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Abstract For integers k, we consider the affine cubic surface Vk given by
M(x) = x21 + x22 + x23 − x1x2x3 = k. We show that for almost all k the Hasse
Principle holds, namely that Vk(Z) is non-empty if Vk(Zp) is non-empty for
all primes p, and that there are infinitely many k’s for which it fails. The
Markoff morphisms act on Vk(Z) with finitely many orbits and a numerical
study points to some basic conjectures about these “class numbers” and Hasse
failures. Some of the analysis may be extended to less special affine cubic
surfaces.

Mathematics Subject Classification 11D25 · 11D45

1 Introduction

Little is known about the values at integers assumed by affine cubic forms F
in three variables. Unless otherwise stated, by an affine form f in n-variables
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we mean f ∈ Z[x1, . . . , xn] whose leading homogeneous term f0 is non-
degenerate 1 and such that f − k is (absolutely) irreducible for all constants
k. For k ∈ Z, set

Vk,F = {x = (x1, x2, x3) : F(x) = k}, (1)

and vF (k) := |Vk,F (Z)|. The basic question is for which k is Vk,F (Z) �= ∅, or
more generally infinite or Zariski dense in Vk,F ?

A prime example is F = S, the sum of three cubes:

S(x1, x2, x3) = x31 + x32 + x33 . (2)

There are obvious local congruence obstructions, namely that Vk,S(Z) = ∅
if k ≡ 4 or 5 (mod 9), but beyond that it is possible that the answers to all three
questions is yes for all the other k’s, which we call the admissible values (see
[20,38]). It is known that strong approximation in its strongest form fails for
Vk,S(Z); the global obstruction coming froman application of cubic reciprocity
[16,18,28]. Moreover, [33] and [3] show that V1,S(Z) is Zariski dense in V1,S .

The case when the cubic polynomial F(x1, x2, x3) factors into linear fac-
tors can be studied algebraically using divisor theory, and is apparently quite
different to our irreducible F . If F is the split norm form N (x) = x1x2x3, then
every Vk,N is non-empty, and for k non-zero, vN (k) is finite and is a divisor
function.

For a Q-anistropic torus given by N (x) = NmK/Q(α1x1 + α2x2 + α3x3),
where α1, α2, α3 is a Z-basis of an order in a cubic number field K , the
Dirichlet Unit Theorem coupled with the action w → uw of the unit group
on the homogeneous space and the theory of divisors, allows for the study
of Vk,N (Z). It consists of a finite number hN (k) of orbits (putting hN (k) =
vN (k) = 0 if Vk,N = ∅), is infinite if it is non-empty and is Zariski dense if K
is totally real. The dependence of hN (k) on k is subtle, especially if the class
number H of the order is not one. Most k’s are not represented; in fact [40]
shows that

∣
∣{|k| ≤ X : vN (k) �= 0}∣∣ ∼ 1

H

∣
∣{|k| ≤ X : k admissible}∣∣ ∼ CX (log X)−

2
3 ,

(3)

as X → ∞. The question of the density ofHasse failures for norms of elements
in a number field K is studied in [14].

To measure the richness of representations by f , we say that f is perfect if
Vk, f (Z) is Zariski dense in Vk, f for all but finitely many admissible k’s; we

1 That is it cannot be transformed to a polynomial of fewer than n variables by a linear change
of variables.
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say it is almost perfect if the same holds for almost all admissible k (in the
sense of natural density); and f is full if v f (k) → ∞ as k → ∞ for almost
all admissible k’s. For an affine form, it follows from [32] and [41] that the
admissible k’s are given in terms of a congruence condition as in the case of
S.
Much more is known about cubic forms in the “subcritical” case of forms in

four ormore variables or diagonal forms f = xa11 +. . .+xabb with
∑b

j=1 a
−1
j >

1 and b ≥ 3 (see [11,30,45] for example) and in the “super-critical” case of
two variables [24]. The basic analytic feature in the subcritical case is that the
average number of representations of k is kδ(log k)A for some δ > 0, while in
the critical case, δ = 0. If f is a cubic polynomial, n ≥ 10 and f0 is nonsingular
then f is perfect [13].2 In a recent paper [30], it is shown that if f = f0 and
is nonsingular with n ≥ 5, then f is full, while conditional on the Riemann
Hypothesis for certain Hasse-Weil L-functions, the same is true for n ≥ 4.
Moreover, it is conjectured there that any such f with n ≥ 4 is perfect. For
cubic f in two variables (supercritical case) the celebrated theorems [44], [43]
assert that Vk, f (Z) is finite and moreover only for very few of the admissible
k’s is Vk, f (Z) non-empty [42].

Returning to the critical dimension n = 3 for affine cubic forms, there are
well-known examples of F which are not perfect, see ( [17,37])3 and also
our example of M below; however it is possible that F is always full (see the
discussion at the end of the Introduction).

This paper is concerned with F = M where

M(x) = x21 + x22 + x23 − x1x2x3. (4)

The affine cubic surface V0,M(Z) was studied by Markoff [35,36]; the points
(x1, x2, x3) ∈ V0,M(Z) with x j ∈ N being essentially the “Markoff triples”.
The reason that one can study V0,M(Z), or more generally Vk,M(Z) is that
there is a descent group action albeit non-linear. The Vieta involutions Vj with
V1(x1, x2, x3) = (x2x3 − x1, x2, x3) and similarly for V2, V3, preserve M ,
as do permutations of the x j ’s and switching the signs of two of the x j ’s.
We denote by � the group of polynomial affine transformations generated as
above. Then, � preserves Vk,M(Z) and except for the case of the Cayley cubic
with k = 4 (see Sect. 4.3), Vk,M(Z) decomposes into a finite number hM(k)
of �-orbits. For example, if k = 0, then hM(0) = 2 corresponds to the orbits

2 They show that |Vk, f (Z)| = ∞ for k admissible from an asymptotic count which is flexible
enough to deduce that Vk, f (Z) is Zariski dense in Vk, f .
3 The projective cubic surface for [17], namely F(x1, x2, x3) = 10x34 with F(x1, x2, x3) =
5x31 + 12x32 + 9x33 , fails the Hasse principle over Q; from which it follows that Vk,F (Z) fails

the Hasse principle over Z for k = 10w3. There are many other such projective cubic surfaces
over Q (see Sect. 4 of [12]).
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of (0, 0, 0) and (3, 3, 3) [36]. If Vk,M(Z) �= ∅ (so that hM(k) > 0) and k ≥ 5
or k < 0 with k not a square, which will be our cases of interest, then each
�-orbit is infinite and even Zariski dense in Vk,M (see [15,21] and Sect. 5). In
particular, for k ≥ 5 and k not a square, or k ≤ 0

Vk,M(Z) �= ∅ iff Vk,M(Z) is Zariski dense in Vk,M . (5)

Moreover, Vk,M(Z) contains polynomial parametric solutions x(t) if and only
if k = 4 + ν2, in which case it contains a line (see Sect. 5 for a direct proof).
In [10] and [9], it is shown that these affine cubic surfaces with Vk,M(Z) �= ∅
satisfy a form of strong approximation,4 after taking into account the possible
finite orbits of � in Vk,M(Q̄). Our goal in this paper is to study the set of k’s
for which hM(k) > 0.

The first issue is to determine the congruence obstructions for k. This is ele-
mentary and in Sect. 6 we show that Vk,M(Z/pnZ) �= ∅ unless k ≡ 3 (mod 4)
or k ≡ ±3 (mod 9). Recall that k is admissible means k does not satisfy any
of these congruences. The number of 0 < k ≤ K (or 0 < −k ≤ K ) which are
admissible is 7

12K + O(1). Any admissible k for which h(k) = 0 is called a
Hasse failure (since in this case Vk,M(Z) is empty but there is no congruence
obstruction).

In order to study hM(k) both theoretically and numerically, we give an
explicit reduction (descent) for the action of � on Vk,M(Z). For this purpose,
it is convenient to remove an explicit set of special admissible k’s, namely
those for which there is a point in Vk,M(Z) with |x j | = 0, 1 or 2. These k’s
take the form (i) k = u2+v2 or (ii) 4(k−1) = u2+3v2 or (iii) k = 4+u2. The
number of these special k’s (which we refer to as exceptional) with 0 ≤ k ≤ K
is asymptotic toC ′ K√

log K
. The remaining admissible k’s are called generic (all

negative admissible k’s are generic). For them, we have the following elegant
reduced forms

Theorem 1.1 (i). Let k ≥ 5 be generic and consider the compact set

F+
k = {u ∈ R

3 : 3 ≤ u1 ≤ u2 ≤ u3 , u21 + u22 + u23 + u1u2u3 = k}.

The points inF+
k (Z) = F+

k ∩Z
3 are�-inequivalent, and any x ∈ Vk,M(Z) is

�-equivalent to a unique point u′ = (−u1, u2, u3)with u = (u1, u2, u3) ∈
F+
k (Z).

(ii). Let k < 0 be admissible and consider the compact set

F−
k = {u ∈ R

3 : 3 ≤ u1 ≤ u2 ≤ u3 ≤ 1

2
u1u2 , u21 + u22 + u23 − u1u2u3 = k}.

4 In its strongest form this fails as is shown using quadratic reciprocity in Sect. 8, see (20).
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Fig. 1 Lattice points and
fundamental set (triangular)
for k = 3685

Fig. 2 Closeup of
fundamental set (triangular)
for k = 3685

The points in F−
k (Z) = F−

k ∩ Z
3 are �-inequivalent, and any x ∈ Vk,M(Z)

is �-equivalent to a unique point u = (u1, u2, u3) ∈ F−
k (Z).

The Theorem is illustrated for k > 5 in Figs. 1 and 2 with k = 3685
where hM(3685) = 6, and for k < 0 in Figs. 3 and 4 with k = −3691,
where hM(−3691) = 9. The lattice points Vk,M(Z) are highlighted and the
fundamental sets indicated in a polygonal region.

Some simple consequences of Theorem 1.1 are (see the discussion in Sect. 2
and also Secs. 7 and 8) :
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Fig. 3 Lattice points and
fundamental set for
k = −3691

Fig. 4 Closeup of fundamental set for k = −3691

(a). V46(Z) = ∅, that is hM(46) = 0, this being the first positive Hasse failure.
(b). hM(−2) = 1 with all solutions equivalent to the point (3, 3, 4); while

k = −4 is the first negative Hasse failure.

(c). hM(k) �ε |k| 13+ε as k → ±∞. This follows from the fact that when
considering the values taken by the corresponding indefinite quadratic
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form in the y and z variable, for each fixed x , the units are bounded in
number due to the restrictions imposed by the fundamental sets.

(d). Let h±
M(k) = |F±

k (Z)| where ± = sgn(k), this being defined for any
k. Then Theorem 1.1 implies that for generic k, h±

M(k) = hM(k) while
otherwise hM(k) ≤ h±

M(k). We have

∑

k �=4
|k|≤K

h±
M(k) ∼ C±K (log K )2, (6)

where C± > 0 and K → ∞ (see Lemmas 7.2 and 7.3).

So, as expected in this case of critical dimension 3, the numbers hM(k) are
small on average. On the other hand the fact that this average grows, albeit very
slowly, is a key feature as it suggests that hM(k) might be non-zero for many
k’s. In Sect. 10, we report on some numerical experiments using Theorem 1.1
to find the Hasse failures among the generic k’s when 0 < k < 6×108. These
suggest that

∑

0<k≤K
k admissible
hM (k)=0

1 ∼ C0K
θ , (7)

with C0 > 0 and θ ≈ 0.8875.. . We also provide results concerning other
statistics for the hM(k)’s for k near this range (see Sect. 10 for the numerics
concerning the numbers hM(k) and some conjectures that these support).

Our main result concerns the values assumed by M and the Hasse failures
in (7); we prove that M is almost perfect but not perfect.

Theorem 1.2 (i). There are infinitely many Hasse failures. More precisely, the
number of 0 < k ≤ K and −K ≤ k < 0 for which the Hasse Principle

fails is at least
√
K (log K )− 1

2 for K large.
(ii). M is almost perfect, that is

#
{|k| ≤ K : k admissible, hM(k) = 0

} = o(K ),

as K → ∞ and for almost all admissible k, Vk(Z) is Zariski dense in Vk.

Remark 1.3(a). The proof of (i) is based on quadratic reciprocity and a global
factorization that arises for special k’s connected to the singular Cayley
cubic V4,M . If k = 4 + βν2, with β carefully chosen and ν’s having its
prime factors in certain arithmetic progressions, we show that Vk,M(Z) =
∅ even though k is generic. Explicit examples are given in Sect. 8. Some of
these obstructions to integer solutions are similar to ones found byMordell
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[37] for similar cubic equations, and also to the “Integer Brauer-Manin
obstructions” in [18]. Following our posting of an earlier version of this
paper, [34] and [19] computed explicitly the Brauer groups of these affine
Markoff surfaces, as well as the corresponding integral Brauer-Manin
obstructions. They find that the Hasse failures in (i) and (ii) of Prop. 8.1
are accounted for by their obstructions. However, the analysis leading to
Hasse failures in part (iii) of the Proposition uses both reciprocity and
Markoff descent, and they are not accounted for by the integral Brauer-
Manin obstruction alone. In any case, all of these algebraic obstructions
are far fewer (they are of order of magnitude

√
K ) than the Hasse failures

that we found numerically, indicating that any simple description of the
latter is perhaps not possible.

(b). In the recent paper [25], the Hasse failure (i) is exploited to give failures
of profinite local to global principles for commutator equations in SL2(O)

for O a ring of S-integers.
(c). The proof of (i i), when combined with Theorem 1.1 yields further infor-

mation about the hM(k)’s for generic k’s. If t ≥ 0 is fixed, then

#
{

0 ≤ |k| ≤ K : hM(k) = t, k generic
} = o(K ),

as K → ∞ . So for generic k, hM(k) → ∞ for almost all k.
(d). Our approach to proving that M is full is to look for points in Vk,M(Z)

with |k| ≤ K in a region R where x1 is small (roughly of size a power
of log K ) and x2, x3 vary in a sector (so they are of the same size). R is
contained in the fundamental domainsF±

k and retains the tentacles (cusps)
of the latter, this being critical to ensuring that the average for |k| ≤ K ,
of the number of points in Vk,M(Z) ∩R grows with k. For a given x1, M
is a (indefinite) binary quadratic form in x2, x3 and this allows one to use
the methods developed in [8] and [6] to show that M assumes a positive
proportion of the k’s. Our proof that M is full is much more delicate. As
with the proofs that cubic forms in many variables (starting with the case
of a sum of four cubes [22]) represents almost all admissible numbers, we
compare the number of points in Vk,M(Z) ∩ R, to an arithmetic function
δ(m)(k) (see Sect. 9; herem is a secondary parameter)which is a product of
local densities of solutions. While this heuristic for the count can be way
off for certain k’s (e.g. for the Hasse failures), we show that its variance
from the actual count when averaged over k, is small enough to conclude
that for almost all k’s, δ(m)(k) is a good approximation. The fullness
then follows after showing that δ(m)(k) is large for most k’s . That M is
almost perfect then follows from (5) and that M is full. The proof of the
vanishing of the variance boils down to examining the “diagonal” and “off-
diagonal” terms in (44). For the first, we make use of the divisor analysis

123



Integral points on Markoff type cubic surfaces

for varying quadratic forms [6],while for the second amodern treatment of
Kloosterman’smethod for ternary quadratic forms [39] allows for uniform
control of the contributions of the varying forms.

To end the introduction, we return to a discussion of the general affine cubic
form F in three variables. The study of the level sets Vk,M(Z), for example
(5) using the Markoff group is very special. It applies to F’s of the form
F = F0 + G, where

F0 = cx1x2x3 and G =
∑

i, j

ai j xi x j +
∑

i

ai xi + a, (8)

with a j j = ±1 for j = 1, 2, 3 and c, a, ai j , ai ∈ Z, as well as F’s obtained
from these via integral affine linear substitutions (see Appendix A). Among
these special affine forms are ones for which Vk carry explicit integral points
and even parametric curves, for every k. This coupled with the action of the
corresponding Markoff group leads to Vk(Z) being Zariski dense for every k.
Thus, the form is both perfect and ‘universal’ in the sense that it represents
every k. Explicit examples are

U1(x1, x2, x3) = x1 + x21 + x22 + x23 − x1x2x3, (9)

and

U2(x1, x2, x3) = x2(x3 − x1) + x21 + x22 + x23 − x1x2x3. (10)

See Sect. 5 for an analysis of these forms. The only perfect F’s that we are
aware of are of the form (8).

On the other hand, our treatment of the fullness of M applies more gener-
ally. We leave the precise details and proofs of the following comments to a
forthcoming paper. If F0 is reducible in Q[x1, x2, x3], then F is full. In this
case F0 has a linear factor, which is the condition that F has h-invariant [23]
equal to 1 (see Appendix A for a discussion of these arithmetic invariants of
F). The linear factor yields a rational plane in F0(x1, x2, x3) = 0 which can
be used as the small variable and to generate a family of planes and of binary
quadratic forms and a tentacled region. If F0 is irreducible in Q[x1, x2, x3]
then our moving plane method fails. Nevertheless one can still create tenta-
cled regions R in R

3 using neighborhoods at infinity of the curve F0(x) = 0
in P

2(R). As before, on average over k with |k| ≤ K , the number of points
rR(k) in Vk,F (Z)∩R grows slowly with k. The study of the variance of rR(k)
from its expected number (i.e. a product of local densities) reduces to counting
points on the hypersurface F(x)− F(y) = 0 with (x, y) ∈ R×R. While this
is well beyond the available tools from the circle method, a natural hypothesis
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in this context along the lines of ([Hoo16]) 5 would lead to F being full. In
particular, this applies to F = S in (2). The much stronger suggestion that S
is perfect ( [28]),6 which was mentioned at the start is a fascinating one, as
is the question of the existence of any perfect homogeneous F . All k’s are
admissible for the homogeneous form x31 + x32 + 2x33 and it is a candidate for
being both perfect and universal over Z. It is interesting to note that this form
is universal when considered over the S-integer ring Z[16 ], and has infinitely
many solutions for each k. This is seen by taking

x1 = 6k

ε2
+ ε

6
, x2 = 6k

ε2
− ε

6
, x3 = −6k

ε2
,

for any unit ε.
We point out that the analogous problem for quadratic polynomials in two

variables is very different in that f is never absolutely irreducible, and indeed
the typical such f is never full.

Finally,we note that the Vk,F ’s for F = M are the relative character varieties
for the representations of π1(
1,1) into SL2 (here 
g,n is a surface of genus
g and n punctures) and the group � is essentially the mapping class group
action on the Vk,M ’s (see Goldman [27]). As such, many of the questions that
we address in this simplest case make sense with 
1,1 replaced by 
g,n (see
Whang [47]). In particular it is shown there that the key feature that the integral
points for these varieties consist of finitely many �-orbits, persists. However
both for 
1,1 and in this more general setting, this finiteness fails when the
integers are replaced by S-integers in a general number ring. This makes for a
quite different picture and analysis to which we will return in a future work.

Notation: For the remainder of the paper we suppress the reference to the
Markoff equation. So for example Vk would mean Vk,M . We also use ( ∗

p )L to
denote the Legendre symbol ( ∗

p ) to avoid any confusion with fractions.

2 The descent argument revisited

The descent argument was first considered by Markoff in [36], and later
extended by Hurwitz [31] and Mordell [37] (see also [2] for a study of
fundamental solutions associated with a special case of these several vari-
able hypersurfaces). In particular, Hurwitz used a “height” function given by
h(x1, x2, x3) = |x1| + |x2| + |x3|, which was then utilized subsequently in

5 Very recently, Wang [46] has shown that S is full if one assumes various standard conjectures
about automorphic L-functions.
6 Recently, Vk,S(Z) for k = 33 and 42 were shown to be nonempty, completing the list of such
for 1 ≤ k ≤ 100 (see Booker [7] and Booker-Sutherland [48]).
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the literature. The descent argument led to a finite number of points plus those
with minimal height. Our initial analysis is a revisit of this descent argument
but without the use of the height function (we later use a new function for a
finer analysis).

For k ∈ Z, consider the set of integral points on the Markoff surface

Vk : x21 + x22 + x23 − x1x2x3 = k. (11)

After invariance by permutations and also changing two signs but leaving
out Vieta involutions (which we call narrow equivalence), we see that (i) if
k < 0, we may consider only solutions 0 ≤ x1 ≤ x2 ≤ x3, and (ii) if k ≥ 0,
there are two types of solutions namely those with all variables non-negative
and so 0 ≤ x1 ≤ x2 ≤ x3; and those in the compact set S+(k) with exactly
one negative variable and two positive.

For k < 0 we note that x = 0, 1 or 2 are not possible (since they give
k = x22 + x23 , 4(k − 1) = (2x2 − x3)2 + 3x23 and (x2 − x3)2 = k − 4
respectively) so that we assume 3 ≤ x1 ≤ x2 ≤ x3 in this case.

When k ≥ 0, x = 0 and x = 1 give at most finitelymany triples (x1, x2, x3).
and we denote this set by T(k). Thus in this case, (x1, x2, x3) is a solution
implies it is equivalent (narrowly) to one in S+(k) ∪ T(k) or it satisfies 2 ≤
x1 ≤ x2 ≤ x3.

We now consider the Vieta involution acting on (x1, x2, x3), sending it to
(x1, x2, x1x2 − x3). If x1x2 − x3 < 0, so that k ≥ 0, then (x1, x2, x3) is
equivalent to a solution in S+(k). Next suppose x1x2 − x3 ≥ x3, so that
2x3 ≤ x1x2. Solving for x3 in (11) gives 2x3 = x1x2 ± σ where σ =
√

x21 x
2
2 − 4(x21 + x22 − k), so that necessarily σ = x1x2 − 2x3 ≤ (x1 − 2)x2.

Squaring and simplifying gives (x1 − 2)x22 ≤ (x21 − k).
If x1 ≥ 3 and k > 0, we conclude that x22 < x21 , a contradiction. If x1 = 2,

we conclude that k ≤ 4. Thus we derive a contradiction for all k > 4, so
that in this case we have 0 ≤ x1x2 − x3 < x3. But more is true, namely
0 ≤ x1x2 − x3 < x2 shown as follows: if x2 ≤ x1x2 − x3 < x3, then
x1x2 < 2x3 ≤ 2(x1 − 1)x2, so that necessarily 2x3 = x1x2 + σ . Then
σ ≤ (x1 − 2)x2 and the argument above gives a contradiction. Hence we have

Lemma 2.1 If k > 4 and if (x1, x2, x3) is a lattice point on Vk in (11), it is
equivalent to one in the compact set S+(k) ∪ T(k) where

S+(k) =
{

(−x1, x2, x3) : 3 ≤ x1 ≤ x2 ≤ x3 ; x21 + x22 + x23 + x1x2x3 = k
}

∩ Z
3,

or if not then it is equivalent to (x1, x1x2 − x3, x2), with 3 ≤ x1x2 − x3 <

x2 ≤ x3 and x1 ≥ 3.
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The special cases 1 ≤ k ≤ 3 are settled as follows: (i) there are no solutions
when k = 3 since there are none modulo 4; (ii) for k = 2, we can use the
descent argument above and conclude that we need only look for solutions
to x2 + y2 + z2 + xyz = 2 with all variables non-negative or we solve the
Markoff equation with x1 ∈ {0, ±1, ±2}, giving us the point (0, 1, 1) and its
infinite orbit under �; and for k = 1, the same analysis results in the point
(0, 0, 1), for which there is only a finite orbit under �. The cases k = 0 and
4 we consider in the next sections (they correspond to the original Markoff
surface in Sect. 3.1 and the singular Cayley surface in Sect. 4.3).

For k < 0, the estimate (x1−2)x22 ≤ (x21 −k) given above is still valid when
we assume x1x2− x3 ≥ x3, with 3 ≤ x1 ≤ x2 ≤ x3. Then, if x1 ≥ 4, it follows
that 2x22 ≤ x21 + |k|, which then implies x2 ≤ √|k|, so that x3 ≤ x1x2

2 ≤ |k|
2 .

If x1 = 3, then clearly x2 ≤ √
9 + |k|, and so x3 ≤ 3

2

√
9 + |k|. The same

argument shows that for large values of |k|, x1 � |k| 13 , x2 �
√ |k|

x1
and

x3 � √|k|x1. Next, supposing x2 ≤ x1x2 − x3 < x3, we see that the point
(x1, x2, x3) is �-equivalent to (y1, y2, y3) = (x1, x2, x1x2 − x3), where now
y1y2 − y3 ≥ y3, the same inequality considered above. Thus we have

Lemma 2.2 For k < 0, if (x1, x2, x3) is a lattice point on Vk in (11), it is then
equivalent to one in the compact set S−(k) ⊂ U(k), where

S−(k) :=
{

(x1, x2, x3) : 3 ≤ x1 ≤ x2 ≤ x3 ≤ 1

2
x1x2

}

∩ Vk(Z),

and

U(k) :=
{

(x1, x2, x3) : 3 ≤ x1 ≤ x2 ≤ √|k| + 9; 3 ≤ x3 ≤ 3

2
(|k| + 9)

}

,

or if not it is equivalent to (x1, x1x2 − x3, x2) with 3 ≤ x1x2 − x3 < x2 ≤ x3
and x1 ≥ 3.

The lemmas above form the basis of the descent argument with repeated
application of the Vieta involution so that ultimately any integral solution is
equivalent to one in a corresponding finite set.

3 Bhargava cubes and Markoff

To construct the fundamental sets in the next section, we utilize a function
�(x) given in (12), that proves useful in tracking the images of points under
the action of the group �. While we could define�without comment, we give
here our original construction using Bhargava cubes.
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Fig. 5 Bhargava cube
associated with M

Let x1, x2 and x3 be arbitrary integers and consider the Bhargava cube ([4])
as shown in Fig. 5.

The Bhargava slicings give rise to the three matrix pairs:

M1 =
[

1 x2
x3 x1

]

, N1 =
[

x1 x3
x2 1

]

;

M2 =
[

1 x3
x1 x2

]

, N2 =
[

x2 x1
x3 1

]

;

M3 =
[

1 x1
x2 x3

]

, N3 =
[

x3 x1
x2 1

]

.

These in turn give the following three quadratic forms Qi (u, v), where

Q1 = (x2x3 − x1)u
2 + (1 + x21 − x22 − x23)uv + (x2x3 − x1)v

2,

Q2 = (x1x3 − x2)u
2 + (1 + x22 − x21 − x23)uv + (x1x3 − x2)v

2,

Q3 = (x1x2 − x3)u
2 + (1 + x23 − x21 − x22)uv + (x1x2 − x3)v

2.

All three quadratic forms have the same discriminant� = �(x1, x2, x3)which
also factorizes to give

� = (1 + x22 − x21 − x23 )2 − 4(x1x3 − x2)
2,

= (1 + x1 + x2 + x3)(1 + x2 − x1 − x3)(1 + x3 − x1 − x2)(1 + x1 − x2 − x3).
(12)

Note that

(a). � ≡ 0 or 1 (mod 4) depending on if x21 + x22 + x23 is odd or even respec-
tively.

(b). � is invariant under permutations.
(c). � is invariant if one variable is fixed and the sign is changed on the other

two variables.
(d). If 2 ≤ x1 ≤ x2 ≤ x3, then � < 0 if and only if x2 ≤ x3 ≤ x1 + x2 − 2.
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3.1 The case k = 0

Recall (Markoff [36]) that the solution set has two orbits with fundamental
roots (0, 0, 0) and (3, 3, 3). We have �(0, 0, 0) = 1 and �(3, 3, 3) = −80.
We show here that

�(x1, x2, x3) < 0 if and only if (x1, x2, x3) = (3, 3, 3). (13)

Thus, the two orbits each have a minimal value for �, taken at the associated
fundamental roots. In other words, there are two components of V0(Z) and
in each component � has a minimum value, taken at a unique point, which
can then be used as a generator for that component. This phenomenon repeats
itself when k ≥ 5 below.

We prove (13) as follows: since x21 + x22 + x23 = x1x2x3, it follows that
x1, x2 and x3 are all positive or exactly two are negative (we avoid the trivial
solution here). By the properties of � itemized above, we may assume that
1 ≤ x1 ≤ x2 ≤ x3. The Markoff equation is equivalent to the equation
(x21 − 4)(x22 − 4) − 16 = (2x3 − x1x2)2, from which it follows that 3 ≤
x1 ≤ x2 ≤ x3, which we assume. Suppose �(x1, x2, x3) < 0, so that x2 ≤
x3 ≤ x1 + x2 − 2 < 2x2. Solving for x3 in the Markoff equation gives us

2x3 = x1x2 ± σ , where σ =
√

(x1x2)2 − 4(x21 + x22) ≥ 1.
If x1 ≥ 4 we must discard the positive sign since x3 < 2x2. So in this case,

x1x2 − σ = 2x3 ≥ 2x2, from which, by expanding and simplifying, one gets
4x22 ≤ x1x22 ≤ x21 + 2x22 ≤ 3x22 , a contradiction.

For x1 = 3, we have x2 ≤ x3 ≤ x1 + x2 − 2 = x2 + 1, so that x3 = x2 or
x3 = x2+1. If x3 = x2, we have 9+2x22 −3x22 = 0 so that x1 = x2 = x3 = 3.
Finally if x3 = x2 + 1, we must have 9+ x22 + (x2 + 1)2 = 3(x22 + x2), which
is impossible.

4 Fundamental sets and Theorem 1.1

The descent arguments of Markoff, Hurwitz and Mordell show that there is a
finite set of lattice points from which all lattice points of the Markoff surface
(11) can be obtained as images under �. This section provides a proof of
Theorem 1.1 by showing the inequivalence of the points in the finite set.

4.1 The case k ≥ 5

Recall from Sect. 2 that if k ≥ 5, any solution x = (x1, x2, x3) to the Markoff
equation (11) is equivalent to one in a compact reduced set (by Lemma 2.1
and descent). We order the coordinates first such that 0 ≤ |x1| ≤ |x2| ≤ |x3|.
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In the next section, we show that the Markoff equation has no solutions for
those k’s (positive or negative) satisfying any of the following congruences:
k ≡ 3 (mod 4) and k ≡ ±3 (mod 9), these then accounting for 5

12K + O(1)
members in the interval 5 ≤ k ≤ K , andwe call them non-admissible; the non-
admissible k’s have local obstructions. The remaining k’s we call admissible,
and there are A(K ) = 7

12K + O(1) of them.
We say that k is exceptional7 if there is a solution to (11) with |x j | = 0, 1

or 2; these k’s satisfy at least one of the equations (i) u2 + v2 = k , (ii)
u2 + 3v2 = 4(k − 1), or (iii) u2 = k − 4. Consequently, for k’s in an interval

of length K , they account for at most O
(

K (log K )− 1
2

)

members, and we

will ignore them in what follows. The remaining 7
12K + O

(

K (log K )− 1
2

)

numbers k in the interval 5 ≤ k ≤ K we shall call generic.
It follows from Sect. 2 that every solution x associated to a generic k is

equivalent to one in the setS+(k) given in Lemma 2.1. We now show that the
elements in this set, when non-empty, are inequivalent under �, so thatS+(k)
is a fundamental set.

We will use the �-function given in (12) to form an ordering on the tree
of solutions to the Markoff equation. Given any x = (x1, x2, x3), the three
Vieta maps are V1 : (x1, x2, x3) �→ (x2x3 − x1, x2, x3), V2 : (x1, x2, x3) �→
(x1, x1x3 − x1, x3) and V3 : (x1, x2, x3) �→ (x1, x2, x1x2 − x3). Recall that
the group � is generated by permutations, double sign-changes and the Vieta
maps. The �-function is invariant under the first two motions and we denote
�i = �◦ Vi . Then, it is easy to check that when x is a solution of the Markoff
equation, one has

�1(x) − �(x) = x2x3(x2x3 − 2x1)
[

2(k − 5) + (x22 − 4)(x23 − 4)
]

,

�2(x) − �(x) = x1x3(x1x3 − 2x2)
[

2(k − 5) + (x21 − 4)(x23 − 4)
]

,

�3(x) − �(x) = x1x2(x1x2 − 2x3)
[

2(k − 5) + (x21 − 4)(x22 − 4)
]

.

(14)

The expressions in the square brackets in all three formulae above are strictly
positivewhen k is generic and if x is any solution of the correspondingMarkoff
equation.

We set up the tree associated with solutions as follows: each solution x =
(x1, x2, x3) will be a vertex and neighboring vertices are edge connected if
they are obtained from x by one of the three Vieta maps. As such, we identify
coordinates if they are obtained by permutations or double sign changes (noting
that � is unchanged under them). By this latter identification, the coordinates

7 The removal of the points x with one of its coordinates in {−2, −1, 0, 1, 2} corresponds to
avoiding the region at infinity on which � acts ergodically (when k > 20) in [27], and to the
notion of “small” in [1] Sect. 5.
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are one of two types, namely all positive or exactly one negative. It is then
possible to rearrange them into the following canonical forms: (x1, x2, x3) or
(−x1, x2, x3) with 3 ≤ x1 ≤ x2 ≤ x3. We call the former positive nodes and
the latter negative nodes. By Lemma 2.1, for k ≥ 5, every positive node is
equivalent to a negative node (or otherwise, by descent is equivalent to the
node (3, 3, 3) which corresponds to k = 0).

We look at the action of the Vieta maps on a positive node. It is clear
that x2x3 − 2x1 and x1x3 − 2x2 are strictly positive so that �1(x) > �(x)
and �2(x) > �(x). Moreover, the nodes V1(x) and V2(x) are both positive,
Next, the argument showing descent in Sect. 2 shows that x1x2 − 2x3 ≥ 0
is impossible so that �3(x) < �(x). Here V3(x) may be either positive or
negative. We represent these observations by the images Fig. 6a, b, where
square nodes are positive nodes, disc nodes are negative nodes, dark nodes are
the Vieta images while the original point is a light node (the vertical ordering
of the nodes is determined by the signs of the �-differences from (14)).

Next, if we begin with a negative node (so that one replaces x1 with −x1
in the formulae above, it is obvious that �i (x) > �(x) for all i and (after
a double sign change and reordering) that the Vi (x) are all positive. This is
represented by Fig. 6c.

It follows now that the tree decomposes into components and each compo-
nent has a root that is a negative node (Fig. 6). Moreover, the negative node
occupies the lowest point on the tree, with all other nodes in that component
being positive (in other words, � has a minimum on each component and that
minimum is determined by a negative node). Thus the negative nodes form a
fundamental set, giving us the first case of Theorem 1.1.

4.2 The case k < 0

From Sect. 2 and Lemma 2.2 every lattice point in Vk is equivalent to one
in S−(k). We show that the points in this set are inequivalent. First using
(x21 − 4)(x22 − 4) = (2x3 − x1x2)2 − 4(k − 4) in (14) and the similar formulae
with the variables permuted, we see that the three terms in square brackets in
(14) are all positive. Thus the signs of the differences of the �-functions in
(14) are determined by the three terms x2x3−2x1, x1x3−2x2 and x1x2−2x3.
The first two are obviously positive, and one sees that the last is non-negative if
and only if (x1, x2, x3) ∈ S−(k) Thus, in the tree determined by these points
one sees that we have nodes of the type shown in Fig. 6c with two or three
black square vertices emanating from points inS−(k), while for points in the
complementary set, we have nodes of the type in Fig. 6a. It follows that the
points in S−(k) can serve as the roots of the components of the tree, from
which the second case of Theorem 1.1 follows.
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Fig. 6 Node blocks; top: (a, b); bottom: (c)

4.3 The Cayley surface k = 4

Most of the argument above for k ≥ 5 can be applied to the case k = 4, and
we indicate the necessary modifications. First, we consider solutions of the
type (−x1, x2, x3) with x1, x2, x3 ≥ 0 satisfying x21 + x22 + x23 + x1x2x3 =
4. It is obvious that there are only two solutions up to equivalence, namely
(−2, 0, 0) ∼ (0, 0, 2) and (−1, 1, 1) ∼ (1, 1, 2). Hencewe need only consider
solutions of the type (x1, x2, x3) with 0 ≤ x1 ≤ x2 ≤ x3. If x1 = 0, the only
solution is (0, 0, 2) while if x1 = 1, then the only choice is (1, 1, 2). Then by
the descent argument in Sect. 2, if x1 ≥ 3, the solution (x1, x2, x3) is equivalent
to one with one of the coordinates equal to 2. It is trivial that the only solutions
of this kind are one of the type (2, a, a), with a ≥ 0 integers. It suffices now
to check the equivalence of these solutions. It is easily checked that the orbits
of (2, 0, 0), (2, 1, 1) and (2, 2, 2) contain no other points of the type (2, a, a)

except themselves, so that we assume a ≥ 3.
Following the three formulas in (14), if x = (2, a, a), then two of the Vieta

transformations keep it fixed while the third creates a node above it, this new
node not being of the same type (we say “above” to mean �i (x) > �(x)).
Also following the argument used for k ≥ 5, if x = (x1, x2, x3), with xi ≥ 3,
then two Vieta transformations create nodes above it while a third creates a
node below it. It is then easily seen that a tree containing a node of the type
(2, a, a) cannot contain a different node of the same type. Hence we have
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Proposition 4.1 The Cayley surface V4(Z) has infinitely many inequivalent
orbits, each determined by a solution of the type (2, a, a), with a ≥ 0.

One checks that the (2, 0, 0) ∼ (−2, 0, 0)-component has only 1 element
(upto permutation and double sign-change) and so the minimal �-value is
�(−2, 0, 0) = 9. Next, the (2, 1, 1)-component has only 2 elements namely
(2, 1, 1) and (−1, 1, 1). The minimal �-value is �(−1, 1, 1) = −16 while
�(2, 1, 1) = 5. Finally, �(2, a, a) = 9 − 4a2 < 0 for a ≥ 2. Then the
same argument used in Sect. 3.1 can be used to show that any lattice point x
not of these type satisfy �(x) ≥ 0, so that the minimal �-value is uniquely
determined. Thus, even here each component has a unique minimal �-value,
whose point can be used as a generator.

One can use the �-function and the analysis above to deduce a descent
procedure.One concludes that either every positive node descends to a negative
node or if not, there is an infinite chain of positive nodes on which �(x) is
strictly decreasing. The latter is not possible since �(x) ≥ 0 on positive
nodes. There are only finitely many negative nodes inS+(k). So we conclude
that there are finitely many orbits. Repeating the analysis in the paper also
shows that all the negative points are �-inequivalent and in each orbit � has a
minimum value taken at the root of that orbit, so at the only (modulo double
sign-changes) negative point on that orbit.

Using Lagrange multipliers on the region on Vk with x j ≥ 3 and k → ∞,
one can show that :

(i). minx∈S+(k) �(x) ≥ k2 + 18k
3
2 + 88k + 621

4 k
1
2 + O(1);

(ii). maxx∈S−(k) �(x) ≤ k2 − 18k
3
2 + 88k − 45

4 k
1
2 + O(1);

(iii). minx∈S−(k) �(x) ≥ −3k
4
3 + O(k).

Hence asymptotically, � behaves like a Minkowski gauge-function, with
“successive minima” taken at the root of the orbits; that is if h(k) is the number
of orbits, the first h(k) minimal values (counted with multiplicity) of � on the
lattice points on Vk occur at the negative points.

5 Parametric solutions on Markoff-type surfaces and Zariski density

Weshow in this section that for generic k, theMarkoff surface has noparametric
integral points and that the solution set is Zariski dense. We also consider the
surfaces given by U1 and U2 mentioned in the Introduction.
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5.1 Parametric solutions

Lemma 5.1 For any k ∈ Z, let M∗
k be the surface given by M

∗(x) = k, where

M∗(x) =
3
∑

j=1

α j x j + (β1x2x3 + β2x1x3 + β3x1x2) + x21 + x22 + εx23 − x1x2x3, (15)

where ε = ±1 andα j ,β j ∈ Z for all j . Suppose there are polynomials Pj (t) ∈
Z[t] each with non-zero degree, such that M∗(P1, P2, P3) = k identically in t .
Then there are polynomials Q1, Q2 ∈ Z[t] of non-zero degree and a constant
q ∈ Z such that M∗(q, Q1, Q2) = k identically in t .

Proof Let Pj have degree d j �= 0 for j = 1, 2, 3 as above. By comparing
degrees in (15) we cannot have d1 = d2 = d3, so that there is either a unique
d j exceeding the other two or exactly two of the degrees are the same. The
latter does not happen as it implies that at least one of the polynomials is a
constant. Hence (comparing degrees in (15)) we have that d ′′ = d ′ + d for
some choice of the degrees. It will not matter which subscript represents the
largest degree in what follows, so that we put d3 = d1 + d2, with d1, d2 ≥ 1.

There is a Vieta affine transformation acting on the surface given by x3 �→
x4 = x1x2 − α3 − β1x2 − β2x1 − εx3, so that if P4(t) is the polynomial
determined by x4, we have

P3P4 = k − P2
1 − P2

2 − β3P1P2 − α1P1 − α2P2,

identically in t . If d4 is the degree of P4, we have d3 + d4 ≤ 2max(d1, d2), so
that d4 ≤ max(d1, d2)−min(d1, d2) < max(d1, d2). Thus we have polynomi-
als P1, P2, P4 in place of P1, P2, P3 representing integral points on the surface,
with the maximal degree reduced by at least one and the newmaximum degree
is determined by P1 or P2. Either P4 has degree zero, in which case we are
done, or if not, all the new polynomials have non-zero degree. Repeating this
descent argument (with a different Vieta transformation) shows that there must
be parametric solutions with at least one polynomial constant, and the other
two polynomials of non-zero degree. ��

It is not possible to have parametric solutions to (15) with two of the poly-
nomials constant. It follows from the lemma that if parametric solutions exist
then there exists q ∈ Z and Q1, Q2 ∈ Z[t] of the same degree d satisfying
(15) (it is possible to show that d ≤ 2, if it exists). We now consider some
special cases:

1. For theMarkoff equationwe have Q2
1+Q2

2−qQ1Q2 = k−q2. Comparing
the highest degree term shows that there are integers q1, q2 such that q21 +
q22 − qq1q2 = 0. It follows that q = ±2 and k − 4 = �. Moreover if
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k = 4 + w2, then one has a parametric family of solutions q = 2, Q1 = t
and Q2 = t + w. In particular, this means that if k is generic, there are no
parametric solutions to the associated Markoff level set.

2. Consider the Markoff-like surface x21 + x22 − x23 − x1x2x3 = k. If we have
parametric solutions as above of the type (Q1, Q2, q), then the argument
is identical to the Markoff case so that we conclude there are no such
parametric solutions except when k + 4 = w2, in which case we have the
parametric family (t + w, t, 2). Next, if either x1 or x2 is q, we have the
equation Q2

1 − Q2
2 − qQ1Q2 = k − q2, so like the case above, we have

q21 −q22 −qq1q2 = 0. We conclude that q = 0 so that when k �= 0, Q1 and
Q2 have degree zero, a contradiction. When k = 0, we have the parametric
family (Q1, 0, ±Q1) for any polynomial Q1.

Remark 5.2 This surface has the following features: (i) there are no local
obstructions, (ii) for k = 4αk′ with α ≥ 0 and k′ odd, it has the integral points
(0, 2α k′+1

2 , 2α k′−1
2 ), (iii) if k′ �= 1 or α ≥ 3, there are infinitely many integral

points, and (iv) there are infinitely many Hasse failures (in particular, k = 94
is a Hasse failure). This latter statement follows from an analysis similar to
that in Prop. 8.1.

3. Consider the linear deformation U1 of the Markoff equation consid-
ered in (9), namely x1 + x21 + x22 + εx23 − x1x2x3 = k. For any integer
k, and ε = ±1, we have the parametric family of integral solutions
(−t2 + k − 4ε, −t2 + t + k − 4ε, 2

)

.
4. Consider the quadratic deformationU2 of (10): x2x3 − x1x2 + x21 + x22 +

x23 − x1x2x3 = k. For any k, we have the parametric solutions (−t2 + t + k −
1, −t2 + k − 1, 1).

5.2 Zariski density

5.2.1
We prove (5) for the Markoff surface for k not a square (this ensures that

if Vk,M(Z) �= ∅, then it has a lattice point with at most one coordinate zero).
First note that if x̂ = (x̂1, x̂2, x̂3) ∈ Vk(Z) and |x̂ j | ≥ 2 for some j , then
|Vk(Z)| = ∞. To see this, say |x̂1| ≥ 2; then the composition of the Vieta
transformation V3 with the permutation of x2 and x3 yields the transformation
(x1, x2, x3) �→ (x1, x1x2 − x3, x2) in �. This preserves the plane x1 = x̂1 and

Vk , and it induces the linear action

[

x̂1 −1
1 0

]

on this plane. Since |x̂1| ≥ 2,

this element in SL2(Z) is of infinite order, so that its orbit is infinite (since it
is not acting on the origin) and its Zariski closure contains the conic section
{x1 = x̂1}∩Vk . We now argue as in [21]. If Vk(Z), the Zariski closure of Vk(Z)
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is not Vk , then it is contained in a finite union of curves in Vk . Hence there can
be at most finitely many x̂1’s with (x̂1, x̂2, x̂3) ∈ Vk(Z) with |x̂1| ≥ 2 (since
otherwise Vk(Z) contains infinitely many distinct conic sections as above).
The same applies to x̂2 and x̂3, giving |Vk(Z)| < ∞. That is we have shown
that |Vk(Z)| = ∞ implies that Vk(Z) = Vk . To complete the proof of (5)
note that if |k| > 20 and (x̂1, x̂2, x̂3) ∈ Vk(Z) then for at least one of the j’s,
|x̂ j | ≥ 2 and so |Vk(Z)| �= ∅ implies Vk(Z) = Vk . For the k’s with |k| ≤ 20
we check directly that (5) holds. One can show that when k = 1, 9, 49, for
example, Vk,M(Z) �= ∅ but has only a finite orbit. On the other hand, when
k = k21 with k1 having an odd prime factor congruent to one modulo 4, then
Vk,M(Z) has an infinite orbit, and by the argument above, is Zariski dense.
5.2.2

We next consider the surface U1 discussed above and in (9). The argument
is almost the same as for theMarkoff surface except that nowwe have an affine
transformation and a lack of full symmetry in the variables.

As in the case for the Markoff equation, assume that Vk,U1(Z) �= Vk,U1

so that it is contained in a finite union of curves. Consider the two Vieta
transformations: V1(x) = (x2x3−1− x1, x2, x3) and V3(x) = (x1, x2, x1x2−
x3), keeping x2 fixed. Putw = (x1, x3)T so that V1 and V3 act onw. By abuse
of notation, we have

V1(w) =
[−1 x2

0 1

]

w +
[−1

0

]

and V3(w) =
[

1 0
−x2 −1

]

w,

so that we write V1V3(w) = Aw + b, with

A =
[−1 − x22 −x2

−x2 −1

]

∈ SL(2, Z), and b =
[−1

0

]

.

Hence (V1V3)
nw = Anw + ∑n−1

j=0 A
jb for n ≥ 1. If V1V3 has order n, it

follows that (An − I )[(A− I )w+ b] = 0. Now, if x2 �= 0, then A has infinite
order and An − I is invertible, so that we have (A − I )w = −b. This is
impossible since (A− I )−1b is not integral. Hence V1V3 has infinite order so
that the orbit V1V3(x1, x2, x3) with x2 �= 0 fixed is infinite. The assumption
of Zariski density implies that there are only finitely many x2’s.

Since the surface given by U1 is symmetric in x2 and x3, it follows that
there are only finitely many x2 and x3’s, from which we conclude that there
are at most finitely many lattice points (since x1 is determined). Starting with
the base point p = (k − 4, k − 4, 2) which is on the surface, we see that this
is impossible since the orbit V1V3(p) is infinite if k �= 4. Hence Vk,U1(Z) is
Zariski dense in Vk,U1 for all k �= 4. For k = 4, we use instead p = (−1, 2, 0)
so that w �= 0, and the argument above gives an infinite orbit, and Zariski
dense.
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5.2.3
The argument for U2 is almost identical: we use the Vieta transformations

V1(x) = (x2x3 + x2 − x1, x2, x3) and V3(x) = (x1, x2, x1x2 − x2 − x3), and
have the corresponding matrix equation for V1V3(w) = Aw + b, with

A =
[−1 + x22 −x2

x2 −1

]

∈ SL(2, Z), and b =
[−x22 + x2

−x2

]

.

The analysis is the same as forU1 except nowwe have that An − I is invertible
if |x2| ≥ 3. As above, we derive a contadiction of the finite order assumption
since (A − I )−1b is not integral. In particular, taking the base point p =
(k−1, k−1, 1), we conclude that Vk,U2(Z) is infinite if |k| ≥ 4. The reasoning
above using the Zariski density assumption shows that there are only finitely
many x2’s.

Due to the lack of symmetry in the variables, we redo the analysis with x1
fixed, using V2V3(w) = Aw+b, with V2(x) = (x1, x1x3 + x1 − x3 − x2, x3),
V3 as before, w = (x2, x3)T and

A =
[

x1(x1 − 2) 1 − x1
x1 − 1 −1

]

∈ SL(2, Z), and b =
[

x1
0

]

.

If |x1−1| ≥ 3,we conclude (A− I )w = −b, and derive a contradiction regard-
ing the finite order assumption. Thus the Zariski density hypothesis implies
that there are only finitely many x1’s. Hence, again since x3 is determined by
x1 and x2, Vk,U2(Z) is finite, giving a contradiction. Thus Vk,U2(Z) is Zariski
dense in Vk,U2 for all |k| ≥ 4. For |k| ≤ 4, a direct computation gives many
eligible candidates for lattice points that lead to Zariski dense.

A much stronger theorem concerning � invariant holomorphic curves and
structures for the surfaces corresponding to (8) is proved in ([15], TheoremD).

6 Local solutions in Z p

Proposition 6.1 Given k ∈ Z, the congruence x21 + x22 + x23 − x1x2x3 ≡
k (mod pn) has solutions for all primes p and n ≥ 1 except for the following
exceptions : k ≡ 3 (mod 4), k ≡ ±3 (mod 9).

We break up the proof into several cases.
It is particularly easy to verify the Proposition for powers of primes p ≥ 5

as follows: recall the Fricke trace identity, namely for any real unimodular
matrices A and B,

S(A)2 + S(B)2 + S(AB)2 − S(A)S(B)S(AB) = S([A, B]) + 2,

(16)
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where [A, B] = ABA−1B−1 is the commutator, andS() denotes the trace of
the matrix.

Restricting the matrices to SL(2, Z), one obtains integral solutions to (11),
with k = t + 2, where we denoteS([A, B]) by t . We have

Lemma 6.2 For any prime p ≥ 5, n ≥ 1 and any integer t , there exists
matrices A, B ∈ SL(2, Z/pnZ) such that

S(A)2 + S(B)2 + S(AB)2 − S(A)S(B)S(AB) ≡ t + 2 (mod pn) .

Proof For

A =
[

a b
c d

]

, B =
[

e 0
0 f

]

, A, B ∈ SL(2, Z/pnZ),

we have S([A, B]) = 2ade f − bc(e2 + f 2) ≡ 2 − bc(e − f )2 (mod pn).
Since p ≥ 5, there exists e and f such that (e − f, p) = 1 with e f ≡

1 (mod pn). Then, we choose c so that c(e − f )2 ≡ 1 (mod pn). Finally, we
choose a = 1, b = 2 − t and d = 1 + bc. ��
Corollary 6.3 For p ≥ 5 and n ≥ 1, the Markoff congruence x21 + x22 + x23 −
x1x2x3 ≡ k (mod pn) has the solution x1 ≡ 2 − (k − 4)c, x2 ≡ e + f and
x3 ≡ e − f + f x1, with e, f and c as in the proof of the Lemma.

The argument above gives the existence of solutions for powers of p ≥ 5.
It is useful to have a precise count for the number of solutions modulo p. For
this, it is not any harder to consider the more general problem in

Lemma 6.4 For p ≥ 3, let Np denote the number of solutions to x21 + x22 +
x23 − αx1x2x3 ≡ β modulo p. Then

Np =

⎧

⎪⎪⎨

⎪⎪⎩

p2 + p
(−β

p

)

L
if p|α,

p2 + 1 +
(

α2β−4
p

)

L

[

3 +
(

β
p

)

L

]

p otherwise.

Proof It is clear we need only consider the cases α = 0 and α = 1, the latter
when p � α, upon which we multiply through with α2 and change variables.

Write Sp(a) = ∑

u ep(au
2) (where ep(x) = e

2π i x
p ) so that when p � a,

one has Sp(a) =
(
a
p

)

L
Sp(1). When α = 1, putting u ≡ 2x3 − x1x2 (mod p)

shows that we have the same number of solutions as the congruence

4(x21 + x22) + u2 − x21 x
2
2 ≡ 4β (mod p),
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so that

Np − p2 = 1

p

∑

a �≡0

Tp(a)Sp(a)ep(−4aβ) ; (17)

here we obtained p2 solutions when a ≡ 0 (mod p), and we put

Tp(a) =
∑

x1,x2

ep
(

a(4x21 + 4x22 − x21 x
2
2)
) =

∑

x1

ep(4ax
2
1)Sp

(

a(4 − x21)
)

.

Breaking the sum over x1 in Tp above depending on when x1 ≡ ±2 or not
gives us

Tp(a) = 2p ep(16a) +
(
a

p

)

L
Sp(1)

∑

x1

(

4 − x21
p

)

L

ep(4ax
2
1).

Summing over a in (17) gives Np = p2 + E1 + E2, where

E1 = 2Sp(1)
∑

a

(
a

p

)

L
ep (a(16 − 4β)) = 2Sp(1)

2
(
4 − β

p

)

L
, (18)

and

E2 = 1

p
Sp(1)

2
∑

x1

(

4 − x21
p

)

L

∑

a �≡0

ep
(

4a(x21 − β)
)

. (19)

Summing over a in (19), we write E2 = −E2,1 + E2,2 with

E2,1 = Sp(1)2

p

∑

x21 �≡β

(

4 − x21
p

)

L

,

= Sp(1)2

p

[
∑

x1

(

4 − x21
p

)

L

−
(
4 − β

p

)

L

[

1 +
(

β

p

)

L

]]

,

and

E2,2 = Sp(1)2

p
(p − 1)

(
4 − β

p

)

L

[

1 +
(

β

p

)

L

]

.
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Since
∑

x

(

4−x21
p

)

L
= −

(−1
p

)

L
, it follows from (18) and (19) that

Np = p2 + 2Sp(1)
2
(
4 − β

p

)

L
+ Sp(1)2

p

(−1

p

)

L
+ Sp(1)

2
(
4 − β

p

)

L

[

1 +
(

β

p

)

L

]

.

Using Sp(1)2 = p
(−1

p

)

L
then gives us

Np = p2 +
(

β − 4

p

)

L

[

3 +
(

β

p

)

L

]

p + 1.

It follows that Np ≥ p2 − 4p + 1 = (p − 2)2 − 3 > 0 if p ≥ 5. This is also
true of p = 3 as can be checked with different values of β.

Next, if p|α,

Np − p2 = 1

p

∑

a �≡0

ep(−βa)Sp(a)3 = Sp(1)3

p

∑

a

ep(−βa)

(
a

p

)

L
.

If p|β, then Np = p2. If p � β, then the right hand side is p
(−β

p

)

L
. ��

6.1 Prime powers: p ≥ 5

Wehave already considered this case in Corollary 6.3, but for completeness we
give here the argument usingHensel’s lemma. Let f = x21+x22+x23−x1x2x3−
k, considered as three functions of each variable. We use Df to represent one
of the three partial derivatives (the choice being understood from the context):
2x1 − x2x3, 2x2 − x1x3 or 2x3 − x1x2. To obtain solutions modulo pn+1

from those modulo pn , it suffices that at least one of these derivatives not
vanish modulo pn . We call such triples non-singular. If (x1, x2, x3) is such
a non-singular solution modulo pn with say 2x1 − x2x3 �≡ 0 (mod pn), then
Hensel’s lemma gives a solution to f ≡ 0 (mod pn+1) of the form (y1, x2, x3)
with y1 ≡ x1 (mod pn). This new triple is non-singular modulo pn+1 so that
by induction a non-singular solution modulo p lifts to one modulo pn for any
n ≥ 1, for any prime p ≥ 5. Note that (3, 3, 3) is a non-singular solution when
p|k, giving solutions modulo pn .
Next suppose the triple (x1, x2, x3) is a singular solution of the congruence

f ≡ 0 (mod p) for p � k, so that we have 2x1 ≡ x2x3, 2x2 ≡ x1x3 and
2x3 ≡ x1x2 (mod p). If we assume p � x1x2x3, then necessarily x21 ≡ x22 ≡ x23
and x1x2x3 ≡ 2x21 (mod p). Substituting into f ≡ 0 (mod p) gives x21 ≡
k (mod p) so that k must be a non-zero quadratic residue modulo p, so say k ≡
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u2 (mod p). But then (u, 0, 0) is a non-singular solution to f ≡ 0 (mod p),
and so by above, lifts to a non-singular solution modulo pn for all n ≥ 1.

Finally, suppose p|x1x2x3 with (x1, x2, x3) singular. Then p divides x1, x2
and x3, so that p2|k. But then (3, 3, 3) is a non-singular solution modulo p2

for all p > 3. We can now apply Hensel’s lemma as above, starting modulo
p2 and lifting to solutions modulo pn for all n ≥ 2 and p > 3.

6.2 Prime powers: p = 3

The congruence f ≡ 0 (mod 3) has the following non-singular solutions :
when k ≡ 1, take (1, 0, 0); and when k ≡ −1, take (0, 1, 1). These solutions
lift to solutions modulo 3n for n ≥ 1.

When k ≡ 0 (mod 3), the only solution is the singular (0, 0, 0). We now
consider this case modulo 9. Since 3 divides each of x1, x2 and x3, then
necessarily when k ≡ 3 or 6 mod 9, there are no solutions. So assume 9|k, in
which case (3, 0, 0) is a non-singular solutionmodulo 9 and so lifts to solutions
modulo 3n with n ≥ 2.

6.3 Prime powers: p = 2

Modulo 2, Df ≡ x1x2 or x1x3 or x2x3. Thus if k is even, one may use the non-
singular solution (1, 1, 1) to obtain solutions modulo powers of 2. When k is
odd, the only solution is the singular (0, 0, 1). Then necessarily k ≡ 3 (mod 4)
has no solutions. So assume k ≡ 1 (mod 4) and we find the non-singular
solution (1, 0, 0) modulo 4 (note that here one uses Df ≡ 2x1 − x2x3 �≡
0 (mod 4)). This then lifts to higher powers of 2.

7 The average of h±
M(k): counting lattice points

We show here that the average of h±
M(k) is C±(log k)2, by counting lattice

points in the domains given in Theorem 1.1 ((see the paragraph containing (6)
for definitions). We provide the details for k > 5.

Fix u1 = a with 3 ≤ a � K
1
3 and write u2 = m and u3 = n. We determine

the asymptotics of Na(K ), the number of pairs (m, n) satisfying the inequality
a2 + m2 + n2 + amn ≤ K with a ≤ m ≤ n. We have

m ≤ n ≤ 1

2

(

−am +
√

4(K − a2) + (a2 − 4)m2
)

,

so that m ≤ Ka , with Ka =
√

K−a2
a+2 . Hence

Na(K )= 1

2

∑

a≤m≤Ka

{√

4(K − a2) + (a2 − 4)m2 − (a + 2)m
}

+O

(√

K

a

)

.
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The function in the sum is decreasing in m and the contribution from the
endpoints are O(

√
K ). Hence

Na(K ) = 1

2

∫ Ka

a

{√

4(K − a2) + (a2 − 4)x2 − (a + 2)x
}

dx + O
(√

K
)

.

Changing variables gives

Na(K ) = 2
K − a2√
a2 − 4

∫ β

α

{
√

1 + x2 − a + 2√
a2 − 4

x

}

dx + O
(√

K
)

,

where β =
√
a−2
2 and α = O(aK− 1

2 ). Replacing α with zero gives an error
of O(

√
K ) and the integral becomes

1

2

{

β

√

1 + β2 + log

(

β +
√

1 + β2

)

− a + 2√
a2 − 4

β2
}

.

Simplifying gives us

Lemma 7.1 For 3 ≤ a � K
1
3 , the number of pairs (m, n) satisfying the

inequality a2 + m2 + n2 + amn ≤ K with a ≤ m ≤ n is

Na(K ) = log

[√
a − 2 + √

a + 2

2

]

K − a2√
a2 − 4

+ O(
√
K ).

Lemma 7.2 Let R+(K ) be the number of points (x1, x2, x3) satisfying x21 +
x22 + x23 + x1x2x3 ≤ K, with 3 ≤ x1 ≤ x2 ≤ x3. Then

R+(K ) = 1

36
K (log K )2 + O(K log K ).

Proof It follows from the previous lemma that

R+(K ) =
∑

3≤a≤K
1
3

log

[√
a − 2 + √

a + 2

2

]

K√
a2 − 4

+ O
(

K
5
6

)

.

The main term is asymptotic to K
2

∑

a
log a
a ∼ K

4 (log K
1
3 )2. ��

We also state, without details, the analogous count for the case of k < 0 in
Theorem 1.1(ii).
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Lemma 7.3 Let R−(K ) be the number of points (x1, x2, x3) satisfying x21 +
x22 + x23 − x1x2x3 = −k, with 0 < k ≤ K and 3 ≤ x1 ≤ x2 ≤ x3 ≤ 1

2 x1x2.
Then

R−(K ) = 1

48
K (log K )2 + O(K log K ).

8 Failures of the Hasse Principle

The fundamental sets allows us to determine Hasse failures for small k very
readily. For example, direct computations reveal that the smallest positive
Hasse failure occurs with k = 46. That k = 46 is a Hasse failure can be
verified by applying Theorem 1.1 as follows: either k = 46 is exceptional or
there exist 3 ≤ x1 ≤ x2 ≤ x3 such that x21 + x22 + x23 + x1x2x3 = 46. The latter
cannot occur since the smallest value of the polynomial is 54. To determine
if 46 is exceptional, since it is not a sum of two squares and since 42 is not
a square, it remains to check if the equation x22 + x23 − x2x3 = 45 has any
solutions with x2, x3 ∈ Z. The equation implies that 3|x2 and 3|x3, so that
we consider the solvability of y21 + y22 − y1y2 = 5. This is equivalent to the
solvability of u21 + 3u22 = 20, which is impossible by congruence modulo 5
or otherwise.

LetVk(Z)denote the integral points on the surface x21+x22+x23−x1x2x3 = k,
for k ∈ Z. For k = 4 + d, the surface Vk is the singular Cayley sur-
face when reduced modulo d. Its features, coupled with global quadratic
reciprocity, yield failures of strong approximation (mod 4d). For example,
assume that n → (4d

n

)

is a primitive Dirichlet character (mod 4d) and let
Sd ⊂ Z/4dZ be the multiplicative closed set

{

n : (4dn
) = 0 or 1

}

. Then, for
any x = (x1, x2, x3) ∈ Vk(Z) one has

x2j − 4 ∈ Sd (mod 4d), for j = 1, 2, 3. (20)

These congruences on x j imposed by (20) are not consequences of local con-
siderations and so strong approximation fails for Vk(Z), at least (mod 4d).

To see (20), we rewrite (11) as

w2 − 4d = (

x21 − 4
) (

x22 − 4
)

, (21)

with w = 2x3 − x1x2. Now, if x21 − 4 = p1 p2 . . . pl with p j primes (possibly

with repetition), then w2 ≡ 4d (mod p j ) and hence
(
4d
p j

)

= 0 or 1. Thus

p j ∈ Sd for each j , and hence so does x21 − 4. The same applies to x22 − 4
and x23 − 4. Quadratic reciprocity then implies that the x j ’s must lie in certain
congruence classes (mod 4d).
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As we now show, by specializing the k’s and enhancing the analysis above,
we can eliminate all the candidate congruence classes and produce families
of Hasse failures. We turn to these and the proof of Theorem 1.2(i) in the
Introduction, which follows from Prop. 8.1 below.

Proposition 8.1 For the following choices of k, Vk(Z) is empty but Vk(Zp) is
non-empty for all primes p :

(i). For k < 0, choose k = 4 − 2ν2, with odd ν having all its prime factors
congruent to 1 or 3 modulo 8.

(ii). For k > 4, choose k = 4+2ν2 with ν having all of its prime factors in the
congruence classes {±1}modulo8, and in additionwith ν ∈ {0, ±3, ±4}
modulo 9.

(iii). Suppose  ≥ 13 is a prime number with  ≡ ±4 (mod 9). Then choose
k = 4 + 22.

The smallest positive k here is 342.

Proof Writing k = 4 + 2εν2 with ε = ±1, with odd ν, the congruence
conditions ensure that Prop. 6.1 implies Vk(Zp) �= ∅ for all primes p.

Let (x1, x2, x3) be a solution to

x21 + x22 + x23 − x1x2x3 = 4 + 2εν2, (22)

with the corresponding

w2 − 8εν2 = (x21 − 4)(x22 − 4), (23)

with w = 2x3 − x1x2.
Since ν is odd, 4± 2ν2 is not divisible by 4, so that at least one of x1, x2 or

x3 is odd, so say x1. Then x21 − 4 ≡ 5 ≡ −3 (mod 8).
Case (i): It follows that x21 − 4 is divisible by a prime number q ≡ −1 or −
3 (mod 8). Since q � ν, it follows from (23) that −2 is a quadratic residue
modulo q, a contradiction.
Case (ii): It follows that x21−4 is divisible by a prime number q ≡ ±5 (mod 8).
Since q � ν, it follows from (23) that 2 is a quadratic residue modulo q, a
contradiction.
Case (iii): Recall that for k ≥ 5, if k is not exceptional, every solution is
equivalent to one in the fundamental set 3 ≤ x1 ≤ x2 ≤ x3 with x21 +x22 +x23 +
x1x2x3 = k = 4+ 22. This implies that 3 ≤ x1 ≤ k

1
3 and x1 ≤ x2 ≤

(
k
x1

) 1
2
.

Now, the proof above requires that at least one of the variables is odd; but
in fact at least 2 variables are odd (by considering the equation modulo 4). It
follows that we derive a contradiction if we follow the proof above with q �= .
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On the other hand, if q = , since two variables are odd, we can choose one,

say x1 satisfying 3 ≤ x1 ≤
√

k
3 with |(x21 − 4). Then |(x1 − 2) or |(x1 + 2)

so that x1 + 2 ≥ t for some t ≥ 1. Then we get

 − 2 ≤ t − 2 ≤ x1 ≤
√

4 + 22

3
,

so that 3( − 2)2 ≤ 4 + 22, which implies that  < 13, a contradiction.
To complete the proof, it remains to check that our choice of k is not excep-

tional, that is there are no solutions with say x1 equal to 0, ±1 or ±2. If
x1 = 0, then since two variables are odd, we have x2 and x3 are odd with
x22 + x23 = 4+ 22. The left side is congruent to 2 while the right is congruent
to 6 modulo 8. Next, if x1 = ±1, we have x22 + x23 − x2x3 = 3 + 22. Com-
pleting the square gives us (2x1 − x3)2 + 3x23 = 4(3 + 22), so that 82 is a
quadratic residue modulo 3. This is a fallacy since 82 ≡ 2. Finally, the case
x1 = ±2 is trivially dealt with since it implies that 2 is a square. ��

We continue belowwith variants of this construction of Hasse failures, their
densities being no more than the k’s in Prop. 8.1, which is K

1
2 (log K )− 1

2 and
establishes Theorem 1.2(i).

Proposition 8.2 Suppose ν2 ≡ 25 (mod 32) with ν having all prime factors
≡ ±1 (mod 12). Then, Vk(Z) is empty with k = 4 + 12ν2, but has local
solutions. The smallest ν is 37, with k = 16432.

Proof It is obvious that with the choice of k, the conditions of Prop. 6.1 are
satisfied so that local solutions exist.

We first consider congruences modulo 12, where the squares are in
{0, 1, 4, 9}. Suppose (x1, x2, x3) is a solution to

x21 + x22 + x23 + x1x2x3 = 4 + 12ν2, (24)

with ν as above.
If 2 � x1x2x3, then x21 − 4 ≡ 5 (mod 12) or is divisible by 3 (the same

holding for x2 and x3). From (24) we have

w2 − 48ν2 = (x21 − 4)(x22 − 4), (25)

so that if x21 − 4 ≡ 5 (mod 12), there is a prime p ≡ ±5 (mod 12) with
p|(x21 −4). This is not possible since p � ν implies that 3 is a quadratic residue
(mod p), a fallacy. The same holds for x2 and x3, so that we may assume that
x21 ≡ x22 ≡ x23 ≡ 1 (mod 12), so that each lies in the set {±1, ±5}modulo 12.
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If x1 ≡ ±5, then in x21 − 4 = (x1 − 2)(x2 + 2), at least one factor is congruent
to ±5, so that the argument above with a prime p gives a contradiction. Hence
we may assume that x1 ≡ ±1 (mod 12), and the same for x2 and x3. But then
9 divides the right hand side of (25), a contradiction.

Next, if 2 � x1x2, but 2|x3, we see that a Vieta map gives the solution
(x1, x2, −(x1x2 + x3)) with all coordinates odd, so that the previous analysis
give a contradiction.

Hence we assume x1, x2 and x3 are all even, so that changing variables gives
us the equation

y21 + y22 + y23 + 2y1y2y3 = 1 + 3ν2, (26)

with the corresponding

w2
1 − 3ν2 = (y21 − 1)(y22 − 1). (27)

If y1 is odd, then 8|(y21 − 1) so that 3 is a quadratic residue mod 8, a fallacy.
Hence we assume all y1, y2 and y3 are even. We now consider congruences
modulo 16. We first note that 1+ 3ν2 ≡ 12 (mod 16), so that we cannot have
4 dividing each of the variables.

Next, if 4|y1, 4|y2 and y3 ≡ 2 (mod 4), then (26) gives us y23 ≡ 12 (mod 16),
an impossibility. Similarly if 4|y1 but y2 ≡ y3 ≡ 2 (mod 4), then y22 + y23 ≡
12 (mod 16), which we see again is impossible. Thus, we may assume that
y1 ≡ y2 ≡ y3 ≡ 2 (mod 4), in which case we write y1 = 2z1, y2 = 2z2 and
y3 = 2z3, with 2 � z1z2z3. Then (26) becomes

z21 + z22 + z23 + 4z1z2z3 = 1 + 3

(
ν2 − 1

4

)

.

The left hand side is congruent to 7 modulo 8, while the right is congruent to
3. Hence the result follows. ��
Proposition 8.3 Suppose ν ≡ ±4 (mod 9) with ν having all prime factors
≡ ±1 (mod 20). Then, Vk(Z) is empty with k = 4 + 20ν2, but has local
solutions. The smallest ν is 41, with k = 33624.

Proof The proof is very much the same as the one above, with a small change.
The squares modulo 20 lie in the set {0, 1, ±4, 5, 9} and the odd primes in
{±1, ±3, ±7, ±9}.

Writew2−80ν2 = (x21−4)(x22−4). If 5|x1, theremust exist a prime p ≡ ±2
modulo 5 dividing x21 −4, so that since p � ν, 80 is a quadratic residue modulo
p, which is false using quadratic reciprocity. So we may assume 5 � x1x2x3 so
that x2j − 4 is not 1 modulo 20.
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If 2 � x1x2x3, since x1 is odd, we have x21 −4 ≡ −3 or 5modulo 20. Assume
the former. Then, if there is a prime factor p|(x21 − 4), with p ≡ ±3 or ±7
(mod 20), then w2 ≡ 80ν2 (mod p), so that 5 is a quadratic residue modulo p;
that is p a quadratic residue modulo 5, which is not true. Hence x21 − 4 must
have a prime factor p ≡ 9 (mod 20). But then, x21 − 4 ≡ 3 implies that there
must be another prime factor q ≡ ±3 or ±7 all modulo 20, and that leads to
a contradiction. Hence we cannot have x21 − 4 ≡ −3 (mod 20), and the same
being so for x2 and x3. Hence we must have x21 − 4 ≡ x22 − 4 ≡ 5 (mod 20),
so that w2 − 80ν2 = (x21 − 4)(x22 − 4) implies that 25|80.

If 2 � x1x2, but 2|x3, the Vieta map gives the solution (x1, x2, −(x1x2+ x3))
with all coordinates odd, so that the previous analysis give a contradiction.
Hence we assume x1, x2 and x3 are all even, so that changing variables gives
us the equation

y21 + y22 + y23 + 2y1y2y3 = 1 + 5ν2, (28)

with the corresponding

w2
0 − 5ν2 = (y21 − 1)(y22 − 1). (29)

If y1, y2 and y3 are all even, then we have a contradiction in (28) since v2 ≡ 1
(mod 4). If y1 is odd, then 8|(y21 − 1) so that 5 is a quadratic residue mod 8, a
fallacy. The result follows. ��

9 Proof of Theorem 1.2(ii)

The proofs for the case k > 0 and k < 0 are almost identical with the main
difference being in the choice of our functions and the domains of the variables.
We give here the details for the case k > 0 and indicate the modification for
k < 0 in a remark below.

Let K → ∞ be our main (large) parameter, and let A be a secondary
parameter satisfying (log K )2 < A �ε K ε, with ε > 0 sufficiently small. Let
Abe the interval [√A, A]. Lastly we use a parameter m = ∏

p≤L pB , where

we put L = log A
log log A�(A) and B = log log A

�(A)2
with �(A) → ∞ with A. Then,

m ∼ A
1

�(A) as A → ∞.
For any a ∈ A, put

ga(x1, x2) = x21 + x22 + ax1x2 and fa(x1, x1) = ga(x1, x2) + a2. (30)

It will be convenient to denote by Da the discriminant a2 − 4 of the indefinite
quadratic form ga above, for each a ∈ A. Completing the square shows that
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4ga(x1, x2) = (2x1+ax2)2−Dax22 , so that we consider the formGd(s1, s2) =
s21 − ds22 with d = Da (not a complete square). We then define the sector Sd
in the plane as

Sd =
{

(s1, s2) : s1, s2 ≥ 0, 0 ≤ Gd (s1, s2) ≤ 1, 2
√
ds2 ≤ s1 ≤ 3

√
ds2

}

,

=

⎧

⎪⎨

⎪⎩

(x1, x2) :
x1, x2 ≥ 0, 0 ≤ ga(x1, x2) ≤ 1

4
,

1

2

(

2
√
d − a

)

x2 ≤ x1 ≤ 1

2

(

3
√
d − a

)

x2

⎫

⎪⎬

⎪⎭

.

(31)

Remark 9.1 For k < 0 we define ga(x1, x2) = x21 + x22 − ax1x2 and define
the sectorSd with the constants 2 and 3 replaced by 1

3 and
1
2 respectively. This

then leads to some minor changes for the sector in the variable x1 and x2.

Next, we define the scaled region

√
XSd =

{(√
Xs1,

√
Xs2

)

: (s1, s2) ∈ Sa

}

.

It is easily shown that

Vol(
√
XSd) = C

X√
d

,

with C = 1
4 log

3
2 .

For 2 ≤ k ≤ K , we define

Rd(k) = #
{

(s1, s2) ∈ √
KSd ∩ Z

2 : Gd(s1, s2) = k and 2|(s1 − s2)
}

.

(32)

Lemma 9.2 For d and m as above we have

∑

k≤K

Rd(k) = CK

2
√
d

+ Oε

(

K
1
2+ε

)

.

Proof By the definition ofSd , we break up the sum in s1 and s2 into the ranges
so that Sd = S

(1)
d ∪ S

(2)
d with

S
(1)
d =

{

s2 ≤
√

K

8d
, 2

√
ds2 ≤ s1 ≤ 3

√
ds2, 2|(s1 − s2)

}

,
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and

S
(2)
d =

{√

K

8d
≤ s2 ≤

√

K

3d
, 2

√
ds2 ≤ s1 ≤

√

K + ds22 , 2|(s1 − s2)

}

.

The sums are easily evaluated. ��
Lemma 9.3 For a and m as above and for any α1 and α2, we have

∑

x1≡α1(m)
x2≡α2(m)
fa(x1,x2)≤K

(x1,x2)∈
√
4KSDa∩Z

2

1 = 2CK√
Dam2

+ Oε

(

K
3
4+ε

)

,

with the error term uniform is all other variables.

Proof By (30) we have trivially x1, x2 � √
K . Assuming 0 ≤ α j < m, we

put x j = α j + ml j with 1 ≤ l j �
√
K
m . Then (x1, x2) ∈ √

4KSDa ∩ Z
2 and

x2 � K
1
4+ε gives at most O(K

1
2+ε) lattice points, so that we may assume

that K
1
4+ε � x1, x2 � √

K . It is then easily checked that C ′
1l2 ≤ l1 ≤ C ′

2l2,

withC ′
j = C j

(

1 + O(K− 1
4+ε)

)

, where we have putC1 = 1
2

(

2
√
d − a

)

and

C2 = 1
2

(

3
√
d − a

)

as in (31).

Next
∣
∣ fa(x1, x2)−m2 fa(l1, l2)

∣
∣ � K

1
2+ε. The error in replacing the condi-

tion fa(x1, x2) ≤ K with the conditionm2ga(l1, l2) ≤ K is at most O(K
1
2+ε)

since we are counting lattice points in a hyperbolic segment of width K
1
2+ε,

with the variables restricted as above. Thus
∑

x1≡α1(m)
x2≡α2(m)
fa(x1,x2)≤K

(x1,x2)∈
√
4KSDa∩Z

2

1 =
∑

ga(l1,l2)≤ K
m2

(l1,l2)∈
√

4K
m2S

∗
Da

∩Z
2

1 + Oε

(

K
1
2+ε

)

,

where S∗ means the constants have been perturbed by about O(K− 1
4+ε), as

discussed above. Completing the square shows that the last sum is over the s1
and s2 variables as in (31) with the constraint that s1 − s2 is even, and with
the constants 2 and 3 defining the inequalities perturbed with the addition of

O(K− 1
4+ε). Applying Lemma 9.2 with K replaced with 4K

m2 gives the result,

with C replaced with C + O(K− 1
4+ε).

��
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Corollary 9.4 For a ∈ Aand k ≤ K let

ra(k) = #
{

(x1, x2) ∈ √
4KSa ∩ Z

2 : fa(x1, x2) = k
}

.

Then

∑

k≤K

ra(k) = 2CK√
Da

+ Oε

(

K
1
2+ε

)

.

We now set

bA(k) =
∑

a∈A
ra(k), (33)

and we are interested in this as a function of k for 1 ≤ k ≤ K . From Corol-
lary 9.4, we have

∑

1≤k≤K

bA(k) = CK log A + O(K A−1), (34)

so that the mean-value of bA(k) is C log A. Our main goal is to estimate the
deviation of bA(k) from its predicted value in terms of local masses. Let δ(Vk)
denote the formal singular series for

Vk : x21 + x22 + x23 + x1x2x3 = k, (35)

so that δ(Vk) = ∏

p<∞ δp(Vk), with

δp(Vk) = lim
ν→∞

#Vk(Z/pν
Z)

pν
.

These are given explicitly in the Appendices and Section 5. Define

δ(m)(k) = #Vk(Z/mZ)

m2 := rm(k)

m2 . (36)

Note that δ(m)(k) depends on k modulo m. With this, we define our variance

V (K ) = V (K , A,m) =
∑

k≤K

(

bA(k) − C(log A)δ(m)(k)
)2

. (37)
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We expand (37) as 
1 + 
2 + 
3. We have


3 = C2(log A)2
∑

l (modm)

δ(m)(l)2
∑

k≤K
k≡l(modm)

1 ,

= C2(log A)2
(
K

m
+ O(1)

)
∑

l (modm)

δ(m)(l)2,

= C2(log A)2 (K + O(m)) δm

(

V (2)
)

,

(38)

where we define

V (2) : x21 + x22 + x23 + x1x2x3 = y21 + y22 + y23 + y1y2y3, (39)

and δm
(

V (2)
)

is the singular series for V (2) over Z/mZ.
Next,


2 = −2C(log A)
∑

k≤K

bA(k)δ(m)(k) = − log A
∑

l (modm)

δ(m)(l)
∑

k≤K
k≡l(modm)

bA(k),

= −2C log A
∑

l (modm)

δ(m)(l)
∑

a∈A

∑

k≤K
k≡l(modm)

ra(k).
(40)

Now, for each a ∈ A, the last sum in (40) above is

∑

k≤K
k≡l(modm)

ra(k) =
∑

α1,α2(modm)
fa(α1,α2)≡l(modm)

∑

y1≡α1 (modm)
y2≡α2 (modm)
fa(y1,y2)≤K

(y1,y2)∈
√
4KSa

1. (41)

Applying Lemma 9.3 to the inner sum gives

∑

k≤K
k≡l (modm)

ra(k) =
∑

α1,α2 (modm)
fa(α1,α2)≡l (modm)

2CK

am2

(

1 + O(a−2)
)

,
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so that

∑

k≤K
k≡l (modm)

bA(k) = 2CK

m2

∑

β (modm)
α1,α2 (modm)

fβ(α1,α2)≡l (modm)

⎛

⎜
⎜
⎝

∑

a∈A
a≡β (modm)

(

a−1 + O(a−3)
)

⎞

⎟
⎟
⎠

,

= 2CK

m3

(
1

2
log A + O(A− 1

2 )

)
∑

β (modm)
α1,α2 (modm)

fβ(α1,α2)≡l (modm)

1,

= 2CK

m

(
1

2
log A + O(A− 1

2 )

)

δ(m)(l).

(42)

Combining (40) with (42) gives us


2 = −2C2 K

m

(

(log A)2 + O(A− 1
2 log A)

) ∑

l (modm)

δ(m)(l)2 ,

= −2C2K
(

(log A)2 + O(A− 1
2 log A)

)

δm(V (2)).

(43)

It remains for us to analyze the difficult case 
1. We have


1 =
∑

k≤K

b2A(k) =
∑

a1, a2∈A

∑

k≤K

ra1(k)ra2(k) ,

=
∑

a∈A

∑

k≤K

r2a (k) +
∑

a1, a2∈A
a1 �=a2

∑

k≤K

ra1(k)ra2(k).
(44)

The diagonal term above can be estimated from

Lemma 9.5

(a). For Rd as in (32), we have

∑

k≤K

R2
d(k) � K√

d
+ K log K

d
τ(d),

(b).

∑

a∈A

∑

k≤K

r2a (k) � K log A.

where τ( ) is the divisor function, and all implied constants are absolute.

Proof Since we are obtaining upper-bounds, we will discard the condition that
s1 − s2 is even in the definition of Rd(k). By abuse of notation, we denote this
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modified counting function by Rd(k) in the proof. Part (b) follows fromPart (a)
in the same manner that Lemma 9.3 follows from Lemma 9.2, and summing
over a ∈ A, giving

∑

a∈A

∑

k≤K

r2a (k) � K log A + K log K log A√
A

� K log A,

since (log K )2 � A � K ε.
For the proof of Part (a), we write s j = (s j , t j ) for j = 1 , 2 to get

R2
d(k) = #

{

(s1, s2) : s21 − dt21 = s22 − dt22 = k, s j ∈ √
KSd , j = 1, 2

}

,

so that we have
∑

k≤K

R2
d (k)=#

{

(s1, s2) : s21−dt21=s22 − dt22 ≤ K , s j∈
√
KSd , j = 1, 2

}

. (45)

Now s j ∈ √
KSd and s2j − dt2j ≤ K imply that

s1 , s2 � √
K and t1 , t2 �

√

K

d

Switching the roles of t1 and t2 in (45) shows that

∑

k≤K

R2
d (k) ≤ #

{

(s1, s2) : s21 + dt22 = s22 + dt21 , s j � K
1
2 , t j �

(
K

d

) 1
2

, j = 1, 2

}

.

Since the forms are now positive definite, we apply Theorem 2 of [6], which
gives the estimate in the Lemma. ��

The inner sum in the off-diagonal term in (44) can be analyzed by using
Kloostermann’s method (see [29] and [39] for a modern treatment and unifor-
mity with our parameters) to give, for a1 �= a2

∑

k≤K

ra1(k)ra2(k) = δ(K )∞ (a1, a2) δfin(a1, a2) + O(K 1−ε0), (46)

for some ε0 > 0. Here, δ(K )∞ (a1, a2) is the singular integral and δfin(a1, a2) =
∏

p<∞ δp(a1, a2), where δp(a1, a2) is the singular series, both associated to
the equation

Va1,a2 : fa1(x1, x2) = fa2(y1, y2), (47)
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with

δp(a1, a2) = lim
ν→∞

#Va1,a2 (Z/pν
Z)

p3ν
. (48)

For the singular integral, let
√
4KSa1,a2 = √

4KSa1 × √
4KSa2 and let χa1,a2

be its characteristic function (here we abuse notation by writingSa j instead of
SDa j

). Then,

δ(K )∞ (a1, a2) =
∫ ∞

−∞

[∫

R4
χa1,a2(x, y) e

(

t (ga1(x) − ga2(y) + a21 − a22)
)

dxdy
]

dt,

= lim
ε→0

1

ε
.Vol

(

(x, y) ∈ √
4KSa1,a2 : |ga1(x) − ga2(y) + a21 − a22 | < ε

)

,

= 4C2K

a1a2

[

1 + O(A−1)
]

.

(49)

Hence, from (44) and (46) we have


1 = 4C2K
(

1 + O(A−1)
) ∑

a1, a2∈A
a1 �=a2

δfin(a1, a2)

a1a2
+ O

(

K log A + K 1−ε0 A2
)

.

(50)

To analyse the main term in (50), we replace δfin(a1, a2) with δ(m)(a1, a2),
where

δ(m)(a1, a2) := #Va1,a2 (Z/mZ)

m3 . (51)

The error term in doing so in (50) has size

� K
∑

s≥1

∑

a1,a2∈A
a1 �=a2

gcd
(

Da1 ,Da2

)=s

∣
∣δfin(a1, a2) − δ(m)(a1, a2)

∣
∣

a1a2
. (52)

According to Appendix B, δ(m)(a1, a2) is suitably close to δfin(a1, a2) unless
s = gcd

(

Da1, Da2

)

is in the set

SA,m :=
⎧

⎨

⎩
s : s =

t
∏

j=1

p
e j
j with either e j ≥ B or p j > L for some j

⎫

⎬

⎭
.
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Moreover, for such a1 and a2, the difference
∣
∣δfin(a1, a2) − δ(m)(a1, a2)

∣
∣ is

O (τ (s)), with τ(.) the divisor function. Hence the contribution to (52) from
these is at most

∑

s∈SA,m

τ(s)
∑

a1,a2∈A
gcd(Da1 ,Da2 )=s

1

a1a2
. (53)

Since Da ≡ 0 (mod k) occurs only if a ≡ ±2 (mod s
2α ) with 0 ≤ α ≤ 3, the

sums in (53) above are bounded by

(log A)2
∑

s∈SA,m

τ(s)

s2
� (log A)2 min

(

L , 2B
)− 1

2
, (54)

because s ∈ SA,m implies s ≥ min(L , 2B) and a1, a2 �= ±2.
Next, for s /∈ SA,m , we write

δfin(a1, a2) =
∏

p≤L

δp(a1, a2)
∏

p>L

δp(a1, a2).

Recall from Prop. B.5 that δp(a1, a2) = 1+O(p−2) if p � Da1Da2

(

Da1−Da2

)

when p ≥ 3. We denote these primes by P(1) and include p = 2 in this set,
and denote the remaining finite set of primes by P(2). We decompose P(2)

further into P(3) = {

p ≥ 3 : p|gcd (Da1, Da2

) }

and its complement. Then
we write

∏

p>L

δp(a1, a2) =
∏

p∈P(1)

p>L

δp(a1, a2)
∏

p∈P(2)

p>L

δp(a1, a2),

=
∏

p∈P(2)

p>L

δp(a1, a2)

(

1 + O

(
1

L

))

.

Since s /∈ SA,m , if p > L we have (using Prop. B.5 again)

log
∏

p∈P(2)

p>L

δp(a1, a2) =
∑

p∈P(2)

p>L

cp
p

+ O

(
1

L

)

,

with coefficients cp satisfying |cp| ≤ 1. Since a1 �= ±a2 and a j �= ±2, the set
P(2) has the bound card(P(2)) � log A

log log A , as it contains those primes dividing
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Da1 or Da2 or
(

Da1 − Da2

)

. Hence the sum over P(2) above is bounded by
log A

L log log A � �(A)−1. Thus, for s /∈ SA,m we have

δfin(a1, a2) =
∏

p≤L

δp(a1, a2) ×
(

1 + O

(
1

�(A)

))

.

To analyse this further, we write δ(m(a1, a2) = ∏

p≤L δ
(m)
p (a1, a2). Then

one has

δp(a1, a2) = 1 +
∞
∑

l=1

Nl(a1, a2) and δ(m)
p (a1, a2) = 1 +

B
∑

l=1

Nl(a1, a2),

(55)

where

Nl(a1, a2) = p−4l
∑∗

b (mod pl )

∑

x, y (mod pl )

e

(
ga1(x) − ga2(y) + Da1 − Da2

pl
b

)

.

(56)

Then for s /∈ SA,m , one has by Prop B.4 that δp(a1, a2) = δ
(m)
p (a1, a2) +

O(p−B). It follows that the contribution to (52) is

K
∑

s≥1
s /∈SA,m

∑

a1, a2∈A
a1 �=a2

gcd
(

Da1 ,Da2

)=s

∣
∣δfin(a1, a2) − δ(m)(a1, a2)

∣
∣

a1a2

� K min
(

�(A), 2B
)−1 ∑

a1, a2∈A
a1 �=a2

∣
∣δ(m)(a1, a2)

∣
∣

a1a2
,

� K min
(

�(A), 2B
)−1

(log A)2,

using δ(m)(a1, a2) � τ(gcd(a1, a2)).

We choose �(A) = 1
2

√
log log A

log log log A so that �(A)2 � 2B = o(L). Substitut-
ing into (50) gives us


1 = 4C2K
∑

a1, a2∈A
a1 �=a2

δ(m)(a1, a2)

a1a2
+ O

(

K�(A)−1(log A)2
)

. (57)
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Since δ(m)(a1, a2) is periodic modulo m, the sum in (57) can be analyzed as
in (38), giving


1 = 4C2K
∑

α1 (modm)
α2 (modm)

δ(m)(α1, α2)

(1
2 log A

)2

m2 + O
(

K�(A)−1 (log A)2
)

,

= C2K (log A)2 δm

(

V (2)
)

+ O
(

K�(A)−1 (log A)2
)

.

(58)

Combining (38), (43) and (57) into (37) gives us the key cancellation and
hence the estimate on the variance V (K ).

Proposition 9.6 Let K → ∞, letAbe the interval [√A, A]with A satisfying
(log K )2 < A �ε K ε, with ε > 0 sufficiently small. Then with �(A) =
1
2

√
log log A

log log log A , we have

1

K

∑

k≤K

[
bA(k)

log A
− Cδ(m)(k)

]2

�ε �(A)−1.

Remark 9.7 One can remove the auxiliary parameter B in the Proposition
above with

δ(m)(k) =
∏

p≤L

δp(k) + O(2−B),

as follows. From (B4) and (35), we have δ(Vk) = ∏

p<∞ δp(k) with
δp(k) = 1 + ∑

l≥1 Nl(k), where Nl(k) is given in (B3) with all evalu-

ated in the Appendix. Similarly, one shows that δ(m)(k) = ∏

p≤L δ
(m)
p (k),

with δ
(m)
p (k) = 1 + ∑

1≤l≤B Nl(k). Then, it follows from Prop. B.1 that

δ
(m)
p (k) = δp(k) + O(p−B). Applying Prop B.2 then gives the result.

9.1 Lower bound for δ(m)(k) for most admissible k’s

To complete the proof of Theorem 1.2(ii), we need to estimate, for ε > 0

∣
∣
{

0 ≤ k ≤ K : k admissible, δ(m)(k) < ε
}∣
∣. (59)

By Props. B.5 and B.12 in the Appendix, and Remark 9.7 , we can write

δ(m)(k) =
∏

p≤L

(

1 + N1,p(k) + Cp(k)
)+ o(1), (60)
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where we indicate the dependence of p in the definition of Nl , and with Cp(k)
coming from the Nl,p’s with l ≥ 2. Since we are assuming that k is admissible,
we can ignore the primes p = 2 and p = 3 since then these local factors are
bounded from below. For p ≥ 5, the problematic case of Cp(k) in (60) is, by
Prop. B.1, of the form 4β p−1 + O

(

p−2
)

. So, up to O
(

p−2
)

, which can be
ignored for our purposes of bounding δ(m)(k) from below, we have that

δ(m)(k) �
∏

p≤L

(

1 + N1,p(k) + O

(
1

p2

))

+ o(1),

�
∏

p≤L

(

1 + χ(k − 4) (3 + χ(k))

p

)

,

(61)

where χ is the Legendre symbol modulo p. Hence

[

δ(m)(k)
]−1 �

∏

p≤L

(

1 − χ(k − 4) (3 + χ(k))

p

)

,

=
∑

n≤M

μ(n)A(k, n)

n
,

(62)

where A(k, n) = A(k, p1) . . . A(k, pl) if n = p1 . . . pl , M =
(
∏

p≤L p
)

≤
m � K ε, and

A(k, p) =
{

χ(k − 4) (3 + χ(k)) if p ≥ 5,
0 otherwise.

(63)

Since A(k, n) as a function of k is periodic of period n, we have

∑

k≤K

A(k, n) = K

n

∑

k (mod n)

A(k, n) + O(n). (64)

By multiplicativity, the completed sum

∑

k (mod n)

A(k, n) =
∏

p|n

⎛

⎝
∑

k (mod p)

A(k, p)

⎞

⎠ = μ(n),

since
∑

k (mod p) χ(k − 4) = 0 and
∑

k (mod p) χ(k − 4)χ(k) = −1. Hence

∑

k≤K

A(k, n) = μ(n)

n
K + O(n),
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so that by (62) we have

∑

k≤K
k admissible

[

δ(m)(k)
]−1 � K

(
∑

n

1

n2

)

+ M � K .

Hence, it follows that for any ε > 0

∣
∣
{

0 ≤ k ≤ K : k admissible , δ(m)(k) < ε
}∣
∣ � εK . (65)

Finally, combining (65) with the variance estimate in Prop. 9.6 gives Theo-
rem 1.2(ii). ��

10 Computations

We computed all the Hasse failures (HF), and also the number of orbits h(k)
for positive generic k’s with k ≤ K where K is about K0 = 564 × 106 (the
limitation imposed by memory usage and computation time). An extended
version of this section can be found in Sect. 10 of our preprint [26]. We state
some conjectures based on these computations.

The number of admissible k’s (see Sect. 3) in the interval [1, K ]wedenote by
A(K ), and is asymptotically 7

12K . The admissibles consist of the exceptional
k’s, of which there are O( K√

log K
) members, the generic k’s consisting of the

Hasse failures (HF) and the generic k’s with h(k) > 0. For K ≥ 5, letAHF(K )

denote the number of HF’s in the interval [5, K ]. By the arguments in Sect. 7,

AHF(K ) �ε K
1
2−ε for any ε > 0. While we do not know the exact order of

AHF(K ), Theorem 1.2(ii) shows that it is o(K ), and we consider this question
computationally, for which we compare AHF(K ) with A(K ).

There are two possible models to consider, namely (1)AHF(K ) ∼ CA(K )θ

for some 0 < θ < 1 or (2) AHF(K ) ∼ CA(K )/(logA(K ))θ . Since K is of
limited size in our computations, we cannot distinguish between these two
cases with confidence, but the latter seemed unlikely from the data. For the
former, the graphical data for logAHF(K )/ logA(K ) with A(K ) = 7

12K is
in Fig. 7. Our data suggests that

AHF(K ) ∼ CK 0.8875...+ o(1), (66)

for some constant C , at least for K in this range. The error is smaller than
0.1% for K ≥ 107 and gets better for larger values of K .

For further justification that AHF(K ) ∼ CA(K )θ rather than AHF(K ) ∼
CA(K )/(logA(K ))θ , we look at the distribution of HF’s within subinter-
vals. Taking K = K0 and subdividing the interval [5, K0] into subintervals
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Fig. 7 Plot of logAHF (K )
logA(K )

Fig. 8 Average of Hasse failures in subintervals

of length h, we compare the average number of HF’s in each subinterval
1
h (AHF((l + 1)h) − AHF(lh)) for 1 ≤ l ≤ K0

h with what we might expect
from the derivative of our predicted function. Taking h = 105 (chosen to
be comparable to

√
K0), we plot 1

h (AHF((l + 1)h) − AHF(lh)) against l in
Fig. 8. The curve in the graph is an approximation, given by g(x) ≈ x−0.0908.
This power decay suggests AHF(K ) ∼ CA(K )θ with a θ close to that given
in (66).

Finally we include graphical data in Fig. 9 on the distribution of the number
of orbits h(k)with generic k ≤ K with K = 107 (this smaller value compared
to K0 above due to long computational times). Here, n(h) = nK (h) is the
number of occurrences of h = h(k) with k running through generic integers
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Fig. 9 Occurences of relative number of orbits: n(h(k))/n(0), generic k ≤ 107. Approximation

curve n(h)
n(0) ≈ e−1.92905

√
h+1, h = h(k) on x-axis

in [1, K ]. Our count also includes the number of Hasse failures, denoted by
n(0). Since n(0) grows with K , we normalize our counts and consider the
distribution of n(h)

n(0) . We find that this quantity appears to behave like the graph

of e−√
h+1. If so, this suggests that n(h+1)

n(h)
∼ 1 − 1

2h
− 1

2 as h → ∞. This is
roughly consistent with our data where for example with h = 21, we have
n(h+1)
n(h)

= 0.88921 while 1 − 1
2h

− 1
2 = 0.89089. By Lemma 7.2, the average

value of h(k) with 0 ≤ k ≤ K has size about (log K )2. Since n(0) has size a
power of K , the data with its suggested exponential decay (at least in this short
range for K ) suggests that the maximal value of h(k) is probably a power of
log K , or at worst h(k) �ε kε , for ε > 0 . As mentioned in the introduction,

the best we know is h(k) �ε k
1
3+ε. For K = 107, the maximum value for

h(k) in our data was 131, while (log K )2 ≈ 61 and K
1
3 ≈ 412.

We end this section with some basic Conjectures concerning the class num-
bers h(k), suggested by our theoretical results as well as the discussion above.

Conjecture 10.1 For any ε > 0 and generic k

h(k) �ε |k|ε.

Conjecture 10.2 1. The number of Hasse failures for 0 ≤ k ≤ K satisfies

∣
∣ {0 ≤ k ≤ K : h(k) = 0 and k admissible } ∣∣ ∼ C0K

θ ,
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for some C0 > 0 and some 1
2 < θ < 1.

2. More generally, for t ≥ 1

∣
∣ {0 ≤ k ≤ K : h(k) = t } ∣∣ ∼ Ct K

θ ,

with Ct ≈ e−α
√
t , for some α > 0.
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Appendix

The appendix consists of (A) a discussion of invariants of affine cubic forms
referred to in the Introduction, and (B) computation of local masses δp, for
primes p ≥ 2 (with some details omitted); their structure is used in the proofs
in Sect. 9.

Notation: To reduce clutter we will use χ(∗) to denote the Legendre symbol
( ∗
p )L , with p fixed. We also use χ4 and χ8 to denote some characters modulo

4 and 8 respectively.

Appendix A: Arithmetic invariants of affine cubic forms

A number of invariants of f as an element of the unique factorization domain
R = Q[x1, x2, . . . , xn], enter into the study of the values assumed by such an
affine cubic form f . The first is theh-invariant from [23]:h( f ) is the minimal
integer h for which

f0 = L1Q1 + L2Q2 + . . . + LhQh, (A1)

where the L j ’s are homogeneous linear and the Q j ’s are homogeneous
quadratic members of R; equivalently n−h( f ) is the dimension of the largest
Q-linear subspace contained in W0 = {x : f0(x) = 0}, the linear space given
by L1 = L2 = . . . = Lh = 0. Note that h( f ) = 1 iff f0 is reducible in R,
and in this case W0 contains a rational hypersurface.

123



A. Ghosh, P. Sarnak

Closely related are the Q-invariants l( f ) and q( f ) defined as the dimen-
sions of the largest Q-affine linear subspaces Ul and Uq of A

n on which the
restriction of f toUl is linear (non-constant) and toUq is quadratic. So, l( f )
and q( f ) lie in [0, n − 1]. Of particular interest to us is that

h( f ) = 1 iff q( f ) = n − 1. (A2)

The group Affn(Z) consisting of integral affine linear maps x → Ax + b
with A ∈ GLn(Z) and b ∈ Z

n , acts on the integral cubic polynomials by
a change of variable. The arithmetic invariants as well as the diophantine
questions concerning Vk, f (Z) are all preserved by this action. On the leading
homogeneous cubic term f0, the action is that of GLn(Z), which has been
well studied in terms of its invariants. With these fixed, there are finitely many
GLn(Z) orbits, see [5] for a recent discussion of the case n = 3, which is our
interest. In this case the vector space of f0’s is 10-dimensional and it’s quotient
by SL3 is 2-dimensional, given by the Aronhold invariants I and J . The vector
space of f ’s is 20-dimensional and its quotient by Aff3 is 9-dimensional. The
invariants for this action up to the additive constant term and at a generic point
are I ( f0), J ( f0) together with the 6-dimensional vector space associated with
the homogeneous quadratic part of f .

We end with some examples of affine cubic forms and their invariants.

(1). S(x) = x31 + x32 + x33 , h(S) = 3, l(S) = q(S) = 0;
(2). M(x) = x21 + x22 + x23 − x1x2x3, h(M) = 1, l(M) = 0, q(M) = 2;
(3). T (x) = x1x2x3 + x1 + x2 (perhaps the mildest perturbation of the fully

split form x1x2x3), h(M) = 1, l(M) = q(M) = 2 (the restriction of T
to x3 = 0 is linear). From the last it follows that vT (k) = |Vk,T (Z)| = ∞;
however T is not perfect or even almost perfect since Vk,T (Z) is not Zariski
dense in Vk,T for k �= 0.

(4). P(x) = x1x2x3 + (x1 − 1)Q1(x) + (x2 − 1)Q2(x), with Q1, Q2 generic
quadratics. Then, l(P) = q(P) = 1 (with x1 = x2 = 1 giving the line
Ul). In particular, Vk,P(Z) �= ∅ for every k. We expect that P is full.

Appendix B: Analysis of the local masses

B.1 Computation of δ p(k) for odd primes

For any integer k and prime p ≥ 3, we determine

δp(k) = lim
l→∞ |Vk(Z/ plZ)| p−2l .
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Define

Nl(k) = p−3l
∑∗

b (mod pl )

∑

x (mod pl )

e

(
f (x) − k

pl
b

)

, (B3)

where x = (x1, x2, x3), f (x) = x21 +x22 +x23 −x1x2x3 and the asterisk denotes
a sum over those b’s not divisible by p. Then one has

δp(k) = 1 +
∞
∑

l=1

Nl(k). (B4)

In what follows, we analyze the case l ≥ 2 (the case l = 1 is determined by
Lemma 6.4). For p ≥ 3 one has

Nl (k) = p−3l
∑∗

b (mod pl )

e

(
4(4 − k)

pl
b

)
∑

x
e

(

(2x3 − x1x2)
2 − (x21 − 4)(x22 − 4)

pl
b

)

.

(B5)

Making a change of variable shows that the inner sum over x is

∑

u

∑

x1,x2

e

(
bu2

pl

)

e

(

−b(x21 − 4)(x22 − 4)

pl

)

= S(b; pl)

×
∑

x

e

(
4b(x2 − 4)

pl

)

× S
(

b(x2 − 4); pl), (B6)

where for q ≥ 1 we put

S(b; q) =
∑

r (mod q)

e

(
br2

q

)

. (B7)

Using properties of the Gauss sum, we get

Proposition B.1 For p ≥ 3 we have

(a). N1(k) = χ(k − 4) [3 + χ(k)]
1

p
+ 1

p2
;

(b). if l ≥ 3 is odd,

Nl(k) =

⎧

⎪⎪⎨

⎪⎪⎩

4p− 1
2 (l+1)χ

(
k−4
pl−1

)

if pl−1|(k − 4),

p− 1
2 (l+1)χ

(
k

pl−1

)

if pl−1|k,
0 otherwise;
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(c). if l ≥ 2 is even, then

Nl(k) =

⎧

⎪⎨

⎪⎩

−p− l+2
2 {4ηl−1(k − 4) + ηl−1(k)} if pl−1||k(k − 4),

p− l
2

(

1 − 1
p

)

{4ηl(k − 4) + ηl(k)} if pl |k(k − 4),

0 otherwise,

where we define ηl(m) = 1 if pl |m and is zero otherwise.

To compute δp(k) for p ≥ 3 in (B4), we write δp(k) = 1+ N1(k)+Sp(k).
Define μ ≥ 0 by pμ||k(k − 4). By Prop. B.1, μ = 0 implies Nl(k) = 0
for l ≥ 2, so that we have Sp(k) = 0 for this case. For μ ≥ 1, we have
pμ||(k − 4β), with β = 0 or 1. Then we combine Prop. B.1 in (B4), to get

Sp(k) = 4β ×
{

p−1 − p− 1
2 (μ+1) − p− 1

2 (μ+3) if 2 � μ,

p−1 − p−μ
2 −1

(

1 − χ
(
k−4β
pμ

))

if 2|μ.
(B8)

In particular, we see that if μ = 1, then Sp(k) = −4β p−2 while if μ ≥ 2
then Sp(k) = 4β p−1 + O(p−2).

Combining (B8) with Prop. B.1(a) in (B4) gives

Proposition B.2 For p ≥ 3, suppose pμ||k(k − 4) with μ ≥ 0. We have

(a). if μ = 0, then δp(k) = 1 + χ(k − 4) [3 + χ(k)] 1
p + 1

p2
;

(b). if p||k, then δp(k) = 1 + 3χ(−1) 1p ;

(c). if p||(k − 4), then δp(k) = 1 − 3
p2
;

(d). if μ ≥ 2 and p|k, then

δp(k) = 1 +
{

(1 + 3χ(−1)) p−1 + p−2 − p− 1
2 (μ+1) − p− 1

2 (μ+3) if 2 � μ,

(1 + 3χ(−1)) p−1 + p−2 − p− μ
2 −1

(

1 − χ
(

k
pμ

))

if 2|μ;

(e). if μ ≥ 2 and p|(k − 4), then

δp(k) = 1 +
{

4p−1 + p−2 − 4p− 1
2 (μ+1) − 4p− 1

2 (μ+3) if 2 � μ,

4p−1 + p−2 − 4p−μ
2 −1

(

1 − χ
(

k
pμ

))

if 2|μ.

Remark B.3 The case (b) shows that δ3(k) = 0 if k ≡ 3 or 6 (mod 9), while
case (a) and (d) shows that δ3(k) > 0 otherwise.
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B.2 Local factors associated with Va1,a2 , odd primes

We next state (without details) the analogous results for the density function
δp(a1, a2) in (48) for the surface Va1,a2 in (47). Recalling the properties in (55)
and (56), since p is odd, completing the square gives us

Nl(a1, a2) = p−3l
∑∗

b (mod pl )

e

(

4b
Da1 − Da2

pl

)

S(bDa1; pl)S(bDa2; pl).

(B9)

Again, using properties of the Gauss sums gives us

Proposition B.4 Let a1 �= a2 be fixed, and let p ≥ 3.

(a). Suppose p � Da1Da2

(

Da1 − Da2

)

. Then

Nl(a1, a2) =
{

−χ
(

Da1Da2

)

p2
if l = 1,

0 otherwise.

(b). Suppose p � Da1Da2 and pμ|| (Da1 − Da2

)

with μ ≥ 1. Then

Nl(a1, a2) =

⎧

⎪⎨

⎪⎩

1
pl

(

1 − 1
p

)

if l ≤ μ,

−p−μ−2 if l = μ + 1,
0 otherwise.

(c). Suppose pα||Da1 but p � Da2 with α ≥ 1. Then

Nl(a1, a2) =
{

p−1 if l = 1,
0 otherwise.

(d). Suppose pη1 ||Da1 , p
η2 ||Da2 and pμ|| (Da1 − Da2

)

with η1,η2 andμ ≥ 1.
Putting η = min (η1, η2) gives us

Nl(a1, a2) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(

1 − 1
p

)

if 1 ≤ l ≤ η,

p−1 if l = η + 1, η1 �= η2,

−p−η−2χ
(
Da1
pη

)

χ
(
Da2
pη

)

if l = η + 1, η1 = η2 ≤ μ,

0 otherwise.

It then follows that
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Proposition B.5 Let a1 �= a2 be fixed, and let p ≥ 3.

(a). Suppose p � Da1Da2

(

Da1 − Da2

)

. Then

δp(a1, a2) = 1 − χ
(

Da1Da2

)

p2
.

(b). Suppose p � Da1Da2 and pμ|| (Da1 − Da2

)

with μ ≥ 1. Then

δp(a1, a2) =
(

1 + 1

p

)(

1 − 1

pμ+1

)

.

(c). Suppose p|Da1Da2 but p �
(

Da1 − Da2

)

. Then

δp(a1, a2) =
(

1 + 1

p

)

.

(d). Suppose pη1 ||Da1 , p
η2 ||Da2 and pμ|| (Da1 − Da2

)

with η1,η2 andμ ≥ 1.
Putting η = min (η1, η2) gives us

δp(a1, a2) =

⎧

⎪⎪⎨

⎪⎪⎩

(1 + η) − η−1
p if η1 �= η2,

(1 + η) − η
p − 1

p2
χ
(
Da1
pη

)

χ
(
Da2
pη

)

if η1 = η2 = μ,

(1 + η) − η−1
p − 1

pμ−η+1

(

1 + 1
p

)

if η1 = η2 < μ.

Remark B.6 If a1 = a2 = a and p ≥ 3, one can deduce the result for δp(a, a)

from parts (c) and (d) above, with μ → ∞, giving

(a). if p � Da , then δp(a, a) = 1 + p−1, and
(b). if pη||Da with η ≥ 1, then δp(a, a) = (1 + η) − η−1

p .

B.3 The even local factor δ2(k)

Since the analysis here is a bit more delicate, we provide some additional

details. Let l ≥ 0 and define Fl(c) = ∑

x mod 2l e
(
cx2

2l

)

. Recall the three

primitive real characters modulo powers of two: χ4 modulo 4, χ8 and χ4χ8
modulo 8, where

χ4(x) =
(−4

x

)

J
=
⎧

⎨

⎩

1 if x ≡ 1 mod 4,
−1 if x ≡ 3 mod 4,
0 otherwise,
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and

χ8(x) =
(
8

x

)

J
=
⎧

⎨

⎩

1 if x ≡ ±1 mod 8,
−1 if x ≡ ±3 mod 8,
0 otherwise.

For l ≥ 1 we define ωl(k) to be 1 if 2l |k and 0 otherwise; if l ≤ 0, we
define ωl(k) to be 1 always. Given a term ωl(k), we define k̂ = k

2l
. While

ωl(k) = ωl(−k), the corresponding “hat” function is not the same, and the
appropriate choice is determined by the ω-function.

We have

Lemma B.7 Define θ ≥ 0 so that 2θ ||c. We have
(a). if θ ≥ l, Fl(c) = 2l ;
(b). if θ = l − 1, Fl(c) = 0;
(c). if l ≥ 2 and 2 � c, then Fl(c) = 2

l
2χ8(c)l [1 + χ4(c)i];

(d). if l ≥ 3 and 1 ≤ θ ≤ l − 2, we have

Fl(c) = 2
l+θ
2 χ8

( c

2θ

)l+θ [

1 + χ4

( c

2θ

)

i
]

;

(e). for l ≥ 1 and q ∈ Z,

∑∗

b (mod 2l )

e

(
qb

2l

)

Fl(b) = ωl−3(q) 2
3(l−1)

2 cos

(
q̂ + 1

4
π

)

[1 + (−1)l+q̂ ],

where q̂ = q
2l−3 , and the sum over b runs through odd numbers.

Lemma B.8 For any b and l ≥ 0, put

Ql(b; a) =
∑

x1,x2 (mod 2l )

e

(

b
x21 + x22 − ax1x2

2l

)

.

(a). If 2|a, then Ql(b; a) = Fl(b)Fl
(

b(a
2

4 − 1)
)

,

(b). If 2 � ab, then Ql(b; a) = (−2)l .

We now compute Nl(k) given in (B3) with p = 2, where the sum over b
runs through odd numbers. It will be convenient to compute Nl(k) for some
small values and we give it as
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Lemma B.9

(a). N0(k) = 1;
(b). N1(k) = 1

4(−1)k;
(c). N2(k) = 1

4 cos(k
π
2 ) + 3

4 sin(k
π
2 );

(d). N3(k) =
{

3
4(−1)

k+3
4 if k ≡ 1 (mod 4),

0 otherwise.

For l ≥ 4, we have

Nl(k) = 2−3l
∑∗

b (mod 2l )

e

(

−kb

2l

)
∑

a (mod 2l )

e

(
ba2

2l

)

Ql(b; a). (B10)

Using the lemmas above, we conclude

Lemma B.10

(a). If k is odd and l ≥ 4, Nl(k) = 0;
(b). if l = 4 then N4(k) = 0 unless 4|k, in which case

N4(k) =
⎧

⎨

⎩

1
2χ4

( k
4

)

if 4||k,
1
4(−1)

k
8+1 if 8|k;

(c). if l = 5, N5(k) = 0 unless 8|k, in which case N5(k) = 3
4χ4

( k
8

)

;

(d). if l ≥ 6, define k̂ = k
2l−3 or 4−k

2l−3 . Then, Nl(k) = 0 unless k̂ ∈ Z, in which
case

Nl(k) =

⎧

⎪⎪⎨

⎪⎪⎩

−2− l+1
2 cos

(
k̂+1
4 π

) [

1 + (−1)l+k̂
]

if 2l−3|k,

2min(3, l−5)− l+1
2 cos

(
k̂+1
4 π

) [

1 + (−1)l+k̂
]

if 2l−3|(k − 4).

Remark B.11 Note that cos
(

w+1
4 π

) = 1
2χ8(w) (1 − χ4(w)) = 1

2

(( 8
w

)

J
− (−8

w

)

J

)

for odd w.

Combining Lemmas B.9 and B.10 gives us

Proposition B.12 Suppose k �= 0 or 4. Let δ2(k) denote the mass at p = 2.
Then δ2(k) = 0 only when k ≡ 3 (mod 4). Otherwise δ2(k) ≥ 3

4 . More
precisely,
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(1). If k is odd then

δ2(k) = 3

4
(1 + χ4(k)) (2 − χ8(k)) ;

(2). if 2||k, then δ2(k) = 1;
(3). if 4||k, define η ≥ 3 with 2η||(k − 4), and put 4 − k = 2ηw with w odd.
(a). if η ≥ 6 is even,

δ2(k) = 13

4
− 2− η−6

2 −
(−4

w

)

J
2− η−4

2 +
((

8

w

)

J
−
(−8

w

)

J

)

2− η−2
2 ,

(b). if η ≥ 7 is odd, δ2(k) = 13
4 − 2− η−6

2 + (−1)w2− η−5
2 ,

(c). if η = 3, δ2(k) = 1,
(d). if η = 4, δ2(k) = 2 + 1

4

(( 8
w

)

J − (−8
w

)

J

)

,

(e). if η = 5, δ2(k) = 2 + 1
4(−1)w;

(4). if 8|k, define η ≥ 3 with 2η||k, and put k = 2ηw with w odd.
(a). if η ≥ 6 is even,

δ2(k) = 5

2
− 2− η−6

2 +
(−4

w

)

J
2− η−4

2 −
((

8

w

)

J
−
(−8

w

)

J

)

2− η−2
2 ,

(b). if η ≥ 7 is odd, δ2(k) = 5
2 − 2− η−6

2 − (−1)w2− η−5
2 ,

(c). if η = 3, δ2(k) = 5
2 ,

(d). if η = 4, δ2(k) = 5
4 − 1

4

(( 8
w

)

J − (−8
w

)

J

)

,

(e). if η = 5, δ2(k) = 5
4 − 1

4(−1)w;

B.4 Local factors associated with Va1,a2 for p = 2

The analog of (B9) is

Nl(a1, a2) = 2−4l
∑∗

b (mod 2l )

e

(

b
a21 − a22

2l

)

Ql(b, a1)Ql(b, a2), (B11)

with δ2(a1, a2) = 1 +∑∞
l=1 Nl(a1, a2). In what follows we have l ≥ 1.

B.4.1
Suppose 2 � a1a2 and 2η||(Da1 − Da2) with η ≥ 3. Then, by Lemma B.8

we have Ql(b, a1)Ql(b, a2) = 22l .
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Hence we get

Nl(a1, a2) =
⎧

⎨

⎩

2−l−1 if 1 ≤ l ≤ η,

−2−l−1 if l = η + 1,
0 if l ≥ η + 2,

(B12)

so that δ2(a1, a2) = 3
2

(

1 − 2−η−1
)

.
B.4.2

Next suppose 2|a1 and 2 � a2, so that η = 0. Put A1 = a21
4 − 1 and 2θ ||A1,

with θ = 0 or θ ≥ 3. By Lemmas B.8, B.7 and (B11), we have Nl(a1, a2) = 0
if l = 1 or l = θ + 1. Otherwise, with l ≥ 2 we have

Nl(a1, a2) = (−1)l

23l
∑∗

b (mod 2l )

e
(

b
σ

2l

)

Fl(b)Fl(bA1), (B13)

where σ = a21 − a22 is odd.
If 2 ≤ l ≤ θ , Lemma B.7 shows that

Nl(a1, a2) = (−1)l2− 3
2 l

∑∗

b (mod 2l )

e
(

b
σ

2l

)

χ8(b) (1 + χ4(b)i) .

We now use

Lemma B.13 Suppose 2μ||σ with μ ≥ 0. Then,

(1). If l ≥ 2,

∑∗

b (mod 2l )

e
(

b
σ

2l

)

χ4(b) =
{

2μ+1χ4
(

σ
2μ

)

i if l = 2 + μ,

0 otherwise;

(2). If l ≥ 3, and a = 0 or 1,

∑∗

b (mod 2l )

e
(

b
σ

2l

)

χ4(b)
aχ8(b) =

{

2μ+ 3
2χ4

(
σ
2μ

)a
χ8
(

σ
2μ

)

ia if l = 3 + μ,

0 otherwise,

If θ ≥ 3, then for 2 ≤ l ≤ θ , we have

Nl(a1, a2) =
{

1
4 if l = 2 or 3,
0 if l ≥ 4.

(B14)

Here we have used the fact that σ = a21 − a22 = (2u2) − v2 with u and v both
odd.
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For l ≥ θ + 2, with θ ≥ 0, we get in (B13)

Nl(a1, a2) = (−1)l

22l−θ

∑∗

b (mod 2l )

e
(

b
σ

2l

)

χ8(b)
θ

[(

1 − χ4

(
A1

2θ

))

+ iχ(b)

(

1 − χ4

(
A1

2θ

))]

.

Applying Lemma B.13 shows that Nl(a1, a2) = 0 for all l ≥ θ + 2.
Thus, if θ = 0, then δ2(a1, a2) = 1, while for θ ≥ 3 we get δ2(a1, a2) = 3

2 .
B.4.3

Assume a1 and a2 are both even and put A j = (a j
2

)2 −1, so that A j ≡ 0, 3
modulo 4. Put 2θ j ||A j with θ j ≥ 0 but θ j �= 1, 2 and C j = A j2−θ j odd. We
will assume that θ1 ≤ θ2. Then a21 − a22 = 4(A1 − A2) so that η = 2+ t , say,
with 2t ||(A1 − A2) with t �= 1. We have

Nl(a1, a2) = 2−4l
∑∗

b (mod 2l )

e

(

b
4σ ′

2l

)

|Fl(b)|2Fl(bA1)Fl(bA2), (B15)

where we put σ ′ = A1 − A2.
Note that Nl(a1, a2) = 0 if l = 1 or l = θ j + 1, so we assume l ≥ 2.

(I). If 2 ≤ l ≤ θ1, then Fl(bA j ) = 2l . Using |Fl(b)|2 = 2l+1 and (B12)
shows that Nl(a1, a2) = 1.

(II). If θ1 + 2 ≤ l ≤ θ2, using Fl(bA2) = 2l and Lemma B.7(d) gives us

Nl(a1, a2) = 2− 3
2 l+ 1

2 θ1+1χ8(C1)
l+θ1Sl(a1, a2),

where

Sl(a1, a2) =
∑∗

b (mod 2l )

e

(

b
4σ ′

2l

)

χ8(b)
l+θ1 [1 + iχ4(bC1)] . (B16)

Applying (B12) and Lemma B.13 shows thatSl(a1, a2) = 0 except for
the cases Sθ1+2(a1, a2) = 2θ1+1 and Sθ1+4(a1, a2) = −2θ3+1.

Thus in this range, if θ1+2 ≤ θ2 then Nθ1+2(a1, a2) = 1
2 ; if θ1+4 ≤ θ2,

then Nθ1+4(a1, a2) = −1
4 and Nl(a1, a2) = 0 for all other l.

(III). For l ≥ θ2 + 2 we get

Nl(a1, a2) = 2−2l+1+ 1
2 (θ1+θ2)χ8(C1)

l+θ1χ8(C2)
l+θ2Sl(a1, a2),
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with

Sl(a1, a2) =
∑∗

b(mod 2l )

e

(

b
4σ ′

2l

)

χ8(b)
θ1+θ2 [(1 + χ4(C1C2)) + i (χ4(bC1) − χ4(bC2))] .

Since C1 and C2 are both odd, we have C1 ≡ (−1)aC2 modulo 4 with
a = 0, 1. Hence

Sl(a1, a2) = 2ia
∑∗

b (mod 2l )

e

(

b
4σ ′

2l

)

χ4(b)
aχ8(b)

θ1+θ2 . (B17)

If θ1 �= θ2, then t = θ1 and l ≥ θ2 + 2 ≥ 3. We apply (B12) and
Lemma B.13 with μ = θ1 + 2 so that Nl(a1, a2) = 0 except possibly
when l = θ1 + 3, θ1 + 4 or θ1 + 5.

If l = θ1 + 3 then necessarily θ2 = θ1 + 1, in which case we get
Nl(a1, a2) = 0.

If l = θ1 + 4 then θ2 = θ1 + 1 or θ2 = θ1 + 2. If the for-
mer, then Nl(a1, a2) = 0. For the latter we get Sl(a1, a2) =
− (1 − χ4(C1C2)) 2θ1+3 so that Nl(a1, a2) = −1

4 (1 − χ4(C1C2)).

If l = θ1 + 5 then θ2 = θ1 + 1, θ1 + 2 or θ1 + 3. If θ2 = θ1 + 2, then
Nl(a1, a2) = 0. If θ2 = θ1+1, thenSl(a1, a2) = 2l− 1

2χ4(C1)χ4χ8(C2)

while if θ2 = θ1 + 3, thenSl(a1, a2) = 2l− 1
2χ4χ8(C1)χ4(C2). In these

latter cases, we get Nl(a1, a2) = 2−4χ4χ8(C1)χ4(C2) if θ2 = θ1 + 1
and Nl(a1, a2) = 2−3χ4(C1)χ4χ8(C2) if θ2 = θ1 + 3.

Next, suppose θ1 = θ2 = θ with t ≥ θ and l ≥ θ +2. Then, from (B17),
we have Nl(a1, a2) = 0 if l ≥ t + 5. For the remaining cases we have

(a). if l = t + 4, Sl(a1, a2) = −χ4

(
A1−A2

2t

)

[χ4(C1) − χ4(C2)] 2l−1;

(b). if l = t + 3, then Sl(a1, a2) = − (1 + χ4(C1C2)) 2l−1 ;
(c). if θ + 2 ≤ l ≤ t + 2, thenSl(a1, a2) = (1 + χ4(C1C2)) 2l−1.

Combining give us the following

Proposition B.14 Let a1 �= ±a2 and a j �= ±2.
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(1). Suppose 2 � a1a2 and 2η||(Da1 − Da2) with η ≥ 3. Then

Nl(a1, a2) =
⎧

⎨

⎩

2−l−1 if 1 ≤ l ≤ η,

−2−l−1 if l = η + 1,
0 if l ≥ η + 2;

(2). Suppose 2|a1 and 2 � a2, and let 22+θ ||Da1 . Then

Nl(a1, a2) =
{

1
4 if θ ≥ 3 and l ∈ {2, 3},
0 otherwise ;

(3). For j = 1, 2 suppose 2|a j , and put A j = 1
4Daj , C j = A j2−θ j with

2θ j ||A j and assume θ1 ≤ θ2. Also suppose 2t ||(A1 − A2) so that t ≥ θ1.
We have

(i). Nl(a1, a2) = 0 for l = 1, θ1 + 1 and θ2 + 1.
(ii). For 2 ≤ l ≤ θ1, Nl(a1, a2) = 1.
(iii). For l ≥ θ1 + 2, and θ1 �= θ2 we have Nl(a1, a2) = 0 except for the

following cases:

Nl(a1, a2) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2−4χ4χ8(C1)χ4(C2) if l = θ1 + 5 and θ2 = θ1 + 1,
2−1 if l = θ1 + 2 and θ2 ≥ θ1 + 2,
−2−2 (1 − χ4(C1C2)) if l = θ1 + 4 and θ2 = θ1 + 2,
2−3χ4(C1)χ4χ8(C2) if l = θ1 + 5 and θ2 = θ1 + 3,
−2−2 if l = θ1 + 4 and θ2 ≥ θ1 + 4.

(iv). If θ1 = θ2 = θ , then

Nl(a1, a2)

=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

−2−(l−θ)χ8(C1C2)
l+θ (1 + χ4(C1C2)) , if θ + 2 ≤ l ≤ t + 2,

−2−(t−θ+3)χ8(C1C2)
t+θ+1 (1 + χ4(C1C2)) , if l = t + 3,

−2−(t−θ+4)χ8(C1C2)
t+θχ4

(
C1−C2
2t−θ

)

[χ4(C1) − χ4(C2)] , if l = t + 4,

0, if l ≥ t + 5.

Corollary B.15 For a1 �= ±a2 and a j �= ±2, suppose 2θ ||gcd(Da1, Da2).

Then δ2(a1, a2) = θ + O(1) and δ2(a1, a2)− δ
(m)
2 (a1, a2) = O

(

2−B
)

, where
the implied constants are absolute.
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