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MENTS

Major Field: INDUSTRIAL ENGINEERING AND MANAGEMENT

Abstract:

Distributed optimization has been a trending topic of research in the past few decades. This
is mainly due to the recent advancements in the technology of wireless sensors and also
the emerging applications in machine learning. Traditionally, optimization problems were
addressed using centralized schemes where the data is assumed to be available all in one
place. However, the main reasons that motivate the need for distributed implementations
include: (i) the unavailability of the collected data in a centralized location, (ii) the privacy
of the data among agents should be preserved, and (iii) the memory and computational
power limitations of data processors. Accordingly, to address these challenges, distributed
optimization provides a framework where agents (e.g., data processor, sensor) communicate
their local information with each other over a network and seek to minimize a global objective
function. In some applications, the data may have a huge sample size or a large number
of attributes. The problems associated with this type of data are often known as big data
problems. In this thesis, our goal is to address such high dimensional distributed optimization
problems, where the computation of the local gradient mappings may become expensive.

Recently, a distributed optimization algorithm has been developed for addressing possibly
large-scale problems by considering stochasticity. This method is called Distributed Stochastic
Gradient Tracking (DSGT). We develop a novel iterative method called Distributed Random-
ized Block Stochastic Gradient Tracking (DRBSGT), that is a randomized block variant of
the existing DSGT method. We derive new non-asymptotic convergence rates of the order
1/k and 1/k2 in terms of an optimality metric and a consensus violation metric, respectively.
Importantly, while block coordinate schemes have been studied for distributed optimization
problems before, the proposed algorithm appears to be the first randomized block-coordinate
gradient tracking method that is equipped with the aforementioned convergence rate state-
ments. We validate the performance of the proposed method on the MNIST and a synthetic
data set under different network settings. A potential future research direction is to extend
the results of this thesis to an asynchronous variant of the proposed method. This will allow
for the consideration of communication delays.
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CHAPTER I

INTRODUCTION

In this chapter, we present a motivating example about big data optimization problems
in distributed optimization in Section 1.1 and present a recently developed algorithm for
addressing distributed stochastic optimization problems in Section 1.2. We then present the
main research contributions of this thesis in Section 1.3.

1.1 Motivating Example

Let us consider the regularized logistic regression loss minimization problem for binary
classification applications. In a progressive manner, we show that this problem can be
reformulated as a distributed stochastic optimization problem. Consider a data set denoted as
D ≜ {(uℓ, vℓ) ∈ Rn × {−1,+1} | ℓ ∈ S} where S ≜ {1, . . . , s} denotes an index set where uℓ

denotes an input vector corresponding to a binary value vℓ. Then, the optimization problem
can be defined as

minimize
x∈Rn

f(x) where f(x) ≜
∑
ℓ∈S

ln
(
1 + exp

(
−vℓu

T
ℓ x

))
+

µ

2
∥x∥2,

where µ > 0 is a regularization parameter that is employed as a hyper-parameter. For a
distributed implementation, let us assume that the data set S is distributed among m agents.
Let Si denote the data locally known by agent i where S = ∪m

i=1Si. Note that the number of
data points may differ among the agents. We let |Si| denote the number of data points in
the set Si. We rewrite the preceding loss minimization problem as a distributed regularized
logistic regression loss minimization problem as

minimize
x∈Rn

m∑
i=1

fi(x) where fi(x) ≜
∑
ℓ∈Si

ln
(
1 + exp

(
−vℓu

T
ℓ x

))
+

µ

2m
∥x∥2,

where ℓ denotes the index of a sample from the set Si. Next, for any i ∈ {1, . . . ,m}, we
introduce a discrete uniform random variable ξi ∈ Rn+1 where defined as ξi ≜ (ui, vi) where
(ui, vi) takes values in Si. From this definition, we can write

fi(x) = |Si|Eξi

[
ln
(
1 + exp

(
−viu

T
i x

))]
+

µ

2m
∥x∥2.

By multiplying and dividing by the size of the original data set, that is |S|, and rearranging
the terms we obtain

fi(x) = |S|Eξi

[ |Si|
|S| ln

(
1 + exp

(
−viu

T
i x

))
+

µ

2m|S|∥x∥
2

]
.
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Let us now define a stochastic function Fi(x, ξi) as

Fi(x, ξi) ≜
|Si|
|S| ln

(
1 + exp

(
−viu

T
i x

))
+

µ

2m|S|∥x∥
2,

Using this definition for Fi we can write

fi(x) = |S|Eξi [Fi(x, ξi)] .

Thus, the original problem can be cast as the following distributed stochastic optimization
problem

minimize
x∈Rn

m∑
i=1

fi(x), where fi(x) = |S|Eξi [Fi(x, ξi)] .

Equivalently, we consider the following distributed stochastic formulation

minimize
x∈Rn

m∑
i=1

Eξi [Fi(x, ξi)] . (1.1.1)

The formulation (1.1.1) has been addressed in a recent work [15] where it is assumed that the
m agents cooperatively solve this optimization problem over an undirected communication
network. The proposed algorithm is called Distributed Stochastic Gradient Tracking (DSGT)
that is described in the following section.

1.2 Existing Algorithm

Algorithm 1 Distributed Stochastic Gradient Tracking Method (DSGT)

1: Input: Agents choose a doubly stochastic weight matrix W and set an initial step-size
γ0 > 0. For all i ∈ [m], agent i chooses a random initial point xi,0 ∈ Rn

2: For all i ∈ [m], agent i generates a realization of the random variable ξi, denoted as ξi,0,
and evaluates the initial gradient tracker yi,0 := ∇fi (xi,0, ξi,0)

3: for k = 0, 1, . . . , do
4: For all i ∈ [m], agent i generates a realization of the random variable ξi, denoted as

ξi,k+1, and evaluates the local gradient mapping ∇fi (xi,k+1, ξi,k+1)
5: For all i ∈ [m], agent i does the following updates:
6: xi,k+1 :=

∑m
j=1Wij (xj,k − γkyj,k)

7: yi,k+1 :=
∑m

j=1Wijyj,k +∇fi (xi,k+1, ξi,k+1)−∇fi (xi,k, ξi,k)
8: end for

The outline of the DSGT method is presented in Algorithm 1. In this method, at iteration
k, agent i does two main updates that are presented in step 6 and step 7 in Algorithm 1. The
vector xi,k ∈ Rn denotes the local copy of the decision variable maintained by agent i at time k
and yi,k ∈ Rn denotes the local copy maintained by agent i at iteration k that is used to track
the average of the gradient mapping of the global objective function. This technique is called

2



gradient tracking and has been employed in the past few years in distributed optimization
methods to help with an acceleration of the underlying algorithm. The scalar Wij denotes
nonnegative weights that agent i uses in its communication with any neighboring agent j.
The scalar γk denotes a diminishing step-size parameter. In step 6 of the algorithm, the
vector xi,k is updated by agent i while in step 7, agent i communicates with its neighbours
and obtains yi,k+1 using the gradient tracking vectors yj,k.

1.3 Research Contributions

In this graduate thesis, the main contributions are as follows:

1. Firstly, we develop an algorithm called distributed randomized block stochastic gradient
tracking (DRBSGT) for addressing distributed stochastic optimization problems of
the form (1.1.1) with possibly a large dimension in the solution space. We employ
randomized block-coordinate technique where agents only require to compute a randomly
selected blocks of their local gradient mapping.

2. Secondly, we derive a rate of O(1/k) on a suboptimality metric and O(1/k2) on a
consensus violation metric for the DRBSGT algorithm. Importantly, while DRBSGT
generalizes DSGT to a randomized block variant, these rate statements are comparable
with those of DSGT, indicating that there is no sacrifice in terms of the order of
magnitude of the rate statements.

3. Finally, we validate the theoretical claims. We compare the performance of our scheme
with that of other existing gradient tracking schemes and provide preliminary results on
different data sets and under different network assumptions. We consider the Modified
National Institute of Standards and Technology (MNIST) and synthetic data sets for
the numerical analysis of this thesis.

3



CHAPTER II

THE PROPOSED ALGORITHM

In this chapter, we consider distributed optimization problems over networks where each
agent is associated with a smooth and strongly convex local objective function. This
mathematical formulation captures a wide range of applications in several areas, including
telecommunication, information processing, and machine learning. We present the problem
formulation and the assumptions in Section 2.1. Section 2.2 summarizes the existing literature
about the recent advancement in block-coordinate and gradient tracking schemes. Section
2.3 provides the notation used throughout the thesis. We present the outline of the proposed
algorithm in Section 2.4, and in Section 2.5 we provides some preliminary results that will
pave the way for the convergence analysis in this thesis in the next chapter. Section 2.6
concludes this chapter.

2.1 Problem formulation

We consider the following distributed optimization problem in which each agent has a local
smooth and strongly convex cost function fi : Rn → R. We minimize the average of all cost
functions

minimize
m∑
i=1

fi(x)

s.t. x ∈ Rn,

(2.1.1)

where each agent is associated with a local objective function fi(x) and communicate over an
undirected graph denoted by G = (N , E) where N is a set of nodes and E ⊆ N ×N is the
set of ordered pairs of vertices.

1 4

32

1 4

32

1 4

32

Figure 1: Examples of doubly stochastic undirected network (ring, complete, and star graph)

The contents of this thesis is submitted to Proceedings of the 2022 American Control Conference [24]
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We let N (i) denote the set of neighbors of agent i, i.e., N (i) ≜ {j | (i, j) ∈ E}. To solve the
problem 2.1.1, we consider the following assumption.

Assumption 2.1.1 For all i ∈ {1, . . . ,m}, function fi is µ-strongly convex and L-smooth.

Motivated by big data applications in machine learning and sensor networks, we are interested
in addressing problem (2.1.1) in stochastic and high-dimensional settings. In particular, we
assume that agents only have access to noisy local gradient mappings denoted by ∇fi(•, ξi)
where ξi satisfies the following assumption.

Assumption 2.1.2 For all i ∈ {1, . . . ,m}, random vectors ξi ∈ Rd are independent and for
all x ∈ Rn,

E[∇fi(x, ξi)|x] = ∇fi(x),

E
[
∥ ∇fi(x, ξi)−∇fi(x) ∥2 |x

]
≤ ν2 for some ν > 0. (2.1.2)

This assumption of the above gradients holds true for many distributed learning problems.
The function fi(x)≜Eξi [Fi(x, ξi)] denotes the expected loss function of agent i.
To address high-dimensionality, we consider a block structure for x given by x =

[
x(1); . . . ;x(b)

]
where x(ℓ) ∈ Rni denotes the ℓ-th block-coordinate of x ∈ Rn and

∑b
ℓ=1 nℓ = n. The blocks

in each iteration are selected randomly. We consider the following assumptions on the
communication network.

Assumption 2.1.3 The weight matrix W is double stochastic, and we have wi,i > 0 for all
i ∈ [m].

Assumption 2.1.4 Let the graph G corresponding to the communication network be undi-
rected and connected.

2.2 Literature Review

Among the recent advancements in distributed optimization algorithms, gradient tracking
methods have been recently studied. In these schemes, agents track the average of the
global gradient mapping through communicating their estimate of the gradient locally with
their neighbors in convex [12, 16, 15, 22], and nonconvex regime [8, 17, 3, 19]. In [16],
Push-Pull, G-Push-Pull algorithms and their variants are developed for addressing distributed
optimization over directed graphs and a linear rate of convergence was established. Recently,
a stochastic variant of gradient tracking methods has been developed in [15], namely the
DSGT method, where non-asymptotic convergence rates of the order 1/k and 1/k2 in terms
of an optimality metric and a consensus violation metric were derived, respectively. Further,
in [7], integrating the ideas from DIGing [12] and a fast incremental gradient method (SAGA)
[2], S-DIGing algorithm is developed.
In the aforementioned schemes, agents have to evaluate full-dimensional gradient vectors at
each iteration of the method. A popular avenue for addressing this issue is the class of block-
coordinate schemes. Block-coordinate schemes, and specifically their randomized variants,
have been widely studied in addressing optimization problems and games in deterministic [13,

5



Table 1: Comparison of this work with other recent gradient tracking schemes for distributed
optimization

Ref. Method
Problem
class

Network
topology

Problem formulation Rate(s)

[15] DSGT, GSGT fi ∈ C1,1
µ,L Undirected min

x∈Rn

1
m

∑m
i=1 fi(x) ≜ E[Fi(x, ξi)]

suboptimality:
O (1/k)
consensus:
O
(
1/k2

)
[16]

Push-Pull
G-Push-
Pull

fi ∈ C1,1
µ,L Directed min

x∈Rn

∑m
i=1 fi(x) linear

[14] Block-SONATA
fi ∈ C1,1,
rℓ ∈ C0,0

0,0
Directed

min
x

∑m
i=1 fi(x) +

∑B
l=1 rl(xl)

s.t. xl ∈ Kℓ, ℓ ∈ {1, . . . , B}
−

[21] S-AB fi ∈ C1,1
µ,L Directed min

x∈Rn

1
m

∑m
i=1 fi(x) ≜ E[Fi(x, ξi)] linear

[6] Network-DANE fi ∈ C1,1
µ,L Undirected

min
x∈Rn

1
N

∑N
i=1 ℓ(x; zi),

where N = total samples,
zi is the ith sample.

linear

[7] S-Diging fi ∈ C1,1
µ,L Undirected min

x∈Rn

∑m
i=1 fi(x) ≜ E[Fi(x, ξi)] linear

[10] GNSD fi ∈ C1,1 Undirected
min
x

1
m

∑m
i=1 fi(x) ≜ E[Fi(x, ξi)]

s.t. xi = xj , j ∈ N (i), ∀i
O
(
1/
√
k
)

This
work

DRBSGT fi ∈ C1,1
µ,L Undirected min

x∈Rn

∑m
i=1 fi(x) ≜ E[fi(x, ξi)]

suboptimality:
O (1/k)
consensus:
O
(
1/k2

)
18, 20, 5, 4] and stochastic regimes [1, 23, 11]. In randomized block schemes, at each
iteration only a randomly selected block of the gradient mapping is evaluated, requiring
significantly lower computational effort per iteration than the standard schemes. Although
block-coordinate schemes have been studied for distributed optimization problems before
[9, 14], the convergence rate statements of randomized block gradient tracking methods
are not yet established. Inspired by the DSGT method [15], our goal in this paper lies in
extending DSGT to a randomized block variant that is equipped with new non-asymptotic
performance guarantees.

2.3 Notation

Throughout this thesis, the vectors are default to columns and the matrices are represented
in bold. Let xi ∈ Rn holds a local copy of decision variable and an variable yi ∈ Rn tracks
the average gradient mapping. The values of these variables at the iteration k is denoted by
xi,k and yi,k, respectively. We let x∗ to denote the unique global optimal solution of problem
(2.1.1). We use [m] to denote {1, 2, . . . ,m} for any integer m ≥ 1. We let ∥ • ∥ denote the
Euclidean norm and Frobenius norm of a vector and a matrix, respectively.
We define Uℓ ∈ Rn×nℓ for ℓ ∈ [b] such that

[U1, . . . ,Ub] = In,

6



where In denotes the n× n identity matrix. Note that we can write,

x =
b∑

ℓ=1

Uℓx
(ℓ),∥∥Uℓx

(ℓ)
∥∥2

=
∥∥x(ℓ)

∥∥2

b∑
ℓ=1

∥∥Uℓx
(ℓ)
∥∥2

= ∥x∥2. (2.3.1)

The function f : X → R is said to be Lipschitz smooth with parameter L if

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ and parameter L > 0,

where X is a set and x, y ∈ X.
A continuous differentiable function f : Rn → R is said to be µ-strongly convex if

f(x) ≥ f(y) +∇f(y)T (x− y) +
µ

2
∥x− y∥2 and the parameter µ > .0.

We consider the following notation throughout the thesis. We let

x := [x1, x2, . . . , xm]
T ∈ Rm×n, y := [y1, y2, . . . , ym]

T ∈ Rm×n,

and

x̄ :=
1

m
1Tx ∈ R1×n, ȳ :=

1

m
1Ty ∈ R1×n,

where 1 indicates the vector for all entries as 1. We define the total objective function as

f(x) ≜
m∑
i=1

fi(x), f(x) ≜
m∑
i=1

fi(xi)

and let

fi(x) ≜ E[fi(x, ξi) | x] .

In addition, we denote

ξ := [ξ1, ξ2, . . . , ξm]
T ∈ Rm×d,

ℓ := [ℓ1, ℓ2, . . . , ℓm]
T ∈ Rm×1,

G(x, ξ) ≜ [∇f1(x1, ξ1), . . . ,∇fm(xm, ξm)]
T ,

G(x),≜ E[G(x, ξ) | x] = [∇f1(x1), . . . ,∇fm(xm)]
T ,

G(x, ξ) ≜
1

m
1TG(x, ξ) =

1

m

m∑
i=1

fi(xi, ξi) ∈ Rm×n,

G(x) ≜ E[G(x, ξ) | x] ,

G(x) ≜ G(1xT ) =
1

m
∇f(x). (2.3.2)

7



Algorithm 2 Distributed Randomized Block Stochastic Gradient Tracking (DRBSGT)

1: Input: Agents choose γ0 > 0 the weight matrix W. For all i ∈ [m], agent i chooses a random initial
point xi,0 ∈ Rn

2: For all i ∈ [m], agent i generates realizations of the random variables ξi,0 and ℓi,0 and sets y
(ℓi,0)
i,0 :=

∇ℓi,0fi(xi,0, ξi,0) and y
(ℓ)
i,0 := 0 for all ℓ ̸= ℓi,0.

3: for k = 0, 1, . . . , do
4: For all i ∈ [m], agent i does the following update for ℓ ∈ [b]:

xi,k+1 :=

m∑
j=1

Wij (xj,k − γkyj,k) .

5: For all i ∈ [m], agent i generates realizations of the random variables ξi,k+1 and ℓi,k+1.
6: For all i ∈ [m], agent i does the following update:

y
(ℓ)
i,k+1 :=



∑m
j=1 Wijy

(ℓ)
j,k +∇(ℓ)fi(xi,k+1, ξi,k+1)−∇(ℓ)fi(xi,k, ξi,k), if ℓ = ℓi,k+1 = ℓi,k∑m

j=1 Wijy
(ℓ)
j,k +∇(ℓ)fi(xi,k+1, ξi,k+1), if ℓ = ℓi,k+1 ̸= ℓi,k∑m

j=1 Wijy
(ℓ)
j,k −∇(ℓ)fi(xi,k, ξi,k) if ℓ = ℓi,k ̸= ℓi,k+1∑m

j=1 Wijy
(ℓ)
j,k, if ℓ ̸= ℓi,k+1, ℓ ̸= ℓi,k.

7: end for

2.4 Algorithm Outline

The outline of the proposed algorithm is presented by Algorithm 2 (DRBSGT). This algorithm
is an extension to the existing Algorithm 1 (DSGT). Additionally, in the newly proposed
algorithm at every iteration in step 6, the agents only compute a randomly selected block of
their local gradient mapping. This computation is under the following assumption.

Assumption 2.4.1 For k ≥ 0 and i ∈ [m], let ℓi,k ∈ [b] be generated from a discrete
uniform distribution, i.e., Prob(ℓi,k = ℓ) = b−1 for all ℓ ∈ [b]. Also, we assume these uniform
distributions are independent from each other and from the random variables ξi.

Algorithm 2 can be compactly written as

xk+1 = W(xk − γkyk),

yk+1 = Wyk + b−1
(
G(xk+1, ξk+1)− ek+1

)
− b−1 (G(xk, ξk)− ek) . (2.4.1)

Throughout, we define the history of the method for k ≥ 1 as

Fk ≜ ∪m
i=1{xi,0, ℓi,0, ξi,0, . . . , ℓi,k−1, ξi,k−1}

where F0 ≜ ∪m
i=1{xi,0, ℓi,0, ξi,0}. We define the stochastic errors of the randomized block-

coordinate scheme as

ei,k ≜ ∇fi(xi,k, ξi,k)− bUℓi,k∇ℓi,kfi(xi,k, ξi,k), (2.4.2)

ek ≜ [e1,k, e2,k, . . . , em,k]
T ∈ Rm×n,

ēk ≜
1

m
1Tek =

1

m

m∑
i=1

ei,k.

Next, we show some key properties of the randomized errors.
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Lemma 2.4.1 We have for all i ∈ [m] and k ≥ 0
(a) E[ei,k | Fk] = E[ēk | Fk] = 0.
(b) E[∥ei,k∥2 | Fk] ≤ (b− 1) (ν2 + ∥∇fi(xi,k)∥2).
(c) E[∥ēk∥2 | Fk] ≤ (b− 1)ν2 + b−1

m
∥G(xk)∥2.

Proof. (a) We can write

E[ei,k | Fk ∪ {ξi,k}]
= ∇fi(xi,k, ξi,k)− bE

[
Uℓi,k∇ℓi,kfi(xi,k, ξi,k) | Fk ∪ {ξi,k}

]
= ∇fi(xi,k, ξi,k)− b

b∑
ℓ=1

b−1Uℓ∇ℓfi(xi,k, ξi,k) = 0.

The desired result follows by taking expectations from the preceding relation with respect to
ξi,k.
(b) Throughout the proof, we use the compact notation ∇̃i,k ≜ ∇fi(xi,k, ξi,k). We can write

∥ei,k∥2 =
∥∥∥(∇̃i,k − bUℓi,k∇̃

ℓi,k
i,k

)∥∥∥2

=
∥∥∥∇̃i,k

∥∥∥2

+ b2
∥∥∥Uℓi,k∇̃

ℓi,k
i,k

∥∥∥2

− 2b
(
∇̃i,k

)T

Uℓi,k∇̃
ℓi,k
i,k .

Taking conditional expectations, we have

E
[
∥ei,k∥2 | Fk ∪

(
∪m

j=1{ξj,k}
)]

=
∥∥∥∇̃i,k

∥∥∥2

+ b
b∑

ℓ=1

∥∥∥Uℓ∇̃ℓ
i,k

∥∥∥2

− 2∇̃T
i,k

b∑
ℓ=1

Uℓ∇̃ℓ
i,k.

We have
∑b

ℓ=1

∥∥∥Uℓ∇̃ℓ
i,k

∥∥∥2 (2.3.1)
=

∥∥∥∇̃i,k

∥∥∥2

. From the two preceding relations, we obtain

E
[
∥ei,k∥2 | Fk ∪

(
∪m

j=1{ξj,k}
)]

= (b− 1)
∥∥∥∇̃i,k

∥∥∥2

.

The desired relation holds by taking expectations with respect to ∪m
j=1{ξj,k} from both sides

and invoking Assumption 2.1.2.
(c) This relation follows from part (b) and by noting that we have

∥ēk∥2 ≤
1

m

m∑
i=1

∥ei,k∥2.

The following two lemmas will be applied in the analysis and can be found in [15].

Lemma 2.4.2 Let Assumption 2.1.3 and 2.1.4, holds true.Let ρW , denote the spectral norm
of the matrix W − 1

m
11T and ū ≜ 1

m
1Tu. Then, ρW < 1, and ∥Wu − 1ū∥ ≤ ρW∥u − 1ū∥

for all u ∈ Rm×n.

Lemma 2.4.3 Let Assumption 2.1.1 hold. For any α ≤ 2
µ+L

, we have

∥x̄k − αG(x̄k)− x∗∥ ≤ (1− µα)∥x̄k − x∗∥.

9



We also make use of the following result.

Lemma 2.4.4 Let u,v ∈ Rm×n. Then,
(a) ⟨u,v⟩ = ∑m

i=1 ui•v
T
i• =

∑n
j=1 u

T
•jv•j.

(b) ∥u+ v∥2 = ∥u∥2 + 2⟨u,v⟩+ ∥v∥2, where ∥ • ∥ denotes the Frobenius norm of a matrix.
(c) For any scalar λ > 0, we have |⟨u,v⟩| ≤ ∥u∥∥v∥ ≤ 1

2

(
λ∥u∥2 + 1

λ
∥v∥2

)
.

Proof. (a) By the definition of ⟨u,v⟩. We have

⟨u,v⟩ =
m∑
i=1

n∑
j=1

uijvij =
m∑
i=1

(ui1vi1 + . . .+ uinvin) =
m∑
i=1

ui•v
T
i•.

Similarly, we also have

⟨u,v⟩ =
m∑
i=1

n∑
j=1

uijvij =
n∑

j=1

(u1jv1j + . . .+ umjvmj) =
n∑

j=1

uT
•jv•j.

(b) By using the definition of the Frobenius norm, we have

∥u+ v∥2 =
m∑
i=1

n∑
j=1

(uij + vij)
2 =

m∑
i=1

n∑
j=1

(
u2
ij + 2uijvij + v2ij

)
⇒ ∥u+ v∥2 =

m∑
i=1

n∑
j=1

u2
ij + 2

m∑
i=1

n∑
j=1

(uijvij) +
m∑
i=1

n∑
j=1

v2ij = ∥u∥2 + 2⟨u,v⟩+ ∥v∥2,

where we used Lemma 2.4.4 (a) in the preceding inequality.
(c) Let u,v ∈ Rm×n and λ > 0, and using the Cauchy-Schwarz inequality. We get

|⟨u,v⟩| =
∣∣∣∣∣

m∑
i=1

n∑
j=1

ui,jvi,j

∣∣∣∣∣ ≤
√√√√ m∑

i=1

n∑
j=1

u2
i,jv

2
i,j =

√√√√ m∑
i=1

n∑
j=1

u2
i,j

√√√√ m∑
i=1

n∑
j=1

v2i,j

⇒ |⟨u,v⟩| ≤ ∥u∥ ∥v∥ .

We use the properties of matrix norms to obtain the second inequality

∥λu− v∥2 ≥ 0

⇒ λ2 ∥u∥2 − 2λ ⟨u,v⟩+ ∥v∥2 ≥ 0

⇒ λ

2
∥u∥2 − ∥u∥ ∥v∥+ 1

2λ
∥v∥2 ≥ 0

⇒ 1

2

(
λ ∥u∥2 + 1

λ
∥v∥2

)
≥ ∥u∥ ∥v∥ .

From the preceding two relations, we obtain

|⟨u,v⟩| ≤ ∥u∥∥v∥ ≤ 1

2

(
λ∥u∥2 + 1

λ
∥v∥2

)
.
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2.5 Preliminaries for convergence analysis

We begin with presenting some important properties of the gradient mappings which are
essential for the convergence analysis.

Lemma 2.5.1 Consider Algorithm 2. Let Assumptions 2.1.1, 2.1.2, and 2.4.1 hold. Then,
for all k ≥ 0, the following results hold.
(a) bȳk = G(xk, ξk)− ēk.
(b) E[bȳk | Fk] = G(xk).
(c) E[∥bȳk −G(xk)∥2 | Fk] ≤

(
1
m
+ b− 1

)
ν2 + b−1

m
∥G(xk)∥2.

(d) For any u,v ∈ Rm×n, ∥G(u)−G(v)∥ ≤ L√
m
∥u− v∥.

(e) ∥G(xk)− G(x̄k)∥ ≤ L√
m
∥xk − 1mx̄k∥.

(f) ∥G(x̄k)∥ ≤ L∥x̄k − x∗∥.
(g) ∥G(xk)∥2 ≤ 2L2∥xk − 1x̄k∥2 + 2mL2∥x̄k − x∗∥2.
Proof. (a) We use induction on k. For k = 0 we have

bȳ0 =
b

m
1Tyk =

b

m

m∑
i=1

yi,0 =
b

m

m∑
i=1

b−1 (∇fi(xi,0, ξi,0)− ei,0)

⇒ bȳ0 = G(x0, ξ0)− ē0.

Let us assume that the relation in part (a) holds true for some k. We show that it holds true
for k + 1.

bȳk+1 =
b

m
1T

(
Wyk + b−1

(
G(xk+1, ξk+1)− ek+1

)
− b−1 (G(xk, ξk)− ek)

)
=

b

m
1Tyk +

1

m
1T

(
G(xk+1, ξk+1)− ek+1

)
− 1

m
1T (G(xk, ξk)− ek)

= bȳk +
1

m
1T

(
G(xk+1, ξk+1)− ek+1

)
− 1

m
1T (G(xk, ξk)− ek)

=
1

m
1T

(
G(xk+1, ξk+1)− ek+1

)
.

Therefore, the induction hypothesis statement holds for k + 1 and hence, the desired relation
holds for all k ≥ 0.
(b) Taking conditional expectations from the equation in part (a) and utilizing Lemma
2.4.1(a), we have

E[bȳk | Fk] = E[G(xk, ξk)− ēk | Fk] = G(xk)− E[ēk | Fk]

= G(xk)−
1

m

m∑
i=1

E[ei,k | Fk] = G(xk).

(c) We can expand the following using Lemma 2.5.1 (a). We get

E
[
∥bȳk −G(xk)∥2 | Fk

]
= E

[
∥G(xk, ξk)− ēk −G(xk)∥2 | Fk

]
= E

[
∥G(xk, ξk)−G(xk)∥2 | Fk

]
+ E

[
∥ēk∥2 | Fk

]
+ 2Eξk

[
Eℓk

[
ēTk (G(xk, ξk)−G(xk)) | Fk ∪

(
∪m

j=1{ξj,k}
)]]

≤ ν2

m
+ (b− 1)ν2 +

b− 1

m
∥G(xk)∥2,
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where the last relation is obtained from Lemmas 2.4.1 and 2.1.2.
(d) For any u,v ∈ Rm×n, with ui, vi ∈ Rn denoting the ith row of u,v, respectively, we have

∥G(u)−G(v)∥ =

∥∥∥∥ 1

m
1T∇f(u)− 1

m
1T∇f (v)

∥∥∥∥ =
1

m

∥∥∥∥∥
m∑
i=1

∇fi(ui)−
m∑
i=1

∇fi (vi)

∥∥∥∥∥
≤ 1

m

m∑
i=1

∥∇fi(ui)−∇fi (vi)∥ ≤ L√
m

∥u− v∥ .

(e) By expanding the G(x̄k) using Equation 2.3.2. We get

∥G(xk)− G(x̄k)∥ = ∥G(xk)−G(1x̄k)∥ ≤ L√
m
∥xk − 1mx̄k∥.

(f) By Invoking G(1x∗) = 0, we have

∥G(x̄k)∥ = ∥G(1x̄k)∥ = ∥G(1x̄k)−G(1x∗)∥ ≤ L∥x̄k − x∗∥.

(g) We can introduce the inequality and write as

∥G(xk)∥2 ≤ 2∥Gk −G(1x̄k)∥2 + 2∥G(1x̄k)∥2
≤ 2L2∥xk − 1x̄k∥2 + 2∥G(1x̄k)−G(1x∗)∥2
≤ 2L2∥xk − 1x̄k∥2 + 2mL2∥x̄k − x∗∥2.

2.6 Concluding Remarks

The above preliminaries are essential for the convergence analysis. We will proceed to derive
the rate statements on three recursive error bounds that are E [∥x̄k − x∗∥2], E [∥xk − 1x̄k∥2],
and E [∥yk − 1ȳk∥2] in the next chapter of this thesis. The term E[∥x̄k − x∗∥2] denotes the
suboptimality metric that measures the expected squared distance of the average value of
solutions obtained from all agents from the optimal solution of the problem of interest. The
other two metrics, i.e., E [∥xk − 1x̄k∥2] and E [∥yk − 1ȳk∥2], are called the consensus violation
metrics for the vectors xi,k and yi,k, respectively. We need these error metrics to be bounded
to proceed with deriving their rate statements.
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CHAPTER III

CONVERGENCE RATE ANALYSIS

In this chapter, we derive recursive error bounds for the error metrics E [∥x̄k − x∗∥2],
E [∥xk − 1x̄k∥2], and E [∥yk − 1ȳk∥2]. In Section 3.1, we derive three recursive error bounds
that will be used to derive rate statements. In Section 3.2, we derive the convergence and
consensus rate statements. Section 3.3 concludes this chapter.

3.1 Recursive Error Bounds

Proposition 3.1.1 (Recursive error bounds) Consider Algorithm 2. Let Assumptions

2.1.1, 2.1.2, 2.1.3, 2.1.4, and 2.4.1 hold. Then, if γk ≤ min
{

2
µ+L

, bµ
4(b−1)L2

}
, for any η > 0

we have

(a) E
[
∥x̄k+1 − x∗∥2

]
≤
(
1− µb−1γk

2

)
E
[
∥x̄k − x∗∥2

]
+

b−1γkL
2

m

(
1

µ
+ b−1(2b− 1)γk

)
E
[
∥xk − 1x̄k∥2

]
+ b−2γ2

k

(
1

m
+ b− 1

)
ν2.

(b) E
[
∥xk+1 − 1x̄k+1∥2

]
≤ 1 + ρ2W

2
E
[
∥xk − 1x̄k∥2

]
+

γ2
k(1 + ρ2W )ρ2W

1− ρ2W
E
[
∥yk − 1ȳk∥2

]
.

(c) E
[
∥yk+1 − 1ȳk+1∥2

]
≤

(
(1 + b−1η)ρ2W + γ2

k(
1

b2
+

1

bη
)
(
2L2ρ2W

+
2(b− 1)L2(1 + ρ2W )ρ2W

1− ρ2W

))
E
[
∥yk − 1ȳk∥2

]
+ 2L2m

(
1

b2
+

1

bη

)(
b−2L2γ2

k

+(b− 1)
(
3 + L2γ2

kb
−2
))

E
[
∥x̄k − x∗∥2

]
+ 2L2

(
b−2L2γ2

k + (b− 1)
(
3 + L2γ2

kb
−2

+b−1γkL
2

(
1

µ
+ b−1(2b− 1)γk

))
+∥W − I∥2

)( 1

b2
+

1

bη

)
E
[
∥xk − 1x̄k∥2

]
+

(
1

b2
+

1

bη

)
ν2

(
mL2b−2

(
1

m
+ b− 1

)
γ2
k + 3mb

)
.
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Proof. (a) Considering the first update rule from (2.4.1), and multiplying both sides by
averaging operator 1

m
1T , and noting that 1TW = 1T from Assumption 2.1.3, we obtain

x̄k+1 = x̄k − γkȳk. Using Lemma 2.5.1(b) and (c), we can write

E
[
∥x̄k+1 − x∗∥2 | Fk

]
= E

[
∥x̄k − γkȳk − x∗∥2 | Fk

]
= ∥x̄k − x∗∥2 − 2γk(x̄k − x∗)TE [ȳk | Fk] + γ2

kE
[
∥ȳk∥2 | Fk

]
= ∥x̄k − x∗∥2 − 2b−1γk(x̄k − x∗)TG(xk)

+ b−2γ2
kE

[
∥bȳk −G(xk) +G(xk)∥2 | Fk

]
= ∥x̄k − x∗∥2 − 2b−1γk(x̄k − x∗)TG(xk)

+ b−2γ2
kE

[
∥bȳk −G(xk)∥2 | Fk

]
+ b−2γ2

kE
[
∥G(xk)∥2 | Fk

]
+ 2b−2γ2

kG(xk)
TE [bȳk −G(xk) | Fk]

= ∥x̄k − x∗∥2 − 2b−1γk(x̄k − x∗)TG(xk)

+ b−2γ2
kE

[
∥bȳk −G(xk)∥2 | Fk

]
+ b−2γ2

k∥G(xk)∥2

≤ ∥x̄k − x∗∥2 − 2b−1γk(x̄k − x∗)TG(xk) + b−2γ2
k∥G(xk)∥2

+ b−2γ2
k

((
1

m
+ b− 1

)
ν2 +

b− 1

m
∥G(xk)∥2

)
.

Adding and subtracting G(x̄k), we obtain

E
[
∥x̄k+1 − x∗∥2 | Fk

]
≤ ∥x̄k − x∗∥2 − 2b−1γk(x̄k − x∗)T (G(xk)− G(x̄k))

− 2b−1γk(x̄k − x∗)TG(x̄k) + b−2γ2
k∥G(xk)− G(x̄k)∥2

+ b−2γ2
k∥G(x̄k)∥2 + 2b−2γ2

k(G(xk)− G(x̄k))
TG(x̄k)

+ b−2γ2
k

(
1

m
+ b− 1

)
ν2 +

2L2b−2γ2
k(b− 1)

m
∥xk − 1x̄k∥2

+ 2(b− 1)L2b−2γ2
k∥x̄k − x∗∥2

≤ ∥x̄k − x∗ − b−1γkG(x̄k)∥2

− 2b−1γk(x̄k − b−1γkG(x̄k)− x∗)T (G(xk)− G(x̄k))

+ b−2γ2
k∥G(xk)− G(x̄k)∥2 + b−2γ2

k

(
1

m
+ b− 1

)
ν2

+
2L2b−2γ2

k(b− 1)

m
∥xk − 1x̄k∥2 + 2(b− 1)L2b−2γ2

k∥x̄k − x∗∥2.

Invoking Lemmas 2.5.1 and 2.4.3 and the Cauchy-Schwartz inequality, we obtain

E
[
∥x̄k+1 − x∗∥2 | Fk

]
≤ (1− b−1µγk)

2∥x̄k − x∗∥2
+ 2b−1γk(1− b−1µγk)∥x̄k − x∗∥∥G(xk)− G(x̄k)∥

+
b−2γ2

kL
2

m
∥xk − 1x̄k∥2 + b−2γ2

k

(
1

m
+ b− 1

)
ν2

+
2L2b−2γ2

k(b− 1)

m
∥xk − 1x̄k∥2 + 2(b− 1)L2b−2γ2

k∥x̄k − x∗∥2.
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We have

E
[
∥x̄k+1 − x∗∥2 | Fk

]
≤

(
(1− b−1µγk)

2 + 2b−2(b− 1)γ2
kL

2
)
∥x̄k − x∗∥2

+
2b−1γkL(1− b−1µγk)√

m
∥x̄k − x∗∥∥xk − 1x̄k∥

+
b−2(2b− 1)γ2

kL
2

m
∥xk − 1x̄k∥2 + b−2γ2

k

(
1

m
+ b− 1

)
ν2.

Note that we have

2b−1γkL(1− b−1µγk)√
m

∥x̄k − x∗∥∥xk − 1x̄k∥

= 2b−1γk
(√

µ(1− b−1µγk)∥x̄k − x∗∥
)( L√

µm
∥xk − 1x̄k∥

)
≤ b−1γk

(
µ(1− b−1µγk)

2∥x̄k − x∗∥2 + L2

µm
∥xk − 1x̄k∥2

)
.

From the preceding two relations, we obtain

E
[
∥x̄k+1 − x∗∥2 | Fk

]
≤

(
(1− b−1µγk)

2(1 + µb−1γk) + 2b−2(b− 1)γ2
kL

2
)
∥x̄k − x∗∥2

+
b−1γkL

2

m

(
1

µ
+ b−1(2b− 1)γk

)
∥xk − 1x̄k∥2

+ b−2γ2
k

(
1

m
+ b− 1

)
ν2.

From γk ≤ bµ
4(b−1)L2 , we obtain

E
[
∥x̄k+1 − x∗∥2

]
≤ (1− µb−1γk

2
)E

[
∥x̄k − x∗∥2

]
+

b−1γkL
2

m

(
1

µ
+ b−1(2b− 1)γk

)
E
[
∥xk − 1x̄k∥2

]
+ b−2γ2

k

(
1

m
+ b− 1

)
ν2.

(b) From Equation 2.4.1 and invoking Lemma 2.4.4(b), we have

∥xk+1 − 1x̄k+1∥2 = ∥Wxk − γkWyk − 1(x̄k − γkȳk)∥2
= ∥Wxk − 1x̄k∥2 − 2γk⟨Wxk − 1x̄k,Wyk − 1ȳk⟩
+ γ2

k∥Wyk − 1ȳk∥2.

15



By Invoking Lemma 2.4.2 and Lemma 2.4.4(c), we obtain

∥xk+1 − 1x̄k+1∥2 = ρ2W∥xk − 1x̄k∥2 + 2γk∥Wxk − 1x̄k∥∥Wyk − 1ȳk∥+ ρ2Wγ2
k∥yk − 1ȳk∥2

≤ ρ2W∥xk − 1x̄k∥2 + 2ρ2Wγk∥xk − 1x̄k∥∥yk − 1ȳk∥+ ρ2Wγ2
k∥yk − 1ȳk∥2

≤ ρ2W∥xk − 1x̄k∥2 + ρ2Wγk

(
1− ρ2W
2γkρ2W

∥xk − 1x̄k∥2 +
2γkρ

2
W

1− ρ2W
∥yk − 1ȳk∥2

)
+ ρ2Wγ2

k∥yk − 1ȳk∥2

=
1 + ρ2W

2
∥xk − 1x̄k∥2 +

γ2
k(1 + ρ2W )ρ2W

1− ρ2W
∥yk − 1ȳk∥2.

We obtain

E
[
∥xk+1 − 1x̄k+1∥2

]
≤ 1 + ρ2W

2
E
[
∥xk − 1x̄k∥2

]
+

γ2
k(1 + ρ2W )ρ2W

1− ρ2W
E
[
∥yk − 1ȳk∥2

]
.

(c) Next we obtain the third recursive relation. For the ease of presentation, we will use the
following compact notation.

Gk ≜ G(xk), G̃k ≜ G(xk, ξk), G̃e
k ≜ G̃k − ek,

∇i,k ≜ ∇fi(xi,k), ∇̃i,k ≜ ∇fi(xi,k, ξi,k),

∇̃e
i,k ≜ ∇fi(xi,k, ξi,k)− ei,k.

Note that E
[
G̃e

k | Fk

]
= Gk, E

[
G̃e

k+1 | Fk+1

]
= Gk+1.

We can write, from Lemma 2.4.4(b),

∥ei,k∥2 =
∥∥∥(∇i,k − bUℓk∇ℓk

i,k

)∥∥∥2

= ∥∇i,k∥2 + b2
∥∥∥Uℓk∇ℓk

i,k

∥∥∥2

− 2b (∇i,k)
T Uℓk∇ℓk

i,k.

Taking conditional expectations, we have

E
[
∥ei,k∥2 | Fk ∪ {ξi,k}

]
= ∥∇i,k∥2 + b

b∑
ℓ=1

∥∥Uℓ∇ℓ
i,k

∥∥2 − 2 (∇i,k)
T

b∑
ℓ=1

Uℓ∇ℓ
i,k.

We have

b∑
ℓ=1

∥∥Uℓ∇ℓ
i,k

∥∥2
=

b∑
ℓ=1

∥∥∥Uℓ (∇i,k)
(ℓ)
∥∥∥2 (2.3.1)

= ∥∇i,k∥2 .

From the two preceding relations, we obtain

E
[
∥ei,k∥2 | Fk ∪ {ξi,k}

]
= (b− 1) ∥∇i,k∥2
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From the update rules of the algorithm, we have

∥yk+1 − 1ȳk+1∥2 ≤ ∥Wyk + b−1G̃e
k+1 − b−1G̃e

k − 1ȳk + 1ȳk − 1ȳk+1∥2

= ∥Wyk − 1ȳk∥2 + b−2∥G̃e
k+1 − G̃e

k∥2

+ 2b−1⟨Wyk − 1ȳk, G̃
e
k+1 − G̃e

k⟩
+ 2⟨yk+1 − 1ȳk,1(ȳk − ȳk+1)⟩+m∥ȳk − ȳk+1∥2

≤ ρ2W∥yk − 1ȳk∥2 + b−2∥G̃e
k+1 − G̃e

k∥2

+ 2b−1⟨Wyk − 1ȳk, G̃
e
k+1 − G̃e

k⟩ −m∥ȳk − ȳk+1∥2

≤ (1 + b−1η)ρ2W∥yk − 1ȳk∥2 + (
1

b2
+

1

bη
)∥G̃e

k+1 − G̃e
k∥2, (3.1.1)

where η > 0 is an arbitrary scalar. In the following, we present a few intermediary results
that will be used to derive the third recursive inequality.
Claim 1: The following holds

E
[
∥G̃e

k+1 − G̃e
k∥2 | Fk

]
≤ E

[
∥Gk+1 −Gk∥2 | Fk

]
+ E

[
∥Gk+1∥2 | Fk

]
+ E

[
∥G̃e

k+1 −Gk+1∥2 | Fk

]
+ 2E

[
∥G̃e

k −Gk∥2 | Fk

]
. (3.1.2)

Proof. We can write

E
[
∥G̃e

k+1 − G̃e
k∥2 | Fk

]
= E

[
∥Gk+1 −Gk∥2 | Fk

]
+ 2E

[
⟨Gk+1, G̃

e
k+1 − G̃e

k −Gk+1 +Gk⟩ | Fk

]
− 2E

[
⟨Gk, G̃

e
k+1 − G̃e

k −Gk+1 +Gk⟩ | Fk

]
+ E

[
∥G̃e

k+1 − G̃e
k −Gk+1 +Gk∥2 | Fk

]
. (3.1.3)

Note that since xk+1 is characterized in terms of ξk, using Assumption 2.1.2, Assumption
2.4.1, and Lemma 2.4.1 we have

E
[
G̃e

k+1 −Gk+1 | Fk

]
= Eξk,ℓk

[
Eξk+1,ℓk+1

[
G̃e

k+1 −Gk+1 | Fk+1

]]
= Eξk,ℓk

[
Eξk+1,ℓk+1

[
G̃k+1 − ek+1 −Gk+1 | Fk+1

]]
= 0.

We also have E
[
G̃e

k −Gk | Fk

]
= 0. Thus, we obtain

E
[
⟨Gk, G̃

e
k+1 − G̃e

k −Gk+1 +Gk⟩ | Fk

]
= ⟨Gk,E

[
G̃e

k+1 − G̃e
k −Gk+1 +Gk | Fk

]
⟩

= ⟨Gk, 0⟩ = 0.
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We can also write

E
[
⟨Gk+1, G̃

e
k+1 − G̃e

k −Gk+1 +Gk⟩ | Fk

]
= Eξk,ℓk

[
⟨Gk+1,Eξk+1,ℓk+1

[
G̃e

k+1 −Gk+1 | Fk+1

]]
⟩+ E

[
⟨Gk+1,−G̃e

k +Gk⟩ | Fk

]
= Eξk,ℓk

[
⟨Gk+1,Eξk+1,ℓk+1

[
G̃e

k+1 −Gk+1 | Fk+1

]]
⟩+ E

[
⟨Gk+1,−G̃e

k +Gk⟩ | Fk

]
= E

[
⟨Gk+1,−G̃e

k +Gk⟩ | Fk

]
.

From the preceding relations, we have

E
[
∥G̃e

k+1 − G̃e
k∥2 | Fk

]
≤ E

[
∥Gk+1 −Gk∥2 | Fk

]
+ 2E

[
⟨Gk+1,−G̃e

k +Gk⟩ | Fk

]
+ E

[
∥G̃e

k+1 − G̃e
k −Gk+1 +Gk∥2 | Fk

]
≤ E

[
∥Gk+1 −Gk∥2 | Fk

]
+ 2E

[
⟨Gk+1,−G̃e

k +Gk⟩ | Fk

]
+ E

[
∥G̃e

k+1 −Gk+1∥2 | Fk

]
+ E

[
∥G̃e

k −Gk∥2 | Fk

]
+ 2E

[
⟨G̃e

k+1 −Gk+1, G̃
e
k −Gk⟩ | Fk

]
.

Note that we have

E
[
⟨G̃e

k+1 −Gk+1, G̃
e
k −Gk⟩ | Fk

]
= Eξk,ℓk

[
⟨Eξk+1,ℓk+1

[
G̃e

k+1 −Gk+1 | Fk+1

]
, G̃e

k −Gk⟩
]

= 0.

Also, we have

2E
[
⟨Gk+1,−G̃e

k +Gk⟩ | Fk

]
≤ E

[
∥Gk+1∥2 | Fk

]
+ E

[
∥G̃e

k+1 −Gk+1∥2 | Fk

]
.

From the last three relations, we obtain Claim 1.

Claim 2: The following relations hold.

E
[
∥G̃e

k −Gk∥2 | Fk

]
≤ mbν2 + (b− 1)∥Gk∥2,

E
[
∥G̃e

k+1 −Gk+1∥2 | Fk

]
≤ mbν2 + (b− 1)E

[
∥Gk+1∥2 | Fk

]
. (3.1.4)

Proof. From Assumption 2.4.1 and Lemma 2.4.1, we have

E
[
∥G̃e

k −Gk∥2 | Fk

]
= E

[
∥G̃k − ek −Gk∥2 | Fk

]
= E

[
∥G̃k −Gk∥2 | Fk

]
+ E

[
∥ek∥2 | Fk

]
= mν2 +

m∑
i=1

E
[
∥ei,k∥2 | Fk

]
= mν2 +

m∑
i=1

(b− 1)
(
ν2 + ∥∇i,k∥2

)
= mbν2 + (b− 1)∥Gk∥2.
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Using this relation, we can also write

E
[
∥G̃e

k+1 −Gk+1∥2 | Fk

]
= Eξk,ℓk

[
Eξk+1,ℓk+1

[
∥G̃e

k+1 −Gk+1∥2 | Fk+1

]]
≤ Eξk,ℓk

[
mbν2 + (b− 1)∥Gk+1∥2 | Fk

]
= mbν2 + (b− 1)E

[
∥Gk+1∥2 | Fk

]
.

Claim 3: The following inequality holds.

E
[
∥Gk+1 −Gk∥2 | Fk

]
≤ 2L2

(
b−2L2γ2

k + ∥W − I∥2
)
∥xk − 1x̄k∥2

+ 2L2ρ2Wγ2
kE

[
∥yk − 1ȳk∥2 | Fk

]
+ 2b−2mL4γ2

k∥x̄k − x∗∥2 + L2γ2
kb

−2(b− 1)∥Gk∥2

+mL2b−2(
1

m
+ b− 1)ν2γ2

k. (3.1.5)

Proof. From the Lipschitzian property of the local objectives we have ∥Gk+1 − Gk∥2 ≤
L2∥xk+1 − xk∥2. Next, we estimate the term ∥xk+1 − xk∥2. We have

∥xk+1 − xk∥2 = ∥Wxk − γkWyk − xk∥2
= ∥(W − I)(xk − 1x̄k)− γkWyk − xk∥2
≤ ∥W − I∥2∥xk − 1x̄k∥2 + γ2

k∥Wyk∥2 − 2γk⟨(W − I)(xk − 1x̄k),Wyk⟩
= ∥W − I∥2∥xk − 1x̄k∥2 + γ2

k∥Wyk − 1ȳk∥2 +mγ2
k∥ȳk∥2

− 2γk⟨(W − I)(xk − 1x̄k),Wyk − 1ȳk⟩
≤ ∥W − I∥2∥xk − 1x̄k∥2 + ρ2Wγ2

k∥yk − 1ȳk∥2 +mγ2
k∥ȳk∥2

+ 2ρWγk∥W − I∥∥xk − 1x̄k∥∥yk − 1ȳk∥
≤ 2∥W − I∥2∥xk − 1x̄k∥2 + 2ρ2Wγ2

k∥yk − 1ȳk∥2 +mγ2
kb

−2∥bȳk∥2.
From Lemma 2.5.1(b) and (c) we have

E
[
∥bȳk∥2 | Fk

]
= E

[
∥bȳk −Gk∥2 | Fk

]
+ ∥Gk∥2

≤
(

1

m
+ b− 1

)
ν2 +

b− 1

m
∥Gk∥2 + ∥Gk∥2 .

Also, from Lemma 2.5.1(e) and (f) we have

∥Gk∥2 ≤ 2∥Gk − G(x̄k)∥2 + 2∥G(x̄k)∥2 ≤
2L2

m
∥xk − 1x̄k∥2 + 2L2∥x̄k − x∗∥2.

From the preceding relations, we obtain Claim 3.

Claim 4: We have

E
[
∥Gk+1∥2 | Fk

]
≤ 2L2m∥x̄k − x∗∥2 + 2L2γ2

k(1 + ρ2W )ρ2W
1− ρ2W

E
[
∥yk − 1ȳk∥2 | Fk

]
+ 2L2

(
1 + b−1γkL

2(
1

µ
+ b−1(2b− 1)γk)

)
∥xk − 1x̄k∥2

+ 2mL2b−2ν2

(
1

m
+ b− 1

)
γ2
k.
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Proof. From Lemma 2.5.1(g) we can write

E
[
∥Gk+1∥2 | Fk

]
= Eξk,ℓk

[
Eξk+1,ℓk+1

[
∥Gk+1∥2 | Fk+1

]]
≤ 2L2E

[
∥xk+1 − 1x̄k+1∥2 | Fk

]
+ 2mL2E

[
∥x̄k+1 − x∗∥2 | Fk

]
.

Substituting E [∥xk+1 − 1x̄k+1∥2 | Fk] and E [∥x̄k+1 − x∗∥2 | Fk] from the first two recursive
bounds, we can conclude Claim 4. Note that from the first two recursions we have

E
[
∥x̄k+1 − x∗∥2 | Fk

]
≤

(
1− µb−1γk

2

)
∥x̄k − x∗∥2

+
b−1γkL

2

m

(
1

µ
+ b−1(2b− 1)γk

)
∥xk − 1x̄k∥2

+ b−2γ2
k

(
1

m
+ b− 1

)
ν2.

And also

∥xk+1 − 1x̄k+1∥2 ≤
1 + ρ2W

2
∥xk − 1x̄k∥2 +

γ2
k(1 + ρ2W )ρ2W

1− ρ2W
∥yk − 1ȳk∥2.

From the preceding relations, we obtain

E
[
∥Gk+1∥2 | Fk

]
≤ 2L2

(
1 + ρ2W

2
∥xk − 1x̄k∥2 +

γ2
k(1 + ρ2W )ρ2W

1− ρ2W
E
[
∥yk − 1ȳk∥2 | Fk

])
+ 2L2m

(
(1− µb−1γk

2
)∥x̄k − x∗∥2

+
b−1γkL

2

µm
(1 + b−1µγk)∥xk − 1x̄k∥2 + b−2γ2

k

2(2b− 1)ν2

m

)
≤ 2L2m∥x̄k − x∗∥2 + 2L2γ2

k(1 + ρ2W )ρ2W
1− ρ2W

E
[
∥yk − 1ȳk∥2 | Fk

]
+ 2L2

(
1 + µ−1b−1γkL

2(1 + b−1µγk)
)
∥xk − 1x̄k∥2 + 4L2b−2γ2

k(2b− 1)ν2.
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By combining (3.1.1), Claims 1 to 4, and Lemma 2.5.1(g), we obtain

E
[
∥yk+1 − 1ȳk+1∥2

]
≤

(
(1 + b−1η)ρ2W + γ2

k

(
1

b2
+

1

bη

)(
2L2ρ2W

+
2(b− 1)L2(1 + ρ2W )ρ2W

1− ρ2W

))
E
[
∥yk − 1ȳk∥2

]
+ 2L2m

(
1

b2
+

1

bη

)(
b−2L2γ2

k + (b− 1)
(
3 + L2γ2

kb
−2
))

E
[
∥x̄k − x∗∥2

]
+ 2L2

(
b−2L2γ2

k + (b− 1)
(
3 + L2γ2

kb
−2

+b−1γkL
2

(
1

µ
+ b−1(2b− 1)γk

))
+∥W − I∥2

)( 1

b2
+

1

bη

)
E
[
∥xk − 1x̄k∥2

]
+

(
1

b2
+

1

bη

)
ν2

(
mL2b−2

(
1

m
+ b− 1

)
γ2
k + 3mb

)
.

3.2 Rate Analysis

We proceed with deriving the rate statements of Algorithm 2.

Theorem 3.2.1 (Rate statements) Consider Algorithm 2. Let Assumptions 2.1.1, 2.1.2,
2.1.3, 2.1.4, and 2.4.1 hold. Let us define e1,k ≜ E [∥x̄k − x∗∥2], e2,k ≜ E [∥xk − 1x̄k∥2], and
e3,k ≜ E [∥yk − 1ȳk∥2] for k ≥ 0. Suppose γk :=

γ
k+Γ

b with γ > 0, Γ > γ,

Γ ≥ γ

√
3

1− ρ2W

(
1

b2
+

1

bη

)(
2L2ρ2W +

2(b− 1)L2(1 + ρ2W )ρ2W
1− ρ2W

)
,

and Γ ≥ γ

(
min

{
2b

µ+ L
,

bµ

4(b− 1)L2

})−1

. (3.2.1)

(a) Then, there exist positive scalars θt > 0 for t = 1, . . . , 9 with θ4 < 1 and θ6 < 1 such that
for all k ≥ 0 we have

e1,k+1 ≤ (1− θ1γk)e1,k + θ2γke2,k + θ3γ
2
k,

e2,k+1 ≤ (1− θ4)e2,k + θ5γ
2
ke3,k,

e3,k+1 ≤ (1− θ6)e3,k + θ7e1,k + θ8e2,k + θ9.

(b) Let γ > 1
θ1
. Let us define ê1 := Γe1,0n1,ê2 := Γe2,0n2, and ê3 := max

{
Γ3θ9

θ6
n3, e3,0

}
,

where n1,n2,n3 > 0 are given as n1 := 2C2

C3Γ−2C1C4C5
, n2 := 2C4C5

Γ
n1, and n3 := C5

Γ
n1, where

C1 ≜ γθ2e2,0, C2 ≜ θ3γ
2, C3 ≜ (γθ1 − 1) e1,0, C4 ≜

6θ9θ5γ2

e2,0θ4θ6
, C5 ≜

θ7e1,0
θ9

, and C6 ≜
θ8e2,0
θ9

.
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Then, if Γ > max
{√

2C4C6,
2C1C4C5

C3
, 4
θ4
− 1

}
, and for all

η < b

(
1− ρ2W
ρ2W

)
, and k > γ

√√√√(
1
b2
+

2ρ2W
b2(1−ρ2W )

)(
2L2ρ2W +

2(b−1)L2(1+ρ2W )ρ2W
1−ρ2W

)
(1 + ρ2W )/2

− Γ, (3.2.2)

e1,k ≤
ê1

k + Γ
, e2,k ≤

ê2
(k + Γ)2

, e3,k ≤ ê3. (3.2.3)

Proof. (a) Consider Proposition 3.1.1. It suffices to show that 0 < 1 − θ6 < 1. From
Proposition 3.1.1 (c), we have

1− θ6 = (1 + b−1η)ρ2W + γ2
k

(
1

b2
+

1

bη

)(
2L2ρ2W +

2(b− 1)L2(1 + ρ2W )ρ2W
1− ρ2W

)
.

It can be observed that 0 < 1− θ6. Remaining is to show 1− θ6 < 1, that is, we need to show

(1 + b−1η)ρ2W + γ2
k

(
1

b2
+

1

bη

)(
2L2ρ2W +

2(b− 1)L2(1 + ρ2W )ρ2W
1− ρ2W

)
< 1. (3.2.4)

From the condition on k in equation (3.2.2), we have

(
k + Γ

γ

)2

>

(
1
b2
+

2ρ2W
b2(1−ρ2W )

)(
2L2ρ2W +

2(b−1)L2(1+ρ2W )ρ2W
1−ρ2W

)
(1 + ρ2W )/2

.

This can also be written as(
γ

k + Γ

)2

<
(1 + ρ2W )/2(

1
b2
+

2ρ2W
b2(1−ρ2W )

)(
2L2ρ2W +

2(b−1)L2(1+ρ2W )ρ2W
1−ρ2W

) ,
Substituting from the condition on η in equation (3.2.2), substituting η = b

2

(
1−ρ2W
ρ2W

)
and

from the definition of sequence γk =
γ

k+Γ
, we have

γ2
k

(
1

b2
+

1

bη

)(
2L2ρ2W +

2(b− 1)L2(1 + ρ2W )ρ2W
1− ρ2W

)
<

(1 + ρ2W )

2
= 1− (1− ρ2W )

2
= 1− ηρ2W

b

Therefore, we have

ηρ2W
b

+ γ2
k

(
1

b2
+

1

bη

)(
2L2ρ2W +

2(b− 1)L2(1 + ρ2W )ρ2W
1− ρ2W

)
< 1.

(b) We select θ3 arbitrarily large such that n1 ≥ 1. Consecutively, we can state that n2 ≥ 1
and n3 ≥ 1. We have

e1,0 ≤ e1,0n1 ≤
ê1
Γ

≤ ê1
0 + Γ

.
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The first inequality in (3.2.3) holds true for k = 0. Now from the definition of ẽ2, we have

e2,0 ≤ e2,0n2 ≤
ê2
Γ2

≤ ê2
(0 + Γ)2

.

This implies the second inequality in (3.2.3) holds true for k = 0. Further, for e3,0, we
have e3,0 ≤ ê3. Therefore, the third inequality in (3.2.3) holds true for k = 0. Now let
the induction hypothesis holds true for some k ≥ 0. From the definition of n1, we have
C2 ≤ (C3Γ− 2C1C4C5)n1. Therefore, we have C1n2Γ + C2 ≤ C3n1Γ. Next, substituting the
values of C1, C2, and C3, in the above, we have

ê1
(k + Γ)2

≤ γθ1ê1
(k + Γ)2

− γθ2ê2
(k + Γ)2

− θ3γ
2

(k + Γ)2
.

We have γ ≥ γk. Substituting in the above

ê1
(k + Γ)2

≤ γθ1ê1
(k + Γ)2

− γkθ2ê2
(k + Γ)2

− θ3γ
2

(k + Γ)2
.

Further, by bounding ê1
(k+Γ)(k+Γ+1)

≤ ê1
(k+Γ)2

, we obtain

ê1
(k + Γ)

− ê1
(k + Γ + 1)

≤ γθ1ê1
(k + Γ)2

− γkθ2ê2
(k + Γ)2

− θ3γ
2

(k + Γ)2
.

By induction hypothesis, and Theorem3.2.1(a), the first inequality of (3.2.3) holds for k + 1.
Next, from the definition of n2, we have

n2 ≥
C4C5

Γ
n1 ≥ C4n3.

Substituting for C4 and rearranging the terms, we obtain

ê3 ≤
θ4

2θ5γ2
ê2 ≤

1

2θ5γ2

(
θ4 −

θ4
2

)
ê2.

From 2Γ+1
(Γ+1)2

≤ θ4
2
, the preceding inequality becomes

2Γ + 1

(Γ + 1)2
ê2 ≤ θ4ê2 − 2θ5γ

2ê3.

Further, from 2k+2Γ+1
(k+Γ+1)2

≤ 2Γ+1
(Γ+1)2

, we have

ê2
(Γ + 1)2

− ê2
(k + Γ + 1)2

≤ θ4ê2
(Γ + 1)2

− 2θ5γ
2ê3

(Γ + 1)2
.

By induction hypothesis and Theorem 3.2.1 (a), we show the second inequality of (3.2.3)
holds for k + 1.
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Next, from the definition of n3, we have n3Γ ≥ C5n1. Substituting value of C5 and rearranging
the terms, we obtain

3θ7
Γ

ê1 ≤ θ6ê3.

Now, from the upper bound of Γ, we have Γ2 ≥ 2C4C6. From this, we have

Γ2

(
C5

Γ
n1

)
≥ 2C4C6

(
C5

Γ
n1

)
≥ C6

(
2C4C5

Γ
n1

)
.

Substituting for C6 and rearranging terms, we have

3θ8
Γ2

ê2 ≤ θ6ê3.

From the preceding two results and 3θ9 ≤ θ6ê3, we have

(1− θ6) ê3 +
θ7

k + Γ
ê1 +

θ8

(k + Γ)2
ê2 + θ9 ≤ ê3.

By induction hypothesis and Theorem 3.2.1 (a), we conclude that the third inequality of
(3.2.3) holds for k + 1.

3.3 Concluding Remarks

We derive the error bounds for all three error metrics that are E [∥x̄k − x∗∥2], E [∥xk − 1x̄k∥2],
and E [∥yk − 1ȳk∥2]. We provide non-asymptotic convergence rates of the order O (1/k) for
an optimality metric, and O (1/k2) for a consensus violation metric. The observed rates by
the proposed DRBSGT algorithm match with those of the DSGT algorithm [15].
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CHAPTER IV

NUMERICAL EXPERIMENTS

In this chapter, we provide numerical experiments to validate our theoretical results. We
consider the logistic loss regression problem for the numerical analysis of the proposed scheme
and discuss the other schemes for comparison with DRBSGT. In Section 4.1, we provide the
setup for the numerical experiment, which includes the tuning and data set parameters. In
Section 4.2, we observe the insights of the results of the numerical experiment and thesis.
The Section 4.3 concludes the thesis.
For the experiments, we consider the regularized logistic regression loss minimization problem
presented in Section 1.1. Consider a data set denoted by D ≜ {(uj, vj) ∈ Rn×{−1,+1} | j ∈
S} where S ≜ {1, . . . , s} denotes the index set. Let Si denote the index set of the data locally
known by agent i where ∪m

i=1Si = S. The problem can be formulated as min
∑m

i=1 fi(x) where
we define local functions fi as

fi(x) ≜
1

|S|
∑
j∈Si

ln
(
1 + exp

(
−vju

T
j x

))
+

µ

2m
∥x∥2, (4.0.1)

where uj ∈ Rn and vj ∈ {−1, 1} for j ∈ Si which denotes the binary value of the jth data
label.
We simulate the proposed distributed randomized block stochastic gradient tracking method
(DRBSGT) algorithm on a network consisting of m agents. We provide a comparison of
suboptimality and consensus metrics of DRBSGT with those of two existing methods namely,
distributed stochastic gradient tracking (DSGT) [15] and adapt then combine (ATC), a
variant of block distributed Successive cONvex Approximation algorithm over Time-varying
digrAphs (block SONATA) in convex regimes [14].

4.1 Simulation

We perform simulations on two data sets with m agents. We use the complete and the
ring graph structure to represent the communication among the agents. We implement the
simulations on MNIST and Synthetic data set for m = 5 and m = 5, 10, respectively. The
MNIST data set consists of 70, 000 labels and 784 attributes, whereas the Synthetic data set
has 10, 000 labels and 10, 000 attributes with a Gaussian distribution with mean as 5 and
standard deviation as 0.5. We consider different parameters for different data sets mentioned
in Table 2. Further, we use γ = 1e + 1, Γ = 1e + 4, µ = 1e − 1, and the batch size for
computing gradient from each agent ϵ = 1e+ 2 for both data sets. Taking into account the
stochasticity involved in DRBSGT and DSGT schemes, we have obtained different sample
paths in our implementations. In Figure 2 we have compared the performance with respect
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Table 2: Parameters of various settings used for implementation

Schemes

Data sets
MNIST (m = 5) Synthetic (m = 5) Synthetic (m = 10)

DRBSGT

n = 784 n = 1e+ 4 n = 1e+ 4
|S| = 5e+ 4 |S| = 1e+ 4 |S| = 1e+ 4
µ = 1e−1 µ = 1e−1 µ = 1e−1
ϵ = 1e+2 ϵ = 1e+2 ϵ = 1e+2
b = 14 b = 100 b = 100

DSGT

n = 784 n = 1e+ 4 n = 1e+ 4
|S| = 5e+ 4 |S| = 1e+ 4 |S| = 1e+ 4
µ = 1e−1 µ = 1e−1 µ = 1e−1
ϵ = 1e+2 ϵ = 1e+2 ϵ = 1e+2

ATC

n = 784 n = 1e+ 4 n = 1e+ 4
|S| = 5e+ 4 |S| = 1e+ 4 |S| = 1e+ 4
µ = 1e−1 µ = 1e−1 µ = 1e−1
b = 14 b = 100 b = 100

Table 3: Objective function value comparision of Algorithm 2 vs. DSGT vs. ATC for 90% CIs

Schemes

Data sets
MNIST (m = 5) Synthetic (m = 5) Synthetic (m = 10)

DRBSGT (Complete) [1.047e+1, 1.057e+1] [9.282e+0, 9.315e+0] [5.071e+0, 5.151e+0]

DRBSGT (Ring) [1.047e+1, 1.056e+1] [9.282e+0, 9.314e+0] [5.105e+0, 5.117e+0]

DSGT (Complete) [4.974e+0, 5.471e+0] [6.508e+1, 14.491e+1] [14.464e+1, 31.159e+1]

DSGT (Ring) [5.057e+0, 5.222e+0] [4.622e+1, 9.889e+1] [2.218e+1, 6.011e+1]

ATC (Complete) 8.078e+3 2.489e+4 2.509e+4

ATC (Ring) 8.076e+3 2.489e+4 2.509e+4

to the number of local gradient evaluations. These local gradient evaluations are the number
of total samples used in each gradient step. The highlighted areas in the plots in Figure 2
represent the confidence intervals. We provide 90% confidence intervals on the errors of the
sample paths for each setting in Table 3. We choose the total sample paths for MNIST and
Synthetic data sets as 5 and 10, respectively.

4.2 Insights

In Figure 2, we notice that the proposed DRBSGT scheme converges for both MNIST and
Synthetic data sets, considering both the suboptimality and consensus metrics. We observe
that with the comparison to DSGT and ATC, the performance of DRBSGT ameliorates.
From Table 3 and Figure 2, we notice that when the number of attributes and the number
of agents m increases, the performance improves for the proposed algorithm. The second
row in Figure 2 provides significant evidence that the consensus errors are bounded and
reducing. We did not observe any significant difference in the performance based on the
network connectivity structure.
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Figure 2: Algorithm 2 vs. DSGT vs. ATC in terms of objective function value and consensus error

4.3 Concluding Remarks

We validate that the theoretical claims hold after the numerical results. We compare
the performance of our scheme with DSGT [15] and ATC [14] under different network
assumptions on logistic loss regression minimization problems. The data sets we consider
for the implementation are the Modified National Institute of Standards and Technology
(MNIST) and synthetic data sets.
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CHAPTER V

CONCLUSION AND FUTURE DIRECTION

In this thesis, we consider the a class of distributed stochastic optimization problems over
undirected networks. Motivated by big data applications, we address this problem considering
a possibility of large-dimensionality of the solution space where the computation of the local
gradient mappings may become expensive. The main contributions of the thesis are as follows:

1. We develop an algorithm called distributed randomized block stochastic gradient
tracking (DRBSGT) for addressing distributed stochastic optimization problems of the
form (2.1.1) with possibly a large dimension in the solution space.

2. We obtain the rate of O(1/k) on a suboptimality and O(1/k2) on a consensus violation
metric for the DRBSGT algorithm, these rate statements are comparable with those of
DSGT.

3. We validate the theoretical claims by performing some numerical experiments. We
compare the performance of our scheme with that of DSGT [15] and ATC [14] under
different network assumptions on logistic loss regression minimization problems. The
data sets we consider for the implementation are the Modified National Institute of
Standards and Technology (MNIST) and synthetic data sets.

In this thesis, we consider synchronous communications among the agents, i.e., at every
iteration k, all the agents communicate with their neighbors synchronously and seek to
minimize the average cost function. For a more practical perspective of addressing this
problem, we plan to relax the assumption of synchronous communications.
As a future direction to this thesis research, we plan on considering asynchronous communi-
cations among agents. In particular:

1. We plan to develop a distributed randomized block gossip-like stochastic gradient
tracking (asyn-DRBSGT) algorithm for addressing distributed stochastic optimization
problems of the form (2.1.1) with possibly a large dimension in the solution space and
asynchronous communication among the agents.

2. We plan to obtain reasonable rate statements for both suboptimality and consensus
violation metrics for asyn-DRBSGT.
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