A LECHARICAL MEMHOD OP AHALYSIS POR

STATICALLY IMDETKKIHATE
SITVOCTURES
By
R.E. Heans

Graduate stulent, Dept. Arob rige.

The result of invartigation of nae of paper models in desige of indeterminate Btructures.

Okiahoma
-vortural and Mecthanical Conter.
Library
AUG 251936

CONTENTS

I. IIATRODUCSIOASPage

1. Preliminary 1
2. Lethods of Analysis 2
3. Object and Scope of Investigation 3
II. DHSCRIPTIOR OR BEV KHEHOD
4. Babic Theory 5
5. Prectioal Fest of Theory 7
6. Application of Theory 9
7. Apparatus 11
8. Kethod of Analyeis 17
III. APPLIO天RION PO HOAOGENEOUS MATERLAIS
9. Celibrating the Gaugos 19
10. Continuous Girders 2111. Rectangular Yramo with Vertical LegsEnds of Columns पinged25
11. Rectangular Frame with Vertical Lege
Column Ends Fixed 34
12. Prame With Inclined Legs
Pnta UR Column Hingod 45

$$
(9,1+7)
$$

14. Frame with Inclined Legs

$$
\text { Ends of Columens Fixed ------------ } 52
$$

15. Two Hinged Arch 58
16. Hingless Aroh 64
IV. ARPLICATION TO REINTGRCED CONCRETE
17. Discussion of Theory 73
18. Rectangular srame with Hingod Colum Rhas 75
19. Hingless Reinforced Conarete Arch 79
20. CORCLUSION
21. Difficulties Enoountered 89
22. Care to be Exercised 91
23. Determination of Thrust, Shear, and
Loment at a Seation Other Than
Support 94
24. Field of Usefulness 95

A MECHANICAL MFTHOD OF ANALYSIS FOR STATICALIM INDETEMINATE

STRUCTURES
I. IMTRODUCTION.

1. Preliminary. --- iith the easeption of a comparatively few apecialiats in the engineering field, the ongineer has up to the present time not bothered with the analysis of complicated statically indeterminate structures. He has contended that the saving inrolved due to builaing rigid struotures wan more than offeet by the amount of designing work required. This may have been true more or lese during the past in America whore the extra amount of material used was of little consequence. But builaing material is fast becoming a lactor of great importance to our national growth and auving that may be affected by the use of rigid structures is of consequence.

Certain building materials lend themelves naturally to the construation of rigid structures. The reinforced conorete building frame is in itself rigid and indeterminate.

Shese atruotures are designod at present in the oxilnary ongineering otiloe by maling certain assunptions whioh are little nore than guesees. some good and mone bad. This is not turne englneezing. Such struatures to dosignad may be amply strong to earry the Loads for which they are destgen; but they mill probably not be economioally designed with unit streeges equal in all itser mombers. Tha ourpenter does this sort of ongineering whon he chooses a joist size because that game joist aise hes proved satisfactory on a previous job.
2. Hethods of Analysis.--- The analyele of indetexninate atructuree is at present done by means of the theory of least work and by slope dedieations. The methot of slope deflections is the more preoticable and is the one in general use by Awerioan enginoari. This meahod 20 davelopad and doporibed in detail in Voluma Il af "ilodorn Franod Etruatures" by Johnson. Bryan. and "rameaure, and in "heinforood conorete Construction" by Heol. A mothod of analyais by the ues of the Bllipse of Elasticity and alastio
weights is proposed by hir. i.c.ejanni, C.... which is described in a diacuosion by 15. Janni of "New Prinoiple in Theory of Structures" BoGeorge F. Swain. Past President A.S.C. H. and given in Pransactions el the A.S.O.E. V Vol. IXXXII - 1919-1920; and as applied to conorete arches in Volunn III of "Reinforced Conorete Construction" by hool. Any analytical method yet discovered for indeterminate struotures is long and telious, involving long mathomatioal oaloulations.

In the spring of 1922 a meohanioal method for the analysis of atatiaslly indeterminate structuras was proposed by George Erle Beggs. Absoolate Professor of Civil Kingineering. Urinciton

University, in which paper modela and apeoial guages are used. Lle claims for the new method speod, accuraoy, and simplicity.
S. Object and Scope of Inveatigation. .-. This investigation of the newly proposed method of deaign was made for the purpose of further establishing the truth as to the accuracy. simplicity, and practiosbility of the method.

It was desired to know whether results obtained by this method would check with those found by the theoretical methods of exact design, and also to know how these results would compare with those found by actyat tests on full aize frames of concrete.

Several models of indetarminate frames were made and analyqed by this method and the reaults compared with those found by the method of alope defleotions. An application pf this method to reinforced concrete frames was then inveatigated to prove ite usefulness for the dealign of this important class of atruotures. In order to compare; this method with the ordinary designing method for simplicity. an influence table for the epringing section of a reinforced concrete arch ring was prepared by the ordinary mothod and by the mechanioal mothod and these compared both as to mathomatical regults and ease of attainmens.

In preparation for the Doctor"s degree. Dr. 避ikiahi Abe, made and tested Beveral reinforced conorete building frames.

The reault of these teats are publiahed in Bullotin 7o. 107 of tho ingineoring lxperiment Station of the iniveraity of Illinois. A model of one of these trames mas made and analysed by the new mothod an: the results compare with thone found by jr. Nibe in the test and by the mothod of least vork.

Ihis work was done under the Bupervision of Erofessor Preston M. Geren. Head of the Department of Arohitedture and arohiteotural angineering.

> II.DESCRLPEIOA OE UEA LKRHUD
4. Basio theorg. --- The prinoiple upon whion this mothod depends is Maxwell's Jaw of Nooriproosl Deileotions, whioh simply stated 18:

The displacement in any given direction es of any point A of a structure. due to a load 3 applied at some other point B in a direction b^{\prime}. is equal to the diaplacement of the point B in tho direction b^{\prime} mhioh would be causea by the application of the load 3 at tho point A in deraction a^{*}.

If a load P (Figure I) be applied at A oausing a deflection d^{\prime} at A und d" at B, the work causing such deformation is Pd / L and is resisted by the intermal work. But this diaplacement d' could be produced at A by applying a force H at B cousing diaplacement at $^{\prime \prime}$ at and a^{\prime} at A and the work done wonld be equal to Hd"/ 2 resisted by the internal work. But the internal work is equal in both cases sinae the same deformation is induced in the structure. Then Hd"/ 2 quals Pd'/2 or H equals Pd'/d".

This deflection d " at A could be produced by a moment at B as shown in Figure II. The wori. done in this oase in causing
deflection a^{\prime} equals $\mathrm{Wa}^{\prime \prime} / 2$ when $\mathrm{a}^{\prime \prime}$ equals the distance moves down in producing the deflection d' The moment of $\begin{aligned} & \text { (tequals }\end{aligned}$ If. If x equals 1 then the moment equals 17 and since ma" equals Pd' then K equale $\mathrm{Pd}^{\prime} / \mathrm{a}^{\prime \prime}$.

All that is needed to find a thrust, moment, or shear at a seotion B for a load P at A is the ratio $\mathrm{a}^{\prime} / \mathrm{d}$ ".
5. Pructical Test of Theory.-- This theory Was put to a practioal test by Professor Beggs by oonstrugsting the rigid frame shown in Pigure III. The Itrame wes made of wood stiaks about $5 / 8$ by $7 / 8$ inohes in section and columsand main horizontal members 50 inches long. The mambexr wera fastened together by mans of metal gusset plates and screws.

The 3-hinged frame was iloated horizontally on ball bearings on the floor. No weights were applied to the structure while measuring deflections in determining the values of horizontal and vertioal reactions at hinge 3 for a lnad of 12 1bs. applied horizontally
at B. To determine by this theory the value of V_{3} at hinge 3 , the pin at 3 was remired and the ratio of deflection at B, horizontally, to that of 3 , vartically, found by forcing point 3 to deflect upward an amount equal to $a^{\prime \prime} / 2$ and then downward a lika amount. Tho motion of B was measured and the ratio $\mathrm{d}^{\prime} / \mathrm{d}$ " astabliahed. focording to the theory then V_{3} equals $a^{\prime} / d^{\prime \prime}$ times 12. This was calculated to be 3.4 Ibs. The value of H_{3} was detormined in a sibilar manner to be 14.6 lbs. The hinge reaction is according to the theory the equare root of tie equare of 14.6 plus the square of 3.4 or 25 Ibs for a load of 22 Ibs. at B. The pin was then replaced at 3 and a weight of 12 Ibs . attachad at B by a cord whioh was wound over a bloyole wheel as shown in the figure. A weight of 15 ibs . was attached in a similar manner at an angle such as to cause oomponents at 3 aqual to ∇_{3} of 3.4 Ibs. and H_{3} of 14.6 1bs. The pin at 5 was then removed and no deflection

oocured whiah indiantes that the value of the renction at 3 was correat as determined meohanioally since there wes produced atetic and elastic equilizbriun.
6. Appliaation of Theory. The internal wark of reailience in any atrueture is equal to
$\int \mathrm{s}^{2} \mathrm{ds} / 21 \mathrm{~A}$ for direct stress on the section and to $\int \mathrm{m}^{2} \mathrm{~d} / 2 \mathrm{LEI} \mathrm{fpr}$ bendemg stress, when

S equals stress at section]
A equale area of bection.
E equals modulus of elasticity.
ds aquals inorement of length of axis.
I equals moment of ineitis.
Li equale benaing moment at the seotion.
This negleats the work of shear which is amall. Vaing the same notation as that used in explahing the theory and equating internal and extermal work:

$$
\text { Hd } 1 / 2 \text { equals } \int s^{2} d s / 2 A B+\int n^{2} d s / 2 E I
$$

 and since $\mathrm{HC} / 2$ equals $\mathrm{Pd} / 2$. then $\int \mathrm{s}^{2} d 8 / 2 A B+\int \mathrm{m}^{2} d \mathrm{ds} / 2 \mathrm{EI}=\int \mathrm{s}_{1}^{2} \mathrm{da} / 2 \mathrm{~A}:+\int \mathrm{H}_{1}^{2} \mathrm{da} / 2 \mathrm{EI}$ or considering E constant throughout the sturature,

$$
\int s^{2} d s / A+\int u^{2} d s / I=\int S_{1}^{2} d s / A+\int L_{1}^{2} d s / I
$$

It aan be seen then that when E is constant throughout the structure, the relation between H, P f and the deflections is not dependent upon the value of E . If we buila a model then of
the same shape as the structure, and of some

11

other material, the same relation of Hd to Pd" will hold in the model as in the full size Irame so long as that material is not stressed beyond the elastic limit, since the value of $\mathrm{a}^{\prime} / \mathrm{a}^{\prime \prime}$ is simply a rotio and not aependent upon the values of the actual deflections. These models may o made to as small a gcale as desired and the reaults obtrined will be just an accurate as those obtelned with $\&$ full size frame so long as the measurements are all made with the reauirod degree of accuracy. By using aardboard hosivy onough that it will not buckle under a Very small deflection for models and measuring the displacaments by maans of a high powered microscope, this mechanicel method may be used in the drafting room.
7. Apparatus.--.. The epparatus used in the investigation of this method conaisted of a mieroscope for reading dafleations at load pointe produced by a smull guage at the section where the value of the shear, thrust. or moment

Is Cosired. The mioroseope was of the ordinary type mafe by Bausch and Lomb CO. Ior use in Beoteriological work. Yor this work the teleaeope and adjusting mehamiamare dismonted Irom the pedestal that in botwean the baes and taile fust mar the teleroope. me.In pedental; and table aontaining the apparatus for holding and lighting the specimen were taken off and the telemoppe turnod thra 180 degreen so thant it way be fooused unon a model lying flat anthe traming board. Tho oniy toola requiret for diamonnting and ramounting the mixomeope were a morvew driver anda brectal mrench.
A. Fiev of the fiom roneope fitted for this work is given in the 111ustration. For meatraxing the collection a niferometer eyepiece, whteh is a
reguiar equifment $\mathcal{L} 0$, the moromeope, is used in the regular eyo-plece of the mioromoope. The fiold

SHEAR PLUG

Thrust \& Moment Plugs

Required for I Gave
WASHERS

2 Smear Plums
2. Thrust q Moment Plugs $21 \frac{1}{2} \times \frac{3}{32}$ Coll SpRINGS
piming the grage to the drawing board. If a hinge is deaired st some point, the model is not olamped but merely fastened in the gaage with a aingle pin at the point where the tinge is deaired and the guage pinned to the drasing board.

So produce a displacement for shaar at a section, the model 1s clemped in A as shown in Figure V with the thrust plugs Inserted as ghown and B plined to the drawing board. The pluge are then romoved and insorted as shown in Figure VI producing a dieplacament normal to the axis at the section. io produce a thruet alspiacoment: 1.e. normal to the section and parallel to the artis, the larger plugs are placed in the garge an mown in Figure VII and the model olamped in A. B is then pinned to the drawing board, the larger plugs removed by means of the wedges shown and the amaller ones inserted. To produce a displasement due to moment, a large plug is placed on one side and a small one on the

SHEAR PLUGS CHANGED
FIGURE VI

Thrust Plugs in Place FIGURE VII

MOMENT PLUGS IN Place
other, as in MigureVIII, and the model is clampod in A. E ia thon fastened to the drawing board and the plugs interchanged as shown in the figure, proancing a moment at the section.
8. Hothod of Anslysis.-- If the value of the alsplacemont for ahar. momont, and thrust produoed by the gatagea as fust explained be known in torms of the Aiviaione on the micrometor oye-piaca, it is possible to determine the bhear, thrust, of moment at the seation of a struature for any loading by the following mans:

A model af the atrueture to be analyzed is made of atift cardboard to mefle. The value of ihe soale is imaterial so long as it la of a size proportional to the deformation produced by the ganges. This model is fastened in the grages at che pointa of support with the supports either ifxed or hinged as previously deecribed, andthe gagee fastened to the board. Then the microscope is focused on the point at

Which the loadie assumed to be oonoentrated and the miorosuter saale oriented to road deljection in the direction in which the Ioad is assumed to be aoting. the thrust plugs ary changed as lasorimed and the displacemant of the lond poist obsazeron anthe miorometer scale. Accoraing to the theory just oxplained the thmust is equal to the lomd agmumed times the ratio of the defleotion of the load point tonthat produced by the guage, or
$T=P d_{i n} / d_{E}$. When d_{n} is the diapinooment meenured by the micrometor and A_{E} is the displacement producea by the gaage. As d_{8} is constant for all pointo of loading. 1t is a aimple metter to obtain veluea of T for plotting the influence line for thrust at the section simply by measuring the defleotion at different load points. In tha mame nannex fatluance lines for moment and shour may be obtained bir produoing daformution of moment and shorix respectively by using the momont and shoar plugs as expleinea earifer.
III. APPLICATION TO HOMOGENEOUS
haterials.
9. Calibrating the Guages.--- Before it is possible to use the apparatus described in the solution of problems, the value of the displacement produced by the gwage must be known in terms of the divisions of the micrometer eyepiece. In determining this relation for the shear plugs, it was founti that the motion was too extensive to be read direotly on the efele. 1 white architects acale was thon fastened parallel to the motion and the number of iivisions of the ricometer in a division of the scale wes determined. It was then possible to determine the motion in terms of the micrometer divisions. The motion due to changing thrust plugs was determined in the same manner with the scale turned parallen to the motion.

Io determine the moment
coofficient a stick was fastened in the gaage and a point on the drawing board a distance of 26 inches from the gage center
was maked. The plugs were changed in the graces and the motion of the point on the stick. Irom lite first porition was measured. This motion divided by the Cistance from the center of rotosioneives the rotation in radiens. Considerable difficult:
mee experiencer in getting the eaares adfusted co that there was not moment produced by the chrust pluge and no thrust nor moment by the shear plugs. Shree of the gauges were itnally abandoacd. The remaining one pas tested end found to produce only ghoar when the ahoar plugs were changea, anly thrust when the thrust gelugs were ohanged, and only morent when the moment pluftr pere interohanged. This gaage was uber in all the machaniosl solutions Which follow, the other gacges being used only for hinger and for fixing the ends of members. The values of a" for this gate $^{\text {the }}$ wore detormined to be as follows: shear 12 diyisiona thrust 13 dreisions

10. Continuous ifrders.--- The analysie of continnous girdors is, 11 ice all statically indeterminate structures, depandent upon the shape of thestructure iteelf, 80 before an analysis is made cortain proportions mat be assumed. If the obatinuous girder is of uniform seotion. the problem becomed a compnratively simple one and mat be readily solvad for any loading by means of the three moment equation. If, however, there are moving loade on the spanus in the lase of bridpes it is oomvenient to plot influonoe lines in which oase the problem in at least lingthened and. for the oase of a verying eoction, an exaot solution Is so Laborious that it is soldom aceomplished. Eut with the proposed mechanioal method, the solution is the same in any onse. A pirder of Yarying beotion may be anelyzed as readily and in oxactly the sam manner as the girder of uniform seotion. In lact irom the discussion of the theory in saction II. It can be seen thast. if tho mothod vill solve one, it mill the other.

In order to check the resulte of the new methol against themretiaal values, the ordinate at p the influence lines for reactions at R_{1}, R_{2}, R_{3} and H_{4} as obtained by botil methods will be compared.

Solving for these values by
means of the three moment equation,

$$
120 \mathrm{H}_{2}+20 \mathrm{E}_{3}=-1600(1 / 2-1 / 8)=-600
$$

and
$20 H_{2}+120 M_{3}=0$
Solving simultaneously

$$
u_{3}=6 / 7, \text { or } 857 \text { ft. } 1 \mathrm{~b} .
$$

from mhich

$$
\begin{aligned}
& \mathrm{R}_{4}=.357 / 40=.0214 \text { upward } \\
& \mathrm{R}_{\mathrm{E}}=.3213 \text { downward }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{H}_{2}=.928 \\
& \mathrm{R}_{1}=.372
\end{aligned}
$$

Cheoking these values

$$
.372+.928+(-.3213)+.0214=1.0001
$$

Fo abtain theae valpae by
the mechanioal method the model was first made of stiff cardboard $1 / 2$ in. Wide and the length to a soale of 1 in. aquals 6 ft . For the value of R_{4}, the model was placed in the four ganges with the pins through the center of the gibder at R_{4}, R_{3}, R_{2} and Fir $^{\prime}$ forming hinges at these points. Whe ganges wore then pinned to the drawing board and the shear pluge changed at R_{4} producing a motion of R_{4} upiard. The deflection of point P was read as . Lupward. The value of R_{4} then acoording to this methol is $.2 / 12$ or .0167.

The shear pluge at R_{4} Were changed back and the valuer:of R_{3} found by changing the plugs in the guage at that point and reading the deflection of point P, which was 3.0. This divided by
the factor for the guage gives a taine of .25. R_{2} and R_{1} were obtained similarly as .77 ama . 37

Comparison of reaulta.

Keaction.	Theory	hodel
R_{1}	.372	.37
R_{2}	.928	.77
R_{3}	-.321	-.25
B_{4}	.0214	.0167

These results possibly donot oheck closer beauuse the paper from Whah the model was oft was not of sufficient thickneas to resiat a alight bwoling especially for the investigation of R_{2}. Another teason might be beause the pins forming the hinges had to be removed each time the shear plygs were ohanged and then replined. Altho the defleotion usually returned to zero upon releasing the displacement, there is good obance for arror. This method is possibly not so well suited to the molution of continuous beams as for
some other forms of indeterminate struotures. The cardboard should to quite heavy and comparativaly large modelk should be used. Better results would probably have been obteined with a little larger model. A great deal of care should be exeroised in determining the reactions of continuous beams by this method.
11. Rectangular Frame with Vertical Lege.

Ends of Colums Hinged. -- The only Fequirement for making this irame atatioelly determinate
is the value of the horizontal thrust at
the bottoms of the colume.
Ascume the frame for analysis
as that shown in Pigure VI. The destection of
 point B with respect to the tangent at A in a horizontal direction is equal to
\int Myas/EI : but
$u^{2}=\mathbf{M}^{\prime \prime}+$ 取 when
L" is the moment
due to vertioal
Loads alone. The
deffection then is
equal to $\int_{A}^{13} y d s / \mathrm{s} I+\mathrm{H} \int_{y^{2} d s / E I}^{\mathrm{B}^{2}}$ and is also equal to zaro since the points A and B oannot wove laterally nor vertioally.

Then $H=\frac{\int_{A}^{B} H^{\prime} y d 8 / I}{\int_{A}^{B} y^{2} d B / I}$
Integrating this for thisnframe, we have the genaral equation

$$
H=\frac{3 P a b I_{1}}{4 h^{2} I_{2}+6 h I I_{1}}
$$

The five frames shown in
Figure VII on the next page were analysed with loading at oenter and quarter points of the horizontal momber. These frames were chosen with the aeveral difforent ratios of the moments of inertia of columen and top menbers in order to see whether this method and theory agree in all cases. Irame 0 was made just $11 k$ frame B exoept that the sise of members ia half that of the previous one With the same ratio of moments of inertia in order to see whether the mechanioal method

FGAME A B \& A A! E

FFiAME r
Fioune \because
vould becur out theory in that the aize of membere is immaterial so long as the ratio of moment of inertia is the same for a frame of the amme size, measuring along the axis.

For frome A looded at the center

$$
\mathrm{A}=\frac{(3)(20)(10)}{(4)(15)(15)+(6)(25)(20)}=.111
$$

For quartar point loaded

$$
\mathrm{H}=\frac{(3)(5)(15)}{(4)(15)(15)+(6)(15)(20)}=.0833
$$

Since this frame is of the same orosg
section throughout. I_{1} aquals I_{2} and cancel in the equation.

In frame B the value of I_{2} (top member) equals $8 / 12$ and I_{1} equals $1 / 12$ or a ratio of I_{1} to I_{2} of 1 to 8 .
For center loading

$$
H=\frac{(3)(10)(10)}{(4)(15)(15)(8)+(6)(15)(20)}=.033
$$

For quarter point loaded

$$
H=\frac{(3)(5)(25)}{(4)(25)(15)(8)(+(6)(15)(20)}=.025
$$

The same ratio of moments of inertia holds for frame C. therefore, the values of H will be the aame for this frame as for frame B.

The Talues of I_{2} and I_{1} for
freme D are 27/768 and 1/12 respectively or
a ratio of 1 to 2.37.
For the oenter loaded

$$
H=\frac{(3)(15)(15)(2.37)}{(4)(20)(20)(+(6)(20)(30)(2.37)}=.158
$$

For load at quarter point

$$
\mathrm{H}=\frac{(3)(7.5)(22.5)(2.37)}{(4)(20)(20)+(6)(20)(30)(2.37)}=.118
$$

For frame E the values of I_{1} and I_{2} are $1 / 12$ and $9 / 32$ respectively or a ratio of 1 to 3.38
por center loading

$$
H=\frac{(3)(15)(15)}{(4)(30)(30)(3.38)+(6)(30)+30)}=.0385
$$

For quarter point loaded

$$
\mathrm{B}=\frac{(3)(7.5)(22.5)}{(4)(30)(30)(3.38)+(6)(30)(30)}=.0288
$$

nd obtain the values of H by the mechanioal method, a model was made of oardboard of each of the franesshown in Figure VI. It was found, howevor, that the ordinary wight cardboard was $t 00$ thin alliming the frame to buolle when the deflectionsware applied with the guages. Two models mere out out for each frame and pasted together making the molel trice as thick as the cardboard. This mas found to be setiseactory.

Trame A vas nade tp a soale of $1 / 2$
in. equals 1 It. It was fastened in the gaages with pins for hinges as shown in the illustration.

When tho shear plugg were changed producing horizontal deflection at the hinge, the deflection of the benter was read as 1.4 divisions of the micrometer in the microscope. The value of H then as determined by this method is $1.4 / 12$ or .116. The deflection of the quarter point was found tobe 1.0 on both sides of the center making H equal to $1 / 12$ or . 0834.

The thrust pluge were placed in the grages and the deflection found to be 6.4 making the vertical reactions equal to $6.4 / 13$ or .493 for the center and $3.1 / 13$ or .24 for the far quarter point and $9.8 / 13$ of .75 for the near quarter point loaded. A model pf Irame B was mado to a scale of $1 / 2$ in. to the foot and placed in the gaages in the same manneras frame A. The defleotion when the shear plugs were thanged. was read as. 4 at the conter and. 5 for both the quarter points. The value of H then for a load of unity at the center is . $4 / 12$ of . $0 \$ 3$ and for the ame load at the quarter point $.3 / 12$ or .025 . When the thrust plugs vere
ohanged, a deflection of 6.5 was noted at the conter of the top member and 9.8 at the near quarter point and 3.3 at the far quarter point. The reations for the center loaded are $6.5 / 13$ or .5 and. for the quarter pointa losded, $9.8 / 13$ or .75 and $3.3 / 13$ or .25

Prame C was made to the ammo scale 1/2 in. equals I ft. and placed in the grages in the same ray. The value of H for center loaded with a load of unity was found to be $4 / 12$ or .0353 and $-3 / 12$ or .025 for the quarter points.

The asme values for reactions were
found for frame D as for frame 0 . The model was made th the same scale as the other two.

A model of frame D was made to the
same sosle as the others and placed in the gaages in the same manner. The values of H for los at the center was I.9/12 or . 188 and $1.3 / 12$ or 108 for aload at the cuarter point.

The model for frame E was made to a soale of $3 / 8$ 1n. equals 1 Pt. and placed In the gaages. The value of H for the center loaded for this frame was . $4 / 12$ or .0333 and f or the quarter points $.3 / 12$ or . 025 .

Comparing these results;

	A		B		0		D		E	
	cheors	4	Th.	L	Th.	15	Th.	31	Th.	4
Cel	ter	oad	d							
H	. 11.	. 11	. 033	. 03	. 033	. ns	.158	. 158	. 038	. 03
R_{2}	. 5	. 49	. 5	. 5	. 5	.5	. 5	. 5	.5	. 5
R_{R}	. 5	. 69	.5	. 5	. 5	. 5	. 5	.5	. 5	- 5
Qaartes point loade										
H	. 083	. 083	. 025	.02	. 025	. 02	. 118	. 108	. 028	. 025
$\mathrm{R}_{\text {I }}$.75	.75	.55	$\cdot 75$. 75	.75	. 75	. 75	.75	. 75
B_{1}	. 25	. 24	. 25	. 25	. 25	. 25	- 25	-25.	. 25	. 25

can be seen that the meohanical method cheoks the theoretioal method of analyisit for this class of struotures and indicates that the model automatioally takes care of the varying moment of inertia.

12. Redtangular Frame with Vertical Legs.

 Colum Ends Fired.--- All the following rectangular frames are calculated accorling to the following method of slope deflections. The fundamental equations for the solution by the method for any mamber $A B$ are:$$
\begin{aligned}
& M_{A B}=2 E K\left(2 \theta_{A}+\theta_{B}-3 R\right) \mp c_{A B} \\
& M_{B A}=2 E K\left(2 \theta_{B}+\theta_{A}-3 R\right) \pm c_{B A}
\end{aligned}
$$

When E is the modulus of elastickty. I is I / l, E is defleotion divided by 1 , and $\sigma_{A B}$ is the resiating moment at the end of a ified beam with an equal span and oarrying the aame system of intermediate loads.

These equations are fully developod in Builatin 108 of the Engineering Experiment

Station of the University of IIlimois.
In the solution of these problems
F Will be ascumed as gero sinve it is go gmell as to be of nosconsequence. Assuming symmetrical loading and applying thase equations to the frame in Figure $I X$:

$$
M_{A}=2 E K_{1} \theta_{B}
$$

and

$$
\begin{aligned}
& { }_{\mathrm{BA}_{\mathrm{A}}}=A \mathrm{C}_{2} Q_{B} \\
& \quad \text { ginco } \theta=0 \text { and } C_{A B}=0 \\
& \mathrm{H}_{\mathrm{BC}}=2 \mathrm{RK}_{2}\left(2 \theta_{B}+\theta_{\mathrm{C}}\right)-C_{B C}
\end{aligned}
$$

EInce the loading
and frame are syrmetrical, the alstortion 111 be aymotrical snd $\theta_{B}=-O_{C}$ Then
$\mathrm{M}_{\mathrm{BC}}=2 E \mathrm{P}_{2} \theta_{\mathrm{B}}-\mathrm{C}_{\mathrm{BC}}$
Since joint B
is in equilibriwn

$H_{B A}+M_{B C}=0$

Substituting

$$
\begin{aligned}
& 4 R K_{1} \theta_{B}+2 E K_{2} \theta_{B}-c_{B B}=0 \\
& \theta_{2}\left(4 K_{1}+2 B K_{2}\right)=c_{R B} \\
& \theta_{B}=\frac{C_{B C}}{\left(4 B K_{1}+2 K_{2}\right)}
\end{aligned}
$$

Substituting this value of θ_{g} in the equation for $\mathrm{m}_{\text {会 }}$

$$
K_{B A}=\frac{2 C_{B C} K_{1}}{2 K_{1}+K_{2}}
$$

For symmetrical loading

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{BC}}=2 a b^{2} / 1^{2}+2 a^{2} b / 1^{2}=P a b / 1 \\
& M_{B^{A}}=\frac{2 P a b K_{1}}{1\left(2 K_{1}+K_{2}\right)}
\end{aligned}
$$

and

$$
\begin{aligned}
& { }^{2 E_{A B}}=\frac{\operatorname{Pab}_{1}}{1\left(2 K_{1}+\bar{Z}_{2}\right)} \\
& K_{1} E I_{1} / h \text { and } K_{2}=I_{2} / 1
\end{aligned}
$$

Substituting these values in the above formulas;
$H_{B A}=\frac{2 \mathrm{PabI}_{1}}{2 I I_{1}+h I_{2}}$
$H_{A B}=\frac{2 a b I_{1}}{E I I_{I}+h I_{2}}$

The same frames will be analyzed
for fixed onde: that were used in the investigation with hinged onds.

$$
\text { For erame A the value of } I_{1}=I_{2}
$$

and

$$
\mathrm{Ki}_{\mathrm{B}}=\frac{2 \mathrm{Pab}}{40+15}=2 / 55 \mathrm{ab}
$$

Nor center loaded With load of unity,

$$
\begin{aligned}
& M_{B A}=200 / 55=3.64 \\
& M_{A B}=1.82 \\
& 2 H=5.46 / 15=.364 \\
& H=.182
\end{aligned}
$$

for quarter point loaded.

$$
\begin{aligned}
& H_{B A}=\frac{(2)(5)(15)}{55}=2.72 \\
& H_{A B}=1.36 \\
& 2 H=4.08 / 15=.272 \\
& H=.136
\end{aligned}
$$

For frame B the ratio of I_{1} to
I_{2} is 1 to 8

$$
i_{\mathrm{Ba}_{\mathrm{i}}}=\frac{2 \mathrm{Pab}}{2(20)+(15)(8)}=\mathrm{Pab} / 80
$$

Vith center Ioaded

$$
\begin{aligned}
& M_{B A}=100 / 80=1.25 \\
& M_{A B}=.625 \\
& 2 H=1.87 / 15=.125 \\
& H=.0625
\end{aligned}
$$

inth quarter points loaded

$$
\begin{aligned}
& M_{B}=\frac{5(15)}{80}=.94 \\
& M_{A B}=.47 \\
& 2 H=1.41 / 25=.094 \\
& H=.047
\end{aligned}
$$

These same results are true for
frame C theorettoally.
For frame D the ratio of I_{1} to
I_{2} Is 2.37 to I

$$
H_{A B}=\frac{2 p a b 2.37}{2(30)(2.37)+20}=3 a b / 34.2
$$

Yith conter loaded

$$
\begin{aligned}
& 4_{A B}=112.5 / 34.2=3.29 \\
& H_{B A}=6.58
\end{aligned}
$$

$$
\begin{aligned}
2 H & =9.87 / 20=.494 \\
H & =.247
\end{aligned}
$$

isth quarter points loaded

$$
\begin{aligned}
& H_{B A}=\frac{75(22.5)}{34.2}=1.84 \\
& W_{A B}=2.42 \\
& 2 H=7.26 / 20=.363 \\
& H=.181
\end{aligned}
$$

For frame E the ratio of I_{1} to
I_{2} is 1 to 3.3 C

$$
4_{\mathrm{BA}}=\frac{2 P a b}{2(30)+30(3.36)}=\mathrm{Pab} / 80.7
$$

With center loaded

$$
\mathrm{H}_{\mathrm{BH}}=\frac{15(15)}{30.7}=2.79
$$

$$
M_{A S}=1.39
$$

$$
2 H=4.18 / 30=.139
$$

$$
H=.069
$$

with quarter points loaded

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{BA}}=\frac{15(15)}{80.7}=2.09 \\
& \mathrm{H}_{\mathrm{EB}}=2.05 \\
& 2 H=\$.14 / 30=.1045 \\
& H=.052
\end{aligned}
$$

Tho moohanioal analyais was carried out with the same models as mere usea With two hinged frames; but were olamped in the gaages wh fixed amas instead of with hinges.

The fotiowing values were
obtained;
irame a center loading
$H=2.5 / 12=.20 B$
$R=6.5 / 13=.5$
$\mathrm{H}_{\mathrm{AD}}=5 / 1.7=2.94$
Hear quarter point loading
$\mathrm{H}=1.6 / 12=.133$
$R=1.0 / 13=.77$
$M_{A B}=1.3 / 1.7=.765$
rar quarter point loading
$H=1.7 / 12=.141$
$E=2.8 / 13=.216$
$\mathrm{H}_{\mathrm{A}}=6.0 / 1.7=3.5$

Frame B
Conter loading
$H=1.2 / 12=.1$
$H=6.5 / 13=.5$
$U_{A B}=2.0 / 1.7=1.17$

Near quarter point loading

$$
\begin{aligned}
& H=.5 / 12=.0410 \\
& R=9.7 / 12=.75 \\
& H_{2 E}=1.6=.94
\end{aligned}
$$

Far quarter point loading
$\mathrm{H}=.8 / 12=.0665$
$R=5.3 / 13=.254$
$\angle B B=1.8 / 1.7=1.06$
Frame C
Conter loading

$$
\begin{aligned}
& H=.6 / 12=.05 \\
& B=6.5 / 13=.5 \\
& M_{\text {PI }}=1.5 / 1.7=.88
\end{aligned}
$$

Hear quarter point loading

$$
\begin{aligned}
& H=.5 / 12=.0416 \\
& R=9.4 / 13=.725 \\
& L_{\Delta B}=1.0 / 1.7=.587
\end{aligned}
$$

Par quarter point loading

$$
\begin{aligned}
& H=.5 / 12=.0415 \\
& R=3 / 13=.25 \\
& H_{A B}=1.0 / 1.7=.587
\end{aligned}
$$

Frame D
Center loading

$$
\begin{aligned}
& H=3.0 / 12=.25 \\
& H=6.5 / 13=.5 \\
& H_{A_{B}}=8.0 / 1.7=4.7
\end{aligned}
$$

Hear quarter point loading

$$
\begin{aligned}
& H=2.1 / 12=.175 \\
& \mathrm{R}=10 / 13=.77 \\
& \mathrm{M}_{\mathrm{AB}}=3.0 / 1.7=1.76
\end{aligned}
$$

Far quarter point loadint

$$
\begin{aligned}
& \mathrm{H}=2.1 / 12=.175 \\
& \mathrm{R}=2.6 / 13=.20 \\
& \mathrm{M}_{\mathrm{AB}}=9 / 1.7=5.3
\end{aligned}
$$

Frame E
Center loading

$$
\begin{aligned}
& \dot{H}=.8 / 12=.066 \\
& R=6.5 / 13=.5 \\
& \mathrm{~h}_{\mathrm{AB}}=2.5 / 1.7=1.47
\end{aligned}
$$

Hear quarter point

$$
\begin{aligned}
& \mathrm{H}=.6 / 12=.05 \\
& \mathrm{R}=9.5 / 13=.73 \\
& \mathrm{M}_{\mathrm{AB}}=1.5 / 1.7=.88
\end{aligned}
$$

Far quarter point loading

$$
\begin{aligned}
& H=.5 / 12=.0416 \\
& R=3.2 / 13=.246 \\
& H_{A B}=2.0 / 1.7=1.18
\end{aligned}
$$

Comparison of results

The bottom colum of this table is the sum of m_{AB} fpribrth quarter points loaded.

From this comparisonif it aan be seon that the velues obtained by theory and with the models agree fairly well eapecially for the value of H. The moment as obtained bythe mechanioul method sesm to be large in nearly every case. It mas thought that the reason Sor this was beoause the moment plugs produced more delormation thin the others mausing the model to buckie. In order to fing out if this was the case, a model of the frame a pas mude of wall board. The reaults of the nechanicul analyeis of thds frame were ab foilows:

	Then in		Tear quaf.Pt		Thar quar. Pt	
H	. 182	. 125	. 13	. 11	. 13	. 11
R	. 5	. 5		. 7.7		. 23
${ }_{A B}$	1.82	1.77		1.47		1.42

The sum of the moments at the foot of the anlume theoreticajly is 2.72 and by the mechanisal mothod is 2.07.

The nasumption that the madel was buckling seems to be justified by these results.

13 Frame with Inolined Legs. Finds of Columns Ilinged.--- Analyzing by the methoa of slope deflestion for the general case shown in Figure X and assuming symmetrical loading.

$$
\begin{aligned}
& M_{A B}=0 \\
& H_{B A}=3 E K_{1} \theta_{B} \\
& H_{B C}=2 Z_{2}\left(2 \theta_{B}+\theta_{C}\right)-C_{B C}
\end{aligned}
$$

Sinoe the frame is symmotrioaland is symetrically 1oaden

$$
\begin{gathered}
\theta_{\mathrm{B}}=-\theta_{C} \\
\mathrm{M}_{\mathrm{BA}}+\mathrm{H}_{\mathrm{BC}}=0
\end{gathered}
$$

$$
\begin{gathered}
3 E K_{1} \Theta_{B}+2 E K_{2} \theta_{B}-C_{B C}=0 \\
\theta_{B}=\frac{C_{B C}}{3 K_{1} E+2 M K_{2}}
\end{gathered}
$$

Substituting in the general equation for $H_{\text {Bi }}$

$$
H_{B A}=\frac{3 K_{B C} K_{1}}{3 K_{1}+2 K_{2}}
$$

From this quation we see that the value of H_{Bj}
is independent of the inclination of the legs.
If the section 18 chnstant throughout, then I is constant and

$$
\mathrm{I}_{1}=I / I_{1} . \quad \text { and } \mathrm{K}_{2}=I / I_{2}
$$

Substituting in the equation for $H_{B A}$ just derived

$$
H_{B A}=\frac{3 C_{B C}}{3+21 / 1_{2}}
$$

Prom this equation ve see that theoretically the valuen of $H_{B A}$ is independent of the aize of the members so long as they are the same size throughout.

In order to conpare the results
as found by theory and by models, and to see Whether the mechanical method bears opt the theory in obtaining the sate value of $\mathrm{lf}_{\mathrm{BA}}$
regardiess of the inclination of the legs and the size of the members of the frame, the three frames shown in Figure XI on the next page were analyzed by the two mathods. The lengths of nembers are equal in all three oases and the depth of membars in frame G is twica that in the others.

Assuming loads at B and C

$$
\mathrm{C}_{\mathrm{BC}}=0 \text { and } \mathrm{M}_{3 A}=0 \text { for all three frames. }
$$

For Prames F and G, since for symetriaal doading, the vertival reactions equal 1 , then $\mathrm{B}=1$

For load at either B or C

$$
\begin{gathered}
H=.8 \\
\text { Assuming Ioads at oenter of apan. } \\
C_{B C}=1 / 4=25 / 4 \\
H_{B A}=\frac{3(25)}{4(3+(2) 35.35 / 25)}=3.22
\end{gathered}
$$

Tor frames F and G

$$
\begin{aligned}
& H=\frac{3.22(85)}{25}=1.13 \text { for } 2 \text { loads of unity. } \\
& H=.565 \text { for } 1 \text { load of unity }
\end{aligned}
$$

FRAME F

For Irame H

$$
\begin{aligned}
& H=3.22 / 35.35=.0913 \text { for double load. } \\
& H=.0456 \text { for single load. }
\end{aligned}
$$

For the machanioal analyais of these frames, models of cardboard to a soale of $1 / 4$ in. aquals 1 ft. They ware placed in the gaages Ath hinges at A and D as shom in the illustration.

With Irame F in the ganges, the dellection of point B was read as 6 divisions and point C as 6 divisions when the shear pluge

Were changed miking $H=6 / 12=.5$. Defleation of midale point mas 6.7 making 11 aqual $6.7 / 12$ or . 56

Frame was then place in the
grages and the values of 4 found to be .5 for points B or C loaded and .54 for midate loaded.

Frame H was next placed in the gaages and the deflection of points Bend C read as 0 . The deflection of the middle point was . 55 making H equal to . 046

Comparing reaults for H

Load	Hrame	F	Frame G	Frame H
pt.	Heory	Hodel	Fheory	Hodel
pheory	Lodel			
orc	.5	.5	.5	.5
Can.	.565	.56	.565	.54

Comparing results of frames
F and G it can be seen that the model bears out the theory for loads at joints B and C. But
for the heavior frame, and a load at the conter a cmaller valua of H is obtrainod by the meohaniorl method than for the light frame Thie goons the more reasonable rasult than that obtained by theory since it oar be seen thet as the cepth of members appromohes tininity, the vllue of H approachos zero. In view of this iact, there is as muoh reason for aoopoting the values obtained by the models as those obtained by theary. In comparing the values obtained for iramee F and I 1t oan be seen that the values of H for conter loading beare about the same ratio to tho theoretionl values an for franes F and 0. The meohanical method bears out the assumption that ${ }^{\text {Ha }}$ is independant of the inolination of the legs. For foints B and C londed M both theoretloally and mechanionlly 16 equal to zero. For the conter loading by the mechanionl method. tho galue of $\frac{1}{\text { BA }}$ for frame p oquals. $56(25)-25 / 2$ equale 1.5 and for frata H_{H} M equals . $046(35.35$) equals 1.6. This furnishes a fairly good oheak for the moment. The results on the whole atree with theoretical resulte very olosely.

14. Frame with Inclined Legs. Ends of

 Column Fixed. ---- We will assume symmetrical loading intis case as before.Then $\quad \theta_{B}=-\theta_{C}$

$$
\begin{aligned}
& M_{A B}=2 E K_{I} \theta_{B} \\
& M_{B A}=4 E K_{I} \theta_{B} \\
& M B C=2 E K_{2}\left(2 \theta_{B}+\theta_{C}\right)-C_{B C} \\
&=2 E K_{2} \theta_{B}-C_{B C} \\
& 4 E K_{I} \theta_{B}+2 E K_{2} \theta_{B}-C_{B C}=0 \\
& \theta_{B}=\frac{C_{B C}}{4 E K_{1} \theta_{B}+2 E K_{2} \theta_{B}} \\
& M_{A B}=\frac{C_{B C} K_{I}}{2 K_{I}+K_{2}} \\
& M_{B A}=\frac{2 C_{B C} K_{I}}{2 K_{I}+K_{2}}
\end{aligned}
$$

From these equations we see that the moments are independent of the inclination of the legs the same as for hinged mas. For uniform section throughout, the formulas become

$$
\begin{aligned}
u_{A B} & =\frac{c_{B C}}{2+1_{1} / 1_{2}} \\
\text { and } \quad u_{B A} & =\frac{2 C_{B C}}{2+I_{1} / 12}
\end{aligned}
$$

As for the aase of hinged ends the value of the moments and it ame independent theoretioally of the size of the section.

The sams three frames as used
in the prowious article will be analysed by both methode.
por joints B and C loaded $C_{B C}=0$
and
$M_{A B}=0$ and also $u_{B A}=0$
For frames F and G
$\mathrm{H}=1$ for doulle looding
$\mathrm{H}=. \$$ for one joint looded.
For frame H

$$
H=0
$$

for symmetrical loads at conter

$$
\begin{aligned}
& C_{B C}=25 / 4 \\
& M_{A B}=\frac{25}{4(2+35.35 / 25)}=1.83 \\
& H_{B A}=2(1.83)=3.66
\end{aligned}
$$

For frames F and G

$$
\begin{aligned}
& H=26.53 / 25=1.08 \text { for two loads } \\
& H=.54 \text { for one load of unity }
\end{aligned}
$$

Far Irame H

$$
H=1.83 / 35.35=.053
$$

Por the mechanioal solution, the frames were fastened in their thrn in the grages with the ends of the colume fixed by fastening to the grages with the plated provided for the purpose.

In the analyeis of Erame F. the deflection of points B and C pere found to be 6 when the shear plage were changed. $H=6 / 12$ or . 5 Deflection of center was 7. $H=7 / 12$ or .583 rihen thrust pluge were changed, there was a deflection of 9.5 for point B. 3.6 for C. and 6.5 for the conter point. Thus the vertical reactions for load over joints are $9.5 / 13$ or .732 and $3.3 / 13$ or . 278 , and for center loaded $6.5 / 13$ or .5 When the moment pluge were changed. deflection of B was 5.9 and of C was 6.0 in the opposite direstion and of the center was 1.7
making $H_{A B}$ equil $5.9 / 1.7$ or 3.47 for B loaded, 1.7/1.7 or 1.0 for center 1oaded, and $6.0 / 1.7$ or-3.52 for C loaded.

Thus tho adndition for a load
at both B and C siving zero moment at A and D is fulfilled by the mechanioal method.

Frame was next placed in the
gauges with ende fired and the following values
found in a similar manner to th t teed for frame F. For a load of unity at B

$$
\begin{aligned}
& H=6.0 / 12=.5 \\
& \mathbb{H}=9.1 / 13=.7 \\
& H_{B}=5.5 / 1.7=3.24
\end{aligned}
$$

por load at C

$$
\begin{aligned}
& H=6.0 / 12=.5 \\
& R=3 . B / 13=.29 \\
& M_{A B}=6.0 / 1.7=-3.52
\end{aligned}
$$

For load at center

$$
\begin{aligned}
& H=6.7 / 12=.558 \\
& R=6.5 / 13=.5 \\
& M_{A B}=2.0 / 1.7=1.17
\end{aligned}
$$

In this ase for a load at both B and 0 the moment
at B is not quite zero due possibly to some inaocurady in outting the model or in lastening in the gauges. The oanditiongof equilibrium are fairly well antiafiad for the vartioal and horizontal reactions.

Por frame it the following results
were obtainea:
For load at B
H $=0$
E $=13 / 13=1$
${ }^{\mathrm{m}_{\mathrm{ab}}}=0$
for loed at C
H $=0$
$\mathrm{E}=0$
$u_{A B}=0$
For load at conter

$$
\begin{aligned}
& \mathrm{H}=.6 / 12=.05 \\
& \mathrm{E}=6.4 / 13=.494 \\
& \mathrm{H}_{\mathrm{AB}}=1.5 / 1.7=.085
\end{aligned}
$$

Comparison of results

	Frame		Trame	G	Prame	\#
Load B	Theory	Hodel	Theory	hodel	Theory	Model
H	. 5	. 5	. 5	.5	0	0
R_{L}		. 732		. 7	1	1
K_{R}		.278		. 29	0	0
$M_{\text {AB }}$		3.47		3.24	0	0
Soad	at cent	ter				
H	.54	. 583	. 54	. 558	. 052	. 05
R	. 5	. 5	. 5	. 5	. 5	. 494
$\mathrm{H}_{\text {AB }}$. 99	1.0	. 99	2.17	. 99	. 885

The valnes compare very well for
this class of frames.
15. Wwo Hinged Aroh. ---- In order to simplify the mathematical obleulationa, a circulat arch of constant ctroes aection Vill be analyzed. From the equations for the deflection of courved beams, the formula for H for any tro hinged aroh is derived.

$$
H=\frac{\int H^{r} y d s / I}{\int y^{2} d s / I}
$$

when in is the moment due to vertacal laads only. For the arch of constant aross section. I is oondtant and the formula beoomes

$$
H=\frac{\int M^{\prime} y d s}{\int y^{2} d s}
$$

Aseume symmetrical loading as shown in 3 igurd XII.

Repressing in polar coordinates

$$
\begin{aligned}
x & =\mathrm{B}(\sin A-\sin \theta) \\
\mathrm{XI} & =\mathrm{R}(\sin \mathrm{~A}-\sin \mathrm{B}) \\
\mathrm{y} & =\mathrm{R}(\cos \theta-\cos \mathrm{A}) \\
\mathrm{ds} & =\mathrm{B} \mathrm{~d} \theta
\end{aligned}
$$

For e less than B

$$
M^{\prime}=P K I=P R(\sin A-\sin B)
$$

For 9 greater than B

$$
M^{\prime}=P x=\operatorname{PR}(\sin A-\sin \theta)
$$

Substituting these values in the formula for $\#$
$H=\frac{2 \int_{0}^{B} P R^{3}(\sin A-\sin B)(\cos \theta-\cos A) d \theta}{E \int_{0}^{A} R^{3}(\cos \theta-\cos A)^{2} d \theta}$

$$
\pm \frac{2 \int_{B}^{A} R^{3}(\sin A-\sin \theta)(\cos \theta-\cos A) d \theta}{2 \int_{0}^{A} R^{3}(\cos \theta-\cos A)^{2} d \theta}
$$

Integrating and dividing by 2 for single load
$H=\frac{\left.P R^{2}\left[\sin ^{2} A-\sin ^{2} B-200 \sin \theta \sin A-B \sin B-\cos B+\cos B\right)\right]}{2 R^{2}\left(A-3 \cos A \sin A+2 A \cos ^{2} A\right)}$
and adding the thrust shortening

$$
H=\frac{\text { Denominator }}{\text { Humerator }+\frac{2 A \text { aps }}{\text { area of section }}}
$$

If the aroh is semiaireular, A is 90° and sin A beamel 1 and $c a b A$ becomes 0 . Then

$$
H=\frac{P \cos ^{2} B}{T}
$$

Fe thrust ahortening will be 0 .
Two arches will be analyzed, the semioircular one shown in Figure XIII and one With A equal to 60°. Both will be loaded at the center and at quarter pointe measured along the aroh axismaking B equal to 45° for the memiciroular aroh and 30° for the segmental arch.

$$
80^{\prime}-0
$$

$$
\begin{aligned}
& A R C H 1 \\
& X\|\|
\end{aligned}
$$

Solving arch I

Load at quarter point

$$
\begin{aligned}
& B=45^{\circ} \cdot 008^{2} B=1 / 2 \\
& B=1 / 2 \pi=.17
\end{aligned}
$$

Load at center

$$
\begin{aligned}
& B=0, \quad \cos ^{2} B=1 \\
& H=.34
\end{aligned}
$$

Solving arch II

$$
\begin{aligned}
& A=60^{\circ}=\pi / 3 \text {. } \sin A=\sqrt{3} / 2, \cos A=1 / 2 \\
& \text { Area of section }=2 \cdot I=2 / 3 \\
& \text { for load point half way between springing }
\end{aligned}
$$

and crown along axis,

$$
\begin{aligned}
& B=30^{\circ}-\sqrt{3} / 6, \sin B=1 / 2, \cos B=\sqrt{3} / 2 \\
& H=\frac{1200[3 / 4-1 / 4-(\pi / 3 \cdot \sqrt{3} / 2-\pi / 12-\sqrt{3} / 2+1 / 2)]}{2400(\pi / 3-3 \sqrt{3} / 4+2 \pi / 12)+\frac{1 \pi / 18}{2}} \\
&=.39
\end{aligned}
$$

For load at center

$$
B=0, \sin B=0, \quad \cos B=1
$$

$$
H=\frac{1200[3 / 4-(\pi \sqrt{3 / 6}-1+1 / 2)]}{675.35}
$$

$$
=-.622
$$

For the meohanioal aralybis. an aroh model of arch I man made of two thicionesees
 This was placed in the gauges with hinges at the apringing and the defleation of the quarter polnta found to be 2 aiviaions for both when the shear plugs ware ohanged.

H for quajter points $=2 / 12=.166$
Hfor center losded $=4 / 12=.333$
The vertical rasctions werc found to be $1.8 / 13$ or .136 and $11 / 13$ or. 85 for the quarter points and $6.7 / 13$ or .515 for the oonter loaded.

For the batigels of arah II, the
anme model mac used as for I with the gauges moved up 30° troui the center. The derlootion of the quar ter points for this aase vas found to be 4.5 and for the onter 6.6 .

H for quarter points $=4.5 / 12=.375$
过 for canter $=6.6 / 12=.55$
The verticel reactions were found to be .185 and - 81 for the quartor pointe and . 485 for the conter loading.

Comparison of reaults

	irch	I	Arch	II
Load at oonter	Theory	Lodel	Theory	Lodel
H	.34	. 33	.622	. 55
F_{L}	. 5	.515	.5	. 485
R_{p}	. 5	. 515	. 5	. 485
L,oad at quarter point				
H	.17	.166	.39	.375
$\mathrm{R}^{\text {d }}$. 148	.138	. 21	.185
H	. 852	. 85	. 78	. 81

Chese results oompare favorably and indicate that the mechanical mathod might be ased with about as much assurance as the theoretical method, eapecially for those types of two hinged arches which do not permit of casy integration.
16. Hingless Arch.--- In the analysis of the hingless uroh, the arch is considered to be cut in the center and equations derived for the unknowns indicated at the crom in Pigure XIY required to hold the hale aroh in equilibrium by equation the deflection of the right half to that of the left half. Thus
$x=-\Delta x^{\prime}$
$\Delta y=\Delta y^{\prime}$
$\Delta \phi=-\Delta \phi^{\prime}$
when Δx is the horizontal deflection of the left half at the oromn, Δy is the vertical deflection of the left half tht the crom, and $\Delta \phi$ is the angular duflaction of the orown from the tangent at the epeinging of the left half. Δx^{2}. ΔJ^{\prime}. and $\Delta 0^{2}$ are the correaponding defleotions for the right half.
substituting for these terms
their axprensions ad aerived for the deflootion of curved beans, and substituting for ii at any
point 1 ts value $\mathrm{K}^{\prime}+\mathrm{L}_{0}+\mathrm{H}_{\mathrm{o}} \mathrm{y} \pm \mathrm{V}_{0} \mathrm{x}$, the following equations for H_{0}, V_{0}, and in are derived.

For this analysis, arch I of the previous article will be used. For constant cross section, the I's cancel in each of the three equations above and for the segmental or semicircular arch.

$$
\begin{aligned}
x^{2} & =2 i y-y^{2} \\
y & =x-\sqrt{R^{2}-x^{2}} \\
d y & =\frac{x d x}{\sqrt{R^{2}-x^{2}}}
\end{aligned}
$$

$$
d s=\frac{R d x}{\sqrt{R^{2}-x^{2}}}
$$

Assume a single load P at some point b distance to the left of the canter.

Then I^{\prime} between A and P (Figure $X Y$) equals
$P(x-b)$ and equals zero over the remainder of the arch.

Evaluating the different terms for circular arch of constant cross section, considering 1 $a s$ half the span as shown in Figure $X V$.

$$
\int d s=\int_{0}^{1} \frac{d x}{\sqrt{R^{2}-x^{2}}}=2 K\left(\sin ^{-1} x / R\right)_{0}^{\Psi}=2 R \sin ^{-1} 1 / R
$$

for semicircular arch

$$
=\pi L
$$

$$
\int y d B=2 R \int_{0}^{2}\left(R-\sqrt{R^{2}-x^{2}}\right) \frac{d x}{\sqrt{R^{2}-x^{2}}}
$$

$$
=\left(2 R^{2} \sin ^{-1} x / R-2 R x\right)_{0}^{\frac{1}{3}}
$$

$$
=2 R^{2} \sin ^{-1} I / R-2 R I
$$

for semicircular arch

$$
=I^{2}(\pi-2)=1.1416(I)
$$

$$
\begin{aligned}
\int y^{2} d s & =2 R \int_{0}^{3}\left(K-\sqrt{R^{2}-x^{2}}\right)^{2} \frac{d x}{\sqrt{R^{2}-x^{2}}} \\
& =2 R\left(3 / 2 R^{2} \sin ^{-1} x / R-2 R x+x / 2 \sqrt{R^{2}-x^{2}}\right)_{0}^{2} \\
& =2 R\left(2 R^{2} \sin ^{-1} L / R-2 R L+L / 2 \sqrt{R^{2}-I^{2}}\right)
\end{aligned}
$$

for semicircular arch

$$
\begin{aligned}
= & 2 L\left(3 / 4\left(\pi L^{2}\right)-2 L^{2}\right)=.71 \Sigma 4 L^{3} \\
\int H^{\prime} g d s= & R \int_{b}^{I} P(x-b)\left(H-\sqrt{R^{2}-x^{2}}\right) \frac{d x}{\sqrt{R^{2}-x^{2}}} \\
= & P H\left(b x-H R^{2}-x^{2}-x^{2} / 2-H b \sin ^{-1} x / R+b x\right)_{b}^{L} \\
= & P R\left(b L-b^{2}-R \sqrt{R^{2}-L^{2}}+R \sqrt{R^{2} b^{2}}-L^{2} / 2+b^{2} / 2\right. \\
& \left.-K b \sin ^{-1} I / R+R b \sin ^{-1} b / R\right)
\end{aligned}
$$

for semicircular arch and b equal to $I / 2$

$$
=P I^{3} / 24(12 \sqrt{3}-3-4 \pi)=5.2 \mathrm{PL}^{3} / 24
$$

for b equal to zero

$$
=P L^{3} / 2
$$

$$
\begin{aligned}
\int B_{1}^{2} d s= & 2 R \int_{b}^{L}(x-b) \frac{d x}{\sqrt{R^{2}-x^{2}}} \\
= & \operatorname{RR}\left(-\sqrt{R^{2}-x^{2}}-b \sin ^{-1} x / R\right)^{L} b \\
= & H\left(-\sqrt{R^{2}-L^{2}}+\sqrt{R^{2}-b^{2}}-b \sin ^{-1} I f R\right. \\
& +b \sin ^{-1} b / R y
\end{aligned}
$$

for semicircular arch and b equal to $\mathrm{I} / 2$

$$
\begin{aligned}
& =\mathrm{PL}(\mathrm{~L} \sqrt{3} / 2-\mathrm{I}(4 / 4+\mathrm{L} / 12) \\
& =\mathrm{PL}^{2} 4.1 / 12
\end{aligned}
$$

for b equal to zero

$$
=P 士^{2}
$$

$$
\begin{aligned}
x^{2} d s & =2 R \int_{0}^{I} \frac{x^{2} d x}{\sqrt{R^{2}-x^{2}}} \\
& =2 R\left(R^{2} / 2 \sin ^{-1} x / E-x / 2 \sqrt{R^{2}-x^{2}}\right)_{0}^{L}
\end{aligned}
$$

for semicircular arch

$$
=L^{3} \pi / 2
$$

$$
\begin{aligned}
& \int_{1} x d s=\operatorname{ma}_{b}(x-b) \frac{x d x}{a^{2}-x^{2}} \\
& =2\left(n^{2} / 2 \sin ^{-1} x / n-x / 2 \sqrt{n^{2}-x^{2}}+b x^{2}-x^{2}\right)_{b}^{L}
\end{aligned}
$$

$$
\begin{aligned}
& +b / 2 \mathrm{R}^{2}-\mathrm{b}^{2}+\mathrm{b} \mathrm{R}^{2}-\mathrm{L}^{2}-\mathrm{b} \sqrt{\mathrm{H}^{2}-b^{2}}
\end{aligned}
$$

Por semiciroplar aroh and b equal to $\mathrm{L} / 2$

$$
=I^{3} / 24(45-3 \sqrt{3})=7.3764 I^{3} / 24
$$

Subatitutingthese values inthe general oquations for load st quafter point

$$
\begin{aligned}
& H_{0}=\frac{\underline{u}^{4}(5,2)}{24}-\frac{x^{4}(4.1)(1.1416)}{\left(I^{2} 1.1416\right)^{2}-\pi I^{4}(.7124)} \\
& =\frac{.682-.39}{1.3-2.24}=-.31 \\
& V_{0} \cdot \frac{7.3764 I^{3}}{2^{2}}=.195 \\
& m_{0}=-\frac{x^{2} 4.1 / 22-(.31)(1.1416) L^{2}}{\pi I} \\
& =-\frac{(40) p 4.1) / 12-.31(40)(1.1416)}{\pi} \\
& =.159
\end{aligned}
$$

$$
H_{B}=.31(40)-.195(40)+.159=4.759
$$

For center loaded

$$
\begin{aligned}
I_{0} & =\frac{L^{4} / 2-P I^{4}(I .2416)}{-I^{4} \cdot 34}=-.455 \\
T_{0} & =\frac{8 L^{3} \pi}{4 I^{2} \pi}=.5 \\
M_{0} & =\frac{2 I^{2}-455 L^{2}(1.1416)}{\pi L} \\
& =\frac{40-21.25}{3.1416}=-5.64 \\
H_{B} & =455(40)-.5(40)+5.64=3.84
\end{aligned}
$$

The value of I aoos not anter into the alculstions so these values obtained by thoory are the same for any depth of arch ring. In the mechanioal nnalyais aroh I of extiole 13 was fagtened in the gauger with fixod onds cis ahom in the illustration. Tha illustration ahowe aroh II of article 13 fastenod in the gapees with fixed onds. Aroh I is the same excopt thet it is fantened on the diameter.

The load pointe were takan as the guarter point of span and not along the aroh axis as was the oase with the two hinged arch. The raluea obtained are as follows for quarter point loaded.

$$
\begin{aligned}
& H=8.6 / 12=.3 \\
& \bar{v}_{B}=2.7 / 13=.207 \\
& { }_{B}=8 / 1.7=4.7
\end{aligned}
$$

and for canter loaded

$$
\begin{aligned}
& H=4.2 / 12=.35 \\
& V_{B}=6.5 / 13=.5 \\
& H_{B}=7.8 / 1.7=4.6
\end{aligned}
$$

Since the theoretical values are independent of I.
another semidroular aroh model was mado withmithe same span but itith half; the thiokreas, and plaoed in the gauges in the ast way. The vilues obtained were:
fow quarter point loaded

$$
\begin{aligned}
& \mathbf{B}=3.7 / 12=.300 \\
& V_{B}=2.5 / 12=.192 \\
& 4_{B}=8 / 1.7=4.7
\end{aligned}
$$

far oenter loaded

$$
\begin{aligned}
& H=4.5 / 12=.375 \\
& \nabla_{B}=6.5 / 13=.5 \\
& H_{B}=7.8 / 1.7=4.6
\end{aligned}
$$

Comparibon of resuile

	Theory	Aroh 1	Aroh with $2 / 2 \mathrm{~d}$.
Cuartor point loaded			
ii	.31	. 3	. 303
V_{3}	. 195	. 207	. 192
H_{3}	4.759	4.7	4.7
Center loadea			
H	. 45	. 35	.375
∇_{B}	. 5	. 5	. 5
4_{3}	3.84	4.6	4.6

In comparing these values it will be noted that there is a littie variation for the theoretical raluos but considering thegreat amount of mork required to obtain these ralueg, those obtainod With the models are probally as nearly correct as those obtained by theory. It is bellored that theed Falues obtrined by the modele are as safe to uso in the design of auch atruotures as those obtained by theoraticsi athods and there is not as much dangar of error.

IV APPIICATIOR MO REINPOROED CONCRETE.
17. Diacussion of Theory.--- Prom article 6. we bow that for any atructure with a constant modulus of elanticity: i.e. made of the same material throughout, the value of E does not enter into the equation for internal mork. The only terms in the equation which is different for reinforeed condrete irames from those of homogeneous material are the values of A and I. Since the obnorete and steel must have the same deformation under stseas, the equivalent area of
steal for conoreta is A_{B} (ares of steal) timea
 to modulus of elasticity of conorete). The value of I for reinforced conarete seation will be the I of the conoreteabout the neutral axia plus the equivalent area of steel times the aquare of its distanoe from the neutral aris. The value of A can be stated inlterms of the depth anI so that for any struature: the analysis depends upon the valuo of I. Sinoe the models are of a homogeneous material. they vill have to be sade with a moment of inertic equal to that for the conerete section. Since the difierent members of the model cannot be varied in thickness, the dopth must be varied to give on equivalent moment of inertia. But since the difierent valuss depent theoretionlly upon the ratio of the moments of inertia of the different members and not upon the Falue of the moments of inertia, it in thought that if the aize of montars 1s kept as mesily as possible to the size of the conorete section and the moments of inertia varied acoordingly, that the results vill bs more mearly their true value.
18. Reotangular Frame with Hinged Colown Ends. -m The Erame ahorn in Plgare XVI is one analysed and tented by Dr. Abe at the University of Illinoie as part of his work for the Dootepte aegroe. The ratio af $\mathrm{E}_{\mathrm{a}} / \mathrm{E}_{\mathrm{c}}$ was determined by aaparate totets on the oonarete and steel as 24.3. The hinge vas placod below the bottom of the colusa ands nelinge tho moment nym of H oqual to 4.63 1t. The yalue of $\mathbf{1}$ (proportion:11ty factor for loostion ofnoutral aris) for section A-A is . 41. A_{8} 1B . $7 B$ Bq.ine. anả j 18.863. The value of H as oomputed by Dre Abe was . 088 P when P is the sum of equal loals on the third pointa. In the test, when a load of 9:00 2b. vae applied at asch of the third pointe, the value of 2 (unit atcal stread) was detormined by axtensometers to he 17.900 16. par sq. in. This stwees is osused by a banding monant and a horisontal thrust in the bean equal to H. Assuning that II will be distributed over the equivalent arta of the beam, the amount af this ampressive stresm oaryed by the ateol in
14.3 (.7日) H or 123 H. Th observed velue of $80+13.3(=78)$
the reaisting moment at seotion A A is than
equal to $(27.900(.78)+.115$ 5) $=363(10)$ and
the external moment is equal to (9000 (24) - H 4.63(12)). Equating the externsl and resisting moment at section A -A and solving for H

$$
\begin{aligned}
180,000 & +1.06 H=216.000-65.5 H \\
H & =1690 \mathrm{Ib} \\
\text { or } H & =.094 \mathrm{P}
\end{aligned}
$$

The computed ralue of x is . 41 for the top
member and is is . 863

$$
\begin{aligned}
I_{\text {n. A. at center }} & =\frac{8(1000)(.9)^{2}}{12}+14(.78)(8.6)^{2} \\
& =540+808=1148
\end{aligned}
$$

I in the solumn just below the joint is about the same as for the oenter of the beam. The bottomelaif (approalmately) of the colvm has a value of k equal to .329 snd j equal to .89

$$
\begin{aligned}
I & =\frac{8(2)(2)(9)(1.5)^{2}}{12}+.39(54) \\
& =1090+25=1115
\end{aligned}
$$

If we asawe a depth of 10 in. for the top member, the thiokness b of a bomogoneons section for a value of I of 1148 is equal to 18.8. The value of d (depth to conter of ateel) for this same breadth of colvan is for a value of I of 1116 equal to

Cardboard was found to be too limber for a model of a fratic of these dimensions, allowing the members to buokle when the deformation was produoed. a model was made of wall board to a scale of $3 / 2$ in. equal 1 ft. and the value of H found to be,for each of the load pointa, equal to . 0416. This makes a value of . 0832 for botin third points loaded. This velue agrees romariably mell with Dr. Abe's value of .OA2.

Model of concrete frame in gauges
19. Hingless Reinforced Conorete Aroh.-The object of this analysis is to compare the results obtained by the ordinary nothod of analymi with those obtained by model for plotting influence Lines for horizontal reactions, vertiosi reactions, thrust, Bhear, and monent at the apringing section of the reinforaed anarete arch ring shom in Pigure XVII.

Thit arah is one analysed in Hool's "Reinforced Conorete Conetruetion" Vol. III. It was axalyzed by dividing the ring into eections whoh that $/$ I for each seotion is constant.

Thin was done by computing the value of I at geveral points on the aroh ring. The aroh axie is then laid off as abscisse and the values of I laid off as ordinates. These pointe located, they are connected by a smath ourve and tha axis divided by trial into bases (urually tan) of iaoscles triangles with apax In the ourve for I. Daing the value of s thus found as the longth along tha axis for that partioular geation of aroh ring and measuring x and y to the center of gravity of the seotions with the crown as the origin. the following equations for $H_{0} V_{0}$ and H_{0} at the orom ane obtaned trom the genaril equations

Pigure showing mathod of alviding aroh axia into sonstant $8 / I$.
as given for the hinglose arch in article 16. Sinoe thisltype of aroh cannot be integrated. da beoomes s and the integral beames a sumation of parts. Since s/I is constant

$$
\begin{aligned}
& \mathrm{H}_{0}=\frac{n \sum(m L+m R) \square-\sum(m L+m R) \sum y}{2\left[n \Sigma^{2}-(\Sigma y)^{2}\right]} \\
& V_{0}=\frac{\sum(m L E R) x}{2 \Sigma x^{2}} \\
& M_{0}=\frac{\sum(m L+m R)-2 H_{0} \sum y}{2 n}
\end{aligned}
$$

when
a oquals length of divibion of arch axis,
n equsls nuper of divisions in one half of arch. mif equals moment at any point on left hall of
arch axis of all externel loads between
the point and the eroms,
mR equals game for right half of aroh.
A table of these tembs used in the above equations is prepared and the values of $H_{o} V_{0}$, and Y_{0} caloulated by anbstitizting values from the table in the equations. Whis table as taken Iron "Reinforced Conorete constructton" is giten on the next page. The following valum are then found.

Unit loadet I_{1}

$$
\begin{aligned}
& H_{0}=\frac{10(13.13)-(1.08)(29.90)}{2\left[10(222.94)-(29.90)^{2}\right]}=.037 \\
& F_{0}=\frac{34.2}{2(2611.6)}=-.007 \\
& H_{0}=\frac{1.08-2(.037)(29.90)}{2(10)}
\end{aligned}
$$

CTMCEETE CONOTK UCTON"

Pt.	\times	4	x^{2}	4^{2}	Unit load at LI			Unit load ir L_{2}			Unit load at L_{3}			linit loadat L-	
L,	30.62				m	ryx	$m y$	m	$m x$	m	m	mx	rnif	$m: m x$	YM1
L_{2}	21.87														
L_{3}	13.12														
L	4.37														
1	31.70	12.16	1004.9	147.87	1.08	34.2	13.13	9.83	311.6	119.53	18.50	5890	225.33	2732866.4	332.33
2	28.18	6.63	584.7	43.76				2.31	55.9	15.32	11.06	267.4	73.33	$19.8,479.0$	131.34
3	19.61	4.25	384.6	18.06							6.49	127.3	27.58	15.24298 .9	64.77
4	16.08	2.80	258.6	7.84							2.96	47.6	8.29	11.71188 .3	32.79
5	13.06	1.85	170.6	3.42										867113.5	16.08
6	10.33	1.13	106.7	1.28										5.96 61.6	6.73
7	780	. 64	60.8	41										3.4 .826 .7	220
8	5.43	. 30	29.5	. 09										1.065 .8	. 32
9	3.18	. 12	10.1	. 01											
10	1.05	. 02	1.1	. 00										I	
Σ		29.90	2611.6	22294	1.08	34.2	13.12	12.14	367.5	134.85	3309	1031. 3	335.13	93.3232 .090 .2	$586 \cdot 2$
(.).															

Unit load at L_{2}

$$
\begin{aligned}
& \mathrm{H}_{0}=\frac{10(134.85)-12.14)(29.90)}{2670.8}=.369 \\
& \mathrm{v}_{0}=\frac{367.5}{5223.2}=.07 \\
& u_{0}=\frac{12.14-2(.369)(29.90)}{20}=-.496
\end{aligned}
$$

Unit lond at I_{z}

$$
\begin{aligned}
& \mathrm{H}_{0}=\frac{10(335.23)-39.09(29.90)}{2670.8}=.818 \\
& \nabla_{0}=\frac{1031.3}{5223.2}=.197 \\
& \mathrm{w}_{0}=\frac{39.09-2(.818)(29.90)}{20}=-.491
\end{aligned}
$$

Unit load at I_{4}

$$
\begin{aligned}
& H_{0}=\frac{10(586.55)-93.23129 .90)}{2570.8}=1.151 \\
& \nabla_{0}=\frac{2030.2}{5223.2}=.891 \\
& H_{0}=\frac{93.23-2(1.151)(29.90)}{20}=+1.22
\end{aligned}
$$

After these valuea are found the arch is atatiosily determinate and the values of H. F. V, and H at the springing line may be detarmined either graphically or algebraioally. The values of these terme are given in the table on the next page.

The following method was used for the mochanioal anslyais,

The value of I at the orown is

$$
16^{3}+15(.994)(2)(0.5)^{2}=5002
$$

and I at the opringing line is

$$
36^{3}+15(.994)(2)(15.5)^{2}=53,760
$$

If we keep the depth of arown the same for the model as the concrete section, the value of b giving an oqual is $\frac{5002(12)}{16^{3}}$ or 14.65.

The equivalent depth at gpringint it

$$
\sqrt[3]{\frac{53.760(12)}{14.55}} \text { or } 35.4 \mathrm{in}
$$

A model was made of wall board
With depth of orom equal to 16 in. and aepth of
1MFLUEMCE
springisg equal to 35.4 in. This model was placed in the gangee with the gauge horizontal to produce horisontal tatleotion at the gilringing for detarmining the value of H and R. The gauges wore then changed to prodnee displacemante parallel to the axis and also normal to the axis for determining T, ∇, aud w at the springing. These ralues are given on page 86. The model fastened in the gauges is shown in the illustration.

The values found by the meohanical
met hod ure secn to compare very woil with thote found by the orisinary method and may be used in the design of such structures. There is as;much reason for thinicing that the resulta of the mechanical
method ere as negr the truth as those found by theoretical methods, as the letor method is a sumation and not exact. At the same time it is not possibla to say fust what the equivalent depth should be taken to give the correct result. The results of the moohanical mathod are certainly much easior of attainment and there is not the danger of malcing mictakes as there air in the mathematical caloulations.

V. COMCIUSIOB

20. Difficulties Encountered.--- There were sereral diffiatlities encountered in the investigation, the most outgtanding one being With the gauges. If the geuges are to give satisfaction, they must be made with a great deal of care. The notohes in the gauges should be made with an anglo of exactly 90° and with the diagonal of the square formed extactly parallel to the main parts of the gauge. They must also be exactly the same distance apart or the gauge W111 rook back and forth as the pressure is ghifted from one end of the gauge to the other. The shear plugs ahould be made with all the faces making exact right angles and they should be exactly the same sime, otherwise the ame dieplacoment will not be produoed unlass they are placed in the gauges in exactly the same manner esch time, thich is a practical imposaibility. The thrust and moment plugs must be exsetiy round or the same displacement will not be producod each time the plugs are changed.

Another difficulty wes encountered
in reading the defleotion in the miorometer eyepiece. A point was tried for marking the load point at which the deflection was measured but Pithout guocess. The load point not only has vertioal motion b ut also a horizontal displacement when the plugs are changed in the gauge. This is sometimes great onouth to cause the point to pass entirely off the soale and alwaye from one side of the eflale to the other. If, when this happones, the bosie is not axaotly oriented, the proper deflection is not read by the difference in reading on the malle. A point when seen through the mearoscope is not a point and it is diffioult to determine the deflection. Also apolnt furnishes no means of orlanting the soale to read delleotion in the direction then the load is aoting. It was not found possible to use a petreil line on the model for orienting besause it is too ragged. This diffioulty was finally solved by making several seall blook of
aluminiun about $1 / 4$ in. square by $3 / 4$ in. Iong and smoothing the faces till tho edges appoared as smooth straight lines when seen under the miempapepe. These were Iasthod to the model With paste at the load pointa with the edges normal to the direction in which the load was assumed to be acting. This furnished a means of orienting the gcale and the line vas always on the sosle permitting easy and correot reading of tie deflection. To read the deflection, the scale was set with zero line along the edge of the blook and the deflection produced in a direction auch that the edge of the block mored back along the soale. The divisions of deflection could then be easily counted as they wesp clear of the confusing lines on the surface of the aluminium.
21. Care to be Exeroised. AB A great
deal of oare should be encerciced if comparatively aocurate resulta are expected. If the models are too thin in oomparison vith the depth and
lonfth of members, they will buckie; and the investigation shows that resulte will be obtained under these circumstances which are far from acourate. The ordinary thickness of curdboard was found to be too thin for most models, two thicimesses of the comparatively heavy cardboard Were found to gite good results for most models; but wall board $3 / 16$ in. thick gave excellent results in overy case in which it was triod. Wall boara is of course more diffioult to cut into wodels than cardboard; but with a sharp inife may be done very woll.

The gauges must be placed exactly
normal to the axia at the section if accurate reaulta are arpected for shear and thrust. In determining the moment the section mast be placed in the gauge with the axis at tial point oxactly midway betwean the plugs; or thrust displacoment Will be producod ir connection With the moment and erroneous results $W 111$ be ottuined.
22. Rotermination of Signs . - Th mechanicsl method antomatically determines the direction of the shear, thruat, or moment at the gection. It can readily be seen that if a shear, or thrust displactment at the gauge prodases a defleation of the load point apposite in direction to that in which the load is sssumed to be acting, then the diaplacoment at the gauge is in the direction of the resotion at the soction and Vice versa. Frph a study of Pigure II, it oan be seen that if. a produced moment at B in the same direction as that orused by P about B, causes an upward delleation ata, then a downmard dofloction st A will cause a moment at B opposite in airection to that of he load about $B ; i . \theta$. tensim in the lower fiber. Te may ary then that if the traning effect in the gauge is in the aane airection as that of the load about B and produoes a deflection apposite in direction to thatin which the load is acting. then the moment at the seotion is in such a direotion as to cause tension in the botton fiber and vioe verba.

Abstract

23. Determination of Thrust, Shear and Loment at a Seotion Other Than Support.enThe theoretical discussion in the introduction holds min any sectio of the etructure. 20 determine the shear, thrust or moment at any section other than the aupport. fasten the model at the supports in exactly the same manner as beiore. Then at the sectio where the thrust. shear or mement is desired, pla0e a gauge and clanm the model in both A and B of the gauge and cut the model between them. A displacement aan then be produced with the plugg at that section. The gauge should be floated on glass and ball bearinge in this case to allow free motion of tho model.

This wasnot tried in this investigation because of lack of time and since it is not as greatly important as the determination of the reaotions. For any but very complicated struatures the atresses are all determinate as soon as the reactions are determined nd, since the gauge winld zestrict the deflection

Abstract

off the model unless great care was exeroised. it is thought that hedtergesults will be obtained by datamining atresses from the reactions

 in every case where it is possible to do so.24. Field of Usefulness.-- In the Iight
of his investigation, a great fiold of usafulness is predicted for this method of analysis becanse of its simpliaity. Even though it may not be used for the original analysis of indeteminate structures, it may be used as a valuatie oheck upon the mathematioal caloulations until its reliability is further established.

It would secm to have a special
field of usefulness in the design of conorete arches. Fhere is a great gaving affeated in the construation of a Beries of arches if the piers are made elastio. This is seldom done due to the great amount of designing mork required. The now method pefers a simple solution for such structures. This is also true with regard to unsymetrical arches.

