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CHAPTER I

LITERATURE REVIEW

1.1 Nonlinear State Space Models

The State space model (SSM), also referred to as the Hidden Markov Model (HMM) [33]
or the Latent Process Model (LPM), is a well-known statistical model for sequential data
analysis [20]. It describes the statistical probabilistic dependence between the hidden variable
and the observable data. Numerous applications of SSM have already been found in the
fields of economics, engineering, statistics, environmental sciences and neuroscience to solve
complicated dynamical system problems[3].

This model consists of two stochastic processes. The first process, denoted as {st}t≥0, is
called hidden Markov process where st are the latent variables with initial density µ(s0) and
transition density f(st|st−1) satisfying Markov property, that is,

s0 ∼ µ(s0) (1.1.1)

st|(s0:t−1) = st|st−1 ∼ f(st|st−1) (1.1.2)

The second process, denoted as {yt}t≥0, is referred to as measurement process where yt
are the observations with a density conditional on st and satisfying the following property,

yt|(s0:t, y0:t−1) = yt|st ∼ g(yt|st) (1.1.3)

The simplest form of SSM is the dynamic linear model [39] which is just the state space
model with linearity and Gaussian property, that is,

yt = Ftst + vt, vt ∼ N(0, Vt) (1.1.4)

st = Gtst−1 + wt, wt ∼ N(0,Wt) (1.1.5)

The target of interest is of likelihood function f(y0:t) evaluation and state inference, i.e.,
filtering density f(st|y0:t) and moment E(h(st)|y0:t) evaluation. This target can be directly
achieved in dynamic linear model by applying Kalman Filter Procedure [38]. However,
when state space model is non-linear or non-Gaussian, analytic solution or expression is not
available. In this context, various numerical procedures have already been proposed over the
last few decades to perform the approximation of likelihood and filtering density. We focus
on two well known methods, the PF and EIS in this dissertation.
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1.2 Particle Filters

Particle filters (PF) are firstly introduced in 1993[14] and have already become the most
commonly used numerical procedures to perform state inference and likelihood approxima-
tion for non-linear non-Gaussian state space model [10]. Essentially speaking, PF methods
are the procedures consisting of two steps. The first step is the sampling. In this step, an
appropriate sampler will be selected and further be used to draw particles and calculate cor-
responding weights. The second step is the approximation. In this step, previously obtained
particles and weights will be used to perform approximation to filtering density f(st|y0:t)
and likelihood f(y0:t).

Numerous PF algorithms have already been proposed over last few decades. To have a
better understanding about the advantage or weakness of these algorithms, a brief review
will be given in the following sections.

1.2.1 Sequential Importance Sampling (SIS)

The Sequential Importance Sampling (SIS) [15, 16] is the earliest developed algorithm of
Particle Filters. The sampler in SIS, denoted as qt(s1:t), has the sequential structure, that
is,

qt(s0:t) = qt(st|s0:t−1)qt−1(s0:t−1)

= q0(s0)
t∏

k=1

qk(sk|s0:k−1)
(1.2.1)

By the theory of Importance sampling and Bayesian inference, we can further have,

f(s0:t|y0:t) =
f(s0:t,y0:t)
qt(s0:t)

qt(s0:t)

f(y0:t)
=

f(s0:t,y0:t)
qt(s0:t)

qt(st|s0:t−1)qt−1(s0:t−1)

f(y0:t)
(1.2.2)

wt =
f(s0:t, y0:t)

qt(s0:t)
(1.2.3)

W i
t =

wit∑N
i=1w

i
t

(1.2.4)

Here, wit and W
i
t are referred to as the unnormalized and normalized weight respectively.

Under the context of non-linear non-Gaussian state space model, the analytical expression
of filtering density f(s0:t|y0:t) is not tractable. Instead, an appropriate sampler qt(s0:t) with
sequential structure will be selected. By Bayesian inference shown in equation1.2.2, particles
{si0:t}Ni=1 will be draw from this sampler and corresponding weights {wit}Ni=1 will be calculated.
As a result, the filtering density f(s0:t|y0:t) will be approximated in the form of mixtures of
Dirac measures, that is,

f̂(s0:t|y0:t) =
N∑
i=1

W i
t × δsi0:t(s0:t) (1.2.5)

2



Here, δsi0:t(s0:t) = 1 when s0:t = si0:t, otherwise, it is equal to zero.

Next, let αt =
f(yt|st)f(st|st−1)
qt(st|s0:t−1)

, equation1.2.3 can be further simplified as,

wt =
f(s0:t, y0:t)

qt(s0:t)
=

f(s0:t, y0:t)

f(s0:t−1, y0:t−1)qt(st|s0:t−1)
× f(s0:t−1, y0:t−1)

qt−1(s0:t−1)

=
f(yt|st)f(st|st−1)f(s0:t−1, y0:t−1)

f(s0:t−1, y0:t−1)qt(st|s0:t−1)
× wt−1

=
f(yt|st)f(st|st−1)

qt(st|s0:t−1)
× wt−1

= αt × wt−1

(1.2.6)

Here, αt is referred to as incremental importance weight. The detailed SIS procedure is as
follows,

Sequential Importance Sampling

• At time t=0

– Draw particles {si0}Ni=1 from q0(s0)

– Compute the unnormalized weight wi0 = f(y0|si0)f(si0)/q0(si0) and normalized
weight W i

0 ∝ wi0

• At time t≥ 1, suppose we inherit {(wit−1, s
i
0:t−1)}Ni=1

– Draw particles {sit}Ni=1 from qt(st|si0:t−1)

– Compute incremental important weight αit = f(yt|sit)f(sit|sit−1)/qt(s
i
t|si0:t−1)

– Compute unnormalized weights wit = αit × wit−1 and normalized weights W i
t ∝ wit

By equation1.2.2, the likelihood value can be evaluated by

f(y0:t) =

∫
f(s0:t, y0:t)

qt(s0:t)
qt(s0:t)ds0:t (1.2.7)

f̂(y0:t) =
1

N

N∑
i=1

f(si0:t, y0:t)

qt(si0:t)
=

1

N

N∑
i=1

wit (1.2.8)

And the moments can be evaluated by

E(h(st)|y0:t) =
∫
h(st)× f(st|y0:t)dst (1.2.9)

Ê(h(st)|y0:t) =
N∑
i=1

W i
t × h(sit) (1.2.10)

3



While Sequential Importance Sampling is intuitive and very easy to implement, there always
arise one challenge problem known as weight degeneracy, i.e., as time goes on, the variance
of the normalized weight will keep increasing [21, 2], as a result, in the extreme case, there
is only one particle taking 1 as the value of normalized weight and all the others taking
0. Increasing the sample size is one way to remedy this problem, but this is at the cost
of efficiency. By far, the most commonly recognized solution is to introduce resampling
step in SIS. This resampling-based SIS is referred to as Sampling Importance Resampling
(SIR)[14, 27].

1.2.2 Sampling Importance Resampling (SIR)

The Sampling Importance Resampling (SIR) algorithm is developed with the motivation
of solving weight degeneracy problem. The basic idea of SIR originates from the fact that
performing resampling can continuously initialize the weights at each time step. As a result,
the normalized weights after resampling will all equal to 1

N
.

The framework of SIR algorithm is almost same with SIS with the exception of the inclu-
sion of resampling procedure[35]. This resampling procedure is implemented to the discrete
distribution of the approximation of filtering density f̂(s0:t|y0:t) =

∑N
i=1W

i
t × δsi0:t(s0:t). The

most intuitive resampling scheme is known as Multinomial Resampling, that is,

{N i
t}Ni=1 ∼Multinomial

(
N, {W i

t }Ni=1

)
(1.2.11)

An important advantage of resampling is reflected by the fact that, after resampling, with
a very high probability, the particle with low weight will be removed while the particle with
high weight will be duplicated, as a result, the computational power will be concentrated on
the region of high probability mass. This may be the reason why SIR is the most commonly
used approach against weight degeneracy problem.

Instead of multinomial resampling, the most widely praised resampling scheme is known
as Systematic Resampling[19]. In most situation, it outperforms other resampling schemes.
The detailed implementation is as follows,

Systematic Resampling

• Sample U1 ∼ U(0, 1
N
) and calculate Ui = U1 +

i−1
N

for i=2,3,...,N

• Find the Cardinality of the set {Uj :
∑i−1

k=1W
k
t ≤ Uj ≤

∑i
k=1W

k
t } and denote it as N i

t

Due to the resampling procedure, the sampler qt(s0:t) in SIR is a little different from the
one in SIS, that is,

qt(s0:t) = qt(st|s0:t−1)qt−1(s0:t−1)

= qt(st|s0:t−1)f(s0:t−1|y0:t−1)
(1.2.12)

Here, we can see that qt−1(s0:t−1) is replaced by the smoothing density f(s0:t−1|y0:t−1) at time

4



t-1. This replacement is due to the fact that,

At time t-1:
{
W i
t−1, s

i
0:t−1

}N
i=1

resample−−−−−→
{

1

N
, s̄i0:t−1

}N
i=1

∼ f(s0:t−1|y0:t−1)

At time t:

{
1

N
, s̄i0:t−1, s

i
t

}N
i=1

=

{
1

N
, si0:t

}N
i=1

∼ qt(st|s0:t−1)f(s0:t−1|y0:t−1)

(1.2.13)

Moreover, the Bayesian inference of filtering density in SIR is given by

f(s0:t|y0:t) =
f(s0:t,y0:t)
qt(s0:t)

qt(s0:t)

f(y0:t)

=

f(s0:t,y0:t)
qt(s0:t)

qt(st|s0:t−1)f(s0:t−1|y0:t−1)

f(y0:t)

=

f(yt|st)f(st|st−1)f(s0:t−1|y0:t−1)f(y0:t−1)
qt(st|s0:t−1)f(s0:t−1|y0:t−1)

qt(st|s0:t−1)f(s0:t−1|y0:t−1)

f(yt|y0:t−1)f(y0:t−1)

=

f(yt|st)f(st|st−1)
qt(st|s0:t−1)

qt(st|s0:t−1)f(s0:t−1|y0:t−1)

f(yt|y0:t−1)

(1.2.14)

And, the unnormalized weight is,

wt =
f(yt|st)f(st|st−1)

qt(st|s0:t−1)
(1.2.15)

Here, we can see that, the unnormalized weight in SIR is just equal to the incremental
importance weight in SIS. And, instead of evaluating likelihood value for the whole time
steps, in SIR, at each time step, we only evaluate conditional likelihood f(yt|y0:t−1) which is
given by,

f(yt|y0:t−1) =

∫
f(yt|st)f(st|st−1)

qt(st|s0:t−1)
qt(st|s0:t−1)f(s0:t−1|y0:t−1)ds0:t (1.2.16)

f̂(yt|y0:t−1) =
1

N

N∑
i=1

f(yt|sit)f(sit|s̄it−1)

qt(sit|s̄i0:t−1)
=

1

N

N∑
i=1

wit (1.2.17)

Overall, the Sampling Importance Resampling algorithm is summarized as follows:

Sampling Importance Resampling

• At time t=0

– Draw particles {si0}Ni=1 from q0(s0)

– Compute the unnormalized weight wi0 = f(y0|si0)f(si0)/q0(si0) and normalized
weight W i

0 ∝ wi0

– Resample {W i
0, s

i
0}Ni=1 to obtain N equally-weighted particles { 1

N
, s̄i0}Ni=1

5



• At time t≥ 1, suppose we inherit { 1
N
, s̄i0:t−1}Ni=1

– Draw particles {sit}Ni=1 from qt(st|s̄i0:t−1) and set si0:t = (s̄0:t−1, s
i
t)

– Compute weight wit = f(yt|sit)f(sit|s̄it−1)/qt(s
i
t|s̄i0:t−1) and W

i
t ∝ wit

– Resample {W i
t , s

i
0:t}Ni=1 to obtain N equally-weighted particles { 1

N
, s̄i0:t}Ni=1

The most popular and basis SIR algorithm is known as Bootstrap Particle Filter (BPF) [14]
in which the sampler consists of transition density f(st|st−1), that is,

qt(s0:t) = µ(s0)×
t∏

k=1

f(sk|sk−1) (1.2.18)

Clearly, as we can see, two kinds of weights are generated during each time step of SIR
algorithm: weight before resampling and weight after resampling. Therefore, there are two
ways to approximate the filtering density, that is,

f̂(s0:t|y0:t) =
N∑
i=1

W i
t × δsi0:t(s0:t) (1.2.19)

f̄(s0:t|y0:t) =
1

N

N∑
i=1

δs̄i0:t(s0:t) (1.2.20)

However, for the moments evaluation, the approximation 1.2.19 outperforms 1.2.20.
Although the performance of SIR is pretty good against weight degeneracy, another

challenge problem, known as sample impoverishment, emerges as the consequence of the
continuous implementation of resampling. As time goes on, particles with relatively high
weights will be duplicated for many times while the ones with relatively low weights will be
removed during the resampling procedure. This will end up with the loss of diversity for the
particles in earlier time [32].

One way to partially solve this problem replies on the adaptive resampling, that is, the
implementation of resampling is only allowed when pre-specified rule is met. The most
commonly used rule is referred to as Effective Sample Size (ESS) criterion [24], which is
given by,

ESS =

(
N∑
i=1

(W i
t )

2

)−1

(1.2.21)

The value range of ESS is between 1 and N and the resampling is allowed only when it is
below a threshold N∗ which typically equal to N/2. The detailed implementation of adaptive
resampling is as follows,

Sampling Importance Adaptive Resampling

• At time t=0

– Draw particles {si0}Ni=1 from q0(s0)

6



– Compute the weights wi0 = f(y0|si0)f(si0)/q0(si0) and W i
0 ∝ wi0

– Compute ESS and if ESS < N/2, then resample {W i
0, s

i
0}Ni=1 to obtain N equally-

weighted particles { 1
N
, s̄i0}Ni=1 and set { 1

N
, s̄i0}Ni=1 → {W̄ i

0, s̄
i
0}Ni=1;

Otherwise, {W i
0, s

i
0}Ni=1 → {W̄ i

0, s̄
i
0}Ni=1

• At time t≥ 1, suppose we inherit {W̄ i
t−1, s̄

i
0:t−1}Ni=1

– Draw particles {sit}Ni=1 from qt(st|s̄i0:t−1) and set si0:t = (s̄0:t−1, s
i
t)

– Compute weight αit = f(yt|sit)f(sit|s̄it−1)/qt(s
i
t|s̄i0:t−1) and W

i
t ∝ αit × W̄ i

t−1

– Compute ESS and if ESS < N/2, then resample {W i
t , s

i
0:t}Ni=1 to obtain N equally-

weighted particles { 1
N
, s̄i0:t}Ni=1 and set { 1

N
, s̄i0:t}Ni=1 → {W̄ i

t , s̄
i
0:t},

otherwise, {W i
t , s

i
0:t}Ni=1 → {W̄ i

t , s̄
i
0:t}

However, even with Sampling Importance Adaptive Resampling, the impoverishment
problem is still inevitable when time goes to infinity. A widely accepted reason for this
challenge is that the sampling process at time t is only based on the particles {si0:t−1}Ni=1

from previous time and the information conveyed by observation yt is missing during the
process. To overcome this problem, particle filters with adaption have already been developed
and the most well-known ones are Fully Adapted Particle Filter (FAPF) [1] and Auxiliary
Particle Filter (APF) [32]. The adaption in this context is referred to as the inclusion of yt
information.

1.2.3 Fully Adapted Particle Filter (FAPF)

Fully Adapted Particle Filter, also known as Conditionally Optimal Particle Filter, has the
same framework with Sampling Importance Resampling with the exception of the particular-
ity of sampler which is based on the availability of the analytical expression of the following
factorization:

f(st|st−1)f(yt|st) = f(st|st−1, yt)f(yt|st−1) (1.2.22)

Here, we can see that the production of transition and measurement density can be fac-
torized into the production of fully adapted sampler f(st|st−1, yt) and the predictive density
f(yt|st−1). At each time step, the sampling process is always implemented based on a sampler
taking into account yt information. To be specific, the sampler in FAPF is given by,

qt(s0:t) = qt(st|s0:t−1)qt−1(s0:t−1)

= qt(st|s0:t−1)f(s0:t−1|y0:t−1)

= f(st|st−1, yt)f(s0:t−1|y0:t−1)

(1.2.23)

Here, qt−1(s0:t−1) is replaced by f(s0:t−1|y0:t−1) for the reason of resampling.
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And By equation 1.2.14, the Bayesian inference of filtering density in FAPF is,

f(s0:t|y0:t) =
f(yt|st)f(st|st−1)
qt(st|s0:t−1)

qt(st|s0:t−1)f(s0:t−1|y0:t−1)

f(yt|y0:t−1)

=

f(yt|st)f(st|st−1)
f(st|st−1,yt)

f(st|st−1, yt)f(s0:t−1|y0:t−1)

f(yt|y0:t−1)

=
[f(yt|st−1)]f(st|st−1, yt)f(s0:t−1|y0:t−1)

f(yt|y0:t−1)

(1.2.24)

Therefore, the weights are given by

wit = f(yt|sit−1)

W i
t = wit/

N∑
i=1

wit
(1.2.25)

Here, we can see that the normalized weight W i
t in FAPF does not rely on sit but only on

sit−1. So, in the context of the inheritance of particles {sit−1}Ni=1 from previous time period,
the conditional variance V ar(W i

t |sit−1) is just equal to zero which achieves the objective
of weight variance minimization optimally and conditionally. This is referred to as condi-
tional optimality which explains why FAPF is also known as Conditionally Optimal Particle
Filter[1, 41].

The conditional likelihood f(yt|y0:t−1) and its approximation in FAPF is given by,

f(yt|yy0:t−1) =

∫
f(yt|st)f(st|st−1)f(st−1|y0:t)dstdst−1

=

∫
f(yt|st−1)f(st|st−1, yt)f(st−1|y0:t)dstdst−1

=

∫
f(yt|st−1)f(st−1|y0:t)dst−1

∫
f(st|st−1, yt)dst

=

∫
f(yt|st−1)f(st−1|y0:t)dst−1

(1.2.26)

f̂(yt|yy0:t−1) =
1

N

N∑
i=1

f(yt|sit−1) (1.2.27)

Here, we can see that, given the fixed support of {sit−1}Ni=1, the variance of the estimator of
conditional likelihood is just equal to zero which implies the conditional optimality. However,
in most situation, the factorization in equation 1.2.22 is not tractable. Thus, we have to
resort to other ways to achieve the adaption. And the most popular one is referred to as
Auxiliary Particle Filter (APF)[32].
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1.2.4 Auxiliary Particle Filters

Auxiliary Particle Filter Algorithm was first proposed by Pitt and Shephard in 1999 [32]. It
has the same implementation procedure with the SIR algorithm except the design of sampler
in which the observation information at current time step is incorporated. Moreover, it
is the method for the replacement of Fully Adapted Particle Filter (FAPF) in which the
factorization shown in 1.2.22 is not available.

To be specific, the APF algorithm is actually based on an auxiliary variable which is
derived by,

f(st|y0:t) =
f(yt|st)

∫
f(st|st−1)f(st−1|y0:t−1)dst−1

f(yt|y0:t−1)

≈
f(yt|st)

∑N
k=1W

k
t−1f(st|skt−1)

f(yt|y0:t−1)

(1.2.28)

f(st, k|y0:t) =
f(yt|st)f(st|skt−1)W

k
t−1

f(yt|y0:t−1)

=

f(yt|st)f(st|skt−1)W
k
t−1

g(st,k|yt) g(st, k|yt)
f(yt|y0:t−1)

, ∀k = 1, 2, .., N

(1.2.29)

Here, f(st, k|y0:t) is referred to as auxiliary filtering density. Our objective is to find an ap-
propriate auxiliary sampler g(st, k|yt) taking into account yt information and use this sampler
to draw particles, calculate weights and perform resampling. As a result, after discarding
the auxiliary variable k, N equally-weighted particles { 1

N
, sit}Ni=1 distributed approximately

to filtering density f(st|y0:t) will be obtained.
For the selection of auxiliary sampler, in [32], a generic form is proposed and given by,

g(st, k|yt) ∝ f(yt|µkt )f(st|skt−1)W
k
t−1 (1.2.30)

where µt can be the mean, the mode, a randomly draw or some other likely values of the
transition density f(st|skt−1). To simulate from this auxiliary sampler, the first step is to
sample from g(k|yt) which is given by,

g(k|yt) ∝
∫
f(yt|µkt )f(st|skt−1)W

k
t−1dst

= f(yt|µkt )W k
t−1,∀k = 1, 2, 3, ..., N

(1.2.31)

λk =
g(k|yt)∑N
k=1 g(k|yt)

(1.2.32)

Here, λk is known as first-stage weight and the first step sampling procedure is implemented
by drawing particles from this probability mass {λk, k}Nk=1. The next step is to perform
simulation from g(st|k, yt) which is given by,

g(st|k, yt) =
g(st, k|yk)
g(k|yt)

∝
f(yt|µkt )f(st|skt−1)W

k
t−1

f(yt|µkt )W k
t−1

= f(st|skt−1) (1.2.33)
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As a result, random draws {sit, ki}Mi=1 where N < M , are obtained from g(st, k|yt). The final
step is to perform resampling. By equation 1.2.29, the resampling weight, also known as
second stage weight, denoted as πi is given by:

ui =
f(yt|sit)f(sit|sk

i

t−1)W
ki

t−1

g(sit, k
i|yt)

=
f(yt|sit)
f(yt|µk

i

t )

πi = ui/
N∑
i=1

ui

(1.2.34)

The resampling procedure is implemented based on the probability mass {πi, sit}Mi=1 and the
resulting particles { 1

N
, s̄it}Ni=1 will be passed into next time period.

The conditional likelihood f(yt|y0:t−1) is given by:

f(yt|y0:t−1) =

∫
f(yt|st)f(st|skt−1)W

k
t−1dstdk

=

∫
f(yt|st)f(st|skt−1)W

k
t−1

g(st, k|yt)
g(st, k|yt)dstdk

=

∫
f(yt|st)
f(yt|µkt )

g(st, k|yt)dstdk

(1.2.35)

f̂(yt|y0:t−1) =
1

N

N∑
i=1

f(yt|sit)
f(yt|µk

i

t )
=

1

N

N∑
i=1

ui (1.2.36)

As we can see, the variance of the likelihood estimator is based on the ratio
f(yt|sit)
f(yt|µk

i
t )

. Gener-

ally speaking, we tend to make the selection of the auxiliary sampler such that the variance
of this ratio can be as small as possible and the ultimate gold is to achieve the variance min-
imization. However, in the whole family of Particle Filters, there is no such algorithm that
can achieve this ultimate goal. Moreover, due to the random sampling, the likelihood val-
ues approximated by Particle Filters are not continuous leading to the convergence problem
on Maximum Likelihood Estimation (MLE). To solve these problems, the Efficient Impor-
tance Sampling (EIS) procedures are developed in which both variance minimization and
continuous approximation of likelihood estimate can be achieved.

1.3 Efficient Importantce Sampling (EIS)

While Particle Filter algorithms are very simple and easy to implement, its way to approx-
imate filtering density f(st|y0:t) greatly restricts its performance. In Particle Filters, the
approximation of f(st|y0:t) relies on particles that can no longer be changed since its genera-
tion. This limits the performance of PF algorithm to be only conditional optimality, that is,
the optimization relies on the fixed support. However, our ultimate goal is to pursue uncon-
ditional optimality and this challenge has already been conquered by Efficient Importance
Sampling methodology.
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1.3.1 The Original EIS

The EIS algorithm is firstly proposed by Richard and Zhang [34] in 2007. The key component
of this algorithm consists of the search for a sampler such that the variance of likelihood
estimate can be minimized and this optimization process can be implemented by applying
the least square method in the modelling of linear regression. The accomplishment on
variance minimization makes EIS becomes highly efficient method to numerically evaluate
the associated integrals. Compared with Particle Filters, EIS can achieve the maximal
performance on likelihood approximation with least particle draws.

Essentially speaking, EIS is originally designed for the numerical evaluation of integral
which does not have analytical solution. Suppose we have an integral of the form:

g(θ) =

∫
f(x; θ)dx (1.3.1)

Here, x can be a vector leading to multiple integral evaluation problem and θ denotes the
fixed parameters. To numerically evaluate this integral, we need to find an appropriate
sampler, denoted as m(x|a), and the above equation can be rewritten as,

g(θ) =

∫
f(x; θ)

m(x|a)
m(x|a)dx (1.3.2)

w(x; θ, a) =
f(x; θ)

m(x|a)
(1.3.3)

Here, w(x; θ, a) denotes unnormalized weights and the estimator of g(θ) is given by,

ĝ(θ) =
1

N

N∑
i=1

w(xi; θ, a) (1.3.4)

The task of EIS procedure is firstly to select an appropriate family of distribution M =
{m(x|a) : a ∈ A}, then to find an optimal value a so that the variance of the weight can be
minimized.

In general, the class of distribution for the EIS sampler m(x|a) is selected from the
exponential family. This is due to the fact that a natural parametrization of this sampler
density can be performed resulting in a linear log kernel which makes it possible to directly
apply least square method to achieve the optimization. The natural parametrization and log
kernel of the exponential sampler m(x|a) is given by

m(x|a) = k(x; a)

χ(a)
=
b(x) · exp(a′

t(x))

χ(a)
(1.3.5)

lnk(x; a) = ln(b(x)) + a
′ · t(x) (1.3.6)

Here, k(x; a) is the density kernel and χ(a) is the integrating constant which satisfies

χ(a) =

∫
k(x; a)dx (1.3.7)
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Usually, we assume that this integrating constant is known analytically.
In equation 1.3.6, the term ln(b(x)) is the intercept part and a

′ ·t(x) represents regression
parameters and explanatory variables. To be specific, the EIS baseline algorithm can be
implemented as follows,

EIS baseline Algorithm

• At initial step k=0

– Find an appropriate initial sampler q0(x)

– Draw particles {x0i }Si=1 from this initial sampler

• At step k=1

– With linear regression least square method, solve the following minimization prob-
lem,

(â1, ĉ1) = ArgMin
a∈A,c∈R

1

S

S∑
i=1

[
lnf(x0i ; θ)− c− lnk(x0i ; a)

]2
(1.3.8)

Here, lnf(x0i ; θ) denotes the dependent variable, c is the intercept and lnk(x0i ; a)
can be factorized into linear regression equation wherein optimal parameters â1
will be found.

– Draw particles {x1i }Si=1 from step k=1 EIS sampler m(x|â1) and pass them into
next step.

• Repeat the process in step k=1 until the convergence of {âk}k=1 and denote the con-
vergent parameter as â

For the problem of initial sampler selection, in general, there exists a factorization of the
integrand f(x; θ) in equation 1.3.1 with the form

f(x; θ) = g(x; θ) · p(x|θ) (1.3.9)

where the resulting density function p(x|θ) is often regarded as the initial sampler q0(x)
in EIS baseline algorithm, known as local sampler. Moreover, it should be noted that the
convergence observed is based on the sequence of least square estimates {âk}k=1 and the
failure to converge can be remedied by either re-selecting initial sampler or extending the
family of EIS sampler.

While the EIS baseline algorithm is very efficient, it can only be used to numerically eval-
uate low-dimensional integrals. This limitation makes it impossible in evaluating likelihood
value in state space model where the integrals are usually in very high-dimensional form.
One way to overcome this challenge is based on the feasibility where the integrand can be
decomposed into the product of a sequence of conditional densities. This decomposition can
achieve problem transformation from high-dimensional integral evaluation to a sequence of
low-dimensional optimization. This methodology is referred to as Sequential EIS.
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1.3.2 Sequential EIS with Backward-iteration

The Sequential EIS of Backward-iteration is developed by Richard and Zhang [34] in 2007.
It is an extension of EIS baseline algorithm designed for the high-dimensional problem of
likelihood evaluation on State Space Model. The feasibility of this algorithm relies on the
following decomposition of likelihood integrand,

f(y0:t) =

∫
f(y0:t, s0:t)ds0:t

=

∫
f(s0)

t∏
i=1

f(si|si−1)
t∏
i=0

f(yi|si)ds0:t

=

∫ t∏
i=0

φi(si, si−1, yi)ds0:t

(1.3.10)

where φi(si, si−1, yi) = f(si|si−1)f(yi|si),∀i = 1, 2, .., t and φ0(s0, y0) = f(s0)f(y0|s0). The
sampler in this Sequential EIS algorithm is denoted as m(s0:t|a0:t) and it has the following
sequential structure

m(s0:t|a0:t) = m0(s0|a0)
t∏
i=1

mi(si|si−1, ai) (1.3.11)

mi(si|si−1, ai) =
ki(si, si−1; ai)

χi(si−1; ai)
(1.3.12)

where ki(si, si−1; ai) is the kernel density and χi(si−1; ai) denotes the integrating constant.
With this structure, equation 1.3.10 can be further rewritten as,

f(y0:t) =

∫
f(y0:t, s0:t)

m(s0:t|a0:t)
m(s0:t|a0:t)ds0:t

=

∫ t∏
i=0

φi(si, si−1, yi)

mi(si|si−1, ai)
mi(si|si−1, ai)ds0:t

= χ0(a0) ·
∫ t∏

i=1

[
φi(si, si−1, yi) · χi+1(si; ai+1)

ki(si, si−1; ai)

]
mi(si|si−1, ai)ds0:t

(1.3.13)

Ri(si, si−1, yi; ai+1, ai) =
φi(si, si−1, yi) · χi+1(si; ai+1)

ki(si, si−1; ai)
(1.3.14)

where χt(st; at+1) ≡ 1. It is clearly unfeasible to directly perform joint optimization for
this high-dimensional integral. Instead, a backward iterative sequence of individual EIS
optimizations is constructed in which the task is to find the optimal value ai such that
the variance of Ri(si, si−1, yi; ai+1, ai) can be minimized. Thus, the highly complicated joint
optimization problem can be decomposed into a sequence of simple individual EIS procedure
in which the target integral is,∫

Ri(si, si−1, yi; ai+1, ai) ·mi(si|si−1, ai)dsi (1.3.15)
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It should be noted that the individual EIS optimization starts from the last time step and
the optimal parameter estimated by least square method will be passed into previous time
step to take participate in the calculation of dependent variable in EIS linear regression. This
backward iterative procedure will continue until reaching the most beginning time period.
On the other hand, instead of the ratio φi(si,si−1,yi)

mi(si|si−1,ai)
, the variance minimization is performed

for Ri(si, si−1, yi; ai+1, ai). This is due to the fact that the dependent variable in EIS linear
regression is ln [φi(si, si−1, yi) · χi(si−1; ai)] which relies on the unknown parameters ai if we

employ the ratio φi(si,si−1,yi)
mi(si|si−1,ai)

for the variance minimization.

To be specific, this Backward Iterative Sequential EIS can be implemented in the following
detailed procedure,

Sequential EIS of Backward-iteration

• At initial step k=0

– Select an appropriate initial sampler q0(s0:t)

– Draw particles {sj0:t}Sj=1 from this initial sampler

• At step k=1, for i in t:0 (start from the last time period)

– With linear regression least square method, solve the following minimization prob-
lem,

(âki , ĉ
k
i ) = ArgMin

a∈A,c∈R

S∑
j=1

{
ln
[
φi(s

j
i , s

j
i−1, yi) · χi+1(s

j
i ; â

k
i+1)
]
− c− lnki(s

j
i , s

j
i−1; a)

}2
(1.3.16)

Here, ln
[
φi(s

j
i , s

j
i−1, yi) · χi+1(s

j
i ; â

k
i+1)
]
denotes the dependent variable, c is the

intercept and lnki(s
j
i , s

j
i−1; a) can be factorized into linear regression equation

wherein optimal parameter âki will be estimated and passed into backward time
period i-1 for the calculation of χi(s

j
i−1; â

k
i ). As a result, the step k tentative EIS

sampler m(s0:t|âk0:t) will be acquired.

– Draw particles {sj0:t}Sj=1 from m(s0:t|âk0:t) and pass them into next step.

• Repeat above process until the convergence of {âk0:t}k=1

By the equation 1.3.13, the likelihood evaluation by Backward iterative Sequential EIS
is given by,

f̂(y0:t) =
1

N

N∑
i=1

f(y0:t, s
i
0:t)

m(si0:t|â0:t)

=
1

N

N∑
i=1

{
t∏

j=0

φj(s
i
j, s

i
j−1, yj)

mj(sij|sij−1, âj)

} (1.3.17)
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One thing we need to be aware of is that the convergence is based on the parameters {âk0:t}
for the whole time periods. This may lead to the convergence problem when we have a very
long time span. To remedy this problem, some researchers have proposed another version of
Sequential EIS in which the individual optimizations are completely independent with each
other.

1.3.3 Sequential EIS with Continuous Approximation

The Sequential EIS with continuous approximation of filtering density is proposed by David
and Roman [5] in 2013. In comparison with the Backward-iterative EIS introduced in pre-
vious section, this EIS procedure constructs a sequence of independent joint samplers for
each individual optimization by employing the continuous approximations for the filtering
densities. As a result, the EIS implementation at each time step is completely indepen-
dent with each other and this independence can help us bypass the convergence challenge in
Backward-iterative EIS. On the other hand, the introduction of continuous approximations
to the filtering densities also makes it possible to perform the evaluation of the filtering
moments given by 1.2.9 without relying on fixed particles which are employed by Particle
Filter algorithms, leading to a more efficient moments approximation.

Instead of directly evaluating the likelihood for the whole time span, in this EIS procedure,
the joint likelihood can be factorized into a product of a sequence of conditional densities,
that is,

f(y0:t) =
t∏
i=0

f(yi|y0:i−1) (1.3.18)

where f(yi|y0:i−1) = f(y0) for i = 0. And the evaluation of conditional likelihood on the
period i can be performed by the following double integral,

f(yi|y0:i−1)

=

∫ ∫
φi(si, si−1)

gi(si, si−1|ai)
gi(si, si−1)|ai)dsi−1dsi

(1.3.19)

φi(si, si−1) = f(yi|si)f(si|si−1)f̂(si−1|y0:i−1) (1.3.20)

wi(si, si−1) =
φi(si, si−1)

gi(si, si−1|ai)
(1.3.21)

where the continuous approximation of filtering density f(si−1|y0:i−1) will be given so that
the EIS procedure can be applied to this double integral for each time step. As a result, a
joint sampler gi(si, si−1|ai) from exponential family will be constructed and the task is to
find the optimal parameter ai such that the variance of weight wi(si, si−1) can be minimized.
The resulting approximation of conditional likelihood is given by,

f̂(yi|y0:i−1) =
1

N

N∑
j=1

wi(s
j
i , s

j
i−1) (1.3.22)

where {sji , s
j
i−1}Nj=1 denotes N i.i.d. draws from gi(si, si−1)|ai). The continuous approxima-
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tion of filtering density at time period i can be derived by,

f(si|y0:i) =
∫
f(yi|si)f(si|si−1)f̂(si−1|y0:i−1)dsi−1

f(yi|y0:i−1)

=

∫
wi(si, si−1)gi(si, si−1|ai)dsi−1

f(yi|y0:i−1)

= gi(si)

∫
wi(si, si−1)gi(si−1|si)dsi−1

f(yi|y0:i−1)

(1.3.23)

where gi(si, si−1|ai) = gi(si)gi(si−1|si) and f(yi|y0:i−1) can be approximated by 1.3.22. More-
over, the integral in the numerator of equation 1.3.23 can be evaluated by,

w̄i(si) =
1

N

N∑
j=1

wi(si, s
j
i−1(si)) (1.3.24)

where {sji−1(si)}Nj=1 denotes i.i.d draws from g(si−1|si). As a result, f(si|y0:i) can be approx-
imated by,

f̂(si|y0:i) = gi(si)w̃i(si) (1.3.25)

w̃i(si) =
w̄i(si)

f̂(yi|y0:i−1)
=

∑N
j=1wi(si, s

j
i−1(si))∑N

j=1wi(s
j
i , s

j
i−1)

(1.3.26)

The success of this EIS procedure mainly owes to the feasibility of the continuous approxima-
tion to the filtering density and this makes it possible to decompose a joint EIS problem into
a sequence of completely independent individual optimizations. The detailed implementation
is demonstrated as follows,

Sequential EIS with Continuous Approximation of Filtering Density

• At time period i, suppose we inherit a continuous approximation of filtering density
f̂(si−1|y0:i−1)

• At initial step L=0

– Select an appropriate initial sampler q0(si, si−1)

– Draw particles {sji , s
j
i−1}Sj=1 from this initial sampler

• At step L=1

– With linear regression least square method, solve the following minimization prob-
lem,

(âLi , ĉ
L
i ) = ArgMin

a∈A,c∈R

S∑
j=1

{
ln
[
φi(s

j
i , s

j
i−1)
]
− c− lnki(s

j
i , s

j
i−1; a)

}2
(1.3.27)
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Here, ln
[
φi(s

j
i , s

j
i−1)
]
denotes the dependent variable, c is the intercept and

lnki(s
j
i , s

j
i−1; a) can be factorized into a linear regression equation wherein optimal

parameter âLi will be estimated. As a result, a tentative EIS sampler gi(si, si−1|âLi )
at step L on time period i will be acquired.

– Draw particles {sji , s
j
i−1}Sj=1 from gi(si, si−1|âLi ) and pass them into next step.

• Repeat above process until the convergence of {âLi }L=1 and we denote the convergent
value as âi. Therefore, the EIS sampler gi(si, si−1|âi) at time period i is acquired.

• Follow the derivation process from 1.3.23 to 1.3.26, a continuous approximation of the
filtering density f̂(si|y0:i) will be acquired and further passed into next time period.

Here, ki(si, si−1; a) is the density kernel of gi(si, si−1|a) satisfying,

gi(si, si−1|a) =
ki(si, si−1; a)

χ(a)
(1.3.28)

where χ(a) is the integrating constant which can be unknown. One point we need to be
aware of is that the convergence relies on parameters {âLi }L=1 for each individual time period
instead of the whole time span. This property help us bypass the convergence challenge met
in Backward-iterative EIS and the continuous approximations of the filtering densities played
a vital role in constructing these independent EIS procedures. For the selection of initial
sampler q0(si, si−1), the most commonly way is to make draws from the local approximation
f(si|si−1)f̂(si−1|y0:i−1) shown in 1.3.19.
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CHAPTER II

LIKELIHOOD EVALUATION FOR STATE SPACE MODELS

2.1 Introduction

State Space Model (SSM), also known as Hidden Markov Model (HMM) or Latent Process
Model (LPM), is a very famous statistical Markov model for sequential data analysis and
can be used to depict the evolution of observable data relying on some hidden unobservable
factors, also referred to as state. Lots of applications of State Space Model have already
been found in the fields such as, statistics, engineering, biology, pattern recognition and
reinforcement learning, see [40, 33, 30, 23]. Formally, a State Space Model consists of two
discrete-time stochastic processes: measurement process {yt}t≥0 and hidden state process
{st}t≥0. The measurement process delivers the observable information depending on state
process and its measurement density satisfies the following property,

gθ(yt|st) = gθ(yt|s0:t, y0:t−1) (2.1.1)

The hidden state process is an unobservable transition process with an initial density µ(s0)
and its transition density is satisfying the Markov property, that is

fθ(st|st−1) = fθ(st|s0:t−1) (2.1.2)

where θ is the parameter vector assumed to be known in this chapter for the purpose of
likelihood evaluation.

Our interests of inference in State Space Model lay on the likelihood evaluation and
parameter estimation. When the model is linear and Gaussian distributed, the analytical
solution of likelihood function can be accessible by directly applying Kalman Filer algorthm
[38, 4]. However, under the non-linear or non-Gaussian context, we have to rely on some
numerical procedures to perform the likelihood approximation.

Particle Filter (PF) Algorithms are the most commonly used procedures to numerically
evaluate the likelihood function for Non-linear State Space Model [31]. Its popularity is
based on the flexibility and simplicity. The earliest developed PF algorithm is known as
the Sequential Importance Sampling (SIS) [9] which is intuitive and very easy to implement.
However, SIS suffers from the weight degeneracy problem which refers to such a fact that
there will exist only few particles with significant weights as the time goes on[2]. To remedy
this problem, researchers further proposed Sampling Importance Resampling (SIR) algo-
rithm in which a resampling step is embedded into the SIS procedure [25]. An important
advantage of resampling is that it allows us to have a high probability to remove particles
of low weight values. As a result, we can focus our computational efforts on regions of high
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probability mass. However, the overuse of resampling leads to another challenge, known
as sample impoverishment: particles with relatively high weights end up being duplicated
too many times during the implementation of resampling, resulting in a loss of diversity
among these samples. Some researchers impute this challenge to the absence of informa-
tion conveyed by observable data yt from current time period during the construction of the
sampler. To conquer this challenge, particle filters with adaption have been proposed and
the most popular one is known as the Auxiliary Particle Filter (APF) in which the sampler
construction process relies on the incorporation of yt information [32, 17].

Although these PF algorithms are very simple and flexible, their performance in likelihood
approximation are greatly restricted by the quality of sampler. Generally, we tend to select
a sampler such that the variance of weight can be controlled as small as possible and the
ultimate goal is to achieve the variance minimization. However, in real application, there is no
such procedure in Particle Filters that can realize this ultimate goal. If the sampler selected
is not appropriate, we may have to draw more particles to reach a specific performance.
Thus, Particle Filter is not an efficient algorithm as we expected. On the other hand, due to
the resampling step, the continuity of likelihood evaluation can not be achieved by simply
using Common Random Number technique leading to the infeasibility of the convergence in
Maximum Likelihood Estimation (MLE). Although researchers have recently proposed some
extensions of Particle Filters for continuous likelihood evaluation [26], without achieving
variance minimization, the MLE implemented by Particle Filters is doomed to be inefficient.

To conquer these challenges, a numerical procedure known as Efficient Importance Sam-
pling (EIS) has been proposed. This EIS methodology is originally developed by Richard
and Zhang [34] in 2007. Its baseline algorithm is designed for the numerical evaluation on
the integrals without tractable analytical solutions. The variance minimization procedure is
introduced and its implementation relies on the Least Square method of linear regression.
The key thought of EIS on numerically evaluating likelihood function for the Non-linear
State Space Model is based on such a fact that the infeasible EIS implementation on high-
dimensional integrals can be decomposed into a sequence of simple individual optimization
problems. However, the EIS procedure developed by Richard and Zhang suffers from the
convergence problem which can be imputed to the dependence of these individual EIS sam-
plers. To remedy this problem, an extension of EIS is proposed by David and Roman [5]
in 2013. The cornerstone of this EIS procedure is based on the introduction of continuous
approximations to the filtering densities leading to the independence of these individual EIS
implementations. On the other hand, the continuity (smoothness) of EIS likelihood estima-
tion can be achieved by using the technique known as Common Random Number (CRN)
[8] where all random particles in EIS procedure are obtained by transformation of a sin-
gle draw from a canonical distribution which does not depend on any parameters, i.e. the
transformation of standard normal distribution.

While the EIS method proposed by David and Roman does not suffer from the conver-
gence problem, another challenge arises from such a fact that the computational complexity
of these continuously approximated filtering densities is O(N t) leading to an infeasible cal-
culation when t takes very large value. One way to partially remedy this problem is known
as Constant Weight (CW) approximation proposed in [5] by David and Roman. However,
this method may introduce an non-negligible bias into corresponding likelihood estimation
for the State Space Model with extremely complicated structure. To further reduce this
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bias and meanwhile make the computation still feasible, in this chapter, we proposed an
improved method to make a more precise calculation on these continuously approximated
filtering densities with the computational complexity be reduced to only O(N). A simulation
study is given and the result showed that our proposed computational method outperforms
the Constant-Weight approximation in likelihood approximation.

2.2 Numerical Evaluation of Likelihood for State Space Models

2.2.1 Particle Filters and EIS

As we know, the likelihood evaluation is the most important prerequisite for parameter
estimation by MLE. Therefore, in this chapter, we will focus our concentration on this
prerequisite and explore the efficiency of different numerical methods. Specifically speaking,
in State Space Model, the likelihood function can be evaluated by the following joint integral,

f(y0:T ) =

∫
...

∫
f(y0:T , s0:T )ds0:T (2.2.1)

When the State Space Model is linear and Gaussian distributed, this integral can be directly
solved by applying Kalman Filter algorithm. However, in most real applications, the models
we met are usually Non-linear or Non-Gaussian distributed and the analytical solution for
above joint integral is not tractable. Therefore, we have to resort to the numerical methods
for the likelihood approximation. The most commonly used methods are known as Particle
Filters (PF) and Efficient Importance Sampling (EIS). Instead of directly evaluating the
high-dimensional integral in 2.2.1, both of these two methods factorize this joint likelihood
into a product of conditional likelihood densities, that is,

f(y0:T ) =
T∏
t=0

f(yt|y0:t−1) (2.2.2)

For the PF algorithms, this conditional likelihood can be evaluated by,

f(yt|y0:t−1) =

∫
f(yt|st)f(st|st−1)

qt(st|s0:t−1)
qt(st|s0:t−1)f(s0:t−1|y0:t−1)ds0:t (2.2.3)

and can be estimated by,

f̂(yt|y0:t−1) =
1

N

N∑
i=1

f(yt|sit)f(sit|s̄it−1)

qt(sit|s̄i0:t−1)
=

1

N

N∑
i=1

πit (2.2.4)

where {s̄i0:t−1}Ni=1 is the i.i.d draws obtained from f(s0:t−1|y0:t−1) by using resampling and
{sit}Ni=1 is the i.i.d draws from qt(st|s0:t−1). For the EIS algorithm, the conditional likelihood
can be evaluated by,

f(yt|y0:t−1) =

∫ ∫
f(yt|st)f(st|st−1)f(st−1|y0:t−1)

gt(st, st−1)
gt(st, st−1)dstdst−1 (2.2.5)
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and can be estimated by,

f̂(yt|y0:t−1) =
1

N

N∑
i=1

f(yt|sit)f(sit|sit−1)f(s
i
t−1|yi0:t−1)

gt(sit, s
i
t−1)

=
1

N

N∑
i=1

wit (2.2.6)

where {sit, sit−1}Ni=1 is the i.i.d draws from gt(st, st−1). In comparison with Particle Filters,
the superiority of EIS lies in the extra step of variance minimization on the weight wt.
The goal of EIS principle is to find a sampler g(s0:T ) such that the variance of wt can be
minimized leading to a likelihood estimate with minimized variance. This is referred to as
global optimization and we can achieve maximal performance on likelihood approximation
with minimal sample draws.

The most widely recognized method of Particle Filters is known as Bootstrap Particle
Filter which will be further used for our simulation study. Its popularity is mainly attributed
to the simplicity of implementation. To be specific, the transition density f(st|st−1) is
selected as the sampler qt(st|s0:t−1) and we can see the weight function πt is just equal to the
measurement density f(yt|st). The detailed implementation process is as follows,

Bootstrap Particle Filter

• At time t=0

– Draw particles {si0}Ni=1 from µ(s0)

– Compute the unnormalized weight πi0 = g(y0|si0) and normalized weight W i
0 ∝ πi0

– Resample {W i
0, s

i
0}Ni=1 to obtain N equally-weighted particles { 1

N
, s̄i0}Ni=1

• At time t≥ 1, suppose we inherit { 1
N
, s̄it−1}Ni=1

– Draw particles {sit}Ni=1 from f(st|s̄it−1)

– Compute weight πit = f(yt|sit) and W i
t ∝ πit

– Resample {W i
t , s

i
t}Ni=1 to obtain N equally-weighted particles { 1

N
, s̄it}Ni=1

There exists a total of two versions of EIS. The first version is proposed by Richard and
Zhang in 2007. Its implementation of variance minimization process starts from the last time
period end in the most beginning time point, known as Backward-iteration. However, when
we have a very large time length T , this EIS may suffer from the convergence problem during
the optimization process. Therefore, we only focus on the second version of EIS proposed by
David and Roman in 2013 in which the convergence problem is solved by implementing the
EIS procedure independently for each time period. This independence essentially relies upon
the continuous approximations of filtering densities which can transform this infeasible high-
dimensional global optimization problem into a sequence of individual EIS implementations.
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2.2.2 Continuous Approximation of Filtering Density

The joint likelihood function f(y0:T ) in State Space Model can be factorized into the following
product of a sequence of conditional densities,

f(y0:T ) =
T∏
t=0

f(yt|y0:t−1) (2.2.7)

And the conditional likelihood f(yt|y0:t−1) can be evaluated by,

f(yt|y0:t−1) =

∫ ∫
f(yt|st)f(st|st−1)f̂(st−1|y0:t−1)dst−1dst

=

∫ ∫
f(yt|st)f(st|st−1)f̂(st−1|y0:t−1)

gt(st, st−1|at)
gt(st, st−1|at)dst−1dst

(2.2.8)

wt(st, st−1) =
f(yt|st)f(st|st−1)f̂(st−1|y0:t−1)

gt(st, st−1|at)
(2.2.9)

where f̂(st−1|y0:t−1) is the continuous approximation of filtering density inherited from the
last time period. After applying the EIS procedure, an optimal sampler gt(st, st−1|ât) will
be found such that the variance of weight function wt(st, st−1) can be minimized and this
conditional likelihood will be estimated by,

f̂(yt|y0:t−1) =
1

N

N∑
i=1

wt(s
i
t, s

i
t−1) =

1

N

N∑
i=1

f(yt|sit)f(sit|sit−1)f̂(s
i
t−1|y0:t−1)

gt(sit, s
i
t−1|ât)

(2.2.10)

Next, we need to find a way to continuously approximate the filtering density in current time
period and pass it into next time period to start a new iteration. By the Bayesian inference,
the filtering density at current time point can be expressed as,

f(st|y0:t) =
∫
f(yt|st)f(st|st−1)f̂(st−1|y0:t−1)dst−1

f(yt|y0:t−1)

=

∫
wt(st, st−1)gt(st, st−1|ât)dst−1

f(yt|y0:t−1)

= gt(st)

∫
wt(st, st−1)gt(st−1|st)dst−1

f(yt|y0:t−1)

= gt(st)
H(st)

f(yt|y0:t−1)

(2.2.11)

H(st) =

∫
wt(st, st−1)gt(st−1|st)dst−1 (2.2.12)
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where gt(st, st−1|ât) = gt(st)gt(st−1|st). The denominator is the conditional likelihood which
can be just approximated by 2.2.10 and the numerator H(st) can be evaluated by,

Ĥ(st) =
1

N

N∑
i=1

wt(st, s
i
t−1(st)) =

1

N

N∑
i=1

f(yt|st)f(st|sit−1(st))f̂(s
i
t−1(st)|y0:t−1)

gt(st, sit−1(st)|at)
(2.2.13)

where {sit−1(st)}Ni=1 denotes i.i.d draws from g(st−1|st). As a result, f(st|y0:t) can be contin-
uously approximated by,

f̂(st|y0:t) = gt(st)
Ĥ(st)

f̂(yt|y0:t−1)
= gt(st)

∑N
i=1wt(st, s

i
t−1(st))∑N

i=1wt(s
i
t, s

i
t−1)

(2.2.14)

As we can see, the computational complexity of above equation is O(N t) and it is impossible
to perform the calculation when t takes very large value. To remedy this calculation prob-
lem, David and Roman further proposed an intuitive method, known as Constant-Weight
approximation.

2.2.3 Constant-Weight Approximation

The challenge on the calculation of f̂(st|y0:t) can be imputed to the dependence of these con-
tinuously approximated filtering densities {f̂(si|y0:i)}ti=0. Specifically speaking, to compute
f̂(st|y0:t), we have to perform calculation on f̂(st−1|y0:t−1) which relies on the evaluation of
f̂(st−2|y0:t−2). As a result, given a value of st, we have to perform the calculation for all the
filtering densities from previous time periods leading the computational complexity to be
O(N t) which is infeasible.

The method proposed by David and Roman, Constant-Weight approximation, is based
on such standpoint that the weight generated by EIS variance minimization process has a
very small fluctuation and can be just viewed as a constant function of state variables. By
applying this method, we can see that Ĥ(st) = f̂(yt|y0:t−1) leading to

f̂(st|y0:t) = gt(st) (2.2.15)

However, it ignores the fact that the implementation of this EIS optimization is based
on the least square method leading to a great restriction such that the family of sampler can
only be chosen from the exponential class. Therefore, even if the variance has already been
minimized, the fluctuation of weight still can not be ignored when exponential family is not
a good choice for the sampler. Moreover, this method may introduce an non-negligible bias
to corresponding likelihood estimation in the State Space Model with extremely complicated
structure and we need to find a way to further reduce this bias.

2.2.4 Proposed Computational Method

Here, we proposed an improved method to make a more precise calculation than Constant-
Weight method. This improved method is still based on Constant-weight approximation,
but instead of simply viewing weight as a constant function, we apply the CW method
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on Ĥ(st) to break the dependence of these continuous approximations of filtering densities
{f̂(si|y0:i)}ti=0.

To be specific, with Constant-Weight principle, we can replace f̂(sit−1(st)|y0:t−1) in Ĥ(st)
by gt−1(s

i
t−1(st)) to construct a new weight function, denoted as w̄t(st, st−1), leading to an

approximation for Ĥ(st), denoted as H̄(st), that is

H̄(st) =
1

N

N∑
i=1

w̄t(st, s
i
t−1(st)) =

1

N

N∑
i=1

f(yt|st)f(st|sit−1(st))gt−1(s
i
t−1(st))

gt(st, sit−1(st)|ât)
(2.2.16)

Thus, starting from t = 1, the continuous approximation of filtering density can be
calculated by,

f̂(st|y0:t) = gt(st)
H̄(st)

f̂(yt|y0:t−1)
= gt(st)

∑N
i=1 w̄t(st, s

i
t−1(st))∑N

i=1wt(s
i
t, s

i
t−1)

(2.2.17)

wt(s
i
t, s

i
t−1) =

f(yt|sit)f(sit|sit−1)f̂(s
i
t−1|y0:t−1)

gt(sit, s
i
t−1|at)

(2.2.18)

f̂(sit−1|y0:t−1) = gt−1(st−1)
H̄(st−1)

f̂(yt−1|y0:t−2)

=
gt−1(st−1)

f̂(yt−1|y0:t−2)

1

N

N∑
i=1

f(yt−1|st−1)f(st−1|sit−2(st−1))gt−2(s
i
t−2(st−1))

gt−1(st−1, sit−2(st−1)|ât−1)

(2.2.19)

By applying this improved method, we can see that the weight function wt(st, st−1) only
relies on f̂(st−1|y0:t−1) leading to a feasible calculation and the computational complexity
of f̂(st|y0:t) is reduced to O(N). Theoretically speaking, in comparison with the Constant-
Weight approximation, this method should generate a likelihood estimate with smaller Mean-
Square Error (MSE). The detailed procedure is shown as follows,

Proposed Computational Method for Continuous Approximation of Filtering Density

• At initial time period t=0

– The likelihood function f(y0) can be evaluated by

f(y0) =

∫
f(y0|s0)f(s0)ds0

=

∫
f(y0|s0)f(s0)
g0(s0|a0)

g0(s0|a0)ds0

=

∫
w0(s0)g0(s0|a0)ds0

(2.2.20)

w0(s0) =
f(y0|s0)f(s0)
g0(s0|a0)

(2.2.21)

– After applying the EIS procedure, we will find an optimal value denoted as â0
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such that the variance of w0(s0) can be minimized and f(y0) can be estimated by

f̂(y0) =
1

N

N∑
i=1

w0(s
i
0) (2.2.22)

where {si0}Ni=1 are the draws from g0(s0|â0)
– The filtering density f(s0|y0) can be derived by

f(s0|y0) =
f(y0|s0)f(s0)

f(y0)
(2.2.23)

and can be estimated by

f̂(s0|y0) =
f(y0|s0)f(s0)

f̂(y0)
=
f(y0|s0)f(s0)∑N

i=1w0(si0)
N (2.2.24)

which is a continuous approximation with the computational complexity be just
O(1) and will be passed into next time period.

• Start from time period t=1, the following process will be iterated

– The likelihood function f(yt|y0:t−1) can be evaluated by

f(yt|y0:t−1) =

∫ ∫
f(yt|st)f(st|st−1)f̂(st−1|y0:t−1)ds0ds1

=

∫ ∫
f(yt|st)f(st|st−1)f̂(st−1|y0:t−1)

gt(st, st−1|at)
gt(st, st−1|at)dst−1dst

=

∫ ∫
wt(st, st−1)gt(st, st−1|at)dst−1dst

(2.2.25)

wt(st, st−1) =
f(yt|st)f(st|st−1)f̂(st−1|y0:t−1)

gt(st, st−1|at)
(2.2.26)

– After applying the EIS procedure, we will find an optimal value denoted as ât
such that the variance of wt(st, st−1) can be minimized and f(yt|y0:t−1) can be
estimated by

f̂(yt|y0:t−1) =
1

N

N∑
i=1

wt(s
i
t, s

i
t−1) (2.2.27)

where {sit, sit−1}Ni=1 are the draws from gt(st, st−1|ât)
– The filtering density f(st|y0:t) can be derived by 2.2.11

f(st|y0:t) =
∫
f(yt|st)f(st|st−1)f̂(st−1|y0:t−1)dst−1

f(yt|yt−1)

= gt(st)

∫
wt(st, st−1)gt(st−1|st)dst−1

f(yt|yt−1)

(2.2.28)
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and can be estimated by 2.2.17,

f̂(st|y0:t) = gt(st)
H̄(st)

f̂(yt|y0:t−1)

=
gt(st)

f̂(yt|y0:t−1)

1

N

N∑
i=1

f(yt|st)f(st|sit−1(st))gt−1(s
i
t−1(st))

gt(st, sit−1(st)|ât)

(2.2.29)

which is a continuous approximation with computational complexity be O(N)
and will be passed into next time period for new iteration.

One important thing we need to be aware of is that the likelihood estimate by EIS is not
unbiased even though minimum variance has been achieved. If we take the expectation on
the EIS likelihood estimate, we can have the following derivations,

E
(
f̂EIS(yt|y0:t−1)

)
= E

(
f(yt|st)f(st|st−1)f̂(st−1|y0:t−1)

gt(st, st−1|at)

)

=

∫ ∫
f(yt|st)f(st|st−1)f̂(st−1|y0:t−1)

gt(st, st−1|at)
gt(st, st−1|at)dstdst−1

=

∫ ∫
f(yt|st)f(st|st−1)f̂(st−1|y0:t−1)dstdst−1

̸=
∫ ∫

f(yt|st)f(st|st−1)f(st−1|y0:t−1)dstdst−1 = f(yt|y0:t−1)

(2.2.30)

On the other hand, the likelihood estimate by Particle Filters is unbiased which can be
derived by,

E
(
f̂PF (yt|y0:t−1)

)
= E

(
1

N

N∑
i=1

f(yt|sit)f(sit|s̄it−1)

qt(sit|s̄i0:t−1)

)

= E

(
f(yt|st)f(st|st−1)

qt(st|s0:t−1)

)
=

∫
f(yt|st)f(st|st−1)

qt(st|s0:t−1)
qt(st|s0:t−1)f(s0:t−1|y0:t−1)ds0:t

=

∫
f(yt|st)f(st|st−1)f(s0:t−1|y0:t−1)ds0:t

= f(yt|y0:t−1)

(2.2.31)

It seems that the likelihood estimate of Particle Filters is better than the one of EIS by
simply considering unbiasedness. However, if we take the variability into account, the EIS
demonstrates its tremendous superiority against Particle Filters. By the variance minimiza-
tion in EIS procedure, we can achieve maximal efficiency gains with a very small price be paid.
On the other hand, since we can never have the access to the true value of f(st−1|y0:t−1) under
the case of Non-linear State Space Model, the EIS likelihood estimate is doomed to be biased.
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So, the only thing we can do to achieve good performance on likelihood approximation is
to reduce this bias as small as possible. Obviously, compared with the Constant-Weight ap-
proximation, our proposed computational method can make the continuously approximated
filtering density shown in 2.2.14 closer to f(st−1|y0:t−1) leading to the bias reduction.

2.3 Simulation Study

In this section, a simulation study is given to make a comparison between Particle Filter and
EIS on their efficiency of likelihood approximation. For PF algorithm, we adopt the bootstrap
Particle Filter mainly for the reason of simplicity and popularity. For EIS procedure, both
Constant-Weight approximation and our proposed computational method are implemented
and their performance are measured by using Mean Square Error (MSE) which is given by,

MSE = V ar
(
f̂(y0:T )

)
+Bias2

(
f̂(y0:T )

)
= V ar

(
f̂(y0:T )

)
+
[
E
(
f̂(y0:T )

)
− f(y0:T )

]2 (2.3.1)

where the variance and mean can be obtained by applying Monte Carlo approximation with
replication time be set to 100. Obviously, it is necessary to have the analytical solution of
likelihood function for the evaluation of MSE. Therefore, the State Space Model for this
simulation study must be Linear and Gaussian distributed so that we can have the access to
the true likelihood value. To be specific, the State Space Model for this simulation study is
given by,

yt = 2st + ϵt, ϵt ∼ N(0, 1)

f(yt|st) = N(yt; 2st, 1)

st = αst−1 + σηt, ηt ∼ N(0, 1)

f(st|st−1) = N(st;αst−1, σ
2)

(2.3.2)

where α = 1
2
and σ = 1. The initial density is given by,

f(s0) = N

(
s0; 0,

σ2

1− α2

)
(2.3.3)

Note that this choice of initial density ensures that f(st) = f(s0) for all t so that the com-
putational process can be simplified for the Particle Filter algorithm. Moreover, we can see
that this State Space Model is Linear Gaussian distributed which implies that its true likeli-
hood value can be directly evaluated by applying Kalman Filter algorithm. Therefore, with
the true likelihood value on hand, we will implement three different methods for the like-
lihood approximation and compare their performance by using Mean Square Error (MSE).
The first algorithm is known as Bootstrap Particle Filter (BPF) which is a very simple
and also most commonly used method of Sampling Importance Resampling. The transition
density f(st|st−1) serves as the sampler and the unnormalized weight values are computed
by measurement density f(yt|st). The second algorithm is the EIS procedure in which the
filtering density is continuously approximated by Constant-Weight method, abbreviated to
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Table 1: MC means, Bias and Standard Deviations of log-likelihood estimates

Sample Size True Likelihood MC Mean Absolute Bias NSE

BPF 1 million -2239.421 -2239.588 0.1670 0.554
CWEIS 100 - -2239.421 1.948×10−7 5.612×10−6

PCEIS 100 - -2239.421 1.462×10−7 1.359×10−6

Table 2: Mean Square Error and CPU time

Sample Size MSE CPU Time

BPF 1 million 0.3348 648 min
CWEIS 100 3.15×10−11 2.59 min
PCEIS 100 0.187×10−11 6.17 min

CWEIS. The last algorithm is still the EIS procedure, but instead of applying Constant-
Weight method, we continuously approximate the filtering density by using our proposed
computational method, abbreviated to PCEIS.

Specifically speaking, a sequence of observations {yt}Tt=0 with T = 1000 are generated
by simulating this Linear Gaussian State Space Model and its true log-likelihood value can
be directly solved by using Kalman Filter algorithm. Figure 1 shows a short section of the
simulated data for both observations and state variables. For BPF, the sample size is set
to N = 1,000,000 (1 Million) and 100 i.i.d. log-likelihood estimates are generated by using
100 different seeds. For CWEIS and PCEIS, the sample sizes for likelihood approximation
shown in 1.3.22 and optimization process shown in 1.3.27 are both set to N = S = 100. For
the replication, we generated 100 i.i.d CWEIS and PCEIS log-likelihood estimates by using
100 different sets of Common Random Numbers. The Monte Carlo (MC) means, numerical
standard errors (NSEs), Absolute Biases, Mean Square Errors (MSEs) and CPU time of
these log-likelihood estimates by using BPF, CWEIS and PCEIS are reported in Table 1
and 2. Moreover, Figure 2 also shows the variability of these log-likelihood estimates for a
more intuitive comparison on the efficiency between BPF and EIS.

Note first from Table 1 that the bias generated by either CWEIS or PCEIS is extremely
small so that the influence caused by the biased likelihood estimation of EIS algorithm can
be ignored to some extent. Therefore, we may claim that this EIS procedure can provide us
with a nearly unbiased likelihood estimator. On the other hand, in comparison with CWEIS,
the PCEIS generates a smaller bias and this also justifies the statement that our proposed
computational method on the continuous approximation of filtering density demonstrates a
better performance on likelihood estimation.

Generally speaking, the more samples taken for likelihood approximation, the smaller
variance of the estimator. However, the efficiency of BPF on variance reduction by increasing
sample size greatly far behind the one of EIS. This can be mainly attributed to the fact
that variance minimization is achieved in EIS procedure and from table 1, the comparison
on Numerical Standard Errors (NSEs) between BPF and EIS sufficiently demonstrates the
great success of variance minimization. Even with one million particles, the BPF is still
unable to compete with the EIS in which only 100 samples are taken for the likelihood
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approximation. Moreover, the NSE of PCEIS is about 4 times smaller than the one of CWEIS
which implies that our proposed computational method for the continuous approximation of
filtering density facilitates a better performance on variance minimization.

The comparisons on Mean Square Errors (MSEs) given in Table 2 between BPF, CWEIS
and PCEIS further justify the superiority of EIS procedure on the efficiency of likelihood ap-
proximation over BPF. Moreover, we can also notice that the MSE of PCEIS is approximately
17 times smaller than the one of CWEIS. Therefore, the computational method we proposed
can exploit the potentiality of EIS algorithm in more depth and realize more efficiency gains
than Constant-Weight EIS. Additional information provided in Table 2 are the CPU time
for 100 replications (calculated on 3.6 GHz desktop using R) and BPF shows its hopelessly
extreme inefficiency on likelihood approximation in comparison with EIS procedure.

2.4 Conclusion and Future Work

In this chapter, we proposed an improved computational method which can achieve a more
accurate calculation performance on the continuous approximation of filtering density. In
comparison with the Constant-Weight approach developed by David and Roman, our pro-
posed method can realize a deeper exploitation on the potentiality of EIS procedure which
have already been demonstrated in detail from our simulation study.

On the other hand, to make a meaningful comparison, it is necessary to have the access
to the true likelihood value and this requirement imposes the restriction of linearity and
normality on our simulated model selection. As a result of model simplicity, in our simulation
study, we can see that the performance difference between these two methods measured by
MSE is so tiny that our modification seems to be negligible. However, one important thing
we should be aware of is that, in most real applications, the models we deal with usually
have extremely complicated structure and the length of its time series is always very large.
As a result, the EIS likelihood estimate generated by simply applying Constant-Weight
approach in such kind of model tends to have an non-negligible bias. Therefore, under this
scenario, bias reduction appears to be particularly important and our proposed method will
demonstrates its necessity of existence.

In the next chapter, we will discuss the topic about Maximum Likelihood Parameter
Estimation in State Space Model. Due to the infeasibility of having access to the closed-
form solution of MLE for Non-linear State Space Model, we have to resort to algorithm of
either Gradient Ascent (GA) or Expectation-Maximization (EM). Attributed to the com-
mon random number technique and variance minimization process, the likelihood estimate
generated by EIS does not suffer from the problem of discontinuity and its fluctuation can be
negligible. As a result, finite difference method can be reliably applied for the evaluation of
score vector leading to the popularity of Gradient Ascent. However, there does not exist too
much research works with respect to the EM algorithm. Therefore, in next chapter, we will
propose a new procedure to achieve the EM algorithm by introducing the EIS optimization
process.
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Figure 1: The variation of simulated Data

Figure 2: Comparison between BPF and EIS on Likelihood Approximation
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CHAPTER III

MAXIMUM LIKELIHOOD PARAMETER ESTIMATION

3.1 Introduction

In this chapter, we will talk about the topic about the parameter estimation in State Space
Model with Maximum Likelihood procedure which aims to solve the following maximization
problem,

θ̂MLE = ArgMax
θ

LT (θ)

LT (θ) = log {fθ(y0:T )}
(3.1.1)

where L(θ) is the log-likelihood function. When the State Space Model we dealing with
is Linear and Gaussian distributed, the analytical expression of log-likelihood function is
available and the closed-form solution of MLE can be just obtained by standard procedures
[29]. However, when the model we met is Non-linear, the analytical expression of log-
likelihood will be infeasible and it is impossible to have access to the closed-form solution
of MLE. Therefore, we have to resort to the numerical methods to help us find the MLE
for Non-linear State Space Model. So far, the most widely used method that can achieve
this task is known as the Gradient Ascent algorithm in which the log-likelihood function
is approximated by EIS procedure introduced before and the score vector is evaluated by
applying finite difference method [12]. The detailed implementation is described as follows,

Gradient Ascent Algorithm of MLE for Non-linear State Space Model

• At iteration k, suppose we inherited θk−1 from previous iteration

• Perform the EIS procedure to generate a sequence of optimal samplers {gt(st, st−1)}Tt=0

for each time period, by making i.i.d draws from these samplers, the likelihood can be
evaluated by

f̂θk−1
(yt|y0:t−1) =

1

N

N∑
i=1

f(yt|sit)f(sit|sit−1)f̂(s
i
t−1|y0:t−1)

gt(sit, s
i
t−1)

f̂θk−1
(y0:t) =

T∏
t=0

f̂(yt|y0:t−1)

(3.1.2)
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• By applying the Finite Difference Method, the score vector can be approximated by

▽θLT (θ)|θ=θk−1
=

LT (θ + h)− LT (θ)
h

(3.1.3)

• By selecting an appropriate step size, the parameter can be updated as,

θk = θk−1 + γk ▽θ LT (θ)|θ=θk−1
(3.1.4)

• Repeat above steps until reaching the convergence of θk

One important thing we need to be aware of is the smoothness or continuity of the estimate of
likelihood function. In general, given fixed parameters and observations, the EIS procedure
by using random draws from these optimal samplers will generate a likelihood estimator with
minimized variance. When this minimized variance is negligible, then we can say that this
estimate of likelihood function is nearly smooth and the Maximum Likelihood Estimation
(MLE) can be performed without any convergence issue under non-strict rule. However, in
most scenarios, the variation of likelihood estimate can not be ignored and we may suffer
from the convergence problem if the MLE is performed by using this likelihood estimate.
One way to remedy this problem is known as Common Random Number (CRN) technique
where all random draws in EIS procedure are obtained by transformation of a single set
{ui}Ni=1 from a canonical distribution which does not depend on any parameters, i.e. the
transformation of standard normal distribution.

Benefit from the variance minimization step in EIS procedure and the Common Random
Number technique, the score vector in Gradient Ascent algorithm can be reliably evaluated
by applying Finite Difference Method. However, this algorithm can be numerically unstable
as it requires us to be very careful with the selection of the step sizes for each component
of the score vector. On the other hand, the Expectation-Maximization (EM) algorithm is
another very popular alternative procedure which can achieve the maximization task without
log-likelihood approximation, score vector calculation and the step size selection. These
properties make EM algorithm more attractive and robust than Gradient Ascent. However,
by far, there does not exist too much research works about performing the EM algorithm
for likelihood maximization on Non-linear State Space Model. Therefore, we proposed a
new procedure, referred to as EIS Monte Carlo EM algorithm, in which the EIS principle
is introduced into the E-step for the Monte Carlo approximation of expectation function
leading to the feasibility of analytical solution of expectation maximization in M-step.

3.2 EM algorithm for Maximum Likelihood Estimation

3.2.1 Expectation-Maximization algorithm

The EM algorithm is proposed by Arthur Dempster, Nan Laird and Donald Rubin in 1977
[7]. It is an iterative method designed for the models involving hidden or missing variables to
achieve the ML parameter estimation without evaluating the likelihood function. The EM
iteration alternates between implementing an Expectation (E) step, in which a Q function
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is built up for the evaluation of the expectation of the log-likelihood function involving
both observations and hidden variables, and a Maximization (M) step, in which optimal
parameters will be found such that this Q function can be maximized. Specifically, the
detailed implementation of EM algorithm on Non-linear State Space Model is shown as
follows,

EM algorithm on State Space Model

• At iteration k, suppose we inherited θk−1 from previous iteration

• E-Step:

Q(θk−1, θ) = Es0:T |y0:T {log [fθ(s0:T , y0:T )]}

=

∫
log [fθ(s0:T , y0:T )] · fθk−1

(s0:T |y0:T )ds0:T
(3.2.1)

fθ(s0:T , y0:T ) = f(s0)
T∏
t=1

f(st|st−1)
T∏
t=0

f(yt|st) (3.2.2)

• M-Step
θk = ArgMax

θ
Q(θk−1, θ) (3.2.3)

• Repeat until reaching the convergence of θk

3.2.2 Monte Carlo EM algorithm with Forward-Backward Smoothing

Generally speaking, the analytical expression of Q(θk−1, θ) is not available for the Non-
linear State Space Model. Thus, we have to rely on the numerical method and the most
intuitive way is to perform Monte Carlo approximation in which we make i.i.d draws from
fθk−1

(s0:T |y0:T ) leading to,

Q̂(θk−1, θ) =
1

N

N∑
i=1

log
[
fθ(s

i
0:T , y0:T )

]
(3.2.4)

This is referred to as Monte Carlo EM algorithm. Unfortunately, this approximation is not
feasible due to the fact that the analytical expression of this smoothing density fθk−1

(s0:T |y0:T )
is intractable under the case of Non-linear State Space Model. Therefore, it is impossible to
directly make i.i.d draws from fθk−1

(s0:T |y0:T ). One way to solve this problem is known as
the Forward-Backward Smoothing proposed by Godsill, Doucet and West in 2004 [13]. This
method relies on the Particle Filter algorithms and its principle is based on the following
key decomposition,

fθk−1
(s0:T |y0:T ) = fθk−1

(sT |y0:T )
T−1∏
t=0

fθk−1
(st|y0:t, st+1) (3.2.5)
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where fθk−1
(st|y0:t, st+1) is referred to as backward Markov transition density. By Bayesian

principle, it can be written by

fθk−1
(st|y0:t, st+1) =

fθk−1
(st+1|st)fθk−1

(st|y0:t)
fθk−1

(st+1|y0:t)
(3.2.6)

By implementing the Particle Filter algorithm from time t = 0 to T , a sequence of approx-
imated filtering densities {f̂θk−1

(st|y0:t)}Tt=0 will be obtained and is given by the following
form of mixture of Dirac measure,

f̂θk−1
(st|y0:t) =

N∑
i=1

W i
t δsit(st) (3.2.7)

By substituting f̂θk−1
(st|y0:t) for fθk−1

(st|y0:t) in 3.2.6, this backward Markov transition den-
sity fθk−1

(st|y0:t, st+1) can be approximated by,

f̂θk−1
(st|y0:t, st+1) =

∑N
i=1W

i
t fθk−1

(st+1|sit)δsit(st)
f̂θk−1

(st+1|y0:t)

fθk−1
(st+1|y0:t) =

∫
fθk−1

(st+1|st)fθk−1
(st|y0:t)dst

f̂θk−1
(st+1|y0:t) =

N∑
i=1

W i
t fθk−1

(st+1|sit)

(3.2.8)

To make the i.i.d draws from this smoothing density fθk−1
(s0:T |y0:T ), we just need to sample

firstly from the approximated filtering density f̂θk−1
(sT |y0:T ) at the last time period, then

make draws from {f̂θk−1
(st|y0:t, st+1)}T−1

t=0 backward iteratively and the Q function can be
just approximated by equation 3.2.4. This sampling method is also referred to as Forward
Filtering Backward Sampling (FFBSa) and it needsO(NT+1) operations to generate a single
path s0:T , as sampling from {f̂θk−1

(st|y0:t, st+1)}T−1
t=0 for each time period need to calculate

fθk−1
(st+1|sit) for N times leading to O(N) operations. Therefore, it requires a total of

O(N2T + N) operations to generate a full path i.i.d draws {si0:T}Ni=1. As a result, the
implementation of this Monte Carlo EM algorithm will be extremely inefficient and time-
consuming if we take very large value for N .

These drawbacks can be mainly imputed to the use of mixture of Dirac measures for
the approximation of filtering densities. Therefore, to remedy these problems, we need to
find a way to achieve the Monte Carlo EM algorithm without the use of mixture of Dirac
measures. Based on the fact that the EIS principle introduced before can generates estimate
with minimized variance and the filtering density is approximated continuously, in next
section, we will propose a EIS-based approach to achieve the Monte Carlo EM algorithm
with the abandonment of mixture of Dirac measure leading to a great efficiency gain.
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3.2.3 Monte Carlo EM algorithm using EIS

Similar to the FFBSa sampling method of smoothing density fθk−1
(s0:T |y0:T ) introduced

before, our proposed method also consists of Forward and Backward procedures except that
we perform EIS algorithm instead of Particle Filter during the implementation of Forward
procedure. Specifically speaking, the joint likelihood function in State Space Model can be
factorized into a product of a sequence of conditional likelihood densities, that is,

fθk−1
(y0:T ) =

T∏
t=0

fθk−1
(yt|y0:t−1) (3.2.9)

and each conditional likelihood density can be written by,

fθk−1
(yt|y0:t−1) =

∫ ∫
f(yt|st)f(st|st−1)f(st−1|y0:t−1)dstdt−1

≈
∫ ∫

f(yt|st)f(st|st−1)f̂(st−1|y0:t−1)

gt(st, st−1)
gt(st, st−1)dstdt−1

(3.2.10)

where f̂(st−1|y0:t−1) is the continuous approximation of filtering density generated from last
time period. By applying EIS algorithm, an optimal sampler gt(st, st−1) will be generated

such that the variance of f(yt|st)f(st|st−1)f̂(st−1|y0:t−1)
gt(st,st−1)

can be minimized leading to the likelihood
estimate with smallest variation. Moreover, this optimal sampler can also be written by,

gt(st, st−1) = gt(st)gt(st−1|st) (3.2.11)

where the marginal density gt(st) will be stored and further passed into the Backward
smoothing procedure. The continuous approximation of filtering density f(st|y0:t) can be
obtained either by Constant-Weight approximation or our proposed computational method
introduced in Chapter 2.

After the completion of the Forward EIS procedure, a sequence of marginal densities
{gt(st)}Tt=0 will be obtained and we can proceed to the Backward smoothing procedure by
rewriting the smoothing density f(s0:T |y0:T ) shown in 3.2.5 and 3.2.6 as

f(s0:T |y0:T ) = gT (sT )
T−1∏
t=0

f(st|y0:t, st+1) (3.2.12)

f(st|y0:t, st+1) =
f(st+1|st)gt(st)
f(st+1|y0:t)

(3.2.13)

where the filtering densities {f(st|y0:t)}Tt=0 are replaced by {gt(st)}Tt=0 based on the Constant-
Weight approximation which claims that,

f(st|y0:t) ≈ gt(st) (3.2.14)

To make the i.i.d draws {si0:T}Ni=1 from the smoothing density f(s0:T |y0:T ), we just need
to firstly sample siT from gT (sT ), then for t = T − 1, T − 2, ..., 0, taking draws sit from
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f(st|y0:t, st+1). However, sampling directly from f(st|y0:t, st+1) is not feasible since its an-
alytical expression does not exist. To remedy this problem, one intuitive way is to per-
form the Importance sampling method in which gt(st) serves as the proposal sampler and
f(st|y0:t, st+1) can be approximated by the following mixture of Dirac measures,

f̂(st|y0:t, st+1) =
N∑
i=1

W i
t δsit(st)

W i
t =

wit∑N
i=1w

i
t

wit = f(st+1|sit)

(3.2.15)

where {sit}Ni=1 is the i.i.d draws from gt(st). However, as we can see, to generate a single
path of f(s0:T |y0:T ), we have to perform N times calculation on {W i

t }Ni=1 at each time period
for t = T − 1, T − 2, ..., 0 leading to O(NT + 1) operations which is the same with the
Forward Filtering Backward Smoothing. Moreover, this intuitive method also involves the
use of mixture of Dirac measures which is the root of inefficiency problem.

Since the EIS procedure introduced before can achieve the variance minimization on
weight function, we developed a Monte Carlo EM algorithm for ML parameter estimation
on Non-linear State Space Model based on Constant-Weight principle proposed by David
and Roman [5] which claims that the weight function of minimized variance can be just
viewed as a constant. Specifically speaking, the equation 3.2.13 can be rewritten as,

f(st|y0:t, st+1) =

f(st+1|st)gt(st)
qt(st)

qt(st)

f(st+1|y0:t)
(3.2.16)

Our objective is to find an optimal sampler qt(st) such that the variance of weight function
f(st+1|st)gt(st)

qt(st)
can be made as small as possible and the ultimate goal is to achieve the variance

minimization. Since the closed-form of f(st+1|st)gt(st) is available, this ultimate goal can be
accomplished by just following the standard EIS procedure introduced before. Moreover, as
we can see, the normalized constant f(st+1|y0:t) in the denominator of above equation can
be evaluated by

f(st+1|y0:t) =
∫
f(st+1|st)gt(st)

qt(st)
qt(st)dst (3.2.17)

and its Monte Carlo approximation can be performed by just making i.i.d draws from qt(st)
leading to,

f̂(st+1|y0:t) =
1

N

N∑
i=1

f(st+1|sit)gt(sit)
qt(sit)

(3.2.18)

By the Constant-Weight principle, we can view this weight function as a constant and the
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backward Markov transition density f(st|y0:t, st+1) can be estimated by,

f̂(st|y0:t, st+1) =

f(st+1|st)gt(st)
qt(st)

qt(st)

f̂(st+1|y0:t)
= qt(st)

(3.2.19)

Therefore, to make a single draw from f(st|y0:t, st+1), we just need to take one sample from
qt(st) and the operation of making a single path of f(s0:T |y0:T ) is reduced to O(ET + 1) in
which E << N is the computational complexity of EIS procedure and it usually takes less
than 10 operations to reach the convergence.

After the generation of i.i.d draws from f(s0:T |y0:T ), denoted as {si0:T}Ni=1, the Monte
Carlo approximation of the expectation function in E-step is given by,

Q̂(θ) =
1

N

N∑
i=1

log
[
fθ(s

i
0:T , y0:T )

]
=

1

N

N∑
i=1

log

{
f(si0)

T∏
t=1

f(sit|sit−1)
T∏
t=0

f(yt|sit)

} (3.2.20)

And this MC approximation will be passed into M-step to find an optimal θ such that the
maximization can be achieved for Q̂(θ). When the analytical expressions of transition density
f(st|st−1) and measurement density f(yt|st) are available, this maximization problem can be
directly solved by standard derivation method leading to a closed-form solution which will
be passed into next iteration until the convergence be reached. The detailed implementation
process is shown as follows,

Monte Carlo EM algorithm of EIS principle

• At iteration k, suppose we inherited θk−1 from previous iteration

• E-Step:

– Start from t = 0, 1, 2, ..., T , implement EIS procedure to the following integral,∫ ∫
f(yt|st)f(st|st−1)f̂(st−1|y0:t−1)

gt(st, st−1)
gt(st, st−1)dstdt−1 (3.2.21)

in which a sequence of optimal samplers {gt(st, st−1)}Tt=0 are generated and the
marginal densities {gt(st)}Tt=0 will be stored and passed into next step.

– For i=1,2,...,N, repeat the following process

∗ Take one sample from gT (sT ), denoted as siT
∗ Start from t = T − 1, ..., 2, 1, 0, implement EIS procedure to the following
integral, ∫

f(sit+1|st)gt(st)
qt(st)

qt(st)dst (3.2.22)
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in which an optimal sampler qt(st) will be generated and a single draw will
be taken from it, denoted as sit

– After the generation of i.i.d draws {si0:T}Ni=1 from f(s0:T |y0:T ), the Q-function can
be approximated by,

Q̂(θk−1, θ) =
1

N

N∑
i=1

log

{
f(si0)

T∏
t=1

f(sit|sit−1)
T∏
t=0

f(yt|sit)

}
(3.2.23)

• M-Step
θk = ArgMax

θ
Q̂(θk−1, θ) (3.2.24)

• Repeat until reaching the convergence

As we can see, it requires a total of O(NET + N) operations to generate a full path i.i.d
draws from f(s0:T |y0:T ). Although it takes less operations than FFBSa-based EM algorithm,
its performance is barely satisfactory. So, in next section, we will propose an improved
EIS-based EM algorithm which can achieves the i.i.d draws from f(s0:T |y0:T ) with very low
computational complexity.

3.2.4 A Fast-Sampling Technique

From the detailed implementation process of EIS-based Monte Carlo EM algorithm shown
in the previous section, the high computational complexity of the generation of i.i.d draws
from f(s0:T |y0:T ) is mainly caused by the overuse of EIS procedure. As we can see, it requires
to implement the EIS algorithm for a total of NT times to generate a full path of i.i.d draws.
To remedy this problem, we developed a procedure, referred to as Fast-Sampling technique
which can further reduces the operation time from O(NET + N) to O(PET + 1) where
P < N .

Specifically speaking, the detailed implementation process of EIS procedure for the inte-
gral shown in 3.2.22 is shown as follows,

Efficient Importance Sampling of Backward Sampling

• At time period t, suppose we inherited {sit+1}Ni=1 from the previous time point

• Select an appropriate exponential family of distribution {qt(st|a) : a ∈ A}

• For i = 1, 2, ...N ,

– At step L=0, the initial particles {s0t,j}Sj=1 can be obtained by making draws from
gt(st)

– At step L=1, solve the following minimization problem by least square method,

(â1t,i, ĉ
1
t,i) = ArgMin

a∈A,c∈R

S∑
j=1

{
ln
[
f(sit+1|s0t,j)gt(s0t,j)

]
− c− lnkt(s

0
t,j|a)

}
(3.2.25)

38



– Draw particles {s1t,j}Sj=1 from qt(st|â1t,i) and pass it into next step

– repeat the above process until reaching the convergence of {âLt,i} and the final
optimal value is denoted as ât,i

• After the generation of optimal samplers qt(st|ât,i) for i = 1, 2, ..., N , we take one single
draw sit from each of these samplers and the resulting particles {sit}Ni=1 will be passed
into next time period t-1 for new iteration.

Here, kt(st|a) is the kernel density of qt(st|a). By the property of exponential family distri-
bution, this kernel density can be factorized into,

lnkt(st|a) = a
′ · t(st) (3.2.26)

where a is the vector of regression parameters and t(st) denotes the vector of explanatory
variables. On the other hand, the term ln

[
f(sit+1|st)gt(st)

]
serves as the dependent variable.

One important thing we should be aware of is that the only difference of these EIS procedures
for i = 1, 2, ..., N lays on the term f(sit+1|st). If we have a sequence of particles {srit+1}Ri=1 ⊂
{sit+1}Ni=1 and their values do not differ too much, we can expect that the optimal values
{âri}Ri=1 generated by their respective EIS procedures will be approximated equal with each
other. Based on this fact, we can just take their mean value for EIS implementation and
the generated optimal value can be shared by these particles of similar values. So, instead of
implementing EIS procedure for R times, we just need to take the mean value and perform
one single EIS which achieves great efficiency gain. Based on this idea, we developed the
Fast-Sampling technique for the EIS-based EM algorithm proposed in previous section to
efficiently generate i.i.d draws {si0:T}Ni=1 from smoothing density f(s0:T |y0:T ) and the detailed
implementation process is shown as follows,

Fast-Sampling technique of EIS-based EM algorithm

• At the time period t, suppose we inherited a sequence of particles {sit+1}Ni=1

• Sort {sit+1}Ni=1 ascendingly and denote the resulting sorted sequence as {s(i)t+1}Ni=1

• Partition {s(i)t+1}Ni=1 into P = N
R

sections and each section has R particles of similar
values.

• Take the mean value for each section and denote these mean values as {µr}Pr=1

• For r = 1, 2, ...P ,

– Implement the EIS procedure to the following integral,∫
f(µr|st)gt(st)

qt(st)
qt(st)dst (3.2.27)

in which an optimal sampler will be generated and we take R draws from it,
denoted as {sjt,r}Rj=1
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• Return these generated particles
{
{sjt,r}Rj=1

}P
r=1

to their original location before sorting

leading to the sequence {st}Nt=1 which will be passed into next time period t− 1

Here, R is referred to as the section size and P is known as partition length. When R = 1,
this EIS-based EM algorithm is equivalent with the one without Fast-Sampling technique.

In the next section, a simulation study of ML parameter estimation on an Non-linear
State Space Model will be given to demonstrate the superiority of our proposed method
against Gradient Ascent and FFBSa methods.

3.3 Simulation Study

3.3.1 Stochastic Volatility Model

In this simulation study, we will explore the Maximum Likelihood Parameter Estimation on
Stochastic Volatility (SV) Model which is a very popular economic model used in the field
of mathematical finance to evaluate derivative securities, such as options. To be specific, the
SV model for our simulation study is given by,

yt = βexp
(st
2

)
Wt,Wt ∼ N(0, 1)

st = αst−1 + σVt, Vt ∼ N(0, 1)

s0 ∼ N (0, 1)

(3.3.1)

Clearly, this is an Non-linear State Space model which implies the fact that the analytical
expression of its likelihood function is not available leading to the infeasibility of closed-form
solution of MLE by standard derivation method. Therefore, we have to rely on numerical
method to achieve the likelihood maximization and the most intuitive one is Gradient Ascent.

To implement the ML parameter estimation by Gradient Ascent algorithm, the first thing
we need to consider about is the approximation of score vector. Generally speaking, this
task can be achieved by just using Finite Difference Method which requires the evaluation of
likelihood function. However, as we said before, the Non-linearity of this SV model makes it
unavailable to apply any computational methods such as Kalman Filter algorithm to find the
true value of likelihood function. Therefore, we have to rely on the numerical methods and
the most commonly used one is the Particle Filter. Unfortunately, due to the resampling step
involved in Particle Filters, it is not available to apply Common Random Number technique
to have the access to a continuous likelihood approximation, and without continuity, the
convergence problem will arises. Moreover, as shown in previous simulation study, Particle
Filter shows hopeless inefficiency on likelihood approximation when we compare it with
EIS procedure. So in this simulation study, for likelihood evaluation in Gradient Ascent,
instead of implementing Particle Filter, we follow the EIS procedure to generate likelihood
approximations with the property of continuity. Another advantage of performing EIS lays
on the fact that the variance of likelihood estimate is minimized. As a result, the score vector
can be reliably approximated by the Finite Difference Method.

Except of Gradient Ascent, the EM algorithm is another alternative which can also be
used for ML parameter estimation. As introduced before, the challenge of implementing this
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algorithm lays on the Monte Carlo approximation of expectation function in E-step which
requires to make i.i.d draws from the smoothing density f(s0:T |y0:T ). The original method
to conquer this challenge is proposed by Godsill, Doucet and West in 2004 and referred to as
Forward Filter and Backward Sampling (FFBSa). However, this method also suffers from the
inefficiency problem. To remedy this, we proposed an EIS-based Monte Carlo EM algorithm
with Fast-Sampling technique and its superiority will be demonstrated by comparison with
Gradient Ascent and FFBSa.

3.3.2 Simulation Setting and Results

Specifically speaking, a sequence of observations {yt}Tt=0 of T=300 are generated by simulat-
ing this Stochastic Volatility Model with parameters be set as: α = 0.91, σ = 1, β = 0.5 and
this generation process will be repeated for 50 replication times. So, a total of 50 observa-
tion sequences, denoted as {yi0:T}50i=1, are generated and one of these observation sequences is
plotted in Figure 3. A total of three ML parameter estimation methods are performed. The
first method is based on the Gradient Ascent algorithm in which the likelihood function is
evaluated by just following EIS procedure and this method is abbreviated to GA-EIS-MLE.
The second method is based on EM algorithm in which the Monte Carlo approximation of
expectation function in E step is performed by Forward Filtering Backward Sampling (FF-
BSa) method and this method is referred to as EM-FFBSa-MLE. The last method is also
based on the EM algorithm, instead of implementing FFBSa, in this method, the Monte
Carlo approximation of Q-function in E-step is achieved by performing our proposed EIS-
based EM algorithm abbreviated to EIS-EM-MLE with Fast-Sampling technique in which
the section sizes are set to R = 1, 4, 10.

In GA-EIS-MLE, the sample size of the likelihood approximation in 3.1.2 and EIS vari-
ance minimization process in 1.3.27 are both set to N = S = 200. The increment value
in Finite Difference Method is selected as h = 0.01 and the step size of Gradient Ascent is
determined by γ = 0.001 for all the components of score vector. In the Expectation step
of the Monte Carlo EM algorithm, the sample size for the Q̂(θk−1, θ) in 3.2.4 is set to 100.
Moreover, in the maximization step of EM algorithm, the closed-form solution is available
and given by,

α =

∑N
i=1

∑T
t=1 s

i
ts
i
t−1∑N

i=1

∑T
t=1

(
sit−1

)2

β =

√√√√ 1

T + 1

1

N

N∑
i=1

T∑
t=0

y2t
exp(sit)

σ =

√√√√ 1

NT

N∑
i=1

T∑
t=1

(sit − αsit−1)
2

(3.3.2)

The Monte Carlo (MC) means, Absolute Biases, Numerical Standard Errors (NSEs) and
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Figure 3: A simulation of the Stochastic Volatility Model

Mean Square Errors (MSEs) of these ML parameter estimates are reported in Table 3 and
the Computational time of 50 replications is shown in table 4. Moreover, Figure 4 also
shows the histograms of these ML parameter estimates which indicate that the distributions
of these parameters are not too far from normality.

From the table 3, we can firstly notice that all the absolute biases of ML estimate for
parameters α, σ, β are not significantly different from zero. With respect to the variation, in
comparison with GA-EIS-MLE and EM-FFBSa-MLE, the ML estimate of these three pa-
rameters generated by our proposed EIS-based EM algorithm (R=1) demonstrates the lowest
variation which can be mainly attributed to the variance minimization processs involved in
the EIS principle. The performance of these algorithms is measured by Mean Square Error,
and as we expected, our proposed EIS-based Monte Carlo EM algorithm (R=1) revealed
its great superiority against EIS-based Gradient Ascent and FFBSa-based Monte Carlo EM
algorithms. However, with the Fast-Sampling technique be applied (R=4, 10), the perfor-
mance of our proposed method became slightly worse than the one without Fast-Sampling
(R=1), but still better than Gradient Ascent method. This is a small price we paid for the
great computational efficiency gain which is demonstrated in table 4.
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Table 3: The Simulation Result

True α = 0.91 MC mean Abs Bias NSEs MSE

GA-EIS-MLE 0.8784 0.0316 0.0920 0.0095

EM-FFBSa-MLE 0.8998 0.0101 0.0409 0.0018

EIS-EM-MLE
R=1 0.9008 0.0092 0.0269 0.0008

R=4 0.8897 0.0203 0.0373 0.0017

R=10 0.8834 0.0266 0.0415 0.0024

True σ = 1.0 MC mean Abs Bias NSEs MSE

GA-EIS-MLE 1.0321 0.0321 0.1428 0.0214

EM-FFBSa-MLE 0.9934 0.0066 0.0958 0.0092

EIS-EM-MLE
R=1 0.9809 0.0191 0.0582 0.0038

R=4 0.9693 0.0307 0.0592 0.0044

R=10 0.9892 0.0108 0.0755 0.0058

True β = 0.5 MC mean Abs Bias NSEs MSE

GA-EIS-MLE 0.5899 0.0899 0.4463 0.2072

EM-FFBSa-MLE 0.5251 0.0251 0.1313 0.0179

EIS-EM-MLE
R=1 0.5583 0.0583 0.0734 0.0088

R=4 0.5673 0.0673 0.0683 0.0092

R=10 0.5642 0.0642 0.0773 0.0101

3.4 Conclusion and Future Work

In this chapter, we proposed an EIS-based Monte Carlo EM algorithm for ML parameter
estimation and developed a technique known as Fast-Sampling to achieve great computa-
tional efficiency gain by paying very small price on the estimation performance. A simulation
study based on a Non-linear Stochastic Volatility Model is given to demonstrate the great
superiority of our proposed method. In comparison with Gradient Ascent, the ML parame-
ter estimation performed by EM framework does not bother with the problems of likelihood
evaluation, score vector calculation and step size selection leading to a more stable estima-
tion performance. However, the implementation of EM algorithm requires the evaluation
on expectation of f(s0:T , y0:T ) shown in 3.2.1 and we have to rely on Monte Carlo method.
To obtain the i.i.d draws from the smoothing density f(s0:T |y0:T ), previous research work
relies on the technique known as Forward Filtering Backward Sampling (FFBSa). However,
this method suffers greatly from the problem of computational inefficiency and this prob-
lem is mainly imputed to the use of Mixture of Dirac measures for the approximation of
filtering density f(st|y0:t) and Backward Markov transition density f(st|y0:t, st+1). Based
on the EIS procedure and Constant-Weight principle, our proposed method achieved the
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Table 4: Computational Time (second) of 50 replications

GA-EIS-MLE 536

EM-FFBSa-MLE 2658

EIS-EM-MLE
R=1 1317

R=4 362

R=10 186

Monte Carlo EM algorithm with the abandonment of Mixture of Dirac measures leading
to a great efficiency gain. Moreover, our developed Fast-Sampling technique can further
reduces the computational complexity with a small price be paid on the MLE performance.
In the next chapter, we will introduce how our developed methods can be applied to real
world applications: Dynamic Stochastic General Equilibrium modeling.
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Figure 4: Histogram of ML estimate
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CHAPTER IV

AN APPLICATION TO DSGE MODELS

4.1 Introduction

4.1.1 DSGE Models

The Dynamic Stochastic General Equilibrium (DSGE) modeling [18] is a well established
methodology for macroeconomics. It not only takes the dominant place in academia but
also plays a vital role in policy making of central banks. Based on the general equilibrium
theory and microeconomics principles, the DSGE modeling attempts to explain economic
phenomenons through mathematical modeling, such as, economic growth, business cycles and
effect of economic policy. As its name suggests, DSGE models are dynamic which implies
the property that the macroeconomic variables evolve over time, stochastic which indicates
the existence of various random shocks involved in the economy, general equilibrium which
illustrates the interrelation and mutual influence between economic entities and economic
variables.

The cornerstone of DSGE modeling lays on the General Equilibrium theory which is first
developed by the French economist Leon Walras in the late 19th century [37]. Specifically
speaking, General Equilibrium theory aims to explain the behavior of supply, demand and
price among a whole economic system of many interacting markets such as households,
firms, banks and government, and it believes that an overall general equilibrium will be
finally reached by the interaction of demand and supply.

Overall, the DSGE modeling can be mainly used in three aspects: story-telling, policy
Experiments and forecasting [6]. The Story-telling refers to the exploration and discussion
on the interaction and linkage relationship between various economic variables by the con-
struction of theoretical economic models that conform to reality. The Policy Experiments
carried out by government heavily rely on a good model setting to investigate the impact
of different economic policies on the real economic operation. The accuracy of economic
forecast is one of the criteria to test whether the model is reasonable. Moreover, better eco-
nomic forecasts can enable the central bank and the government to find economic problems
as early as possible and adopt appropriate economic policies in a timely manner, so as to
better stabilize the economy.

With the great improvement of DSGE modeling on model setting, solution technique
and parameter estimation, central banks began to widely apply DSGE models in policy
analysis and economic forecasting. DSGE models can provide a strong coherent framework
for policy discussion and analysis, help identify the sources of economic fluctuations, assess
the potential effects of different policies, and have predictive power comparable to that of
traditional macro-econometric models. Table 5 lists the most recent DSGE models used by
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Table 5: DSGE models used by Central Banks

Bank DSGE Model

Federal Reserve Board EDO, SIGMA
Bank of Canada ToTEM II, BoC-GEM
European Central Bank NAWM II, EAGLE-FLI
Bank of England COMPASS

some central banks [36].

4.1.2 A Real Business Cycle Model

A representative DSGE model is known as Real Business Cycle (RBC) model proposed by
[22] which states that the fluctuations of business cycle can be explained to a large extent
by real shocks and changes in productivity. It tries to explain economic fluctuations without
taking currency into account, or even without the existence of monetary authorities. An
example of RBC model used by [11] is given to illustrate the general framework of DSGE
modeling and how we can associate it with the problem of parameter estimation on the
non-linear state-space model.

To be specific, this model aims to solve a representative household problem which seeks
to find the optimal household behaviour on consumption c and labour n to maximize the
expected discounted stream of utility,

MAX
ct,nt

{
U = E0

∞∑
t=0

βt
(cφt (1− nt)

1−φ)
1−ϕ

1− ϕ

}
(4.1.1)

where β is the subjective discount factor of household, ϕ is the degree of relative risk aversion
and φ is the relative importance of ct and lt in determining the utility at time period t. The
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solution of this maximum problem leads to the following equilibrium conditions:(
1− φ

φ

)
ct
lt

= (1− α)zt

(
kt
nt

)α
cκt l

λ
t = βEt{∗}

{∗} =

{(
1 +

g

1− α

)κ
cκt+1l

λ
t+1

[
αzt+1

(
nt+1

kt+1

)1−α

+ (1− δ)

]}
xt = ztk

α
t n

1−α
t

xt = ct + it(
1 +

g

1− α

)
kt+1 = it + (1− δ)kt

1 = nt + lt

log(zt) = (1− ρ)log(z0) + ρlog(zt−1) + ϵt, ϵt ∼ N(0, σ2
ϵ )

κ = φ(1− φ)− 1

λ = (1− φ)(1− ϕ)

(4.1.2)

From these equilibrium conditions, we can determine the observation to be yt = (xt, ct, it, nt)
and the measurement density f(yt|st) is given by the following equations,

xt = ztk
α
t n(kt, zt)

1−α + uxt, uxt ∼ N(0, σ2
x)

ct = c(kt, zt) + uct, uct ∼ N(0, σ2
c )

it = i(kt, zt) + uit, uit ∼ N(0, σ2
i )

nt = n(kt, zt) + unt, unt ∼ N(0, σ2
n)

(4.1.3)

which can be summarized as,

f(yt|st) ∼ N4 (µ(st),Ωy) (4.1.4)

where Ωy is a diagonal covariance matrix with diagonal elements (σ2
x, σ

2
c , σ

2
i , σ

2
n) and µ(st)

can be directly found from above equations. Moreover, we can find the state variables to be
st = (zt, kt) and the transition density f(st|st−1) is given by the following equations,

log(zt) = (1− ρ)log(z0) + ρlog(zt−1) + ϵt, ϵt ∼ N(0, σ2
ϵ )(

1 +
g

1− α

)
kt = i(kt−1, zt−1) + (1− δ)kt−1

(4.1.5)

which can be summarized as,

f(st|st−1) ∼ N2 (Rst−1,Ωs) (4.1.6)

Here, R = (A, 0) and Ωs is a diagonal covariance matrix with diagonal elements (σ2
z , 0) where

A and σ2
z can be directly found from 4.1.5. The objective is to apply some methods such as

maximum likelihood approach to find the estimate of parameters (φ, α, ρ, δ, λ, κ, β, ϕ). Since
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this is a parameter estimation problem on the non-linear state space model, we can directly
apply the procedures and algorithms that are proposed in previous chapters.

4.1.3 Linear Rational Expectation Models

For the purpose of illustration on the methods and techniques developed in previous chapters
about likelihood evaluation and parameter estimation, we will use a simple RBC model -
linear rational expectation models to demonstrate and compare the performance of those
methodologies. The linear rational expectation models are originally developed by [28] and
have been widely used in the field of macroeconomics. These models are based on rational
expectation theory, also known as economics rational expectation hypothesis which states
the fact that people always keep rational when they make the prediction on some economic
phenomenon, such as the market price, and they always make the most of the information to
take actions so that they can avoid systematic error. This means that all errors are random
and generally, people’s rational expectation is just equal to the statistical expectation.

To be specific, the model we use in this chapter is

MAX
ct,kt+1

{
Et

∞∑
t=0

βtln(ct)

}
(4.1.7)

subject to
ct + kt+1 = (1− τt)Rtkt + Zt +Πt (4.1.8)

where c is the consumption, k is capital, R is return to capital, τt is income tax rate, Zt
is government transfer and Πt is the profit. The detailed model solution process is skipped
here and the state space form is given by:

k̂t = αk̂t−1 + ât−1 −
αβ(1− τ)ρτ

1− αβ(1− τ)ρτ
v1τ̂t−1 (4.1.9)

v1 =
1− αβ(1− τ)

αβ(1− τ)
× τ

1− τ
(4.1.10)

ât = ρaât−1 + ϵat , where ϵ
a
t ∼ N(0, σ2

a) (4.1.11)

τ̂t = ρτ τ̂t−1 + ϵτt , where ϵ
τ
t ∼ N(0, σ2

τ ) (4.1.12)

yt,1 = k̂t + ϵy1, where ϵy1 ∼ N(0, σ2
y1) (4.1.13)

yt,2 = τ̂t + ϵy2, where ϵy2 ∼ N(0, σ2
y2) (4.1.14)

where st = (ât, τ̂t, k̂t) are state variables, yt = (yt,1, yt,2) are observations, τ is the steady
state income tax rate, β is the discount factor, α is the output elasticity of capital, ρa is
the persistence in technology and ρτ is the persistence in tax rate. Equations 4.9 - 4.12 are
transition densities. Equations 4.13 and 4.14 are measurement densities. All the error terms
are Gaussian distributed. We shall notice that the state space form in this RBC model has
a singular transition density f(st|st−1) in which k̂t is a deterministic function of states from
previous time point. This singular state space form is quite common in DSGE modeling.
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As a result, we also need to make some modifications in EIS estimation to deal with this
singular form.

4.2 State Space Model with Singular Transition

In DSGE models, it is quite common to see the state space form with singular transition
f(st|st−1) such as equations 4.9-4.12. For this special case, David and Roman [5] illustrate
the fact that this singular transition form can help us effectively reduce the dimensionality
in EIS procedure so that it will take less time to reach convergence.

First of all, suppose we have a singular transition density f(st|st−1) and the state variable
st can be divided into st = (pt, qt), then, the transition of state variables can be expressed
by a non-singular transition density f(pt|st−1) and the following identity:

qt = ϕ(pt, st−1) (4.2.1)

which states the fact that qt is directly determined by pt and st−1. As we know, the condi-
tional likelihood function f(yt|Yt−1) at time point t is given by:

f(yt|Yt−1) =

∫ ∫
f(yt|st)f(st|st−1)f(st−1|Yt−1)dstdst−1

=

∫ ∫
f(yt|st)f(st|st−1)f(st−1|Yt−1)

gt(st, st−1)
gt(st, st−1)dstdst−1

(4.2.2)

φt(st, st−1) =
f(yt|st)f(st|st−1)f(st−1|Yt−1)

gt(st, st−1)
(4.2.3)

And in EIS procedure, we aim to find an optimal sampler gt(st, st−1) among exponential
family such that the variance of ratio φt(st, st−1) can be minimized. We still can just follow
the EIS procedure introduced before even if the transition density f(st|st−1) is singular.
However, if the dimension of state variable is high, then, it will takes more time for EIS
procedure to reach convergence. Fortunately, the singular transition can effectively reduce
this dimensionality, and the conditional likelihood function can be rewritten as,

f(yt|Yt−1) =

∫ ∫
f(yt|st)J(st, pt−1) [f(pt|st−1)f(st−1|Yt−1)]

∣∣∣∣
qt−1=ψ(st,pt−1)

dstdpt−1

=

∫ ∫ f(yt|st)J(st, pt−1) [f(pt|st−1)f(st−1|Yt−1)]

∣∣∣∣
qt−1=ψ(st,pt−1)

gt(st, pt−1)
gt(st, pt−1)dstdpt−1

(4.2.4)

J(st, pt−1) =

∣∣∣∣∣∣∣∣ ∂∂q′tψ(st, pt−1)

∣∣∣∣∣∣∣∣ (4.2.5)

where qt−1 = ψ(st, pt−1) is derived from equation 4.14. As we can see, with this singular
transition form, we no longer need to find the optimal sampler gt(st, st−1) over two state
variables any more. Instead, we just need to find the optimal sampler over st and pt−1 which
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effectively reduce the convergence time in EIS procedure. The filtering density now is given
by:

f(st|Yt) =
gt(st)

f(yt|Yt−1)

∫
wt(st, pt−1)gt(pt−1|st)dpt−1 (4.2.6)

gt(st, pt−1) = gt(st)gt(pt−1|st) (4.2.7)

wt(st, pt−1) =

f(yt|st)J(st, pt−1) [f(pt|st−1)f(st−1|Yt−1)]

∣∣∣∣
qt−1=ψ(st,pt−1)

gt(st, pt−1)
(4.2.8)

Under the constant-weight approximation, we can have,

f(st|Yt) ≈ gt(st) (4.2.9)

Under our proposed method introduced in Chapter 2, this filtering density can be approxi-
mated by:

f(st|Yt) ≈
gt(st)

f̂(yt|Yt−1)

1

N

N∑
i=1

ŵt(st, p
i
t−1(st)) (4.2.10)

ŵt(st, pt−1) =

f(yt|st)J(st, pt−1) [f(pt|st−1)gt−1(st−1)]

∣∣∣∣
qt−1=ψ(st,pt−1)

gt(st, pt−1)
(4.2.11)

where {pit−1(st)}Ni=1 are the draws taken from gt(pt−1|st).
In the next section, we will use linear rational expectation model to demonstrate and

compare the performance of the methods and techniques we introduced before on likelihood
evaluation and parameter estimation.

4.3 The EM Algorithm

The EM algorithm is an iterative method designed for the models involving hidden or missing
variables to achieve the ML parameter estimation without evaluating the likelihood function.
The EM iteration alternates between implementing an Expectation (E) step, in which a
Q function is built up for the evaluation of the expectation of the log-likelihood function
involving both observations and hidden variables, and a Maximization (M) step, in which
optimal parameters will be found such that this Q function can be maximized.

In this chapter, we aim to achieve maximum likelihood parameter estimation for linear
rational expectation model by using EM algorithm with two different sampling methods:
Forward Filtering Backward Sampling (EM-FFBS) and our developed EIS-based sampling
method (EM-EIS). For EM-FFBS and our proposed EM-EIS, both methods aim to solve the
Q function in EM algorithm by taking draws from fθk−1

(s0:T |y0:T ):

Q(θk−1, θ) =

∫
...

∫
log {fθ(s0:T , y0:T )} × fθk−1

(s0:T |y0:T )ds0:T (4.3.1)
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fθ(s0:T , y0:T ) = f(s0)
T∏
t=1

f(st|st−1)
T∏
t=0

f(yt|st) (4.3.2)

And the estimation of this Q function is given by:

Q̂(θk−1, θ) =
1

N

N∑
i=1

log
{
fθ(s

i
0:T , y0:T )

}
(4.3.3)

The EM-FFBS and our proposed EM-EIS methods only differ in the way they take
samples from this smoothing density fθk−1

(s0:T |y0:T ). Specifically, this smoothing density
can be written as:

f(s0:T |y0:T ) = f(sT |y0:T )
T−1∏
t=0

f(st|y0:t, st+1) (4.3.4)

f(st|y0:t, st+1) ∝ f(st+1|st)f(st|y0:t) (4.3.5)

In the EM-FFBS method, we firstly run the Particle Filter algorithm from time t = 0
to T , storing the weight values {W i

t }Ni=1 and particles {sit}Ni=1 at each time point. This step
is known as Forward Filtering. After that, we need to take draws from f̂(sT |y0:T ) which is
a probability mass function in last time point consisting of {W i

T}Ni=1 and {siT}Ni=1 we found
from Forward Filtering step. Then, for t = T − 1, T − 2, ..., 1, 0, we need to take draws from
f(st|y0:t, st+1) which can be approximated by the following probability mass function:

f̂(st|y0:t, st+1) =
N∑
i=1

W i
nf(st+1|sit)∑N

i=1W
i
nf(st+1|sit)

δsit(st) (4.3.6)

This step is known as Backward Sampling and it requires O(MNT ) operations to generate
full path particles {si0:T}Mi=1, as taking draws from 4.3.6 costs O(N) operations and sample
size is set as M .

In our proposed EM-EIS method, instead of approximating filtering density f(st|y0:t)
by probability mass function, we approximate it by using some continuous function from
Constant-Weight EIS procedure. So, first of all, we just run EIS algorithm from time t = 0
to T , storing the density function gt(st) which can be obtained from Constant-Weight method
at each time point. This step is known as Forward EIS. After that, we need to take draws
from gT (sT ) which is the approximation of filtering density f(sT |y0:T ) at the last time point.
Then, for t = T − 1, T − 2, ..., 1, 0, we need to take draws from f(st|y0:t, st+1). Instead of
performing discrete approximation, we can actually rewrite equation 4.3.5 as follows:

f(st|y0:t, st+1) ∝ f(st+1|st)g(st|y0:t)

∝ f(st+1|st)g(st|y0:t)
q(st|a)

q(st|a)
(4.3.7)

where f(st|y0:t) is replaced by g(st|y0:t) and we can just implement EIS procedure there to
find an optimal sampler q(st|â) among some exponential family to minimize the variance of
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Figure 5: Flowchart of our proposed Forward-Backward EIS Sampling

f(st+1|st)g(st|y0:t)
q(st)

, and by Constant-Weight principle, we can just have:

f(st|y0:t, st+1) ≈ q(st|â) (4.3.8)

So, we just need to take draws from q(st|â) as the sample for f(st|y0:t, st+1). This step is
known as Backward EIS sampling and it only requires O(MET ) operations to generate full
path particles {si0:T}Mi=1 where E is the EIS computational complexity and usually less than
6. Moreover, Figure 5 is the flowchart which gives clearer demonstration to our proposed
Forward-Backward EIS sampling process. From this flowchart, we can see that it is quite
time consuming to implement EIS procedure for each single draw. To remedy this, in chapter
3, we proposed a technique known as Fast-Sampling which aims to partition these particles
into several groups and use their group mean value for EIS procedure to generate samples.
Since the model used in this chapter is no longer one dimensional, we adopt the K-means
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Figure 6: Flowchart of Fast-Sampling Technique

clustering method to implement this partition and Figure 6 demonstrates this technique in
clearer way.

4.4 Numerical Results

In this section, we will use linear rational expectation model to demonstrate the performance
of the methods and techniques we introduced in Chapter 2 and 3 in both likelihood evaluation
and parameter estimation. The true parameter values for this model are set up as follows,

α = 0.33, τ = 0.25, β = 0.99

ρa = 0.85, ρτ = 0.75

σa = 0.01, στ = 0.01, σy1 = 0.1, σy1 = 0.1

(4.4.1)

Let yt = (yt,1, yt,2) and st = (pt, qt) where pt = (ât, τ̂t) and qt = k̂t, then the distribution
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Table 6: Simulation Result of Log-likelihood Estimates for DSGE model

Sample Size True Likelihood MC Mean Absolute Bias NSE

BPF 100,000 380.9859 380.3154 0.6705 0.8188
CW-EIS 100 - 380.7585 0.2274 0.6078
PC-EIS 100 - 380.8976 0.0883 0.0648

form of Linear Rational Expectation model is given as follows:

yt|st ∼ N2

([
k̂t
τ̂t

]
,

[
σ2
y1 0
0 σ2

y2

])
(4.4.2)

k̂t = αk̂t−1 + ât−1 −
αβ(1− τ)ρτ

1− αβ(1− τ)ρτ
× 1− αβ(1− τ)

αβ(1− τ)
× τ

1− τ
τ̂t−1 (4.4.3)

pt|st−1 ∼ N2

([
ρaât−1

ρτ τ̂t−1

]
,

[
σ2
a 0
0 σ2

τ

])
(4.4.4)

s0 ∼ N3

00
0

 ,
0.1 0 0

0 0.1 0
0 0 0.1

 (4.4.5)

4.4.1 Likelihood Evaluation

Since the linear rational expectation model is linear and Gaussian distributed, then, its true
likelihood can still be evaluated by using Fast Kalman Filter method. For this part, we will
compare three different methods on likelihood estimation: Bootstrap Particle Filter (BPF),
EIS with constant-weight approximation method (CW-EIS), EIS with our proposed weight
computation method (PC-EIS).

Specifically speaking, a sequence of observations {yt}Tt=0 with T = 200 are generated by
simulating this model with true parameters shown above. For the Boost Particle Filter,
we will use N = 100, 000 as the sample size, the transition density f(pt|st−1) will serves as
the sampler and the weight values can be just computed by measurement density f(yt|st).
For both CW-EIS and PC-EIS, the sample size is set as 100 and common random number
will be used for the purpose of fast convergence in EIS step. The replication time is set as
50 for all these three methods. The Monte Carlo (MC) mean, Numerical Standard Error
(NSE), Absolute Bias, Mean Square Error and CPU time of these log-likelihood estimates
by using BPF, CW-EIF and PC-EIS are reported in Table 6 and 7. Moreover, Figure 7
gives clearer MSE comparison between these three methods and Figure 8 also shows the
variability of these log-likelihood estimates for a more intuitive comparison on the efficiency
between BPF, CW-EIS and PC-EIS.

The first thing we note in Table 6 is that BPF has the largest absolute bias. However, we
also need to note the fact that BPF is actually an unbiased method in likelihood estimation
while the estimation from EIS methods is biased. If we have a look on the formula of EIS
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Figure 7: MSE Comparison of BPF, CW-EIS, PC-EIS

likelihood, we can have,

f̂(yt|Yt−1) =
1

N

N∑
i=1

f(yt|sit)J(sit, pit−1)
[
f(pit|sit−1)f̂(s

i
t−1|Yt−1)

]∣∣∣∣
qt−1=ψ(st,pt−1)

gt(sit, p
i
t−1)

(4.4.6)
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Table 7: Mean Square Error and CPU time of DSGE model

MSE CPU Time

BPF 1.1200 216 min
CW-EIS 0.4212 9 min
PC-EIS 0.0120 33 min

And its expectation is given by,

E
(
f̂(yt|Yt−1)

)
= E


f(yt|sit)J(sit, pit−1)

[
f(pit|sit−1)f̂(s

i
t−1|Yt−1)

]∣∣∣∣
qt−1=ψ(st,pt−1)

gt(sit, p
i
t−1)


=

∫ ∫ f(yt|st)J(st, pt−1)
[
f(pt|st−1)f̂(st−1|Yt−1)

]∣∣∣∣
qt−1=ψ(st,pt−1)

gt(st, pt−1)
gt(st, pt−1)dstdpt−1

=

∫ ∫
f(yt|st)J(st, pt−1)

[
f(pt|st−1)f̂(st−1|Yt−1)

]∣∣∣∣
qt−1=ψ(st,pt−1)

dstdpt−1

̸=
∫ ∫

f(yt|st)J(st, pt−1) [f(pt|st−1)f(st−1|Yt−1)]

∣∣∣∣
qt−1=ψ(st,pt−1)

dstdpt−1

= f(yt|Yt−1)

(4.4.7)

The continuously approximated filtering density f̂(st−1|Yt−1) in EIS method is the reason
for the bias estimation since f̂(st−1|Yt−1) ̸= f(st−1|Yt−1). However, we should also notice that
this bias generated by CW-EIS is quite small and we can ignore it to some extent. Moreover,
by using our proposed weight computation method, this bias can be further reduced by
61.17% which demonstrates the superiority of our PC-EIS method. In aspect of Numerical
Standard Error (NSE), in comparison with BPF of 100,000 sample size, both CW-EIS and
PC-EIS can achieve lower NSE with only 100 draws and the EIS procedure with our proposed
method can further reduce this NSE by almost 89.34% which sufficiently demonstrate the
great efficiency we gained from implementing the EIS variance minimization step and filtering
density weight computation.

The comparison on Mean Square Errors (MSE) shown in Figure 7 between BPF, CW-EIS
and PC-EIS further illustrate the fact that EIS procedure is superior over BPF in likelihood
evaluation. And also, we should note that the MSE of PC-EIS is much smaller than that of
CW-EIS. Therefore, our proposed filtering density weight computation method can help us
further exploit the potentiality of EIS algorithm and realize more efficiency gains than the
EIS method by Constant-Weight approximation. If we take a look on the result table 2 in
Chapter 2 where a very simple one-dimensional state space model is used for simulation, we
can note that the MSE results in Chapter 2 are too small to be reliable although PC-EIS
is better than CW-EIS. In this chapter, we used multi-dimensional DSGE model with more
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Figure 8: Log-likelihood Variability of BPF, CW-EIS, PC-EIS

complicated structure leading to more reliable MSE results and this illustrate the fact that
the superiority of PC-EIS will become clearer in state space model with higher dimensionality
and more complicated structure.

4.4.2 Parameter Estimation

In this part, we will explore the maximum likelihood parameter estimation on the Linear
Rational Expectation model with five different methods: Gradient Ascent with Particle Filter
(GA-PF), Gradient Ascent with EIS (GA-EIS), Expectation Maximization with Forward
Filtering Backward Sampling (EM-FFBS), Expectation Maximization with our developed
EIS-based method (EM-EIS) and EM-EIS with our proposed Fast-Sampling Technique (EM-
EIS-FS).

For GA-PF and GA-EIS, the likelihood value is estimated by Bootstrap Particle Filters
and EIS method respectively, and the score vector can be just evaluated by finite difference
method. For EM-FFBS and our proposed EM-EIS, both methods aim to solve the Q function
in EM algorithm by taking draws from fθk−1

(s0:T |y0:T ) in different ways.
For the simulation, specifically, a sequence of observations {y}Tt=0 of T = 300 are gen-

erated and this generation process will be repeated for 50 replication times. So, a total of
50 observation sequences, denoted as {yi0:T}50i=1, are generated. In GA-PF and GA-EIS, the
sample sizes for likelihood estimation are set as 100, 000 and 100 respectively, and the score
vector is evaluated by finite difference method. In EM-FFBS method, the sample sizes for
Forward Filtering and Q function estimation are set as N = 1000 and M = 100 respectively.
In EM-EIS, the sample sizes for EIS variance minimization step and Q function estimation
are both set as 100. In EM-EIS-FS, we use K-means clustering to partition these draws
and the number of clusters is set to G = 25, 20, 10. For the gradient ascent optimization,
we used R function ’optim’ in which ’L-BFGS-B’ method is adopted since this method can
set up both lower bound and upper bound for our estimated parameters. The Monte Carlo
mean, Absolute Bias, Numerical Standard Error (NSE), Mean Square Error (MSE) and
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Table 8: Computational Time (min) of 50 replications of DSGE model

GA-PF 1160

GA-EIS 48

EM-FFBS 550

EM-EIS 336

EM-EIS-FS
G=25 124

G=20 97

G=10 36

computational time of these methods are reported in Table 8 and 4.4.2.
From the results shown in these tables, we can firstly notice that the EM-EIS method

has the best performance in parameter estimation which demonstrates the superiority of
EIS variance minimization technique. And overall, we can also see that the EM algorithm
(EM-FFBS and EM-EIS) outperforms Gradient Ascent algorithm (GA-PF and GA-EIS)
except the α estimation with EIS-FFBS which has quite large numerical standard error. In
the aspect of EM-EIS-FS, it has quite good performance when the number of clusters is
25. However, as this number decreases, its performance is getting worse even though the
computational time is decreasing. This is caused by the loss of sample diversity and we
must be very careful with the selection of cluster size to make a trade-off between estimation
performance and computational time.
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Table 9: The Simulation Result of DSGE model
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