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Abstract: Many soft biological tissues are heterogeneous, having different properties at 

different locations. Characterizing these tissues is very important for virtually testing 

potential medical technologies or protocols. Some synthetic thin structures used in various 

manufacturing processes are also complex in material composition. Determination of the 

mechanical properties of these structures is critical for industrial production. These 

materials can undergo very large deformation in actual applications and their behavior is 

nonlinear.  This makes their characterization difficult and there is a need for an efficient 

method.  In this study, hyperelastic material properties of a heterogeneous synthetic flat 

membrane with two constituent materials are determined using two inverse methods. One 

method is the traditional Finite Element Model Updating Method and the other is based on 

machine learning using a deep neural network. Inverse modeling was done in moderate 

strain range (engineering strain up to 37 %) with the Neo-Hookean material model and in 

the large strain (engineering strain up to 93%) range using the Yeoh model. Both the 

inverse methods were found to have very good accuracy. Accuracy in the moderate strain 

range was slightly higher than that of the high strain range. For both strain range, the 

coefficient of determination values were very close to 1 for both the stress-strain curves 

and the work-energy curves, which indicates very good accuracy.  The machine learning 

method was six orders of magnitude faster than the Finite Element Model Updating 

Method. 
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CHAPTER I 
 

 

1 INTRODUCTION AND BACKGROUND 

 

1.1 Introduction  

 

Many soft biological tissues such as eardrums [1], skins [2], heart valves [3] are heterogeneous. 

Characterization of the physical properties of these tissues is challenging. Many bio-tissues are soft 

and complex and therefore, preparing testing bio-samples is very difficult. A limited number of 

bio-samples can’t represent the properties of an entire tissue since tissue properties vary at different 

locations. It is desirable to obtain the bio-tissue properties in vivo because when they are removed 

from their bio-contexts, their properties change with time. Soft bio-tissues can undergo very large 

deformation in extreme conditions [4]. The tissues exhibit nonlinear behavior [5] which is difficult 

to characterize. Synthetic thin structures such as stretchable electronics [6], foam metals [7], and 

non-woven fabrics [8] have complex material compositions. For the optimization of industrial 

production processes, it’s critical to obtain the mechanical properties of these heterogeneous thin 

products. They can also undergo large deformation [9] in actual applications. The linear elastic 

model is incapable of characterizing materials that undergo large deformation. Hyperelastic and 

viscoelastic models are required for this purpose.  
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(a) (b) 

Figure 1.1 (a) Tympanic membrane with various properties at various locations [10] (b) 

Stretchable silicon circuit in a wavy geometry, compressed in its center by a glass capillary tube 

(main) and wavy logic gate built with two transistors (top right inset) [6] 

In this research, a combination of numerical simulation, theoretical study, and experimental 

validation was used to achieve the following specific objectives:  

a) Develop an efficient computational framework to solve an inverse problem to determine the 

hyper-elastic mechanical properties of thin, flat, heterogeneous membranes based on full-field 

strain measurements.   

b) Compare the accuracy and efficiency of the developed Machine Learning based inversed method 

to those of the traditional Finite Element Model Updating method. 

c) Validate the framework on synthesized membranes consisting of elastomers of two different 

elastic moduli. 

 

1.2 Background  

1.2.1 Heterogeneous materials  

Heterogeneous materials consist of significantly different and randomly distributed materials. 

Constituent heterogeneity, microstructural heterogeneity, or crystal structure heterogeneity can 

cause material heterogeneity. The domain can be of various sizes and geometry.  
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Figure 1.2 Schematics of a heterogeneous lamella structure [11] 

 

1.2.2 Strain Measurement  

A branch of new methods has emerged to measure soft materials deformation with the development 

of microscopic and electron microscope technology. In a scanning electron microscopy (SEM) 

system [12], a beam of electrons is produced with an electron gun. A path through the microscope 

within a vacuum is followed by the electron beam. Electrons and X-rays are ejected from the sample 

when the beam hits the sample. These X-rays, backscattered electrons, and secondary electrons are 

collected by detectors and are then converted into a signal that is converted to produce the final 

image. There are three functional parts of an atomic force microscopy (AFM) system [13]: a sharp 

tip mounted to a piezoelectric actuator, a micro-machined cantilever probe, and a position-sensitive 

photodetector. During operation, the sharp tip scans the surface of the sample. The light intensities 

on the photodetectors fluctuate while the tips move up and down with the profile of the surface. A 

Scanning tunneling microscope (STM) [14] is based on quantum tunneling. It consists of a metallic 

tip, which is brought very near to the surface of the sample to be examined, with applied voltage. 

Electrons are extracted from the surface by quantum tunneling when voltage is applied. An 

electrical current is created between the tip and the surface. When the tip lies on top of an atom, 
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tunneling occurs at very short distances. The position of the atoms of the metal surface can be 

deduced by drawing the current intensity versus the tip.  

There are some limitations of the methods described above. AFM is limited to a very small area 

and relies on contact surface scanning. SEM is not possible for any in vitro/in vivo setup since it 

requires a conductive surface and a high-energy electron beam (tens of kV) to scan the surface. 

Sample preparation in the form of fixation, dehydration, and staining is required for SEM and STM, 

which can have a shrinking effect on bio-membranes resulting in dysfunction. The electron beam 

can cause damage to the biological samples Therefore, all kinds of electron microscopy are not the 

best option for biomaterials measurement [15].  

Non-contact measurement techniques such as the conventional laser confocal microscopy for 3D 

profilometry [16] are not suitable for real-time measurements when fast evolution under high strain-

rate loading is involved, since it requires the acquisition of a set of images and takes a relatively 

long time.  Spinning disk confocal microscopy [17] is not fast enough for the investigation of the 

hyper-elastic behavior of biomaterials under large deformation. Reflected light confocal 

microscopy [18] also suffers from low real-time imaging speed. 

Digital image correlation (DIC) is another widely used technique in the field of mechanics [19–

22]. During the implementation of the 2D DIC [23] method, the first step is to define a region of 

interest (ROI) in the reference image. This region is further divided into evenly spaced grids as 

shown in Figure 1.3(a). The displacements are computed at each point of the virtual grids. Full-

field deformation (Figure 1.3(b)) is obtained by computing displacement at each point of the virtual 

grid.  In DIC, the same points or pixels are tracked from the two images recorded before and after 

deformation as schematically illustrated in Figure 1.4. To compute the displacements of point P, a 

reference subset centered at point P (x0, y0) from the reference image is used to track its 

corresponding location in the deformed image. A square subset is chosen rather than an individual 
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pixel because a subset comprising a wider variation in gray levels can distinguish itself from other 

subsets.  

  
(a) (b) 

  
Figure 1.3 (a) Region of interest divided into grids. Intersection points on the grid denote points 

in which displacement will be calculated, the red square is the subset used for tracking motion of 

centerpoint (b) calculated displacement vectors [23] 

 

Figure 1.4 Reference subset before deformation (left) and a target subset after deformation (right) 

[23] 

A cross-correlation (CC) criterion or sum-squared difference (SSD) correlation criterion is 

predefined to determine the similarity degree between the reference subset and the deformed subset. 

Once the correlation coefficient extremum, which is the peak position of the distribution of 

correlation coefficient is detected, the deformed subset position is determined. The in-plane 
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displacement vector at point P is found from the differences in the positions of the reference subset 

center and the target subset center.  

Only in-plane deformation measurement of the planar object surface can be captured by 2D DIC, 

To overcome this limitation 3D DIC was developed by applying the principle of binocular stereo-

vision [24,25]. The digital volume correlation (DVC) [26] method is another direct 3D extension 

of a 2D DIC method that can show the internal deformation field of solid objects by tracking the 

movement of a volume unit within digital image volumes of the sample.   

1.2.3 Inverse methods based on full-field measurements 

A system response can be predicted with a reliable model and known input parameters. The type 

of problem aiming at finding system response for given input parameters is referred to as a direct 

problem. A problem is an inverse [27] when it deals with the estimation of the parameters based 

on a given model and system response. Full-field displacement/strain measurement techniques such 

as Digital Image Correlation and Digital Volume Correlation have paved the way for various 

inverse identification methods [28] for the characterization of heterogeneous materials constituents.  

Finite element model updating [29,30] is the most widely used inverse strategy. This method 

iteratively updates the material parameters input into the finite element model based on the 

comparison of the corresponding output data after forward analysis (typically displacement or 

strain fields) and their experimental counterparts. The aim is to identify the set of parameters that 

provide the best match between numerical outputs and real behavior captured through experiments. 

FEMU can be utilized to determine the distribution of properties in materials with heterogeneous 

stress/strain fields. One of the benefits of the FEMU method is the fact that full-field measurements 

on the whole domain are not required [31] and therefore, it can carry out parameter identification 

using partial knowledge on the displacement data. Inverse solutions within a smaller region of 

interests are normally preferred as these would be more stable and generate less discretization error. 
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Moreover, material models with complex geometries and boundary conditions can be characterized 

by taking the advantage of finite element simulation capabilities. An inverse technique was 

developed by Wang et al [32] for identifying viscoelastic adhesive interfacial parameters relying 

on damage state at the interface. To record failure positions of interfacial area, deformation images 

were recorded at the surface of the specimen. An inverse strategy was proposed by Fedele et al. 

[33] for estimating mechanical parameters of a cohesive law of an adhesive layer using full-field 

displacement data supplied by DIC.deformation measurement of the planar object surface can be 

captured by 2D DIC. 

 

Figure 1.5 Finite Element Model Updating algorithm [34] 

 

The constitutive equation gap method (CEGM) [35] is also called an Error in the Constitutive 

Equation. The principle of CEGM is to minimize the difference between a statically admissible 

stress field and the stress field calculated from a measured displacement field and a chosen 

constitutive model. The first step is to define an initial set of material parameters, then the statically 
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admissible stress field with this initial set of material parameters will be determined. Then an 

objective function is evaluated, which is based on the error of the two stress fields. An optimization 

method will keep optimizing the set of material parameters until the value of the objective function 

reaches a given threshold. After that, the statically admissible stress field is updated following a 

user-defined criterion. In some cases, the FE model is adopted, and the determination of the 

statically admissible stress field is performed before the minimization of the objective function. 

The whole process is repeated until the convergence criterion is reached, which is calculated by 

comparing the stress in the current and previous iteration. This method has been applied to study 

heterogeneous materials [36], anisotropic elasticity [37], plasticity [38], and damage [39] 

Grédiac proposed the Virtual Fields Method (VFM) in 1989 [40]. The key elements in VFM are 

the Principle of Virtual Work and a suitable choice of virtual fields. For a solid body in the absence 

of body-forces and under infinitesimal small displacements, the Principle of Virtual Work is that 

the internal virtual work must equal the external virtual work performed by the external forces. 

This method has been used to determine stiffness constants of orthotropic laminated composites, 

nonlinear shear behavior of composites [41], detection of heterogeneities [42] in functionally 

graded materials, Promma et al [43] identified Mooney model constitutive parameters retrieved 

from a multiaxial mechanical test using VFM. 

The FEMU has some special features which make it the most widespread method among all the 

above-mentioned identification techniques. The computation time can be reduced in the 

identification process as this method does not require full-field measurement data on the whole 

domain. When specimens with complex geometries and boundary conditions are to be categorized, 

this technique also benefits from the robustness of the finite element method. However, this method  

is computationally expensive because of time-consuming finite element calculations, especially 

when dealing with 3D models, which is the main drawback of this method. The VFM requires full-
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field data within the domain and is also very sensitive to noise. This method is not iterative, which 

immediately brings a limitation that this method does not follow any regularization.  

With the increasing amount of data availability, powerful GPUs, and the development of new 

algorithms, machine learning has revolutionized several fields. Data generated by FEA is noise-

free. Several studies have used virtually generated FEA data [44,45] to train learning algorithms. 

A machine learning approach was proposed by Lorente et al [46] to model the mechanical behavior 

of the liver during real-time breathing. Several regression models were trained. External 

displacement and elasticity parameters were used as input and the FEM-based nodal displacements 

were used as output. Deep learning has been shown to have the ability to simulate hyperelastic-

material in real-time [47]. Wang et al. [48] used Gappy proper orthogonal decomposition (POD) 

for inverse material characterization. POD is a model order reduction method. The geometry of the 

structure, the boundary conditions, and the partial-field response measurements from a 

nondestructive testing procedure was the input. Response of the structure under the testing 

conditions is calculated based on an initial guess of material property distribution by the forward 

analysis procedure. Then POD modes were calculated using full-field structural responses. The 

full-field response was updated using Gappy POD. The updated response was compared with data 

generated by physics-based simulation. The results were accurate for both static and dynamic 

modes. The procedure was computationally efficient compared to the traditional mathematical 

derivation. The expense of the inverse characterization procedure, which includes the training of 

the POD modes, was comparable to less than 40 standard finite element analyses for the simulated 

examples. The inversion procedure was equivalent to a single standard finite element analysis after 

the development of the POD modes. Artificial neural networks have also been used to model 

material behavior [49]. 
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1.2.4 Hyperelastic models  

 

Figure 1.6 Position vectors and displacement vector in a cartesian coordinate system [50] 

A brief discussion of some basics of continuum mechanics is helpful at this point for understanding 

the formulation of hyperelastic models.  A given point, P, in a body is defined as having the 

reference position vector  𝐗 = Xi𝐞𝐢̂ . Following a body deformation and/or motion, the new position 

of point P is defined by point P' which has the current position vector 𝐱 = xi𝐞𝐢̂. The reference 

position vector, X, and the current position vector, x, are related by the displacement vector, u, such 

that  

xi = Xi + ui (1.1) 

Indicial form of vectors, such as Xi or tensors, such as Fij is simply a different way of expressing 

their equivalent bold font style, matrix form, X and F, respectively.  The differential form of 

equation (1.1) can be reduced to 

dxi =
∂xi
∂Xj

dXj = FijdXj (1.2) 

where Fij, here in indicial form, is commonly known as the deformation gradient tensor, or simply 

the deformation gradient, F, in matrix form. The right Cauchy-Green tensor, C, is obtained from 

the deformation gradient, such that 
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Cij = FmiFmj (1.3) 

or in matrix form, 

𝐂 = 𝐅𝐓. 𝐅 (1.4) 

We define stretch ratio, λ, for a one-dimensional element of reference length L0, and current 

length L, such that  

λ =
L

L0
 

(1.5) 

The various types of strain used in this research are tabulated below: 

Table 1.1 Different strain measures used in this study 

Engineering strain εeng = λ − 1 

True strain εtrue = 1 −
1

λ
 

Logarithmic strain εLog = lnλ 

Lagrangian strain  εLag =
1

2
(λ2 − 1) 

 

The strain invariant can be defined from right Cauchy-Green tensor C, such that they are 

independent of the coordinate orientation.  

I1 = λ1
2 + λ2

2 + λ3
2 = tr(𝐂) (1.6) 

I2 = λ1
2λ2

2 + λ2
2λ3

2 + λ3
2λ1

2 =
1

2
(I1
2 − tr(𝐂2))  (1.7) 

I3 = λ1
2λ2

2λ3
2 = J2 = det⁡(𝐂)  (1.8) 



12 
 

J is equal to 1 for incompressible materials. The hyperelastic constitutive behavior of a material is 

derived from strain energy function [49] ‘W’ which is a function of three invariants.  

W = f(I1, I2, I3⁡) (1.9) 

A brief description of the hyperelastic models considered in this study are given below:  

Mooney-Rivlin model 

 

This is a phenomenological model with two parameters. It is suitable for moderately large strains 

in shear and uniaxial deformation [51,52]. However, it is incapable of capturing the upturn in the 

typical S shape of hyperelastic materials. The strain energy density of this model has the following 

form  

W = ⁡C10(I1 − 3) + C01(I2 − 3) (1.10) 

Neo Hookean model 

This model is obtained by setting C01= 0 in the Mooney-Rivlin model. This model is suitable for 

small strains. It is simple to use since it has only one parameter. The strain energy density of this 

model has the following form: 

W = ⁡C10(I1 − 3) (1.11) 

Yeoh 

This phenomenological model [53] has the form of a third-order polynomial and is based only on 

the first invariant. Various modes of deformation can be simulated using this model with limited 

data [54]. This model is suitable for large strains. The strain energy density of this model has the 

following form: 

W =⁡∑Ci0(I1 − 3)

3

i=1

 (1.12) 
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Ogden 

This model [55] was proposed by Ogden in 1972.  Instead of invariants, this model is based on  

principal stretches. This model can capture the full S shape of hyperelastic materials. The strain 

energy density of this model has the following form: 

W =∑
2µi

αi
2 (λ1

αi

N

i=1

+ λ2
αi + λ3

αi) (1.13) 

Arruda Boyce  

This model [56] is based on a molecular chain network and is also called the Arruda Boyce 8-

chain model. It is based on the first invariant and has the following form of strain energy density:  

W = µ∑
Ci

λm
2i−2

5

i=1

(I1
i − 3i) (1.14) 

Shahzad et al [54] used hyperelastic models to characterize an indigenously developed rubber. 

Uniaxial, equi-biaxial, planar shear, and volumetric tests were conducted. They considered 

Mooney-Rivlin, Neo-Hookean, Yeoh, Ogden, and Arruda Boyce models. Yeoh model was found 

to match experimental stress-strain data better than other models at both small and large strain 

values.  Vlad et al [57] characterized PDMS-based silicone elastomer films. Parameters of Mooney 

Rivlin, Ogden (N=2), Neo Hookean, Yeoh, Arruda Boyce, and Van der Waals model were 

determined by Abaqus from experimental stress-strain data. FEM simulations were performed to 

validate uniaxial tension data Mooney Rivlin, Yeoh, and Ogden models were found to have good 

accuracy.  Ribeiro et al [58] performed the biaxial test on PDMS samples at different speeds. DIC 

was used to measure the displacement field and was found to be well suited for hyperelastic material 

analysis. Mooney Rivlin, Yeoh, and Ogden models were used for conducting numerical 

simulations. Yeoh model was found to be the most accurate after Comparison of FEM displacement 

field with that obtained from DIC.  Kim et al [59] measured the nonlinear mechanical properties of 
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PDMS. Cyclic uniaxial tension and single-pull-to failure tension test were performed. Parameters 

of Neo-Hookean, second-order Ogden, and third-order Mooney models were computed. All models 

showed a good fit in the small strain region. However, only the second-order Ogden model was 

suitable for nonlinear, large strain regions.  Tobajas et al [60] determined hyperelastic model 

parameter for simulation of Exxonmobil manufactured Santoprene 101-73 material. Uniaxial 

stress-strain and strain energy density data were supplied by the manufacturer. Mooney-Rivlin, 

Neo-Hookean, Ogden, Gent-Thomas, Yeoh, and Arruda Boyce models were considered. Mooney-

Rivlin and Yeoh models were found to have superior accuracy over other models.  The study 

conducted by Esmail et al [61] aimed at characterizing hyperelastic material based on uniaxial test 

only. The material characterized was a layer of chloroprene rubber. Mooney-Rivlin, Polynomial, 

Neo-Hookean, Yeoh, and Ogden models were used. Polynomial, Ogden, and Yeoh models were 

found to be convenient for fitting the hyperelastic behavior.  Martins et al [62] studied the nonlinear 

mechanical behavior of silicone rubber and soft tissues subjected to uniaxial tension. They analyzed 

seven hyperelastic material models: Mooney-Rivlin, Yeoh, Humprey, Ogden, Neo-Hookean, 

Martins, and Veronda. Yeoh, Ogden, and Martins models produced the best results. Liu et al [63] 

investigated the nonlinear behavior of silica-filled and the Kevlar-filled thin rubber sheets under 

quasi-static uniaxial tension test. Four models were considered: original Neo-Hookean, extended 

or generalized Neo-Hookean, Mooney-Rivlin, and Ogden models. The Second-order Rivlin model 

and Ogden models were found to fit experimental data better.  Thanakhun et al [64] studied PDMS 

material models for eco-friendly anti-fouling surfaces. Uniaxial tension test and punch shear test 

were conducted, and the following models were considered: Neo-Hookean, Mooney-Rivlin 3 and 

5 parameters, Ogden (1, 2, 3 terms), Yeoh (1st, 2nd, 3rd order) and Arruda-Boyce material models. 

Yeoh 3rd order model was found to be most accurate in simulating both the uniaxial tension and 

shear loading. Huri et al [65] studied hyperelastic material models for finite element analysis of 

rubberlike materials. Uniaxial compression test was performed and material constants were 
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determined using curve fitting in ANSYS. Three term Yeoh model outperformed two term 

Mooney-Rivlin model.   

1.2.5 Adopted methodologies 

 

2D digital image correlation has been used in this study to obtain full-field strains. For inverse 

modeling, finite element model updating has been used. and a machine learning algorithm is 

integrated with the FEA. Neo-Hookean, Mooney-Rivlin, Ogden (N=1), and Arruda Boyce models 

are considered for inverse modeling in moderate strain range. Yeoh and Ogden (N=2) models are 

considered for inverse modeling in large strain range.   
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CHAPTER II 
 

 

2 METHODOLOGY 

 

2.1 Specimen Fabrication: 

Polydimethylsiloxane (PDMS) [66] Sylgard 184 was processed to make specimens of different 

stiffnesses. PDMS can be considered incompressible [67] Molds of specified geometries were 

created using a CNC milling machine. 

 

Figure 2.1 CNC milled mold for making specimens 

The PDMS base and curing agent were mixed at a chosen weight ratio. The mixture was degassed 

in a vacuum chamber till the point when there were no bubbles. The mixture was cast into the mold. 

Specimens were then cured in an oven at 100֯C. Curing time [68] and mixing ratio [69] was varied 

to create materials with different stiffnesses.  First material was cast in the mold and cured. Then it 

was cut in half and second material was cast in the mold and cured. Heterogeneous  specimens with 

strong material interfaces were obtained through this method.  This is important since the specimens
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were subjected to high strain during the uniaxial tension test. Three homogeneous specimens of 

each constituent and one heterogeneous specimen were cut. The specimen fabrication process is 

shown in Figure 2.2. The heterogeneous specimens had dimensions 60mm×15mm. M1 had a 

thickness of 1.09 mm and M2 had a thickness of 1.06 mm. The heterogeneous specimens had 

dimensions of 30mm×5mm and thickness was about 1mm. The three homogeneous specimens 

made of material 1 are labeled M1_1, M1_2, and M1_3. The three homogeneous specimens made 

of material 2 are labeled M2_1, M2_2, and M2_3.  

 

Figure 2.2 Specimen fabrication 
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Five heterogeneous specimens were prepared and tested to validate the computational framework. 

Table 2.1 shows young’s modulus of the two constituents of the five specimens. Young’s modulus 

were calculated using 0-5% true stress-true strain data.  

Table 2.1 Youngs Modulus (MPa) of the constituents of five 1×2 pattern specimens 

 

 

After the specimens were fabricated, they were subjected to uniaxial testing.   

2.2 Uniaxial testing: 

 

An Instron 5942 system was used to perform tensile tests. Figure 2.3 shows the testing system. 

 

Figure 2.3 Testing setup 

 
Specimen 1 Specimen 2 Specimen 3 Specimen 4 Specimen 5 

M1 2.02 ± 0.01 1.10 ± 0.02 2.21 ± 0.03 1.79 ± 0.02 1.09 ± 0.04 

M2 1.12 ± 0.05 1.95 ± 0.01 1.69 ± 0.02 1.20 ± 0.01 1.90 ± 0.02 
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A Nikon D5 camera (Tamron AF 90mm f/2.8 Di SP AF/MF 1:1 Macro Lens), with a resolution of 

3840×2160 pixels, was used to record videos during the tensile test. The videos were converted 

into images in MATLAB, where each image corresponded to a specific load. A lamp was used to 

increase the contrast of the images.  

2.2.1 Homogeneous specimen: 

 

Three homogeneous specimens of each constituent of the heterogeneous specimen were tested. A 

cross-section of each specimen was entered in the software (Bluehill) associated with the testing 

system. Engineering stress was calculated by the system at specified times steps, which is load 

divided by the initial cross-sectional area. This was used directly in the analysis. However, the 

engineering strain data obtained from the system couldn’t be used since it was based on grip 

displacement and ignored the effects of slippage. To get an accurate stress-strain curve, the 

engineering strain was calculated from markers.  Two lines, separated by 10mm distance, were 

marked in the samples. Figure 2.4  shows a homogeneous specimen in the initial and stretched 

condition.  

  
(a) (b) 

  
Figure 2.4 A homogeneous specimen during uniaxial testing (a) Initial and (b) Stretched 
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Due to elongation number of pixels between the markers increased. The number of pixels between 

the lines was determined by a MATLAB program from images corresponding to different strain 

levels during the experiment. Pixels between markers in the first image were subtracted from the 

pixels between markers in the current image. The value was divided by pixels between markers in 

the first image and the engineering strain corresponding to the current image was obtained. The 

knurled grip was used in this research to minimize slip. Engineering stress-strain data was entered 

in the evaluate option in Abaqus. Several hyperelastic models can be fit to experimental data using 

this option.   

2.2.2 Heterogeneous specimen  

 

A random speckle pattern was generated using airbrush spraying on the heterogeneous specimens. 

Figure 2.5(a) shows a speckle pattern for one of the samples in this study, clamping boundary, and 

region of interest for DIC analysis. 

   
(a)                                        (b) 

 

Figure 2.5 (a) Fabricated 1×2 heterogeneous specimen with DIC Region of Interest (blue lines) 

and clamping boundaries (red lines) (b) Full-field Lagrangian strain distribution obtained by 2D-

DIC 
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The DIC analysis was done in the MATLAB open-source software Ncorr. The full-field strain 

distribution obtained from DIC analysis is shown in Figure 2.5(b).  

For calibrating hyperelastic model parameters using engineering strain-engineering stress data, a 

strain range is needed. Since the model parameters are obtained from curve fitting, they vary with 

the strain range used to calibrate them. For example, calibrated parameters obtained from 0-25% 

stress-strain data are different from those obtained from 0-35% stress-strain data. Therefore, a strain 

range must be defined for each material of the heterogeneous specimen, which will be used to 

calibrate the hyperelastic model parameters. The maximum strain in this range is defined as the 

calibration strain in this study. Calibration strain for M1 and M2 are selected as the strain 

corresponding to the top and bottom boundary respectively of the region of interest. In Figure 2.5(b) 

Lagrangian strain values corresponding to the top and bottom boundaries are 0.7 and 1.3 

respectively. By converting these values to engineering strain, we get calibration strain 0.55 (or 

55%) for M1 and 0.9 (or 90%) for M2.  

A high-quality speckle pattern is very important to get accurate DIC results. A good speckle pattern 

has high contrast, randomness, isotropy, and stability [70]. Figure 2.6 (a) shows grayscale 

distribution of the speckle pattern which shows the utilization of a wide spectrum of grayscale 

values and therefore, high contrast.  
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(a)  (b)  
 

Figure 2.6 (a) Grayscale distribution of speckle pattern (b) The distribution of the equivalent 

diameter of the speckle particles 

The pattern is non-periodic and non-repetitive which indicates randomness. There is no visible 

directionality and it tightly adhered to the sample surface during experiments. Pan et al [71] 

proposed a global parameter, named mean intensity gradient (MIG) to assess the quality of speckle 

pattern. The parameter is defined as: 

MIG =∑∑|∇f(𝐱ij)|

H

j=1

W

i=1

/(W× H) (2.1) 

Where W and H are the image width and height in pixels, and 

|∇f(xij)| = √fx(𝐱ij)
2 + fy(𝐱ij)

2 (2.2) 

fx(𝐱ij) and fy(𝐱ij) are the directional intensity derivatives in the x and y-direction.  

It was shown that mean bias error and standard deviation error are smaller for speckle patterns 

having larger MIG values. In their study, they analyzed five speckle patterns and corresponding 

MIG values were: 34.64, 21.51,20.03,12.34, and 9.03. For the reference images of the five samples 

in this study, computed MIG values were on average 26. This indicates a good speckle pattern. 
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Choosing a proper subset size is another critical aspect of DIC analysis. Figure 2.6 (b) shows 

particle size distribution.  most particles have an equivalent diameter of 1-5 pixels. And after 

averaging all the particles, an average diameter size was obtained in this ROI of 3.8 pixels. 

Following the work of Lecompte et al. [72] subset size was chosen to be 15 × 15 pixels in this 

study.  

Figure 2.7 shows Load vs extension curve of the five 1×2 pattern specimens. 

 

Figure 2.7 Load vs extension curves of five specimens 

 

The curves have the typical S shape of hyperelastic materials. For inverse modeling in moderate 

strain range, the maximum load considered was 5N. For inverse modeling in large strain range, the 

maximum load considered was 18N.  
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2.3 Finite Element Model Updating: 

 

Figure 2.8 Boundary conditions of the FEA model 

 

A 2D plane stress model was used in Abaqus to model the heterogeneous specimens. Figure 2.8 

shows the boundary conditions of the model. A mesh convergence study was conducted to 

determine the proper element size. M1 and M2 were defined according to Yeoh model parameter 

obtained for specimen 1 (Table 4.3, Page 50 ).  18N load was applied to the model, which is the 

maximum load applied to the specimens in this research, and the maximum strain was recorded for 

a various number of elements. A model with 600 elements was selected based on mesh convergence 

(Figure 2.9).  

 

Figure 2.9 Mesh convergence 
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When more than one strain field was used for inverse modeling, multiple instances of the same 

model were created. Then different instances were assigned different loads. Figure 2.10 shows 

logarithmic strain distribution in y-direction obtained from an Abaqus simulation where five 

different loads (2N, 6N, 10N, 14N, and 18N) were applied to the instances.  

 

 

 

Figure 2.10 Logarithmic strain distribution in Abaqus simulation 

 

The inverse modeling process was done with SIMULIA software Isight. The flowchart of the 

process is shown in Figure 2.11. 

 

Figure 2.11 Isight optimization process 
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Abaqus: In this component, two files were read. One is the .inp file, which contains all the 

information to run the model. During the inverse modeling process, the material parameters are 

updated by the optimization algorithm in this file. Another file is the .odb file, which is generated 

after running the Abaqus model. This file contains the simulation results. From this file logarithmic 

strain values at selected nodes were obtained to be used later for comparing with the target strain 

values.  

Data Exchanger: This component allows writing the value of a parameter into a file. A user can 

define options for handling structured data (e.g. tables of numbers, vectors, name/value lists, etc).  

Data Matching: The target strain distribution is given within this component, which is matched 

with the strain distribution obtained from the simulation. This component provides input support 

for numerical array parameters generated upstream in the workflow. It also provides output support 

for error measures such as the sum of absolute difference, the sum of the squared difference, etc. 

This error information is then supplied to the optimization component.  

Optimization: The optimization process in Isight can optimize material parameters to fit specified 

objectives. Many algorithms are available. After some trials, the Downhill Simplex algorithm was 

found to yield better results compared to other algorithms. An Intel® Core™ i5-6400 CPU was 

used to perform Finite element model updating (FEMU) analysis. Obtaining a mean square error 

less than 10-4 was the optimization objective.   

 

2.4 Machine Learning:  

 

The architecture of the deep neural network adopted in this study is shown in Figure 2.12.  
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Figure 2.12 Architecture of the deep neural network 

 

The strain of the selected elements in the specimen was used as the input. The input was mapped 

to a vector and fed into the network. The target parameters were estimated in the output layer. The 

network consists of two linear hidden layers before the output. 600 neurons were used in Layer 1 

and 200 neurons in Layer 2. Mean squared error (MSE) was used as a loss function. The training 

time varies with network structure; training data amount; the resolution of the data and computer 

hardware.  The neuron learning rate decayed with a factor of 0.95 for every 10,000 epochs in the 

training process to allow adjustments to improve the network-data fitting. The neuron parameters 

were updated automatically during training to minimize the MSE loss to ensure that the network 

produces accurate parameter predictions. The network was built and tested using NVIDIA GTX 

750 ti graphic card with 640 CUDA cores. Once the network was developed and fully trained, it 

only took 1 millisecond to generate the required output for any new input (strain distribution) 

obtained from FEA-generated data or DIC experiments. 
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2.5 Determination of Fitting Accuracy  

 

The fitting accuracy of the hyperelastic models is determined by calculating the coefficient of 

determination, denoted by R2. It can have a value between 0 and 1. An R2 value of 1 indicates a 

perfect fit. Considering a data set that has n values y1….yn. , each associated with a predicted value 

f1,…fn. Mean of the observed data  

y̅ =
1

n
∑yi

n

i=1

 
(2.3) 

The sum of squares of residuals is calculated as  

SSres =∑(yi − fi)
2

n

i

 (2.4) 

The total sum of squares is calculated as 

SStot =∑(yi − y̅)2
n

i=1

 (2.5) 

Then coefficient of determination can be calculated from the following equation  

R2 = 1 −
SSres
SStot

 (2.6) 
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CHAPTER III 
 

 

3 INVERSE MODELING IN MODERATE STRAIN RANGE 

 

3.1 Model Selection  

 

We define moderate strain as the strain level when the stress-strain curve has just become non-

linear, so young’s modulus is not sufficient to characterize the material. As described in section 

2.2.2, for moderate strain range, 5N was the maximum load considered. Table 3.1 shows 

Calibration strain (%) obtained from full-field strain distribution corresponding to 5N load 

Table 3.1 Calibration strain (%) obtained from full-field strain distribution corresponding to 5N 

load 

Specimen 1 Specimen 2 Specimen 3 Specimen 4 Specimen 5 

M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 

17 36 35 19 15 22 20 35 37 20 

 

Based on the literature review Neo-Hookean, Ogden(N=1), Mooney-Rivlin, and Arruda Boyce 

models were considered. Figure 3.1 shows how they fit the experimental data of one of the materials 

in this study (M1_1, Specimen 1).  
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Figure 3.1 Neo-Hookean, Ogden(N=1), Mooney-Rivlin and Arruda-Boyce model fit to 

experimental data 

Table 3.2 Model Parameters 

Neo-Hookean Mooney-Rivlin Ogden(N=1) Arruda Boyce 

C10 = 192571 C10 = 180248 µ1 =  388831 µ =  385143 

  C01 = 14536 α1 = 1.827 λm = 1445 

 

α1 and λm in Table 3.2 are unitless. The rest of the parameters have the unit of Pascal (Pa). All the 

models had R2 = 1, which indicates perfect fitting. Neo-Hookean has less constant compared to 

other models. Therefore, it was chosen for inverse modeling. For the Neo Hookean model, in the 

case of uniaxial loading, the following relation exists between engineering stress and stretch ratio: 

σeng = 2C10(λ −
1

λ2
) (3.1) 

The stretch ratio is related to engineering strain by the following equation:  

λ = 1 + εeng (3.2) 
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After C10 parameter was determined from inverse modeling, using the above two equations, the 

stress strain curve corresponding to the C10 value could be obtained.  

3.2 Finite Element Model Updating : 

 

A virtual test was done to determine the number of strain fields required to inversely determine the 

Neo-Hookean model parameters. In the Abaqus model, Material 1 was defined as having 

C10=337661 Pa and material 2 was defined as having C10=192571 Pa according to single material 

uniaxial test results of Specimen 1 (Table 3.3, Page 34). 5N Load was applied. This strain 

distribution was then used as a target in the inverse modeling process. The results showed that 

Isight could find  C10 of the two materials from the strain field corresponding to the maximum load. 

Therefore during the inverse modeling process, the experimental strain field corresponding to 5N 

load was set as the target. 

3.3 Machine Learning  

As a first step of the training data generation process, C10 was related to the Youngs modulus. The 

following relation exists between Young’s modulus and shear modulus:  

G =⁡
E

2(1 + υ)
 (3.3) 

Where G is the shear modulus, υ is Poisson's ratio and E is Young’s modulus. C10 is related to the 

shear modulus according to: 

C10 =
G

2
 (3.4) 

With equation (3.4), together with incompressibility assumption (υ=0.5), equation (3.3) reduces 

to  

C10 =
E

6
 (3.5) 
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A C10 vs Young’s modulus curve was plotted using equation (Figure 3.2, blue line). The range of 

Young’s modulus values plotted is 1.0-2.3 MPa according to experimental observations. A bit of 

the nearby region indicated in the curve was also considered for training data generation because 

the linear region of the stress-strain curve can extend up to 40% strain [69]. It is up to the tester to 

choose the range from which young’s modulus will be calculated. In this study young’s modulus 

was calculated using 0-5% true strain but the linear region lasted up to 10% true strain for one of 

the materials (M2_1, specimen 1). C10 also varies with calibration strain. So, considering these facts 

it’s appropriate to include a bit of the surrounding region. Otherwise, the search space would be 

incomplete. 20000 Pa variation was considered on both sides of the blue line.  

 

Figure 3.2 Search space for C10 for training data generation. Blue line is the plot of Equation (3.5) 

and shaded region is the uncertainty interval 

In the second step, young’s modulus combinations (1.0-2.3MPa) in increments of 0.1 MPa- 182 

sets and another 118 randomly generated sets, a total of 300 sets were generated. C10  corresponding 

to the young’s modulus was assigned to the model and corresponding logarithmic strain of the 

elements corresponding to 5N load were computed and recorded. The strains were used in the input 

layer of the DNN and the two C10 parameters (corresponding to M1 and M2) were the targets in 
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the output layer. 50 synthetic validation data were also generated to evaluate the network 

performance. The network was trained for 50,000 epochs. The final training loss was .000004. 

Training time was approximately 10 minutes.  

3.4 Results:  

All the parameters in this section are reported in Pascal (Pa) unit.   

Specimen 1:  

  
(a) (b) 

 

Figure 3.3 Engineering stress-engineering strain (σeng-εeng) plot showing Neo-Hookean fit of (a) 

M1and (b) M2 

  
(a) (b) 

Figure 3.4 Strain energy density-engineering strain (W-εeng) plot showing Neo-Hookean fit of (a) 

M1 and (b) M2 
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Table 3.3 Single-material uniaxial test results 

 
Sample 1 Sample 2 Sample 3 

C10_M1 337661 335167 342676 

C10_M2 192571 190430 187563 

 

Table 3.4 Inverse Modeling Results 

 
FEMU ML 

 
C10 R2(σ) R2(W) C10 R2(σ) R2(W) 

M1 320744 0.9951 0.9954 319060 0.9937 0.9943 

M2 187865 0.9965 0.9991 188950 0.9958 0.999 

 

Specimen 2: 

  

(a) (b) 

Figure 3.5 σeng-εeng  plot showing Neo-Hookean fit of (a) M1and (b) M2 
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(a) (b) 

Figure 3.6 W-εeng plot showing Neo-Hookean fit of (a) M1 and (b) M2 

Table 3.5 Single-material uniaxial test results 

i 1 2 3 

C10_M1_i 190345 185532 184683 

C10_M2_i 324065 327800 326206 

 

Table 3.6 Inverse modeling results 

 
FEMU ML 

 
C10 R2(σ) R2(W) C10 R2(σ) R2(W) 

M1 185483 0.9955 0.9992 185580 0.9954 0.9991 

M2 320970 0.9974 0.9996 319150 0.9981 0.9995 

 

 

 

 

 



36 
 

Specimen 3: 

  

(a) (b) 

Figure 3.7 σeng-εeng plot showing Neo-Hookean fit of  (a) M1 and (b) M2 

  

(a) (b) 

Figure 3.8 W-εeng plot showing Neo-Hookean fit of (a) M1 and (b) M2 
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Table 3.7 Single-material uniaxial test results 

i 1 2 3 

C10_M1_i 376011 362916 371261 

C10_M2_i 280906 280040 287816 

 

Table 3.8 Inverse modeling results 

 
FEMU ML 

 
C10 R2(σ) R2(W) C10 R2(σ) R2(W) 

M1 358333 0.998 0.9981 356660 0.9976 0.9975 

M2 284392 0.9902 0.9983 283600 0.9912 0.9985 

 

Specimen 4: 

  

(a) (b) 

Figure 3.9 σeng-εeng plot showing Neo-Hookean fit of  (a) M1and (b) M2 



38 
 

  

(a) (b) 

Figure 3.10 W-εeng plot showing Neo-Hookean fit of (a) M1 and (b) M2 

Table 3.9 Single-material uniaxial test results 

i 1 2 3 

C10_M1_i 298291 295507 298816 

C10_M2_i 195786 193564 198393 

 

Table 3.10 Inverse modeling results 

 
FEMU ML 

 
C10 R2(σ) R2(W) C10 R2(σ) R2(W) 

M1 290580 0.9992 0.9995 289050 0.9991 0.9992 

M2 193853 0.9969 0.9994 194340 0.9965 0.9993 
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Specimen 5: 

  

(a) (b) 

Figure 3.11 σeng-εeng plot showing Neo-Hookean fit of  (a) M1and (b) M2 

  

(a) (b) 

Figure 3.12 W-εeng plot showing Neo-Hookean fit of (a) M1 and (b) M2 
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Table 3.11 Single-material uniaxial test results 

i 1 2 3 

C10_M1_i 180521 180620 185155 

C10_M2_i 297562 306757 319445 

 

Table 3.12 Inverse modeling results 

 
FEMU ML 

 
C10 R2(σ) R2(W) C10 R2(σ) R2(W) 

M1 173928 0.995 0.9972 174880 0.9962 0.9979 

M2 303848 0.9976 0.9986 302760 0.9976 0.9984 

 

3.5 Discussion: 

Inverse modeling was done using two strain fields (corresponding to 2.5N and 5N) and three strain 

fields (corresponding to 1N, 2.5N, and 5N) to see if the increasing number of strain fields improved 

the results. However, no significant improvement was observed.  

A R2 value greater than 0.90 is termed good by many researchers [60,62,73,74]. For direct problem 

where experimental stress-strain is available, R2 values very close to 1 is often obtained. However, 

when the problem is complex, this is not the case. The direct problem can also be difficult 

sometimes. R. W. Ogden termed experimental data fitting within the mechanics or thermo-

mechanics framework of elastomeric solids as ‘a very delicate question’ [75]. In the study 

conducted by Tobajas et al [60], the best fit obtained had a corresponding R2 value of 0.9783. In 

another study. For most of the materials in this study in moderate strain range, the R2 value was 

greater than 0.996. Since this is an inverse problem, this is a good accuracy.  
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Table 3.13 shows the time taken by the two methods. Machine learning method is significantly 

faster. 

Table 3.13 Comparison of time taken by the two methods 

Method  FEMU ML 

Time (sec) ~5400 <.001 
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CHAPTER IV 
 

 

4 INVERSE MODELING IN LARGE STRAIN RANGE 

 

4.1 Model Selection: 

 

We define high strain as the strain level when the stress-strain curve has the typical S shape of 

hyperelastic materials. As described in section 2.2.2, for large strain range, 18N was the maximum 

load considered.  Table 4.1 shows calibration strain (%) obtained from full field strain distribution 

corresponding to 18N load. 

Table 4.1 Calibration strain (%) obtained from full field strain distribution corresponding to 18N 

load 

Specimen 1 Specimen 2 Specimen 3 Specimen 4 Specimen 5 

M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 

53 90 88 56 50 63 59 87 93 58 

 

Based on literature review, Ogden and Yeoh models fit well in this region. Figure 4.1 shows how 

the models fit the experimental data of one of the materials (Specimen 1, M2_1) in this study. 
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Figure 4.1 Ogden and Yeoh Model Fit to experimental data 

Table 4.2 Yeoh and Ogden model parameters 

Yeoh Ogden (N=2) 

C10 194494 µ1 10200 

C20 -15066 µ2 380000 

C30 23377 α1 9.92 

    α2 0.987 

 

Both models can fit experimental data perfectly. Yeoh model has one less parameter than the Ogden 

model. This is convenient for the inverse modeling process. More than one deformation mode is 

suggested to properly characterize the material when using the Ogden model [54]. Parameters 

determined with only uniaxial test may not represent other deformation modes well. Keerthiwansa 

et al [76] compared hyperelastic model parameters determined from only uniaxial data and a 

combination of uniaxial and pure shear data. For the Mooney-Rivlin model combination of two test 

data significantly improved the quality of fit while the Yeoh model was found to be less responsive 

to the change. Therefore, Yeoh model was chosen in this study for high strain characterization. For 
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Yeoh model, in case of uniaxial loading, the following relation exists between engineering stress 

and stretch ratio: 

σeng =∑2i (λ −
1

λ2
)Ci0(I1 − 3)i−1

3

i=1

 (4.1) 

Where, I1 = λ2 +
2

λ
 

4.2 Finite Element Model Updating  

Now we closely examine the three parameters of the Yeoh model. Figure 4.2 shows how C10, C20, 

and C30 influence the stress-strain curve. Typically, C10 is positive, C20 is negative and C30 is 

positive. These magnitudes create the typical S shape. At low strains, C10 represents the initial shear 

modulus, which softens because of the influence of negative C20, and an upturn follows because of 

positive C30 at larger strains. Therefore, the initial assumption was that at least three strain fields 

corresponding to three regions will be needed to inversely determine the three parameters.  
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Figure 4.2 Influence of the three parameters on the stress-strain curve (a) shows stress-strain 

curves with fixed values of C20, C30, and varying C10. Figure (b) shows stress-strain curves with 

fixed values of C10, C30, and varying C20. Figure (c) shows stress-strain curves with fixed values 

of C10, C20, and varying C30 

Figure 4.3 shows virtual test results where material 1 had C10= 334466, C20= -17853, C30=124079 

and material 2 had C10= 193655, C20= -15219, C30=22227 according to Specimen 1 test results 

(Table 4.3, Page 50). One strain field (corresponding to 18N) is not enough to inversely determine 

the three parameters. Inverse modeling results were identical to target values with three strain fields 

(corresponding to 2N,10N, and 18N). 
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Figure 4.3 Virtual test results 

4.3 Machine Learning: 

Figure 4.4 (a)  shows the stress-strain curve of specimen 5, M1_1 up to 75% engineering strain. 

Figure 4.4 (b),(c), and (d) show how the three parameters (C10, C20, and C30) vary with calibration 

strain. A 30 % calibration strain, for example, in the plots means that the Yeoh model parameters 

were obtained through curve fitting of 0-30% engineering stress-engineering strain curve.  C10 is 

the most stable parameter among the three. C20 starts at a high negative value which gradually 

increases with an increase in calibration strain. C30 value gradually decreases and almost stabilizes 

when the stress-strain curve has the S shape or in other words when the upturn has begun. For 

material with higher Young’s modulus, C30 stabilizes at a higher value. 
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(a) (b) 

  
(c) (d) 

 

Figure 4.4 (a) Stress-strain curve of M1_1 of Specimen 5 (b) Variation of C10 with calibration 

strain (c) Variation of C20  with calibration strain (d) Variation of C30 with calibration strain 

For materials with different Young’s modulus, C30 values were obtained when the stress-strain 

curve corresponding to the materials had an S shape. Then the values were plotted against Young’s 

modulus and the blue line in Figure 4.5 was obtained. A few surrounding values were also 

considered since the C30 values didn’t fully stabilize. A 3000Pa variation was considered for C30 

value corresponding to 1.1 Mpa Young’s modulus and 30000Pa variation was considered for C30 

value corresponding to 2.3 Mpa. The variation varied linearly in between.   
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Figure 4.5 C30 vs Young’s modulus 

For generating training data, the following equation was obtained through curve fitting: 

C30 = (7.1227 × 104)YM2 + (−1.1328 × 105)YM + (5.5097 × 104) (4.2) 

Here, YM is Young’s modulus. Young’s modulus combinations were generated in the same way 

as in the case of inverse modeling in moderate strain range. Since in this case there are two 

additional parameters, more random combinations (304) were used during training so that the entire 

search space is covered. In total 500 combinations were used for training data generation. Then the 

C10 and C30 corresponding to the young’s modulus were assigned to the model and the 

corresponding logarithmic strain of the elements corresponding to 2N, 10N, and 18N load were 

computed and recorded. The C20 parameter was kept random (a value between -40000Pa and -

5000Pa according to experimental observation). The strains were used in the input layer of the 

DNN and the six parameters (two C10, two C20, and two C30 corresponding to M1 and M2) were the 

targets in the output layer. 100 synthetic validation data were also generated to evaluate the network 

performance. The network was trained for 120,000 epochs. The final training loss was .06. Training 

time was approximately 30 minutes. 
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4.4 Results: 

All the parameters in this section are reported in Pascal (Pa) unit.   

Specimen 1: 

  

(a) (b) 

Figure 4.6 σeng-εeng plot showing Yeoh fit of  (a) M1and (b) M2 

  

(a) (b) 

Figure 4.7 W-εeng plot showing Yeoh fit of (a) M1 and (b) M2 
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Table 4.3 Single-material uniaxial test results 

i 1 2 3 j 1 2 3 

C10_M1_i 334466 337763 342957 C10_M2_j 193655 194494 190247 

C20_M1_i -17853 -32187 -36154 C20_M2_j -15219 -15067 -14126 

C30_M2_i 124079 135684 142420 C30_M2_j 22227 23378 22205 

 

Table 4.4 Inverse modeling results 

  
FEMU ML 

 
M1 M2 M1 M2 

C10 322082 196063 324610 203040 

C20 -15231 -16825 -20740 -21270 

C30 130626 25862 106990 25760 

R2(σ) 0.9974 0.987 0.9843 0.9928 

R2(W) 0.998 0.9972 0.9928 0.9963 

 

Specimen 2: 

  
(a) (b) 

Figure 4.8 σeng-εeng plot showing Yeoh fit of (a) M1and (b) M2 
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(a) (b) 

Figure 4.9 W-εeng plot showing Yeoh fit of (a) M1 and (b) M2 

Table 4.5 Single-material uniaxial test results 

i 1 2 3 j 1 2 3 

C10_M1_i 192722 187885 187522 C10_M2_j 325057 329296 327166 

C20_M1_i -12991 -12672 -14020 C20_M2_j -33953 -39197 -31768 

C30_M2_i 20932 19819 186641 C30_M2_j 121072 120233 117502 

 

Table 4.6: Inverse Modeling Results 

 
FEMU ML 

 
M1 M2 M1 M2 

C10 187579 322966 195730 319210 

C20 -11662 -17566 -23210 -23090 

C30 22721 121440 22710 107240 

R2(σ) 0.982 0.9938 0.9942 0.9982 

R2(W) 0.9974 0.9991 0.9986 0.9995 
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Specimen 3: 

  

(a) (b) 

Figure 4.10 σeng-εeng plot showing Yeoh fit of  (a) M1and (b) M2 

  

(a) (b) 

Figure 4.11 W-εeng  plot showing Yeoh fit of (a) M1 and (b) M2 
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Table 4.7 Single-material uniaxial test results 

i 1 2 3 j 1 2 3 

C10_M1_i 375005 361744 369783 C10_M2_j 280686 282671 289684 

C20_M1_i -39537 -21425 -18591 C20_M2_j -8966 -34096 -31552 

C30_M2_i 181327 159927 168124 C30_M2_j 66990 78478 77275 

 

Table 4.8 Inverse Modeling Results 

 
FEMU ML 

 
M1 M2 M1 M2 

C10 353961 285546 359420 290290 

C20 -14786 -15431 -19190 -21500 

C30 168922 80251 142420 76110 

R2(σ) 0.9972 0.9853 0.992 0.9937 

R2(W) 0.9982 0.9962 0.9975 0.9969 

 

Specimen 4: 

  

(a) (b) 

Figure 4.12 σeng-εeng plot showing Yeoh fit of  (a) M1and (b) M2 
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(a) (b) 

Figure 4.13 W-εeng plot showing Yeoh fit of (a) M1 and (b) M2 

Table 4.9 Single-material uniaxial test results 

i 1 2 3 j 1 2 3 

C10_M1_i 297754 295584 298817 C10_M2_j 198425 196130 202116 

C20_M1_i -5308 -13854 -16422 C20_M2_j -13991 -13774 -18179 

C30_M2_i 84847 90198 98218 C30_M2_j 23577 23655 25469 

 

Table 4.10 Inverse Modeling Results 

 
FEMU ML 

 
M1 M2 M1 M2 

C10 287615 198953 291410 207270 

C20 -6027 -15259 -20550 -21550 

C30 88495 28159 77210 26770 

R2(σ) 0.998 0.9814 0.9752 0.9971 

R2(W) 0.9988 0.9974 0.9936 0.9982 
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Specimen 5:  

 
 

(a) (b) 

Figure 4.14 σeng-εeng plot showing Yeoh fit of (a) M1and (b) M2 

  

(a) (b) 

Figure 4.15 W-εeng plot showing Yeoh fit of (a) M1 and (b) M2 
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Table 4.11 Single-material uniaxial test results 

i 1 2 3 j 1 2 3 

C10_M1_i 182475 181904 186364 C10_M2_j 303667 306309 31998 

C20_M1_i -10659 -8080 -75590 C20_M2_j -10370 -7791 -22350 

C30_M2_i 19706 18808 18991 C30_M2_j 99560 99090 113696 

Table 4.12 Inverse Modeling Results 

 
FEMU ML 

 
M1 M2 M1 M2 

C10 175805 305942 185970 308250 

C20 -13616 -11046 -24050 -23150 

C30 19957 109430 19890 98250 

R2(σ) 0.9851 0.9977 0.9421 0.99 

R2(W) 0.9903 0.9992 0.9824 0.9972 

 

4.5 Discussion  

 

Inverse modeling was done using five strain fields (corresponding to 2N, 6N, 10N, 14N, and 18N) 

to see if the increasing number of strain fields improved the results. However, no significant 

improvement was observed. Therefore, future studies will utilize three strain fields that correspond 

to low, moderate, and high strain levels for inverse modeling. 

Accuracy was slightly lower in large strain range compared to moderate strain range. One of the 

possible reasons is inaccuracy associated with high strain DIC [77]. For high strain DIC, only one 

reference image is not sufficient. A few images have to be given as input for the analysis. The 

reference image is updated based on an algorithm in the software. Figure 4.16 shows a section of a 

speckle pattern corresponding to two loads. 
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(a) (b) 

Figure 4.16 A section of the speckle pattern at various loads (a) 0N (b) 10N 

Table 4.13 Mean Intensity Gradient of the speckle pattern corresponding to various loads 

Load (N) 0 10 

MIG 28.022 21.1650 

 

At higher loads mean intensity gradient value is lower. So, if this image is used as a reference image 

at some point during the analysis, it will yield some inaccuracy. 

Table 4.14 shows the time taken by the two methods. The machine learning method is significantly 

faster. 

Table 4.14 Comparison of time taken by the two methods 

Method FEMU ML 

Time(sec) ~14400 <.001 
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CHAPTER V 
 

 

5 CONCLUSIONS AND FUTURE WORK 

 

5.1 Conclusions: 

 

a) Both the inverse methods, traditional FEMU and the developed ML method in this work,  

are capable of inversely solving hyperelastic material parameters for the demonstrated case 

studies with simple flat, 1×2 heterogeneous patterns, in both the moderate and large strain 

ranges, and their accuracy is comparable.  

b) Higher accuracy is obtained in the moderate strain range inverse modeling compared to 

that of the high strain range.  

c) The machine Learning method has a significant advantage in efficiency compared to 

FEMU – more than six orders of magnitude faster in the demonstrated case studies. 

5.2 Future Work: 

 

a) Future work will aim at solving more complex patterns. The immediate next step will be 

to solve the 2×2 grid pattern consisting of four different materials.  

 

  

  

 

Figure 5.1 2×2 grid pattern
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b) In this study, hyperelastic model parameters were determined using a uniaxial test only. 

For complete characterization, more deformation modes are needed since in actual 

applications the materials can undergo more than one deformation mode. Characterization 

by the method in this study is not complete. But it can be considered as a good 

approximation. In future studies, more deformation modes will be tested.  
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