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Abstract: This study aims to explore students’ critical thinking novel to the related rates 

problem. Students are having hard time to understand the concepts mainly because they 

are not understanding the meaning while they solve relates rates problem. Facione, Peter 

A suggested important critical thinking skills and subskills are essential for success in each 

endeavor. I leveraged these skills to inform the design of task-based questions that I used 

when I interviewed with students to understand how their reflective thinking makes the 

problem progress or how wrong reasoning made them incorrect answer. The result of my 

study indicates that failing to engage in critical thinking skills such as Interpretation, 

Analysis, Evaluation, Inference, Explanation, and Self Correction will demonstrate wrong 

conceptualize meaning of related rates and derivatives. Also, the result suggest that 

students did not understand the meaning of implicit differentiation and the rates and 

showing difficulty of solving tasks. Thus, Instructors should develop conceptual 

understanding of related rates to encourage them to engage in critical thinking while they 

solve problems and provide them variety of problems to improve the skills. 
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CHAPTER I 
 

 

INTRODUCTION 

 

Critical thinking entails the complex mental processes of analyzing or evaluating 

information. Critical thinking, or reflective thinking, plays a crucial role of students’ 

learning and application of mathematics. Since mathematics is a concept-oriented subject, 

it is important to know how students engage in critical thinking while applying concepts 

to novel problems and contexts.  

Calculus is a foundational mathematical subject for all students who intend to pursue 

STEM majors in college. Related rates are a central topic in single-variable calculus, and 

a context for students to apply the central concept of instantaneous rate of change in 

applied settings. The research literature has documented students’ difficulties with related 

rate problems (e.g., Engelke, 2004; Martin, 1996, 2000; Selden, Selden, & Mason, 1994). 

Primary among these difficulties are students’ interpretations of the problem context, 

which affects students’ ability ot model the context with an appropriate formula relating 

relevant quantities and their rates of change.
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The main steps involving in related rates problems are, 

1. identify constant and varying quantities in an applied context. 

2. define an equation that relates the values of these quantities. 

3. differentiate the resulting equation with respect to elapsed time; and 

4. use given information to solve the resulting related rate equation for the requested 

rate of change. 

Enacting this general procedure for solving related rates problems requires a 

sequence of strategic inferences, coordinations, deductions, abstractions, and 

generalizations that originate in students’ ability to think critically about the context. 

More specifically, accomplishing the first step requires students to conceptualize the 

context dynamically and identify rates of change specified in the problem statement and 

the rate of change the task prompts them to compute. On the basis of these abstractions, 

in step 2 students can either associate or construct an appropriate formula relating the 

values of varying quantities, specifically those whose rates are either known or to be 

determined. Engaging in this type of thinking will improve students' reasoning abilities, 

which will further advance students’ understanding of the central concepts. Not all 

productive thinking is necessarily critical thinking, however. It is one among a family of 

closely related forms of thinking relevant to mathematical ability.  

Almost all calculus teachers have observed students’ difficulties solving related 

rates problems. It is therefore instructors’ responsibility to support students’ ability to 

analyze a problem context correctly, and to foster the kind of reasoning that enables 

students to strategically and purposefully engage in the process of solving related rate 

problems.  
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 This study investigates students' engagement in critical thinking while reasoning 

about related rates problems and examines the role of critical thinking for developing a 

conceptual understanding of related rates in general. Many studies have discussed the 

relevance of applying critical thinking skills when solving problems in mathematics. For 

example, Facione (1990) described the cognitive aspect of critical thinking skills and sub-

skills. However, this study mainly focuses on related rates and how two undergraduate 

calculus students applied critical thinking skills when reasoning about this important 

concept. 
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CHAPTER II 
 

 

LITERATURE REVIEW 

 

Critical Thinking 

Thompson (2013) argued that teachers' inability to teach for understanding 

contributes to students' inability to develop mathematical meanings that support their 

critical thinking, interest, and future learning. Understanding many ideas of calculus 

requires students to engage in critical thinking and complex reasoning. Solving related 

rate problems, for example, requires students to reason quantitatively about complex 

scenarios to make informed decisions that guide their problem-solving process. Students 

often wonder why related rates are essential in mathematics and what the practical 

advantages of related rates are. Sometimes students pose these kinds of questions in 

classrooms. Teachers should encourage students' critical thinking to create interest in 

mathematics. Also, reasoning plays a vital role in solving problems in mathematics in 

general. 

Facione (1990) provided a list of critical thinking skills and sub-skills necessary 

in mathematics. The below are the primary skills and sub-skills that are the focus of this 

research, and which collectively comprise the analytical framework. 
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Table 1 

Critical Thinking Skills and Subskills (Facione, 1990) 

Critical Thinking Skills Critical Thinking Subskills 

1. Interpretation • Categorization 

• Decoding significance 

• Clarifying meaning 

 

2. Analysis • Examining ideas 

• Identifying arguments 

• Analyzing arguments 

 

3. Evaluation • Assessing claims 

• Assessing arguments 

 

4. Inference • Querying evidence 

• Conjecturing alternatives 

• Drawing conclusions 

 

5. Explanation • Stating results 

• Justifying procedures 

• Presenting arguments 

 

6. Self-Regulation • Self-examination 

• Self-correction 

 

 Facione (1990) argued that persons who can integrate successful execution of 

various critical thinking skills with confidence and sound judgment are more inclined to 

apply these powerful tools in their other studies and their everyday lives. Similarly, Rott 

(2021) concluded that students with sophisticated mathematical reasoning abilities seem 

to be more likely to choose study programs with higher mathematical demands. Several 

researchers have demonstrated that mathematics is one of the subjects that can develop 
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students’ critical thinking skills (Rajendran, 2010; Aizikovitsh and Amit, 2010). Critical 

thinking in mathematics is closely related to knowledge of the substantive and syntactic 

structures of mathematics, mathematical reasoning, mathematical epistemology, and 

mathematical proof and argumentation (Krulik and Rudnick, 1995).  

Critical thinking skills, which I mentioned above, are needed when we understand 

the concept that will trigger ideas (Ennis, 1996). Krulik and Rudnick (1995) argue that 

critical thinking is tantamount to thinking analytically, which involves questioning, 

reasoning, testing activities, and evaluating the information or problem context. 

Similarly, critical thinking requires a student to use new information or manipulate 

existing knowledge and information to obtain reasonable responses to new situations 

(Lewis & Smith, 1993). Finally, educational psychologists describe critical thinking as 

the strategic use of reasoning skills for developing a form of reflective thinking that 

ultimately optimizes itself and includes decision-making and fluency in problem-solving 

(Jablonka, 2013). 

This research study aims to understand how students engage in critical thinking 

activities as they solve related rates problems in calculus.  

Related Rates: The Concept of Identifying Constant and Varying Quantities 

Related rates problems require students to have a working knowledge of rates—as 

a proportional relationship between corresponding changes in the measures of 

continuously covarying quantities—and students should need an idea of how they can 

represent changing quantities with variables. Also, it is essential to conceptualize an 

applied context in terms of constant and varying quantities, and the relationships between 

them, or what Thompson (1990) called a quantitative structure. Sometimes students 
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make a mistake when substituting variable values prior to implicitly differentiating a 

formula relating the values of covarying quantities, which will lead to incorrect solutions. 

This common error reflects unknowingly turning a dynamic situation into a static 

situation, where rates of change cannot be meaningfully related because nothing is 

changing. Finally, construct a robust image of the context is essential to students’ 

selection or construction of an appropriate formula that relates the measures of quantities 

in an applied context, and which when differentiated implicitly with respect to elapsed 

time, yields a related rate formula that expresses the relationship between rates of change 

in an applied context. 

Research suggests that students have difficulty with the concept of variable, 

which stems from their learning of algebra where variables are often treated as something 

to “solve for” (Trigueros, 2008). To solve related rate problems, students need to interpret 

what the problem is asking, analyze the information, evaluate the information, and make 

strategic inferences to guide their problem-solving activity. Jacobs (2002) suggested that 

students who had a mature understanding of variables, as representations of the 

continuum of values through which a quantitie’s measure can vary, demonstrated a 

capacity to express quantitative relationships in addition to simply performing 

computational tasks fluently. 

Related Rate Formulas and Implicit Differentiation 

Many students in calculus attempt to apply implicit differentiation while solving 

related rates problems without ever having constructed a conceptual understanding of 

what a derivative represents. For example, some students do not interpret dy/dx as the 

constant of proportionality that relates corresponding infinitesimal changes in x and y. 



8 
 

Moreover, in related rate problems, it is important for students to understand the product 

structure of the chain rule, and to conceptualize relations between covarying quantities 

that vary not only with respect to each other, but also with respect to a common time 

elapsed. Thus, it is essential to know how students engage in critical thinking while 

connecting the various ideas on which a productive understanding of related rates 

depends. We cannot understand their reflective thinking abilities by examining their 

solution alone. 

The study from Clark et al. (1997) mentioned that students have difficulty 

executing implicit differentiation while solving a related rate problem. For example, only 

39% solved it correctly. But this study did not indicate whether students’ difficulties were 

rooted in their critical thinking skills while solving these problems. Relatedly, 

Mitchelmore (1990) had mentioned that students write dy/dx while solving problems in 

calculus without much attention to what the expression represents. 

Thus, solving related rates problems requires critical thinking skills, which will 

encourage students' robust understanding and coordination of the foundational concepts 

that need to be applied to fluently reason about novel related rate problems. Therefore, 

this research study mainly focuses on essential skills of critical thinking and how students 

engage in critical thinking when they learn a new concept or solve problems. 



9 
 

CHAPTER III 
 

THEORETICAL FRAMING 

 

Radical constructivism: 

Radical constructivism was defined by Von Glasersfeld as a theory of knowing and 

which has similarity on Piaget constructivism and ideas about epistemology. Piaget and 

Glasersfeld argued that we construct out concepts and understanding of the world 

developmentally. 

         Concept of student developmental learning and hypothetical learning pathways are 

main focuses on radical constructivism (Von Glasersfield, 2007: Steffe 2007). 

Educational Psychologist Jean Piaget, notion of genetic epistemology was very 

influential in Glasersfeld’s theory of radical constructivism, and it provides an 

explanation of how educators develop new knowledge, and which can help students learn 

and understand about the concepts. 

The Implications of Radical Constructivism: 

Radical constructivism mainly focuses on how students learn and think when they learn 

new concept. Von Glasersfeld suggest that using classroom conversations and asking   
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students verbalize their conceptual understanding will encourage two-way learning 

between student and the teacher. So, asking to verbalize their thought process in each 

concept will improve students critical thinking. Students conceptual learning and 

understanding includes: 

• Creating opportunities for making students think and hence will improve their 

knowledge. 

• It encourages students’ creation of concepts 

• It encourages students to think rationally and make judgements and it 

recognize and support their efforts learn and motivate students. 

• It also encourages students to verbalize and construction of knowledge and 

their thought process which enables them to think critically (Glasersfeld 

2001a). 

radical constructivism opened the door for teachers and students to free themselves 

from very rigid approaches to teaching and learning, particularly in science education. 

Quantitative Reasoning: 

This study draws on the theory of quantitative reasoning on the context of related rates 

problem. The quantitative reasoning is the act of analyzing a problem situation in terms 

of the quantities and relationships among the quantities involved in the situation 

(Thompson, 1993). What is important in quantitative reasoning is making sense of 

relationships between quantities (Smith III & Thompson, 2007; Thompson, 1993). In 

related rates, quantitative reasoning refers to how students: (1) Interpreted and analyze 

the variable and making a relationship among them, (2) identified or created formulas 
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that relate quantities in different related rates tasks, (3) evaluated these formulas to 

determine numeric values for quantities, (4) reasoned about time as an implicit or explicit 

quantity, and (5) reasoned about units or meanings of quantities. Related to the current 

study, the critical thinking skills also leads to quantitative reasoning.  

A quantity is a measurable attribute of an object (Thompson,1994). Thompson (1993) 

distinguished between a quantity and a numerical value-the former has a unit of 

measurement and the latter does not. Thompson (1993) remarked that “quantities, when 

measured, have numerical values, but we need not measure them or know their measures 

to reason about them” (pp. 165–166). The research suggests that quantitative reasoning 

will particularly enhance student’s thinking level, and hence it makes more flexible 

mathematics concepts (Oehrtman, Carlson: Michael A Tallman). According to Thompson 

(1993), quantitative reasoning is analyzing a problem situation in terms of the quantities 

and relationships between quantities involved in the problem situation. Thompson argued 

that what is important in quantitative reasoning is not quantification (i.e., the process of 

assigning numeric measures to quantities), but rather reasoning about relationships 

between two or more quantities. Quantitative reasoning seems a particularly important 

lens for these types of problems, like the covariational reasoning lens used by Engelke 

(2007), since they inherently deal with quantities-measurable attributes of an object. In 

fact, it seems that some of the students’ issues seen in related rates studies (e.g., 

Martin, 2000; Monk, 1992) may deal directly with difficulties involving quantitative 

reasoning. That may lead them a wrong conceptual understanding of specific situation. 

While covariational reasoning (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002) is certainly a 

key construct when dealing with related rates problems, we note that there may be 
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quantitative ideas, such as the role and use of diagrams to represent relationships between 

quantities, at play.  

Critical Thinking Skills. 

Facione(1990) has mentioned there are 6 cognitive aspects of critical thinking skills 

which are important in many different context. While characterizing each skill and every-

subskill to become conceptually discrete from all the other ones. Following are 

descriptions of CT skills mentioned in Fascione(1990) 

1. Interpretation: To comprehend and express the meaning of the problem, make a 

prediction and procedures how to solve the problem 

1.1 Categorization: Appropriately formulate the distinctions or describing 

characterizing the given problem. 

1.2  Decoding significance: Describe the information on specific to the content, 

explain it’s purposes and significance to the problem, make a drawing, graphs 

charts etc. 

1.3  Clarifying meaning: To paraphrase or make explicit through stipulation, 

analogy, or figurative expression. 

2. Analysis: To identify the intended and relationship among statements or make a 

judgement, reason, and opinion of the specific content. 

2.1. Examining ideas: To determine the role of various statements or arguments.  

It involves the define terms, compare or contrast ideas, concepts, or statement. 

Also, ability to make smaller ideas when we have complicated problems or 

statements. 
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2.2. Analyzing the arguments: It contains the intended main conclusion the 

premises and the reasons advanced in support. Also, this means that additional 

unexpressed elements of the reasoning given several reasons or chains of in 

support of a particular claim. 

 3.  Evaluation: Evaluation assess the credibility of statements or make a logical connection                    

using the arguments and assess the contextual relevance of the question, information’s, and     

principles.  

             3.1. Assessing arguments: This justifies one’s accepting as true (deductively 

certain), or very probably true (inductively justified, and that leads conclusion of that 

arguments. Also, one’s can judge between reasonable inference and to determine the extent 

to which possible addition of an information might strengthen or weaken an argument. 

4.  Inference: To make a reasonable or secure statements needed to draw conclusion. In 

particular to recognize and formulate the strategy for seeking information. Also, one’s able 

to determine which of the several possible conclusions most strongly warranted. 

5.  Explanation: In this skill particularly focusing to state the results of one’s reasoning 

and justify that reasoning in terms of the evidential and contextual consideration. Stating 

results includes representations of the results of one’s reasoning activities to analyze, 

evaluate, or monitor those results. Finally, presenting arguments means to give reasons 

for accepting some claims. 

6.  Self-Regulation: Self-correcting or evaluating one’s reasoning or one’s results. Self-

examination of the work reflect one’s own reasoning and verifying the correct application 
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and execution of cognitive skills involved. Self-correction involves the reasonable 

procedures to correct or how to resolve the mistakes and their causes. 
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CHAPTER IV 
 

METHODOLOGY 

 

To investigate calculus students' application of critical thinking while solving 

related rate problems, I conducted task-based clinical interviews (Clement, 2000) during 

the fall 2021 semester with two undergraduate students who were enrolled in Calculus 1 

(MATH 2144) class at Oklahoma State University. The task sequence aimed at exposing 

how students engage in critical thinking in various types of related rate problems. 

(Appendix A contains the task sequence.) The course coordinator of MATH 2144, Dr. 

Tallman, and I decided to select five questions of increasing complexity from the related 

rates instructional materials for the course. To understand how students engage in critical 

thinking, I analyzed students responses to various problems and their interaction with me 

during the interviews. 

Since I was curious about the critical thinking skills students demonstrated when 

solving the related rate problems in the task sequence, I developed the following general 

interview protocol that I followed during each students’ engagement with each of the 

tasks in the sequence: 
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• Describe what is happening in this situation? (This question aims to expose how 

students interpret the problem.) 

• What quantities are varying, and what quantities are constant? (This question 

enabled me to determine if the student conceptualized the context correctly, 

conceived the situation dynamically, and constructed a quantitative structure that 

related the quantities described in the context). 

• What are you asked to compute? (Students’ responses to this question allowed me 

to explore the analytical and interpretation aspects of critical thinking.) 

• Describe how you might go about solving this problem? (This question, and the 

following one, enabled insight into the inferences students made and their 

evaluation of the context to strategize a plan for solving the problem.)  

• Describe the general strategy that you will employ to solve this problem? 

• Take a few minutes to solve the problem, and feel free to verbalize your thought 

process as you proceed. 

• Summarize your process for solving this problem (after obtaining a solution), 

• How confident are you that your solution is correct? Why? (This question allowed 

students to provide explanations and give insight into their self-regulation.) 

The last four parts of the questions will evaluate the critical thinking skills, 

evaluation, inferences, and self-regulation. I am focusing here on how students’ 

reasoning and thinking informs their actions while solving each related rates problem, 

rather simply determining whether they obtained an accurate answer. The rationale 

behind these questions is to evaluate students' critical thinking in various related rates 

problems. 



17 
 

I conducted two interview sessions with Meghan. Two interviews lasted one hour, 

and I recorded Meghan's interviews, both written and audio work. During the first 

interview, I covered three related rates problems, and Meghan was able to share what she 

thought and provided her thoughts, interpretations, and rationale for her actions. The 

second interview covered only one question from the task sequence, which was more 

complicated than the first three problems. But although she only completed one task, her 

second interview contributed substantial insight into Meghan’s critical thinking, 

including her interpretation of, and strategy for solving, related rate problems. 

I conducted two interview sessions with Karl. Both interviews lasted about one 

hour. Karl has attempted five questions from related rates problem altogether, and he was 

able to attempt one more problem than Meghan. But, like Meghan, Karl was also wholly 

engaged in tasks and was effective at articulating his thoughts while solving problems 

from the task sequence. 
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CHAPTER V 
 

 

RESULTS AND CONCLUSION 

 

I selected five related rate problems of increasing difficulty for the task-based 

clinical interviews (see Appendix A). My aim was to evaluate the participants’ critical 

thinking skills as they engaged with these five problems. The increasing difficulty of 

these tasks provided students the opportunity to think critically when they attempted each 

question. Students who participated in the interviews got a chance to analyze their work, 

regardless of whether it was correct. Also, I did not expect students to solve each problem 

correctly; the content of the questions and their progressive difficulty enabled me to focus 

on students’ thought processes, including how they critically evaluated the validity of 

their work.  

Interviews with Meghan 

Meghan’s’ first interview lasted about an hour, and she attempted the first three questions 

listed in Appendix A. The first question stated, “If the radius of a spherical balloon 

increases at a rate of two inches per minute, at what rate is volume increasing when 

the radius is three inches?” Meghan was confident in her solution to this first problem. 

Excerpt 1 documents our discussion of this task.



19 
 

Excerpt 1 

Interviewer:  Describe what is happening in this situation? 

Meghan:  I wanted to find the rate, and two is my derivative. So, I would use the 

volume of a sphere and then take the derivative with respect to the time t. 

Interviewer:  Can you explain what quantities are varying and what quantities are 

constant? 

Meghan:  Rate of change of radius is constant, and the radius is a varying quantity. 

(She demonstrated confusion about whether the radius is constant or not.) 

Interviewer:  Feel free to solve the problem and feel free to verbalize your thought 

process here. 

Meghan:  Okay, we know 𝑉 =
4

3
𝜋𝑟3, and we want to make derivative on both sides, 

we get 
𝑑𝑉

𝑑𝑡
=

4π

3
(

𝑑𝑟

𝑑𝑡
)

3

. Now substitute 
𝑑𝑟

𝑑𝑡
= 2, and that value is the rate of change 

of volume. 

Interviewer:  When you look back to your solution again, how confident are you? 

Meghan:  I went wrong on the step I took the derivative … 

Interviewer:  Why do you think that? 

Meghan:  Because I do not have any “r” in my rate equation to plug the value of the 

radius  

r = 3. I think,  

𝑑𝑣

𝑑𝑡
 =

4

3
𝜋𝑟2

𝑑𝑟

𝑑𝑡
 =

4

3
𝜋 (3 )22( 2) =  24 𝜋.   

Interviewer:  How confident you are currently? 

Meghan:  I am very confident now. 
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From her responses on the first task, Meghan demonstrated a correct 

interpretation of the first problem. When she started solving the problem, she did not 

recognize that she needed to use the chain rule to construct the correct related rate 

formula. She represented the derivative of r3 with respect to t as (
𝑑𝑟

𝑑𝑡
)

3

, but she then re-

evaluated her work, identified where she went wrong, and finally, completed the problem 

correctly. From here, we could say Meghan was able to think critically about whether she 

was correct or not in the contest of the problem. She was also able to think critically 

brought up the right answer for the question. 

The second task was a little more involved than the first one. The second question 

that Meghan attempted was, “A 10-foot ladder is leaning against a wall, the bottom is 

pulled away at a constant speed of 1 feet/sec. How fast is the top of ladder moving 

when it is 5 feet from the ground?” Meghan thinks this problem is more complicated 

than the first question.  

Excerpt 2 

Interviewer:  How do you look at this problem? 

Meghan:  This problem is more challenging than the first one. For the first problem, I 

have the formula to use, but here I do not know. 

Interviewer:  What are you being asked to compute? 

Meghan:  I want to find a derivative at which the top of the ladder moving. One foot 

per second represents another derivative, and I must use it when I solve the 

problem. Also, the height of the ladder is constant, which is 10 feet height ladder. 

Interviewer:  Describe how you might go about solving this problem? 
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Meghan:  This is another triangle problem, since I want to find the speed of the top of 

the ladder is moving, so I might use the equation speed = distance/time. Where 

speed = 
𝑑𝑠

𝑑𝑡
= 1= 1 feet/sec and distance = 5 feet. 

Interviewer:  Is this your answer? 

Meghan:  I am not sure! I did not use the 10 feet in my answer, I think I want use that 

as well. 

Interviewer:  Okay, you are mixed up with a different concept. I will show you how 

the visual representation of this problem looks like. (Dr. Tallman showed a 

dynamic animation of a moving ladder). Now think how you would solve the 

problem. 

Meghan:  I would use Pythagorean theorem, 52 + 𝑐2 = 102    

𝑐2 = √(100 − 25) 

𝑐 = √75. 

This would be the base length for the right triangle. So, I know the bottom of the 

ladder moving at a constant rate 
𝑑𝑥

𝑑𝑡
=1 feet/sec, and I want to find the speed at 

which top of the ladder falling. So, I can use the Pythagorean theorem, 
𝑑𝑦

𝑑𝑡

2
+

𝑑𝑥

𝑑𝑡

2
=

𝑑

𝑑𝑡

2
but I don’t have any speed corresponding to the side hypotenuse of my 

triangle. 
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Interviewer:  So, do you think Pythagorean theorem is also correct for the rates 

corresponding to each side? 

Meghan:  Yes. 

Interviewer: Can you explain me what is 
𝑑𝑦

𝑑𝑡
, and 

𝑑𝑥

𝑑𝑡
 represent? 

Meghan:  
𝑑𝑦

𝑑𝑡
 is the speed at which the top of the ladder falling, 

𝑑𝑥

𝑑𝑡
 is the speed at 

which the bottom of the ladder pulled away, and which is 1 feet/sec. 

Interviewer:  How confident you are on the equation connecting the rates? 

Meghan:  I am very confident, because that equation contains 
𝑑𝑦

𝑑𝑡
 and I can solve that. 

When I analyzed Meghan’s’ interview, she was confused to proceed the problem 

as she did not interpret the problem correctly. She was thinking initially she can use  

𝑠𝑝𝑒𝑒𝑑 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑡𝑖𝑚𝑒
  to solve the problem. After seeing the visual representation, she 

understood that she wanted to evaluate the rate at which the ladder falling when the 

height is 5 feet from the ground. At this point Meghan’s interpretation was right. Also, 

she was right at the marking sides of the right triangle, and she was right when she used 

the Pythagorean theorem to find the length of the base of the triangle. So, she was able to 

make an equation relating the variables, but she did not consider differentiating her 

equation 𝑥2 + 𝑦2 = 102. Visual representations were able made her to think critically 

about making accurate Pythagorean equation. More specifically, she did not make an 

actual inferential relationship among statements, and hence she did not critically analyze 

the problem situation correctly. For example, after 𝑥2 + 𝑦2 = 102, she did not assess the 



23 
 

credibility of the statements “
𝑑𝑦

𝑑𝑡

2
+

𝑑𝑥

𝑑𝑡

2
=

𝑑

𝑑𝑡

2
.” Instead, her reasoning was she use 

Pythagorean theorem for the equations of rates. Also, the meaning of the derivates 

completely ignored when we write “
𝑑

𝑑𝑡

2
.” 

When I asked her how confident she was in her solution, I wanted to know 

whether she could justify her reasoning. Here she is much confident about what she 

wrote, and she was confident that she can solve 
𝑑𝑦

 𝑑𝑡
, if she knows the rate that relate to the 

side hypotenuse of the triangle. The absence of the analyzing skills, Evaluation skill and 

the self-evaluations skills, made her unable to solve the task. 

Meghan’s third task was more complicated than first two tasks. We decided 

increasing complexity of task as it is important know how students are engage in critical 

thinking in various context. “A water tank in the shape of an inverted cone has a radius of 

2 meters and a height of 4 meters. If water is pumped in at a rate of 3 m3/min. Find the 

rate at which the water level is rising when the water is 3 meters deep?” In this task 

student want to think deeply about the situation before they attempted the problem. Also, 

needed the prerequisites for finding the volume of the cone. 

Excerpt 3 

Interviewer:  How do you interpret the problem? 

Meghan:  Here I can say that the radius of a cone is 2 meters, which is constant, and 

height is 4 meters.  

Interviewer:  What is 3 m3/min here? 
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Meghan:  3 m3/min refers to the rate of the volume of the water pumped in. 

Interviewer:  How can you represent it? 

Meghan:  
𝑑𝑤

𝑑𝑡
=

3𝑚3

𝑚𝑖𝑛𝑢𝑡𝑒
. 

Meghan correctly interpreted the rate of change of volume of water with respect 

the time. Also, she analyzed the problem in such a way that she knew she wanted to use 

the equation of the cone, but she forgets it. Also, Meghan was thinking the rate at which 

the water is pumped in is same as the rate which is asking to find on the problem. She did 

not interpret the meaning of the different rates described on the problem, and that is why 

she was unable to proceed the problem. 

Excerpt 4 

Interviewer:  The equation of the volume of a cone is, 𝑉 =
1

3
 πr2ℎ. Now how can you 

proceed here? 

Meghan: I know r equals two, and height is four meters.  

Meghan drew a picture of an inverted cone and she realized that the two rates are 

different. She concluded that we want to find the rate of change of height at which the 

water level rising with respect to the time, and 
𝑑𝑤

𝑑𝑡
=

3𝑚3

𝑚𝑖𝑛𝑢𝑡𝑒
 is the rate of change of 

volume of water with respect to the time. At this point, Meghan was critically evaluated 

her previous statement and she realized that the two rates are different. So, it is important 

to think critically, and interpret, analyze, and evaluate our response before we proceed the 
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problem. If she did not critically evaluate her statements, her thought regarding 

distinguish between two rates would lead her wrong answer to the problem.  

Meghan did not get enough time to work on the problem, as we are reached 1 

hour for the meeting. But, at last she was concluded that she wanted to find the rate at the 

water level is rising, also analyzed “water level is rising” related to the height. So, she 

concluded that she would proceed the problem to take the derivative on both sides of the 

equation, 𝑉 =
1

3
 πr2ℎ. 

Meghan’s second interview for task 4 lasted one hour. We constructed the task 4 

as more complicated than first three tasks. I wanted to see how student’s critical thinking 

can help to solve complex problems. The task 4 addressed the problem “A man starts 

walking north 4 feet/sec from a point P. Five minutes later a woman starts walking south 

at 7 feet/sec from a point 500 feet due east to P. At what rate are the people moving apart 

15 minutes after the woman start walking?” This problem required to think a lot before 

the student attempt to solve.  

Excerpt 5 

Interviewer:  How do you look at this problem.? 

Meghan:  The problem gives the rates which man and woman are walking. So the rate 

at which man walking , 
𝑑𝑚

𝑑𝑡
= 4 feet/second, and the rate at which woman walking 

𝑑𝑤

𝑑𝑡
= 7 feet/sec. So, we can draw a right triangle connecting these informations. 

Meghan tried to draw the picture, but she felt that’s not correct. But she did mark 

the directions correctly. Meghan identified the point P at which the man and woman are 
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walking correctly, and then she marked  
𝑑

𝑑𝑡
 as the rates at which people are moving after 

15 minutes. Initially, Meghan thought the man and woman are walking at the same rate 

after 15 minutes, but she self-evaluated her response, and told they are walking at 

different rates. Hence, it is important to know why she thought about this. 

Excerpt 6 

Interviewer:  Tell me more about why do you think the possibility of two related 

rates? 

Meghan:  Because there are two different people, and they are walking at two 

different rates. So, I can use the Pythagorean theorem in the following way: 

𝑑𝑚

𝑑𝑡

2

+
𝑑𝑤

𝑑𝑡

2

=
𝑑

𝑑𝑡

2

= 42 + 72. 

Meghan was not confident about the equation she wrote, as she felt she did not 

use much information. Especially, the woman’s distance 500 feet from the point P. We 

could understand from here that Meghan was evaluated her work critically as it made her 

think I did not use all the information’s here. 

Excerpt 7 

Interviewer:  When you applied the Pythagorean theorem here, are you confident that 

you can use it for the rates as well rather than the length of the sides of the right 

triangle? 

Meghan:  Yes 
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From here we could understand that her understanding or meaning of the related 

rates are not clear. She did not interpret and analyze the problem correctly. After some 

point Meghan was thinking her triangle picture, she represented early is not correct, the 

intention for her thinking was she wanted to use 500 feet in her figure. So, she drew her 

picture again and marked hypo tenuous as 500 feet. But she evaluated her picture again 

and she made her comments that since the woman walking 500 feet east of the point P, 

500 feet should be marked on the right of P. Also, she analyzed the problem again and 

she was thinking to need another equation connecting the variables and then take the 

derivatives on both sides. The reason why she thought about this is she can plug in, 
𝑑𝑚

𝑑𝑡
 

and 
𝑑𝑤

𝑑𝑡
 at some point.  

Excerpt 8 

Interviewer:  Why do you think you are missing an equation here? 

Meghan:  When we solve related rates problem, we will have an equation first and 

then we will take it’s derivative. I am missing that step here. 

When I analysed her response I understood that students mostly follow the steps 

involved in solving related rates problem without much further thinking of their work. I 

wanted to know how her reasoning will change if we show the dianamic representation of 

the problem. 

Excerpt 9 

Interviewer: Why do you think I draw the woman walking down here (see Figure 1)? 
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Meghan: Okay, now I realized that woman is walking south at 7 feet/sec. So, it should 

be the opposite direction of man walking. 

Interviewer: what is asking to solve here? 

Meghan: The speed at which man and woman are walking. Oh no. On the question it 

says they are moving apart. So, there should a line connecting those two points. 

(Meghan was right at this point. So, creating a visual representation of the 

problem made to think her in a right direction.) 

Interviewer: Very good! So, I should connect them using a straight line. Now, what 

do you think who is going to walk first? Man, or woman? 

Meghan: The man starts first. 

Interviewer:  Okay, so here man going to walk first and then five minutes later 

woman is going to walk. 

Figure 1 

Interviewer’s Sketch of the Context from Problem 4 
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Meghan agreed that she wanted to find the rate at which the red line moving after 

seeing the visual representation. We asked her to rethink about her work after seeing this, 

and Meghan did approach the problem in following way 

𝑑𝑚

𝑑𝑡
= 4

𝑓𝑒𝑒𝑡

𝑠𝑒𝑐
+ 5 𝑚𝑖𝑛 

𝑑𝑤

𝑑𝑡
= 7

𝑓𝑒𝑒𝑡

𝑠𝑒𝑐
 

𝑑 = 500 𝑓𝑒𝑒𝑡 

Her assumption was she wanted to find 
𝑑𝑑

𝑑𝑡
 at 15 minutes. At this point we could also 

understand that student was not able to interpret the meaning of what does it mean when 

finding the rate at which 15 minutes after the woman start walking. She explained why 

she had difficulty of solving this problem. Since this picture is having two triangles it is 

also difficult for her to identify the suitable right triangle appropriate to this situation. So, 

this means that she did not analyze the problem the way it is. So, we wanted to explain 

little more about the problem using the visual representation. Dr. Tallman created an 

animation which man walking and after five minutes later woman starts walking, and 

their walk followed by a traced line (see Figure 1).                      

After this Meghan draw her triangle as shown in Figure 2. 
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Figure 2 

Meghan’s Drawing While Responding to Task 4 

 

Meghan was so confused why she did not have regular numbers here rather than 

the rates. At this point she did not realize to connect the sides of the triangle as distance 

of man or woman are walking. But she critically self-evaluated her work and made the 

assumptions that she could draw her right triangle with m + w, 500, and d as their length, 

and she said she can use the Pythagorean theorem in following way (𝑚 + 𝑤)2 + 5002 =

𝑑2  and she knew that she wanted to take the derivative on both sides. But she did not 

analyze her work as if she wanted to use the chain rule while taking the derivatives. She 

completely ignored that, and she tried it following way, 

(
𝑑𝑚

𝑑𝑡
+

𝑑𝑤

𝑑𝑡
)

2

+ 𝑡2 =
𝑑𝑑

𝑑𝑡

2

. 

When I asked about why did she use the variable t in her derivative equation, her 

reasoning was we wanted plug in 15 minutes and 7 minutes at some point, so we want a 

variable t in our equation. In this situation, Meghan really thinks about the situation, but 
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she did not come up with the inference, or did not able to make a reasonable conclusion 

of her work.  

Excerpt 10 

Interviewer:  Ok on your last equation, you said you took the derivative on both sides, 

do you mean the derivative of 5002 is  𝑡2? 

Meghan:  No, I think I can think the following way. 

(
𝑑𝑚

𝑑𝑡
+

𝑑𝑤

𝑑𝑡
)

2

+ 0 =
𝑑𝑑

𝑑𝑡

2

𝑡 

Interviewer: Why is that ‘t’ on the right side 

Meghan:  Because I am taking the derivative with respect to time, but there is no 

actual time on numerator.  

At last, she had concluded that, 

(
𝑑𝑚

𝑑𝑡
+

𝑑𝑤

𝑑𝑡
)

2

+ 0 =
𝑑

𝑑𝑡
 𝑡. 

Meghan also stated that she could divide by t on both sides to find the derivative. She 

expressed a high degree of confidence in her work at this point. 

When I analyzed Meghan’s’ second interview, the task was little hard. When I 

evaluated her work each time, I understood that she did not understand the meaning of 

the related rates completely. She failed to think critically most of her work, that’s why 

she ended up a wrong reasoning. When an interviewer provided the visual representation 

of the problem, she provided more meaningful reasoning and were able to think critically 
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than before. Also, she did not think critically evaluated her work when she took the 

derivative each time, and which made her reasoning and work wrong. 

Table 2 

Meghan’s explanation and Critical thinking skills 

Meghan’s explanations in various tasks Critical Thinking skills/Subskills 

 “I wanted to find the rate, and two is my 

derivative. So, I would use the volume of 

a sphere and then take the derivative with 

respect to the time t”. 

 

Meghan Interpreted the task 1 

Analyzed the task that she wanted to use the 

volume of a sphere and then do the 

differentiation 

𝑉 =
4

3
𝜋𝑟3 

𝑑𝑉

𝑑𝑡
=

4π

3
(

𝑑𝑟

𝑑𝑡
)

3

 

 

Meghan did not evaluate the problem at first as 

she did not have a good idea about implicit 

differentiation 

I do not have any “r” in my rate equation to 

plug the value of the radius r = 3. 

 

She self-evaluated her work and that made her 

to rethink the differentiation again 
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𝑑𝑣

𝑑𝑡
 =

4

3
𝜋𝑟2

𝑑𝑟

𝑑𝑡
 =

4

3
𝜋 (3 )22( 2)

=  24 𝜋.   

“I know the bottom of the ladder moving 

at a constant rate 
𝑑𝑥

𝑑𝑡
=1 feet/sec, and I 

want to find the speed at which top of the 

ladder falling” 

She made an inference and correctly evaluated 

the task. 

 

 

She did interpret the problem after seeing the 

dynamic representation of the problem 

I can use the Pythagorean theorem, 
𝑑𝑦

𝑑𝑡

2
+

𝑑𝑥

𝑑𝑡

2
=

𝑑𝑧

𝑑𝑡

2
, If the equation connection to 

the side is 𝑥2 + 𝑦2 = 𝑧2 

Did not evaluate the validity of the statement 

and failed to evaluate critically here! 

“The rate at which the water is pumped in 

is same as the rate at which the water 

level is rising” 

She analyzed and interpreted the meaning of 
𝑑𝑊

𝑑𝑡
 

and she did not analyze the problem that she 

wanted to evaluate 
𝑑ℎ

𝑑𝑡
 

 The rate at which man walking , 
𝑑𝑚

𝑑𝑡
= 4 

feet/second, and the rate at which woman 

walking 
𝑑𝑤

𝑑𝑡
= 7 feet/sec 

Interpreted the arguments. 

 On the question it says they are moving 

apart. So, there should a line connecting 

those two points 

Meghan Interpreted and Analyzed the task in a 

right direction and the visual representation 

helped her to reevaluate her previous work 
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𝑑𝑚

𝑑𝑡
= 4

𝑓𝑒𝑒𝑡

𝑠𝑒𝑐
+ 5 𝑚𝑖𝑛 

And I wanted to find 
𝑑𝑑

𝑑𝑡
 at 15 minutes, 

when d = 500 feet. 

 

 

Meghan failed to think critically what it means 

when finding the rate at which 15 minutes after 

the woman start walking 

 

 (𝑚 + 𝑤)2 + 5002 = 𝑑2 

(
𝑑𝑚

𝑑𝑡
+

𝑑𝑤

𝑑𝑡
)

2

+ 𝑡2 =
𝑑𝑑

𝑑𝑡

2

. 

 

 

Wrong evaluation of the problem. Did not have 

an idea about the implicit differentiation. 

 

Interviews with Karl 

We had two interview sessions with Karl. Both interviews were video recorded, 

and all his data was transcribed. Karl completed one more problem than Meghan. We did 

interview with Karl with the same tasks’ series. 

Task one was about the radius of the spherical balloon problem. Karl thought task 

1 was an easy related rates problem, and he was able to solve the problem correctly and 

provided reasoning correctly. When asked to interpret the problem, Karl responded, “I 

want to find at what rate the volume of a spherical balloon is increasing when radius is 

exactly 3 inches. Radius is increasing at a rate of two incher per second.” Karl’s response 

demonstrates that he was able to interpret the problem correctly. Identified what he wants 
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to find and what are the information’s provided to find the unknown quantity. To answer 

the second question Karl wanted to analyze the problem correctly, so I wanted to make 

sure he understood about the quantities. 

Excerpt 11 

Interviewer:  What quantities are varying here and what quantities are constant? 

Karl:  Volume is changing, radius is also varying. But when radius is 3 inches, which 

is constant we can spot on the volume. So, these are the constants. 

Interviewer:  What are you being asked to compute? 

Karl:  I want to find the rate at which the volume is increasing when the radius is 3 

inches. 

Interviewer:  Okay, how do you represent that? 

Karl:  I want to find 
𝑑𝑣

𝑑𝑡
 at 𝑟 = 3 inches. 

Interviewer:  Describe how you might go about solving the problem? 

Karl:  We know what the volume of a sphere is, and then I can take the derivative 

with respect to the time t. 

Interviewer:  Take a few minutes to solve the problem and try to verbalize your 

thought while you solve. 

Karl:  Okay, I can solve the problem in following way: 𝑉 =
4

3
 πr3. I want to find 

𝑑𝑉

𝑑𝑡
 

when r = 3 inches. When r = 3, V = 36𝜋. Then, 
𝑑𝑣

𝑑𝑡
= 0. 
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Interviewer:  How do you evaluate your problem? 

Karl:  I am sure about the way I approached the problem. But the equation 
𝑑𝑉

𝑑𝑡
= 0 

does not make sense! 

Interviewer:  Why do you think like that? 

Karl:  Because I know that the rate of change of volume increases when r increases.  

Karl was more confident about these questions. He was able to spot on what he 

wanted to compute and analyze the problem in a proper way. Here Karl was able to 

critically evaluate his equation of the related rates and that made him to rethink what 

should be the right way of approach the problem. Karl then said since we are taking the 

derivative of the volume with respect to t, it could be 72𝜋. Because we have an exponent 

𝑟3. Karl’s critical thinking on this problem varies differently. He was able to interpret the 

problem and analyze the problem correctly. He critically evaluated his statement 
𝑑𝑉

𝑑𝑡
= 0, 

and that helped to solve the problem correctly. 

Karls’ next task is about the ladder problem. The ladder problem was little 

involved than the first task. Karl was sure that the ladder problem is a triangle problem. 

So, Karl was able to interpret and analyze the situation correctly. He correctly marked 

each side as the length and was able to identify variables and the rates are related. He was 

sure that 
𝑑𝑏

𝑑𝑡
= 1, and he wants to find 

𝑑𝑎

𝑑𝑡
. 
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When I compared Meghan’s work with Karl’s, I could see that Karl is having 

better understanding of rates and their meaning. Also, Karl is critically analyzed the 

problem here. Karl’s written work is displayed in Figure 3 

Figure 3 

Karl’s Written Work on Task 2 

 

 

Notice that Karl expressed the relationship between the side lengths and the hypotenuse 

with the equation 𝑎2 + 𝑏2 = 102. He then plugged 5 in for a and solved for b, to obtain 

𝑏 = √75. 

Karl was right here, or he could make the relationship between a and b. He was sure that 

he wanted to find 𝑎′ here. He started solving following way, 

𝑎′2 + 𝑏′2 = 𝑐′2 

𝑎′2 + 1 = 𝑐′2 
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Excerpt 12 

Interviewer:  What is ‘c’ here? 

Karl:  c is constant here, so c’ is never change and hence c’ = 0. (Even though Karl 

above equation is wrong, his reasoning for understanding related rates make 

sense! Karl solved the above equation as 𝑎′ = √−1.) 

Interviewer:  Are there any part of your solution you are not confident? 

Karl:  I am confident. 

Interviewer:  When you look at your solution, you have not used the value 𝑏 = √75 

anywhere in the problem. What do you think about it? 

Karl:  I think we may not need that information. 

Karl did not critically evaluate his work when he took the derivates. Also, he did 

not check his validity of the equation  𝑎′2 + 𝑏′2 = 𝑐′2, whether the Pythagorean theorem 

is also applicable for derivative. It had really interested me that both Meghan and Karl 

think they can use the right triangle law for the rates.  

The third task is about the inverted cone problem. 

Excerpt 13 

Interviewer: How do you look at the problem? 
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Karl:  (Sketched the cone displayed in Figure 4) The volume of the cone is, 𝑉 =

1

3
𝜋𝑟2ℎ. Here, r = 2 and h = 3. So, when I substitute these here, I would get V = 

4π. 

Interviewer:  Okay, what is 4π represent? 

Karl:  The volume of the cone. Then you need to find the derivative of the volume 

with respect to the time, and which is zero. 

Figure 4 

Karl’s Written work for Problem 3 

 

 

Karl did not realize here that he did not use all the information to solve the 

problem, that is he needs 
𝑑𝑉

𝑑𝑡
= 3, and he did not identify the relationship between the 
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radius r and h, which is 𝑟 =
ℎ

2
. Also, he was believing that he wanted to find the 

𝑑𝑉

𝑑ℎ
 

instead of  
𝑑𝑉

𝑑𝑡
 as the questions asks the rate at which the water level is rising when the 

water is 3 meters deep. So, it is important to know whether he understood what’s the 

difference is between 
𝑑𝑉

𝑑ℎ
 and 

𝑑𝑉

𝑑𝑡
 on the contest of problem. 

Excerpt 14 

Interviewer:  What is the difference between 
𝑑𝑉

𝑑ℎ
 and 

𝑑𝑉

𝑑𝑡
 here? 

Karl:  Okay, here we want to find 
𝑑𝑉

𝑑𝑡
, because the water is pumped in a rate of 

3 𝑚3/𝑚𝑖𝑛.  

Interviewer:  In which part of your work are you not confident here? 

Karl: I have not used the rate at which water is pumped in, which is 3 𝑚3/𝑚𝑖𝑛. 

Interviewer:  How confident you are about your work? 

Karl:  Compared to first two tasks, I am not that confident. 

Karl did not analyze the problem that he wanted to find the rate 
𝑑ℎ

𝑑𝑡
, and he said 

that he was more confident on the ladder problem than this. Karl self-evaluated his work, 

and he could not identify where he went wrong. He believed that he wanted to find the 

rate of change of volume with respect to the time when the height of the water, h =3. 

Also, he thinks once he solves 
𝑑𝑉

𝑑𝑡
, there might be a formula where we can plug h = 3. 
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Karl was not able to correctly interpret the rates 
𝑑𝑉

𝑑ℎ
  and  

𝑑𝑉

𝑑𝑡
. He was thinking he wanted 

to solve 
𝑑𝑉

𝑑𝑡
, and then we must substitute h = 3 in that equation. This is because Karl did 

not critically analyze the meaning of the sentence “find the rate at which the water level 

is rising when the water is 3 meters deep.” 

Since Karl was able attempt the first three tasks in the first clinical interview, the 

second interview focused on more complicated problems which need strong critical 

thinking skills before they attempt the problem. We decided the task series increasing 

difficulty, so that we could analyze how students engage in critical thinking, how their 

wrong reasoning led to solve the task. The statement of Problem 4 is as follows: “A man 

starts walking north at 4 feet/sec from a point P. Five minutes later a woman starts 

walking south at 7 feet/sec from a point 500 feet due east to P. At what rate are the 

people moving apart 15 minutes after the woman started walking?” 

Excerpt 15 

Interviewer:  Describe what is happening in this situation? 

Karl:  We want to find the rate people are moving 15 minutes after the woman start 

walking by using the rates which man and woman are walking: 

Interviewer:  What are the quantities here are varying and what are the quantities are 

constant? 

Karl:  The distance 500 feet is constant; I can draw the situation here and explain. By 

using this triangle, I can make one right triangle, which will be (draws right 
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triangle, see Figure 5). So, we want to find c’, the rate at which people are 

moving. 

Interviewer:  How did you get 𝑎′ = 11? 

Karl:  I can add two rates together and can make a one side of the triangle. Since 500 

feet is not changing so 𝑏′ = 0. I can use the Pythagorean theorem to solve the c’. 

𝑎′2 + 𝑏′2 = 𝑐′2 

𝑐′2 = 121 

𝑐′ = 11 

Interviewer:  Is this your final answer? 

Karl:  Yes. 

Interviewer:  How did you come up with the equation 𝑎′2 + 𝑏′2 = 𝑐′2? 

Karl:  I can use the Pythagorean theorem for rates. 

Figure 5 

Karl’s Written work on Problem 4 
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When I analyze the Karl’s work on Problem 4, he can interpret the problem and 

analyze the problem. But when started solving the problem, he did not realize that he 

wanted to first make a relationship between variables. His pictorial representation of the 

problem was correct. Karl said his first picture represent the given situation is not correct, 

as he thought man and woman are moving at different direction. He did not realize that 

Pythagorean theorem is applicable if he treats the sides of triangle as its length. Also, He 

was not able to make an inference about his conclusion.  

When we analyzed Meghan’s and Karl’s work. They both were using 

Pythagorean theorem for the derivatives, and they were confident that they can use the 

theorem for rates. Karl was able to draw the situation correctly without seeing the virtual 

representation of the problem, and finally they both were failed to think critically about 

the correctness of their work at last. 
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Task 5 is a related rates problem involving trigonometry. The question is, “A hot 

air balloon raising straight up from a level field is tracked by an inclinometer 500 feet 

from the lift off point. At the moment the inclinometers angle of elevation is 
𝜋

4
 radians. 

The angle is increasing at the rate of 0.14 rad/min. How fast is the balloon rising at this 

moment?” Karl was able to attempt this, which Meghan did not. 

Excerpt 16 

Interviewer:  How can you interpret the problem? 

Karl:  I want to find how fast is balloon rising and given that the angle is increasing at 

the rate of  
𝜋

4
 radians. 

Interviewer:  How do you represent the sentence “angle is increasing at the rate of  
𝜋

4
 

radians” mathematically? (Karl drew a right triangle that represent the problem. 

See Figure 6) 

Interviewer:  What is the 500 represent here? 

Karl:  That is the initial height. 

Figure 6 

Karl’s Written Work on Problem 5 
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Karl was confused about how to connect all the information to solve this problem. 

But he did try to let a represent the angle which is 
𝜋

4
,  since it is given that the angle is 

increasing at a rate 0.14 radians per minute, 𝑎′ = 0.14. When he made this assumption, 

Karl did not evaluate his response critically that his assumption is logically incorrect. 

Also, he proceeded by recognizing the need to compute the rate of change of h with 

respect to elapsed time, knowing that h = 500 feet. Karl was not sure how to connect the 

information provided in the task statement to construct an equation.  

At this point, the interviewer supplied Karl with some information about 

trigonometric rations that might have enabled him to make progress on the task (see the 

red text in Figure 6). We just wanted to know whether he could make any equation using 

either of above trigonometric equation. After, providing this I just wanted to know 

whether Karl understand what x, h and z represent in this situation. After evaluating his 
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work Karl was realized that 500 feet represent x here. So, the first time he was wrong, 

and this is because he did not correctly interpret the meaning of “500 feet from the lift off 

point.” Karl then proceeded by writing tan (
𝜋

4
) =

ℎ

500
. Then, h = 500, and x = 500. He 

stated, “I want to find h prime here.” 

Karl’s next attempt was whether he could substitute 𝑎′ = 0.14 into the trigonometric 

equation tan (a) =
ℎ

𝑥
, and then he will be able to find 

𝑑ℎ

𝑑𝑡
. It’s really interested that Karl 

thinks if he could replace the variable with rates, the trig equation still works. 

So, he proceeded by writing the following: 

tan(𝑎′) =
ℎ′

𝑥′
 

tan(𝑎′) =
0

0
 

At this point Karl realized that he might need to use other trig equation. But he wanted to 

first find what is z. He explained, “Okay, now I am thinking 5002 + 5002 = 𝑧2. So, z 

=707.11, and I am stuck here.” The interviewer replied, “Replacing variables with its 

derivative in trig equation is not true, it happens only very limited circumstances.” 

During his last task, Karl was able to interpret the problem critically and analyze it, but 

he was failed to think critically about his work. 

Table 3 

Karl’s explanation and critical thinking skills 
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Karl’s explanations in various tasks Critical Thinking skills/Subskills 

I want to find 
𝑑𝑣

𝑑𝑡
 at 𝑟 = 3 inches. 

 

Interpret the problem and analyze the 

arguments. 

We know what the volume of a sphere is, 

and then I can take the derivative with 

respect to the time t 

Karl did make an inference how he 

procced the problem 

I want to find 
𝑑𝑉

𝑑𝑡
 when r = 3 inches. When 

r = 3, V = 36𝜋. Then, 
𝑑𝑣

𝑑𝑡
= 0. 

 

Did not critically evaluate the task at first 

But the equation 
𝑑𝑉

𝑑𝑡
= 0 does not make 

sense! 

I know that the rate of change of volume 

increases when r increases 

 

Karl self-evaluated his work 

again/Critically evaluated his last 

statement and this helped to solve the 

problem finally! 

𝑎2 + 𝑏2 = 102. And  𝑏 = √75. Interpreted and analyzed the ladder 

problem in a right direction 

𝑎′2 + 𝑏′2 = 𝑐′2 

𝑎′2 + 1 = 𝑐′2 

 

 

Had an idea about to take the derivatives 

but evaluated it in a wrong way 

We want to find the rate people are 

moving 15 minutes after the woman start 

Correctly interpreted and analyzed what is 

asking and the drew the picture perfectly 
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walking by using the rates which man and 

woman are walking: 

 

𝑎′2 + 𝑏′2 = 𝑐′2 

𝑐′2 = 121 

𝑐′ = 11. 

Pythagorean theorem is also applicable 

for rates 

 

Failed to think critically/evaluated 

critically 

Not good understanding of rates and it’s 

meaning. 

𝑉 =
1

3
𝜋𝑟2ℎ. Here, r = 2 and h = 3. So, 

when I substitute these here, I would get 

V = 4π. 

 

Did not interpreted and analyzed the 

inverted cone problem. Also, ignored 

much information while solving problems. 

Did not analyze the arguments 
𝑑𝑣

𝑑𝑡
 and 

𝑑ℎ

𝑑𝑡
 

tan (
𝜋

4
) =

ℎ

500
. Then, h = 500, and x = 

500. He stated, I want to find h prime 

here. 

Interpreted to use trig identity but failed to 

evaluate critically on the contest. 

tan(𝑎′) =
ℎ′

𝑥′
 

tan(𝑎′) =
0

0
 

Replacing variables with rates in trig 

equation still work 

 

Wrong interpretation and evaluation:  
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                                                   Discussion and Conclusions 

When I analyzed the two students’ task-based clinical interviews, I revealed that 

students were engaged in critical thinking in various ways. The most challenging task 

required a high level of thinking, and students were facing difficulty in solving the 

problem. When students solve related rates problems, they are knowingly or 

unknowingly engaged in critical thinking. In some tasks, they were able to interpret, 

analyze, and evaluate their situation correctly critically. However, in the most challenging 

task, both students were facing the difficulty of providing reasoning and were failed to 

engage in critical thinking. Also, I understood the common mistakes that happen when 

they take derivatives on related rates problems. They just think 
𝑑𝑦

𝑑𝑥
   as a fraction. This is 

mainly because students think of the function 
𝑑𝑦

𝑑𝑥
  as a notation or misconceptions about 

the rates. Therefore, this led them to a wrong answer. Following are the main points I 

summarized when I interviewed Meghan and Karl. 

• When I asked them about “how they interpret the problem,” they both were able 

to provide me with what they wanted to find, what quantities vary, and what 

quantities are constant. So, they understood the meaning of the problem 

correctly.  

• Since some of the tasks needed higher-level thinking, students were having 

difficulty coordinating the information. For example, on task 3, Meghan could not 

draw the picture exactly from where man and woman are starting initially. But 

Karl was able to visualize and draw the situation correctly.  

• Both did not make logical inferences for their rate equation, that is Meghan was 

wrong at if she can write 𝑥2 + 𝑦2 = 𝑐2, then she said this equation followed 
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𝑑𝑥

𝑑𝑡

2
+

𝑑𝑦

𝑑𝑡

2
=

𝑑𝑐

𝑑𝑡

2
. On the other hand, Karl wrote if, (𝑥 + 𝑦)2 + 𝑧2 = 𝑚2, then 

(
𝑑𝑥

𝑑𝑡
+

𝑑𝑦

𝑑𝑡
)

2

+
𝑑𝑧

𝑑𝑡

2
=

𝑑𝑚

𝑑𝑡

2
. So, both Meghan and Karl were failed to evaluate their 

equation critically and they did not think they did want to use the chain rule for 

the differentiation. 

• Karl was able to attend the trigonometric problem, but he was failed to decode 

which trigonometric identity he wanted to use in that problem. Also, he did not 

correctly interpret the meaning “the angle is increasing at the rate of 0.14 radians 

per second.   

• Both students were successfully able to solve the first task. When the problem 

was difficult, students were having difficulty of solving the tasks and they were 

not able to give the reason correctly. 

• Both students were failed to evaluate their difficult tasks like trig problem and the 

problem of Man and women walking. Both had a wrong solution, and they did not 

have a good understanding of the concepts of rates and differentiation.  

• Karl was wrong at critically evaluating his statement about interchanging variable 

in the trig identity with its derivative. That is, he wrote 

tan(𝑎) =
ℎ

𝑥
 

tan(𝑎′) =
ℎ′

𝑥′
=

0

0
. 

This was incorrect, and Karl demonstrated confusion about his answer. 

During the interview with Meghan and Karl, they were confused about many concepts, 

and they did not wholly understand taking derivatives. But, when they critically evaluated 

and analyzed their work, I felt they both were confident in solving the task. So, engaging 
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in critical thinking made their good understanding, and hence they were able to solve the 

problem correctly. 

                                         Recommendation for Instructors  

The result of my study indicates that students having a hard time to understand the related 

rates problem. As critical thinking skills evoke students cognitive reasoning, it is 

important to make sure that students are engaged in critical thinking while they solve 

problems. Instructors should encourage students to think critically in classroom. It is also 

important to know each time how students interpret the problem, analyze the arguments 

and how they are making inference in given situation. Most of the time instructors won’t 

understand their reasoning for wrong statements until we talk with them, so we have to 

make sure that we are providing enough time to think about each problem. When it’s 

come to the complex problems like related rates and the implicit differentiation, most 

students are attempting to solve the problems as they are more curious to get the answers 

rather than understanding what they are doing. So, it is important to give some time to 

think what’s going on the problem before they solve it. When students make false reason 

like “Pythagorean theorem is also applicable for rates”, as an instructor we want to 

remind them it’s only possible in a very rare circumstances, possibly with an example. 

Also, when student think if the equation 𝑥2 + 𝑦2 = 𝑧2, and ask them what does happen if 

we take the first derivative. Like Karl and Meghan, they thought the rates equation is, 

𝑑𝑥2

𝑑𝑡
+

𝑑𝑦2

𝑑𝑡
=

𝑑𝑧2

𝑑𝑡
. Student did not think about the role of implicit differentiation. So, when 

instructor introduced the topics it’s important that whether student’s get an idea what’s 
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going there and what’s it’s meaning. Maybe, just ask couple of questions before students 

start doing differentiation, in order to understand whether they get the idea or not. 



53 
 

REFERENCES 
 

 

 

1.Facione, Peter A, Critical Thinking: A statement of Expert Consensus for Purposes of 

Educational Assessment and Instruction. Research Findings and Recommendations. 

Mathematical Problems. 

2.Brett Elliott, Karla Oty, John McArthur & Bryon Clark: The effect of an 

interdisciplinary towards mathematics. 

3.Christine Knipping: A Method for revealing structures of argumentations in classroom 

proving process. 

4.Firdaus, Ismail Kailani, Md. Nor Bin Baker, Bakry. (2015). Developing Critical 

Thinking Skills of Students in Mathematics Learning. Journal of Education and Learning. 

Vol. 9(3) pp. 226-236. 

5.Thompson, P. W. (2013). In the absence of meaning…In Leatham, K. (Ed), Vital 

directions for research in mathematics education (pp. 57-93). New York, NY: Springer.



54 
 

6.Thembinkosi P. Mkhatshwa: Calculus Students’ Quantitative Reasoning In The Context 

of Related Rates Problem. 

7.Kevin C. Moore, Marilyn P. Carlson, Michael Oehrtman: The role of quantitative 

reasoning in solving applied pre-calculus problem. 

8.Michael A Tallman: An Examination of the Effect of a Secondary Teacher’s Image of      

Instructional Constraints on His Enacted Subject Matter Knowledge



55 
 

APPENDICES 
 

 

 

Task-based clinical interview problems: 

1. If the radius of a spherical balloon is increasing at a rate of 2 inches per minute, at 

what rate is the volume increasing when the radius is 3 inches? (Enter your 

answer accurate to two decimal places.) 

2. A 10-foot-long ladder is leaning against a wall. The bottom is pulled away at a 

constant speed of 1 feet/sec. How fast is the top of the ladder moving when it is 5 

feet from the ground? 

3. A water tank in the shape of an inverted cone has a radius of 2 meters and a height 

of 4 meters. If water is pumped in at a rate of 3 m3/min. Find the rate at which the 

water level is rising when the water is 3 meters deep?
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4. A man starts walking north 4 feet/sec from a point P. Five minutes later a woman 

starts walking south at 7 feet/sec from a point 500 feet due east of P. At what rate 

are the people moving apart 15 minutes after the woman started walking? 

5. A hot air balloon raising straight up from a level field is tracked by an 

inclinometer 500 feet from the lift off point. At the moment the inclinometers 

angle of elevation is 𝜋/4 radians. The angle is increasing at the rate of 0.14 

rad/min. How fast is the balloon rising at that moment? 

. 
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