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Abstract 

A pulse laser emits ultrashort optical pulses with pulse widths on the order of pico-seconds 

and narrower.  A full characterization of these optical pulses requires complete knowledge of their 

corresponding spectral amplitude and phase.  Once complete knowledge of the corresponding 

spectral amplitude and phase are known for a pulse it can then pass through a pulse modulator to 

be manipulated to nearly any desired shape.  While spectral amplitude is easy to achieve, the square 

root of measured spectral intensity, spectral phase is unobtainable with current measuring 

equipment.  Group delay is the derivative of spectral phase with respect to frequency.  Spectral 

phase is the integral of group delay with respect to frequency plus a constant frequency 

independent phase.  While group delay can be determined by the following techniques:  frequency 

resolved optical gating (FROG), spectral phase interferometry for direct electric-field 

reconstruction (SPIDER), and multiphoton intrapulse interference phase scan (MIIPS) a new way 

of determining group delay is presented.   

Determining group delay is achieved through the combination of four things:  difference 

frequency generation in a nonlinear material, a frequency to spatial conversion, a binary spatial 

light modulator (BSLM), and correlated imaging (aka ghost imaging).  A newly generated 

frequency due to difference frequency generation has a phase that is a result of an integral sum of 

phase differences.  This phase can be determined as a result of frequency down shift due to 

difference frequency generation.  Correlated imaging uses two detectors:  one detector spatially 

resolves an incident field upon an object while the other detector which has no spatial resolution 
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measures the fields response to the object.  An image of the object is formed through the cross 

correlation of the two detectors involving many different realizations.  By using a frequency to 

spatial conversion and BSLM we can select which frequencies contribute to the integral sum of 

phase differences.  By correlating the contributing frequencies to the resulting phase of the newly 

generated frequency through many different BSLM realizations group delay can be determined.  

Group delay is shown to be able to be determined this way through analytical calculations and 

numerical simulation. 
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Chapter 1 

1. Introduction 

With the advent of the Laser (light amplification by stimulated emission) in 1960 [1-3], it 

has been said and come true that there are countless uses for the laser.  While there are many lasers 

used in countless various ways there are two main types of lasers:  continuous [4] and pulsed [1,5].  

A continuous laser emits light at a constant intensity as a function of time. Some common examples 

of a continuous laser include:  a laser pointer, the commonly used helium-neon (HeNe) laser, and 

the read/write laser used on a cd drive.  Unlike the continuous laser, a pulsed laser only delivers 

field/photons of light over a small spatiotemporal window.  The most common pulsed laser is a 

mode locked laser.  One of the first pulsed lasers was a Nd:Glass laser [5] developed in 1965 which 

had a pulse duration of 10 picoseconds.  Research into decreasing pulse duration for various laser 

types was not until the late 70’s and throughout the 80’s. During this time, pulse duration was 

decreased from the tens of picoseconds with the mode-locked diode laser [6-8] to the hundredths 

of picoseconds with CPM Ring Dye laser [9,10] and pulse compression [11-13].  Notably, a one 

picosecond pulse has a spatial length of 1/3mm, while a 100-femtosecond pulse has a spatial length 

of 33µm (about the diameter of a human hair).  These short pulses allow for a wide range of 

different applications:  increased data transmission, imaging on an ever decreasing temporal and 

spatial scale, and achieving high field densities. 

  As the temporal pulse duration decreases, the pulse spectral bandwidth increases.  

Furthermore, the corresponding spectral phase of the spectral bandwidth is also a determining 
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factor for the pulse shape and duration (both spatially and temporally).  This means for a given 

spectral bandwidth, there are nearly an infinite number of different pulse shapes based on the 

corresponding spectral phase.  In order to fully characterize a short pulse both quantities; spectral 

amplitude and spectral phase need to be known.  Once these two quantities are known full control 

over the shape of short pulses is achievable through amplitude modulation and spectral phase 

modulation.  While determining the spectral amplitude of a short pulse is easy, it is the square root 

of the measured spectral intensity, spectral phase is currently impossible to measure.  Spectral 

phase is determined by measuring the field as a function of time and then preforming a Fourier 

transform to convert the time domain temporal measurement to the frequency domain.  Once in 

the frequency domain spectral phase is achieved via the complex amplitude of each frequency.  

Currently there is no device that can measure the optical pulse’s field as a function of time.  This 

is because the current measurement sampling time is much greater than one over the frequency 

being measured and as such the corresponding phase information is lost.  With ultrashort pulses 

having pulse durations on the order of picoseconds and their corresponding contributing 

frequencies having temporal oscillation on the order of femtoseconds, and with sampling 

oscilloscopes measurements of tens of picoseconds, direct determination of spectral phase is an 

elusive value.  

Even though spectral phase is an elusive measurement, techniques have been developed to 

measure/determine group delay (the derivative of spectral phase with respect to frequency).  The 

well-known current techniques used to measure/determine group delay are:  frequency resolved 

optical gating (FROG) [14-16], spectral phase interferometry for direct electric-field 

reconstruction (SPIDER) [17], and multiphoton intrapulse interference phase scan (MIIPS) [18-
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20].   Each of these stated techniques have one thing in common, they each use a nonlinear optical 

material to generate a new frequency by combining two frequencies.  A newly created frequency 

generated from a nonlinear optical material can be generated in 1 of 4 ways:  frequency doubling, 

difference frequency generation, sum frequency generation, and optical rectification.  FROG and 

MIIPS both use frequency doubling to generate information about group delay, while SPIDER 

uses sum frequency generation.  This dissertation will demonstrate using difference frequency 

generation and Ghost Imaging to determine the group delay of an unknown optical pulse through 

analytical calculation and numerical simulations. 

1.1 Importance of Pulse Shaping 

Pulses emitted by pulse lasers can be shaped. Gaussian pulses are the most common pulse 

shape, but others including square, sawtooth, circular can be generated with limited bandwidth and 

a known spectral amplitude.  

1.1.1 Bandwidth Limited Pulse 

The minimum possible pulse duration for a given spectral bandwidth is called a bandwidth-

limited pulse; it is also known as a Fourier-transform-limited pulse.  This specific pulse shape 

occurs when the spectral phase is constant across its spectral bandwidth.  As stated above direct 

measurement of spectral phase is currently impossible for optical pulses; we must rely on group 

delay to determine whether the optical pulse bandwidth limited.  The group delay is the derivative 

of the spectral phase with respect to frequency.  If a group delay is equal to zero, it indicates that 

the corresponding spectral phase is constant.  Forcing a pulse to have limited bandwidth, its 

spatiotemporal width is minimized for a given spectral amplitude.  The minimized pulse can then 

be used in imaging, communications, and micro manufacturing. 
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In 1990 Web and Denk implemented a microscope that could cause simultaneous multiple 

fluorophore excitation using near-IR light pulses.  This two-photon microscopy became widely 

used in the biomedical imaging field, because it reduced photodamage out-of-focus 

photobleaching and fluorescence scattering.  This is achieved by the inherent instantaneous peak 

intensity and narrow focal plane of excitation.  bandwidth limited pulses take less energy per pulse 

compared to a non-bandwidth limited counterpart to achieve a given intensity with reduced of 

light-induced damage and photobleaching [21].   

Using On/Off keying modulation, optical communication presents ones with light 

transmissions and zeros with no light transmission.  Maximum achieved data rate of an optical 

communication is directly proportional to receiver’s ability to distinguish ones from zeros.  As an 

optical pulse travel through a fiber, it experiences group velocity dispersion (GVD).  The 

frequencies within the optical pulse travel at different speeds which cause the optical pulse to 

broaden as it travels through the fiber.  Broadening optical pulses limit the data rate of a fiber.  An 

optimal data rate occurs when bandwidth limited pulses are incident upon the receiver placed at 

the end of an optical fiber.  To achieve an optimal data rate a chirp can be placed upon the pulse 

at the transmitter to compensate for the GVD that the optical pulse experiences as it travels through 

a fiber.  Group delay is important to compensate for the broadening of pulse and determine the 

setting of a GVD.  

Another application for bandlimited optical pulses is as electrical components become 

smaller over time, the machining needed to effectively use the smaller components have shrunk.  

Micromachining uses optical pulses to remove unwanted material [22-25].  Generally shorter pulse 

widths provide better spatial resolution, depth control, and edge quality due to a minimized 

peripheral thermal damage.  In order to remove unwanted materials, the optical pulse must have a 
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laser power that exceeds the material’s ablation threshold power.  Pulse power below the ablation 

threshold power is wasted energy dissipates as thermal energy, may cause deformation in the 

material. 

 
Figure 1 :  Usable laser power for ablation must surpass the ablation threshold power for the 
material.  Laser power below the ablation threshold power is wasted energy that deforms the 
surrounding material [26]. 

Bandwidth limited pulse would deliver the optimal amount of usable pulse energy emitted by the 

pulse laser that minimizes the potential material deformations in the heat affected zone. 

This dissertation is organized as follows.  I first present the mathematical foundation of 

light wave nature, optical pulse and its phase in chapter 2.  Ghost imaging will be covered in 

chapter 3, while light interactions with nonlinear materials to determine the group delay for an 

unknown ultrashort pulse are presented in chapter 4.  Chapter 5 will explain the conditions under 

which a group delay frequency-based ghost imaging can be used.  Chapter 6 will present 

analytically simulated results of determining group delay for an unknown ultrashort pulse.  Chapter 

7 we will be look at some of the errors associated with other techniques that currently used to 

measure.  Chapter 8 provides concluding remarks.  
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Chapter 2 

2. Wave Nature of Light 

2.1 Wave Function 

To begin to understand the wave nature of light we begin by describing the wave function 

as 𝑢𝑢(𝑟𝑟, 𝑡𝑡) where 𝑟𝑟 = (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) is position and 𝑡𝑡 is time.  This wave function satisfies a partial 

differential equation called the wave equation: 

∇2𝑢𝑢 −
1
𝑐𝑐2
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

= 0 (1) 

where c is the speed of light in the propagating material, ∇2 is the Laplacian operator in the 

Cartesian coordinates �∇2= 𝜕𝜕2
𝜕𝜕𝑥𝑥2� + 𝜕𝜕2

𝜕𝜕𝑦𝑦2� + 𝜕𝜕2
𝜕𝜕𝑧𝑧2� �.  The first important thing to note is 

that due to the wave equation (1) being linear that the principle of superposition applies.  This 

means if 𝑢𝑢1(𝑟𝑟, 𝑡𝑡) and 𝑢𝑢2(𝑟𝑟, 𝑡𝑡) are both possible solutions then 𝑢𝑢(𝑟𝑟, 𝑡𝑡) = 𝑢𝑢1(𝑟𝑟, 𝑡𝑡) + 𝑢𝑢2(𝑟𝑟, 𝑡𝑡) is also 

a possible solution. 

2.1.1 Monochromatic Wave 

The simplest light wave solution to the wave equation is a monochromatic wave with 

temporal and spatial dependence, which is represented by the following: 

𝑢𝑢(𝑟𝑟, 𝑡𝑡) = 𝑎𝑎(𝑟𝑟) cos�2𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜙𝜙(𝑟𝑟)� (2) 

where 𝑎𝑎(𝑟𝑟) is amplitude, 𝜙𝜙(𝑟𝑟) is phase, and 𝜋𝜋 is frequency.  A representation of a monochromatic 

wave can be seen in figure 1. 
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Figure 2:  A monochromatic wave function with unit amplitude and frequency.  The 

monochromatic wave function has an initial phase of −𝜋𝜋 2�  as described by equation (2). 

An equally valid and sometimes more convenient way of describing a monochromatic 

wave is through the complex wave function. 

𝑈𝑈(𝑟𝑟, 𝑡𝑡) = 𝑎𝑎(𝑟𝑟)𝑒𝑒𝑖𝑖𝑖𝑖(𝑟𝑟)𝑒𝑒𝑖𝑖2𝜋𝜋𝜋𝜋𝜋𝜋 (3) 

In relation to equation (2) 

𝑢𝑢(𝑟𝑟, 𝑡𝑡) = 𝑅𝑅𝑒𝑒{𝑈𝑈(𝑟𝑟, 𝑡𝑡)} =
1
2

[𝑈𝑈(𝑟𝑟, 𝑡𝑡) + 𝑈𝑈∗(𝑟𝑟, 𝑡𝑡)] (4) 

The complex wave function must satisfy the following wave equation: 

∇2𝑈𝑈 −
1
𝑐𝑐2
𝜕𝜕2𝑈𝑈
𝜕𝜕𝑡𝑡2

= 0 (5) 

the complex wave function (3) can be described it in terms of its spatial dependence and its time 

independence as follows. 

𝑈𝑈(𝑟𝑟, 𝑡𝑡) = 𝑈𝑈(𝑟𝑟)𝑒𝑒𝑖𝑖2𝜋𝜋𝜋𝜋𝜋𝜋 (6) 
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The time independent element of equation (6) 𝑈𝑈(𝑟𝑟) =  𝑎𝑎(𝑟𝑟)𝑒𝑒𝑖𝑖𝑖𝑖(𝑟𝑟) is commonly referred to as the 

complex amplitude of the wave.  The temporal independence and dependence of this can be seen 

in parts a and b of figure 2. 

 
Figure 3: Given a position r in figure 2(b) the magnitude |𝑈𝑈(𝑟𝑟)| = 𝑎𝑎(𝑟𝑟) is the amplitude of the 
wave with 𝜙𝜙(𝑟𝑟) being its phase.  Figure 2(a) shows the temporal dependence of the complex 

wave function by a phasor that rotates with angular velocity 𝜔𝜔 = 2𝜋𝜋𝜋𝜋. 

Now by inserting equation (6) into the complex wave function (5), one will come up with 

Helmholtz equation: 

∇2𝑈𝑈 + 𝑘𝑘2𝑈𝑈 = 0 (7) 

which introduces the wave number (k) with it being: 

𝑘𝑘 =
2𝜋𝜋𝜋𝜋
𝑐𝑐

=
𝜔𝜔
𝑐𝑐

 (8) 

The wave number may not seem relevant now, but its relevance will be clear in the generation of 

a new wave with frequency c from two waves with frequencies a and b where 𝑐𝑐 ≠ 𝑎𝑎 𝑜𝑜𝑟𝑟 𝑏𝑏. 

Now since the frequencies of an optical field are typically much higher when compared to 

the sampling rate of a measuring device, we measure optical intensity, which is defined as the 
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optical power per unit area, and not field strength.  Optical intensity is proportional to the average 

of the squared wave function. 

𝐼𝐼(𝑟𝑟, 𝑡𝑡) = 2〈𝑢𝑢2(𝑟𝑟, 𝑡𝑡)〉 (9) 

For a monochromatic wave, its intensity is the absolute square of its complex amplitude.  This can 

be clear by inserting equation (2) into equation (9). 

2𝑢𝑢2(𝑟𝑟, 𝑡𝑡) = 𝑎𝑎2(𝑟𝑟) cos2�2𝜋𝜋𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜙𝜙(𝑟𝑟)� (10) 

= |𝑈𝑈(𝑟𝑟, 𝑡𝑡)|2{1 + cos(2[2𝜋𝜋𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜙𝜙(𝑟𝑟)])} (11) 

When the measurement time much greater than the optical period of 1 𝜋𝜋� , the second term in 

equation (11) disappears, therefore one is left with: 

𝐼𝐼(𝑟𝑟, 𝑡𝑡) = |𝑈𝑈(𝑟𝑟, 𝑡𝑡)|2 (12) 

2.1.2 Plane Wave 

The number of wavefunctions that can satisfy the Helmholtz wave equation are numerous.  

Many of the wavefunctions are quite complex and they present many mathematically challenging 

problems.  Thankfully, superposition still applies to the Helmholtz equation and as such many 

various complex wavefunctions can be treated through a plane wave approximation.  The plane 

wave approximation is akin to taking the Taylor series of a complex function.  The Taylor series 

is an infinite sum of ever-increasing power of polynomials that approximate a complex function 

𝑓𝑓(𝑥𝑥).  The accuracy of the series increases with the addition of higher-degree polynomials 

provided that the approximation takes place within the interval of convergence.  Outside this 

interval of convergence, the complex function cannot be accurately approximated regardless of the 

degree the polynomial approximation is taken to.  Unlike the Taylor series the plane wave 

approximation does not have a limited interval of convergence with respect to approximating 
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complex wave functions.  A plane wave, which is a solution to the Helmholtz equation has a 

complex amplitude of: 

𝑈𝑈(𝑟𝑟) = 𝐴𝐴𝑒𝑒𝑖𝑖𝑘𝑘�𝑟𝑟 = 𝐴𝐴𝑒𝑒𝑖𝑖�𝑘𝑘𝑥𝑥𝑥𝑥+𝑘𝑘𝑦𝑦𝑦𝑦+𝑘𝑘𝑧𝑧𝑧𝑧� (13) 

where A is a constant called the complex envelope and 𝑘𝑘� = �𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦,𝑘𝑘𝑧𝑧� is called the wave vector.  

The magnitude of the wave vector 𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2 + 𝑘𝑘𝑧𝑧2 = 𝑘𝑘2 is the wavenumber k noted in equations (7) 

and 8.  The purpose of wavenumber k is that it depicts the travel direction of the wavefunction.  

The travel direction of wave function corresponds to the spatial planes with constant phase, also 

called wavefronts.  The phase of a given spatial plane is 𝑎𝑎𝑟𝑟𝑎𝑎{𝑈𝑈(𝑟𝑟)} = 𝑎𝑎𝑟𝑟𝑎𝑎{𝐴𝐴} − 𝑘𝑘� ∙ 𝑟𝑟.  The 

corresponding spatial plane with the same phase occur with 𝑘𝑘� ∙ 𝑟𝑟 = 𝑘𝑘𝑥𝑥𝑥𝑥 + 𝑘𝑘𝑦𝑦𝑦𝑦 + 𝑘𝑘𝑧𝑧𝑧𝑧 = 2𝜋𝜋𝜋𝜋 +

𝑎𝑎𝑟𝑟𝑎𝑎{𝐴𝐴} where q is an integer.  Consecutive spatial planes with the same phase are separated by a 

distance of 𝜆𝜆 = 2𝜋𝜋
𝑘𝑘� .  This is referred to as a frequency’s corresponding wavelength. 

𝜆𝜆 =
𝑐𝑐
𝜈𝜈

 (14) 

Now taking the travel direction along the z-axis with 𝑈𝑈(𝑟𝑟) = 𝐴𝐴𝑒𝑒−𝑖𝑖𝑘𝑘𝑧𝑧 corresponds to a 

wavefunction of equation (15): 

𝑢𝑢(𝑟𝑟, 𝑡𝑡) = |𝐴𝐴| cos[2𝜋𝜋𝜈𝜈𝑡𝑡 − 𝑘𝑘𝑧𝑧 + 𝑎𝑎𝑟𝑟𝑎𝑎{𝐴𝐴}]

= |𝐴𝐴| cos �2𝜋𝜋𝜈𝜈 �𝑡𝑡 −
𝑧𝑧
𝑐𝑐
� + 𝑎𝑎𝑟𝑟𝑎𝑎{𝐴𝐴}� = |𝐴𝐴| cos[𝜔𝜔(𝑡𝑡 − 𝑘𝑘𝑧𝑧) + 𝑎𝑎𝑟𝑟𝑎𝑎{𝐴𝐴}] 

(15) 

This wavefunction is periodic in time with a period of 1 𝜈𝜈⁄  and periodic in space with a period of 

2𝜋𝜋 𝑘𝑘⁄ .  The wave phase varies as function in both time and space; the variables (𝑡𝑡 − 𝑧𝑧 𝑐𝑐⁄ ) is called 

the phase velocity of the wave.  Likewise, we can also view the phase velocity (𝑡𝑡 − 𝑘𝑘𝑧𝑧) in relation 

to angular frequency 𝜔𝜔 using equation (8). 
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Until this point, we have assumed that the waves are traveling in free space.  When light 

waves travel through a medium it interacts with the medium, slowing its travel speed among others.   

This reduction in speed is proportional to the mediums refractive index n.   

𝑐𝑐 =
𝑐𝑐0
𝑛𝑛

 (16) 

This refractive index also affects the wavelength in the medium 𝜆𝜆 = 𝑐𝑐 𝜈𝜈⁄ = 𝑐𝑐0 𝑛𝑛𝜈𝜈⁄  so 𝜆𝜆 = 𝜆𝜆0 𝑛𝑛⁄  

where 𝜆𝜆0 is the wavelength in free space.  This in turn affects the wavenumber k.  It is increased 

by a factor equal to the index of refraction 𝑘𝑘 = 2𝜋𝜋 𝜆𝜆⁄ = 2𝜋𝜋𝑛𝑛 𝜆𝜆0⁄ .  When a monochromatic light 

plane wave travels through a medium with refractive index n, the velocity, wavelength, and 

wavenumber change except its frequency that remains constant with respect to traveling in free 

space. 

𝑐𝑐 =
𝑐𝑐0
𝑛𝑛

 (17) 

𝜆𝜆 =
𝜆𝜆0
𝑛𝑛

 (18) 

𝑘𝑘 = 𝑛𝑛𝑘𝑘0 (19) 

This is not true when light travels though non-linear materials; new frequencies will be generated.  

2.1.3 Fourier Transform 

Previously, we have established a mathematical representation for a monochromatic wave 

and a monochromatic plane wave.  These monochromatic waves extend over all time and space of 

a 2D plane and they constitute an ideal light wave.  An actual optical pulse is of a finite spatial 

space and temporal duration.  To construct an optical pulse, we can use the principle of 

superposition with many different monochromatic waves.  We will be applying the Fourier method 

to deconstruct an arbitrary optical pulse d 𝑢𝑢(𝑡𝑡) into a superposition of harmonic functions of 
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different frequencies each of which have an associated amplitude and phase.  Taking a sum of 

monochromatic waves to infinitum we get an integral sum of all frequencies, amplitudes, and 

phases which is: 

𝑢𝑢(𝑡𝑡) = � 𝑢𝑢(𝜈𝜈)𝑒𝑒𝑖𝑖2𝜋𝜋𝜋𝜋𝜋𝜋𝑑𝑑𝜈𝜈
∞

−∞
 (20) 

𝑢𝑢(𝜈𝜈) can be determined by carrying out the Fourier transform 

𝑢𝑢(𝜈𝜈) = � 𝑢𝑢(𝑡𝑡)𝑒𝑒−𝑖𝑖2𝜋𝜋𝜋𝜋𝜋𝜋𝑑𝑑𝑡𝑡
∞

−∞
 (21) 

Equations (20) and (21) represent a Fourier transform pair.  If either the functions 𝑢𝑢(𝑡𝑡) or 𝑢𝑢(𝜈𝜈) is 

known, the other can be determined through a Fourier transform.  In this case a complex-valued 

temporal function 𝑢𝑢(𝑡𝑡) is decomposed into a superposition integral of harmonic functions of 

different frequencies (𝜈𝜈) and complex amplitudes.  Both functions 𝑢𝑢(𝑡𝑡) and 𝑢𝑢(𝜈𝜈) are equivalent 

in what they represent.  𝑢𝑢(𝑡𝑡) is the time-domain representation, while 𝑢𝑢(𝜈𝜈) is the frequency-

domain representation.  One way to realize their equivalence is through the conservation of energy.  

This is done through Parseval’s Theorem which states that the signal energy, which is the integral 

of the signal power |𝑢𝑢(𝑡𝑡)|2, equals the integral of the energy spectral density |𝑢𝑢(𝜈𝜈)|2. 

� |𝑢𝑢(𝑡𝑡)|2𝑑𝑑𝑡𝑡
∞

−∞
= � |𝑢𝑢(𝜈𝜈)|2𝑑𝑑𝜈𝜈

∞

−∞
 (22) 

The Fourier transform has many other properties aside from Parseval’s Theorem.  This dissertation 

requires three important properties: linearity, convolution, and symmetry theorems. 

Linearity:  𝐹𝐹[𝑢𝑢1(𝑡𝑡) + 𝑢𝑢2(𝑡𝑡)] = 𝐹𝐹[𝑢𝑢1(𝑡𝑡)] + 𝐹𝐹[𝑢𝑢2(𝑡𝑡)]  The Fourier transform of a weighted 

sum (of two or more functions) is equal to the sum of the individual weighted functions Fourier 

transforms. 
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Symmetry:  If 𝑢𝑢(𝑡𝑡) is real then 𝑢𝑢(𝜈𝜈) has Hermitian symmetry 𝑢𝑢(−𝜈𝜈) = 𝑢𝑢∗(𝜈𝜈).  Symmetry 

also states that if 𝑢𝑢(𝑡𝑡) is real and symmetric 𝑢𝑢(𝜈𝜈) is also real and symmetric. 

Convolution Theorem:  If the Fourier transform of 𝑢𝑢1(𝑡𝑡) and 𝑢𝑢2(𝑡𝑡) are 𝑢𝑢1(𝜈𝜈) and 𝑢𝑢2(𝜈𝜈) 

respectively, then the Fourier transform of their product 

𝑢𝑢3(𝜈𝜈) = 𝑢𝑢1(𝜈𝜈)𝑢𝑢2(𝜈𝜈) (23) 

is 

𝑢𝑢3(𝑡𝑡) = � 𝑢𝑢1(𝑡𝑡) ∗ 𝑢𝑢2(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏
∞

−∞
 (24) 

Equation (24) is known as a convolution in the time domain between the two functions 𝑢𝑢1(𝑡𝑡) and 

𝑢𝑢2(𝑡𝑡).  The convolution theorem simply states that a convolution in one domain is equivalent to a 

multiplication in another domain, if the two domains constitute a Fourier transform pair. 

2.1.4 Polychromatic wave/Pulsed Light 

Equation (20) extends over both positive and negative frequencies.  It is known that the 

optical temporal pulse �𝑢𝑢(𝑡𝑡)� in equation (20) is real which means that, 𝑢𝑢(−𝜈𝜈) = 𝑢𝑢∗(𝜈𝜈), by using 

the symmetry rule of a Fourier transform.  This means that negative frequency components are not 

actually independent from the positive frequency components but are rather conjugated versions 

of the corresponding positive-frequency components.  Knowing this fact, it is at times convenient 

to represent the real temporal function 𝑢𝑢(𝑡𝑡) by using only the positive frequencies as seen in the 

following complex function: 

𝑈𝑈(𝑡𝑡) = 2� 𝑢𝑢(𝜈𝜈)𝑒𝑒𝑖𝑖2𝜋𝜋𝜋𝜋𝜋𝜋𝑑𝑑𝜈𝜈
∞

0
= 2� 𝐴𝐴(𝜈𝜈)𝑒𝑒𝑖𝑖2𝜋𝜋𝜋𝜋𝜋𝜋+𝜙𝜙(𝜋𝜋)𝑑𝑑𝜈𝜈

∞

0
 (25) 

Equation (25) includes only the positive valued frequency components (which are multiplied by a 

factor of 2), while negative frequencies are suppressed. The function of 𝑈𝑈(𝑡𝑡) has a Fourier 
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transform and is 𝑈𝑈(𝜈𝜈) = 2𝑢𝑢(𝜈𝜈) for 𝜈𝜈 ≥ 0 and 0 for 𝜈𝜈 < 0.  If the complex representation �𝑈𝑈(𝑡𝑡)� 

is known and the real function 𝑢𝑢(𝑡𝑡) is desired it can be determined by taking the real part of the 

complex function. 

𝑢𝑢(𝑡𝑡) = 𝑅𝑅𝑒𝑒{𝑈𝑈(𝑡𝑡)} =
1
2

[𝑈𝑈(𝑡𝑡) + 𝑈𝑈∗(𝑡𝑡)] (26) 

A simple and useful example of this complex representation is that of a real harmonic function 

𝑢𝑢(𝑡𝑡) = A �𝜔𝜔
2𝜋𝜋
� cos �𝜔𝜔𝑡𝑡 + 𝜙𝜙 �𝜔𝜔

2𝜋𝜋
��. It is used to describe a monochromatic wave in a complex 

harmonic function 𝑈𝑈(𝑡𝑡) = 2𝐴𝐴 �𝜔𝜔
2𝜋𝜋
� 𝑒𝑒𝑖𝑖𝜔𝜔𝜋𝜋+𝜙𝜙�

𝜔𝜔
2𝜋𝜋�.  Through this representation a polychromatic wave 

is described by the superposition of complex representations of each of its monochromatic Fourier 

components. 

 
Figure 4:  The time domain representation of a monochromatic wave function with unit amplitude is 

displayed in figure 3(c) while its frequency domain representation is seen in figure 3(a) and 3(b).  The 
frequency domain representation seen in figure 3(a) encompasses both positive and negative frequencies 

using equation (21) while figure 3(b) only encompasses the positive frequencies using the Hermitian 
symmetry property along with equations (25) and (26). 
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With a polychromatic wave being the superposition of infinitely many monochromatic 

waves, two polychromatic waves are differentiated from one another by their corresponding 

complex amplitudes as a function of frequency.  The complex amplitude can further be broken 

down into two components: maximum amplitude 𝐴𝐴(𝜈𝜈) (called spectral amplitude) and spectral 

phase 𝜙𝜙(𝜈𝜈).  Both the spectral amplitude and spectral phase impact the temporal amplitude and 

temporal width of the polychromatic wave.  For a given spectral amplitude, the minimum temporal 

width (a bandwidth-limited pulse) is achieved when its corresponding spectral phase is constant 

[27].  A polychromatic wave with a constant spectral phase has a constant group delay equal to 

zero.  Group delay is defined as the derivative of spectral phase with respect to frequency. 

𝜏𝜏𝑔𝑔(𝜛𝜛) = −
𝑑𝑑𝜙𝜙(𝜈𝜈)
𝑑𝑑𝜈𝜈

 
(27) 

Likewise knowing the group delay of a polychromatic wave, its spectral phase is the integral of 

group delay plus a constant phase term across the spectrum. 

𝜙𝜙(𝜈𝜈) = �𝑇𝑇𝑔𝑔(𝜛𝜛)𝑑𝑑𝜛𝜛 + 𝜙𝜙(0) (28) 

As stated, polychromatic wave is a superposition of infinitely many monochromatic waves.  A 

complete description of a wave’s content is given by its spectral amplitude and its spectral phase.  

Further, the spectral amplitude and group delay of a polychromatic wave contains the same amount 

of information minus a constant phase across the spectrum.  While it is easy to determine the 

spectral amplitude for any pulse (the square root of spectral intensity, as shown in equations (10-

12), it is difficult to determine the spectral phase when sampling time is greater than a period of 

1 𝜈𝜈� . Lack of information on spectral phase for ultra-short pulses drove the development of 
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inventive ways (FROG, SPIDER, MIIPS) to determine group delay.  This dissertation will describe 

how to use correlated imaging in conjunction with difference frequency generation to determine 

the group delay of an ultra-short pulse. 

2.2 Nonlinear Light 

In the previous section a basic mathematical foundation was laid out for the description of both 

a monochromatic wave and the construction of a polychromatic pulse.  In this section, we present 

the work of Boyd [28].  The mathematical foundation for a light wave (electromagnetic radiation) 

traveling through a medium is described. Specifically, we will focus on nonlinear susceptibility of 

a medium to generate a new frequency from two or more monochromatic wave sources traveling 

through it.  We will then follow the work of Gallot and Grischkowsky [29] that expand the work 

to study new frequencies generated by polychromatic sources. We must first start off with 

Maxwell’s equations that govern the electric and magnetic fields: 

∇ × 𝐸𝐸 = −
1
𝑐𝑐
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

 (29) 

∇ × 𝜕𝜕 =
1
𝑐𝑐
𝜕𝜕𝐸𝐸
𝜕𝜕𝑡𝑡

+
4𝜋𝜋
𝑐𝑐
𝐽𝐽 (30) 

∇ ∙ 𝐸𝐸 = 4𝜋𝜋𝜋𝜋 (31) 

∇ ∙ 𝜕𝜕 = 0 (32) 

where E is an electric field, B is a magnetic field, J and 𝜋𝜋 are the current and charge densities 

respectively which are related by the charge conservation law. 

∇ ∙ 𝐽𝐽 +
𝜕𝜕𝜋𝜋
𝜕𝜕𝑡𝑡

= 0 (33) 

Where J and 𝜋𝜋 can be expanded into a series of multipoles [30]: 
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𝐽𝐽 = 𝐽𝐽0 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

+ 𝑐𝑐∇ × 𝑀𝑀 +
𝜕𝜕
𝜕𝜕𝑡𝑡

(∇ ∙ 𝑄𝑄) + ⋯ (34) 

𝜋𝜋 = 𝜋𝜋0 − ∇ ∙ 𝜕𝜕 − ∇(∇ ∙ 𝑄𝑄) + ⋯ (35) 

Where P, M, and Q are the electric polarization, the magnetization, and the electric quadrupole 

polarization, respectively.  Higher terms in this expansion contain the contributions to the 

magnetization and electric polarization of an increasing number of poles.  In the region of optics, 

it has been pointed out by Landau and Lifshitz [31] that it is not meaningful to include the higher 

order multipoles of J and 𝜋𝜋 terms, because the typical definitions of multipoles are unphysical.  

This leads us to use a generalized electric polarization P defined by: 

𝐽𝐽 = 𝐽𝐽𝑑𝑑𝑑𝑑 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

 (36) 

This changes the second equation of the Maxwell’s equations to  

∇ × 𝜕𝜕 =
1
𝑐𝑐
𝜕𝜕
𝜕𝜕𝑡𝑡

(𝐸𝐸 + 4𝜋𝜋𝜕𝜕) +
4𝜋𝜋
𝑐𝑐
𝐽𝐽𝑑𝑑𝑑𝑑 (37) 

If it is assumed that an electric field propagating in a medium does not have a dc current running 

through it, the following equation describes how the electric field is affected by the medium: 

∇2𝐸𝐸� −
𝑛𝑛2

𝑐𝑐2
𝜕𝜕2𝐸𝐸�
𝜕𝜕𝑡𝑡2

=
1

𝜖𝜖0𝑐𝑐2
𝜕𝜕2𝜕𝜕�𝑁𝑁𝑁𝑁

𝜕𝜕𝑡𝑡2
 (38) 

where 𝜕𝜕� is a time-varying source term that describes the mediums response to the electric field.  If 

we take an anharmonic oscillator model approach to describe the mediums response �𝜕𝜕�� the 

response can be broken down/expanded into a power series of 𝐸𝐸�(𝑡𝑡) that includes all nonlinear 

contributions. 

𝜕𝜕�𝑁𝑁𝑁𝑁(𝑡𝑡) = 𝜖𝜖0�𝜒𝜒(1)𝐸𝐸�(𝑡𝑡) + 𝜒𝜒(2)𝐸𝐸�2(𝑡𝑡) + 𝜒𝜒(3)𝐸𝐸�3(𝑡𝑡) + ⋯� (39) 

𝜕𝜕�𝑁𝑁𝑁𝑁(𝑡𝑡) = 𝜕𝜕�1(𝑡𝑡) + 𝜕𝜕�2(𝑡𝑡) + 𝜕𝜕�3(𝑡𝑡) + ⋯ (40) 
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The constants 𝜒𝜒(𝑖𝑖) represent the nth order susceptibility of the medium.  The first order linear 

susceptibility is expressed as: 

𝜕𝜕�1(𝑡𝑡) = 𝜖𝜖0𝜒𝜒(1)𝐸𝐸�(𝑡𝑡) (41) 

Optical effects that occur from the first order of susceptibility are diffraction, reflection, refraction, 

absorption, and change in phase.  Within the first order susceptibility, there is no and can be no 

frequency mixing.  This also states that each frequency is independent from all other frequencies.  

The mixing of different frequencies to generate a new one first occurs in the second order term 

due to nonlinear polarization given as follows: 

𝜕𝜕�2(𝑡𝑡) = 𝜖𝜖0𝜒𝜒(2)𝐸𝐸�2(𝑡𝑡) (42) 

When a medium has a second order susceptibility, the total electric field 𝐸𝐸�(𝑡𝑡) becomes a 

superposition of two angular frequencies 𝜔𝜔1 and 𝜔𝜔2.  Angular frequency was seen being related 

to frequency via the wave number in equation (8), 𝜔𝜔 = 2𝜋𝜋𝜈𝜈. 

𝐸𝐸�(𝜔𝜔, 𝑡𝑡) = �̃�𝐴1𝑒𝑒𝑖𝑖�𝑘𝑘1𝑧𝑧−𝜔𝜔1𝜋𝜋+𝜑𝜑(𝜔𝜔1)� + �̃�𝐴2𝑒𝑒𝑖𝑖�𝑘𝑘2𝑧𝑧−𝜔𝜔2𝜋𝜋+𝜑𝜑(𝜔𝜔2)� + �̃�𝐴1𝑒𝑒−𝑖𝑖�𝑘𝑘1𝑧𝑧−𝜔𝜔1𝜋𝜋+𝜑𝜑(𝜔𝜔1)�

+ �̃�𝐴2𝑒𝑒−𝑖𝑖�𝑘𝑘2𝑧𝑧−𝜔𝜔2𝜋𝜋+𝜑𝜑(𝜔𝜔2)� 
(43) 

For simplicity I shall include the corresponding phase term 𝜑𝜑�𝜔𝜔𝑗𝑗� within the amplitude term �̃�𝐴𝑗𝑗 

and as such the incident field on the nonlinear medium is expressed as: 

𝐸𝐸�(𝜔𝜔, 𝑡𝑡) = 𝐴𝐴1𝑒𝑒𝑖𝑖(𝑘𝑘1𝑧𝑧−𝜔𝜔1𝜋𝜋) + 𝐴𝐴2𝑒𝑒𝑖𝑖(𝑘𝑘2𝑧𝑧−𝜔𝜔2𝜋𝜋) + 𝐴𝐴1∗𝑒𝑒−𝑖𝑖(𝑘𝑘1𝑧𝑧−𝜔𝜔1𝜋𝜋) + 𝐴𝐴2∗𝑒𝑒−𝑖𝑖(𝑘𝑘2𝑧𝑧−𝜔𝜔2𝜋𝜋) (44) 

The induced second order nonlinear polarization is given by: 

𝜕𝜕�2(𝑡𝑡) = 𝜖𝜖0𝜒𝜒(2)�𝐴𝐴1𝑒𝑒𝑖𝑖(𝑘𝑘1𝑧𝑧−𝜔𝜔1𝜋𝜋) + 𝐴𝐴2𝑒𝑒𝑖𝑖(𝑘𝑘2𝑧𝑧−𝜔𝜔2𝜋𝜋) + 𝐴𝐴1∗𝑒𝑒−𝑖𝑖(𝑘𝑘1𝑧𝑧−𝜔𝜔1𝜋𝜋) + 𝐴𝐴2∗𝑒𝑒−𝑖𝑖(𝑘𝑘2𝑧𝑧−𝜔𝜔2𝜋𝜋)�
2
 (45) 
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𝜕𝜕�2(𝑡𝑡) = 𝜖𝜖0𝜒𝜒(2)�𝐴𝐴12𝑒𝑒𝑖𝑖2(𝑘𝑘1𝑧𝑧−𝜔𝜔1𝜋𝜋) + 𝐴𝐴1∗2𝑒𝑒−𝑖𝑖2(𝑘𝑘1𝑧𝑧−𝜔𝜔1𝜋𝜋) + 2𝐴𝐴1𝐴𝐴1∗ + 𝐴𝐴22𝑒𝑒𝑖𝑖2(𝑘𝑘2𝑧𝑧−𝜔𝜔2𝜋𝜋)

+ 𝐴𝐴2∗2𝑒𝑒−𝑖𝑖2(𝑘𝑘2𝑧𝑧−𝜔𝜔2𝜋𝜋) + 2𝐴𝐴2𝐴𝐴2∗ + 𝐴𝐴1𝐴𝐴2𝑒𝑒𝑖𝑖�(𝑘𝑘1+𝑘𝑘2)𝑧𝑧−(𝜔𝜔1+𝜔𝜔2)𝜋𝜋�

+ 2𝐴𝐴1∗𝐴𝐴2∗𝑒𝑒−𝑖𝑖�(𝑘𝑘1+𝑘𝑘2)𝑧𝑧−(𝜔𝜔1+𝜔𝜔2)𝜋𝜋� + 𝐴𝐴1∗𝐴𝐴2𝑒𝑒𝑖𝑖�(𝑘𝑘2−𝑘𝑘1)𝑧𝑧−(𝜔𝜔2−𝜔𝜔1)𝜋𝜋�

+ 𝐴𝐴1𝐴𝐴2∗𝑒𝑒−𝑖𝑖�(𝑘𝑘2−𝑘𝑘1)𝑧𝑧−(𝜔𝜔2−𝜔𝜔1)𝜋𝜋�� 

(46) 

There are 6 terms resulting from the second order polarization which can be grouped into 4 

categories: 

• Second harmonic generation (SHG):  A doubling of the incident frequency. 

𝜕𝜕(2𝜔𝜔1) = 𝜖𝜖0𝜒𝜒(2)�𝐴𝐴12𝑒𝑒𝑖𝑖2(𝑘𝑘1𝑧𝑧−𝜔𝜔1𝜋𝜋) + 𝐴𝐴1∗2𝑒𝑒−𝑖𝑖2(𝑘𝑘1𝑧𝑧−𝜔𝜔1𝜋𝜋)� (47) 

𝜕𝜕(2𝜔𝜔2) = 𝜖𝜖0𝜒𝜒(2)�𝐴𝐴22𝑒𝑒𝑖𝑖2(𝑘𝑘2𝑧𝑧−𝜔𝜔2𝜋𝜋) + 𝐴𝐴2∗2𝑒𝑒−𝑖𝑖2(𝑘𝑘2𝑧𝑧−𝜔𝜔2𝜋𝜋)� (48) 

• Sum frequency generation (SFG):  The resulting frequency is the sum of the two incident 

frequencies 

𝜕𝜕(𝜔𝜔1 + 𝜔𝜔2) = 2𝜖𝜖0𝜒𝜒(2)�𝐴𝐴1𝐴𝐴2𝑒𝑒𝑖𝑖�(𝑘𝑘1+𝑘𝑘2)𝑧𝑧−(𝜔𝜔1+𝜔𝜔2)𝜋𝜋� + 𝐴𝐴1∗𝐴𝐴2∗𝑒𝑒−𝑖𝑖�(𝑘𝑘1+𝑘𝑘2)𝑧𝑧−(𝜔𝜔1+𝜔𝜔2)𝜋𝜋�� (49) 

• Difference frequency generation (DFG):  The resulting frequency is the difference between 

the two incident frequencies 

𝜕𝜕(𝜔𝜔2 − 𝜔𝜔1) = 2𝜖𝜖0𝜒𝜒(2)�𝐴𝐴1∗𝐴𝐴2𝑒𝑒𝑖𝑖�(𝑘𝑘2−𝑘𝑘1)𝑧𝑧−(𝜔𝜔2−𝜔𝜔1)𝜋𝜋� + 𝐴𝐴1𝐴𝐴2∗𝑒𝑒−𝑖𝑖�(𝑘𝑘2−𝑘𝑘1)𝑧𝑧−(𝜔𝜔2−𝜔𝜔1)𝜋𝜋�� (50) 

• Optical Rectification (OR):  A resulting frequency of zero 

𝜕𝜕(0) = 2𝜖𝜖0𝜒𝜒(2)[2𝐴𝐴1𝐴𝐴1∗ + 2𝐴𝐴2𝐴𝐴2∗ ] (51) 

2.2.1 Monochromatic source used in difference frequency generation 

Four different electric fields could be generated from the mixing of two different angular 

frequencies when they are incident upon a second order susceptible medium.  The possible field/s 

that could be generated are:  𝐸𝐸2𝜔𝜔1 ,𝐸𝐸2𝜔𝜔2 ,𝐸𝐸𝜔𝜔1+𝜔𝜔2 ,𝑎𝑎𝑛𝑛𝑑𝑑 𝐸𝐸𝜔𝜔2−𝜔𝜔1.  However, not every one of these 
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possible fields will be generated by every second order susceptible medium.  In order to determine 

which if any of these fields are generated in the second order susceptible medium, we must use 

Maxwell’s second equation in its modified form.  This modified form is a coupled differential 

mathematical equation. 

∇2�𝐸𝐸2𝜔𝜔1 + 𝐸𝐸2𝜔𝜔2 + 𝐸𝐸𝜔𝜔1+𝜔𝜔2 + 𝐸𝐸𝜔𝜔2−𝜔𝜔1� −
𝑛𝑛𝜔𝜔2−𝜔𝜔1
2

𝑐𝑐2
𝜕𝜕2�𝐸𝐸2𝜔𝜔1 + 𝐸𝐸2𝜔𝜔2 + 𝐸𝐸𝜔𝜔1+𝜔𝜔2 + 𝐸𝐸𝜔𝜔2−𝜔𝜔1�

𝜕𝜕𝑡𝑡2

=
1

𝜖𝜖0𝑐𝑐2
𝜕𝜕2𝜕𝜕�𝑁𝑁𝑁𝑁

𝜕𝜕𝑡𝑡2
 

(52) 

For the purpose of this dissertation, we are only concerned about examining the conditions under 

which difference frequency generation occurs: 

∇2�𝐸𝐸𝜔𝜔2−𝜔𝜔1� −
𝑛𝑛𝜔𝜔2−𝜔𝜔1
2

𝑐𝑐2
𝜕𝜕2�𝐸𝐸𝜔𝜔2−𝜔𝜔1�

𝜕𝜕𝑡𝑡2

=
𝜒𝜒(2)

𝑐𝑐2
𝜕𝜕2

𝜕𝜕𝑡𝑡2
�2𝐴𝐴1∗𝐴𝐴2𝑒𝑒𝑖𝑖�(𝑘𝑘2−𝑘𝑘1)𝑧𝑧−(𝜔𝜔2−𝜔𝜔1)𝜋𝜋� + 2𝐴𝐴1𝐴𝐴2∗𝑒𝑒−𝑖𝑖�(𝑘𝑘2−𝑘𝑘1)𝑧𝑧−(𝜔𝜔2−𝜔𝜔1)𝜋𝜋�� 

(53) 

Not concerning with the complex conjugate part of the wave, for the moment, we have: 

�∇2𝐴𝐴𝜔𝜔2−𝜔𝜔1 −
𝑛𝑛𝜔𝜔2−𝜔𝜔1
2

𝑐𝑐2
𝜕𝜕2𝐴𝐴𝜔𝜔2−𝜔𝜔1

𝜕𝜕𝑡𝑡2 � 𝑒𝑒𝑖𝑖�𝑘𝑘𝜔𝜔2−𝜔𝜔1𝑧𝑧−𝜔𝜔𝜔𝜔2−𝜔𝜔1𝜋𝜋�

=
2𝜒𝜒(2)

𝑐𝑐2
𝜕𝜕2

𝜕𝜕𝑡𝑡2
𝐴𝐴1∗𝐴𝐴2𝑒𝑒𝑖𝑖�(𝑘𝑘2−𝑘𝑘1)𝑧𝑧−(𝜔𝜔2−𝜔𝜔1)𝜋𝜋� 

(54) 

Expanding the first term on the left side and taking the partial time derivative of the right side we 

will obtain: 

�
𝜕𝜕2𝐴𝐴𝜔𝜔2−𝜔𝜔1

𝜕𝜕𝑧𝑧2
+ 2𝑖𝑖𝑘𝑘𝜔𝜔2−𝜔𝜔1

𝜕𝜕𝐴𝐴𝜔𝜔2−𝜔𝜔1

𝜕𝜕𝑧𝑧
− 𝑘𝑘𝜔𝜔2−𝜔𝜔1

2 𝐴𝐴𝜔𝜔2−𝜔𝜔1 −
𝑛𝑛𝜔𝜔2−𝜔𝜔1
2

𝑐𝑐2
𝜕𝜕2𝐴𝐴𝜔𝜔2−𝜔𝜔1

𝜕𝜕𝑡𝑡2
� 𝑒𝑒𝑖𝑖�𝑘𝑘𝜔𝜔2−𝜔𝜔1𝑧𝑧−𝜔𝜔𝜔𝜔2−𝜔𝜔1𝜋𝜋�

= −
2𝜒𝜒(2)(𝜔𝜔2 − 𝜔𝜔1)2

𝑐𝑐2
𝐴𝐴1∗𝐴𝐴2𝑒𝑒𝑖𝑖�(𝑘𝑘2−𝑘𝑘1)𝑧𝑧−(𝜔𝜔2−𝜔𝜔1)𝜋𝜋� 

(55) 
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By taking the slowly varying envelope approximation, we can neglect the first term on the left-

hand side due to its negligible value as compared to the second term of the left-hand side.  Also, 

in taking the second partial with respect to the fourth term on the left-hand side we will obtain: 

�2𝑖𝑖𝑘𝑘𝜔𝜔2−𝜔𝜔1

𝜕𝜕𝐴𝐴𝜔𝜔2−𝜔𝜔1

𝜕𝜕𝑧𝑧
− 𝑘𝑘𝜔𝜔2−𝜔𝜔1

2 𝐴𝐴𝜔𝜔2−𝜔𝜔1 −
𝑛𝑛2𝜔𝜔𝜔𝜔2−𝜔𝜔1

2

𝑐𝑐2
𝐴𝐴𝜔𝜔2−𝜔𝜔1� 𝑒𝑒

𝑖𝑖�𝑘𝑘𝜔𝜔2−𝜔𝜔1𝑧𝑧−𝜔𝜔𝜔𝜔2−𝜔𝜔1𝜋𝜋�

= −
2𝜒𝜒(2)(𝜔𝜔2 − 𝜔𝜔1)2

𝑐𝑐2
𝐴𝐴1∗𝐴𝐴2𝑒𝑒𝑖𝑖�(𝑘𝑘2−𝑘𝑘1)𝑧𝑧−(𝜔𝜔2−𝜔𝜔1)𝜋𝜋� 

(56) 

Using 𝑘𝑘𝜔𝜔2−𝜔𝜔1
2 = 𝑛𝑛𝜔𝜔2−𝜔𝜔1

2 𝜔𝜔𝜔𝜔2−𝜔𝜔1 𝑐𝑐2⁄  we get: 

2𝑖𝑖𝑘𝑘𝜔𝜔2−𝜔𝜔1

𝜕𝜕𝐴𝐴𝜔𝜔2−𝜔𝜔1

𝜕𝜕𝑧𝑧
= −

2𝜒𝜒(2)(𝜔𝜔2 − 𝜔𝜔1)2

𝑐𝑐2
𝐴𝐴1∗𝐴𝐴2𝑒𝑒𝑖𝑖��(𝑘𝑘2−𝑘𝑘1)−𝑘𝑘𝜔𝜔2−𝜔𝜔1�𝑧𝑧� (57) 

𝜕𝜕𝐴𝐴𝜔𝜔2−𝜔𝜔1

𝜕𝜕𝑧𝑧
=
𝑖𝑖𝜒𝜒(2)(𝜔𝜔2 − 𝜔𝜔1)2

𝑘𝑘𝜔𝜔2−𝜔𝜔1𝑐𝑐2
𝐴𝐴1∗𝐴𝐴2𝑒𝑒𝑖𝑖��(𝑘𝑘2−𝑘𝑘1)−𝑘𝑘𝜔𝜔2−𝜔𝜔1�𝑧𝑧� (58) 

To slightly simplify the differential equation of (57), I assume that a perfect phase-matching is 

achieved, resulting in  (𝑘𝑘2 − 𝑘𝑘1) − 𝑘𝑘𝜔𝜔2−𝜔𝜔1 = 0.  When preforming the above calculation for SHG 

and SFG, this assumption is also considered.  It is primarily the phase-matching condition 

(nonlinear material dependent) that determines which SHG, DFG, or SFG is generated.   The 

resulting newly generated frequency is dampened by the amount of non-zero phase matched 

condition.  The resulting created field of the new frequency as a function of position within the 

nonlinear material can be expressed as follows. 

𝐴𝐴𝜔𝜔2−𝜔𝜔1(𝑧𝑧) = 𝑖𝑖��
𝑛𝑛1𝜔𝜔𝜔𝜔2−𝜔𝜔1

𝑛𝑛𝜔𝜔2−𝜔𝜔1𝜔𝜔1
�
𝐴𝐴2

|𝐴𝐴2|𝐴𝐴1
∗(0) sinh(𝜅𝜅𝑧𝑧) (59) 

where  

𝜅𝜅2 =
𝜒𝜒(2)2𝜔𝜔12𝜔𝜔𝜔𝜔2−𝜔𝜔1

2

𝑘𝑘1𝑘𝑘𝜔𝜔2−𝜔𝜔1𝑐𝑐4
|𝐴𝐴2|2 (60) 
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We have obtained a new angular frequency (𝜔𝜔2 − 𝜔𝜔1) due to a nonlinear material from two 

monochromatic sources with angular frequencies 𝜔𝜔1 and 𝜔𝜔2.  The initial phase of this new 

generated angular frequency depends on the phase of the two source frequencies.  It can be found 

within the complex amplitude terms 𝐴𝐴2𝐴𝐴1∗  in equation (59).   The initial phase for the newly 

generated frequency is the phase difference between the two source frequencies.  Thus, the newly 

generated monochromatic field of angular frequency (𝜔𝜔2 − 𝜔𝜔1) has an initial phase of 

�𝜑𝜑(𝜔𝜔2) − 𝜑𝜑(𝜔𝜔1)�.   

2.2.2 Polychromatic sources used in difference frequency generation 

I would like to now ask the question what is the initial phase for a newly generated monochromatic 

field if there are more than two source frequencies?  To answer this question, I shall expand the 

source frequencies from two monochromatic fields to a polychromatic source incident upon a 

second order susceptible medium that will generate angular frequency (𝜔𝜔𝑘𝑘) from all possible 

angular frequency combinations of �𝜔𝜔𝑖𝑖 − 𝜔𝜔𝑗𝑗�. 

𝜔𝜔𝑘𝑘 = 𝜔𝜔𝑖𝑖 − 𝜔𝜔𝑗𝑗 (61) 

The initial phase of newly generated frequency (𝜔𝜔𝑘𝑘) will have contributions from all possible 

frequency combinations of �𝜔𝜔𝑖𝑖 − 𝜔𝜔𝑗𝑗�.  We will follow the work of Gallot and Grischkowsky [29] 

to expand to near infinitum number of source frequencies that generate a near infinitum number 

of difference frequency fields.   

We start by first defining the polychromatic input fields:  

Field 1: 

𝐸𝐸1(𝑧𝑧,𝜔𝜔1) = 𝐸𝐸1(𝑧𝑧,𝜔𝜔1)𝑢𝑢�𝑘𝑘 (62) 
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𝐸𝐸1(𝑧𝑧,𝜔𝜔1) = 𝐴𝐴1(𝑧𝑧,𝜔𝜔1 − 𝜔𝜔0)𝑒𝑒𝑖𝑖(𝑘𝑘1(𝜔𝜔1)𝑧𝑧−(𝜔𝜔1−𝜔𝜔0)𝜋𝜋)  

𝐸𝐸1(𝑧𝑧, 𝑡𝑡) = � 𝐸𝐸1(𝑧𝑧,𝜔𝜔1 − 𝜔𝜔0)𝑑𝑑𝜔𝜔1
∞

−∞
 (63) 

Field 2: 

𝐸𝐸2(𝑧𝑧,𝜔𝜔2) = 𝐸𝐸2(𝑧𝑧,𝜔𝜔2)𝑢𝑢�𝑘𝑘 (64) 

𝐸𝐸2(𝑧𝑧,𝜔𝜔2) = 𝐴𝐴2(𝑧𝑧,𝜔𝜔2 − 𝜔𝜔0)𝑒𝑒𝑖𝑖(𝑘𝑘2(𝜔𝜔2)𝑧𝑧−(𝜔𝜔2−𝜔𝜔0)𝜋𝜋)  

𝐸𝐸2(𝑧𝑧, 𝑡𝑡) = � 𝐸𝐸2(𝑧𝑧,𝜔𝜔2 − 𝜔𝜔0)𝑑𝑑𝜔𝜔2

∞

−∞
 (65) 

The generated difference-frequency polychromatic field is: 

𝐸𝐸3(𝑧𝑧,𝜔𝜔3) = 𝐸𝐸3(𝑧𝑧,𝜔𝜔3)𝑢𝑢�𝑘𝑘 (66) 

𝐸𝐸3(𝑧𝑧,𝜔𝜔3) = 𝐴𝐴3(𝑧𝑧,𝜔𝜔3 − 𝜔𝜔0)𝑒𝑒𝑖𝑖(𝑘𝑘3(𝜔𝜔3)𝑧𝑧−(𝜔𝜔3−𝜔𝜔0)𝜋𝜋)  

𝐸𝐸3(𝑧𝑧, 𝑡𝑡) = � 𝐸𝐸3(𝑧𝑧,𝜔𝜔3 − 𝜔𝜔0)𝑑𝑑𝜔𝜔3

∞

−∞
 (67) 

With a Difference frequency of:  𝜔𝜔3 = 𝜔𝜔2 − 𝜔𝜔1 

With the addition of absorption, the wave vector k becomes 

𝑘𝑘 = 𝑘𝑘′ + 𝑖𝑖𝑖𝑖 (68) 

The polarization generation for the difference frequency: 

𝜕𝜕(2)(𝜔𝜔3) = 𝑝𝑝(2)𝑒𝑒𝑖𝑖[(𝑘𝑘2−𝑘𝑘1)𝑧𝑧−𝜔𝜔3𝜋𝜋]𝑢𝑢� = 𝜒𝜒𝑖𝑖𝑗𝑗𝑘𝑘
(2)𝐸𝐸1∗(𝜔𝜔1)𝐸𝐸2(𝜔𝜔2)𝑢𝑢� 

𝜕𝜕(2)(𝜔𝜔3) = 𝑝𝑝(2)𝑒𝑒𝑖𝑖[(𝑘𝑘2−𝑘𝑘1)𝑧𝑧−𝜔𝜔3𝜋𝜋]𝑢𝑢� = 𝜒𝜒𝑖𝑖𝑗𝑗𝑘𝑘
(2)𝐸𝐸1∗(𝜔𝜔1)𝐸𝐸2(𝜔𝜔2)𝑢𝑢�  (69) 

where 𝑢𝑢�  is a generalized unit vector of 𝑢𝑢�𝑥𝑥,𝑢𝑢�𝑦𝑦, 𝑜𝑜𝑟𝑟 𝑢𝑢�𝑧𝑧.  Using the slowly varying amplitude 

approximation for the two fields, the generated difference frequency field is: 

�
𝜕𝜕
𝜕𝜕𝑧𝑧

+ 𝑖𝑖3(𝜔𝜔3)� 𝐴𝐴3(𝑧𝑧,𝜔𝜔3 − 𝜔𝜔0) = 𝑖𝑖
2𝜋𝜋𝜔𝜔3

2

𝑐𝑐2𝑘𝑘3(𝜔𝜔3)𝑝𝑝
(2)𝑒𝑒(𝑖𝑖∆𝑘𝑘−[𝛽𝛽1(𝜔𝜔1)+𝛽𝛽2(𝜔𝜔2)])𝑧𝑧 (70) 
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The phase match condition is: 

∆𝑘𝑘 = −𝑘𝑘3(𝜔𝜔2 − 𝜔𝜔1) − 𝑘𝑘1(𝜔𝜔1) + 𝑘𝑘2(𝜔𝜔2) (71) 

The solution to the differential equation (70) is: 

𝐴𝐴3(𝑙𝑙,𝜔𝜔3 − 𝜔𝜔0) = 𝑖𝑖
2𝜋𝜋𝜔𝜔3

2

𝑐𝑐2𝑘𝑘3(𝜔𝜔3) 𝑝𝑝
(2) 𝑒𝑒(𝑖𝑖∆𝑘𝑘−[𝛽𝛽1(𝜔𝜔1)+𝛽𝛽2(𝜔𝜔2)])𝑙𝑙 − 𝑒𝑒−𝛽𝛽3(𝜔𝜔3)𝑙𝑙

𝑖𝑖∆𝑘𝑘 − [𝑖𝑖1(𝜔𝜔1) + 𝑖𝑖2(𝜔𝜔2) − 𝑖𝑖3(𝜔𝜔3)] 
(72) 

Using the polarization generation for the difference frequency equation, one can rewrite the 

previous equation to: 

𝐴𝐴3(𝑙𝑙,𝜔𝜔3 − 𝜔𝜔0) = 𝑖𝑖
2𝜋𝜋𝜔𝜔3

2

𝑐𝑐2𝑘𝑘3(𝜔𝜔3)𝜒𝜒𝑖𝑖𝑗𝑗𝑘𝑘
(2)(𝜔𝜔3)

𝑒𝑒𝑖𝑖∆𝑘𝑘𝑙𝑙 − 1
𝑖𝑖∆𝑘𝑘

𝑒𝑒−𝛽𝛽3(𝜔𝜔3)𝑙𝑙𝐴𝐴1∗(𝜔𝜔1 − 𝜔𝜔0)𝐴𝐴2(𝜔𝜔2 − 𝜔𝜔0) (73) 

The complex phase mismatch and absorption are expressed as: 

∆𝑘𝑘 = −𝑘𝑘3(𝜔𝜔2 − 𝜔𝜔1) − 𝑘𝑘1(𝜔𝜔1) + 𝑘𝑘2(𝜔𝜔2) (74) 

The total generated field for a given frequency (𝜔𝜔) which is created through difference frequency 

generation with an optical pulse within a second order susceptible medium is obtained by 

integration over the entire optical pulse bandwidth.  To calculate this, we describe 𝜔𝜔1 and 𝜔𝜔2 as: 

𝜔𝜔1 = Ω (75) 

𝜔𝜔2 = 𝜔𝜔 + Ω (76) 

The total generated field becomes: 

𝐸𝐸3(𝑙𝑙,𝜔𝜔) = 𝑖𝑖 �
2𝜋𝜋𝜔𝜔2

𝑐𝑐2𝑘𝑘3(𝜔𝜔)

∞

−∞

𝜒𝜒𝑖𝑖𝑗𝑗𝑘𝑘
(2)(𝜔𝜔;Ω,𝜔𝜔 + Ω)

𝑒𝑒𝑖𝑖∆𝑘𝑘𝑙𝑙 − 1
𝑖𝑖∆𝑘𝑘

𝑒𝑒−𝑘𝑘3(𝜔𝜔)𝑙𝑙𝐴𝐴1∗(Ω − 𝜔𝜔0)𝑒𝑒𝑖𝑖(Ω−𝜔𝜔0)𝜋𝜋𝐴𝐴2(ω + Ω

− 𝜔𝜔0)𝑒𝑒𝑖𝑖(ω+Ω−𝜔𝜔0)𝜋𝜋𝑑𝑑Ω 



25 
 

𝐸𝐸3(𝑙𝑙,𝜔𝜔) = 𝑖𝑖 � �
2𝜋𝜋𝜔𝜔2

𝑐𝑐2𝑘𝑘3(𝜔𝜔)

∞

−∞

𝜒𝜒𝑖𝑖𝑗𝑗𝑘𝑘
(2)(𝜔𝜔;Ω,𝜔𝜔 + Ω)

𝑒𝑒𝑖𝑖∆𝑘𝑘𝑙𝑙 − 1
𝑖𝑖∆𝑘𝑘

𝐴𝐴1∗(Ω − 𝜔𝜔0)𝐴𝐴2(ω + Ω

− 𝜔𝜔0)𝑑𝑑Ω� 𝑒𝑒−[𝑘𝑘3(𝜔𝜔)𝑙𝑙−𝜔𝜔]𝜋𝜋 

(77) 

Similar to the case of two monochromatic source fields, the phase for a given angular frequency 

(𝜔𝜔) is an integral sum over the entire optical pulse with a frequency difference of [𝜔𝜔2 − 𝜔𝜔1] where 

𝜔𝜔2 > 𝜔𝜔1 as seen in the complex amplitude terms of 𝐴𝐴2(ω + Ω − 𝜔𝜔0) and 𝐴𝐴1∗(Ω − 𝜔𝜔0).  While the 

above is for a given generated frequency the resulting field in the temporal domain is: 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠(𝑙𝑙, 𝑡𝑡) = � 𝑑𝑑𝜔𝜔
∞

−∞

�𝑖𝑖 � �
2𝜋𝜋𝜔𝜔2

𝑐𝑐2𝑘𝑘3(𝜔𝜔)

∞

−∞

𝜒𝜒𝑖𝑖𝑗𝑗𝑘𝑘
(2)(𝜔𝜔;Ω,𝜔𝜔 + Ω)

𝑒𝑒𝑖𝑖∆𝑘𝑘𝑙𝑙 − 1
𝑖𝑖∆𝑘𝑘

𝐴𝐴1∗(Ω − 𝜔𝜔0)𝐴𝐴2(ω + Ω

− 𝜔𝜔0)𝑑𝑑Ω� 𝑒𝑒−[𝑘𝑘3(𝜔𝜔)𝑙𝑙−𝜔𝜔]𝜋𝜋� 𝑒𝑒−𝑖𝑖𝜔𝜔𝜋𝜋 

(78) 

Each angular frequency (𝜔𝜔) that was generated by difference frequency generation in the newly 

generated field 𝐸𝐸3(𝑙𝑙, 𝑡𝑡) is a composition of all possible frequencies within the incident optical pulse 

that have a frequency difference of [𝜔𝜔2 − 𝜔𝜔1 = 𝜔𝜔].   

In conclusion, through the current and charge density terms in Maxwell’s equations and a 

series of multipoles, new frequencies can be generated as a light travels a medium with at least a 

second order susceptibility.  The potential newly generated frequencies could be grouped into four 

different types:  frequency doubling, sum frequency generation, difference frequency generation, 

and optical rectification.  It was found that the initial phase of the generated monochromatic wave 

is equal to the phase difference between the two monochromatic wave sources.  This was then 

expanded by having a polychromatic wave source instead of two monochromatic waves.  This in 

turn generates a polychromatic wave instead of a monochromatic wave.  As it turns out that the 
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initial phase for a given frequency within the generated polychromatic wave is an integral sum of 

phase differences residing from within the polychromatic wave source.  With this knowledge and 

using ghost imaging we can decompose the integral sum into their individual phase difference 

components that reside within polychromatic wave source.  This is important because the 

individual phase difference components are effectively the group delay of the polychromatic wave 

source.  The next few chapters develop the thesis of this dissertation. I will first review spatial 

ghost imaging and second apply it in the frequency domain to determine the group delay of an 

unknown polychromatic wave.   
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Chapter 3 

3. Correlated Imaging (aka Ghost 
Imaging) 

In 1995 Pittman et al. [32] first demonstrated the creation of a ghost imaging using an 

orthogonally polarized signal and idler beams created by a type-II phase-matched spontaneous 

parametric down-conversion (SPDC).   

 

Figure 5:  A simple ghost imaging setup 

The entangled photon pairs created by the SPDC are separated by a polarizing beam 

splitter.  On one leg of the setup an entangled photon interacts with the object to be imaged.  The 

bucket detector which has no spatial resolution capabilities measures the photon count as a 

function of time.  The leg with the charge-coupled device (CCD) detector which has spatial 

resolution measures the photon count as a function of time and spatial location.  A ghost image is 

formed through a photon-coincidence count cross-correlation between the two detector 

measurements.  A photon-coincidence is performed as opposed to a photocurrent cross correlation 

because of the low photon count of the SPDC.  From this setup it was thought that the formation 
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of a ghost image relied on entanglement to generate an image.  It was later demonstrated by 

Bennink et al. [33] in 2002 that it is possible to generate a ghost image using a pair of collimated 

laser beams with anti-correlated propagation directions.  This sparked a debate as to if the 

generation of a ghost image was a classical or quantum effect [34-36].  It was determined that the 

generation of a ghost image produced by a classical scheme was inferior to the quantum generation 

of a ghost image scheme.  It was when the classical scheme was expanded to a mutual coherence 

function with thermal light, with propagation properties similar to the biphoton quantum scheme, 

could generate a similar quality ghost image to the quantum scheme [37, 38].  The new classical 

scheme of generating a ghost image uses a laser beam that passes through a rotating ground glass 

diffuser to generate a time-varying optical field.  This time-varying optical field is incident upon 

a beam splitter in where its output is used for the two legs of the classical ghost imaging scheme.   

From this, two competing ideas were formed about how a ghost image was generated.  On the 

classical side we have the description of a ghost image formation based in coherence theory [39, 

40] and classical statistical optics [41, 42].  On the other side we have the quantum-mechanical 

description of the formation of a ghost image by Scarcelli et al. [43] which was based on nonlocal 

two-photon interference.  To unify these two competing ideas Erkmen and Shapiro formed a 

Gaussian-state framework that encompassed ghost images formed from both pseudothermal, 

biphoton, and classical phase-sensitive light [44].  Shapiro showed from the Gaussian-state 

framework that the biphoton-state ghost image depends on the phase-sensitive cross correlation 

between the two legs while the thermal-state ghost image depends on the phase-insensitive cross 

correlation between the two legs.   Due to the fact that the formation of a ghost image is based on 

both phase-insensitive and -sensitive cross correlations, the ghost image generated by the biphoton 

scheme was not caused by quantum entanglement but by classical coherence propagation because 
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a Gaussian-state source can, in principle, have an arbitrary amount of phase-sensitive and -

insensitive cross correlation functions. 

A ghost image is formed from the cross-correlation measurements made by two detectors.  

These cross-correlation measurements can either be phase-sensitive or phase-insensitive.  The 

difference between the two is the quality of the ghost image with the better one coming from the 

phase-sensitive cross correlation.  One way of generating a field with a cross correlation is to use 

a speckle field [45].  To generate this speckle field one can either pass a coherent beam through a 

rotating ground glass [45] or by having a spatially coherent beam illuminate a spatial light 

modulator (SLM) that is driven by an independent random noise process [46].   

3.1 Spatial Ghost Imaging 

A ghost image is generated through the correlation between the spatially resolved 

measurements made by a spatially resolving detector and the non-spatially resolved intensity 

measurements made by the bucket detector placed immediately behind the object.  An image of 

the object is created by correlating the measured intensity-intensity statistics.   

𝐺𝐺(𝑥𝑥,𝑦𝑦) =
1
𝑁𝑁
�𝐼𝐼𝑜𝑜

(𝑠𝑠)𝐼𝐼(𝑠𝑠)(𝑥𝑥,𝑦𝑦)
𝑁𝑁

𝑠𝑠=1

 (79) 

where N is the total number of samplings, 𝐼𝐼(𝑠𝑠)(𝑥𝑥,𝑦𝑦) is the measured intensity by the reference 

detector and  

𝐼𝐼𝑜𝑜
(𝑠𝑠) = �𝑂𝑂(𝑥𝑥′,𝑦𝑦′)𝐼𝐼(𝑠𝑠)(𝑥𝑥′,𝑦𝑦′)𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦′ (80) 

where 𝐼𝐼𝑜𝑜
(𝑠𝑠) is the bucket detector measurement for a sampling, 𝑂𝑂(𝑥𝑥′,𝑦𝑦′) is the unknown object, and 

𝐼𝐼(𝑠𝑠)(𝑥𝑥′,𝑦𝑦′) is the incident Intensity of the incident field.   
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The information about the object is contained within the cross correlation between the two 

intensities (𝐼𝐼𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝐼𝐼).  Within the 𝐺𝐺𝑚𝑚,𝑛𝑛(𝑥𝑥,𝑦𝑦) term there is extraneous information.  This is best 

seen with the Gaussian moment theorem [47].  We shall rewrite the 𝐺𝐺𝑚𝑚,𝑛𝑛(𝑥𝑥,𝑦𝑦) term in the form of 

its fields and applying the Gaussian moment theorem we have. 

𝐺𝐺𝑚𝑚,𝑛𝑛(𝑥𝑥,𝑦𝑦) = E[𝐸𝐸𝑜𝑜𝐸𝐸𝑜𝑜∗𝐸𝐸1𝐸𝐸1∗] (81) 

E[𝐸𝐸𝑜𝑜𝐸𝐸𝑜𝑜∗𝐸𝐸1𝐸𝐸1∗] =  E[𝐸𝐸𝑜𝑜𝐸𝐸𝑜𝑜∗]E[𝐸𝐸1𝐸𝐸1∗] + E[𝐸𝐸𝑜𝑜𝐸𝐸1]E[𝐸𝐸𝑜𝑜∗𝐸𝐸1∗] + E[𝐸𝐸𝑜𝑜𝐸𝐸1∗]E[𝐸𝐸𝑜𝑜∗𝐸𝐸1] (82) 

The first term on the right side of the equation involves no cross correlation between the 

two fields.  This term like the 𝐺𝐺𝑚𝑚,𝑛𝑛(𝑥𝑥,𝑦𝑦) term; it is a known quantity and it can be therefore 

subtracted from the 𝐺𝐺𝑚𝑚,𝑛𝑛(𝑥𝑥, 𝑦𝑦) term to end up with just the cross correlation terms. 

E[𝐸𝐸𝑜𝑜𝐸𝐸𝑜𝑜∗𝐸𝐸𝐸𝐸∗] −  E[𝐸𝐸𝑜𝑜𝐸𝐸𝑜𝑜∗]E[𝐸𝐸1𝐸𝐸1∗] = E[𝐸𝐸𝑜𝑜𝐸𝐸1]E[𝐸𝐸𝑜𝑜∗𝐸𝐸1∗] + E[𝐸𝐸𝑜𝑜𝐸𝐸1∗]E[𝐸𝐸𝑜𝑜∗𝐸𝐸1] (83) 

It is these cross-correlation terms on the right side of equation (83) that generate an image of the 

object. 

3.2 Speckle Field 

A speckle field is defined as a random intensity distribution of light over a plane.  The 

generation of a speckle field can be created by taking a coherent wave and reflecting it off a 

“rough” surface.  When the reflected wave front is observed using the same orientation of an 

incident wave front except with a rotation equal to the average angle of reflectance, an interference 

pattern emerges.  The reason for this is because the rough surface adds a random amount of 

distance to the locally incident portion of the plane wave when compared to a non-rough surface.  

The random distance imparts a random phase to the locally incident wave.  The wave front after 

reflection is a sum of all the locally incident portions of the plane wave via use of the Huygens-

Fresnel wave principle.  Since each locally incident wave portion has a random phase an 
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interference pattern emerges along the phase front of the reflected wave.  This random phase is 

best described as a random-walk phenomenon [48]. 

 

 

Figure 6:  Free space geometry for speckle formation [48]. 

When viewing figure 5 the field at observation point is a superposition of all the different 

paths that the field could have traveled from the laser to the surface and to the observation point.  

Each path imparts a random phase to the field.  The field at the observation point at a given point 

in time is a summation of all the different paths. 

𝜓𝜓(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = � 𝐴𝐴𝑚𝑚(𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚, 𝑧𝑧𝑚𝑚, 𝑡𝑡)𝑒𝑒𝑖𝑖(𝑘𝑘(𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚,𝑧𝑧𝑚𝑚)−𝜔𝜔𝜔𝜔+𝜙𝜙𝑚𝑚)
∞

𝑚𝑚=1

 (84) 

With the resulting intensity being: 

𝐼𝐼𝜓𝜓(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡)

= �� 𝐴𝐴𝑚𝑚(𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚, 𝑧𝑧𝑚𝑚, 𝑡𝑡)𝑒𝑒𝑖𝑖(𝑘𝑘(𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚,𝑧𝑧𝑚𝑚)−𝜔𝜔𝜔𝜔+𝜙𝜙𝑚𝑚)
∞

𝑚𝑚=1

� �� 𝐴𝐴𝑚𝑚(𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚, 𝑧𝑧𝑚𝑚, 𝑡𝑡)𝑒𝑒−𝑖𝑖(𝑘𝑘(𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚,𝑧𝑧𝑚𝑚)−
∞

𝑚𝑚=1

 
(85) 

The resulting cross terms give rise to the interference magnitude which determines if a 

bright or dark spot is located at the observation point.  Performing a sum over all the different 
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paths first and then performing the intensity calculation is akin to treating system as a random-

walk phenomenon which is a well-studied classical problem [49-51].  Similar to a random-walk 

each scatterer on the reflecting surface can be represented by an amplitude (|𝐴𝐴𝑚𝑚|) and phase (𝜙𝜙𝑚𝑚). 

𝜓𝜓𝐴𝐴(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = � |𝐴𝐴𝑚𝑚|𝑒𝑒𝑖𝑖𝜙𝜙𝑚𝑚
∞

𝑚𝑚=1

 (86) 

In doing this we will make two assumptions related to the scatterers.  The first one is that 

each scattering element has its phase and amplitude statistically independent of each other.  The 

second being that the phases have an equal probability to lie anywhere over the interval between 

(−𝜋𝜋 𝑎𝑎𝑎𝑎𝑎𝑎 𝜋𝜋).  With these two assumptions and following the mathematical proofs in [52] the 

results are the following.  For many scatterers (m) the real and imaginary parts of the field for a 

given location are independent, zero mean, and identically distributed Gaussian random variables.  

The corresponding intensity has a probability density function of the form: 

𝑝𝑝(𝐼𝐼) = �
1
𝐼𝐼 ̅
𝑒𝑒−

𝐼𝐼
𝐼𝐼̅� 𝐼𝐼 ≥ 0

0 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
� (87) 

where 𝐼𝐼 ̅ is the intensity mean.  This is a negative exponential distribution function that has a 

standard deviation equal to its mean.  This leads to the contrast value of 1 for this generated speckle 

pattern as given by: 

𝐶𝐶 = 𝜎𝜎𝐼𝐼
𝐼𝐼 ̅�  (88) 

A random-walk phenomenon was used to describe the resulting field phase and amplitude 

located at an observation point in space.  The resulting probability density function describing the 

intensity at that observation point is a negative exponential function with equal standard deviation 

and mean. The resulting contrast of 1 is a defining statistical characteristic of a speckle pattern.   
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3.2.1 Speckle Field Creation 

A speckle field can be physically created with the use of a Phase-Only Spatial Light 

Modulator (SLM).  A SLM is a pixelated plane which imparts a localized change in phase on the 

reflected field.  When a field with a constant phase front is incident upon the SLM, the SLM 

imparts a random phase onto the local incident field akin to equation (86).  By preforming a Fourier 

transform on the field post interaction with the SLM, a speckle field is created.  This speckle field 

is deterministic even though a random phase was applied to each local phase front for two reasons.  

The first is due to the controllable nature of the imparted phase by the SLM.  The second is that 

the Fourier plane phase front is calculable by Fourier transform.  By controlling the local phase 

induced by the SLM on the SLM plane, one can produce any desired speckle field on the Fourier 

plane.  This now leads to through specific control of the induced local phase on the SLM plane, 

the created speckle field on the Fourier plane can have a contrast equal to one (Rayleigh). 

3.2.2 Rayleigh Speckles 

The probability density function for a Rayleigh distribution is the following: 

𝑝𝑝𝑅𝑅𝑅𝑅𝑦𝑦𝑅𝑅𝑅𝑅𝑖𝑖𝑅𝑅ℎ(𝑥𝑥, 𝜍𝜍) =
𝑥𝑥
𝜍𝜍2
𝑒𝑒
−𝑥𝑥2

2𝜍𝜍2�  (89) 

𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜍𝜍 is a defining characteristic of the width of the Rayleigh distribution.  The Rayleigh 

distribution has a corresponding expected value (mean) of: 

𝐸𝐸(𝑥𝑥) = 𝜍𝜍�
𝜋𝜋
2

 (90) 

The variance is the expected value of a squared deviation of a random variable from its mean is 

given by: 

𝑉𝑉𝑎𝑎𝑒𝑒(𝑍𝑍) = 𝐸𝐸[(𝑍𝑍 − 𝜇𝜇)2] (91) 
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where Z is the random value and 𝜇𝜇 is the mean of the random value of Z.  The variance for a 

Rayleigh distribution is the following: 

𝑉𝑉𝑎𝑎𝑒𝑒 =
4 − 𝜋𝜋

2
𝜍𝜍2 (92) 

With the standard deviation (𝜎𝜎) being the square root of the variance 

𝜎𝜎 = �𝐸𝐸[(𝑍𝑍 − 𝜇𝜇)2] (93) 

The standard deviation for a Rayleigh distribution is: 

𝜎𝜎 = �4 − 𝜋𝜋
2

𝜍𝜍2 (94) 

Lastly with the root mean square (RMS) contrast defined as the standard deviation of the intensity 

over a defined region. 

𝑅𝑅𝑅𝑅𝑅𝑅 𝐶𝐶𝑜𝑜𝑎𝑎𝑡𝑡𝑒𝑒𝑎𝑎𝑒𝑒𝑡𝑡 = �
1

𝑅𝑅 𝑁𝑁
� �(𝐼𝐼𝑖𝑖𝑖𝑖 − 𝐼𝐼)̅2 

𝑀𝑀−1

𝑖𝑖=0

𝑁𝑁−1

𝑖𝑖=0

 (95) 

where 𝐼𝐼𝑖𝑖𝑖𝑖 is the ith, jth location in the field of view and 𝐼𝐼 ̅is the average intensity over the entire field 

of view.  Now if we can use a Rayleigh distribution to describe the speckle intensity over a field 

of view: 

𝑝𝑝𝑅𝑅𝑅𝑅𝑦𝑦𝑅𝑅𝑅𝑅𝑖𝑖𝑅𝑅ℎ(𝐼𝐼, 𝜍𝜍) =
𝐼𝐼
𝜍𝜍2
𝑒𝑒
−𝐼𝐼2

2𝜍𝜍2�  (96) 

Then its standard deviation is exactly equal to the RMS contrast of that field.  As described before 

the defining characteristic of a speckle field is when its contrast is equal to one.  This means that 

for a Rayleigh distributed intensity field to have a contrast of 1, the defining characteristic of a 

Rayleigh distribution (𝜍𝜍) has the value of: 
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𝜍𝜍 = � 2
4 − 𝜋𝜋

 (97) 

When the intensity distribution of a speckle field can be defined as a Rayleigh distribution with a 

contras/𝜎𝜎 equal to 1 we can define this speckle field as Rayleigh speckles.   
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Chapter 4 

4. Group Delay via Frequency Ghost 
Imaging 

In this chapter we will apply the concepts learned about the nature of light wave, in chapters 

1 and 2, and ghost imaging, in chapter 3, to determine the group delay of an unknown optical pulse 

through analytical means.  However, prior we must perform one more fundamental calculation 

that involves the correlation between a function and a random mask. 

4.1 Fundamental cross correlation calculation 

We begin with the fundamental theorem of calculus [53] which states that if the function 

𝒇𝒇(𝒙𝒙) is continuous on the interval [𝒂𝒂,𝒃𝒃] and it is the derivative of the function 𝑭𝑭(𝒙𝒙) then: 

� 𝒇𝒇(𝒙𝒙)𝒅𝒅𝒙𝒙
𝒃𝒃

𝒂𝒂
= 𝑭𝑭(𝒂𝒂) − 𝑭𝑭(𝒃𝒃) (98) 

The resulting value of this definite integral is easily calculated when there is a closed form solution 

to the integral of 𝒇𝒇(𝒙𝒙).  When no closed form solution is available, one may use Reimann sum to 

approximate the solution, [53]. For 𝒏𝒏 < ∞ and 𝒏𝒏 = ∞, one such sum is expressed as follows. 

� 𝒇𝒇(𝒙𝒙)𝒅𝒅𝒙𝒙
𝒃𝒃

𝒂𝒂
= 𝐥𝐥𝐥𝐥𝐥𝐥

𝒏𝒏→∞
�𝒇𝒇(𝒙𝒙) �

𝒃𝒃 − 𝒂𝒂
𝒏𝒏 �

𝒏𝒏−𝟏𝟏

𝒊𝒊=𝟎𝟎

 (99) 

The approximation above is called a left-hand side Reimann sum.  Other Reimann sum 

approximations include the right-hand side, or mid-point rule.  The question becomes how would 
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one calculate second order correlation between function 𝒇𝒇(𝒙𝒙) and a random binary mask function 

𝑴𝑴(𝝃𝝃)? 𝑴𝑴(𝝃𝝃) 𝒊𝒊𝒊𝒊 given as follows.  

𝑴𝑴(𝝃𝝃) = �𝟎𝟎𝟏𝟏� (100) 

The second order correlation is given as follows. 

𝑮𝑮(𝟐𝟐)(𝒙𝒙, 𝝃𝝃) = 〈� 𝒇𝒇(𝒙𝒙)𝒅𝒅𝒙𝒙
𝒃𝒃

𝒂𝒂
𝑴𝑴(𝝃𝝃)〉 (101) 

To start, we begin by applying a Reimann sum approximation to the integral to match up with the 

random binary mask function. 

= 𝐥𝐥𝐥𝐥𝐥𝐥
𝒏𝒏→∞

�𝒇𝒇(𝒙𝒙) �
𝒃𝒃 − 𝒂𝒂
𝒏𝒏 �

𝒏𝒏−𝟏𝟏

𝒊𝒊=𝟎𝟎

〈𝑴𝑴(𝝌𝝌)𝑴𝑴(𝝃𝝃)〉 (102) 

Since the function 𝒇𝒇(𝒙𝒙) may not have zero mean and the mask function 𝑴𝑴(𝝃𝝃) will definitely not 

have a zero mean, the application of Isrellis theorem [54] needs to be applied to separate out the 

mean from the cross correlation. 

= 𝐥𝐥𝐥𝐥𝐥𝐥
𝒏𝒏→∞

�𝒇𝒇(𝒙𝒙) �
𝒃𝒃 − 𝒂𝒂
𝒏𝒏 �

𝒏𝒏−𝟏𝟏

𝒊𝒊=𝟎𝟎

[〈𝑴𝑴(𝝌𝝌)𝑴𝑴(𝝃𝝃)〉 + 〈𝑴𝑴(𝝌𝝌)〉〈𝑴𝑴(𝝃𝝃)〉] (103) 

= 𝐥𝐥𝐥𝐥𝐥𝐥
𝒏𝒏→∞

�𝒇𝒇(𝒙𝒙) �
𝒃𝒃 − 𝒂𝒂
𝒏𝒏 �

𝒏𝒏−𝟏𝟏

𝒊𝒊=𝟎𝟎

〈𝑴𝑴(𝝌𝝌)𝑴𝑴(𝝃𝝃)〉 + 〈𝐥𝐥𝐥𝐥𝐥𝐥
𝒏𝒏→∞

�𝒇𝒇(𝝌𝝌) �
𝒃𝒃 − 𝒂𝒂
𝒏𝒏 �

𝒏𝒏−𝟏𝟏

𝒊𝒊=𝟎𝟎

〉 〈𝑴𝑴(𝝃𝝃)〉 (104) 

Now that we have separated the mean (right term) from the cross-correlation (left term), we shall 

apply a Gaussian approximation to the mask function to the left term and compute the mean value 

associated with the mask function to the right term.  A Gaussian approximation of the mask 

function allows the ability to vary the size of the mask function between values a and b. 
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= 𝐥𝐥𝐥𝐥𝐥𝐥
𝒏𝒏→∞

�𝒇𝒇(𝝌𝝌) �
𝒃𝒃 − 𝒂𝒂
𝒏𝒏 �

𝒏𝒏−𝟏𝟏

𝒊𝒊=𝟎𝟎

𝒆𝒆
−𝒙𝒙𝟐𝟐+𝝃𝝃𝟐𝟐

𝟒𝟒𝚫𝚫𝒎𝒎𝟐𝟐 + 〈𝐥𝐥𝐥𝐥𝐥𝐥
𝒏𝒏→∞

�𝒇𝒇(𝝌𝝌) �
𝒃𝒃 − 𝒂𝒂
𝒏𝒏 �

𝒏𝒏−𝟏𝟏

𝒊𝒊=𝟎𝟎

〉
𝟏𝟏
𝟐𝟐

 (105) 

The term 𝒆𝒆
−𝒙𝒙𝟐𝟐+𝝃𝝃𝟐𝟐

𝟒𝟒𝚫𝚫𝒎𝒎𝟐𝟐  is the Gaussian approximation of the mask function and when taking it to the 

extreme (𝚫𝚫𝒎𝒎𝟐𝟐 → ∞), it becomes a delta function.  If we also at the same time take both Reimann 

sums to their limits we get: 

= � 𝒇𝒇(𝝌𝝌)𝜹𝜹(𝝌𝝌 − 𝝃𝝃)𝒅𝒅𝝌𝝌
𝒃𝒃

𝒂𝒂
+ 〈� 𝒇𝒇(𝝌𝝌)𝒅𝒅𝝌𝝌

𝒃𝒃

𝒂𝒂
〉
𝟏𝟏
𝟐𝟐

 (106) 

And with completing the integrations 

𝑮𝑮(𝟐𝟐)(𝒙𝒙, 𝝃𝝃) = 𝒇𝒇(𝝃𝝃) + �
𝑭𝑭(𝒃𝒃) − 𝑭𝑭(𝒂𝒂)

𝒃𝒃 − 𝒂𝒂
� �
𝟏𝟏
𝟐𝟐�

 (107) 

The first term 𝑓𝑓(𝜉𝜉) is the cross-correlation term which is the derivative of the function 

𝐹𝐹(𝜉𝜉) on the interval [𝑎𝑎, 𝑏𝑏].  This term is the function 𝑓𝑓(𝑥𝑥) except with a change of variable.  The 

second term is a combination of two terms: the mean value of an integral, and the average value 

associated with the random mask function.  It might seem redundant to determine the original 

function 𝑓𝑓(𝑥𝑥) given that we used it to calculate a second order correlation between it and a random 

mask function resulting in it 𝑓𝑓(𝜉𝜉) plus a mean term but there is actually a scenario in which we 

know the resulting integral sum of a derivative function without knowing the derivative function 

itself.   

4.2 Frequency ghost imaging in relation to spatial ghost imaging 

As stated in chapter 3, a difference frequency monochromatic field of frequency (Ω) is 

generated as a result of an integral sum of the frequencies within the complex fields of 𝐸𝐸𝑘𝑘(𝜔𝜔) and 

𝐸𝐸𝑖𝑖∗(𝜔𝜔).  Where Ω is the frequency difference given that  𝜒𝜒𝑖𝑖𝑖𝑖𝑘𝑘
(2)(Ω;−𝜔𝜔,𝜔𝜔 + Ω). 
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𝑃𝑃𝑇𝑇𝑇𝑇𝑧𝑧(Ω) = � 𝜒𝜒𝑖𝑖𝑖𝑖𝑘𝑘
(2)(Ω;−𝜔𝜔,𝜔𝜔 + Ω)𝐸𝐸𝑖𝑖∗(𝜔𝜔)𝐸𝐸𝑘𝑘(𝜔𝜔 + Ω)𝑎𝑎𝜔𝜔

∞

−∞
 (108) 

 The initial phase of the difference frequency generated monochromatic field of frequency (Ω) is 

𝜙𝜙(Ω) which is a definite integral sum of each phase difference between 𝐸𝐸𝑘𝑘(𝜔𝜔) and 𝐸𝐸𝑖𝑖∗(𝜔𝜔) that has 

a frequency difference of Ω, or equivalently the definite integral of the group delay of the 

polychromatic source. 

𝜙𝜙(Ω) = � 𝜙𝜙(𝜔𝜔 + Ω) − 𝜙𝜙(𝜔𝜔)𝑎𝑎𝜔𝜔
∞

−∞
 (109) 

We know from equation (4), in the introduction, that the negative frequency terms are conjugate 

values of the positive frequency values and we can represent complete amplitude and phase 

information through use of only the positive frequency terms, equation (25).  When using 

correlated imaging in order to achieve tangible results, the negative frequency components will 

need to be separated from the positive frequency components which modifies equation (109) to. 

𝜙𝜙(Ω) = � 𝜙𝜙(𝜔𝜔 + Ω) − 𝜙𝜙(𝜔𝜔)𝑎𝑎𝜔𝜔
∞

0
 (110) 

Here we have a definite integral consisting of only the positive frequency terms of a group delay.  

In the beginning of this chapter we saw that if we perform a second order correlation between a 

random binary mask function and a function that is the derivative 𝑓𝑓(𝑥𝑥) of a definite integral 

𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎) we can recover the derivative function 𝑓𝑓(𝑥𝑥).  In comparison to 𝜙𝜙(𝜔𝜔 + Ω) − 𝜙𝜙(𝜔𝜔) ≡

𝑓𝑓(𝑥𝑥) and 𝜙𝜙(Ω)  ≡ 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎).  What is lacking is an equivalent mask function used in equation 

(101) for the second order correlation calculation.  By creating a frequency to spatial conversion 

with a grating it will allow a binary spatial light modulator (BSLM) to control the frequencies of 

𝜔𝜔𝑘𝑘 and 𝜔𝜔𝑖𝑖 that will contribute to the definite integral of 𝜙𝜙(Ω).  The addition of a second binary 
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mask function will allow for the separation between the positive and negative frequencies allowing 

us to express equation (109) in (110).  This leads to in the creation of fourth order correlation 

instead of a second order correlation.  We can now take this fourth order correlation and relate it 

to spatial ghost imaging. 

As you may recall there are two main equations when preforming spatial ghost imaging: 

𝐼𝐼𝑜𝑜
(𝑠𝑠) = �𝑂𝑂(𝑥𝑥′,𝑦𝑦′)𝐼𝐼(𝑠𝑠)(𝑥𝑥′,𝑦𝑦′)𝑎𝑎𝑥𝑥′𝑎𝑎𝑦𝑦′ (111) 

and 

𝐺𝐺(𝑥𝑥,𝑦𝑦) =
1
𝑁𝑁
�𝐼𝐼𝑜𝑜

(𝑠𝑠)𝐼𝐼(𝑠𝑠)(𝑥𝑥,𝑦𝑦)
𝑁𝑁

𝑠𝑠=1

 (112) 

When one equates frequency ghost imaging to spatial ghost imaging, the 𝜙𝜙(Ω) 

measurement is equivalent to the bucket detector 𝐼𝐼𝑜𝑜
(𝑠𝑠) measurement.  The phase difference term 

between 𝐸𝐸𝑘𝑘(𝜔𝜔) and 𝐸𝐸𝑖𝑖∗(𝜔𝜔) is equivalent to the unknown spatial object 𝑂𝑂(𝑥𝑥′,𝑦𝑦′); but instead of 

being spatially dependent (𝑥𝑥′,𝑦𝑦′),  it is frequency dependent �𝜔𝜔𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝜔𝜔𝑖𝑖�.  The known variant 

quantity for spatial ghost imaging is 𝐼𝐼(𝑠𝑠)(𝑥𝑥,𝑦𝑦).  By creating a frequency to spatial conversion, the 

BSLM controls which frequencies contribute to the frequency-based bucket detector measurement 

𝜙𝜙(Ω) and is equivalent to the known variant 𝐼𝐼(𝑠𝑠)(𝑥𝑥′,𝑦𝑦′) and 𝐼𝐼(𝑠𝑠)(𝑥𝑥,𝑦𝑦) in spatial ghost imaging.  

The two frequency ghost imaging equations equivalent to spatial ghost imaging are: 

𝑃𝑃𝑇𝑇𝑇𝑇𝑧𝑧(Ω) = � 𝜒𝜒𝑖𝑖𝑖𝑖𝑘𝑘
(2)(Ω;𝜔𝜔,𝜔𝜔 + Ω)𝑅𝑅(𝜉𝜉)𝐸𝐸𝑖𝑖∗(𝜔𝜔)𝑅𝑅(𝜉𝜉′)𝐸𝐸𝑘𝑘(𝜔𝜔 + Ω)𝑎𝑎𝜔𝜔𝑎𝑎𝜉𝜉𝑎𝑎𝜉𝜉′

∞

−∞
 (113) 

and 

𝐺𝐺(𝜉𝜉, 𝜉𝜉′,Ω) =
1
𝑁𝑁
�𝑃𝑃𝑇𝑇𝑇𝑇𝑧𝑧(Ω)𝑅𝑅(𝜉𝜉)𝑅𝑅(𝜉𝜉′)
𝑁𝑁

𝑠𝑠=1

 (114) 
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4.3 Experimental configuration for frequency ghost imaging 

The following is a proposed schematic of an experimental setup for the implementation of 

frequency ghost imaging. 

 

Figure 7:  An unknown ultrafast optical pulse is first incident upon a grating lens pair.  This pair 
is used to perform a frequency to spatial conversion.  The separated frequencies are then incident 
upon a binary spatial light modulator (BSLM) that randomly selects frequencies to remove.  The 

optical pulse is then reconstructed by a second grating lens pair without the removed optical 
frequencies.  This new pulse then passes through a nonlinear material which performs a 

frequency mixing on the optical pulse via difference frequency generation.  For unknown optical 
pulses with a central wavelength in the 810nm range this produces a terahertz (THz) pulse.  A 
correlator then corelates the measured phase for a given THz frequency measured by a THz 

detector with the orientation of the BSLM through many different BSLM realizations. 

 
A femtosecond pulse with unknown phase characteristics is first incident upon a grating lens pair 

which spatially spreads the different frequency components.  A BSLM then randomly selects 

which frequency components within the unknown pulse to be incident upon a nonlinear material.  

A second grating lens pair is used to reconstruct the pulse without the disregarded frequencies 

chosen by the BSLM.  The resulting pulse is now incident upon a nonlinear material which 

preforms frequency mixing.  Through difference frequency generation a terahertz pulse is 

generated which is then measured by a terahertz detector.  Taking a closer look at the BSLM as a 
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first order approximation the frequencies across the BSLM can be described in a linear 

approximation. 

 
0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 
 

… 𝜔𝜔−2 𝜔𝜔−1 𝜔𝜔0 𝜔𝜔+1 𝜔𝜔+2 𝜔𝜔+3 … 

Figure 8:  A first order linear approximation of the optical angular frequencies that the binary 
spatial light modulator can pass or not pass. 

When 𝜔𝜔𝑖𝑖 and 𝜔𝜔𝑖𝑖+1 are both passed through the BSLM, the nonlinear material produces the positive 

frequency 

Δ𝜔𝜔 = 𝜔𝜔𝑖𝑖+1 − 𝜔𝜔𝑖𝑖 (115) 

through difference frequency generation.  As seen in chapter 2, monochromatic frequency creation 

through difference frequency generation, the initial phase of the generated frequency is equal to 

the phase difference between the two frequencies.  Also seen in chapter 2, polychromatic frequency 

creation through difference frequency generation, the initial phase of a specific generated 

frequency is an integral sum of the initial phase difference between all the monochromatic 

frequencies that could generate the specific frequency.   With our control over the BSLM we can 

construct a linear approximation of the phase differences that contribute to the integral sum for a 

specific generated frequency’s initial phase.  Using equation (102) as an example for a specific 

generated frequency of Δ𝜔𝜔, we know the contributing frequencies and their contributing phase 

differences.  This is visualized in figure 8. 
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0 

1 
 

… 𝜔𝜔−2 − 𝜔𝜔−1 𝜔𝜔−1 − 𝜔𝜔0 𝜔𝜔0 − 𝜔𝜔1 𝜔𝜔1 − 𝜔𝜔2 … 

Figure 9:  A first order linear approximation of the difference frequency generation between two 
optical angular frequencies that contribute to the phase of a newly generated frequency. 

The nonlinear material will generate this frequency Δ𝜔𝜔 for all consecutive 𝜔𝜔𝑖𝑖 and 𝜔𝜔𝑖𝑖+1, resulting 

in initial phase of frequency Δ𝜔𝜔 that is a sum of all consecutive 𝜔𝜔𝑖𝑖 and 𝜔𝜔𝑖𝑖+1due to BSLM.  To 

expand this specific monochromatic field generation of frequency Δ𝜔𝜔 to a polychromatic field 

generation, we perform a matrix multiplication of figure 7. 

 … 0|1 

𝜔𝜔−2 

0|1 

𝜔𝜔−1 

0|1 

𝜔𝜔0 

0|1 

𝜔𝜔1 

0|1 

𝜔𝜔2 
… 

⋮        

0|1  𝜔𝜔−2   (0|1)(0|1)(𝜔𝜔−1 − 𝜔𝜔−2) (0|1)(0|1)(𝜔𝜔0 − 𝜔𝜔−2) (0|1)(0|1)(𝜔𝜔1 − 𝜔𝜔−2)   

0|1  𝜔𝜔−1   (0|1)(0|1)(𝜔𝜔−1 − 𝜔𝜔−1) (0|1)(0|1)(𝜔𝜔0 − 𝜔𝜔−1) (0|1)(0|1)(𝜔𝜔1 − 𝜔𝜔−1)   

0|1  𝜔𝜔0   (0|1)(0|1)(𝜔𝜔−1 − 𝜔𝜔0) (0|1)(0|1)(𝜔𝜔0 − 𝜔𝜔0) (0|1)(0|1)(𝜔𝜔1 − 𝜔𝜔0)   

0|1  𝜔𝜔1   (0|1)(0|1)(𝜔𝜔−1 − 𝜔𝜔1) (0|1)(0|1)(𝜔𝜔0 − 𝜔𝜔1) (0|1)(0|1)(𝜔𝜔1 − 𝜔𝜔1)   

0|1  𝜔𝜔2   (0|1)(0|1)(𝜔𝜔−1 − 𝜔𝜔2) (0|1)(0|1)(𝜔𝜔0 − 𝜔𝜔2) (0|1)(0|1)(𝜔𝜔1 − 𝜔𝜔2)   

⋮        

Table 1: Optical angular frequencies located along the top and side of the table are controlled by 
the binary spatial light modulator (BSLM).  A given generated frequency created through 

difference frequency generation (DFG) can be found within the table along a diagonal. For a 
given BSLM realization only certain optical angular frequencies can contribute to DFG. 

 
Along the top and side of this matrix we have the frequencies passed by the BSLM.  Along each 

diagonal of this matrix, we have a newly generated monochromatic field.  A given diagonal is a 

specific example given by equation (115) and seen in figure 8.  By taking the frequencies along 
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the top to be positive and the frequencies along the side to be negative, the central diagonal of this 

matrix represents the newly generated frequency of 0 rads/s.  Diagonals above the central diagonal 

are newly generated positive frequencies and increase in magnitude the further away from the 

diagonal.  Diagonals below the central diagonal are newly generated negative frequencies that 

increase in negative magnitude the further away from the diagonal.   

The bucket detector measurement, equation (113), is a phase measurement with frequency 

Δ𝜔𝜔 which corresponds to a given diagonal within the matrix.  A fourth order correlation between 

the two mask functions and the corresponding source frequencies gives measure of group delay 

(GD) of the incident pulse.  As the bucket detector measurement Δ𝜔𝜔 decreases in frequency, the 

better the approximation of group delay will be.  There is a caveat though to achieving a better 

estimation of group delay; a greater number of realizations need to be taken due to the increased 

segmentation of group delay. 

4.4 Analytical calculation of group delay via frequency ghost imaging 

To determine the group delay for an unknown optical pulse using frequency ghost imaging 

we must complete a fourth order correlation calculation akin to the second order calculation 

preformed at the beginning of chapter with an accurate accounting of all possible changes in phase. 

4.4.1 Field, Phase, Mask, and Measurements in frequency ghost imaging 

First, we assume that the input field is separable in x and t (x is perpendicular to the 

direction of travel). 

𝐸𝐸𝑖𝑖𝑛𝑛(𝑥𝑥, 𝑡𝑡) = 𝑎𝑎𝑖𝑖𝑛𝑛(𝑥𝑥)𝑎𝑎𝑖𝑖𝑛𝑛(𝑡𝑡) (116) 

In the frequency domain we have 

𝐸𝐸𝑖𝑖𝑛𝑛(𝜔𝜔, 𝑡𝑡) = 𝑎𝑎𝑖𝑖𝑛𝑛(𝑥𝑥)𝑎𝑎𝑖𝑖𝑛𝑛(𝜔𝜔) (117) 
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Where we have made use of the Fourier transform. 

𝑎𝑎𝑖𝑖𝑛𝑛(𝜔𝜔) = � 𝑎𝑎𝑖𝑖𝑛𝑛(𝑡𝑡)𝑒𝑒𝑖𝑖𝜔𝜔𝜔𝜔
∞

−∞
𝑎𝑎𝑡𝑡 (118) 

We have 𝜔𝜔 = 𝜛𝜛 −𝜔𝜔0 with 𝜔𝜔0 being the central angular frequency. 

The unknown optical pulse is first incident upon a grating which will spatially decomposed into 

different frequency components that make up the unknown optical pulse.  In accordance with 

Martinez [55], a frequency dependent phase is induced upon the field when the field interacts with 

the grating G1. 

𝐸𝐸1(𝑥𝑥1,𝜔𝜔) = 𝐸𝐸𝑖𝑖𝑛𝑛(𝛼𝛼𝑥𝑥1,𝜔𝜔)𝑒𝑒𝑖𝑖𝑘𝑘𝑖𝑖𝜔𝜔𝑥𝑥1 (119) 

In a short aside we will follow Martinez’s work [55] so see the derivation of the frequency 

dependent phase is induced from the interaction of the optical pulse with a grating. 

Aside 

With an input field given by 𝑎𝑎(𝑥𝑥,𝜔𝜔) the spatial Fourier transform 𝐴𝐴(𝜉𝜉,𝜔𝜔) is: 

𝐴𝐴(𝜉𝜉,𝜔𝜔) = � 𝑎𝑎(𝑥𝑥,𝜔𝜔)𝑒𝑒𝑖𝑖2𝜋𝜋𝜋𝜋𝑥𝑥𝑎𝑎𝑥𝑥
∞

−∞
 (120) 

The input field as a superposition of plane waves traveling at different angles.  𝐴𝐴(𝜉𝜉,𝜔𝜔) is a Dirac 

function 𝛿𝛿(𝜉𝜉 − 𝜉𝜉0) when: 

𝑎𝑎(𝑥𝑥,𝜔𝜔) = 𝑒𝑒𝑖𝑖2𝜋𝜋𝜋𝜋0𝑥𝑥 (121) 

A plane wave propagating at angle Δ𝛾𝛾 has a phase of (2𝜋𝜋 𝜆𝜆⁄ )[sin(Δ𝛾𝛾)𝑥𝑥 + cos(Δ𝛾𝛾)𝑧𝑧]. If Δ𝛾𝛾 ≅

sin(Δγ) = 𝜉𝜉0𝜆𝜆 and we have constant z then the amplitude is given above using the small angle 

approximation.   
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An incident field is to be deflected by an angle 𝛼𝛼Δ𝛾𝛾.  The increase in angle by a factor of 𝛼𝛼 is 

matched to an equivalent increase in the spatial frequency.  The resulting amplitude at spatial 

frequency 𝜉𝜉 would then be proportional to the incident amplitude at frequency 𝜉𝜉 𝛼𝛼⁄  thus: 

𝐴𝐴𝑇𝑇(𝜉𝜉,𝜔𝜔) = 𝐴𝐴 �
𝜉𝜉
𝛼𝛼

,𝜔𝜔� (122) 

The transmitted field AT is found by taking the inverse Fourier transform of the above equation.  

The dispersion due to the grating (𝛽𝛽𝜔𝜔) is added by multiplying a frequency-dependent phase factor 

that defines a rotation 

𝑎𝑎𝑇𝑇(𝑥𝑥2,𝜔𝜔) = 𝑒𝑒𝑖𝑖𝑘𝑘𝑖𝑖𝜔𝜔𝑥𝑥2𝐹𝐹−1 �𝐴𝐴𝑇𝑇 �
𝜉𝜉
𝛼𝛼�
� = 𝑒𝑒𝑖𝑖𝑘𝑘𝑖𝑖𝜔𝜔𝑥𝑥2𝑎𝑎(𝑥𝑥2𝛼𝛼) (123) 

In determining the values of 𝛼𝛼 and 𝛽𝛽, they are determined to be: 

𝛼𝛼 =
cos(𝜃𝜃0)
cos(𝛾𝛾0) (124) 

𝛽𝛽 =
2𝜋𝜋𝜋𝜋𝜋𝜋

𝜔𝜔02𝑎𝑎 cos(𝛾𝛾0) (125) 

where 𝛾𝛾0 and 𝜃𝜃0 are the incident and transmitted angles respectively, m is the grating order, and d 

is the grating spacing. 

End Aside 

After the first grating the field then undergoes a Fourier transform performed by lens L1.  The field 

incident upon the filter is: 

𝐸𝐸2(𝜒𝜒,𝜔𝜔) = 𝑎𝑎𝑖𝑖𝑛𝑛(𝜔𝜔)� 𝑎𝑎𝑖𝑖𝑛𝑛(𝛼𝛼𝑥𝑥1)𝑒𝑒𝑖𝑖�𝑘𝑘𝑖𝑖𝜔𝜔−
𝑘𝑘𝑘𝑘
𝑓𝑓 �𝑥𝑥1𝑎𝑎𝑥𝑥1

∞

−∞
 (126) 

where f is the focal length of the Fourier transform lens.  The field just after the filter is: 

𝐸𝐸3(𝜒𝜒,𝜔𝜔) = 𝑎𝑎𝑖𝑖𝑛𝑛(𝜔𝜔)𝑅𝑅𝑛𝑛(𝜒𝜒)� 𝑎𝑎𝑖𝑖𝑛𝑛(𝛼𝛼𝑥𝑥1)𝑒𝑒𝑖𝑖𝑘𝑘�𝑖𝑖𝜔𝜔−
𝑘𝑘
𝑓𝑓�𝑥𝑥1𝑎𝑎𝑥𝑥1

∞

−∞
 (127) 
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Now if we suppose that the input spatial profile is of a Gaussian distribution 

𝑎𝑎𝑖𝑖𝑛𝑛(𝑥𝑥) = 𝑎𝑎0𝑒𝑒
−𝑥𝑥

2

𝐷𝐷2 (128) 

where D is the beam size on the grating, we can integrate with respect to 𝑥𝑥1 and arrive at 

𝐸𝐸3′(𝜒𝜒,𝜔𝜔) =
√𝜋𝜋𝐷𝐷𝑎𝑎0
𝛼𝛼

𝑎𝑎𝑖𝑖𝑛𝑛(𝜔𝜔)𝑅𝑅𝑛𝑛(𝜒𝜒)𝑒𝑒
− 𝑘𝑘2𝐷𝐷2
4𝑓𝑓2𝛼𝛼2(𝑘𝑘−𝑓𝑓𝑖𝑖𝜔𝜔)2

 (129) 

We perform a second Fourier transform by a second lens L2 from 𝑅𝑅(𝜒𝜒) plane to the second grating: 

𝐸𝐸4(𝑥𝑥2,𝜔𝜔) =
√𝜋𝜋𝐷𝐷𝑎𝑎0
𝛼𝛼

𝑎𝑎𝑖𝑖𝑛𝑛(𝜔𝜔)� 𝑅𝑅𝑛𝑛(𝜒𝜒)𝑒𝑒
− 𝑘𝑘2𝐷𝐷2
4𝑓𝑓2𝛼𝛼2(𝑘𝑘−𝑓𝑓𝑖𝑖𝜔𝜔)2

𝑒𝑒−𝑖𝑖
𝑘𝑘𝑥𝑥2
𝑓𝑓 𝑘𝑘𝑎𝑎𝜒𝜒

∞

−∞
 (130) 

Considering the previous equation with the following 𝐸𝐸1(𝑥𝑥1,𝜔𝜔) = 𝐸𝐸𝑖𝑖𝑛𝑛(𝛼𝛼𝑥𝑥1,𝜔𝜔)𝑒𝑒𝑖𝑖𝑘𝑘𝑖𝑖𝜔𝜔𝑥𝑥1 in finding  

the effect of the second grating but with a reverse effect, i.e., 𝐸𝐸5(𝑥𝑥3,𝜔𝜔) = 𝐸𝐸4 �
𝑥𝑥3
𝛼𝛼

,𝜔𝜔� 𝑒𝑒−𝑖𝑖
𝑘𝑘𝑘𝑘𝑘𝑘
𝛼𝛼 𝑥𝑥3 we 

arrive at: 

𝐸𝐸5(𝑥𝑥3,𝜔𝜔) =
√𝜋𝜋𝐷𝐷𝑎𝑎0
𝛼𝛼

𝑎𝑎𝑖𝑖𝑛𝑛(𝜔𝜔)� 𝑅𝑅𝑛𝑛(𝜒𝜒)𝑒𝑒
− 𝑘𝑘2𝐷𝐷2
4𝑓𝑓2𝛼𝛼2(𝑘𝑘−𝑓𝑓𝑖𝑖𝜔𝜔)2

𝑒𝑒−𝑖𝑖
𝑘𝑘𝑥𝑥3
𝛼𝛼𝑓𝑓 𝑘𝑘𝑒𝑒−𝑖𝑖

𝑘𝑘𝑖𝑖𝜔𝜔
𝛼𝛼 𝑥𝑥3𝑎𝑎𝜒𝜒

∞

−∞
 (131) 

The output field in general is given by 

𝐸𝐸𝑜𝑜𝑜𝑜𝜔𝜔(𝑥𝑥3,𝜔𝜔) = � 𝑎𝑎𝜒𝜒� 𝑎𝑎𝑖𝑖𝑛𝑛(𝛼𝛼𝑥𝑥1,𝜔𝜔)𝑅𝑅(𝜒𝜒)𝑒𝑒−𝑖𝑖
𝑘𝑘𝑖𝑖𝜔𝜔
𝛼𝛼 𝑥𝑥3𝑒𝑒−𝑖𝑖

𝑘𝑘𝑥𝑥3
𝛼𝛼𝑓𝑓 𝑘𝑘𝑒𝑒−𝑖𝑖

𝑘𝑘𝑘𝑘
𝑓𝑓 𝑥𝑥1𝑒𝑒𝑖𝑖𝑘𝑘𝑖𝑖𝜔𝜔𝑥𝑥1𝑎𝑎𝑥𝑥1

∞

−∞

∞

−∞
 (132) 

If we consider the Gaussian profile in x: 

𝑎𝑎𝑖𝑖𝑛𝑛(𝛼𝛼𝑥𝑥1,𝜔𝜔) = 𝑎𝑎𝑖𝑖𝑛𝑛(𝜔𝜔)𝑎𝑎𝑖𝑖𝑛𝑛(𝛼𝛼𝑥𝑥1) = 𝑎𝑎𝑖𝑖𝑛𝑛(𝜔𝜔)𝑒𝑒−
𝛼𝛼2𝑥𝑥12
𝐷𝐷2  (133) 

𝐸𝐸𝑜𝑜𝑜𝑜𝜔𝜔(𝑥𝑥3,𝜔𝜔) = � 𝑎𝑎𝜒𝜒� 𝑎𝑎𝑖𝑖𝑛𝑛(𝜔𝜔)𝑅𝑅(𝜒𝜒)𝑒𝑒−
𝛼𝛼2𝑥𝑥12
𝐷𝐷2 𝑒𝑒−𝑖𝑖

𝑘𝑘𝑖𝑖𝜔𝜔
𝛼𝛼 𝑥𝑥3𝑒𝑒−𝑖𝑖

𝑘𝑘𝑥𝑥3
𝛼𝛼𝑓𝑓 𝑘𝑘𝑒𝑒−𝑖𝑖

𝑘𝑘𝑘𝑘
𝑓𝑓 𝑥𝑥1𝑒𝑒𝑖𝑖𝑘𝑘𝑖𝑖𝜔𝜔𝑥𝑥1𝑎𝑎𝑥𝑥1

∞

−∞

∞

−∞
 (134) 

= � 𝑎𝑎𝑖𝑖𝑛𝑛(𝜔𝜔)𝑒𝑒−𝑖𝑖
𝑘𝑘𝑖𝑖𝜔𝜔
𝛼𝛼 𝑥𝑥3𝑒𝑒

−𝑘𝑘
2𝐷𝐷2(𝑓𝑓𝑖𝑖𝜔𝜔−𝑘𝑘)2

4𝑓𝑓2𝛼𝛼2 𝑒𝑒−𝑖𝑖
𝑘𝑘𝑥𝑥3
𝛼𝛼𝑓𝑓 𝑘𝑘𝑅𝑅(𝜒𝜒)𝑎𝑎𝜒𝜒

∞

−∞
 (135) 
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The resulting field is achieved without the using a frequency filter but with light interaction with 

two lenses and two gratings.  Now the field generated by the second order nonlinear process of 

difference frequency generation is: 

𝑃𝑃𝑇𝑇𝑇𝑇𝑧𝑧(Ω) = � 𝜒𝜒𝑖𝑖𝑖𝑖𝑘𝑘
(2)(Ω;𝜔𝜔,𝜔𝜔 + Ω)𝐸𝐸𝑖𝑖∗(𝜔𝜔)𝐸𝐸𝑘𝑘(𝜔𝜔 + Ω)𝑎𝑎𝜔𝜔

∞

−∞
 (136) 

Considering the field generated by the second order nonlinear process in equation (136), the 

frequency filter shall be approximated as: 

〈𝑅𝑅(𝜒𝜒)𝑅𝑅(𝜒𝜒′)〉 = 𝑒𝑒
−𝑘𝑘

2+𝑘𝑘′2
4Δ𝑀𝑀

2 𝑒𝑒
−(𝑘𝑘−𝑘𝑘′)2

2𝜎𝜎𝑀𝑀
2  (137) 

And applying this process to the modulated field above (135): 

𝑃𝑃𝑇𝑇𝑇𝑇𝑧𝑧(𝑥𝑥3,Ω) = � 𝑎𝑎𝜔𝜔𝜒𝜒𝑖𝑖𝑖𝑖𝑘𝑘
(2)(Ω;𝜔𝜔,𝜔𝜔′ = 𝜔𝜔 + Ω)

∞

−∞
� 𝑎𝑎𝑖𝑖𝑛𝑛(𝜔𝜔)𝑒𝑒−𝑖𝑖

𝑘𝑘𝑖𝑖𝜔𝜔
𝛼𝛼 𝑥𝑥3𝑒𝑒

−𝑘𝑘
2𝐷𝐷2(𝑓𝑓𝑖𝑖𝜔𝜔−𝑘𝑘)2

4𝑓𝑓2𝛼𝛼2 𝑒𝑒−𝑖𝑖
𝑘𝑘𝑥𝑥3
𝛼𝛼𝑓𝑓 𝑘𝑘𝑎𝑎𝜒𝜒

∞

−∞
 

� 𝑎𝑎𝑖𝑖𝑛𝑛∗ (𝜔𝜔′)𝑒𝑒𝑖𝑖
𝑘𝑘𝑖𝑖𝜔𝜔′
𝛼𝛼 𝑥𝑥3𝑒𝑒

−𝑘𝑘
2𝐷𝐷2(𝑓𝑓𝑖𝑖𝜔𝜔′−𝑘𝑘′)2

4𝑓𝑓2𝛼𝛼2 𝑒𝑒𝑖𝑖
𝑘𝑘𝑥𝑥3
𝛼𝛼𝑓𝑓 𝑘𝑘′

∞

−∞
𝑒𝑒
−𝑘𝑘

2+𝑘𝑘′2

4Δ𝑀𝑀
2 𝑒𝑒

−(𝑘𝑘−𝑘𝑘′)2

2𝜎𝜎𝑀𝑀
2 𝑎𝑎𝜒𝜒′ 

(138) 

Being frequency ghost imaging, the bucket detector is a complex value.  Next chapter will 

elaborate further on the achieved results.  For now, the response function of the detector is taken 

as ℎ(Ω′) 

� ℎ(Ω′ − Ω)𝑎𝑎Ω
∞

−∞
 (139) 

4.4.2 Fourth order analytical calculation of group delay via frequency ghost imaging 

With this the fourth order correlation function for frequency ghost imaging is: 

𝐺𝐺2(𝑥𝑥3, 𝜉𝜉, 𝜉𝜉′,Ω′) = 〈� 𝑎𝑎Ω ℎ(Ω′ − Ω)
∞

−∞
𝑃𝑃𝑇𝑇𝑇𝑇𝑧𝑧(𝑥𝑥3,Ω)𝑅𝑅(𝜉𝜉),𝑅𝑅(𝜉𝜉′)〉 (140) 

= � 𝑎𝑎Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑎𝑎𝜔𝜔𝜒𝜒𝑖𝑖𝑖𝑖𝑘𝑘

(2)(Ω;𝜔𝜔,𝜔𝜔′ = 𝜔𝜔 + Ω)
∞

−∞
� 𝑎𝑎𝑖𝑖𝑛𝑛(𝜔𝜔)𝑒𝑒−𝑖𝑖

𝑘𝑘𝑖𝑖𝜔𝜔
𝛼𝛼 𝑥𝑥3𝑒𝑒

−𝑘𝑘
2𝐷𝐷2(𝑓𝑓𝑖𝑖𝜔𝜔−𝑘𝑘)2

4𝑓𝑓2𝛼𝛼2 𝑒𝑒−𝑖𝑖
𝑘𝑘𝑥𝑥3
𝛼𝛼𝑓𝑓 𝑘𝑘𝑎𝑎𝜒𝜒

∞

−∞
 (141) 
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× � 𝑎𝑎𝑖𝑖𝑛𝑛∗ (𝜔𝜔′)𝑒𝑒𝑖𝑖
𝑘𝑘𝑖𝑖𝜔𝜔′
𝛼𝛼 𝑥𝑥3𝑒𝑒

−𝑘𝑘
2𝐷𝐷2(𝑓𝑓𝑖𝑖𝜔𝜔′−𝑘𝑘′)2

4𝑓𝑓2𝛼𝛼2 𝑒𝑒𝑖𝑖
𝑘𝑘𝑥𝑥3
𝛼𝛼𝑓𝑓 𝑘𝑘′𝑎𝑎𝜒𝜒′

∞

−∞
〈𝑅𝑅(𝜒𝜒)𝑅𝑅(𝜒𝜒′)𝑅𝑅(𝜉𝜉)𝑅𝑅(𝜉𝜉′)〉 

In reviewing the on-axis results (𝑥𝑥3 = 0) for the fourth order correlation function, we end up with 

is a matrix of size 𝜉𝜉 × 𝜉𝜉′ with complex values associated with the generated frequency Ω′.  The 

mask functions of 𝑅𝑅(𝜉𝜉) and 𝑅𝑅(𝜉𝜉′) are represented in figure 7 with their matrix multiplied elements 

𝑅𝑅(𝜉𝜉) × 𝑅𝑅(𝜉𝜉′) seen in table 1.  Figure 8 represents a given diagonal within the 𝑅𝑅(𝜉𝜉) × 𝑅𝑅(𝜉𝜉′) 

matrix.  Applying the Gaussian moment theorem to equation (141), we get: 

𝐺𝐺2(𝑥𝑥3, 𝜉𝜉, 𝜉𝜉′,Ω′) = 

(142) 

� 𝑎𝑎Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑎𝑎𝜔𝜔𝜒𝜒𝑖𝑖𝑖𝑖𝑘𝑘

(2)(Ω;𝜔𝜔,𝜔𝜔′ = 𝜔𝜔 + Ω)
∞

−∞
� 𝑎𝑎𝑖𝑖𝑛𝑛(𝜔𝜔)𝑒𝑒−𝑖𝑖

𝑘𝑘𝑖𝑖𝜔𝜔
𝛼𝛼 𝑥𝑥3𝑒𝑒

−𝑘𝑘
2𝐷𝐷2(𝑓𝑓𝑖𝑖𝜔𝜔−𝑘𝑘)2

4𝑓𝑓2𝛼𝛼2 𝑒𝑒−𝑖𝑖
𝑘𝑘𝑥𝑥3
𝛼𝛼𝑓𝑓 𝑘𝑘𝑎𝑎𝜒𝜒

∞

−∞
 

× � 𝑎𝑎𝑖𝑖𝑛𝑛∗ (𝜔𝜔′)𝑒𝑒𝑖𝑖
𝑘𝑘𝑖𝑖𝜔𝜔′
𝛼𝛼 𝑥𝑥3𝑒𝑒

−𝑘𝑘
2𝐷𝐷2(𝑓𝑓𝑖𝑖𝜔𝜔′−𝑘𝑘′)2

4𝑓𝑓2𝛼𝛼2 𝑒𝑒𝑖𝑖
𝑘𝑘𝑥𝑥3
𝛼𝛼𝑓𝑓 𝑘𝑘′𝑎𝑎𝜒𝜒′

∞

−∞
[〈𝑅𝑅(𝜒𝜒)𝑅𝑅(𝜒𝜒′)〉〈𝑅𝑅(𝜉𝜉)𝑅𝑅(𝜉𝜉′)〉

+ 〈𝑅𝑅(𝜒𝜒)𝑅𝑅(𝜉𝜉)〉〈𝑅𝑅(𝜒𝜒′)𝑅𝑅(𝜉𝜉′)〉 + 〈𝑅𝑅(𝜒𝜒)𝑅𝑅(𝜉𝜉′)〉〈𝑅𝑅(𝜒𝜒′)𝑅𝑅(𝜉𝜉)〉] 

This previous line gives the following three terms:  A DC Intensity term, and two mirrored terms.  

One mirrored term has positive frequencies on the left side of the diagonal and negative 

frequencies on the right side of the diagonal.  The other mirrored term has negative frequencies on 

the left side of the diagonal and positive frequencies on the right side of the diagonal 

The DC term (which corresponds to the matrix diagonal) is expressed by: 

� 𝑎𝑎Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑎𝑎𝜔𝜔𝜒𝜒𝑖𝑖𝑖𝑖𝑘𝑘

(2)(Ω;𝜔𝜔,𝜔𝜔′ = 𝜔𝜔 + Ω)
∞

−∞
|𝐸𝐸𝑜𝑜𝑜𝑜𝜔𝜔(𝑥𝑥3,𝜔𝜔)|2〈𝑅𝑅(𝜉𝜉)𝑅𝑅(𝜉𝜉′)〉 (143) 

One mirrored term is expressed by: 

� 𝑎𝑎Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑎𝑎𝜔𝜔𝜒𝜒𝑖𝑖𝑖𝑖𝑘𝑘

(2)(Ω;𝜔𝜔,𝜔𝜔′ = 𝜔𝜔 + Ω)
∞

−∞
 

× � 𝑎𝑎𝑖𝑖𝑛𝑛(𝜔𝜔)𝑒𝑒−𝑖𝑖
𝑘𝑘𝑖𝑖𝜔𝜔
𝛼𝛼 𝑥𝑥3𝑒𝑒

−𝑘𝑘
2𝐷𝐷2(𝑓𝑓𝑖𝑖𝜔𝜔−𝑘𝑘)2

4𝑓𝑓2𝛼𝛼2 𝑒𝑒−𝑖𝑖
𝑘𝑘𝑥𝑥3
𝛼𝛼𝑓𝑓 𝑘𝑘𝑎𝑎𝜒𝜒

∞

−∞
〈𝑅𝑅(𝜒𝜒)𝑅𝑅(𝜉𝜉)〉 

(144) 
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× � 𝑎𝑎𝑖𝑖𝑖𝑖∗ (𝜔𝜔′)𝑒𝑒𝑖𝑖
𝑘𝑘𝑘𝑘𝑘𝑘′
𝛼𝛼 𝑥𝑥3𝑒𝑒

−𝑘𝑘
2𝐷𝐷2(𝑓𝑓𝑘𝑘𝑘𝑘′−𝜒𝜒′)2

4𝑓𝑓2𝛼𝛼2 𝑒𝑒𝑖𝑖
𝑘𝑘𝑥𝑥3
𝛼𝛼𝑓𝑓 𝜒𝜒′𝑑𝑑𝑑𝑑′

∞

−∞
〈𝑀𝑀(𝑑𝑑′)𝑀𝑀(𝜉𝜉′)〉 

The other mirrored term is expressed by: 

� 𝑑𝑑Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑑𝑑𝜔𝜔𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2)(Ω;𝜔𝜔,𝜔𝜔′ = 𝜔𝜔 + Ω)
∞

−∞
 

× � 𝑎𝑎𝑖𝑖𝑖𝑖(𝜔𝜔)𝑒𝑒−𝑖𝑖
𝑘𝑘𝑘𝑘𝑘𝑘
𝛼𝛼 𝑥𝑥3𝑒𝑒

−𝑘𝑘
2𝐷𝐷2(𝑓𝑓𝑘𝑘𝑘𝑘−𝜒𝜒)2

4𝑓𝑓2𝛼𝛼2 𝑒𝑒−𝑖𝑖
𝑘𝑘𝑥𝑥3
𝛼𝛼𝑓𝑓 𝜒𝜒𝑑𝑑𝑑𝑑

∞

−∞
〈𝑀𝑀(𝑑𝑑)𝑀𝑀(𝜉𝜉′)〉 

× � 𝑎𝑎𝑖𝑖𝑖𝑖∗ (𝜔𝜔′)𝑒𝑒𝑖𝑖
𝑘𝑘𝑘𝑘𝑘𝑘′
𝛼𝛼 𝑥𝑥3𝑒𝑒

−𝑘𝑘
2𝐷𝐷2(𝑓𝑓𝑘𝑘𝑘𝑘′−𝜒𝜒′)2

4𝑓𝑓2𝛼𝛼2 𝑒𝑒𝑖𝑖
𝑘𝑘𝑥𝑥3
𝛼𝛼𝑓𝑓 𝜒𝜒′𝑑𝑑𝑑𝑑′

∞

−∞
〈𝑀𝑀(𝑑𝑑′)𝑀𝑀(𝜉𝜉)〉 

(145) 

Negative frequency is related the mask selection on 𝜔𝜔 and 𝜔𝜔′.  When 𝜔𝜔′ is smaller than 𝜔𝜔 the 

resulting generated frequency Ω is negative.  We begin with equation (116) as a complex 

representation of an unknown polychromatic field. Through equation (136), we generate a new 

polychromatic field by difference frequency generation.  The resulting Fourier transform of the 

measured polarization signal in the temporal domain 𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥3, t) generated through difference 

frequency generation gives both positive and negative frequencies.  This is true of all propagating 

electric fields; a simple example of this is the Fourier transform of a monochromatic wave as seen 

in the introduction chapter: 

𝐹𝐹[cos(2𝜋𝜋𝑓𝑓0𝑡𝑡 + 𝜃𝜃)] =
1
2
𝑒𝑒𝑖𝑖𝑖𝑖𝛿𝛿(𝑓𝑓 − 𝑓𝑓0) +

1
2
𝑒𝑒−𝑖𝑖𝑖𝑖𝛿𝛿(𝑓𝑓 + 𝑓𝑓0) (146) 

The complete solution of equations (143) through (145) which are equivalent to the right-hand 

side of the previous equation (146) involves both positive and negative frequencies which would 

yield no results if not for control over the bucket detector.  By using only, the positive frequency 

complex values measured by the bucket detector one can achieve tangible results.   Knowing that 



51 
 

the two mirrored terms are but complex conjugates of each other; hence in calculating for one; the 

other can be easily determined.  Beginning with one of the mirrored terms: 

𝐺𝐺2(𝑥𝑥3, 𝜉𝜉, 𝜉𝜉′,Ω′) = � 𝑑𝑑Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑑𝑑𝜔𝜔𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2)(Ω;𝜔𝜔,𝜔𝜔′ = 𝜔𝜔 + Ω)
∞

−∞
|𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥3,𝜔𝜔)|2〈𝑀𝑀(𝜉𝜉)𝑀𝑀(𝜉𝜉′)〉 

+� 𝑑𝑑Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑑𝑑𝜔𝜔𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2)(Ω;𝜔𝜔,𝜔𝜔′ = 𝜔𝜔 + Ω)
∞

−∞
 

× � 𝑎𝑎𝑖𝑖𝑖𝑖(𝜔𝜔)𝑒𝑒−𝑖𝑖
𝑘𝑘𝑘𝑘𝑘𝑘
𝛼𝛼 𝑥𝑥3𝑒𝑒

−𝑘𝑘
2𝐷𝐷2(𝑓𝑓𝑘𝑘𝑘𝑘−𝜒𝜒)2

4𝑓𝑓2𝛼𝛼2 𝑒𝑒−𝑖𝑖
𝑘𝑘𝑥𝑥3
𝛼𝛼𝑓𝑓 𝜒𝜒𝑑𝑑𝑑𝑑

∞

−∞
〈𝑀𝑀(𝑑𝑑)𝑀𝑀(𝜉𝜉)〉 

× � 𝑎𝑎𝑖𝑖𝑖𝑖∗ (𝜔𝜔′)𝑒𝑒𝑖𝑖
𝑘𝑘𝑘𝑘𝑘𝑘′
𝛼𝛼 𝑥𝑥3𝑒𝑒

−𝑘𝑘
2𝐷𝐷2(𝑓𝑓𝑘𝑘𝑘𝑘′−𝜒𝜒′)2

4𝑓𝑓2𝛼𝛼2 𝑒𝑒𝑖𝑖
𝑘𝑘𝑥𝑥3
𝛼𝛼𝑓𝑓 𝜒𝜒′𝑑𝑑𝑑𝑑′

∞

−∞
〈𝑀𝑀(𝑑𝑑′)𝑀𝑀(𝜉𝜉′)〉 

(147) 

 

In order to simplify the integration involving the 𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘
(2) term, I want to describe 𝑎𝑎𝑖𝑖𝑖𝑖(𝜔𝜔) and 𝑎𝑎𝑖𝑖𝑖𝑖∗ (𝜔𝜔′) 

in terms of the temporal domain.  By doing so the integration involving ∫ 𝑑𝑑𝜔𝜔𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘
(2)(Ω;𝜔𝜔,𝜔𝜔′ =∞

−∞

𝜔𝜔 + Ω) can be dropped because the 𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘
(2) term is a multiplication in the temporal domain and not a 

convolution.  Then after the temporal multiplication has been completed, we can Fourier transform 

back to the frequency domain. 

= � 𝑑𝑑Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑑𝑑𝑡𝑡 𝑒𝑒𝑖𝑖Ω𝑜𝑜
∞

−∞
𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2)(𝑡𝑡; 𝑡𝑡′, 𝑡𝑡′)|𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥3, 𝑡𝑡′)|2〈𝑀𝑀(𝜉𝜉)𝑀𝑀(𝜉𝜉′)〉 

+� 𝑑𝑑Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑑𝑑𝑡𝑡′ 𝑒𝑒𝑖𝑖Ω𝑜𝑜′
∞

−∞
𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2)(t′;𝜔𝜔,𝜔𝜔′) 

× � 𝑑𝑑𝜔𝜔
∞

−∞
𝑒𝑒−𝑖𝑖

𝑘𝑘𝑘𝑘𝑘𝑘
𝛼𝛼 𝑥𝑥3𝑒𝑒−𝑖𝑖𝑘𝑘𝑜𝑜′𝑎𝑎𝑖𝑖𝑖𝑖(𝜔𝜔)� 𝑒𝑒

−𝑘𝑘
2𝐷𝐷2(𝑓𝑓𝑘𝑘𝑘𝑘−𝜒𝜒)2

4𝑓𝑓2𝛼𝛼2 𝑒𝑒−𝑖𝑖
𝑘𝑘𝑥𝑥3
𝛼𝛼𝑓𝑓 𝜒𝜒𝑑𝑑𝑑𝑑

∞

−∞
〈𝑀𝑀(𝑑𝑑)𝑀𝑀(𝜉𝜉)〉 

× � 𝑑𝑑𝜔𝜔′𝑒𝑒𝑖𝑖
𝑘𝑘𝑘𝑘𝑘𝑘′
𝛼𝛼 𝑥𝑥3𝑒𝑒𝑖𝑖𝑘𝑘′𝑜𝑜′𝑎𝑎𝑖𝑖𝑖𝑖∗ (𝜔𝜔′)

∞

−∞
� 𝑒𝑒

−𝑘𝑘
2𝐷𝐷2(𝑓𝑓𝑘𝑘𝑘𝑘′−𝜒𝜒′)2

4𝑓𝑓2𝛼𝛼2 𝑒𝑒𝑖𝑖
𝑘𝑘𝑥𝑥3
𝛼𝛼𝑓𝑓 𝜒𝜒′𝑑𝑑𝑑𝑑′

∞

−∞
〈𝑀𝑀(𝑑𝑑′)𝑀𝑀(𝜉𝜉′)〉 

(148) 

Next, we insert the mathematical description of the mask function: 

= � 𝑑𝑑Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑑𝑑𝑡𝑡 𝑒𝑒𝑖𝑖Ω𝑜𝑜
∞

−∞
𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2)(𝑡𝑡; 𝑡𝑡′, 𝑡𝑡′)|𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥3, 𝑡𝑡′)|2〈𝑀𝑀(𝜉𝜉)𝑀𝑀(𝜉𝜉′)〉 (149) 
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+� 𝑑𝑑Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑑𝑑𝑡𝑡′ 𝑒𝑒𝑖𝑖Ω𝑜𝑜′
∞

−∞
𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2)(𝑡𝑡′;𝜔𝜔,𝜔𝜔′) 

× � 𝑑𝑑𝜔𝜔
∞

−∞
𝑒𝑒−𝑖𝑖

𝑘𝑘𝑘𝑘𝑘𝑘
𝛼𝛼 𝑥𝑥3𝑒𝑒−𝑖𝑖𝑘𝑘𝑜𝑜′𝑎𝑎𝑖𝑖𝑖𝑖(𝜔𝜔)� 𝑒𝑒

−𝑘𝑘
2𝐷𝐷2(𝑓𝑓𝑘𝑘𝑘𝑘−𝜒𝜒)2

4𝑓𝑓2𝛼𝛼2 𝑒𝑒−𝑖𝑖
𝑘𝑘𝑥𝑥3
𝛼𝛼𝑓𝑓 𝜒𝜒𝑒𝑒

−𝜒𝜒
2+𝜉𝜉2

4Δ𝑀𝑀
2 𝑒𝑒

−(𝜒𝜒−𝜉𝜉)2

2𝜎𝜎𝑀𝑀
2 𝑑𝑑𝑑𝑑

∞

−∞
 

× � 𝑑𝑑𝜔𝜔′𝑒𝑒𝑖𝑖
𝑘𝑘𝑘𝑘𝑘𝑘′
𝛼𝛼 𝑥𝑥3𝑒𝑒𝑖𝑖𝑘𝑘′𝑜𝑜′𝑎𝑎𝑖𝑖𝑖𝑖∗ (𝜔𝜔′)

∞

−∞
� 𝑒𝑒

−𝑘𝑘
2𝐷𝐷2(𝑓𝑓𝑘𝑘𝑘𝑘′−𝜒𝜒′)2

4𝑓𝑓2𝛼𝛼2 𝑒𝑒𝑖𝑖
𝑘𝑘𝑥𝑥3
𝛼𝛼𝑓𝑓 𝜒𝜒′𝑒𝑒

−𝜒𝜒′
2+𝜉𝜉′2

4Δ𝑀𝑀
2 𝑒𝑒

−(𝜒𝜒′−𝜉𝜉′)2

2𝜎𝜎𝑀𝑀
2 𝑑𝑑𝑑𝑑′

∞

−∞
 

We integrate with respect to 𝑑𝑑 and 𝑑𝑑′: 

= � 𝑑𝑑Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑑𝑑𝑡𝑡 𝑒𝑒𝑖𝑖Ω𝑜𝑜
∞

−∞
𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2)(𝑡𝑡; 𝑡𝑡′, 𝑡𝑡′)|𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥3, 𝑡𝑡′)|2〈𝑀𝑀(𝜉𝜉)𝑀𝑀(𝜉𝜉′)〉 

+� 𝑑𝑑Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑑𝑑𝑡𝑡′ 𝑒𝑒𝑖𝑖Ω𝑜𝑜′
∞

−∞
𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2)(𝑡𝑡′;𝜔𝜔,𝜔𝜔′)𝑒𝑒
−𝜉𝜉

2+𝜉𝜉′2

4Δ𝑀𝑀
2  

(150) 

× � 𝑑𝑑𝜔𝜔
∞

−∞
𝑒𝑒−𝑖𝑖

𝑘𝑘𝑘𝑘𝑘𝑘
𝛼𝛼 𝑥𝑥3𝑒𝑒−𝑖𝑖𝑘𝑘𝑜𝑜′𝑎𝑎𝑖𝑖𝑖𝑖(𝜔𝜔)𝑒𝑒

−
�𝑘𝑘𝑥𝑥3𝛼𝛼𝑓𝑓 �

2
+4𝑖𝑖�𝑘𝑘𝑥𝑥3𝛼𝛼𝑓𝑓 ��

𝑘𝑘2𝐷𝐷2
4𝑓𝑓2𝛼𝛼2𝑓𝑓𝑘𝑘𝑘𝑘+

1
2𝜎𝜎𝑀𝑀

2 𝜉𝜉�+4
𝑘𝑘2𝐷𝐷2
4𝑓𝑓2𝛼𝛼2�

1
4Δ𝑀𝑀

2 (𝑓𝑓𝑘𝑘𝑘𝑘)2+ 1
2𝜎𝜎𝑀𝑀

2 (𝑓𝑓𝑘𝑘𝑘𝑘−𝜉𝜉)2�+ 1
4Δ𝑀𝑀

2
1

2𝜎𝜎𝑀𝑀
2 𝜉𝜉

2

4� 𝑘𝑘
2𝐷𝐷2

4𝑓𝑓2𝛼𝛼2+
1

4Δ𝑀𝑀
2 +

1
2𝜎𝜎𝑀𝑀

2 �  

× � 𝑑𝑑𝜔𝜔′
∞

−∞
𝑒𝑒−𝑖𝑖

𝑘𝑘𝑘𝑘𝑘𝑘′
𝛼𝛼 𝑥𝑥3𝑒𝑒−𝑖𝑖𝑘𝑘′𝑜𝑜′𝑎𝑎𝑖𝑖𝑖𝑖∗ (𝜔𝜔′)𝑒𝑒

−
�𝑘𝑘𝑥𝑥3𝛼𝛼𝑓𝑓 �

2
−4𝑖𝑖�𝑘𝑘𝑥𝑥3𝛼𝛼𝑓𝑓 ��

𝑘𝑘2𝐷𝐷2
4𝑓𝑓2𝛼𝛼2𝑓𝑓𝑘𝑘𝑘𝑘′+

1
2𝜎𝜎𝑀𝑀

2 𝜉𝜉′�+4
𝑘𝑘2𝐷𝐷2
4𝑓𝑓2𝛼𝛼2�

1
4Δ𝑀𝑀

2 (𝑓𝑓𝑘𝑘𝑘𝑘′)2+ 1
2𝜎𝜎𝑀𝑀

2 (𝑓𝑓𝑘𝑘𝑘𝑘′−𝜉𝜉′)2�+ 1
4Δ𝑀𝑀

2
1

2𝜎𝜎𝑀𝑀
2 𝜉𝜉′

2

4� 𝑘𝑘
2𝐷𝐷2

4𝑓𝑓2𝛼𝛼2+
1

4Δ𝑀𝑀
2 +

1
2𝜎𝜎𝑀𝑀

2 �  

A rearrangement of the 𝜎𝜎𝑀𝑀2  terms result in: 

= � 𝑑𝑑Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑑𝑑𝑡𝑡 𝑒𝑒𝑖𝑖Ω𝑜𝑜
∞

−∞
𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2)(𝑡𝑡; 𝑡𝑡′, 𝑡𝑡′)|𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥3, 𝑡𝑡′)|2〈𝑀𝑀(𝜉𝜉)𝑀𝑀(𝜉𝜉′)〉 

+� 𝑑𝑑Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑑𝑑𝑡𝑡′ 𝑒𝑒𝑖𝑖Ω𝑜𝑜′
∞

−∞
𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2)(𝑡𝑡′;𝜔𝜔,𝜔𝜔′)𝑒𝑒
−𝜉𝜉

2+𝜉𝜉′2

4Δ𝑀𝑀
2  

(151) 

× � 𝑑𝑑𝜔𝜔
∞

−∞
𝑒𝑒−𝑖𝑖

𝑘𝑘𝑘𝑘𝑘𝑘
𝛼𝛼 𝑥𝑥3𝑒𝑒−𝑖𝑖𝑘𝑘𝑜𝑜′𝑎𝑎𝑖𝑖𝑖𝑖(𝜔𝜔)𝑒𝑒

−
(𝑘𝑘𝜎𝜎𝑀𝑀)2𝑥𝑥32+𝑖𝑖�

𝑘𝑘𝑥𝑥3
𝛼𝛼𝑓𝑓 ��

𝑘𝑘2𝐷𝐷2𝜎𝜎𝑀𝑀
2

𝑓𝑓2𝛼𝛼2 𝑓𝑓𝑘𝑘𝑘𝑘+2𝜉𝜉�+ 𝑘𝑘2𝐷𝐷2
2𝑓𝑓2𝛼𝛼2�

𝜎𝜎𝑀𝑀
2

2Δ𝑀𝑀
2 (𝑓𝑓𝑘𝑘𝑘𝑘)2+(𝑓𝑓𝑘𝑘𝑘𝑘−𝜉𝜉)2�+ 1

2Δ𝑀𝑀
2 𝜉𝜉

2

�
𝑘𝑘2𝐷𝐷2𝜎𝜎𝑀𝑀

2

𝑓𝑓2𝛼𝛼2 +
𝜎𝜎𝑀𝑀
2

Δ𝑀𝑀
2 +2�  

× � 𝑑𝑑𝜔𝜔′
∞

−∞
𝑒𝑒−𝑖𝑖

𝑘𝑘𝑘𝑘𝑘𝑘′
𝛼𝛼 𝑥𝑥3𝑒𝑒−𝑖𝑖𝑘𝑘′𝑜𝑜′𝑎𝑎𝑖𝑖𝑖𝑖∗ (𝜔𝜔′)𝑒𝑒

−
(𝑘𝑘𝜎𝜎𝑀𝑀)2𝑥𝑥32+𝑖𝑖�

𝑘𝑘𝑥𝑥3
𝛼𝛼𝑓𝑓 ��

𝑘𝑘2𝐷𝐷2𝜎𝜎𝑀𝑀
2

𝑓𝑓2𝛼𝛼2 𝑓𝑓𝑘𝑘𝑘𝑘′+2𝜉𝜉′�+ 𝑘𝑘2𝐷𝐷2
2𝑓𝑓2𝛼𝛼2�

𝜎𝜎𝑀𝑀
2

2Δ𝑀𝑀
2 (𝑓𝑓𝑘𝑘𝑘𝑘′)2+(𝑓𝑓𝑘𝑘𝑘𝑘′−𝜉𝜉′)2�+ 1

2Δ𝑀𝑀
2 𝜉𝜉′

2

�
𝑘𝑘2𝐷𝐷2𝜎𝜎𝑀𝑀

2

𝑓𝑓2𝛼𝛼2 +
𝜎𝜎𝑀𝑀
2

Δ𝑀𝑀
2 +2�  

Taking Δ𝑀𝑀 → ∞ 
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→ � 𝑑𝑑Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑑𝑑𝑡𝑡 𝑒𝑒𝑖𝑖Ω𝑜𝑜
∞

−∞
𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2)(𝑡𝑡; 𝑡𝑡′, 𝑡𝑡′)|𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥3, 𝑡𝑡′)|2𝑒𝑒
−
�𝜉𝜉−𝜉𝜉′�2

2𝜎𝜎𝑀𝑀
2  

+� 𝑑𝑑Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑑𝑑𝑡𝑡′ 𝑒𝑒𝑖𝑖Ω𝑜𝑜′
∞

−∞
𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2)(𝑡𝑡′;𝜔𝜔,𝜔𝜔′)𝑒𝑒

−
2�𝑘𝑘𝜎𝜎𝑀𝑀𝛼𝛼𝑓𝑓 �

2
𝑥𝑥32+𝑖𝑖�

2𝑘𝑘
𝛼𝛼𝑓𝑓�𝑥𝑥3(𝜉𝜉−𝜉𝜉′)

�
𝑘𝑘2𝐷𝐷2𝜎𝜎𝑀𝑀

2

𝑓𝑓2𝛼𝛼2 +2�
 

× � 𝑑𝑑𝜔𝜔
∞

−∞
𝑒𝑒−𝑖𝑖𝑘𝑘𝑜𝑜′𝑎𝑎𝑖𝑖𝑖𝑖(𝜔𝜔)𝑒𝑒

−𝑘𝑘𝑘𝑘𝛼𝛼 �1+�1+ 2𝑓𝑓2𝛼𝛼2

𝑘𝑘2𝐷𝐷2𝜎𝜎𝑀𝑀
2 �

−1
�𝑥𝑥3𝑘𝑘

𝑒𝑒

− 1

2𝜎𝜎𝑀𝑀
2 �1+ 2𝑓𝑓2𝛼𝛼2

𝑘𝑘2𝐷𝐷2𝜎𝜎𝑀𝑀
2 �

(𝑓𝑓𝑘𝑘𝑘𝑘−𝜉𝜉)2

 

× � 𝑑𝑑𝜔𝜔′
∞

−∞
𝑒𝑒−𝑖𝑖𝑘𝑘′𝑜𝑜′𝑎𝑎𝑖𝑖𝑖𝑖∗ (𝜔𝜔′)𝑒𝑒

−𝑘𝑘𝑘𝑘𝛼𝛼 �1+�1+ 2𝑓𝑓2𝛼𝛼2

𝑘𝑘2𝐷𝐷2𝜎𝜎𝑀𝑀
2 �

−1
�𝑥𝑥3𝑘𝑘′

𝑒𝑒

− 1

2𝜎𝜎𝑀𝑀
2 �1+ 2𝑓𝑓2𝛼𝛼2

𝑘𝑘2𝐷𝐷2𝜎𝜎𝑀𝑀
2 �

�𝑓𝑓𝑘𝑘𝑘𝑘′−𝜉𝜉′�
2

 

(152) 

Describing 𝑎𝑎𝑖𝑖𝑖𝑖 in the time domain: 

∝ � 𝑑𝑑Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑑𝑑𝑡𝑡 𝑒𝑒𝑖𝑖Ω𝑜𝑜
∞

−∞
𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2)(𝑡𝑡; 𝑡𝑡′, 𝑡𝑡′)|𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥3, 𝑡𝑡′)|2𝑒𝑒
−
�𝜉𝜉−𝜉𝜉′�2

2𝜎𝜎𝑀𝑀
2  

+� 𝑑𝑑Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑑𝑑𝑡𝑡′ 𝑒𝑒𝑖𝑖Ω𝑜𝑜′
∞

−∞
𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2)(𝑡𝑡′; 𝜏𝜏, 𝜏𝜏′)𝑒𝑒

−
2�𝑘𝑘𝜎𝜎𝑀𝑀𝛼𝛼𝑓𝑓 �

2
𝑥𝑥32+𝑖𝑖�

2𝑘𝑘
𝛼𝛼𝑓𝑓�𝑥𝑥3(𝜉𝜉−𝜉𝜉′)

�
𝑘𝑘2𝐷𝐷2𝜎𝜎𝑀𝑀

2

𝑓𝑓2𝛼𝛼2 +2�
 

× � 𝑎𝑎𝑖𝑖𝑖𝑖(𝜏𝜏)𝑑𝑑𝜏𝜏
∞

−∞
� 𝑑𝑑𝜔𝜔
∞

−∞
𝑒𝑒
𝑖𝑖𝑘𝑘�𝜏𝜏−𝑜𝑜′−𝑘𝑘𝑘𝑘𝛼𝛼 �1+�1+ 2𝑓𝑓2𝛼𝛼2

𝑘𝑘2𝐷𝐷2𝜎𝜎𝑀𝑀
2 �

−1
�𝑥𝑥3�

𝑒𝑒

− 1

2𝜎𝜎𝑀𝑀
2 �1+ 2𝑓𝑓2𝛼𝛼2

𝑘𝑘2𝐷𝐷2𝜎𝜎𝑀𝑀
2 �

(𝑓𝑓𝑘𝑘𝑘𝑘−𝜉𝜉)2

 

× � 𝑎𝑎𝑖𝑖𝑖𝑖∗ (𝜏𝜏′)𝑑𝑑𝜏𝜏′
∞

−∞
� 𝑑𝑑𝜔𝜔′
∞

−∞
𝑒𝑒
−𝑖𝑖𝑘𝑘′�𝜏𝜏′−𝑜𝑜′−𝑘𝑘𝑘𝑘𝛼𝛼 �1+�1+ 2𝑓𝑓2𝛼𝛼2

𝑘𝑘2𝐷𝐷2𝜎𝜎𝑀𝑀
2 �

−1
�𝑥𝑥3�

𝑒𝑒

− 1

2𝜎𝜎𝑀𝑀
2 �1+ 2𝑓𝑓2𝛼𝛼2

𝑘𝑘2𝐷𝐷2𝜎𝜎𝑀𝑀
2 �

(𝑓𝑓𝑘𝑘𝑘𝑘′−𝜉𝜉′)2

 

(153) 

Perform the integration over  𝜔𝜔 and 𝜔𝜔′ 

∝ � 𝑑𝑑Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑑𝑑𝑡𝑡 𝑒𝑒𝑖𝑖Ω𝑜𝑜
∞

−∞
𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2)(𝑡𝑡; 𝑡𝑡′, 𝑡𝑡′)|𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥3, 𝑡𝑡′)|2𝑒𝑒
−
�𝜉𝜉−𝜉𝜉′�2

2𝜎𝜎𝑀𝑀
2  

+� 𝑑𝑑Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑑𝑑𝑡𝑡′ 𝑒𝑒𝑖𝑖Ω𝑜𝑜′
∞

−∞
𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2)(𝑡𝑡′; 𝜏𝜏, 𝜏𝜏′)𝑒𝑒

−
2�𝑘𝑘𝜎𝜎𝑀𝑀𝛼𝛼𝑓𝑓 �

2
𝑥𝑥32+𝑖𝑖�

2𝑘𝑘
𝛼𝛼𝑓𝑓�𝑥𝑥3(𝜉𝜉−𝜉𝜉′)

�
𝑘𝑘2𝐷𝐷2𝜎𝜎𝑀𝑀

2

𝑓𝑓2𝛼𝛼2 +2�
 

× � 𝑎𝑎𝑖𝑖𝑖𝑖(𝜏𝜏)𝑑𝑑𝜏𝜏
∞

−∞
𝑒𝑒
𝑖𝑖𝜉𝜉
𝑓𝑓𝑘𝑘�𝜏𝜏−𝑜𝑜

′−𝑘𝑘𝑘𝑘𝛼𝛼 �1+�1+ 2𝑓𝑓2𝛼𝛼2

𝑘𝑘2𝐷𝐷2𝜎𝜎𝑀𝑀
2 �

−1
�𝑥𝑥3�−

𝜎𝜎𝑀𝑀
2

2𝑓𝑓2𝑘𝑘2�1+
2𝑓𝑓2𝛼𝛼2

𝑘𝑘2𝐷𝐷2𝜎𝜎𝑀𝑀
2 ��𝜏𝜏−𝑜𝑜

′−𝑘𝑘𝑘𝑘𝛼𝛼 �1+�1+ 2𝑓𝑓2𝛼𝛼2

𝑘𝑘2𝐷𝐷2𝜎𝜎𝑀𝑀
2 �

−1
�𝑥𝑥3�

2

 

(154) 
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× � 𝑎𝑎𝑖𝑖𝑖𝑖∗ (𝜏𝜏′)𝑑𝑑𝜏𝜏′
∞

−∞
𝑒𝑒
− 𝑖𝑖𝜉𝜉𝑓𝑓𝑘𝑘�𝜏𝜏′−𝑜𝑜

′−𝑘𝑘𝑘𝑘𝛼𝛼 �1+�1+ 2𝑓𝑓2𝛼𝛼2

𝑘𝑘2𝐷𝐷2𝜎𝜎𝑀𝑀
2 �

−1
�𝑥𝑥3�−

𝜎𝜎𝑀𝑀
2

2𝑓𝑓2𝑘𝑘2�1+
2𝑓𝑓2𝛼𝛼2

𝑘𝑘2𝐷𝐷2𝜎𝜎𝑀𝑀
2 ��𝜏𝜏′−𝑜𝑜

′−𝑘𝑘𝑘𝑘𝛼𝛼 �1+�1+ 2𝑓𝑓2𝛼𝛼2

𝑘𝑘2𝐷𝐷2𝜎𝜎𝑀𝑀
2 �

−1
�𝑥𝑥3�

2

 

Having 𝜎𝜎𝑀𝑀 → 0 

𝐺𝐺2(𝑥𝑥3, 𝜉𝜉, 𝜉𝜉′,Ω′) → � 𝑑𝑑Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑑𝑑𝑡𝑡 𝑒𝑒𝑖𝑖Ω𝑜𝑜
∞

−∞
𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2)(𝑡𝑡; 𝑡𝑡′, 𝑡𝑡′)|𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥3, 𝑡𝑡′)|2𝛿𝛿(𝜉𝜉 − 𝜉𝜉′) 

+� 𝑑𝑑Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑑𝑑𝑡𝑡′ 𝑒𝑒𝑖𝑖Ω𝑜𝑜′
∞

−∞
𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2)(𝑡𝑡′; 𝜏𝜏, 𝜏𝜏′)𝑒𝑒−𝑖𝑖�
𝑘𝑘
𝛼𝛼𝑓𝑓�𝑥𝑥3�𝜉𝜉−𝜉𝜉

′� 

× � 𝑎𝑎𝑖𝑖𝑖𝑖(𝜏𝜏)𝑑𝑑𝜏𝜏
∞

−∞
𝑒𝑒
𝑖𝑖𝜉𝜉
𝑓𝑓𝑘𝑘�𝜏𝜏−𝑜𝑜

′−𝑘𝑘𝑘𝑘𝛼𝛼 𝑥𝑥3� � 𝑎𝑎𝑖𝑖𝑖𝑖∗ (𝜏𝜏′)𝑑𝑑𝜏𝜏′
∞

−∞
𝑒𝑒
𝑖𝑖𝜉𝜉
𝑓𝑓𝑘𝑘�𝜏𝜏′−𝑜𝑜

′−𝑘𝑘𝑘𝑘𝛼𝛼 𝑥𝑥3� 

(155) 

We perform the integration over 𝜏𝜏 and 𝜏𝜏′ 

∝ � 𝑑𝑑Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑑𝑑𝑡𝑡 𝑒𝑒𝑖𝑖Ω𝑜𝑜
∞

−∞
𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2)(𝑡𝑡; 𝑡𝑡′, 𝑡𝑡′)|𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥3, 𝑡𝑡′)|2𝛿𝛿(𝜉𝜉 − 𝜉𝜉′) 

+� 𝑑𝑑𝑡𝑡′ 𝑒𝑒𝑖𝑖Ω𝑜𝑜′
∞

−∞
𝑒𝑒−𝑖𝑖�

𝑘𝑘
𝛼𝛼𝑓𝑓�𝑥𝑥3(𝜉𝜉−𝜉𝜉′)𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2) �𝑡𝑡′;
𝜉𝜉
𝑓𝑓𝑓𝑓

,
𝜉𝜉′
𝑓𝑓𝑓𝑓
�𝑎𝑎𝑖𝑖𝑖𝑖 �

𝜉𝜉
𝑓𝑓𝑓𝑓
�𝑎𝑎𝑖𝑖𝑖𝑖∗ �

𝜉𝜉′
𝑓𝑓𝑓𝑓
�� 𝑑𝑑Ω ℎ(Ω′ − Ω)

∞

−∞
𝑒𝑒−

𝑖𝑖�𝜉𝜉−𝜉𝜉′�
𝑓𝑓𝑘𝑘 𝑜𝑜′ 

(156) 

We perform a Fourier transform back to the frequency domain: 

𝐺𝐺2(𝑥𝑥3, 𝜉𝜉, 𝜉𝜉′,Ω′) ∝ � 𝑑𝑑Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑑𝑑𝑡𝑡 𝑒𝑒𝑖𝑖Ω𝑜𝑜
∞

−∞
𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2)(𝑡𝑡; 𝑡𝑡′, 𝑡𝑡′)|𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥3, 𝑡𝑡′)|2𝛿𝛿(𝜉𝜉 − 𝜉𝜉′) 

+𝑒𝑒−𝑖𝑖�
𝑘𝑘
𝛼𝛼𝑓𝑓�𝑥𝑥3�𝜉𝜉−𝜉𝜉

′�𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘
(2) �Ω;

𝜉𝜉
𝑓𝑓𝑓𝑓

,
𝜉𝜉′

𝑓𝑓𝑓𝑓
�𝑎𝑎𝑖𝑖𝑖𝑖 �

𝜉𝜉
𝑓𝑓𝑓𝑓
�𝑎𝑎𝑖𝑖𝑖𝑖∗ �

𝜉𝜉′

𝑓𝑓𝑓𝑓
�� 𝑑𝑑Ω ℎ(Ω′ − Ω)

∞

−∞
𝛿𝛿 �Ω −

(𝜉𝜉 − 𝜉𝜉′)
𝑓𝑓𝑓𝑓

� 

(157) 

; and for the mirrored term 

𝑒𝑒𝑖𝑖�
𝑘𝑘
𝛼𝛼𝑓𝑓�𝑥𝑥3(𝜉𝜉−𝜉𝜉′)𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2) �Ω;
𝜉𝜉
𝑓𝑓𝑓𝑓

,
𝜉𝜉′
𝑓𝑓𝑓𝑓
�𝑎𝑎𝑖𝑖𝑖𝑖 �

𝜉𝜉
𝑓𝑓𝑓𝑓
�𝑎𝑎𝑖𝑖𝑖𝑖∗ �

𝜉𝜉′
𝑓𝑓𝑓𝑓
�� 𝑑𝑑Ω ℎ(Ω′ − Ω)

∞

−∞
𝛿𝛿 �Ω +

𝜉𝜉 − 𝜉𝜉′

𝑓𝑓𝑓𝑓
� (158) 

The compete G2 result is: 

𝐺𝐺2(𝑥𝑥3, 𝜉𝜉, 𝜉𝜉′,Ω′) ∝ � 𝑑𝑑Ω ℎ(Ω′ − Ω)
∞

−∞
� 𝑑𝑑𝑡𝑡 𝑒𝑒𝑖𝑖Ω𝑜𝑜
∞

−∞
𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2)(𝑡𝑡; 𝑡𝑡′, 𝑡𝑡′)|𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥3, 𝑡𝑡′)|2𝛿𝛿(𝜉𝜉 − 𝜉𝜉′) 

+𝑒𝑒−𝑖𝑖�
𝑘𝑘
𝛼𝛼𝑓𝑓�𝑥𝑥3(𝜉𝜉−𝜉𝜉′)𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2) �Ω;
𝜉𝜉
𝑓𝑓𝑓𝑓

,
𝜉𝜉′
𝑓𝑓𝑓𝑓
�𝑎𝑎𝑖𝑖𝑖𝑖 �

𝜉𝜉
𝑓𝑓𝑓𝑓
�𝑎𝑎𝑖𝑖𝑖𝑖∗ �

𝜉𝜉′
𝑓𝑓𝑓𝑓
�� 𝑑𝑑Ω ℎ(Ω′ − Ω)𝛿𝛿

∞

−∞
�Ω −

(𝜉𝜉 − 𝜉𝜉′)
𝑓𝑓𝑓𝑓

� 

+𝑒𝑒𝑖𝑖�
𝑘𝑘
𝛼𝛼𝑓𝑓�𝑥𝑥3(𝜉𝜉−𝜉𝜉′)𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2) �Ω;
𝜉𝜉
𝑓𝑓𝑓𝑓

,
𝜉𝜉′
𝑓𝑓𝑓𝑓
�𝑎𝑎𝑖𝑖𝑖𝑖 �

𝜉𝜉
𝑓𝑓𝑓𝑓
�𝑎𝑎𝑖𝑖𝑖𝑖∗ �

𝜉𝜉′
𝑓𝑓𝑓𝑓
�� 𝑑𝑑Ω ℎ(Ω′ − Ω)

∞

−∞
𝛿𝛿 �Ω +

𝜉𝜉 − 𝜉𝜉′

𝑓𝑓𝑓𝑓
� 

(159) 
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If the bucket detector is a measure of complex phase for a specific generated frequency (Ω) that 

corresponds to a frequency difference between two spatially separated frequencies then the 

resulting corresponding complex phase will be the complex phase difference between the two 

spatially separated frequencies plus two additional phases: the phase induced by a spatial 

separation caused by the grating �𝑒𝑒𝑖𝑖�
𝑘𝑘
𝛼𝛼𝛼𝛼�𝑥𝑥3(𝜉𝜉−𝜉𝜉′)� and the phase induced by the nonlinear condition 

𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘
(2) �Ω; 𝜉𝜉

𝑓𝑓𝑘𝑘
, 𝜉𝜉′
𝑓𝑓𝑘𝑘
�.  Note this is provided that the nonlinear condition 𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘

(2) �Ω; 𝜉𝜉
𝑓𝑓𝑘𝑘

, 𝜉𝜉′
𝑓𝑓𝑘𝑘
� is met for the 

generation of the new frequency (Ω).  A few questions arise from these results.  Under what 

conditions is this achievable?  How does one achieve a complex valued frequency-based bucket 

detector measurement?  These questions will be addressed in the next chapter. 
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Chapter 5 

5. Complex Phase Measurement in a 
Terahertz Spectroscopy System 

Two questions on the implementation of group delay ghost imaging arises from the analysis 

presented in the previous chapter.  How can a complex valued frequency-based bucket detector 

measurement be taken and under what conditions will the nonlinear condition be satisfied to 

achieve difference frequency generation?  Both questions are easily answered and satisfied with 

the use of a Terahertz Time-Domain Spectroscopy (THz-TDS) system.  We will first look at one 

of many Terahertz Time-Domain Spectroscopy (THz-TDS) system and how it functions and in 

doing so it will be shown how complex valued frequency-based measurements are routinely made 

in a THz-TDS system.  Then the appropriate nonlinear conditions will be described that will satisfy 

the conditions for group delay ghost imaging performed by a slight adjustment of the THz-TDS 

system along with a given scenario in which frequency difference ghost imaging can be 

implemented. 

5.1 Terahertz Time-Time Domain Spectroscopy setup 

There are many ways in which a freely propagating THz pulse can be generated.  There are 

also numerous ways in which the THz pulse can be measured.  A given THz-TDS system can be 

seen in figure 9 [56]. 
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Figure 10:  An example of a terahertz time domain spectroscopy system [56]. 

 

In this THz-TDS system the femtosecond (fs) laser is a mode locked Ti-sapphire laser that 

has a repetition rate around 85MHz.  The operating center wavelength of the laser is around 810nm.  

The emitted pulses from the fs-laser are first incident upon the beam splitter in which half of the 

pulse travels on to the transmitter while the other half travels through an optic delay line to the 

receiver.  In this setup the transmitter is comprised of two 10µm wide aluminum lines spaced 80µm 

apart on a gallium arsenide (GaAs) substrate.  A voltage is applied across the two aluminum 

transmission lines of about 80V, which slightly less than the ionization break down voltage of air.  

When the incident optical pulse from the femto-second laser creates electron-hole pairs in the 

GaAs substrate the now free electrons (and to a lesser degree, holes) undergo ballistic acceleration.  

THz radiation is generated due to this ballistic acceleration.   On the other side of the GaAs 

substrate is a truncated high resistivity silicon lens.  The silicon lens is used to direct the THz 

radiation to the first parabolic mirror in figure 9.  This parabolic mirror is used to collimate the 

THz pulse.  Once collimated, the THz pulse interacts with a sample material, which is placed in 

the center of the THz system.  After passing through the sample the THz pulse is incident upon 

the second parabolic mirror.  The second parabolic mirror is used to re-image the THz pulse onto 
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the receiver.  To further focus down the THz pulse onto the receiver a silicon lens is placed onto 

the receiver substrate.  The receiver is comprised of two 10µm wide aluminum transmission lines 

spaced 50µm apart with two extruding aluminum blocks between the transmission lines.  A 

schematic of the receiver can be seen in figure 10. 

 
Figure 11:  A schematic of a THz receiver transmission lines. 

 
The two receiver transmission lines are on a highly ion implanted silicon on sapphire substrate.  

The optically delayed pulse from the fs-laser frees electrons in the silicon on sapphire substate in 

between the two transmission lines, while the incident terahertz pulse creates an electric field, 

which drives a current between transmission lines.  There must be both free electrons and an 

electric field to have a current.  If one or the other does not exist no current will be generated.  A 

current amplifier then amplifies this current.  The resulting amplified current is proportional to the 

electric field of the THz pulse.  The detection of a THz pulse can be described by the following 

three equations: 
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𝑔𝑔(𝑡𝑡) = � 𝐼𝐼(𝑡𝑡′)𝑒𝑒−
�𝑜𝑜−𝑜𝑜′�
𝜏𝜏𝑐𝑐 𝑑𝑑𝑡𝑡′

𝑜𝑜

−∞
 (160) 

𝑉𝑉(𝑡𝑡) = � 𝐸𝐸(𝑡𝑡′)𝑒𝑒−
�𝑜𝑜−𝑜𝑜′�
𝐶𝐶𝑇𝑇0 𝑑𝑑𝑡𝑡′

𝑜𝑜

−∞
 (161) 

𝑄𝑄(𝜏𝜏) = � 𝑔𝑔(𝑡𝑡′ − 𝜏𝜏)𝑉𝑉(𝑡𝑡′)𝑑𝑑𝑡𝑡′
∞

−∞
 (162) 

where 𝐼𝐼(𝑡𝑡′) is the laser pulse, 𝜏𝜏𝑐𝑐 is the carrier lifetime, C is the capacitance of the transmission line 

gap, and z0 is the transmission line impedance.  The measured current �𝑄𝑄(𝜏𝜏)� is a convolution, in 

the temporal domain, between the voltage �𝑉𝑉(𝑡𝑡)�, generated by the THz pulse �𝐸𝐸(𝑡𝑡′)�, and the 

freed electron-hole pairs �𝑔𝑔(𝑡𝑡)�, generated by the femtosecond optical pulse �𝐼𝐼(𝑡𝑡′)�.  The 

measured current �𝑄𝑄(𝜏𝜏)� would be a faithful representation of the THz pulse �𝐸𝐸(𝑡𝑡′)� if not for the 

frequency-dependent term of the autocorrelation of the probing pulse �𝑔𝑔(𝑡𝑡)� which in turn is the 

laser pulse �𝐼𝐼(𝑡𝑡′)�.  This frequency-dependent term has little effect when the bandwidth of the 

probing pulse is much larger than the bandwidth of the THz pulse.  A temporal visual picture of 

this can be seen in figure 11. 
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Figure 12:  A temporal picture of the THz pulse 𝐸𝐸(𝑡𝑡′) being convolved with a probing pulse 

𝐼𝐼(𝑡𝑡′) in the detection of a THz pulse [31]. 

 
When the bandwidth of the integrating optical pulse �𝐼𝐼(𝑡𝑡′)�  is much larger than the bandwidth of 

the THz pulse �𝐸𝐸(𝑡𝑡′)� the temporal features of the THz pulse can be seen because the temporal 

duration of the optical pulse is much smaller than that of the THz pulse.  For the usual experimental 

situation regarding THz spectroscopy this is easily satisfied because the bandwidth of the optical 

pulse is much greater than the carrier frequency of the THz pulse. 

  With the qualifications stated aforementioned, the traditional data analysis of a THz 

spectroscopy system is a measurement of the complex refractive index as a function of frequency.  

To increase the signal to noise ratio, of the measured current, a lock-in amplifier with a mechanical 

chopper are used to enhance the measurement of the resulting current/electric field amplitude as a 

function of optical delay.  A mechanical chopper modulates the THz signal passing to the receiver.  

The resulting complex field is plotted as a function of time/optic delay.  It is the Fourier transform 

of this electric field that gives the complex field as a function of frequency. 
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𝐹𝐹(Ω) = � 𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑖𝑖2𝜋𝜋Ω𝑜𝑜𝑑𝑑𝑡𝑡
∞

−∞
 (163) 

 A measurement of the complex field amplitude as a function of frequency is done for both 

a sample scan and a reference scan.  A reference scan is a scan of a THz pulse without a sample 

inside of the system.  The extraction of the effects of the sample on the THz pulse is found by 

taking the ratio between the reference scan and the sample scan. 

𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟𝑜𝑜(Ω) =
𝐹𝐹𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟(Ω)
𝐹𝐹𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑐𝑐𝑟𝑟(Ω) (164) 

Without the reference scan the effect the sample has on the THz pulse cannot be determined.   

5.1.1 Transmitter 

In the previous section, a THz pulse was generated from the ballistic acceleration of freed 

electrons by an ultrashort pulse incident between two transmission lines with a large DC voltage 

between them.  This is by no means the only way of generating a THz pulse.  One such way of 

generating a THz pulse is through difference frequency generation with the use of Gallium 

Phosphide (GaP).  GaP has a large nonlinear optical coefficient and its phase-matching conditions 

are relatively easily satisfied for optical rectification in the collinear geometry [57].  If the GaP 

crystal is sufficiently thin, absorption caused by GaP on the optical pulse and the generated THz 

pulse can be neglected.  An optical pulse can be well-detuned away from any resonances.  Lastly 

the generated THz frequencies are well below the phonon resonances of GaP.  This means that 

since the absorption and dispersion can be neglected, the nonlinear term 𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘does not depend on 

optical frequency. 

Starting with an unknown ultrashort optical pulse incident upon a thin GaP crystal will 

generate a THz pulse through difference frequency generation.  If the unknown optical pulse is 
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well detuned away from any resonances within GaP crystal, the nonlinear term 𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘 will not depend 

on optical frequency.  The resulting generated THz pulse’s electric field can then be measured as 

a function of time through, essentially it is an autocorrelation between the THz pulse and the 

unknown optical pulse.  The Fourier transform of the temporal THz pulse will give the complex 

field in the frequency domain.  For a given realization, the complex field is the ratio between a 

sample (a given realization) and a reference.  The reference is a THz pulse generated from the 

totality of the unknown optical pulse.  It is then through a fourth order correlation between a given 

THz complex field value for a specific frequency and the corresponding optical frequencies that 

contribute to generate the specific THz frequency that the group delay for an unknown optical 

pulse can be determined.  In the next chapter through numerical analysis for a given set of 

qualifying conditions that the group delay for an unknown optical pulse can be determined using 

difference frequency generated ghost imaging.   
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Chapter 6 

6. Numerical Simulation 

This chapter contains a numerical simulation of a second order correlation between the 

spatial configuration of the BSLM and the THz frequency measurement for an unknown optical 

pulse which is displayed in the frequency domain in figure 12.  The discretized numerical 

simulation space will be based on three off the shelf components:  lens, grating, and BSLM.  The 

BSLM is the Texas Instruments DLP650LNIR, which is comprised of 1280 X 800 orthogonally 

placed micromirrors [58].  The distance between the center of each micromirror to its translational 

neighbor for this BSLM is 10.8µm.  This BSLM is the physical representation of the mask function 

𝑀𝑀(𝑑𝑑).  Each of the 800 columns along the 1280- micromirrors axis is completely independent 

from all other columns and each column has an equal probability of being on or off for each 

realization.  In this numerical simulation, the random mask function is represented by equation 

(100) and figure 7.  The mask function is a 1280 length vector function with each element within 

the vector representing the state of a BSLM micromirror column for a given realization.  The 

grating which is offered by Thor Labs is a 1200 grooves per mm reflective grating [59].  Using a 

100mm focal length lens and by reviewing equation (135) we can determine the central frequency 

located on each micromirror. 

𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥3,𝜔𝜔) = � 𝑎𝑎𝑖𝑖𝑖𝑖(𝜔𝜔)𝑒𝑒−𝑖𝑖
𝑘𝑘𝑘𝑘𝑘𝑘
𝛼𝛼 𝑥𝑥3𝑒𝑒

−𝑘𝑘
2𝐷𝐷2(𝑓𝑓𝑘𝑘𝑘𝑘−𝜒𝜒)2

4𝑓𝑓2𝛼𝛼2 𝑒𝑒−𝑖𝑖
𝑘𝑘𝑥𝑥3
𝛼𝛼𝑓𝑓 𝜒𝜒𝑀𝑀(𝑑𝑑)𝑑𝑑𝑑𝑑

∞

−∞
 (165) 



64 
 

The central frequency occurs when 𝑓𝑓𝑓𝑓𝜔𝜔 − 𝑑𝑑 = 0.  Using the distance between each micromirror 

(10.8µm) the focal length of the lens (100mm), and by calculating 𝑓𝑓 using equation (125) we can 

determine the change in frequency between consecutive micromirrors.  The ultrafast unknown 

optical pulse used in this numerical simulation will have a Gaussian amplitude in the frequency 

domain.  The Gaussian distribution will have a full width half maximum (FWHM) of 5nm with a 

central wavelength of 805nm.  In setting the central micromirror to 805nm the resulting spread of 

the unknown optical pulse across the BSLM is from 796nm to 814nm.  Based on the above off the 

shelf components, the chosen unknown ultrafast optical pulse, and for ease of calculation for the 

Fourier transform the discretized simulation space will be 2048 pixels with a one to one conversion 

from the frequency domain to the BSLM micromirror spatial domain.        

 

Figure 13:  Spectral amplitude for the unknown optical pulse in the frequency domain. 
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 This frequency domain representation of the incident unknown optical pulse extends over 

2048 units with a frequency difference such that an individual frequency is centrally located on an 

BSLM micromirror if there is one.    The spectral phase for this unknown optical pulse was given 

a parabolic shape with a range from 0 to 2π across the 2048 units.  This spectral phase can be seen 

in figure 13. 

 
Figure 14:  Spectral phase for the unknown optical pulse.  The spectral phase was given a 

parabolic structure for the frequencies spanning across the BSLM. 

 

Figures 12 and 13 show the frequency domain representation of amplitude and phase 

respectively for an unknown optical pulse extending from790nm to 820nm.  When considering the 

BSLM the ends of the unknown pulse are truncated due to the lack a micromirror at that spatial 

location.  Figures 14 and 15 show the resulting frequency domain representation of amplitude and 

phase respectively for an unknown optical pulse when the BSLM is considered along with the 

simulation space of this numerical simulation. 
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Figure 15:  Spectral phase for the unknown optical pulse with the physical bounds of the BSLM 

considered. 

 
Figure 16:  Spectral phase for the unknown optical pulse with the physical bounds of the BSLM 

considered. 
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This unknown ultrafast optical pulse will generate a THz pulse when it passes through a 

sufficiently thin GaP crystal in the collinear geometry [57].  Using the above defined simulation 

space, the unknown ultrafast optical pulse described in the previous paragraph, and a given 

realization of the mask function we can numerically simulate the frequency domain of the 

unknown ultrafast optical pulse incident upon the nonlinear material through the use of equations 

(124), (125) and (135).  When equation (135) is calculated for a given realization equation (136) 

can be calculated which will give the resulting THz pulse in the frequency domain.  In relation to 

spatial ghost imaging for each realization there are two measurements:  a spatially resolved field, 

and a bucket detector measurement.  For this numerically simulated group delay frequency ghost 

image we also have two measurements:  a complex valued THz pulse frequency domain 

measurement (bucket detector measurement) and a BSLM mask function matrix measurement.  

While it is the 1280 length mask function vector that depicts which frequencies of the unknown 

ultrafast optical pulse are passed by the BSLM, it is the 1280 X 1280 mask matrix (equivalent to 

the spatially resolved field measurement) that depicts the combination of the unknown ultrafast 

optical pulse frequencies that contribute to the generation of the complex valued THz pulse 

frequency domain measurement.  As stated in chapter four the BSLM mask function matrix is 

determined by preforming matrix multiplication between the mask vector and its transpose.  As I 

also showed in chapter four, table 1 each diagonal in this mask matrix corresponds to the 

generation of a different THz frequency through difference frequency generation.  The bucket 

detector measurement is a complex value measurement of a THz frequency which corresponds to 

one of the diagonals along the mask matrix.  Numerically this corresponds to one value in the 

vector calculation of equation (136).  The difference between an experimental second order 

correlation and this numerical simulation is in an experiment the bucket detector must first measure 
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the generated THz pulse in the temporal domain through an autocorrelation between the generated 

THz pulse and an integrating optical pulse followed by a Fourier transform conversion from the 

temporal domain to the frequency domain to determine the complex valued THz frequency 

measurement. 

 The number of different realizations used in this numerical simulation was 20480.  This 

number of realizations was chosen because this is 16 runs of 1280 realizations, with 1280 being 

the number of BSLM micromirrors.  The measurement bucket detector frequency used in the 

simulation was 0.5 THz which corresponds to the 75th diagonal away from the central diagonal of 

the BSLM mask matrix.  The resulting numerical simulated ghost imaging of phase difference for 

0.5 THz along with the actual phase difference for 0.5 THz can be seen in figure 16. 

 
Figure 17:  A plot of the actual phase difference between frequencies of the unknown optical 

pulse with a frequency difference of 0.5 THz in red with the calculated second order correlation 
phase difference through numerical simulation of 20480 realizations in blue. 
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The vector length of the 75th diagonal is 1206 which corresponds to 1280 – 74.  As it can 

be seen the ghost phase difference closely predicts the actual phase difference with regards to the 

central frequencies of the unknown ultrafast optical pulse.  As we move away from the center of 

the group delay generated by the central frequencies of the unknown optical pulse the phase 

deference generated by ghost imaging deviates away from the actual phase difference. 

 In the previous simulation the total number of realizations was 20480 which corresponded 

to 16 runs of 1280 realizations.  The realization number of 1280 corresponded to the total number 

of BSLM elements.  From a practical standpoint the total number of realizations 20480 could be 

too many and as such we shall now perform another numerical simulation that reduces the scale 

of precision to reduce the total number of realizations.  This will be done by grouping the 1280 

BSLM elements into groups of 80.  By doing this we transition from a 1280-length mask vector to 

a 16-length mask vector.  The total number of runs for this configuration will be 256 which 

corresponded to 16 runs of 16 realizations.  For the bucket detector measurement, we will shift 

from 0.5 THz which corresponded to the 75th diagonal to 0.53 THz which corresponded to the 

number of BSLM element grouped together and the 80th diagonal of the mask matrix.  The 

resulting numerical simulated ghost imaging of phase difference for 0.53 THz along with the actual 

phase difference for 0.53 THz can be seen in figure 17. 
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Figure 18:  A plot of the actual phase difference between frequencies of the unknown optical 

pulse with a frequency difference of 0.53 THz in red with the calculated second order correlation 
phase difference through numerical simulation of 256 realizations in blue.  This numerical 

simulation consists of grouping the 1280 BSLM elements into 16 groups of 80. 

 

Here the vector length of the 80th diagonal is 1199 which corresponds to 1280 – 81.  In this 

numerical simulation we again see greater accuracy in determining the phase difference with 

regards to the central frequencies compared to the tail frequencies.  The simplest way to increase 

the accuracy of phase difference through ghost imaging is to increase the total number of 

realizations which can be directly seen in figure 18.   
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Figure 19:  A plot of the actual phase difference between frequencies of the unknown optical 
pulse with a frequency difference of 0.53 THz in red with the calculated second order correlation 

phase difference through numerical simulation of 2560 realizations in blue.  This numerical 
simulation consists of grouping the 1280 BSLM elements into 16 groups of 80. 

 

As in the previous numerical simulation there are 16 groups of 80 BSLM elements with the bucket 

detector measurement of 0.53 THz for each realization.  The total number of realizations this time 

was increased by a factor of ten going from 256 to 2560.  It is quite evident when comparing figure 

17 to figure 18 that as the number of realizations increases the accuracy with regards to phase 

difference using ghost imaging increases and the accuracy of phase difference falls the further, we 

travel from the central frequencies. 
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Chapter 7 

7. Comparison with Other Group Delay 
Measuring Methods 

The focus of the comparison will be on errors in the FROG technique. The errors are of 

two varieties:  sampling errors and noise errors.  Lacking a proper sampling rate and not containing 

all sampling data within the FROG-trace grid will result in mischaracterization of the unknown 

optical pulse.  Noise errors come in two varieties multiplicative and additive.  We will first look 

at the sampling error followed by the noise errors. 

7.1 FROG error 

If a signal that is band-limited is sampled at a rate at least as high as the Nyquist rate given 

the Nyquist criterion it contains all required information regarding that signal [60].  Sampling at a 

higher rate than the Nyquist produces no additional information, without noise considerations.  The 

Nyquist rate requires sampling to be at least twice as high as the highest frequency in a signal.  

However, the FROG sampling rate (FSR) has a stricter criterion than the Nyquist rate.  If a signal 

is sampled at the Nyquist rate as opposed to the FSR, there will be truncated data that will not fall 

upon the FROG-trace grid.  There are two limits that FSR is required to satisfy [61].  The first is 

that the temporal step ∆𝑡𝑡 does not extend off the FROG-trace grid in the frequency direction.  This 

temporal step is satisfied by the following: 
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∆𝑡𝑡 ≤
1

6.3𝑓𝑓𝑝𝑝
≈

𝜆𝜆02

6.3𝑐𝑐𝜆𝜆𝑝𝑝
 (166) 

where 𝜆𝜆0 is being the central wavelength and 𝜆𝜆𝑝𝑝 �𝑓𝑓𝑝𝑝� is being the FWHM of the spectrum.  For a 

bandwidth limited pulse, the required minimum sampling time ratio is:  𝑡𝑡𝑝𝑝 Δ𝑡𝑡 ≥ 2.78⁄  with 𝑡𝑡𝑝𝑝 

being the FWHM of the pulse temporal width.  While this is the first FSR sampling step size limit, 

FROG has a second one that prevents the FROG-trace data so that it does not extend off the grid 

in the time-delay direction.  For a Gaussian pulse this limit is the following: 

∆𝑡𝑡 ≥
4.5𝑡𝑡𝑝𝑝
𝑁𝑁

 
(167) 

where N is the grid size for the FROG-trace.  while the above step size limits were calculated for 

Gaussian pulses, other pulses and spectral shapes will have different FSR limits.  A FROG trace 

must satisfy both equations (166) and (167) to capture all significant temporal data and contain it 

within the FROG-trace grid.  If either is not satisfied the FROG-trace will lack information about 

the unknown pulse. 

 Experimental measurements of the FROG-trace are performed by a CCD camera.  FROG 

noise arises from the use of an imperfect detectors. The error could be multiplicative or additive 

[62].  Multiplicative noise is less detrimental to recovering the unknown optical pulse, because it 

only affects the part of the FROG trace that has a measured quantity.  If multiplicative error is 10% 

in noise trace results in only 1% rms error in the retrieved pulse intensity and phase [62].  This 

multiplicative noise arises from the pixel-to-pixel signal variations that are proportional to the 

intensity measured at a pixel. 

On the other hand, additive error is harder to compensate for because unlike multiplicative error it 

affects the entire FROG-trace.  This error arises from pixel-to-pixel signal variations independent 
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of the FROG intensity at a given pixel.  An example of additive error is thermal noise that occur 

in CCD cameras.  A 10% additive noise means there is a 10% noise everywhere in the FROG-

trace.  It is only in using noise filtering techniques that there will be only a 1% rms error in the 

retrieved pulse intensity and phase.   

7.2 SPIDER error 

For SPIDER technique, the spectral phase of the unknown pulse is encoded in the fringe 

spacing of the generated interferogram.  This interferogram is generated by taking an unknown 

pulse and passing it through a beam splitter to create unknown pulse A and unknown pulse B.  

Unknown split pulse A is then passed through a dispersive material to broaden it.  Unknown pulse 

B is unmodified, and it travels a variable length optical path.  A trace between modified unknown 

pulse A and unknown pulse B is performed in a sum frequency generated in a nonlinear material 

to create a spectral shear between the two unknown pulses. The sum is measured by a spectrometer 

to create spectrograph is created.  Recovery of the group delay using SPIDER is of the following: 

𝐺𝐺𝐺𝐺(𝜔𝜔𝑐𝑐) =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜔𝜔

|𝜔𝜔𝑐𝑐 ≈
𝜕𝜕(𝜔𝜔𝑐𝑐 + Ω) − 𝜕𝜕(𝜔𝜔𝑐𝑐)

Ω
 (168) 

The chosen spectral shear (Ω) of the SPIDER technique determines the step size of the recovered 

group delay.  It is critical in SPIDER that the wavelength calibration of the spectrometer be 

performed, because even the smallest wavelength calibration error can generate significant 

measurement error [63].  For a wavelength calibration error of 𝜖𝜖𝜆𝜆 this corresponds to a 

misestimation of the group delay of: 

𝜖𝜖𝐺𝐺𝐺𝐺 =
𝜔𝜔
Ω
𝜏𝜏
𝜖𝜖𝜆𝜆
𝜆𝜆

=
2𝜋𝜋𝑐𝑐
𝜆𝜆

𝛽𝛽2𝑙𝑙
𝜖𝜖𝜆𝜆
𝜆𝜆

 (169) 
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where 𝛽𝛽2 is dispersion and 𝑙𝑙 is the length of dispersive material.  As an example, for a 

miscalibration of 0.01 nm this generates a group delay error of about 0.5 femtoseconds.  Another 

error in SPIDER is detection error which is unrelated to calibration error.  The spectral shear Ω 

between the two unknown pulse cannot be made arbitrarily small because detection noise 

dominates over the actual phase difference.   On the other hand, 𝜕𝜕𝜔𝜔 cannot be made to large for it 

sacrifices spectral resolution. 

7.3 MIIPS error 

To measure group delay, MIIPS introduces a well-known reference function 𝑓𝑓(𝜔𝜔) with the 

use of a pulse shaper to locally cancel the distortions by the unknown spectral phase 𝜕𝜕(𝜔𝜔) of the 

unknown pulse.  A commonly used pulse shaper is a combination of a frequency spreader and a 

phase only spatial light modular (POSLM).  The POSLM imparts an additional phase on 𝜕𝜕(𝜔𝜔) 

corresponding to the frequency incident upon each pixel of the POSLM.  This new pulse has a new 

phase and it is given by 𝜑𝜑(𝜔𝜔) = 𝜕𝜕(𝜔𝜔) + 𝑓𝑓(𝜔𝜔).  A second harmonic generation (SHG) is then 

used to retrieve the unknown phase 𝜕𝜕(𝜔𝜔).  Retrieval of 𝜕𝜕(𝜔𝜔) is given by the two following 

equations [64]: 

𝐼𝐼(2𝜔𝜔) = ��|𝐸𝐸(𝜔𝜔 + Ω)||𝐸𝐸(𝜔𝜔 − Ω)|𝑒𝑒𝑖𝑖[𝜙𝜙(𝜔𝜔+Ω)+𝜙𝜙(𝜔𝜔−Ω)]𝑑𝑑Ω�
2
 (170) 

𝜕𝜕(𝜔𝜔 + Ω) + 𝜕𝜕(𝜔𝜔 − Ω) = 2𝜕𝜕(𝜔𝜔) + 𝜕𝜕′′(𝜔𝜔)Ω2 +
2

(2𝑛𝑛)!
𝜕𝜕2𝑛𝑛′(𝜔𝜔)Ω2𝑛𝑛 + ⋯ (171) 

where on the right side of equation (171) is a Taylor series expanded around 𝜔𝜔. When 𝜕𝜕(𝜔𝜔 + Ω) +

𝜕𝜕(𝜔𝜔 − Ω) is zero, maximal generation of the second harmonic signal occurs.  This equivalently 

takes place when 𝜕𝜕′′(𝜔𝜔) = −𝑓𝑓′′(𝜔𝜔).  By scanning 𝑓𝑓(𝜔𝜔) across the spectrum of the unknown pulse, 
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𝜕𝜕(𝜔𝜔) can be determined. Due to Taylor expansions around 𝜕𝜕(𝜔𝜔) and 𝑓𝑓(𝜔𝜔), some systematic error 

occurs.  For example when the well-known reference function is:  𝑓𝑓(𝛿𝛿,𝜔𝜔) = 𝛼𝛼 sin(𝛾𝛾𝜔𝜔 − 𝛿𝛿) is 

used with 𝛿𝛿 being phase shift, 𝛼𝛼 being a fixed parameter with value 1.5π, and 𝛾𝛾 also being a fixed 

parameter equal to the duration of the pulse this error for the second derivative of 𝑓𝑓(𝜔𝜔) is 

calculated as 1 12𝛾𝛾2 𝜏𝜏02⁄⁄  where 𝜏𝜏0 is the time duration of the pulse .  A single scan of the pulse 

error is ~10% when 𝛾𝛾2 𝜏𝜏02⁄ ≈ 1.  The sum of all errors from all nonlinear terms of 𝜕𝜕(𝜔𝜔) which 

define the error in the second derivative of the measured phase is: 

𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
′′ ≈ 𝜕𝜕′′ �1 ± �

𝜕𝜕𝑛𝑛′

𝜏𝜏02−𝑛𝑛𝑛𝑛!
𝑛𝑛

� (172) 

Two additional notes are due regarding this error.  MIIPS factorially decreases the error every 

iteration.  The error is greatest on the spectral sidelobes of the pulse. 

 Aside from the error resulting from the Taylor expansion there is also error with regards to 

digital noise of the retrieved 𝜕𝜕′′.  This error is equal to 4𝜋𝜋𝛼𝛼𝛾𝛾2 𝑁𝑁⁄  where N is being the number of 

steps in the scan.  The smallest possible phase delay that the POSLM can provide along with the 

number of pixels being used determine the lower limit of the step size.  Using a POSLM with a 

greater number of pixels yields better accuracy when a smaller step size is used. 

7.4 Summary of errors among various techniques 

Each technique, be it FROG, SPIDER, MIIPS or the one proposed in this dissertation which 

I will call group delay via frequency ghost imaging (GD-FGI) has error associated with its 

determination of group delay.  While each method contains errors and those errors fall under two 

categories:  those that can be mitigated and those that may not.  Errors that can be mitigated are 
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ones such as measurement error, optical alignment, and use of optical material choices.  Errors that 

currently hard to mitigate are ones that cannot be minimized through various means of suppression.  

Error with regards to GD-FGI in viewing equation (159) in chapter 4 error arises in two forms:  

the size of the matrix, and the ghost imaging technique.  increasing the discretization of the matrix 

will yield a better approximation of group delay but at the cost of needing to have more realizations 

for an accurate group delay approximation.  In the following table is a breakdown of errors 

associated with each technique. 

Table 2:  Technique along with their corresponding associated errors. 
Technique Mitigatable Error Unmitigable Error 

FROG CCD measurement noise 
(thermal) Not satisfying the FROG sampling rate (FSR) 

SPIDER Chosen spectral shear Miscalibration of spectrometer 

MIIPS Spatial discretization of the 
POSLM n number of steps in a scan 

DG-FGI Spatial discretization of the 
BSLM n number of realizations 
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Chapter 8 

8. Conclusion 

 The temporal duration of an optical pulse is determined by two factors:  spectral bandwidth 

and spectral phase.  While the measurement for determining spectral bandwidth is relatively easy 

for any temporal size, long or short, the measurement for determining spectral phase becomes 

increasingly difficult to impossible as temporal duration decreases.  When it is impossible to 

determine, the spectral phase of an optical pulse methods have been developed to determine the 

group delay of the optical pulse.  Group delay being the derivative of spectral phase with respect 

to frequency.  These methods include frequency resolved optical gating (FROG), spectral phase 

interferometry for direct electric-field reconstruction (SPIDER), and multiphoton intrapulse 

interference phase scan (MIIPS).  Each of the named methods generate a new frequency which 

contains information regarding the group delay through a nonlinear process that uses a nonlinear 

optical material.  New frequency generation is the result of frequency mixing taking the form of 

frequency doubling, sum frequency generation, difference frequency generation and optical 

rectification.  FROG, SPIDER, and MIIPS use either doubling or sum frequency generation.  

Optical rectification and Difference frequency generation have not been used to determine the 

group delay of an unknown optical pulse.  In this dissertation it is shown how in combination of 

correlated imaging and difference frequency generation can determine the group delay of an 

unknown ultrafast optical pulse. 
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 This dissertation has taken a methodical approach to show how the group delay of an 

unknown ultrafast optical pulse can be determined using correlated imaging and difference 

frequency generation.  To show this we began in chapter one by laying the mathematical 

background by describing the wave nature of light.  At the start of chapter one we begin with a 

mathematical description of a monochromatic time dependent wave, originating from the wave 

equation.  It is from this description that we contextualize a waves amplitude, phase, and often 

measured intensity.  Next, we mathematically describe a plane wave which is the inclusion of an 

additional dependent variable, space.  In doing so we can make a distinction between a wave 

traveling through free space and a wave traveling through some material.  To continue expanding 

on the mathematical description of the wave nature of light the Fourier transform is introduced so 

we can expand from a monochromatic traveling wave to a polychromatic traveling wave.  We now 

see that spectral phase is a function of phase versus frequency for a polychromatic wave with the 

derivative of spectral phase being group delay.  Likewise, we see that if we know group delay for 

a polychromatic wave then the integral of group delay is the spectral phase for the polychromatic 

wave plus some constant phase term across the spectrum.  It is here we end our mathematical 

background description on the wave nature of light.   

 Chapter two begins with Maxwell’s four in order to describe what happens when a 

monochromatic wave travels through a nonlinear optical material.  In using an anharmonic 

oscillator model approach to describe the nonlinear optical material response and looking at the 

second order susceptibility we see that there are four possible outcomes:  second harmonic 

generation (SHG), sum frequency generation (SFG), difference frequency generation (DFG), and 

optical rectification (OR).  Upon further examination of DFG with the use of two monochromatic 
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waves we see that the resulting initial phase of the newly generated frequency is equal to the phase 

difference between the two monochromatic fields.  We then expand upon this by seeing what the 

resulting initial spectral phase of a difference frequency generated polychromatic wave when for 

two polychromatic sources are used.  What we find is that the initial phase for a frequency 

generated by DFG is an integral sum of phase differences between the two polychromatic sources 

that have a frequency difference equal to newly generated frequency.  Normally, even though the 

spectral phase of the newly generated polychromatic wave can be determined, it contains zero 

information about spectral phase of the generating polychromatic sources.  It is here we bring in 

correlated imaging (aka ghost imaging) to gain information regarding the spectral phase of the 

polychromatic sources.   

 Chapter three begins by introducing correlated imaging (aka ghost imaging).  This is done 

through giving a brief history of ghost imaging from generating a spatially resolved ghost image 

using orthogonally polarized signal and idler beams created by a type-II phase-matched 

spontaneous parametric down-conversion (SPDC) [26] to generate a spatially resolved ghost 

image using the cross-correlation measurements made by two detectors with non-entangled source 

fields.  The resulting cross-correlation measurements can either be phase-sensitive or phase-

insensitive.  Through the history of spatial ghost imaging there are two key measurements:  bucket 

detector and spatially resolved field.   It is the cross-correlation between these two measurements 

that generate a ghost image.  The rest of chapter three involves the generation of a resolved field 

for the use one of the many realizations used to generate a ghost image. 

 Chapter four constitutes the merging of ghost imaging and DFG to show how the group 

delay for an unknown optical pulse can be determined.  However, before the merge between ghost 
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imaging and DFG can occur we looked at the second order correlation between the fundamental 

theorem of calculus and a random mask function.  What we end up with is the original function 

with a change of variable pulse the mean value of an integral, multiplied by the average value of 

the random mask function.  It is here that it is recognized that if a mask function was placed upon 

a polychromatic source used in DFG that the group delay of the polychromatic source can be 

determined by using ghost imaging.  This was first shown qualitatively and then it is shown 

analytically through a fourth order correlation between two mask functions and the corresponding 

source frequencies.  However, before a fourth order correlation was calculated a full accounting 

of all possible optical components used in an actual experiment that could impact phase needed to 

be considered.  The optical components include grating, lenses, nonlinear optical material, and free 

space propagation.  When the fourth order analytical calculation was completed, equation (159), 

we saw that if the bucket detector is a measure of complex phase for a specific generated frequency 

which corresponds to a frequency difference between two spatially separated frequencies then the 

resulting corresponding complex phase will be the complex phase difference between the two 

spatially separated frequencies plus two additional phases: the phase induced by a spatial 

separation caused by the grating and the phase induced by the nonlinear material.  This is provided 

that the nonlinear condition is met for DFG as determined by the nonlinear material. 

 While chapter four was the analytical calculation of the fourth order correlation that 

resulted from merging of ghost imaging with DFG, chapter five outlined a scenario in which an 

experiment could physically take place and chapter six was a numerical simulation of such an 

experiment.  An 805nm central wavelength with a 5nm full width half maximum optical pulse 

incident upon sufficiently thin GaP crystal in the collinear geometry will generate a THz pulse.  
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Using a THz spectroscopy set up as outlined in chapter five the resulting THz pulse electric field 

is measured in the temporal domain by completing an autocorrelation between the THz pulse and 

the unknown optical pulse.  This temporal domain pulse is then Fourier transformed to the 

frequency domain for the complex phase bucket detector measurement for a realization.  In 

completing this for many different realizations, seen numerically in chapter six, there is an accurate 

determination of the group delay of the unknown optical pulse.  While it is also seen in chapter six 

that the accuracy of determining the group delay is dependent on both the total number of 

realizations and the discretization of the frequency to spatial conversion, only one diagonal of the 

mask matrix was used.  All other diagonals with the same sign could be used to decrease the total 

number of realizations needed for a given amount of accuracy.  This additional information stems 

from the fact that all other diagonals, with the same sign, contain different frequency mixing which 

all originate from the same unknown optical pulse.   
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