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Abstract 

 

Drop size distribution (DSD) and rain rate (R) have been estimated from polarimetric radar 

data that are now available nationwide. DSD and R are essential in understanding rain 

microphysics. Past studies utilized parametrized equations or empirical formulas to estimate the 

parameters for DSD retrieval and R estimation. In addition, previous machine learning approaches 

have been utilized, but these efforts have been centered solely on rain estimation rather than 

estimating DSD parameters. This study focuses on estimating both DSD parameters and R using 

deep learning to better understand the precipitation microphysics along with an improved 

estimation of rain rate, which is the biggest concern in operational and societal purposes. 

Past studies have found that the estimation accuracy degrades depending on errors in the radar 

measurements and estimation methods. Here, the deep neural network (DNN) approach has been 

utilized to improve the estimation of DSD and rain rate by mitigating these error effects. The 

performance of this approach was verified with the ground truth observations measured by a two-

dimensional video disdrometer (2DVD) deployed at Kessler Farm, Oklahoma and compared with 

the conventional estimation methods for the period 2006−2017. Physical parameters (mass-

/volume-weighted diameter and liquid water content), rain rate, and polarimetric radar variables 

(including radar reflectivity and differential reflectivity) were obtained from the DSD data. The 

three methods−physics-based inversion, empirical formula, and DNN were applied to two different 

temporal domains (instantaneous and rain-event-average) with three diverse error sources (fitting, 

measurement, and model errors). The DSD and rain estimations from the total 18 (= 3 × 2 × 3) 

cases were evaluated by calculating the bias and root mean squared errors (RMSE). DNN produced 

the best performance for most cases, up to 50% reduced RMSE when model errors existed. DSD 

and rain estimated from the Oklahoma City polarimetric radar using the empirical and DNN 
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methods were well fit to the disdrometer observations; the rain estimation bias of DNN reduced 

significantly (2.7% in DNN versus 6.7% in empirical). The present results suggest that DNN would 

be useful for retrievals from radar observation. 
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1. Introduction 

 

Radar data is useful in monitoring current weather situations and producing short-range 

forecasts by linking rain microphysics variables in the atmosphere to precipitation type and 

intensity (Zhang 2016). Radars are used for numerous purposes in meteorology, including 

hydrometeor classification (e.g., Vivekanandan et al. 1999; Liu and Chandrasekar 2000; Park et 

al. 2009), quantitative precipitation estimations (QPE), and drop size distribution (DSD) retrievals 

(e.g., May et al., 1999; Testud et al. 2000; Matrosov et al. 2005; Cao et al. 2010; Thurai et al. 2021; 

Ryu et al., 2021). The accurate quantification of precipitation and drop size distribution are critical 

for estimating latent heating (e.g., Nelson et al. 2016; Huaman and Schumacher 2018; Nelson and 

L’Ecuyer 2018), and further understanding and parametrization of cloud microphysics, leading to 

improvements of weather forecasts (e.g., Lim and Hong, 2010; Morrison and Milbrandt, 2015; 

Zhang et al., 2021). In the early era of radar development, only radar reflectivity (Zh) provided the 

information on rain rate (R) with the well-known Z-R relationship derived using power law forms 

between Zh and R. The coefficients of Z-R relation were determined depending on various factors 

including rain types, seasons, and locations resulting in over two hundreds Z-R relationships 

(Doviak and Zrnic 1993; Rosenfeld and Ulbrich, 2003). In addition, the selection of the dataset, 

measurement errors, and the changes in the rain microphysics led to variations in the DSDs. 

Typically, more parameters (≥2) are required to accurately characterize the DSD, leading to the 

development of polarimetric radars (Seliga and Bringi 1976).   

The development to polarimetric radar data (PRD) provided advantageous properties that can 

lead to comprehensive knowledge regarding the shape, composition, and phase of hydrometeors 

(Zhang et al., 2019). Particular variables such as differential reflectivity (Zdr) and specific 

differential phase (KDP), and Zh enhance the reliability of R estimation, reducing error from 30−40% 
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to ~15% (Brandes et al., 2002). Further, PRD enabled DSD retrievals by incorporating two or more 

radar variables. DSD can be widely used to retrieve all parameters and variables of rain 

microphysics and are often more useful than just R (Zhang, 2016). The deterministic retrievals 

using DSD parameters of slope (L) and intercept terms (N0), from the definition of ZDR (defined 

as 10log10(Zdr) the log unit of Zdr) and Zh are often conducted assuming two-parameter exponential 

or constrained-gamma DSD model (Zhang et al. 2001). However, DSD parameters are non-

physical variables and not Gaussian distributed with skewed distributions (Cao et al. 2010; Zhang 

2016). Mahale et al. (2019) indicated that physical parameters of mass-/volume-weighted diameter 

(Dm) and liquid water content (W) would be used for DSD retrieval for two-parameter exponential 

DSD model. These two parameters (Dm and W) can be derived from model physical parameters 

(number concentration and mixing ratio) which often follow a Gaussian distribution. These 

physics-based inversion retrievals were conducted by utilizing the parametrized PRD operators 

derived as function of the physical parameters (Mahale et al. 2019). 

 The use of PRD, empirical formula and physics-based inversion retrievals contain inherent 

limitations. Power law forms (i.e., empirical formula) tend to be linear in logarithmic domain, 

cannot handle nonlinear terms, and minimally account for measurement and/or model errors. 

While physics-based retrievals may perform well in the idealized formulations, these approaches 

do not work suitably in real atmospheric cases when errors exist. In addition, since physics-based 

inversion could not account for any bias in the data, small errors may significantly deteriorate its 

performance. This study was conducted to overcome the weaknesses of these two existing methods 

by introducing the deep neural network (DNN). 

Here, one of the machine learning (ML) methods, DNN was applied to obtain R and physical 

parameters from PRD. Notice that ML has an advantage as the approach includes nonlinear terms 
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and additional input and output variables; so, this technique can solve complex forms of data and 

problems (e.g., Sarker 2021; Ho et al. 2021; Lang et al. 2021; Alimissis et al. 2018). The results 

can be attained from this approach quickly once the training is completed and allowing the 

technique to be easily employed for operational purposes. Previous studies have utilized different 

forms of ML for QPE. For example, Kusiak et al. (2013) demonstrated that the neural network 

produced the best performance among various MLs in rain estimation from Zh alone. Shin et al. 

(2021) utilized random forest, a traditional ML method, to compare and improve QPE from 

applying the power law equations to the radar and video disdrometer data collected in Korea. Chen 

et al. (2020) used multilayer perceptron to estimate rain rate over a vast area from satellite-

observed multi-channel radiances. However, their approach had a crucial constraint in that the 

technique assumed radar-retrieved R was the ground-truth. The research in this thesis used similar 

DNN algorithm to that of Chen et al.’s but with the inclusion of small-scale errors contained in 

radar variables and, several types of observational errors (i.e., measurement error and model bias) 

in the training and testing data sets for estimating physical parameters and R. The DNN results 

from this approach were compared with existing methods such as physics-based inversion retrieval 

and power law form of empirical formula. 

The goal for this thesis can be summarized into the following three points. 

• Confirm the validity of using DL algorithms for DSD retrievals and QPE 

• Analyze the impact of observational errors (i.e., measurement and model errors) on the 

physics-based inversion, empirical, and DNN methods 

• Identify if improvements result in QPE and DSD retrieval by including additional 

spatiotemporal or meteorological information in deep learning algorithms 



4 
 

In chapter 2, brief background of the variables, distributions and the parametrized PRD operators 

will be discussed. Chapter 3 provides a description of the data used in this investigation. Chapter 

4 discusses the three methods used and compared in this research. Chapter 5 and 6 contain the 

results using two-dimensional video disdrometer (2DVD) and radar observations. Lastly, chapter 

7 gives the summary and future works. 

 

Fig 1. Flowchart displaying the forward process from NWP predictions to polarimetric radar 

variables, and DSD retrieval and rain estimation from polarimetric variables.  

 

2. Background 

 

2.1 Dual-polarimetric variables 

 

2.1.1.  Reflectivity factor 
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The reflectivity factor (Z) is represented by the drop size distribution (DSD) of precipitation, and 

can be mathematically written as  

𝑍 =  ∫ 𝐷6𝑁(𝐷)𝑑𝐷
𝐷𝑚𝑎𝑥  

0
   (1) 

where the D is the diameter of the droplet, N(D) the DSD, and Dmax the maximum diameter 

(Kessler, 1969). The reflectivity factor is proportional to the sixth power of the diameter and can 

be expressed as the sixth moment. This relationship is for small spherical droplets and is derived 

to describe the proportional relations between radar cross section and square of the particle volume 

(e.g., Marzano et al., 2006). The nth moment of the DSD is represented as  

𝑀𝑛 =  ∫ 𝐷𝑛𝑁(𝐷)𝑑𝐷
𝐷𝑚𝑎𝑥

0
   (2) 

The reflectivity factor is proportional to the radar reflectivity for spherical rain particles that are 

small compared to the radar wavelength (i.e., Rayleigh scattering). The radar reflectivity factor is 

expanded further to include the radar polarimetry, random orientation, and the DSD (Danielsen et 

al. 1972; Smith et al. 1975; Doviak and Zrnić 1984; Zhang 2016). Then, assuming S-band and 

raindrop shape from Brandes et al. (2002), the effective reflectivity factor for horizontal and 

vertical polarization are expressed by 

𝑍h,v =
4𝜆4

𝜋4|𝐾𝑤|2 ∫ |𝑠ℎℎ,𝑣𝑣(𝜋, 𝐷)|
2
𝑁(𝐷)𝑑𝐷

∞

0
   (3) 

for  𝐾𝑤 =  
𝜀𝑟−1

𝜀𝑟+2
  (4) 

 

and in decibels (dBZ),  

𝑍H,V = 10 log10 𝑍h,v   (5) 
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where the λ is the wavelength (mm), N(D) the DSD (m-3mm-1), 𝐾𝑤  (Eq. 4) the complex dielectric 

constant for water, and the shh and svv the backward scattering amplitudes for horizontal and 

vertical polarization, respectively (Doviak and Zrnić 1984). The Zh (Eq. 3) is in linear units of 

mm6m-3 and the ZH (Eq. 5) in the logarithmic units of dBZ. Note that Eq. 3 can be simplified to 

the form of Eq.1 for small particles (D < λ/16) in Rayleigh scattering regime of spherical particles. 

ZH contains the concentration of rain, and the intensity of rain can be obtained. ZH is the quantity 

of the returning radar energy back to the radar from the target, and depends on various factors such 

as number, size, shape, dielectric property, and symmetry of the hydrometeors. Due to this 

variability, Z-R relationship depended on too many factors requiring additional polarimetric 

variable for accurate QPE.  

 

2.1.2. Differential Reflectivity 

 

The differential reflectivity (ZDR) indicates the ratio (Zdr) between the horizontal (Zh) and vertical 

radar reflectivity (Zv) in decibel, which can be written as  

𝑍DR = 10 log10(
𝑍h

𝑍v
)   (6) 

where the Zh and Zv are the horizontal and vertical components displayed in Eq. 3 (Seliga and 

Bringi, 1976). Similar to ZH, the ZDR is Zdr in dB unit. ZDR contains information regarding the 

shape and size of the rain droplets, further providing information regarding the rain microphysics. 

From equation 6, it is intuitive to notice that ZDR is positive for larger scatter from the horizontal, 

negative for larger scatter from vertical, and zero if spherical shaped. Starting from Seliga and 

Bringi (1976), ZDR is widely used for QPE purposes and DSD retrievals (e.g., Seliga et al. 1979; 

Ulbrich and Atlas 1984; Zhang et al. 2001, Cao et al. 2008). In rain, ZDR also typically increases 
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with heavier rain and ZH, but may display large ZDR and relatively moderate ZH in cases of size 

sorting in the leading convective regions (Kumjain et al. 2013). Generally, tropical rain has smaller 

rain drops (i.e., smaller ZDR) and continental rain larger rain drops (e.g., Ryzhkov et al. 2005b; 

Tokay et al. 2008; Ryzhkov et al. 2011). 

 

2.1.3. Additional polarimetric variables 

 

The specific differential phase shift (KDP) is defined as the phase difference between the horizontal 

and vertical components across a unit distance and is expressed as  

KDP =
180λ

π
× 10−3 ∫ Re[shh(0, D) − svv(0, D)]N(D)dD   (7) 

where shh,vv (mm) are the forward scattering amplitudes each for horizontal and vertical 

polarization,  and the parts within Re the real part of the differences in scattering amplitudes. KDP 

is often used for QPE purposes due to its usefulness in heavy rain and less sensitivity to hail 

contaminations (Sachidananda and Zrnić 1987; Ryzhkov and Zrnić 1996). However, KDP does not 

work well for light rain, often contains large error, and the resolution volume is different compared 

to ZH and ZDR (Ryzhkov et al. 2005a). The co-polar radar correlation coefficient represents the 

similarity between the horizontal and vertical components of polarization and is expressed as  

𝜌hv =  
∫ shh

∗ (π,D)svv(π,D)N(D)dD

[∫|shh(π,D)|
2

N(D)dD ∫|svv(π,D)|2N(D)dD]
1/2   (8) 

While ρhv are useful in qualitatively classifying hydrometeors, ρhv is close to 1 for rain at S-band 

frequencies and is not useful for quantitative processes of QPE or DSD retrieval. Thus, most of 

the calculations and estimations hereafter are predominantly conducted as functions of Zh and Zdr, 

which have the highest data quality.  
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2.2. Drop size distribution 

 

The DSD describes the fundamental of rain microphysics and can be used to calculate rain physics 

parameters (Zhang 2016). The Marshall-Palmer (M-P), exponential, and gamma DSD distribution 

models had been widely used to describe rain microphysics utilizing the number concentration 

parameter (N0, mm-µ-1 m-3), slope parameter (L, mm-1), and for gamma distribution, shape 

parameter (µ). The one parameter, M-P model has one unknown parameter L with fixed N0 of 8000 

m-3 mm-1 (Marshall and Palmer 1948; Kessler 1969) and is written as  

N(D) = 8000exp (−ΛD)   (9) 

The three-parameter gamma DSD distribution is also used to describe rain DSD (Ulbrich 1983). 

Gamma DSD model is useful in representing broader range of rain DSD. Noting that all three 

parameters are not independent of each other (Haddad et al., 1996), the constrained-gamma (C-G) 

DSD distribution model is proposed in order to facilitate the process of retrieving three parameters 

from radar measurements (Zhang et al. 2001). The gamma DSD and the relation between shape 

and slope parameters for Oklahoma (Cao et al. 2008) are derived as following 

N(D) = N0Dµexp (−ΛD)   (10) 

µ =  −0.0201Λ2 + 0.902−  1.718   (11) 

While the three parameter C-G DSD distribution model is better in displaying natural rain, the two 

parameter, exponential model is still predominantly used in numerical weather prediction (NWP). 

The exponential DSD distribution is mathematically written as 

N(D) = N0exp(−ΛD)    (12) 
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The N0 and L terms are commonly referred to as the DSD parameters. The DSD retrieval is 

conducted by calculating the DSD parameters from radar variables to form the DSD based on the 

DSD distribution models. DSD parameters are nonphysical parameters and often have skewed 

distributions. Mahale et al. (2019) suggested the usage of mass-/volume- weighted mean diameter 

(Dm) and liquid water content (W), also called the physical parameters, for the two-parameter 

exponential DSD model. The advantage of using physical parameters is that they can be obtained 

from rainwater mixing ratio and number concentration from NWP simulations and are often 

gaussian distributed (Mahale et al. 2019).  

 

3. Data 

 

The quality, and inclusion of errors and contamination is a core part in training the DNN and 

forming the equations for the empirical formulas. Here, the 2DVD, and operational S-band radar 

observation data are utilized. The initial training is conducted using the 2DVD data, which often 

contains less errors and contamination, and the observational errors can be controlled to observe 

the effects on the different methods. Then, the three methods will be tested on the operational radar 

data. 

 

3.1. Disdrometer data 

 

The rain microphysics variables from two-dimensional video disdrometer (2DVD) for the 

period 2006–2017 (twelve years) were analyzed for initial model evaluations. 2DVD can directly 

measure microphysics variables such as DSD, and particle size in approximately one-minute 
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interval. The 2DVD works by projecting two orthogonal light sheets onto two cameras and when 

particles fall through the two light sheets and recording the shadows on to the photodetectors 

(Kruger et al. 2001). The sampling volume of the 2DVD can be calculated by multiplying the 

sampling cross section, fall velocity, and sampling interval (Campos and Zawadzki, 2000). The 

cross section is 0.01 m2
 and the sampling volume of the 2DVD is typically less than 5 m3 for each 

minute. Given the observed DSD data and T-matrix scattering amplitudes for S-band radar, radar 

variables (e.g., ZH, ZDR, KDP), and rain microphysics parameters (e.g., Dm, W) were calculated 

from numerical integration of wave scatterings. The 2DVD used in this research is located in 

Kessler Farm Field Laboratory (KFFL; 34.98°N and 97.53°W), about 44.75 km southwest (239 

degrees) of the KTLX Oklahoma City radar (Fig. 2). During the twelve years, the total of 616320 

points were collected over 428 days of rain events. 

 

3.2. Radar data 

 

The polarimetric measurements from the S-band KTLX Weather Surveillance Radar-1988 

Doppler (WSR-88D, also called as NEXRAD), with a beamwidth of 0.95° and a range resolution 

of 250 m, were used to compare the performance of each method on radar observations for the 

same dates as 2DVD beginning 2013. The data prior to 2013 were removed due to lack of 

polarimetric radar variables. The NEXRAD level-II data was obtained from National Center for 

Data Collection (www.ncei.noaa.gov) for only the lowest 0.5° elevation above the corresponding 

2DVD location. This data included several mesoscale convective system cases of both stratiform 

and convective rain. The radar sampling volume were calculated by multiplying the beamwidth, 

gate size, and distance from the radar. The radar data were updated approximately in five-minute 

intervals, and the radar resolution volumes are about 107 larger than the sampling volume of 2DVD 

http://www.ncei.noaa.gov/
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at a distance of 30 km (Cao et al. 2008). In addition to difference in spatial/temporal resolution, 

radar data are often prone to additional sources of contamination such as hail, ground clutter, and 

anomalous propagation (Ulbrich and Lee 1999; Hubbert et al. 2009; Grams et al. 2019; Zhang et 

al. 2020). 

 

Fig 2. Plot of ZH on May 20th, 2017 at 04UTC displaying the locations of 2DVD and KTLX radar. 

 

3.3. Data collection 

 

To minimize the error from the observations, unrealistic (e.g., rain rate over 1000 mm hr−1) 

and non-meaningful (e.g., rain rate below 0.1 mm hr−1) rain events were excluded. Some 

unrealistic values were in the 2DVD data, because 2DVD collects data every minute, and high rain 

rate values may be recorded in a single time frame. For 2DVD data, which typically has less error 

sources than radar data, rain events within the range of R between 0.1 and 100 mm hr−1, the total 
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count larger than 50, and ZDR between 0.2 and 4.5 dB were considered. When conducting the 

average, rain events that continued for at least twenty minutes, allowing ten minutes interruption, 

were grouped. The ZDR range was limited, because exponential DSD model does not accurately 

represent both very small and large droplets from natural rain (Ulbrich 1983, Kozu and Nakamura 

1991, Tokay and Short 1996). When temporal information was included for rain estimation or 

DSD retrieval, all rain events were divided into twenty minute sequences to ensure sufficient 

amount of data and match the size of input data. For all cases, data were divided into 70%, 15%, 

15% for training, validation, and testing, respectively. The total of 595 rain events were selected 

and 54,112 points were available for training process. It is noted that number of samples for the 

total training was diverse for different error cases due to the exclusion of values outside the chosen 

criteria. During the training process when choosing appropriate weighting and form of empirical 

formulas and selecting the activation function and input form and unit for DNN, 2DVD data were 

used. 

In order to compensate for the increased sources of errror and contamination, some filtering 

and averaging were applied on the raw radar data. First, the five-point median filter over five gates 

along the radial were used to remove flattation error and smooth the data. Second, radar correlation 

coefficient (ρhv) filter was applied to minimize the influence of hail and non-meteorological objects 

(e.g., ground clutter and beam blockage). Then, the averaged Zh and Zdr values over the five gates 

(two gates prior to and two after the estimated corresponding location), excluding missing values, 

were utilized as the input data. The DSD data from 2DVD (in one-minute interval) were modified 

to adjust the radar data (in five-minute interval) by using the corresponding time and the next four 

minutes. Within these five minutes DSD data, both maximum and minimum values were discarded 

and the mean of the remaining three has been used to retrieve the Dm,W, and R using numerical 
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integration. These procedures were conducted to lessen the impact of different spatiotemporal 

resolution between radar and 2DVD, resulting in reduced flattation error, and accomodation of the 

time lag from different starting angle of the radar beam and the observation height between 2DVD 

and radar (approximately 400 m higher at the corresponding location). The anomalous propagation 

or hail contamination from nearby gates may still influence the data at the chosen location. Only 

gates with ρhv values larger than 0.97 are considered, and filtered again before usage.    

 

3.4. Three types of error 

 

The perfect, measurement, and model errors were introduced to examine the influence of 

different errors in estimations, and the performance of the three methods. First, no external errors 

were introduced. The perfect error in each methods purely occurs from the fitting process between 

the radar variables and the three estimators. Mahale et al. 2019 derived the parametrized PRD 

operators for rain by assuming exponential DSD distribution, as function of Dm (in mm) and W  

(in 1 g m−3) as  

Zh =  W(−0.3078 + 20.87Dm + 46.04Dm
2 − 6.403Dm

3 + 0.2248Dm
4 )2  (13) 

Zdr =  1.019 − 0.1430Dm + 0.3165Dm
2 − 0.06498Dm

3 + 0.004163Dm
4  (14) 

The radar variables are expressed in polynomial functions of physical parameters for the 

convenience of usage. The process of calculating the input and output variables for perfect error 

category is conducted as following. The input radar variables, Zh and Zdr, are simply calculated 

using Eqs. 13 and 14 for given Dm and W. Taking truncation effects of DSD into account, the 

output variables, physical parameters and R, are formed by utilizing Dm and W to calculate the 

DSD parameters (Eqs. 15 and 16), which can be further used to calculate the DSD (i.e., N(D) in 

Eq. 12) assuming exponential DSD distribution,  
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Λ =  −
0.00065

𝐷𝑚
2 +

4.01

𝐷𝑚
− 0.023+0.028𝐷𝑚 − 0.01𝐷𝑚

2   (15) 

N0 =
6×103WΛ4  

πγ(λDmax,4)
     (16) 

where Λ is the slope parameter, Dm mass-/volume- weighted diameter, N0 intercept parameter, W 

liquid water content, and D (mm) particle diameter. The calculated DSD are then numerically 

integrated to form physical parameters and R. The fitted relations are matched well with the 

numerically calculated values in figure 1. All procedures and equations above are derived based 

on the definitions of physical parameters assuming exponential DSD model and accounting for 

truncation effects. Additional details regarding the parametrized PRD operators can be found in 

Mahale et al. (2019). 

Second, the statistical Gaussian distributed external errors were introduced to the radar 

variables calculated in the previous step. The standard deviation of the errors for ZH was 1 dBZ, 

and 0.2 dB for ZDR. No additional errors were included to the estimators. 

Third, for model error category, random errors arising from 2DVD observations were included. 

The included errors encompasses some measurement errors as well as the model errors arising 

from the difference between the modelled exponential DSD and the measured rain DSD, and the 

difference of radar variables between the numerical integrations and using the parameterized 

operators. The numerically integrated radar variables, physical parameters, and R directly 

calculated from 2DVD DSD observations were used for the analysis.  

 

3.5. Evaluation metrics 

 

The evaluation metrics include bias, root-mean-square-error (RMSE), absolute error, and bias 

factor. Bias is the difference between estimated and observed mean values (Eq. 17). RMSE is the 
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root of the average of the squared sum of the difference between observation and estimation (Eq. 

18). Here, the relative bias and RMSE are expressed in percentage by dividing the mean of the 

observed values. The percent values may reduce excessive influence from large differences in a 

small sample. The residual represents the difference between estimation and observation for each 

points (Eq. 19). The bias factor is the ratio of summed estimation to summed observation (Eq. 20); 

it has been frequently used in previous studies (Brandes et al. 2002). 

𝐵𝑖𝑎𝑠 =
1

𝐿
∑ [𝑥𝑒𝑠𝑡(ℓ) −𝐿

ℓ=1 𝑥𝑜𝑏𝑠(ℓ)]  (17) 

𝑅𝑀𝑆𝐸 = √∑
1

𝐿
[𝑥𝑒𝑠𝑡(ℓ) − 𝑥𝑜𝑏𝑠(ℓ)]2𝐿

ℓ=1     (18) 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 = 𝑥𝑒𝑠𝑡 − 𝑥𝑜𝑏𝑠   (19) 

𝐵𝑖𝑎𝑠 𝐹𝑎𝑐𝑡𝑜𝑟 =
∑ [𝑥𝑒𝑠𝑡(ℓ)𝐿

ℓ=1 ]

∑ [𝑥𝑜𝑏𝑠(ℓ)𝐿
ℓ=1 ]

    (20) 

 

4. Methods  

 

 

4.1. Physics-based Inversion 

 

The physics-based inversion method utilizes the parameterized PRD operators (Eqs. 13 and 14) 

taken from Mahale et al. (2019). This method provides the most interpretability because the entire 

procedure is formulated based on the definitions and observed relations between the physical 

parameters and radar variables (Fig. 3). The entire process is constituted of two parts, calculation 

of physical parameters from parametrized PRD operators and retrieval of microphysics variables 

from the calculated physical parameters. The former process is the direct inversion of Eqs. 13 and 

14, using the root of nonlinear function. For a given Zdr, the best representation of Dm is calculated 
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from the relation in Eq. 14. Subsequently, the calculated Dm and given Zh can be used to calculate 

W from Eq. 13. The calculated Dm and W can be further utilized to form the DSD parameters and 

DSD from Eqs. 15 and 16. Then, the DSD is used to retrieve all necessary rain microphysics 

variables, including R, using numerical integration. Since this approach does not utilize additional 

data or include error terms to adjust the relations for different sets of data, the equations derived 

from the physical models does not always represent the real situations. Thus, this approach lacks 

flexibility for various weather phenomenon. While this method is based on the two-parameter 

exponential DSD distribution, the performance of the physics-based inversion method is 

conducted for the C-G distribution (Table 1). The mu-lambda relation (Eq. 11) for Oklahoma was 

used based on the Cao et al. 2008. The percentage RMSE using C-G model reduced 8.9% for Dm, 

23.7% W, and 5.3% R compared to that of the exponential model. This result agrees with previous 

research where C-G distribution is more fit to describe natural rain (Zhang et al. 2001). 

 

Table 1. The percentage RMSE of the error estimation for the three variables (Dm, W, and R) using 

exponential and constrained-gamma (C-G) distributions. 

 Exponential distribution C-G distribution 

 Dm W R Dm W R 

RMSE (%) 28.2 115.4 86.8 19.8 91.7 81.5 
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Fig. 3. Scatter plots of numerical calculations and polynomial fitting as functions of mass-/volume-

weighted mean diameter (Dm) and liquid water content (W) for (a) Zdr, (b) Zh, (c) KDP, (d) rhv, (e) 

L, (f) R/Z, (g) W/Z. The unit for Dm is mm, Zh mm6 m3, KDP km−1,  

 

4.2. Empirical method 

 

The empirical formulas are commonly used for operational purposes due to its intuitiveness 

and simplicity (Grams et al. 2019; Ryzhkov et al. 2022). Both power law and polynomial forms 

were often adopted for rain estimation (Brandes et al. 2002; Cao et al. 2008; Ryzhkov et al.2022). 

In this study, proper formulations of both forms were conducted and evaluated. Starting with the 
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power law form, the exponent of 0,1, 1.5, and 2 of the estimating parameters were utilized as the 

weighting for the estimations (Table 2). The power law forms were derived using the least squares 

fit in known covariance method with appropriate weighting. The weighting is necessary to 

accommodate for less frequent large values of physical parameters and R. Based on the percentage 

bias and RMSE results in Table 2, the exponent between 1 and 1.5 will provide the best results.  

 

Table 2. The training results of different weighting for the power law forms displayed in percentage 

bias and RMSE of the three estimators (Dm, W, and R)  

 0 1 1.5 2 

 Dm W R Dm W R Dm W R Dm W R 

Bias 

(%) 

-0.1 -13.2 -11.4 1.0 3.6 1.6 2.0 6.0 2.1 3.4 6.2 1.1 

RMSE 

(%) 

21.0 80.9 73.4 16.4 44.9 34.1 15.5 42.6 31.1 15.2 44.0 31.3 
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Fig. 4. Scatter plot of different weights for power law form of empirical formula for estimating (a) 

mass-/volume-weighted diameter (Dm), (b) liquid water content (W), and (c) rain rate (R). The unit 

for Dm is mm, W g m−3, and R mm hr−1. The blue star denotes  

 

However, for simplicity, the exponent of 1.5 of the estimators was chosen. The exponents of 1 and 

1.5 most resemble a straight line in one-one plot, with no weighting and exponent of 2 estimating 

too small or large for higher values (Fig. 4). Typically, the estimation results for W and R should 

be similar, because W is the third and R the 3.67th DSD moment. The results in table 2 display 

large difference between the W and R estimation as the exponents increased due to such small 

values of W. The R worked as a good weighting for W estimation reducing more than 5% bias and 

similar RMSE for exponent of 1.5 (Table 3). Thus, the weightings were chosen as R1.5 for all three 

estimators using the power law form.  
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Table 3. The percentage bias and root mean square error (RMSE) for different weights of liquid 

water content (W) and rain rate (R) when estimating W using power law form of empirical formula. 

Each data point is weighted based on the least squares solution of known covariance.   

 W R 

 1 1.5 2 1 1.5 2 

Bias (%) 3.6 6.0 6.2 1.2 0.9 -1.3 

RMSE (%) 44.9 42.6 44.0 43.2 41.0 41.6 

 

Next, the polynomial and power law forms of empirical formulas were tested on the entire 

2DVD dataset. Relative errors were calculated, which are the errors divided by the mean observed 

values, i.e., Eqs. (17)-(18) are divided by the mean observation. The training and testing relative 

RMSE and bias for single polarization Z-R relationship, power law and polynomial forms using 

dual-polarization variables were calculated and recorded in tables 4 and 5. Although the training 

bias for single-polarization was as low as 0.93%, the testing bias was 6.6% exceeding 0.6% using 

dual-polarization variables. The power law was found to perform better than the polynomial for 

W and R estimations when adequate weighting was selected for the power law forms. Lower biases 

were observed, with 0.9%, 2.1% bias for power law compared to 3.2%, 2.3% from polynomial 

forms. The RMSE was about 6% lower in power law for both training and testing W and R 

estimations. For Dm estimation, polynomial form resulted in less error with no bias and 9.6% 

RMSE. The RMSE is still lower using polynomial form, similar bias is observed on testing data. 

The figures 5 and 6 display a scatter plot of power law and polynomial forms for the three 

estimations. Some differences can be found in the regions of higher values, where polynomial form 

tends to overestimate, and power law underestimate. Thus, only power law forms are used 

hereafter.  
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Table 4. The rain estimation results using single polarization variable, dual polarization variables 

in power law and polynomial forms for Dm, W, and R estimations. 

 Single 

polarization 

Dual-polarization Power law (1.5) Dual-polarization polynomial 

 R Dm W R Dm W R 

Bias (%) 0.93 2.0 0.9 2.1 0.0 3.2 2.3 

RMSE 

(%) 

94 15.5 41.0 31.1 9.6 46.9 37.6 

 

Table 5. Same as Table 4 except for testing data. 

 Single 

polarization 

Dual-polarization Power law (1.5) Dual-polarization polynomial 

 R Dm W R Dm W R 

Bias (%) 6.64 0.3 1.1 0.6 0.1 -0.2 0.6 

RMSE 

(%) 

102.6 15.4 47.4 35.4 9.6 49.0 39.1 
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Fig. 5. Scatter plot of the estimations of three estimators, (a) Dm, (b) W, and (c) R using power law 

and polynomial forms of empirical formulas. The blue star denotes the power law, and the green 

plus sign polynomial form. 



23 
 

 

Fig. 6. Same as Fig. 5 but for testing results. 

 

The empirical formulas of physical parameters and R for perfect, adding measurement, and 

with model errors were derived in Table 6. The table 6 indicates that Dm mainly relies on the 

positive exponent of Zdr for estimation. The exponent of Zh is small for all error types of Dm 

estimation, ranging from 0.011 to 0.028. This is because Dm is a size property, which is mainly 

contained in Zdr (Kumjian, 2013). Although Dm is often derived as function of Zdr only, the results 

show that inclusion of Zh provide better performance (not shown). The power law forms for W 

and R display positive exponent for Zh, and negative for Zdr displaying inverse relations. The 

empirical formulas for W and R estimations display similar form of equations because W is third 

and R approximately 3.67th DSD moment. The exponent of Zh is larger for W and R, because those 



24 
 

two contains physical information of the number concentration of droplets (Kumjian, 2013). The 

constant term of Dm is much larger than that of W and R, from 0.81 to 1.01.  

 

Table 6. Empirical formulas of mass-/volume-weighted diameter (Dm), liquid water content (W), 

and rain rate (R) for perfect, adding measurement, and with model errors. All formulas were 

derived using two-dimensional video disdrometer data in Kessler Farm Field Laboratory, 

Oklahoma for the period 2006–2017. 

 Dm W R 

Perfect error 0.90𝑍ℎ
0.011𝑍𝑑𝑟

1.6 0.00039𝑍ℎ
0.95𝑍𝑑𝑟

−4.4 0.0049𝑍ℎ
0.97𝑍𝑑𝑟

−3.7 

Adding measurement 

error 
0.80𝑍ℎ

0.037𝑍𝑑𝑟
1.2 0.001𝑍ℎ

0.79𝑍𝑑𝑟
−2.9 0.0096𝑍ℎ

0.85𝑍𝑑𝑟
−2.5 

With model error 0.98𝑍ℎ
0.046𝑍𝑑𝑟

0.91 0.00059𝑍ℎ
0.83𝑍𝑑𝑟

−3.0 0.0072𝑍ℎ
0.89𝑍𝑑𝑟

−3.04 

 

Empirical formulas are relatively easy to formulate and provides interpretable equations 

between the variables. In addition, power law forms can be derived for different sets of data, 

providing more flexibility compared to the previous physics-based inversion method. In addition, 

some model, measurement errors, and prior probability density function (PDF) are included 

compared to the physics-based method. However, there are several limitations, for optimal results 

the error in the logarithm domain needs to be Gaussian distributed to be optimal. Also, the bias, 

errors and prior can be additionally and more effectively incorporated using statistical or ML 

methods. Notice that the linear relationship between the radar variables and rain rate in logarithmic 

domain does not show accurate results in linear domain (Zhang et al. 2019). Figures 7 and 8 display 

the Dm, W, and R estimation results for training and testing sets in linear and logarithmic domain. 

While linear line is observed in logarithmic domain, the estimated points are dispersed in linear 

domain, especially for the single polarization case, resulting in more errors in linear domain.  
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Fig. 7. Scatter plots of rain estimation using single polarization (only radar reflectivity; a and b) 

and dual polarization (both radar reflectivity and differential reflectivity, c and d) radar variables 

in logarithmic (a and c) and linear domain (b and d). The results were calculated based on the 

training dataset. The units are mm hr−1. 
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Fig. 8. Same as Fig. 7 but for testing data. 
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4.3. Deep Neural network 

 

  

 

Fig. 9. Architecture of the deep neural network for estimating physical parameters and rain rate 

from polarimetric radar variables. The box displays the hyperparameters used in the model. The 

16 different architectures, with batch size of 64, learning rate 0.01, and fixed number of epochs of 

120, and hyperbolic tangent function (Tanh) is used as the activation function in the hidden layers. 

 

Various forms and types of ML and deep learning algorithms has been developed since the 

advent of artificial neural networks in McCulloch and Pitts, 1943. To briefly organize the 

terminologies, artificial intelligence encompasses any computer technology that tries to implement 

human intelligence and includes all traditional ML and deep learning algorithms (Campesato 

2020). ML utilizes data to train the model to educate itself for the output. Deep learning is the most 

specific term, that describes an approach that tries to imitate how the neurons work in the human 

brain (Campesato 2020). DNN is widely used in various fields today, and Reichstein et al. 2019 

claims that deep learning methods are more suitable for solving problems for earth systems 
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compared to the traditional forms of ML. Deep learning contains multiple advantages over 

traditionally used ML algorithms, especially in combining the regression and feature extraction 

steps (Jainesch et al. 2021). While even more advanced deep learning methods incorporating 

statistical and/or more rigorous spatiotemporal information are available, the complexity of the 

model does not always provide improved results (Schultz et al. 2021). In this study, DNN, which 

is rather simple form of deep learning, is used to for both DSD retrieval and QPE purposes. 

The biggest advantage that DNN provides is the ability to include nonlinear terms, and 

flexibility that are often lacking in previous deterministic or statistical approaches (Alzubaidi et al. 

2021). DNN, like other ML, requires set of hyperparameters for optimal results. The process of 

choosing hyperparameters may often be difficult. The structure and design of the DNN model is 

consisted of choosing the model architecture and unifying input and output size and shape and 

choosing the parameters and activation functions (Fig. 9). DNN, including and often specified as 

multilayer perceptron in some literatures (e.g., Chen et al. 2020; Zhao et al. 2021), can be described 

as collection of links consisted of artificial neurons or perceptron. For each input, the output can 

be simply described in form of  

𝑦 = 𝑓(𝑤𝑥 + 𝑏)     (21) 

where y (e.g., rain rate, mass mean diameter, liquid water content) is the output, f the activation 

function, w the assigned weight, x the input variables (e.g., Zh, Zdr, KDP), and b the bias term. While 

different activation functions are tested, the hyperbolic tangent (Tanh) function was used within 

the hidden layers to provide nonlinearity. The Tanh is in the form of a smooth nonlinear function 

and is often used for regression purposes. The rectified linear activation unit (ReLU) function is 

the most commonly used activation function for its efficiency. However, Tanh often provides 
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better results than ReLU for rather simple regression problems (Nwankpa et al. 2018; Szandala, 

2020). Since the problem here is rather simple single point estimation, the Tanh function is used, 

Tanh =  (e𝑥  – e−𝑥) / (e𝑥  +  e−𝑥)   (22) 

where the x is the input (e.g., radar variables) matrix. The R estimation results display more errors 

when ReLU was used (Table 7). For other hyperparameters, the learning rate is set as 0.001 with 

multiplicative factor of learning rate of decay as 0.9 and step size of 5. The total number of epochs 

and batch size was fixed as 120 and 64, respectively. The loss is calculated in the form of mean 

squared error and are converted to RMSE.  

 

Table 7. The R estimation results using linear (ReLU) and non-linear (Tanh) activation functions 

in percentage RMSE. 

 Tanh ReLU 

RMSE (%) 1.04 2.83 

 

The system design consists of standardization of the input data, regression, and output. In the 

standardization step, the inputted radar variables are standardized by removing the mean and 

scaling to the unit variance. Although DNN does not rely heavily on the distribution of input and/or 

output variables, the standardization process results in similar distribution of output variables and 

provide faster and more efficient optimization process. The estimation results display minimal 

difference due to input shape, size, distribution, and format. The regression was conducted for 

radar variables in dB scale, linear scale, and between the logarithm of the radar variables in linear 

units and logarithm of the estimators (Table 8). Here, Zh and Zdr were mainly used as input 

variables in linear units for single point estimations since 2DVD data are utilized. To match with 

the empirical method, the input estimators and radar variables were fitted after taking the logarithm 
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of both sides. While KDP is also often used for QPE purposes, KDP is excluded when using radar 

data because it does not have the same resolution variable compared to the previous two and may 

result in worse results than not including. Rain events are typically fairly distributed throughout 

the year, so the data were inputted in timely order. However, the order of the training data was 

randomized after every epoch (i.e., set of iterations) for efficient computations. The randomization 

process did not make much influence when 2DVD data was used, due to rather less complexity of 

problem with less observational errors. However, large differences were observed when 

randomization was not conducted for training radar data. Total fourteen different model 

architectures were trained with various number of hidden layers consisted of different number of 

nodes. The nodes in each layer were chosen as multiples of three or four, and the number of hidden 

layers vary from three to eight. Using the same algorithm, two different models, one for estimating 

physical parameters and the other rain rate, were trained for each error case. Although Dm and W 

are used together for DSD retrieval, the Dm is the ratio between the fourth and third, and W the 

third DSD moment. Thus, the results may differ when Dm is trained with or without W. Table 9 

displays minimal difference in separating the two estimations when sufficient learning rate and 

epochs are provided.  

 

Table 8. DNN results for Dm, W, and R estimations using PRD in dB and linear units for training 

 Linear Log (linear) dB 

 Dm W R Dm W R Dm W R 

RMSE 0.15 0.07 1.08 0.14 0.07 1.04 0.14 0.06 1.06 

 

Table 9. The Dm estimation results using DNN for training only Dm and training both Dm and W. 

 Only Dm With W 

RMSE (%) 0.14 0.14 
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For the selected hyperparameters and architecture, optimization process has to be adequately 

determined. The Adam algorithm is used as the optimizer (Kingma and Ba, 2015), which 

provides efficient optimization in the backpropagation step. Overall, the calculation of the output 

and optimization of the models can be simply put in four steps. First, the calculation of output y 

from the inputs x going through the hidden layers. Second, the cost function is computed in 

forms of mean squared error (RMSE) for given ground truth physical parameters and rain rate 

from 2DVD data. Third, the Adam algorithm, which is an iterative process utilizing the 

exponential moving average, is used in the backward propagation step to update the parameters 

in form of, 

𝜃𝑡+1 =  𝜃𝑡 −
𝛼

√𝜈�̂�+𝜀
𝑚�̂�    (23) 

where  𝑚�̂� bias-corrected first moment estimate, α the step size, √𝜈�̂� bias-corrected second raw 

moment estimate, 𝜀 small hyperparameter preventing division of 0 (Kingma and Ba, 2015). 

Lastly, the weights are iteratively updated until optimal solution is reached. After the training is 

completed, RMSE of training, validation, and testing datasets for epochs that reduced RMSE 

compared to the previous epoch are saved. The architecture and epoch displaying lowest 

validation RMSE were further selected for testing. 

In addition to the advantageous properties of DNN described previously, it can relatively 

include additional input/output variables, and spatiotemporal information (Alzubaidi et al. 2021). 

In addition, the different weights, and bias function helps find optimal solutions when various 

observational errors exist in the input/output variables. Similar to the empirical formulas in the 

previous section, the DNN were trained for each data containing different observational errors. 

DNN requires precautions when choosing the training data. For example, if the model is trained 

using stratiform rain only, it will have difficulties predicting higher values of estimators for 
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convective rain. This is because convective rain contains both small and large rain rates while light 

rain dominates in stratiform rain. The usage of even the most updated machine learning does not 

always provide better results over conventional statistical methods in all situations and areas of 

research due to ML issues such as data preprocessing, detrending, computational complexity and 

overfitting (Makridakis et al., 2018). In fact, statistical methods showed better results in cases 

when abundant prior information is known about the topic, and input variables were limited and 

established (Rajula et al., 2020). Thus, both the quantity and quality of the training data matters 

heavily for DNN to perform well. As shown in Fig. 10, the nonlinear terms of DNN are evident in 

both linear and logarithmic domain. However, in linear domain (Fig 10a), the DNN’s R estimations 

are curved flat from about 60 mm hr−1 due to lack of representation of high R values in the training 

data. This may imply that DNN may not be suitable for estimating unusual and record-breaking 

rain events. Further representation of larger rain rate values is required. 

  

Fig. 10. The rain estimations from only radar reflectivity using power law and deep neural network 

in (a) linear and (b) logarithmic domains. 
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In order to choose the appropriate hyperparameters and choose/test the appropriate form of 

input data for the DNN, various testing was conducted. The PRD data in dB and linear units, 

different activation functions (Tanh vs. ReLU), and testing and training on two different data 

(stratiform and convective rain) were conducted. Several strengths, weaknesses, and potential for 

improvements of DNN were located. 

1. Influence of input type, shape, size, and form 

In order to locate the nonlinearity of outputs using DNN, the Z-R relationship was initially 

tested. As shown in Fig. 10, the DNN displays nonlinear ends and wavy ends, explicitly 

displaying the nonlinear outputs. In addition, the lack of large values and below 0.1 mm 

hr-1 in the training data resulted in lack of estimations for higher rain rate and near zero 

points. Next, three different input forms of radar variables were conducted, in linear units, 

logarithm of both input variables and estimators, and dB unit radar variables (Table 8). As 

mentioned previously, all three forms did not make a large influence on the Dm, W and/or 

R estimations. The absolute RMSE was 0.15, 0.14,0.14 for Dm, 0.07,0.07,0.06 for W, and 

1.08,1.04,1.06 for R estimations using linear, logarithm of linear, and dB units of input 

radar variables. These results indicate further uses of various distributions of input and 

output variables can be used, showing strengths compared to the previously used statistical 

or deterministic approaches. It is common for the empirical formula to conduct the fitting 

between the logarithmic of the PRD in linear units, and the logarithmic of physical 

parameters or rain rate. However, some statistical methods, such as the Bayesian retrieval 

(Cao et al. 2008) simply uses the PRD in dB units for the retrieval process. Thus, both 

forms of input data are trained and tested. While no significant differences are noticed, the 
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regression was conducted identically as the empirical method, as the logarithm of both 

input and output variables and parameters.  

 

2. Two different training and testing data 

For QPE purposes, stratiform and convective region are often separated. The stratiform 

and convective region display completely different physical mechanisms in the growth of 

clouds resulting in different characteristics. Here, the data was divided into stratiform rain 

and convective rain based on the Bayesian classification (Bukovcic et al. 2014). Based on 

the classification results, the 2DVD data was divided for training and testing data. First, 

DNN trained from convective rain was tested with stratiform rain. While the errors 

increased compared to training with stratiform or combination of convective and stratiform 

rain, the results were fairly accurate with RMSE of 14.9% (Fig. 11). However, when the 

DNN was trained with stratiform rain and tested on convective rain, the results deteriorated 

further, with RMSE of 124.4% (Fig. 11). This is due to the lack of higher rain rate values 

in stratiform rain data. This further emphasizes the need for similar PDF and values of 

training and testing data for the DNN. Similar result is shown in figure 8, due to the 

distribution of the training data, the model lacks the ability to estimate R above 60 and 

below 0.1 mm hr−1.  
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Fig. 11. The rain estimations for convective rain cases trained with convective (top) and stratiform 

(bottom) events. 
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5. Results from two dimensional video disdrometer data 

 

The three methods (physics-based inversion, empirical formula, and DNN) were compared and 

evaluated using the ground truth 2DVD data. The three variables (Dm, W, and R) were estimated 

for two temporal domains (instantaneous and rain-event-average) and three error sources (perfect, 

adding measurement, and with model errors). The perfect error represents that no additional errors 

were added to the parametrized operators, and only fitting errors from each method exist. The 

adding measurement error randomly assigns gaussian error with standard deviation of 1 dBZ for 

ZH and 0.2 dB for ZDR. Model error category utilizes the variables that were numerically integrated 

from 2DVD observed DSD data and numerical integration with T-matrix calculated scattering 

amplitudes for S-band radar; errors come from difference between 2DVD observations and 

physics-based models. The error distributions were illustrated as psuedocolor, scatter, and box 

plots for the three variables, three methods, and three error sources. The relative bias and RMSE 

were also calculated. 

 

5.1 Instantaneous domain 

 

The estimation errors of Dm, W, and R were calculated by substituting 2DVD observed truth 

from the estimates using the physics-based inversion (physics hereafter), empirical formula 

(empirical hereafter), and DNN methods. The figures 12-14 display the psuedocolor plots each for 

the three types of errors, figure 15 and figure 16 the error distributions categorized into the three 

error sources, perfect, adding measurement, and with model errors each using scatter and box plots 

in instantaneous domain. It is noted that numbers of 2DVD testing data vary depending on the 

error sources, 11,577-13,037 minutes. The pseudocolor plots may indirectly provide information 
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regarding the dependence of each estimator on ZH and ZDR. The one-one plot and box plots 

explicitly display the outlying points and/or the bias of each method for the observational errors. 

In the perfect error category (Figs. 12, 15 and 16 a−c), estimation errors of the three variables in 

interquartile range (i.e., between 25% and 75%) are nearly zero for the physics and DNN methods. 

Relatively, errors in the empirical method are meaningfully larger in all three variables; in Dm, the 

interquartile range is distributed in the negative errors; however, outliers are spread in the positive 

errors (Fig. 16 a). In W and R (Figs. 15 and 16 b and c), the interquartile range of the empirical 

method is situated near zero; however, outliers are widely dispersed in the negative errors. This 

larger error in the empirical method is due to the perfect error category utilizing parameterized 

operators derived in polynomial forms, while power law forms are used for the empirical formulas. 

Nevertheless, all methods show small errors for all three estimators in perfect error category. The 

pseudocolor plots display similar distribution for physics based and DNN methods (Fig. 12). 
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Fig. 12. Psuedocolor plots displaying the distribution of the estimation results for Dm, W, and R 

given perfect error case using (a−c) physics-based inversion, (d−f) empirical, and (g−i) DNN 

methods.  

 

In adding measurement errors compared to the perfect error category, estimation errors 

increase for all methods and variables; the maximum error values increase up to 5 times (Figs. 13, 

and 15 and 16 d−f). The interquartile range appears thicker in Dm (Figs. 15 and 16 d) and remain 

thin near zero in W and R for all methods (Figs. 15 and 16 e and f). The outliers are spread in both 

positive and negative errors with small bias. In the with model error category, the range of outliers 

increase in Dm (Fig. 15 and 16 g) and rather decrease in W and R (Figs. 15 and 16 h−i) as compared 

to values in the adding measurement error category. The errors for the three estimators increased, 

displaying some clear differences in performance between the three methods. The physics method 
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deteriorated heavily, the interquartile range of Dm is distributed from −0.4 to −0.6 mm, showing a 

very large negative bias, with 0.2-0.3 g m-3 interquartile range for W, and 2-3 mm hr-1 R with 

positive bias. The empirical method represents an error outlier distributed to the positive value in 

Dm and the negative in W and R. While the range of outliers increased for DNN in both positive 

and negative regions, the interquartile range and the median stayed near zero. Summing up, for the 

three methods, three variables, and three error sources, DNN shows the smallest residuals with 

near-zero bias even in cases inclusion of measurement or model errors. From figures 13 and 14, 

empirical (d-f) and DNN (g−i) utilizes ZH more for Dm estimation compared to perfect error 

category as observational errors were included. For W and R estimations, empirical and DNN 

methods display rather narrow regions of higher estimator values compared to physics-based 

method (a−c), as observational errors were included. 
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Fig. 13. Same as Fig. 12 except for measurement error case.  
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Fig. 14. Same as Fig. 12 except for model error case.  

 

In the same way, the relative bias and RMSE of the parameter estimates for the three variables, 

the three methods, and the three error sources were shown in Table 10. In the table, the error values 

are grouped according to the error sources, (a) perfect error, (b) adding measurement error, and (c) 

with model error. In the perfect error category (Table 10a), using the physics and DNN methods, 

bias and RMSE were found to be less than 1% in all three variables. By contrast, there are large 

errors in the empirical method: the bias increases to 3.6% and the RMSE increases to 17.1% in W. 

As adding measurement errors, bias and RMSE increase significantly for all variables and methods 

(Table 10b). Overall, the errors of the three methods are analogous for Dm. For W and R, however, 

the biases are around 1% in DNN and 5-9% in the other two methods. The RMSE values are so 
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large that the physical method shows about 75%, and the empirical and DNN methods show close 

to 60%. When model errors are added (Table 10c), the errors increase largely in the physics method 

compared to when measurement errors are added but decrease in the empirical and DNN methods 

with substantial reduction in bias. Compared with the empirical method, the DNN method shows 

smaller errors in general. Taken together, the results from Table 10 indicate that the physical 

method shows large errors in the three variables, with DNN displaying smallest bias and RMSE 

especially when adding model errors. Summing up, for the three methods, three variables, and 

three error sources, DNN shows the smallest absolute error value with near-zero bias even in cases 

of observational errors.  

 

Fig. 15. Scatter plot displaying the estimation results of mass-/volume-weighted diameter (Dm), 

liquid water content (W), and rain rate (R) using physics-based inversion (P), empirical formula 

(E), and DNN (D) methods in instantaneous domain.    
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Fig. 16. Box plot of the error distributions of mass-/volume-weighted diameter (Dm), liquid water 

content (W), and rain rate (R) for the physics-based inversion (P), empirical formula (E), and DNN 

(D) methods in instantaneous domain. There are three error sources, (a−c) perfect, (d−f) adding 

measurement, and (g−i) with model errors to instantaneous two-dimensional video disdrometer 

(2DVD) data for the period 2006−2017. Numbers of instantaneous 2DVD data vary depending on 

the error sources, 11,577−13,037 minutes. In each box, lower and upper boundaries denote 

interquartile range (25% and 75%, respectively), line inside box median, lower and upper error 

lines 1.5 interquartile range, and dots outlier values beyond the 1.5 interquartile range. Unit for Dm 

is mm, W g m−2, and R mm hr−1. The y-axis tick marks are adjusted accordingly. 
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Table 10. The bias and RMSE of the error estimation for the three variables (Dm, W, and R) and 

three methods—physics (P), empirical (E), and DNN (D)—in instantaneous domain according to 

the three error sources, (a) perfect error, (b) adding measurement error, and (c) with model error. 

The unit is %. 

 Dm W R 

 P E D P E D P E D 

Bias -0.1 0.5 0.0 0.0 3.6 -0.1 0.0 1.8 -0.1 

RMSE 0.4 4.4 0.1 0.3 17.1 0.9 0.1 11.3 0.9 

 

(b) Adding measurement error 

 Dm W R 

 P E D P E D P E D 

Bias -0.1 -0.7 -0.5 9.1 8.3 -1.1 6.5 5.6 1.2 

RMSE 8.1 8.7 10.1 77.0 59.0 57.3 74.4 60.4 58.5 

 

(c) With model error 

 Dm W R 

 P E D P E D P E D 

Bias -27.3 0.5 -0.4 70.8 1.0 -0.9 37.3 0.8 -0.3 

RMSE 29.1 11.8 9.5 111.4 50.6 35.1 69.1 36.9 25.8 

 

5.2 Event average domain  

 

The previous analysis was repeated by summing each continuous rain period for at least 20 

minutes, including up to ten-minute interruptions, from the instantaneous 2DVD data (Figs. 17 

and 18). There are 127 rain-event-average cases for the analysis 2DVD data. Since rainy periods 

vary from 22 to 950 minutes, there are differences of error distributions between instantaneous and 

rain-event-average domain. For the perfect error category (Figs. 17 and 18 a-c), the physics and 

DNN methods show nearly zero error for the three variables; the empirical method shows minor 

errors. By adding measurement error (Figs. 17 and 18 d-f), the errors slightly increase for the three 

methods and variables. The interquartile ranges of the error are located around zero, and the 

median value is also near zero. Since gaussian error were added to the input variables, the 

averaging process reduced errors significantly when rain-event-averaged values were compared. 
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Overall, it is difficult to determine which of the three methods is superior. In the category where 

model errors are involved, the difference among the three methods is noticeable (Figs. 17 and 18 

g-i). This is evident in the physics method that the median value of the error is 0.45 mm in Dm, -

0.11 g m-3 in W, and -0.12 mm hr-1 in rain rate. In the DNN method, the interquartile range of W 

and R lies near zero, indicating very accurate estimation (Figs. 17 and 18 h and i). 

 

Table 11. Same as Table 10 except for rain-event-average domain. 

(a) Perfect error 

 Dm W R 

 P E D P E D P E D 

Bias (%) -0.1 -0.2 -0.0 -0.0 1.1 -0.1 0.0 0.4 -0.1 

RMSE (%) 0.2 2.9 0.1 0.2 9.7 0.3 0.0 6.2 0.3 

 

(b) Adding measurement error 

 Dm W R 

 P E D P E D P E D 

Bias (%) -0.2 -0.5 -0.7 8.3 5.7 -1.8 6.1 4.1 1.1 

RMSE (%) 1.7 3.6 3.1 17.1 13.5 12.4 15.7 11.6 10.9 

 

(c) With model error 

 Dm W R 

 P E D P E D P E D 

Bias (%) -26.6 0.9 -0.6 59.8 -3.5 -1.6 32.1 -2.4 -1.0 

RMSE (%) 27.0 5.7 4.0 71.7 26.4 14.2 40.5 19.6 10.9 

 

Table 11 displays the relative bias and RMSE estimated for the three variables, methods, and 

error sources using 127 cases in rain-event-average domain. For the perfect error category, the 

physics and DNN methods produce almost perfect results for all three variables, but the empirical 

method produces an error of 9.7% in W and 6.2% in R estimation (Table 11a). For adding 

measurement error category, there is no significant difference between the three methods in Dm 

estimation (Table 11b). DNN method is somewhat superior in estimating W and R, but there is no 

obvious difference between the three methods. When model errors are involved, there is a large 
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difference in bias and RMSE between methods (Table 11c). In the physics method, the absolute 

value of the bias and RMSE error was 20% or more in all three variables. In particular, a large 

error in the bias is noteworthy. In the empirical method, errors decrease significantly compared to 

the physics method, but the RMSE error is 26.4% in W and 19.6% in R estimation. The error is 

greatly reduced in DNN method; as compared to the result of empirical method, it is about half. 

 

Fig. 17. Same as Fig. 15 except for rain-event average domain. Number of rain-event average case 

are 127. 
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Fig. 18. Same as Fig. 16 except for rain-event-average domain. Numbers of rain-event-average 

case are 127. 

 

5.3 Additional variable and information 

 

One advantage of DNN is the ability to include additional input and/or output variables 

relatively easily. Using this ability, additional spatial and/or temporal information can be 

incorporated for the estimations. Here, inclusion of KDP and 20-minute temporal information are 

trained and tested using 2DVD data. As mentioned previously, KDP is widely used for QPE for 
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heavy rain and cases containing hail by combining Zh and KDP in empirical formulas. Including 

KDP lowered RMSE for about 5% when model errors exist, with slightly higher bias compared to 

only using two polarimetric variables (Table 12 and figure 19). Next, the 20-minute temporal 

information were included. The radar variables from 20 minute prior to the corresponding time 

(i.e. t-19 to t for corresponding time t) were used. Incorporating 20-minute prior information 

reduced the RMSE for about 10%, while bias remained similar, or slightly higher compared to 

single point estimations (Table 13 and figure 20). 

 

Table 12. Comparison of R estimations for with model error category including Kdp. 

 Perfect Measurement Model 

Bias (%) 0.1 5.2 -1.9 

RMSE (%) 1.1 58.5 21.9 
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Fig. 19. Scatter plot of rain estimation for perfect (a), measurement error (b), model error (c) 

category after including KDP for rain estimation comparing with the rain estimation for model error 

category without KDP.  

 

Although notable improvements are shown when including additional polarimetric variable, 

KDP, and temporal information of fixed 20-minutes, verification on real radar data are not 

conducted further. This is because KDP are often prone to contamination when using radar data, 

and other polarimetric variables are not appropriate to include in this single-point estimations 

conducted in this research; ρhv is not suitable for DSD retrieval or QPE purposes due to small 

variations in its values, and ΦDP is often used for entire ray of radar data. Note that KDP that is 

numerically integrated from 2DVD observed DSD are often less contaminated by large errors. 
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Thus, these results indicate that inclusion of additional polarimetric variables, if properly used, can 

assist in estimations. While temporal information may also help improve estimation results, the 

DNN model used in this research requires fixed input size, and have difficulties in including 

varying temporal resolution and storm lengths when using real radar data. 

 

Table 13. The results using twenty-minute temporal information for model error category. 

(a) Dm 

 15 20 30 

Bias (%) -1.2 0.1 -0.7 

RMSE (%) 6.2 5.6 5.2 

 

(b) W 

 15 20 30 

Bias (%) -0.8 0.5 -0.5 

RMSE (%) 26.2 24.4 20.1 

 

(c) R 

 15 20 30 

Bias (%) -0.5 1.7 -0.5 

RMSE (%) 18.6 15.8 12.3 
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Fig 20. Scatter plot of Dm, W, and R estimation when fifteen, twenty, and thirty minute temporal 

information are included for model error category. 

 

6. Verification on radar data 

 

As seen in the previous section, the performance of the physics-based inversion retrieval 

degraded greatly when model errors existed. Consequently, the physics method is not used in the 

following analysis. Here, previously developed empirical and DNN methods based on 2DVD data 
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were applied to the real radar data. Then, both empirical and DNN methods were trained and 

evaluated directly using radar observation data. 

 

6.1 Model training with 2DVD data 

 

Aforementioned trained models using 2DVD data were applied to radar data. Due to 

differences in observation data (S-band radar and 2DVD), there is inherent bias between the 

training (2DVD) and testing (radar) data, which varies depending on the distance and elevation 

(Tokay et al. 2020). In order to avoid confusion with the percentage bias calculated as evaluation 

metrics of the estimators, the adjustments between the two different datasets will be written as BC. 

Table 3 displays the estimation results for the three variables with and without BC. For all three 

estimators, large biases are noticed in the estimation results without BC. Here, the BC was -3.0 

dBZ for ZH and 0.12 dB for ZDR with the radar observations being smaller than the 2DVD (Fig. 

21). The RMSE using DNN for before and after BC does not show much difference for all three 

estimators with 19.7,148.3,120.8% without BC, and 22.0,147.9,163.1% with BC for Dm, W, and 

R, respectively (Table 14). The bias reduced significantly, from 20 to 10% for Dm and -48.6, -42.7% 

to -5.2 and -0.2% for W and R estimation, respectively. Comparing with the empirical method, the 

bias for Dm was almost half of that of DNN, with similar RMSE. For W and R estimations, the 

bias and RMSE were similar (Table 14).  The similar or increased RMSE values after BC are 

probably induced from outliers, which are minimally affected from the adjustments of the two 

datasets. In addition, due to the large mean difference, large values from radar observations may 

have increased even more due to the BC, resulting in higher RMSE than prior to BC. Note that 

RMSE is often affected by small number of large errors and may not represent overall deterioration 

or improvement.  
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Fig. 21. Scatter plot comparing the polarimetric variables, ZH and ZDR distribution based on 2DVD 

and radar observations for corresponding days. 

 

Table 14. The bias, root-mean-square-error (RMSE), and bias factor of the error estimation from 

radar data, using 2DVD trained empirical (E) and DNN (D) methods. The three variables (Dm, W, 

and R) without and with bias correction (w/o BC and w/ BC, respectively) are shown. Unit is %. 

 Dm W R 

 w/o BC w/ BC w/o BC w/ BC w/o BC w/ BC 

 E D E D E D E D E D E D 

Bias 

(%) 

4.5 4.3 5.1 10.9 -

44.9 

-

48.6 

-4.3 -5.2 -39.6 -42.7 2.6 -0.2 

RMSE 

(%) 

19.4 19.7 16.4 22.0 84.4 92.1 121.8 148.3 116.4 120.8 147.9 163.1 
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Total 

bias 

factor 

1.0 1.0 1.1 1.1 0.6 0.5 1.0 0.9 0.6 0.6 1.0 1.0 

 

It is noticed that large increase of errors was noticed for both empirical and DNN methods 

when tested on radar data, but the overall bias/total bias factor may be reduced by adjusting the 

mean difference (BC) in the two different datasets. The bias factor for empirical method shows 

similar results with previous publications (Brandes et al. 2002). Large number of outlying points 

were noticed, due to both observational errors and additional physical reasons (Figs 22−24). 

Additional errors in instantaneous domain were expected, due to increased amount of 

observational errors and sources of contamination that often occurs in radar data. Note that the 

mean difference between the ground and radar observation differs heavily based on the distance 

between the two and may require accurate BC for each location of various distances for accurate 

estimations (Tokay et al. 2020). Thus, this implies that training will be required for each distance 

away from the radar with adjusted bias. 
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Fig. 22. The Dm estimation result for 2DVD trained empirical method tested on radar data. 
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Fig. 23. Same as figure 22, excpet for W estimation. 
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Fig. 24. Same as figure 22, except for R estimation. 

 

6.2 Data Augmentation 

 

Estimation results of Dm, W, and R using radar data only were evaluated comparing with the 

ground-truth (2DVD) values; 80% of radar data were used for training, 10% for validation, and 

the remaining 10% for testing. The distribution of Dm, W, and R showed less than 10 points in the 

higher values of estimators, which hinders proper estimation of those values that lack 

representations in the training data (Figs. 25−27). Due to the lack of data points in the radar data 

for training, data augmentation techniques were used. Data augmentation increases the amount of 

data by clustering additional points around the original data with very small changes. In addition 
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to increasing training data, data augmentation also helps form invariant predictions (Cui et al. 

2014). Data augmentation is typically conducted by uniformly adding gaussian distributed random 

noise (Xu et al. 2016). Applications or examples of data augmentation for DSD retrieval or QPE 

purposes using radar data are not abundant, and the following form of equation was used (Kim et 

al. 2020; Mikolajczyk and Grochowski 2018), 

𝑥′ = 𝑥 + 𝐶 × 𝜎 × 𝑁 

where x is the original data, N is the gaussian distributed random number, 𝜎 standard deviation of 

1, and C is a constant term set as 10-7. The constant is set as 10-7 because the C should be small 

enough to not increase any errors in the data, while sufficient amount of change should be included 

to avoid truncation and overfitting issues. Other methods such as modifying class weights to put 

more weighting for the less represented range may also be possible. However, only 26 points exist 

for rain rate over 50 mm hr-1 compared to 4043 points below 5 mm hr-1. Similar ratio was shown 

for the 2DVD dataset, with a lot less points for higher rain rate. This implies that the absolute 

number of data points are also essential in addition to the ratios between ranges. 
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Fig. 25. Bar plot displaying the number of training data for each range of rain rate values. The blue 

bar shows the original data, and the yellow after data augmentation. The rain rate is in units of mm 

hr-1.  
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Fig. 26. Same as figure 25 except for Dm. The unit is in mm. 
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Fig. 27. Same as figure 25 except for W. 

 

6.3 Model training with radar data 

 

The temporal domains are separated into instantaneous (Table 15a) and rain-event-average 

(Table 15b). In instantaneous domain, for bias and RMSE, the DNN method shows much better 

skills than the empirical method (Table 15a). The DNN method indicates practically perfect 

performance for W and R in bias and total bias factor: bias is 0.2% for W and -2.7% for R, and 

total bias factor is 1 for the two variables. The bias and total bias factor might be small as positive 

and negative differences may have compensated each other; however, RMSE is not necessarily. 
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RMSE of Dm is 18.4% in DNN method, which is slightly better than 21.9% in empirical method. 

For W and R, RMSE values are about 100% in DNN method and 130-170% in empirical method. 

 

Table 15. The bias, root-mean-square-error (RMSE), and total bias factor of the error estimation 

for the three variables (Dm, W, and R) from the radar trained and tested using the empirical (E) 

and DNN (D) methods. The values are shown in two temporal domains, (a) instantaneous and (b) 

rain-event-average. Units of bias and RMSE are %. 

(a) Instantaneous domain 

 Dm W R 

 E D E D E D 

Bias (%) 12.3 7.6 56.6 0.2 75.9 −2.7 

RMSE (%) 21.9 18.4 136.5 104.8 168.9 104.4 

Total bias factor 1.1 1.1 1.6 1.0 1.8 1.0 

 

(b) Rain-event-average domain 

 Dm W R 

 E D E D E D 

Bias (%) 14.0 7.5 44.8 −1.3 62.0 −7.0 

RMSE (%) 18.1 10.3 75.8 38.5 98.7 43.0 

Total bias factor 1.1 1.1 1.5 1.0 1.6 0.9 

 

In rain-event-average domain, most extreme outliers disappear as the continuous rain rates are 

combined into the same rain event. The RMSE values decrease significantly in this domain; these 

reduce by half in both three variables and two methods (Table 15b). By contrast, the bias and total 

bias factor are similar or rather increased. Somehow, the total bias factor from the DNN method 

is 1 or close, so it indicates very good performance. Comparing to the previous research, DNN 

reduced rain estimation error from about 15% to less than 5%. Some of the outlying points in the 

2DVD trained empirical (Figs. 22-24) results were removed using radar observation trained DNN 

(Figs. 28-30). However, including the large errors near x and y-axis, additional analysis of outlying 

points seems to be necessary. 
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Fig. 28. Dm estimation result from radar trained DNN model. 
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Fig. 29. Same as figure 28 except for W estimation. 
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Fig. 30. Same as figure 28 except for R estimation. 

 

From the high RMSE values, some evident outliers were noticed. From the estimation results, 

outliers with the largest deviations from ground observations were sorted. In total of 668 points in 

testing data, about 48 points showed large errors, consisting more than half of the total error. The 

outliers that consist of about 10% of the testing data were causing more than 50% of the errors for 

all training methods. It is noted that sources of contamination include but not limited to ground 

clutter and anomalous propagation, hail contamination, inhomogeneous rain, heavy rain, and 

infrequent large drops. The outliers resulted from the prementioned physical reasons do not show 

significant improvements regardless of the methods used. While efforts to remove the influence 
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from ground clutter, hail or other hydrometeors were conducted, the influence from nearby gates 

or rays were difficult to mitigate. Overall, similar results were found for both empirical and DNN 

(Table 16) in terms of outlying points, as implied in such high RMSE. In order for huge 

improvements in DSD retrieval and rain estimation, thorough analysis of the outliers seems to be 

needed. 

 

Table 16. The bias, root-mean-square-error (RMSE), and total bias factor of the error estimation 

for the three variables (Dm, W, and R) from the 2DVD trained the empirical (E) and radar trained 

DNN (D) methods tested on radar data excluding influence of other hydrometeors. The values are 

shown in two temporal domains, (a) instantaneous and (b) rain-event-average. Units of bias and 

RMSE are %. 

(a) Instantaneous domain 

 Dm W R 

 E D E D E D 

Bias (%) 5.1 5.6 −3.1 −2.0 2.4 2.9 

RMSE (%) 16.4 18.6 122.4 95.4 144.7 101.6 

Total bias factor 1.1 1.1 1.0 1.0 1.0 1.0 

 

(b) Rain-event-average domain 

 Dm W R 

 E D E D E D 

Bias (%) 5.4 6.7 −13.7 −13.3 −8.8 −10.2 

RMSE (%) 7.4 8.8 89.1 78.5 93.9 78.3 

Total bias factor 1.1 1.1 0.9 0.9 0.9 0.9 

 

There are 23 rain-event-average cases for the testing period of January - July 2017. Figure 29 

displays testing results of Dm, W, and R using the empirical and DNN methods in the rain-event-

average domain. Overall, the deviations from observations are relatively small in Dm (Fig. 31a) 

and large in W and R (Figs. 31b and c, respectively). When comparing the two methods, except 

for a few cases (e.g., 18th, 22nd, and 23rd cases), DNN method shows better performance than 



67 
 

empirical method. It is noted that a large amount of positive deviation appears in all three variables 

by empirical method in the 15th case. The DNN method yields a value close to the observation. 

 

 

Fig. 31. The event averaged result for Dm, W, and R estimation using the radar data trained DNN 

and empirial formula. 

 

7. Summary and Conclusion 

 

The present study evaluated the radar retrievals of rain microphysics parameters (Dm, W, and 

R) from newly developed DNN model by comparing those from two conventional methods such 

as physics-based inversion and empirical formula. During the period 2006–2017, the ground-truth 

2DVD located at KFFL and radar data obtained from Oklahoma City KTLX radar were analyzed. 
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The 2DVD data was temporally degraded into five-minute intervals to match the temporal 

resolution between the two datasets. Empirical and DNN methods were trained and tested on 

different data; partitioning of training, validation, and testing periods was 70%, 15%, and 15% in 

the 2DVD data and 80%, 10%, and 10% in the radar data, respectively. 

First of all, the training and testing data were taken from the identical 2DVD data. The 

estimation results of Dm, W, and R were calculated for three error types (perfect, adding 

measurement, and with model) in instantaneous temporal domain. The performance of the three 

methods were similar for perfect and adding measurement error categories with relatively low bias. 

However, the estimations deteriorated when model errors were involved. In particular, the bias of 

physics-based inversion method was large for all Dm, W, and R estimation because this method 

cannot resolve non-statistical random errors. Then, the rain events that occurred continuously for 

longer than twenty minutes were sorted into rain-event-average. While overall results from 23 

rain-event-average cases were similar to those from the instantaneous, RMSE reduced 

significantly in the measurement error category; the averaging process compensated for most of 

the gaussian errors contained in the input data.      

Second, the training and testing data were obtained from two different datasets: 2DVD-trained 

empirical and DNN methods were applied to the radar observations for testing. Since two different 

datasets were used for training and testing, bias correction between the two datasets was necessary. 

It was found that radar observations/retrievals have negative biases compared to 2DVD data due 

to additional sources of errors and contamination. Two types of bias correction (i.e., with and 

without) and two categories of adding measurement error (i.e., with and without) in the training 

model were examined. When bias in the two datasets were minimized, errors of R estimation 

decreased 30%. In addition to bias correction, measurement errors were included in an effort to 
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minimize the impact of extra errors and contamination in radar data. With this gaussian error in 

the training model, less sensitivity to radar-induced errors were found. This extra error inclusion 

reduced about 10% bias for Dm estimation using DNN. Similar results were shown for rain-event-

average analysis. 

Third, both training and testing were conducted on radar observation data for empirical and 

DNN methods. Disdrometer variables are observed periodically with much smaller spatiotemporal 

volume compared to radar. In addition, the bias between the 2DVD and radar varies significantly 

based on the distance between the two observation locations (Tokay et al. 2020). Thus, direct 

training from radar data may be helpful. About 50,000 minutes and 3,000 minutes of radar data 

were used for training and testing, respectively. For instantaneous retrieval and estimation, the bias 

for DNN method was 7.6, -0.2, and -2.7% for Dm, W, and R, respectively. The bias for empirical 

method was higher with 12.3, 56.6, 75.9, for Dm, W, and R, respectively. Similar results were also 

shown for rain-event-average computations. Summing up, DNN method may provide about 70% 

and 50% improvements for R estimation and DSD retrieval, respectively, when radar data are 

utilized for both training and testing. 

Since the DNN algorithm includes nonlinear terms, which were not included in the empirical 

method, comprehensive representations between the estimators and radar variables are anticipated. 

This study represents the superiority of DNN in radar-retrievals of rain rate and physical 

parameters. However, there are several weaknesses and potential for future improvements in the 

present analysis. While impact of statistical and random errors was reduced using DNN, much of 

the outliers occurring from physical reasons, such as ground clutter, hail contamination, 

inhomogeneous rain, and heavy rain, requires additional improvements. Even after the removal of 

anomalous propagation, hail clutter, and influence of other hydrometeors, large errors existed. 
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While the source and reason of errors in DSD retrieval and QPE are relatively well known, there 

had been lack of tools to incorporate multiple polarimetric and/or meteorological signatures to 

solve those issues. The complexity of statistical methods increases rapidly when number of input 

and output variables and parameters increase. DNN is one of the simplest forms of deep learning 

available at present, with more complex models such as long short-term memory network and 

convolutional neural network are available. It is noted that simple forms often showed better 

performance compared to complicated ones (Schultz et al. 2021), thus verification of usage of 

neural networks for DSD retrieval and QPE were required. In this study, neural networks showed 

the potential to provide accurate and less biased retrieval and estimations. Next, polarimetric and 

meteorological signatures that may be included in the deep learning model should be located. Deep 

learning is most useful to solve complex problems that are often hard to from using empirical or 

statistical methods. Thus, integrating the polarimetric signatures and other meteorological 

variables from vertical profiles and/or spatiotemporal information of the entire storm motion may 

enhance the retrievals. In addition, DSD retrieval and QPE should be further improved to include 

different types of hydrometeors, and/or various mixture of hydrometeors. DNN also has critical 

weakness in its inability to exactly describe why and how the errors are decreased compared to the 

physics-based inversion retrieval or empirical formulas. Newly developed AI algorithms may be 

used to deliver some interpretability in its hidden layers. The inclusion of observational errors, and 

incorporations of additional phases of hydrometeors using further advanced machine learning 

techniques may improve rain estimation using ground-based radars in remote areas, our 

understanding of cloud microphysics and radiative properties, and weather forecasts. More efforts 

to understand the results scientifically are required. 



71 
 

References 

Alimissis, A., Philippopoulos, K., Tzanis, C. G., & Deligiorgi, D. (2018). Spatial estimation of 

urban air pollution with the use of artificial neural network models. Atmospheric 

Environment, 191, 205–213. doi:10.1016/j.atmosenv.2018.07.058 

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., et al. (2021). 

Review of Deep Learning: Concepts, CNN Architectures, challenges, applications, Future 

Directions. Journal of Big Data, 8(1). doi:10.1186/s40537-021-00444-8  

Brandes, E. A., Ryzhkov, A. V., & Zrnić Dus̆an S. (2001). An evaluation of radar rainfall 

estimates from specific differential phase. Journal of Atmospheric and Oceanic 

Technology, 18(3), 363–375. doi:10.1175/1520-0426(2001)018<0363:aeorre>2.0.co;2  

Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a 

polarimetric radar in a subtropical environment. Journal of Applied Meteorology, 41, 674–

685, doi:10.1175/1520-0450(2002)041<0674:eirewa>2.0.co;2.  

Bukovčić, P., D. Zrnić, and G. Zhang, 2015: Convective–stratiform separation using video 

disdrometer observations in Central Oklahoma – the Bayesian approach. Atmospheric 

Research, 155, 176–191, doi:10.1016/j.atmosres.2014.12.002.  

Campesato, O. (2020). Artificial Intelligence, Machine Learning, and Deep Learning. Dulles, 

VA: Mercury Learning and Information.  

Campos, E. and I. Zawadzki. 2000. Instrument uncertainties in Z–R relations. J. Appl. 

Meteor 39:1088–1102. 

Cao, Q., G. Zhang, E. A. Brandes, and T. J. Schuur, 2010: Polarimetric radar rain estimation 

through retrieval of drop size distribution using a Bayesian approach. Journal of Applied 

Meteorology and Climatology, 49, 973–990, doi:10.1175/2009jamc2227.1.  

Cao, Q., G. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, and K. Ikeda, 2008: Analysis of video 

disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. 

Journal of Applied Meteorology and Climatology, 47, 2238–2255, 

doi:10.1175/2008jamc1732.1.  

Chen, H., V. Chandrasekar, and R. Cifelli, 2019: A deep learning approach to dual-polarization 

radar rainfall estimation. 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), 

doi:10.23919/ursiap-rasc.2019.8738337.  

Chen, H., Chandrasekar, V., Cifelli, R., & Xie, P. (2020). A machine learning system for 

precipitation estimation using satellite and Ground Radar Network Observations. IEEE 

Transactions on Geoscience and Remote Sensing, 58(2), 982–994. 

doi:10.1109/tgrs.2019.2942280  



72 
 

Cui, X., Goel, V., & Kingsbury, B. (2014). Data Augmentation for Deep Neural Network 

Acoustic modeling. 2014 IEEE International Conference on Acoustics, Speech and Signal 

Processing (ICASSP). doi:10.1109/icassp.2014.6854671  

Danielsen, E. F., Bleck, R., & Morris, D. A. (1972). Hail growth by stochastic collection in a 

cumulus model. Journal of the Atmospheric Sciences, 29(1), 135–155. doi:10.1175/1520-

0469(1972)029<0135:hgbsci>2.0.co;2  
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