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ABSTRACT 

 

Within the realm of drug discovery more intricate, rigid small molecules exhibit 

higher potencies as drug leads and candidates. This is because molecules with three-

dimensional features such as stereochemistry and bond saturation have increased 

binding specificities, decreased toxicological liabilities, and favorable pharmacological 

properties. Natural products, due to their structural complexity, have historically 

established the blueprint for drug discovery, inspiring the cores or complete scaffolds for 

most pharmaceuticals available today. As a result, over 50% of available drugs are either 

natural products or their derivatives. While natural products have historically served as 

trailblazers for the pharmaceutical industry, in the past twenty years drug-discovery 

programs have de-emphasized natural products in favor of high-throughput screening of 

synthetic chemical libraries. This shift has been met with diminishing returns, as these 

changes have led to an average ‘hit rate’ of >0.001% for pharmaceutical screenings of 

synthetic chemical libraries. Resultantly, there has been a resurgence in the belief that 

natural product-based drug design is the most practical model for future drug discovery 

efforts. Therefore, there is a need for convergent methods to access complex cores to 

sustain these early discovery programs, as often trivial differences in substrates lead to 

vast differences in site-binding and drug efficacy. 

There are several challenges associated with natural product-based drug design, 

however, the most glaring is the lack of low-cost, efficient methodologies to access 

privileged natural product-like cores. This dissertation addresses these issues with two 

primary foci: 1. The implementation of carbenoid-initiated reactions to form complex, 



 vi 

natural product-like cores in efficient transformations; and 2. the utilization of metal 

catalysts for highly specific transformations. While my preliminary studies feature 

precious metal catalysts, the continuation of my research features Earth-abundant 

catalysts. 

These focuses have converged for the development of methodologies surrounding 

two small-molecule frameworks: spirocycles and carbohydrates. Through the 

implementation of metal-carbenoids, we have developed stereoselective protocols to 

access these privileged frameworks readily in tandem or cascade strategies. Cascade 

reactions are multiple synthetic transformations that can occur in a single reaction pot, 

thereby truncating long reaction sequences into a single step. These reactions reduce the 

number of overall steps necessary to synthesize the desired compound while facilitating 

the rapid generation of structural complexity from simple starting materials. Likewise, 

multiple reactions can be completed in a single flask, which negates the need for the 

isolation of intermediates,  thereby reducing the total cost of synthesis. The work herein 

details cascade sequences that can be utilized to access both scaffolds. 
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CHAPTER 1 

Bioactive Motifs in Drug Discovery 

1.1 NATURAL PRODUCTS AS AN INSPIRATION FOR THE SYNTHESIS OF 
BIOACTIVE SCAFFOLDS 

The proverb “health is wealth” alludes to the conviction that health is one’s most 

valuable asset. Thus, as humans, we should prioritize health and well-being above all 

else. Yet, the high cost of potent therapeutics suggests that access to medications 

necessary to preserve one’s health is a luxury. By 2023, the global pharmaceutical market 

will exceed $1.5 trillion.[1] The high cost of medication can be attributed to various 

elements; however, the most alarming factor is the high cost of drug development. 
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Nature and medicine are intertwined. Due to their chemical and structural diversity 

and the biodiversity of flora, plants are the most dominant source of new medicines.[2] 

Natural products, organic molecules synthesized within living organisms, have historically 

served as trailblazers for the pharmaceutical industry.[3] More complex, rigid molecules 

exhibit higher efficacies within drug discovery as drug leads and candidates. Molecules 

with three-dimensional features such as chirality and bond saturation have increased 

binding specificities. Likewise, these molecules sustain favorable pharmacological 

properties and decreased toxicological liabilities.[3a] Natural products often possess many 

of these features, including rigid frameworks and structural complexity. As a result, these 

molecules have historically served as the blueprint for drug discovery. Consequently, 

these molecules have inspired the structural core or mimics for most pharmaceuticals 

available today. As a result, over 50% of available drugs are natural products or 

derivatives (Figure 1.1).[3b, 3c]  
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Figure 1.1: Pharmaceuticals inspired by natural products; a Not a direct synthesis 

However, drug-discovery programs have de-emphasized natural products favoring 

high-throughput screening of synthetic chemical libraries in the last two decades. This 

shift has been met with diminishing returns, as these changes have led to an average hit 

rate of <0.001% for pharmaceutical screenings of synthetic chemical libraries.[4] 

Resultantly, there has been a resurgence in the conviction that natural product-based 

drug design is the most practical model for future drug discovery efforts.[5] 

Traditionally, terrestrial plants and microorganisms are the most significant 

sources of biologically active natural products.[3b-d, 6] Additionally, terrestrial and aquatic 

species of plants and microorganisms, especially those of marine origin,[7] have 

consistently yielded unique bioactive small molecules, leading to a variety of valuable 

therapeutics and lead structures for potential new drugs. 

The extraction of some valuable natural products from their biological sources is 

challenging. Conventional extraction methods such as maceration, percolation, and reflux 

extractions offer a series of disadvantages that make extracting natural products found in 

low concentrations impractical.[8] These extractions typically employ long extraction times 

and large quantities of solvents only to obtain low yields of the desired molecule.[8b, 9] 

Additionally, the amounts of bioactive small molecules from these sources are typically 

relatively low. As a result, there is an urgent need to develop efficient methodologies to 

access these scaffolds in large quantities. The design of efficient synthetic methodologies 

to access natural product cores is thought by some to be the most practical route to 

access sizable quantities of candidates for drug screening programs.  
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Natural products typically are characterized by massive structural diversity as well 

as scaffold complexity. In contrast to conventional synthetic small molecules, these 

molecules are often rigid and contain a large fraction of sp3 carbons. Compounds 

featuring a large fraction of sp3 centers (fsp3) have an increased likelihood of progression 

in drug discovery programs.[10] Additionally, increased fsp3 character in molecules 

increases the range of accessible fragment growth vectors, thus enabling the structural 

elaboration of fragment hits in a three-dimensional manner in Fragment-Based Drug 

Discovery (FBDD) efforts.[11] This has led to the development of numerous 3D fragment 

libraries. One of the most common strategies for incorporating these features and rigidity 

is the introduction of quaternary stereocenters. An example of a valuable class of 

molecules featuring a quaternary center and high fsp3 character is spirocycles.  

 

1.1.1 SPIRO-SYSTEMS IN BIOACTIVE MOLECULES  

Spirocycles are a class of molecules containing two or more rings fused by a single 

atom –i.e., its spirocore or spirocenter. Spirocycles, due to this spiro-junction, are 

inherently rigid molecules.[12] Additionally, the spiro-ring fusion (highlighted in red) is a 

valuable motif that can increase molecular complexity. These molecules are distinctly 

three-dimensional in nature and thus can adapt to many types of proteins as biological 

targets.[13] These features make the spirocyclic motif a privileged structure for drug 

discovery efforts (Figure 1.2).  

Spirocyclic motifs are found abundantly in nature and natural product scaffolds.[14] 

Subclasses of spirocycles including spiroketals,[14] spirolactams,[15] spiroethers[16], and 

spiroamines[17] are prominent in natural products and bioactive small molecules. 
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Additionally, several drug candidates contain a spirocyclic moiety. Griseofulvin is a World 

Health Organization (WHO) essential antifungal treatment used to treat infections of the 

skin, hair, and nails.[18] Additionally, spironolactone is a small molecule medication used 

to treat high blood pressure and heart failure. Too, spironolactone is a diuretic and 

aldosterone receptor antagonist.[19] 

  

 
Figure 1.2: Spirocycles in pharmaceuticals and bioactive molecules 

Despite this, comparatively few spirocyclic moieties have been evaluated as drug 

candidates in the past decades.[12] While these compounds’ structural rigidity and 

complexity are ideal for drug discovery programs, their limited availability in phenotypic 

screenings is predominately due to the challenges surrounding their synthesis. The 
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transformations.[20] More challenging is the installation of carbon centers with designated 

stereochemistry. The progress on new synthetic routes to access spiro building blocks 

will facilitate the incorporation of spirocyclic scaffolds into more pharmaceutically relevant 

molecules. 

Most existing methods to access spirocycles rely heavily on intramolecular 

cyclization/rearrangement reactions of appropriate linear precursors. These strategies 

are handicapped by long starting material preparation to synthesize the appropriate 

precursors (Figure 1.3).[21] 

 

Figure 1.3: Traditional Access to Spirocycles 

 
1.1.1.1  Formal Synthesis of (–)-Cephalotaxine Core: Spirocyclic 

Natural Product 

Cephalotaxus harringtonia, an evergreen plum plant species native to Japan, is 

responsible for a potent class of alkaloids renowned for their significant antileukemic 

activity.[22] Hayes et al. completed the formal synthesis of the spirocyclic tetracyclic 

alkaloid core of (–)-cephalotaxine (5) twice, and in both syntheses, utilized an alkylidyne-

derived carbene to establish a critical quaternary stereocenter (Figure 1.4).[23]  

 Both syntheses employ an alkylidene carbene cyclization precursor 1 that, once 

exposed to excess KHMDS (2.0 equiv.), results in the formation of the transient alkylidene 

carbene species 2. Alkylidene 2 can participate in a 1,5 C–H insertion bond formation to 
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furnish the spirocyclic alkaloid 3. Immediately following this carbon bond-forming event, 

spiroalkaloid 3 is exposed to iodinating conditions to supply the aryl halide. Tetracycle 4 

is then bridged together via a Heck cyclization.  

 

Figure 1.4: Formal Synthesis of -(-)cephalotaxine 

Spirocycles are one of the least studied fragments in drug discovery. 

Complementary to this work, this dissertation will detail synthetic strategies to access the 

most abundant natural-product framework –carbohydrates.  
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Plants produce carbohydrates via photosynthesis, a process that converts 

electromagnetic energy into chemical energy. Plants are responsible for the biosynthesis 

of upwards of 200,000 distinct small molecule natural products that serve as primary and 

secondary metabolites.[26] Primary metabolites perform essential metabolic roles that are 

indispensable for life. Conversely, secondary metabolites are molecules not required for 

growth and development; however, assist in other biological capacities. The biosynthesis 

of natural products as secondary metabolites, while not completely understood, is 

composed of networks of secondary metabolic pathways utilizing biosynthetic enzymes 

and CO2 (Figure 1.5).[26c, 27] 

 

 
Figure 1.5: Generation of Primary and Secondary Metabolites through Photosynthesis  
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A variety of carbohydrate-containing scaffolds including 

glycans,[28]glycoconjugates,[29]aminoglycosides,[30] and nucleosides[31] are used 

abundantly as drug and vaccine candidates and pharmaceuticals (highlighted in red) 

(Figure 1.6). 

Salicin is a b-glycoside in willow bark and is responsible for the tree’s therapeutic 

properties. Likewise, salicin is the biosynthetic precursor to the analgesic salicylaldehyde 

–the inspiration and precursor to the analgesic medicine aspirin. Willow bark is 

colloquially termed “Nature’s aspirin” in many cultures as it has been used for centuries 

as a pain reliever and anti-inflammatory.[32]  

Empagliflozin and the spiroglycan tofogliflozin are treatment options for diabetic 

patients.[33] 

Likewise, the a-glycosides idarubicin and doxorubicin are chemotherapeutic 

treatments. Stavudine belongs to a class of nucleoside reverse transcriptase inhibitors 

(NRTIs) and is an antiretroviral medication, commonly sold as Zerit, that is prescribed for 

the prevention and treatment of HIV and AIDS. 

Additionally, aminoglycosides represent a significant class of broad-spectrum 

antibiotics used to treat gram-negative bacterial infections.[30, 34] A variety of 

aminoglycoside antibiotics are currently available today to treat a range of illnesses; 

clindamycin is used to treat particularly stubborn cases of acne and bacterial vaginosis.[35] 

Framycein is used to treat eye and ear infections.[36] Additionally, carbohydrates have 

been used as antiviral treatments for SARS-CoV-2 infections such as N4-hydroxycytidine 

and remdesivir.[37] 
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Figure 1.6: Drugs and Bioactive Molecules Containing Carbohydrates 
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 The stereoselective synthesis of glycosidic bonds is the most prevalent challenge 

within carbohydrate chemistry. Most glycosylation methods proceed through either SN1 

or SN2-type reactivity at the anomeric carbon.[38] The stereoselectivity of these reactions 

is typically dominated by the anomeric effect or protecting group manipulations (Figure 

1.7a).[38a] The anomeric effect is a stereo-electronic phenomenon observed in cyclic rings 

containing a heteroatom, where a heteroatom-carbon bond at the anomeric position 

prefers the axial orientation as opposed to an equatorial configuration. This is due to a 

stabilizing hyperconjugation interaction where the oxygen’s electrons from the non-

bonding orbital can donate into the antibonding orbital of the C–X bond, stabilizing the 

axial position (Figure 1.7b).  

 

 
 

Figure 1.7: Overview of Established Carbohydrate Chemistry 
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1.1.2.1 Synthesis of Medermycin: Carbohydrate-Based Natural 
Product 

Medermycin is an aryl b-C-aminoglycoside first isolated from Streptomyces sp. in 

1976.[39] Analogous to other aminoglycosides within the pyranonaphthoquinone family of 

antibiotics, mermycin (15) possesses potent activity against gram-position organisms, 

including species of Staphylococcus and Bacillus.[40] Early methods developed by Pulley 

et al. utilize Fischer chromium carbenes in a Wulff-Dötz annulation as the key step toward 

synthesizing the valuable aminoglycoside (Figure 1.8).[41] 

 

Figure 1.8: Synthesis of Medermycin featuring Fischer Carbene 
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1.1.3 CARBENES AS AN AMBIPHILIC SYNTHON 
 

Ambiphilic synthons are a widely untapped resource within synthetic chemistry and, 

with proper design and innovation, can be used to access a broad spectrum of valuable 

scaffolds. These reagents bear dual reactivity, as they have both electrophilic and 

nucleophilic characteristics. One example of a powerful ambiphilic synthon is carbenes, 

which exist as an amalgam of carbocationic and carbanionic properties (Figure 1.9).  

 

Figure 1.9: Comparison of Reactive Carbon Species 
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Figure 1.10: Comparison of Fischer and Schrock Carbenes 
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1.1.4 GOALS OF DISSERTATION 

 
This dissertation aims to utilize metal-bound carbenoids as synthons to construct 

privileged bioactive motifs. Specifically, this dissertation details our attempts to access 

spirocyclic cores and glycosidic bonds. The research featured in Chapter 2 of this 

dissertation details the synthesis of spirocycles (spiroalkaloids, spirocarbocycles, and 

spirooxindoles) using diazo-derived carbene synthons via an intermolecular strategy. 

This approach incorporates rhodium (II) carbenoids, which can undergo X–H insertion 

initiated cascade sequences, to access the desired spirosystems with a high degree of 

stereoselectivity (Figure 1.11).  

 

Figure 1.11: Carbene-Mediated Transformations Detailed within Dissertation 
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and 4 will detail the synthesis and design of two novel carbene-assisted glycosyl donors. 

These chapters will describe research efforts surrounding these donors in stereoselective 

glycosylation reactions for the formation of O-glycosides (Figure 1.11).  

In our research, we have utilized alkynes as versatile synthons to access both 

classes of molecules. In Chapter 2, we used propargyl groups as bifunctional trapping 

agents to access spirocyclic moieties. Then, bearing in mind these resourceful synthons, 

we turned to alkynes for the generation of metal carbenes to realize our glycosylation 

strategy, featured in Chapters 3 and 4. 
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2. CHAPTER 2 

Carbene-Initiated Spirocyclization Cascades 

2.1 HISTORICAL PERSPECTIVE OF SPIROSYSTEMS AND METAL 
CARBENOIDS 

Spirocyclic frameworks are considered privileged structures in drug discovery. The 

three-dimensionality and rigidity of these scaffolds allow them to perform and adapt well 

to biological targets.[1] Resultantly, these motifs have been of intense interest in modern 

drug discovery. Nonetheless, there has been a dramatic drop in spiro-junctions found in 

drug leads, thought to be a result of the increased synthetic effort necessary for their 

installation.[2]  
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 The popularity of spiro-junctions can, in part, be attributed to the breakthrough 

development of the drug spironolactone in 1957 (Figure 2.1).[3] Spironolactone is a 

mineralocorticoid receptor (MR) antagonist used to treat heart disease and hypertension. 

This discovery paved the way for scaffolds possessing a spirocore in medicines. 

Spironolactone was approved for use in 1959, and in the decades following, scientists 

continued the development of spironolactone antiandrogens for libraries of 

progesterones. Eplerenone is another MR antagonist patented in 1983 and approved for 

medical use in the United States in 2002.[4] Additionally, drospirenone is a progesterone 

medication featuring a spirolactone moiety sold as birth control since its approval in 

2000.[5] 

 

Figure 2.1: Spirojunction in [6,6] ring system; Spirocyclic moieties in progesterone medications 

 Spiro-junctions are found abundantly in natural products, and often more than one 

spirosystem can be found in a single natural product. These include spiro sub-classes for 

spiroethers (spiroacetals, spiroketals), spirocyclic alkaloids (spirolactams), and 

spirocarbocycles. Additionally, spiro-ring systems have been incorporated successfully 

into enzymes and protein-protein interaction inhibitors. The introduction of conformational 

restriction by ring formation, including spiro-ring formation, can modulate binding potency 
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and specificity. Likewise, these restrictions can potentially improve bioavailability and 

metabolic stability. Furthermore, conformational restrictions may reduce off-target 

activities.[6] 

In literature, spirocycles are typically formed through alkylations, rearrangements, 

cycloadditions, oxidative or reductive couplings, or the cleavage of bridged systems. 

While powerful, most of these reports lack a general strategy for synthesizing different 

sub-classes of spirosystems —the work presented details our attempts to combat this 

challenge utilizing carbenoid-initiated cascade cyclizations.  

2.1.1 SYNTHESIS AND REACTIVITY OF DIAZO COMPOUNDS 

Diazo compounds have a long history of synthetic applications. Originating as 

dyes, they quickly were applied as efficient alkylating agents. Initially feared due to 

their instability and potential explosive behavior,[7] synthetic efforts for their efficient and 

safe synthesis have made these compounds commonplace in the academic lab setting.[8]  

More recently, their popularity has converged to their application as carbenoid 

precursors, often achieved through metal-catalyzed diazo decomposition. The most 

popular means of synthesizing diazos are via a Reigtz diazo transfer, formed via an amine 

base promoted transfer from an azide moiety (Figure 2.2).[9] The diazos synthesized 

within this chapter will be prepared using this method. 
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Figure 2.2: Synthesis of diazo compounds via Regitz Transfer 

Benchtop stable diazos are divided into three categories: donor/acceptor diazos 

(D/A), acceptor-only diazos (A), and acceptor/acceptor (A/A) diazos.[10] Notably, while 

offering the most reactivity, donor/acceptor diazos are plagued with decreased stability 

due to the donor substituent destabilizing the diazo moiety (Figure 2.3a). Contrastingly, 

acceptor/acceptor diazos are incredibly stable; however often require high temperatures, 

refluxing conditions, or higher catalyst loadings to decompose the diazo. The reactivity is 

reversed once the diazo is decomposed to the metal carbenoid (Figure 2.3b).  

A/A carbenes are the most reactive species due to the two electron-withdrawing 

substituents destabilizing the electron-deficient carbene species resulting in the most 

electrophilic species. D/A carbenes are the most long-lived traditional species and tend 

to facilitate more selective transformations. Recently, newly developed, non-diazo 

carbene surrogates have led to the introduction and study of donor-only (D) and donor-

donor carbenes (D/D).[11]  
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Figure 2.3: Comparison of diazos compounds and their respective metal carbenoids 
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electrophilic addition of the metal salt onto the diazo carbon, prompting the loss of 

dinitrogen gas. This forms the electrophilic metal carbenoid species (boxed in red). As 

ambiphilic synthons, metal carbenoids can participate in various transformations, most 

notably X–H insertions (Figure 2.4). 

 Rhodium is undoubtedly the most common and most effective transition metal 

catalyst for diazo decomposition.[12b, 13] Often, dirhodium (II) complexes are commercially 

available with a wide variety of bridging carboxylate or carboxamide ligands that provide 

a range of reactivities. Dirhodium (II) acetate (Rh2(OAc)4) is typically regarded as the 

standard rhodium catalyst. Replacing the acetate ligands can influence the chemical and 

physical properties of the catalyst and the resulting carbenoid. For example, rhodium (II) 

octonate is more soluble in non-polar solvents, and rhodium (II) perfluorobutyrate results 

in a more electrophilic carbene. Additionally, these catalysts are exceptionally versatile 

and can be used at extremely low catalyst loadings, thus having remarkably high turnover 

numbers. Additionally, copper catalysts have been historically used for diazo 

decomposition. 

 
Figure 2.4: Overview of metal carbenoid generation/ X–H insertion 
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 These carbenoids are easily generated, well studied, and engage in very reliable 

transformations such as cyclopropanations,[14] cyclopropenations,[15] insertion reactions 

(C–H, N–H, O–H, S–H, B–H, Si–H),[13a, 16] trifluoromethylations,[17] C–H 

functionalization,[12f, 18] dipolar additions,[19] cascades, [12a, 18a, 20] formal cycloadditions,[21] 

and rearrangement reactions.[22] 

2.1.3 CASCADE/DOMINO/TANDEM SEQUENCES 

Cascade reactions are a series of sequential chemical transformations operating in a 

single flask without the need for intermediary isolation. Additionally, the product(s) from 

the initial reaction is used as the starting material for the successive reaction. This 

sequence is continued until a stable product is formed that can be isolated (Figure 

2.5).[12a, 20a, 23]  

 

Figure 2.5: Illustration of a two-step cascade or tandem reaction 
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There has been a significant increase in cascade-based method development in the 

past few decades, often towards target-oriented synthesis and diverted synthesis efforts. 

These transformations are increasingly practical and can be utilized to develop highly 

functionalized building blocks and other fine chemicals. Often, cascade reactions provide 

an efficient route to highly complex scaffolds. These reactions are typically accompanied 

by high stereoselectivity due to the higher-ordered transition states integral to these 

transformations.  

Additionally, cascade sequences are synthetically ‘green’ as these reactions reduce 

waste generation. Likewise, these reactions save resources, time, and effort. Due to their 

usefulness and practicality, numerous reviews have been reported detailing cascade-

based transformations involved in pericyclic and sigmatropic rearrangements,[24] radical 

reactions,[23a, 25] carbene/carbenoid reactions,[12a, 12d, 22, 26] and ionic reactions.[25d, 27] 

Cascade reactions are frequently accessed through reactive dual-character synthons. 

Diazo carbonyls are reliable precursors routinely used to access a powerful ambiphilic 

synthon –metal carbenoids. Once decomposed, diazos are converted to electrophilic 

metal-bound carbenoids, which can react with an accessible nucleophile to form reactive 

zwitterionic intermediates.[19, 28]  

2.1.4 OBJECTIVE OF CHAPTER 

The research included within this chapter features a general, convergent strategy 

for the convenient synthesis of diverse spirocycles, featuring X–H insertion tandem 

intermolecular sequences (Figure 2.6a). These reactions function by bypassing a 

common limitation observed in metal-carbenoid reactions, the 1,2 proton transfer. 
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Towards the goal of stereoselectively synthesizing spirocycles, we have identified 

synergistic bimetallic conditions for synthesizing various spirosystems. Namely, we have 

applied these conditions towards spirocyclic alkaloids[20b] and spirocarbocyclic 

systems[18a] using a previously identified Rh (II)/ cationic Au(I) catalyst combination 

(Figure 2.6b).[29] Additionally, we have begun developing conditions using Earth-

abundant metals for the synthesis of spiroethers.  

 

Figure 2.6: Overview of Spirocycle Synthesis 

 

MLn

O O
R

R1

O
OR

R1
XDiverse Spirocycles

X = sp2 CH, sp3 CH, OH or NHR

O O

R R1
MLn

X-H Insertion Conia-Ene Cyclization

MLn = Rh2L2, Cu (II) Zn(OTf)2

7
8

9

X

H

X

H

R = R1, alkyl, O-alkyl

N

MLn
R2R1

N
MLn

R2R1

N2
ENu ENu

R2R1

H
LnM

H

ENu
n

R2
R1

H

R2R1

Nu E

n

H

n 1,2 proton transfer

two-step cascade

Desired

Undesired

n

*

a) General approach to diazo-trap cascade

b) Goals of spircocyclization project

1

2

3

4

5

6



Ch.2– Carbene-Initiated Spirocyclization Cascades 
 

† This topic was a featured cover review article for European Journal of Organic Chemistry, see 
reference: A. I. Bain, K. Chinthapally, A. C. Hunter, I. Sharma, “Dual Catalysis in Rhodium(II) 
Carbenoid Chemistry” Eur. J. Org. Chem. 2022, e202101419. 
 29 

2.2 METAL CATALYST SYNERGISM 

There are many facets of dual catalysis. Dual synergistic catalysis involves two 

catalysts that independently activate two separate substrates. This concurrent activation 

creates two reactive species that can rapidly react to form a new bond (Figure 2.7).[30] 

This differs from other multicatalyst systems, such as double activation catalysts, where 

two catalysts work cooperatively to activate a single substrate,[30-31] or cascade/relay 

catalyst systems that require the systematic activation of a single substrate.[32] Often, 

these systems are more efficient than traditional single catalysts and enable new 

transformations not possible with mono-catalytic systems.

 
Figure 2.7: Bimetallic synergistic catalysis with diazo compounds 

Our research group has had considerable success using synergistic catalysis,† 

specifically pertaining to rhodium (II) mediated X–H insertion/Conia-ene cascades. [18a, 

20b, 29, 33] In 2016, Hunter et al. identified an Rh(II)/Au(I) dual catalyst system to facilitate 

the O–H insertion/Conia-ene tandem reaction, using a combinatory AgOTf/PPh3AuCl 

system. Building upon our Rh(II)/Au(I) finding, we then expanded this methodology for 
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trapping different bifunctional reactants to synthesize both spiroalkaloid systems and all-

carbon spirocycles.

 

2.3 PROPARGYL-ACTIVATED CONIA-ENE REPORTS 

Historically, Conia-ene cyclizations consist of a thermally induced intramolecular 

cyclization of an enolizable carbonyl with an olefinic or propargyl moiety (Figure 2.8a). 

The Conia-ene reaction is a widely utilized synthetic transformation that can be used to 

construct carbon-containing rings.[34] Implementation of a metal catalyst allows further 

activation of the p-system, thereby decreasing the activation energy necessary for the 

desired cyclization. This activation allows for milder reaction conditions and shorter 

reaction times. Pioneering strategies for metal-catalyzed Conia-ene reactions were 

developed by Toste using 1,3 dicarbonyls and cationic gold, forming a variety of cyclized 

products with high diastereoselectivities (Figure 2.8b).[35] Since then, Conia-ene 

reactions mediated by propargyl activations have been expanded to encompass diazo-

mediated reactions and a broad range of metals.[36] 



Ch. 2: Carbene-Initiated Cascade Spirocyclizations 
 

 31 

 
 

Figure 2.8: Overview of Conia-ene Cyclizations 
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(Figure 2.9).[37] 
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Figure 2.9: Two-step protocol for the synthesis of aminoalkynes 17 

 Additionally, the ethynylaniline 20 was prepared in two steps from 2-iodoaniline.[38] 

Ethynyltrimethylsilane was coupled at the ortho position of 2-iodoaniline via a 

Sonogashira coupling to yield the silyl-protected propargyl amine 19, which was exposed 

to Tetra-n-butylammonium iodide (TBAF) to yield the desired propargyl amine 20 (Figure 

2.10). 

 

Figure 2.10: Two-step protocol for the synthesis of aminoalkyne 20 
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2.4.2 N–H INSERTION/CONIA-ENE CASCADE FOR SPIROALKOIODS 

After developing an Rh(II)/ cationic gold catalytic cocktail to furnish O–H/Conia-

ene cascades,[33] our group furthered our own methodology to trap aminoalkynes 17 

(Figure 2.11).[20b] This transformation employed Rh2esp2 (1 mol%) as a rhodium (II) 

source for efficient diazo decomposition, as well as the cationic gold complex 

PPh3AuSbF6 (10 mol%), which is produced in situ from PPh3AuCl and AgSbF6.  

 

Figure 2.11: Optimized conditions for the synthesis of Spiroalkaloids 

Remarkably, this work was tolerable to both donor/acceptor (22a,22b) and 

donor/acceptor (22c-22e) diazos (Figure 2.12). D/A diazos were able to be decomposed 

readily to access the spiro systems, including diazos synthesized from 2-tetralone (22a) 

were synthesized in a moderate 60% yield, as well phenanthren-9(10H)-one-derived 

diazo (22b) 60%. To synthesize diverse spirocyclic alkaloids, the diazos were added 

dropwise via syringe pump to a 0.3M CH2Cl2 solution of the three-component catalyst 

cocktail in dichloromethane. More stable A/A diazos were also able to facilitate the 

desired transformations, albeit with slightly modified conditions.  
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Figure 2.12: Representative Substrate Scope for Spiroalkaloids 
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27 or gold p complex 28. This is catalyzed by the gold-activation of the propargyl group, 

inducing a Conia-ene cyclization to supply the desired cyclized product 29. Alternatively, 

the ylide species can participate in a 1,2 proton transfer to yield the undesired insertion 

product 30 (Figure 2.13). 

 

Figure 2.13: Postulated N–H Insertion/Conia-ene Mechanism 
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2.4.2.2 Enantioselective Stepwise N–H Insertion/Conia-ene  

We then thought to develop an enantioselective approach to spiroalkaloids, inspired 

by our previous studies. Our Rh(II)/Au approach did not observe any enantioinduction 

even when chiral rhodium salts were screened. As our Rh(II)/Au conditions require both 

substrates’ fast and expedient activation, these conditions were not compatible with 

enantioinduction. We postulated that this is due to our system’s poor transmission of 

ligand chirality. For non-asymmetric Conia-ene transformations, these tend to form purely 

from the propargyl group’s activation. To account for this, we thought to develop a chiral 

enolate to produce some ee within our system. 

Asymmetric reactions attract much attention within the synthetic community –the 

same is true for Conia-ene reactions. A standard method for asymmetric induction in 

Conia-ene reactions employs two metals: 1). a hard metal with chiral ligands for enolate 

activation and 2). a soft carbophilic metal to activate the propargyl group (Figure 2.14). 

The first of these reports was published by Toste in 2005, where the group reported an 

enantioselective Conia-ene protocol using a Pd(DTBMSegPhos) complex and Yb(OTf)3 

co-catalyst.[35c] 



Ch. 2: Carbene-Initiated Cascade Spirocyclizations 
 

 37 

 

Figure 2.14: Double Metal Activation for Enantioselective Conia-ene 

To synthesize a chiral metal center, we turned to readily available bisoxazoline 

(BOX) ligands. Chiral ligands have served as one of the most dominant platforms for 

asymmetric catalysis.[39] Exceptionally, C2 symmetric ligands, such as BOX ligands, have 

seen great successes in asymmetric transformations and can be synthesized reliably.[40]  

In preliminary studies, we attempted a stepwise insertion/Conia-ene from 

aminoalkyne 17a and A/A diazo 31. First, the insertion product 32 was synthesized using 

Rh2esp2 in dichloromethane (Figure 2.15a). Once the starting material was consumed 

via TLC, the insertion product was purified and exposed to a chiral copper BOX complex 

in chloroform. L1 was synthesized readily from L-leucine (Figure 2.15b).[41] We chose to 

begin preliminary studies with the Earth-abundant metal copper towards our goal of 

developing selective transformations with more sustainable methods. Enantioselectives 

were then measured via HLPC. While we could not induce significant ee, we were able 

to begin developing more sustainable transformations within the laboratory. 

RR2O

OO

MH

L*

MS
MH = hard metal
MS = soft carbophillic metal
L* = chiral ligand

formation of chiral enolate 
with hard metal

alkyne activation with soft metal



Ch. 2: Carbene-Initiated Cascade Spirocyclizations 
 

 38 

 

Figure 2.15: Copper-catalyzed stepwise asymmetric Conia-ene reaction 
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Figure 2.16: Initial Observations for [5,5] Spirocarbocycles 
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Figure 2.17: Access to [5,6] and [5,7] Spirocarbocycles 
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Figure 2.18: Access to [5,5] Spirocarbocycles 
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the propargyl ketoamide 51. Ketoamide 51 is then exposed to pABSA and DBU to 

undergo a deacylative diazo transfer to yield the desired diazo 39c (Figure 2.19).  

 

Figure 2.19: Starting Material Preparation for Spirocarbocycles 
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Figure 2.20: Synthesis and Preparation of Diazo 39b 
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and also negating the use of additional reagents and solvents. 

Due to its economic advantages, iron-based catalysis can affect all industries, 

including agriculture, pharmaceutical manufacturing, and food processing. The limited 

amounts of precious metals available require extensive efforts to obtain, as opposed to 
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the ease of acquiring Earth-abundant metals such as iron, copper, and zinc.[43] Likewise, 

today’s population surges have led to the increased demand for metals in manufacturing 

and industrial practices. The utilization of these metals in these capacities can meet these 

needs while simultaneously offering economic advantages. As the cost of a drug is 

directly proportional to the cost of reagents, employing cheaper Earth-abundant metals 

poses a distinct advantage over traditional metal catalysis. Towards these goals, we 

began screening conditions to develop an O–H/Insertion/aldol cascade that featured 

Earth-abundant metal catalysts. 

Inspired by Moody,[44] who developed an O-H insertion/aldol cascade using rhodium 

and copper salts, we thought to develop this system further to facilitate other Earth-

abundant metals (Table 2.1). Due to its abundance, we began screening iron metal salts 

with an achiral tetramethyl BOX ligand L2. 

 

entry catalyst solvent 57 : 58 Yield 

1 FeCl2 CH2Cl2 nd nd 

2 FeCl2 CHCl3 3:1 35% 

3 Fe(BF4)2-6H2O CH2Cl2 3:1 54% 

*Optimization reactions were completed by dissolving keto alcohol (1 equiv.), ligand (12 mol%), 
NaBArF (12 mol%) and catalyst (10 mol%) were dissolved into 2 mL of dry solvent. The catalyst 
solution was then allowed to stir at room temperature for 1 h and then brought to reflux for an 
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O
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O
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4 Å MS, solvent, reflux H
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additional hour. Then, the diazo was dissolved into 1mL of the solvent and added to refluxing 
catalyst solution over 2 h. Once added, the syringe was quantitively washed with1 mL of the 
transfer solvent. The reaction was allowed to reflux overnight. The following day, the crude 
solution was filtered over a silica/celite pad and was analyzed via NMR. Compound was purified 
with silica gel chromatography. Anomeric ratios are based on the integration of crude spectra. 

Table 2.1: Iron Metal Screening for O–H Insertion/Aldol Cascade 

 

Iron is one of the most abundant metals in the Earth’s crust and possesses 

“minimal safety concern” as 1,300-ppm residual iron is deemed acceptable in drug 

substances. This status represents a distinct advantage compared with the ≤ 10 ppm 

prescribed for most other transition metals, including rhodium.[43, 45] Preliminary screens 

led to the identification of Fe(BF4)2-6H2O in dichloromethane as optimal conditions for the 

desired transformation, with 3:1 ratio of the desired aldol to insertion product. Additionally, 

the aldol product was isolated in a 54% yield. With these conditions in hand, we then 

hypothesized that different BOX ligands may be able to induce a greater aldol:insertion 

ratio. As such, four ligands were synthesized (L3-L6), including three chiral ligands (L4-

L6). 

 Bisoxazoline (BOX) ligands are commonly used in asymmetric catalysis as they 

can form highly ordered coordination complexes with metal salts. These ligands can be 

synthesized easily, as depicted. Suitable amino alcohols can be exposed to a dinitrile 

moiety and zinc salt to form the desired ligand in one step. As the chirality of the amino 

alcohol is retained in the BOX ligand, this method serves as a general and convenient 

route to access both chiral and achiral BOX ligands. Ligands L2-L6 were synthesized in 

two steps from malononitrile 59 (Figure 2.21a). Malononitrile 59 was first dialkylated with  



Ch. 2: Carbene-Initiated Cascade Spirocyclizations 
 

 46 

 
 

Figure 2.21: Synthesis of BOX Ligands screened 

 
iodomethane, followed by refluxing in toluene with zinc (II) triflate to reliably synthesize 

the desired ligands (Figure 2.21b). Once synthesized, each ligand was exposed to the 

initial conditions; however, no significant increase in yields or ratios was observed. 

Additionally, ee was not measured for chiral ligands. 

As no considerable aldol was observed in any condition, we then turned to oxindole 

diazo 61 for continued screening (Table 2.2). As we did not observe any increased aldol 

formation by screening ligands, this screening was completed without the addition of BOX 

ligands.  
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entry catalyst 62 : 63 Yield 

1 FeCl3 63 only nd 

2 Fe(ClO4)XH2O 63 only nd 

3 Fe(BF4)2-6H2O 63 only nd 

4 Zn(OTf)2 1 :19 93% 

5 ZnCl2 1:4 nd 

6 ZnI2 1:5 nd 

7 In(OTf)3 63 only nd 

*Optimization reactions were completed by dissolving keto alcohol (1 equiv.) and catalyst (10 
mol%) in 2 mL of dry CH2Cl2. The diazo was dissolved into 1mL of the solvent and added to 
refluxing catalyst solution over 1h. Once added, the syringe was quantitively washed with1 mL of 
the transfer solvent. The reaction was allowed to reflux overnight. The following day, the crude 
solution was filtered over a silica/celite pad and was analyzed via NMR. The compound was 
purified with silica gel chromatography. Anomeric ratios are based on the integration of crude 
spectra. 

Table 2.2: Catalyst Screening with Oxindole Diazo 

 We continued screening Earth-abundant catalysts for the O–H insertion/aldol 

cascade with diazo oxindole diazo 61. Iron-metal catalysts resulted in the exclusive 

formation of the insertion product 62 (entries 1-3). We then turned to zinc salts as iron 
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could not perform the desired transformation. Zinc is the 24th most abundant element in 

the Earth’s crust. Additionally, zinc is a dietary requirement, and most adults intake 

several milligrams daily. Surprisingly, when Zn(OTf)2 was screened, it resulted in 1:19 

(insertion: aldol) reaction. Further, the aldol product was isolated via a silica gel column 

at a 93% yield. To further probe the reaction with zinc salts, we subjected both zinc 

chloride and zinc iodide to the reaction conditions; however, these trials resulted in a 

higher ratio of the undesired insertion product (entries 5,6). 

2.7 CONCLUSIONS AND SUMMARIES 

We have developed a synergistic cascade utilizing diazo-derived metal carbenoids 

to access privileged spirocyclic motifs. Notably, we utilized Hunter’s Rh(II)/Au catalyst 

combination to access spirocyclic alkaloids and spirocarbocycles. To expand upon this 

methodology and access enantioselective transformations, we conducted preliminary 

studies to access spiroalkaloids via a stepwise N–H insertion/Conia-ene sequences using 

chiral copper BOX complexes to induce moderate 34% ee. Further, we continued the 

development of our X–H insertion cascade sequences to access spirooxindoles, utilizing 

an O–H insertion/aldol tandem sequence. With these studies, we have identified zinc (II) 

triflate as a suitable catalyst and isolated the desired spirooxindole in a 93% yield. 

Here, we have disclosed metal-carbenoid based methods to synthesize diverse 

spirocyclic motifs –one of the least studied moieties in drug discovery. The following 

chapters will discuss our attempts to access the most abundant natural product scaffold, 

carbohydrates, using metal carbenoid systems.  
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2.9 EXPERIMENTAL SECTION FOR CHAPTER 2  

MATERIALS AND METHODS 

Reagents 

Reagents and solvents were obtained from Sigma-Aldrich, Chem-Impex, VWR 

International, and Acros Organics and used without further purification unless otherwise 

indicated. Dichloromethane and Acetonitrile were distilled over CaH under N2 unless 

stated otherwise. Tetrahydrofuran was distilled over Na under N2 with benzophenone 

indicator. 

Glassware 

All reactions were performed in flame-dried glassware under positive N2 pressure with 

magnetic stirring unless otherwise noted. 

Chromatography 

Thin layer chromatography (TLC) was performed on 0.25 mm E. Merck silica gel 60 F254 

plates and visualized under UV light (254 nm) or by staining with potassium 

permanganate (KMnO4), cerium ammonium molybdate (CAM), phosphomolybdic acid 
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(PMA), and ninhydrin. Silica flash chromatography was performed on Sorbtech 230-400 

mesh silica gel 60. 

Analytical Instrumentation 

NMR spectra were recorded on a Varian VNMRS 300, 400, 500, and 600 MHz NMR 

spectrometer at 20 ºC in CDCl3 unless otherwise indicated. Chemical shifts are expressed 

in ppm relative to solvent signals: CDCl3 (1H, 7.26 ppm, 13C, 77.0 ppm); coupling 

constants are expressed in Hz. IR spectra were recorded on a Cary 760 FTIR 

spectrometer with peaks reported in cm-1. Mass spectra were obtained on an Advion 

Expression CMS TLC Mass Spectrometer 

Nomenclature 

Chemical structure named in accordance with IUPAC guidelines, automatically generated 

using ChemDraw 20.1 

Additional Information and Considerations 

Syringe pump addition reactions were conducted using a Harvard Apparatus (Model: 55-

1111) or a New Era Pump Systems, Inc. (Model: NE-300) syringe pump. Sonication was 

performed using a Bransonic Ultrasonic Cleaner (Model: M5800H).  
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2.9.1  Synthesis of Spirocyclic Alkaloids 

2.9.1.1 Synthesis of Aminoalkynes 

 

N-(but-3-yn-1-yl)aniline (17a): Compound was prepared from a literature-reported 

procedure from aniline. The values of the NMR spectra are in accordance with reported 

literature data [1] 

 

N
H

Ph

N
H

MeO
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N-(but-3-yn-1-yl)-4-methoxyaniline (17b): Compound was prepared from a literature-

reported procedure from aniline. The values of the NMR spectra are in accordance with 

reported literature data [1]  

 

2-ethynylaniline (20): Compound was prepared from a literature-reported procedure 

from 2-iodoaniline. The values of the NMR spectra are in accordance with reported 

literature data [2]  

2.9.1.2 Synthesis of Diazo Compounds 

 

10-diazophenanthren-9(10H)-one (21a): Compound was prepared from a literature-

reported procedure. The values of the NMR spectra are in accordance with reported 

literature data [3]  

NH2

H

O

N2
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methyl 2-diazo-3-oxo-3-phenylpropanoate (21c): Compound was prepared from a 

literature-reported procedure. The values of the NMR spectra are in accordance with 

reported literature data [4]  

 

5-diazo-2,2-dimethyl-1,3-dioxane-4,6-dione (21d): Compound was prepared from a 

literature-reported procedure. The values of the NMR spectra are in accordance with 

reported literature data [5]  

2.9.1.3       N-H Insertion/Cona-ene Reactions 
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methyl-2-benzoyl-3-methylene-1-phenylpyrrolidine-2-carboxylate (22c): To a 4.0 mL 

vial equipped with a magnetic stir bar was added Rh2(esp)2 (1 mol %) and a solution of 

(but-3-yn-1-yl)-aniline (1.1 equiv.). The diazo (1.0 equiv.) in dichloromethane (0.3 M) was 

added, and the reaction vessel was sealed and allowed to stir at reflux until bubbling 

ceased and the diazo was consumed via TLC in 20 minutes. (Take caution when opening 

reaction flask as the evolution of N2 gas creates a pressurized system.) Once the insertion 

product had formed PPh3AuCl (10 mol %), and AgSbF6 (10 mol %) was added directly 

into the reaction vessel and this solution was allowed to stir an additional 30 min until the 

insertion product was no longer visible on TLC and a new, more polar spot had formed 

(the cyclization product). Once the reaction was complete, the crude reaction mixture was 

filtered through a slurry of celite/silica gel, concentrated, and analyzed via crude 1H NMR. 

The crude mixture was then purified via flash chromatography (10% EtOAc/ 90% 

Hexanes) to furnish 22c as a yellow oil. 

IR (NaCl): 3059, 2949, 2916, 2849, 2320, 1740,1678.  

1H NMR (600 MHz, CDCl3) d 7.68 (dd, J ¼ 8.4, 1.4 Hz, 2H), 7.35 (ddt, J ¼ 8.8, 7.3, 1.3 

Hz, 1H), 7.24e7.19 (m, 2H), 7.11e7.05 (m, 2H),6.67 (td, J ¼ 7.3, 1.0 Hz, 1H), 6.61 (dq, J 

¼ 7.3, 1.5, 1.0 Hz, 2H), (m, 2H), 3.87 (dt, J ¼ 8.9, 7.5 Hz, 1H), 3.73 (s, 3H), 3.64 (dt, J ¼ 

8.7, 7.2 Hz, 1H), 2.98 (tt, J ¼ 7.3, 2.3 Hz, 2H). 

13C NMR (151 MHz, CDCl3) d 197.2, 169.2, 146.4, 145.1, 136.0, 132.2, 128.8 (2C), 128.7 

(2C),127.9 (2C), 118.2, 113.7, 112.8, 80.3, 74.8, 52.7, 47.8, 30.0.  
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HRMS (ESI) m/z calcd for C20H19NO3Na+ 344.1263; found 344.1272. 

2.9.2   Synthesis of Spirocarbocycles 

2.9.2.1 Synthesis of Propargyl Keto Diazos  

 

 

2-diazo-N-(2,4-dimethoxybenzyl)-N-(2,2-dimethyl-2H-chromen-5-yl)hept-6-ynamide 

(39c): Synthesized in aforementioned protocol (pg 42) Yellow oil (89 mg, 37%).  

 

Rf 0.54 (30% EtOAc in Hexanes).  

 

IR (NaCl): 3435, 3318, 3059, 3028, 2378, 2311, 2218, 1647, 1618, 1570, 1545, 1489, 

1449, 1423, 1362, 1335, 1302, 1275, 1227, 1173, 1013, 978, 858, 827, 777, 743, 698, 

679, 635.  
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1H NMR (600 MHz, Chloroform-d) δ 7.30 (d, J = 8.3 Hz, 1H), 6.98 (t, J = 8.0 Hz, 1H), 6.72 

(d, J = 8.1 Hz, 1H), 6.50 (dd, J = 7.9, 1.0 Hz, 1H), 6.40 (dd, J = 8.3, 2.4 Hz, 1H), 5.59 (d, 

J = 10.0 Hz, 1H), 4.99 (d, J = 14.2 Hz, 1H), 4.72–4.66 (d, J = 14.2 Hz, 1H), 3.77 (s, 3H), 

3.48 (s, 3H), 2.38 (dh, J = 28.7, 7.4 Hz, 2H), 2.19 (td, J = 7.1, 2.6 Hz, 2H), 1.92 (t, J = 2.6 

Hz, 1H), 1.65 (p, J = 7.3 Hz, 2H), 1.39 (s, 6H).  

13C NMR (151 MHz, Chloroform-d) δ 166.0, 160.3, 158.7, 153.5, 137.9, 132.1, 132.0, 

128.7, 121.3, 120.0, 117.8, 117.6, 116.3, 103.9, 98.1, 83.4, 75.8, 68.8, 60.4, 55.3, 55.0, 

48.0, 27.1, 27.7, 26.5, 24.9, 17.6. 

HRMS (ESI) m/z calcd for C27H29NO4Na ([M+Na-N2] +) 454.1995; found 454.1976. 

 

 

2-diazo-N-(2,4-dimethoxybenzyl)-N-methylhept-6-ynamide (39b): Synthesized in 

aforementioned protocol (pg 43) in three steps from 1-(2,4-dimethoxyphenyl)-N-

methylmethanamine. 

 

Rf = 0.42 (30% EtOAc in Hex).  

IR (NaCl): 3296, 2937, 2107, 2067, 1708.  

N
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1H NMR (500 MHz, Chloroform-d) δ 6.41–6.38 (m, 1H), 6.36 (d, J = 1.6 Hz, 2H), 3.79 (s, 

6H), 3.31 (s, 3H), 2.39 (t, J = 7.4 Hz, 2H), 2.22 (td, J = 7.0, 2.4 Hz, 2H), 1.95 (t, J = 2.5 

Hz, 1H), 1.71 (p, J = 7.1 Hz, 2H).  

13C NMR (126 MHz, Chloroform-d) δ 161.6, 145.7 (2C), 131.6, 104.8 (2C), 99.1 (2C), 

83.3, 69.0, 55.5 (2C), 38.8, 26.4, 24.4, 17.7.  

HRMS (ESI) m/z calcd for C16H19N3O3Na ([M+Na]+) 324.1324; found 324.1307 

2.9.3  O–H Insertion/Aldol Cascade 

2.9.3.1 Synthesis of BOX Ligands 

 

 

BOX Ligands L1-L6 were synthesized from the following two-step protocol, from 

malononitrile and the corresponding amino alcohol. 

 

NC CNNC CN

K2CO3
MeI

MeCN, 0ºC
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2,2'-(propane-2,2-diyl)bis(4,4-dimethyl-4,5-dihydrooxazole) (L2): Synthesized from 

the aforementioned protocol using 2-amino-2-methylpropan-1-ol. The values of the NMR 

spectra are in accordance with reported literature data.[6] 

 

1H NMR (500 MHz, CDCl3) δ 3.91 (s, J = 1.4 Hz, 4H), 1.48 (s, J = 1.3 Hz, 6H), 1.26 (s, J 

= 1.8 Hz, 12H). 

 

13C NMR (101 MHz, CDCl3) δ 167.62, 79.37, 66.95, 38.20, 28.01, 24.35. 
 

 

 

(4S,4'S)-2,2'-(propane-2,2-diyl)bis(4-isopropyl-4,5-dihydrooxazole) (L3): 

Synthesized from the aforementioned protocol using L-valinol. The values of the NMR 

spectra are in accordance with reported literature data.[7] 
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1H NMR (400 MHz, CDCl3) δ 4.19 (td, J = 7.5, 1.4 Hz, 2H), 4.03 – 3.92 (m, 4H), 1.85 – 

1.75 (m,2H), 1.50 (d, J = 1.8 Hz, 6H), 0.89 (d, 6H), 0.84 (d, J = 6.8 Hz, 6H). 

 

13C NMR (101 MHz, CDCl3) δ 168.78, 71.46, 69.91, 38.56, 32.18, 24.45, 18.55, 17.32. 
 

 

 

(4S,4'S)-2,2'-(propane-2,2-diyl)bis(4-isobutyl-4,5-dihydrooxazole) (L4): Synthesized 

from the aforementioned protocol using L-leucinol. The values of the NMR spectra are 

in accordance with reported literature data.[8]  

 

1H NMR (400 MHz, CDCl3) δ 4.32 (dd, J = 9.3, 8.0 Hz, 2H), 4.20 – 4.08 (m, 2H), 3.85 

(m, J = 7.8 Hz, 2H), 1.56 (s, 6H), 1.50 (s, 6H), 1.29 (dd, J = 6.6, 1.9 Hz, 1H), 0.92 (t, J = 

6.5 Hz, 12H). 

 

13C NMR (101 MHz, CDCl3) δ 168.65, 73.34, 64.52, 45.24, 38.43, 25.31, 24.35, 23.18, 

22.40. 
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(4S,4'S)-2,2'-(propane-2,2-diyl)bis(4-benzyl-4,5-dihydrooxazole) (L5): Synthesized 

from the aforementioned protocol using L-phenylalaninol. The values of the NMR spectra 

are in accordance with reported literature data.[8] 

 

1H NMR (400 MHz, CDCl3) δ 7.32 – 7.25 (m, 5H), 7.26 – 7.14 (m, 6H), 4.41 (m, J = 14.4, 

8.5 Hz, 2H), 4.17 (ddd, J = 9.3, 7.7, 1.1 Hz, 2H), 4.01 (ddd, J = 8.2, 6.8, 1.1 Hz, 2H), 3.09 

(dd, J = 13.8, 4.7 Hz, 2H), 2.66 (dd, J = 13.7, 8.6 Hz, 2H), 1.46 (d, J = 1.1 Hz, 6H). 

 
 

 

 

2,2'-(propane-2,2-diyl)bis(4,5-dihydrooxazole) (L6): Synthesized from the 

aforementioned protocol using 2-amino-ethanol. The values of the NMR spectra are in 

accordance with reported literature data.[6] 

 

1H NMR (500 MHz, CDCl3) δ 4.30 (t, J = 9.5 Hz, 4H), 3.89 (t, J = 9.5 Hz, 4H), 1.53 (s, 

6H). 
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2.9.3.2 Data for O–H Insertion/Aldol Cascade 

 

 

Methyl-3-hydroxy-3-methyl-2-phenyltetrahydrofuran-2-carboxylate (57): Keto 

alcohol (1 equiv.), ligand (12 mol%), NaBArF (12 mol%) and catalyst (10 mol%) were 

dissolved into 2 mL of dry solvent. The catalyst solution was then allowed to stir at room 

temperature for 1 h and then brought to reflux for an additional hour. Then, the diazo was 

dissolved into 1mL of the solvent and added to refluxing catalyst solution over 2 h. Once 

added, the syringe was quantitively washed with1 mL of the transfer solvent. The reaction 

was allowed to reflux overnight. The following day, the crude solution was filtered over a 

silica/celite pad and was analyzed via NMR. Compound was purified with silica gel 

chromatography to yield inseparable mixture of insertion + aldol products. Anomeric ratios 

are based on the integration of crude spectra 

 

Rf = 0.42 (30% EtOAc in Hex).  

PhMeO2C
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1 H NMR (500 MHz, Chloroform-d) δ 7.61 – 7.49 (m, 2H), 7.49 – 7.28 (m, 7H), 4.91 (s, 

1H), 4.38 – 4.13 (m, 3H), 2.79 (t, J = 6.4 Hz, 2H), 2.20 (d, J = 1.5 Hz, 3H), 2.14 – 1.97 

(m, 3H), 1.16 (s, 4H). 

 

13C NMR (mixer of isomers) (126 MHz, CDCl3) δ 206.97, 171.18, 137.84, 136.20, 130.10, 

128.76, 128.63, 128.14, 128.07, 127.20, 125.37, 89.48, 81.83, 81.38, 66.25, 64.79, 52.83, 

52.26, 43.58, 38.70, 30.48, 23.99. 

 

 

 

1'-benzyl-3-hydroxy-3-methyl-4,5-dihydro-3H-spiro[furan-2,3'-indolin]-2'-one (62): 

Keto alcohol (1 equiv.), NaBArF (12 mol%) and catalyst (10 mol%) were dissolved into 2 

mL of dry solvent. 

 

1H NMR (500 MHz, cdcl3) δ 7.45 – 7.24 (m, 5H), 7.22 (td, J = 7.8, 1.3 Hz, 1H), 7.06 (td, J 

= 7.5, 1.0 Hz, 1H), 6.75 (dt, J = 7.8, 0.8 Hz, 1H), 5.10 (d, J = 15.7 Hz, 1H), 4.76 (d, J = 

15.7 Hz, 1H), 4.51 (td, J = 8.5, 7.3 Hz, 1H), 4.30 (td, J = 8.4, 3.8 Hz, 1H), 4.22 (s, 1H), 

2.58 (ddd, J = 12.5, 7.2, 3.8 Hz, 1H), 2.37 (dt, J = 12.4, 8.5 Hz, 1H), 1.18 (s, 3H). 
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13C NMR (101 MHz, CDCl3) δ 176.77, 142.69, 135.15, 129.74, 128.89, 127.80, 127.20, 

124.81, 123.23, 109.81, 86.99, 81.74, 67.88, 43.93, 39.89, 23.37. 
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2.10 APPENDIX 1 
Spectra Relevant to Chapter 2 
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3. CHAPTER 3  

Glycal Carbenes –A Novel Glycosyl Donor 
for Stereoselective Glycosylation 
3.1 INTRODUCTION TO STEREOSELECTIVE GLYCOSYLATION 

Extraordinary progress has been achieved pertaining to the construction of glycosidic 

bonds. Stereoselective glycosylation, however, has remained one of the most significant 

unresolved challenges within glycoscience and organic chemistry.[1]  

There are several critical gaps within carbohydrate chemistry. The most apparent 

challenge is the lack of general, stereoselective glycosylation approaches for assembling 

carbohydrates.[2] Most glycosylation methods proceed through either SN1 or SN2-type 

reactivity at the anomeric carbon (Figure 3.1a/b).[3] The stereoselectivity of these 
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reactions is typically dominated by the anomeric effect and protecting group 

manipulations.[3a] To date, the significant factors influencing anomeric selectivity are 

neighboring group participation of 2-O-acyl protecting groups,[4] concentration, and 

solvent effects (Figure 3.1c).[1a]  

 

Figure 3.1: Traditional Approaches to Glycosidic Bond Formation 

 
Catalytic methods can serve as a powerful alternative to traditional methods; however, 

they often require a vast excess of glycosyl donors and acceptors or additional promoters, 

as observed in modern adaptations of Fischer[5] and Koenigs–Knorr[6] glycosylation 

protocols. Opposingly, catalytic glycosylation approaches with low catalyst loadings 

routinely rely on precious metal catalysts, such as rhodium,[7] palladium,[8] platinum,[9] and 

gold.[10] To address these challenges, the objective of this chapter is fundamental insight 
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for the design of new carbene-mediated glycosyl donors catalytically activated by Earth-

abundant metals.  

3.1.1 VINYLCARBENOIDS AND OXY-VINYLOGOUS CARBENES 

Carbene-assisted strategies are rare opportunities within glycosylation. To utilize 

a carbene-mediated strategy, we envisioned harnessing the vinylogous reactivity of 

metal-carbenoids. Metal carbenoids are versatile synthetic intermediates capable of 

novel transformations, [11] leading to the rapid generation of molecular complexity with 

high efficiency, selectivity, and atom economy.[12] Within the class of donor/acceptor 

diazos is a diazo known as vinyl diazos (12) (Figure 3.2).  

 

Figure 3.2: Vinylogous Reactivity of Vinyl Metal Carbenoids 
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Vinyl carbenes are powerful synthetic intermediates as they encompass the 

traditional ambiphilic a-carbenoid site (red) and an additional electrophilic g site (blue).[12d, 

14] This reactivity is often dictated by choosing an appropriate metal catalyst.[15] These 

substrates are exceedingly versatile as they possess ambiphilic reactivity at the alpha 

carbon of the carbenoid center and electrophilic reactivity at the vinylogous position.[13] 

This dual reactivity provides access to a diverse array of zwitterionic-intermediary 

cascades. As a result, vinyldiazos possess a distinct advantage over traditional 

donor/acceptor aryldiazo acetates, which only contain one reactive site.  

Various factors can dictate whether the vinylcarbenoids react at the carbenoid 

terminus or vinylogous terminus. Davies conducted early fundamental studies on a- 

versus g- reactivity of Rh(II) carbenoids[13] and demonstrated that judicious choice of 

solvent, substrate, and catalyst could alter regioselectivity. Namely, bulky carbenoid 

precursors and electron-deficient catalysts tend to favor reactivity at the vinyl terminus. 

Since this report, studies have reported the propensity of coinage metal carbenoids such 

as silver to undergo regioselective g additions.[15-16]  

The first oxy-vinylogous carbene was reported in 1991, were authors observed the 

vinylogous insertion of methanol into oxy-vinylogous carbenes (Figure 3.3).[17] Oxy-

vinylogous carbene 17 was synthesized by exposing the corresponding tosylhydrazone 

to a concentrated NaOMe solution. Following the formation of the oxy-vinyl carbene, the 

species undergoes an oxygen-assisted vinylic insertion, despite being the more sterically 

disfavored position to furnish 18.  
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Figure 3.3: Oxy-vinylogous Carbene Literature Precedence 

Inspired by this work, we thought to construct a parallel system to accommodate 
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thioglycoside and trichloroacetimidate donors (Figures 3.4a). This approach features a 

vinylcarbenoid moiety integrated into the carbohydrate scaffold. We intend to harness the 

electrophilic vinylogous position of the designed glycosyl donors to promote our 

glycosylation strategy. Additionally, this approach features low catalyst loadings with 

Earth-abundant metals, and we intend to utilize these donors to access a variety of 

glycosidic bonds with different glycosyl acceptors. 

 

Figure 3.4: Overview of Glycosylation Strategy 
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extensive experience in diazo-derived metal carbenoids and vinyl diazo carbonyls.[18] 

However, we found the synthesis of sugar diazos to be infeasible.  

In one route, we synthesized iodoglycal 23 readily.[19] Our goal was to optimize 

palladium-catalyzed conditions to couple ethyl diazo acetate to the glycal scaffold. 

However, despite vast screening and literature reports on similar systems,[20] we were 

unable to develop favorable conditions (Figure 3.5a).  

 

Figure 3.5: Failed Syntheses of Glycal Diazos 
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incorporate into newly developed synthetic practices. Due to this, we turned to other 

carbene precursors.  

Following a literature review, we found that metal carbenes can readily be 

synthesized from alkynes precursors.[21] In fact, enynones (28) have experienced 

considerable success in carbene-mediated chemistry.[21-22] Once activated, these 

precursors share similar reactivity to diazo-derived carbenes (Figure 3.6). We 

hypothesized that installing an additional olefinic moiety alpha to the propargyl group 

would furnish vinylic metal carbenes. These carbene surrogates host a multitude of 

advantages over traditional diazo precursors and allow access to carbene species that 

would be challenging to generate through conventional diazo chemistry.[23] 

 

Figure 3.6: Enynones and Enynals as Metal Carbenoid Precursors 
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Revisiting alkynes, we thought to synthesize glycal carbenes using enynones as a 

metal carbene precursor. Initially, the free glucose-derived glycal 32 (glucal) was 

protected with either benzyl or acetate protecting groups, following a literature known 

protocol. The tri-protected glucal was then exposed to N-iodosuccinimide and silver 

nitrate to form the corresponding iodoglycal 34 .[19]  

 

Figure 3.7: Synthesis of Glycal Carbene from Enynones 

Following iodination, the substrate was exposed to palladium-catalyzed, 

Sonogashira coupling conditions with propargyl alcohol 35 to synthesize the hydroxyl 

propargyl glycal 36. This step is extremely low-yielding. We postulate that this is due to 

the bulk of the C3 groups hindering the oxidative addition of the palladium metal center. 
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to be oxidized to the glycal aldehyde 37. Following isolation, the aldehyde 37 was 

exposed to 2,4 pentanedione in toluene to undergo a Knoevenagel condensation to 

produce the desired tri-protected enynone 38 (Figure 3.7).  

SCREENING OF CATALYTIC CONDITIONS 

With a reproducible route established to synthesize the desired glycal carbenes, 

we then focused on the optimization of catalytic conditions to promote the desired g 

insertion. Encouraged by the disclosed results of Lopéz,[21a] where the authors observed 

exclusive g insertion of primary alcohols with enynones bearing an additional alkenyl 

moiety, we exposed the benzyl-protected glycal 38b to analogous conditions. Thus, at 

room temperature, we exposed 38b to isopropanol with ZnCl2 (10 mol%) in 

dichloromethane (Figure 3.8).   

Monitoring this reaction via TLC, we observed consumption of the starting material 

within one hour. We expected to observe a ratio of regioisomers for both the a and g 

insertion of isopropanol. However, extrapolation of NMR data confirmed that neither the 

a nor g insertion product was formed. Opposingly, this system resulted in the C–H 

functionalization of the benzyl C3 methylene group to form product 42.[24] 
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Figure 3.8: Initial Observation with Benzyl-protected Glycal 

With these results, we postulated that the arming benzyl protecting group was ill-

suited for our designed system. We then synthesized the triacetate-protected analog 38a 

and exposed this substrate to analogous conditions to circumvent this. We observed 

complete consumption of the starting material within one hour via TLC, to our delight. 

Upon completion, with NMR spectral analysis we observed a single regioisomer –the 
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Figure 3.9: Initial Observations using Triacetate System 
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the ZnCl2 catalyzed reaction. To solve for stereochemistry, we initially screened a variety 
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dichloromethane (Table 3.1). 
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entry catalyst temp time a : b 

1 ZnCl2 -20ºC 1 h 1:4 

2 ZnBr2 -20ºC 12 h 1:1 

3 ZnI2 -20ºC 12 h 1:1 

4 Zn(OTf)2 0ºC 1 h 5:1 

5 (MeCN)4CuBF4 0ºC 4 h 3:1 

6 AgBF4 0ºC 2 h 8.5 :1 

7 Fe(BF4)-H2O 0ºC 12 h n.d 

8 FeCl3 0ºC 12 h n.d 

9 Rh2(esp)2 0ºC 1 h 1:3 

*Optimization reactions were completed by dissolving isopropanol (1.2 equiv.) into 500 𝜇L of 
distilled dichloromethane and cooled to the appropriate temperature. After 10 minutes the 
catalyst (0.3 equiv.) was added to solution and allowed to stir an additional 5 minutes. Finally, 
38a (0.015g, 1 equiv.) was added to the reaction and monitored via TLC. Once complete, the 
reaction is diluted in dichloromethane and washed with a saturated NaHCO3 solution. The 
organics were extracted a total of three times, before drying over Na2SO4. Anomeric ratios based 
on the integration of crude spectra. 
 

Table 3.1: Metal Catalyst Optimization for Anomeric Stereoselectivity 

A variety of metal salts were screened. Initially, to observe the effect of other halide 

anions, both zinc bromide and zinc iodide were studied. However, these experiments 
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resulted in a racemic mixture on anomers (entries 2,3). To further study the effect of 

anion substitution, zinc triflate was screened (entry 4) and, to our surprise, resulted in a 

flip of anomeric selectivity. NMR analysis resulted in the observation of a 5:1 (a:b) 

anomeric ratio. This was contrary to our ZnCl2 results and piqued our scientific interests. 

We hypothesized that the more liable, less coordinating triflate ligand would produce a 

more cationic metal center that could be responsible for the stereoselectivity observed. 

To test this hypothesis, both copper and silver tetrafluoroborate were assessed (entries 

5,6) as the tetrafluoroborate ligand is also a weakly-coordinating complex. This resulted 

in anomeric selectivity in line with our hypothesis.  

We then attempted to screen iron salt complexes, given our goal of developing 

Earth-abundant metal catalysis protocols. Iron is the second most abundant metal in the 

Earth’s crust, after aluminum, and is considered to possess “minimal safety concern” as 

in drug substances. However, neither ferric chloride nor iron tetrafluoroborate resulted in 

a clean reaction (entries 7,8). Lastly, we screened Rh2(esp)2, due to its success in the 

diazo-mediated transformations developed within our research laboratory.[18b] 

Catalyst screening led to the identification of Zn(OTf)2 and AgBF4 as optimal 

catalysts for the predominant formation of the a anomer (thermodynamic product). 

However, ZnCl2 was the best-screened catalyst for the formation of the b anomer and 

resulted in the cleanest rection. In line with our goals to identify catalyst systems using 

Earth-abundant metals, we continued our optimization studies using ZnCl2 as the catalyst 

of choice. Zinc is the 25thmost abundant metal within the Earth’s crust, and most adults 

intake several milligrams daily. To continue optimizing for the formation of the b anomer, 

we then turned to solvent screening (Table 3.2).  
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entry solvent time a : b 

1 CH2Cl2 > 1 h 1 : 3 

2 PhCF3 3 h 5 : 1 

3 nitromethane 3 h decomposition 

4 CHCl3          overnight 4 :1 

5 toluene 0ºC 6 :1 

6 MeCN overnight 1 : 4 

7 THF overnight nr 

8 Heptane: CH2Cl2 

(6 : 1) 

overnight 1 : 2.3 

*Optimization reactions were completed by dissolving isopropanol (1.1 equiv., 2 uL, ZnCl2 (20 
mol %), and 20 mg of activated 4-angstrom molecular sieves into 500 𝜇L of the desired solvent 
and cooled to 0ºC. After 10 minutes, 38a was added to the solution and allowed to stir and warm 
to room temperature until starting material consumption via TLC. Once complete, the reaction is 
diluted in dichloromethane and washed with a saturated NaHCO3 solution. The organics were 
extracted a total of three times, before drying over Na2SO4. Anomeric ratios are based on the 
integration of crude spectra. 
 

Table 3.2: Solvent Optimization Table 

 After solvent screening, we noticed a profound solvent effect on the anomeric 

selectivity of the glycosylation reaction. When a,a,a-trifluorotoluene and toluene were 

screened, both nonpolar solvents, we observed a higher ratio of the a-product was 
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observed. This was also observed with chloroform as a solvent. Seemingly, only 

dichloromethane furnishes a greater ratio of the b-anomer. Additionally, when a ratio of 

heptane and DCM (6:1) was used, we observed a 1:2.3 (a:b) ratio. Notably, the Lewis 

basic solvent THF resulted in no product formation, and nitromethane resulted in severe 

product decomposition.  

 With these results, we decided to first pursue the a-anomer using triflourotoulene, 

as these conditions resulted in the cleanest product formation. Continued optimization led 

to the identification of finalized reaction conditions, which included the addition of 0.5 

equivalents of 2,6-Di-tert-butyl methylpyridine, a non-coordinating Brønsted base, to 

quench any acid that may be formed in situ, as it is known that Lewis acids can serve as 

a mild source of their corresponding Brønsted acid.[25] These conditions result in an 

efficient and fast glycosylation strategy, complete within 1 hour (Figure 3.10). 

 

Figure 3.10: Optimization Conditions for a-anomer formation 
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acceptor, we were able to prepare the corresponding glycoside 45a in a moderate 57% 

yield. When we exposed the bulky chiral alcohol L-menthol to our glycal carbene system, 

we observed a profound effect on the diastereoselectivity of our reaction conditions and 

observed almost exclusive a-anomer formation via NMR. We went on to isolate 45b in a 

moderate 48% yield. Additionally, we are currently synthesizing the galactal-derived 

glycal carbene. Once prepared, we intend to expose it to analogous conditions to 

determine whether the stereochemistry of the glycosyl donor will affect yields and 

anomeric selectivity (Figure 3.11). 

 

 

Figure 3.11: Glycosylation Reactions with Simple Alcohols 

We then turned our attention to sugar glycosyl acceptors to form disaccharide 

bonds. In light of this, we synthesized primary sugar alcohol 46 and exposed it to our 

glycal system. However, despite attempting to optimize conditions with the sugar alcohol 

(solvent, temperature, catalyst, etc.), we were never able to develop respectable 

conditions. Additionally, the reaction with the bulkier alcohol was much more sluggish. 
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alcohol never reach full consumption of the glycal carbene. Additionally, less than 10% of 

the desired glycoside 47 was formed via TLC and NMR analysis (Figure 3.12).  

 

Figure 3.12: Glycosylation Attempts with Sugar Acceptor 

 These observations concluded that this system was not conducive for disaccharide 

and oligosaccharide synthesis. 

3.2.2 MECHANISTIC INSIGHTS 
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Figure 3.13: Mechanistic Rationale for Glycosylation 

 

Another factor that can influence the stereocontrol of the reaction is the role of the 
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(Figure 3.14). 
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Figure 3.14: Solvent and Counterion Effect on Anomeric Ratio 

 

3.3 FUTURE DIRECTIONS AND LIMITATIONS 

With our optimized conditions, we will continue the application of our glycal carbene 

to a variety of simple alcohols. While the realization of our glycal carbene approach will 

enhance the fundamental understanding of metal-carbene chemistry in glycosylation 

reactions, there may be certain limitations for the preparation of simple oligosaccharides 

due to the additional manipulations required after glycosylation. To address this, we 

intend to cleave the pendant furan group via an oxidative cleavage yielding 2-

oxyglycoside 57.[27] This will result in a C2 ketone, an excellent diversification handle that 

can be used to diversify the glycoside (Figure 3.15a). 

X

α-covalent species

SN2

OPGO
PGO

PGO

LnM
X

OPGO
PGO

PGO

LnM Y Y

54 55

56

HOR1

SSIP CIP

X = Cl or OTf

O

XLnM

PGO
PGO
PGO

Y

O

MLn
Y OPG

OPG OPG

52

β-anomer 
preferred

50

O OR1

Y

PGO
PGO
PGO



Ch. 3: Glycal Carbenes –A Novel Glycosyl Donor for Stereoselective Glycosylation 
 

 
 
 

98 

 

Figure 3.15: Diversification of Furan Moiety for Diverse pyranosides 

2-Oxyglycoside 57 can undergo a Wolff-Kishner reduction[28] to remove the C2 

carbonyl moiety for the synthesis of 2-deoxygenated sugars 59. Equally, a reductive 

amination sequence would furnish glycosyl amines 61.[29] Finally, a reduction sequence 

would allow the installation of secondary alcohol at the C2 position. Stereoselective 

reductions can also be implemented to access biologically relevant targets bearing a 

particular stereochemistry found in either glucose[30] or mannose[31] series (58,60) (Figure 

3.15b).  
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addition of nucleophiles at the anomeric position. Through this mechanism, in theory, two 

regioisomers are possible. In our first successful trial using this system, we were thrilled 

to have solved the initial question of regioselectivity, thereby effectively harnessing the 

vinylogous reactivity of glycal carbenes. Further, we have demonstrated that g-addition 

leads to the formation of the single geometric (E)-isomer of the resulting exo-olefin. This 

strategy is applicable to simple alcohol glycosyl acceptors and can synthesize glycosides 

in moderate yields.  

This work is extremely novel and in its infancy. We have optimized conditions for 

both a- and b- anomer formation and have begun synthesizing analogues with these 

conditions for a-glycosides. With our optimized conditions, we have synthesized sugar 

analogs in moderate yields with isopropanol (57%). Encouragingly, when the bulky chiral 

alcohol L-menthol is used, diastereoselectivity increases dramatically (98:2). 

Unfortunately, while novel and exciting, we are not able to apply this chemistry towards 

di- and oligosaccharide synthesis. Additionally, we recognize that these donors require 

post-transformation modifications which decreases the impact of this strategy. The 

following chapter will discuss the design of another carbene-assisted donor we have 

developed to overcome these limitations. 
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3.6 EXPERIMENTAL SECTION FOR SECTION 3  

MATERIALS AND METHODS 

Reagents 

Reagents and solvents were obtained from Sigma-Aldrich, Chem-Impex, VWR 

International, and Acros Organics and used without further purification unless otherwise 

indicated. Dichloromethane and Acetonitrile were distilled over CaH under N2 unless 

otherwise indicated. Tetrahydrofuran was distilled over Na under N2 with benzophenone 

indicator. 

Glassware 

All reactions were performed in flame-dried glassware under positive N2 pressure with 

magnetic stirring unless otherwise noted. 

Chromatography 

Thin layer chromatography (TLC) was performed on 0.25 mm E. Merck silica gel 60 F254 

plates and visualized under UV light (254 nm) or by staining with potassium 

permanganate (KMnO4), cerium ammonium molybdate (CAM), phosphomolybdic acid 

(PMA), and ninhydrin. Silica flash chromatography was performed on Sorbtech 230-400 

mesh silica gel 60. 

Analytical Instrumentation 
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NMR spectra were recorded on a Varian VNMRS 400 and 500 MHz NMR spectrometer 

at 20 ºC in CDCl3 unless otherwise indicated. Chemical shifts are expressed in ppm 

relative to solvent signals: CDCl3 (1H, 7.26 ppm, 13C, 77.0 ppm); coupling constants are 

expressed in Hz. IR spectra were recorded on a Cary 760 FTIR spectrometer with peaks 

reported in cm-1. Mass spectra were obtained on an Advion Expression CMS TLC Mass 

Spectrometer 

Nomenclature 

Chemical structure named in accordance with IUPAC guidelines, automatically generated 

using ChemDraw 20.1 

Additional Information and Considerations 

Syringe pump addition reactions were conducted using a Harvard Apparatus (Model: 55-

1111) or a New Era Pump Systems, Inc. (Model: NE-300) syringe pump. Sonication was 

performed using a Bransonic Ultrasonic Cleaner (Model: M5800H).  
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3.6.1 Synthesis of Glycal Carbene 
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(2R,3R,4S)-2-(acetoxymethyl)-5-iodo-3,4-dihydro-2H-pyran-3,4-diyl diacetate (34a): 

Compound was prepared from a literature-reported procedure from D-glucal.[1] 

 

(2R,3S,4R)-2-(acetoxymethyl)-5-(3-hydroxyprop-1-yn-1-yl)-3,4-dihydro-2H-pyran-

3,4-diyl diacetate (36a): 34a (1 equiv.), PdCl2(PPh3)2 (20 mol%) and CuI (20 mol%) was 

suspended into 0.2 M solution of Et3N in a Teflon coated 20 mL vial. The solution was 

degrassed N2 for 15 minutes with a 6 inch needle, before propargyl alcohol (5 equiv.) was 

added to reaction. The flask was then sealed and heated to 80ºC. After two hours, the 

starting material was consumed via TLC. The crude reaction was filter over celite with 

EtOAc and washed twice with brine. The organics were extracted three times before 

drying over Na2SO4. The crude compound was purified via a silica gel chromatography 

at a 20% EtOAc / 80% Hexanes to 50% EtOAc / 50% Hexanes gradient as a yellow oil.  

Rf = 0.22, 50% EtOAc/ 50% Hexanes 

O
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1H NMR (500 MHz, CDCl3) δ 6.88 (s, 1H), 5.50 (dt, J = 5.2, 0.9 Hz, 1H), 5.19 (dd, J = 6.6, 

5.2 Hz, 1H), 4.41 (dd, J = 12.1, 6.3 Hz, 1H), 4.35 (dd, J = 6.4, 3.4 Hz, 4H), 4.20 (dd, J = 

12.1, 3.3 Hz, 1H), 2.15 – 2.06 (m, 13H). 

13C NMR (126 MHz, CDCl3) δ 170.40 (d, J = 25.8 Hz), 169.43, 151.27, 96.15, 88.09, 

79.90, 74.23, 66.96, 66.29, 61.01, 51.43, 21.55 – 19.82 (m). 

 

 

 

(2R,3S,4R)-2-(acetoxymethyl)-5-(3-oxoprop-1-yn-1-yl)-3,4-dihydro-2H-pyran-3,4-

diyl diacetate (37a): 36a (1 equiv) was dissolved in wet 0.15M of dichloromethane (50:1 

DCM:H2O) in a round bottom flask. Sodium bicarbonate (10 equiv) was added to the 

reaction flask and the reaction was allowed to stir at room temperature overnight. After 

12 hours, the reaction was complete via TLC. The reaction was diluted with DCM and 

washed with sodium bicarbonate. The organics were extracted three times before drying 

over sodium sulfate. The crude compound was purified via isocratic 40% EtOAc/60% 

Hexanes eluent system.  

Rf = 0.25, 30% EtOAc in Hexanes 
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1H NMR (500 MHz, CDCl3) δ 9.25 (d, J = 1.5 Hz, 1H), 7.22 (s, 1H), 5.58 – 5.50 (m, 1H), 

5.22 (t, J = 5.6 Hz, 1H), 4.52 – 4.39 (m, 2H), 4.23 (dd, J = 11.9, 3.0 Hz, 1H), 2.17 – 2.06 

(m, 11H). 

13C NMR (101 MHz, CDCl3) δ 175.91, 170.38, 169.90, 169.28, 157.53, 94.43, 92.27, 

91.16, 75.15, 65.67, 65.57, 60.73, 20.72, 20.66. 

 

 

 

(2R,3S,4R)-2-(acetoxymethyl)-5-(4-acetyl-5-oxohex-3-en-1-yn-1-yl)-3,4-dihydro-2H-

pyran-3,4-diyl diacetate (38a): 37a (1 equiv) was dissolved in a 0.05M solution of 

toluene in a flame-dried round bottom flask. In succession, dione (1.2 equiv.), piperidine 

(10 mol%) and glacial acetic acid (30 mol%), and sodium sulfate (20 mol%) was added 

to the reaction flask. After reaction completion (1 h), the reaction was diluted with EtOAc 

and washed twice with brine. The organics were dried over sodium sulfate then purified 

via a 20% EtOAc in hexanes to 40% EtOAc in hexanes gradient as a yellow powder, 

Average yield 72%. Compound must be stored neat at a temperature below -20ºC.  

Rf = 0.15, 30% EtOAc/70% Hexanes 
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1H NMR (400 MHz, CDCl3) δ 7.03 (d, J = 1.0 Hz, 1H), 6.79 (s, 1H), 5.52 (d, J = 5.1 Hz, 

1H), 5.20 (t, J = 5.4 Hz, 1H), 4.48 – 4.37 (m, 2H), 2.43 (s, 3H), 2.32 (s, 3H), 2.16 – 2.06 

(m, 12H). 

13C NMR (126 MHz, CDCl3) δ 200.63, 195.53, 170.37, 169.93, 169.31, 154.39, 148.15, 

122.33, 103.09, 96.59, 87.13, 74.87, 66.12, 66.07, 60.83, 30.88, 27.26, 20.73, 20.71, 

20.65. 

3.6.2 Synthesis of Sugar Acceptor  

 

 

((2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-methoxytetrahydro-2H-pyran-2-

yl)methanol (46): The sugar alcohol 46 was synthesized in three steps from methyl α-D-

glucopyranoside, from literature know procedures.[2]  

Rf: 0.45 (30% EtOAc in Hexanes) 
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1H: (500 MHz, CDCl3) δ 7.40 – 7.24 (m, 15H), 4.99 (d, J = 10.9 Hz, 1H), 4.88 (d, J = 11.0 

Hz, 1H), 4.86 – 4.77 (m, 2H), 4.65 (t, J = 11.6 Hz, 2H), 4.57 (d, J = 3.5 Hz, 1H), 4.00 (t, J 

= 9.3 Hz, 1H), 3.77 (ddd, J = 11.6, 5.4, 2.6 Hz, 1H), 3.69 (dq, J = 7.6, 3.7 Hz, 1H), 3.65 

(dt, J = 10.0, 3.4 Hz, 1H), 3.54 – 3.47 (m, 2H), 3.37 (s, 3H). 

 

13C NMR (101 MHz, CDCl3) δ 138.68, 138.08, 128.50 (d, J = 2.0 Hz), 128.43, 128.15, 

128.07, 128.00, 127.97, 127.92, 127.66, 98.16, 81.95, 79.90, 75.79, 75.05, 73.45, 70.61, 

61.85, 55.21. 

 

3.6.3 General Procedure for Vinylic O–H Insertion of Glycal 

Carbenes 

General Procedure: Nucleophile (1.2 equiv.), 2,6-Di-tert-butylpyridine (0.5) was 

dissolved into 500 𝜇L of distilled dichloromethane with 20 mg 4 Å MS and allowed to stir. 

After 10 minutes the catalyst (0.3 equiv.) was added to solution and allowed to stir an 

additional 5 minutes. Finally, the glycal carbene (0.040g, 1 equiv.) was added to the 

reaction and monitored via TLC. Once complete, the reaction is diluted in 

dichloromethane and washed with a saturated NaHCO3 solution. The organics were 

extracted a total of three times, before drying over Na2SO4 and purifying. 
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(2R,3S,4R,6S,E)-2-(acetoxymethyl)-5-((4-acetyl-5-methylfuran-2-yl)methylene)-6-

isopropoxytetrahydro-2H-pyran-3,4-diyl diacetate (45a): Prepared using general 

protocol. Yellow oil (26 mg, 57%).  

Rf = 0.31 (30% EtOAc in Hex).  

1H NMR (500 MHz, Chloroform-d) (a-anomer) δ 6.68 (s, 1H), 6.43 (s, 1H), 6.23 – 6.18 

(m, 1H), 5.52 (dd, J = 7.9, 5.9 Hz, 1H), 5.24 (s, 1H), 4.34 (dd, J = 11.8, 5.1 Hz, 1H), 4.26 

(d, J = 3.9 Hz, 1H), 4.24 – 4.13 (m, 2H), 3.89 (ddd, J = 8.5, 5.1, 3.9 Hz, 1H), 2.57 (s, 3H), 

2.39 (d, J = 1.9 Hz, 5H), 2.13 – 2.03 (m, 17H). 
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(2R,3S,4R,6S,E)-2-(acetoxymethyl)-5-((4-acetyl-5-methylfuran-2-yl)methylene)-6-

(((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)tetrahydro-2H-pyran-3,4-diyl 

diacetate (45b): Prepared using general protocol. Yellow oil (26 mg, 48%).  

Rf = 0.23, 30% EtOAc/70% Hexanes 

1H NMR (500 MHz, Chloroform-d) δ (400 MHz, cdcl3) δ 6.68 (s, 1H), 6.47 (s, 1H), 6.26 – 

6.20 (m, 1H), 5.46 (dd, J = 9.0, 5.8 Hz, 1H), 5.41 (s, 1H), 4.29 – 4.17 (m, 2H), 3.80 (ddd, 

J = 8.8, 5.2, 3.5 Hz, 1H), 3.70 (td, J = 10.6, 4.1 Hz, 1H), 2.57 (s, 3H), 2.39 (s, 6H), 2.18 

(d, J = 12.2 Hz, 1H), 2.13 – 2.01 (m, 12H), 1.77 – 1.56 (m, 4H), 1.49 – 1.21 (m, 3H), 1.11 

– 0.80 (m, 13H) 
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3.7 APPENDIX 2 

Spectra Relevant to Chapter 3 
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4. CHAPTER 4 

Carbene-Mediated Glycosyl Donors 

4.1 INTRODUCTION TO CARBENE-ASSISTED GLYCOSYLATION 

Highly selective transformations involving metal carbenoid synthons are well-

studied in organic synthesis.[1] These reactions are well documented, engage in well-

understood transformations, and have resulted in libraries of valuable, biologically active 

scaffolds.[2] Despite this, these synthons are rarely utilized to construct glycosidic bonds. 

In fact, carbene-mediated transformations are rarities in glycoscience. 

Lecourt et al. developed an intramolecular glycosylation strategy towards the 

synthesis of ketopyranosides.[3] This approach relies on the Rh(II) catalyzed 
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functionalization of the anomeric C–H bond to insert into the diazo functionality grafted at 

the C2 position (Figure 4.1a). Further, Tang developed a carbene-assisted alkylation 

protocol where the authors selectively promoted the Rh(II) catalyzed O–H insertion of 

either C2 or C3 carbohydrate hydroxyl group (Figure 4.1b).[4] Wan and coworkers 

reported the Rh(II)/Brønsted acid relay strategy to activate thioglycosides. While this 

transformation proceeds in an SN1-like manner, the group reported sizeable stereocontrol 

(Figure 4.1c).[5]  

 

Figure 4.1: Reported Carbene-Assisted Glycosylation Strategies 

While unique, these strategies all employ rhodium, an expensive precious metal 

catalyst, to synthesize the diazo-derived metal carbenoid species. The research 
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highlighted within this chapter will disclose a carbene-mediated glycosylation protocol 

featuring the use of readily available Earth-abundant metal catalysts to facilitate the 

proposed transformations. Additionally, we have designed an alkynyl-based system to 

furnish metal-carbenoids in situ, a significant advantage over unstable diazo-derived 

carbenoid systems. 

4.1.1 GOLD-ASSISTED GLYCOSYLATIONS 

One of the most critical challenges within carbohydrate chemistry is the lack of 

general approaches for assembling carbohydrates tolerant to various glycosyl 

acceptors.[6] Recently, the design of alkynyl-embedded glycosyl donors has emerged as 

an elegant approach to construct valuable and diverse glycosidic bonds. 

Gold activation of alkynes is a powerful tool that scientists have utilized to catalyze 

synthetically valuable transformations.[7] However, catalytic glycosylations are still 

relatively new to glycoscience. A new class of gold-activated glycosylations was first 

reported in 2006; Hotha and Kashyab synthesized C3-O propargyl protected glucal 9, 

which was exposed to catalytic amounts of Au(III) to undergo a Ferrier-like reaction with 

various aglycones (aliphatic, aromatic, alicyclic, and monosaccharide) to synthesize a-

glucosides stereoselectively (Figure 4.2a).[8] This work was expanded that same year, 

and the group installed a propargyl leaving group at the anomeric position to synthesize 

the donor 11. This report was tolerant to a range of simple glycosyl O-H acceptors, 

however, with low anomeric selectivities (Figure 4.2b).[9] Both of these reports were 

limited to benzyl-protected glucal-based donors. 
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Figure 4.2: Early Reports of Au-Mediated Glycosylations 

Following these reports, ortho-alkynylbenzoates and ortho-alkynyl 

arylthioglycosides emerged as highly stereoselective glycosyl donors. Both donors 

typically employ Au(I), and these reactions’ mechanisms are summarized below (Figure 

4.3).[10] Gold activation of the propargyl moiety of the glycosyl donor results in the 

formation of gold-p-complex 13. This activation increases the electrophilicity of the 

propargyl species, resulting in the intramolecular attack of the nucleophilic species (either 

a sp2 CO or S) via an endo-dig cyclization to form intermediate 14. Electron donation of 

the endocyclic oxygen results in the formation of oxocarbenium ion and promotion of the 

leaving group species 16. Hydrolysis of species 16 regenerates the gold catalyst to form 

species 17. Once produced, the oxocarbenium ion 7 is intercepted by an appropriate 

glycosyl acceptor, resulting in the desired glycosidic linkage 18. 
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Figure 4.3: Gold-Assisted Alkyne Activations for Glycosylations 

 
The design of these propargyl-embedded donors can play a significant role in the 

stereoselectivity observed. In 2021, Zhang designed a donor bearing sterically hindered 

oxazole to function as a directing group and base (Figure 4.4).[10a] These donors function 

via an SN2 pathway, and the group reported outstanding selectivities and high yields. 
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4.1.2 OBJECTIVES OF CHAPTER 

This chapter will detail the design, synthesis, and applications of a new variety of 

carbene-mediated glycosyl donors. These donors are fundamentally distinct from other 

propargyl-embedded or diazo-embedded donors reported and can be activated with 

Earth-abundant metal salts.  

Mechanistically, this system is designed to undergo an intramolecular cyclization 

once exposed to a suitable metal salt to form a metal-carbenoid in situ (Figure 4.5). 

Following this cyclization, a nucleophile can attack the anomeric position, thus promoting 

the elimination of the latent benzofuranone functionality in either an SN1-like or SN2-like 

fashion.  

The glycosylation strategy entailed is unique and fundamentally innovative. In 

addition to synthesizing an unprecedented variety of glycosyl donors, we have 

demonstrated its utility using Earth-abundant catalysis –namely copper salts. Our goal is 

to utilize these donors to target challenging glycosidic linkages, particularly 1,2 cis 

glycosides. The synthesis of 1,2 cis-glycosides is a considerable challenge within 

glycoscience. There are several convenient and eloquent strategies to access 1,2 trans-

linkages. These strategies often employ techniques involving neighboring group 

participation.[11] Contrastingly, the vicinal C2 group that aids and is responsible for 

stereospecific trans linkages inhibits the formation of the cis counterpart. 
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Figure 4.5: Overview of Glycosylation Strategy 
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4.2 DESIGN, SYNTHESIS, AND APPLICATIONS OF CARBENE-MEDIATED 
DONOR 

To study our envisioned carbene-mediated donor, we thought to design an 

enynone-derived, metal carbenoid system. Based on our design of glycal carbene donors 

(Chapter 3) and the instability associated with diazo compounds, we envisioned an 

enynone-based system to access metal carbenoids. 

Diazos are not industrially utilized due to their explosive behavior and toxicity, 

despite serving as historically useful carbenoid precursors.[12] This instability regularly 

requires low-temperature storage. Likewise, their highly reactive nature necessitates low 

concentration reaction pots or slow diazo addition to prevent dimerization, a significant 

side reaction typically observed in carbene chemistry.[13] The incorporation of alternative 

alkyne-derived, carbene precursors will significantly impact the scope of these reactions 

and can pave a pathway to industrially convenient carbene-based protocols. 

4.2.1 OVERCOMING LIMITATIONS OF GLYCAL CARBENES 

The major setback with our initial glycal carbene donor (Chapter 3) is the cleavage 

of the pendant furan system tethered at the C2 position. To rectify this impediment, we 

thought to cleave the furan with an ozonolysis step furnishing a C2 ketone. Carbonyls can 

serve as an excellent diversification handle and could aid in pyranose diversification. 

However, we acknowledge these this additional step would weaken the impact of our 

donor due to the required post-glycosylation transformations. To account for this, we 

thought to develop a new donor, where the furan moiety would be grafted at the anomeric 

position; and therefore, would be cleaved during the glycosylation step. Another limitation 
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that we observed during optimization was that our glycal carbene systems were not 

applicable to disaccharide systems. The construction of this newly designed donor was 

meant to overcome both limitations. 

Both donors are designed with an embedded alkynyl-group, designed to undergo 

an in situ carbene formation once exposed to an appropriate Lewis acid. Glycal carbenes, 

as observed in Chapter 3 of this dissertation, following carbene formation can undergo a 

regioselective vinyl addition at the anomeric position (Figure 4.6a). Contrastingly, our 

newly designed donor can be intercepted at the anomeric position following carbene 

formation via a carbene-assisted strategy (Figure 4.6b). 

 

 
 
 

Figure 4.6: Inspiration behind New Donor Design 
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4.2.2 EXPERIMENTAL DESIGN 

Due to literature-reported high stereoselectivity with sterically hindered protecting 

groups, we initiated our design featuring a 4,6 O-benzylidene protected donor. [14] These 

protecting groups are known to enhance b-selectivity and fall in line with our goal of 

synthesizing challenging 1,2 cis linkages. To confront the challenge of b-mannosylation, 

we initiated our studies on a mannose-derived system. First, peracetate-protected 

pyranmannose sugar 28 was exposed to thiophenol and boron trifluoride diethyl etherate 

to synthesize the thiophenol-protected sugar 29. Sugar 29 was exposed to basic 

conditions to induce a global deprotection to yield 30, which was exposed to 31 to form 

the 4,6 O-benzylidene protected sugar 32. Sugar 32 was then di-benzyl protected at the 

C2 and C3 position, followed by a thiophenol deprotection to yield sugar 34. Using a well-

established carbodiimide coupling strategy, iodobenzoic acids (35) were then coupled to 

the protected sugar to synthesize sugars 36. Lastly, sugar 36 was exposed to propargyl 

aldehyde 37 and Sonogashira coupling conditions to yield the desired donor 38 (Figure 

4.7). Notably, we synthesized the a-anomer almost exclusively with little isomerization to 

the b-anomer. This is in contrast to the well-reported anomerization of ortho-

alkynynylbenzoates donors.[10d]  
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Figure 4.7: Synthesis of Benzylidene Protected Mannose Donor 
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and we were able to isolate the adduct in a 75% yield. NMR analysis illustrated in a 1:10 

a:b ratio (entry 3). Lastly, we exposed our donor to Cu(I)OTf and NaBArF (entry 4), and 

this resulted in the desired product with a shared stereoselectivity 1:10 (a:b), and the 

product was isolated cleanly in a 79% yield. 

 

 

entry catalyst conversion yield a:b 

1 ZnCl2 40% nd n.d 

2 Cu(I)Cl 30% nd n.d 

3 Zn(OTf)2 100% 82% 1:10 

4 Cu(I)OTf  100% 79% 1:10 

*Optimization reactions were completed by dissolving isopropanol (1.1 equiv.), catalyst (20 mol 
%), NaBArF (20 mol%), and 20 mg of activated 4-angstrom molecular sieves into 500 𝜇L of the 
dichloromethane. After 10 minutes, 38 was added to the solution and allowed to stir until starting 
material consumption via TLC. Once complete, the reaction is diluted in dichloromethane and 
washed with a saturated NaHCO3 solution. The organics were extracted a total of three times 
before drying over Na2SO4. Percent conversion and anomeric ratios are based on the integration 
of crude spectra. 

Table 4.1: Initial Catalyst Screening of System with Isopropanol 
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To realize our goal of disaccharide synthesis, we synthesized the sugar acceptor 

40 and are currently developing favorable conditions within our lab (Table 4.2). 

Optimization with the sugar donor is currently underway to improve the disaccharide yield 

using the guidelines for O-glycoside formation.[15] In our preliminary experiments, based 

on our success with zinc triflate in our isopropanol system, it was the first screened 

catalyst with the sugar acceptor. While the bulky sugar alcohol resulted in the exclusive 

b-anomer formation, the reaction was extremely low yielding (entry 1). Revisiting copper 

triflate led to a slightly increased 45% yield (entry 2). Postulating that this system needed 

a highly cationic Lewis acid, we increased the amount of NaBArF to 1 equivalent, 

increasing the yield to 52% (entry 3). To date, we have identified THF as the optimal 

solvent; however, we are continuing optimization on this system. Additionally, we intend 

to continue screening catalysts with labile/non-coordinating ligands such as 

tetrafluoroborate [BF4]- and hexafluorophosphate [PF6]-. 

 

entry catalyst solvent yield X a : b 

1 Zn(OTf)2 DCM 37% 0.2 b only 

2 Cu(I)OTf DCM 45% 0.2 b only 
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3 Cu(I)OTf DCM 52% 1 b only 

4 Cu(I)OTf THF 60% 1 b only 

Optimization reactions were completed by dissolving sugar alcohol (1.1 equiv.), catalyst (20 mol 
%), NaBArF, and 20 mg of activated 4-angstrom molecular sieves into 500 𝜇L of the desired 
solvent. After 10 minutes, 38 (0.02 mmol) was added to the solution and allowed to stir until 
starting material consumption via TLC. Once complete, the reaction is diluted in ethyl acetate 
and washed with a saturated NaHCO3 solution. The organics were extracted a total of three times 
before drying over Na2SO4. Anomeric ratios are based on the integration of crude spectra. 

Table 4.2: Current Optimization with Sugar Acceptor 

4.2.4 POSTULATED MECHANISTIC PATHWAY 

As mentioned previously, we hypothesize that our system is initiated by the 

coordination of the metal salt to the alkynyl moiety to induce a 5-exo-dig cyclization to 

form sugar furan 38. Following a 5-exo-dig cyclization to form sugar furan 42, the available 

carbonyl moiety can undergo an sp2 oxygen insertion into the metal carbenoid to form a 

latent benzofuranone leaving group. Once species 43 is formed, two pathways are 

proposed. In one alternative, electron donation from the endocyclic oxygen results in 

oxocarbenium intermediate, which can be intercepted in an SN1-like fashion. 

Contrastingly, the nucleophile can attack in an SN2-like manner to cleave the pendant 

benzofuranone functionality (Figure 4.8a). 
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Figure 4.8: Plausible Mechanistic Pathway 
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a-triflate. Following the formation of the a-triflate species 45, the glycosyl acceptor can 

add onto the sugar via a stereospecific SN2 to yield the desired b-linkage (Figure 4.8b). 

4.2.5 HANDICAP OF METHODOLOGY 

Optimization of this methodology is currently underway; however, these 

experiments have highlighted a significant limitation that handicaps the yields of our 

system. Our glycosylation strategy is competing with an intramolecular rearrangement to 

yield the benzofuranone adduct 49 (evidenced through 1H NMR analysis). Additionally, 

this by-product has an extremely similar, near-identical Rf to the desired glycoside. This 

results in a decreased yield of the desired glycosides 47 (Figure 4.9). 

 
 

Figure 4.9: Competing Intramolecular Rearrangement 
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4.3 FUTURE DIRECTIONS AND CONCLUSIONS  

This project is still in its infancy, and our research laboratory is currently locating 

tremendous energy, supplies, and personnel to continue developing this system. We plan 

to synthesize the b-glycosyl donor 52 to observe the effect of anomeric configuration on 

selectivity, reaction rates, and yields (Figure 4.10). An a-bromo-protected sugar 50 can 

undergo a stereospecific substitution reaction with iodobenzoic acids 35 to yield the b-

sugar benzoate 51.[10a] A successive Sonogashira coupling can install enynone 37 to 

generate the corresponding b-glycosyl donor 52. We will first synthesize the unsubstituted 

b-mannose derivative to conduct a head-to-head comparison of the two donors. These 

results will provide fundamental insight into the mechanism (SN1 or SN2 type). 

Additionally, if required, we will develop favorable conditions to induce sizable 

stereochemical control for b-glycosyl donors. 

 
 

Figure 4.10: Synthetic Route to β-Sugar Enynone 
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4.3.1 SYNTHESIS OF O–GLYCOSIDES 

Once we have optimized reaction conditions, we intend to prepare a diverse 

substrate scope featuring a range of oxygen-based acceptors (Figure 4.11). We will 

primarily focus on synthesizing challenging 1,2 cis-linkages such as a-glucosides, a-

galactosides, and b-mannosides. We have synthesized the b-mannoside 47a and are 

currently optimizing conditions to increase the yields for the disaccharide. Additionally, 

concurrently, we are developing a viable synthetic route to the glucose-derived donor to 

prepare the b-glucoside 47b. We expect the glucose system to require further 

optimization for high selectivity. 

 

 
 

Figure 4.11: Access to O–Glycosides 
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Following this, we will prepare sugar donors featuring different protecting groups 

to observe protecting group effects on the system. We will screen disarming protecting 

groups such as acetate and benzoyl (47c,47d). These studies will coincide well, as our 

parent system is protected with arming (benzyl) groups. Additionally, to observe the effect 

of the C2 groups, we will synthesize the 2-deoxygenated donor to synthesize 47e. 

Next, we intend to expose our glycosyl donors to chiral alcohols such as L-menthol 

(47g) and cholesterol (47h). As previously observed, we expect to achieve sizable 

selectivity using sterically hindered acceptors.  

4.3.2 APPLICATIONS TO N– AND S– GLYCOSIDES AND FURANOSES  

Once we have established a diverse library of sugars with oxygen nucleophiles, we 

will further our methodology by utilizing heteroatom and carbon-based glycosyl acceptors 

(Figure 4.12). Aminoglycosides are particularly attractive linkages due to their potency 

as bactericidal antibiotics in both gram-positive and gram-negative bacteria.[18] Too, they 

are commonly involved in the post-synthetic modification of various proteins and can 

possess antiviral or anticancer activity.[19] By developing a more efficient way to access 

these privileged glycosides, we can rapidly synthesize libraries of relevant targets that 

can be screened for their biological activity.  
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Figure 4.12: Substrate Scope with Non-Oxygen Acceptors 
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This donor is a stark contrast to reports of gold-activated alkynyl donors emerging 

in the literature. We are developing conditions for disaccharide synthesis with sugar 

acceptors with this donor. We have preliminary conditions using copper (I) triflate as a 

catalyst to date. We hope to develop these conditions for high-yielding disaccharides and 

envision expanding this work to access N– and S– glycosides. 
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4.5 EXPERIMENTAL SECTION FOR SECTION 4  

MATERIALS AND METHODS 

Reagents 

Reagents and solvents were obtained from Sigma-Aldrich, Chem-Impex, VWR 

International, and Acros Organics and used without further purification unless otherwise 

indicated. Dichloromethane and Acetonitrile were distilled over CaH under N2 unless 

otherwise indicated. Tetrahydrofuran was distilled over Na under N2 with benzophenone 

indicator. 

Glassware 

All reactions were performed in flame-dried glassware under positive N2 pressure with 

magnetic stirring unless otherwise noted. 

Chromatography 

Thin layer chromatography (TLC) was performed on 0.25 mm E. Merck silica gel 60 F254 

plates and visualized under UV light (254 nm) or by staining with potassium 

permanganate (KMnO4), cerium ammonium molybdate (CAM), phosphomolybdic acid 

(PMA), and ninhydrin. Silica flash chromatography was performed on Sorbtech 230-400 

mesh silica gel 60. 

Analytical Instrumentation 
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NMR spectra were recorded on a Varian NMRS 400 and 500MHz NMR spectrometer at 

20 ºC in CDCl3 unless otherwise indicated. Chemical shifts are expressed in ppm relative 

to solvent signals: CDCl3 (1H, 7.26 ppm, 13C, 77.0 ppm); coupling constants are 

expressed in Hz. IR spectra were recorded on a Cary 760 FTIR spectrometer with peaks 

reported in cm-1. Mass spectra were obtained on an Advion Expression CMS TLC Mass 

Spectrometer 

Nomenclature 

Chemical structure named in accordance with IUPAC guidelines, automatically generated 

using ChemDraw 20.1 

Additional Information and Considerations 

Syringe pump addition reactions were conducted using a Harvard Apparatus (Model: 55-

1111) or a New Era Pump Systems, Inc. (Model: NE-300) syringe pump. Sonication was 

performed using a Bransonic Ultrasonic Cleaner (Model: M5800H).  

 

PUBLICATION AND CONTRIBUTIONS STATEMENT 

The research within this section is unpublished. All materials and procedures are 

contributions by A. Bain and Bidhan Ghosh.  



Ch. 4- Carbene-Mediated Glycosyl Donors 

 
 
 

149 

4.5.1 Synthesis of Alkynyl Donor  

 

(4aR,6R,7S,8S,8aR)-7,8-bis(benzyloxy)-2phenylhexahydropyrano[3,2d][1,3]dioxin-

6-yl 2-iodobenzoate (36): Sugar (1 equiv), iodobenzoic acid (2 equiv), EDC salt (2 equiv) 

and DMAP (0.3 equiv) were dissolved in distilled dichloromethane (0.2M solution) at room 

temperature. The reaction was allowed to stir overnight until starting materials were 

consumed. The following day, the reaction was diluted in DCM and washed with brine. 

The organics were extracted twice more, then washed with a saturated sodium 

bicarbonate solution before drying over sodium sulfate. The crude compound was purified 

via an isocratic 20% EtOAc silica gel column. 

Rf: 0.41 (20% EtOAc in Hexanes) 

1H: (500 MHz, CDCl3) δ 7.99 (d, J = 8.1 Hz, 1H), 7.71 (d, J = 7.8 Hz, 1H), 7.52 (d, J = 7.3 

Hz, 2H), 7.49 – 7.36 (m, 8H), 7.39 – 7.30 (m, 4H), 7.30 (d, J = 8.5 Hz, 3H), 7.18 (d, J = 

15.5 Hz, 1H), 6.40 (s, 1H), 5.68 (s, 1H), 4.87 (s, 2H), 4.83 (d, J = 12.5 Hz, 1H), 4.69 (d, J 

= 12.3 Hz, 1H), 4.38 (t, J = 9.7 Hz, 1H), 4.30 (dd, J = 10.1, 4.6 Hz, 1H), 4.13 (dd, J = 10.3, 

3.3 Hz, 1H), 4.01 – 3.93 (m, 2H), 3.89 (t, J = 10.2 Hz, 1H). 
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13C NMR (126 MHz, CDCl3) δ 164.38, 141.58, 137.58, 137.46, 134.12, 133.30, 131.60, 

128.95, 128.54, 128.45, 128.31, 128.26, 128.08, 128.04, 127.78, 101.53, 94.07, 93.85, 

78.56, 75.36, 75.12, 73.68, 72.96, 68.50, 66.92. 

 

(4aR,6R,7S,8S,8aR)-7,8-bis(benzyloxy)-2phenylhexahydropyrano[3,2d][1,3]dioxin-

6-yl-2-((2-formylcyclohex-1-en-1-yl)ethynyl)benzoate (38): Sugar (1 equiv), CuI (30 

mol%) and PdCl2(PPh3)2 (30 mol%) were dissolved in 0.5M concentration of Et3N, in a 

flame-dried round bottom flask fitted with a reflux condenser, then flushed with nitrogen 

gas for 15 minutes. The enynone was added to the reaction in one portion, and the 

reaction was heated to 60ºC for 24 hours. After 24 hours, the crude reaction was filter 

over celite with EtOAc and washed twice with brine. The organics were extracted three 

times before drying over Na2SO4. The crude compound was purified via a silica gel 

chromatography 

Rf: 0.22 (20% EtOAc / 80% Hexanes) 

1H (500 MHz, CDCl3) δ 10.38 (s, 1H), 7.83 (d, J = 7.9 Hz, 1H), 7.65 – 7.49 (m, 6H), 7.47 

– 7.28 (m, 16H), 6.41 (d, J = 1.8 Hz, 1H), 5.69 (s, 1H), 4.86 (s, 3H), 4.83 (s, 1H), 4.66 (d, 
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J = 12.0 Hz, 2H), 4.39 (t, J = 9.7 Hz, 1H), 4.29 (dd, J = 10.2, 4.5 Hz, 1H), 4.05 (dd, J = 

10.0, 3.3 Hz, 1H), 3.97 (d, J = 4.6 Hz, 1H), 3.94 – 3.90 (m, 2H), 3.89 (s, 1H), 2.55 (d, J = 

8.3 Hz, 3H), 2.29 (t, J = 6.1 Hz, 3H), 1.74 – 1.60 (m, 6H). 

13C NMR (101 MHz, CDCl3) δ 193.38, 162.93, 143.67, 139.61, 138.19, 137.56, 137.35, 

134.57, 132.70, 130.73, 130.02, 128.90, 128.73, 128.48, 128.35, 128.22, 128.19, 127.95, 

127.70, 127.68, 101.37, 96.59, 93.12, 91.95, 78.49, 75.49, 75.43, 73.48, 73.15, 68.50, 

66.88, 32.00, 22.14, 21.82, 20.93. 

4.5.2 Synthesis of Sugar Alcohol  

 

 

 

((2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-methoxytetrahydro-2H-pyran-2-

yl)methanol (40): The sugar alcohol 40 was synthesized in three steps from methyl α-D-

glucopyranoside, from literature know procedures.[1]  

Rf: 0.45 (30% EtOAc in Hexanes) 
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1H: (500 MHz, CDCl3) δ 7.40 – 7.24 (m, 14H), 4.99 (d, J = 10.9 Hz, 1H), 4.88 (d, J = 11.0 

Hz, 1H), 4.86 – 4.77 (m, 2H), 4.65 (t, J = 11.6 Hz, 2H), 4.57 (d, J = 3.5 Hz, 1H), 4.00 (t, J 

= 9.3 Hz, 1H), 3.77 (ddd, J = 11.6, 5.4, 2.6 Hz, 1H), 3.69 (dq, J = 7.6, 3.7 Hz, 1H), 3.65 

(dt, J = 10.0, 3.4 Hz, 1H), 3.54 – 3.47 (m, 2H), 3.37 (s, 3H). 

 

13C NMR (101 MHz, CDCl3) δ 138.68, 138.08, 128.50 (d, J = 2.0 Hz), 128.43, 128.15, 

128.07, 128.00, 127.97, 127.92, 127.66, 98.16, 81.95, 79.90, 75.79, 75.05, 73.45, 70.61, 

61.85, 55.21. 

 

4.5.3 Glycosylation Reactions 

Experiments performed by Bidhan Ghosh and A. Bain.  

 

 

(4aR,7S,8S,8aR)-7,8-bis(benzyloxy)-6-isopropoxy-2-

phenylhexahydropyrano[3,2d][1,3]dioxine (39): Isopropanol (1.1 equiv.), catalyst (20 

mol %), NaBArF (20 mol%), and 20 mg of activated 4-angstrom molecular sieves into 500 

𝜇L of the dichloromethane. After 10 minutes, 38 was added to the solution and allowed 
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to stir until starting material consumption via TLC. Once complete, the reaction is diluted 

in dichloromethane and washed with a saturated NaHCO3 solution. The organics were 

extracted a total of three times before drying over Na2SO4. NMR Spectra was verified by 

comparison to literature reports.[2]  

 

 

 

(2R,4aR,6R,7S,8S,8aR)-7,8-bis(benzyloxy)-2-phenyl-6-(((2R,3R,4S,5R,6S)-3,4,5-

tris(benzyloxy)-6-methoxytetrahydro-2H-pyran-2yl)methoxy)hexahydropyrano[3,2-

d][1,3]dioxine (41): Sugar alcohol (1.1 equiv.), catalyst (20 mol %), NaBArF, and 20 mg 

of activated 4-angstrom molecular sieves into 500 𝜇L of the desired solvent. After 10 

minutes, 38 was added to the solution and allowed to stir until starting material 

consumption via TLC. Once complete, the reaction is diluted in ethyl acetate and washed 

with a saturated NaHCO3 solution. The organics were extracted a total of three times 

before drying over Na2SO4. NMR Spectra was verified by comparison to literature 

reports.[3] 
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1H NMR (600 MHz, CDCl3) δ 7.51 – 7.46 (m, 2H), 7.41 (d, J = 7.7 Hz, 2H), 7.39 – 7.23 

(m, 25H), 7.20 (t, J = 7.2 Hz, 1H), 5.53 (s, 1H), 5.06 (d, J = 10.7 Hz, 1H), 4.86 – 4.78 (m, 

3H), 4.78 – 4.73 (m, 2H), 4.67 – 4.57 (m, 4H), 4.38 (s, 1H), 4.30 (d, J = 12.1 Hz, 1H), 4.11 

– 4.03 (m, 2H), 3.88 (p, J = 8.9 Hz, 2H), 3.65 (d, J = 3.1 Hz, 1H), 3.61 (dd, J = 9.4, 2.8 

Hz, 1H), 3.57 – 3.51 (m, 3H), 3.47 (dd, J = 10.9, 3.0 Hz, 1H), 3.41 (s, 3H), 3.34 (dd, J = 

9.9, 3.1 Hz, 1H).  

 

13C NMR (101 MHz, CDCl3) δ 139.38, 138.61, 138.53, 138.30, 137.63, 137.50, 128.80, 

128.51, 128.36, 128.35, 128.31, 128.27, 128.14, 128.04, 128.00, 127.77, 127.66, 127.50, 

127.44, 127.30, 127.18, 126.05, 101.53, 101.27, 98.37, 80.23, 78.94, 78.68, 78.25, 77.65, 

76.96, 75.25, 74.94, 73.61, 73.54, 72.49, 69.54, 68.54, 68.28, 67.21, 55.33 
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4.6 APPENDIX 3 
Spectra Relevant to Chapter 4 
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5. CHAPTER 5 

Summaries, Conclusions, And Future 
Directions 

 Within this dissertation, we have illustrated the construction of spirocyclic and 

carbohydrate scaffolds through the utilization of metal-bound carbenoids and alkynes. 

Building on fundamental metal carbenoid reactivity, these research projects aimed to trap 

these resourceful synthons in well-designed transformations to construct spirocycles –

one of the least explored natural product motifs, and glycosides –the most abundant 

natural product framework.  

5.1 SYNTHESIS OF DIVERSE SPIROCYCLES 

Spirocycles are one of the most underrepresented motifs in drug development. Our 

group has previously developed a synergistic Rh(II)/cationic gold catalyst combination 
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that we were able to extend to these research efforts. To synthesize spirocycles, we 

initially trapped diazo-derived carbenoids in tandem sequences (Chapter 2). Notably, we 

developed methods to construct spirocyclic alkaloids and spirocarbocycles using an X–H 

insertion/Conia-ene cascade. We then attempted to access enantioselective alkaloids via 

a stepwise, copper-catalyzed approach using chiral BOX ligands. However, these 

conditions did not produce any sizeable enantiocontrol.  

Following these studies, we theorized developing a tandem O–H insertion/aldol 

cascade to synthesize a variety of spiroethers. We became increasingly interested in 

Earth-abundant catalysis strategies based on our limited success with copper N–H 

insertion/Conia-ene reactions. We thought to continue our O–H insertion/aldol cascade 

using readily available, Earth-abundant metals. While we did not find much success with 

an iron-based system, we observed favorable conditions using Zn(OTf)2 on spirooxindole 

diazos.  

5.2 CARBENE-ASSISTED ACCESS TO GLYCOSIDES 

Following the conclusions of our spirocyclization projects, we then set our sights 

towards one of the most prevalent natural product scaffolds, carbohydrates. The 

stereoselective glycosylation of carbohydrates remains a significant obstacle in 

glycoscience. With our background in Rh(II) carbenoid-initiated cyclizations, we thought 

to develop carbene-assisted strategies to access glycosidic bonds. To achieve this goal, 

we have designed and synthesized two novel glycosyl donors to address these 

challenges: glycal carbenes (Chapter 3), and carbene-mediated glycosyl donors (Chapter 
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4). Both donors are incredibly innovative and feature carbene-assisted strategies to 

access glycosides stereoselectively with Earth-abundant metal catalysts. 

 Utilizing enynones, we first synthesized and tested a novel, carbene-based 

glycosyl donor: glycal carbenes. These donors function through the vinylogous addition 

of nucleophiles at the anomeric position. We developed favorable conditions and can 

facilitate the desired transformation using zinc (II) chloride as the optimum catalyst. 

Unfortunately, we are not able to apply this chemistry towards di- and oligosaccharide 

synthesis, as bulky sugar acceptors were incompatible with our reaction conditions. 

Additionally, while innovative, we recognize that they require post-glycosylation 

transformations to cleave the pendant furan moiety. 

To address these shortcomings, we began to design new carbene-based glycosyl 

donors. Inspired by gold-activated propargyl-embedded glycosyl donors, we designed a 

new variety of carbene-mediated glycosyl donors. These glycosyl donors function 

differently and are fundamentally distinct from other alkynyl-embedded or diazo-

embedded donors and are activated with Earth-abundant metal salts. We are developing 

these donors to access O–glycosides, and hope to use these donors to access N–, and 

S– glycosides as well. Additionally, we have activated these donors using cheap, readily 

available copper salts. 

5.3 DEVELOPMENT OF EARTH-ABUNDANT CATALYSIS AND 
SUSTAINABLE STRATEGIES 

The initial research presented in this dissertation employed cascade strategies to 

rapidly access spirocycles in one pot. Additionally, our glycosylation reactions employed 
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cascade sequences. Cascade sequences allow multiple synthetic steps to occur in one 

pot, thereby negating the use of excess solvents and reagents. These eloquent strategies 

allow for the rapid generation of structural complexity from relatively simple starting 

materials thus exhibiting high atom- and step-economy. Thus, using greener reaction 

conditions to access relevant scaffolds.  

As my studies and research progressed within this dissertation, we transitioned to 

Earth-abundant metal catalysts (Zn/Cu/Fe) to facilitate the proposed transformations as 

opposed to rhodium. This prompted the development of copper-catalyzed stepwise 

Conia-ene reactions and iron-catalyzed insertion/aldol strategies. 

Iron is one of the most abundant metals in the Earth’s crust and possesses 

“minimal safety concern” as 1,300 ppm residual iron is deemed acceptable in drug 

substances. This is a distinct advantage compared to the ≤ 10 ppm allowed for most other 

transition metals, including rhodium and palladium. Likewise, zinc and copper are the 24th 

and 25th most abundant elements in the Earth’s crust. Additionally, zinc and copper are 

dietary requirements, and most adults intake several milligrams daily. As the cost of a 

drug is directly proportional to the cost of reagents, employing cheaper Earth-abundant 

metals poses a distinct advantage over traditional metal catalysis. Therefore, Earth-

abundant catalysis promises to empower an efficient, green reaction prototype while 

simultaneously providing potential economic benefits and safety features. 

Despite our strong background in diazo chemistry, we began to consider the 

drawbacks of using diazos as carbene precursors. While these reagents can be 

commonly found in the academic lab setting, diazos are not industrially utilized due to 

their instability and potential explosive behavior. To circumvent these drawbacks, we 
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turned to literature to find safer carbene surrogates. Our literature survey led to the 

identification of enynones as an industrially friendly carbene precursor. We believe that 

incorporating alternative, alkyne-based carbene precursors will significantly impact the 

scope of these reactions, as it can pave a pathway to industrially convenient carbene-

based protocols. 

 

5.4 FUTURE DIRECTIONS AND SCOPE OF WORK 

The coalition of metal carbenoid chemistry and glycosylation is still in its infancy. 

Within, we have shared an account of our ongoing research and are excited at the scope 

and opportunities of this methodology within organic synthesis. There is much knowledge 

to be uncovered involving metal carbenes in glycosylations. Our ultimate aspiration for 

the enclosed glycosylation work is to optimize a general, highly selective carbene-

mediated donor that is highly tolerant to various nucleophiles for the rapid construction of 

oligosaccharide libraries. 
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