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Abstract 

 Systematic error variance (SEV) is one of sources that make a measurement noninvariant 

(DeShon, 2004).  In the confirmatory factor analysis (CFA), researchers use the bifactor or 

correlated uniqueness (CU) model to control the SEV.  This study aims to examine the impacts 

of SEVs on the multiple groups mean comparison, and evaluate the methods used to control the 

SEVs in the framework of multiple group CFA.  In Monte Carlo simulation, multiple groups data 

contaminated by different SEV distributions are generated, then, the bifactor and the CU model 

were used to fit the data.  The original model, which assumed no SEVs, was also used as the 

baseline model.  Results show that uncontrolled SEV could affect the estimation of mean 

difference.  Among three models, the bifactor overperformed the other two models in most 

conditions if it yields converged results.  This study also provided an empirical example to 

demonstrate how to select appropriate methods in multiple group CFA. Implications of these 

results for applied researchers are discussed. 

Keywords: Measurement invariance, confirmatory factor analysis, systematic variance 
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Introduction 

When researchers are interested in group mean difference of a psychological construct, 

they may use a self-report inventory or scale to assess it. If means of these groups are different, 

they can conclude that the difference is attributed to group variables (e.g., culture, time). This 

comparison assumes that the measurement instrument is actually measuring the same construct 

across groups.  In other words, researchers must make sure that the measurement is invariant 

across groups before making group mean comparison.  Therefore, the measurement invariance 

test becomes an integral part of multiple-group analysis (DeShon, 2004). Measurement 

invariance test can be also conducted in the framework of the confirmatory factor analysis 

(CFA).  CFA permits the comparison in the term of latent variables so that the measurement 

error is controlled (Thompson & Green, 2006).  In the CFA, the measurement invariance test is 

applying restraints on a sequence of sets of parameters.  The test begins with examining whether 

the factor structure is the same across groups by setting model configuration identical across 

groups.  Then to restrain all factor loadings as equivalent across groups to test weak or metric 

invariance; then all intercepts to test strong or scalar invariance; then residuals to test strict 

invariance. Strong invariance is a necessary condition for construct means comparison. 

 Systematic error variance (SEV) is one of potential sources which make a measurement 

non-invariant. SEV is shared error variance among variables. Because it is usually ascribed to 

using of measurement instruments, the term SEV is believed to be exchangeable for method 

variance (Richardson et al., 2009; Podsakoff et al., 2003).  It frequently appears in research data 

which is collected by self-report scale (Richardson et al., 2009).  Most researchers deem the SEV 

as a detrimental impact on model parameter estimations; unmodeled systematic error variance 
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usually cause poor model fitting and incorrect model parameters estimations (Podsakoff, et al., 

2003; Spector, 2006).   

 In CFA, researchers may rely on modification indices or their prior knowledge to locate 

items affected by SEV then control it by modeling the SEV. Currently, two measures are 

commonly used: the bifactor model and the correlated uniqueness (CU) model (Lance, et al., 

2002).  By applying the appropriate measure, SEV can be taken out from variance of constructs.  

Although both methods are widely used in CFA studies, it is still controversial surrounding 

which method is more appropriate to model the systematic error variance.   Two methods not 

only represent different assumptions of SEV, but also have their advantages and weaknesses 

(Lance, et al., 2002; Podsakoff et al., 2002; Conway, et al., 2004; Lance, et al., 2010).   

 Many studies have assessed effectiveness of the bifactor model and CU model in 

controlling SEV in the analysis of covariance structure, yet results indicated both models are not 

perfect (e.g., Richardson, et al., 2009; Williams, et al., 2015).  In the other aspect, Geiser, et al. 

(2014) found that systematic error variance caused by measurement instrument can also alter the 

mean structure.  However, few studies touched the topic that examining the effectiveness of both 

methods in recovering true mean structure (Cheung & Chan, 2002).  The main purpose of this 

paper is to examine the effectiveness of two methods in controlling systematic error variance and 

whether they can lead to proper conclusion about latent factor mean difference among groups.  

This study presents a detailed examination of both methods by using Monte Carlo method to 

simulate different conditions of systematic error variance.  Both methods will also be compared 

with a baseline model which assumes the SEV absent (no controlling).  This study concludes 

with a real data demonstration to give social science researchers suggestions about how to 

choose appropriate SEV controlling strategy. 
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The paper will be presented in following order: first, the paper will introduce the 

measurement invariance and multiple group CFA, then the paper summarized the previous 

research about systematic error variance and methods used to control the systematic error 

variance. In the second section, the paper will present the simulation study and results.  In the 

third section, the paper will present a real data demonstration. 

Multiple-Group Confirmatory Factor Analysis and Measurement Invariance 

In CFA model, a scale consists of 𝑛 continuous, observable variables 𝑌, and it measures 

𝑘 continuous latent variables 𝜂.  The CFA model can be expressed as: 

𝑦𝑖𝑗 = 𝛼𝑗 + 𝛴𝑘=1
𝐾 𝜆𝑗𝑘𝜂𝑗𝑘 + 𝜖𝑖𝑗, (1) 

Where 𝑖 = 1,… , 𝐼 for research subjects and 𝑗 = 1,… , 𝐽 for observable variables or items of a 

scale; 𝛼𝑗 represents the mean of sample, 𝜆𝑗𝑘 represents the factor loadings of item 𝑗 on latent 

variable 𝑘, 𝜖𝑖𝑗 represents the measurement errors.  According to this equation, the effects of 

latent variables on observable variables are additive.  

In multiple group CFA, suppose there are total 𝐺 groups, the superscript 𝑔 denote that 

this parameter is group-specific, equation 1 can also be written as matrices multiplication: 

𝑦𝑔 = 𝜏𝑔 + 𝛬𝑔 𝜂𝑔 + 𝜖𝑔,    (2) 

where 𝑦𝑔 is a 𝑛 × 1 vector of scores on 𝑛 measured variables (or indicator) for each individual. 

𝜏𝑔 is 𝑛 × 1 vector of intercepts on 𝑛 indicators.  𝛬 is a  𝑛 × 𝑘 matrix of the factor loadings. 𝜂 is 

an 𝑛 × 1 vector of latent variable scores.  𝜖 is a 𝑛 × 1 vector of residuals. If take square at both 

sides, then we obtained the covariance matrix.  The covariance matrix of this model can be 

expressed by equation: 
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𝛴𝑔 = 𝜏𝑔𝜏𝑔′
+ 𝛬𝑔𝛹𝑔𝛬𝑔′

+ 𝛩𝜖
𝑔
,    (3) 

Where 𝛴 is a 𝑛 × 𝑛 matrix of covariance among 𝑛 indicators.  𝛹 is 𝑘 × 𝑘 matrix of covariance 

among 𝑘 latent factors, 𝛩𝜖
𝑔

 is a diagonal matrix of the variance components of errors. 

In measurement invariance test, to test the configural invariance, researchers should make 

sure the locations of zeros and non-zero cells are identical across covariance matrices of each 

group.  To test weak invariance, researchers should set equity on factor loadings across groups 

(𝛬𝑔 = 𝛬).  To test strong invariance, researchers then should set equity on both factor loadings 

and intercepts across groups (𝛬𝑔 = 𝛬, 𝜏𝑔 = 𝜏 ). To test strict invariance, researcher should set 

equity on factor loadings, intercepts, and residuals covariance matrix ( 𝛬𝑔 = 𝛬, 𝜏𝑔 = 𝜏, 𝛩𝑔 =

𝛩). When these conditions are met, it is safe to say that measurement invariance is hold across 

groups, and group mean comparison becomes feasible (Meredith, 1993). To estimate group mean 

difference, simple set latent factor mean 𝜂 of an arbitrary group as 0 and leave that of other 

groups being freely estimated. 

Previous Research of Systematic Error Variance 

Measurement error variance is variance that cannot be explained by the construct of 

interests, it can be further partitioned into unique variance and systematic error variance 

(Spector, 1994; Spector & Brannick, 1995). The latter is defined as shared residual variance 

among a clutch of variables.  Although the error variance is believed as threat to measurement 

validity and reliability, the systematic error variance is more concerning.  For example, Spector 

(2006) believes the correlation between two variables will be inflated by systematic error 

variance. 
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The concept of systematic error variance was initially introduced by Fiske and Campbell 

(1959): By examining the multitrait-multimethod (MTMM) matrix, they found if two traits are 

measured by the same method, the measured correlation is the combination of traits and method.   

Later, other researchers found other sources of systematic error variance, for example: Common 

sources or raters (e.g., Eden & Leviatin, 1975; Guzzo, et al., 1986); item characteristics (e.g., 

Thomas & Kilmann, 1975); item context (e.g., Salancik & Pfefffer, 1977; Harrison & 

McLaughlin, 1993).  Unfortunately, due to lacking appropriate analytic tools, researchers are still 

debating on how to locate the source of SEV and to which extent the systematic error variance 

has impact on analysis (Spector, 1987; Williams, et al., 1989; Bagozzi, Yi, 1990).   

So far, the discussion of systematic error variance is mostly about the method variance.  

Researchers agree that method variance is the shared variance between observable variables that 

is ascribed to the way information was collected, while the definition of method varies (Maul, 

2013). Most researchers deem all systematic error variance as method variance, since method 

variance is ‘something like systematic variance not attributable to trait under consideration’ 

(Golding, 1977, p.93).  This idea is supported by many other researchers (e.g., Fiske, 1982; 

Bagozzi, 1984; Baumgartner & Steenkamp, 2001; Johnson, 2011; Messick, 1991; Siemsen et al. 

2010, Weijters et al., 2010; Edwards, 2008).  As Fiske (1982, p.82) noted, the definition of 

method ‘encompassed potential influence at several levels of abstractions’, therefore, the 

correlated residuals may be the combination of multiple method effect.  Meanwhile, other 

researchers hold a narrower definition of method effect (Lance et al, 2009; Sechrest, 2000).  

According to Lance (2009, 2010), method variance should be able to trace back to certain 

measurement facets, like item similarity in content, structure, or format which elicit similar 

response.  Meanwhile, the raters’ tendency, measurement occasion or situation and item order 
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may be excluded from measurement facets (Podsakoff, et al., 2012).  In this perspective, the 

method variance is a subtype of systematic error variance.  Besides, researchers like Spector 

believe the method effect is an ‘urban legend’, since the systematic error variance is caused by a 

limited number of people that cannot report accurately (Brannick et al., 2010; Spector, 2006).  

As Spector concluded that systematic error variance is the result of ‘biases that affect particular 

sets of variables’ (Brannick et al., 2010, p.417). 

So far, the discussion about the systematic error variance is limited to examination of 

covariance structure of multiple constructs in single-group studies, in which correlations of 

multiple traits are suspected to be contaminated by systematic error variance.  However, the 

single-trait measurement is also not free from systematic error.  When researchers use CFA 

model to estimate a trait without controlling the systematic error variance, they may obtain the 

incorrect factor loadings. To illustrate, in CFA model, the covariance between two indicators is 

expressed as: 

𝐶𝑂𝑉𝑖𝑗 = 𝜆𝑐𝑖𝜓𝜆𝑐𝑗 , 

where 𝜆𝑖, 𝜆𝑗 are factor loadings of indicator of 𝑖 & 𝑗, 𝜓 is the variance of latent the factor.  In 

some model identification process, the latent factor mean is set as 0 and variance as 1, then the 

equation can be rewrite as:  

𝐶𝑂𝑉𝑖𝑗 = 𝜆𝑐𝑖𝜆𝑐𝑗, 

  However, when these two indicators are contaminated by systematic error variance from 

some unknown sources, the covariance of two indicators can be decomposed into the covariance 

explained by the construct and the unknown source. Therefore, it can be expressed by equation: 

𝐶𝑂𝑉𝑖𝑗 = 𝜆𝑐𝑖𝜆𝑐𝑗 + 𝜆𝑠𝑖𝜓𝑠𝜆𝑠𝑗 , 
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If we assuming the systematic error variance is caused by a measurement facet based on 

narrow definition of the method effect.  Then 𝜆𝑠𝑖 , 𝜆𝑠𝑖  are factor loading of the latent method 

factor.  We can also assume that the systematic error variance is just correlated residuals, so the 

equation can be also expressed as:  

𝐶𝑂𝑉𝑖𝑗 = 𝜆𝑐𝑖𝜆𝑐𝑗 + 𝐶𝑂𝑉𝜖 , 

Where 𝐶𝑂𝑉𝜖 represents the correlated residuals. In both cases, if researchers try to identify their 

model without modeling the systematic error variance, their factor loadings are potentially 

biased. 

Statistical Methods to Control Systematic Error Variance 

Some techniques are invented to estimate systematic error variance, for example, the 

MTMM matrix (Fiske & Campbell, 1959) and marker technique (Lindell & Whitney, 2001).  

Due to the improvement of statistical computation, the CFA is becoming a popular tool.  With 

help of the CFA model, researchers could not only estimate both covariance structure and mean 

structure, but also separate systematic error variance from measurement error (Geiser, et al., 

2014).  Applying bifactor or CU models are the two most common strategies in controlling of 

SEV, the selection of strategies are based on researchers’ knowledge about SEV or other 

practical considerations.  

Bifactor model 

Bifactor model, also named as correlated-trait-correlated-method (CTCM), specified a 

general latent factor that accounts for covariance among all indicators and group factors that 

account for additional covariance among subsets of indicators (Reise, 2012).  The bifactor model 

assumes that systematic error variance is caused by other unmodeled constructs (e.g., 
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measurement facets), so that SEV are specified as group factors. In bifactor model, single 

measurement can be decomposed into construct component 𝐶𝑗, other group factor 𝑆𝑘, and 

unexplained residuals 𝛦𝑗𝑘:  

𝑦𝑗𝑘 = 𝜆𝐶𝑗𝑘𝐶𝑗 + 𝜆𝑆𝑗𝑘𝑆𝑘 + 𝛦𝑗𝑘, 

where 𝜆𝐶𝑗𝑘 are factor loadings on construct and 𝜆𝑆𝑗𝑘 are factor loadings on group factors, the 

construct factors and groups factors are assumed to be uncorrelated (Eid et al., 2003; Geiser, et 

al., 2014). 

So far, much research has assessed the performance of bifactor model in a specific 

application: using bifactor model to control the correlation that is caused by method effect 

between an independent variable and dependent variable.  Many Monte Carlo simulation studies 

show that bifactor model could accurately recover the true correlation when the model is 

correctly specified (Conway et al., 2004; Hoogland & Boomsma, 1998; Lance et al., 2007; Le et 

al., 2009).   

Richardson et al. (2009) compared three correctional measures in controlling of method 

effect and concluded that the bifactor model is not recommended.  Specifically, three 

correctional methods are: correctional marker technique, CFA marker technique, and ULMC 

technique (bifactor).  The first two techniques introduce a conceptually independent ‘marker’ 

construct whose measurement instrument is identical to independent/dependent variables (e.g. 

two constructs are measured by self-report scale). While, for the former one, all correlations 

between constructs would be assessed by a composed score. Since the marker construct is 

conceptually independent with constructs of interests (e.g., two constructs of interests are 

cognitive ability and math ability, the marker variable can be sexual orientation), any correlation 
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between marker variable and constructs must be caused by method.  The true correlation 

between two constructs of interests is the measured correlation minus method correlation. In 

CFA marker technique, all constructs are assessed as latent factors; an indicator has factor 

loadings on both construct of interest and marker latent variable.  In ULMC technique, a method 

factor is specified.  Each indicator has factor loadings on both construct factor and a method 

factor (see Figure 1).  However, across various simulation conditions, the bifactor model is either 

equal or worse to the CFA marker technique or original model.  Later, Williams et al. (2015) 

revised Richardson et al. (2009), they also reached the same conclusion about the bifactor model. 

Beside these simulation studies, other researchers suggest that the bifactor model may 

cause the inadmissible model estimation (e.g., standardized factor loadings larger than 1.0) or 

non-convergence (Lance, 2002; Grayson & Marsh, 1994).  Based on evidence above, it can be 

assumed that if the bifactor model is applied to control systematic error variance in multiple 

group CFA, biased results may be obtained. 

Correlated Uniqueness (CU) model 

CU model is invented to overcome the nonconvergence and inadmissible solution which 

cause by using bifactor model (Kenny,1976; Kenny, 1979; Kenny & Berman,1980; Marsh, 

1989).  The CU model can be written as: 

𝑦𝑖𝑗 = 𝜆𝑆𝑖𝑗𝑆𝑖 + 𝛿𝑖𝑗, 

where 𝛿𝑖𝑗 is the combination of unexplained residuals and systematic error variance (Lance et al., 

2002). From this expression, the CU model assumes the systematic error variance does not have 

mean structure. 
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Despite the flexibility and popularity of the CU model, there are some weaknesses also 

noticeable.  As Lance et al. (2002) summarized, the CU model lacks theoretical soundness, 

because it does not separate the variance of method effect from other systematic or non-

systematic error variance.  On the other hand, the CU model could not estimate the correlations 

between method effects. Moreover, since CU model does not model the confounding effects on 

measurement of construct mean, it is also criticized for ‘creating unmeasured variable problems’ 

(James, 1980).  Most serious issue is model estimation.  Corway et al. (2004) found the 

estimations of construct factor loadings and correlation may be biased under the CU model, 

therefore, lead to inaccurate inference of construct 

Systematic Error Variance in Multiple-Group CFA 

Comparing with single group study, controlling SEV is trickier in multiple group studies, 

because SEV may interact with grouping factors.  In the general linear model, the term 

interaction is referred as that the relation between two variables varies over different levels of the 

third variable.  In multiple group CFA, the interaction is that systematic error variance is not 

identically distributed across groups. In other words, the systematic error variance altered the 

factor loadings in different extent across groups, which causes the measurement noninvariance. 

This issue has not received enough attention from researchers.  

 Some researchers indicate that interaction of SEV is prevalent.  For example, the 

Rosenberg Self-esteem scale (SES) is widely used since its establishment and translated into 

more than 28 languages (Rosenberg, 1979).  Schmitt and Allik (2005) analyzed the SES data 

from 53 countries and found the factorial structure of SES is not invariant across all countries.  

From the analysis of factorial structure, they concluded that neutral response bias, which is 

prevalent in collective cultures, may cause the configural noninvariance. This research implies 
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that some systematic error variance is culturally specific.  In other SES and cross-culture studies, 

using different samples yield contradicting results: some research sample from western 

populations found negative method effect exists (Motl & DiStefano, 2002; Horan, et al., 2003; 

Quilty, et al., 2006); other research sample from both eastern and western populations found both 

negative and positive method effect exist (Wang et al., 2001; Wu, 2008).  Such evidence suggest 

researcher should not assume that the influence of systematic error variance is homogeneously 

exerted on each group. 

Although the systematic error variance has been studied for more than 60 years, previous 

studies are focus on the covariance structure, few studies explored the influence of systematic 

error variance on modeling mean structure (Geiser, et al, 2014). While many studies indicate that 

systematic error variance has mean structure and its properties are similar to psychological 

constructs (Spector, et al., 2019; Lance, et al. 2011; Maul, 2013; Chen, et al., 2012; Pohl, & 

Steyer, 2010; Lance, et al., 2010).  Based on this assumption, a single measurement is the linear 

combination of constructs: 

𝑦𝑗 = 𝜆𝑐𝑗𝐶𝑗 + 𝜆𝑠𝑗𝑆𝑗 + 𝜖𝑗, 

in which 𝑆𝑗 is the mean of unexplained latent factor, 𝐶𝑗 is the mean of latent factor of construct.  

In model fitting, it is unclear where such influence would exert on.  According to research of 

method effect, the method effect would inflate the correlation between two constructs. Therefore, 

it can be assumed that when the systematic error variance is unmodeled, the factor loadings of 

affected indicators are also inflated, and the mean of unmodeled variances will sneaked into the 

mean of construct, instead of staying on intercepts of indicators. 

 Another issue is that minor misspecifications is tolerated in current measurement 

invariance tests.  To find a baseline model, many methodological papers or books suggest that 



12 

 

conducting CFA without any restrictions at each group separately, then move to multiple group 

CFA test if there is no group has large deviation; or testing configural invariance directly (e.g., 

Bowen & Masa, 2015; Schoot, et al., 2012; Milfont & Fisher, 2010).  Therefore, 

misspecifications in certain groups are averaged by the whole sample, which may lead to 

inaccurate conclusions of estimation of factor mean in certain groups. 

 In summary, the impact of systematic error variance on mean structure analysis in 

multiple group CFA has not received enough attentions from researchers. And this issue is 

complicated by nonequivalent distribution of SEV.  Although bifactor and CU model are 

extensively used to control the SEV, studies also suggested potential problems in applications of 

these model in single-group study. Therefore, it is worth to examine both models under the 

influence of SEV in the framework of multiple group CFA. 

 Therefore, this study has three objectives.  For the first one, I want to know whether 

minor model misspecifications will affect the estimation of group mean differences.  It represents 

a scenario in which items affected by SEV are inconsistent with researchers’ priors.  The second 

objective is examining whether the amount of SEV would affect the estimation of group mean 

difference.  This issue will be examined in two dimensions: incorrect estimation is caused by 1. 

the overall amount of SEV, or 2. the difference amount of SEV across groups.  The third 

objective is examining whether to apply SEV controlling methods will lead to appropriate 

conclusions about group mean differences; or, in other words, finding out the strategy of 

applying appropriate SEV controlling method.  Both bifactor and CU model will be used to fit a 

same dataset and their performance will be compared. 

 This study would not provide opinions on definitions of the SEV or the method effect.  

Because this study is interested in mean structure analysis, I assume the SEV also have mean 



13 

 

structure.  Therefore, the properties of SEV in this study is closer to Lance et al. (2002) and the 

SEV will be specified as a latent factor. 

Method 

Simulation Models 

 The simulated the data is assumed to be collected by a scale which is administrated 

among multiple populations.  This 6-item scale is developed in one population and has a clearly 

defined single-dimension construct.  Previous research suggested 3 out of 6 items are 

contaminated by systematic error variance, so the researchers consider modifying the original 

model to control the variance. 

Model configurations 

The simulation models are inspired by Richardson et al. (2009); however, each unit of 

analysis is of mean structure.  Figure 2 presents 5 configurations of models which were used to 

generate data. The first condition represents the exact fitting, in which exactly 3 items were 

contaminated by systematic error variance and researcher has successfully identified them.  The 

second condition represents under fitting, in which 5 items were contaminated by systematic 

error variance but only 3 are controlled by researchers for both groups.  The third condition 

represents the over fit; in which only 2 items contaminated by systematic error variance, but 

researchers thought 3 items.  The fourth condition represents one of interaction of systematic 

error variance; in the first group, 3 items are under the influence of systematic error variance, 

however, the second group is freed of systematic error variance; this condition is named as 

interaction 1.  The fifth condition represents another type of interaction: only 3 items in the first 
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group are under the influence of systematic error variance, but 5 items in the second group; this 

condition is named as interaction 2.  

Fixed parameters 

The factor loadings loaded on construct, intercepts, latent factor variance and residual 

variance are set to be unchanged across all simulation conditions. For simplicity, all factor 

loadings are set to .8, which represent to medium to high reliability; the variance of construct 

factor is set to 1.0; the intercepts of indicators are set to 0; and the residual variance of indicators 

are set to .36 (1 −. 82). 

Systematic error variance 

The systematic error variance functions as a latent factor, and it is named as error factor.  

This study wants to know whether the overall amount or the difference in amount of SEV have 

influences on estimation of mean difference. For the former one, named as equal SEV condition, 

is achieved by setting the average factor loadings as equivalent across groups; the average factor 

loadings are chosen from .2, .3, .4, and .5, which represent low, low-medium, medium, and high 

amount of SEV.  For the later one, named as unequal SEV condition, the average factor loading 

always set to .2 in the second group; in the first, the average factor loading is chosen from .3, .4 

and .5, which represent low, medium, and high amounts of difference in SEV. 

In each level, factor loadings are not identical within a group, they vary around their 

average values. For example, when average factor loading is set as .2, if the error factor has three 

indicators, then three factor loadings are .1, .2, and .3; if the error factor has only two indicators, 

then two factor loadings are .15 and .25; if the error factor has five indicators, then first three 

factor loadings follow the rule of three factor loadings, and two extra factor loadings are fixed 
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to .2 and .3 across all conditions.  Since in the interaction 1 condition, the second group is freed 

of SEV, therefore, influence of SEV on two groups cannot be homogeneous.  The interaction 1 

condition would be independent from rest of simulation models and has 4 levels of factor 

loadings; for other simulation models, they are used to simulate both equal and unequal SEV 

conditions.  

Sample size 

Four sample sizes are used, they are 100, 300, 500, and 1000.  They represent the sample 

size commonly appear in CFA studies. 

Latent factors mean difference 

One purpose of this study is to answer two questions: whether the systematic error 

variance will increase the chance of type I error when two groups are equivalent; and whether 

systematic error variance will increase the type II error when two groups are different. Therefore, 

two latent factor mean differences are used: 0 for detecting type I error, and .25 for type II error. 

The reason .25 is used for type II error detection is because it represents the medium effect size 

that can be detected by the smallest sample size (200 in total) in this experimental design.  If the 

systematic error variance would change the estimation of mean structure, the chance of type I 

error will be higher as the sample size increase, while the chance of type II error will be higher as 

sample size decrease.   

Data Generation 

 The process of data generation can be expressed as: 
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. 

 𝜆𝑠1, 𝜆𝑠2, 𝜆𝑠3 are factor loadings loaded on error factor.  𝜂𝑐 is the mean of construct, the first 

group is either 0 or .25, and the second group is always 0.  𝜂𝑠 is the mean of error factor, the first 

group is set to .5 and 0 for the second group. 

In summary, there are totally 5 × 4 × 4 + 4 × 3 × 4 = 128 simulation conditions, and in 

each condition, two group mean differences are set for testing type I and II error rates.  

Analysis procedure 

Simulation and analysis are performed through the R platform. An R program is designed 

for data generation and collection.  Two R libraries were primarily used: ‘simsem’ and ‘lavaan’.  

‘Simsem’ is an opensource R library developed by the University of Kansas and it is used for 

data simulation; ‘lavaan’ is also an open-source library used for model fitting created under the 

main developer Yves Roseel. 

In each simulation condition, the program will simulate 1000 pairs of samples for each 

construct mean difference conditions, totally 2000 pairs of samples.  After generation of one 

dataset, the ‘lavaan’ will use bifactor, CU, and single-factor models to fit this data. Figure 3 

shows the configurations of models used to fit the data.  At this stage, the program will directly 

access the mean different with strong invariance setting.  Because the CU model is unable to set 

residual covariances as equivalent across two groups. Therefore, when the bifactor model is used 

to fit the data, partial invariance is applied, in which the factor loadings loaded on the error 

factors were freely estimated.  After fitting, following information will be extracted: estimated 
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mean difference, p-value associated the mean difference. Nonconvergent model fittings would be 

discarded. This process repeated for 1000 times. 

To make all conditions comparable, the absolute error (AE) was introduced. AE is 

calculated by estimated mean difference minus true difference.  In model identification, the first 

factor loading is set as 1, which is the default setting of most SEM programs (e.g., lavaan, mplus, 

amos).  By doing so, the estimate latent mean difference is re-scaled by the first factor loading 

(in this study, the true estimated differences are 0 and .20, respect to 0 and .25). 

Two indices are used to evaluate whether these models could obtain correct conclusions 

about the mean difference: specificity and sensitivity.  The specificity is operationalized as the 

rate of not committing to type I error (true negative rate); the sensitivity is operationalized as the 

rate of not committing to the type II error (true positive rate). 

Another two criteria are used to evaluate the performance of models: accuracy and 

precision.  The accuracy is operationalized as the mean of absolute error; the precision is the 

width of 95% interval of AE after 1000 simulations. 

Results 

Rate of Converged Results 

Table 1 and 2 present the number of converged results after 2000 times of model fitting.  

Results indicated that non-converged results could only occur with the bifactor model, while 

both the CU and single factor model had not any non-converged results. Also, for both equal and 

unequal SEV conditions, the rate of convergent results increased as the sample size and overall 

amount of SEV increasing.  One exception was the condition of over fitting, the rate of non-
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convergent results was higher than other conditions in both equal and unequal SEV conditions, 

and the increase of sample size did not improve the rate of convergent results. 

Assessing Accuracy and Precision 

 Table 1 and 2 also present the average AE of each model in every simulation conditions.  

The AE represents the deviation of estimated group mean difference from the true difference.  

The accuracy is operationalized as the average AE after 2000 times of simulation.  The average 

AE closer to 0, a model has higher probability to obtain true group mean differences.  Results 

showed that the bifactor model overperformed the CU and the single factor models in most 

simulation conditions.  In conditions of exact and over fitting, the average AE of the bifactor 

model was almost equal to 0 across all simulation conditions.  In other simulation models, the 

average AE of the bifactor model was lower than 0, which indicates the bifactor model 

underestimated the group mean difference in these simulation conditions.  However, such results 

were still better than the CU model or the single factor model.   

In the perspectives of sample size or amounts of SEV, the accuracy of all three models 

were not affected by sample size.  However, increase of amount of SEV have different impact on 

three models. For bifactor model, in each simulation model configuration, the range of accuracy 

was smaller than .018 (maximum in the interaction 2, equal SEV). However, for the CU model, 

the range of accuracy could be as high as .089 (maximum in the over, equal SEV), .187 for the 

single-factor model (maximum in the exact, equal SEV). Also, as the amount of SEV increasing, 

the accuracy of the CU and single factor model become worse. 

 On exception was interaction 1 model. In which case, the bifactor model had the worst 

performance.  In the condition of interaction 1, the bifactor model highly estimated the group 
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mean difference (average AE = .3), and such estimates were not affected by sample sizes or 

amounts of SEV.  Estimates from the CU model and the single-factor model are slightly lower 

than the bifactor model (.209 to .255 for CU model; .118 to .251 for single-factor model). Also, 

as the amounts of SEV increasing, the accuracy also improved. 

 When the bifactor model did not model all SEVs, it was likely obtaining inaccurate 

estimates. In the overfitting and interaction 2 conditions, in which 5 items were influenced by 

SEV in either one or two groups, the average AE of the bifactor model ranged from -.102 to -.82 

in both equal and unequal SEV conditions. Also, the average AEs seemed to be not affected by 

the sample size or the amounts of SEV.  Although the inaccuracy in estimation, the bifactor 

model still overperformed the CU and the single factor model; in the under fitting and the 

interaction 2 conditions, the average AE of the bifactor model was closer to the 0 than the CU or 

the single factor models across all simulation conditions.   

 The precision is measured by width of 95% interval of AE after 2000 times of simulation, 

the narrower width indicates the better precision.  Table 1 and table 2 show that the width of 

95% interval which was calculated by the upper end minus the lower end.  The precision did not 

have visible changes across the fitting models, the simulation models, and type of SEVs; the 

precision only improved as the sample size increasing.  The only exception was the condition of 

interaction 1, in which the widths of intervals were slightly higher than other simulation models. 

Assessing Specificity and Sensitivity 

 The specificity is referred as the true negative rate, or the rate of non-significant results 

when the true difference is zero.  As table 1 and 2 show, the bifactor model still overperformed 

other models. In the conditions of exact fitting and overfitting, the specificity of the bifactor 
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model could be remaining around .95 across all simulation conditions. However, for CU model, 

its specificity could reach above .9 only when sample size is small, however, when sample size 

was becoming larger, the specificity decreased.  In other conditions of simulation models, the 

specificity of the bifactor model failed to remain above .9, but it was still much higher than the 

CU and the single factor model in both equal and unequal SEV conditions. One exception is the 

condition of interaction 1, in which single factor model had the best performance in specificity.  

However, all three models almost got 0 in specificity when sample size is larger than 300. 

 Also, compared with conditions of equal and unequal SEV, the specificity of the bifactor 

model does not have considerable differences.  However, specificity of the CU model was 

slightly higher in equal SEV condition than unequal SEV condition. 

 The sensitivity is referred to true positive rate, or the rate of significant results when there 

is a difference between two groups.  The sensitivity is also related to statistical power.  Many 

researchers agree that the power above .80 is deemed as acceptable (Bezeau & Graves, 2001). 

Table 1 and 2 shows the bifactor model still overperformed the CU model and the single factor 

model, while the CU model was slightly better than the single factor model, across all simulation 

conditions.  For the bifactor model, in most simulation models, when sample size was larger than 

300, its power reached acceptable level.  For the CU model, it required sample size larger than 

500 to reach an acceptable power. One exception was interaction 2, in which the bifactor model 

failed to reach above .8 in most simulation conditions in both equal and unequal SEV. And equal 

or unequal SEV seem having no effects on sensitivity. 
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A Self-Esteem Example 

 This study provided an example of how to select appropriate SEV controlling method in 

multiple group CFA, based on the information obtained from the simulation study.  The data is 

from a project in which the Rosenberg Self-Esteem Scale (RSE) was administrated among 

Chinese, Japanese, and American college students. There are totally 844 participants, 280 

Americans, 378 Chinese and 186 Japanese. 

 The RSE was developed by Rosenberg (1965), it is the most widely used instrument to 

measure the globe self-esteem (Marsh, 1996).  So far, the RSE has been translated into many 

languages and administrated among at least 53 countries or areas (Schmitt & Allik, 2005).  The 

RSE is a Likert scale which consists of 10 items, participants make responses form one (strongly 

disagree) to five (strongly agree). 5 out of 10 items are positively worded (e.g., ‘On the whole, I 

am satisfied with myself’) and the rest is negatively worded (e.g., ‘At times, I am no good at 

all’).  Although RES is designed for measuring a unidimensional self-esteem, some studies also 

reported a two-factorial structure (e.g., Carmines & Zeller, 1979; Marsh, 1996).  Majority of 

researchers agreed on that the multiple-factorial structure is accounted for response style to 

differently worded items, such response styles are also called positive or negative method effect 

(e.g., Marsh, 1996; Risko, Oakman & Evan, 2006).  Therefore, if the RSE data is collected from 

one group, researchers can suspect either its half of items is contaminated by one type of SEV, or 

all items contaminated by two types of SEV. 

 To determine the factorial structure of each group, 7 models were selected from previous 

studies to fit the data of each group (e.g., Wu, 2008).  Figure 4 presents the figures of these 

models.  Seven models are: 1. original model which assumes no SEV; 2. Bifactor model which 

assumes the negative method effect exists; 3. Bifactor model which assumes the positive method 
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effect exists; 4. CU model which assumes the negative method effect exists; 5. CU model which 

assumes the positive method effect exists; 6. Bifactor model assumes both method effects exist; 

7. CU model assumes both method effects exist. 

 Table 3 presents results of all fitting attempts. The original model was used as the 

baseline model.  The chi-square difference test indicated whether the model fitting improvement 

is significant or not.  Results show, for the US and China, after applying any models which 

specifies only one method effect, the model fitting had significant improvements. Therefore, 

both positive and negative method effects existed in US and Chinese population (p < .000).  For 

the Japanese data, the model fittings also had significant improvements, but the improvement is 

relatively small after applying models with positive method effect specified (𝜒2(6) = 14.16, p 

=.038 for CU model, 𝜒2(6) = 19.23, p = .028 for bifactor model).  Also, compared model 4 and 

model 7, the improvement was not significant anymore (𝜒2(10) = 14.31, p = .159). Therefore, 

positive method effect might slightly contaminate Japanese data.  

 Based on CFA results, it is safe to conclude that researchers should apply a model with 

both positive and negative method effects specified. Also, simulation study suggests that the 

bifactor model is superior to CU model. Therefore, a bifactor model with two method effect 

factors should be applied.  However, this model unable to yield a converged result.  By 

reviewing the CFA results, model was unable to yield converged results in US sample.  

Therefore, the US sample was discarded, and only Chinese and Japanese samples would be 

compared.   Setting Chinese sample as the baseline and the estimated mean difference is -.806 

(z=-12.222, p<.000).  Therefore, the null hypothesis was rejected and there was a significant 

difference in self-esteem between the Chinese and Japanese people. 
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Discussion 

 In CFA, both bifactor and CU models are commonly used to control the systematic error 

variance, researchers make decision on model choice based on the fit indices: good fit indices 

indicate that the model has correctly specified the SEV.  However, the misspecification and 

unequal distribution of SEV are issues unique to multiple group CFA.  Plus, the mean structure 

analysis is also a unique objective of multiple group CFA.  Therefore, commonly used fit indices 

(e.g., CFI, SRMR) may not be exclusive criteria for model selection.  This study addressed two 

issues, the first is that how do the bifactor and CU model control the different types of SEVs in 

multiple group study; the second is that how SEV affects the estimation of group mean 

difference.  Results indicate that the bifactor model has most accurate estimation of the mean 

difference, if it is able to yield the converged results.  When bifactor models encounters the 

nonconvergent results, an overfitted CU model could be an alternative, though the results would 

still be biased.  Also, whether the amount of SEVs distributes equally would not affect 

estimation a lot; however, configural noninvariance caused by SEVs and total amount of SEVs 

are more serious issues 

All stimulation models can also be divided into two categories: for exact fitting, over 

fitting and interaction 1, all SEV are modeled; for under fitting and interaction 2, not all SEVs 

are modeled.  In the first category, the bifactor model perfectly estimated the group mean 

difference, whereas the CU model is likely to underestimate the group mean difference.  Such 

results indicate that by specifying the SEV as an error factor, the bifactor model could 

successfully estimate the mean structure of the error factor and partial it out from construct.  In 

the contrary, the CU model also correctly specified the SEVs, the failed to obtain the estimations 

as accurate as the bifactor models.  One explanation is because the CU model is unable to specify 
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the mean structure of SEVs, it is less effective in taking the mean of SEVs out from the 

construct. 

Results from the condition of the interaction 1 seem contradicting to the conclusions that 

draw above.  Comparing with the over fitting, the interaction 1 is also a type of over fitting but 

yielded worst estimation, while the former one yield best estimations.  One explanation is that 

when SEVs are totally absent, but model has specified SEV, extra parameters which were 

designed to control SEVs would extract covariance from the construct of interests at the second 

groups. It can explain that under the interaction 1 simulation model, all models are likely to 

overestimate the group mean difference.  If SEVs are present, regardless its amount, they would 

serve as a reference so that model would not extract variance from the construct. 

In the second category, in which not all SEVs are modeled, models with SEV controlling 

(bifactor, CU model) overperformed the models without SEV controlling (single factor model). 

And the bifactor is better than the CU model across all simulation conditions.  From conclusions 

above, it is safe to concluded that the bifactor model have better estimations in group mean 

difference than the CU model. 

These findings are also complementary to previous studies about the methods used to 

control SEVs.  In the framework of covariance structure analysis, Williams and O’Boyle (2015) 

concluded that correctly specified bifactor model could be able to make expected error near to 

zero (Conway et al., 2004; Lance et al., 2007; Le et al., 2009; Marsh & Bailey, 1991).  This 

study also indicates the correctly specified or overly specified bifactor model could also obtain 

accurate parameter estimation in the framework of mean structure analysis. 
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The major weakness of the bifactor model is non-converged results. Simulation study 

indicates that probability of nonconvergent results reduces as the amount of SEV or sample size 

increasing.  In applied studies, researchers may not be able to increase the sample size.  

However, when nonconvergent results occur, it may indicate the SEV they try to model is low in 

amount.  In other words, the ratio of the amount of SEV and the number of degrees of freedom 

costed in modeling this SEV is relatively low.  Eid (2000) named this issue as over factorization 

and proposed one solution which reduced the number of parameters in fitting model.  Eid (2000) 

and Eid et al. (2003) proposed the CTCM-1 (pronounced as ‘CTCM minus one’): if a model 

have k error factors, only k-1 factors will be specified.  However, by doing so, situation of exact 

or over fitting may be converted to under fitting.  According to simulation results of this study, 

bias will be introduced.  Therefore, researchers should also consider exact or over fitting CU 

model and determine which one could yield most accurate results. 

Limitation 

This study is not freed of limitations.  This study is only simulated simplest SEV 

conditions, in which there is only one SEV resource and specified as a latent factor.  In the stage 

of model fitting, the best results yielded by the bifactor model may be due to that bifactor model 

is closer to the true model than the CU model.  Also, the SEV in this study actually reflects the 

narrow definition of method effects, which is proposed by Lance et al (2003).  Due to lack of 

theoretical understanding of SEVs, it is unclear in how to simulate data with CU model, 

meanwhile, mean structure of SEVs included.  According to the board definition of the method 

effect, the SEV may present in the data in a more complicated way.  Following conditions are 

not simulated in this study: 1. there may be more than one type of SEV exist; 2. Some indicators 

have factor loadings loaded on more than one error factors; 3. covariance exists among two error 
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factors.  When these conditions are introduced, different conclusions about the bifactor and CU 

models may be obtained.  

Direction for Future Research 

 Future studies can examine whether existed fit indices are able to be used as indicators of 

accuracy in mean difference estimations.  Currently, five fit indices (CFI, SRMR, RMSEA, chi-

square, AIC) are most widely used to evaluate the goodness of fit in CFA.  Researchers are likely 

to choose the model with best fit indices because it indicates the model fits the data best.  

However, Lance et al. (2007) found that true model may not have the best fit indices.  Therefore, 

it worth to know the means of fit indices to the estimation of group mean difference. 

Conclusion  

The promising findings from this study will help applied researchers to understand the 

impact of SEV on the measurement invariance test and the properties the SEV controlling 

methods.  This study was found that unmodeled SEVs will alter estimation of latent group mean 

difference in multiple CFA.  It was found that the bifactor model could accurate estimate the 

group mean difference when it is correctly or overly specified.  It was also found that the CU 

model is less effective in controlling the SEV, therefore, the bifactor model is the preferable SEV 

controlling method.  However, in certain conditions, bifactor model may yield worst estimations 

among available methods.  These findings inform applied researchers in choosing appropriate 

SEV controlling strategies. 
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Table 1a 

 

Results of three models under the equal SEV condition 

Simulation 

models FL n 

Bifactor Model 

Convergent 

rate 

Average 

AE 

Width of 

Interval Specificity Sensitivity 
Exact .2 100 1065 .001 .498 .948 .386 

 300 1426 .002 .284 .952 .817 

 500 1607 .000 .225 .939 .939 

 1000 1808 .001 .149 .958 .999 

.3 100 1639 .002 .464 .950 .369 

 300 1954 -.004 .288 .926 .782 

 500 1991 .001 .214 .960 .954 

 1000 1999 .000 .162 .929 .998 

.4 100 1974 .003 .465 .959 .397 

 300 2000 .002 .287 .932 .839 

 500 2000 .001 .220 .946 .966 

 1000 2000 .000 .146 .961 1.000 

.5 100 1999 -.003 .467 .959 .360 

 300 2000 .000 .272 .957 .823 

 500 2000 .000 .208 .959 .956 

 1000 2000 .000 .148 .957 .999 

Under .2 100 1033 -.088 .498 .896 .148 

 300 1069 -.092 .287 .761 .290 

 500 1015 -.093 .209 .581 .526 

 1000 1049 -.089 .160 .370 .799 

.3 100 1102 -.097 .513 .885 .130 

 300 1217 -.097 .288 .738 .282 

 500 1278 -.096 .240 .604 .475 

 1000 1347 -.100 .162 .285 .729 

.4 100 1370 -.103 .544 .839 .126 

 300 1559 -.104 .322 .706 .283 

 500 1695 -.101 .244 .578 .449 

 1000 1848 -.103 .176 .277 .710 

.5 100 1833 -.104 .561 .864 .117 

 300 1987 -.107 .327 .657 .270 

 500 1998 -.106 .255 .510 .404 

 1000 2000 -.106 .179 .243 .681 

Over .2 100 1077 .001 .473 .957 .369 

 300 1170 .002 .285 .940 .816 

 500 1204 .001 .214 .954 .946 

 1000 1216 .000 .140 .960 1.000 

.3 100 1202 .001 .504 .941 .365 

 300 1343 -.001 .283 .945 .816 

 500 1329 -.001 .208 .953 .938 
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Simulation 

models FL n 

Bifactor Model 

Convergent 

Results 

Average 

AE 

Width of 

Interval Specificity Sensitivity 
Over .3 1000 1341 .000 .153 .942 1.000 

.4 100 1334 -.006 .489 .949 .359 

 300 1389 -.002 .271 .954 .801 

 500 1400 .002 .210 .955 .955 

 1000 1421 .000 .149 .956 1.000 

.5 100 1526 .003 .483 .944 .388 

 300 1545 .001 .283 .945 .815 

 500 1560 .000 .210 .946 .967 

 1000 1591 .001 .146 .947 1.000 

Interaction 1 .2 100 1051 .300 .595 .095 .920 

 300 1280 .300 .430 .000 1.000 

 500 1457 .304 .385 .000 1.000 

 1000 1728 .300 .337 .000 1.000 

.3 100 1471 .295 .612 .104 .886 

 300 1881 .300 .441 .000 1.000 

 500 1949 .298 .390 .000 1.000 

 1000 1997 .301 .330 .000 1.000 

.4 100 1824 .307 .617 .091 .910 

 300 1981 .299 .438 .000 1.000 

 500 1994 .302 .384 .000 1.000 

 1000 2000 .300 .328 .000 1.000 

.5 100 1914 .306 .622 .085 .904 

 300 2000 .298 .444 .000 1.000 

 500 2000 .299 .397 .000 1.000 

 1000 2000 .300 .329 .000 1.000 

Interaction 2 .2 100 929 -.090 .506 .866 .165 

 300 948 -.087 .277 .778 .323 

 500 1050 -.086 .226 .617 .541 

 1000 1178 -.081 .153 .433 .851 

.3 100 1071 -.088 .477 .885 .160 

 300 1181 -.088 .289 .723 .355 

 500 1165 -.086 .226 .638 .531 

 1000 1150 -.085 .149 .392 .864 

.4 100 1400 -.082 .493 .885 .150 

 300 1674 -.087 .271 .772 .358 

 500 1808 -.088 .229 .612 .536 

 1000 1933 -.086 .158 .405 .831 

.5 100 1887 -.091 .507 .872 .143 

 300 1994 -.087 .299 .773 .335 

 500 2000 -.088 .228 .631 .533 

 1000 2000 -.087 .162 .384 .799 

Note. FL= the average factor loadings which loaded on the error factor in simulation model 

of both groups; Average AE = average absolute error; Width of interval = width of 95% 

interval 
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Table 1b 

 

Results of three models under the equal SEV condition 

Simulation 

models FL n 

Correlated Uniqueness Models 

Convergent 

rate 

Average 

AE 

Width of 

Interval Specificity Sensitivity 
Exact .2 100 2000 -.043 .465 .942 .270 

 300 2000 -.044 .266 .903 .623 

 500 2000 -.045 .213 .858 .833 

 1000 2000 -.043 .149 .805 .981 

.3 100 2000 -.060 .459 .931 .222 

 300 2000 -.062 .276 .828 .528 

 500 2000 -.057 .210 .813 .780 

 1000 2000 -.058 .156 .659 .955 

.4 100 2000 -.065 .464 .914 .227 

 300 2000 -.064 .280 .821 .523 

 500 2000 -.065 .221 .750 .731 

 1000 2000 -.066 .143 .581 .946 

.5 100 2000 -.071 .453 .922 .210 

 300 2000 -.067 .265 .833 .517 

 500 2000 -.067 .202 .778 .698 

 1000 2000 -.067 .148 .573 .946 

Under .2 100 2000 -.100 .487 .857 .124 

 300 2000 -.099 .283 .712 .281 

 500 2000 -.101 .215 .532 .482 

 1000 2000 -.098 .153 .273 .749 

.3 100 2000 -.132 .511 .820 .089 

 300 2000 -.131 .284 .569 .186 

 500 2000 -.131 .233 .369 .240 

 1000 2000 -.132 .156 .086 .423 

.4 100 2000 -.164 .512 .741 .061 

 300 2000 -.162 .312 .412 .096 

 500 2000 -.160 .238 .198 .135 

 1000 2000 -.161 .168 .017 .205 

.5 100 2000 -.188 .559 .696 .059 

 300 2000 -.189 .315 .298 .060 

 500 2000 -.188 .249 .099 .070 

 1000 2000 -.188 .175 .006 .079 

Over .2 100 2000 -.033 .462 .945 .308 

 300 2000 -.028 .271 .932 .715 

 500 2000 -.029 .209 .911 .900 

 1000 2000 -.031 .144 .860 .996 

.3 100 2000 -.046 .482 .930 .267 

 300 2000 -.044 .268 .886 .623 

 500 2000 -.044 .204 .877 .830 
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Simulation 

models FL n 

Correlated Uniqueness Model 

Convergent 

Results 

Average 

AE 

Width of 

Interval Specificity Sensitivity 
Over .3 1000 2000 -.042 .154 .803 .989 

.4 100 2000 -.055 .474 .931 .245 

 300 2000 -.051 .263 .874 .612 

 500 2000 -.049 .205 .836 .829 

 1000 2000 -.051 .146 .729 .985 

.5 100 2000 -.052 .466 .933 .250 

 300 2000 -.055 .276 .856 .572 

 500 2000 -.056 .207 .817 .785 

 1000 2000 -.055 .147 .695 .983 

Interaction 1 .2 100 2000 .255 .595 .142 .833 

 300 2000 .256 .426 .000 .999 

 500 2000 .254 .374 .000 1.000 

 1000 2000 .255 .326 .000 1.000 

.3 100 2000 .232 .588 .191 .793 

 300 2000 .233 .434 .001 .998 

 500 2000 .234 .381 .000 1.000 

 1000 2000 .236 .323 .000 1.000 

.4 100 2000 .225 .600 .222 .786 

 300 2000 .220 .421 .003 1.000 

 500 2000 .222 .371 .000 1.000 

 1000 2000 .220 .321 .000 1.000 

.5 100 2000 .213 .573 .232 .756 

 300 2000 .209 .428 .002 .999 

 500 2000 .209 .387 .000 1.000 

 1000 2000 .211 .319 .000 1.000 

Interaction 2 .2 100 2000 -.097 .477 .865 .132 

 300 2000 -.096 .269 .711 .314 

 500 2000 -.097 .211 .552 .478 

 1000 2000 -.095 .151 .277 .769 

.3 100 2000 -.119 .454 .841 .101 

 300 2000 -.119 .272 .579 .235 

 500 2000 -.120 .215 .412 .313 

 1000 2000 -.119 .151 .117 .552 

.4 100 2000 -.133 .477 .786 .085 

 300 2000 -.138 .274 .508 .138 

 500 2000 -.139 .216 .289 .221 

 1000 2000 -.138 .151 .052 .366 

.5 100 2000 -.156 .483 .746 .066 

 300 2000 -.153 .292 .463 .102 

 500 2000 -.154 .228 .220 .146 

 1000 2000 -.153 .158 .026 .243 

Note. FL= the average factor loadings which loaded on the error factor in simulation model of 

both groups; Average AE = average absolute error; Width of interval = width of 95% interval 
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Table 1c 

 

Results of three models under the equal SEV condition 

Simulation 

models FL n 

Single Factor Model 

Convergent 

rate 

Average 

AE 

Width of 

Interval Specificity Sensitivity 
Exact .2 100 2000 -.053 .469 .928 .243 

 300 2000 -.054 .267 .874 .559 

 500 2000 -.055 .214 .814 .786 

 1000 2000 -.053 .151 .715 .970 

.3 100 2000 -.093 .477 .887 .167 

 300 2000 -.095 .277 .721 .319 

 500 2000 -.091 .211 .595 .544 

 1000 2000 -.092 .158 .333 .802 

.4 100 2000 -.149 .479 .767 .076 

 300 2000 -.149 .289 .431 .128 

 500 2000 -.148 .230 .230 .183 

 1000 2000 -.149 .153 .027 .280 

.5 100 2000 -.242 .491 .543 .067 

 300 2000 -.238 .277 .092 .090 

 500 2000 -.239 .220 .013 .113 

 1000 2000 -.240 .158 .000 .186 

Under .2 100 2000 -.100 .486 .854 .122 

 300 2000 -.099 .278 .710 .283 

 500 2000 -.101 .213 .534 .481 

 1000 2000 -.098 .153 .268 .753 

.3 100 2000 -.134 .509 .821 .086 

 300 2000 -.133 .284 .559 .178 

 500 2000 -.133 .234 .352 .232 

 1000 2000 -.134 .158 .076 .403 

.4 100 2000 -.183 .520 .712 .054 

 300 2000 -.180 .314 .347 .071 

 500 2000 -.178 .245 .131 .085 

 1000 2000 -.179 .171 .005 .100 

.5 100 2000 -.260 .555 .530 .067 

 300 2000 -.262 .316 .085 .101 

 500 2000 -.261 .252 .011 .143 

 1000 2000 -.261 .176 .000 .221 

Over .2 100 2000 -.037 .467 .941 .295 

 300 2000 -.031 .276 .921 .706 

 500 2000 -.032 .211 .908 .883 

 1000 2000 -.034 .145 .836 .994 

.3 100 2000 -.059 .491 .921 .227 

 300 2000 -.057 .278 .845 .552 

 500 2000 -.057 .209 .812 .769 
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Simulation 

models FL n 

Single Factor Model 

Convergent 

Results 

Average 

AE 

Width of 

Interval Specificity 

Sensitivit

y 
Over .3 1000 2000 -.055 .155 .684 .973 

.4 100 2000 -.089 .496 .886 .169 

 300 2000 -.086 .279 .747 .412 

 500 2000 -.084 .219 .627 .589 

 1000 2000 -.086 .153 .349 .867 

.5 100 2000 -.159 .538 .760 .068 

 300 2000 -.164 .323 .396 .114 

 500 2000 -.166 .239 .169 .105 

 1000 2000 -.165 .170 .015 .201 

Interaction 1 .2 100 2000 .251 .603 .158 .820 

 300 2000 .252 .427 .000 .998 

 500 2000 .250 .374 .000 1.000 

 1000 2000 .251 .325 .000 1.000 

.3 100 2000 .217 .591 .240 .746 

 300 2000 .219 .436 .003 .997 

 500 2000 .220 .381 .000 1.000 

 1000 2000 .222 .326 .000 1.000 

.4 100 2000 .188 .617 .352 .648 

 300 2000 .183 .435 .025 .977 

 500 2000 .184 .379 .000 1.000 

 1000 2000 .183 .325 .000 1.000 

.5 100 2000 .122 .588 .591 .437 

 300 2000 .118 .440 .141 .848 

 500 2000 .118 .390 .023 .969 

 1000 2000 .120 .326 .000 1.000 

Interaction 2 .2 100 2000 -.098 .476 .868 .132 

 300 2000 -.097 .268 .708 .307 

 500 2000 -.098 .211 .547 .463 

 1000 2000 -.096 .150 .267 .756 

.3 100 2000 -.129 .458 .826 .086 

 300 2000 -.128 .275 .537 .200 

 500 2000 -.129 .218 .348 .245 

 1000 2000 -.128 .152 .078 .460 

.4 100 2000 -.167 .491 .718 .059 

 300 2000 -.172 .275 .343 .074 

 500 2000 -.173 .220 .132 .072 

 1000 2000 -.172 .149 .008 .099 

.5 100 2000 -.248 .497 .512 .089 

 300 2000 -.245 .296 .106 .110 

 500 2000 -.247 .226 .008 .159 

 1000 2000 -.246 .163 .000 .259 

Note. FL= the average factor loadings which loaded on the error factor in simulation model 

of both groups; Average AE = average absolute error; Width of interval = width of 95% 

interval 
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Table 2a 

 

Results of three models under the unequal SEV condition 

Simulation 

models FL n 

Bifactor Model 

Convergent 

rate 

Average 

AE 

Width of 

Interval Specificity Sensitivity 
Exact .3 100 1487 .004 .484 .947 .391 

300 1911 -.002 .282 .946 .800 

500 1977 -.002 .217 .945 .943 

1000 2000 -.002 .152 .948 .999 

.4 100 1815 -.001 .489 .953 .396 

300 1991 -.003 .288 .950 .779 

500 2000 -.003 .211 .960 .944 

1000 2000 -.001 .158 .941 .997 

.5 100 1939 .000 .474 .955 .367 

300 1997 .000 .278 .954 .800 

500 2000 -.002 .213 .955 .945 

1000 2000 -.003 .156 .941 1.000 

Under .3 100 1110 -.089 .543 .853 .138 

300 1198 -.102 .314 .650 .290 

500 1237 -.094 .235 .583 .481 

1000 1314 -.095 .166 .342 .759 

.4 100 1417 -.098 .515 .879 .119 

300 1661 -.098 .302 .741 .311 

500 1782 -.098 .238 .555 .453 

1000 1939 -.100 .167 .307 .727 

.5 100 1844 -.100 .541 .862 .123 

300 1989 -.098 .320 .755 .292 

500 1997 -.099 .246 .581 .444 

1000 2000 -.098 .168 .291 .736 

Over .3 100 1163 .007 .489 .952 .387 

300 1295 -.001 .281 .954 .782 

500 1326 .000 .220 .943 .961 

1000 1333 .000 .150 .950 .999 

.4 100 1358 .003 .488 .947 .378 

300 1391 .003 .284 .959 .814 

500 1436 -.001 .213 .949 .963 

1000 1391 .000 .155 .934 1.000 

.5 100 1521 .008 .518 .928 .378 

300 1567 -.002 .287 .929 .799 

500 1570 .003 .214 .951 .964 

1000 1592 .000 .153 .942 .999 

Interaction 2 .3 100 923 -.082 .492 .908 .189 

300 977 -.089 .286 .767 .369 

500 1017 -.090 .217 .645 .514 
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Simulation 

models FL n 

Bifactor Model 

Convergent 

Results 

Average 

AE 

Width of 

Interval Specificity Sensitivity 
Interaction 2 .3 1000 1127 -.090 .150 .336 .823 

.4 100 1196 -.088 .491 .882 .157 

 300 1563 -.093 .288 .719 .367 

 500 1738 -.091 .228 .624 .484 

 1000 1917 -.094 .163 .345 .775 

.5 100 1695 -.088 .491 .881 .146 

 300 1944 -.097 .299 .718 .303 

 500 1979 -.095 .232 .599 .485 

 1000 2000 -.095 .153 .292 .779 

Note. FL= the difference of the average factor loadings which loaded on the error factor in 

simulation model of two groups; Average AE = average absolute error; Width of interval = 

width of 95% interval 
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Table 2b 

 

Results of three models under the unequal SEV condition 

Simulation 

models FL n 

Correlated Uniqueness Model 

Convergent 

rate 

Average 

AE 

Width of 

Interval Specificity Sensitivity 
Exact .3 100 2000 -.059 .470 .916 .239 

300 2000 -.062 .281 .846 .543 

500 2000 -.061 .215 .788 .764 

1000 2000 -.061 .150 .613 .960 

.4 100 2000 -.075 .468 .902 .203 

300 2000 -.076 .275 .809 .432 

500 2000 -.075 .205 .683 .674 

1000 2000 -.073 .153 .486 .915 

.5 100 2000 -.083 .474 .891 .185 

300 2000 -.082 .274 .776 .405 

500 2000 -.084 .208 .664 .599 

1000 2000 -.085 .153 .402 .864 

Under .3 100 2000 -.127 .524 .808 .103 

300 2000 -.132 .295 .534 .167 

500 2000 -.128 .227 .344 .277 

1000 2000 -.128 .152 .089 .473 

.4 100 2000 -.157 .503 .751 .077 

300 2000 -.156 .289 .420 .112 

500 2000 -.157 .230 .184 .151 

1000 2000 -.159 .164 .014 .201 

.5 100 2000 -.182 .513 .685 .051 

300 2000 -.181 .308 .332 .066 

500 2000 -.182 .237 .100 .081 

1000 2000 -.182 .165 .002 .103 

Over .3 100 2000 -.041 .463 .940 .276 

300 2000 -.045 .265 .901 .619 

500 2000 -.044 .211 .850 .856 

1000 2000 -.045 .151 .782 .983 

.4 100 2000 -.056 .479 .917 .240 

300 2000 -.052 .270 .879 .557 

500 2000 -.056 .212 .828 .786 

1000 2000 -.055 .150 .679 .973 

.5 100 2000 -.060 .480 .895 .230 

300 2000 -.066 .276 .831 .512 

500 2000 -.062 .211 .790 .762 

1000 2000 -.063 .145 .621 .958 

Interaction 2 .3 100 2000 -.116 .479 .841 .119 

300 2000 -.120 .268 .561 .216 

500 2000 -.121 .215 .410 .313 



44 

 

Simulation 

models FL n 

Correlated Uniqueness Model 

Convergent 

Results Average AE 

Width of 

Interval Specificity Sensitivity 
Interaction 2 .3 1000 2000 -.122 .153 .097 .531 

.4 100 2000 -.144 .477 .755 .072 

 300 2000 -.147 .285 .441 .142 

 500 2000 -.145 .217 .251 .198 

 1000 2000 -.146 .153 .038 .306 

.5 100 2000 -.163 .469 .724 .057 

 300 2000 -.171 .281 .316 .084 

 500 2000 -.168 .227 .138 .097 

 1000 2000 -.169 .147 .008 .142 

Note. FL= the difference of the average factor loadings which loaded on the error factor in 

simulation model of two groups; Average AE = average absolute error; Width of interval = 

width of 95% interval 
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Table 2c 

 

Results of three models under the unequal SEV condition 

Simulation 

models FL n 

Single Factor Model 

Convergent 

rate 

Average 

AE 

Width of 

Interval Specificity Sensitivity 
Exact .3 100 2000 -.083 .478 .878 .177 

300 2000 -.086 .282 .759 .397 

500 2000 -.085 .219 .630 .585 

1000 2000 -.086 .150 .353 .860 

.4 100 2000 -.127 .482 .816 .112 

300 2000 -.130 .282 .543 .180 

500 2000 -.128 .212 .350 .268 

1000 2000 -.126 .156 .083 .514 

.5 100 2000 -.186 .471 .703 .050 

300 2000 -.186 .284 .274 .052 

500 2000 -.188 .213 .073 .054 

1000 2000 -.188 .157 .006 .065 

Under .3 100 2000 -.127 .522 .804 .100 

300 2000 -.133 .295 .539 .168 

500 2000 -.129 .229 .338 .266 

1000 2000 -.129 .153 .089 .474 

.4 100 2000 -.165 .506 .745 .067 

300 2000 -.164 .293 .383 .091 

500 2000 -.165 .231 .164 .123 

1000 2000 -.167 .164 .009 .158 

.5 100 2000 -.214 .524 .626 .038 

300 2000 -.213 .314 .226 .055 

500 2000 -.214 .243 .048 .047 

1000 2000 -.215 .169 .001 .038 

Over .3 100 2000 -.050 .473 .938 .242 

300 2000 -.054 .267 .868 .567 

500 2000 -.053 .216 .806 .799 

1000 2000 -.054 .153 .702 .970 

.4 100 2000 -.078 .496 .891 .182 

300 2000 -.074 .282 .810 .446 

500 2000 -.078 .214 .704 .633 

1000 2000 -.076 .158 .467 .909 

.5 100 2000 -.111 .515 .818 .144 

300 2000 -.118 .300 .594 .245 

500 2000 -.114 .234 .419 .400 

1000 2000 -.115 .162 .154 .633 

Interaction 2 .3 100 2000 -.120 .479 .832 .116 

300 2000 -.125 .266 .534 .199 

500 2000 -.125 .213 .384 .284 
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Simulation 

models FL n 

Single Factor Model 

Convergent 

Results 

Average 

AE 

Width of 

Interval Specificity Sensitivity 
Interaction 2 .3 1000 2000 -.127 .152 .077 .487 

.4 100 2000 -.157 .476 .729 .055 

 300 2000 -.160 .283 .377 .094 

 500 2000 -.158 .216 .171 .129 

 1000 2000 -.160 .151 .017 .186 

.5 100 2000 -.198 .465 .663 .046 

 300 2000 -.207 .287 .172 .048 

 500 2000 -.203 .223 .050 .053 

 1000 2000 -.205 .147 .002 .041 

Note. FL= the difference of the average factor loadings which loaded on the error factor in 

simulation model of two groups; Average AE = average absolute error; Width of interval = 

width of 95% interval 
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Table 3 

 

CFA results after using seven models to fit the data of three groups separately 

 𝜒2 𝑑𝑓 𝛥𝜒2(𝑑𝑓, 𝑝) SRMR RMSEA CFI 

US       

    1 169.19 35 NA .06 .12 .89 

    2 62.29 29 106.9(6, <.000) .03 .06 .97 

    3 103.07 29 66.12(6, <.000) .05 .10 .94 

    4 55.46 25 113.73(10,<.000) .03 .07 .97 

    5 86.67 25 82.52(10, <.000) .05 .09 .95 

    6 NA NA NA NA NA NA 

    7 33.94 15 21.52(10, <.000)*/ 

52.73(10, <.000)** 

.03 .07 .98 

       

CN       

    1 229.94 35 NA .07 .12 .83 

    2 123.39 29 106.55(6,<.000) .05 .09 .92 

    3 134.13 29 95.81(6, <.000) .05 .10 .91 

    4 96.28 25 133.66(10, <.000) .04 .09 .94 

    5 114.35 25 115.59(10, <.000) .05 .10 .92 

    6 62.34 23 61.05(6, <.000)*/ 

71.79(6, <.000)** 

.03 .07 .97 

    7 34.12 15 62.16(10, <.000)*/ 

80.22(10, <.000)** 

.02 .06 .98 

       

JP       

    1 129.55 35 NA .08 .12 .85 

    2 64.05 29 65.5(6, <.000) .05 .08 .94 

    3 115.39 29 14.16(6,.028) .08 .13 .86 

    4 47.62 25 81.93(10, <.000) .05 .07 .96 

    5 110.32 25 19.23(10, .038) .07 .14 .86 

    6 47.20 23 17.3(6, .008)*/ 

68.19(6, <.000)** 

.04 .08 .96 

    7 33.31 15 14.31(10, .159)*/ 

77.01(10, <.000)** 

.04 .08 .97 

Note. 1 = model with no method effect; 2 = bifactor model with negative method effect; 3 = bifactor 

model with positive method effect; 4 = CU model with negative method effect; 5 = CU model with 

positive method effect. 

 

*   Comparing with the model specifies negative method effect 

** Comparing with the model specified positive method effect 
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Figure 1 

An example of ULMC (Bifactor) model 
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Figure 2 

The configurations of models for data generation 
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Note. S factor represents SEV, C factor represents construct. 
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Figure 3 

The configurations of models used to fit data 
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Note. S factor represents SEV, C factor represents construct. 
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Figure 4: 

Theoretical Models for the Rosenberg Self-Esteem Sale 

 

 

Model 1: Single Factor Model 

 

 

Model 2: Bifactor Model with Negative Method Factor 

 

Model 3: Bifactor Model with Positive Method Factor 
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Model 4: CU Model with Negative Method Factor 

 

Model 5: CU Model with Positive Method Factor 

 

Model 6: Bifactor Model with Two Method Factors 

 

Model 7: CU Model with Two Method Factors 

 


