INFORMATION TO USERS

This dissertation was produced from a microfilm copy of the originai document.
While the most advanced technological means to photograph and reproduce this
document have been used, the quality is heavily dependent upon the quality of
the original submitted.

The following explanation of techniques is provided to help you understan
markings or patterns which may appear on this reproduction.

1.

The sign or "‘target” for pages apparently lacking from the document
photographed is “Missing Page(s) ”. If it was possible to obtain the
missing page(s) or section, they are spliced into the film along with
adjacent pages. This may have necessitated cutting thru an image and
duplicating adjacent pages to insure you complete continuity.

When an image on the film is obliterated with a large round black
mark, it is an indication that the photographer suspected that the
copy may have moved during exposure and thus cause a blurred
image. You wiil find a good image of the page in the adjacent frame.

When a map, drawing or chart, etc., was part of the material being
photographed the photographer followed a definite method in
“sectioning”’ the material. it is customary to begin photoing at the
upper left hand corner of a large sheet and to continue photoing from
left to right in equal sections with a small overlap. If necessary,
sectioning is continued again — beginning below the first row and
continuing on ‘until complete.

The majority of users indicate that the textual content is of greatest
value, however, a somewhat higher quality reproduction could be
made from ‘‘photographs” if essential to the understanding of the
dissertation. Silver prints of ‘‘photographs” may be ordered at
additional charge by writing the Order Department, giving the catalog
number, title, author and specific pages you wish reproduced.

University Microfilms

300 North Zeeb Road
Ann Arbor, Michigan 48106

A Xerox Education Company



72-29,900
McQUEEN, Henry Leon, 1938-
AUTOMORPHISHMS OF THE SYMPLECTIC GROUP OVER
LOCAL RINGS.

The University of Oklahoma, Ph.D., 1972
Mathematics

University Microfilms, A XEROX Company , Ann Arbor, Michigan

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED



THE UNIVERSITY OF OKLAHOMA
GRADUATE COLLEGE

AUTOMORPHISMS OF THE SYMPLECTIC GROUP OVER LOCAL RINGS

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirement for the
degree of

DOCTOR OF PHILOSOPHY

BY
HENRY LEON MCQUEEN
Norman, Oklahoma

1972



AUTOMORPHISMS OF THE SYMPLECTIC GROUP OVER LOCAL RINGS

APPROVED BY

— 5 IR0

Seea ® B

/"'M

/QMM@ @Wﬂé

/mcm

DISSERTATION COMMITTEE



PLEASE NOTE:

Some pages may have
indistinct print.

Filmed as received.

UniversityiMicrofilms, A Xerox Education Company



ACKNOWLEDGMENTS

I express my gratitude to my thesis advisor, Bernard
McDonald, who suggested the topic and provided assistance
and encouragement throughout the course of the research.

I also thank my wife, Harriett, for her help in
editing and typing and for her encouragement throughout the

degree program.

iid



TABLE OF CONTENTS

INTRODUCTION . . v o o o ¢ o v o o o &
Chapter
I. SYMPLECTIC GROUPS . . . . .
II. INVOLUTIONS . . . . &« « « .
IIT. TRANSVECTIONS . . . « «
IV, AUTOMORPHISMS . . .+« « « +

BIBLIOGRAPHY . . . . . . . L] L] . . . .

iv

Page

25
36
50
62




AUTOMORPHISMS OF THE SYMPLECTIC GROUP OVER LOCAL RINGS

INTRODUCTION

The term "classical groups" has been used traditionally

to mean the general linear group, GLn(V), and its subgroups

which leave various forms invariant. In this paper, we shall

investigate the symplectic group, Spn(V), that is, the
subgroup which leaves invariant a certain alternating form.
particular we shall determine the automorphisms of Spn(V).
Motivation is provided by the general observation that
results for the general linear group can be carried over,
in many instances, to the symplectic group.

The first book devoted to the theory of linear

groups was Jordan's Traité des Substitutions in the 19th

Century which developed earlier ideas of Galois. These
results were subseguently refined by Dickson and others to
the point that the’structure of the general linear group,
in the case where the space under consideration is a field,
is relatively well known. For example, see Artin [1] and
Dieudonné [7]. Following a natural course, many of these
results have been generalized to modules over rings. Of

particular interest to us is the specialization to local

In

rings. Klingenberg [13], after earlier work on the structure
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2
of the general linear group, studied the structure of the
symplectic group. He showed that the symplectic group 1is
generated by the transvections and that the only invariant
subgroups are the congruence subgroups. We are able to
use these facts to relate the local ring case to the field
case.

The study of the automorphisms of the linear groups
dates back to 1925 when Schreier and van der Waerden [23]
determined the automorphisms of the general linear group
over an arbitrary commutative field. Nearly a quarter of
a century later Dieudonné [6] described the automorphisms
of the general linear group over a non-commutative field.
This was followed by investigations of the form of the
automorphisms of GLn(V) where V is a free R-module for
various rings R. Due to thelr related work on the symplectic
group, we call attention to the work of Hua and Reiner [8]
over the integers and O0'Meara [17] and Chien [U] over
integral domains. Recently Pomfret [19] described the
automorphisms of the general linear group over 1o0cal rings
where the characteristic of the ring is other than 2 and
the dimension of the module is at least 3.

As for the automorphisms of Spn(V), the division
ring case is virtually complete and can be found in
Dieudonné [5]. We further note that many of those who had
researched GLn(V) turned thelr attention to Spn(V). The

automorphisms of Sp, (V) over the ring of integers were
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found by Reiner [20]. O'Meara [18] indicates that Wan has
found the automorphisms over a commutative Euclidean ring of
characteristic not 2 when n > 6. O'Meara then described
all automorphisms of Spn(V) over any commutative integral
domain of any characteristic when n > 4. Throughout these
studies of the linear groups, 1t is apparent that arguments,
if they exist, in the cases for "small" dimension and rings
of characteristic 2 require somewhat different methods than
the other cases.

The approaches in determining automorphisms seem to
be in two main veins. One is a highly computational argument
as in Chien, Reiner, and Pomfret. The other, as exemplified
by O'Meara, relies more on geometry.

We shall concern ourselves with the automorphisms of
Spn(V) where V is a free module over a local ring R with
characteristic of R/m # 2 and R/m # Fy where n > 6. (F3
is the finite field of three elements.) The method is to
determine the images of involutions and then the images of
transvections. Recent work by Ojanguren and Sridharan [16]
enables us to proceed & la O'Meara [18] and Dieudonné [6]
in applying the fundamental theorem of projective geometry.

We conclude that the automorphisms of Spn(V) are of
the same general type as in the cases above, that is,

g > x(c)gog"l where g is a semi-linear isomorphism of V

onto V and ¥ is a homomorphism of Spn(V) into its center.




Notation and Terminology

Throughout this paper all rings are assumed to have
identity element which is denoted by 1 or by I in the case of
matrix rings. The symbol R always denotes a local ring with
maximal ideal denoted by m.

The following is a list of symbols and a brief de-
scription of their use. Precise definitions are given in
the text of the paper.

GLn(V), the group of invertible linear transformations of the

free R-module V of dimension n.

Q the group of invertible n x n matrices.

n?

Sp,(V), the symplectic group over V (dim V = n).

Tps

the subset of Qn corresponding to Spn(V).
py» the natural morphism of R + R/J where J is an ideal of R.
81> the morphism V -» V/JV induced by Pye

h., the morphism of Spn(V) > Spn(V/JV} induced by g5

7
GSp(V,J), the general congruence subgroup mod J.
SSp(V.J), the special congruence subgroup mod J.

P(V), the collection of lines of V.

SLn(V), the subgroup of GLﬁ(V) consisting of elements of

determinant 1.




CHAPTER I
SYMPLECTIC GROUPS

Let R be a local ring with maximal ideal m and let
V = V(R) be an n-dimensional free R-module. If &:V xV > R
is a bilinear form on V, then ¢ induces homomorphisms dg

and d of V into its dual V¥. The mapping dg:V > V¥ is

given by dg(x)(y) ¢(y,x) and the mapping ¢d:V + V¥ is

given by 4d(x)(y) o(x,y). Suppose B ='{b1,...,bn} is an
R~basis for V and let biJ = @(bi,bj), then the matrix [bij]
is called the matrix of the form ¢ relative to B and is
denoted by MatB(Q). These concepts are related by:
Theorem 1.1. With the above notation, the following
are equivalent.
(1) d¢ is an isomorphism.
(i1) d is an isomorphism.
(1i1) Matg(¢) is invertible.
Proof: See Lang [14].
Definition 1.1. A bilinear form on V satisfying any

of the above equivalent conditions i1s called non-singular.

The free module V 1s a symplectic space of dimension n if V

is an n-dimensional free R-module on which is glven a

5




6
non-singular bilinear form ¢ satisfying ®(x,x) = 0 for all

X in V.

Throughout this paper V will be a symplectic space
with form & and R will be a local ring. Often instead of
o(x,y), we write (x,y).

Definition 1.2. A submodule U of V is called a sub-
space 1f U is a direct summand of V. A subspace U is called

non-isotropic if d@lUiU + U% is an isomorphism. An (n-1)-

dimensional subspace of V 1s called a hyperplane of V; a
l-dimensional subspace 1s called a line of V; and a
2-dimensional subspace is called a plane of V.

Definition 1.3. Let U, Ul’ U2 be subspaces of V. We

say that U is the orthogonal sum of U; and U2, notation

U=U;LUp, if

(1) U=1U; ®Up (U is the direct sum of U and Up)
(11) (up,u,) = 0 for every u; in U, and u, in U2.
Let U° = {v in V|(v,u) = 0 for all u in U}. Note that
(x,x) = 0 for all x in V implies (x,y) = -(y,x) for x in
V and y in V. Thus (v,u) = 0 implies (u,v) = O.
Theorem 1.2. Let U be a subspace of V. Then
(1) U° is a subspace of V.
(ii) dim U + dim U° = dim V.
(111) (U°)°

(iv) Ker(dg|y:U + U¥) = U N U°.

U.

Proof: Since dQ:V + V¥ is an isomorphism, dg(U) is

a direct summand of V¥, say V¥ = dg(U) ® W. Let my:V¥ » dg(U)
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and wy:V¥ > W be the natural projections. For o in V¥¥,
define o, and oy satlsfying o = o; + o, by ol(f) = g(myf) and
Ug(f)
g, ()

o(nzf) for any £ in V¥, Note that if f is in W then

o(myf) = 0 and if £ is in dg(U) then op(f) = c(ﬂ2f) = 0,
Letting S = {0 in V¥#|g(f) = 0 for all £ in W} and T =
{0 in V¥¥|g(f) = 0 for all f in dgz(U)}, it is clear that
VE®E = S + T,

Suppose that ¢ is in SN T. Then o(f) = 0 for all f
in V¥ = d,(U) @W. Thus ¢ = 0 and V¥¥ = S & T.

But there is a natural isomorphism between V and V¥#
given by x > x¥% where x¥¥(f) = £(x) fer any T in V¥,

x#¥, If

Suppose ¢ In T and X in V are such that o
u is in U, then dg(u)(x) = x¥¥(dg(u)) = o(dgl(u)) = 0, so that
x is in U°. Conversely if x is in U° then dé(u)(x) = 0 for
every u in U. Then x¥¥(dz(u)) = 0 so that x¥* is in T. Thus
we identify U® in V with T in V#% and conclude that U° is a
direct summand of V. The module U® is thus a subspace.

If fy5.005fofm41s0 05Ty form a dual basis for V¥
with f1,...,f,; a basis for dg(U); and, if o3,...,0n are in
V¥¥ with oi(fj) = Sij’ then ¢4,...,0, 1s a basis for V*¥% and
T is spanned by Opyu1s---,0y. Thus dim U° = dim T = codim U.

Observe that U <& U%°, Since both U and U°C are direct
summands with dim U = dim U®C®, it follows that U = UCO,

Clearly UM U9 = ker(dgly).

Theorem 1.3. Let U be a subspace of V. The following

are eguilvalent:



(i) U is non-isotropic.
(i1) U° is non-isotropic.
(11i) v = U0 1 v°.

Proof: Assume U is non-isotropic. Then dg|y:U + U¥
is an isomorphism. Let x be in V. Then there is ay in U
satisfying dg(x) |y = dply(y). Thus dg(x-y) = 0 on U so that
X -y is in U°. Hence there is a z in U° with x -y = z,
that is x =y + z. Thus V= U + U°, Further, 0 = ker(dglu) =
UN U° so that V = U_L U°. Thus (i) implies (iii).

On the other hand, assume V = U_L U°. Then dg|y is
injective since d@'U is a homomorphism with ker(ds|y) =
unN w =o.

Observe that de(V)|y = U¥. Let f be in U¥. Then
there is an x in V satisfying dq,(x)IU = £, Since V=U®U°,
X = u; +u, with u; in U and u, in U°. If u is in U, then
dQ(x)(u) = dé(u1+u2)(u) = (u,u1+u2) = (u,uj;). Thus
£(u) = (u,uy) = dy(ur)(u). Since dgly is injective,
dp(x)(u) = f(u) = dg(uy)(u) implies x = u;. Thus x 1s in U
and dQ!U is surjective.

Hence dg|, is an isomorphism and U 1s non-isotropic.
Thus (iii) implies (i).

To show that (ii) and (iii) are equivalent, we
observe that U° is also a subspace of V and use the same
argument as in the equivalence of (i) and (iii).

Theorem 1.4. Let x be in V. The following are

equivalent:
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(1) g X # 0 where g,V > V/mV is the natural

projection.
n ~ n
(ii) If x = iZlaiui and {ui}i=1 is a basis of V, then
R = Ral + *® c o + Ran .
n .
(iii) If x = izlaiui and {u;} is a basis of V, then ay

is a unit for some 1.
(iv) Rx = L is a direct summand of V.
(v) There is an R-morphism ¢:V -+ R satisfying
og(x) = 1.
(vi) {o(x)]|o in V¥} = R.
(vii) The map h:R - V given by h(r) = rx 1s a split
monomorphism,
Proof: Strailghtforward.
Definition 1.4. An element x in V satisfying any of
the above 1s called unimodular.

We will make use of the following theorem for finitely

generated medules over local rings,

Theorem 1.5. Let R be a local ring with maximal

ideal m and let V be a finitely generated R-mocdule.
(1) 4 subset'{ui}§=1 of V is a generating set for V

e D

if and only if their residue classes {ui} generate the
i=1

R/m-vector space V/mV.
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(i1) A subset {ui}?=1 of V is a minimal generating

set for V if and only if {ﬁi}g=l is a linearly independent
R/m-basis for V/mV.

(i1i) Any generating set for V contains a minimal
generating set; if ul,...,un and VyseessV, are both minimal

generating sets for V then m = n and there is an R-

isomorphism of V + V that maps Uy > vy, 1<1i<n.

Proof: See Nagata [15], pages 13, 1i.

If J is an ideal of R (J # R), let V/JV denote the
n-dimensional free module over R/J. The canonical homo-
morphism pJ:R + R/J induces a natural morphism gJ:V + V/JV.
When a basis has been fixed, 8y reduces components of a
vector modulo J.

If V is a symplectic space, then V/JV is a symplectic
space over R/J formed by the vectors 83X, X in V. The form
% on V/JV is given by EKng,gJy) = pJQ(x,y) where ¢ is the
form on V. If J = R, we extend these concepts by putting
V/RV = 0.

Theorem 1.6. Let x in V be unimodular. Then.there

exists a y iIn V satisfying

(i) P = Rx + Ry 1s a plane and

(i1) v=rpr.L PO,

Proof: Since d¢:V + V¥ is an isomorphism and x in V
is unimodular, there is a y' in V such that dQ(x)(y') is a

unit. Thus there 1s a y in V satisfying (x,y) = 1.
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It is easily seen that {x,y} is R-free. The set
{x,y} may be extended to a basis for V. Let T = g iV V/my
and note that ®(mwx,my) = pm(x,y) = 1. Thus wx # Ty and
x # 0, my # 0. Thus extend 7mx, 7y to a basis of V/mV and
take their pre-images to obtain a basis for V.

By the above P = Rx + Ry is a direct summand of V
and hence a subspace. Considering @lP and the basis
B = {x,y},

(x,x) (x,y)] |0 1
MatB(@IP) = =

(y,x) (y,¥) -1 0

MatB(QIP) has unit determinant and thus by (1.1), P is
non-isotropic. Hence by (1.3), V= P l_Po.

A pair {x,y} of elements of V satisfying (x,y) =1
is called hyperbolic. Thus the R-module P = Rx + Ry spanned
by a hyperbolic pair {x,y} is a non-isotropic subspace of

dimension 23 P is called a hyperbolic plane.

Theorem 1.7. A symplectic space V of dlmension n is
a direct sum of hyperbolic planes.

Proof: Since V is non-isotropic, dim V # 1. For
dim V = 2, apply (1.6). For dim V > 2, by (1.6), there is a
hyperbolic plane P such that V= P 1 P°. By (1.3) and (1.2),
P° is non-isotropic with dimension n-2. The proof is
completed by induction. That is, we consider the symplectic

space P° and as in the proof of (1.6) conclude that PO is the
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orthogonal sum of a plane Pl and its orthogonal complement
in P°.

Since a symplectic space is then a direct sum of
hyperbolic planes, the dimension of V must be even,
(say n = 2r). Further V must possess a basis
B ='{xl,yl,xz,yz,...,xr,yr} with (xi,yi) =1, (yi,xi) = -1
for 1 <1 < r, with all other combinations of basls ele-

ments yielding zero. Thus with respect to the basis B,

MatB(Q) = .'
0 1

The basis B is called a hyperbolic basis for V.

Let B! ='{x1,...,xr,yl,...,yr} be the set B with
elements listed in the described order. Then with respect

to the basis B',

0 I
r
MatB'(@) = where
-1 0
T }

I, denotes the r x r identlty matrix and 0 is the r x r
matrix with each element 0. The basis B' 1s called a
symplectic basis for V.

The following examples i1llustrate some non-standard

difficulties.
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Example 1.1. Suppose U is a non-isotropic subspace
of V and x in U is unimodular. Then there is a y in U
satisfying (x,y) = 1. Thus if L is a l-dimensional free
R-module which is a direct summand of V, then L is not
non-isotropic.

Example 1.2. It is possible that an element x in V
is R-free but not unimodular. Consider the domain
Zp = {a/b| (b,p) = 1}, that is the localization of the
integers Z at a prime p. Note Zp is a local ring. Let
V=2Z_ & Zp and denote a standard basis by e

p 1
and e2 = <0,1>, Take x in V to be x = <p,0> = pel. Since

= <1,0>

there are no torsion elements, we have x is Zp-free.
However modulo the maximal ideal,,gmx = 0, thus x 1s not
unimodular.

Example 1.3. We may have elements not contained in
any 1-dimensional summand. Let R = (Z/Zp)[X,Y1/(X°,XY,¥°)
= {a + bX + cY|a,b, and ¢ in Z/Zp} (Z/Zp denotes the
integers Z modulo a prime p). Let V=R ®R = ReI & Re2;
el = <1,0>, e, = <0,1>. Let a in V be given by
a = Xe:L + Ye2. Suppose b is in V, b unimodular, and rb = a.

Then b = Slel + 558, and thus a = rb = rsieq + rsye Hence

5¢
X=rs, and Y = rs, with s, Or s, 2 unlit. But this is
impossible. Thus a is not contained in any l-dimensional
summand .

Definition 1.5. Let V and V' be symplectic spaces

over the local ring R with bilinear forms & and ¢' respectively.
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An R-isomorphism o:V -+ V' satisfying &(x,y) = ¢'(ox,0y) shall
be called an isometry and we say V and V' are isometric,

If V and V' have the same dimension, then each must
have a hyperbolic basis, say B and B' respectively. Then
there is a linear map carrying B onto B' which is an
isometry. We thus have the following corollary.

Corollary 1.8. Let V be a symplectic space. Then
the dimension of V is even. Further any two symplectic
spaces with the same dimension are isometric.

Definition 1.6. Let V by a symplectic space with
dimension n = 2r. Let Sp,(V) denote the set of isometries
of V onto V. Observe Spn(V) contains both 1V (identity on V)
and -ly and further Sp,(V) forms a group. The group Spn(V)

is called the symplectic group over V.

Consider a symplectic space V with dimension n = 2r

and let B be a symplectic basis of V. Let

0 Ir
Matg(e) =
N
be designated by F. Let Qn denote the group of all

invertible matrices over R. If M is in Qn, Mt shall denote
the transpose of M. Let Pn consist of all n x n matrices
M in Qn satisfying MFMt = F. We observe that Pn forms a
subgroup of Qn. Lang ([14], page 3U4) shows that an n x n

matrix M is the matrix of an automorphism of the form ¢




15
(relative to our basis) if and only if MFM' = F. That is, an
element ¢ is in Spn(V) if and only if the matrix of o,
relative to the symplectic baslis B of V, is an element of Fn.
The followling provides criteria for determining when

n X n matrices belong to Pn.

A B

Let M = s where A, By, C, and D are r x r matrices

with entries in R.
Lemma 1.9. For the above setting, M is in I' 1if and
only if the following conditions are satisfied:
(1) ABt is symmetric.
(i1) cpb is symmetric.
(111) ap® - BcY = 1.

Proof: If M is in I, then MFM® = F.

o -1 “ e
s sllo 1]fat et [0 1
Thus =
t t J
| C qd{:l 0{|B D -I 0
4% + a8®  -Bct + mpt 0 I
So =
oat + cB®  -pef 4 opf -I 0
.. — L -

t t
Then BA” = 8%, pc® = ¢p’, and aD° - BC® = I.
Conversely if ABt is symmetric, CDt is symmetric, and

ap® - BcP = 1, then DAY - BY = I. Thus from the above
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computation MFMt = F.
We now record Klingenberg's [13] results on normal
subgroups of Spn(V). The map gJ:V + V/JV (J ideal of R)

determines a homomorphism h :Spn(V) > Spn(V/JV). When a

J
basis has been fixed, hJ merely reduces entries of a matrix

modulo J. More precisely h_ is defined by (hJG)(ng) = gJ(ox)

Jd
for all o in Spn(V) and x in V. Let Spn(V/RV) be the
identity group.

Let J be an ideal in R,

Definition 1.7. The general congruence subgroup mod

J of Spn(V), denoted by GSp(V,J), is the group
hgl(center Sp, (V/3V)) .

Definition 1.8. The special congruence subgroup mod

J of Sp,(V), denoted by SSp(V,J) is the group hgl(l) -

kernel hJ.

For the extreme cases we have, GSp(V,R) = SSp(V,R)

Spn(V); GSp(V,0) = center (Spn(V)); SSp(V,0) = identity
group.

Definition 1.9. A (symplectic) transvection is an

element T in Spn(V) of the form 1x = x + A(a,x)a for x in V
where a is a unimodular element of V and A is in R. If A is

a unit in R, then 1t 1s a regular transvection.

Let T, , denote the transvection given by T (x) =
a, as
X + A(as,x)a for x in V. Note that Ty A is an R-linear map.
3
Further, if x and v are elements of V, then

(1x,Ty) = (x +A(a,x)a, v + A(a,y)a)
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(x,y) + (x,X(a,y)a) + (A(a,x)a,y) + (A(a,x)a,r(a,y)a)

(st) + A(a-sy)(xsa) - )\(X:a)(a:y)

(x,y).

Thus, since V is a svmplectic space, T is an iscmetry

asA
and T is indeed an element of Spn(V).

as A

Definition 1.10. The line Ra 1s called a line of t
(t = Ta’k). Note that (T - 1V)V C Ra. Further H = (Ra)® 1is
a hyperplane satisfying tx = x for x in H. The subspace H
is called a hyperplane of 1. (Note dim (Ra) = 1 implies
dim H = n - 1).

Lemma 1.10. Let V be a symplectic space of dimension
n and let T be in Spn(V). Then there exists a hyperplane H
on which T is the identity map 1f and only if there is a line
L such that t™x - x is in L for all x in V.

Proof: Let H be a hyperplane on which t is the
identity. Since dim H + dim H®° = n implies dim HO = 1,
there 1s a unimodular a in V with HC = Ra. Let L = H®. If
Xx in V and h in H, then (tx - x, h) = (tx,h) - (x.h) =

1) - {(z,h) = {x.h) = (x,h) = 0, Thus 7x - x is an

{(x,t~
element of H° = L for all x in V.

On the other hand, suppose there lis a line L = Ra
such that Tx - x 1s in L for all x in V. Then H = L° is a
hyperplane of V. Recall, since V is symplectic, if

(x,y) = (x,v') for all x in V then y

y'. Let y be in H.

Then. for any x in V, 0 = (1x - x, y) = (1x,y) - (x,y) so

that (tx,y) = (x,y). But then (x, T'ly) = (x,y) for all x
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-1
in V. Hence T y =y and 1y = y, that is 1t is the identity

on H.

. Thus if =t \ is a transvection, it acts like the

3

identity on the hyperplane H = (Ra)® and (Ta’)\-lv)v C Ra.
We observe in the following theorem that if an element of
Spn(V) has these properties, then 1t is a transvection.
Theorem 1.11. Let T be an element of SpéV) satisfying
Tx = X for all x in a hyperplane H. Then T has the form
Ta’x for some unimodular a in V and A in R.
Proof: Let t in Spn(V) be the identity on the
hyperplane H in V. Then H® = Ra for some unimodular a in
V. Since V is symplectic, there exists a b in V with
(a,b) =1 and V = <a,b> 1 P, (<a,b> denotes the plane gener-
ated by the pair {a,b}). Then by (1.10) ™ - b is in Ra.
Thus Tb = b + Aa for some A in R. We claim 1 = Ta’l.
Note Ta,x(b) =Db + A(a,b)a=Db + 2a = t(b). If x is
in V, then x = ra + sb + p for r and s in R and p in P.
Then

(%)

]

rta + stb + 10
=ra + st + p (since a and p are in H)
=ra+ sb + sxa + p (since t = b + Aa).
But Ta,A(X) =x + r(a,x)a
=ra+ sb +p+ ArA(a, ra + sb + pla
=ra + sb + p + Asa.
Thus 1 = Tapk.

Consequently if 1 is an element of Spn(V) and if H is
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a hyperplane such that tx = x for all x in H, then 1 is a
transvection. Conversely, 1f 1 is a transvection, then
clearly 1t fixes some hyperplane of V. However the repre-

sentation of T may not be unique. For T =1, _ for
a’k " b’].l

any pair <b,u> in V x R with b unimodular satisfying
AMa,x)a = u(b,x)b for all x in V. 1In the case of regular

transvections we can establish a "form" of uniqueness.

Lemma 1.12, Let Ta N be a regular transvection in

Spn(V). Let Tb:u be a transvection in Spn(V) such that

T . Then there exists a unit o in R satisfying
b,u a, A

a = ob and a’zu = XA (then Ty y must be regular).
3

Proof: From Tb’u = Ta,k we have Ta A(x) = Tb,u(x)

L]

for all x in V. Thus x + A(a,x)a = x + u(b,x)b and finally
A(a,x)a = p(b,x)b for all x in V.

Since a is unimodular, there 1s an Xy in V satisfying

(a,xl) = 1. Since A is a unit, a A"lu(b,xl)b. Since b is
unimodular, there is an x, in V satisfying (b,xz) = 1, Thus
wb = A(a,xg)a. Then a = A'lu(b,xl)b = A'lk(a,xz)(b,xl)a.
Since {a} may be extended to a basis of V, we have
(a.x2)(b,xl) = 1. Thus (a,x2) and (b,xl) are units, indeed
are inverses.

Let o = yA™l(b,x,). Then a = ab. Further (byx)™h =
(a,x,) = (ab,X,) = a(b,x,) = a. Thus o is a unit and hence yu
is a unit. Thus Tb’u is a regular transvection.

Noting that u = A(b,xl)'z we compute o~2y; a"zu =
(uk‘l(b,xl))'zu = (b,xl)'zlzu'Zu = (b,xl)'zkzu'l =

-2.2 2.~1
(b,x,) 23 (b,x)°A™0 = A,
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Corollary 1.13. If T A is a regular transvection,
as
then t has exactly one line and hence one hyperplane.

a,A

Proof: Immediate using lemma 1.12.

Let u be an element of R. Then o(u) denotes the
ideal generated by u. Let x be in V; the order of x, o(x),
is the smallest ideal J C R such that ng = 0. Let o be in
Sp (V); the order of g, o(c), 1s the smallest ideal J C R

J
that o(x) is generated by the components of x with respect

such that h.o is in Spn(V/mV), that is ¢ in GSp(V,J). Note

to any basis of V. Thus if o(x) = R, then x 1s unimodular.
Theorem 1.14. Center Spn(V) = {lv,-lv}.
Proof: Klingenberg [13].
Corollary 1.15. For J # R, GSp(V,J)/SSp(V,J) z'{lv,-lv}.
Corollary 1.16. Let Ta’k be a transvection. Then
o(t) = o(A).
Theorem 1.17. 8Sp(V,J) is generated by the symplectic
transvections of order contained in J. In particular,

Spn(V) is generated by the transvections.

Proof: Klingenberg [13].

Klingenberg discusses the structure of Spn(V). For
this study, we are restricted to local rings R with character-
istic of (R/m) # 2 and R/m # F3 = 72/37.

Theorem 1.18. The only normal proper subgroups of
the symplectic group Spn(V) over V are the congruence sub-
groups GSp(V,J) and SSp(V,J), J an ldeal not R.

Proof: Klingenberg [13].
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Corollary 1.19. 8Sp(V,J) = commutator (Spn(V),GSp(V,J))
= commutator (Spn(V),SSp(V,J)). In particular, commutator
(8p,(V), sp, (V)) = Sp, (V).

Proof: Klingenberg [13].

Theorem 1.20. The group GSp(V,m) is characteristic
under a group automorphism A:Spn(V) - Spn(V).

Proof: By theorem 1.18, the maximal normal subgroup
of Spn(V) is GSp(V,m). Let A:S8p, (V) = Sp, (V) be a group
automorphism. Since normal subgroups are carried to normal
subgroups under A we have that A(GSp(V,m)) C GSp(V,m).

Thus GSp(V,m) is characteristic under A.

Theorem 1.21. The normal subgroup SSp(V,m) is
characteristic under group automorphisms of Spn(V). ~

Proof: By corollary 1.19, SSp(V,m) is the commutator
of Spn(V) and GSp(V,m). Let A be a group automorphism of
Spn(V). Let g be in Spn(V) and h in GSp(V,m). By theorem
1.20, Ah is in GSp(V,m). Thus A(ghg~th™1) = AgAnag=ian—1 is
in the commutator SSp(V,m) of Spn(V) and GSp(V,m). Thus
A(SSp(V.m)) is contained in SSp(V,m); that is SSp(V,m) is
characteristic.

Let T = hm:Spn(V) > Spn(V/mV). For A an automorphism
of Sp, (V) define K:Spn(V/mV) + 8p, (V/mV) by A (o) = n(Ao)

for ¢ in Spn(V). We show that N is well defined. Suppose ¢

lV and

At is

and B are in Spn(V) such that Mg = NIB. Then NM(cB™1)

"

087l = 1 with T in H'l(lv) = SSp(V,m). Thus A(o8™")

in SSp(V,m) by theorem 1.21. Then AcAg~l = At and




22
T(AoAB™1) = M(At) = 1,. Hence N(Ac) = N(AB) and T is well
defined. This provides the following important commutative
diagram:

A
Spn(v) —_—> Spn(V)

—

A
o
Spn(V/mV) —_— opn(V/mV)

For the remainder of this chapter, R will denote a
finite local ring. We let m denote the maximal ideal of R
and put k = R/m. We will determine ISpn(V)[.

If Ta,x is a transvection in Sp,(V), then hm(Ta,A) =
Tz 1 1s a transvection in Sp, (V/mV), (a denotes g,a and x

3

denotes pmx). Since every transvection in Spn(V/mV) can be
obtained in this fashion and since these transvections
generate Spp(V/mV), we have hm:Spn(V) + Sp,(V/mV) is

surjective.

Artin [1], page 146-147, calculates [Spn(V/mV)l =

2 r .
|k[¥ 1 (|x|?1 - 1), (n = 2r). Further we have

1=]1
(x]® - 1) {m|® = [R]™ - |m]" unimodular elements v in V.
For each of these v, there are (|k|D - Ik[n"l)|m|n =
|IR|D - 1Rln'1{ml unimodular vectors w such that (v,«) is

a unit and (|k|° - lk|)|m|® = [R[2 ~ |R||m| of them span
the same plane <v,w>. Thus we have IRln_2 hyperbolic

planes <v,w>,
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Now, in each plane there are ([kl2 - k) |m[? =
|R|2 - |R||m| vectors w with (v,w) a unit and these vectors
w determine lines Rw with (]k| - 1)|m| = |R| - |m| of them

giving the same line,

IRl = |k||m| lines Rz with (v,z) a unit.

Now the plane <v,w> contains

On each line there

n-1

exists an x with (v,x) = 1. Thus there exists Ikln-llml =

IR|"! pairs with first component x.

Since there are

(Ik|™ - D n)™ = |R]" - Im|™ such vectors v, we have that

the number of hyperbolic pairs, An’ is given by An =

IRIPHRIT - m| ™).

Let A = ISpn(V)l.

A given hyperbolic pair {v,w}

can be moved to any other hyperbolic pair by a o in Spn(V),

that is into any of An palrs.
same pair, then 1~

<v,w> | <v,ws°.

1

o will leave <v,w> fixed.

Let V =

If ¢ and T move {v,w} to the

Then if p = T—lo, we have p = lU.l.on

where U = <v,w> and pUO is in the group of Uo. Thus An =

A,A

n-2"

So Ay =

)\nln_2 L | A2

IR

(n-1) + (n=3) + ... +1

) .

oS

(IR|21

n=
=

2(i+2+...+n
|m|

- |m]23)

a

2
2 || x|

)

2

=

(| k|
1:1

21 1)




[m]

|m|

(g)2
|

n(n+l)
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n(n+2)

|Spn(V/mV)|

| Sp,, (V/mV) | .



CHAPTER II
INVOLUTIONS

An element ¢ in Spn(V) is called an involution if
02 = lV‘ In this chapter we investigate the action of
automorphisms of Spn(V) on involutions. We shall assume
that the characteristic of the field R/m is other than 2.

Thus we have r = -r implies r = 0 and re

= 1 implies r = %1.
Let o be an involution in Spn(V). With o, assoclate

two submodules of V:
U

W

{x in V]o(x)

-x} and

x} .

{x in V]|o(x)

Obviously UN W = 0, If x is in V,

x = 1/2(x - o(x)) + 1/2(x + o(x)).

Since x - o(x) is in U and x + o(x) 1s in W, we have
V=0U®W. Thus the involution ¢ in Spn(V) determines a
unique splitting o:V = U @ W, The spaces U and W are

called the proper spaces of g. We define the index of g,

denoted ind o, by ind ¢ = min{dim U, dim W}.

Since o° = 1V, we have

1]

2((o + 1y)x, (0 - 1,)y) = ¢(ox + X, oy - y)

®(ox,0y) - o(ax, y) + &(x,0y) - 2(x,y)
25
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= &x,y) ~ ¥x,07) + o(x,0y) - &(x,y)
=0

Further if v is in V then v = u + w for some u in U, w in W.

Then (o + LV)(V) = gv + V ou+ow+ u+w=w+wis in W,

If w is in W, then (¢ +,1V)(1/2 w) = 1/2 g(w) + 1/2 w = w.

Thus (o + 1)V = W. Similarly (¢ - 1)V = U. We have
vV =U_LW.
Further observe that W = U°, For if x is an element of
W, then (x,U) = 0 so that W g:UO. On the other hand, if x
is in U°, then (x,U) = 0. Now x in V implies x = u + w

with u in U and w in W. Then 0 = (x,U) = (u + w,U) =

(u,U) + (w,U) = (u,U). But d¢:V + V¥ is an isomorphism,

For v in Vv, v u, + w. for some u, in U and w, in W. Then

1 1 1 1
dé(u)(v) = (v,u) = (ul + wl,u) = (ul,u) + (wl,u) = 0. Thus

d¢(u) is the zero map on V and u = 0. Therefore x =u +w =W

]

and U C W. Thus W =10° andV =0U_LW =10 L0 1In
particular, U and W are non-isotropic subspaces of V. Further
dim U and dim W must then be even. So if ¢ is an involution
in Spn(V)g the index of ¢ must be even.

The following facts are evident.

(1) 1If o, and 0, are involutions in Spn(V), then ¢,

= ioz if and only if they have the same proper spaces.

(1i) Let o, and o, be involutions in Spn(V). Then
0102 is an involution if and only if 010p = 0,0~
(i1i) Let B be an element of Spn(V) and let ¢ be an

involution in Spn(V) with proper spaces U and W. Then
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Bos'l is an involution with proper spaces BU and BW.

(iv) Let B be in HomR(V,V) and ¢ in Spn(V) with
proper spaces U and W. Then B0 = of i1f and only if BUC U
and BW € W,

Theorem 2.1. Let V be a symplectic space with dimen-
sion n = 2r and let B be a symplectic basis of V. Let o be
an involution in Spn(V) and let A be the matrix representa-
tion of o with respect to B. Then there exlists an integer

t such that A is similar to P @& P where P 1s a matrix of the

form

P = 1 with t -1's,

is P= -1 & .
that 1is It Ir—t

~ Proof: The involution ¢ determines a splitting of V,

o:V =U L Wwlth o = —lU ® %M' By the previous discussion,
we have that U and W are non-isotropic subspaces and thus
each must have a symplectic basis. Let'{xl,...,xt,yl,...,yt}
be a symplectic basis for U and {Xt+1""’xr’yt+l""’yr}

be a .symplectic basis for W. Since R is local, it follows
that {xl,...,xr,yl,...,yr} is a symplectic basis for V.

Let B ='{vl,...,vr,vi,...,vé} be our original



symplectic basis for V.

by Q(vi) = x; and Q<Vi) =V, for i =

28

1’2’...’r.

Define a change of basis matrix Q

Since Q

maps a symplectic basis of V to a symplectic basis, it is

an element of Fr'
1

described in the statement of the theorem.

Note that dim U

ind ¢ = min{dim U, dim W}

ind 0 = k, then the matrix of ¢

min{2t, n-2t}.

2t and dim W= n - 2%,

Thus 1if

But Q"lAQ = P @ P where P is of the form

Recall

is similar to a diagonal

matrix with either k or (n-k) =-1's; the other entries being

1's.

If the matrix has k -1's, we shall say o is of fype

(k, n-k) and if the matrix has (n-k) -1l's, we say ¢ has

type (n-k, k).

of type (k, n-k) or (n-k, k).

Thus o has index k if and only if ¢ is eilther

For computational purposes, the notion of symplectic

direct sum is sometimes useful.

M =

1

and M

2

A
2

|

are given by

B |
2

then the symplectic direct sum of Ml and M2, denoted Ml % MZ’

is given by

Ml ¥ M

2=
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A straightforward computation shows that if

- -
A, B
1 i
Yi = (i =1,2) is in Fnl and
C D
LT 1]
El Fi_1
Z, = (i =1,2) is in Fn
G, H 2
i
L =

then (Yl % Zl)(Y2 % Z2) =Y Y2 ¥ Z

1 Z

172°

Note 1f ¢ is an involution iIn Sp (V) with mat (o) = A,
then A 1s similar to a matrix in the form -I(2%) ¢ 12(n=t)

Let Wn be the collection of matrices in I, with the
form En = Fr ® Fr where Fr is a matrix in Qr having 1 or -1
in any combination on the main diagonal and zeroes elsewhere.
By (1.9) it is clear that E  in ¥, is an element of T.
Further any two elements of ?ncommute and any En in Wn is
an involution.

Theorem 2.2. If {Ai}§=l is a collection of pairwise
commutative involutions in T,, then there is a P in I'n for
which P'lAiP is in ¥ for all 1 = 1,2,...,s.

Proof: Consider first the case n = 2. Let A be an

involution in 'y given by
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A= . Then A = so that

a® = 1. But then a = + 1, so that A = # I.

Proceeding by induction, assume the theorem holds in

To for 1 Sk S r (n=2r). If A, is an involution with

Index 0 or n, then Ay = ¢ I. Thus we may assume that A,
has index t for some t satisfying 2 < t % n-2, otherwise
the result would be trivial,

Since Al has Index t, there is a Q in rn such that

Q’lAlQ = -1(t) % I(n"t), (or _p(n=t) % I(t), in which case
the argument is similar). For each i, 1 < i < s, the matrix

Q"lAiQ commutes with Q"lAlQ and therefore has the form

-1 -
Q ‘AiQ = Bit) % Bin t) where Biq) denotes a q by q matrix

block. Checking the criteria for membership in Ty and Pn-t
(n-t)
i

lution in T _ . Also since'{Ai}i=i is a pairwise commutative

ylelds that Bit) is an involution in Tt and B is an invo-

S

s ) (t) ) (n"t) s are
collection, we have that {B; "’} _; and 1B bt
collections of pailrwise commutative involutions from I’t and
rn»t respectively. t)

By induction, there exist Q(t) inTr_and § = in

t
I'h-t such that

-1
t € 1
Q( ) B§ )Q(h2 is in ?n

and
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-1

t!
Therefore for all i, 1 < 1 < s,

-1 =1
@(®) & q(=9) Tyg-1p q(al®) 4 on-P))

is in Tn and the proof is complete.
Our discussion of involutions to this point has
involved in most cases the use of symplectic basis. We

recall that a symplectic basis {xl,...,x «os¥pl gives

rsYys.
rise to a hyperbolic basis {xl,yl,...,xr,yr} (and conversely).
That is, we may assume that there is a splitting of V into
hyperbolic planes, V = Pl.l_P2.l.... J_Pr. In this context

an involution o:V > V is of index k = 2t if o is similar to

O"="1P enoo $-l @l @a.. el or

P
1 r=t r-t+l r
In this case an element of Wn as desceribed above will con-
sist of the set of involutions

(ilP ) @ (:th ) S ... 9 (+1 ).

1 2 P
r

If we consider matrix representations of elements of
Tn in terms of a hyperbolic basis of V, we see that such an
element is a direct sum of 2 x 2 block matrices, where each

block is + I.
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Theorem 2.3. Let X be a set of involutions in Spn(V).
Then the following are equivalent:
(i) The elements of X are pairwise commutative.

(ii) There is a splitting of V into hyperbolic planes,

1
for i = 1,2,...,r and all ¢ in X. Thus each ¢ in X will

V=P, L ... LP ., such that oP, = & P, (that is 0 = + 1p )
1 T 1 P \

have the form ¢ = (% lP ) L ... L(% lP ).
l I’)

(1iii) There is an element B in Spn(V) such that
mat(8~1oB) is in ¥ for all o in X.

Proof: ((i) implies (iii)). This is the result of
(2.2) when translated to Spn(V) and formulated with a
hyperboliec basis.

((iii) implies (i)). If o, and o, are in X, then
there is a B in Spn(V) such that B“lolB and B"lozs are in
Yo Since elements of Wn are pairwise commutative, we have
KB_lolB)(B'lo2B) = (8-1028)(8-1018)- But then ¢y0, = 0,0;-

((ii) implies (iii)). Lettingg = lV will suffice.

((1ii) implies (ii)). Let {Xl’°"°xn} be a hyperbolic
basis for V. By (iii) there is a change of basis map g s0
that 8'103 is in Wn for all ¢ in X. Thus the new basis
gives a splitting of V with the desired condition.

Corollary 2.4. Let V be a symplectic space of
dimension n = 2r. Let X be a collection of pairwise comnuta-
tive involutions in Spn(v), each of index k = 2t. Then there

are at most 2(5) elements in X.

Proof: Let V = Pl_L ces J_Pr be a splitting of V
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into hyperbolic planes. Then we can choose t of these
planes in (g) ways. If 2k # r, there are 2(2) elements of
Y, of index k. If 2k = r, there are (i) elements of ¥ of
index k. In either case (2.3) yields our result.

Corcllary 2.5. Let V be a symplectic space of
dimension n = 2r. Let X be a collection of pairwise commuta-
tive involutions in Spn(V), each of type k = 2t. Then there
are at most (g) elements in X.

Proof: Immediate.

Let o; be the element of Spn(V) with representation
in Fn a diagonal matrix with -1 In both the (i,i) and
(tr, i+r) positions and 1 elsewhere for i = 1,2,...,p

(where dim V = n = 2r). Noting that matrices of the form

(U in Qr)
-1
0 yt

are elements of Fn, we see that oj is similar to o, for all
i, j, 1 <1, 3 <r. Thus, if A:Spn(V) -+ Spn(V) is a group
automorphism, then Aoi is similar to ch for all i, j,
1 <i, J<r. Thus the involutions {Aci}yi’=l are all of the
same type, say (k, n-k), k = 2%.

We claim that t = L or £t = r - 1. Clearly t # 0 and
t # r since o5 F + Lv.- Thus suppose 1 < t < r - 1. But (i) <
(?) implies there is an involution B of type k not in the

set {Aoi} and commuting with each Ao,. Then A8 commutes
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with all o, and has type (2, n=2). But this is impossible.

Thus t =1 ort =r -1, That 1s, Ag, 1s either of type

i
(2, n=2) or (n-2, 2).

Now let ¢ in Spn(V) have type (2, n=2). Then there
is a y in Sp,(V) such that y’loy =0, for some i. Then
Ay~loy) = Aci has type (2, n-2) or (n-2, 2). Thus Ac =
(A\()(Ao:-L)(A\r)"':L is either of type (2, n=2) or of type
(n-2, 2). Similarly, if ¢ is of type (n-2, 2), then Ac is
of type (n-2, 2) or (2, n=2).

Let I(p) = {¢|ind ¢ = 2}, That is, there is a

splitting of V such that for ¢ in I(2)

O=lP e.oc @lP
1 i-1 1 i+l r

some i or

some j.

Observing that A'l is also an automorphism, we have
the following lemma.

Lemma 2.6. If A is a group automorphism of Sp (V),
then AI(2) = 1(2).
Observe that we have two cases. If ¢ and B have the

same type, then Ao and AR have the same type; consequently

A
(I) type (2, n=2) ——>type (2, n=2) and

A
type (n=-2, 2) ——> type (n-2, 2).
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A
or (ID) type (2, n=2) ——=>type (n-2, 2) and

A
type (n-2, 2) ——> type (2, n-2).




CHAPTER III
TRANSVECTIONS

Let t:V > V be a transvection of the form Ta A with

3
unimodular a and A in R. We can extend {a} to a hyperbolic

basis of V. Then considering Mat(t) relative to this basis,
it is clear that v 1s an element of the special linear group,
SLn(V). Recalling that Klingenberg has shown that Spn(V)
is generated by the transvectlons, we see Spn(V) C SLn(V).
In the case n = 2, Sp,y(V) = SL2(V).
Let T be the set of transvections in Spn(V), and let
A be an automorphism of Sp,(V). If A(T) = T, we say A
preserves transvections. It is our intent in this chapter
to show that any automorphism of Sp,(V) preserves trans-
vections. First, we make some observations on transvections.
The identity 1V is a transvection; namely, 1y = 1

for some unimodular a. Further, if 1, y 1 then )\ = 0.
3

V’
For if tx = x + A(a,x)a = x, then A(a,x)a = 0 for all x in
V. Selecting x such that (a,x) = 1, we have )a = 0. Since
a is unimodular, X must be 0. However, since we are

assuming that 2 i1s a unit in R, -1V is not a transvection.

Lemma 3.1. Let Ta,x be a transvection. Then

36
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-1 _ \
OTa,Ao Toa. ) for every ¢ in Spn(V).

Proof: oT o'l(x) = 0T (o=1x) = o(o~ix + A(a,c‘lx)a) =
—_— a,\ a,A

X + A(a.U"lx)oa = x + A(oa, x)oa = Tsa >t(x). Since o(a) is
H]

unimodular, the proof 1s complete.

Note that « has line Ra = L. Thus if o is in

a,A

Spn(V), then ot -1l is a transvection with line oL.

a,2°
Lemma 3.2. Let Ta,A be a regular transvection.

Then

i

(1) = T if and only if b
b, A

]
i+
o

a,A

(ii) = if and only if A

T
8.,>\ a,u

Proof: By (1.12) T = T implies there is a unit
=root a,d b\
a in R such that b = oa and A = 0™2\. Then a2 = 1, so that

o =+ 1. Thus b = + a, Conversely if b = £ a, then

CIPASY

x + A(a,x)a while

i
o

X + A(a,x)a if b
Tb,A(X) = x + Ab,x)b =
x + A(-a,x)(~a) = x + A(a,x)a if b = -a.
For (ii), if Tax = 1T then by (1.12) there is a
5

a,u
ca and p = a"2A. But a is

unit o in R satisfying a
unimodular, a = aa implies a = 1 and u = A,

" Lemma 3.3. Let Tl and Ty be transvections with the

same line. Then T1To is a transvection (with the same line

as t., and 12).

1

Proof: Let T1 = Ta,x and T2 = Ta’u. Then

TITE(X) = 15x + A(a, 15%)a
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= x + u(a,x)a + A(a, xtp(a,x)ala

]
¥

+ u(a,x)a + A(a,x)a + Au(a,x)(a,a)a

= x + u(a,x)a + A(a,x)a

i}
»

+ (p+d)(a,x)a.
Thus T112
Jote that if Ty and T

Ta5u+X'
5 are regular transvections with
the same line, then 1,1, is a transvection with the same
line. however 1T, may not be regular.

Lemma 3.4. Let 7, and 1, be regular transvections.
Then T and Ty permute 1f and only if their lines are
orthogonal.

Proof: Let T, T Ta’A and 1, = To,u° Then for all x
InV, 1ix = x ¢ A(a,x)a and TX = X + u(b,x)b with a and b
unimodular elements of V and A and u units in R. Suppose
T1To = TpT1. Then T1T2TIl = 1,. By (3.1) TszTil =
TTl(b),u’ thus T, = TTl(b),U; that is, Tb’u = TTl(b),u' ‘By

(3.2) b = £ Tl(b). So two cases arise.

(1) If b Tl(b), then b = b + A(a,b)b so A(a,b)b = 0.
But A is a unit and b is unimodular, thus (a,b) = 0. Thus the
lines Ra and Rb of Ty and Tos respectively, are orthogonal.
(i1) If b = —Tl(b), then b = = b - A(a,b)a so that
b=~ A2"l(a,b)a. Then (a,b) = 0 and the lines are orthogonal.
Conversely, suppose the proper lines of T and T,
are orthogonal. In particular, (a,b) = 0., Now 1315(x) =

x + u(b,x)b + A(a,x)a + Au(b,x)(a,b)a and 1517 (x) =

x + A(a,x)a + u(b,x)b + ur(a,x)(b,a)b. Thus t7, = ToTq s
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Wote that if the lines of Tl and T, are orthogonal,

then T4Ty = ToTy without the requirement that t. and T be

1
regular. The other implication seems to require regularity.
Lemma 3.5. Let 1 be a regular transvection with
line Ra, say T, , = 7. Let ¢(t) = {o in Sp,(V)|oT = 10}
2

Then C{t) = {0 in Sp,(V)|ca = & al}.

Proof: Suppose ga = t a. Then o1(x) =

o(x + A(a,x)a) = ox + A(a,x)oa

ox + A(a,x)a if oa = a,
ox - A(a,x)a if ca = -a,
and
to(x) = ox + A(a,o0x)a = ogx + x(c'la,x)a

ox + A(a,x)a if cga = a since this case has o'la = a.

i

ox - A(a,x)a 1f oa = -a since this case has o~la = -a.
Thus o1 = 10 and o is in C(1).
Conversely, suppose ¢ is in C{t}. Then oto~t = 1. Thus
. -1 _ .
. = nce = . B 1.12 here 1
Toa, Ty, S1 oTo Toa A y ( ) t s a

unit o in R satisfying ca = aa and o~2A = A. Thus a2 = 1

and o = * 1. Hence ca = £ a and C(t) C {0 in Sp,(V)|oa = & a}.
Observe that 1t need not be regular to have that

{o in Sp,(V)|oa = £ a} C C(1).
Lemma 3.6. Let 11 and 1, be regular transvections

in Sp,(V). Then C(ry) = C(t,) if and only if 1y and T, have
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the same line.
Proof: Suppose Ty and T, have the same line, say Ra.
Then by (3.5),
C(ty) = {o in Spn(V)Ioa = & al = C(1,).
Conversely, suppose C(Tl) = C(T2) and 1, = Ta,x and

Ty, = Ty ue Suppose the lines of t. and T, are distinct.
2

1 2
Then the hyperplanes (Ra)® and (Rb)° are distinct, since
(U°)° = U for any subspace U of V. Thus there exists a ¢ in

V satisfying (a,c) = 0 and (b,c) # 0. We can assume c 1is

unimodular and choose a unit v in R, so Te v is a trans-
3
vection. But T, (a) = a + y(c,a)e = a implies that T is
sV CyV
in C(t_).
n C( l)

We claim however that Tc,v(b) # + b. Suppose
Tc,v(b) = b, Thenb =b + v(e,b)e so that v(e,b)e = 0. But
v is a unit and c¢ is unimodular so (¢,b) = 0. This contra-
dicts our choice of c. Suppose that Tc’v(b) = -b. Then
b + v(e,b)e = =b, so =2~lv(e,b)e = b, But then (b,c) = O,
again contradicting the choice of ¢. Thus we have
Te,v(®) # £ b. Hence by (3.5), Te,v is not an element of
C(T2). This is a contradiction to C(Tl) = C(Tz). Therefore

Ra = Rb, that is T, and Ty have the same line.

Lemma 3.7. Let o be an element of Spn(V) such that

oL L for all lines L in V. Then ¢ = % 1V.
Proof: Let L be a line in V, that is L 1s a free
R-submodule of dimension 1 which is a direct summand of V.

Thus L = Rx for some unimodular x in V. Since oL = L, there
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exists ro in R such that ox = rxx. If y is in Rx, then

y = sx for some s in R. Hence oy = o(sx) = sox = sr X =

rxsx = ryy and gy = rxy for every y in L = Rx,

Let x and y be basis vectors of V. Then o(x+y)

a(x+y) for some a in R. But o(x+y) = ox + oy = r_x + ryy.

X

a - = m i
S0 ax + ay r.Xx + ryy and Ty a ry. Thus if x is any

basls vector in V and y is in Rx, then oy = ay.

Select x and y satisfying (x,y) = 1. Then 1 = (x,y) =

(gx,0y) = (ax, ay) = az(x,y) = 22, But a =1 implies a =

1. Thus o = % lV.

Lemma 3.8. Let V = Pl.L e J.Pr be a splitting of
V into planes. Let T be a regular transvection such that
TPy = Pi for i = 1,2,...,r. Then the proper line of T is

contained in one of the Pi'

Proof: Let T = Ta \ be a regular transvection. Then
L]

there is a b in V with (a,b) = 1. But V=P, 1 ... ..LPr

so b = bl + ... + br with bi in Pi'

(a,b, + ... + br) = (a,bl) + ... t (a,br). Since the sum

Then 1 = (a,b) =

of non-units in R cannot be a unit, we must have (a.b;) a
unit for some 1i.

Then, since tP; = P; and bi in Pi’ we have Tbi = b.l +
A(a,bi)a in Pi' But (a,bi) and A are units; thus solving
for a yilelds that a is in P;. Hence Ra C F;.

Theorem 3.9. Let n> 6. If A is a group automorphism
of Sp,(V) and 1 is a regular transvectlon in Spn(V), then At

is a transvection.
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" Proof: Let T be a regular transvection with line
L = Ra and put T = At. 8ay 1x = A(a,x)a for x in V where a
is unimodular and A is a unit in R. Since a is unimodular,
there is a hyperbolic basis of V, say {a = X1,y55 «.+s xr,yr}
with V = Py 4... .LPr where P,, 1 < 1 <r, is the hyperbolic
plane spanned by‘{xi,yi}. Thus the line of 1, that is
L = Ra, 1is contained in P,.

lHlow choose o to be an involution of index 2 whose

plane contains L, say ¢ = -1 & ... & lP . Let I = Ao. By
1 r

(2.6), £ is an involution of index 2. Thus I determines a
splitting of V, 2:V = P 1 N, with dim P = 2 and either
(1) =

(i1)

Note that L is contalned in the proper plane of o so

that ¢g(a) = -a. Then for x in V,

ot(x) o(x+x(a,x)a) ox + A(a,x)oa = ox - A(a,x)a and

to(x) ox + A(a,ox)a = ox + A(oa,x)a = ox - A(a,x)a.
Thus 1 permutes with ¢ and hence IT = TI.
We claim then that T:P - P. If I = -1p > 1y and
p in P then T(p) = Py + ng for some p; in P and n; in N.
Then $T(p) = I(p;+n;) = -p; + n;. But Tz(p) = T(-p) =
-T(p) = -p;-ny. Thus -p; + ng = -p; -1y implying that
n; = 0. That is, T(p) = Py in P. Similarly if ¥ = lP & -lN,
we conclude that T(p) in P. Thus we have T:P » P.

By a similar argument we also have T:N - N. We want
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to show that 72 is the identity on N,
Suppose we choose an involution I' (# * I) of index
2 which permutes with I. Then I' determines the splitting

£':V = P' | N' with plane P'. Note L' = -1,, @ ls PCN',

P'
and P' C . We claim that TP' = P'.

Also AT is an automorphism of Sp (V). Since I' is
an involution of index 2, it follows that A~1%' is also of
index 2. Further £ ¥ £ ¥ and ZI' = L'L implies that
A1z # + o and (A712')o = o(A~1Z'). So by (2.3) there is
a splitting of V such that V = Ql.L ce l.Qr where oQ; =

t Q,

; and A-12'Q; = 2 Q for 1 < i <r. We may assume then

that the plane of o is Q1 = P. and the plane of A'lZ' is

1
Q2 (that is, theéir planes are orthogonal). But L, the line
of T, is then contained in Ql. An easy computation then
shows that T(A-lZ') = (A-Lzv)yT, Hence, applying A, we have __  _
Tt = $'7?, It follows that T:P' -+ P! and T:N' - W', Since
T is an isomorphism, we have TP' = P!,

We now show that T actually acts as lP' on P'.
Suppose P? is generated by {v,w) where (v,w) = 1. Recall
that P' € N and consider the line K = Rv (similarly for
K = Rw). Since n > 6, there is an element u, a member of
the hyperbolic basis of V, with u not in P or P', and u in
N. HNote that u + v is a unimodular element of V and let J
be the line J = R(utv).

Then observe the following:

(1) I C N; since u is in N and v is in N.
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(i1) J 1 X; since (utv, v) = (u,v) + (v,v) = 0.
(14i) J§$IP'; since u + v is not in P',
(iv) J JLP'; since (ut+v , w) = 1.
Let ¢ be a regular transvection in Spn(V) with line J,

1

and put " = ¢I'¢ ~. Then I" is an involution of index 2,

since I' is of index 2. Also since the line J of ¢ is

contained in N, we have ¢f = I or I = ¢+

X¢. Hence,
since ' # + I, it is evident that I" # % %.

Recall that the proper spaces of E' are P' and N!
with dim P' = 2. Since I" = ¢5'¢"l, we have the proper
plane of £" is P" = ¢P'. Now we have " # * I and
$"E = Iz" (since I = ¢I¢~1), thus we apply the same argu-
ment as in showing TP' = P' to obtain that TP" = P", ©Now
TP' = P' and TP" = P" so T(P'N P")& P'MN P". But T
is an automorphism so T(P'M P") = PN P". We claim that
P'MY P" = P'N ¢P' = K,

Since K | J and KC P', we see that ¢ acts as the
identity on K. Hence K& ¢P'. Thus K& P'/) ¢P'. Conversely,
suppose X is in P'M 4P'., Now x in P' implies x = rv + sw
for some r and s In R. Since x is in ¢P', there exists a
y in P' wuch that ¢(y) = x. Let y = r.v + s.w, with r,

1 1 1

and sl in R. Recall that ¢ is a regular transvection with
line J = R(u+v), say ¢(z) = z + g(ut+v, 2z)(u+v) for all z in
V where B is a unit. Then

6 (y)

y + B(utv, y)(utv)

(rlv + sqw) + Bg(utv, rqv + slw)(u+v)
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=r v + sqW + Sslu + Bs_v

1
w + leu.

1

= (rl + le)v + sl

But ¢(y) = rv + sw, and u,v, and w are basis elements, so
leu = 0. Since B is a unit, s; = 0. Thus y = r,v implies
$(y) rl¢(v) =TV (since J 1 K implies ¢ fixes V).

Thus x = $(y)

¢ (rqv)

rlv is in K = Rv. Therefore P'N ¢ Pt = K.

Hence TK = K. Similarly we have T(Rw) = Rw.

Kow P' = Rv ® Rw, T(Rv) = Rv and T(Rw) = Rw. Using the
technique in the proof of (3.7) we have there exist r, and

r, in R so that T(y) = r,y for all y in Rv and T(y) = rwy

for all y in Rw,
Observe that (i) (v+w, w) =1, (ii) {v+w, wl is
Refree, and (iii) v + w is in P', Thus P' is also P' =

R(v+w) ® Rw. Thus there exist ryy, in R such that T(y) =

+w

. m - t—
. for all y in R(v+w). Then rv+w(v+w) T(v+w)

v +r w=ryv+ rowW. So

V4w v

v + Tw = rvv + rWe Thus rv+w

r,=r,=r,, =r. But (vow) = 1. So 1 = (v,w) = (Tv,Tw) =

(rv,rw) r2(v,w) =p2, Thus r =+ 1, If r =1 and x in P',

then x = v, v + rzw for sonme rl and », Iin R, Then Tx =

1 -2
rilv + r2Tw = rlv +row=x. Ifr=-1, Tx = rlTv + rziw =
~riv - Ir,W = =X, Thus T = % lP"
We have T a transvection with line L, V = Pl.L oler,

and L C P,. Let

=1 @...®1P and let

o @®-1, @1 ®...801
| -1 F1 P P

i+l r

S = {ci}# . Note that each Aci is an involution of index 2.
i=q1
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Let P.', ..., P_' be the planes of the set of involutions

1° r
{Aci}r . For each 1 =1, 2, ..., r, fix an involution
i=1

Iy, of index 2 with plane P, .

We chose ¢ = 0, = <1 ® 1 ® ... 91 and let
1 Pl 5 Pr

1

1
!
N = P2'_L oo _LPr . Then we chose L' # * I and showed

z

Ao. We can then assume that Z = I, so P=2P and

that T = A1 acts like the identity on the plane of %',

Thus by using this argument for each of L5, 23, coey zr,

we conclude that T must act like & 1, , on Pi' for 2 <1 <r.
i

Thus T° acts like the identity on Pi' for 2 < 1 < r and

hence like the identity on N.

In the splitting V.= P, L P, L ... L, let P, be

generated by the hyperbolic pair {a,b} and P, by the hyper-

2
bolic pair {c,d}, (note r > 3). Take J' = R(atc). Then
(1) J' is a line; since a + c¢ is unimodular.
(ii) J'l L ; since L = Ra and (atc, a ) = 0.
(i1i1) J'¢ Plg since a + ¢ is not in Pl'
(iv) J'*{'Pl; since (at+c, b) = 1.
Let 6§ be a regular transvection with line J'.
Let o, = §66=L. Then
(1) o, is an involution of index 2.
(ii) the plane of o, is PO = §P,
(ii1) L € P_; since J* L L, 8L=1L. But L CP so
6L C P_.

(iv) 9, # + o3 for example oo(b) # + o(b).
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Thus we have two distinct involutions ¢ and LA each of
index 2 with proper plane containing L.
Let ¥ = Ao and X = Aco. Then % and Zo determine
splittings of V; %:V = P LNand £ _:v =P [ N,. Let T' =

A Note 2 is a unit so A/2 is a unit. Thus T

Ta,l/2. a,A/2
is a regular transvection. Then the above argument shows
that T'2 = (ATa,A/2)2 = ATa,k acts as the identity on N and
NO.

Now recall the following commutative diagram:

A
Spn(V) —_— Spn(V)
hpy l 1 iy
Iy
Spn(V/mV) _— Spn(V/mV)

Let N » N and N~ ﬁo under the map g :V » V/mV.
Then using the images of ¢, g,, and § under h , say g, ;o
and 8, and T = ka (k = R/m), and J' = k(a + ¢), we repeat
the above argument. Thus we conclude that the two spaces
N and N, of dimension n - 2 are distinct.
Since W # ﬁg, there exists an x in Né - N. Thus
there is an x in N, - N. Let {51. «ees Dp_2} be a basis for
I obtained from the basis {by, ..., by 5} of N. Then
'{Bi, ...,_55_2}()'{E}IJ {y}, for some y, is a basis for V/mV.
If y is a pre-image of y, then {by, «vvs by o} U {3} U {y}
is a basis for V. But by is in Nfor 1 =1, 2, ..., n -2 and

X is in No- Since ATa,A fixes N and No.we have that ATa,A
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fixes the hyperplane Rb; @ ... ® Rbn_2 ® Rx. Thus Aty o
1s a transvection.
Corollary 3.10. If Ta,a is a regular transvection,
then ATa,A is a regular transvection where A is an auto-
morphism of Sp, (V).

Proof: Recall the commutative diagram:

A
Spn(V) —_— Spn(V)
hy l l by
K
Spn(V/mV) —_——— Spn(V/mV).

If T is a regular transvection, then AT is a trans-
a,A a,A
vection by (3.9). HWow T, 5 regular implies hyT, » # 1y /mv
Thus IhmTa,l A Ly /v Hence hmATa,K # 1;. Therefore
ATa,A is regular.
Theorem 3.11. Let A:Spn(V) -> Spn(V) be a group
automorphism. Then A preserves transvections.

Proof: Let 7 = 1. . be a transvection in Sp (V).
— a,A n

If A is a unit then AT is a transvection by (3.10). Suppose

then that A is not a unit. Then T But 1

L) = Ta’lta,h"l.

and A - 1 are units, so T 1 and T are regular trans-

a, a,A-1

vections with line L = Ra. By (3.5)

¢ty 1) = {o|lca =+ a} = C(Ta,x—l)'

By (3.10) T, = Aty ; and T, = A are regular
L]

1 Ta,)\—l
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transvections. Since C(Ta,l) = C(Ta,x-l)’ we have C(Ty) =
C(T,). Thus by (3.6), 'I‘l and T2 have the same line. Then
(3.3) implies T;T, is a transvection with the same line.

But AT = A(Ta’lTa’x_l) = A.Ta’l ATa,}\-l = Tsz. ThU.S AT

is a transvection. Therefore A preserves transvections.




CHAPTER IV
AUTOMORPHISMS

In this section we determine the automorphisms of
the symplectic group over a local ring. We require that
the characteristic of R/m be other than 2, that R/m # F3,
and that V have dimension n > 6.

Theorem 4.1. Let ¢ be an automorphism of Sp, (V)
with the following property: For each transvection 1 in
Spn(V), 61 is a transvection with the same line as t. Then
there exists a homomorphism y of Spn(V) into its center
{t 1y} such that ¢(o) = x(o)o for all ¢ in Sp (V). In
this case we write ¢ = PX'

Proof: We claim that ¢o = 1o for all o in Sp,(V).
Let o be in Spn(V); let L be a line in V, and let 1 be a
regular transvection in 8p (V) with line L. Then ¢t is a
regular transvection with line L. Hence (¢0)(ét)(¢0)~T is
a transvection with line (¢o)L.

On the other hand, oto~l is a transvection with line
oL. Thus ¢(c10~t) is a transvection with line oL. But
(60) (¢1) (¢0)~L = ¢(ot0o™L) so that (¢o)(¢w)(¢o)—l must have
line oL. Hence (¢0)L = oL. Therefore ¢=1(¢o)L = L for

50
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all lines L in V. Hence 0=1(¢1) = & 1, by (3.7). Thus
¢c = & o for ¢ in Sp,(V). Define the homomorphism x of
Sp, (V) into {% lv} by ¢0 = x(o)o for o in Sp, (V).

Let g be a semi~linear isomorphism of V onto itself.
Let ¢g be the mapping defined by ¢g(0) = gcg‘l for all ¢ in
Sp,(V). It is clear that ¢g is an injective homomorphism
of Sp,(V) into GLn(V). We shall describe the automorphisms
of Spn(V) in terms of mappings of the types P

X
Theorem 4.2. Let A be a group automorphism of

and .
¢g

Sp, (V). Then there are automorphisms P, and ¢g on Spn(V)

X
such that A = PX°¢g.
Proof: Since A is an automorphism of Sp, (V), by
(3.11) it preserves transvections. The proof consists of
a sequence of steps, some of which will be stated as theorems.
For any line L in V, let T(L) denote the collection
of regular transvectlions in Spp(V) with line L. Since A
preserves transvections, every element of A(T(L)) is a
transvection. Indeed, by (3.10), each element is a regular
transvection.

Let 7,' and t,' be elements of A(T(L)) with AT, = T,

1 1
in T(L). Since T, and Ty

1

- ]
and AT2 Ty for some Ty and 12

are regular transvections each with line L, we have
C(ty) = C(1p). But then C(Aty) = C(Ate). So 7,' and 1,

are regular transvections with C(Tl') = C(TZ'). Hence rl'

and 12' have the same line. Thus there exlists a line L' in

V such that A(T(L)) CT(L").
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Let 7,' be an element of T(L'). Select t,' in
ACT(L)) € T(L') with AT2 = TZ' for some T, in T(L). Since
A’l is an automorphism, the above argument shows that
A"lt,t = 1, and A7lt;' have the same line; namely, L. Thus
A=1(T(L')) C T(L) so that T(L') CA(T(L)). Hence A(T(L)) =
T(L').

We can therefore associate with each line L in V a
unique line L' in V such that A(T(L)) = T(L'). Clearly for
lines L and K in V with L # K, we have L' ¥ K'., By consid-
ering A=l we have that every line in V is an L' for some L.
We have therefore established a bijection a:P(V) » P(V) of
the collection of lines of V onto itself.

We now show that o preserves orthogonal lines; that

is, o(Lq, L2) = 0 implies &(L. "', L2') = 0, Let L, and L, be

1 2
orthogonal lines in V. Let Ty and Ty be regular transvectlons
with lines L, and L2, respectively. Then ATl and AT2 are
regular transvections with lines Ll' and L2'. lNow @(Ll, L2) =

0 Implies t. and T, permute by (3.4). Hence ATl and AT2

1
permute. Thus, by (3.4) again, L,' and L,' are orthogonal.

Similarly o~

preserves orthogonal lines.

The above argument establishing the bijectilon «
utilized the techniques used by O'Meara [18] in the case
where R is an integral domaln. Again, using these techniques
and the automorphism A of Spn(V/mV), there exists a biljection
<> L' of the set of lines of V/mV onto itself given by

the defining equation A(T(L)) = T(L').
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Recall the automorphism A:Sp,(V) » Spn(V) induces
an automorphism K:Spn(V/mV)-+ Spn(V/mV) such that the
followlng diagram is commutative:

A
Spn(V) ——— Spn(V)

Iy
Spr(V) —_— Spn(V)
Observe that the following diagram is also commutative:

a
P(V) _— P(V)

r :

a
P(V/mV) ———> P(V/mV)

I
where I is the natural projection (Ra+——> ka). Let L be

a line in V and IIL = L be its image in V/mV. Let T be a

regular transvection in Spn(V) with line L. Then Nt = T

is a non-trivial transvection in Spn(V/mV). Further At is

a regular transvection in Spn(V) with line aL. Now

K(nt) = N(At), so oL = n{aL) must be the line of the trans-

vection A(Mt), that is L'. Thus the diagram is commutative.
O'Meara shows that the Fundamental Theorem of

Projective Geometry (over fields) applies to the bijection q.

Thus there is a semi-linear isomorphism g:V/mV -+ V/mV such
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that gL = L' for all lines L in V/mV. Thus if'fEi,.,.,Et}
forms a basis for a subspace of V/mV then kEi ® ... e>k€é
is a subspace of dimension t, (that is {E{,...,Eé} is
independent).
Let H be any hyperplane in V. Then any line L in H

is orthogonal to the line 1. Kence L' is orthogonal to

1 ] .
the line (H°) . But then L is contained in the hypervlane

o]
((i°)') . Thus oH = {aL|L line in H} is contained in

o
((H°)') . Supvose H = Re, ® ... ® Re,_;. Then there exist
elements ei,...,eﬁ_l in V such that
o
Re —— Re!
i i
; l l I
_ o -
ke —_— ke!?
i 1

is commutative, 1 =1, ..., n -1, Let <alH> be the sub-
module of V generated by aH. Then, by the diagram,
{ei,...,eh_l} is an indevendent set modulo mV in <oH>
containing n-l elements. But by the above discussion, <all>
is contained in a space of dimension n-l1l and thus must
actually be a hyperplane. Hence for any hyperplane H in V,
<al> is also a hyperplane.

Treorem 4.3. Let N be a subspace of V of dimension t.

Then <ol> is a space of dimension t (t<n).

Proof: By the above, if t = n-1 then <gl> 1s a
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space of dimension n-1. We proceed by inductlon and assume
that subspaces of dimension t+1 are mapped by o to subspaces
of dimension t+l. Let N be a subspace of dimension t. Note

that N = () {M|dimM = n+1, N C M}.

i
o'l
[

Select a basis b ..,bt for N. Then {Hbi

1°°

gives a basis for IN = N. Then if a(kb. ) = kFi, there
i
exists bi, i=l,...,t, such that

o
Rb, ~———> ORDb, = Rb:,'L in ol

H\L J/n

o
kﬁ‘i — kﬁi.

Thus Q = Rbi ® ... 0 Rb% C <oN> € V. Now extend’{bi,...,b%}

1 1 ' 1 i ]
to {bl""’bt’bt+1""’bn} a basis for V. Let Rb.,,
a‘leé+l,...,Rbn = a‘lﬁbé. Then as before, using ot
instead of o, we conclude b b_1is a basis of V.

l,!nu’ n

Now suppose <oali>Z2 Q. Then there exists an x in
<gN> = Q. Since x is in V, we have

= ' g ' 1
X s1bl +Qc.+stbt+0t+lb + +ouu+snbn Where S

are
t+1

t+l§uoo,sn

s s 2 Sand - ' t y
in the maximal ideal m. Let M Rbl @... 8 Rbt @ Rbt+1

and M" = Rb; & ... ® Rb% e Rbé+2. (Note t < n-2 so there

n ! 1 1 ! 11 1
are elements b!, ., and bt+2‘) Then M' and M" are subspaces

of dimension t+l. Thus <a™iM'> and <a~lM"> are spaces of
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} and {b b,,b

1o+ es0psbiyol,
Imrs ana

dimension t+l1 containing {bl""’bt’bt+l

respectively. Thus these two sets are bases for <a”

<a~lM">, But § C <o™M'™> ang N € <¢™iM">., Thus <oN> CM!

and <alN> C M". Since x i1s in <aN>, we have x in M' and x in
M", But x in M' implies Sggp = eee =8, =0 and x in M"
implies Sg4l T Stg4z T e T S, = 0. That is,

X = Slbi + ... F Stbé' But then x is in Q, a contradiction.

Thus <all> = Q@ and <aN> is a space of dimension t as desired.
Corollary 4.4, If P is a plane. then <oP> is a plane.
Proof: Suppose P = Rel(9 Re,. Then by (4.3),

= ! ? 1 1 1 =
<ab> Re1 & R62 where aRel Rei, i=1,2.
Corollary 4.5. Let L = Re, L; = Re), and L, = Re, be

lines in V. Then L C L, ® L, if and only if oL C oL, & oL,.

Proof: Assume L CL; ®L By (4.4), <o(L, + Ly)> =

2.

oL, @ oL,. But oL C <a(l; @ L,)> so el £ aL; @ ol On the

5
other hand, suppose oL C chl @ °‘L2‘ By the above arguments,
using o=l instead of o, we have L& L @ L,.
Recently Ojanguren and Sridharan [16] have generalized
to commutative rings the fundamental theorem of projective
geometry. The setting is provided by the following definitions.
Let M and N be free modules over commutative rings A
and B, respectively. A map a:P(M) » P(N) is called a projec-
Ctivity If o is bijective and for P1s Pos p3 in P(M), we have
apq Q:apz + ap3 in N if and only if Py C P5 + p3 in M. If
g:M -~ N 1s a o-semilinear isomorphism, then g induces a map

P(g):P(M) » P(N) by setting P(g) (Ae) = Bg(e) for any
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unimodular element e of M. With this notation, if o is an
isomorphism, then P(g) is a projectivity. The following
theorem ([16], page 311) then generalizes to commutative
rings the classical "Fundamental Theorem of Projective
Geometry."

Theorem. Let M and N be free modules of rank > 3
over commutative rings A and B respectively. If a:P(M) - P(N)
is a projectivity, then there exlsts an isomorphism c:A + B
and a‘o-semilinear isomorphism g:M - N such that o = P(g).

We return to our setting and recall that we have
established a bijection a:P(V) + P(V). However we have not
indicated that o is a projectivity. Instead of satisfying

the condition ap, C op, + ap, if and only if p. C p, * P..
1=""2 3 1="2

3
we have been able to show for o that Re - Rel @ Re2 if and
only if oRe g:aRel ® uRe2 for Re, Rel, and Re2 lines in V.

That is, we require that Rel @ Re, be a plane in V. Thus

we are not able to apply the theorem to our setting directly.
However, an examination of the proof of this "Fundamental
Theorem" enables us to make the following observations
concerning our setting.

Let €15 €55 «ves en be a basis for V. We have
previously indicated that if aRe; = Rei for i =1,2,...,0,
then ei,...,eé is also a basis for V., Using the techniques
of the proof of Ojanguren and Sridharan, we get a basis
fl,...,fn of V such that

and

A
}—h
1A
=

(1) uRel = Rfi 1
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(1i) aR(e; + e;) = R(fy + ;) 2 < i< n,

Further for r in R, aR(el + re2) = R(b + b2f2) with b

11
a unit of R. Thus aR(el + rez) = R(fl + o(r)f2) where

1

o:R » R 1s a well-defined map. Proceeding, as in [16], one
is able to conclude that o:R »+ R is a ring isomorphism.
Next it is shown that for Phyesesly In R we have

UR(el+r2e2+...+rnen) = R(fl+0(a2)f2+...+o(an)fn); Indeed

for any rl""’ri—l’ri+1""’rn and 1 = 2, ..., N,

aR(ei+rlel+...+ri_lei_l+ri+1ei+l+...+rnen)

= R(fi+o(rl)fl+...+o(ri_ )fi“1+o£yi+l)f.

i+l

+5..+q(rn)fn).

1

A1l of these statements can be verified using the properties
of o which are slightly weaker than those of O janguren and

Sridharan.
At this point in the proof [16], it is necessary to

show for a unimodular e = rlel+...+ in V, that

Tn®n
uR(rlel+...+rnen) = R(c(rl)fl+...+o(rn)fn). In the case

of arbitrary commutative rings, the proof reguires the
stronger condition on the bijection. However, in our setting,

R is local and thus one of Ppaeeesly must be a unit, say r;.

Thus R(rjey+...+rpe )

= -1 ~1 -1 -1
= Rlegtr Tryeqt, . 4077ry gey g40i Ty e, bty r e,).

Then oRe

+c(r71r )f +

-1 -1
= + . o+ 0
R(fi o(ri ri)fl+ o(ri T o1 P

)£

+o-o
i-1 i+l

-1
0(1":.L rn)fn ).
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But ¢ is a ring lsomorphism so that c(r;l) is a unit. Thus

-1 -1 = ¢
R(fi+c(ri rl)f1+...+0(ri rn)fn) R(o\rl)fl+...+0(rn)fn).

Therefore

aR(rlel+...+rnen) = R(o(rl)fl+...+o(rn)fn) for unimodular

rlel+...+rnen.

Now, let g:V = V be the o-semilinear isomorphism
defined by g(ei) = fi‘ The result of the preceeding para-

graph shows that o= P(g). Thus the above gives the following

theorem.

Theorem 4.6. In the setting described in this section,

wlth a:P(V) » P(V) the bijection defined by oL = L' where
A(T(L)) = T(L'), there is a semilinear isomorphism g of V
onto V such that gL = L' for all lines L in V.

We have previously noted that o preserves orthogonal
lines. Thus, since gL = aL, g also must preserve orthogonal
lines. Then if x and y are unimodular elements such that
(x,y) = 0, then the lines Rx and Ry must be orthogonal.

Thus (g(Rx). g(Ry)) = 0. In particular, (gx,gy) = 0.

Let X = {X1=X2”"’xn} be a symplectic basis for V,
n=2r. For 1 < 1 <r, put s = (gxi,gxi+r). Then

(k4% 5 X400, - xj+r) =0 forl<j<r,1l<ic<r,
But note X35 xj, X {4p> xj+r are basis elements and hence

unimodular. Further xi + Xj and Xi X are then

+r = Tj4r
unimodular. Thus by the above note (g(xi+xj), g(xi+r-x

))

JHr

So 0 = (gxitexy, %), ~8X )

0.
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= (gxi,gxi+r) - (gxi,ng+r) + (ng,gxi+r) - (ng,ng+r).

But since x. and Xx.
i +

j4r are unimodular with (xi,x

j+r) =0,
we have (gxi.ng+r) = 0. Similarly (ng,gxi+r) = 0. Thus

Jtr L J

j+r) = a6ij for some o in Rj; namely, o = a, = aj.

(gxi—gxi+r) - (ng—x: ) = 0 so that a; =oa,. Thus
X,
(g 5 18X

Thus, consider cases (gxk,gxs) = a(xk,xs) for
1l <k<n, 1<s<n:
(i) If k¥ = s, then (xk,xs) = 0 implies (gxk,gxs) = 0,
Hence (gxk,gxs) = a(xk,Xs).
(ii) If k # s, assume k < s.
(a) If s <r, then (xk,xs) = 0 implies
(gxk,gxs) = 0. Hence (gxk,gxs) = a(xk,xs).
(b) If k < r < s then there exists a j such that

Xj4p = Xg. Then (gxk,gxs) = (gxkng+r). Hence

0 (j#k) = a(xk,xj+r) = a(xk,xs)
(gx,,ex ) =

a (j=k) = u(xk,xk+r) a(xk,xs).

(¢) If r < k, then (xk,x ) = 0 implies
S
(gx,.gx ) = 0. Thus (gx,,ex ) = alx),x.).
So in any case (gxk,gxs) = u(xk,xs).
By linearity, we have (gx,g8y) = alo(x,y)] for x and
v in V, PFor if x = alxl+...+a X, and y = b_Xx +...+bnxn, then

n"n 1M1
(o(ag)e(xy)+...4o(a degl(x ).o(by)g(x)+.. .+o(byde(x,))

(gx,8y)

o(ap)o(by,,) (8%, 8% ). .- to(ay)o(by) (g% )

~0(ay;1)0(0) (8% 1,8%7 )= .-a(a Jo(b,) (gxn,8%,)
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o(al)c(bl+r)a+...+o(ar)o(bn)a-...-0(ar+l)o(b1)a

- c(an)c(br)a

a[o(albl+r+...+arbn-ar+1bl—...-anbr)]

alo(x,y)].
Observe then that ¢g(o) is in Sp,(V) for ¢ in Spn(V).
For if ¢ is in Sp,(V), then

(6,(0)(x),0.(0)(y)) = (gog~t(x),z0e1(y))
g g

alo(og=t (x),081(y))]

i

alo(g~lx,g=1y)]

(g(g~1x),g(g~1y))

(x,y).

Thus ¢g(Spn(V)) Q;Spn(v). By considering g'l, we have
¢g(Spn(V)) = Spn(V). Hence ¢g is an automorphism of Spn(V).
Hence ¢él° A defines an automorphism of Spn(V).
Suppose T 1s a transvection with line L. Since A preserves
transvections, At is a transvection with proper line L' = alL.

Observe that ¢;l = dg.l and ¢gql(AT) = g‘l(At)g. Hence
-1
¢%

$~~ o A{T) has the same line as t. Thus by (4.1), there is
g

a homomorphism x:_Spn(V) > {£ 1V} such that ¢él o A = PX.

o A(T) is a transvection with line g <L' = L. That is,

Therefore A = ¢g o PX' Using ALl instead of A, we obtain

A= RX ° ¢g as stated in theorem 4.2.
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