential temperature difference at 2PVU from T0 (1200UTC 4 Aug) to T12 

(0000UTC 5 Aug) between T&R and Control (a-d), and between T&R_wind (e-h). Orange 

cycles shows the location of cyclone center in pseudo-observation experiments and black cycles 

show the locations in Control experiments. The orange dash line shows the location of the 

shortwave trough.  
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Figure 15. RMSE of jet wind speed (a) and potential temperature in the high PV region (b).  
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Figure 16. Potential temperature (K, red contours), wind speed (color shading) and SLP (hPa, 

black contours) of reanalysis (a-d), T&R (e-h) and T&R_wind (i-j) from T0 to T12. 
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Fig 17. Covariance plots of potential temperature (a,c), windspeed (b,d) at the observation 

location (yellow dots) and potential temperature (a,b), windspeed (c,d) field at 2PVU surface. 

The difference between reanalysis and control forecast at 2PVU surface of potential temperature 

(e) and wind speed (f). 
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Fig 18. Cyclone center SLP and track error of (a) longwave experiments, (b) shortwave 

experiments, (c) PBL experiments, and (d) microphysics experiments. 
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Fig 19. Comparison of LW cooling between different LW schemes. (a)(c)(e) show vertical 

profile of longwave cooling (K/day, blue color shading) averaged near the cyclone center 

changing with time. The black thick contours are the 2PVU surface, and the black thin contours 

are cloud mixing ratio (QICE+QCLOUD).  (b)(d)(f) show the difference in longwave cooling 

(K/day) between each experiment to the default RRTMG LW scheme, the red thick contours are 

the 2PVU surface of RRTMG LW.  
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Fig 20. TPV intensity of LW and SW experiments 
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Fig 21 Same as Fig. 20 but for shortwave heating.  
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Fig 22. Difference in GH (m, a-c), PV (PVU, d-f), potential temperature (K, g-h), and relative 

vorticity (𝑠−1, j-l) between YSU (red contours) and MYNN(black contours) (a,d,g,j), MYJ (red 

contours) and MYNN (black contours)(b,e,h,k), the reanalysis (red contours) and MYNN (black 

contours) (c,f,I,l). The thick contours are the 2PVU surface.   
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Fig 23. 900hPa Temperature difference between (a)YSU(K, red contours) and MYNN(black 

contours), (b) MYNN (red contours) and MYNN(black contours).  
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Fig 24. Cloud fraction (a,c,e) and precipitation (b,d,f) difference (g/kg) between (a,b) LIN (red) 

and Morrison 2-moment(black), (c,d)  WSM6 (red) and Morrison 2-moment (black), (e,f) 

Thompson (red) and Morrison 2-moment (black). Thin contours are cloud mixing ratio and thick 

contours are 2PVU surface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   70 

Appendix 
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The above figure shows an example of a pseudo-rawinsonde observations. The first row include 

observation type (ADPUPA, upper air radiosonde observations), name (JETAAA), latitude 

(63.6) and longitude (116.3), altitude (1.7 m), time after the cycle time (0.001 h) , vertical levels 

(40) and report type (120: temperature and moisture sounding,  220: wind sounding). For the 120 

observations, the first 4 columns are pressure level (hPa), height level (m), virtual temperature 

(℃) and specific humidity (mg/kg), and the last 3 columns are drifting info, including longitude, 

latitude and time. For the 220 observations, the first 4 columns are pressure level (hPa), height 

level (m), zonal wind (m/s) and meridional wind (m/s), and the last 3 columns are still drifting 

info. This text file is then formatted into a PREPBUFR file.  

 

Additional ensemble sensitivity analysis results with 500hPa GH and 850hPa GH as the state 

variable. The above figure shows the ensemble sensitivity analysis (a-f) and initial condition 

error (g-i) of the two state variables. The signals at the two levels below 300hPa share consistent 

features with 300hPa, suggesting the trough, ridge, and NETPV with its northeast edge are 

critical to the AC12’s evolution.  

 


