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CHAPTER I 

INTRODUCTION 

Neural Network Classifier 

Neural networks are parallel interconnected systems consisting of many simple 

processing units which interact among one other via links with adaptive weights. There 

are a variety of models proposed to approximate the neural network concept. Each model 

defines a learning process and its accuracy. The simplest yet most powerful model is 

implemented by a competitive classifier. This classifier is divided into two subnets, a 

lower subnet and an upper subnet. The lower subnet (qualifier) defines the correlation 

between the input and the stored patterns by evaluating each exemplar vector versus the 

input pattern and determining the number of mismatches encountered. The upper subnet 

is the competition layer selecting the reference pattern. with the highest correlation ( or 

highest score). This layer can be implemented by a winner take all (WTA) or any other 

discriminator type architecture capable of selecting the reference pattern which most 

closely matches the input. 

The objective of this thesis is to propose a low power and high speed competitive 

classifier architecture. This classifier is process independent, reliable and manufacturable 

in a low cost fabrication process. 

To pursue this objective, a novel low power qualifier cell is introduced and fully 



characterized followed by a detailed discussion on the learning process. For this learning 

process, the System is required to handle high voltage; therefore, a novel high voltage 

driver is proposed and developed. Furthermore, a discriminator architecture Oalaleddine, 

1992] is presented and fully analyzed when used in conjunction with the proposed 

qualifier subnet. Then, a 2x2 recognition engine is manufactured in the 2.0u ORBIT 

process and fully characterized. The characterization includes, programming each cell and 

evaluating the input pattern. Finally, the steady state results found using simulation and 

the closed-form solution are compared against the silicon results. 

Chapter Description 

Chapter II covers a variety of existing techniques to implement a neural network 

classifier. 

Chapter III introduces and analyzes a novel content addressable memory (CAM) 

structure. The analysis includes finding a closed-form solution for the CAM cell and 

comparing then;i. to. simulation ;results. 

Chapter IV describes the learning process for the content addressable memory while 

examining the effects of a non-ideal CAM on the learning process. 

Chapter V introduces a high voltage transistor which constitutes the basis of a proposed 

high voltage driver. 

Chapter VI investigates the behavior of the Winner Take All circuit (WTA) used in 

conjunction with the proposed CAM. This includes finding a closed-form solution for the 

WT A circuit and relating its output to the input of the CAM cell. 
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Chapter VII contains the data from the fabricated silicon and compares the closed-form, 

simulation and the silicon's results. 

Chapter VIII discusses the goals achieved in this thesis. 
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CHAPTER II 

LITERATURE SURVEY 

. Introduction 

Due to the number of the neurons and their ·required. connections, research on 

neural net implementation has been evolved. with key concepts such as area, learning 
' . . . 

efficiency, resolution, and power consumption. Traditionally, one way to reduce area and 

total power consumption is to implement most of the ~chitecture using analog circuitry; 

so that, a large number of components can be monotonically integrated [Joongho, May, 

1993]. To further reduce the power consumption, purely capacitive' methods were 

introduced [Ugur, Feb. 1991, Jan., Mar., May, 1993]. These methods use preGharge and 

charge sharing concepts in order to manipulate information. Finally, to allow longer 

stor~ge ability and.lower total power consumption, a combination of arialbg circuitry and 

analog memory is suggested .. ·· This section·introduces these different architectures while 

briefly discussing their pros and cons. 

Mixed Mode Approach 

As mentioned a competitive classifier architecture is expected to identify the 

closest match with respect to the input pattern. This is accomplished in two stages. First 

4 



the qualifier indicates how close the input pattern is to the stored patterns, then based on 

the qualifier's result the discriminator determines the winner. 

Figure II-1 depicts a possible hardware implementation of a competitive classifier 

architecture [Joongho, May, 1993], 

5 



.a .talifier 

,I 

(I) 

VBB2 

vout(j-1) 

VBB1 

U-1)thcell 1 (j)thce/1 0+1Jth ce11 I 

Figure II-I. A Self-Organized Neural Network with an Analog Winner Take All circuit 
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The qualifier d,etermines the score between the synapse weights (stored pattern) 

and the input signals as follow [Ugur, Jan., 1991] 

Equation 11-2 

m m m 

Si= A'.:..A·LX: +2·A·L~·Xij-A·L~2 Equation 11-3 
J=l J=l J=I 

where 

S; is the qualifier's output (score) 

Xif is the input at the ith row and the l column 

TiJ is the pattern stored at the ith row and the jth column 

A' is an arbitrary constant · 

A is an arbitrary constant 

The output of each cell ( S;-J, S;, S;+1) is then compared to one other via a 

discriminator (Winner-Take-All circuitry) to determine the winner [figure II-1]. Each 

score (S;) is fed in to a follower configuration, securing a proportional current from the 

total pull down current This total current is provided by equally divided transistors (Ms;-1, 

M5i, Ms;+1) whose drains are connec.ted to a common node Vern· The cell with the largest 

score (S;) will conduct the most current, since it forces the largest gate to source potential 

voltage (Vgs) across the corresponding follower; therefore, it takes up the majority portion 

of the total bias current, forcing less current through the competing cells. Each current is 

then mirrored to the next stage and gets converted to a proportional voltage. To quantify 

this voltage a relationship between each inputs and output must be found. 
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Total current ( the sink current) through Vcm is 

Equation 11-3 

I,,,,, ~ ~" · (V,82 - V ss - V, )' Equation 11-4 

where 

!bias is the tail bias current of each cell 

N is the number of cells in the architecture 

VBBJ is a DC voltage 

VBB2 is a DC voltage 

Pn is a constant proportional to the size. and process variables 

The current through each cell(/;) can be determined by its corresponding score 

Equation 11-5 

This current is converted to a voltage as follow 

vout(j) = -1-·(2. m. Ji. ! ·(VBB2 - Vss -VT )2 
- lJ + Vss An · JJ4 · .. 

Equation 11-6 

where 

m is the gain between M2 and M3 

Equation II-5 and II-6 indicate how the largest score secures the most current and how it . 

is converted to a proportional output voltage. 
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This architecture occupies a relatively large amount of area due to the number of 

interconnections between each cell. It is also designed such that more gain can be used to 

further separate the winner from the losers; however, this increases both area and power 

consumption. Therefore, one has to trade between speed, power consumption and area, a 

classic bottle neck for Neural Networks. 

A more efficient design has been implemented using purely capacitive Hamming 

Classifier shown in figure 11-2 [Ugur, Jan., 1993]. This architecture also consists of two 

major layers, the qualifier and the discriminator. The qualifier is sub-divided into two 

layers, synaptic matrix and normalization matrix: '.fhe discriminator is an inhibiting 

circuit whose outputs are directly fed in to the inputs oftri-state buffers. 
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Figure 11-2. A Charge Based Hamming Classifier 
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As indicated in figure II-2, this architecture requires four non over lapping clocks. 

At phase one ( (p1 ), all of the rows are set to a reference voltage Vref, while the columns are 

set to Vaa . At the end of this phase the total stored charge on each row is 
2 

where 

m 

clot= Icu +Cpi 
J=l 

m is the number of capacitors on each row 

Cp; is normalizing capacitor on the ith row 

Cmin is the smallest capacitance achievable on chip 

Equation II-7 

CiJ is a capacitance between ;th row and/h column (synaptic capacitance) 

At phase 2 the input voltages (input pattern) are applied to the qualifier's columns. At this 

point, the final charge on each row becomes 

m 

Q1¢2 = L (v,i -~) · cu + V,; · cpi 
J=l 

Equation II-8 

where Vr; is the line voltage. Since the charge must be conserved, equation II-7 and II-8 

must be equal; therefore, at the end of phase 2 the· 1ine voltage Vr; becomes 

Equation II-9 

where 
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VJ is a normalized input at the /11 column 

To relate equation 11-9 to equations 11-1 and 11-2, inputs and the weights are defined as 

follow. 

where 

V. 
x.=-1 

J V 
dd 

A is an arbitrary positive voltage 

Equation 11-10 

Equation 11-11 

TiJ is the stored pattern at the ith row and the /11 column 

rewriting Vr; in equation 11-9 

V,.; = vref + ( cmin. Vaa) ,Ctot · i:(2 ·Xj -1)+ A· IT;j ·(2 ·Xj -1) 
2 J=l J=l 

Equation 11-12 

In equation 11-12 input vectors are normalized while stored pattern (TiJ) is 

programmed in terms of synaptic capacitance value. Equation 11-11 suggests TiJ is zero 

once CiJ = Cm;~, and it is one if CiJ = 2 . A · C101 + Cmin. Therefore, a binary one is 
Vaa 

presented by any capacitance larger than Cmin, while a binary zero is realized by a 

minimum capacitance. 
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The inhibiting circuit is enabled when phase 3 ( <p3) clock turns on. In this circuit, 

all of the match lines are interconnected to one other in a fashion such that each match 

line controls the gate of a single pull down transistor connected between each of the 

competing match lines and ground. As a result, each row is connected to a series of pull 

down transistors whose gates ar.e connected to each of the competing match lines. The 

line with the highest correlation forces the highest Vgs on the rest of the pull downs, 

causing them to decay at a higher rate while it decays at a normal rate. Eventually, this 

row will force all of the competing voltages to zero. 

This architecture has gone to a great .· extend . to. reduce power consumption; 

however, the main problem still exists with respect to the connectivity and area. As the 

number of match lines increases, the complexity of tli.e inhibiting circuit increases in a 

more rapid manner. · Therefore, to accommodate N · match lines NxN transistors are 

required; hence, the size and inter-connectivity becomes another bottle neck. 

[Ugur1 Feb., 1991] proposed a similar capacitive Hamming architecture (figure 11-

3). This architecture consists of coupled linear capacitors, an inverter per row, series of 

s~tches, two reference voltages, and a tri-state buffer. 

The recognition process is· divided into three different phases, storage, evaluation, . 

and discrimination; th€?refore, three non overlapping clocks are required. The process 

starts by first charging each row voltage to the threshold of its inverter while applying 

reference VRJ and input voltage to Cifand Cif respectively. At this point the charge 

proportional to the input and the reference voltage is 

13 



m m 

Q,¢1 = VT " C p + L ( VT - vi)" C ij + LC ij "(VT - VRI) Equation 11-13 
i=l i=l 

where 

is the total non synaptic parasitic associated to each row 

are synaptic capacitors between the ;th row and /h colon 

are the reference voltages. 

During the next phase the input voltage is transferred to CiJ and the reference 

voltage VR2 is imposed on Cu . At this point of time the total charge is changed to 

m m 

Qil¢2 = (VT +VrJ. cp + I(vT + ~i -VRi). cij + L cij ·(VT+ vri -Vi) 
i=l i=l 

Equation 11-14 

At the end of the second phase, according to the conservation of energy, equations 

II-13 and II-14 must remain the same. This results in a total deviation (Vri) from VT. 

Therefore, at the end of the second phase the output voltage of each inverter (Vai) goes 

high or low depending on the polarity of Vri, where 

m [ m m ] ~ ( ~i -C:) · ~ - vRI ·~cu - vR2 · ~ C: 
m 

cp + Iccu + cu) 
i=l 

Finally, during r)J the final Ol.ltput U0 i can be written as 

14 

Equation 11-15 



Equation II-16 

Where His approximating the transfer characteristics of each row's comparator. Equation 

· II-16 has the same form as the generic neural function 

Equation II-17 

Where 

TiJ is the bipolar connection weights 

)0 is the unipolar input ( o::;; )0 ::;; I) 

lf/i is a neural threshold 

Therefore, the capacitive network can operate as a neural network ( equation H-17) under 

the following transformation. 

V 
X.=-1 

I vdd 

C-C 
T= I) I) 

I) K 

Where 

K is a positive scale factor 

15 



VRI 

VR2 

Figure II-3. A Capacitive Neural Network 
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[Yuping, May, 1993] proposed yet another low power and high speed solution. 

This technique uses a charge base comparator as the main qualifier. This comparator 

determines the score (SJ based on the Euclidean distance defined by 

Si= C·I[1-/w;k -xk/] 
J=l 

Equation II-18 

where 

C is a constant 

W;k is the stored pattern at the ith row and the kth column 

Xk is the input voltage at the kth column 

j is the number of columns 

According to the above scoring mechanism, if there is a match between the 

m 

stored and the input pattern, the score becomes Si= C · I[l]; otherwise, S; = 0. 
J=l 

The hardware implementation of this scheme is shown in figure II-4. This cell is 

consisted of four transistors, M1, M2, M3, and M4 whose parasitics at each node are 

lumped in to a single capacitor as below 

Equation II-19 

Equation II-20 

cs cgs3 + csb3 Equationll-21 

Where Cs is controlled via the gate voltage and must be designed to be the dominant 

capacitor. Once the input voltage (x) is high and the weight (w) is zero, M1 and M4 are on 

17 



while M2 and M3 are off; therefore, the total capacitance contributed by the cell is 

Equation II-22 

However, if the input and the weight are both high, M1 and M3 are on while M2 and M3 

are off, the total capacitance contributed by this cell is 

Equation II-23 

In general the two above cases can be summarized as 

Equation II-24 

which is indeed the Euclidean distance. For n cells m a row, the total capacitance 

becomes 

Equation II ~25 

It is easy to see, the more exact match there is, the more capacitance ( Cs) is added to the 

row, storing more charge; therefore, longer decay time. 

18 



_x __ l- M, J cd M,-1-x-

Figure II-4. A Capacitive Comparator circuit 

To determine the winne.r a discriminator is used. This circuit is an inhibiting WTA 

circuit shown in figure II-5. 

Vdd 

s.., 

Precharge Discrimination Enlargement 

Figure II-5. The WTA circuit 
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The system works as follows: first precharge clock is asserted ( rp1 is low), next 

comes the discrimination or competition phase when both rp1 and rp2 are high. At this 

point the winner has a voltage higher than the threshold voltage of the inhibiting 

transistors. [Yuping, May, 1993] shows that the time it takes for the winner to force the 

loser rows to a lower voltage is proportional to n • L • Cs /gds where n is the number of 

comparators in a row, Lis the number of equal bits and gds is output conductance of an 

NMOS transistor. 

[Johnson, Sep., 1991] proposed a digital circuitry which is based on the ability to 

recall by association using Content Addressable Memory (CAM) as neurons. CAM is a 

memory in which data is acquired on the basis of content rather than address; therefore, 

information is retrieved from a memory location with content matching the input. Unlike 

other CAM implementations used in pattern recognition, this architecture is not searching 

for an exact match; instead, the closest match is acquired; hence, the name Relaxative 

Content Addressable Memory (RCAM) [jalaleddine, Jun., 1992]. RCAM finds a 

correlation between input and the pattern ( qualifier) and lets the second stage determine 

the winner ( discriminator). Figure II-6 depicts such architecture where the neuron is 

basically a CAM cell composed of two layers, RAM and an XOR circuit. The output of 

the CAM controls the gate voltage of pull down transistors Mwij called the weight 

transistors. These transistors operate in a digital fashion since their gates are either high or 

low. The inhibition strength that each word receives is proportional to the total current 

that sinks through all of the weight transistors (IMwiJ). This current can be expressed as 

m 

!(inhibit);= LlMwy 
J=l 

Equation 11-26 
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The process starts by precharging all of the lines to Vdd· Then the input path to each cell 

is enabled, causing the weight transistors to turn on or stay off depending on whether or 

not there is a match between the input vector and the stored pattern. The more mismatch, 

the more weight transistors will turn on; therefore, stronger inhibition current will flow 

through the corr~sponding row. Naturally, the word with the least inhibition current will 

have the slowest discharge rate as opposed to the rest. As a . result, the inhibiting 

transistors ( MciJ ) in the winning word will be turned on weaker than the rest of the Mc 

transistors. As a result, all of the competing words will eventually decay to zero while the 

winner remains at a higher voltage (at least a threshold above ground). 

Memory Memory 

Cell Cell 

~ 
. . . Nlcq 

. 114.oo ~ Vm1 

- -- -- ... 
Memory Memory 
Cell Ce// 

if 

114..,0 ~ vrm 

Figure 11-6. Th~ Relaxative Content Addressable Memory (RCAM) 
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All of the discriminators discussed above use some kind of inhibiting transistor 

whose gates are controlled via the competing lines. As a result the number of inhibiting 

transistors is proportional to the square of the number of the match lines. Due to the 

importance of the area, a new WTA circuit was proposed [Lazzaro, 1989]. This 

architecture has a complexity of O(N), as opposed to the O(N2). However, the ability of 

this circuit is limited in finding the best match even with perfect devices. [Jalaleddine 

and Johnson, Jun., 1992] introduced an improved RCAM architecture based on the same 

WT A concept. The basic architecture is shown in figureII-7. 

v,.,, 

s.,.,2 

I NEMORY I 
I 

CAM 

S1--,,-, 

Figure II-7. The RCAM and the WT A network model 
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In this architecture, each word line is connected to the gate of a follower whose 

source is connected to a common node which is connected back to the gate of the pull 

down transistors. Once the evaluation starts and the RCAM evaluated the input versus the 

stored pattern, the match line with the smallest mismatch will have the fewest pull down 

· transistors on; therefore, a higher voltage is established on this match line (the winner 

match line). Based on this voltage, the feed back voltage regulates the pull down currents 

throughout the whole network. Since, this feed back voltage is higher than the required 

regulating voltage for the rest of the competing match lines; hence, their corresponding 

pull down transistors tend to sink more current than normal. Eventually, these lines decay 

to a small voltage while the line with the highest voltage (the line with the fewest· 

mismatch) stays at a higher level. 

All Analog Approach 

The multiplication operation is a function used in the vast majority of neural 

networks algorithms to determine the relationship between the input and the stored 
. . 

pattern (qualifier). The most suitable analog cell implementing this operation is the·. 

Gilbert multiplier. The multiplication is accomplished by multiplying two known 

voltages in order to produce a ·proportional output current. 

A basic differential multiplier circuit is shown in Figure 11-8. Using a square law 

model and assuming all of the transistors are in saturation, the output current can be 

expressed as 
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Equation 11-27 

Equation 11-28 

Where 

Vtn is the differential input voltage 

Id is the tail current 

k is a process dependent constant 

For a small input voltage, the term V;/ can be neglected 

. F2·I) 
lout =k·(Vin)~\TJ Equation 11-29 

Substituting for Id , where Id = k .(Vgs - lvrlY yields 

Equation 11-30 

Equation II-27 shows how the output current is related to a proportion of the input voltage 

(Vtn) multiplied by the tail bias voltage (Vx), 

/',. V In 

Figure II-8. The Two-Quadrant Multiplier 
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This cell can be used to implement a simple yet efficient single synapse cell as shown in 

figure II-9 [Francis, Feb., 1990]. 

~~ 
C2-l 

R 

Figure II-9. The Differential Pair Two-Quadrant programmable analog Multiplier circuit 

This circuit stores the input and weight vectors on capacitance, C2_, C2+ and Cx, 

Moreover, since the output is current, the result of multiple stages can be summed simply 

by connecting all of these synaptic cells' drains to a common node 
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n 

!tot oc L~. Vxij 
J=I 

Where 

Equation 11-31 

Wif is the stored weight at the ith and the l column 

Vxif is the differential· input voltage on the ~ell at the ith and the l 

column· 

This simple architecture suffers from two major flaws, limited input range· and 

finite charge retention. The range can be improved by design techniques; however, it 

increase both area and power consumption. On the other hand, there is a finite time that 

charges can be held on each node; therefore, refreshing is required and must be done 

frequently. This requires constant clocking; hence, a noisy environment which is 

undesirable for any analog system. To avoid this problem analog memory, also known as 

floating gate device, introduces an easy solution since it increases charge retention to an 

equivalent of 100 years. 

The following section introduces the concept of analog memory. Such. device has 

found its way in to hardware implementation of neural network systems due to its ability 

to store high resolution data. This property can result in an area and power efficient 

system. The following chapters, will show how at1 analog device is employed as a 

memory cell in the classifier proposed in this thesis; but first, a detail functionality of this 

analog device is necessary. 
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Floating Gate Structure 

The first floating gate.device was propose by Khang and Sze [Khang, 1967]. In 

this structure, the charge is transported from the silicon substrate across the oxide to a 

floating metal electrode. This inje9tion is accomplished by the electrons with the excess 

energy acquired from a high source to drain channel electric field. Injection of electrons 

in this manner is known as a hot electron injection. The hot electrons with sufficient 

energy will conduct across the oxide . barrier and charge the gate. The drawback of this 

device is that removing electrons from the floating gate is not controllable. Therefore, to 

erase these electrons, the floating gate must be exposed to UV light. 

[Johnson, 1980] introduced the first electrically erasable programmable read only 

memory (EEPROM). This topology gave a better control over charge transfer in and out 

of the floating gate. Eventually, this architecture led to the floating gates with tunneling 

injector [Yong-Yoong, Dec., 1994]. 

Figure II-10 depicts a simple model of such EEPROM device where Cpp is the 

capacitance formed by floating Poly and a second Poly, C0x is the capacitance between the 

floating gate and substrate, C;nJ is the second double-poly capacitance and Cg is the 

capacitance formed by the floating gate and the channel of the measuring transistor whose 

purpose will be explained in the later chapters. 
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Figure 11-10. The simplified EEPROM Model 

· The charge flow and storage in the EEPROM with the tunneling injection 

structure shown in figure II-10 can be explained by Fowler - Nordhiem tunneling 

phenomena. Without getting into too much physics, Fowler - Nordheim is explained as 

follows; there exits an energy barrier of approximately 3 .2V between poly silicon and 

silicon dioxide which prevents electrons flow between the two layers. At room 

temperature; however, electrons have enough kinetic energy to tunnel approximately 5nm 

in to the ·si02 [Kolodny, Jun. 1986]. At this point, if the potential within this distance 

(5nm) is below 3.2V, these electrons will return; hence, no net current flow has been 

established. However, if there exists a strong electric field in Si02 ( > 3.2V 15nm), some 

of these electrons will be carried away by the electric field, causing a net current to flow. 

Therefore, more electric field results in more current flow. The current density defining 

this phenomena is 

Equation II-32 
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Equation II-33 

where 

E is electric field in the silicon dioxide. 

Viun is the voltage across the silicon dioxide 

is the thickness of silicon dioxide 

a and f3 are parameters determined experimentally 

Before getting into the actual charge and voltage relationships it is important to 

understand different ways of programming an EEPROM. There are two ways to alter the 

amount of charge on an EEPROM, a write and an erase operation. A write operation is 

done when more negative charge is transferred into the floating gate via Folwer-

Nordheim tunneling. To perform a write operation a high voltage is applied to the Vpp 

terminal (figure 11-10) while grounding VinJ· Doing so causes a strong electric field with a 

direction from the floating gate to the injector causing a negative charge flow in the 

opposite direction of the electric field. If this electric field is strong enough negative 

charge penetrates into the floating gate across the injector: oxide. 

An erase operation is accomplished by grounding the control gate (Vpp) and 

applying a high voltage to the Vin1 terminal. As a result, a strong electric field is imposed 

across the tunneling terminal (from VinJ to the floating gate) causing a negative charge 

movement from the floating gate to the VinJ terminal; hence, removing electrons from the 

floating gate. 

Now that the basic functionality of an EEPROM has been explained, a more in 
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depth characterization is in order. 

As shown in figure II-10, EEPROM is consisted of a multi-conducting bodies in 

an isolated system. It should be obvious that presence of charge on one of the conductors 

will affect the potential of the others; therefore, the total charge at the :floating gate can be 

written as 

Equation II-34 

rearranging above and solving for the total voltage at the :floating gate terminal 

Equation II-35 

where 

Vt is the voltage at the :floating gate 

Qfloat is the total charge stored at the :floating gate 

For the write operation, ~n;O 

Equation II-36 

Equation II-3 7 

dQ float _ J _ ( v;un )2 -[ V:/J ] 
- - tun - -a. - . e __I!'!!_ 

df (nj t;nJ 

Equation II-38 

Where 
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t;nJ is the thickness of the oxide in the injector capacitor 

The same procedure results in a similar expression for the erase operation. 

Equation 11-39 

Equation 11-40 

V. =Y .. (l -~nj)- Qfloat 
tun m1 C c· · 

tot · · tot 
Equation 11-41 

Equation 11-42 

Equation 11-43 

Comparing Equations 11-39 and II-43 it is easy to see that in a given programming 

process, as the charge trapped in the floating gates varies, the tunneling current also varies 

in a nonlinear fashion due to the amount of charge already trapped on the floating gate. 

Figure 11-11 combines the two ideas presented in this chapter (Gilbert multiplier 

and EEPROM) to create a programfuable neuron with a finite resolution and long term 

charge retention [Holler, Aug., 1990f In this ar¥hitecture the tail voltage of each current 

sink is programmed through a close loop programming circuit. It was shown [Holler, 

Aug., 1990] that the output current is 

Equation 11-44 
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where 

Equation II-45 

AQfg ( . TT -TT -O) AV!i =-- assummg r;n1-rpp-
g C . 

tot 

AV1g is· the differential weight stored in each neuron 

AQ1g is the charged written/removed to/from the floating gate 

k is a positive constant 

A v;n is the differential input voltage . 

EEPROM 
CELL 

+ < 

1 ... I_ 

EEPROM 
CELL 

Figure II-11. The differential floating gate synapse 

Although, the above technique is an effective method of implementing a 

programmable Neuron, it consumes power and tend to be area consuming. 
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CHAPTER III 

ANALOG CAM 

.· Introduction 

Traditionally, recognition engines realized exact match by searching for a 

perfectly matched pattern [Grant, Sep., 1994, Perfetti,' Oct., 1990]. Then came the neural 

inspired system which decided· on an output based on the closest match [Johnson, 

·. Jalaleddine, Jun'., 1992]. · In this architecture the patterns were stored in a digital fashion; 

therefore, the content addressable memory (CAM) cells could only represent the patterns 

with a one or zero value (a binary pattern). To improve such system, this chapter proposes 

an ultra low power Content Addressable Memory device (CAM) which allows a greater 

information storage by storing the patterns in an analog fashion (analog pattern). 

First the function of the CAM cell. is discussed. Next, a piece-wise linear 

transistor model is used to derive a theoretical closed-form solution for the CAM. 

Furthermore, to prove the validity of · the model and the closed~form solution, the . 

theoretical results are compared with the simulation results. Finally, it will be shown how 

an EEPROM can be integrated info this proposed CAM architecture as a long term 

memory device. 
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A Pre-charged Based Content Addressable Memory (CAM) 

Figure 111-1 depicts the novel analog CAM cell. This architecture is based on two 

paths competing to reach a state which best represents the closeness of two input voltages 

(the input voltage ~n and the pattern voltage VreJ). Therefore, the main operation of this 

circuit is to determine how close the input voltage is to the stored pattern. 

v<*i 

Path A PathB 

' / 
precharge 

.. 

Vrer 

GND 

Figure 111-1. The Charge Based Analog Content Addressable Memory (CAM) 
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There are two operating modes in this architecture, precharge and evaluation. The 

process starts with precharging nodes VA and VB of the two competing paths. Once the 

precharge clock is low, the transistors MPA and MPB (PMOS) are both conducting while 

transistors MA1 and M81 are both off, preventing any DC current from the positive power 

supply (Vdd) to Ground; hence, charging nodes VA and VB to Vdd· The second phase is the 

evaluation phase when the precharge clock is high. At this time transistors MPA and MPB 

are both turned off while transistors M At and M 81 are on. At this point, a discharge path 

now exists form both nodes VA and VB to ground. 

Since the current through a transistor is primarily proportional to its gate to source 

potential (Vgs), the discharge current in each path is initially set by the input voltages V;n 

and VreJ(figure IIl-1). The higher these voltages the higher the discharge current through 

the corresponding paths would be. To further enhance the difference between the two 

paths, a pair of negative feed back transistors (cross coupled or inhibiting transistors) are 

included in between each path (MA and MB). Assuming, all of the devices match 

perfectly, if one of the paths initially conducts more current due to a higher input voltage 

(for instance, Vref in path A), the corresponding precharged node (VA) tends to fall at a 

faster rate than its counter part (VB in·path B ). As a result the fast falling node VA asserts 

a lower Vgs on the inhibiting transistor (MB) in the competing path (path B). Therefore, 

less current flows through this path (path· B) than the faster falling path (path A). 

Therefore, node VB falls at an even slower rate, asserting more Vgs on the crossed couple 

transistor MA. This condition forces even more conduction in·the path A while gradually 

turning MB transistor in path B off. Thanks to this negative feed back mechanism, the 

path with higher input voltage (path A) falls at a faster rate while inhibiting further 
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conduction in the competing path (path B). This process feeds itself until VA falls below 

the threshold of the inhibiting transistor in the path B (Ms). At this point the final steady 

state is reached. 

Figure IH-2 depicts another possible way of implementing the CAM cell. The 

difference between figure III-2 and figure III-1 is the location of the input transistors 

(MA2 and Ms2). Constructing the C.AM as shown in figure III-2 introduces a body effect 

due to the voltage drop across the drain to source of MA1 and MBI. This body effect is 

variable and changes as the discharging current changes in the corresponding path. This 

nonlinear effect c:auses the input transistors to mismatch which is not desired since the 

comparison between the inputs will not be fair. Constructingthe CAM as shown in figure 

III-I eliminates this body effect issue, making it more desirable. 

V: 

PathB 

/ 

Figure III-2. An Alternative Configuration of the Analog CAM 
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Large Signal Analysis 

Now that an overview of the CAM architecture has been described, a theoretical 

analysis is in order, but first a proper transistor model must be introduced. Generally, 

transistor models are presented in two ways, linear and nonlinear. The linear models 

assume a current linearly related to the drain to source voltage potential of a transistor in 

the triode region and a constant current in the saturation region (velocity saturation). 

These models tend to predict the first degree dependence of the transistor's current ID, the 

drain to source potential (Vds) and gate to source voltage potential (Vgs), Although, there 

is a discontinuity between these regions, this type of model works well for fast short 

channel digital circuit design. The second group models the non-linearities, such as the 

transistor behavior under electric field exerted by Vgs and Vds· Such models are used in 

precision analog circuit designs where these non-linearities influence the behavior of the 

overall circuit. For analytical calculation, a simple linear model is sufficient, since a 

more accurate result can be computed via numerical manipulations. The main objective 

of the analytical derivation is to provide the designer an insight on the behavior of the 

CAM cell by expressing the final result in a simplified manner. It will be clear that 

although the model . used is largely simplified, yet an · excellent agreement with the 

numerical results (HSPICE) is achieved. 

The model used is a piece-wise linear model introduced by [Johnson, Sep., 1991] 

Equation III-1 
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Gohm . vds' >- Gsat . (Vgs - VT) and vgs >- VT 

ID:::; Gohm. vds' 

Gohm . vds -< Gsat . (Vgs - VT) and vgs >- VT 

ID =0 

vgs-< vT 

Equation III-2 

Equation III-3 

Equations III-1 and III-2 imply no dependence of ID to Vds in the saturation region 

and a completely linear dependence of ID to V ds in the ohmic region. 

Closed-Form Solution 

It was pointed out that the CAM cell is a highly non-linear system. The incentive 

behind finding a closed-form is to approximate the CAM's behavior by a linear 

approximation method such that the system's behavior is still modeled the same, yet 

simplified enough to be able to predict the CAM' s behavior under any parameter 

variations. 

The key to a successful closed-form solution is to simplify the circuit as much as 

possible without jeopardizing the accuracy of the final result. Figure III-3 depicts the 

CAM cell with its parasitics. All of the parasitics to ground are lumped at the drain and 

source of each transistor, while the coupling capacitors are drawn as they appear in the 

real· circuit. These parasitics are assumed to be linear and not varying with the voltage. 
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Figure III-3. The CAM with parasitics 
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Where 

C =C +C +C +C 
A gd MPA bd MPA db MA load Equation III-4 

C =C +C +C +C Al gs MA bsMA db MAJ gdMA1 
Equation III-5 

C =C +C +C +C A2 gsMA1 bsMAJ dbMA2 gdMA2 Equation III-6 

C =C +C +C +C B gd MPB bd MPB db MB load Equation III-7 

C =C +C +C +C 
Bl gsMB bsMB dbMB1 gdMB1 , 

Equation III-8 

C =C +C +C +C B2 gsMB1 bsMB1, dbMB2 gdMB2 
Equation III-9 

Ctaad is the total load capacitance seen at the output of the CAM cell (It will 

be shown in chapter IV that this load capacitance is the total gate 

capacitance of an n-channel device connected to VA and Vs) 

The coupling capacitor CgdAS which is composed of the two drain to gate 

capacitors of MA and Ms ( CgdAB = CgdMA + CgdMB ), can be ignored since before the steady 

state voltage has reached, the two nodes VA and Vs fall nearly at the same rate which 

dVA - dVB 
implies dt - dt . Therefore, the total charge transfer between the two nodes 1s 

minimal. This is written as !iQ = CdAB · (dVA - dVs)::::; 0. This assumption is valid since 
dt dt 

the reg10n during which the final voltage is set, occurs before one of the coupling 

transistors (MA or Ms) turn off. During this period, VA, VBJ, Vs and VA1 nodes fall at the 

same rate, causing the charge transfer between any of these two nodes negligible. 

Minimal charge transfer with time means minimal current through the corresponding 
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capacitor; therefore, any current through these paths can be ignored without effecting the 

accuracy of the final voltage. Similar argument can be made for the CgsB and CgsA 

coupling capacitors. 

Further assumption is in regards to the regions of operation of each transistors. 

Using equations Iil-1 through III-3, it is possible to predict the exact region of operation 

of each transistor. It is assumed Gohm=G;at, since this model used already grossly 

approximates the transistor's behavior in the ohmic region (Johnson, Sep., 1991); 

therefore, the boundaries becoine 

vds >- (Vgs -VT) (saturation case) Equation III-10 

vds -< (Vgs - VT) (triode case) Equation III-11 

In the following analysis, it is assumed that· each transistor will stay entirely in the 

region that it spends the majority of its time during the evaluation period. For instance, 

initially MA2 and MB2 transistor's drain voltage are discharged to ground given the input 

voltages are greater than the threshold voltage of each input transistor. Once the 

evaluation starts and the transistors MArand MB] start conducting, each drain voltage rises 

to some voltage prior to· discharging back to ground. Depending on the input voltage, M,12 

and MB2 transistor can feasibly enter the saturation voltage for a short period of time, then 

enter the ohmic region again. As a result, these transistors operate in the ohmic region for 

the majority of the operating time. Therefore, in this analysis, MA2 and MB2 are assumed 

to be in the ohmic region over the entire evaluation process, since they can only be in the 

saturation region for a small period of time. 

Furthermore, CA1 is charged to a threshold voltage below the precharged node VB 
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( VA1 = Vdd - VT ) and the node . VA2 is discharged to zero ( assuming the. input voltage is 

higher than the threshold voltage of the input transistor). This implies 

Equation III-12 

where 

Substituting for J/pre an:d VAJ in equation III-12 yield V dd - VT >- vdd - VT . This 

implies that the transistor MA1 is marginally in saturation even at the instant the 

· evaluation mode commences. It is obvious that this transistor will fall out of saturation, 

much earlier than the rest of the traI1sistots. Therefore, it is safe to assume this transistor 

is in the ohmic region for the entire evaluation period. The same argument is valid for the 

MBJ transistor. 

The last set of transistors to consider are the MA and MB transistors. After the 

precharge period, both MA and MB are in saturation. During the evaluation process, one of 

the transistors starts to turn on harder that the competing transistor ( assuming V;n and · Vref 

are different). This process continues until one of the transistors is turned on very hard 

· while the competing cell is only marginally on. Eventually, the marginally on transistor 

turns off while the competing transistor stays on, until its drain decays to ground. The 

moment one of the transistors starts to turn off is the time when the two voltage VA and VB 

start separating and not fall at the same rate. Prior to this time, the gate and drain of these 

transistors fall at a rate such that the gate voltage of neither transistor exceeds its drain 
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voltage by more than a threshold voltage (i.e. VB >- VA - Vr ). This implies that both 

transistors stay in saturation until one of them starts to turn off. This insures that these 

two transistors are for the most part in the saturation region. Furthermore, since the 

parasitic capacitors CA1, CBI, CA2 and CB2 are smaller than CA and CB, and the falling rate 

of the voltage VA and VB is dominated by the combination of the larger capacitance CA, CB 

and the high impedance looking in to the drain of each transistor MA and MB, CA1, CBI, 

CA2, and CB2 can be ignored without effecting the final result. 

Figure III-4 depicts a large signal representation of the analog CAM. 

T t T 
GND 

GND 

Figure 111-4. Large Signal Model of the Analog CAM 

In this figure, transistors MA and MB are presented as voltage controlled current 

sources (VCCS) whose currents are controlled via the drain voltage of the competing 
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transistor (negative feedback). Transistors MA1, MBJ, MA2 and MB2 are modeled as 

resistors since these transistors spend most of their time in the ohmic region. Current 

through each of these devices is presented by a piece-wise linear model discussed at the 

beginning of this chapter (equation Ill-1 through equation 111-3). 

Once the evaluation mode begins; VA and VB are discharged at the rate set by the 

Where 

Equation III-13 

Equation III-14 

Equation III-15 

Equation III-16 

Equation III-17 

Equation m..:1s 

Equation III-19 

Rs=-1-+_1_ 
GBl GB2 

Equation III-20 

Ge.f!A is the effective conductance for the MA transistor 

GeffB is the effective conductance for the MB transistor 
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is the effective conductance for the MA1 transistor 

is the effective conductance for the MBJ transistor 

is the effective conductance for the MA2 transistor 

.is the effective conductance for the MB2 transistor 

These parameters will be discussed in detail later in this chapter. 

Substituting equation 111-13 and equation 111-14 into the equation III-15 and equation III-

16 for IDA and IDB yields 

Equation III-21 

Equation III-22 

Substituting for VAJ and VBI (equations 111-17 and 111-18) in equations 111-21 and 22 and 

arranging the result gives 

ldVA O ] 0 dt . . ..o cJ O dV, +[a, 
dt . 

Equation III-23 

Where 

Equation III-24 

Equation III-25 
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Solving the above differential equations for the time the current through the MA 

transistor is equal to zero, yields the final steady state value of the VA voltage. This 

voltage is expressed as follows {Appendix A) 

Equation III-26 

Using the same procedure, the steady state output voltage at the output VB is 

Equation III-27 

Where 

is the initial precharged voltage of the VA node 

is the initial precharged voltage of the VB node 

Equation 111-26 and 111-27 are the closed-from solutions indicating the final steady 

state voltage of each path. These expressions are simple yet able to predict the effect of 

any parameter variation on the final steady state voltage. 

To see how these equations predict the final steady state voltages, consider 

increasing the conductance of MA2- This decreases RA (equation III-19), which results in 
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an increase of the GA parameter (equation III-24). Assuming all the other parameters are 

constant, equation III-26 and III-27 predict that VAJ decreases while VBJ is not a valid 

solution. Hence, a closed-form solution which predicts the CAM' s behavior based on any 

parameter variation has been derived; 

Now that a closed-form solution has_ been found, proper conductance values need 

to be found. The idea is to adjust the conductance so that the simplified current model 
. . 

approxim~tes the more accurate non-linear current equation. This is done by equating the 

linear current equation to a more accurate non-linear equation. The conductance found 

using this method results in a first approximation. To fully' predict this parameter a fitting 

technique is suggested. This method will be discussed in detail, later in this chapter. 

First the input transistors' conductances are considered. It was concluded that 

these transistors are in the ohmic region; therefore, equation III-2 is set equal to the ohmic 

model [Johnson, ECEN 5263, Jan. 1997] as follow 

Where 

k·w P=
z 

k 

w 

l 

is the process parameter 

is the width of the device 

is the length of the device 
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According to the equation 111-29, the conductance of MA2 transistor (GA2) can be 

approximated by relating it to p · (V gs - VT) . This is accomplished by tal<lng the average 

gate to source voltage of this transistor during the evaluation region. Therefore, 

Equation III-30 

Where 

Equation III-31 

Vgs(O) is the initial gate to source voltage potential on the transistor 

Vgs(/inal) is the final gate to source voltage potential on the transistor 

is the fitting constant for the input transistors (MB2 and MA2) 

which will be discussed later in this chapter 

. Equation 111-31 suggests the averaging process is based on two points, initial 

voltage and· final voltage.· This technique results in a first guess approximating for the 

input transistors' conductance. Further manipulation .will be conducted later in this 

chapter to get the_ best fit. For the input transistors MA2 and MB2, the Vgs{O) and Vg;s(/inal) 

stay constant. Therefore,· according to the equation 111-31, Vgs_av=Vref for MA2 and 

Vgs_av= Vin for MB2, Substituting these parameters in to the equation 111-30 implies that 

Equation III-32 
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· Equation III-33 

Similar procedure is considered for the transistors MAJ and Mn1. The initial gate to 

source of these transistors are at zero volt, while their final voltage remains at five volts; 

V . . 
therefore, Vgs-av = ~a . Substituting this average voltage in the equation 111-30 yields 

· Equation III-34 

Equation III-35 

The same procedure can be used for transistors MA and Mn. Using the averaging 

concept, an average gate to source over the entire evaluation period must be found. As 

discussed earlier in this chapter, the initial gate to source voltage across these cross 

coupled transistors (MA or Mn) is equal to Vr ( Vgs (0) = Vr ). However, finding the average 

gate to source current in this case is not an easy task. The difficulty is finding the final 
. /. ·• . . -

gate to source voltage, Vgs(final), in equation III-31. Since this voltage can vary form Vr 

to V dd, there is no· single best value to choose for the final voltage. If the final voltage is · 

left as a parameter, equation 111-23 becomes a nonlinear differential equation. In case of a 

nonlinear set of equations, finding a closed-form solution for the steady state voltage 

requires a numerical solution which defeats the purpose of deriving a.simplified closed-

form expression; therefore, some other technique must be used. For the first 

approximation, the final voltage is chosen to be Vgs(final) = V; . To approximate the 
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conductance, the linear model in equation Ill-1 is set equal to the traditional saturation 

equation. This is an adequate approach for the first approximation since to fully define 

this parameter, a fitting technique is used. This method is described later in this chapter. 

Equation III-36 

Equations III-31 and III-36 imply 

v = vdd + vr 
gs_av 4 2 Equation III-37 

Equation III-38 

Equation III-39 

The fitting method employed, involves choosing the best conductance value 

which best fits the outcome of the closed-form solution to the simulation result (Matson, 

Oct. i 990). The fitting process starts by varying each of the fitting parameters in the 

equations III-32 through Ill-35, III-38 and III-39, until the best fit between the closed-

from solution's steady state result (VAJ, VBJ) and the simulation steady state result is 

achieved. Once these fitting parameters are found, the closed-form must yield similar 

results as the numerical solution (HSPICE), over all of the input range. The following are 

the parameters that best fit the closed-form to the HSPICE simulation 
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p 
G A2 = (V,.ef - VT) · -. 2 

- p G B2 - cv;n - VT) . -
2 

Equation III-40 

Equation III-41 

Equation III-42 

Above indicates that the averaging process is only used as an initial guess to the 

fitting process. Once the best fitting constant is achieved, that value is used in equations 

III-40 thro11gh III-42 to estimate the corresponding transistor's conductance. 

Furthermore, these conductances will reniain the same over the entire CAM process. 

To verify the validity of the above derivations, the closed-form solution's results 

are compared with simulation results. Figure III"'5 through III-10 compare the 

simulation's results which take all of the non-linearity of the system in to account, versus 

the close-form's results just derived from a simple linear model. 
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Figure III-5. CAM's Output VS. Input Voltage (Vre_Fl.5 Volts) 
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Figure 111-6. CAM's Output VS. Input Voltage{Vre..f-=2 Volts) 
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Figure III-8. CAM's Output VS. Input Voltage (Vref=3 Volts) 
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Figure 111-10. CAM:s Output VS. Input Voltage (Vre.f=4 Volts) 

The comparison ·is done as follow; first a reference voltage is set, then the input 

voltage is swept from 0.5 volts b.elow the reference voltage to 0.5 volts above it. As the 

input voltage gets closer to the reference voltage, the output falls to a lower value, until 

the inputvoltage is exactly equal the reference voltage. Once that happens the absolute 

minimum steady state output voltage has been reached. As the input voltage deviates 

away·from the reference voltage towards a more positive voltage, the output voltage gets 

larger. As shown in these figures, there is an excelle}J.t correlation between HSPICE and 

the closed-form solution's results despite all of the simplifications made. 

Above proves that the CAM is a nonlinear cell which recognizes whether or not 

its input is getting closer to the pattern stored. This is very similar to a neuron's behavior. 

Neurons are in nature nonlinear cells which recognize the patterns once they learn what 

they are. The learning process and memory retention are what determine how well the 

neuron is able to recognize the patterns. If the learning is efficient, chances that the 
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neuron makes a wrong choice is far less than an inefficient learning process. The CAM 

cell can be trained by storing charge on a floating device connected to one of the input 

transistors (MA2 or MB2) as shown in figure 111-11. The learning efficiency is determined 

by a combination of the amount of the charge transfer in and out of the EEPROM and the 

method of programming each cell. Programming each EEPROM has already been 

discussed; however, the method of programming each cell remains to be discussed in the 

next chapter. 

PathA PathB 

' / 
precharge precharge 

MA. M 8 • Ca· ._____.~~·I-.. ~ 
V,:p. 

V: .· 
re, -

GND 

Figure 111-11. The Analog CAM with Analog Memory incorporated 
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CHAPTER IV 

THKLEARNING PROCESS 

Introduction 

So far the main. components of the pattern recognition engine has been discussed. 

First, the old WTA circuit was introduced [Johnson, Aug., 1992] in chapter II, then the 

CAM cell was analyzed in chapter III. However, to structure the pattern recognition 

architecture, more controlling circuitry needs to be added. The objective of this chapter is 

to combine all of the pieces required to build a pattern recognition engine, and describe 

the programming and evaluation cycles in a detailed fashion. 

Architecture 

It is quite obvious that any transistor mismatch in the CAM cell will result in an 
. . 

erroneous result since. this cell is fundamentally based on RC delay of each competing 

path. Therefore, an architecture insensitive to process variations such as parasitic 

mismatch, edge effects, and threshold mismatch is required. The idea is to be able to 

program each cell so that device and parasitic mismatch have no effect on the overall 

result. Hence, a topology which programs the EEPROM through the same path as it 

evaluates from is essential. [Yong-Yoong, Jun., 1996] introduced such concept by 
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programmmg different EEPROM cells usmg a single amplifier. Through this same 

amplifier, the value of the floating .gate voltage just programmed is sent off-chip. Using 

this technique, during a, read operation, the output voltage becomes· independent of any 

process variations such as the input-offset voltage. Similar concept will be used to 

program information on each CAM cell. It will be shown that this topology manifests 

these process variations as a DC offset associated with each cell. Therefore, as far as the 

end user is concerned, there is no effect from process variation. This concept will be 

explained in detail once .the programming and evaluation modes are clearly understood. 

As discussed in chapter Ill, an analog. memory (EEPROM) is incorporated into 

. each CAM cell. To program these analog memories, high voltage circuitry [Yang-Yoong, 

Dec., 1994] must be used. Figure IV-1 depicts a 2x2 array of CAM cells with their 

corresponding high voltage circuitry. To program a single cell, one has to select the row 

and the column where the memory cell of interest resides. Doing so allows a high 

voltage potential across the floating gate of interest and its injecting gate. The rest of the 

cells have mid-voltage on at least one of their terminals; therefore, no programming is 

done on these cells since the electric field does not get high enough for any of the Fowler 

current to flow. The complete programming process of an EEPROM is explained in detail 

in [Yong-Yoong, Dec:, 1994]; however, in this thesis, the programming procedure of the 

CAM cells will be explained in detail. Moreover, a new approach is taken in 

implementing the high voltage circuitry. 
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Programming Process 

It was discussed in chapter II that any competitive classifier requires a 

discriminator to determine the closest match. It was also explained in chapter III that the 

CAM's performance is based on an RC delay concept; therefore, the capacitance loads 

seen by the two output of each CAM cell (VA and VB) is important to remain the same 

while in the programming and the evaluation mode. Furthermore, to program each CAM 

cell to the desired pattern, extra circuitry besides the discriminator circuit is required. To 

eliminate the need for this additional circuitry and to make sure that the CAM' s output 

sees the same capacitive loading whether in the programming mode or in the evaluation 

mode, the discriminator circuit is converted to a new circuit by applying an external 

signal called start_prog. Forcing this signal to Vdd indicates that the recognition engine is 

in the programming mode allowing the programming process to be monitored through the 

match line, where final evaluation is done from. This section describes how the 

discriminator circuit is set in to the programming mode, and how each CAM cell gets 

programmed. 

A winner take all circuit was chosen as the discriminator in this thesis. Figure IV-

2 depicts this circuit used both to evaluate and to program· each EEPROM cell. The 

programming process starts with the start _prog signal set high. Then, the corresponding 

row and column where the EEPROM cell resides need to be selected. For instance for 

demonstration purposes, lets assume the CAM cell located in the first row and first 

column is to be selected and a write operation is to be performed on it. To do so, the 

EEPROM connected to the CAMoo is selected by both column and row signals set to zero, 
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while So is set high. Doing so eil.a~les HVo to pass the high voltage [Yong - Yoong, Jun., 

1996]. Selecting the first columnturns the pull downs on the first column on ( through the 

Mn1 and Mn2 transistors) while the out put of the high voltage driver (HV2) is set to 

ground. This forces a high voltage potential across the floating gate connected to the 

CAMoo while the rest of the cells have mid-voltage potential across their terminals [Yong 

- Yoong, Jun., 1996]. This c~ilses the first match line (ML1) to be. controlled only by the 

selected CAM cell (CAMoo).·Furthermore, while programming, it is essential that non of 

the gate to source potential voltage of the transistors in the selected path vary except the 
. . 

Mc transistors. Doing so·ensures that the match line is only controlled by the output of the . 

CAM. As a result, while programming, any change · in the value of the match line 

indicates a change in the charge stored on the EEPROM connected to the CAM. 

Therefore, it is important that the feed back voltage does not contribute to the 

· programming process. This is done by disconnecting the feed back regulators from the 

feed back voltage (Mn1, Mn2 in figure IV-2) and connecting their gates Vdd which forces 

the feed back transistors in to the ohmic region. Once in this region, these transistors act 

like resistors connected to the source of Mc1 and Mc2, implementing a follower. To. 

. . . 

disconnect the feed back voltage from the regulating circuit, the start _prog signal (figure 

IV~2)needs to be asserted. 
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Once the CAM has reached its final steady state value, the corresponding CAM' s 

output voltage minus a gate to source voltage (Vgs) drop of MciJ is reflected on the drain of 

Mn1 (Vnij = VBij - Vgs_MCij) which sets the current drawn from the match line. To be able to 

measure this current, the p-channel current source (Mpci) is converted to a diode connect 

device, mirroring this current to another p-channel (Mpoi) device for measurement. This 

conversion is done once the start _yrog signal is set high. This whole process converts the 

CAM's output voltage to a proportional current. Figure IV-3 shows a single CAM cell 

under program with the WTA circuit in programming mode. 

v .... 
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0 

Meg L 
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Vin v. ... v"" w 
- E 

R 

WRITE SIGNAL 

. . . . ERASE SIGNAL 

Figure IV-3. An equivalent engine's diagram while programming a single CAM 
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For illustration purposes, suppose the pattern voltage that needs to be 

programmed, is some voltage Vref· Furthermore, it is assumed that there is no charge on 

the EEPROM. To program this cell from zero volts to Vref (a positive voltage) an erase 

operation must be conducted. To do so, high voltage pulses are applied to the injecting 

gate while the controlling gate is grounded. As more pulses are applied to the cell, the 

stored value increases to a more positive value. As this voltage increases towards the 

reference voltage, the CAM cell's output voltage drops. This process continues until the 

minimum output value is encountered, corresponding to a perfect match. Further 

programming causes the CAM's output voltage to deviate from its minimum to a higher 

value. Figure IV-4 shows this process. 

25 ------------------------'-~ 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Z3 

Nnba"dRugamilIJAises 

Figure IV-4. The Analog CAM under program 

As the programmed voltage on the EEPROM cell gets closer to Vref, the gate to 

source potential difference of the pull down device in the winner take all circuit (MciJ, 

figure IV-3) also decreases. This voltage is converted to a proportional current thanks to 
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this follower configuration (Mcif and Mnif)- Figure IV-5 superimposes an example of the 

output of the CAM cell and the corresponding current generated through the WTA 

circuit. 
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Figure IV-5: CAM's Output voltage and the corresponding match line voltage 

Looking at figure IV-5 from the 0th pulse to the 12th pulse, it is clear that as the 

programmed voltage gets closer to the reference voltage, the match line current decreases. 

Therefore, with every pulse, the present current measured is smaller than the previous 

one. As long as this is true an erase operation ought to be performed. The moment the 

· minimum current is reached, the programming process needs t() stop. 

Based on this behavior, the controller is to decide whether or not the CAM needs 

more programming while indicating the programming direction based on the behavior of 

the CAM. Once that has been established, this circuit will signal the high voltage circuitry 

to program the selected cell, in the appropriate direction [Yong-Yoong, Jun., 1996]. The 
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detail implementation of this procedure will be explained in the following chapter. 

Controller 

Knowing how the CAM responds to each programming pulse, a programming 

control circuit is proposed. During the programming process, the proposed controller is 

able to determine the programming duration and direction. This is done by recognizing 

the previous state at which the CAM had been i11, and compare it with the present state, 

then decide whether or not the CAM cell needs to be programmed. 

To built this controlling circuit, first the match line current generated by the 

configuration shown in figure IV-5, needs to be converted back to a voltage. This is 

accomplished by forcing this current through a resistor as shown in figure IV-6. Since 

this voltage is analog, to store the present and previous states, a sample and hold circuit is 

used. Then, these analog voltages are converted to digital level voltage using a high gain 

comparator (figure IV-6). These states are then stored in digital storage devices which are 

then fed in to a digital circuitry in order to decide the direction and duration of the 

programming process. A fix duration programming signal is asserted as long as the last 

state and the present states of the digital storage devices are the same. As soon as the two 

states are different, the programming signal is set . low; indicating a stop in the 

programming process. [Yong-Yoong, Jun., 1996] explains in detail how the direction of 

programming is determined; therefore, no more explanation is given in this thesis. 
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As shown in figure IV-6, this architecture consists of four major sub-blocks, high· 

voltage circuitry, an analog sampler, an analog to digital sample converter, and a digital 

logic circuit, determining the direction and duration of the programming process. The 
. . 

novelty of this architecture is in the samplers and the high voltage circuitry. To start the 

programming process it is important to know the starting state. The best state to start with 

is when there is no charge or a charge equivalent less than the threshold voltage of the 

floating gate transistor (MB2 in figure III~ I 0) exists on the floating gate. Once in this 

state, there is only one directiou that the EEPROM needs to be programmed which is in 

the erase direction. However, in siHcon implementation of EEPROMs, there might be 

positive charge trapped on the · floating gate. To ensure this charge. has been removed, a 

write operation on .the EEPROM must be conducted until the floating gate transistor is 

turned off. 

Assuming the EEPROM has no charge stored on it, the floating gate transistor is 

off; therefore, a precharge and evaluation operation will result in some high voltage at VB 

node while node VA discharges to zero. This ensures that one of the pull downs (MciJ) in 

the WT A circuitry is on; which sets the current through the corresponding match line. 

This current is converted to voltage (Vsampte) which is compared with the stored voltage on 

the capacitor at the negative terminal of the comparator (Cp in figure IV-6). If Vsample is 

larger than the stored value on Cp, the output of the comparator goes to a high state; 

otherwise, the output is low. Finally, the comparator's output is sampled at the end of 

every other evaluation cycle, respectively via sampling clocks smp/J and smpl2, on the 

two digital storage elements DFFA or DFFB. This allows a comparison between the 

· previous and present states. The program signal is asserted high if the two states are the 
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same; however, if the two are different, this signal is set low indicating a stop in the 

programming process. Prior to programming the CAM further, it is necessary to transfer 

the present state (V.ampte) to the sampling capacitor Cp. Doing so makes Vsample the previous 

state. This is done by an extra sampling cycle while not asserting a programming pulse to 

the EEPROM under program. 

To understand the complete process it is helpful to go through a complete 

programming cycle. Suppose the programming mode is an erase operation and the CAM 

has just been programmed with the JOth pulse (figure IV-5). The corresponding voltage 

(V.ampte) is compared with the value stored on the sampling capacitor (the output of the 9th 

pulse) and is· converted to ·the appropriate digital level using the high gain comparator. 

Prior to applying the next pulse, this·digital state is stored by a digital ·storage device such 

as a: DFF (DFFA in figure IV-7) using smp/i clock. Next, the analog voltage 

corresponding to the 10th pulse is stored on the sampling capacitor (Cp) prior to applying 

the 11th programming pulse. Once the 11th pulse is complete, the old state's voltage value 

(the 10th pulse) and the new one (the 11th pulse) are compared at the input of the 

comparator. If the previous voltage is larger than the present one, the comparator switches 

low; otherwise, the output is high. The outcome at this point is stored on the second DFF 

( DFFn, in figure IV-7) using smple2 clock,-indicating the present digital state. Since the 

two digital states are the same, the prograi:nming process continues. The programming 

direction is determined by a: separate circuitry which samples the output of the 

comparator every other cycle by the smple2 clock on DFF c (figure IV-7). It is easy to see 

that if the stored digital voltage is low on DFF c ( when the previous analog state is higher 

than the present one), the erase signal operation is asserted; otherwise, a write signal is 
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enforced. The same procedure is continued until the 13th pulse is applied. At this point the 

present state is higher than the previous state; hence, the output of the comparator is set 

low. This value is stored on the DFFA (using smp/1) which causes the program signal to 

go low. This stops the programming process, indicating a programmed cell. A detailed 

clocking of the programming scheme is shown in figure IV-8. 

COMP_ 

start_prog Snp/1 

ak 

-----1 
I I 
I I PROG >--------- I 

r---:1L-' I I 

----11 DFFa .,._ __ _. 

Figure IV-7. The Programming Pulse Controller 
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The sampling method that was just discussed must be offset free since any offset 

that exists in this portion of the path will be directly stored on the EEPROMs. However, 

it is well known that having a circuit free of any physical offset is impossible; therefore, 

techniques must be used to eliminate the effect of any offsets. These offsets attributed to 

many different sources, such as threshold mismatch, oxide variation, and edge effects. To 

eliminate such offsets, the technique shown in figure IV -9 can be used. This technique 

uses the well known auto-zeroing technique concept without an extra clock cycle. Once 

a voltage is sampled using this technique, any offset referred to the input is also stored on 

the capacitor. Once the next value is compared to the stored value, the stored offset 

cancels the input referred offset. 

Figure IV -9 depicts a comparator with an input referred offset modeled as a 

voltage source at its positive terminal. Please note that this offset is completely random 

and it could have a positive or a negative value and it does not effect the concept. 
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Figure IV-9. The Sampler 
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The sampling process starts with closing the switch. Once the switch is closed 

and the comparator is put in the unity feed back configuration, the input voltage is equal 

to 

where 

V;n+ is the virtual ground of the comparator 

AV is the open loop of the comparator 

. . 1 
Assuming AV>> 1 and-~ 0 

AV 

v;n+ = Vo 

Equation IV-1 

Equation IV-2 

Writing V;n+ in terms of the input voltage (Vsampte) and the offset voltage, 

v;n+ = ~ample - ~ffset Equation IV-3 

Substituting above in (?qlJ.ation IV-2 and solving for V0 gives 

~ = Vin- = Vin+ = ~ample - ~ffset Equation IV-4 

This is the voltage stored on the sampling capacitor ( Cp) at the end of each cycle. 

· Now assume the switch is open, the charge remains stored on this capacitor until the 

switch closes. In reality this capacitor leaks through junction leakage; however, its time 
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constant is much lower than sampling cycle; therefore, it is ignored. 

Now assume that a new voltage (Vsample new) is applied to the input of the 

comparator while the sampling switch is open. At this time, the output voltage can be 

written as 

Vo = [ ( Vsampte-new - Voffset ) - ( Vsampte _0 ,a - Voffset ) ] • A V Equation IV-5 

Equation IV-6 

Above indicates that offset voltage does not effect the final state of the 

comparator. This is an extremely important property of this architecture which allows 

programming each CAM cell without worrying about offset and mismatch issues in the 

sampling circuit. 

Initial Clocking 

As pointed out earlier in this chapter, it is important to ensure that the 

programming procedure starts from a known state; otherwise, cells can be programmed in 

the wrong direction or always be stuck in the starting state. It was also indicated that the 

programming sequence starts in the erasing mode. To do so, first the sampling capacitor 

Cp is discharged to zero, then the CAM cell under program is precharged. During the 

evaluation cycle this cell sets Vmmpte to a voltage higher than ground voltage causing the 

output of the comparator to go high. At this point both clocks sample1 and sample2 are 

applied simultaneously. Doing so causes the input of the XOR gate to have the same state 

causing the program voltage to be asserted (figure IV-7). At the same time, the output of 

73 



the DFFc is set to a high voltage enforcing the erase signal. From here on regular 

programming is assumed. Figure IV-10 shows the first period clocking scheme along 

with the regular clocking. 

Initial Cocking. 
1 

Regular Cocking ----
precharge 

sample_b __ _,_ ... u 
Li 

prog_~k _____ ..... rl~----~fl-~~-

sam p/e~"+·------~fl ______ _ 

sam ple~-----------rt_ 

Figure IV .,.10. The Complete Clocking Scheme. 

More Mismatch 

So far all of the programming and results were based on ideal and well matched 

devices. However, it is dear that in real life there is a variety of mismatches to be 

accounted for. These mismatches should be considered and quantified. Previously, it was 

assumed that the two paths in the CAM cell are matched. Furthermore, from the 

discussion in chapter III, it is obvious that any mismatch in the competing paths results in 

an erroneous result. It was also pointed out, while programming, the CAM' s response is 
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measured from the match line the point at which the CAM evaluates the pattern stored 

against the input voltage; hence, the error becomes irrelevant. The key point to remember 

is that it does not matter what the stored value is, as long as the CAM cell results in the 

best match when compared with the input pattern. 

As an example, assume the parasitic capacitance on one of the output nodes (CA or 

Cs) is smaller than the other, and the reference voltage (Vref) is set equal to the input 

voltage. In an ideal CAM cell, both paths decay at the same rate to about a threshold 

above ground (when both cross coupled transistors turn each other off). Now that there is 

a mismatch between the two paths, the path with the smaller capacitance decays at a 

faster rate. This difference gets enhanced in a hurry, thanks to the feed back mechanism 

(MA and MB), Therefore, the outputs do not decay with same rate anymore; rather, the 

path with the smaller capacitance decays to ground leaving the other path at some higher 

value. Figure IV-11 depicts a possible case that might happened. 
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Figure IV -11. CAM' s output vs. input voltage 
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Figure IV-11 assumes, due to the mismatch between the two paths, to store 2.5 

volts using this architecture, a 2.7 volts needs to be stored on the EEPROM. Obviously, 

this is not the intended value that was suppose to be stored. Now suppose the same 

location where the EEPROM had been programmed from, is. used to evaluate the stored 

value against the input value. As far as the CAM is concerned, a 2.5 volts matches 2; 7 

volts since a 2.S volts on one side and a 2. 7 volts on the other side results in a perfect 

match. That means, once the inptit is at 2.5 volts art exact match is encountered. This 

implies no matter what the offset is, the exact match is realized· if the stored value had 

been programmed through the same location.(as long as the nature of the offset does not 

change with voltage change). Therefore, this mismatch can be viewed as a mapping 

function that is transparent to. the end user. This is the most important characteristic of 

this . architecture which gives the designer the freedom to chose a very inexpensive 

process. 
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CHAPTERV 

THE HIGH VOLTAGE CIRCUIT 

Introduction 

The amount of charge transferred in and out of the floating gate of the EEPROM 

must be controlled while programming. Since thickness of the oxide varies across the die 

and from one wafer to the next, different voltage amplitudes might need to be applied to 

get the same charge flow in and out of different floating gates. This voltage can range 

from 14 to 25 volts which is quite high and in some cases (voltages higher than 16 volts) 

surpass the physical process limitations in most of the standard process. For instance, in 

the process under use (2.0u ORBIT Process), junction breakdown is around 14 to 16 

volts; therefore, regular circuitry with regular MOSFETs can not be used. Hence, 

techniques must be used to create a high voltage tolerant circuit. 

There have been numerous papers published on how to implement high voltage 

circuits [Donly, Pasternak:, Dec., 1986]. Some [Parpia, Dec., 1986] use special processes 

which can be quite costly; hence, a more cost effective solution is in order. Some [Parpia, 

Salama, Oct., 1988] use layout or circuit techniques to implement these devices. This 

chapter introduces a unique method to implement a high voltage n-channel MOSFET 

using · a regular process with no special doping or additional mask layers. First the 

existing layout technique is discussed, then the novel transistor is introduced. Finally, a 
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true high voltage driver is introduced and characterized. 

High· Voltage Transistor 

A regular transistor built in the 2.0u ORBIT process can only handle voltages as 

high as 14 volts on its source and drain and not more than 15 volts on its gate. It is well 

known that the drain/source of a regular transistor is.created by implanting highly doped 

N+ into a lightly doped substrate .. Where these materials contact each other, majority 

carriers cross the boundary leaving behind ionized atoms in a region depleted of free 

carriers. This simple charge depletion model gives a breakdown voltage of 

· &si 2 1 1 .· 
BV = -Ee (N + N ) , where Np, Nn are the doping concentration on the P and N 

2q p n 

sides of the junction, Ee is the maximum electric field that can exists across the depleted 

junction, and Esi is the dielectric constant of the silicon. To get highbreak down voltage 

(BV), low doping on both sides of the junction is best. However, changing doping is not 

an appropriate solution since it requires a special mask in the fabrication process and adds 

cost. 

The next issue to consider is oxide break down. In a regular transistor the oxide 

formed between the gate and the channel is a thin oxide with maximum gate break down 

voltage of approximately 15 volts. Moreover, if the voltage potential difference between 

the gate and any other terminal ( drain, source or body) exceeds this voltage the oxide will 

breakdown. 

78 



Figure V-1 depicts the cross section of a high voltage n-channel transistor 

introduced in [Parpia, Dec., 1986]. This transistor is essentially the same as a regular 

transistor with a different drain implementation. The transistor employs a layout 

technique to increase both the PN junction break down voltage as well as increasing the 

gate to drain oxide breakdown voltage. The PN junction breakdown is increased by 

surrounding the highly doped diffusion by a lightly doped N type material (N-well) which 

increases the effective resistance from drain to channel and substrate. Furthermore, this 

device is able to handle a high voltage potential between gate and drain thanks to the 

thick oxide in between these two terminals. 

Source <?ate Cran 
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Figure V-1. An Extended Drain Transistor 
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The above topology is adequate yet does not implement a true high voltage 

transistor. To use this transistor as a high voltage pass transistor, one has to make sure 

the gate to source voltage does not exceed the thin oxide break down voltage; therefore, 

extra circuitry is required to control the gate to source voltage. A true high voltage 

transistor must endure high voltage both on the source and drain side while being able to 

sustain high voltage on the gate. Such transistors can be used toimplement high voltage 

EEPROM drivers as discussed in [Yong-Yoong, Dec., 1994] with much higher break 

down voltage. 

A Complete High V olfage Transistor 

Figure V-2 depicts the side view of the proposed transistor. This transistor is 

designed so that all of its terminals can tolerate a high voltage potential. Both drain and 

source are implemented by surrounding the highly doped material ( N+ ) with a lower 

doped material ( N-well ) in order to increase the breakdown voltage to a much higher 

voltage. In order to be able to sustain high voltage on the gate, thick oxide has been used. 

To create thick oxide underneath the gate, a clever layout trick is implemented. It is 

known that once a poly layer overlaps active area, a thin oxide is created. Therefore, to 

prevent creating thin oxide it is made sure that the gate never overlaps the active area (as 

shown in figure V-2). Now that the gate thickness is roughly 15 time more than a regular 

gate thickness a much higher voltage can be applied to the gate before the oxide breaks 

down. 
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Figure V ,..2. A Complete High Voltage Transistor (Field Transistor) 

So far all terminals can handle high voltage; however, the threshold voltage for the 

channel formation is still extremely high (15 to 20 Volts). The reason for this high 

threshold voltage is the field implant layer which increases the doping in the substrate 

area underneath any thick oxide layer. This is a necessary step during fabrication in order 

to prevent field inversion by any voltage applied over the thick oxide. As a result, an 

extremely high voltage is required to invert these areas. Blocking the field implant layer 

underneath selected areas reduces these region's doping. By selecting the intended 

channel area not to be heavily doped, the effective threshold drops to a much lower 

voltage; therefore, making it possible to form channel at much lower voltage. Figure V-3 

depicts the top view layout of the proposed device. 
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Figure V-3. Top View Layout of the complete High Voltage Transistor 
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Silicon Results 

The proposed high voltage device was fabricated in the 2.0u ORBIT process. This 

device can sustain up to 100 volts on its drain or source, while handling up to 100 volts 

on its gate. Figure V-4 depicts current versus the drain to source (Vds) voltage potential 

for different gate to source (Vgs) potential. 
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Figure V-4. The Current vs. Drain to Source Voltage Potential Curve 
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Field Transistor's Threshold Voltage 

In a standard process, formation of the thin oxide is always followed by a 

threshold adjust mask to precisely control the doping underneath the thin oxide (the 

doping in the channel). This step is an extra channel doping step which sets the threshold 

to about one volt. Without this step, there is no channel doping, causing the threshold to 

be approximately equal to zeto volt (the threshold voltage of a native transistor). In case 

of the extended drain device, as in the regular transistor's case, the gate is self aligned 

forming a thin oxide under the gate; hence, followed by the threshold adjust step. As a 

result, this device has a threshold equivalent to that of a regular transistor in the same 

process. However, as explained earlier in this section, the oxide formed underneath the 

gate of a field transistor is a thick oxide. It is also explained that the threshold adjust 

mask is applied only where thin oxide has been formed. Therefore, due to the lack of the 

thin oxide formation underneath the gate area of the field transistor, there is no channel 

doping adjustment to maintain a higher threshold for this transistor. As a result, the 

threshold voltage for this device is approximately equal zero volt (the threshold of a 

native transistor). 

Figure V-5 depicts the drain to source current versus gate to source voltage 

potential of the field transistor with different body to source. voltage potentials. It can be 

concluded that the threshold voltage of this device is approximately 0.1 volts for VBs=O. 

Clearly, this threshold is well below that of a regular transistor; therefore, it requires 

careful biasing of the FET. Another way of increasing the effective threshold voltage for 

such device is to increase its body to source voltage potential. 
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Figure V-5. Oscilloscope plot of the Drain to Source Current vs. The Gate to Source 
Voltage Potential 

Numerous samples were tested to ensure that the field transistor is notleaky. This 

test was done by setting the gate to source potential to zero while increasing drain to 

source potential voltage to 100 Volts. The current through these field transistors were 10 
. . . . . . 

to 15 pAmps. This implies that the proposed field transistors are not leaky even though 

the threshold is small. 
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Layout Precautions 

The first precaution is to completely isolate this transistor from any adjacent 

device. That is done by creating a closed loop ground shield around the high voltage 

device. This ground shield helps to prevent any floating charge to get in to the substrate 

causing noisy environment or possible. latch up. There are a number of ways to implement 

the ground shield. Guard ring is the best way of implementing such shield; however, this 

technique can increase the total area required by the transistor. To reduce the area 

required, a metal or poly II loop shield connected to ground can be used. Although this 

type of shielding is not as robust as the guard ring, it allows a significant decrease in the 

total area while effectively prevents any floating charge to escape the enclosed area. 

Due to the low threshold in this device, extra care must be taken in order to 

completely control the channel behavior. Failing to do so could result in a leaky 

transistor. Specially, care should be taken when the gate is off (at ground potential) and 

the voltage potential difference between drain to source is a high voltage. In this 

scenario, due to the high electric field and low threshold voltage the channel could turn 

on if the gate does not completely block the channel. In order to make sure there are no 

leaky paths, the gate must completely cover the entire channel. This is done by extending 

the gate over the complete channel and over the shield as shown in Figure V-6. This 

ensures that the channel is completely off and no path is formed between drain and source 

due to extensive electric field across the channel. 
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Figure V-6. Top View of the High Voltage Transistor with Ground Shield 
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High Voltage Driver 

[Yong-Yoong, Dec., 1994] proposed a circuit capable of passing three different 

high voltages; however, it can not sustain voltages above the P-N junction break down 

voltage. To get aroqndthis problem, the circuitry in figure V..,6 is proposed. 
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Figure V-7. A High Voltage Driver 
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Like [Yong-Yoong, Dec., 1994], this circuit is able to pass three different voltage 

levels, high, mid and zero volts. To sustain high voltage, both types of transistors 

discussed in this chapter are used. The pass transistors in the middle (Mno and Mn1) must 

sustain high voltage both on their drains and sources; therefore, a field transistor must be 

used. The rest of the transistors need to handle high voltage only on their drains; hence, 

they are made of extended drain transistors. Similar to the high voltage transistors, the 

resistors also need to sustain the high voltage potential difference between any section of 

the resistor and the substrate. Therefore, the resistors are made of N-well material due. to 

the high breakdown voltage between N-well and substrate. 

To pass high voltage, logico and logic1 are set to ground and logic2 is high. This 

allows node A to rise to the high voltage, allowing the node Vaut to rise to the high 

voltage minus the Mno's threshold. To pass the mid~voltage logic0 and logic2 are forced 

to ground, while logic1 is forced high. This drives node B to the high voltage while 

forcing output Vaut to the mid-voltage. Finally, Vaut is forced to ground if logico, logic 1 

and logic2 are set high. 

This circuit was fabricated in a 2.0u ORBIT process. Vaut was able to drive the 

scope probe load (15 pF) up to 80 volts. The average rise time was 5 Usec while the fall 

time was 1 Usec. 

Although this circuit consumes DC power, it can reliably handle an extremely 

high voltage. The point to be careful about is to make sure transistors Mno and Mn1 are 

completely off when they are not suppose to be operational. This concern is risen due to 

the low threshold of these devices. While passing high voltage and mid-voltage, the low 

threshold is not an issue since Vaut is at some high voltage, turning off Mn1 or Mno 
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accordingly. However, the problem arises when Vout is equal to zero. At this point, if any 

of the two field transistors leak, Vout tends to rise to a voltage higher than zero unless the 

pull down current is much larger than these leakage currents. Therefore, the pull down 

transistor Mn2 is sized so that it sinks much larger current than any leakage current from 

the field transistors. 

This driver was used to program several EEPROM cells fabricated in the 2.0u 

ORBIT process proposed by [Yong-Yoong, Dec., 1994]. As discussed in chapter II, the 

EEPROM'sresolution is determined by the amount of charge transferred in and out of the 

floating gate. It was also discussed that the amount of charge transferred on each pulse 

depends on pulse amplitude and pulse duration. The shorter the pulse duration, the 

smaller amount of charge is added to or removed from the floating gate; hence, a higher 

resolution is achieved. The goal was to determine the pulse .duration and amplitude 

which results in the minimum observable charge transfer in and out of the floating gate. 

To do so, the EEPROM cell was connected to the gate of an n-channel device as shown in 

figure V-8. 

Svc/ts 

A1p1ete, - ~ 

vinj 

= 1 -i = 

• < FloeErgGa<e 

Figure V-8. Ann-channel transistor incorporated with an EEPROM cell 
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In order to program the_ EEPROM cell a high voltage pulse on either Vpp or the Vi,u 

is applied while the rest of the terminals are grounded. After appiying the high voltage 

pulse, all of the terminals are grounded. With these terminals at the ground potential, the 

effective voltage on the gate is the amount of charge trapped in the floating gate. This· 

charge transfer can be viewed as a change in the effective threshold voltage of then

channel transistor. Therefore, any shift in.the effective threshold, will cause the drain 

current (ID) through the n-channel to vary. For instance if a write operation has occurred, 

the effective voltage increases, causing less current to flow through the n-channel 

transistor. On the other hand if an erase operation has occurred, the threshold shifts in a 

positive direction, causing more current to flow through the n-channel transistor ( chapter 

II). Therefore, by measuring the current flow through the n-channel transistor prior and 

after each high voltage programming pulse, it is possible to find the optimum high 

voltage programming pulse shape which results in the minimum observable change in 

this drain current. After programming several EEPROMs, the optimum pulse duration 

was found to be 200u seconds. Furthermore, for the erase operation with the pulse 

amplitude of Vin1=I I volts, the minimum observable current change of 0.8u amps is 

achieved. While for the write operation, and Vpp=l 5 volts, the minimum observable 

current change is equal to I u ,a.Illps. The significance of the minimum observable change 

will be discussed in the later chapters. 
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CHAPTER VI 

THE WINNER TAKE ALL CIRCUIT 

Introduction 

There are numerous architectures proposed on how to implement winner take all 

(WTA) circuits. Some [Ugur;Mar., 1993, Yuping, Mar., 1993] suffer from the increasing 

size and the interconnect complexity as the number of match lines increase. This increase 

is usually of O(N2) complexity. An example of such architecture is the pull down 

inhibiting circuit discussed in chapter II. The increasing size.clearly puts this architecture 

at a disadvantage. 

To get around this problem a winner take all of O(N) complexity was introduced 

by [Lazzaro, 1989]. However, this circuit is limited in its ability to find the best match 

even when perfectly matched transistors are used. A more elegant architecture followed 

[Johnson, Jalaleddine, Jun., 1992]; however, as used in this architecture, the WTA's 

performance was limited by the resolution of digital CAM cells. To utilize the fine 
. . 

resolution of this WTA architecture, it seems only logical to incorporate it with an analog 

device which distinguishes between the input .· and the stored pattern with a higher 

resolution than the standard digital CAM. The key objective of this chapter is to 

investigate the behavior of the WTA introduced by [Johnson, Sep., 1991] incorporated 

with the analog CAM described in chapter III. 
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First the functionality of the circuit is explained. Then a closed-form solution is 

found for the steady state voltage which enables the designer to predict the behavior of 

this circuit based on any parameter variation. Furthermore, the CAM's closed-form and 

the WTA circuit's closed-form will be combined to characterize the behavior of the 

whole system with respect to the input voltage difference. Finally, the closed-from results 

will be compared with the simulation results to prove the closed-form solution's validity. 

Winner Take All 

Figure VI-I depicts the simplified WTA circuit in the evaluation mode. Each 

match line is connected to· a follower circuit whose source is connected to a common 

node (VJ). This node is used as a global feed back which regulates all of the match lines 

using a feed back network. The feed back circuitry consists of a series of transistors (Mn) 

whose gates are controlled by the feedback node ( VJ) and their drains are connected to the 

corresponding match lines through other pull down transistors (figure VI-I). 
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Figure VI-1. The WTA circuit in the evaluation mode. 
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In this architecture, the match line with the least pull downs (Mc transistors} 

turned on, holds the highest voltage compared to the rest. This line which is connected to 

the gate of a follower will cause the common node's voltage (VJ) to rise. For the already 

losing match lines (the lines with more pull down transistors on), this feed back voltage is 

higher than norm~ly required; therefore, pulling more current through the corresponding 

pull down. transistors, causing these match lines to fall towards ground. Eventually, 

depending on the degree of the mismatch between the pattern and the input voltage, the 

match line with the highest voltage (winner) causes all of the. competing voltages to 

reduce to a low voltage (the losers) while it converges to a higher value. This scenario 

happens only if there is a clear winner, that 1s if there is much more mismatch in the 

competing lines versus the winner. 

To accurately predict the behavior of the circuit and its overall performance, a 

closed-form solution is required for the steady state output voltage. To get a closed-form 

solution a model different from the one used in chapter III is used. It was shown in 

chapter III that the crossed couple transistors dominate the final steady state value result. 

Furthermore, it was concluded that these transistors are in the saturation region for the 

entire evaluation process while only the input transistors were in the ohmic region. 
. . ·. . 

Therefore, it was most important that the model characterizes the saturation region better 

than the ohmic region; However, in deriving the a closed-form solution for the WTA 

circuit, it will be shown that the region of operation for the feed back circuit has a great 

influence in determining the final steady state of the match line. Therefore, it is essential 

to predict the behavior of this circuit in each of the operating regions; hence, one can not 

get away with the crossly simplified model used for the linear region in chapter ill. 
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Unlike the model used in chapter III, this model includes the effect of the gate to source 

potential on the drain current of a transistor in the ohmic region. While in the saturation 

region, it is assumed that the transistor has effectively reached velocity saturation limit 

where the drain current is no longer dependent on the drain to source voltage. 

Furthermore, while in the ohmic region, the drain to source voltage is small enough so 

V 2 . 

that the ; term in the ohmic region equation can be neglected. These assumptions are 

necessary to be able to get a closed-form solution since the conventional nonlinear 

equations result in complex equations that are either too complex or are only solvable 

through numeticaLmethod (HSPICE). The goal is to derive.a simple closed-form solution 

that will predict the behavior of the circuit as close as one can achieve without using any 

numerical methods. 

The ohmic and velocity saturation limit model used are as follow (Johnson, 

ECEN 5263, Jan. 1997): 

where 

K= µ·Cox 

w 
/J=K·

l 

Equation VI-1 

Equation VI-2 
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Vmax 

µ 

is the oxide capacitance per unit area 

is the carrier saturation voltage and is equal to v · !_ 
max µ 

is the maximum carrier velocity 

is the low field inversion layer mobility and assumed to be constant 

VDsat · is the drain to source voltage at which the velocity saturation limit is 

achieved 

WTA's Closed-Form Solution 

To find the closed-form solution, it is assumed that there is a single "winner" 

match line which is the closest match and all of the competing ''loser" match lines are 

pulled low enough so that there is no contribution from these lines to the. follower 

voltage. Furthermore, the stored pattern in the winner matches the input pattern except for 

a single pixel (one CAM). As shown in the figures 111-5 through 111-10, the steady state 

output of the CAM can vary between one to five, volts. In case this voltage is much larger 

than the threshold of Mc (figure VI-1), the transistor Mn is entirely in saturation region. 

However, if this voltage is approximately equal to the M/s threshold voltage, Mn is in the 

ohmic region. Therefore, the feed back transistor Mn· can potentially operate in two 

different regions depending on the output of the CAM. The p-channel transistor (Mpc) 

which acts as a current source during the regular operation, is assumed in the ohmic 

region when the CAM' s output voltage is approximately the same as the threshold 

voltage of the Mc transistor.· This is an appropriate assumption since the pull down 
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current is much less than the pull up current provided from the p-channel current source. 

This forces the match line voltage to approximately 5 volts; therefore, forcing A/pc in the 

ohmic region. The follower transistor M.t and transistor Mc are always in the saturation 

region since their gate voltage never exceeds their drain voltage by a threshold. The 

transistor Mt is always in the ohmic region by design. 

To start, it is assumed that the CAM's output is approximately equal to the Mc 

transistor's threshold; therefore, Mp, Mn and Mt are in the ohmic region while the rest of 

the transistors are in the saturation region. Using this as a starting point, the closed-form 

solution will predict the change of operating region as the drain to source voltage of each 

transistor passes the boundary regions (VDsa1). 

Summing all of the currents in and out of the winner match line (figure VI-1) and 

the common node 

dV n 
C . -~=/3, ·(V -V. -V, )·(V -V )-'°'a ·V ·(V -V -V,) mw dt p dd bras Tp dd mw ~n a, a:on1 nw1 1J 

Equation VI-3 

Equation VI-4 

Equation VI-5 

Where 
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~am, output of the ith CAM cell at the steady state (VA1or Vn1) 

n is the number of mismatch in the winner match line 

Vmw is the voltage of the winner match line 

Vnw is the drain voltage of the feed back transistor in the winner 

match line 

Vj is the global feed back voltage 

Cmw is the total capacitance on the winner match line 

Cnw is the total capacitance on the drain of the feed back transistors 

in the winner inatch line 

Ci is the total capacitance on the feed back node 

Viias is the bias voltage on the gate of the p-channel transistors 

PP is the f) of the A/pc transistor 

Pn is the f) of the Mc transistor 

Pi is the f) of the Mz transistor 

/31 is the f) of the Mjtransistor 

Vrn is the threshold voltage of the transistors Mn and Mz(transistors 

with no body effect) 

VrJo 

v1J 

is the threshold voltage of the transistor Mc (transistor with 

body effect) 

is the threshold voltage of the follower transistor Mj(transistor 

with body effect) 

is the carrier saturation voltage for all of the pull down 
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n-channel devices 

is the carrier saturation voltage for follower 

n-channel devices 

Let 

Once the steady state is reached, the AC current no longer exists resulting the following 

n 

O=G0 ·(Va1-V,,,.J-L,8,i ·Vai ·(V~ -Vnw, -Vv) Equation VI-6 
i=l 

Equation VI-7 

Equation VI-8 

Manipulating the above equations and solvingfor VJ, Vnw and V mw in terms of the 

CAM's output voltage (Vcam) results (Appendix B). 

I . 
V =-·[-B-.JB2 -4·A·C] 

1 2·A 

Equation VI-9 

Where 
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A = -2 · G · (/J, · V + G ) a 'f cf b 

B = [- 2 · a · V · V +(2 · a · v; - G ) · V + 2 · G . (V - v; + v; )] . V . fJ, /Jn en cam ', .· /Jn 1J a . en a dd 1Jo Tn cf f 

+(2.v; -·V )·G ;G .· 
Th en a b 

Equation VI-10 

V = (Ga,(Vmw-Vaa) 
nw 2 • p n , ( - V f + V Tn ) 

Equation VI-11 

Equation VI-9 suggests .as the Vcam increases (in parameters B), the feed back 

voltage VJ drops. At this point, M,:, is in the triode region and looks like a variable resistor 

whose value is controlled via its.gate to source voltage (VJ). As VJ-drops Mn's impedance 

gets larger; therefore, less current is being pulled from the match line. This causes the 

drain voltage of this transistor to rise. 

To better illustrate how well the WTA circuit works, it is essential to find the 

loser voltage. As mentioned earlier in this section, it is assumed that the loser voltage 

does not contribute to the feedback voltage (VJ) since the follower transistor connected to 

the loser match line assumed to be in the cut off region. Therefore, Equation VI-9 remains 
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the same while deriving an expression for the loser voltage. In the case of the loser 

voltage, the p-channel current source is in the saturation region since it is assumed that . 

the loser match line is already at a ·voltage below the threshold voltage of the follower 

transistor Mfi, Furthermore, the input transistor to the WT A circuit, Mc, is also assumed 

to be in the ohmic region. The last transistor to consider · are the feed back transistors 

which can operate in both operating regions. Like the derivation for the winner match 

· line, it is further assumed that only one of the pull downs in the loser match line is on. 

This corresponds to a single CAM mismatch in the overall loser pattern. It is also 

assumed that this mismatch(Vcamt) is much larger than the mismatch in the winner match 

line. With these assumptions, the currents through the loser match line are 

n, 
0 = Ga - Lf3n · (V wm1; -Vn1; - Vv) · CVm1; -Vn1;) Equation VI-12 

i=l 

Equation VI-13 

Where 

is the number of the mismatch in the loser match line 

is the drain voltage on the ith feed back transistor in the loser 

match line 

Vmti . is the voltage of the ith loser match line 

Vcamli is the input to the ith pull down in the loser match line 

Manipulating above equations, the loser voltage is as follow 
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Equation Vl-14 

Equation VI-15 

Equations VI-14 and VI-15 implies that the .loser match line voltage is 

predominately controlled by the global feed back voltage ('1-) which is what is expected. 

When the drain to source voltage of the feed back pull down transistor (Mn) 

crosses its VDsat voltage, it changes its operating region from the ohmic to the saturation· 

region. The input voltage at which this happens can be quantified by solving for the input 

voltage to the WTA circuit (Vcamc) when the drain to source potential on the feed back 

voltage eqlials the VDsain- This voltage is equal (Appendix ij) 

-V 2 ·A-d-V ·b V = Jc Jc 
came c+V ·a 

Jc 

a= -2 · V · V · R ·P · en cf 1-'n f 

b = (2·Vrn -Ven)·Ga ·Gb +(Vdd -V1Jo +Vrn)·2·P1 -~! ·Ga 

+ 2. P1. vef. ~n. (Ga+ P1. V71) 

c = -a· Vrn 

d = (2. VTn - Ven). P1. Ga. vcf. VTfo 

+((-2VTn + ~n)·Vdd ·fi1 ·Ga -:--2·~n ·fin ·V71 ·Vrn ·fi1)·Ven 
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Where 

Vcamc is the CAM' s steady state voltage which the feed 

back transistor 

leaves the ohmic region and enters the saturation region 

is the feed back voltage exerted on the gate to source of the 

feed back vqltage at the point where it leaves the ohmic 

region and enters the saturation region 

Below· is the set of equations when the feed back transistor changes its operating 

· reg10n. 

n 

. O=Ga·(Vtt1-Vmw)-L,8,i·V01 ·(Va1111; -Vnw; -Vv) Equation VI-17 
.. i=l 

Equation VI-18 

Equation VI-19 

Equations VI-17 · indicates that Mn is operating in the saturation region. while the 

rest of the transistors remain in their previously assumed regions. Solving for the VJ; Vnw, 

and V mw in terms of Vcam yield. the following 

_ [(vdd -VTfo)·Ga +2·Pn ·Ven ·Vrn}P1 ·Vef 

V fs - [ (P 1 · vef + G b ) • Ga + 2 · Pn · Ven · Pt · vef ] 
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Equation VI-21 

Equation VI-22 

Equations VI-20 and VI-21 indicate, once the Mn transistor is in the saturation . . 

. . . 
region, the outcome of the WTA (Vmw) is no longer dependent on the output of the CAM 

cell (Vcam), At this point, the pull down current is set by the gate to source voltage 

potential (VJ) of the feed back transistor (Mn), 

Equation VI-16 · suggests when Vcam exceeds Vcamc, the feed back transistor leaves 

the ohmic region and enters the saturation region. Therefore, as long as Vcam is less than 

or equal Vcamc, equations VI-9 through VI-11 are valid, as Vcam passes Vcamc, equations VI-

19 through VI-21 become valid. 

Now it is time to check the validity of the closed-form solution by comparing the 

theoretical against the simulation results (HSPICE). This will indicate how closely the 

closed-form solution predicts the actual behavior of the system. 

As indicated while deriving the dosed-form solution, it is assumed ~at there is 

only a single mismatch between the input and the stored pattern. Like the closed-form, 

HSPICE suggests that the circuit starts with the Mn transistor in the ohmic region. As Vcam 

increases, more current sinks through this path as long as Mn is in the ohmic region. This 

causes the match line to fall and the feed back voltage to follow, causing the Vgs of the Mn 

transistor to drop while its drain to source potential increases. 
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Once Mn starts operating in the saturation region, the Mc transistor is no longer 

setting the pull down current directly. This current is now set by the gate to source of Mn 

(Vj) and is independent of Vcam; therefore, the match line does not vary with Vcam any 

more. This concept is shown in figure VI-2 through VI-3; however, the point where this 

voltage becomes flat(whenMn is in saturation) is different from the closed-form solution. 

This is expectedsince the closed-form solution ignores the pinch off region and models 

transistors with drain to source voltage greater than VDsat in the velocity saturation region. 

Despite this assumption the closed-form solution correlates with HSPICE result. 
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Figures VI-2 and VI-3 clearly show the nonlinear characteristics of the results 

found by the simulator versus the closed-form solution. Besides the obvious difference 

between the model used in this chapter and the conventional model [Meta-Software], 

issues such as dependence of the mobility on the gate to source potential, accurate 

estimation of the threshold and.its body effect are some of the major contributors to these 

nonlinearities. In deriving the closed-form solution, these. effects were ignored for 

simplicity; otherwise, obtaining a close-form solution would be extremely difficult if not 

impossible. 

To further characterize the closed-form solution, the loser match line voltage 

found using the closed-form solution is compared against the results found from the 

simulation. As shown in figure VI-4, the closed-form solution also agrees with the 

simulation results. 
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Figure VI-4. Theory vs. Simulation for the loser match line voltage 

So far all of the pieces of the recognition engine has been introduced. Furthermore, it was 

shown how different patterns are stored on each CAM cell while the recognition engine 

107 



is in the program mode. After storing the desired patterns on each CAM cell, the engine is 

ready to evaluate any input test pattern against the stored patterns. Next section describes 

this evaluation process 

Evaluation Mode 

Figure VI-5 depicts the complete recognition engine while in the evaluation mode. 

The evaluation mode is performed once an of the CAM cells have been programmed with 

the desired patterns. This process compares all of the stored patterns against the input 

pattern in a parallel fashion. At the end of a this cycle, the match line with the highest 

score eliminates the competing match lines (given there is enough mismatch in loser 

patterns). 

Prior to the evaluation cycle, the start _prog signal is set low which puts the WTA 

circuit in the evaluation mode. Meanwhile, all of the columns are selected enabling all of 

the pull down transistors (Mn). At this point the WTA circuit acts as a discriminator. 

Next, the test pattern is applied to the inputs, then the precharge signal is applied globally 

to the chip precharging each of the CAM ceH's output nodes (VA and VB) to Vdd· The 

evaluation process commences, once the precharge clock is set high. During this 

evaluation cycle, any mismatch between the pattern and the input value, causes the 

corresponding pull down transistor to be on. For instance if there is a mismatch between 

the pattern in the CAM cell in the first row and the first column (CAMoo), the 

corresponding pull down transistor Mn will be on. Moreover, the strength of each pull 

down is determined by the degree of the mismatch between the stored and the test pattern 
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since the gate voltage of each pull down is controlled by the output of the corresponding 

CAM cell (VA and VB). In the above example, if the input and the stored pattern in CAM00 

are mismatched by 0.5 volts, the output of this CAM cell (VA or VB) settles to a higher 

voltage than if the inputs mismatched by 0.1 volts (VA1and VB/in figure 111-5 through 10). 

Therefore, the latter case exerts a smaller gate to source voltage (Vgs) on the 

corresponding pull down transistor (Mnoo). Hence, the closer the pattern is to the input 

value, the lower the output voltage of the CAM is; as a result, the weaker the 

corresponding pull down transistor is turned on. 

Furthermore, the more number of mismatch there is between the test and the store 

patterns in the entire match line (more mismatch CAMs), the more pull down transistors 

are on, causing more current to sunk from the corresponding match line. For instance, if 

the pull down current through the match line exceeds the current being provided by the 

pull up transistor Mpc, this match line falls towards ground. On the other hand, if the 

match line has less or no mismatch, it will settle to some voltage close to Vdd, since there 

is little or no pull down current compared to the current provided by the pull up p-channel 

transistor. This voltage dominates the feed back voltage and eventually pulls down all of 

the competing match lines to a lower voltage. 
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Closed-Form Versus Simulation 

So far a closed-form solution is found for both the CAM and the winner take all 

circuit· separately. By putting these results together; the overall closed-form solution of 

the complete architecture while the evaluation mode is found. This is possible since the 

final result of interest is the steady state of the whole system; therefore, combining the 

steady state Value of each individual stage {equations VI-9 through VI-22 and equations 

111-26 and 111-27), results in the characterization of the input versus output voltage of the 

overall system. The goal is to get a tabulated result relating the stored and the input 

pattern, to the match line voltage. As shown in figure VI-5, the output of each CAM cell 

is connected to the gate of the pull down transistors Mc. As already indicated in the 

chapter III, depending on the inputs, one of the CAM's output voltage decays to ground 

leaving the second path at·a higher voltage. This causes only one of the pull down nodes 

to be high. For instance if the Vrefequalsl.5 and Vin equals 1.3 volts, according to the 

closed-form solµtion found in chapter III; VA decays to ground while VB stays at 3.5 volts. 

These voltages are now considered the input voltage to the WTA circuit. Based on the 

closed-form solution f0tmd iri this chapter, the corresponding ·match line voltage is 4.2 

yolts; 

To compare the,closed-form solutions re~ults against the simulation results, the 

2x2 array shown in figure VI-5 was considered. The pattern in the first match line was 

set equal to·the input pattern. Then the input to the first CAM (CAMoo) cell was varied 

+/- 0.5 volts from the stored voltage while the inputs to the second CAM (CAM01) were 
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perfectly matched. On the other hand, the reference pattern on CAM10 was purposely 

mismatched to its input voltage by at least 2 volts while the inputs to CAM11 were 

perfectly matched. The goal was to see how the engine picks the winner, and how close 

are the results found from simulation and closed-form solution. 

Figure VI-6 through VI-11. tabulate the simulation results versus the closed-form's 

results during the evaluation process. These figures indicate that the results follow the 

same pattern and are dose despite the difference in the model used in chapter III, this 

chapter and the model.used by the simulator [Meta-:So~are]. In each figure, Vrefis set to 

the pattern voltage on the CAMoo, while the input pattern voltage deviates +/-0,5 volts 

from this pattern voltage. 

\mt=1.5Vdts 

~~·NM~~ ID~ 00 m N . . . . . . 

lrµi Vdtcf}e (Vdts) 

Figure VI-6. Input Voltage vs. Match Line Voltage (Vref=l.5Volts) 
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Figure VI-8. Input Voltage vs. Match Line voltage (Vref=2.5Volts) 
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Figure VI-13 shows an example of how the engine separates the winner from the 

loser despite the small difference between the patterns in these competing match lines. 

This figure indicates, although there is only one CAM mismatched between the two 

match lines, the recognition engine clearly picks the line with the closest pattern as the 

winner. 
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Figure VI-12. Comparison between the winner and the loser match lines (Vref=2.5 Volts) 
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CHAPTER VII 

SILICON RESULTS 

Introduction 

This chapter · characterizes the performance of the recognition engine 

manufactured in the 2.0u ORBIT process. The characterization includes programming 

and .evaluation of each CAM cell. Furthermore, it investigates the validity of the 

simulation and the closed-form solution results against the results measured from silicon. 

Silicon Results 

In order to verify the functionality of the silicon,. a very conservative approach was 
. . . : . 

. . ' .. 

taken. The main objective was to show the functionality of the architecture as described 

in this thesis so far. This mainly includes, verifying the programming and the evaluation 

concept. To do so, a 2X2 array of the recognition architectur.e was fabricated in the 2.0u 

ORBIT process (figure VII-I). In this architecture, the EEPROM cells were used as the 

reference voltage storage devices along with four high voltage drivers to program each 

cell independently. 

The programmiiig process for the manufactured engine in the 2.0u ORBIT process 
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started by setting the start yrog signal to five volts and enabling the rows and columns of 

the CAM cell which was intended to be programmed. Then, the desired pattern voltage to 

be programmed in the memory, was applied to the input side of the selected CAM cell 

(Vin) while the programming direction was forced from outside the chip. Next, a high 

voltage programming pulse was applied followed by a precharge and evaluation clock. 

After each programming pulse, the current through the p-channel transistor (Mpc) was 

mirrored outside the chip where it was measured. This ensured that each cell was 

programmed in the appropriate direction. As the equivalent voltage in the EEPROM cell 

of the CAM under program got closer to the pattern voltage, the current through the p

channel device Mpo (figure VII-I) got smaller. The programming continued until the 

measured current approached zero. At this point, the CAM was programmed and the 

programming cycle for the cell under program was complete. The same programming 

procedure was followed until all of the cells were programmed to the desired patterns. 
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Once all of the cells were successfully programmed, the start _prog signal was set 

low, indicating that the engine is ready for the evaluation process. To investigate the 

functionality of the engine in the this mode, the input to one of the CAM cells (CAMoo) 

was purposely vari~d from -0.5 to+ 0.5 volts of its stored reference voltage (V,.e100 ). In the 

competing match line, the CAM (CAM10) with. its input connected to the input voltage 

varying+/- 0.5, was programmed so that the difference between its stored value (V 1 ) re 10 

. . 

and the input .pattern was at least two volts. The input to the remaining CAMs ( CAM01 

and CAM11) were well matched; hence, they did not contribute to any mismatch in the 

competing match lines. To summarize, the first match line (ML0) had one CAM (CAM01) 

with matched inputs O'";n1 == V,.ef 01 ) and one CAM (CAMoo) with its input voltage a 

maximum of 0.5 volts below or above the stored pattern ( V,.ef - 0.5:::;; v;1.n :::;; Vreif + 0.5 ). . · . 00 o 00 

The competing match line (ML1) on the other hand, had one CAM cell (CAM11) with 

matched inputs (f';n1 = V,.e111 ), and the second CAM cell whose input was different from 

the input pattern by at least two volts ( Vreif - 2 ~ Vin ~ V,.eif + 2 ). Therefore, there was 
. 10 o 10 

. . 

one unmatched and one m:atched CAM in each line with the first line being the closest 

match compared to the second line .. The goal was to investigate how the real silicon 

chooses the winner,· and how the winning match line changes 1:1,s one of the input patterns 

(f';n0 ) varies from -0.5 volts of the reference pattern of CAMoo to 0.5 .volts above it. 

Theses results were then compared with the results found using simulation and the 

closed-from solution. 

Figures VII-2 through VII-6 depict these results. It is clear that there is a great 

accordance between the theory, the simulation and the actual silicon. Therefore, it is safe 

119 



· to assume that the behavior of the system is very well defined using either simulation or 

theory. 
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Figure VII-2. Winner match line voltage (V,.efoo = l.5Volts) 
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Figure VII-6. Winner m~tch line voltage U'refoo =3.5 Volts) 

It was also observed that the loser voltage was near the ground voltage while 

evaluating the above conditions. This implies that although there is one unmatched and 

one matched CAM in each line with the first line being the closest match compared to the 

second line, the proposed recognition engine clearly picks the closer match line as the 

winner. 
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CHAPTER VIII 

CONCLUSION 

The objective of this thesis was to propose a low power and high speed 

competitive classifier architecture. To pursue this goal a novel qualifier was proposed. 

This qualifier was implemented as an ultra low power analog content addressable 

memory (CAM) and was fully characterized. The characterization included a 

mathematical closed-form expression relating the CAM's steady state output to its input. 

Although the closed-form uses a simplified transistor model, it was demonstrated that its 

results were comparable with the results found using much more accurately modeled 

transistors (simulation results). To complete the qualifier, an analog memory (EEPROM) 

was used to constitute the long term memory for each CAM cell. 

Next, the learning process was defined. This process involves programming the 

data pattern directly in the analog memory cells (a simple learning algorithm). 

Furthermore, it was demonstrated that the learning process is totally independent of any 

process variation and mismatch in the CAM cells. This important characteristic becomes 

inherent to the system by programming the qualifier cell through the match line that each 
( 

cell uses to evaluate its inputs. Thanks to this learning technique, any additional offset in 

the programming path that is not common between the programming path and the 

evaluation path, appears as a DC offset associated with each single cell, causing the 
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outcome to be independent of any process mismatch in the system. As a result, the end 

user does not notice any process variation and mismatches. 

Furthermore, it was .indicated that the learning process requires high voltage 

pulses to move charge in and out of the analog memory cells. It was shown that there are 

· two factors .that effect the charge transfer during the programming process, amplitude and 

duration of the programming pulse. It was also indicated that the oxide thickness varies 

across the die and from one wafer to the next; therefore, effecting the amplitude voltage 

needed to get the minimum observable charge flow in and out of different floating gates 

(given the same pulse auration). This amplitude voltage can eas,ily exceed the physical 

· limitation of the standard process used in this project (2.0u ORBIT process). Therefore in 

this process, a regular MOSFET can not be employed to reliably generate the high voltage 

pulse required. As a result, a unique method to implement a . high voltage n-chanhel 

MOSFET using a standard process with no special doping or additional mask layer was 

proposed and successfully manufactured. Results· show this transistor has consistent 

characteristics when manufactured on the same wafer or on different dies. 

Based on the proposed field transistor, a high voltage driver was proposed. and 

manufactured. This circuit produces three different voltage level pulses necessary to 

program each analog memory. 

To complete the architecture, a discriminator of O(N) complexity [Johnson, Jun., 

1992] was fully characterized. The characterization included a closed-form solution for 

the discriminator circuit (WTA). The closed-form solution was then combined with the 

closed-form solution found for the qualifier · cell in order to relate the final steady · state 

output of the discriminator to the inputs of the system (inputs of the qualifier). It was 
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shown that even though the transistor models were grossly simplified, the results obtained 

from the closed-form agreed with the result from the simulation. 

· Finally, a complete 2x2 recognition engine was fabricated in a 2.0u ORBIT 

process. It was proven. that the· silicon's behavior is well characterized either using 

numerical solution (HSPICE) or a closed-form solution derived in this thesis; therefore, a 

fast recognition engine has been designed and fully characterized. 
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Define 

V -3 
rel 

V. =3.5 m 

W=4· 10- 6 

L=2-10- 6 

k=30·10- 6 

w 
~=k-

L 

a=l 

y=2 

h=& 

Volts 

Volts 

Volts 

Volts 

µm 

µm 

ampsNolt2 

ampsNolt2 

Farad 

Farad 

Farad 

1/0hm 

1/0hm 

Reference voltage pattern voltage 

N-channel threshold voltage 

Input voltage pattern voltage 

Width of all of the n-channel transistors 

Length of all of the n-channel transistors 

Load at the precharging nodes (C load) 

Conductance of the transistor M 81 

Conductance of the transistor M A1 
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Gef~=4·~ 

G =(V - V )J A2 ref Th 

I l 
R=-· +B . 

GBI GB2 

. I I 
R =--+--. A. . 
. GAI GA2 

1/0hm Conductance of the transistor M 8 

1/0hm Conductance of the transistor M A 

1/0hm Conductance of the transistor M 82 

1/0hm Conductance of the transistor M A2 

Ohm. Eq.1 

Ohm Eq.2 

1/0hm 

Eq;3 

Eq.4 

. Eq.5 

Eq.6 

Eq.7 
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Eq.8 

Eq.9 

d Geff. . VT 
C ·-V + A · V =Geff. ·-,---------L dt A (1 + Ge~·~) B . A (1 + Ge~·~) 

Eq.10 

Eq.11 

Eq.12 

Eq.13 

Eq.14 

d .· ·. .. Ge~ 

-V ' 
. 0 

. (1 + Ge~·RA) -(::r (L O )· dt A 
+ 

o ct !v Ge~ 

dt B 0 
l+Ge~-~ 
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VT 

Gef~· (l + Gef~·RA) 

•= VT 

Geft· (1 + Geft·RB) 

(
CL o 

C= 
O CL 

Let 

Gef~ 

GA= (1 + Gef~·RA) 

Geft 

GB= 1 + Geft·~ 

-( o GA 
G- G o 

B 

(
G ·V . A T 

K= V 
GB· T 

0 

Eq.15 

Eq.16 

Eq.17 
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0 
1 

-·G 
C A 

L 

0 

·· Finding the eigen values ·· 

0 

1 
-·G 
C .B 

L 

1 
-·G 
C A 

L 

0 

1 -i. -·G c·A 
L 

1 
-·G -A 
C B 

L 

(
1 0 )· ,. 

- ')..,. . =O 
· 0 1 

=o 

,. =-1 ·lo,~ o. c· . ~uA ~uB . 
. L. , 

-1ra:·A ,. =-· G · G 
1 C A B 

. L . 

Or 

,. =-A 
0 1 

Eq.18 

Eq.19 
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Now finding the first eigen vector 

- A, 
1 

-·G 

-(::)=, 
0 C A 

L 

1 
-A, -·G B 0 

CL 

Eq.20 

Normalized eigen vector 

Eq.21 

Now finding the second eigen vector 
- -

-11, 
1 

-·G 

-(:: )=o 
C A 

L 

1 
Eq.22 

-·G .~ ').. 
C B 

L 
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Normalized eigenvector 

The general solution is 

Where matrix U is a 2x2 matrix where each column is the normalized 
eigen vectors a.nd 

(

- ')., ·t 
- SD·t e o 

e = 

0 

0 

Setting initial conditions 
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Eq.23 

Eq.24 



1 
0 -

G-1= 
GB 

1 
- 0 
G A 

Constructing the U matrix 

U= 1 

jGA +GB 

fci:-A 
AA 

1 1 
-- --

.. IJ .··.··.~··A 
U- 1=-· G .· + G · 

2 A B -1 1 
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Lexp('- t.. ·t) + Lexp(1 ·t) 
2 · 0 2 O 

Lexp(-1 ·t) + Lexp(1 ·t) 
2 0 2 0 

The solution is 

V =G ·K + Ue ·U · V - G ·K · - I - SD·t - I [ .· - I ] 

(t) . (o) . 

. · . . 

V A(tta·exp(-1 0·t) + b·exp(10·t) + VT Eq.25 

Eq.26 

Eq.27 

Eq.28 

Eq.29 
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d=- Eq.30 

Eq.31 

Eq.32 

Final voltage has reached when dV idt=O 

Eq.33 

Eq.34 

Multiplying both sides by 

Solve for the time d V A/dt=O 

Eq.35 

And 

Eq.36 
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. Plug above expressions in to the V A(t) to get the steady state Voltage 

Eq.37 

Eq.38 

Same procedure is followed to find the steady state voltage of the V B 

Eq.39 

Eq.40 
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Define 

VTf=l.4 Volts Threshold of any n_channel transistor with body effect 

W1=4 µm Width of the transistor M 1 

L1=8 fLm Length of the transistor M 1 

W.r=20 µm Width of the transistor M f 

Lt=2 µm Length of the transistor M f 

W =6 n µm Width of all of the pull down transistors 

L =2 n µm Length of all of the pull down transistors 

W =20 p µm Width of the p-channel current source transistor 

L =2 µm Length of the p-channel current source transistor p 

V =I Tp Volt Threshold of the p-channel transistor with no body effect 

VTn=0.9 Volts Threshold of any n-channel transistor with no body effect 

vdd=s Volts 

V Tfo = 1.4 Volts Threshold of any n_channel transistor with body effect 

C =50 
OX 

Farad Oxide capacitance per unit area 

µOn µmN.nS N-channel mobility 

µOn 
µmN.nS P-channel mobility µotz.s 
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V =20 max 

L 
V=v 

maxµ 
0 

K =µ0 ·Cox 
p p 

K =µ0 ·Cox n n 

w n 
~ =K ·-

n n L 
n 

w 
~ =K .__E 

P P L 
p 

. w 
I 

~1=Ki'-
LI 

L 
V 

n 
=V en maxµ 

On 

L 
V =v 

p 
cp maxµ 

.· Op 

Lf 
V -v ·-
ct maxµ 

On 

V =V Dsatf cf 

V =V Dsatn en 

µm/nS Maximum Saturation velocity 

V Carrier saturation voltage 

ampsNolt2 

ampsNolt2 

ampsNolt2 

ampsNolt2 

ampsNolt2 

Volts 

Volts 

Volts 

Volts 

Volts 

Volts 
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V cam is the output of the mismatched CAM in the winner match line 

V caml is the output of the mismatched CAM in the loser match line 

The following equation are used 

I=P·V·(V -v) D C GS T 

Summing the current in and out 9f the match line .. 

n 

o=Pp·(Vdd - vbias - VTp)·(Vdd - vmw)---: L Pn-Vcn·[ (vcam)i - (vnw\- vTfJ 
i= 1 

n 

o=Ga·(Vdd - vmw)- L, pn.ycn'[ (vcam)i - (vnw)i - vTfJ 
i= 1 

o= p · V · (v - V - V .) - 2· p · (v - V ) · V n en cam nw Tf n f Tn nw 

o= p . V . (v - V - V . ) - G . V f cf mw f Tfo b f 

Solving for V nw 

o= p. · V · (v - V - V ) - 2· p · (v - V ) · V n en cam nw Tf n f Tn nw 
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Eq.1 

Eq.2 

Eq.3 



(vcam - Yrr) 
V =-V ·------

nw en (- V - 2· V + 2· V ) 
en f Tn 

O= G · (v - V ) - 2· p · (v - V ) · V . add mw n f Tn nw 

Substituting Eq,4 in Eq.5 

Solving for Vt in terms of V mw 

I (-Vdd + Vmw) 
Vt=V - -·V ·G ·--------------

Tn 2 en a (A . V . V - A . V . V - G . V + G . V ) 
. 1-'n en cam 1-'n en Tf a dd a. mw 

Now solving for V mw in terms of Vt Using Eq.3 

Substituting Eq. 7 in Eq.6 for Vmw and solving for Vt 
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Eq.4 

Eq.5 

Eq.6 

Eq.7 

Eq.8 

Eq.9 



A=(-2·G - 2-A ·V )·G . b · Pf cf a 

B(V )=[ (2-~ ·V - G )·V + 2;G ·V - 2.A ·V ·V - 2·G ·V · + 2·V ·G J·V .A cam n Tf a en a dd P n en cam a Tfo Tn a cf Pf · · · 

+(2·V ·G ·G -G ·G ·V ) . Tn a b a b en 

Eq.10 

Substitute for Vf to. find Vnw· and V mw in Eqs; 5&7 

Eq.11 

Eq.12 

Now solving for V cam voltage at Which the feed back .transistor leaves the ohmic region and 

enters the saturation region.This is the value of the V cam at which the V nw<V cam> in Eq.12 is 

equal to the V Dsat of the n-channel transistor. Furthermore, lets define the feed back voltage at 

which V nw is equal to the V Dsat to be called V fc (the critical feedback voltage). 

Eq.12a 

Solving Eq.12a for V fc 

Eq.12b 
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Eq.12b is the feed back voltage at which the feed back transistor leaves the ohmic region and 
enters the saturation region. 
Rearrange the parameters A, B(V cam> and C(V cam> in Eq. 9 for simplicity 

a=-2·V ·V ·P ·P .en cf n f 

b=(2·V - V )·G ·G + (2·V - 2·V + 2·V - V )·P ·V ·G + 2·P ·V ·V ;p ·V Tn en a ·· b dd Tfo Tn en f cf a f cf en n Tf 

B(V )=a·V. + b cam cam ·. 

c=2·V ·V ·P ·V ·P en cf .n Tn f 

d=[[ (-2·V + V )·V + 2·V ·V - V ·V ]·P ·G - 2'.V ·P ·V. ·V ·P ]·V Tn en dd Tfo Tn en Tfo f a · en n Tf Tn f cf 

c(v )=c·V + d cam cam 

V =-1 ·[-(a·V + b)- J(a·Y + b)2 - 4·A(c·V + d)] 
fc ( 2·A) cam . cam . cam 

Now solving the CAM's voltage in tenns of V fc 

Eq.12c 

Eq.12d 

This is the value oftheV cam which cau~es the feed back transistors to leave the ohmic region 
. ' . 

and enter the saturation region, 

The Only transistor out of linear is the M n transistor 
Sumi;ning the current in and out of the match line 

n 

0=Pp·(Vdd - vbias - VTp)·(Vdd - vmw)- L pn,Ven·[ (vcam)i - (vnw\- VTf] 

i= 1 

n 

O=Ga·(Vdd - vmw) - L pn.ycn·[ (vcam\- (vnw)i - VTf] 

i= 1 
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G =P ·(V - V. - V ) a p dd bias Tp Eq.13 

o=P ·V ·(V . - V - V ) - 2·P ·V ·(V - V ) n en cam nw Tf n en f Tn Eq.14 

o= p . V . (v - V - V ) - p . (v - V ) . V 
f cf row f Tfo 1 dd Tn f 

o=P ·V ·(V - V - V ) - G ·V · f cf row · f Tfo b . f Eq.15 

Solving for V nw using Eq.14 

o= p · V · (v - V - V ) - 2· p · V · (v - V ) n en cam nw Tf n en f Tn 
Eq.16 

V = V - V - 2· V + 2· V 
nw cam Tf f Tn 

Solving forVmw using Eq.15 

o=P ·V ·(V - V - V ) - G ·V fcf row f Tfo bf 

Eq.17 

Manipulating Eqs.13&14 

G · (v - V ) - 2· p · V · (v - V ) = 0 a dd row · n en f Tn · 

[-2·V ·(V - V )] 
V = en f Tn . p + V 

row G n dd 
Eq.18 

a 
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Equating Eq. 17&18 and solving for Vf and renaming it to V fs for the feed back voltage in 

the saturation region 

V =1+ · ·V+V r 
Gb 

mws (Pr Ver) fs Tfo 

Where V mws and V nws indicate the winner match line voltage and drain voltage of the feed 

back transistor when the feed back transistor is in saturation. 

Summing the current in and out of the loser match line 

°i 

Eq.19 

Eq.20 

Eq.21 

0=Pp·(Vdd - vbias -VTp)·(Vdd -Vmw)- L Pn·[ (vcam1)i -(vru)i - VTfl[v(ml\- (vru)i] 
i = 1 

°i 

O=Ga - L Pn·[ (vcam1\- (vru)i - VTfl[ (vml)i - (vru)i] 
Eq.22 

i = 1 

o=r:i ·(V -V -V )·(V ~v)-2-p ·(V-V ·)·V f' n caml · nl Tf · ml · nl n f Tn nl 
Eq.23 

Assuming there is only one mismatch in the loser line 

O= G - A • (v - V - V ) . (v - V ) a 1-'n caml nl Tf ml nl Eq.24 

O= A • (v - V - V ) · (v - V ) - 2· p · (v - V ) · V 1-'n caml nl Tf ml nl n f Tn nl Eq.25 
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Solving for V ml and V nl 

o=G - z.A ·V •V + z.A ·V ·V a P n nl · f P n nl Tn 

The feed back (Vt> voltag~ is set by the winn,r match line (u~ing eq. 1 L) 

It is found that all of the pull down transistors in the losing match line are in the ohmic 
region over the entire operating region 
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Eq.27 

Eq.28 
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