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Abstract

Systematic error variance (SEV) is one of sources that make a measurement noninvariant
(DeShon, 2004). In the confirmatory factor analysis (CFA), researchers use the bifactor or
correlated uniqueness (CU) model to control the SEV. This study aims to examine the impacts
of SEVs on the multiple groups mean comparison, and evaluate the methods used to control the
SEVs in the framework of multiple group CFA. In Monte Carlo simulation, multiple groups data
contaminated by different SEV distributions are generated, then, the bifactor and the CU model
were used to fit the data. The original model, which assumed no SEVs, was also used as the
baseline model. Results show that uncontrolled SEV could affect the estimation of mean
difference. Among three models, the bifactor overperformed the other two models in most
conditions if it yields converged results. This study also provided an empirical example to
demonstrate how to select appropriate methods in multiple group CFA. Implications of these

results for applied researchers are discussed.

Keywords: Measurement invariance, confirmatory factor analysis, systematic variance
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Introduction

When researchers are interested in group mean difference of a psychological construct,
they may use a self-report inventory or scale to assess it. If means of these groups are different,
they can conclude that the difference is attributed to group variables (e.g., culture, time). This
comparison assumes that the measurement instrument is actually measuring the same construct
across groups. In other words, researchers must make sure that the measurement is invariant
across groups before making group mean comparison. Therefore, the measurement invariance
test becomes an integral part of multiple-group analysis (DeShon, 2004). Measurement
invariance test can be also conducted in the framework of the confirmatory factor analysis
(CFA). CFA permits the comparison in the term of latent variables so that the measurement
error is controlled (Thompson & Green, 2006). In the CFA, the measurement invariance test is
applying restraints on a sequence of sets of parameters. The test begins with examining whether
the factor structure is the same across groups by setting model configuration identical across
groups. Then to restrain all factor loadings as equivalent across groups to test weak or metric
invariance; then all intercepts to test strong or scalar invariance; then residuals to test strict

invariance. Strong invariance is a necessary condition for construct means comparison.

Systematic error variance (SEV) is one of potential sources which make a measurement
non-invariant. SEV is shared error variance among variables. Because it is usually ascribed to
using of measurement instruments, the term SEV is believed to be exchangeable for method
variance (Richardson et al., 2009; Podsakoff et al., 2003). It frequently appears in research data
which is collected by self-report scale (Richardson et al., 2009). Most researchers deem the SEV

as a detrimental impact on model parameter estimations; unmodeled systematic error variance



usually cause poor model fitting and incorrect model parameters estimations (Podsakoff, et al.,

2003; Spector, 2006).

In CFA, researchers may rely on modification indices or their prior knowledge to locate
items affected by SEV then control it by modeling the SEV. Currently, two measures are
commonly used: the bifactor model and the correlated uniqueness (CU) model (Lance, et al.,
2002). By applying the appropriate measure, SEV can be taken out from variance of constructs.
Although both methods are widely used in CFA studies, it is still controversial surrounding
which method is more appropriate to model the systematic error variance. Two methods not
only represent different assumptions of SEV, but also have their advantages and weaknesses

(Lance, et al., 2002; Podsakoff et al., 2002; Conway, et al., 2004; Lance, et al., 2010).

Many studies have assessed effectiveness of the bifactor model and CU model in
controlling SEV in the analysis of covariance structure, yet results indicated both models are not
perfect (e.g., Richardson, et al., 2009; Williams, et al., 2015). In the other aspect, Geiser, et al.
(2014) found that systematic error variance caused by measurement instrument can also alter the
mean structure. However, few studies touched the topic that examining the effectiveness of both
methods in recovering true mean structure (Cheung & Chan, 2002). The main purpose of this
paper is to examine the effectiveness of two methods in controlling systematic error variance and
whether they can lead to proper conclusion about latent factor mean difference among groups.
This study presents a detailed examination of both methods by using Monte Carlo method to
simulate different conditions of systematic error variance. Both methods will also be compared
with a baseline model which assumes the SEV absent (no controlling). This study concludes
with a real data demonstration to give social science researchers suggestions about how to

choose appropriate SEV controlling strategy.



The paper will be presented in following order: first, the paper will introduce the
measurement invariance and multiple group CFA, then the paper summarized the previous
research about systematic error variance and methods used to control the systematic error
variance. In the second section, the paper will present the simulation study and results. In the

third section, the paper will present a real data demonstration.

Multiple-Group Confirmatory Factor Analysis and Measurement Invariance
In CFA model, a scale consists of n continuous, observable variables Y, and it measures

k continuous latent variables n. The CFA model can be expressed as:
Yij = 0 + k=i Apje + €, (1)

Where i = 1, ..., 1 for research subjectsand j = 1, ..., J for observable variables or items of a
scale; a; represents the mean of sample, 4;; represents the factor loadings of item j on latent
variable k, €;; represents the measurement errors. According to this equation, the effects of

latent variables on observable variables are additive.

In multiple group CFA, suppose there are total G groups, the superscript g denote that
this parameter is group-specific, equation 1 can also be written as matrices multiplication:
yI=19+A9n9 +€9, (2)
where y9 is an x 1 vector of scores on n measured variables (or indicator) for each individual.
9 i1sn X 1 vector of intercepts on n indicators. A isa n x k matrix of the factor loadings. 7 is
ann x 1 vector of latent variable scores. € isan x 1 vector of residuals. If take square at both
sides, then we obtained the covariance matrix. The covariance matrix of this model can be

expressed by equation:



29 =1919" + A9P9IA9" + 07, (3)

Where X' is a n X n matrix of covariance among n indicators. ¥ is k x k matrix of covariance

among k latent factors, 67 is a diagonal matrix of the variance components of errors.

In measurement invariance test, to test the configural invariance, researchers should make
sure the locations of zeros and non-zero cells are identical across covariance matrices of each
group. To test weak invariance, researchers should set equity on factor loadings across groups
(A9 = A). To test strong invariance, researchers then should set equity on both factor loadings
and intercepts across groups (A9 = A,79 = t). To test strict invariance, researcher should set
equity on factor loadings, intercepts, and residuals covariance matrix (A9 = A, 19 = 1,09 =
0). When these conditions are met, it is safe to say that measurement invariance is hold across
groups, and group mean comparison becomes feasible (Meredith, 1993). To estimate group mean
difference, simple set latent factor mean n of an arbitrary group as 0 and leave that of other

groups being freely estimated.

Previous Research of Systematic Error Variance

Measurement error variance is variance that cannot be explained by the construct of
interests, it can be further partitioned into unique variance and systematic error variance
(Spector, 1994; Spector & Brannick, 1995). The latter is defined as shared residual variance
among a clutch of variables. Although the error variance is believed as threat to measurement
validity and reliability, the systematic error variance is more concerning. For example, Spector
(2006) believes the correlation between two variables will be inflated by systematic error

variance.



The concept of systematic error variance was initially introduced by Fiske and Campbell
(1959): By examining the multitrait-multimethod (MTMM) matrix, they found if two traits are
measured by the same method, the measured correlation is the combination of traits and method.
Later, other researchers found other sources of systematic error variance, for example: Common
sources or raters (e.g., Eden & Leviatin, 1975; Guzzo, et al., 1986); item characteristics (e.g.,
Thomas & Kilmann, 1975); item context (e.g., Salancik & Pfefffer, 1977; Harrison &
McLaughlin, 1993). Unfortunately, due to lacking appropriate analytic tools, researchers are still
debating on how to locate the source of SEV and to which extent the systematic error variance

has impact on analysis (Spector, 1987; Williams, et al., 1989; Bagozzi, Yi, 1990).

So far, the discussion of systematic error variance is mostly about the method variance.
Researchers agree that method variance is the shared variance between observable variables that
is ascribed to the way information was collected, while the definition of method varies (Maul,
2013). Most researchers deem all systematic error variance as method variance, since method
variance is ‘something like systematic variance not attributable to trait under consideration’
(Golding, 1977, p.93). This idea is supported by many other researchers (e.g., Fiske, 1982;
Bagozzi, 1984; Baumgartner & Steenkamp, 2001; Johnson, 2011; Messick, 1991; Siemsen et al.
2010, Weijters et al., 2010; Edwards, 2008). As Fiske (1982, p.82) noted, the definition of
method ‘encompassed potential influence at several levels of abstractions’, therefore, the
correlated residuals may be the combination of multiple method effect. Meanwhile, other
researchers hold a narrower definition of method effect (Lance et al, 2009; Sechrest, 2000).
According to Lance (2009, 2010), method variance should be able to trace back to certain
measurement facets, like item similarity in content, structure, or format which elicit similar

response. Meanwhile, the raters’ tendency, measurement occasion or situation and item order



may be excluded from measurement facets (Podsakoff, et al., 2012). In this perspective, the
method variance is a subtype of systematic error variance. Besides, researchers like Spector
believe the method effect is an “urban legend’, since the systematic error variance is caused by a
limited number of people that cannot report accurately (Brannick et al., 2010; Spector, 2006).
As Spector concluded that systematic error variance is the result of ‘biases that affect particular

sets of variables’ (Brannick et al., 2010, p.417).

So far, the discussion about the systematic error variance is limited to examination of
covariance structure of multiple constructs in single-group studies, in which correlations of
multiple traits are suspected to be contaminated by systematic error variance. However, the
single-trait measurement is also not free from systematic error. When researchers use CFA
model to estimate a trait without controlling the systematic error variance, they may obtain the
incorrect factor loadings. To illustrate, in CFA model, the covariance between two indicators is

expressed as:
COVU = Acilplcj'
where A;, A; are factor loadings of indicator of i & j, ¥ is the variance of latent the factor. In
some model identification process, the latent factor mean is set as 0 and variance as 1, then the
equation can be rewrite as:
COVU = Acilcj'
However, when these two indicators are contaminated by systematic error variance from

some unknown sources, the covariance of two indicators can be decomposed into the covariance

explained by the construct and the unknown source. Therefore, it can be expressed by equation:

COVy; = Agilej + AqihsAs),



If we assuming the systematic error variance is caused by a measurement facet based on
narrow definition of the method effect. Then Ay, A; are factor loading of the latent method
factor. We can also assume that the systematic error variance is just correlated residuals, so the

equation can be also expressed as:

COVU = ACiACj + COVE,
Where COV, represents the correlated residuals. In both cases, if researchers try to identify their
model without modeling the systematic error variance, their factor loadings are potentially

biased.

Statistical Methods to Control Systematic Error Variance

Some techniques are invented to estimate systematic error variance, for example, the
MTMM matrix (Fiske & Campbell, 1959) and marker technique (Lindell & Whitney, 2001).
Due to the improvement of statistical computation, the CFA is becoming a popular tool. With
help of the CFA model, researchers could not only estimate both covariance structure and mean
structure, but also separate systematic error variance from measurement error (Geiser, et al.,
2014). Applying bifactor or CU models are the two most common strategies in controlling of
SEV, the selection of strategies are based on researchers’ knowledge about SEV or other

practical considerations.

Bifactor model

Bifactor model, also named as correlated-trait-correlated-method (CTCM), specified a
general latent factor that accounts for covariance among all indicators and group factors that
account for additional covariance among subsets of indicators (Reise, 2012). The bifactor model

assumes that systematic error variance is caused by other unmodeled constructs (e.g.,



measurement facets), so that SEV are specified as group factors. In bifactor model, single

measurement can be decomposed into construct component C;, other group factor Sy, and

unexplained residuals Ej
Yik = AcjkCj + AsjiSk + Eji,

where A, are factor loadings on construct and Ay, are factor loadings on group factors, the

construct factors and groups factors are assumed to be uncorrelated (Eid et al., 2003; Geiser, et

al., 2014).

So far, much research has assessed the performance of bifactor model in a specific
application: using bifactor model to control the correlation that is caused by method effect
between an independent variable and dependent variable. Many Monte Carlo simulation studies
show that bifactor model could accurately recover the true correlation when the model is
correctly specified (Conway et al., 2004; Hoogland & Boomsma, 1998; Lance et al., 2007; Le et

al., 2009).

Richardson et al. (2009) compared three correctional measures in controlling of method
effect and concluded that the bifactor model is not recommended. Specifically, three
correctional methods are: correctional marker technique, CFA marker technique, and ULMC
technique (bifactor). The first two techniques introduce a conceptually independent ‘marker’
construct whose measurement instrument is identical to independent/dependent variables (e.g.
two constructs are measured by self-report scale). While, for the former one, all correlations
between constructs would be assessed by a composed score. Since the marker construct is
conceptually independent with constructs of interests (e.g., two constructs of interests are

cognitive ability and math ability, the marker variable can be sexual orientation), any correlation



between marker variable and constructs must be caused by method. The true correlation
between two constructs of interests is the measured correlation minus method correlation. In
CFA marker technique, all constructs are assessed as latent factors; an indicator has factor
loadings on both construct of interest and marker latent variable. In ULMC technique, a method
factor is specified. Each indicator has factor loadings on both construct factor and a method
factor (see Figure 1). However, across various simulation conditions, the bifactor model is either
equal or worse to the CFA marker technique or original model. Later, Williams et al. (2015)

revised Richardson et al. (2009), they also reached the same conclusion about the bifactor model.

Beside these simulation studies, other researchers suggest that the bifactor model may
cause the inadmissible model estimation (e.g., standardized factor loadings larger than 1.0) or
non-convergence (Lance, 2002; Grayson & Marsh, 1994). Based on evidence above, it can be
assumed that if the bifactor model is applied to control systematic error variance in multiple

group CFA, biased results may be obtained.

Correlated Uniqueness (CU) model
CU model is invented to overcome the nonconvergence and inadmissible solution which
cause by using bifactor model (Kenny,1976; Kenny, 1979; Kenny & Berman,1980; Marsh,

1989). The CU model can be written as:
Yij = AsijSi + 6y,

where §;; is the combination of unexplained residuals and systematic error variance (Lance et al.,

2002). From this expression, the CU model assumes the systematic error variance does not have

mean structure.



Despite the flexibility and popularity of the CU model, there are some weaknesses also
noticeable. As Lance et al. (2002) summarized, the CU model lacks theoretical soundness,
because it does not separate the variance of method effect from other systematic or non-
systematic error variance. On the other hand, the CU model could not estimate the correlations
between method effects. Moreover, since CU model does not model the confounding effects on
measurement of construct mean, it is also criticized for ‘creating unmeasured variable problems’
(James, 1980). Most serious issue is model estimation. Corway et al. (2004) found the
estimations of construct factor loadings and correlation may be biased under the CU model,

therefore, lead to inaccurate inference of construct

Systematic Error Variance in Multiple-Group CFA

Comparing with single group study, controlling SEV is trickier in multiple group studies,
because SEV may interact with grouping factors. In the general linear model, the term
interaction is referred as that the relation between two variables varies over different levels of the
third variable. In multiple group CFA, the interaction is that systematic error variance is not
identically distributed across groups. In other words, the systematic error variance altered the
factor loadings in different extent across groups, which causes the measurement noninvariance.

This issue has not received enough attention from researchers.

Some researchers indicate that interaction of SEV is prevalent. For example, the
Rosenberg Self-esteem scale (SES) is widely used since its establishment and translated into
more than 28 languages (Rosenberg, 1979). Schmitt and Allik (2005) analyzed the SES data
from 53 countries and found the factorial structure of SES is not invariant across all countries.
From the analysis of factorial structure, they concluded that neutral response bias, which is

prevalent in collective cultures, may cause the configural noninvariance. This research implies

10



that some systematic error variance is culturally specific. In other SES and cross-culture studies,
using different samples yield contradicting results: some research sample from western
populations found negative method effect exists (Motl & DiStefano, 2002; Horan, et al., 2003;
Quilty, et al., 2006); other research sample from both eastern and western populations found both
negative and positive method effect exist (Wang et al., 2001; Wu, 2008). Such evidence suggest
researcher should not assume that the influence of systematic error variance is homogeneously

exerted on each group.

Although the systematic error variance has been studied for more than 60 years, previous
studies are focus on the covariance structure, few studies explored the influence of systematic
error variance on modeling mean structure (Geiser, et al, 2014). While many studies indicate that
systematic error variance has mean structure and its properties are similar to psychological
constructs (Spector, et al., 2019; Lance, et al. 2011; Maul, 2013; Chen, et al., 2012; Pohl, &
Steyer, 2010; Lance, et al., 2010). Based on this assumption, a single measurement is the linear

combination of constructs:

Vi = AejG + AsjSj + €,
in which S; is the mean of unexplained latent factor, C; is the mean of latent factor of construct.
In model fitting, it is unclear where such influence would exert on. According to research of
method effect, the method effect would inflate the correlation between two constructs. Therefore,
it can be assumed that when the systematic error variance is unmodeled, the factor loadings of
affected indicators are also inflated, and the mean of unmodeled variances will sneaked into the

mean of construct, instead of staying on intercepts of indicators.

Another issue is that minor misspecifications is tolerated in current measurement

invariance tests. To find a baseline model, many methodological papers or books suggest that

11



conducting CFA without any restrictions at each group separately, then move to multiple group
CFA test if there is no group has large deviation; or testing configural invariance directly (e.g.,
Bowen & Masa, 2015; Schoot, et al., 2012; Milfont & Fisher, 2010). Therefore,
misspecifications in certain groups are averaged by the whole sample, which may lead to

inaccurate conclusions of estimation of factor mean in certain groups.

In summary, the impact of systematic error variance on mean structure analysis in
multiple group CFA has not received enough attentions from researchers. And this issue is
complicated by nonequivalent distribution of SEV. Although bifactor and CU model are
extensively used to control the SEV, studies also suggested potential problems in applications of
these model in single-group study. Therefore, it is worth to examine both models under the

influence of SEV in the framework of multiple group CFA.

Therefore, this study has three objectives. For the first one, | want to know whether
minor model misspecifications will affect the estimation of group mean differences. It represents
a scenario in which items affected by SEV are inconsistent with researchers’ priors. The second
objective is examining whether the amount of SEV would affect the estimation of group mean
difference. This issue will be examined in two dimensions: incorrect estimation is caused by 1.
the overall amount of SEV, or 2. the difference amount of SEV across groups. The third
objective is examining whether to apply SEV controlling methods will lead to appropriate
conclusions about group mean differences; or, in other words, finding out the strategy of
applying appropriate SEV controlling method. Both bifactor and CU model will be used to fit a

same dataset and their performance will be compared.

This study would not provide opinions on definitions of the SEV or the method effect.

Because this study is interested in mean structure analysis, | assume the SEV also have mean

12



structure. Therefore, the properties of SEV in this study is closer to Lance et al. (2002) and the

SEV will be specified as a latent factor.

Method

Simulation Models

The simulated the data is assumed to be collected by a scale which is administrated
among multiple populations. This 6-item scale is developed in one population and has a clearly
defined single-dimension construct. Previous research suggested 3 out of 6 items are
contaminated by systematic error variance, so the researchers consider modifying the original

model to control the variance.

Model configurations

The simulation models are inspired by Richardson et al. (2009); however, each unit of
analysis is of mean structure. Figure 2 presents 5 configurations of models which were used to
generate data. The first condition represents the exact fitting, in which exactly 3 items were
contaminated by systematic error variance and researcher has successfully identified them. The
second condition represents under fitting, in which 5 items were contaminated by systematic
error variance but only 3 are controlled by researchers for both groups. The third condition
represents the over fit; in which only 2 items contaminated by systematic error variance, but
researchers thought 3 items. The fourth condition represents one of interaction of systematic
error variance; in the first group, 3 items are under the influence of systematic error variance,
however, the second group is freed of systematic error variance; this condition is hamed as

interaction 1. The fifth condition represents another type of interaction: only 3 items in the first

13



group are under the influence of systematic error variance, but 5 items in the second group; this

condition is named as interaction 2.

Fixed parameters

The factor loadings loaded on construct, intercepts, latent factor variance and residual
variance are set to be unchanged across all simulation conditions. For simplicity, all factor
loadings are set to .8, which represent to medium to high reliability; the variance of construct
factor is set to 1.0; the intercepts of indicators are set to 0; and the residual variance of indicators

are set to .36 (1 —. 82).

Systematic error variance

The systematic error variance functions as a latent factor, and it is named as error factor.
This study wants to know whether the overall amount or the difference in amount of SEV have
influences on estimation of mean difference. For the former one, named as equal SEV condition,
is achieved by setting the average factor loadings as equivalent across groups; the average factor
loadings are chosen from .2, .3, .4, and .5, which represent low, low-medium, medium, and high
amount of SEV. For the later one, named as unequal SEV condition, the average factor loading
always set to .2 in the second group; in the first, the average factor loading is chosen from .3, .4

and .5, which represent low, medium, and high amounts of difference in SEV.

In each level, factor loadings are not identical within a group, they vary around their
average values. For example, when average factor loading is set as .2, if the error factor has three
indicators, then three factor loadings are .1, .2, and .3; if the error factor has only two indicators,
then two factor loadings are .15 and .25; if the error factor has five indicators, then first three

factor loadings follow the rule of three factor loadings, and two extra factor loadings are fixed

14



to .2 and .3 across all conditions. Since in the interaction 1 condition, the second group is freed
of SEV, therefore, influence of SEV on two groups cannot be homogeneous. The interaction 1
condition would be independent from rest of simulation models and has 4 levels of factor
loadings; for other simulation models, they are used to simulate both equal and unequal SEV

conditions.

Sample size
Four sample sizes are used, they are 100, 300, 500, and 1000. They represent the sample

size commonly appear in CFA studies.

Latent factors mean difference

One purpose of this study is to answer two questions: whether the systematic error
variance will increase the chance of type I error when two groups are equivalent; and whether
systematic error variance will increase the type Il error when two groups are different. Therefore,
two latent factor mean differences are used: 0 for detecting type | error, and .25 for type 1l error.
The reason .25 is used for type Il error detection is because it represents the medium effect size
that can be detected by the smallest sample size (200 in total) in this experimental design. If the
systematic error variance would change the estimation of mean structure, the chance of type |
error will be higher as the sample size increase, while the chance of type Il error will be higher as

sample size decrease.

Data Generation

The process of data generation can be expressed as:

15



Y11 .8 Asi] €17
Y2 .8 Ay €2
V3| _ 1.8 Ag Tc €3
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_y6_ _.8 0 i _66_

As1, Ag2, Ag3 are factor loadings loaded on error factor. 7. is the mean of construct, the first
group is either 0 or .25, and the second group is always 0. 7, is the mean of error factor, the first

group is set to .5 and 0 for the second group.

In summary, there are totally 5 X 4 X 4 + 4 X 3 X 4 = 128 simulation conditions, and in

each condition, two group mean differences are set for testing type | and Il error rates.

Analysis procedure

Simulation and analysis are performed through the R platform. An R program is designed
for data generation and collection. Two R libraries were primarily used: ‘simsem’ and ‘lavaan’.
‘Simsem’ is an opensource R library developed by the University of Kansas and it is used for
data simulation; ‘lavaan’ is also an open-source library used for model fitting created under the

main developer Yves Roseel.

In each simulation condition, the program will simulate 1000 pairs of samples for each
construct mean difference conditions, totally 2000 pairs of samples. After generation of one
dataset, the ‘lavaan’ will use bifactor, CU, and single-factor models to fit this data. Figure 3
shows the configurations of models used to fit the data. At this stage, the program will directly
access the mean different with strong invariance setting. Because the CU model is unable to set
residual covariances as equivalent across two groups. Therefore, when the bifactor model is used
to fit the data, partial invariance is applied, in which the factor loadings loaded on the error

factors were freely estimated. After fitting, following information will be extracted: estimated

16



mean difference, p-value associated the mean difference. Nonconvergent model fittings would be

discarded. This process repeated for 1000 times.

To make all conditions comparable, the absolute error (AE) was introduced. AE is
calculated by estimated mean difference minus true difference. In model identification, the first
factor loading is set as 1, which is the default setting of most SEM programs (e.g., lavaan, mplus,
amos). By doing so, the estimate latent mean difference is re-scaled by the first factor loading

(in this study, the true estimated differences are 0 and .20, respect to 0 and .25).

Two indices are used to evaluate whether these models could obtain correct conclusions
about the mean difference: specificity and sensitivity. The specificity is operationalized as the
rate of not committing to type I error (true negative rate); the sensitivity is operationalized as the

rate of not committing to the type Il error (true positive rate).

Another two criteria are used to evaluate the performance of models: accuracy and
precision. The accuracy is operationalized as the mean of absolute error; the precision is the

width of 95% interval of AE after 1000 simulations.

Results

Rate of Converged Results

Table 1 and 2 present the number of converged results after 2000 times of model fitting.
Results indicated that non-converged results could only occur with the bifactor model, while
both the CU and single factor model had not any non-converged results. Also, for both equal and
unequal SEV conditions, the rate of convergent results increased as the sample size and overall

amount of SEV increasing. One exception was the condition of over fitting, the rate of non-
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convergent results was higher than other conditions in both equal and unequal SEV conditions,

and the increase of sample size did not improve the rate of convergent results.

Assessing Accuracy and Precision

Table 1 and 2 also present the average AE of each model in every simulation conditions.
The AE represents the deviation of estimated group mean difference from the true difference.
The accuracy is operationalized as the average AE after 2000 times of simulation. The average
AE closer to 0, a model has higher probability to obtain true group mean differences. Results
showed that the bifactor model overperformed the CU and the single factor models in most
simulation conditions. In conditions of exact and over fitting, the average AE of the bifactor
model was almost equal to 0 across all simulation conditions. In other simulation models, the
average AE of the bifactor model was lower than 0, which indicates the bifactor model
underestimated the group mean difference in these simulation conditions. However, such results

were still better than the CU model or the single factor model.

In the perspectives of sample size or amounts of SEV, the accuracy of all three models
were not affected by sample size. However, increase of amount of SEV have different impact on
three models. For bifactor model, in each simulation model configuration, the range of accuracy
was smaller than .018 (maximum in the interaction 2, equal SEV). However, for the CU model,
the range of accuracy could be as high as .089 (maximum in the over, equal SEV), .187 for the
single-factor model (maximum in the exact, equal SEV). Also, as the amount of SEV increasing,

the accuracy of the CU and single factor model become worse.

On exception was interaction 1 model. In which case, the bifactor model had the worst

performance. In the condition of interaction 1, the bifactor model highly estimated the group

18



mean difference (average AE = .3), and such estimates were not affected by sample sizes or
amounts of SEV. Estimates from the CU model and the single-factor model are slightly lower
than the bifactor model (.209 to .255 for CU model; .118 to .251 for single-factor model). Also,

as the amounts of SEV increasing, the accuracy also improved.

When the bifactor model did not model all SEVs, it was likely obtaining inaccurate
estimates. In the overfitting and interaction 2 conditions, in which 5 items were influenced by
SEV in either one or two groups, the average AE of the bifactor model ranged from -.102 to -.82
in both equal and unequal SEV conditions. Also, the average AEs seemed to be not affected by
the sample size or the amounts of SEV. Although the inaccuracy in estimation, the bifactor
model still overperformed the CU and the single factor model; in the under fitting and the
interaction 2 conditions, the average AE of the bifactor model was closer to the 0 than the CU or

the single factor models across all simulation conditions.

The precision is measured by width of 95% interval of AE after 2000 times of simulation,
the narrower width indicates the better precision. Table 1 and table 2 show that the width of
95% interval which was calculated by the upper end minus the lower end. The precision did not
have visible changes across the fitting models, the simulation models, and type of SEVs; the
precision only improved as the sample size increasing. The only exception was the condition of

interaction 1, in which the widths of intervals were slightly higher than other simulation models.

Assessing Specificity and Sensitivity
The specificity is referred as the true negative rate, or the rate of non-significant results
when the true difference is zero. As table 1 and 2 show, the bifactor model still overperformed

other models. In the conditions of exact fitting and overfitting, the specificity of the bifactor
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model could be remaining around .95 across all simulation conditions. However, for CU model,
its specificity could reach above .9 only when sample size is small, however, when sample size
was becoming larger, the specificity decreased. In other conditions of simulation models, the
specificity of the bifactor model failed to remain above .9, but it was still much higher than the
CU and the single factor model in both equal and unequal SEV conditions. One exception is the
condition of interaction 1, in which single factor model had the best performance in specificity.

However, all three models almost got 0 in specificity when sample size is larger than 300.

Also, compared with conditions of equal and unequal SEV, the specificity of the bifactor
model does not have considerable differences. However, specificity of the CU model was

slightly higher in equal SEV condition than unequal SEV condition.

The sensitivity is referred to true positive rate, or the rate of significant results when there
is a difference between two groups. The sensitivity is also related to statistical power. Many
researchers agree that the power above .80 is deemed as acceptable (Bezeau & Graves, 2001).
Table 1 and 2 shows the bifactor model still overperformed the CU model and the single factor
model, while the CU model was slightly better than the single factor model, across all simulation
conditions. For the bifactor model, in most simulation models, when sample size was larger than
300, its power reached acceptable level. For the CU model, it required sample size larger than
500 to reach an acceptable power. One exception was interaction 2, in which the bifactor model
failed to reach above .8 in most simulation conditions in both equal and unequal SEV. And equal

or unequal SEV seem having no effects on sensitivity.
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A Self-Esteem Example

This study provided an example of how to select appropriate SEV controlling method in
multiple group CFA, based on the information obtained from the simulation study. The data is
from a project in which the Rosenberg Self-Esteem Scale (RSE) was administrated among
Chinese, Japanese, and American college students. There are totally 844 participants, 280

Americans, 378 Chinese and 186 Japanese.

The RSE was developed by Rosenberg (1965), it is the most widely used instrument to
measure the globe self-esteem (Marsh, 1996). So far, the RSE has been translated into many
languages and administrated among at least 53 countries or areas (Schmitt & Allik, 2005). The
RSE is a Likert scale which consists of 10 items, participants make responses form one (strongly
disagree) to five (strongly agree). 5 out of 10 items are positively worded (e.g., ‘On the whole, I
am satisfied with myself”) and the rest is negatively worded (e.g., ‘At times, I am no good at
all’). Although RES is designed for measuring a unidimensional self-esteem, some studies also
reported a two-factorial structure (e.g., Carmines & Zeller, 1979; Marsh, 1996). Majority of
researchers agreed on that the multiple-factorial structure is accounted for response style to
differently worded items, such response styles are also called positive or negative method effect
(e.g., Marsh, 1996; Risko, Oakman & Evan, 2006). Therefore, if the RSE data is collected from
one group, researchers can suspect either its half of items is contaminated by one type of SEV, or

all items contaminated by two types of SEV.

To determine the factorial structure of each group, 7 models were selected from previous
studies to fit the data of each group (e.g., Wu, 2008). Figure 4 presents the figures of these
models. Seven models are: 1. original model which assumes no SEV; 2. Bifactor model which

assumes the negative method effect exists; 3. Bifactor model which assumes the positive method
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effect exists; 4. CU model which assumes the negative method effect exists; 5. CU model which
assumes the positive method effect exists; 6. Bifactor model assumes both method effects exist;

7. CU model assumes both method effects exist.

Table 3 presents results of all fitting attempts. The original model was used as the
baseline model. The chi-square difference test indicated whether the model fitting improvement
is significant or not. Results show, for the US and China, after applying any models which
specifies only one method effect, the model fitting had significant improvements. Therefore,
both positive and negative method effects existed in US and Chinese population (p <.000). For
the Japanese data, the model fittings also had significant improvements, but the improvement is
relatively small after applying models with positive method effect specified (y?(6) = 14.16, p
=.038 for CU model, x2(6) = 19.23, p = .028 for bifactor model). Also, compared model 4 and
model 7, the improvement was not significant anymore (y%(10) = 14.31, p = .159). Therefore,

positive method effect might slightly contaminate Japanese data.

Based on CFA results, it is safe to conclude that researchers should apply a model with
both positive and negative method effects specified. Also, simulation study suggests that the
bifactor model is superior to CU model. Therefore, a bifactor model with two method effect
factors should be applied. However, this model unable to yield a converged result. By
reviewing the CFA results, model was unable to yield converged results in US sample.
Therefore, the US sample was discarded, and only Chinese and Japanese samples would be
compared. Setting Chinese sample as the baseline and the estimated mean difference is -.806
(z=-12.222, p<.000). Therefore, the null hypothesis was rejected and there was a significant

difference in self-esteem between the Chinese and Japanese people.
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Discussion

In CFA, both bifactor and CU models are commonly used to control the systematic error
variance, researchers make decision on model choice based on the fit indices: good fit indices
indicate that the model has correctly specified the SEV. However, the misspecification and
unequal distribution of SEV are issues unique to multiple group CFA. Plus, the mean structure
analysis is also a unique objective of multiple group CFA. Therefore, commonly used fit indices
(e.g., CFI, SRMR) may not be exclusive criteria for model selection. This study addressed two
issues, the first is that how do the bifactor and CU model control the different types of SEVs in
multiple group study; the second is that how SEV affects the estimation of group mean
difference. Results indicate that the bifactor model has most accurate estimation of the mean
difference, if it is able to yield the converged results. When bifactor models encounters the
nonconvergent results, an overfitted CU model could be an alternative, though the results would
still be biased. Also, whether the amount of SEVs distributes equally would not affect
estimation a lot; however, configural noninvariance caused by SEVs and total amount of SEVs

are more serious issues

All stimulation models can also be divided into two categories: for exact fitting, over
fitting and interaction 1, all SEV are modeled; for under fitting and interaction 2, not all SEVs
are modeled. In the first category, the bifactor model perfectly estimated the group mean
difference, whereas the CU model is likely to underestimate the group mean difference. Such
results indicate that by specifying the SEV as an error factor, the bifactor model could
successfully estimate the mean structure of the error factor and partial it out from construct. In
the contrary, the CU model also correctly specified the SEVs, the failed to obtain the estimations

as accurate as the bifactor models. One explanation is because the CU model is unable to specify
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the mean structure of SEVs, it is less effective in taking the mean of SEVs out from the

construct.

Results from the condition of the interaction 1 seem contradicting to the conclusions that
draw above. Comparing with the over fitting, the interaction 1 is also a type of over fitting but
yielded worst estimation, while the former one yield best estimations. One explanation is that
when SEVs are totally absent, but model has specified SEV, extra parameters which were
designed to control SEVs would extract covariance from the construct of interests at the second
groups. It can explain that under the interaction 1 simulation model, all models are likely to
overestimate the group mean difference. If SEVs are present, regardless its amount, they would

serve as a reference so that model would not extract variance from the construct.

In the second category, in which not all SEVs are modeled, models with SEV controlling
(bifactor, CU model) overperformed the models without SEV controlling (single factor model).
And the bifactor is better than the CU model across all simulation conditions. From conclusions
above, it is safe to concluded that the bifactor model have better estimations in group mean

difference than the CU model.

These findings are also complementary to previous studies about the methods used to
control SEVs. In the framework of covariance structure analysis, Williams and O’Boyle (2015)
concluded that correctly specified bifactor model could be able to make expected error near to
zero (Conway et al., 2004; Lance et al., 2007; Le et al., 2009; Marsh & Bailey, 1991). This
study also indicates the correctly specified or overly specified bifactor model could also obtain

accurate parameter estimation in the framework of mean structure analysis.
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The major weakness of the bifactor model is non-converged results. Simulation study
indicates that probability of nonconvergent results reduces as the amount of SEV or sample size
increasing. In applied studies, researchers may not be able to increase the sample size.
However, when nonconvergent results occur, it may indicate the SEV they try to model is low in
amount. In other words, the ratio of the amount of SEV and the number of degrees of freedom
costed in modeling this SEV is relatively low. Eid (2000) named this issue as over factorization
and proposed one solution which reduced the number of parameters in fitting model. Eid (2000)
and Eid et al. (2003) proposed the CTCM-1 (pronounced as ‘CTCM minus one’): if a model
have k error factors, only k-1 factors will be specified. However, by doing so, situation of exact
or over fitting may be converted to under fitting. According to simulation results of this study,
bias will be introduced. Therefore, researchers should also consider exact or over fitting CU

model and determine which one could yield most accurate results.

Limitation

This study is not freed of limitations. This study is only simulated simplest SEV
conditions, in which there is only one SEV resource and specified as a latent factor. In the stage
of model fitting, the best results yielded by the bifactor model may be due to that bifactor model
is closer to the true model than the CU model. Also, the SEV in this study actually reflects the
narrow definition of method effects, which is proposed by Lance et al (2003). Due to lack of
theoretical understanding of SEVs, it is unclear in how to simulate data with CU model,
meanwhile, mean structure of SEVs included. According to the board definition of the method
effect, the SEV may present in the data in a more complicated way. Following conditions are
not simulated in this study: 1. there may be more than one type of SEV exist; 2. Some indicators

have factor loadings loaded on more than one error factors; 3. covariance exists among two error
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factors. When these conditions are introduced, different conclusions about the bifactor and CU

models may be obtained.

Direction for Future Research

Future studies can examine whether existed fit indices are able to be used as indicators of
accuracy in mean difference estimations. Currently, five fit indices (CFI, SRMR, RMSEA, chi-
square, AIC) are most widely used to evaluate the goodness of fit in CFA. Researchers are likely
to choose the model with best fit indices because it indicates the model fits the data best.
However, Lance et al. (2007) found that true model may not have the best fit indices. Therefore,

it worth to know the means of fit indices to the estimation of group mean difference.

Conclusion

The promising findings from this study will help applied researchers to understand the
impact of SEV on the measurement invariance test and the properties the SEV controlling
methods. This study was found that unmodeled SEVs will alter estimation of latent group mean
difference in multiple CFA. It was found that the bifactor model could accurate estimate the
group mean difference when it is correctly or overly specified. It was also found that the CU
model is less effective in controlling the SEV, therefore, the bifactor model is the preferable SEV
controlling method. However, in certain conditions, bifactor model may yield worst estimations
among available methods. These findings inform applied researchers in choosing appropriate

SEV controlling strategies.
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Table 1la

Results of three models under the equal SEV condition

Bifactor Model

Simulation Convergent  Average Width of

models FL n rate AE Interval Specificity  Sensitivity

Exact .2 100 1065 .001 498 948 .386

300 1426 .002 284 .952 817

500 1607 .000 225 .939 939

1000 1808 .001 149 .958 999

.3 100 1639 .002 464 950 .369

300 1954 -.004 .288 .926 782

500 1991 .001 214 .960 .954

1000 1999 .000 162 929 .998

4 100 1974 .003 465 .959 397

300 2000 .002 287 932 .839

500 2000 .001 220 946 .966

1000 2000 .000 146 961 1.000

5 100 1999 -.003 467 .959 .360

300 2000 .000 272 957 .823

500 2000 .000 .208 .959 .956

1000 2000 .000 148 957 999

Under 2 100 1033 -.088 498 .896 148

300 1069 -.092 287 761 290

500 1015 -.093 209 581 526

1000 1049 -.089 160 370 799

3100 1102 -.097 513 .885 130

300 1217 -.097 .288 .738 282

500 1278 -.096 240 .604 475

1000 1347 -.100 162 .285 129

4 100 1370 -.103 544 .839 126

300 1559 -.104 322 .706 .283

500 1695 -.101 244 578 449

1000 1848 -.103 176 277 710

.5 100 1833 -.104 561 .864 117

300 1987 -.107 327 .657 270

500 1998 -.106 .255 510 404

1000 2000 -.106 A79 243 .681

Over .2 100 1077 .001 473 957 .369

300 1170 .002 .285 940 .816

500 1204 .001 214 .954 .946

1000 1216 .000 140 .960 1.000

3 100 1202 .001 504 941 .365

300 1343 -.001 .283 945 .816

500 1329 -.001 .208 953 .938
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Bifactor Model

Simulation Convergent  Average Width of
models FL n Results AE Interval Specificity  Sensitivity
Over .3 1000 1341 .000 153 942 1.000
4 100 1334 -.006 489 .949 359
300 1389 -.002 271 .954 .801
500 1400 .002 210 955 .955
1000 1421 .000 149 .956 1.000
5 100 1526 .003 483 944 .388
300 1545 .001 .283 .945 .815
500 1560 .000 210 .946 967
1000 1591 .001 146 947 1.000
Interactionl .2 100 1051 .300 595 .095 .920
300 1280 .300 430 .000 1.000
500 1457 .304 .385 .000 1.000
1000 1728 .300 337 .000 1.000
3 100 1471 .295 612 104 .886
300 1881 .300 441 .000 1.000
500 1949 .298 .390 .000 1.000
1000 1997 301 .330 .000 1.000
4 100 1824 307 617 091 910
300 1981 299 438 .000 1.000
500 1994 .302 .384 .000 1.000
1000 2000 .300 .328 .000 1.000
S5 100 1914 .306 .622 .085 .904
300 2000 .298 444 .000 1.000
500 2000 .299 397 .000 1.000
1000 2000 .300 329 .000 1.000
Interaction2 .2 100 929 -.090 .506 .866 165
300 948 -.087 277 178 323
500 1050 -.086 226 617 541
1000 1178 -.081 153 433 .851
3 100 1071 -.088 AT77 .885 160
300 1181 -.088 .289 123 .355
500 1165 -.086 226 .638 531
1000 1150 -.085 149 392 .864
4 100 1400 -.082 493 .885 150
300 1674 -.087 271 172 .358
500 1808 -.088 229 .612 .536
1000 1933 -.086 158 405 831
5 100 1887 -.091 507 872 143
300 1994 -.087 299 73 335
500 2000 -.088 228 .631 533
1000 2000 -.087 162 .384 799

Note. FL= the average factor loadings which loaded on the error factor in simulation model
of both groups; Average AE = average absolute error; Width of interval = width of 95%
interval
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Table 1b

Results of three models under the equal SEV condition

Correlated Uniqueness Models

Simulation Convergent  Average Width of

models FL n rate AE Interval Specificity Sensitivity

Exact 2 100 2000 -.043 465 .942 270

300 2000 -.044 .266 903 .623

500 2000 -.045 213 .858 .833

1000 2000 -.043 149 .805 .981

3 100 2000 -.060 459 931 222

300 2000 -.062 276 .828 528

500 2000 -.057 210 813 .780

1000 2000 -.058 156 .659 .955

4 100 2000 -.065 464 914 227

300 2000 -.064 .280 821 523

500 2000 -.065 221 .750 731

1000 2000 -.066 143 581 .946

S5 100 2000 -.071 453 922 210

300 2000 -.067 .265 .833 517

500 2000 -.067 202 178 .698

1000 2000 -.067 148 573 946

Under 2 100 2000 -.100 487 .857 124

300 2000 -.099 283 712 281

500 2000 -.101 215 532 482

1000 2000 -.098 153 273 .749

3 100 2000 -.132 511 .820 .089

300 2000 -131 284 569 .186

500 2000 -131 233 .369 240

1000 2000 -.132 156 .086 423

4 100 2000 -.164 512 741 .061

300 2000 -.162 312 412 .096

500 2000 -.160 .238 .198 135

1000 2000 -.161 168 017 205

5 100 2000 -.188 559 .696 .059

300 2000 -.189 315 .298 .060

500 2000 -.188 249 .099 .070

1000 2000 -.188 175 .006 .079

Over 2 100 2000 -.033 462 .945 .308

300 2000 -.028 271 932 715

500 2000 -.029 209 911 .900

1000 2000 -.031 144 .860 .996

3100 2000 -.046 482 .930 .267

300 2000 -.044 .268 .886 .623

500 2000 -.044 204 877 .830
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Correlated Uniqueness Model

Simulation Convergent  Average Width of
models FL n Results AE Interval Specificity  Sensitivity
Over .3 1000 2000 -.042 154 .803 .989
4 100 2000 -.055 474 931 245
300 2000 -.051 263 874 .612
500 2000 -.049 205 .836 .829
1000 2000 -.051 146 729 .985
5 100 2000 -.052 466 933 250
300 2000 -.055 276 .856 572
500 2000 -.056 207 817 .785
1000 2000 -.055 147 .695 .983
Interactionl .2 100 2000 .255 595 142 .833
300 2000 .256 426 .000 999
500 2000 254 374 .000 1.000
1000 2000 .255 .326 .000 1.000
3 100 2000 232 588 191 793
300 2000 233 434 .001 .998
500 2000 234 381 .000 1.000
1000 2000 .236 323 .000 1.000
4 100 2000 225 .600 222 .786
300 2000 220 421 .003 1.000
500 2000 222 371 .000 1.000
1000 2000 220 321 .000 1.000
S5 100 2000 213 573 232 .756
300 2000 209 428 .002 .999
500 2000 209 .387 .000 1.000
1000 2000 211 319 .000 1.000
Interaction2 .2 100 2000 -.097 AT77 .865 132
300 2000 -.096 .269 Jq11 314
500 2000 -.097 211 552 478
1000 2000 -.095 151 277 .769
3100 2000 -.119 454 841 101
300 2000 -119 272 579 235
500 2000 -.120 215 412 313
1000 2000 -.119 151 A17 .552
4 100 2000 -.133 477 .786 .085
300 2000 -.138 274 508 138
500 2000 -.139 216 .289 221
1000 2000 -.138 151 .052 .366
.5 100 2000 -.156 483 746 .066
300 2000 -.153 292 463 102
500 2000 -.154 228 220 146
1000 2000 -.153 158 .026 243

Note. FL= the average factor loadings which loaded on the error factor in simulation model of
both groups; Average AE = average absolute error; Width of interval = width of 95% interval
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Table 1c

Results of three models under the equal SEV condition

Single Factor Model

Simulation Convergent  Average Width of

models FL n rate AE Interval Specificity  Sensitivity

Exact .2 100 2000 -.053 469 .928 243

300 2000 -.054 267 874 559

500 2000 -.055 214 814 .786

1000 2000 -.053 151 715 970

3 100 2000 -.093 AT7 .887 167

300 2000 -.095 277 721 319

500 2000 -.091 211 595 544

1000 2000 -.092 158 333 .802

4 100 2000 -.149 479 167 .076

300 2000 -.149 .289 431 128

500 2000 -.148 230 230 183

1000 2000 -.149 153 027 .280

5 100 2000 -.242 491 543 .067

300 2000 -.238 277 .092 .090

500 2000 -.239 220 .013 113

1000 2000 -.240 158 .000 .186

Under 2 100 2000 -.100 .486 .854 122

300 2000 -.099 278 .710 .283

500 2000 -.101 213 534 481

1000 2000 -.098 153 .268 753

3100 2000 -.134 .509 821 .086

300 2000 -.133 284 .559 178

500 2000 -.133 234 352 232

1000 2000 -.134 158 .076 403

4 100 2000 -.183 520 712 .054

300 2000 -.180 314 347 071

500 2000 -.178 245 131 .085

1000 2000 -.179 A71 .005 100

.5 100 2000 -.260 555 530 .067

300 2000 -.262 316 .085 101

500 2000 -.261 252 011 143

1000 2000 -.261 176 .000 221

Over .2 100 2000 -.037 467 941 295

300 2000 -.031 276 921 .706

500 2000 -.032 211 .908 .883

1000 2000 -.034 145 .836 994

3 100 2000 -.059 491 921 227

300 2000 -.057 278 .845 .552

500 2000 -.057 .209 812 769
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Single Factor Model

Simulation Convergent  Average  Width of Sensitivit
models FL n Results AE Interval Specificity y
Over 3 1000 2000 -.055 155 .684 973
4 100 2000 -.089 496 .886 169
300 2000 -.086 279 T47 412
500 2000 -.084 219 627 .589
1000 2000 -.086 153 349 .867
5 100 2000 -.159 .538 .760 .068
300 2000 -.164 323 .396 A14
500 2000 -.166 .239 169 105
1000 2000 -.165 170 .015 201
Interaction1 .2 100 2000 251 .603 .158 .820
300 2000 .252 427 .000 .998
500 2000 .250 374 .000 1.000
1000 2000 251 325 .000 1.000
3 100 2000 217 591 240 146
300 2000 219 436 .003 997
500 2000 220 381 .000 1.000
1000 2000 222 .326 .000 1.000
4 100 2000 .188 617 352 .648
300 2000 183 435 .025 977
500 2000 184 379 .000 1.000
1000 2000 183 325 .000 1.000
5 100 2000 122 .588 591 437
300 2000 118 440 141 .848
500 2000 118 .390 .023 .969
1000 2000 120 .326 .000 1.000
Interaction2 .2 100 2000 -.098 476 .868 132
300 2000 -.097 .268 .708 307
500 2000 -.098 211 547 463
1000 2000 -.096 150 267 .756
3 100 2000 -.129 458 .826 .086
300 2000 -.128 275 537 .200
500 2000 -.129 218 .348 .245
1000 2000 -.128 152 .078 460
4 100 2000 -.167 491 718 .059
300 2000 =172 275 343 074
500 2000 -.173 220 132 .072
1000 2000 =172 149 .008 .099
5 100 2000 -.248 497 512 .089
300 2000 -.245 .296 106 110
500 2000 -.247 226 .008 159
1000 2000 -.246 163 .000 .259

Note. FL= the average factor loadings which loaded on the error factor in simulation model
of both groups; Average AE = average absolute error; Width of interval = width of 95%

interval
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Table 2a

Results of three models under the unequal SEV condition

Bifactor Model

Simulation Convergent  Average Width of
models FL n rate AE Interval Specificity  Sensitivity
Exact 3 100 1487 .004 484 947 391
300 1911 -.002 .282 946 .800
500 1977 -.002 217 .945 943
1000 2000 -.002 152 .948 999
4 100 1815 -.001 489 953 .396
300 1991 -.003 .288 .950 779
500 2000 -.003 211 .960 944
1000 2000 -.001 158 941 .997
5 100 1939 .000 474 .955 .367
300 1997 .000 278 .954 .800
500 2000 -.002 213 955 945
1000 2000 -.003 156 941 1.000
Under 3 100 1110 -.089 543 .853 138
300 1198 -.102 314 .650 290
500 1237 -.094 235 .583 481
1000 1314 -.095 .166 342 759
4 100 1417 -.098 515 879 119
300 1661 -.098 302 741 311
500 1782 -.098 .238 .555 453
1000 1939 -.100 167 307 q27
5 100 1844 -.100 541 .862 123
300 1989 -.098 320 755 292
500 1997 -.099 246 581 444
1000 2000 -.098 .168 291 .7136
Over 3 100 1163 .007 489 952 .387
300 1295 -.001 281 954 782
500 1326 .000 220 943 961
1000 1333 .000 150 .950 .999
4 100 1358 .003 488 947 378
300 1391 .003 284 .959 814
500 1436 -.001 213 .949 963
1000 1391 .000 155 934 1.000
S5 100 1521 .008 518 .928 378
300 1567 -.002 287 929 799
500 1570 .003 214 951 .964
1000 1592 .000 153 942 .999
Interaction2 .3 100 923 -.082 492 .908 .189
300 977 -.089 .286 167 .369
500 1017 -.090 217 .645 514
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Bifactor Model

Simulation Convergent  Average Width of
models FL n Results AE Interval Specificity  Sensitivity
Interaction2 .3 1000 1127 -.090 150 .336 .823
4 100 1196 -.088 491 .882 157
300 1563 -.093 .288 719 .367
500 1738 -.091 228 .624 484
1000 1917 -.094 163 .345 75
S5 100 1695 -.088 491 .881 146
300 1944 -.097 299 718 303
500 1979 -.095 232 .599 485
1000 2000 -.095 153 292 779

Note. FL= the difference of the average factor loadings which loaded on the error factor in
simulation model of two groups; Average AE = average absolute error; Width of interval =
width of 95% interval
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Table 2b

Results of three models under the unequal SEV condition

Correlated Uniqueness Model

Simulation Convergent  Average Width of
models FL n rate AE Interval Specificity  Sensitivity
Exact 3 100 2000 -.059 470 916 239
300 2000 -.062 281 .846 543
500 2000 -.061 215 .788 164
1000 2000 -.061 150 .613 .960
4 100 2000 -.075 468 .902 .203
300 2000 -.076 275 .809 432
500 2000 -.075 205 .683 674
1000 2000 -.073 153 486 915
5 100 2000 -.083 474 .891 .185
300 2000 -.082 274 776 405
500 2000 -.084 .208 .664 599
1000 2000 -.085 153 402 .864
Under 3 100 2000 =127 524 .808 103
300 2000 -.132 295 534 167
500 2000 -.128 227 344 277
1000 2000 -.128 152 .089 A73
4 100 2000 -.157 .503 751 077
300 2000 -.156 .289 420 A12
500 2000 -.157 230 184 A51
1000 2000 -.159 164 .014 201
5 100 2000 -.182 513 .685 .051
300 2000 -.181 .308 332 .066
500 2000 -.182 237 100 .081
1000 2000 -.182 165 .002 103
Over 3 100 2000 -.041 463 .940 276
300 2000 -.045 .265 901 .619
500 2000 -.044 211 .850 .856
1000 2000 -.045 A51 182 .983
4 100 2000 -.056 479 917 240
300 2000 -.052 270 .879 557
500 2000 -.056 212 .828 .786
1000 2000 -.055 150 .679 973
S5 100 2000 -.060 480 .895 230
300 2000 -.066 276 .831 512
500 2000 -.062 211 .790 762
1000 2000 -.063 145 621 .958
Interaction2 .3 100 2000 -.116 479 841 119
300 2000 -.120 .268 561 216
500 2000 -121 215 410 313
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Correlated Uniqueness Model

Simulation Convergent Width of
models FL n Results Average AE  Interval  Specificity Sensitivity
Interaction2 .3 1000 2000 -.122 153 .097 531
4 100 2000 -.144 AT7 755 072
300 2000 -.147 .285 441 142
500 2000 -.145 217 251 .198
1000 2000 -.146 153 .038 .306
5 100 2000 -.163 469 124 .057
300 2000 -171 281 316 .084
500 2000 -.168 227 138 .097
1000 2000 -.169 147 .008 142

Note. FL= the difference of the average factor loadings which loaded on the error factor in
simulation model of two groups; Average AE = average absolute error; Width of interval =
width of 95% interval
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Table 2¢

Results of three models under the unequal SEV condition

Single Factor Model

Simulation Convergent  Average Width of
models FL n rate AE Interval Specificity  Sensitivity
Exact 3 100 2000 -.083 478 .878 A77
300 2000 -.086 .282 759 .397
500 2000 -.085 219 .630 .585
1000 2000 -.086 150 353 .860
4 100 2000 -.127 482 .816 112
300 2000 -.130 282 543 180
500 2000 -.128 212 .350 .268
1000 2000 -.126 156 .083 514
5 100 2000 -.186 471 .703 .050
300 2000 -.186 284 274 .052
500 2000 -.188 213 .073 .054
1000 2000 -.188 157 .006 .065
Under 3 100 2000 =127 522 .804 .100
300 2000 -.133 295 539 .168
500 2000 -.129 229 .338 .266
1000 2000 -.129 153 .089 474
4 100 2000 -.165 .506 745 .067
300 2000 -.164 293 .383 .091
500 2000 -.165 231 164 123
1000 2000 -.167 164 .009 158
5 100 2000 -214 524 .626 .038
300 2000 -.213 314 226 .055
500 2000 -.214 243 .048 .047
1000 2000 -.215 169 .001 .038
Over 3 100 2000 -.050 473 .938 242
300 2000 -.054 267 .868 567
500 2000 -.053 216 .806 .799
1000 2000 -.054 153 .702 970
4 100 2000 -.078 496 .891 182
300 2000 -.074 282 .810 446
500 2000 -.078 214 704 .633
1000 2000 -.076 158 467 .909
S5 100 2000 -111 515 .818 144
300 2000 -118 .300 594 245
500 2000 -114 234 419 400
1000 2000 -115 162 154 .633
Interaction2 .3 100 2000 -.120 479 .832 116
300 2000 -.125 .266 534 199
500 2000 -.125 213 .384 284
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Single Factor Model

Simulation Convergent  Average Width of
models FL n Results AE Interval Specificity Sensitivity
Interaction2 .3 1000 2000 -.127 152 077 487
4 100 2000 -.157 476 729 .055
300 2000 -.160 .283 377 .094
500 2000 -.158 216 A71 129
1000 2000 -.160 151 .017 .186
5 100 2000 -.198 465 .663 .046
300 2000 -.207 287 A72 .048
500 2000 -.203 223 .050 .053
1000 2000 -.205 147 .002 041

Note. FL= the difference of the average factor loadings which loaded on the error factor in
simulation model of two groups; Average AE = average absolute error; Width of interval =
width of 95% interval
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Table 3

CFA results after using seven models to fit the data of three groups separately

% df Ax?(df,p) SRMR RMSEA CFI
us
1 169.19 35 NA 06 12 89
2 62.29 29 106.9(6, <.000) 03 06 97
3 103.07 29 66.12(6, <.000) 05 10 94
4 55.46 25 113.73(10,<.000) 03 07 97
5 86.67 25 82.52(10, <.000) 05 .09 95
6 NA NA NA NA NA NA
7 33.94 15 21.52(10, <.000)*/ 03 07 08
52.73(10, <.000)**
CN
1 229.94 35 NA 07 12 83
2 123.39 29 106.55(6,<.000) 05 .09 92
3 134.13 29 95.81(6, <.000) 05 10 91
4 96.28 25 133.66(10, <.000) 04 .09 94
5 114.35 25 115.59(10, <.000) 05 10 92
6 62.34 23 61.05(6, <.000)*/ 03 07 97
71.79(6, <.000)**
7 34.12 15 62.16(10, <.000)*/ 02 .06 08
80.22(10, <.000)**
JP
1 129,55 35 NA 08 12 85
2 64.05 29 65.5(6, <.000) 05 08 94
3 115.39 29 14.16(6,.028) 08 13 86
4 47.62 25 81.93(10, <.000) 05 07 96
5 110.32 25 19.23(10, .038) 07 14 86
6 47.20 23 17.3(6, .008)*/ 04 08 96
68.19(6, <.000)**
7 33.31 15 14.31(10, .159)*/ 04 08 97

77.01(10, <.000)**

Note. 1 = model with no method effect; 2 = bifactor model with negative method effect; 3 = bifactor
model with positive method effect; 4 = CU model with negative method effect; 5 = CU model with
positive method effect.

* Comparing with the model specifies negative method effect
** Comparing with the model specified positive method effect
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Figure 1

An example of ULMC (Bifactor) model
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Figure 2

The configurations of models for data generation
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Note. S factor represents SEV, C factor represents construct.

49



Figure 3

The configurations of models used to fit data
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Note. S factor represents SEV, C factor represents construct.
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Figure 4:

Theoretical Models for the Rosenberg Self-Esteem Sale
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Model 2: Bifactor Model with Negative Method Factor Model 3: Bifactor Model with Positive Method Factor
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Model 6: Bifactor Model with Two Method Factors
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Model 7: CU Model with Two Method Factors




