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Abstract

Machine learning, deep learning, and other artificial intelligence (AI) meth-

ods are becoming popular tools within the meteorological research community.

However, despite the breadth of promising AI research and its increasing adop-

tion within operational agencies, expert forecasters are often hesitant to fully

embrace this relatively new technology. Operational forecasters have a prac-

ticed, expert insight into weather analysis and forecasting but typically lack the

time, resources, or guidance for formal research and development due to the

daily demands of their jobs. Conversely, many researchers have the resources,

theoretical knowledge, and formal experience to solve complex meteorological

challenges but may lack a full understanding of operation procedures, needs,

requirements, and authority necessary to effectively bridge the research to op-

erations (R2O) gap. To address these challenges and attempt to improve the

R2O success of AI-derived products, this research investigates how operational

forecasters evaluate new forecast guidance and how their perspectives about the

R2O process differ from those of the research community. The results from these

investigations are then used to derive a collaborative co-production framework

intended to optimize the R2O process while improving researcher-forecaster

communication throughout the development cycle. Finally, the benefit of this

collaborative co-production framework is demonstrated by applying modern AI

techniques in tandem with the expert knowledge of Storm Prediction Center

forecasters to develop two new forecast products designed to predict lightning

hazards and emulate county-based Severe Thunderstorm and Tornado Watches

that dynamically evolve with the predicted time and location of the severe

weather threat.

xiv



Chapter 1

Introduction

The phrase “research to operations” (R2O) is widely used within the meteoro-

logical community to describe the transfer of new ideas and technologies into an

operational working environment. Within the academic and public research sec-

tors, this often means the transition of a new product, algorithm, or technique

from a prototype or experimental research phase into a form that is routinely

used and supported operationally by the National Oceanic and Atmospheric

Administration (NOAA) or one of its line offices such as the National Weather

Service (NWS). To aid in R2O transitions, NOAA has implemented a hierarchy

of nine Readiness Levels (RLs; NOAA 2022) intended to provide a consistent,

systematic assessment of the maturity of ongoing research and development. In

this hierarchy, RL 1 represents a project in the basic or theoretical research

stage, while a project in RL 9 has been deployed and is used routinely in oper-

ations. These RLs often serve as a standardized project template for those in

the research community and provide iterative milestones for funding agencies

to assess development progress.

The benefits of collaboration between the research and operational com-

munities during the R2O process have long been documented in the scientific

literature. Operational forecasters have a practiced, expert insight into weather

analysis and forecasting but typically lack the time, resources, or guidance for

formal research and development (Doswell 1986; Auciello and Lavoie 1993; Kain
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et al. 2003). Conversely, many researchers have the resources, theoretical knowl-

edge, and formal experience to solve complex meteorological challenges but lack

an understanding of operation procedures, needs, requirements, and authority

necessary to effectively bridge the R2O gap (Auciello and Lavoie 1993; Ser-

afin et al. 2002). Sustained collaboration between researchers and operational

forecasters, then, serves as the most viable strategy to bridge this gap while

offering the potential to further a better understanding and improved predic-

tion of atmospheric processes (Kain et al. 2003) via ongoing multi-disciplinary

knowledge transfer between the research and operational communities. How-

ever, despite these apparent benefits, the R2O process is often perceived to

be a unidirectional interface between the research and operational communi-

ties. For example, researchers abiding by the NOAA RL milestones may not

necessarily interact with their intended end users and stakeholders (e.g., op-

erational forecasters) until late in the development process. Indeed, the first

milestone that explicitly requires interaction with potential end users is RL 6,

at which point the project is expected to demonstrate a functioning prototype

in a formal testbed or other relevant environment. This structure potentially

disincentivizes two-way communication between researchers and their end users

during earlier stages of development and unintentionally limits opportunity for

collaboration. Such lack of collaboration during the development process may

come as a detriment to the value, usability, and adoption of the final product

in an operational environment (Doswell et al. 1981; Auciello and Lavoie 1993;

Serafin et al. 2002; Kain et al. 2003).

Deal and Hoffman (2010a) chronicle the many challenges facing researchers

and operational forecasters as they navigate the R2O process. New technolo-

gies and products proposed for operational implementation must derive from the

2



forefront of modern research and be relevant to the immediate needs of the end

users. However, development, testing, and buy-in by operational agencies can

take years - sometimes decades - to complete, by which point the new technology

may no longer be new or relevant. To further complicate matters, stakeholder

needs and requirements are vulnerable to change throughout the development

process as the operational context, expertise, and managerial priorities evolve.

These challenges can leave researchers trying to meet a moving target that ul-

timately increases the complexity, time, and cost of development. Frese and

Sauter (2003) and Hoffman et al. (2009) identify several elements common to

successful R2O transitions, including accommodation to changing requirements,

management buy-in, and communication among executives, managers, develop-

ers, suppliers, and end users. While these recommendations are valuable as

general guidelines, Deal and Hoffman (2010a) argue that unstructured commu-

nication alone may not be sufficient to completely solve the challenges inherent

with designing products for operations. Researchers should instead actively en-

gage their end users in detailed collaboration to learn their operational needs,

desires, and procedures. Additionally, end users who more actively engage in the

development process may be more aware of the assumptions and limitations of

the new tools and technologies being produced. Per Deal and Hoffman (2010a),

successful R2O transitions “tend to be those in which the technology developers

had a deep understanding of the nature of the user’s work.” To formalize this

collaborative process, Hoffman et al. (2010) and Deal and Hoffman (2010b) in-

troduce and demonstrate a cyclic model for collaborative co-development which

they call the Practitioner’s Cycles. This model and the concept of collaborative

co-development is discussed further in Chapter 4.
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The consequences of limited researcher-forecaster collaboration are perhaps

most apparent in the meteorology community’s recent advances in machine

learning research. The ever-increasing volume and quality of data from high-

resolution numerical weather prediction (NWP) models, ground-based observa-

tional systems, and Earth-orbiting satellites has made the field of meteorology

an ideal target for the application of artificial intelligence research (McGovern

et al. 2017). Indeed, machine learning (ML), deep learning (DL), and other

artificial intelligence (AI) methods are becoming more popular tools among the

meteorological research community. There are numerous studies in the liter-

ature (e.g., Gagne et al. 2014, 2017; Lagerquist et al. 2017, 2019; McGovern

et al. 2017; Burke et al. 2020; Hill et al. 2020; Loken et al. 2020; Zhou et al.

2020; Shield and Houston 2022; van Straaten et al. 2022; Yang et al. 2022)

that showcase the potential of AI techniques for nowcasting and forecasting

severe and high-impact weather. Others have developed ML and DL meth-

ods to automate the detection of meteorological features such as synoptic-scale

fronts (Lagerquist et al. 2019; Justin et al. 2022; Niebler et al. 2022), convection

(Haberlie and Ashley 2018a,b; Cintineo et al. 2020b), atmospheric rivers (Chap-

man et al. 2019; Muszynski et al. 2019), and extratropical cyclones (Kumler-

Bonfanti et al. 2020) from ground- and space-based observational systems. As

of this writing, the number of formal meteorology publications that mention

machine learning, deep learning, or artificial intelligence is increasing at a rate

greater than that of most traditional meteorology topics. In particular, there

has been recent exponential growth in the number of papers utilizing tree-based

or (convolutional) neural network ML techniques, and this trend is expected to

continue for the foreseeable future (Fig. 1.1; Chase et al. 2022).
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Figure 1.1: From Chase et al. (2022), their Fig. 1. “Clarivate Web of Science

abstract results for machine learning and severe weather topics in meteorology

and atmospheric sciences. Machine learning keywords searched were: linear

regression, logistic regression, decision trees, random forest, gradient boosted

trees, support vector machines, k-means, knearest, empirical orthogonal func-

tions, principal component analysis and self organizing maps. Severe weather

keywords searched were: tornadoes, hail, hurricanes and tropical cyclones. (a)

Number of publications per year in the Meteorology/Atmospheric Science cat-

egory and in the machine learning and severe weather subsets. (b) Number

of machine learning and severe weather publications normalized by the total

number of Meteorology/Atmospheric Science publications.”
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This saturation of AI applications within modern meteorological research

has not gone unnoticed by the public-sector operational community. In 2020,

NOAA published the NOAA Artificial Intelligence Strategy (NOAA 2020) which

lays out a series of specific goals to dramatically expand the application of AI in

every NOAA mission area. The strategy proposes to accomplish this by improv-

ing the efficiency, effectiveness, and coordination of AI development and usage

across the agency. As part of this strategy, a variety of experimental ML-derived

nowcast and forecast products have been evaluated by NWS forecasters within

testbed settings (e.g., Calhoun et al. 2021; Clark et al. 2021). Many of these

products, such as Hill et al. (2020), Loken et al. (2020), and Schumacher et al.

(2021), have even progressed beyond testbed evaluation and are now being ex-

perimentally assessed and operationally implemented at NWS weather forecast

offices (WFOs) and national centers. However, despite NOAA’s recent emphasis

on AI, the breadth of promising AI research, and its increasing adoption within

operational agencies, expert forecasters are often hesitant to fully embrace this

relatively new technology (McGovern et al. 2019, 2022).

The apparent difficulty ML research has navigating the R2O process is often

attributed to a perceived inherent distrust that forecasters and other domain

experts have of “black boxes” (Ding 2018; Sejnowski 2018; McGovern et al.

2019, 2020). Most modern ML models learn to solve classification or regression

tasks by training and optimizing a potentially complex combination of mathe-

matical weights, thresholds, and nonlinear cost functions. As such, it is often

difficult to determine how these models reach a solution from their given in-

put or if the relationships learned by the models are physically realistic. This

general lack of transparency and interpretability has earned ML models the
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dubious association with seemingly magic “black boxes.” Anecdotal observa-

tions, informal conversations, and formal research (e.g., Hoffman et al. 2013,

2017; Harrison 2018; Karstens et al. 2018) support the notion that operational

forecasters are hesitant to trust output from an automated model or algorithm

that they don’t understand or lack familiarity with. As a result, there has been

a recent surge of formal study within the computer science and meteorological

research communities to attempt to make the inner workings of ML more trans-

parent and physically interpretable (e.g., Herman and Schumacher 2016; Olah

et al. 2017; Lipton 2018; McGovern et al. 2019, 2020; Molnar 2020; Toms et al.

2020). Although these efforts have been shown to generally improve forecaster

trust and may help ease the transition into operations (Cains et al. 2022), the

interpretation and explanation of ML products typically occurs near the end of

the development cycle when training potential end users. These methods alone

do not necessarily increase communication or collaboration between researchers

and forecasters during the development process, but merely improve the fore-

casters’ understanding of the product they are being asked to use. As such, the

application of ML interpretation during the development cycle, while important,

might be indicative of symptoms of a larger problem within the meteorological

research community.

Consider what it truly means for ML models to be regarded as “black boxes”

and how that perception compares to more traditional products or “anchors”

utilized within the operational community. Do all operational forecasters un-

derstand the inner workings of NWP used in everyday forecasting procedures?

Are they familiar with the data assimilation techniques, initial and bound-

ary conditions, microphysics schemes, and dynamical cores of every member

of the convection-allowing ensembles that help guide their short-term forecast
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decisions? In the context of public-sector operations, nonlinear physical and

statistical models of any type are difficult to interpret and could be consid-

ered “black boxes” in the same way as ML models (Herman and Schumacher

2016; Boukabara et al. 2019). This discrepancy warrants deeper investigation

to understand the dilemma impeding ML success in the R2O process. Does the

operational community truly evaluate ML products with more scrutiny, or are

there deeper concerns perhaps resulting from insufficient researcher-forecaster

collaboration during the development cycle?

I hypothesize that many AI-driven products struggle to transition to the

operational sector at least in part because the new products fail to sufficiently

meet the needs and requirements of their intended end users. Furthermore, I

hypothesize that actively increasing communication and collaboration between

researchers and forecasters will improve the R2O success of new ML technolo-

gies. To assess these hypotheses, this dissertation investigates how operational

forecasters evaluate ML guidance and how their perspectives about the R2O pro-

cess differ from those of the research community (Chapter 3). The results from

this investigation are then used to derive a collaborative co-production frame-

work based on Hoffman et al. (2010)’s Practitioner’s Cycles to optimize the

R2O process while improving researcher-forecaster communication throughout

the development process (Chapter 4). The potential benefit of this collabora-

tive co-production is revealed by detailing the design and successful operational

implementation of a new linear regression lightning forecast product at the

National Weather Service’s Storm Prediction Center (SPC; Chapter 5). Ad-

ditionally, collaborative co-production principles are demonstrated by applying

modern ML techniques in tandem with the expert domain knowledge of SPC

forecasters to develop a new forecast product designed to emulate county-based

8



Severe Thunderstorm and Tornado Watches that dynamically evolve with the

predicted time and location of the severe weather threat (Chapter 6). Finally,

this new watch forecast guidance was presented and tested during the 2022 Haz-

ardous Weather Testbed Spring Forecasting Experiment, and the results from

that experiment are provided (Chapter 7).

9



Chapter 2

Background

The research presented in this dissertation largely focuses on the collabora-

tive application of machine learning techniques to solve complex meteorological

problems. However, ML is a broad field of study and includes a large variety of

methods such as random forests, convolutional neural networks, and other AI

techniques. To simplify future discussion, this chapter introduces the basic con-

cepts of ML, the ML methods utilized in this dissertation, and common metrics

for evaluating ML performance.

2.1 Machine Learning Overview

The origins of ML can be traced back to the 1950s when Arthur Samuel formally

defined ML as a field of study that provides learning capability to computers

without being explicitly programmed (Samuel 1959; Alzubi et al. 2018). At

the fundamental level, these computational algorithms are designed to emulate

or surpass human intelligence by extracting information from large, multidi-

mensional datasets, using that information to derive complex relationships, and

generalizing those relationships to unseen tasks. ML modeling techniques have

proven particularly successful in environmental and atmospheric sciences where

the complexity of data often does not align with the idealized assumptions re-

quired by more traditional statistical methods (Breiman 2001b).
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Most modern ML algorithms fall under the category of supervised or unsu-

pervised learning. Supervised learning methods rely on the user to manually

oversee many aspects of the learning process, including feature selection, train-

ing criteria, and verification methods (Russell and Norvig 2010; Mercer et al.

2021). These types of algorithms are typically supplied with a collection of

curated input features that correspond to a predefined set of labels or solu-

tions. Supervised models then learn and optimize relationships between the

input features and solutions to maximize predictive performance on an inde-

pendent dataset. Conversely, unsupervised learning methods are not provided

with a predefined set of solutions, but rather learn patterns in the training data

to estimate their own solutions. Self-organizing maps (Nowotarski and Jensen

2013), k-means clustering (Wilks 2011), and kernel principal component analy-

sis (Schölkopf et al. 1998) are a few examples of common unsupervised learning

algorithms. The research presented in this dissertation primarily utilizes super-

vised learning techniques, and so the following discussion will omit unsupervised

methods.

Supervised ML techniques can be further subdivided into classification and

regression models. As the name suggests, classification models are designed to

estimate the probabilities that a given sample belongs to one or more prede-

fined classes. In scenarios where a deterministic solution is desired, classification

models can be optimized or tuned to convert these probabilities into a single

class prediction. Regression models, on the other hand, generally output solu-

tions that fall within a continuous range of numerical values. For example, a

classification model might be trained to predict if it is going to rain (a binary

yes/no solution) while a regression model could be used to predict how much

rain will fall (a continuous range of values). Many supervised ML algorithms
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can be applied to both regression and classification tasks (Géron 2017), includ-

ing linear regression, random forest, and gradient boosting models which are

applied later in this dissertation. These ML algorithms are briefly described in

the following subsections.

2.1.1 Linear Regression

Linear regression is a method that falls at the intersection of traditional statis-

tical analysis and modern ML modeling. The most basic form of linear regres-

sion defines the dependence of a predictand to one or more predictor variables

(Maulud and Abdulazeez 2020) via the equation

ŷ =
n∑

i=0

wixi (2.1)

where wi is a learned weight, xi is a predictor variable, and n is the total number

of predictor variables. The weights wi are typically fit to minimize the residual

summed square error (RSS) loss function

RSS =
N∑
j=0

(yj − ŷj)
2. (2.2)

Here, yj is the true value, ŷj is the predicted value, and N is the number of

samples in the dataset. Basic linear regression models have the advantage of

simplicity and computational efficiency, meaning that they are fast to train and

easily interpretable. However, they can also be sensitive to outliers or noise

in the dataset which can cause the models to overfit or fail to converge on a

solution. These limitations of linear regression can be addressed in part by

applying techniques to regulate the loss function such that the range of possible

coefficients is constrained. Common regulation methods include ridge regression

(Hoerl and Kennard 1970), Lasso regression (Tibshirani 1996), and elastic nets

(Zou and Hastie 2005).
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2.1.2 Random Forests

A random forest (Breiman 2001a) is a collection of decision trees (Breiman 1984)

that work as an ensemble to estimate the solution to a regression or classification

task. Each decision tree in a random forest is trained on a random subset of

the training dataset sampled by bootstrapping with replacement. Only a small

random subset of the total training variables are evaluated for splitting at each

node within each tree, and this forces tree nodes to split along the best variable

in the subset rather than along the best overall variable. As such, some trees

in the forest are grown from suboptimal features within a dataset, resulting in

greater tree diversity across the ensemble. Once a sufficient number of trees have

been grown from the input data, the final prediction from the forest is the mean

of the predicted values from all individual trees. By averaging the ensemble

results, random forests are able to produce a smoother range of predicted values

with lower variance than a single decision tree (Strobl et al. 2008). Additionally,

random forests have been shown to exhibit a lower model bias compared to other

tree-building techniques (Géron 2017).

2.1.3 Gradient Boosted Forests

Boosting within ML is commonly defined as any ensemble method that combines

multiple weak learners to produce a strong learner (Géron 2017). In most

cases, boosting methods iteratively train a model such that each subsequent

iteration attempts to correct the errors of the previous version (Freund et al.

1996; Freund and Schapire 1997; Drucker 1997). Gradient boosting (Breiman

1997; Friedman 2001, 2002) applies this technique by first building and training

a weak decision tree on the training dataset to solve a regression or classification

13



task. The gradient boosting algorithm then sequentially adds new predictors to

the ensemble such that each new predictor is trained on the residual errors of

the previous iteration (Géron 2017). Once a specified number of predictors have

been trained, the final prediction of the gradient boosting model is determined

by taking the sum of the predictions from all predictors in the ensemble. The

iterative nature of the training process utilized by gradient boosting algorithms

means that only one tree within the ensemble can be grown at a time. As

a result, gradient boosting is often slower to train than other prominent ML

algorithms. However, studies such as McGovern et al. (2017) and Gagne et al.

(2009) have suggested that gradient boosting models may be more robust than

other tree-based ML methods and better able to generalize to noisy data.

2.1.4 Isotonic Regression

When attempting to solve classification tasks, ML algorithms output probabil-

ities that a given sample belongs to one or more predefined classes. However,

the predictions produced by classification models are often overconfident and

underdispersive, resulting in probability distributions biased towards the ex-

tremes of 0 and 1. To achieve probabilities that are more statistically reliable,

a calibration technique known as isotonic regression can be applied. Isotonic

regression (Dykstra and Robertson 1982) is a statistical inference (Barlow 1972)

that finds a non-decreasing approximation of a function while minimizing the

mean squared error of the training data. Isotonic regressions do not make any

assumptions about the linearity of the target function, but do require that

each point of the function be greater than or equal to the previous point (non-

decreasing). In practice, isotonic regressions are typically trained on the output
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of another ML classification and applied as a calibration so that the predicted

class probabilities more closely match the true observed frequency.

2.2 Model Evaluation and Verification

When designing a new ML model (or any forecast product) for operational

implementation, it is typically desirable, if not crucial, to supply potential end

users with comparative metrics that describe the product’s performance or good-

ness. Murphy (1993) explains that the goodness of a forecast is dependent on

that forecast’s consistency, quality, and value. In the context of automated

algorithms and ML-derived products, consistency generally refers to how well

a forecast aligns with the prior knowledge and experience of the expert user.

This consistency, or lack thereof, is what often associates ML products with

“black boxes” as described in Chapter 1. If an algorithm or model is difficult to

interpret and the underlying logic that produces the output is opaque, domain

end users cannot know if the predictions are consistent with their own expertise

(Chase et al. 2022).

A forecast is said to have value if it provides a benefit to the user, and a

forecast’s quality can be measured by how well the prediction corresponds to

observations (Murphy 1993). It is important to note, however, that forecast

quality is not the same as forecast value. Consider a case in which an NWP

model predicts heavy rain at a particular location. In this example, heavy rain

does indeed occur within the region but not at the exact location predicted by

the model. By many metrics, this forecast would be considered of poor quality;

however, the prediction could still be valuable to a forecaster attempting to

issue a regional rainfall forecast. The subjective nature of consistency and value
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make these aspects of forecast goodness difficult to evaluate with generalizable

metrics. As such, forecast quality is often the primary standard used to evaluate,

verify, and compare modern forecast products. The importance and practical

implications of product verification will be discussed further in Chapter 3, but

first it is necessary to understand how forecast quality is evaluated and what

metrics are appropriate for different applications.

According to Murphy (1993) and Wilks (2011), there are nine primary as-

pects of a forecast that contribute to its quality. Those attributes are:

1. Bias - the correspondence between the mean forecast and mean observa-

tion. In other words, bias is the average ratio of the number of forecast

events to the number of observed events. A forecast with more predicted

events than observations is known as an overforecast while a forecast with

fewer predicted events than observations is an underforecast.

2. Association - the strength of the linear relationship between forecast and

observation pairs. Association is often equivalent to the linear correlation

coefficient between forecasts and observations.

3. Accuracy - the level of agreement between forecast and observation pairs,

or how “correct” a forecast is. Disagreement between forecast and obser-

vation pairs is the forecast error and is inversely proportional to accuracy.

4. Skill - the accuracy of a forecast relative to the accuracy of a standard

reference. The standard reference is often an unskilled forecast derived

from random chance or climatology.
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5. Reliability - the average agreement between conditional mean observa-

tions and the conditioning forecasts. Reliability is often determined by

stratifying forecasts into different ranges or categories.

6. Resolution - the difference between the conditional mean observation and

unconditional mean observation averaged across all forecasts. A forecast

has resolution if it is able to sort observed events into frequency distribu-

tions that are different from each other.

7. Sharpness - the variability of the forecast distribution. For example, a

smoothed climatology would typically exhibit low forecast variability and

thus would have low sharpness.

8. Discrimination - the ability of the forecast to discriminate between differ-

ent types of observations.

9. Uncertainty - the variability of the observation distribution.

These attributes together represent the joint probability distribution between

forecasts and observations and provide a coherent framework for the verifica-

tion process. Readers are referred to Murphy (1993) for more detail about the

probability distribution subsets represented by each aspect of forecast quality.

A comprehensive depiction of the nine attributes of forecast quality requires

the application of multiple metrics and evaluation techniques. In many in-

stances, a given forecast can be reduced to a dichotomous prediction of whether

or not an event will occur. For example, in non-deterministic frameworks this

might mean selecting one or more thresholds to discriminate between “yes” and

“no” predictions. The quality of discrete binary forecasts can then be evaluated
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Observed

Yes No

Yes True Positive (TP) False Positive (FP)

No False Negative (FN) True Negative (TN)

Table 2.1: Example of a binary contingency table.

using a contingency table (Table 2.1; Wilks 2011), a 2x2 matrix that repre-

sents all possible forecast/observation combinations within the joint probability

distribution. Attributes of the contingency table consist of true positives (TP),

false positives (FP), false negatives (FN), and true negatives (TN). These values

can be combined into a variety of metrics that together present a comprehensive

depiction of the forecast quality. Common verification metrics derived from a

binary contingency table are provided by equations 2.3–2.9 in Table 2.2.

Each score in Table 2.2 provides critical information about an aspect of

forecast performance, but they can also be misleading when used incorrectly.

For example, accuracy depicts the total fraction of correct predictions, where a

higher accuracy equates to a more correct forecast. However, most forecast ap-

plications within the atmospheric sciences focus on predicting rare, high-impact

events. As such, there is often a large class imbalance between the target rare

event and the much more common null event. Because accuracy only depicts

the total number of correct forecasts, a model or algorithm can achieve a high

accuracy simply by always predicting the majority (null) class. Similarly, prob-

ability of detection (POD) can be artificially improved by predicting more “yes”

events, while false alarm ratio (FAR) and success ratio (SR) can be improved

18



Accuracy TP+TN
TP+FN+TN+FP

(2.3)

Probability of Detection (POD) TP
TP+FN

(2.4)

Probability of False Detection (POFD) FP
TN+FP

(2.5)

False Alarm Ratio (FAR) FP
TP+FP

(2.6)

Success Ratio (SR) TP
TP+FP

(2.7)

Bias TP+FP
TP+FN

(2.8)

Critical Success Index (CSI) TP
TP+FP+FN

(2.9)

Table 2.2: Common verification metrics derived from a binary contingency table.

with more “no” events. Therefore, it is important to consider all metrics to-

gether when evaluating the quality of a forecast. Critical success index (CSI)

(Gilbert 1884) is often considered a better single-metric measure of a forecast’s

performance as it combines information about TP, FP, and FN into a composite

score that equally penalizes misses and false alarms. However, CSI by itself does

not distinguish the source of forecast error and is sensitive to the climatological

frequency of the target event.

Additional information about a forecast’s quality can be derived from com-

binations of the above metrics. For instance, a probabilistic forecast’s ability

to discriminate between two alternative outcomes can be evaluated by plot-

ting the relationship between the forecast’s POD and probability of false detec-

tion (POFD). This relationship, known as the relative operating characteristic

(ROC; Mason 1982), is found by plotting POD as a function of POFD using a

sequence of increasing thresholds to transform the probabilistic forecast into a

series of discrete binary predictions. The ROC diagram is always constructed

such that the lowest threshold results in a POD of 1 and a POFD of 0, while the

highest threshold has a POD of 0 and a POFD of 1. The integrated area under
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Figure 2.1: (a) Example of a combined ROC/reliability diagram for a proba-

bilistic forecast. The dashed line represents the line of no skill for the ROC

curve and the one-to-one line for the reliability plot. This case demonstrates

a forecast with good potential usefulness but poor calibration. (b) Example

of a performance diagram for a probabilistic forecast. See Chapter 6 for more

information about the data plotted.

the ROC curve (AUC) is used to score the relative skill of the forecast across

all thresholds, such that a score of 1 represents a perfect forecast and a score

of 0.5 equates the forecast to random chance. ROC curves are not sensitive

to forecast bias, so a poorly calibrated prediction may still exhibit a favorable

AUC. As such, ROC curves are often considered a measure of the potential

usefulness of a forecast, but should be paired with other metrics particularly

when calibration is important. To this end, ROC diagrams are often combined

with reliability diagrams, which plot the relative observed frequency of an event

against the relative forecast frequency (Zadrozny and Elkan 2002). An example

of a combined ROC/reliability diagram is shown in Fig. 2.1a.
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A variation of the ROC diagram, known as a performance diagram (Roeb-

ber 2009; Fig. 2.1b) can be used to assess many aspects of a forecast’s quality

in a single plot. By replacing POFD with SR on the x-axis, the performance

diagram takes advantage of the mathematical relationship between POD, FAR,

SR, CSI, and bias to explicitly depict all five metrics simultaneously. In general,

a forecast’s quality improves as POD, SR, CSI, and bias approach 1 (and FAR

approaches 0). Therefore, higher quality forecasts lie toward the upper-right

corner of the performance diagram. In addition, the relative skill of a forecast

can be assessed by plotting a reference forecast or climatology on the perfor-

mance diagram and comparing the forecasts’ relative positions in the parameter

space. Note that each score contained within a performance diagram ignores TN

predictions. As such, a performance diagram is most appropriate for assessing

the prediction of rare events where TN predictions are trivial.

Each of the verification metrics discussed thus far rely on a direct mapping of

forecast-observation pairs to assess forecast quality. While these scores provide

considerable information about the overall performance of a forecast, they do

not explicitly diagnose the sources or nature of forecast error. Consider again the

example where a heavy rainfall forecast is spatially offset from where the heavy

rain was observed. In a spatial forecast product, metrics such as those listed in

Table 2.2 require that the location of the predicted and observed events coincide

within a margin of error determined by the spatial and temporal resolution of

the forecast. This means that forecasts which correctly predict an event but

slightly miss the time or location are penalized equally to forecasts that do not

predict the event at all. To achieve a complete depiction of forecast performance,

it is necessary to consider the value of the forecast in addition to its quality.

As previously stated, forecast value is generally subjective in nature and can be
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difficult to directly quantify via traditional metrics. That said, a separate class

of metrics, known as diagnostic verification (Murphy et al. 1989), can be used

to evaluate sources of error and estimate how these errors impact the value of

a forecast.

One such diagnostic metric, the fractional skill score (FSS; Roberts and

Lean 2008), can be used to assess how forecast skill varies with spatial scale.

This metric directly compares the fractional coverage of predicted and observed

events within a spatial window of user-specified size to assess how well the

forecast corresponds to observations. The FSS can then be calculated as:

FSS = 1−
1
N

∑
N(Pf − Po)

2

1
N
[
∑

N P 2
f +

∑
N P 2

o ]
(2.10)

where Pf is the forecast fraction, Po is the observed fraction, and N is the

number of spatial windows within the domain. An FSS value of 1 indicates a

perfect match between forecasts and observations, while a score of 0 represents

a complete mismatch. Forecast events that do not occur and observed events

that weren’t forecast always result in an FSS of 0. By applying a neighborhood

window to the forecast and observations, FSS does not penalize forecasts for

small spatial displacement from the observed event. This window can also be

applied along the temporal axis to assess error resulting from discrepancies

in the predicted and observed timing of an event. Other diagnostic verification

methods include fuzzy logic (Damrath 2004), multi-scale statistical organization

(Zepeda-Arce et al. 2000), and spatial multi-event contingency tables (Atger

2001).

How appropriate a verification metric is for evaluating a particular forecast

can depend on many factors including the type of forecast, the climatology of

the target event, the question(s) being addressed by the verification, and the
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target audience. When developing a product for operational implementation,

many of these factors are dictated by the needs and conventions of the end

users. As such, it is important to have a good understanding of these needs

throughout the development cycle.
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Chapter 3

How Forecasters Evaluate Machine Learning

To better identify and understand sources of forecaster hesitancy precluding

the wider adoption and success of AI products within NWS operations, it is

necessary to first understand the decision-making process by which end users

determine whether a new product or system satisfies their needs. For example,

how do NWS forecasters evaluate new products and technologies? What factors

influence their decision to trust and implement those products in their daily pro-

cedures? Do these factors differ between ML-derived products and products de-

signed via more traditional (i.e., non-ML) methods? To address these questions,

a structured survey was presented to operational forecasters and researchers at

the 2021 Hazardous Weather Testbed Spring Forecasting Experiment to elicit

first-hand perspectives about the challenges facing AI-derived products in an

operational environment.

3.1 The 2021 Spring Forecasting Experiment

The Spring Forecasting Experiment (SFE) is an annual program conducted as

part of NOAA’s Hazardous Weather Testbed (HWT) during which participants

investigate and evaluate a variety of NWP models, convection-allowing models

(CAMs), ML- and traditionally-derived products, and other forecast guidance

for the the prediction of severe and high-impact weather (Kain et al. 2003; Gallo
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et al. 2017; Clark et al. 2022). The SFE is jointly managed by NOAA’s National

Severe Storms Laboratory (NSSL) and SPC and is traditionally held within the

HWT facility - a pysical space within the National Weather Center (NWC) in

Norman, Oklahoma, that hosts a combined forecast and research laboratory.

Week-long activities performed during the SFE are designed to emulate con-

ditions within SPC operations, and experimental products are tested on live

weather data across the contiguous United States (CONUS) to assess perfor-

mance in varied circumstances. By bringing researchers, developers, and NWS

forecasters together in one large experiment, SFEs provide an opportunity for

systematic in-person collaboration and feedback.

The 2021 SFE was somewhat unique in that COVID-19-related restrictions

precluded a traditional in-person experiment (Clark et al. 2021, 2022). Instead,

the SFE was held virtually via the Google Meet video-communication service,

and facilitators remotely guided participants through online web-based inter-

faces to help them assess and evaluate experimental products. As described by

Clark et al. (2022), science-based discussions and collaborations can be difficult

in a virtual environment. However, this new virtual format also unbound the

number of participants from the size constraints of the physical HWT facility.

As such, the 2021 SFE was able to host 133 invited forecasters, researchers, and

students over a five week period from 3 May 2021 - 4 June 2021. This was the

largest SFE in the program’s history at the time, and participants hailed from

a variety of NWS WFOs, NOAA research laboratories, universities, cooperative

institutes, and international agencies. The increased participation and diversity

of the 2021 SFE made the experiment attendees an ideal sample from which to

elicit perspectives about ML in operational environments.
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3.2 Survey Design

Attendees of the 2021 SFE were polled via an online form designed and dis-

tributed using the Qualtrics survey software. The virtual survey was composed

of ten questions, including one multiple choice, five matrix tables, and four open

responses. Question 1 (Q1) asked participants to select their professional back-

ground from a list of choices including “Operational forecaster,” “Researcher,”

“Academic faculty/staff,” “Student,” and “Other”. Multiple selections were

permitted so that a participant could identify in more than one background.

Those that selected “Other” were asked to specify their professional background

in an open response field. This question was designed to assess the professional

demographic of the survey participants, and the responses were later used to

stratify survey results as described in section 3.3.3. Q2 further expanded on

participant demographics by asking survey takers to indicate how often they

utilize probabilistic forecast products as part of their work-related duties. For

the purposes of this survey, probabilistic forecast products were defined as any

probabilistic forecast derived from a model or ensemble that might represent the

ensemble’s inherent uncertainty and spread or otherwise extract information not

explicitly provided by the original model. The question text also included links

to various operational probabilistic forecasts (i.e., Jirak et al. 2014; Cintineo

et al. 2020a; Harrison et al. 2022) to serve as examples of the types of products

intended for this query. Participants responded by choosing the best frequency

from a 5-point Likert scale (Jebb et al. 2021) with labels of “Never”, “Once a

week”, “2-3 times a week”, “4-6 times a week”, and “Daily.” The final demo-

graphic question, Q6, asked respondents to rate their general knowledge and

understanding of ML, including random forests, DL, and other AI techniques.
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As before, participants answered by selecting from a 5-point Likert scale ranging

from “Not knowledgeable at all” to “Extremely knowledgeable.”

The main body of the survey focused on identifying what factors respondents

consider most important when deciding whether to implement a new forecast

product as part of their daily procedures. To this end, Q4 requested partic-

ipants first consider some probabilistic forecast product they have utilized in

the past to serve as a point of reference. Respondents were then presented

with a list of ten factors in randomized order and asked to answer the question,

“When evaluating how useful that product might be to your personal forecast-

ing process, how important are each of the following factors?” Each factor was

independently assessed on a 5-point Likert scale ranging from “Not at all impor-

tant” to “Extremely important,” and participants were asked to describe any

additional relevant factors in an open response Q5. The ten factors included

in this survey (Table 3.1) were selected based on input from SPC forecasters,

SPC management, and academic social scientists to represent various aspects

of forecast consistency, quality, and value as described in Chapter 2. For ex-

ample, the “statistical verification of a product” is a direct measure of forecast

quality, while “how closely the product aligns with human-generated output” is

representative of forecast consistency.

The next set of questions (Q7-8) once again asked respondents to evaluate

the importance of the ten factors when determining how useful a new product

might be for their personal forecast process. However, this time the participants

were specifically told that the hypothetical product in consideration was the di-

rect result of a ML model. These somewhat repetitive questions were included

to help identify any differences in how the respondents evaluate a ML product
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(A) The statistical verification of the product

(B) Previous experience evaluating experimental versions of the product

(C) How closely the probabilistic output aligns with human-generated

forecasts

(D) Knowledge of how the probabilistic output is derived

(E) How closely the variables used as inputs to the product align with

traditional meteorological knowledge

(F) Use by other experts in the field

(G) Timeliness and availability of the product

(H) Previous experience with the developers of the product

(I) Knowledge of the product’s limitations and failure conditions

(J) Performance of the product in case studies

Table 3.1: The list of factors survey respondents were asked to consider when

evaluating what variables influence their decision to implement a new product

in their personal forecast process.
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compared to more traditional products. When designing this section of the sur-

vey, it was hypothesized that any discrepancies in the results between Q4-5 and

Q7-8 might represent a change in evaluation priorities specific to ML products,

and that these discrepancies may partially explain the apparent hesitancy of

forecasters to adopt new ML products operationally. As before, an open re-

sponse field was provided for participants to describe any relevant factors not

included in the question matrix.

Finally (Q9), survey participants were asked to indicate their subjective per-

spectives on how important it is for researchers and developers to collaborate

with operational forecasters during each phase of a product’s development cycle

(i.e., exploratory research; initial design and planning; technical and logistical

development; product testing; and publication, training, and outreach). The

importance of collaboration at each stage of development was assessed indepen-

dently via a 5-point Likert scale with labels ranging from “Not very important”

to “Extremely important.” This last question was included to assess interest

in multidisciplinary collaboration during the R2O process. Respondents were

also encouraged to provide any additional comments they might have regarding

researcher/forecaster collaboration in an open response field (Q10).

The Qualtrics survey was introduced to the 2021 SFE attendees during the

morning of the first experiment day of each week immediately following intro-

ductions. The survey was voluntary and attendees were informed that all re-

sponses would be deidentified prior to analysis. Those that agreed to participate

completed the survey virtually on their personal devices and were permitted to

review their responses prior to submission. This study was approved by the

University of Oklahoma Institutional Review Board. A copy of the survey is

provided for reference in Appendix A.
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Background Number of respondents Percent of respondents

Operational forecaster 36 34%

Researcher 38 35%

Academic faculty/staff 16 15%

Students 10 9%

Other 7 7%

Table 3.2: The number and percent of survey respondents in each professional

background. Participants who selected multiple backgrounds are counted in

each associated category.

3.3 Results and Discussion

3.3.1 Survey Demographics

Of the 133 attendees of the 2021 SFE, 92 voluntarily completed the survey for

a 69% response rate. Respondents consisted of 36 operational forecasters, 38

researchers, 16 academic faculty/staff, 10 students, and 7 individuals who iden-

tified in an “other” professional background (Table 3.2). Thirteen respondents

selected multiple backgrounds, including 4 that identified as both a researcher

and an operational forecaster. The remaining mixed backgrounds consisted of

combinations of researchers, academic faculty/staff, and students. Individuals

who did not fit into the provided categories specified their professional back-

grounds as model developers, program managers, and private sector employees.

Survey participants were generally found to be familiar with the concept

of probabilistic forecast products, but utilization of those products in a formal

capacity varied (Fig. 3.1a). About 33% of all respondents reported that they

apply probabilistic forecast products as part of their typical work duties on
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Figure 3.1: (a) How often survey respondents utilize probabilistic forecast prod-

ucts as part of their typical work responsibilities. (b) How knowledgeable survey

respondents are ML, including random forests, DL, and other AI techniques.

a daily basis, 18% indicated they use the products 4-6 times per week, 15%

selected 2-3 times per week, and 21% said once per week. Fifteen percent of

all participants stated that they never use probabilistic forecast products as

part of their typical work duties. Perhaps unsurprisingly, those who identified

as operational forecasters reported the most frequent utilization, with about

95% stating they use probabilistic forecast products more than once per week

and 58% on a daily basis. Conversely, researchers’ responses were much more

varied, with about 25% reporting they use the products on a daily basis and

51% indicating they use the products at most once per week. Note that these

results do not necessarily reflect how much experience participants have with

probabilistic forecasts as respondents may still use such products outside of their

typical work-related duties. Instead, this question was intended to assess how

familiar respondents are with the formal application of probabilistic forecast

products within a structured professional environment. This will be discussed

further in section 3.3.3.
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Participants generally described themselves as somewhat or not very knowl-

edgeable about ML techniques, with about 82% of all respondents falling in these

categories (Fig. 3.1b). Approximately 12% indicated they were very knowl-

edgeable of ML, while 6% of participants said they were not knowledgeable at

all. These results were relatively similar between researchers and forecasters as

well, though researchers did generally express slightly more familiarity with ML

practices overall. Of the 38 respondents who identified as a researcher, about

15% claimed to be very knowledgeable of ML, 48% were somewhat knowledge-

able, 34% were not very knowledgeable, and 3% were not knowledgeable at all.

In comparison, only 3% of forecasters indicated they were very knowledgeable

about ML techniques, 60% were somewhat knowledgeable, 29% were not very

knowledgeable, and 8% indicated that they were not knowledgeable at all. No-

tably, no survey respondent reported to be extremely knowledgeable about ML,

DL, or other AI techniques.

3.3.2 Machine Learning vs. Traditional Forecast Products

Participant responses to Q4 and Q7 were processed and evaluated to identify

what factors most influence an end user’s decision to trust and implement a

new product as part of their personal forecast process. To aid in this evalua-

tion, a kernel density estimation (KDE; Wilks 2011) was applied to the data.

The resulting KDE curves are analogous to histograms and approximate the

discrete survey responses as a linear combination of nonparametric Gaussian

probability density functions. These curves more accurately estimate the un-

derlying distributions of the survey responses than traditional histograms which

are sensitive to the selected bin intervals and end points and often demonstrate

greater variance for small sample sizes (Potvin et al. 2019). The KDE curves
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Figure 3.2: Mean relative importance when evaluating a generic probabilistic

forecast product. Error bars represent the 95% confidence interval from 10,000

bootstrapped samples.

presented here represent the relative frequency of survey responses across the

provided 5-point Likert scale and are useful for identifying, interpreting, and

comparing response variance. To best present the data, a gaussian kernel with

a bandwidth of 0.35 was utilized to smooth the KDE curves. Additionally, the

mean score and variance of each factor was computed from 10,000 bootstrapped

samples.

Survey participants rated knowing the limitations and possible failure con-

ditions of a probabilistic forecast product as the most important factor when

evaluating that product for operational application. This consideration achieved

a bootstrapped mean score of 4.40 out of the possible 5.00 across all survey re-

spondents (Fig. 3.2), with 92% of participants citing the factor as “very” or

33



“extremely” important. The next most important factors according to the sur-

vey results were the timeliness and reliable availability of the product (4.17),

the statistical verification of the product (4.02), how well the product performed

in case studies (3.81), and knowledge of how the probabilistic output is derived

(3.78). How closely the product inputs align with traditional meteorological

knowledge was rated 3.61, and the product’s use by other experts in the field

scored 3.36 on average. Finally, how closely the probabilistic output aligns with

human-generated products (3.20), the user’s previous experience evaluating ex-

perimental versions of the product (3.02), and the user’s previous experience

with the developers of the product (2.45) were rated as the least important

factors to the participants’ decision-making process. Other important factors

commonly mentioned by participants in an optional open response prompt (Q5)

include the product’s ease of access, how well end users understand the product

output, and how well the product is tuned to the end users’ specific needs.

Considerable variability was noted in the survey responses, and this was

particularly observed in the lower-ranking factors (Fig. 3.3). For example, the

importance of a user’s previous experience evaluating experimental versions of

a product saw the greatest disagreement among all survey participants, with a

bootstrapped standard deviation of 0.99. The KDE curve for that factor reveals

nearly equal response rates of “not very important,” “somewhat important,”

and “very important,” representing a wide range of views among respondents.

How often the product is used by other experts in the field saw the second high-

est standard deviation of 0.95, while the statistical verification of the product

had a standard deviation of 0.92. Conversely, having knowledge of a product’s

limitations and possible failure conditions saw the most respondent agreement

with a bootstrapped standard deviation of 0.66. How well the product inputs
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Figure 3.3: Survey Q4 responses approximated as KDE curves. Dashed vertical

lines represent the mean score of each factor. Red fill represents factors with

bootstrapped mean scores ≥ 4.0, yellow is used for mean scores between 3.0 -

4.0, and green indicates mean scores < 3.0.
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align with traditional meteorological knowledge had the second lowest standard

deviation of 0.70, largely stemming from consistent scores of “somewhat” or

“very” important.

It is notable that the third highest ranked factor also exhibited the third

greatest variability among all participant responses. About 78% of respondents

rated a product’s statistical verification as “very” or “extremely” important,

15% said it is “somewhat” important, 6% responded with “not very” impor-

tant, and one operational forecaster stated that it is “not at all” important

to their decision-making process. That forecaster explained their reasoning in

the open response Q5, commenting, “A product’s statistical verification does

not necessarily translate to its usefulness on the forecast desk. I don’t care if

it has been shown to be 75% accurate over the entire CONUS over the last

5 years. That’s great, but what I really need to know is: Should I trust this

product right now over my forecast area for the time period in question?” This

insight indirectly invokes the relationship between a forecast’s quality and value

as described in Chapter 2. A forecast product may exhibit excellent statistical

verification, but it may not necessarily be considered a good forecast if it does

not provide a benefit to the end user in a specific situation. As described by

Murphy (1993), the relationship between a forecast’s quality and value is inher-

ently nonlinear and subjective, varying from situation to situation and user to

user. In this instance, the survey respondent placed greater emphasis on fore-

cast value while other participants applied equal or greater weighting to forecast

quality. This discrepancy potentially explains some of the variability observed

in the survey results. Other sources of variability among participant responses

are explored in section 3.3.3.
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Figure 3.4: Mean relative importance when evaluating an ML probabilistic

forecast product. Error bars represent the 95% confidence interval from 10,000

bootstrapped samples.

Participants overall showed little discrimination in how they ranked factors

between traditional probabilistic forecast products (Q4) and products specif-

ically derived from ML methods (Q7). The indicated importance of the ten

variables was nearly identical for ML products as those previously described,

with knowledge of the product’s limitations and possible failure conditions once

again earning the highest bootstrapped mean score of 4.49 (Fig. 3.4). In fact,

there were only two changes to the order of importance compared to those shown

in Fig. 3.2. First, the statistical verification of the product moved up from the

third most important factor to the second most important, jumping the time-

liness and availability of the product with scores of 4.15 and 4.10 respectively.

Second, how often the product is used by other experts in the field fell to the
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Figure 3.5: Survey Q7 responses approximated as KDE curves. Dashed vertical

lines represent the mean score of each factor. Red fill represents factors with

bootstrapped mean scores ≥ 4.0, yellow is used for mean scores between 3.0 -

4.0, and green indicates mean scores < 3.0.

38



third least important factor (3.26) after being overtaken by how closely the prob-

abilistic output aligns with human-generated forecasts (3.35). However, these

differences fall well within the bootstrapped 95% confidence intervals of each

factor, making the statistical relevance of the changes dubious at best. More

notable differences were observed in the variability of survey responses between

generic probabilistic forecast products and ML-derived products (Fig. 3.5). As

before, the importance of a user’s previous experience evaluating experimental

versions of a product saw the greatest respondent disagreement, with a standard

deviation of 1.06. This time, however, knowledge of how the probabilistic out-

put is derived had the second greatest variability with a standard deviation of

0.99, followed by the timeliness and availability of the product at 0.98. Knowl-

edge of the ML product’s limitations and failure conditions once again had the

most respondent agreement with a standard deviation of 0.68, followed by how

closely the product inputs align with traditional meteorological knowledge at

0.77. Comparisons of the mean scores and standard deviations between generic

and ML-derived probabilistic forecast products are provided in Tables 3.3 and

3.4.

These results appear to largely refute the earlier hypothesis that discrep-

ancies between Q4 and Q7 might represent a change in evaluation priorities

specific to ML products, and that these discrepancies may partially explain

the apparent hesitancy of forecasters to adopt new ML products operationally.

Instead, the survey responses suggest that the respondents on average do not

consciously evaluate ML-derived forecast products any differently than they do

products derived from more traditional methods. This is further supported by

the direct comments of the respondents, such as the private sector employee
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who stated, “I would treat a machine learning-produced product pretty simi-

larly to any other probabilistic product.” However, there is a caveat to these

conclusions. Respondents were made aware of the nature of this survey prior

to their participation, and the limited number of questions make it apparent

that Q4 and Q7 are intended to be compared. As such, this design may in-

troduce the possibility of acquiescence and desirability bias where respondents

consciously or subconsciously provide the “desired” responses rather than their

true opinions. Because participants were allowed to review their answers prior

to submitting, it is possible that some respondents may have adjusted their

ratings to be consistent between Q4 and Q7 to avoid the appearance of bias for

or against ML-derived products. Regardless of these potential response biases,

the survey results provide useful insight into the decision-making process of the

end users and generally align with the results of past and ongoing studies (e.g.,

Doswell 2004; Hoffman et al. 2017; Cains et al. 2022).
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Factor µ(Q4) µ(Q7) µ(Q7)−µ(Q4)

(I) Knowledge of the product’s limitations and failure conditions 4.40 4.49 +0.09

(G) Timeliness and availability of the product 4.17 4.10 -0.07

(A) The statistical verification of the product 4.02 4.15 +0.13

(J) Performance of the product in case studies 3.81 3.88 +0.07

(D) Knowledge of how the probabilistic output is derived 3.78 3.82 +0.04

(E) How closely the variables used as inputs to the product align with

traditional meteorological knowledge

3.61 3.65 +0.04

(F) Use by other experts in the field 3.36 3.26 -0.10

(C) How closely the probabilistic output aligns with human-generated

forecasts

3.20 3.35 +0.15

(B) Previous experience evaluating experimental versions of the product 3.02 3.02 0.00

(H) Previous experience with the developers of the product 2.45 2.53 +0.08

Table 3.3: Bootstrapped mean importance scores µ for generic probabilistic forecast products (Q4), ML-derived proba-

bilistic forecast products (Q7), and the differences between the two.
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Factor σ(Q4) σ(Q7) σ(Q7)−σ(Q4)

(I) Knowledge of the product’s limitations and failure conditions 0.66 0.68 +0.02

(G) Timeliness and availability of the product 0.90 0.98 +0.08

(A) The statistical verification of the product 0.92 0.78 -0.14

(J) Performance of the product in case studies 0.84 0.77 -0.07

(D) Knowledge of how the probabilistic output is derived 0.91 0.99 +0.08

(E) How closely the variables used as inputs to the product align with

traditional meteorological knowledge

0.70 0.77 +0.07

(F) Use by other experts in the field 0.95 0.91 -0.94

(C) How closely the probabilistic output aligns with human-generated

forecasts

0.84 0.83 -0.01

(B) Previous experience evaluating experimental versions of the product 0.99 1.06 +0.07

(H) Previous experience with the developers of the product 0.87 0.93 +0.06

Table 3.4: As in Table 3.3, but for the bootstrapped standard deviation (σ).
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3.3.3 Researcher vs. Forecaster Perspectives

To further explore the observed variability in survey responses, all results were

stratified by professional background and compared. This strategy revealed

notable differences between the responses of individuals who identified as re-

searchers and those who identified as operational forecasters as shown in Fig.

3.6 and 3.7. Forecasters, for example, rated the timeliness and availability of a

generic probabilistic forecast product as the most influential consideration when

evaluating the usefulness of that product. This factor was given a mean score

of 4.64 and surpassed the rated importance of knowledge about a product’s

limitations and failure conditions at 4.50. Forecasters were largely in agreement

about the importance of a product’s timeliness and availability as well, with the

factor earning a near unanimous rating of “very” or “extremely” important and

a standard deviation of 0.54. Conversely, researchers rated the factor as their

fourth most important consideration on average, with a mean score of 3.97 and

a standard deviation of 1.0. One forecaster explained the importance of prod-

uct availability among other factors, commenting, “A good training/overview of

the product, good visualization tools, and easy, reliable access are all important.

These things help me to begin dabbling in the new product during real-time

operations without compromising my attention to other things. Once I can get

to that stage of somewhat routine experimentation with the product, it has a

chance to impress me with performance in individual cases, which is actually

more important to me than the statistical verification.” Another operational

forecaster noted, “I also look at how the product has performed over time in

real-world conditions based on looking at it informally during active weather,

especially during atypical or unusual situations.” These anecdotes mirror the

recommendations of Hoffman et al. (2013), who suggest that end users require
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time to assess an automated product’s reliability, validity, utility, robustness,

and false alarm before trust in that product can be earned. As such, having

timely and reliable access to a new probabilistic forecast product enables the as-

sessment of the other factors included within this survey.

Other notable differences between researcher and forecaster responses were

observed for lower ranking factors as well. For example, forecasters rated how

closely a product’s input variables align with traditional meteorological knowl-

edge with a mean score of 3.72 and standard deviation of 0.93. In comparison,

researchers rated that factor a 3.08 on average with a standard deviation of 1.02.

Forecasters also tended to place more value on how often a product is used by

other experts in the field, with a mean score of 3.5 compared to researchers’

score of 3.0.

Forecaster responses exhibited only marginal discrepancies between generic

probabilistic forecast products (Q4) and ML-derived products (Q7), with no

change in the assessed order of importance (Fig. 3.7). The bootstrapped mean

score of a product’s timeliness and availability increased slightly from 4.64 to

4.72, while how closely a product’s inputs align with traditional meteorological

knowledge decreased from 3.72 to 3.56. Factors such as a product’s statistical

reliability and the performance of a product in case studies achieved the same

average scores on both questions. Despite these relatively consistent scores,

many forecaster respondents provided additional context about their thoughts

regarding ML in the optional open response Q8. For example, one operational

forecaster stated, “Some knowledge of the inner-workings of the machine model

algorithm would be helpful. Often, I feel that ML algorithms are somewhat

of a black box. Knowing that the guidance is based upon factors that hold

meteorological significance would improve my confidence in using the output.”
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Figure 3.6: Survey Q4 forecaster and researcher responses approximated as

KDE curves. Dashed vertical lines represent the mean score of each factor.
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Figure 3.7: Survey Q7 forecaster and researcher responses approximated as

KDE curves. Dashed vertical lines represent the mean score of each factor.
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These insights were echoed by another forecaster with, “Most of my evaluation

would be based on how well the ML product does in real time. The main thing

I know about ML is that it has to be given the right problem to solve to be the

most effective, so I would be very interested in how the ML was done.” Finally,

a third forecaster contextualized their responses with an anecdote: “I like to

know what was the main goal of the developers, and does that goal directly

correspond to a product or service that I provide as a forecaster? [. . . ] I began

using a ML-based tool to support national flash flood outlooks, but the tool was

based on rainfall recurrence intervals and did not account for wet soil. This was

a key limitation I needed to know.”

In contrast to the consistent forecaster ratings, the mean importance scores

assessed from researcher responses saw more considerable changes between generic

forecast products and ML-derived products (Fig. 3.7). For instance, the mean

importance of how closely a product’s input variables align with traditional

meteorological knowledge fell from 3.08 to 2.97, while how often the product

is used by other experts in the field increased from 3.00 to 3.16. Additionally,

the indicated importance of a product’s timeliness and availability decreased

from 3.97 to 3.78, and the importance of the statistical verification of a product

increased from 4.41 to 4.59. Overall, researcher responses between Q4 and Q7

changed by a mean absolute difference of 0.10, while forecaster responses exhib-

ited a mean absolute difference of 0.06. However, these differences were found

to be well within the bootstrapped 95% confidence intervals of each factor and

thus should only be interpreted as a trend in the data rather than a statistically

significant conclusion. A comparison of researcher and forecaster responses for

Q4 and Q7 are provided in Table 3.5. Notably, researcher respondents tended

to assign greater importance to factors related to the understanding of how an
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ML product works than they did for generic probabilistic forecast products.

This is further supported by the comments of researcher participants, with one

stating, “I would like to know which type of machine learning is utilized and

why because each type has its strengths and weaknesses.” Another researcher

indicated that “information on the training data used to derive the ML product

and any biases that may be introduced from that training data” would be an

important consideration as they evaluated the usefulness of the product.

Overall, survey participants who identified as operational forecasters tended

to place more importance on factors that represent a forecast’s consistency and

value, while researcher responses generally emphasized considerations of fore-

cast quality. These results potentially reflect the different skills, experience, and

needs of the two professions and showcase the varying perspectives contained

within the diverse meteorological community. Professional researchers are often

intimately familiar with the demands of peer review and the need for objec-

tive metrics and other statistics by which new products are typically assessed.

Conversely, operational forecasters are most concerned about their next forecast

and using the tools at their disposal to provide the best service to their partners

and end users. A forecast product has no intrinsic value on its own, but rather

gains value by influencing the decisions of those who use it (Murphy 1993). As

such, the long-term statistical verification of a forecast product does not matter

in an operational setting if the product is unable to benefit the forecast pro-

cess. These differing perspectives can represent a healthy balance of theoretical

and operational expertise within the meteorological community (Doswell et al.

1981); however, they can also be a source of misunderstanding, confusion, and

conflict between researchers and forecasters when transitioning a new product

through R2O processes (Deal and Hoffman 2010a).
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The meteorological research community generally drives the development,

testing, and peer review of new ML forecast products that are eventually tran-

sitioned into NWS operations. However, the results of this survey suggest that

those same researchers may evaluate ML products with different priorities than

those of the intended end users. If these differing perspectives remain unchecked

during development, researchers and developers may utlimately produce a fin-

ished product that is considered a success by their standards but completely

fails to meet the needs of their intended end users. As such, I offer the hy-

pothesis that forecasters are not necessarily hesitant to adopt new ML products

because they evaluate ML with more scrutiny than other methods. Rather, ML

products that struggle in the R2O transition may not provide a tangible benefit

or otherwise fail to meet the needs of their intended end users. To repeat a line

from Chapter 1, sustained collaboration serves as the most viable strategy to

bridge the R2O gap by ensuring new products address a real operational need,

satisfy operational requirements, and are presented in a way that is accessible

by forecasters (Kain et al. 2003). Therefore, these survey results support the

calls of Doswell et al. (1981), Auciello and Lavoie (1993), Serafin et al. (2002),

Kain et al. (2003) and others for increased collaboration between the research

and operational communities so that we may better apply our diverse expertise

toward our shared scientific goals.
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Q4 Q7

Factor µF µR µF −µR µF µR µF −µR

(G) Timeliness and availability of the product 4.64 3.97 +0.67 4.72 3.78 +0.94

(I) Knowledge of the product’s limitations and failure conditions 4.50 4.41 +0.09 4.50 4.59 -0.09

(J) Performance of the product in case studies 4.06 3.76 +0.30 4.06 3.78 +0.28

(A) The statistical verification of the product 3.81 4.05 -0.24 3.97 4.16 -0.19

(D) Knowledge of how the probabilistic output is derived 3.78 3.92 -0.14 3.81 4.00 -0.19

(F) Use by other experts in the field 3.72 3.08 +0.64 3.56 2.97 +0.59

(E) How closely the variables used as inputs to the product align with

traditional meteorological knowledge

3.56 3.68 -0.12 3.47 3.68 -0.21

(C) How closely the probabilistic output aligns with human-generated

forecasts

3.50 3.00 +0.50 3.47 3.16 +0.31

(B) Previous experience evaluating experimental versions of the product 3.25 3.00 +0.25 3.19 2.97 +0.22

(H) Previous experience with the developers of the product 2.61 2.38 +0.23 2.61 2.51 +0.10

Table 3.5: Bootstrapped mean importance scores for generic probabilistic forecast products (Q4) and ML-derived proba-

bilistic forecast products (Q7) as rated by operational forecasters (µF ) and researchers (µR).50



3.3.4 Collaboration in Product Development

The survey results presented thus far support the need for increased collabo-

ration between researchers and operational forecasters during the development

and implementation of new forecast products. To further expand upon these

conclusions, survey participants were asked to indicate how important they be-

lieve it is for researchers and developers to collaborate with forecasters during

incremental stages of product development. Survey responses to this question

were strongly positive among all participants, with the product testing phase

achieving the highest bootstrapped mean score of 4.72 (Fig. 3.8). Respondents

overwhelmingly rated collaboration at this stage as “very” or “extremely” im-

portant, with 99% of responses falling in these categories. Collaboration during

publication, training, and outreach was given the second highest rating of 4.52,

followed by collaboration during the initial design and planning phase at 3.94.

Collaboration during exploratory research and during technical and logistical

development tied for the lowest rating of 3.47. Notably, these responses were

similar for both forecasters and researchers, indicating a strong interest in col-

laboration from both parties.

Forecasters in particular were very vocal in their support for increased col-

laboration, with one participant noting, “Collaboration throughout the develop-

ment process is critical to providing something that meets the users’ needs and

finding issues early and correcting them prior to operationalization. [. . . ] Loss of

confidence in a product is difficult to win back.” Another researcher/forecaster

commented, “Some exploratory, visionary work could be done without forecast-

ers, but to ensure utility of the product forecasters should be involved through-

out development and testing. The training aspect is also critical so that fore-

casters understand strengths and weaknesses, and do not form their own vague
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Figure 3.8: Survey Q9 responses approximated as KDE curves. Dashed verti-

cal lines represent the mean importance of researcher/forecaster collaboration

during each phase of production. Red fill represents factors with bootstrapped

mean scores ≥ 4.0 and yellow indicates mean scores < 4.0.
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impressions of what the product is designed to do.” This sentiment was echoed

by a researcher who suggested, “I believe it is quite important for developers

and evaluators/forecasters to collaborate on a new forecast product well be-

fore the official evaluations are sent out. Offering forecasters the opportunity

to give input at the earlier stages of development would be beneficial for all

of those involved in the model evaluation/upgrade/implementation.” Finally,

a third forecaster expressed strong support for early collaboration, suggesting,

“Early interaction with operational forecasters is extremely important because

it offers insight to where we need additional forecast guidance support and the

types of information, time-scale and data resolution that would be most benefi-

cial on a daily basis. This can help steer the ship and make sure whatever new

approaches are being designed will actually be useful. So early collaboration

with operational forecasters is essential.”

Such strong support for researcher/forecaster collaboration is encouraging,

but the question remains how best to achieve it in practice. As described in

Chapter 1, there are many barriers to continuous collaboration in traditional

research and operational settings, including funding requirements, time con-

straints, and security concerns. These limitations have long stymied true col-

laboration within the development process (Doswell et al. 1981; Deal and Hoff-

man 2010a) and are in part responsible for the inadequacies of modern R2O

pipelines. As such, a change in the current development paradigm may be

required to overcome these challenges and successfully promote collaboration

at all phases of the R2O process. This dissertation introduces the concept of

collaborative co-production as a possible solution to these challenges, with the

hypothesis that systemic collaboration throughout a product’s development will

improve the success of that product in the R2O transition.
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Chapter 4

Collaborative Co-Production

Co-production is a collaborative process that provides a service or product via

an equal, reciprocal relationship between professionals and end users (Boyle

and Harris 2009). This relationship might be between software developers and

members of the general public, academics and public decision makers, or re-

searchers and operational forecasters, to name but a few examples. Collabo-

rative co-production requires end users to be recognized as experts not only

in their domain knowledge and experience but in their technological systems,

procedures, and requirements as well (Realpe and Wallace 2010). Conversely,

this necessitates researchers and developers to take on the roles of facilitator and

practical implementer, working closely with their end users to find solutions to a

problem or task. The core principle of co-production is that the end user should

be considered a valuable resource and ally of the development process, and no

development that ignores their contributions can be efficient (Boyle and Harris

2009). To fully realize these principles ultimately requires a shift of power, re-

sources, and responsibility from researchers and developers to end users through

deliberate, user-led, collaborative processes (Boyle and Harris 2009; Realpe and

Wallace 2010).

Various degrees of co-production have long been integrated into industrial

and commercial applications, but these principles have only recently seen ex-

plicit application within the atmospheric sciences. Indeed, the exploration of
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co-production has seen a rapid growth particularly within the climate sciences

over the past decade (e.g., Meadow et al. 2015; Kruk et al. 2017; Wall et al. 2017;

Bremer et al. 2018; Kolstad et al. 2019; Ziaja 2019; Blair et al. 2022). These

studies primarily apply and evaluate collaborative co-production principles as

a means to bridge the often contentious divide between climate scientists and

public decision makers to produce actionable climate research and knowledge.

Within the R2O space, past publications such as Doswell (1986) and Auciello

and Lavoie (1993) have indirectly advocated for the application of co-production

between the research, academic, and operational communities; however the con-

cept of collaborative co-production in the modern R2O process is perhaps best

formalized by Hoffman et al. (2010) and their Practitioner’s Cycles model.

Hoffman et al. (2010)’s Practitioner’s Cycles is a conceptual collaborative

co-production model generically designed to optimize the procurement and im-

plementation of new technologies within commercial and government institu-

tions. As described in Chapter 1, the Practitioner’s Cycles model is based on

the principle that successful R2O transitions are the result of active engage-

ment with end users through extensive collaboration to learn their operational

needs, desires, and procedures. The Practitioner’s Cycles, then, place great

emphasis on the application of cognitive work analysis (Scott et al. 2005; Roth

et al. 2006), or research that reveals and exploits the knowledge and strategies

employed by end users during the course of their regular duties. Such anal-

ysis might include field studies, job shadowing, and structured interviews to

discover leverage points where changes and improvements to a product could

have significant impacts to operational efficiency and effectiveness. Where more

traditional R2O cycles might focus on recursively performing research activities
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and statistical evaluations, the Practitioner’s Cycles strive to continuously pro-

duce and evaluate iterative prototypes in the real work environment irrespective

of project milestones and schedules.

Etgar (2008) presents a descriptive model of the co-production process that

can be modified to break the development cycle into five primary phases: the

initiating phase, design phase, production phase, distribution phase, and eval-

uation phase. These phases are not independent of each other and may be

performed concurrently during the development cycle. This descriptive model

(summarized in Fig. 4.1) can be applied to the Practitioner’s Cycles, and each

phase is described in detail in the following subsections. To aid in this descrip-

tion, readers are encouraged to refer to Hoffman et al. (2010), their Fig. 1-5 for

graphical depictions of the full Practitioner’s Cycles.

4.1 Initiating Phase

The first step of collaborative co-production is to determine if co-production is

truly the best development model for the task at hand. There are many scenar-

ios in which the degree of structured collaboration required by this process may

not be appropriate or desirable to meet a project’s goals. For example, highly in-

novative technology or techniques that fall contrary to operational norms may

face stiff resistance and push-back from those hesitant to drastically change

their procedures or risk compromising operational systems (Deal and Hoffman

2010b). While structured collaboration would be appropriate and likely re-

quired to eventually transition such a product into operations, the user-centric

approach necessitated by collaborative co-production risks the elimination of
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Figure 4.1: Schematic of the collaborative co-production process.
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more novel or radical ideas in favor of maintaining the status quo. In some in-

stances, it might be beneficial to first develop a basic prototype or mock-up in a

pure research environment as a proof of concept before subjecting the product

to the rigors of the co-production cycle. One should also consider the many

environmental factors that might influence the effectiveness of collaborative co-

production. Turnhout et al. (2020) describes unequal power relations between

developers and end users as the primary cause of failure in co-production pro-

cesses. These power imbalances ultimately limit or extinguish collaboration

effectiveness and may derive from a variety of sources such as managerial pres-

sures, regulations, contractual obligations, and workplace culture.

Once collaborative co-production is confirmed as the optimal design strategy,

the next step in the initiating phase is to facilitate contact between developers

and end users. This phase should identify all parties involved in the proposed

collaboration, the level of collaborative participation requested of each party,

and where prototype evaluation and testing will occur. The initiation phase can

be considered a pre-step to the Practitioner’s Cycles and is intended to establish

the basic details required for later phases.

4.2 Design Phase

The purpose of the design phase is to collaboratively identify and plan the fea-

tures and characteristics of the product to be produced (Etgar 2008). During

this phase, Deal and Hoffman (2010a) and Hoffman et al. (2010) encourage

developers to first become intimately familiar with the tasks, procedures, tech-

nologies, and limitations of the end users to better understand the role of the

new product and the problems it is intended to address. This might be achieved
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through extensive job shadowing, training, structured interviews, or other cog-

nitive work analysis techniques. As an example, Deal and Hoffman (2010a)

relay an anecdote of a successful R2O transition in which the developers were

told to “Go there, get training, and come back when you have reached the

point where the director would say he would let you do the actual job.” This

degree of familiarity is of course not practical in most collaborations, but active

engagement with end users during this early stage is crucial for establishing a

comprehensive understanding of the project goals.

The second step of the design phase is for developers and end users to jointly

identify problems or needs within the existing system that would improve oper-

ational effectiveness. During early stages of development (Hoffman et al. 2010,

their Fig. 1), each group might individually or collaboratively suggest poten-

tial solutions to these problems before designing research proposals, prototype

mock-ups, and initial programs to explore these solutions. The design phase of

the co-production model is recursive, and additional problems and needs will

likely be identified as product development progresses. In later iterations of a

project (e.g., Hoffman et al. 2010, their Fig. 2-4), the design phase may consist

of identifying feature requests, interface issues, usability issues, and integration

issues of a prototype system and proposing solutions to those problems. Even

after a new product has fully transitioned into operations, developers may con-

tinue to collaborate with their end users to identify additional feature requests

and bug fixes that can be implemented in minor and major updates (Hoffman

et al. 2010, their Fig. 5).
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4.3 Production Phase

The production phase is primarily concerned with the processes by which the

product designs are realized into mock-ups, prototypes, and deployable systems

(Etgar 2008). This stage of development may include extensive exploratory re-

search, code creation, and graphic interface design to achieve a product that

can be presented for evaluation to the end user. The production phase is per-

haps the point in the co-production cycle when the relevant skills and expertise

of the collaborative parties are the most distinct, as this step places great em-

phasis on the technical aspects of development. Nevertheless, there are many

opportunities for continued collaboration during product invention that should

be explored. For example, end users might participate in, contribute to, or even

lead research activities performed over the course of production, particularly

when that research falls within their expert domain knowledge. A co-production

with the goal to produce a system that predicts tornadoes, for instance, might

defer to the domain knowledge of operational forecasters when choosing which

variables to include in the predictive model. Developers could also utilize this

stage of development to familiarize end users with the methods and technologies

being applied to produce the mock-up, prototype, or system. For example, a

project that employs ML modeling might apply and demonstrate explainable

AI techniques to help end users interpret how the model reaches an output.

By including these collaborations during the production phase, developers can

impart a sense of ownership to the end users and increase their familiarity with

the resulting product prior to evaluation (Deal and Hoffman 2010b).
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4.4 Distribution Phase

The next step in the co-production cycle is the distribution phase. This phase

focuses on how products are provided to end users for evaluation, testing, and

implementation. As described by Hoffman et al. (2010) and Deal and Hoffman

(2010a,b), end users should ideally evaluate mock-ups, prototypes, and deploy-

able systems in their native workplace to ensure valid results and reduce logistic

challenges. As such, developers are encouraged to collaborate with their end

users to identify and create processes by which these products can be evaluated

in operationally representative environments. This might mean integrating a

product into the end users’ primary software or creating interfaces compatible

with existing operational technologies. In cases where it is not feasible to deploy

a prototype directly to an operational environment, testbeds or other experi-

mental platforms may be utilized to simulate how a product might perform in

operational conditions. For example, the NWS has long utilized the HWT (Kain

et al. 2003) to host stakeholders as they explore, test, and evaluate experimental

technologies in structured weeks-long sessions. The HWT was established on

the principles that collaboration increases the speed and success of R2O tran-

sitions, benefits both the research and operational communities, and generates

outcomes that are more reliable and useful for society (Calhoun et al. 2021).

Activities performed within the testbed are designed to mimic operations within

a NWS WFO or national center, and experiments are provided the opportunity

to leverage live and archived weather data across the United States to assess

performance in varied circumstances. One caveat to organized testbeds is that
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they tend to meet infrequently, and it might be difficult to maintain the de-

gree of continuous collaboration championed by the collaborative co-production

conceptual model.

4.5 Evaluation Phase

The evaluation phase is the point at which developers and end users directly

assess the performance and usability of a product or system. In the atmospheric

sciences, a product’s performance often refers to the goodness of a forecast

or analysis as described in section 2.2. This aspect of the evaluation phase

frequently relies on the application of verification metrics to identify a product’s

quality, value, and limitations. Other measures of performance might evaluate

technical considerations such as required computing resources, runtime, or cost

effectiveness. These metrics are updated and compared with each iteration of

development and are useful for measuring progress toward project goals.

The second aspect of evaluation is perhaps less familiar to traditional re-

searchers and developers but equally important to a product’s assessment. Stated

simply, usability refers to how well end users are able to interact with and apply

a product to achieve an objective. Hoffman et al. (2010) and Deal and Hoff-

man (2010a,b) place great emphasis on continuous, coordinated collaboration

between developers and end users to assess a product’s usefulness, usability,

and understandability throughout the development cycle. As during the design

phase, these evaluations might require the application of cognitive work analy-

sis techniques to qualitatively and quantitatively assess product usability. One

such technique, a use test, is a process by which developers watch end users

interact with a product with the intention of making that product easier to use
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(Krug 2009). In this process, developers become facilitators as they encourage

constructive feedback from end users and apply that feedback to create a better

product. As described by Hoffman et al. (2010), product usability is a core

tenet of co-production and should be a major consideration at each stage of the

development cycle.

Finally, it is important to understand that although evaluation is the last

phase of this discussion, it is not the final phase of development. Instead, the

evaluation phase might be considered the beginning of the next iteration of de-

velopment as the collaborative results obtained from product assessment fold

back into the next design phase. End users might reveal a prototype’s brit-

tleness in varying circumstances or discover interface, usability, or integration

issues that ultimately reduce the effectiveness of the product. These issues are

then passed to the next design phase, resolved during production of the next

prototype, and then evaluated again until the product finally achieves opera-

tional status.

63



Chapter 5

Lessons from an R2O Success

In the previous chapter, collaborative co-production was presented as a user-

centered production cycle that has the potential to improve the success rate

of R2O transitions. However, co-production is ultimately an idealized model

with many potential limitations to practical real-world application. To assess

the feasibility of this proposed paradigm in a high-impact operational environ-

ment, I collaborated with expert forecasters and management at the National

Weather Service’s Storm Prediction Center to apply co-production principles

toward the development and operational implementation of a new suite of cal-

ibrated thunderstorm forecast guidance using traditional (non-ML) methods.

This chapter (modified from Harrison et al. 2022) chronicles that development

and implementation process.

5.1 Background

The first step of applied co-production was to identify an operational need that

could be filled through collaborative development. The stated mission of the

SPC is to deliver timely and accurate forecast information about tornadoes,

severe thunderstorms, lightning, wildfires, and winter weather across the con-

tiguous United States (CONUS) to protect lives and property (SPC 2021a). As

64



part of this mission, the SPC is responsible for issuing forecast products that in-

dicate where and when cloud-to-ground (CG) lightning is anticipated. One such

product is the Thunderstorm Outlook, which depicts the probability of thun-

derstorms across the CONUS in 4- or 8-hour periods (Bright and Grams 2009;

SPC 2021b) for the upcoming or current convective day. Specifically, these fore-

casts represent the probability of at least one CG lightning flash within 20 km

(12 miles) of a point location during the valid forecast period. The increased

temporal resolution of the Thunderstorm Outlook aids NWS forecasters and

partners in time-sensitive decisions related to thunderstorms and lightning haz-

ards (Stough et al. 2012; SPC 2021b).

Accurately predicting the timing and location of thunderstorms across the

CONUS can often be a time consuming and mentally taxing challenge for fore-

casters. Many studies have been published over the past five decades show-

casing a variety of automated, gridded thunderstorm probability guidance in-

tended to aid in the prediction of lightning hazards. One of the earliest of

these studies dates to the 1970s, when Reap and Foster 1979 created a mul-

tiple screening regression to generate medium-range thunderstorm probability

forecasts from Model Output Statistics (MOS; Glahn and Lowry 1972). More

recent approaches to probabilistic lightning prediction have been incorporated

within the NWS’s National Blend of Models (NBM), a project intended to gener-

ate calibrated, high-resolution forecast guidance from statistically postprocessed

multi-model ensembles (Tew et al. 2016; Hamill et al. 2017; Craven et al. 2018).

Probabilistic lightning forecast products currently contained within the oper-

ational NBM include MOS guidance from the Global Forecast System (GFS;

Kanamitsu et al. 1991, Hughes 2001), the North American Mesoscale Forecast

65



System (NAM; Rogers et al. 2005, Maloney et al. 2009), and the European Cen-

tre for Medium-Range Weather Forecasts (ECMWF; Shafer and Rudack 2015)

model. MOS thunderstorm forecasts in the NBM are primarily derived from

a regression of deterministic large-scale numerical weather prediction (NWP)

precipitation forecasts and lightning climatology in 3-hour intervals. Although

the GFS, NAM, and ECMWF MOS thunderstorm forecasts have demonstrated

skill, their dependence on large-scale NWP forecasts ultimately limits the spa-

tial and temporal detail of the guidance. Additionally, the reliance of MOS

schemes on climatology tends to reduce the forecast skill of spatiotemporally

infrequent lightning events (Shafer and Fuelberg 2008).

The NBM also includes probabilistic lightning forecasts from the Localized

Aviation MOS Program (LAMP; Charba et al. 2019), which combines the afore-

mentioned deterministic large-scale MOS products with fine-scale model output

from the deterministic High Resolution Rapid Refresh (HRRR; Benjamin et al.

2016) model, total lightning observations from the National Lightning Detec-

tion Network (NLDN; Cummins et al. 1998), and radar reflectivity from the

Multi-Radar Multi-Sensor (MRMS; Smith et al. 2016, Zhang et al. 2016) sys-

tem. Objective verification of the LAMP by Charba et al. (2019) has shown

the guidance performs very well in the first forecast hour via extrapolation of

MRMS and NLDN observations. However, the influence of observations on the

guidance was found to sharply decrease within the first four forecast hours. As

such, much of the LAMP’s forecast skill comes from shorter lead-time forecasts,

with notably decreasing skill at longer lead times.

A fifth lightning forecast product contained within the NBM is derived by

SPC through post-processing the 26-member National Centers for Environmen-

tal Prediction (NCEP) Short-Range Ensemble Forecast (SREF; Du et al. 2014).

66



For nearly two decades, SPC forecasters have largely utilized the SREF Cali-

brated Thunder guidance (SREFCT) as their “first guess” when generating

Thunderstorm Outlooks and other thunderstorm forecast products. The SRE-

FCT aids in delineating areas favorable for CG lightning by identifying regions of

appropriate instability and thermodynamic factors coinciding with precipitation

within the SREF forecast grid (Bright et al. 2005). Specifically, the SREFCT

highlights points within the SREF’s 40-km NCEP 212 grid where the forecast

LCL ≥ -10º C, CAPE > 100 Jkg-1 in the 0º to -20º C layer, and the equilib-

rium level temperature is ≤ -20º C. As described by Bright et al. (2005), these

parameters are believed to approximately delineate regions where mixed-phase

hydrometeors are present above the charge-reversal temperature and coincide

with updrafts sufficiently strong enough to replenish supercooled liquid above

the charge-reversal zone (Saunders 1993). The SREFCT probability of at least

one CG lightning flash within 20 km (12 miles) of a point location is derived by

first combining the above environmental parameters into a single probabilistic

ensemble composite known as the Cloud Physics Thunder Parameter (CPTP;

Bright et al. 2005):

CPTP =
(−19◦ C − TEL)(CAPE−20 −K)

K
(5.1)

where TEL is the equilibrium level temperature, CAPE−20 is the CAPE between

the 0º C to -20º C levels, and K is a constant set to 100 Jkg−1. The calibrated

lightning probability is then obtained by calculating the relative frequency of

CG flashes observed by the NLDN given the predicted CPTP probability and

the SREF ensemble probability of accumulated precipitation ≥ 0.01 in. (0.254

mm) during the valid forecast period.
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Verification studies of the SREFCT (e.g., Bright and Grams 2009) have

shown that the algorithm provides reliable and skillful guidance, particularly as

a “first-guess” product for forecasters when producing Thunderstorm Outlooks.

A first-guess guidance typically provides an initial automated approximation of

a forecast or other official product which human forecasters can then modify

to better align with their expert assessment and criteria. Such guidance is

generally intended to help forecasters quickly analyze and process complex data,

highlight areas of interest within a forecast domain, and reduce the amount

of time spent on the technical aspects of drawing and submitting operational

products. However, the SREFCT guidance was found to exhibit a notable

bias toward under-forecasting CG lightning probabilities in the Plains and Gulf

Stream, especially during the warm season when nocturnal convection is more

prevalent. Forecasters have also noted a tendency to over-forecast lightning

potential along the California coast and in the Pacific Northwest. Bright and

Grams (2009) speculate that these biases may be in part due to the SREF’s

inability to explicitly resolve convection. For example, over the ocean it is

common for the SREFCT’s thermodynamic parameters to be met despite a

dearth of convective precipitation. In these cases, the guidance may undesirably

generate probabilities for grid-scale precipitation originating from low clouds in

the model’s marine boundary layer (Bright and Grams 2009).

Given the apparent limitations of the SREFCT and other probabilistic light-

ning guidance, I hypothesized that the addition of simulated radar reflectivity

and other storm-attribute fields from an ensemble of convection-allowing mod-

els (CAMs) may lead to improved probabilistic thunderstorm predictions. This

idea was proposed to SPC forecasters with great interest, and I was invited

to shadow in SPC operations to observe and learn the processes by which the
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Thunderstorm Outlooks are created. By spending dozens of hours shadowing

experts and even creating my own experimental forecasts, I was able to witness

the aforementioned shortcomings of the existing SREFCT guidance in an opera-

tional environment. With this crucial step of the co-production cycle complete,

I began collaboration with SPC forecasters and management to design and test

a new suite of probabilistic thunderstorm guidance products derived from the

NCEP High-Resolution Ensemble Forecast (HREF; Roberts et al. 2019) system.

5.2 Data and Methods

The HREF Calibrated Thunder (HREFCT) forecast products were derived us-

ing prognostic fields from the operational HREF version 2 (HREFv2) and an ex-

perimental version of the HREF (HREFv2.1) that was tested internally at SPC

(Roberts et al. 2020). The HREFv2 is composed of eight ensemble members with

four deterministic CAM configurations represented by the High-Resolution Win-

dow Advanced Research version of the Weather Research and Forecast Model

(HRW ARW; Skamarock et al. 2008), the National Severe Storms Laboratory

version of the ARW (HRW NSSL; Kain et al. 2010), the Nonhydrostatic Mul-

tiscale Model on the B Grid (HRW NMMB; Janjić and Gall 2012), and the

3-km NAM Nest (Rogers et al. 2017). Each configuration is represented twice

within the HREFv2 ensemble by including 12-hour time-lagged initializations of

each member. A full list of the model cores, boundary conditions, microphysics

schemes, and PBL schemes of each of the eight members is provided by Roberts

et al. (2019), their Table 1.

The HREFv2.1 utilized in this study adds the operational HRRR and its

6-hour time-lagged run, giving the ensemble a total of 10 members for the
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first 30 forecast hours, 9 members through forecast hour 36, and 5 members

through forecast hour 48. The inclusion of the HRRR has been shown to increase

member spread and improve the overall skill of the ensemble (Gallo et al. 2018).

Note that as of 11 May 2021, the operational version of the HREF version 3

(HREFv3) replaces the NMMB member of the ensemble with a Finite Volume

Cubed Sphere (FV3) model and extends the temporal range of the HRRR to

48 hours (EMC 2021; NWS 2021b). However, these changes were not available

at the time of this study and thus were not included during the initial design

and testing. This is discussed further in section 5.3.

Both 00z and 12z cycles of the HREFv2 were obtained for 1 July 2017 -

1 January 2019, and the HREFv2.1 cycles were collected for 1 January 2019

- 11 May 2021 (the full period available). The HREF is natively produced

on a 3-km grid; however, SPC Thunderstorm Outlooks are verified on the 40-

km NCEP 212 grid. To ensure the HREFCT forecast probabilities remain

consistent with those being issued by the SPC forecasters, all prognostic fields

within the HREF ensemble members were remapped to the 212 grid using a

nearest neighbor maximum, minimum, or average, depending on the variable

(Mesinger et al. 1990; Mesinger 1996; Accadia et al. 2003). For example, a

nearest neighbor minimum was used to remap lifted index forecasts because

lower values indicate increased instability, while a nearest neighbor maximum

was used to remap 1-hour accumulated precipitation. Additionally, observed

hourly CG lightning flashes were obtained from the NLDN for the 1 July 2017

- 11 May 2021 period and spatially mapped to the same 40-km grid.
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5.2.1 The HREFCT Algorithm

Initial development of the HREFCT attempted to build upon the success of

the SREFCT by first focusing on the same environmental parameters used in

the existing guidance. However, recreating the SREFCT’s algorithm within the

HREF framework quickly proved unsuccessful as some HREF members lack the

fields necessary to compute the equilibrium level temperature or CAPE in the

0º C to -20º C layer. Instead, the HREFCT guidance was derived from scratch,

with the first step to identify which HREF prognostic fields best correlate to

the occurrence of at least one CG lightning flash. To accomplish this, the first

24 forecast hours of all 00z and 12z HREF cycles from 1 July 2017 - 1 July

2019 were compared to the corresponding NLDN gridded CG lightning obser-

vations. A Pearson correlation coefficient was then computed between the CG

flash observations and all prognostic fields common across the HREF members.

The resulting correlations from each member were averaged to provide an en-

semble mean correlation for each field. Total accumulated QPF was found to

have the highest mean correlation to at least one CG lightning flash, with a

value of 0.14. Most unstable CAPE (MU CAPE) had the second highest mean

correlation, followed by the derived radar reflectivity at -10º C, derived radar

reflectivity at 4 km above ground level, maximum 1-hour composite reflectivity,

precipitable water, specific humidity, and the most unstable 4-layer lifted index

(MU LI). Correlations for each field are provided in Table 5.1.

Once the best correlated prognostic fields were identified, the next step was

to develop an algorithm to convert the data into a probabilistic thunderstorm

forecast. Several regression analyses utilizing various combinations of the afore-

mentioned fields were tested and subjectively evaluated by SPC forecasters dur-

ing this stage. Hourly probabilistic thunder forecasts were created from each
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Variable Ensemble mean correlation

Total accumulated QPF 0.14

MU-CAPE 0.13

Derived radar reflectivity at -10º C 0.12

Derived radar reflectivity at 4 km AGL 0.12

Maximum composite reflectivity 0.11

Precipitable water 0.10

Specific humidity 0.07

MU LI 0.06

Table 5.1: HREF prognostic fields with the greatest ensemble mean Pearson

correlation to 1-hour NLDN CG lightning flashes computed between 1 July

2017 and 1 July 2019.

algorithm/input combination for the first 24 forecast hours from the 00z and

12z HREF cycles between 1 July 2017 and 1 July 2019. The mean critical suc-

cess index (CSI) was computed for each 1-hour forecast, and this process was

iteratively repeated until the best combination (i.e., the combination with the

greatest mean CSI and subjective forecaster approval) of algorithm and prog-

nostic fields was determined. Ultimately, the derived radar reflectivity at -10

ºC (Z-10C), total accumulated QPF (QPFaccum), and MU LI were found to be

the most successful combination of prognostic fields when paired with a linear

regression model of the form:

w1P (X ≥ t1) + w2P (Y ≥ t2) + w3P (Z ≥ t3) (5.2)

Here, w1, w2, and w3 represent weights summing to 1; X, Y , and Z are HREF

prognostic fields; and t1, t2, and t3 are threshold values corresponding to the

respective HREF fields. The probability function P () is defined as the fraction of
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HREF ensemble members where the inequality is true. As an example, consider

a single grid point where five of the ten HREF members predict Z-10Cwill be

greater than a threshold of 40 dBZ over a given 1-hour period. Then P (Z -10C ≥

40 dBZ) = 5⁄10 = 50%. The probability of lightning predicted by the algorithm

for a given grid point is then the weighted average of the probabilities that each

prognostic field meets or exceeds its respective threshold value.

The final step in the initial derivation was to determine which combination of

weights and thresholds provide the optimal forecast. This was accomplished by

performing a randomized grid search (Bergstra and Bengio 2012), where thun-

der forecasts were again computed for 1 July 2017 - 1 July 2019 using a random

subset of every possible combination of weights and thresholds. The combina-

tion of hyperparameters that resulted in the greatest forecast CSI was selected

as the optimal configuration. This optimization was performed independently

for rolling forecast windows of 1- and 4-hour intervals, where the 4-hour predic-

tion at a given forecast hour represents the cumulative probability of at least

one CG flash within 20 km (12 miles) of a point location over the previous 4

hours. For example, the 4-hour forecast at forecast hour f04 represents the f00

- f04 period. Additionally, 24-hour forecasts were generated and optimized for

each convective day (12z - 12z) contained within each HREF cycle (00z HREF

f12 - f36; 12z HREF f00 - f24 and f24 - f48.) HREFCT forecasts for intervals

greater than one hour were computed using the maximum or minimum values of

each input variable over the specified period. The best weights and thresholds

for each forecast interval are provided in Table 5.2.
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Z-10C; Z4 km AGL QPFaccum MU LI

1-hour forecast t1 ≥ 40 dBZ

w1 = 0.6

t2 ≥ 1 mm

w2 = 0.3

t3 ≤ −3

w3 = 0.1

4-hour forecast t1 ≥ 40 dBZ

w1 = 0.6

t2 ≥ 2 mm

w2 = 0.3

t3 ≤ −1

w3 = 0.1

24-hour forecast t1 ≥ 40 dBZ

w1 = 0.6

t2 ≥ 2 mm

w2 = 0.4

Table 5.2: The best thresholds (t) and weights (w) for each HREF prognostic

field and forecast time interval. MU LI was excluded from the 24-hour forecast

due to strong diurnal variations in the parameter.

Though the HREF parameters are not identical to those used in the SRE-

FCT algorithm, the fields and thresholds chosen for the HREFCT formula cap-

ture many of the same environmental conditions and physical processes high-

lighted by the original guidance. For example, the thresholds chosen for MU LI

broadly indicate where lapse rates may be steep enough to support sustained

updrafts necessary to replenish supercooled liquid above the charge-reversal

zone, and Z-10C might be considered an approximation of mixed-phase hydrom-

eteors present near or above the charge-reversal temperature. Note that some

members of the HREFv2 did not initially provide Z-10C, so the derived radar

reflectivity at 4 km above ground level (Z4 km AGL) was used as a proxy with

the same weights and thresholds prior to the implementation of the HREFv2.1.

The improved performance of MU LI over MUCAPE was an unexpected result

during the algorithm derivation, as MUCAPE exhibited much higher correlation

to CG flashes (Table 1). Anecdotally, forecasts that utilized MUCAPE instead

of MU LI tended to over-forecast the spatial coverage of lightning, particularly
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in marginally unstable or capped environments. Perhaps the ability of MU LI

to represent both stable and unstable environments as a single parameter gives

it an advantage over MUCAPE in the HREFCT algorithm, as MUCAPE would

need to be paired with another variable such as MUCIN to provide information

about stable layers within the thermodynamic profile.

5.2.2 Calibration

Calibration of the HREF probabilistic thunder guidance to be statistically re-

liable was performed by first generating thunder forecasts from 13 June 2019

through 13 June 2020. These dates were chosen for calibration to avoid incon-

sistencies in the HREF members that were present during the initial transition

from HREFv2 to HREFv2.1. Noise in the raw probability fields was removed

by applying a 2D Gaussian filter (σ=80 km) to spatially smooth the forecasts.

The smoothed probabilities from the 1-year period were then stratified into 10%

bins centered on every 10% (5 - 15%, 15 - 25%, etc.), and the reliability of each

bin at each grid point was computed (Fig. 5.1a). For example, at a given grid

point, the true probability of the 40% bin was defined as the fraction of 35 -

45% forecasts that verified with at least one observed CG lightning flash. If a

given grid point received 40% probability forecasts 100 times throughout the

year and lightning occurred at that grid point in 30 of those forecasts, then

the true probability was 30% and the 40% bin had a reliability error of +10%

(an over-forecast). The reliability error was then recorded for each grid point.

This process was performed independently for the 00z and 12z HREF cycles,

the 1-hour, 4-hour, and 24-hour forecast products, and for each of the HREF’s

48 forecast hours. Thus, the calibration step resulted in a 5-dimensional lookup
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table containing the mean reliability error at every grid point for every forecast

hour, HREF cycle, and binned forecast probability.

This calibration process revealed a systematic bias in the uncalibrated HRE-

FCT probabilities that generally led to an over-forecast of CG lightning flashes

in the 1- and 4-hour forecast products and an under-forecast in the 24-hour

product (Fig. 5.1b). The 1-hour probabilities exhibited a consistent mean relia-

bility error of about +5% through at least the first 24 forecast hours, while the

4-hour uncalibrated guidance had an error of +5 to +10%. The 24-hour uncali-

brated guidance averaged an under-forecast of -5 to -10%. The reliability errors

of the 1- and 4-hour forecasts varied considerably in the last 18 forecast hours,

likely due in part to predictability error in the spatial placement of convection

at longer lead times. Forecast probabilities between 25% and 55% exhibited

the greatest mean reliability error for all three products (not shown). Both the

1- and 4-hour uncalibrated guidance averaged an over-forecast of +10 to +15%

at these probabilities, while the 24-hour guidance under-forecast by up to -5%

on average. Notably, all three products were found to slightly under-forecast

at probabilities < 5% and over-forecast at probabilities > 95% on average. As

such, the resulting calibration tends to move the final forecast probabilities away

from these extremes. Because of this, the calibration rarely changes the areal

coverage of HREFCT probabilities or zeros out probabilities in the uncalibrated

guidance.

Calibration is applied to new thunder forecasts by first matching the grid

point, forecast hour, HREF cycle, and initial forecast probability to the cor-

responding reliability error in the lookup table. Once this is determined, the

guidance is calibrated by simply subtracting that reliability error from the orig-

inal forecast probability. For example, if at a given grid point the pre-calibrated

76



Figure 5.1: (a) Mean uncalibrated reliability error of the 12z HREFCT 4-hour

lightning probabilities at forecast hour 16 for the 40% probability bin. Positive

values represent an over-forecast compared to NLDN observations from 13 June

2019 - 13 June 2020. (b) Mean uncalibrated reliability error of the 12z HREFCT

as a function of lead time.
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Figure 5.2: (a) HREFCT (a) 4-hour and (b) 24-hour forecasts from the 12z

HREF cycle on 17 March 2021. Yellow “+” symbols indicate grid points where

there was at least one CG lightning flash detected during the valid forecast

period.

guidance had a probability of 44% and the mean reliability error for the 40% bin

at that grid point at that forecast hour was +10% (an over-forecast by 10%),

then the final, calibrated probability for that grid point would be 44% - 10%

= 34%. Note that the calibration is only applied to points where probabilities

already exist in the grid. As such, the calibration cannot introduce probabil-

ities where there were none before the calibration step. An example 4-hour

and 24-hour calibrated thunderstorm forecast from 17 March 2021 is shown in

Fig. 5.2.

5.2.3 Instability and Reflectivity Mask

During iterative testing of the HREFCT guidance, SPC forecasters identified a

bias in the algorithm that would result in the prediction of thunder probabilities
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for locations that were subjectively analyzed to be unsupportive of deep convec-

tion or lightning. This most commonly occurred when several HREF members

predicted moderate stratiform precipitation which would activate the QPFaccum

term of the HREFCT equation. Although such relatively stable environments

might fail to meet the thresholds for Z-10C and MU LI, a sufficiently large frac-

tion of HREF members predicting moderate accumulated precipitation values

could still generate lightning probabilities.

To correct this bias, a filter was imposed on each member of the HREF to

create a simple instability and reflectivity mask. The contribution from any

HREF member that forecasts MU LI > 0 and Z-10C < 35 dBZ over the valid

forecast period is set to zero when creating the probabilities for a given grid

point. As an example, consider a grid point where eight of the ten HREF

members predict stratiform precipitation with a maximum Z-10C of 30 dBZ

and a 4-hour QPFaccum of 0.25 in. (6.35 mm). Only one of the ten members

predicts MU LI < 0, while the others are all > 0. Without the instability mask,

this grid point would be given a 25% probability of thunder, largely driven

by the accumulated precipitation term. With the mask applied, however, all

but one member would be set to zero in the calculation because the predicted

reflectivity is < 35 dBZ and the MU LI is > 0. This would then produce a

thunder probability of 4% for the grid point prior to calibration.

Calibrated 1-hour, 4-hour, and 24-hour thunder forecasts were regenerated

for 13 June 2019 - 13 June 2020 with the new mask applied, and prelimi-

nary verification revealed a slight improvement in the bulk performance of the

guidance (not shown). Furthermore, anecdotal case studies and real-time ap-

plication by SPC forecasters found that the mask was successful at removing

most non-meteorological regions of low thunder probabilities, particularly in

79



the Pacific Northwest and in stratiform precipitation regions of extratropical

cyclones. This addition to the HREFCT algorithm highlights a key benefit

of the collaborative co-production process, as the need for an instability and

reflectivity mask was only discovered through frequent iterative evaluation in

an operational environment. Without direct input from SPC forecasters, these

edge cases of the guidance may not have been discovered until much later in the

development cycle, if at all. Additionally, informal conversation with the fore-

casters revealed that including the mask at their recommendation anecdotally

increased operational buy-in and trust in the final product. All discussion of the

HREFCT hereafter refers to the HREFCT with the instability and reflectivity

mask applied.

5.3 Results and Discussion

Verification of the 00z and 12z HREFCT forecast products was performed on

the 11-month independent dataset of 13 June 2020 - 11 May 2021. Calibrated

1-hour, 4-hour, and 24-hour thunder forecasts were generated for the full verifi-

cation period, and the probabilities from each forecast were stratified into 10%

bins as during calibration. The forecasts were then compared to the observed

NLDN CG lightning flashes for each forecast hour, and the POD, FAR, CSI, and

statistical reliability were computed for each probability bin. Additionally, 95%

confidence intervals for the metrics were computed from 10,000 bootstrapped

samples. The following discussion will focus on the 12z HREFCT guidance, but

similar results were noted for the 00z guidance as well.

Verification of the HREFCT generally improved as the valid forecast win-

dow increased (Fig. 5.3a). The 24-hour forecast product was found to have the
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greatest performance over the verification period with a maximum CSI of 0.43

(0.41 - 0.45) at the 40% probability bin. The 4-hour forecast product exhibited

the next best performance with a maximum CSI of 0.28 (0.26 - 0.30) at 30%, and

the 1-hour HREFCT guidance had the lowest average performance with a max-

imum CSI of 0.19 (0.17 - 0.20) at 20%. All three forecast products were found

to be statistically reliable over the verification period, but the 24-hour forecast

tended to under-forecast the observed CG lightning flashes by about 5 - 10%

at forecast probabilities ≥ 40% (Fig. 5.3b). In contrast, the 1-hour and 4-hour

forecasts were, on average, reliable within 5% of observations at all probability

levels. Note that the 1-hour HREFCT guidance rarely predicted probabilities

≥ 75% during the verification period (Fig. 5.3c), and so the higher bins were

excluded when calculating the performance and reliability of the product.

The observed tendency of the 1-hour guidance to produce lower probabilities

than the 4-hour or 24-hour guidance is largely a result of forecast uncertainty

manifested by the spread of the HREF members. As described in section 2,

the HREFCT algorithm is a linear combination of probability functions. These

probability functions describe not only how favorable the predicted environment

is for lightning, but also the ensemble uncertainty that those conditions will be

met. Generating high probabilities in a 1-hour forecast requires an equally

large number of HREF members to meet the forecast thresholds at the same

grid point and forecast hour (i.e., large ensemble agreement.) Conversely, the

4-hour guidance only requires the HREF membership to meet those forecast

thresholds at any time during the valid 4-hour interval. As such, it is generally

easier to achieve higher probabilities in the 4-hour (and 24-hour) guidance than

in the 1-hour guidance. This holds true at shorter lead times too, as many
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Figure 5.3: 12z HREFCT 1-hour, 4-hour, and 24-hour (a) mean performance,

(b) mean reliability, and (c) forecast probability frequency for 20200613 -

20210511. The shaded regions represent the 95% confidence intervals from

10,000 bootstrapped samples.
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HREF members utilize different dynamical cores, initial and boundary condi-

tions, microphysics schemes, and PBL schemes that lead to differing solutions

early in the forecast cycle.

Additional nuance in the HREFCT’s performance was revealed by analyzing

a spatial and temporal breakdown of the 4-hour guidance. The average relia-

bility error of the product over the verification dataset was produced at each

point within the NCEP 212 grid and across six 4-hour intervals as shown in

Fig. 5.4. Despite calibration, the HREFCT continued to exhibit a tendency to

over-forecast CG lightning probabilities on average across most of the CONUS

and at most hours of the day. Even so, this error was typically within 5 - 10%

of observations and much improved from the 20 - 25% error noted in the un-

calibrated guidance (Fig. 5.1). These results serve as an example of how an

underdispersive or overconfident ensemble may be corrected by applying cali-

bration to reduce probabilities at most locations and times (Raftery et al. 2005;

Berrocal et al. 2007; Kann et al. 2009). More notable over-forecasting was ob-

served along and east of the Appalachians between 04z – 16z, with reliability

errors of 10 - 15% common across that region. Other forecast biases include

a broad area of +10% reliability error along the Gulf Coast from 00z - 04z, a

small area of +10% error in the central Plains from approximately 08z - 20z,

and a slight under-forecast of up to 5% across the Southwest from 16z - 04z.

These regional biases may be at least partially attributable to systematic

error in the underlying HREF forecast. The over-forecast region in the central

Plains, for example, anecdotally correlates to the approximate time and loca-

tion of a number of MCS events that occurred during the 2020 warm season.

Although the ability of CAMs to predict MCS events has improved over recent

years, some HREF members such as the HRRR have been shown to commonly
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Figure 5.4: 12z HREFCT mean spatial reliability error across six 4-hour periods.

Positive values (warmer colors) represent an over-forecast and negative values

(cooler colors) represent an under-forecast. The reliability error was calculated

for the 40% probability bin from 20200613 - 20210511.
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over-forecast MCS convection in the Plains during the overnight hours (Clark

et al. 2007; Pinto et al. 2015). As such, the HREFCT may have over-forecast

the probability of CG lightning because some members of the HREF consis-

tently predicted too many MCS events in that region. One important caveat to

this analysis is that the relatively short 11-month verification period potentially

makes the reliability error at any given location sensitive to a small number of

events. For instance, there is a consistent area along the Pacific coast where

the guidance over-forecast the lightning potential by up to 25% on average.

However, the sample size of forecasts in that region is extremely limited, and so

these results may not be fully representative of the longer-term performance of

the HREFCT in that area. These sample-size limitations are also applicable to

the underlying HREFCT calibration, which was necessarily performed on just

one year of data. Recalibration and verification on multiple years of forecasts

is planned for future updates to the operational guidance as a longer period of

record becomes available.

A primary goal when developing the HREFCT was to improve upon the

existing SREFCT guidance. As such, it was necessary demonstrate to SPC

forecasters how the new HREFCT performance compared to that of the origi-

nal SREFCT. One-hour, 4-hour, and 24-hour forecasts from the SREFCT were

regenerated for the 20200613 - 20210511 verification period, and the POD, FAR,

CSI, and reliability were computed as before (Fig. 5.5). There is no 12z SREF

cycle to directly compare against the 12z HREF, so the 09z and 15z SREF

cycles were used instead. The 09z 4-hour SREFCT exhibited a maximum CSI

of 0.20 (0.19 - 0.21) at the 20% probability bin, while the 15z SREFCT had a

maximum CSI of about 0.21 (0.19 - 0.21) also at 20%. This performance was

notably less than the 4-hour HREFCT’s maximum CSI of 0.28 (0.26 - 0.30) at
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the 30% bin. Unfortunately, several months of missing data in the local SRE-

FCT archive prevented a direct comparison of the 1-hour and 24-hour products.

However, indirect comparisons using the incomplete dataset reveal a similar im-

provement in the HREFCT guidance over that of the SREFCT (not shown).

Despite the notable improvements in CSI, the SREFCT and HREFCT products

exhibited similar statistical reliability (Fig. 5.5). The 4-hour forecasts for the 09z

and 15z SREFCT tended to slightly under-forecast probabilities < 25% while

slightly over-forecasting probabilities ≥ 35%. In contrast, the HREFCT tended

to slightly under-forecast CG lightning potential at all probabilities. Addition-

ally, the forecast probability distribution of the HREFCT was notably shifted

toward higher probabilities compared to that of the SREFCT (Fig. 5.5c). Ap-

proximately 10% of HREFCT 4-hour forecast values exceeded 55% during the

verification period compared to only 2% of the 09z and 15z SREFCT forecasts.

In fact, the SREFCT 4-hour forecast rarely exceeded 65% during the verifi-

cation period. This demonstrated ability of the HREFCT to produce higher,

statistically reliable forecast probabilities is a noteworthy improvement over the

SREFCT.

Next, the mean CSI and reliability error of the SREFCT and HREFCT 4-

hour forecasts were computed at each forecast hour to reveal diurnal and lead

time variations in the guidance (Fig. 5.6). Both the SREFCT and HREFCT 4-

hour forecasts achieved their greatest mean CSI at approximately 23z on day 1

(12z HREF f11; 09z SREF f14; 15z SREF f08). As before, the HREFCT showed

marked improvement over the SREFCT with a mean CSI of about 0.31 (0.30

- 0.32) compared to 0.24 (0.22 - 0.25) for the 09z and 15z SREFCT forecasts.

After a steady decline in mean performance between approximately 01z and

18z, all versions of the guidance then experienced a secondary peak at about
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Figure 5.5: A comparison of 09z and 15z SREFCT and 12z HREFCT 4-hour (a)

mean performance, (b) mean reliability, and (c) forecast probability frequency

for 20200613 - 20210511. The shaded regions represent the 95% confidence

intervals from 10,000 bootstrapped samples.
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23z - 00z on day 2 (12z HREF f36; 09z SREF f38; 15z SREF f32). This time,

the HREFCT achieved a mean CSI of about 0.26 (0.25 - 0.27) while the 09z

and 15z SREFCT forecasts had mean CSIs of about 0.21 (0.20 - 0.22) and 0.22

(0.21 - 0.22) respectively. Notably, the day 2 performance peak exhibited by

the HREFCT is equal to or greater than the day 1 peak of the SREFCT. The

HREFCT demonstrated a minimum mean performance of about 0.18 (0.17 -

0.19) at 10z on day 2 (f46).

More notable differences are evident when comparing the diurnal and lead

time variations of the SREFCT and HREFCT mean reliability error (Fig.5.6b).

After an initial spin-up period in the first few forecast hours, the HREFCT

maintained a reliability error within 5% of observations through 03z of day 2

(f39). Beyond that time, the guidance began to over-forecast CG lightning

probabilities by up to 10 - 15%. This reduction in reliability is likely due in

part to predictability error in the spatial placement of convection at longer

lead times, as well as reduced spread from the ensemble as only five members

contribute to the probabilities after forecast hour 36. In contrast, the SREFCT

generally remained within 5% of observations up to about 10z (09z SREF f25;

15z SREF f19) before under-forecasting by up to 15% at 16z (09z SREF f31; 15z

SREF f25). This strong diurnal signal in the SREFCT reliability error aligns

with forecaster observations and past verification studies as discussed in section

5.1. Of note, the HREFCT forecast reliability error did not exhibit a strong

diurnal signal and was found to be statistically reliable on average through at

least forecast hour 39.

Finally, the HREFCT and SREFCT forecast products were reviewed and

compared for several case studies and in real-time SPC forecast operations.

Anecdotally, the HREFCT generally produced spatially larger areas of thunder
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Figure 5.6: A comparison of 09z and 15z SREFCT and 12z HREFCT 4-hour

(a) mean performance and (b) mean reliability error as a function of lead time

between 20200613 - 20210511. The shaded regions represent the 95% confidence

intervals from 1000 bootstrapped samples. Forecast lead time increases to the

right for both plots.
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Figure 5.7: (a) 12z HREFCT and (b) 09z SREFCT 4-hour calibrated thunder

forecasts for 20200412 12z - 16z. Yellow “+” symbols indicate grid points where

there was at least one CG lightning flash detected during the valid forecast

period.

probabilities than the SREFCT, and these probabilities were frequently greater

in value. One example of this can be seen in Fig. 5.7, which shows a com-

parison of the HREFCT and SREFCT 4-hour forecast for 12z - 16z 12 April

2020. Both the HREFCT and SREFCT 4-hour guidance correctly predicted

the potential for lightning across the southern and central plains and the lower

Mississippi Valley. However, the SREFCT probabilities peaked with a small

area of 40% in northeast Texas, while the HREFCT painted a broad area of

70 - 80% across parts of Arkansas and Louisiana. The SPC forecaster-created

Thunderstorm Outlook for this time period included two regions of 70% across

Arkansas, Louisiana, and Texas which more closely aligned with the HREFCT

forecast. The HREFCT, SREFCT, and SPC Thunderstorm Outlook all failed

to capture the observed lightning over parts of Georgia and Florida, although
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the HREFCT did have a few pockets of 5% probability in the vicinity. Scat-

tered convection developed across much of Georgia and north Florida around

15z as a warm front lifted north across the region. Several HREF members

accurately depicted the placement and timing of this convection, but the fore-

cast 4-hour Z-10C values were generally < 40 dBZ and 4-hour QPFaccum values

were < 2 mm. Therefore, the reflectivity and precipitation thresholds of the

HREFCT algorithm were not met and the resulting probabilities were < 5%

after calibration. This case highlights a potential limitation of the HREFCT

to predict lightning in “dry” thunderstorm scenarios. In particular, the partial

reliance of the HREFCT algorithm on QPFaccum may greatly limit probabilities

when convection is forecast to produce < 1 mm of precipitation in an hour or

< 2 mm over a 4-hour period. Additional HREFCT products are currently in

development to better account for dry thunderstorm scenarios which play an

important role in fire weather forecasting.

5.4 Operational Implementation

Initial prototypes of the HREFCT guidance were iteratively provided to SPC

forecasters for evaluation beginning October 2018. To aid in the subjective as-

sessment of the new products, an internal webpage was created that enabled

easy comparison of prototype versions, provided objective performance metrics

in near-real time, and directly compared prototype forecasts to the operational

SREFCT (Fig. 5.8a). Forecasters were also provided access to an online form

through which they could send comments about the products’ performance dur-

ing a particular day or event. This virtual form, combined with direct email and
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face-to-face conversations, served as the primary conduit for formal communi-

cation between the forecasters and myself during the collaborative development

process. These evaluation tools were designed in accordance with the principles

of collaborative co-production to be easily accessible, reliable, and user-friendly.

Approximately 16 months after the first prototype was introduced to fore-

casters, a more formal version of the HREFCT guidance was experimentally

implemented within SPC operations. This version of the guidance was directly

integrated into the SPC’s primary operational software, the NCEP-Advanced

Weather Interactive Processing System (NAWIPS; Schotz et al. 2008), thus en-

abling forecasters to directly incorporate the new products as part of their daily

forecasting activities (Fig. 5.8b). Daily operational use by an initial few col-

laborating end users rapidly increased exposure to other forecasters, and formal

training sessions were provided as interest increased. Finally, just 2.5 years af-

ter the first prototype was created, the SPC formally sponsored the HREFCT

guidance for operational implementation. The HREFCT suite of products was

officially implemented operationally on NCEP’s Weather and Climate Opera-

tional Supercomputing System (WCOSS) on 11 May 2021 and is now being

distributed by the NWS. Internally, SPC forecasters have largely begun to uti-

lize the HREFCT in combination with or in replacement of the SREFCT when

generating thunderstorm forecast products. As of this writing, the 1-hour HRE-

FCT is planned to be added to the NBMv4.1 in combination with the SREFCT,

LAMP, and various MOS guidance to inform a blended national thunderstorm

probability product.

This demonstrated success of the HREFCT is a testament to the potential

of collaborative co-production for rapid R2O transitions. Forecaster feedback

was invaluable throughout the development process and both objectively and
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Figure 5.8: (a) An interactive web interface designed to easily compare HRE-

FCT prototypes and operational SREFCT forecasts while also displaying near-

real time verification. (b) HREFCT products integrated into the operational

NAWIPS software.
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subjectively improved the performance of the final product. However, it should

be noted that the HREFCT was produced using primarily traditional statistical

methods and techniques already familiar to forecasters and researchers at SPC.

It is therefore unclear how effective collaborative co-production would have been

had the new guidance been developed through less familiar means. To address

this question, the remainder of this dissertation will chronicle the application

of collaborative co-production to a more complex forecasting challenge that

ultimately exposes SPC forecasters and management to the complications and

benefits of ML techniques.
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Chapter 6

Co-Production of a First-Guess Convective

Watch Product

The Storm Prediction Center is responsible for issuing Severe Thunderstorm

and Tornado Watch products when conditions become favorable for organized

severe thunderstorm development (SPC 2021b). In particular, a Tornado Watch

is issued when satellite, radar, and environmental trends appear conducive for

multiple tornadoes over a focused geographic area, or when a single intense

tornado is forecast. Similarly, Severe Thunderstorm Watches are used when or-

ganized convection is expected to result in at least six severe weather events over

a confined geographic region, including severe wind gusts (≥ 58 mph), large hail

(≥ 1 in. diameter), and brief or weak tornadoes. As described by SPC (2021b),

watches are intended to encourage the general public to stay alert to chang-

ing weather conditions while providing emergency managers, storm spotters,

and broadcast media lead time to prepare for severe weather operations. Addi-

tionally, the issuance of watch products has been shown to positively correlate

with the quality of NWS warnings (Hales Jr 1990; Krocak and Brooks 2021)

and may considerably influence weather awareness among the general public

(Gutter et al. 2018).

Forecasters at the SPC issue Severe Thunderstorm Watches with the goal

to provide at least 45 minutes of lead time prior to the first severe weather
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event (SPC 2021b). Conversely, Tornado Watches are issued with an intended

lead time of 2 hours before the first tornado occurrence and at least 1 hour

before non-tornado severe weather hazards (i.e., wind or hail). Watch prod-

ucts are initially produced by SPC forecasters as parallelograms that define the

approximate area of the predicted severe weather threat (Fig. 6.1b). Those par-

allelograms are then converted into preliminary county-based watch products

prior to direct collaboration with affected NWS WFOs (NWS 2021a) during

which WFO forecasters advise SPC of any local considerations that might im-

pact the spatial scope of the watch. As such, some counties included within

a Severe Thunderstorm or Tornado Watch may not necessarily fall within the

initial parallelogram, and some counties within the parallelogram may not be

included in the final watch. Severe Thunderstorm and Tornado Watches typi-

cally range in size from 20,000 to 40,000 square miles and have a duration of 6

to 8 hours (SPC 2021b). However, a watch may be canceled early or extended

in space and time by local WFOs as conditions require.

SPC convective watches are typically preceded by a mesoscale convective

discussion (MCD; SPC 2021b) - a combined graphic and text product that con-

veys a forecaster’s thoughts about how convection will evolve over a mesoscale

domain during the next 1 to 6 hours (Fig. 6.1a). Severe weather MCDs are

often used to highlight areas of meteorological interest and typically indicate

the likelihood that a watch will be issued during the next few hours. Per SPC

(2021b), these products are intended to provide extra lead time ahead of poten-

tial severe weather development and serve as advance notice to NWS partners

that a watch may be issued in the near future. It is the goal of SPC to publish

an MCD at least 1 to 2 hours prior to a watch issuance when workload and

predictability allow.
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Figure 6.1: Example of an (a) MCD and (b) Tornado Watch as issued by SPC

on 20 May 2019. The MCD was issued at 1617z and the Tornado Watch went

into effect at 1835z.

Given the stated lead time goals of MCDs and convective watches, SPC

forecasters must begin to plan when and where a watch will be issued several

hours before the impacts of severe weather hazards are observed. This process

is further complicated by NWS procedures which transfer ownership of a watch

product from SPC to the affected WFOs immediately after issuance (NWS

2021a). SPC maintains the responsibility to issue 30-minute watch status mes-

sages in which SPC forecasters highlight counties within any ongoing watches

that are no longer expected to experience severe weather and are recommended

to be removed from the watch product. However, any changes to a watch after

it is initially transmitted by SPC must be coordinated with and enacted by lo-

cal WFO forecasters who may be preoccupied issuing warnings, communicating

with partners, and performing other high-priority severe-weather operations.

As such, it is important that SPC forecasters correctly estimate the location

and time of severe weather development to ensure each watch optimally covers

the severe weather threat. A watch that does not adequately define the spatial
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or temporal domain of the convective weather hazards might require a local

extension by WFOs or the issuance of another watch by SPC. These actions ul-

timately increase workload on both SPC and WFO forecasters and may result

in delayed product dissemination, inconsistent messaging, and public confusion.

As with most products in the modern NWS watches, warings, and advi-

sories (WWA) paradigm, Severe Thunderstorm and Tornado Watches are static

products that are difficult to modify once issued. Although local WFOs have

the authority to cancel or add individual counties to an existing watch, large

changes typically require the issuance of a new watch by SPC. These limita-

tions of the current paradigm potentially result in nonuniform lead times across

the spatial domains of WWA products (Stumpf and Gerard 2021), where loca-

tions on the upstream side of a static product often see impacts from hazardous

weather sooner than those farther downstream. For example, consider Tornado

Watch 1231 issued for parts of Louisiana and Mississippi on 13 April 2022 in an-

ticipation of long-track supercells capable of producing tornadoes and damaging

wind gusts (Fig. 6.2). Approximately 2 hours after the watch was issued, the

first severe storms formed near the western edge of the watch and began pro-

ducing severe wind gusts and tornadoes eastward across the watch domain (Fig.

6.2b). Local WFOs cleared counties from the upstream side of the watch after

the storms passed those locations, but the downstream portion of the watch

remained unchanged. Finally, the still-severe storms approached the eastern

edge of the valid watch domain six hours after the watch was issued, and SPC

decided to issue a new Severe Thunderstorm Watch downstream to capture the

continuing severe weather threat (Fig. 6.2d). In this scenario, locations near the

western edge of the initial watch domain received about two hours of lead time

1https://www.spc.noaa.gov/products/watch/2022/ww0123.html
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before observing impacts of hazardous weather, while those on the eastern side

saw up to six hours of lead time from the product. This disparity of lead time

not only has the potential to be inequitable to populations within the watch

(Stumpf and Gerard 2021), but it can also lead to undesirable discrepancies in

public response. Krocak et al. (2019) found that members of the public tend to

express more uncertainty about how to respond to a severe weather threat as

lead time increases, and studies by Doswell (1999), Ewald and Guyer (2002),

and Hoekstra et al. (2011) argue that there may be a threshold of lead time

at which the public no longer deems the severe weather threat imminent or

actionable. As such, the increased lead time provided by downstream portions

of a watch may come at a detriment to public response.

To address these challenges of the current WWA system, NOAA’s Forecast-

ing a Continuum of Environmental Threats (FACETS; Rothfusz et al. 2018) ini-

tiative is tasked with exploring innovative methods that can shift NWS services

from static, deterministic products to a dynamic, probabilistic paradigm. Much

of FACETs-related research thus far has focused on storm-scale warning gen-

eration through dynamically evolving probabilistic hazard information (PHI).

Under the PHI concept, WFO forecasters would ideally provide a continuously

updating flow of storm-scale hazardous weather information that can be specif-

ically tailored to an end user’s location and threat tolerance (Kuhlman et al.

2008; Ling et al. 2015; Karstens et al. 2015, 2018; Harrison 2018; Krocak et al.

2019). However, initial evaluation of PHI in an experimental setting revealed

that key NWS partners often rely on deterministic products to trigger critical

decisions (Cross et al. 2019) and were generally unfamiliar with how those de-

terministic thresholds might transfer to a probabilistic paradigm (LaDue et al.

2017; Shivers et al. 2017; Klockow-McClain et al. 2020). As such, more recent
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Figure 6.2: Verification of Tornado Watch 123 on (a) 13 April 2022 19z, (b) 13

April 2022 22z, (c) 14 April 2022 00z, and (d) 14 April 2022 02z. Counties with

red outlines but no fill represent counties that were cleared from the original

watch. Adjacent watches are not shown for clarity.
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iterations of PHI have strived to combine the idealized continuous flow of in-

formation with the existing WWA structure by deriving static products from

the underlying probabilistic information. One such product has been realized

in the form of dynamically-updating deterministic warning polygons which au-

tomatically track along a severe storm’s path in real time. These non-static tor-

nado and severe thunderstorm warnings have been termed “Threats-in-Motion”

(TIM; Stumpf et al. 2011; Stumpf and Gerard 2021) and are currently being

proposed as a bridge between the deterministic WWA system and the proba-

bilistic PHI paradigm. Although TIM is primarily concerned with storm-scale

warnings, I hypothesized that the concept of deriving dynamically-evolving de-

terministic products from an underlying probabilistic paradigm could be further

developed and applied to address the operational challenges and limitations of

SPC Severe Thunderstorm and Tornado Watches. To this end, I collaborated

with SPC forecasters and management to design and test a prototype system

which applies ML techniques to produce a dynamic, first-guess watch product.

6.1 HREF-based ML guidance

In accordance with the collaborative co-production principles described in Chap-

ter 4, the first step towards developing a new first-guess watch product was to

become familiar with the current watch issuance process. Ideally, this would

have been achieved through in-person observations of the SPC lead forecast desk

during severe weather operations; however, restrictions related to the COVID-19

pandemic precluded any in-person shadowing during this collaboration. Instead,

I relied upon electronic communication with SPC forecasters, online training
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documentation, and personal experience from pre-pandemic shadowing oppor-

tunities to compile a working knowledge of the intricacies of convective watch

operations. Initial design-phase collaborations identified key objectives for the

first-guess watch guidance, including the operational need for both probabilistic

and deterministic outputs in a format comparable to existing watch products

(i.e., county-based forecasts). Based on the research conclusions of Gutter et al.

(2018) and Krocak et al. (2019), informal feedback from WFO forecasters, and

formal operational requirements specified by NWS directives, it was determined

that the first-guess watch products should optimally provide 2-3 hours of lead

time prior to the issuance of storm-based warnings or local storm reports (LSRs).

Finally, SPC forecasters and management suggested that these goals should be

achieved using both ML and non-ML techniques so that the two approaches

might be compared during later evaluations. Development and verification of

both versions of the guidance will be featured in this chapter.

Development of the ML-based watch guidance underwent many iterations

of the collaborative co-production design and production phases before a vi-

able prototype was considered ready for deeper evaluation. For example, initial

research assessed the skill of an ML model trained solely on the individual haz-

ard probabilities contained within SPC’s convective outlooks - human-issued

forecasts that indicate the likelihood of tornadoes, severe wind, or severe hail

within 25 miles of a point location during a convective day (SPC 2021b). This

ML model attempted to not only predict where a watch should be issued, but

also whether that watch should be a Tornado Watch or a Severe Thunder-

storm Watch. Although this initial guidance demonstrated some skill at iden-

tifying the type of watch that should be issued, SPC forecasters determined

that the location and areal coverage of the first-guess watch products produced
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considerable false alarm and did not provide the spatial specificity desired for

operational applications. Later iterations added prognostic synoptic-scale en-

vironmental parameters and derived storm-scale attributes from the HREF to

the ML training data to better localize the spatial placement of the first-guess

watches. However, these models continued to produce first-guess watches that

forecasters evaluated to be too nonspecific to be useful in SPC operations, and

the watch-type predictions also showed decreased skill from earlier attempts.

These failed designs are not discussed in detail in this dissertation for the

sake of brevity; however, it is important not to overlook the contributions of

this initial research and the collaborative discussion it generated. For example,

diagnosing model performance in these early iterations was found to be partic-

ularly challenging, as predicting both the type and location of a watch resulted

in increased model complexity and reduced interpretability. Therefore, the de-

cision was collaboratively made to only focus on predicting watch placement in

the next phase of model development. Additionally, feature importance analysis

performed on each iteration of the ML model was crucial for narrowing down

the list of input data until the best-performing features were subjectively identi-

fied. These lessons learned from failure ultimately led to the creation of a viable

ML-based first-guess watch product as detailed in the following subsections.

6.1.1 Feature Engineering

The most viable ML-based first-guess watch guidance was primarily trained us-

ing prognostic storm-scale attributes derived from the HREFv2.1 and HREFv3

ensembles. For this study, full 48-hour 00z and 12z HREFv2.1 forecasts were
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obtained for 10 March 2018 - 10 May 20212, and HREFv3 forecasts were col-

lected for 11 May 2021 - 31 May 2022 (the full period available). As described

in Chapter 5 and detailed by Roberts et al. (2019), the HREF is an ensemble

of opportunity composed of five deterministic CAM configurations and their

12-hour (6-hour for the HRRR) time-lagged cycles. Each CAM configuration

is compiled using different combinations of dynamical cores, initial and bound-

ary conditions, microphysics schemes, and PBL schemes which provide greater

forecast spread and more effectively samples forecast uncertainty than unified

convection-allowing ensembles (Roberts et al. 2020). This forecast spread is

perhaps most apparent in the derived storm-scale attributes produced by each

HREF member, as deterministic simulated convection often varies considerably

in spatial and temporal placement among the different CAM configurations.

However, storm-scale attributes have also been shown to be skillful predictors

of severe hazards when smoothed and upscaled to produce probabilistic “sur-

rogate severe” forecasts (Sobash et al. 2011, 2016; Roberts et al. 2019, 2020;

Gallo et al. 2021). Such surrogate severe fields were hypothesized to be strong

candidates for training an ML-based first-guess watch product as they not only

serve as proxies for explicit hazard prediction but also represent localized spatial

scales similar to that of operational SPC watches (as opposed to synoptic-scale

environmental parameters like MUCAPE). Additionally, these post-processed

fields inherently contain information about ensemble spread and forecast uncer-

tainty, thus removing the need to explicitly include individual output from each

ensemble member in the training data. This ultimately reduces the complexity

2The HRRR member of the HREFv2.1 was retroactively added to the HREFv2 archive

after development of the HREFCT had completed, hence the discrepancy in the available

dates shown here and in the previous chapter.
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of the ML model and makes the product robust to future changes in HREF

membership.

Probabilistic surrogate forecasts for tornadoes, severe hail, and damaging

wind were derived from the HREF 1-hour maximum updraft helicity (UH), 1-

hour maximum updraft vertical velocity (UVV), and 1-hour maximum 10-m

wind speed using a technique similar to that described by Roberts et al. (2019).

First, each storm-scale field was aggregated using a rolling 3-hour window to

produce a 3-hour maximum composite. This was performed in part to satisfy the

key project goal of providing up to 3 hours of lead time prior to severe weather

occurrence. By training a model on 3-hour composite data, the model forecast

at a given forecast hour is inherently valid for the 3-hour window associated with

that forecast hour. Recall that HREF forecast hours represent the end of the

valid forecast period, so a 12z HREF 1-hour forecast at f09 is valid for the 20z -

21z period. Thus a first-guess watch product derived from the 12z HREF at f09

(20z) would be based on data aggregated from f09 - f11 (20z - 23z) and provide

up to 3 hours of lead time for any surrogate severe hazards predicted within

that 3-hour window. Each aggregated field from a given ensemble member was

transformed into a binary representation of the forecast. Grid points within

each ensemble member’s 1-hour maximum UH forecast were set to a value of

1 where the forecast UH values exceeded a specified threshold (tuned during

model training) within a 40 km x 40 km neighborhood centered on that point.

All other points were set to 0. The binary UH fields were then averaged across all

ensemble members to produce a neighborhood maximum ensemble probability

(NMEP; Schwartz and Sobash 2017), or the ensemble probability that the UH

threshold will be exceeded anywhere within the 40-km neighborhood. Finally,

these probabilities were spatially smoothed via a Gaussian kernel with σ = 20
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Field Threshold Mask

NMEP 1-h Max UH 99.85%

NMEP 1-h Max UVV 20 ms−1

NMEP 1-h Max 10-m wind speed 35 kt ZComp > 30 dBZ

Mean 1-h Max 10 m - 500 mb Shear ZComp > 30 dBZ

Table 6.1: Derived storm-scale and environmental fields, their optimal ex-

ceedance thresholds, and spatial masks that make up the training dataset.

km (tuned during model training). An example of the smoothed UH NMEP can

be seen in Fig. 6.3b, and a detailed depiction of the data transformation process

is provided by Roberts et al. (2019), their Fig. 1. This process was repeated for

the 1-hour maximum UVV and 10-m wind speed fields, and the best exceedance

thresholds for each attribute were identified during model tuning as described

in the next section.

While UVV and 10-m wind speed exceedance thresholds were calculated

from fixed physical values, it was necessary to base the UH threshold on clima-

tological percentiles. Research by Potvin et al. (2019) and Gallo et al. (2021)

noted that some members of the HREF produce higher UH values on average

than others, and particularly those with an FV3 dynamical core. As such, the

predictive skill of a UH value of 75 m2s−2 in the HRRR member, for example,

may not be equivalent to that of the same value in the WRF ARW member. To

facilitate these differences in model climatology, the UH exceedance threshold

was tuned based on percentile values specific to each HREF member. It was

also necessary to mask the 1-hour maximum 10-m wind field such that only

grid points where the 1-hour maximum composite reflectivity (ZComp) exceeded

30 dBZ were included in the NMEP calculations. This step was required to
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exclude any non-convective wind speeds forecast by the HREF, particularly in

mountainous regions and in the stratiform region of extratropical cyclones dur-

ing the cool season. Finally, the ensemble-mean 10 m - 500 mb bulk wind shear

was identified as another promising indicator of severe weather potential, par-

ticularly in cases when the forecast UH signal is limited. A full list of training

variables and their tuned exceedance thresholds are provided in Table 6.1.

Both SPC parallelogram and county–based Tornado and Severe Thunder-

storm Watches were collected for 10 March 2018 - 31 May 2022 and mapped to

the HREF’s native 3-km grid. Each watch was aligned temporally with the most

recent valid HREF cycle and forecast hour, such that a watch valid from 20z

to 04z would be paired with the 12z HREF forecast hours f09 - f16. Examples

of the positive or target class (WATCH) were compiled by sampling every 50th

grid point (2% of all points) within each watch parallelogram at each valid hour.

The resulting examples then contained the processed forecast values of the four

input fields at the associated grid points and forecast hours. Similarly, examples

of the negative or null class (NO WATCH) were compiled by sampling every

50th grid point within at least an SPC Day 1 (D1) convective outlook marginal

(MRGL) risk category but not within a watch parallelogram for all hours when

a watch was in effect. Conditioning the null class examples to locations within

a MRGL ensured that non-severe and pre-severe convective environments were

well represented within the dataset and avoided placing too much emphasis on

trivial non-convective environments. Additionally, watch parallelograms were

used to specify the positive class instead of county-based watches as the sim-

pler geometries considerably reduced the otherwise prohibitive time required to

process the data. Note that the number of sampled grid points on a given con-

vective day was determined by the spatial size of the masking watch or MRGL
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Figure 6.3: (a) Example of grid point sampling within the SPC D1 MRGL risk

on 20 May 2019. Red dots indicate positive class (watch) samples while black

dots represent negative (no watch) samples. (b) Grid point sampling of NMEP

UH values > 99.85% of climatology on 20 May 2019. (c) Spatial distribution

of sampled Tornado Watch grid points from 10 March 2018 - 31 May 2022. (d)

As in (c) but for Severe Thunderstorm Watches.
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risk area such that a smaller mask region produced fewer examples than a larger

area. A depiction of the sampling process is shown in Fig. 6.3a,b.

Watches sampled for this research frequently occupied a large percentage

of the MRGL risk areas used to mask the dataset, leaving fewer grid points

available to sample for the negative examples. As such, the sampling process

resulted in a positive skew, with a total of 851,723 positive examples and 495,500

negative examples for the four-year period of study. Most watches were sampled

east of the Continental Divide, with the majority of Tornado Watches located

in the southern plains, Southeast, and along the Gulf Coast (Fig. 6.3c). Severe

Thunderstorm Watches were primarily sampled from the Great Plains, though

a secondary maximum of data was obtained along the Northeast corridor (Fig.

6.3d). Finally, null data points represented a largely uniform sampling east

of the Rocky Mountains and west of the Appalachians, with slightly reduced

density along the East Coast and Florida (not shown).

6.1.2 Model Design

Prior to model development, the dataset was separated into independent train-

ing, calibration, and testing sets. Examples from 10 March 2018 - 1 March 2020

were selected for the combined training and validation set, 10 March 2020 - 10

March 2021 was used for model calibration, and the test set contained examples

from 20 March 2021 - 31 May 2022. Ten days were withheld between datasets

to avoid cross-contamination from temporal autocorrelation within the features.

As noted in the previous section, the method used to sample data from the 3-

km HREF grid resulted in a greater number of positive class examples than

negative examples by a factor of about 1.72. To better balance the two classes
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NMEP UH > 99.85%

(%)

NMEP UVV > 20 m/s

(%)

NMEP 10-m Wind > 35 kt

(%)

Bulk Shear

(kt)

Class

4.67 10.7 0.00 29.0 NO WATCH

7.22 39.6 13.6 40.7 WATCH

57.9 79.5 79.2 47.9 WATCH

9.68 15.6 0.01 24.9 NO WATCH

15.5 36.1 47.8 22.0 WATCH

0.00 2.36 1.39 51.7 NO WATCH

11.4 44.7 0.00 18.5 NO WATCH

10.8 21.3 25.0 34.5 WATCH

Table 6.2: Example of input values within the training dataset. Note that the “Class” field was removed prior to training

and is only provided here for reference.
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for training, an oversampling approach was applied so that negative class exam-

ples in the training dataset were randomly selected with replacement until the

number of negative classes equaled the number of positive classes. This process

was applied independently for each convective day within the training dataset

to ensure equal representation of the two classes when subsetting by date in

later operations. The class ratios remained unchanged in the calibration and

testing datasets. An example of the training data is provided in Table 6.2.

This study initially trained and compared the ability of random forest (RFC)

and gradient boosted classifiers (GBC) to predict whether each example in the

dataset belonged to the WATCH or NO WATCH class. These ML models were

chosen for their ability to learn from multiple weak predictors as described in

Chapter 2, and for the ease with which probabilistic forecast confidence can

be extracted from the model predictions. A randomized grid search (Bergstra

and Bengio 2012) with K-fold cross validation (Kohavi et al. 1995) was used to

train and tune hyperparameters for each model while also identifying the opti-

mal exceedance thresholds for each NMEP feature. The training dataset was

equally partitioned into five folds, with at least one day of examples withheld

between each fold to preserve sample independence. One thousand randomized

combinations of hyperparameters and NMEP exceedance thresholds were then

trained on data from four of the folds and validated on the remaining fold.

This process was repeated five times for each model configuration (5-fold cross

validation) such that each fold was used for validation exactly once per combi-

nation. Finally, the model accuracy (Eq. 2.3) was calculated for each validation

fold, and the average accuracy of all five validation folds was reported as the

mean validation performance for that selection of model, hyperparameters, and
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Number of Estimators: 500 Learning Rate: 0.1

Max Depth: 19 Loss Function: Deviance

Min Samples/Split: 5 Max Leaf Nodes: None

Min Samples/Leaf: 5 Max Features: Auto

Table 6.3: Optimally-tuned hyperparameters used to train a scikit-learn GBC

(https://scikit-learn.org).

NMEP exceedance thresholds. Ninety-five percent confidence intervals were also

computed for each mean validation score from 10,000 bootstrapped samples.

Models trained using a GBC were found to consistently outperform RFCs

throughout the random grid search and cross validation process. Ultimately, the

best RFC configuration exhibited a mean validation accuracy of 0.862 (0.859

- 0.865), while the GBC achieved a maximum score of 0.914 (0.910 - 0.917).

From these results, the GBC was selected as the best model architecture and

the RFC was excluded from future analysis. The model tuning process also

found that the surrogate severe storm-scale attributes demonstrated the great-

est predictive skill when using exceedance thresholds of 35 kts for 10-m wind

speed, 20 m/s for UVV, and 99.85% of model climatology for UH. A list of the

tuned model hyperparameters is provided in Table 6.3. Initial analysis of the

GBC performance revealed that the model tended to produce overconfident class

predictions, with both positive and negative class probabilities heavily skewed

towards 0 or 1. This behavior resulted in probabilistic forecasts that were statis-

tically unreliable with the observed class frequency as indicated by a reliability

diagram systemically offset from the one-to-one line (not shown). To account

for this overconfidence, an isotonic regression model was applied by first running

the GBC on the calibration dataset and then training the isotonic regression
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on those predictions as described in Section 2.1.4 and (Burke et al. 2020). As

before, 5-fold cross validation was used to assess the isotonic regression perfor-

mance and the 95% confidence interval was calculated via 10,000 bootstrapped

samples. The resulting calibrated model did not exhibit any notable change in

accuracy scores, and all differences fell well within the 95% confidence interval.

However, the class probabilities produced by the GBC and isotonic regression

were found to be less skewed and more statistically reliable with observations.

All discussion of the GBC model herein refers to the GBC with the isotonic

regression applied.

6.1.3 Deriving First-Guess County-Based Watches

During the initial design phase of this research, SPC forecasters and manage-

ment indicated the operational desire for model output that is directly compa-

rable to the current watch paradigm. As such, it was not sufficient to provide

forecasters with a model that only predicts the probability of a watch at a

given location and time; rather, the model should provide derived first-guess

county-based watch predictions as well. To achieve this goal, it was first neces-

sary to identify the optimal forecast probability threshold to use when stratify-

ing WATCH and NO WATCH predictions. Full-CONUS probabilistic forecasts

were generated by applying the calibrated GBC model to each point within the

HREF 3-km grid for each forecast hour in the calibration dataset. The resulting

3-km watch probabilities were then interpolated to a 40-km grid and smoothed

with a Gaussian kernel (σ = 40 km) to reduce noise and better represent the

spatial scales at which SPC watches are typically issued. SPC watches were

also mapped to the 40-km grid and temporally aligned with the forecasts as

before, and the GBC probabilistic forecasts were compared to the SPC watches
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Figure 6.4: (a) Distribution of SPC Convective Outlooks with a watch from

2009 - 2019. (b) Distribution of Tornado and Severe Thunderstorm Watches

per modern SPC Convective Outlook category from 2009 - 2019.

on a gridpoint by gridpoint basis. This evaluation employed a similar strategy

to that used in Chapter 5, where the forecast probabilities were first stratified

into 10% bins centered on every 10% (5-15%, 15 - 25%, etc) prior to calculating

mean contingency table metrics for the full 1-year period.

A forecast probability of 70% was identified as the optimal threshold for

stratifying WATCH and NO WATCH forecasts, with a mean CSI of 0.24 and

a bias of 1.4 (Fig. 6.5a). However, anecdotal observations and bulk statistics

revealed considerable false alarm particularly in the lower forecast probabili-

ties. This was corroborated during initial evaluation by SPC forecasters who

noted that much of the false alarm was located in environments supportive of

precipitation but generally unfavorable for severe convective storms. To help

reduce the model tendency to overforecast the spatial extent of watch probabil-

ities, the SPC convective outlook was investigated as a potential way to further
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mask non-severe environments. A precursory climatology of SPC watch prod-

ucts revealed that about 65% of all D1 convective outlooks with a maximum

Slight (SLGT) risk category received a Severe Thunderstorm or Tornado Watch

at some point during the convective day, and this number increased to 93% for

Enhanced (ENH) risk days (Fig. 6.4a). Similarly, about 94% of all watches were

issued within at least a D1 SLGT risk category, and 99% of watches fell within

at least a MRGL (Fig 6.4b). These statistics strongly supported the application

of the SPC convective outlook as a mask to remove watch probabilities from

environments unsupportive of severe hazards; however, collaborative discussion

with SPC forecasters and management resulted in some uncertainty regarding

which outlook category to use as the threshold. To objectively address this ques-

tion, full-CONUS forecasts were once again generated for the 1-year calibration

dataset and compared to the SPC watches. This time, however, probabilities

were excluded from the verification process if they fell outside of a MRGL or

SLGT risk category. The 2000z D1 outlook was used to mask forecasts from

the 00z HREF up to forecast hour f12, and the 1300z D1 outlook was applied

for 12z HREF cycles up to f12. Similarly, the 1730z D2 outlook was used for

00z HREF cycles from f12 - f36 and the 0600z D2 outlook was selected for 12z

cycles through f48. Finally, the 0730z D3 outlook was applied to 00z HREF

forecasts f36 - f48. These outlook times were chosen because they represent the

most recent SPC forecasts at the time each HREF cycle becomes available for

post-processing.

Forecast performance and reliability were calculated for each threshold and

compared as shown in Fig. 6.5. Model performance notably increased when

only considering points within at least a MRGL, with a maximum mean CSI of
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Figure 6.5: GBC (a) mean performance and (b) mean reliability for 20200310

- 20210310 when not masked, masked by an SPC MRGL risk, or masked by an

SPC SLGT risk area. Shaded regions represent the 95% confidence intervals

from 10,000 bootstrapped samples.

0.29 and a bias of 1.05. Additional improvement was observed with the appli-

cation of a SLGT risk mask, though diminishing returns were noted compared

to the MRGL risk mask. Forecasts within at least a SLGT risk area exhibited

a maximum average CSI of 0.32 and a bias of 0.95. GBC forecast probabilities

also demonstrated improved statistical reliability as the categorical threshold

increased, but all models were still found to overforecast on average at most

probability bins. From these results, a set of criteria was proposed to derive de-

terministic county-based watches from the hourly probabilistic GBC forecasts.

A county was included within a first-guess watch product at a given forecast

hour if (1) the mean watch probability of all grid points within the county ≥

70% and (2) any part of the county falls within at least a SLGT risk area.

Counties are also removed from the first-guess watch when these criteria are

no longer met. This results in an hourly forecast watch product that ideally
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Figure 6.6: (a) Forecast watch probabilities and (b) derived first-guess county-

based watches for 20200520 23z. The blue polygons represent operational SPC

Severe Thunderstorm Watch parallelograms valid for this hour.
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extends about 3-hours downstream of a predicted severe weather hazard and au-

tomatically removes counties for locations where the severe weather threat has

passed. Recall that the GBC forecast probabilities were previously interpolated

to a 40-km grid and smoothed via a Gaussian kernel to remove noise and better

represent the scale of SPC watches. To ensure that there was at least one grid

point associated with each county in the CONUS, it was necessary to remap

these upscaled GBC probabilities back to a 3-km grid prior to calculating which

counties should be included in the deterministic first-guess watch product. Note

that the remapped probabilities still effectively provide the 40-km scaling but

subdivided into the higher-resolution grid. An example of a probabilistic and

deterministic watch forecast for 20 May 2020 23z is provided in Fig. 6.6.

6.2 SPC Severe Timing Guidance

A secondary goal of this research was to derive a first-guess county-based watch

product using non-ML techniques. SPC forecasters and management suggested

this alternative product as a less complex and more transparent baseline to com-

pare against the ML output for the purpose of becoming more familiar with how

the ML process differs from more traditional approaches. From the principles of

collaborative co-production, it was also hypothesized that the inclusion of this

less complex algorithm could give forecasters an increased sense of ownership of

the final product and ultimately enhance operational buy-in if the ML-derived

guidance proved successful.

This non-ML watch guidance was produced by leveraging the output from

an experimental product known as Severe Timing Guidance (Jirak et al. 2020).

The SPC Severe Timing Guidance is a prototype system that combines explicit
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convective timing and evolution details from the SREF and HREF with human-

issued SPC convective outlooks to provide probabilistic information about how

and when the severe weather threat will evolve during a convective day. As de-

scribed by Jirak et al. (2020), the Severe Timing Guidance is produced by first

geometrically closing each discrete probability contour of the tornado, wind, and

hail D1 convective outlook such that each contour becomes a geometrically-valid

polygon. This step primarily fixes instances where the original outlook con-

tours intersect with the outer bounds of the National Digital Forecast Database

(NDFD; Glahn and Ruth 2003) domain and thus do not form a closed geometric

shape. The closed outlook probabilities are then mapped to the HREF 3-km

grid and the discrete probability contours are converted to gridded continuous

probabilities via linear interpolation (Loken et al. 2020). This method ensures

that the locations of the probability contours issued by SPC forecasters are

preserved and that only points within the bounds of the original contours are

modified. An example of a continuous-probability SPC outlook is provided by

Jirak et al. (2020), their Fig. 1.

The next step of the Severe Timing Guidance algorithm is to derive convec-

tive timing information for each severe weather hazard from HREF storm-scale

attributes and SREF environmental parameters. This method pairs the ag-

gregated 4-hour HREF NMEP UH ≥ 75 m2s−2 with the 40-km neighborhood

ensemble probability that the SREF significant tornado parameter (STP), MU-

CAPE, and effective-layer wind shear fields will exceed hazard-specific thresh-

olds during the same 4-hour period. The environmental fields and exceedance

thresholds are different for each hazard (tornado, wind, and hail), and those

values are provided in Table 6.4. The HREF/SREF calibrated 4-hour tornado,
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Hazard HREF SREF

Tornado UH ≥ 75 m2s−2 STP ≥ 1

Hail UH ≥ 75 m2s−2 MUCAPE ≥ 1000 J/kg

Eff. Shear ≥ 20 kts

Wind UH ≥ 75 m2s−2 MUCAPE ≥ 250 J/kg

Eff. Shear ≥ 20 kts

Table 6.4: From Jirak et al. (2020): “Probabilistic inputs from the HREF and

SREF to the calibrated hazard guidance.”

wind, and hail probabilities are then obtained by calculating the historical fre-

quency of each hazard within 25 miles of a point location given the predicted

combination of UH and environmental NMEPs during the valid forecast period.

Finally, the gridded HREF/SREF calibrated probabilities are scaled relative

to the SPC D1 Convective Outlook such that a scaling factor < 1 indicates

that the full-period, grid point-dependent SPC probabilities are less than the

4-hour HREF/SREF guidance. This scaling factor is applied to each 4-hour

HREF/SREF calibrated hazard probability to ensure that the Severe Timing

Guidance does not exceed probability values issued by SPC forecasters and that

lower guidance probabilities are increased to be consistent with SPC messaging.

These scaled probabilities are then smoothed via a gaussian kernel to produce

the final hourly overlapping 4-hour tornado, wind, and hail probabilities for the

convective day (Jirak et al. 2020).

The inputs used to derive the SPC Severe Timing Guidance algorithm ex-

hibit many parallels to those used to train the ML-based first-guess watch prod-

uct as described previously. For example, both techniques utilize the HREF
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NMEP UH as a proxy for severe hazards, and both methods temporally aggre-

gate these storm-scale and environmental attributes to produce rolling windows

of lead time. Because of these similarities, the experimental SPC Severe Timing

Guidance was selected as a starting point to derive a non-ML first-guess watch

product. First, the gridded Severe Timing Guidance individual hazard probabil-

ities for a given forecast hour were mapped to their equivalent SPC Convective

Outlook categories. For example, a grid point with a Severe Timing Guidance

tornado probability between 5% - 10%, wind probability between 15% - 30%, or

hail probability between 15% - 30% was considered equivalent to a SLGT risk.

TThe maximum category between the three hazards was then identified for each

grid point and assigned a numerical value corresponding to that risk category

(1 = MRGL, 2 = SLGT, etc). Finally, first-guess county-based watches were

derived using similar criteria as that defined for ML-based watches. Specifi-

cally, a county was included within a first-guess watch at a given forecast hour

if (1) the maximum Severe Timing Guidance equivalent risk category within the

county was at least a SLGT (≥ 2), and (2) any part of that county was included

within an SPC convective outlook SLGT risk contour. This second condition

was primarily included to be consistent with the ML criteria, as the Severe

Timing Guidance by definition should never produce probabilities greater than

an equivalent SLGT outside of a SLGT risk contour in the official convective

outlook. An example of the Severe Timing Guidance first-guess watch product

for 23z 13 April 2022 is provided in Fig. 6.7.
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Figure 6.7: (a) SPC Severe Timing Guidance categorical forecast and (b) de-

rived first-guess county-based watches for 20220413 22z. The red and blue

polygons represent valid operational SPC Tornado and Severe Thunderstorm

Watch parallelograms respectively.
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6.3 Results and Discussion

The ML and Severe Timing Guidance first-guess watch products were objec-

tively evaluated on the 14-month independent test set of 20 March 2021 - 31

May 2022. Hourly, full-CONUS, county-based forecasts were generated for each

convective day within the evaluation period where the SPC 13z D1 convective

outlook contained at least a SLGT risk, and this resulted in a total of 244 days

available for verification. During initial collaborations with SPC forecasters and

management, two primary goals of the evaluation phase were identified. First,

any verification should identify how well the ML and Severe Timing Guidance

first-guess watches align spatially and temporally with the official SPC Tornado

and Severe Thunderstorm Watches valid during the same period. These met-

rics are intended to assess whether the forecast products are able to emulate

the timing and spatial specificity of a human-issued watch. The second goal of

the objective evaluation is to determine how well the forecast guidance is able

to correctly predict the true severe weather hazard regardless of when or where

SPC issued a watch. This question removes the assumption that SPC watches

are always optimal and avoids penalizing the guidance for predicting a watch

where severe weather occurred but an operational watch was not issued. By

collaborating with SPC forecasters to identify the criteria with which to evalu-

ate these first-guess watch products, this research adheres to the principles of

collaborative co-production and ensures the experimental products are assessed

in the ways that matter most for operational application.

Prior to this evaluation, it is important to note several caveats in this anal-

ysis. First, there are differences in the inherent lead time of the ML and Severe

Timing Guidance products. Inputs to the GBC model are aggregated over a
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3-hour rolling window to approximate a 3-hour lead time prior to severe weather

occurrence; however, the SPC Severe Timing Guidance is derived from rolling

4-hour periods. As such, the hourly Severe Timing Guidance first-guess watch

product is produced in such a way that a predicted watch at a given forecast

hour should ideally provide up to 4 hours of lead time prior to the observation

of severe weather. This discrepancy complicates comparisons of the ML and

Severe Timing Guidance products, as the Severe Timing Guidance should in

theory produce first-guess watches earlier than the ML approach. Future it-

erations of this research are planned to better align the temporal component

of the two methods; however those results are not available for this disserta-

tion. Additionally, SPC watches are designed to produce about 1 hour of lead

time for non-tornado hazards and 2 hours of lead time for tornadoes. These

differences in intended lead time could result in situations where the first-guess

guidance recommends a watch earlier than the operational watches were issued,

and this may be desirable behavior. Another factor to consider is that the dy-

namic paradigm represented by the hourly ML and Severe Timing Guidance

first-guess watch products is not entirely compatible with the static nature of

operational Tornado and Severe Thunderstorm Watches. An operational watch,

for example, may initially cover a large spatial area even though storms may

not move into the downstream portion of the watch until several hours after

issuance. Conversely, the forecast guidance products are designed to dynam-

ically evolve with the severe weather threat, such that locations downstream

should ideally only be added once they are within 3-4 hours of the predicted

hazard. This may result in instances where the forecast guidance technically

underforecasts the spatial extent of an SPC watch at a given forecast hour, but

124



the reduced coverage may be a desirable behavior. These limitations will be

discussed in greater detail in the following subsections and in Chapter 7.

6.3.1 Comparison to SPC Watches

The first stated goal of this objective evaluation is to assess how well the forecast

guidance emulates the timing and placement of SPC Severe Thunderstorm and

Tornado Watches. Deterministic, county-based, first-guess watches produced by

the ML and Severe Timing Guidance algorithms were first mapped to a 40-km

grid for each forecast hour in the evaluation dataset. SPC watches were also

mapped to the same 40-km grid, and the products were compared on a grid

point by grid point basis. Contingency table metrics were calculated for the

ML and Severe Timing Guidance using the operational SPC watches as “true”

observations. As such, a predicted first-guess watch at a given grid point verified

as a TP only if there was an SPC-issued Severe Thunderstorm or Tornado Watch

valid at that grid point and forecast hour. The resulting performance metrics

serve as an indication of how well the guidance predicted exactly when and

where an operational watch would be valid on a given convective day (within 40

km and 1 hour). Because both the ML and Severe Timing Guidance forecasts

are designed to provide greater lead time than operational SPC watches, only

forecast hours with at least one valid SPC watch were included in this analysis.

This limitation was applied to avoid penalizing the guidance for recommending

first-guess watches earlier than those issued by SPC; however it also precludes

evaluation of the true false alarm produced by the models. As such, the results

presented in this subsection are conditional, subject to the existence of at least

one operational Severe Thunderstorm or Tornado Watch at a given hour. A
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more detailed discussion of the products’ true false alarm is included in the

next subsection.

The conditional POD, FAR, CSI, and bias were calculated for each predictive

model for each convective day, and these values were averaged across the full

14-month evaluation period (Fig. 6.8). Note that the SPC Severe Timing

Guidance is only run through forecast hour f24, whereas the HREF–based ML

guidance is available through f48. To ensure a fair comparison between the two

products, only forecasts up to f24 were considered for these calculations. The

verification presented herein is for ML forecasts generated from the 12z HREF

and Severe Timing Guidance based on the 12z HREF and 13z D1 convective

outlook. Similar results were noted for the 00z HREF forecast cycle. Both the

ML and Severe Timing Guidance first-guess watches exhibited a mean CSI of

0.32, though the Severe Timing Guidance was found to have a slightly larger

95% confidence interval (0.27 - 0.38) compared to that of the ML guidance

(0.28 - 0.36). At first glance, the ML guidance appeared to generally exhibit

a higher POD and FAR compared to the Severe Timing Guidance, suggesting

that the ML approach produced a greater frequency of positive class predictions

(both TP and FP) than the non-ML approach on average. However, these

differences were not found to be statistically significant at the 95% confidence

level. Indeed, both products demonstrated little forecast bias, with mean scores

of 1.09 (0.99 - 1.23) for the ML-based approach and 0.89 (0.78 - 1.03) for the

Severe Timing Guidance. Furthermore, the optimal forecast bias score of 1 was

observed to fall within the 95% confidence intervals for each model, indicating

that neither product strongly overforecast or underforecast the areal coverage

of SPC watches at times when one was in effect.
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Figure 6.8: Mean performance of the 12z HREF-based ML and 13z SPC Severe

Timing Guidance deterministic, first-guess, county-based watch predictions for

20 March 2021 - 31 May 2022. Shaded regions denote 95% confidence intervals

from 10,000 bootstrapped samples.
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Greater nuance in forecast performance was observed when calculating the

mean conditional CSI on an hourly basis as shown in Fig. 6.9. The HREF-based

ML guidance exhibited greater performance than the Severe Timing Guidance

on average from the beginning of the forecast period through D1 19z (f07). The

two products demonstrated similar CSI scores from D1 20z - 03z (f08 - f15),

then the Severe Timing Guidance outscored the ML guidance from about D1

04z - 06z (f16 - f23). These results suggest that the HREF-based ML watches

may better align with SPC watches during the beginning of a severe weather

event, while the Severe Timing Guidance may better capture the end of the

event. Intuitively, these discrepancies were first thought to be a result of the

increased inherent lead time built into the design of the Severe Timing Guidance

product as described previously. However, anecdotal case studies revealed that

the Severe Timing Guidance actually tends to produce first-guess watches later

in an event than the ML guidance, and this resulted in the product missing

the initial timing of SPC watches by up to several hours in some events. These

observations will be discussed further in Chapter 7. The ML-based guidance

demonstrated a maximum hourly CSI of 0.37 (0.35 - 0.38) at D1 21z (f09), while

the Severe Timing Guidance maximum CSI of 0.38 (0.31 - 0.39) occurred one

hour later at D1 23z (f10). Both products exhibited a strong diurnal signal

in the mean verification scores, with the worst mean performance occurring

around 12 - 16z during both the D1 and D2 periods. Note that there was also a

strong diurnal signal in the number of forecasts available for evaluation, as SPC

watches were less common during the overnight hours. As such, these reduced

performance metrics may be influenced in part by a much smaller sample size

compared to that of the afternoon and evening hours. Alternatively, the reduced

forecast performance may be due in part to dirunal variation in the HREF
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Figure 6.9: A comparison of 12z HREF-based ML and 13z Severe Timing Guid-

ance mean conditional performance as a function of lead time between 20 March

2021 - 31 May 2022. The shaded regions represent the 95% confidence intervals

from 10,000 bootstrapped samples. Forecast lead time increases to the right.

ensemble climatology, resulting in reduced nocturnal signal in the storm-scale

attributes that may not meet the exceedance thresholds described in sections

6.1.1 and 6.2. This will need to be studied further in future iterations of this

research.

A secondary performance maximum was noted for the HREF-based ML first-

guess watch product, with a score of 0.32 (0.31 - 0.34) at D2 22z (f39). This is

an encouraging result as it indicates that the ML guidance is skillful in the D2

period with performance only slightly degraded from the D1 timeframe. It is

therefore conceivable that these first-guess watch products could have value at

forecasting the placement of SPC watches at least 36 hours in advance of a severe

weather event. Such potential lead time for a watch product may allow SPC

forecasters to better plan their watch and MCD strategies, staffing, and shift
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activities long before workload increases due to severe weather operations. This

was a key motivating factor of this research, and these results are encouraging

for future operational impact.

As described in Chapter 2, one limitation of grid-point-dependent contin-

gency table metrics is that it requires the forecast to exactly match observations

within a spatial and temporal window specified by the data. In this case, a first-

guess watch only verified if a Severe Thunderstorm or Tornado Watch was valid

within a 40-km and 1-hour neighborhood of the forecast. However, this does

not address the value of a forecast that is close to but not quite aligned with ob-

servations. For example, is a first-guess watch invalid because it did not include

one county that the SPC watch contained? Should a forecast be penalized be-

cause it recommended a watch one hour earlier than the SPC? To address these

challenges, a mean FSS (Eq. 2.10) was calculated for both the HREF-based ML

and the SPC Severe Timing Guidance first-guess county-based watch forecasts.

The FSS was computed at increasing horizontal scales from 40 km to 480 km in

40-km increments, and at time windows of 0 hours, ± 1 hour, and ± 2 hours to

identify how the guidance verifies with increasing spatial and temporal buffers

(Fig. 6.9). The ML guidance exhibited greater FSS on average than the Severe

Timing Guidance at all horizontal and temporal scales, with a FSS of 0.43 (0.42

- 0.44) compared to 0.37 (0.36 - 0.39) at native 40 km horizontal spacing and no

temporal buffer. FSS generally increased with increasing horizontal scales for

both products, but diminishing returns were observed beyond a horizontal scale

of about 300 km. Significant increases (at 95% confidence) were noted with a

temporal window of ± 1 hour for both the ML and Severe Timing Guidance

forecasts, with FSS increasing to 0.46 (0.45 - 0.47) and 0.42 (0.40 - 0.43) at

40 km spacing, respectively. Additional improvements were noted with a ± 2
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Figure 6.10: (a) 12z HREF-based ML and (b) 13z SPC Severe Timing Guidance

FSS as a function of horizontal and temporal scales for 20 March 2021 - 31 May

2022. The shaded regions represent the 95% confidence intervals from 10,000

bootstrapped samples.

hour temporal buffer, though these differences were not found to be statistically

significant compared to the ± 1 hour buffer.

The results from this FSS analysis suggest that the first-guess watch forecasts

produced by the ML and Severe Timing Guidance may be offset temporally

from SPC watches by 1 to 2 hours. This appears to particularly apply to

the Severe Timing Guidance product, which saw more notable improvement

with a ± 1 hour buffer than the ML-based approach. These results align with

the hourly verification metrics and anecdotal observations discussed previously,

which also indicated the Severe Timing Guidance first-guess watches tend to

be forecast later in an event than those produced by the ML guidance and

SPC. Additionally, this analysis suggests that both products may be spatially

offset from SPC watches by up to several hundred kilometers in some instances.

However, it is unclear if these spatial displacements are true misforecasts or

a side effect of the partially-incompatible dynamic and static paradigms. For
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example, the ML or Severe Timing Guidance forecasts may predict a first-guess

watch for an area that falls downstream of an ongoing severe weather threat,

dynamically expanding the leading edge of the watch and clearing the trailing

counties as the storms evolve. If the SPC has a static Severe Thunderstorm

or Tornado Watch in effect at that hour but haven’t yet issued a downstream

watch, then the first-guess watch would be deemed spatially displaced from

the “true” observations. Such discrepancies in the two paradigms make direct

comparisons of the forecast guidance and SPC watches challenging, and indicate

the need for more subjective evaluation. This is addressed in Chapter 7.

6.3.2 Capturing the Severe Weather Threat

The second objective of this evaluation was to assess how well the HREF-based

ML and SPC Severe Timing Guidance first-guess watch products capture ob-

served severe weather hazards regardless of when or where SPC issued a watch.

To accomplish this, LSRs were obtained for each day in the evaluation database

and filtered to exclude any reports that fell outside of a 13z D1 SLGT risk area.

Filtering reports by the SPC convective outlook avoids penalizing the watch

guidance for missing severe weather events in locations where it was systemat-

ically precluded from producing a forecast and keeps the verification consistent

with methods described in the previous subsection. Mean contingency table

metrics were calculated for the ML and Severe Timing Guidance first-guess

county-based watch products using a similar method to that described by An-

thony and Leftwich Jr (1992). First, POD was calculated as the percentage of

LSRs contained within a first-guess watch at the time of the report. Similarly,

the percent verified (PV) was defined as the percentage of counties included in

the first-guess watch product that contained an LSR during the watch’s valid
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duration. Finally, Anthony and Leftwich Jr (1992) proposed a modified calcu-

lation of FAR to assess the spatial false alarm of watch products. This modified

FAR accounts for the spatial distribution of LSRs within a watch product by

first mapping those reports to a 40-km grid. Next, an estimated area of impact

is assigned to each LSR by defining a 200 x 200 km (5 x 5 40-km grid blocks)

neighborhood centered on the report. Anthony and Leftwich Jr (1992) then de-

fine the “good area percentage” (A) as the cumulative area of impact contained

within a watch divided by the total area of that watch. The modified FAR of

the watch guidance for a given convective day is then 1 − A, where A is spa-

tially summed for all LSRs and predicted watch counties during the convective

day. Note that the modified FAR proposed by Anthony and Leftwich Jr (1992)

also includes a temporal component which was excluded for this study, as the

metrics were calculated on an hourly basis before being aggregated into daily

verification scores.

These metrics were computed for both the HREF-based ML and Severe

Timing Guidance watch products and averaged across the 14-month evaluation

period. Operational SPC Tornado and Severe Thunderstorm Watches were also

evaluated using this method, and the mean CSI was calculated from the POD

and modified FAR (Fig. 6.11). As before, the ML and Severe Timing Guidance

watch products achieved similar mean CSI scores of 0.39 (0.37 - 0.41) and 0.35

(0.33 - 0.38) respectively. However, more notable differences were observed

between the products’ POD and FAR. The ML watch guidance was found to

have a mean POD of 0.65 (0.61 - 0.71), significantly greater than the POD of

0.48 (0.44 - 0.51) exhibited by the Severe Timing Guidance. Conversely, the

Severe Timing Guidance demonstrated markedly improved FAR over the ML,

with mean scores of about 0.41 (0.36 - 0.48) and 0.52 (0.48 - 0.57) respectively.
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Figure 6.11: Mean performance of the 12z HREF-based ML, 13z Severe Timing

Guidance, and operational SPC watch products evaluated against local storm

reports for 20 March 2021 - 31 May 2022. The shaded regions represent the

95% confidence intervals from 10,000 bootstrapped samples.
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From these scores, the ML guidance was determined to have an overforecast bias

of about 1.3 (1.2 - 1.5) while the Severe Timing Guidance underforecast with

a bias of 0.8 (0.7 - 0.9). These results are further supported by the mean PV

of each model, with an average 37% of ML-predicted watch counties verifying

with an LSR on a given convective day. In contrast, 57% of counties predicted

by the Severe Timing Guidance verified with an LSR on average.

Both forecast guidance products exhibited notable skill at predicting ob-

served severe weather hazards; however, the human-issued SPC Tornado and

Severe Thunderstorm Watches outperformed the two algorithms by a consider-

able margin. Operational watches had a mean POD of 0.75 (0.71 - 0.79) and

a mean FAR of 0.38 (0.32 - 0.42) over the 14-month evaluation period, result-

ing in an average CSI of about 0.53 (0.50 - 0.55). SPC watches did exhibit a

tendency to overforecast with a mean bias of 1.2 (1.1 - 1.3), and about 51% of

operational watch counties verified with an LSR on average. This impressive

performance serves as a reminder of the skill and expertise of SPC forecasters

and again demonstrates the importance of collaboration to ensure that expert

knowledge is incorporated into product design. However, it should also be noted

that SPC forecasters had access to real-time data including radar and satellite

observations which aided in the issuance of the watch products. This gives

SPC watches an inherent advantage over the ML and Severe Timing guidance

forecast products.

The objective evaluation thus far has revealed the skill of the forecast guid-

ance and operational SPC watches to capture the severe weather threat at time

of occurrence; however, watch products are intended to provide some amount

of lead time as well. To assess this aspect of the ML and Severe Timing Guid-

ance forecasts, each LSR in the test dataset was mapped to the county it was
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Figure 6.12: 12z HREF-based ML, 13z Severe Timing Guidance, and opera-

tional SPC watch product POD as a function of lead time for (a) all reports,

(b) tornado reports, (c) wind reports, and (d) hail reports for 20 March 2021 -

31 May 2022.
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reported in, and a check was performed to determine if the LSR fell within a

first-guess watch at the time severe weather was observed. LSRs not contained

within a watch at time of observation were assessed no lead time from the watch

product and set aside for later operations. Note that some LSR locations may

have been included within a watch product prior to issuance, but the location

was removed from the watch by the time severe weather was observed. While

it may be argued that those locations still received lead time from the watch

product, that lead time was not continuous and thus excluded from this eval-

uation. LSRs contained within a watch at the time of the report were further

assessed by comparing the report to incrementally earlier watch forecasts in

1-hour steps. When a watch forecast that no longer contained the location of a

report was identified, the lead time for that LSR was calculated by subtracting

the time of the earliest forecast hour with a verifying watch from the time of the

LSR. This lead time was then binned into 15-minute intervals and cumulatively

plotted for each hazard as shown in Fig. 6.12. Here, POD refers to the fraction

of all reports contained within a watch at a given lead time.

The ML-derived first-guess watch product was found to produce very similar

lead times to operational SPC watches overall, and particularly for tornado and

damaging wind reports. About 60% of tornado reports received a lead time

of at least 2 hours from operational watches, while the ML guidance captured

about 64% of tornado reports at this lead time (Fig. 6.12b). Both products

contained about 52% of wind reports with at least 2 hours of notice (Fig. 6.12c).

Conversely, the SPC Severe Timing Guidance first-guess watches tended to

capture fewer reports overall, and thus exhibited reduced POD at time frames

of 2 hours or less. However, these discrepancies vanished at lead times greater

than 3 hours, with all three watch products exhibiting similar performance
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at longer time frames. More notable differences in the products’ performance

were observed for hail reports, with the ML-guidance not only capturing more

reports at time of observation than the operational SPC watches (78% and 73%

respectively; Fig. 6.12d). The ML first-guess watches captured 60% of hail

reports at lead times of at least 2 hours and 28% at lead times of at least 4

hours. Conversely, the operational SPC watches only contained about 40% of

hail reports at 2 hours and 13% at 4 hours. The SPC Severe Timing guidance

captured 43% of hail reports at 2 hours and 18% at 4 hours. It is unclear why the

ML guidance exhibited such improved performance for hail reports specifically,

and this will be a topic of future study.

Lead time calculations were also computed for NWS-issued Tornado (TOR)

and Severe Thunderstorm (SVR) storm-based warnings to determine how well

the guidance predicted the timing and placement of local storms assessed to

be potentially severe by expert forecasters (Fig. 6.13). The ML guidance was

once again found to perform similarly to the operational SPC watches for TOR

warnings, with about 65% of TOR warnings captured by the ML product at 2

hours of lead time and 61% contained by an SPC watch. However, SPC watches

exhibited greater POD at shorter lead times, such that 89% of TOR warnings

were contained within an operational watch at time of issuance compared to

82% for the ML guidance. The SPC Severe Timing guidance was again found

to capture fewer warnings overall, with only 70% of TOR warnings captured by

the non-ML first-guess watches.

The ML-derived watch product provided notably greater lead time for SVR

warnings than the operational SPC watches, capturing 60% and 50% of warnings

with at least 2 hours of lead time, respectively. This discrepancy may be in part

a result of SPC watch product definitions, which specify Severe Thunderstorm
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Figure 6.13: 12z HREF-based ML, 13z Severe Timing Guidance, and opera-

tional SPC watch product POD as a function of lead time for (a) all warnings,

(b) TOR warnings, (c) SVR warnings for 20 March 2021 - 31 May 2022.
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Watches should produce at least 45 minutes of lead time prior to the first non-

tornado severe weather event. As the ML guidance was designed with the intent

to provide 3 hours of lead time for all severe observations, it makes sense that

the product would produce greater lead time than the SPC operational watches

for non-tornado events. It should be noted that the Severe Timing Guidance

first-guess watches provided equivalent or reduced lead time compared to the

other watch products, even though it was produced using inputs aggregated over

the longest temporal window (4 hours compared to a 3-hour period for the ML

guidance). As such, the Severe Timing Guidance should theoretically produce

the greatest lead time of the forecast products, but this was not observed.

As previously noted, the Severe Timing Guidance first-guess watch algorithm

results in fewer watch predictions than the ML guidance, and consequently the

guidance has a reduced overall POD. It is possible that the conservative spatial

forecasts produced by the non-ML guidance also limit the maximum achievable

lead time of the product, as the smaller forecasts may be more sensitive to

spatially or temporally displaced HREF/SREF forecasts. Additional work is

needed to assess these discrepancies, and future work is planned to compare the

ML and non-ML products using the same temporal windows and inherent lead

times.

To summarize, both the ML and SPC Severe Timing Guidance first-guess

watch products were found to be skillful at emulating human-issued SPC watches

and capturing observed severe weather hazards. The ML-based approach tends

to overforecast in both instances, with increased POD and FAR over the non-

ML algorithm. Conversely, the Severe Timing Guidance demonstrated an un-

derforecast of both SPC watches and observed severe weather hazards, resulting
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in decreased POD and FAR. The ML-derived first-guess watch products gener-

ally provide equivalent or greater lead time than operational SPC watches on

average, with notable improvement observed for hail reports and SVR warn-

ings. These results are very encouraging, particularly for the ML guidance, but

also suggest potential room for additional improvement. To further assess how

the products perform in real time severe weather scenarios, the ML and Severe

Timing Guidance products were presented to a combination of expert opera-

tional forecasters and researchers as part of the 2022 HWT SFE for subjective

analysis. Their evaluation is discussed in detail in the next chapter.
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Chapter 7

Results from the 2022 Hazardous Weather

Testbed

As described in Chapter 4, a key step of the collaborative co-production process

is to iteratively present product prototypes to intended end users for frequent,

subjective evaluation. For example, various experimental versions of the HRE-

FCT guidance described in Chapter 5 were evaluated by SPC forecasters for

more than a year before the final product was operationally implemented by

the NWS. In similar fashion, prototypes of the ML and SPC Severe Timing

Guidance first-guess watch products were originally intended to be subjectively

evaluated by SPC forecasters over several seasons of severe weather operations.

Unfortunately, restrictions related to the COVID-19 pandemic greatly reduced

access to SPC operations, and in-person evaluation was not possible during

this phase of the research. Additionally, restricted network access and remote

work orders prevented deployment of a web-based display or other experimen-

tal interface with which forecasters could virtually assess the performance of

the guidance on a regular basis. Instead, SPC forecasters provided targeted

evaluation feedback through scheduled virtual meetings, during which specific

case studies were presented and discussed. While these evaluations provided

valuable feedback, the limited sample size and case studies precluded subjective

142



evaluation of the watch products’ long-term performance. To increase the num-

ber of product evaluations, the forecast watch products were included as part of

the 2022 HWT SFE and subjectively assessed by a combination of operational

forecasters, researchers, developers, and students.

7.1 Testbed Design

The 2022 SFE was conducted as part of NOAA’s HWT and co-led by NSSL and

SPC over a 5-week period from 2 May 2022 - 3 June 2022. Similar to the pre-

vious year’s SFE described in Chapter 3, this experiment was held virtually via

the Google Meet video-communication service, and participants interacted with

web-based interfaces to assess and evaluate experimental products. The 2022

SFE hosted a total of 166 participants over the 5-week experiment, including

individuals from local NWS WFOs, NOAA research laboratories, universities,

cooperative institutes, and international agencies. This was the largest single

experiment in the history of the SFE, and participation exceeded the record

of 133 SFE attendees set during the previous year. To accommodate such a

large group, experimental product evaluations were divided into four groups,

and each attendee participated in one group of evaluations per day on Tues-

day through Friday. Mondays were reserved for introductions, and no product

evaluations occurred on that day. These groups then rotated every other day

such that each participant experienced two of the four evaluation groups over

the course of the experiment. Previous iterations of the virtual SFE instructed

participants to rotate groups each day, allowing every attendee to partake in

each evaluation group once during the week. However, feedback from the 2021
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SFE indicated that some participants desired more than one opportunity to ob-

serve an experimental product to better understand and assess its performance.

By rotating participants every other day, the 2022 SFE enabled attendees to

observe and evaluate how experimental products performed on two consecutive

days of real-weather cases; however, this also meant that each participant was

only exposed to half of the experimental products demonstrated in the SFE.

The ML and Severe Timing Guidance first-guess watch products were in-

cluded as part of the fourth group of evaluations, known as Group D or the

“medley” group. Where products evaluated in the other three groups tended

to fit a group theme (e.g., derived probabilistic guidance, deterministic CAM

configurations, ensemble modeling, etc.), Group D contained a variety of mostly

unrelated experimental products including several innovative applications of ML

for the prediction and analysis of severe weather hazards. Developers of each ex-

perimental product provided a brief introduction to the group each day, and the

participants were then given approximately 10 minutes to independently explore

the product and fill out an associated evaluation survey. At the end of the eval-

uation period, the group reconvened and openly discussed their thoughts about

the product performance, giving developers the opportunity to ask questions,

explain design decisions, and receive direct feedback from their prospective end

users. The full 2022 SFE program overview and operational plan is provided in

NSSL (2022).

The first-guess county-based watch products were presented to SFE partici-

pants via an interactive webpage with three graphic panels as shown in Fig. 7.1.

Hourly forecasts from the SPC Severe Timing Guidance were displayed in the

left-most panel, the ML guidance forecasts were presented in the middle panel,

and the “observed” SPC-issued Severe Thunderstorm and Tornado Watches
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Figure 7.1: Web display presented to 2022 SFE participants while evaluating the

performance of the 12z HREF-based ML and 13z SPC Severe Timing Guidance

first-guess watch products. Blue polygons represent SVR warnings valid at the

displayed hour, blue squares indicate wind LSRs, and green circles represent

hail LSRs.

were provided in the right-most panel. An interactive slider bar at the top of

the webpage enabled participants to step through each available forecast hour

(17z - 08z), and overlays of LSRs, NWS storm-based warnings, and the 13z D1

SPC outlook could be toggled on all three panels. The spatial scope of the eval-

uation was limited to a rectangular domain of 15◦ longitude × 8.721◦ latitude,

and this domain was set each day by the SFE facilitators to best contain the

severe weather event. All evaluations of the ML and Severe Timing Guidance

first-guess watches were performed for the previous day’s severe weather.

The evaluation survey presented to Group D participants consisted of five

questions, including three open response and two matrix-table questions. The

first two questions contained metadata, asking respondents to enter the date

of the forecast being evaluated and their unique participant number. These

questions were included on all evaluation surveys during the 2022 SFE and

enabled facilitators to remove results from participants who did not agree to
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share their responses for scientific study. Question 3 (Q3) asked respondents to

subjectively rate how similar the placement and timing of the ML and Severe

Timing Guidance watch products were to the operational Tornado and Severe

ThunderstormWatches issued by the NWS. Each product was assessed indepen-

dently on a 5-point Likert scale with values ranging from “Not at all similar” to

“Extremely similar.” Respondents were instructed to consider the full 16-hour

forecast period when determining their responses, and an option of “N/A” was

provided if there were no operational watches issued for the event. Similarly,

Q4 directed participants to subjectively evaluate how well the ML and Severe

Timing Guidance watch products captured the location and timing of the severe

weather threat during the available 16-hour forecast period. Again, the ML and

non-ML products were independently assessed via a 5-point Likert scale rang-

ing from “Terrible” to “Excellent.” This evaluation was to be performed using

both the LSR and NWS storm-based warning overlays to indicate the observed

location and time of severe weather occurrence. Additionally, respondents were

instructed to only consider reports and warnings that fell within at least a 13z

D1 SLGT to avoid penalizing the forecast products for not capturing severe

hazards in locations where the guidance was systematically precluded from is-

suing forecasts. Finally, Q5 provided an open response field for participants

to describe their thoughts about the guidances’ performance for the day. This

study was approved by the University of Oklahoma Institutional Review Board.

A copy of the survey is provided for reference in Appendix B.
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7.2 Participant Evaluation

A total of 122 responses were received for the watch guidance evaluation survey

over the 5-week SFE, including 43 (35%) from operational NWS forecasters.

These survey results were processed and assessed to subjectively identify how

well each guidance product emulated SPC watches and captured the true se-

vere weather hazards according to the expertise of the SFE participants. To

aid in this evaluation, a KDE was applied to the data in much the same way

as described in Chapter 3. As before, the KDE curves represent the relative

frequency of responses provided across the 5-point Likert scales and are use-

ful for identifying and interpreting response variance. This time, however, the

resulting probability density functions were smoothed using a Gaussian kernel

bandwidth of 0.55 to best represent the data. The mean scores and standard

deviations were also computed for Q3 and Q4 via 10,000 bootstrapped samples.

Respondents were neutral on average when rating how similar the ML and

Severe Timing Guidance first-guess watch products were to the SPC-issued

Tornado and Severe Thunderstorm watches (Fig. 7.2a). The ML guidance

received a bootstrapped mean score of 3.13 with a standard deviation of 0.82.

Similarly, the non-ML guidance was given a mean rating of 2.93 and had a

standard deviation of 0.93. Differences between the two products were small

and ultimately not statistically significant at the 95% confidence level; however,

the distribution of survey responses does at least indicate a slight trend in favor

of the ML-derived first-guess watch products. Approximately 77% of survey

responses indicated the ML guidance was at least “moderately” similar to the

SPC watches, and 36% of responses found it to be“very” or “extremely” similar.
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Conversely, the Severe Timing Guidance was at least “moderately” similar in

67% of responses and “very” or “extremely” similar in only 28% of the results.

Q4 responses generally rated ML and Severe Timing Guidance first-guess

watch products more favorably in regard to how well they captured the spatial

and temporal domains of the true severe weather hazards, with bootstrapped

mean scores of 3.58 and 3.37 respectively (Fig. 7.2b). Additionally, respondent

agreement was nearly identical for both products as indicated by a standard

deviation of 0.82 for the ML and 0.81 for the non-ML products. As before, these

minute differences between the product ratings were not found to be statistically

significant at the 95% confidence level, but the response distribution of the

ML guidance again trended towards somewhat higher ratings than that of the

Severe Timing Guidance. About 86% of responses stated that the ML first-guess

watches captured the timing and spatial coverage of the observed NWS warnings

and LSRs with at least “average” skill, and 61% said the model performance was

“good” or “excellent.” In comparison, the Severe Timing Guidance performance

was rated as “average” or better in 83% of responses and “good” or “excellent”

in 48% of the results.

Anecdotal observations of the guidance products found that the ML model

often forecast first-guess watches 1-2 hours earlier than the Severe Timing Guid-

ance algorithm, and the additional lead time was viewed favorably by partici-

pants during open discussion. This sentiment was shared in the open response

Q5, with one respondent assessing the product performance on 3 May 2022

as, “The ML put up a Watch over southern Ohio a couple of hours before the

timing guidance, so it gave better lead time as to where the initial problem

area might develop.” Another participant commented with regard to 18 May

2022: “I was impressed that both new methods produced watches in advance of
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Figure 7.2: (a) Survey Q3 and (b) Q4 responses approximated as KDE curves.

Dashed vertical lines represent the mean score for each guidance product.
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the official watch issuance.” The ML guidance was also observed to frequently

produce larger watch areas than the Severe Timing Guidance, and this was

evaluated with more mixed reviews. Many participants noted that the smaller

Severe Timing Guidance first-guess watches often missed LSRs or storm-based

warnings due to the more conservative watch areas, while others argued that

the ML-based guidance produced areas that were too large even if they fully

captured the threat. Group discussion on this topic often referenced personal

preference for better POD or FAR, with opinions varying considerably each day.

This was also noted in the survey Q5 responses. One participant indicated a

preference for reduced FAR in their evaluation of 24 May 2022, stating, “The

HREF-based ML guidance would have given a lot of advanced lead time, but

with the caveat that FAR was really high. If I were a user of this product, the

Severe Timing Guidance is more accurate. While lead time was not gained as

much, it more effectively captured the event while minimizing FAR and can-

celing watches when appropriate.” Another respondent explicitly stated this

dichotomy in their evaluation for 31 May 2022, noting that each product’s rat-

ing, “Goes back to valuing POD (ML guidance better) vs FAR (Severe Timing

Guidance better).” This was echoed by several other respondents for the same

day, with comments including: “I initially wanted to dismiss the HREF-based

ML guidance because of its extensive coverage. And, while it does seem to indi-

cate that the FAR would run high using this guidance alone, it is worth asking

about the trade-off between FAR and POD numbers. This then turns into a

social science question of how best to serve the public,” and “ML HREF guid-

ance was by far the most superior, in some cases better than SPC (especially

over TX/OK/KS). Only drawback [in my opinion] was that it was a bit heavy

150



Figure 7.3: Mean performance of the 12z HREF-based ML and 13z Severe

Timing Guidance watch products compared to (a) operational SPC watches

and (b) LSRs during the 2022 Spring Forecasting Experiment.

handed with watches over MO. But given that this was a frontal boundary with

widely spaced convective development, that’s a minor consideration.”

The comments raised by the SFE participants demonstrate the need for

continuous collaboration with end users during development to ensure the final

product is tuned to their specific needs. In this case, survey respondents revealed

widely varying sensitivities to POD vs FAR based on their own needs and

requirements. However, these sensitivities often differ from one end user to

another and may change from day to day depending on the circumstances.

For example, an operational forecaster may be more concerned with FAR on

a day with only low chances for severe weather, but may place greater value

on POD during a high-impact severe weather outbreak (Karstens et al. 2018).

These variable sensitivities and asymmetric penalties (Doswell 2008) are an

ongoing challenge in the study of risk communication and a primary target of

probabilistic hazard information research (e.g., LaDue et al. 2017; Shivers et al.

2017; Rothfusz et al. 2018; Klockow-McClain et al. 2020).
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The anecdotal observations and subjective analysis presented thus far gen-

erally aligned well with an independent, objective verification of the forecast

products during the 2022 SFE. Contingency table metrics were calculated for

the ML and Severe Timing Guidance first-guess watches with respect to oper-

ational SPC-issued watches (Fig. 7.3a) and LSRs (Fig. 7.3b) as described in

Chapter 6. These metrics were computed for Monday - Thursday of each week

(recall that evaluations were performed for the previous day during the SFE)

and from 2 May 2022 - 3 June 2022. The HREF-based ML first-guess watch

products exhibited a mean CSI of 0.32 (0.28 - 0.36) when compared to the oper-

ational watches, and the SPC Severe Timing Guidance performed similarly with

a CSI of 0.32 (0.28 - 0.38). Although both products achieved a nearly identical

CSI, the products’ biases were more distinct. The ML guidance demonstrated

a mean POD of 0.61 (0.58 - 0.68) and a mean FAR of 0.62 (0.58 - 0.64), result-

ing in an overforecast bias of about 1.5 (1.4 - 1.7). In comparison, the Severe

Timing Guidance performed with a mean POD of 0.47 (0.42 - 0.52) and a mean

FAR of 0.5 (0.44 - 0.55) for a bias of about 0.9 (0.8 - 1.1).

Similar results were noted when objectively evaluating how well the forecast

watches captured the severe weather threat as represented by LSRs. The ML

first-guess watches performed with a mean CSI of 0.48 (0.43 - 0.51) and the

Severe Timing Guidance exhibited a CSI of 0.43 (0.39 - 0.48). In comparison,

the operational watches achieved a mean CSI of 0.61 (0.55 - 0.66) during the

same evaluation period. The ML guidance was found to once again overforecast

the severe weather potential with a mean POD of 0.77 (0.73 - 0.8), a mean FAR

of 0.45 (0.42 - 0.49), and a bias of about 1.4 (1.3 - 1.5). Similarly, the Severe

Timing Guidance generally underforecast compared to LSRs, with a mean POD
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of 0.57 (0.54 - 0.60), a mean FAR of 0.36 (0.31 - 0.40), and a bias of about 0.9

(0.8 - 1.0).

These objective verification metrics corroborate the subjective evaluation

provided by the 2022 SFE participants, demonstrating that the survey respon-

dents were well calibrated on average and unbiased toward a particular forecast

product. Additionally, the verification of the ML and Severe Timing Guidance

first-guess watch products during the 5-week SFE correspond well to the 14-

month verification presented in Chapter 6. Although both products exhibited

a higher mean CSI with respect to LSRs during the shorter verification period,

that increase was achieved while maintaining approximately constant forecast

bias. Similarly, the mean CSI of the ML and non-ML forecast guidance with

respect to operational watches remained largely unchanged between the 5-week

SFE and the full 14-month verification period, although the ML overforecast

bias did increase slightly during the shorter time period. These results suggest

that the mean behavior and performance of the ML and Severe Timing Guid-

ance first-guess watches during the severe weather events assessed in the 2022

SFE are largely representative of the products’ long-term performance.

Finally, it is worth noting that the 2022 SFE participants were overwhelm-

ingly favorable to the concept of the first-guess watch products and strongly

encouraged continued development. This sentiment was captured by one re-

spondent who commented, “From an operational standpoint, this product could

be very useful for communicating severe hazards to core partners, especially in

the hours leading up to an event.” Such a positive response is encouraging and

suggests a degree of buy-in from prospective end users.
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7.3 Future Work

The results from the 2022 SFE provide valuable subjective feedback from po-

tential end users of the first-guess watch products and offer insight into fu-

ture improvements. For example, one participant noted that much of the false

alarm produced by the ML guidance occurred upstream from the severe weather

threat, and particularly later in the severe weather event. This false alarm is

hypothesized to be, in part, a result of the Gaussian kernel that is applied to the

input fields before generating the forecasts as described in section 6.1.1. This

technique, used to spatially smooth the NMEP surrogate severe fields, equally

weights all directions radially from a given grid point. As such the spatial extent

of the surrogate severe fields is smoothed and expanded in all directions without

regard for the relative motion of the predicted storms or any boundaries or sharp

environmental gradients in the HREF forecast. In some cases, this may result in

counties that fall upstream of a predicted severe weather hazard being included

in a first-guess watch as noted during the SFE. To address this undesirable

behavior, future iterations of the ML guidance may incorporate a nonuniform

smoothing that places greater weight on the Gaussian kernel downstream of the

predicted storm motion vector. Alternatively, prognostic environmental fields

from the HREF ensemble may be considered to mask counties no longer at risk

for severe weather.

Several SFE participants also expressed concern about how the forecast

products were masked by the 13z D1 SLGT risk area. In many days of the

experiment, the SPC expanded or upgraded the predicted severe weather haz-

ard in later outlooks, and severe events that occurred in those areas were not

captured by the masked guidance. As stated in one survey response, “I do think
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that it is problematic that the guidance is restricted to the slight risk area. The

main corridor of severe weather can occur outside this delineated area and thus

this product can be misleading and miss important features.” Based on this and

similar feedback, the categorical mask applied to both the ML and SPC Severe

Timing Guidance first-guess watches will need to be reevaluated, as well as the

probabilistic thresholds used to derive deterministic watches from the Severe

Timing Guidance product. Future versions of the guidance products are also

anticipated to utilize equivalently-sized rolling windows when deriving tempo-

rally aggregated storm-scale attributes and environmental parameters used for

watch prediction as discussed in Chapter 6. This will enable a more direct com-

parison between the ML and non-ML products, as the products’ inherent lead

times will be homogenous.

With the restrictions of COVID-19 gradually rolling back, all future itera-

tions of the first-guess watch guidance are expected to be run in real-time within

SPC operations and presented to SPC forecasters via an experimental web in-

terface. Frequent face-to-face collaborative discussions are also planned, and

forecasters have already begun offering ideas for improvements and expansions

of the current research. Ideally, this increased in-person collaboration will allow

future development of the first-guess watch guidance to more closely follow the

principles of collaborative co-production, with the goal to reach full operational

implementation within the next few years.
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Chapter 8

Conclusions

ML, DL, and other AI methods have demonstrated great potential for advanc-

ing the state of science within the field of meteorology, but this potential has

been somewhat stymied by the slow adoption of AI products by domain experts

within operational settings. This hesitancy is often attributed to a perceived

inherent distrust that forecasters and domain experts have of systems that are

not easily understood or interpretable; however, complexity and opaqueness are

not qualities exclusive to ML products within the field of meteorology. Indeed,

any nonlinear model or algorithm can be difficult to understand or interpret

for those unfamiliar with its design. Therefore, attributing suboptimal R2O

performance of new ML products to forecaster distrust of “black boxes” alone

implies that operational forecasters must evaluate ML products with different

priorities than products derived from non-ML techniques. This notion is di-

rectly contradicted by survey results from the 2021 SFE which indicate that

operational forecasters on average do not consciously evaluate ML-derived fore-

cast products any differently than they do more traditional or non-ML products.

These results were further corroborated by open response comments from the

survey participants, in which one respondent explicitly stated, “I would treat a

machine learning-produced product pretty similarly to any other probabilistic

product.” Instead, the survey results revealed that respondents who identified as

operational forecasters do evaluate products in general with priorities that differ
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somewhat from those who identified researchers and developers. Whereas re-

searchers tended to place more importance on factors that represent a forecast’s

quality (i.e., verification), operational forecasters emphasized considerations of

a forecast’s value and consistency (i.e., usability). These differing perspectives

are perhaps reflective of the different skills, experience, and responsibilities of

the two professions, and can represent a healthy diversity within the meteorolog-

ical community. However, such varied priorities can also be a source of conflict

and confusion during product development if left unmitigated by structured

communication and collaboration.

The survey results presented in this dissertation strongly support the disser-

tation hypothesis that increased communication and structured collaboration

between the research and operational communities may improve the success of

products in the R2O process. To this end, collaborative co-production is pro-

posed as an approach to product development that enables an equal, reciprocal

relationship between developers and their end users. This development cycle

extends the principles of Hoffman et al. (2010)’s Practitioner’s Cycles, and is

based on the ideal that the end user should be considered a valuable resource

and ally of the development process. Collaborative co-production ultimately re-

quires a shift of power and responsibility away from researchers and developers

to end users through deliberate, user-led collaboration in the initiation, design,

production, distribution, and evaluation phases of development. In support of

this process, operational forecasters in the 2021 SFE noted that it is important

for forecasters to be “involved throughout” the development process, includ-

ing “early interaction” to provide insight about where additional guidance and

support is needed within operations. These comments indicate the desire of op-

erational forecasters to be actively involved with the design and production of
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products intended for operational implementation. It should be noted that this

sentiment was not unanimous among survey respondents, and some researchers

and developers suggested forecasters serve in the role of consultant rather than

co-developer.

Collaborative co-production was hypothesized to improve the speed and suc-

cess rate of R2O transitions by ensuring new products address a real operational

need, satisfy operational requirements, and are presented in a way that is ac-

cessible by forecasters. Additionally, collaborative co-production principles are

expected to expedite management and forecaster buy-in by imparting a sense of

ownership of the final product. However, collaborative co-production is an ideal-

ized development model with many potential limitations to practical real-world

application. To assess the feasibility of this proposed paradigm, collaborative

co-production principles were applied to the development of two operations-

oriented forecast products using both ML and non-ML techniques. The first

project involved frequent collaboration with SPC forecasters to develop a new

suite of probabilistic thunderstorm guidance products derived from the HREF.

Forecasters were able to view and assess performance of the experimental HRE-

FCT guidance daily in their native operational software, and this enabled rapid,

iterative development to tune the products to their operational needs. After

just 2.5 years of development, the new products were found to consistently out-

perform the existing operational guidance by a considerable margin, and the

HREFCT guidance is now operational within the NWS.

A similar strategy of collaboration with SPC forecasters was applied to de-

velop ML and non-ML approaches for producing first-guess watch forecasts.

These products predict where and when conditions will be favorable for a Se-

vere Thunderstorm or Tornado Watch each hour, and provide a probabilistic,
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dynamic framework to help SPC forecasters plan watch issuance strategies,

staffing, and shift activities long before severe weather occurs. This dynamic,

probabilistic framework is a key innovation for the evolution of operational SPC

products toward FACETs goals, and is anticipated to serve as a starting point

for the future development of a dynamic “watch-in-motion” product. As before,

this watch guidance was intended to be evaluated by SPC forecasters during op-

erational activities over several seasons of severe weather operations. However,

restrictions due to the COVID-19 pandemic made in-person communication and

evaluation impossible, and greatly restricted access to SPC operational systems

for deployment. Instead, the products were tested and evaluated during the

2022 SFE to mostly positive reviews. Feedback from experiment participants

has been critical to future development, and this experience highlights one way

collaborative co-production can be applied in circumstances where direct access

to end users is not possible.

The successful operational implementation of the HREFCT and the promis-

ing reviews of the first-guess watch guidance serve as a testament to the po-

tential of collaborative co-production for improving the speed and success of

R2O transitions. Additionally, this new production paradigm offers the oppor-

tunity to improve our understanding and prediction of atmospheric processes

via increased multi-disciplinary knowledge transfer between the operational and

research communities. Although the focus of this dissertation is on the co-

production of ML in operational meteorology, the results presented here have

shown co-production to apply equally to non-ML applications as well. As such,

the principles of collaborative co-production are recommended to be integrated

into existing development procedures, including the NOAA Readiness Levels

described in Chapter 1. Within the current RL system, developers are not
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required to directly interact with their intended end users until RL 6, when

projects must demonstrate a working prototype within a formal testbed or sim-

ilar environment. However, this dissertation has shown that it is beneficial to

include end users during each stage of the development cycle. For example, RL

2 (Applied Research) may be considered analogous to the first design and pro-

duction phases of the co-production model shown in Chapter 4. End users (e.g.,

operational forecasters) could work with researchers and developers at this stage

to identify key goals of the research and how the anticipated knowledge gain

may improve operational skill or efficiency. Similarly, RL 3 - 7 generally refer-

ence various degrees of product evaluation which may be comparable to multi-

ple iterations through the co-production evaluation phase. Frequent, iterative

forecaster feedback during such evaluation stages was found to be particularly

important to ensure the new product continued to meet end-user needs and re-

quirements. Codifying these researcher-forecaster interactions into the existing

RLs would formalize the co-production process within NOAA R2O procedures,

increase the scope and frequency of researcher-forecaster collaboration, and po-

tentially improve the success and speed of R2O transitions. Ultimately, this

research is presented as a call to the meteorological community as a whole to

strive for greater structured collaboration in product development, so that we

may better apply our diverse expertise toward our shared scientific goals.
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2021 SFE Survey
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2022 SFE Survey
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