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Evidence of learning walks related to scorpion home
burrow navigation
Douglas D. Gaffin1,*, Maria G. Muñoz1 and Mariëlle H. Hoefnagels2

ABSTRACT
The navigation by chemo-textural familiarity hypothesis (NCFH)
suggests that scorpions use their midventral pectines to gather
chemical and textural information near their burrows and use this
information as they subsequently return home. For NCFH to be
viable, animals must somehow acquire home-directed ‘tastes’ of the
substrate, such as through path integration (PI) and/or learning walks.
We conducted laboratory behavioral trials using desert grassland
scorpions (Paruroctonus utahensis). Animals reliably formed burrows
in small mounds of sand we provided in the middle of circular, sand-
lined behavioral arenas. We processed overnight infrared video
recordings with a MATLAB script that tracked animal movements at
1–2 s intervals. In all, we analyzed the movements of 23 animals,
representing nearly 1500 h of video recording. We found that once
animals established their home burrows, they immediately made one
to several short, looping excursions away from and back to their
burrows before walking greater distances. We also observed similar
excursions when animals made burrows in level sand in the middle of
the arena (i.e. no mound provided). These putative learning walks,
together with recently reported PI in scorpions, may provide the
crucial home-directed information requisite for NCFH.
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INTRODUCTION
Sand scorpions live in burrows that they dig, and from which they
emerge at night to hunt (Polis, 1980; Polis and Farley, 1979). Sand
scorpions, especially females, spend most of their time within 1 m
of their burrow, though they occasionally venture several meters
away (Polis et al., 1985). Questions exist about how they return
home. We think scorpions might use a simple view-based
navigational process, similar to that proposed for ants and bees,
termed ‘navigation by scene familiarity’ (Baddeley et al., 2012;
Philippides et al., 2011). However, instead of or in addition to
vision, scorpions may be guided by tastes and touches acquired via
their mid-ventral pectines (Cloudsley-Thompson, 1955; Wolf,
2017).
Scorpions have both median and lateral eyes, but the paired

median eyes seem most conducive to navigation. The median eyes

arise from a protuberance on the midline of the dorsal prosoma
and gather light from opposing hemispheres of the animal’s
surroundings. Together, the two eyes have a 360 deg field of view
and a 40 deg binocular overlap above the animal (Locket,
2001). The median eyes have high acuity and can detect light as
low as 106 irradians (Fleissner and Fleissner, 2001). The median
eyes also show sensitivity to polarized light (Locket, 2001; Horváth
and Varjú, 2004; Brownell, 2001). Even though the morphology
and physiology of scorpion eyes suggest that visual cues such as
star patterns and surrounding features and panoramas are accessible
to these animals during their night-time forays (Fleissner and
Fleissner, 2001), research is lacking on visual navigation in
scorpions.

Unlike scorpion vision, the unique scorpion pectines have
received considerable attention, in terms of their physiological
and morphological characteristics and their potential use in
navigation by familiarity. We have developed proof-of-concept
models of how scorpions could navigate using ground-based
information acquired by their pectines (similar to models of visual
navigation in ants; Baddeley et al., 2012). We have termed this
process ‘navigation by chemo-textural familiarity’ (Gaffin and
Brayfield, 2017; Musaelian and Gaffin, 2020 preprint). Put simply,
to get home, the scorpion uses its pectines to detect and move
toward tastes and textures it has learned during previous home-
bound forays. While the study reported here focuses on the pectines,
it is likely the animals integrate chemo-tactile information from their
pectines with visual information from their median eyes.

No matter the modality of sensory input, for the navigation by
familiarity hypothesis to be viable, two crucial ingredients must be
present. First, there must be adequate sensor complexity to match
the environment. Second, there must be a way to generate the initial
home-bound training paths (Baddeley et al., 2012; Gaffin et al.,
2015; Wehner et al., 1996).

Regarding sensor complexity, each pecten has a series of teeth
that support thousands of minute peg sensilla (aka ‘pegs’) on
their ground-facing surfaces (Ivanov and Balashov, 1979; Foelix
and Müller-Vorholt, 1983). Each peg contains a population of
chemosensory taste cells (∼10) and at least one mechanosensory
neuron that responds when the peg bends (Ivanov and Balashov,
1979; Foelix and Müller-Vorholt, 1983; Gaffin and Brownell,
1997b; Melville, 2000). In all, hundreds of thousands of sensory
afferents project from the pectines to the scorpion’s central nervous
system (Wolf, 2008; Brownell, 2001; Drozd et al., 2020). Based on
this complexity, a proof-of-concept model showed that an agent
using a downward-facing sensor could navigate various proxies of a
simulated environment (Musaelian and Gaffin, 2020 preprint).

Sensory complexity is therefore adequate; what about the
generation of home-bound training paths? The glances and tastes a
scorpion experiences while leaving its nest or burrow depart 180 deg
from those that lead home (Fig. 1). How does the animal know its way
home after venturing out for the first time? Innate behaviors such asReceived 28 December 2021; Accepted 20 May 2022
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path integration (PI) and learning walks may provide the answer. In
PI, the distance and direction of each outbound leg is integrated to
compute an approximate homebound vector (Wehner, 1992;
Papi, 1992). PI is well documented for many animals, but the
studies of desert ants are the most extensive (Collett, 2019; Wehner,
1992;Wehner and Srinivasan, 1981;Wehner et al., 1996, 2004, 2006;
Wolf, 2011; Wittlinger et al., 2006, 2007; Wittlinger andWolf, 2013;
Heinze et al., 2018; Srinivasan, 2015). PI has also been described for
some groups of spiders (Ortega-Escobar, 2002, 2006; Ortega-
Escobar and Ruiz, 2014, 2017; Görner and Claas, 1985; Moller and
Görner, 1994; Nørgaard, 2005; Seyfarth and Barth, 1972; Seyfarth
et al., 1982), and a recent study showed evidence of PI in the lesser
Asian scorpion, Mesobuthus eupeus (Prévost and Stemme, 2020).
In addition, learning walks are innate behavioral patterns thought

to further help the animal gain goal-directed stimuli (Deeti and
Cheng, 2021; Müller and Wehner, 1988, 2010; Ronacher, 2008;
Wehner et al., 2004; Fleischmann et al., 2016, 2017, 2018; Zeil
et al., 1996, 2014). As with PI, learning walks are well described for
navigating ants (Jayatilaka et al., 2018; Zeil and Fleischmann, 2019)
but have never been documented for scorpions or any other arachnid
(although the zigzag outbound paths of the wandering Namib
spider, Leucorchestris arenicola, are strongly suggestive; Nørgaard
et al., 2012; Gaffin and Curry, 2020).
In this study, we made long-term video recordings of sand

scorpions as they produced burrows in the middle of laboratory
arenas. We show that the animals make consistent, repeated looping
paths immediately after their first burrow-digging behavior and that
these paths have similar characteristics to learning walks in ants.

MATERIALS AND METHODS
Animals, collection details and maintenance
Desert grassland scorpions, Paruroctonous utahensis (Williams
1968), were collected from the Walking Sands dune area about
6 km SE of the University of New Mexico Sevilleta Field Station,
NM, USA.We used UV lights to find animals on three nights during
periods of new moon in August, September and October 2020. Only
animals judged to be adults were collected. Fig. S1 shows the
collection locations and the mixture of males and females from the
three collection nights. We collected many more males than females
in the August and September collections, but many more females
than males in the October collection. The animals were transported

and housed individually at the Station in small rectangular food
storage containers with air holes drilled in the lids and∼50 ml of sand
collected from the animals’ habitat as a substrate. The animals were
exposed to a 14 h:10 h light:dark cycle (lights on at 06:00 h, off at
20:00 h) using indirect light from two white 60 W equivalent LED
bulbs housed in work lights (Bayco clamp light, 21.6 cm) placed
∼50 cm from the animals and plugged into a timer switch. The room
temperature was maintained at about 22°C. After 45 days, we moved
all animals to a room in the laboratory building on the UNMSevilleta
campus where the animals were exposed to natural light that streamed
through the large NE facing picturewindows and the temperaturewas
kept at 20–21°C with a relative humidity of 16–20%. A voucher
specimen was given to the SamNoble OklahomaMuseum of Natural
History at the University of Oklahoma in Norman, OK, USA.

Encouraging burrow formation
We noticed some patterns of digging activity in pilot studies of
animals atop native sand in circular arenas (for an example, see
Fig. S2). We ran several additional pilot studies to determine which
conditions were most conducive to the scorpions digging and
occupying burrows. These included tests of various substrates
(Fig. S3), mound sizes and sand moisture content (Fig. S4), and the
timing of burrow occupation relative to daylight (Fig. S5).

Behavioral apparatus and video recording
We built four identical behavioral set-ups (Fig. 2) in the UNM
Sevilleta Field Station lab building (inspired by Vinnedge and
Gaffin, 2015). Each arena consisted of an aluminium water heater
drain pan (Camco, product no. 20860; 76.6 cm base diameter,
7.6 cm height) sitting atop a turntable (formed from a 70 cm
diameter×1.9 cm thick plywood disk attached to a 30.5 cm diameter
Richelieu swivel plate with 454 kg capacity) to allow 360 deg
rotation. A rubber mat (Ottomanson multi-purpose 61×61 cm
exercise tile mat) was placed beneath each arena to dampen room
vibrations. About 1250 ml of screened native sand was spread in a
thin layer across the bottom of each arena. We then added ∼250 ml
of native sand through a small funnel to form a mound in the middle
of the arena. We then misted the mound from above with 20 squirts
of water (∼15 ml). To minimize the role of vision, light- blocking
curtains were secured to hula hoops (Ice Hoop, Kess Co.; 86 cm
diameter) with large binder clips and draped around each arena.

Scorpion leaving
burrow

Scorpion returning
to burrow

Left pecten Right pecten Left pecten Right pecten

B

Fig. 1. Conflicting information between outbound versus inbound paths. The chemicals and textures the pectines experience on the journey leading away
from the burrow (B) depart 180 deg from what they experience on the return trip to the burrow.
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Twowork lights (Bayco clamp light, 21.6 cm) equipped with broad-
spectrum bulbs (Duracell Ultra 75 W equivalent daylight) were
positioned 110 cm above each arena. The lights were controlled by a
timer set to a 14 h:10 h light:dark cycle (on at 05:30 h, off at
19:30 h). We used infrared cameras (ELP 1 megapixel Day Night
Vision) to track the animals; scorpions do not appear to perceive
infrared light (Fleissner and Fleissner, 2001). The cameras were
mounted 110 cm above the center of each arena and connected via
USB to two laptop computers (two cameras per laptop; Apple
MacBooks). A MATLAB script was written to toggle between the
cameras and acquire 200×200 pixel frames at a user-defined
interval. The frames were stored in a MATLAB structure array for
subsequent analysis.
To aid in video tracking, we used double-sided tape to affix a

small crystal (5 mm round cab crystal; Acrylic Gems) on the dorsal
mesosoma of each animal before releasing them into the behavioral
arenas (Fig. 3). To secure the crystal, we first placed an animal in a
rectangular plastic container (30×17 cm). We then placed a square
plastic sheet (8.5×8.5 cm) that had a 6 mm hole cut close to one of
its corners over the animal such that the holewas over the mesosoma
with the remainder of the sheet covering the rest of the animal’s
body. This system calmed and secured the animal and allowed the
crystal to be easily applied through the hole to the animal’s back
without the danger of being stung. The crystals reflected infrared
light from all angles and from all animal positions within the arenas,
so the plotting accuracy inMATLABwas greater than 99%. Smaller
3 mm crystals proved less effective, given the camera’s resolution
and distance from the arena floor.
Before each recording, we created a mound either in the center of

an arena or offset from the center in various positions. The video
monitoring system was then set to record for a given length of time.
We set our recording times to focus mainly on the animals’ most
active periods while also managing our digital storage capacity. As
such, some gaps in the recordings are apparent during daytime hours.
Finally, a crystal-equipped animal was introduced near the wall of its
designated arena and the curtains were completely closed around the
front of the set-up using binder clips.

Inducing learning walks without mounds
We also induced scorpions to occupy burrows in the center of the
arenas without pre-made mounds. To do this, we added a thicker
layer of sand (3000 ml) to the arena and placed a plastic ring (30 cm
diameter×12.5 cm tall) in the middle. In the center of the plastic

To computer Camera

Curtain

Mound Sand

Pan
TurntableMat

10 cm

A BLight Hoop
Fig. 2. Behavioral set-up for long-term recordings. (A) Each
arena was composed of an aluminium heater drain pan atop a
turntable and a rubber mat. Sand was added to the pan and a
mound was formed in a pre-defined location. A curtain was cut
from black, light-blocking material and suspended from a hula
hoop attached to a supporting frame. Two timer-controlled lights
and an infrared camera connected to a laptop computer were
also attached to the frame. (B) Photos of an arena with curtain
closed (left) and open (right) and the four arenas (below) arrayed
along the lab counter with the laptop computer at the end.

5 mm

Fig. 3. Animal with attached crystal. A Paruroctonus utahensis female
photographed under UV light with a 5 mm round cab crystal affixed via double-
sided tape to its dorsal mesosoma.
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ring, we partially buried a small paper slip (formed by removing the
base of a Dixie 3-ounce bath cup). The slip was 4 cm in diameter
with a 4 mm tall rim that had a quarter of its circumference removed;
the rim side was placed downward. We misted over the top of the
slip with 5 squirts (∼4 ml) of water to provide additional structural
support to induce the scorpion to dig within this smaller arena. We
then placed a scorpion in the center ring in the late afternoon
and used video recording and MATLAB to track the animal’s
movements for 18–22 h. The plastic ring was removed the following
afternoon if the scorpion was found inside or near the burrow. If the
scorpion failed to dig into the region of the paper slip, the smaller
ring was left in place, the region was misted with three additional
squirts of water, and the animal was given an additional night to
burrow. After the plastic ring was removed, we continued recordings
to track the animal’s movements throughout the large arena for
another night.

Analysis
We wrote various MATLAB scripts to analyze our behavioral data.
We used a frame-by-frame subtraction method coupled with
centroid plotting to automatically track the X–Y coordinates of the
scorpion locations during our videos. We then used the Pythagorean
theorem to calculate the distance walked and used the video frame
capture rate to determine velocity. We also made time-lapse videos
that plotted the current animal position along with the three previous
positions to create a stardust effect, which efficiently revealed
instances of the animal’s initial burrowing. Once the initial digging

was identified, we then hand plotted (for increased accuracy) the
animal’s subsequent movements until we were confident that the
animal had resumed its exploratory behavior or remained in the
burrow for a prolonged period.

RESULTS
Activity plots
In all, we tracked 23 different animals (14 males, 9 females), some
for multiple evenings, for a total of nearly 1500 h of video. During
our trials, the animals spent most of their time walking along the
walls of the arena but also made many forays across the arena’s
interior. All-night plots of animal movements (Fig. 4) showed a lot
of activity, including concentrated movements around the central
mound.

Burrow formation
As in our pilot studies (see Figs S3–S5), the animals in these trials
readily dug burrows in the central mounds. Most of the initial
digging occurred toward the end of the dark period or soon after the
lights were turned on. A sample of some of the burrows we observed
is shown in Fig. 5, along with an example of a natural scorpion
burrow filmed on the wildlife refuge. A short video clip of a
scorpion digging its burrow in the lab is also provided (Movie 1).

Activity patterns
Fig. 6 (top) shows activity plots by hour for an animal we monitored
for 7 consecutive days. Over the 7 days, the animal walked 4415 m

Fig. 5. Scorpion burrows in nature and in
the lab. The photo on the left is an example of
a scorpion burrow next to one of the field
station’s trails. The four photos on the right are
examples of burrows we saw in our trials in the
lab.

10 cm

Fig. 4. Long-term activity plot. Example of an all-
night video with the animal’s position plotted every
second via a MATLAB script. The animal’s paths
are shown by connecting the points with line
segments in the left plot; the segments are
excluded in the right plot.
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for an average of 631 m per night. Tracking this animal’s average
distance walked by hour of the day showed a consistent pattern
of behavior (Fig. 6, middle) with the highest activity soon after the
arena lights were turned off in the evening and just before or just after
the lights were turned on in the morning. This pattern was also
evident when the activities of all animals were pooled (Fig. 6,
bottom).

Signs of learning walks
Wewere interested in the locomotory movements the scorpions made
immediately after their first digging behavior in the central mound.
We identified these using time-lapse video and plotted the animal’s
movements away from and back to the initial digging position. An
example of a typical learning walk following initial burrowing is
shown in Fig. 7; a video of this walk is also provided (Movie 2). Fig. 7
also shows how we processed video showing the looping excursions.
We hand-marked the position of the burrow and used the Pythagorean
theorem to plot the distance of the animal from the burrow over time
(Fig. 7B, first graph). We also plotted the animal’s instantaneous
velocity by time during the walk (Fig. 7B, second graph). Next, we
plotted the distance from the burrow against the cumulative path
length (Fig. 7B, third graph) and marked each return to the burrow.
Finally, we superimposed each of these individual loops by plotting
the start of each at the origin (Fig. 7B, fourth graph).
Of the 23 animals we monitored, 18 showed looping walking

behavior immediately after the first signs of burrow digging. For the
other 5 animals, the video resolution either did not allow accurate

detection of digging behavior or burrow formation happened
outside the period of video monitoring. Fig. 8A shows all the initial
learning walks that we encountered for these 18 animals along with
the processing described in Fig. 7. In all, 80 looping excursions
away from and back to the burrow were identified for all the animals
and these are superimposed in Fig. 8B. The number of loops
observed per animal varied from 1 to 10 and averaged 4.4±2.5
(mean±s.e.m.). The average duration of the initial learning walks
was 348.9±47.9 s and the average distance covered was
505.6±74.6 cm. We determined the average velocity of each
animal’s initial learning walk by dividing the distance covered by
the duration of the walk. The average velocity of these walks was
1.7±1.4 cm s−1.

The focus of this study was on capturing the first occurrence of
putative learning walk behavior immediately after the initial signs of
burrow digging. However, the animals displayed many subsequent
looping routes later in the videos. We judged these to be learning
walks instead of foraging trips because they were continuous (i.e.
lacked prolonged pauses), included repeated returns to the burrow,
and did not involve extended bouts of wall-walking. Some of these
routes were elaborate and encompassed all parts of the arena. One
such example is shown in Fig. 8C, where bouts of looping
excursions occurred 10, 25 and 47 min after the initial set.

Learning walks without a mound
We tried to reduce the possible visual or tactile influence of the sand
mound by inducing animals to adopt burrows in level sand in the
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middle of the arena. We first confined the animals to a smaller ring
(30 cm diameter) in the middle of the large arena, along with a
partially buried paper slip to encourage burrowing. After we were
convinced that the animal had occupied the burrow, we lifted the
ring to allow the scorpion access to the rest of the large arena.
Fig. 9A shows three examples of the first set of looping excursions
that animals made after their first return to the burrow in the middle
of the arena. Fig. 9B shows an example of subsequent bouts that
occurred later in the recording.

Arena rotation
We tried rotating four arenas midway through two successive
evenings when the animals were away from their burrows to see if
the change in burrow position relative to the room and surrounding
curtain affected burrow relocation. Of the four animals, two either
stayed in their burrow or did not move enough prior to the rotation to
produce a detectable pattern in their movements. The video
resolution for the third animal was too poor to accurately resolve
its paths. However, the fourth animal’s video was good and
contained enough movement points to show patterns before and
after the rotation on each of the successive nights. This animal’s
movements for the 3 nights are shown in Fig. 10. The animal
repeatedly returned to the rotated burrow (instead of the position
prior to rotation).

DISCUSSION
Our findings are clear. Essentially all animals that made their
own burrows in the middle of our laboratory arenas executed
looping walks immediately after their first signs of digging.
We found similar looping excursions whether we induced the
animals to burrow in a small sand mound or in level sand in the

middle of the arenas. This is the first report of learning walks in
scorpions.

Potential role of learning walks in familiarity navigation
Learning walks are consistent with navigation by both visual and
chemo-textural familiarity. In line with familiarity navigation, the
putative learning walks could be an innate behavior that allows
scorpions to acquire home-directed views, tastes and touches near
their burrow for subsequent retracing (Baddeley et al., 2012; Gaffin
and Brayfield, 2017; Musaelian and Gaffin, 2020 preprint). This
idea is similar to that proposed for familiarity navigation in desert
ants (Baddeley et al., 2011, 2012). In addition to panoramic
information gathered by the eyes, the scorpion pectines could act as
local sensors that acquire matrices of chemo-textural information
from the substrate beneath the animal. This local sensor approach
was used in a computer simulation that used straight-down views of
Earth satellite images to navigate (Gaffin et al., 2015) and has been
applied to simulations of scorpion navigation (Gaffin and Brayfield,
2017; Musaelian and Gaffin, 2020 preprint).

In hymenopterans, learning walks and learning flights appear to
help the animals learn home-related features of the landscape
(Degen et al., 2016; Collett and Zeil, 2018). These walks or flights,
if directed in various directions from the hive or nest, also keep an
animal from overshooting its home when following a longer home-
bound vector (as generated by PI). This is because the scenes, tastes
and touches beyond the nest would be unfamiliar unless there was a
way to acquire a repertoire of home-directed scenes which bend
back to the starting point. Indeed, the addition of artificial learning
walks to a computer simulation improved the homing accuracy of
artificial agents navigating by scene familiarity (Baddeley et al.,
2012).
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A few of our observations are consistent with the navigation by
familiarity hypothesis. First, the animal observed in the rotated arena
experiment (Fig. 10) returned faithfully to its burrow instead of the
burrow’s position prior to rotation. We were not surprised that the
animal found its burrow as the burrow’s position and substrate did not
change relative to the animal’s position (even though the surrounding
visual information did change). While this behavior is supportive of
the chemo-textural familiarity idea, it can also be explained by PI.
Second, we also found some interesting movement patterns during a
subsequent assessment of inbound and outbound paths relative to
burrow location (Fig. S6). We digitally placed a rectangle around the
position of the animal’s burrow after movement coordinates had been
gathered for an entire evening.We then usedMATLAB to plot the 20 s
of movement prior to the animal entering the rectangle (‘Inbound’
paths) and the 20 s of movement after the animal exited the rectangle
(‘Outbound’ paths). Interestingly, the animals seemed to follow more
consistent and concentrated inbound paths compared with their more
dispersed outbound paths. These movement patterns suggest that
previously learned features (visual, chemical, textural or other) may
guide animals along consistent home-directed routes.

Sensor complexity of the pectines
In the Introduction, we noted that adequate sensor and
environmental complexity is necessary for animals or agents
navigating via familiarity to avoid being confused by similar
scenes, tastes or textures in multiple locations. This trade-off has
been examined in various vision-based simulations (Gaffin et al.,
2015; Gaffin and Brayfield, 2016) and in a navigation simulation
modeled on scorpion pectines (Musaelian and Gaffin, 2020
preprint). Our estimates of the pattern detection capacity of
scorpion pectines are informed by electrophysiological studies
showing that peg sensilla responded similarly to a variety of
chemicals presented to the pore at the peg tip (Knowlton and Gaffin,
2009, 2010, 2011a,b; Gaffin and Walvoord, 2004). Based on these
data, it has been estimated that the pectines can conservatively
detect from 1012 to 1040 different patterns (Gaffin and Brayfield,
2017). Further, neurons in peg sensilla interact synaptically (Gaffin
and Brownell, 1997a; Foelix and Müller-Vorholt, 1983; Melville,
2000; Gaffin, 2002), which appears to reduce sensory adaptation
through a local feedback loop and may improve information fidelity
for navigation (Gaffin and Shakir, 2021).
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Quantifying the chemo-textural complexity of the scorpion’s
sand substrate, however, is difficult. Proxies of the textural
information available on the surface of a fine sand substrate (and
at dimensions germane to the packing densities of the peg sensilla
matrices) have been generated by photographing multiple images of
sand through a dissecting microscope while projecting light from
the side to produce pronounced shadows (Gaffin and Brayfield,
2017; Musaelian and Gaffin, 2020 preprint). Knowing the nature of
the chemical milieu that occurs naturally on sand grains is still more
challenging. Studies of scorpion responses to pheromone deposits
suggest the chemicals may stably adhere to the sand grains and
remain viable for scorpion sensory detection for days to weeks
(Gaffin and Brownell, 1992; Taylor et al., 2012). It seems safe to
suggest that decaying organic matter, animal deposits and numerous
other processes leave hundreds of residual chemicals on the sand in
varying concentrations, creating enormous chemical complexity.
Simply put, the peg matrices and substrate appear suitably matched
in complexity.

Other interpretations for learning walks
While the looping paths that we observed could be learning walks
for gathering homebound information for familiarity navigation,

we cannot rule out other interpretations. For example, female
P. utahensis are known to release ground-based pheromones to
attract males during the mating season (Taylor et al., 2012). As such,
it seems possible that the animals might be releasing their own
chemical cues during the loops to generate a burrow-centered
gradient of markers that they could use to orient back to their burrow
after future excursions. It is also possible that the learning walks
serve to gather information about what is around a newly established
burrow (such as conspecifics, prey, predators). Furthermore, sand
scorpions hunt by detecting vibrations (Brownell, 1977) and can be
drawn meters away from their burrow (Polis et al., 1985; Gaffin,
2011), which makes them more vulnerable to predators (e.g. owls,
grasshopper mice, etc.). It is therefore adaptive for scorpions to
return quickly and accurately to their burrow shelter. One possibility
is that the learning walks simply facilitate a quick retreat to safety
and play no role in subsequent navigation.

PI as the mechanism of learning walks
There is an intimate relationship between learning walks and PI, and
it is likely that aspects of PI underlie the generation of locomotory
movements that bring the animal back to its initial digging point.
The information required for PI can be disaggregated into
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directional and distance components. Directional cues are often
deduced by updating the animal’s outbound bearing as compared
with a reliable external reference, such as polarized light patterns or
the Earth’s geomagnetic field (Wehner, 1992; Papi, 1992; Gaffin
and Curry, 2020). Directional information can also be gleaned from
differential activation of joint-associated lyriform organs to monitor
turns during sinuous outbound journeys (Seyfarth and Barth, 1972;
Seyfarth et al., 1982). Distance estimates are also necessary for
successful PI and this information can be assessed by monitoring
the animal’s own movement with mechanisms such as counting
footsteps (Wittlinger et al., 2007; Wolf, 2011) or monitoring optic
flow across the animal’s eyes (Wolf, 2011). It will be interesting to
assess the mechanisms that underpin the scorpion’s distance and
directional computations during learning walks by selectively
ablating or covering specific sensory organs, such as leg slit sensilla
(including basitarsal compound slit sensilla; Brownell, 1977;
Brownell and Farley, 1979), the median and lateral eyes, and the
pectines.

Future studies
Many additional studies are needed to build on the results presented
in this study. Most of our attention has been on the pectines, but
we cannot ignore the likely contribution of vision in any of our
arguments. The current study does not provide explicit evidence
that scorpions are using texture or chemical information to find their
way back home. Future studies of navigation need to test animals
with their eyes and pectines selectively covered or ablated to see
whether homing ability is compromised. While we ran
our experiments under infrared cameras and attempted to exclude
as much extraneous light as possible, scorpion eyes are sensitive
to starlight levels of light (Fleissner and Fleissner, 2001). It is
therefore crucial to repeat these tests using animals whose eyes have

been thoroughly blocked with blindfolds. The arena lights should
also be smoothly dimmed and brightened to simulate natural sunset
and sunrise conditions. While removing the pectines could be
harmful to the animal, it might be possible to reversibly cover the
pectines with tubing or tape to assess the use of these organs relative
to chemo-tactile information. Other experiments should consider
disrupting the sand around the burrow after bouts of walks have
occurred to see whether looping behavior intensifies relative
to baseline levels without disruption. In addition, disruption of the
sand while the animal is away from its burrow would be useful
for assessing the use of home-directed substrate information. In
future incarnations of the rotated arena experiment, the animal
should be lifted prior to arena rotation and repositioned in a new
position relative to the burrow. If chemo-textural familiarity
information is salient, we would expect the animal to be drawn to
the new position of the rotated burrow instead of the previous
burrow location. Tests also need to systematically alter the rotation
of the arena relative to the curtain and the laboratory to control
for visual and geocentric cues. Displacement studies in which
animals familiar with one arena are captured while away from their
burrow and transferred to a novel arena would also be useful for
assessing the use of PI in generating a home-directed vector
(see Ortega-Escobar, 2002, for one such model). Finally, we think it
would be interesting to look for signs of learning walks in other
long-range navigating arachnids, such as amblypygids, that have
substantial chemosensory and mechanosensory attributes (Hebets,
2002; Hebets et al., 2014).
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