
Stream Oriented Computations in Dataflow Execution

Model and Application to String Matching Problems

By··.

JIN·HWANPARK

Master of Science

· The Ohi? University·· .. ·.·

Athens, Ohio

1987

Submitted to the Faculty of the
••· Graduate College of the
.Oklahoma State University

in partial fulfillment qf
the requirements for

. the Degree of
DOCTOR OF PHILOSOPHY

December, 1998

·COPYRIGHT

By

Jin Hwan Park

December, 1998

Stream Oriented Computations in Dataflow Execution

Model and Application to String Matching Problems

Thesis Approved:

<2 z:_fot-L
1~

- . ' . . Dean of the Graduate College

ii

ACKNOWLEDGEMENTS

I wish to express. my . deep gratitude and sincere appreciation to my major advisor

Professor K. M. · George for his supportive suggestions, constructive comments, and .

critical insights throughout this thesis. My appq~ciation extends to my other committee ·

members Professor J. P. Chandler, Professpr .G. E. Hedrick, and Dr. K. A. Teague for•
. : . ,"

their valuable suggestions and encouragement during the course of this project.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ... 1

1.1 Overview of Application to String Matching Problems 3

1.2 The Organization of the Thesis .. 5

II. PREL™INARIES , .. , ... 7

2.1 Dataflow Execution Models: Implicit Parallelism ... , ... 7

2.1.1 Classifications , ; , .. 9

2.1.1.1 Static/dynamic classification ... 9

2.1.1.2 Micro/Macro classification , : 12

2.1.2 Prototypes and Implementations .. 13

2.2 Representation of Streams in Dataflow Execution Models 13

ID. HISTORY SENSITIVE COMPUTATION PROBLEM 18

3.1 Primitive Models .. 18

3.2 Approaches .. 20

3.2.1 Recursive Scheme , .. 20

3.2.2 Iterative Scheme .. 23

3.2.3 Automata Based Scheme ... 25

IV. PROPOSED APPROACH: THE MEMORYLESS SCHEME 28

4.1 Accumulator Based Model ... ; ... 28

iv

Chapter Page

·4.2 Working-Set Based Model ... 30

4.3. Language Constructs ... 34

V. COMPARISON .. 36

5.1 Iterative Scheme .. 38 ·

5.2 Recursive Scheme '. ... , 38

5.3 Automata Based Scheme .: .. , 39

5.4 The Memoryless Scheme , ... 39

VI. EXPLOITING MAXIMUM PARALLELISM . : ~ ~ 40

6.1 Explicit Parallelism in Accumulator Based Model , 41

6.1.1 Forwarding Mechanism (PACC) ... 42

6.2 Explicit Parallelism in Working-Set Based Model , 47

6.2.1 Alternative Representation ofWS Block47

6.2.2 Forwarding Mechanism (PWS) .. : 50 ·

6.3 Performance Measurements : ... 55

. VII. APPLICATIONTOPARALLEL PREFIX COMPUTATION 61

7.1 Prefix Computation Problern· ·····'.··········:·······:._. : ... , : '.··········.············· 61 .

7.2 Implementation Methodologies , .. 62

VIII. APPLICATION TO PARALLEL STRING MATCHING , 65

8.1 String Matching Problem ... : : 65

8.2 Problem Definitions and Related Work ... 67

8.2.1 K-differences Problem .. • · 68

V

Chapter Page

8.2.2 K-mismatches Problem , ... 69

8.2.3 Exact Matching Problem .. 69

8.2.4 Need for Special Purpose Architecture .. , 70

8.2.5 Hardware Approaches : . , 71

8.2.5.l K-differences problem ... 71

8.2.5.2 Exact matching problem , ... 74

8.3 Design Strategy ... 75

IX. K-DIFFERENCES PROBLEM , .. 78

9.l Edit Distance Computation ; : ' 78

9.2 Dataflow Scheme: Implicit Parallelism ... 81

9.3 Performance .. 87

9.4 Implementation Methodologies .. 89

X. K-MISMATCHES PROBLEM .. 91

10.1 Edit Distance Computation with K-mismatches ... 91

10.2 Dataflow Scheme: Implicit Parallelism ... 93

10.2.1 Hierarchical Scheme .. ; , , 94

10.2.2 Linear Scheme: Linear representation of the computation part 98

10.2.3 Broadcasting scheme ... 103

10.2.4 Performance .. 106

10.3 Parallelization with Multiple Streams: Explicit Parallelism 109

10.3.1 Parallel Approaches for Hierarchical and Linear Schemes 111

vi

Chapter Page

10.3.2 Parallel Broadcasting Scheme .. 116

1·0.3.3 Performances , .. : 126

10.4 Implementation Methodologies ... 133

10.4.1 Hierarchical Scheme , 133

10.4.2 Linear Scheme .. , 135

10.4.3 Broadcasting Scheme , ... 137 ·

XI .. EXACT MATCHING PROBLEM .. ~ i : 139

11.1 Alternative Schemes : : ; : 139

XII. CONCLUSION : .. ; 143

REFERENCES · ... 147

vii

LIST OF TABLES

Table Page

1. Characteristics of string matching subproblems .. 67

2. Time complexities ofschemes fork-mismatches (and exact matching) problem .. 132 .

. viii

LIST OF FIGURES

Figure Page

1. Static I dynamic .. dataflow computers : 11

2. Static and dynamic representations of stream ... 16

3. Recursive scheme of history sensitive computations ... 21
. .

4. Redundant memory accesses in working-set(window size =3) 24 ·

5. I-Structure memory , .. '. · : :.·; 25

6. Generic actions of automata based scheme , : 26

7. Memoryless scheme for the accumulator based model .. 29

8. Memoryless scheme for the v,.,orking-set based model in static ·

dataflow environment · .. : , 3 0

9. Snap shots ofworking-:-set based model with window size 3 31

10. Memoryless scheme for the working-set based model in dynamic

(tagged token) dataflow environment .. 32
. . . '·

: . . .

11. The MA V problem with the Memoryless scheme in dynamic

(tagged token) dataflow environment , .. , ... 3 3

12. Dataflow graphs for Fibonacci number generation ... , : 31

13. Input/output arrangements of forwarding mechanism (PACC(d)) : .. 42

14. Concept of forwarding mechanism with degree d=3 case (PACC(3)) 43

15. Optimized forwarding mechanism (PACC) with binary operators 4 5

ix

Figure Page

16. Forwarding mechanism (depth 3 case) in dynamic (tagged token)

dataflow environment .. : 46

17. · Alternative scheme for the working-set based model (window size 3 case) 48

18. Input/output arrangements of the forwarding mechanism PWS(d*dm) · 50

19. Concept of the forwarding mechanism ... ~ 51
' . ' .

20. Examples of forwarding mechanisms generated by Algorithm-I 53

21. Forwarding mechanism (depth= 3, window size~ 3 case) for the working-set

based.history sensitive problems in static dataflowenvironmenf 54

22. Degree 3 forwarding mechanism (window sizy m=3 case) in dynamic

(tagged token) dataflow environment ... 55.

23. Dependency graphs in accumulator based model ... ~ .. 56
:

24. Pipeline performances with stream size (N) and pipeline depth (d) ················:······· 57

25. Parallel prefix sum computator of size 4 (pipeline depth=4) 62

26. Latch arrangements in parallel prefix computator (pipeline depth=5 case) 64

27. System block diagram of general purpose computer ... 71

28. 2:-dimensional structlirefor string distance computation by Cheng and Fu 72•

29. High level dataflow in parallel scheme (m=4 case) .. 81

30. Behavior snap shots ofWS(m) block in the scheme (m=3 case) 82
. . . '

31. Refined scheme.for approximate stringmatching (m=4 case) :.~ 83

32. Refined operation block "Main" ... 84

33. Dataflow graph (static) for the operation block "min" ... 85

34. Linear systolic array for the k-differences problem .. , 86

X

Figure Page

35. Data dependencies and paralleism on table D (m=4 case) 87

36. Parallel evaluation of the table D (m=4 case) .. 88

37. Structure of each PEi for the k-differences problem .. 90

38. Data dependencies & conceptual timing on table D' (m=4case) .. : 95

39. Dataflow scheme for the k-mismatches problem (pattern length m=4 case) 96

40. Evaluation timing of the linear scheme on table D' ... 99

41. The linear scheme for the k-mismatches problem .. 99

42. Behavior of each global block (GB) in the computation part 100

43. Refined linear scheme for the k-mismatches problem (m=4 case) 100

44. Linear computation part for the static dataflow environment (m=4 case) 102

45. Concept and dataflow of the broadcasting scheme .. 103

46. The broadcasting scheme (m=4 case) ... 104

47. Time analysis on dataflow schemes for the k-mismatches problem 107

48. Evaluation of table D' by the linear and the broadcasting schemes (m=4 case) 109

49. Concept of the parallel hierarchical I linear schemes ... 111

50. Examples of parallel schemes (hierarchical I linear) , .. 112

51. Parallel string matching for the k~mismatches problem (d=3, m=4 case) 113

52. Outputs from the paraUel hierarchical I linear schemes .. 115

53. Concept of the parallel broadcasting scheme and input arrangement 117

54. Conceptual view of the parallel broadcasting scheme .. 118

55. Diagonal entries to each computation part (BCP) ... 120

56. Examples of parallel broadcasting blocks .. 121

xi

Figure Page

57. Parallel broadcasting scheme fork-mismatches problem (d=3, m=4 case) 122

58. Inputs to BCP before and after the alignment mechanism 122

59. Outputs from the parallel broadcasting scheme ... 126

60. Evaluation of table D' by parallel hierarchical scheme (d=3, m=4 case) 127

61. Entries of table D' available on time slices of the parallel hierarchical scheme

(d=3, m=4 case) , ... 127

62. Evaluation of table D' by parallel linear scheme (d=3, m=4 case) 128

63. Entries of table D' available on time slices of the parallel linear scheme

(d=3,.m=4 case) , , .. 129

64. Evaluation of table D' by parallel broadcasting scheme (d=3, m=4 case) 130

65. Total execution times on serial and parallel broadcasting schemes 131

66. Entries of table D' available on time slices of the parallel broadcasting scheme

(d=3, m=4 case) ... ; 132

67. Hierarchical array of cells for the k-mismatches problem

(serial scheme with m=4 case) .. 134

68. The structures of basic cells "S'."Eq'' and "Eq" , ... 135

69. Systolic array of PEs for serial linear scheme (m=4 case) 135

70. Structure of each PE of the linear scheme , ... 135

71. Latches used in implementation of the linear scheme (m=4 case) 136

72. Systolic array of PEs for serial broadcasting schem (m=4case) 137

73. Structure of each PE (PEi) of the broadcasting scheme....................................... 13 8

Xll

Figure Page

7 4. Alternative hierarchical scheme for the exact matching problem

(serial, m=4 case) ... · 141 . .

75. Alternative linear scheme for the exact matching problem (serial, m=4 case) 141

76. Alternative broadcasting scheme for the exact matching.problem

(serial, m=4 case) .. ; .. 141

77. Refined dataflow graph (static) for the operation block "And" 142

xiii

Chapter I

INTRODUCTION

As an attractive parallel computation·model, dataflow architectures have been proposed

and developed steadily (8, 29, 42, 45, 71, 72}. The goal of the efforts has been exploiting
. ' . .

maximum parallelism which is inherent in.the asynchrony and functionality principles of

the dataflow model. The asynchrony principle implies that an operation (instruction) is

executable if all its required operands · are available based on data driven mechanism.

Since the functionality principle implies that all operations are side-effect-free functions,

any. set of enabled operations can be executed in parallel. In contrast to the centralized

control used in conventional von Neumann computers, distributed control mechanism

inherent in the implicit . instruction level parallelism provides challenging performance

improvements [44, 75, 83]. Thus it makes the dataflow execution model one of attractive

parallel architectur.es.

In spite of the advantages of dataflow execution model, obstacles such as structured

· data (array) handling problem [i 1, 38, 39, 59], resource management problem [27, 87],

and real time situation like·history sensitive computation problem degrade the performance

of dataflow computers [2, 4, 14]. The history sensitive computation problem is caused

by ahistoric nature of the data driven mechanism. In history sensitive computations,

current output depends on both current· input and history of inputs. In other words,

history sensitive function memorizes the previous inputs and this contradicts the data

1

driven mechanism. Thus, efficient handling of history sensitive computations in dataflow

execution model is unavoidable to preserve high performance parallel processing.

Deyeloping elegant solution for handling the history sensitive problems in dataflow

execution model has important role in the digital signal processing. That can provide

efficient systolic algorithms for the prefix computation problem and the string matching

problem. Those systolic algorithms are parallel hardware solutions to the problems since

they can be used to design special purpose VLSI chip for those problems.

In dataflow d1vironment, with stream data type [21, 31, 38, 50] history sensitive

computations can be implemented in either static or dynamic way. In static scheme,

history sensitive functions operate on indirect-access (stored in memory) stream data ·

structures iteratively or recursively. The history of inputs are reserved in stored stream

data structure itself. In contrast, dynamic scheme does not use stored stream data

structure. Individual tokens flow as a stream and history sensitive functions receive this

dynamic stream as input. The automata based approach proposed in [14] is an example

of this scheme. Since dynamic scheme does not use static stream (stored in memory), it

has to provide other mechanisms to keep the required history of inputs. In fact, the

automata based approach .also uses memory spaces for mair1taining the required history.

These implementation schemes are briefly reviewed with analysis of their shortcomings in

Chapter III. In addition to their major shortcomings, existing schemes use memory

references during computations and these incur memory management overhead. Thus,

they take one step back to the von Neumann model and do not meet the principles of

dataflow model. Therefore, researchers have been motivated towards the design of

2

elegant solutions to the history sensitive computation problems which meet the principles

of the dataflow model and provide high performance.

The first major concern of this dissertation is presenting a new approach in a pure

dataflow way to handle history sensitive computations in dataflow execution model. We

call this a memoryless scheme. The pure dataflow way means that it does not use

memory locations to store the stream data structure · or to keep the history of inputs

needed in computation. Only tokens flow dynamically along the arcs of dataflow graph

and there are no. memory references. Thus, it is free from memory operations. Based

on multiple streams, parallelization mechanisms for the memoryless scheme are also

presented.

The other major concern is applying the memoryless scheme to real problems including

the prefix computation problem and the string matching problem. The memoryless

scheme with parallelization mechanisms provides high performance dataflow and hardware

solutions to the problems.

1.1 Overview of Application to String Matching Problems

Later chapters of the dissertation present parallel solutions to string matching problems.

The solutions are based on the memoryless scheme for working-set based history sensitive

computations. Both serial and parallel memoryless schemes are used to provide dataflow

(i.e. systolic) solutions to the problems. Solutions are presented for three subproblems

known as k-differences, k-mismatches, and exact matching problems. Since the

memoryless scheme for the working-set based history sensitive computations (WS) and its

parallel approach (PWS) are pure dataflow schemes, the solutions are able to work on

3

actual dataflow machines· and suitable for VLSI implementation. The scheme for the

k-differences problem is a parallel algorithm for the dynamic programming method [90] of

evaluating minimum edit distances between ,pattern and any substring of reference string.

The scheme uses WS(m) block and the time complexity is O(n + m) to evaluate n * m

minimum edit distance table where n and m are the lengths of reference and pattern strings

(n >> m). For the k-mismatches and the exact matching problems, three different

approaches namely the hierarchical, the linear, and the broadcasting schemes are presented

with linear time complexities O(n + a), where O::; a::;; log m. The hierarchical and the

linear approaches use WS(m) block and, the broadcasting approach uses BC(m) block

which is a variation of the WS(m) block. For these two subproblems, further parallelism

is gained by using PWS .and PBC blocks , which are parallel versions of WS and BC

blocks, based on multiple stream input and output. Time complexities of those parallel

schemes are O((n/d) + a), where d represents the controllable degree of parallelism

(number of streams used). The variable a is log m for the parallel hierarchical and, m for

the parallel linear and the parallel broadcasting schemes. These pure dataflow schemes

present methods to design special purpose systolic array hardware for string matching.

The designs are linear or hierarchical systolic array of few basic cells. They can process

any length reference string and easily extendible for arty length pattern. Designs for the

parallel schemes includ1ng the parallel linear and the parallel broadcasting, which are used

for exploiting explicit parallelism on the k-mismatches and the exact matching problems,

need d*m PEs, where d is controllable degree of explicit parallelism.

4

1.2 The Organization of the Thesis

This thesis consists of two major parts. The first part is devoted to the development

of efficient schemes for handling history sensitive computation problems in dataflow

execution models. The. second part applies these methods to solve real life problems

such as prefix computation problem and string matching problem. Parallel solutions to

those problems are provided in dataflow execution models and are easily converted to

hardware solutions to the problems.

The first part consists of Chapter II, Chapter III, Chapter IV, Chapter V, and Chapter

VI. In Chapter II, dataflow execution models, which are instruction. level parallel

architectures, are introduced briefly. · Architectural dassifications are provided. Since

the history sensitive computations belong to stream oriented computations,

representations of stream data types in dataflow execution models also are described in

this chapter. Chapter III describes the history sensitive computation problems and

approaches for solving problems in dataflow execution model. The problems are

presented abstractly in two models and both models are defined in this chapter. The

proposed scheme, namely "the memoryless scheme", is described in detail in Chapter IV.

The scheme is represented in both static and dynamic dataflow execution models.

Language constructs of the memoryless scheme are presented in this chapter. Chapter V

presents comparison of the memoryless scheme to other approaches using simple example.

Then Chapter VI describes the methods of exploiting explicit parallelism in the

memoryless scheme. Parallelization mechanisms for both models of history sensitive

computation problems are provided with the performance measurements.

5

The . second part consists of Chapter VII, Chapter VIII, Chapter IX, Chapter X, and

Chapter XI. In these chapters, the memoryless scheme of handling history sensitive

computations. are applied to solve problems of prefix computation and string matching.

Parallel solutions to these problems are provided in dataflow execution models and these

easily are converted to hardware solutions to the problems. In Chapter. VII, dataflow

and hardware solutions to the parallel prefix computation problems are described.

Remaining chapters devote to the string matching problems. Three subproblems (i.e. k

differences, k-mismatches, and exact matching problems) of string matching are discussed

in those chapters. Chapter VIII describes the string matching problems and related work

in both software and hardware approaches. Since the dataflow solutions are suitable for

building special purpose hardware for the string matching tasks, descriptions focus on

hardware approaches. In Chapter IX, parallel solution to the k-diffetences problem

which is a version of the approximate string matching problem is described. Chapter X

provides parallel solutions to the k-mismatches problem which is the other version of the

approximate string matchirig problem. · Finally, Chapter XI describes parallel solutions to

. the exact string matching problem. The solutions are based on the memoryless scheme

for handling history sensitive computations. Performance evaluations and

implementation methodologies are provided in each chapter ..

6

Chapter II .

PRELIMINARIES

2.1 Dataflow Execution Models: Implicit Parallelism

Most parallel computer architectures are MIMD schemes employing interconnections of

conventional von Neumann architectures. Datatlow architectures are completely·

different from conventional von Neumann computer architectures and are recognized as

attractive parallel architectures.

The traditional von Neumann processors have fundamental characteristics that reduce

effectiveness of parallel computers. First, their_ performances ·suffer from presence of.

long memory and communication latencies, and these are unavoidable in parallel machines. ·

Second, they do not provide good synchronization mechanisms· for frequent task switching

between parallel activities, also inevitable in parallel machines. In addition, traditional

programming languages are not easily extended to incorporate parallelism. These

. conventional machines have control"-driven organizations.' This means that the program

has complete control over fostm"ction sequencing. , Synchronous computations .are

performed in control flow(von Neumann) computers using centralized control.

In contrast, dataflow computers have data-driven organizations that are characterized

by passive examine stages. · An instruction is executable if all its operands are available•

and arrival of operands activates execution of an instruction. Since this is the 6n:ly

execution sequencing constraint, many instructions can be executed simultaneously and

7

asynchronously and high degree of implicit parallelism is expected in dataflow

computation models. The following are some major advantages of dataflow computation

model [47, 95, 96].

• Highly concurrent operations Parallelism easily can be exposed m a dataflow

program graph.

• Matching with VLSI technology : The homogeneity and modularity in cellular

structures contribute to the suitability of VLSI implementation of major components in

a dataflow computer.

• Programming productivity : A well designed dataflow computer should be able to

remove the bottleneck caused by assorted scalar operations in von Neumann machine.

In particular, a dataflow language such as Id [10] provides an elegant method for

writing concurrent programs.

On the other hand, there exist a number of shortcomings and technical problems to

be solved to realize practical dataflow computers.

The typical criticisms of dataflow computers from the architectural view point include :

• A large amount of hardware. is needed, and in particular, the matching memory for

data synchronization is complex.

• The packet communication network cost is high.

• Not suited to handle structure (array or list)processing.

• Fine-grain parallel processing causes an increase in parallel processing overhead.

• Performance degradation occurs at points of low parallelism within a program.·

8

• . The number of instructions executed is relatively more than that of von Neumann

computer.

Besides these disadvantages, there are other problems. One of them is that no strategy . .

for full utilization of processing elements has been developed arid the other is that resource

management is difficult to implement and has much overhead. Since the basic principles

were first introduced about 20 years ago, there have been many research projects on

dataflow compute~s under development in the United States of America, Europe, Japan,

and Australia [1]. But none of current dataflow machines proves that dataflow

computers can surpass conventional von Neumann parallel machines and vector type super

computers since the prototypes· constructed were small and experimental.

Since the implementation methodologies of dataflow concept are different there are

many kinds of prototypes of data.flow machines. We consider these dataflow

architectures in two classification terms, namely Static/Dynamic, and Micro/Macro.

2.1.1 Classifications

2.1.1.1 Sta(ic/dynamic clas~ification

Early dataflow machines traditionally are classified as either static or dynamic.

Depending on the way of handling data tokens, dataflow computers are divided into two

groups namely static and dy~amic models. In the static model, only one token exist on

an arc at a time and control tokens are used to acknowledge the proper timing in

transferring data tokens from node to node. When an instruction receives all required

tokens it is enabled in this model. Jack Dennis and his research group at the MIT has

9

developed the static machine [29], and McGill university's static "Argument-fetching

dataflow architecture" was a coproject with Dennis at MIT [46]. An interesting feature

of the "Argument-fetching" dataflow architecture is that only signals flow through the

system instead of data. The reason for proposing such an architecture was to answer

some criticisms . raised against dataflow · architectures concerning the unnecessary data
. . .

movement, an inefficiency in previously proposed architectures [46].

In the dynamic· model, more than one token can exist on an arc at a time, and it uses

tagged tokens. This. dynamically . tagged dataflow model suggests that maximum

parallelism can · be exploited from a program graph: In this .. ~nodel, the system

synchronization is based bn inatching mechanism: Representative dynamic dataflow

machines are MIT's "TTDA(Tagged Token Dataflow Architecture)" machine [10, 71, 72,

84], "Manchester" dataflow machine in England [41, 78], and the ''EDDY" system in

Japan [95].

Both static and dynamic architectures have a pipelined ring structure. Figure- I (a)

shows general organization of the static dataflow computer and its instruction format.

Figure- I (b) illustrates general organization of the dynamic dataflow computer and its

instruction format. There ar·e some advantages and disadvantages of both. architectures.

In the static machine, hardware required is quite simple, but. it is difficult to construct the

graph to guarantee one-token per arc restriction. Another. problem is that since nodes

are permanently assigned to · processors, a particular processor may attract an unequal

share of the work load. In the dynamic machine, loop unfolding feature can increase the

amount of parallelism significantly [1]. Maj or disadvantages of the dynamic model are

10

that it has the added complexities of tagging and untagging, the increased network traffic

and the resorting of data.

(data

Memory unit
(instructions).

tokens Processing unit
'----I

(processors)

general organization

,op.code
presence bit I operand 1
presence bit , I . operand 2

destination s1 ·
...

destination Sn

instruction format

(a). Static dataflow computer

Matching unit

Memory unit
(instructions)

Matching unit (matched
token sets .._ __ ~ _ _.

Processing unit ----Instr. queue
(processors)

general organization

(b). Dynamic dataflow computer

opcode
literaj l constant

destination s1

destination Sn

instruction format ·

Figure ... I. Static I dynamic dataflow computers

There have been approaches to combine these static and dynamic architectures. The

"RMIT" dataflow computer combines both architectures by . us1ng advantages · of both

models [1]. Its architecture allows efficient execution of pipelined data sets without the

disadvantages of one-token per arc and, the high degree of parallelism obtained in dynamic

model without the necessity of always tagging data.

11

2.1.1.2 Micro/Macro classification

There are two levels of dataflow executions; instruction level dataflow which is also ·

called micro-dataflow (or fine-grain), and procedure level dataflow which is also called

macro-dataflow (or large grain). In micro--dataflow, all the instructions are allocated to

each PE and each instruction of a procedure is distributed among a set of PEs. In macro-

dataflow, PE allocation serves every procedure. Therefore it is possible to construct a ·

macro-dataflow computer by interconnecting several von Neumann type PEs.

Including early dataflow machines such as Dennis' static machine and Arvind's dynamic

machine, later pure dataflow machines Monsoon [72] and Epsilon-2 [42] are classified in

the micro level dataflow execution model. "Monsoon" uses directly-addressed frames

instead of an associative wait-match memory, showing a similarity to von Neumann

machines but, it has pure dataflow architecture in the sense that tokens not only schedule

instructions but also carry data [72].

On the other hand, there have been research trends on macro (procedure level) dataflow

architectures which synthesize dataflow and von Neumann architectures. They are hybrid

of von Neumann and dataflow architectures. Nikhil and Arvind suggested "P-RISC"

multiprocessor for the hybrid architecture [68]. Closest to "P-RISC" is Ianriucci's hybrid

architecture [48]. Japanesemachines called "TOPSTAR"and "EM-4" are also based on

von Neumann/dataflow hybrid architectures [81, 86]. . Other hybrid approaches include

"LDF 100" [53], *T [69, 70], and "Threaded Abstract Machine [26].

12

2.1.2 Prototypes and Implementations

Some proposed dataflow machines such as MIT's Tagged Token machine [10],

Monsoon [72], England's Manchester [78] machine, and Japan's Sigma-I [45] are fully

implemented and most of others have been in prototype stage. The Sigma- I, which have

been built in Japan's Electro-Technical Laboratory, has been considered as the most

complete and impressive dataflow machine to date [45]. This is a representative

contemporary dataflow machine.

The practical goal of the Sigma,. I project has been to construct a large-scale, scientific

parallel computer consisting of instruction level dataflow PEs which executes practical . .

application programs at an average speed bflOO MFLOPS. The current implementation

consists of 128 processors, 128 I-Structure stores, 32 local communication networks, a

global communication network, 16 maintenance microprocessors and a host computer.

The PEs and structure elements are divided into 32 groups, each of which consists of four

PEs, four structure elements and a local communication network. All groups are

connected via the global communication network. The whole system is synchronous and .

operates under a single clock, I 00 nano second. This implementation has gone into

operation and demonstrated a performance of 170 MFLOPS on a small integration

problem [10, 45].

2.2. Representation of Streams in Dataflow Execution Models

A stream can be defined as a sequence of values (tokens), all of the same type, that are

passed sequentially according to the order of generation between program modules. The

end of stream is indicated by the special marker EOS (end of stream) and the stream is

13

produced by some producer module with fixed order and consumed by one or more

consumer modules in the same order. This order of time property makes stream suitable

to manipulate the history sensitive computations since the production order has the

meaning of the history. Another role of stream is that !t provides the synchronization

mechanism among· parallel processes by sending and receivin~ stream of tokens with the

action of deferred access (waiting) of non.,,produced token. Stream is also considered as

an alternative for the fixed sized data structure li~e array in the· case of iterative filling and

iterative consumpJion.

In a dataflow eµvironment, streams are represented in either static or dynamic way. In

static representations, stream is treated as a · data structure · and stored in memory space

similar to the I-structure [11]. Static representations can be divided· into the following

three cases:

(1). Dennis and Weng [31] proposed the method of handling the stored stream as a binary

tree such as the list in functional programming languages (Figure-2(a)). Stream is built

recursively and operations on it are Append, First, and Rest · as defined for list

manipulation. Thus, stream generation module appends a data to the end of list, and the

consuniet module accesses the. data from the top (root) of the tree. . This scheme can be

implemented with linked list in . memory space and thus, dynamic memory allocation

bottleneck should be handled efficiently (i.e. fast enough). The list processing is

. . . . ' :

inherently sequential though pipelining can exploit parallelism. ·

(2). With the I-structure [11], representations like packed stream method [50] store

stream structures in the buffer of consecutive one-dimensional array like memory spaces.

In this scheme, the stream must be finite length and the size must be known to allocate the

14

memory spaces for the buffer. Thus strict implementation is expected but the parallel

access is possible with this scheme. For example, in the I-structure a producer dataflow

graph writes into an I-structure location while several other consumer dataflow graphs

read that location. However. the semantics require that consumers should wait until the

value becomes available. . More detailed description of this deferred access mechanism

will be examined in the next chapter.

In the stream buffer representations, the order of stream generation is kept in the index of

the structure. Figure-2(b) sh<;>ws the general conceptual view of these buffered stream

representations.

(3). The third case is a hybrid. of these two schemes. A paged-memory scheme [21]

stores a stream as a linked list of paged memories. When the current page is full, a new

page is assigned and starts to fill.

All these static schemes provide deferred access (waiting for unwritten data)

mechanisms and the pointer to the stream structure flows as a token to the consumer

processes. Stored streams are different from array structures with certain restrictions,

such that once written an. element cannot be· updated and elements must be accessed in

sequence. In general, the major advantages of static representations include:

• · Entire stream is. passed as a token (pointer to stream) to other functions.

·• Nested stream structures can be represented .

. But there are also disadvantages and the leading ones are:

• Since this approach uses memory references for manipulating the stream, it violates

dataflow principles and thus goes one step back to the von Neumann model.

15

• Complexity of memory allocation and deallocation processes.

• Inefficiency caused by queuing activity of deferred access (read request for unwritten

data) mechanism.

In contrast, dynamic representation of stream does not use memory and thus it provides

a true dataflow mechanism. In this approach, each stream element is treated as an .

individual token and we can imagine easily that. tokens flow sequentially according to the ·

order of generation along the arcs. of dataflow graph (Figure-2(c)). · Considering the case

of generated stream eiements accumulated on certain .arcs· of.the dataflow graph (this is

possible when stream generation module iteratively generates elements in parallel or

pipelined manner), there should exist the mechanism to keep the order of each stream

element. One simple method to solve this problem is using a FIFO queue such that

tokens are queued on each arc of the dataflow graph in their arrival order [3 5]. Of

. . .

course this possibly brings about the cost of handling large queues. Most popular

solution is using tagged token [10, 35, 38, 39]. In this method, each stream element

' .
carries its index (or iteration level) as a part of the tag (color) and tag of each stream

element recognizes the order of production.

rest

J conswneri.

• • • • •
producer . • • • X3[3] X2[2] XJ[l]

(a) Tree structure (b) Stream buffer (c) Dynamic stream

Figure-2. Static and dynamic representations of stream

16

In the stream generation module, each subsequent element. is produced with unique

increasing index value and sent to consumer modules. By using token relabeling scheme ·

[38, 39] or actions like tag actor D for the CT-interpreter [9], each stream element can

proceed.

With the advantages of real dataflow mechanism (no memory references) and its

simplicity, there are some drawbacks in the dynamic stream representations:

• Token duplication overhead when stre.am elements are sent to multiple consumers.

·· • Difficulty in manipulating nested stre,ams (stream of streams).

• Entire stream can not be passed as a single parameter (token) to functions.

• With the tagged token method, tagging and matching mechanisms need additional

hardware costs.

With this basic knowledge of streams, we will discuss the ways of handling history

sensitive computations in dataflow execution models in following chapters.

17

Chapterfil.

IDSTORV SENSITIVE COMPUTATION PROBLEM

With series of input values, the history sensitive computation module generates series of

output values in which each (current) output value is dependent on both corresponding

(current) input value and history ofinput values. In this chapter, we define two primitive

.: ,•.

· models of history sensitive computation problems and analyze existing approaches for

handling the problems,

3~1 Primitive Models ·

There are several real time situations which require fostory sensttivity but most of them

. .

can be grouped in two primitive models, namely accumulator based and working-set based

models. With little variations or mixtures of these, we can represent various history

sensitive problems. We define these two models with the following input and output

streams of values.

Input stream : xi, x2, X3, X4, xs, ...

Output strearri: Y1, Y2, Y3, Y~, Ys, ...

In the accumulator based model, each outputyds defined as

Y1 = x1, and

Yi= Yi-1 <op> xi; (for all i ?:'. 2, and <op> represents an operation)

in which Xi is current input and Yi-t is result of applying <op> to all .previous inputs.

18

Of course, this definition stands for only history sensitive part of a compound problem

which consists of history sensitive and non history sensitive parts. Some examples of this

model are cumulative sum, cumulative product, cumulative average, and the difference

between cumulative average and current input computation problems. In this paper, the

following cumulative sum computation problem is used. as a simple example of this model.
. .

[Example 1] Cumulative Sum Problem.

With input stream { x1, x2, x3, x.i, xs, ... },

the output stream { Y1, Y2, y3, Y4, Ys, ... } is defined as:

Y1 = x1, and

Yi.= Yi-1 + xi; (for all i ~· 2)

The working-set based model is defined with some function (operations) f on a fixed

number (working-set window size)ofthe most recent inputs. More formally, each output

Yi with working-set window size n is defined as:

Y1 = /(x1, 0, ,0),

Y2 = flx2, X1, 0, 0),

Yn-2 = flxn-2, Xn-3, ... , X2, 'X1; 0, 0), . , . .

Yn-1 = flxn-1, Xn-2, Xn-3, ... , X2, X1, 0), and

Yi = flxi, Xi-1, Xi-2, ... Xi-(n-1)); (fot all i ~ n)

in which function/has n arguments and each Yi is defined with current input Xi and

n-1 most recent inputs.

19

With stream of inputs, computing the difference between current input and one previous

input (thus working-set window size= 2), and computing sum (product, or average) of

the most recent n (working-set window size = n) inputs are examples of problems

belonging to this model. · The problem of computing average of the most recent n inputs

is used as an example of this model in this thesis. Since this problem is introduced in

[14] under the name of Moving Average Problem, we use the same name in the following

example:

[Example 2] Moving Average Problem with working-set window size 3.

With input stream { x1, x2, X3, kt, xs, ... },

the output stream {y1, Y2, y3, Y4, Ys,: .. } is defined as:

. Y1 = X1 I 3,

Y2 = (x2 + x1) I 3, and

Yi = (xi + Xi-1 + Xi-2) I 3 ;(for all i ~ 3)

3.2 Approaches

Static schemes use indirect-access (memory reference) Stream data structures which are

stored in memory locations. With stored stream structure, history sensitive computations

are processed recursively or iteratively. We name these· the recursive scheme and the

iterative scheme respectively in this thesis. In contrast, dynamic schemes use direct

access data elements which flow dynamically as individual tokens.

3.2.1 Recursive Scheme

In the recursive scheme, binary tree structured representation of stored stream [31] is

used and treated same as the list in functional programming environment. Since the list's

20

data structure is defined recursively, functions applied to list are evaluated recursively.

The recursive evaluation structures are classified into tree structure (divide and conquer)

and linear structure (tail recursion) [4, 5].

For the accumulator based history sensitive computation problems, the divide and conquer

scheme cannot be used because the problem can not be split into equal sized sub-
·. . .

problems. The working-set based model. also has difficulty for adapting the divide and

conquer scheme and thus can .be represented usin& linear structure. In general, the linear

recursion scheme illustrated in [5] forsolving a problem is shown in Figure-3(a).

problem arg1 list
i @ . . ~-----~
~ split

...........

construct construct

------~ construct construct

+ output list

(a) Linear recursion (b) Depende!lcy graph or accumulator based model

Figure-3. Recursive scheme of history sensitive computations.

The cumulative sum problem, which is an example of accumulator based model of history

sensitive problems, can be represented in functional form as follows:

21

Function Cumulative_sum (arg1, list) /* initially arg1=0 */

= construct (a, 1) .

where { a = First(list} + arg1,

. . , .

1 = Cumulative_ sum (a, Rest(list)}

Figure-3 (b) shows th~ dependency graph of this.

For the working-set based model of history sensitive problems, the moving average

problem with working,-set window size 3 defined in Example-2 can be represented in

functional language fomi asfollows:

. Function Moving_ave_) (list)

= construct (a, 1)

where {a= (First(list) + First(Rest(list) + First(Rest(Rest(list)))) I 3,

1 = Moving~ave _3 (Rest(list))}

I* This code shows only cases where i ~ 3 and

the initial cases are handled appropriately. * I

.For the above two function bodies, computation part for "a" is analogous to "solve-I"

node in Figure-3(a).

In general, recursive scheme to handle the history sensitive problems requires high level

memory operations (i.e: split and cqnstruct) which implies .high Jevel pointer operations

since variable sized list is implemented with linked list. In the working-set based model,

each activation of recursive function accesses a number of list elements equal to the size

of the .working-set window and these accesses are done in serial pointer traversing.

Another factor is that these memory accesses are all redundant. For example, with the ·

22

working-set window size n, each list elementis accessed n times by adjacent n instances of

recursion bodies. If the window size is very big, great performance degradation is

anticipat~d because of excessive number of redundant memory accesses and serial pointer

operations in each instance of the recursion. In addition to the memory allocation and

deallocation (garbage colleciion) overheads, the activation frame management problem

has been an issue indataflow execution models [4, 5, 42, 44].

3.2.2 Iterative Scheme

With the static stream representation, another way of implementing history sensitive

problems is iterative method. In the iterative scheme, I-structure like stored stream data

structures [11, 50] are used and rebinding of iteration variable makes the stream proceed

to next element. Since this scheme is based on fixed sized data structure, strict

implementation (i.e. stream size should be known at compile time) is expected.

scheme, the cumulative sum problem (Example-I) can be represented as follows:

for all i with A,

Yi = Yi-1 + A-(i];

here, A is stored stream data structure used as input.

Example-2 can be represented similarly;

for all i with A,

Yi = (AciJ + Aci-11 + Aci-2J) / 3;

(i~3 and initial cases are handled appropriately)

In this

Similar to th~ recursive scheme, this scheme also suffers from redundant memory access

overhead. In the working-set based model, each loop body accesses a number of input

23

stream elements determined by the window size (3 in our Example-2) and all of them are

duplicate accesses by adjacent loop instances. Figure-4 illustrates this.

loopi-1 loopi,2 loopi-3 loopi-4

Figure-4. Redundant memory accesses in working-set (window size ,,;,3)

When loop unfolding or successive activation of recursion are possible, these redundant

memory references bring about memory contention problem which greatly degrades the

performance. The iterative scheme does not provide elegant solution when complexity ·

increases with the order of input tokens' dependencies [2, 10, 14, 35]. Further more, these·

static schemes suffer from the deferred access (waiting for unwritten data) overhead such

as maintaining waiting queµes [11, 50) if the required input stream elements are not

available in the stored stream.structure yet.

As mentioned earlier, the deferred access mechanism to handle this situation is complex

and costly. The I-structure's deferred access mechanism is shown in Figure-5. In the

data storage area, each location has some extra presence bits that specify its state:

"present", "absent", or "waiting';. When a "read token''. arrives, it contains the address

of the location to be read and the tag for the instruction that is waiting for the value. If

the state is absent (A) or waiting (W), the read is deferred, i.e., the tag is queued at that

location. The queue is a linked list of tags in the deferred read request area. In the

figure, the location "n+2" and "n+3" are waiting for the data from the producer inodule

24

while instructions X, Y, and Z attempt to read. Thus there exist high memory latencies

and synchronization costs.

~ p resence fft (P 1 S t Ab. t W ·r) resen, sen, aI mg

'

r Da)a or Deferred Read PoiOU,r

........
n: p datum

.
TagX •-:- -

n+l: A .
TagZ /

w • ~ TagY I/ ·.·
n+2:

n+3: w •
n+4: A

..... ·• .. Deferred Read Requests

n+m: p datum

Data Storage

Figure-5. I-Structure memory ·

In addition to these problems, these static schemes suffer from memory contention.

Contention happens when reference counters are needed for garbage collection.

3.2.3 Automata Based Scheme

The dynamic schemes use direct-access data elements that flow dynamically as

individual tokens. In the automata based scheme, the history sensitive problems are

represented as finite state machines in which states keep the required history of the

computation and tokens flow as dynamic stream. Figure-6 illustrates the actions of this

scheme. Each state consists oflist of values (minimally one) and thus it must be stored in

. memory as structured data (i.e. array or linked list). New state generation function g

receives previous state and updates it with current input token. The output generation

25

function f receives required state from g and accesses each elements from that state and

performs desired computation with input token. Thus the state acts as the history

(previous inputs) and the function g updates it and the function f uses it for the

computation.

new state generation function (g)

input - update state (structure in memory)
---- s

~
with input token (p

tate
ointer to structure)

output generation function (f)

- access each elements from state
~

- make desired computation by using output
each element of state and input

Figure-6. Generic actions of automata based scheme

For our Example- I (cumulative sum problem), functions g and f start actions on the

initial state <O>. The function g outputs the current state and performs binary operation

''+" to update the state and the function f includes computation "current input + value

accessed from state". For the Example-2 (moving average problem with working-set

window size 3), the initial state should be <0,0>. The function g should perform

structure updating action analogous to the action of shift· registers of size two. The

output generation function f includes computation "((add two elements· accessed from

state)+ input)/ 3".

Even though this scheme uses dynamic token flow as input and output, it uses memory .

spaces for storing and updating the state variables to keep the required history. This

brings about a more serious problem known as the structured data updating problem in .

dataflow machines [11, 38, 39, 59]. Functions f and g must provide state operations

26

such as accessing and updating memory spaces. The best case is the accumulator based

model which uses single element state but the working-set based model needs array size

same as the working-set window size. If the working-set window size is very big, this is

significant overhead.

Memory access and updating operations degrade the performance of this scheme and

thus it does not promise an elegant solution to tbe history sensitive computation problems.

27

Chapter IV

PROPOSED APPROACH: THE MEMORYLESS ,SCHEME

This chapter presents a new scheme for handling history sensitive problems in dataflow

execution models. Our proposed scheme named the memoryless scheme does not use

stored stream data structure in memory arid thus it is a dynamic scheme which uses

dynamic stream (token flow) as iriput and output.

In this chapter, the memoryless scheme will be presented at the dataflow graph level.

First it will be described in stat,ic dataflow environment and next in dynamic (tagged

token) dataflow environment. , The two examples from section 3.1 are used to illustrate

our design. With appropriately designed language constructs for history sensitive

computation parts, compiler can recognize them and generate dataflow graph as we

represented in this thesis for the target code.

4.1 Accumulator Based Model

For the accumulator based i:nodel of history sensitive problem, we provide an elegant

design which receives an input stream token and generates corresponding output stream

token dynamically. Our design is motivated by the design of flip-flops. Flip-flops

remember the previous information for one clock cycle. There is a feed-back line from

the output to the input. In data flow environment, instead of using clock cycle concept,

data dependency is used to keep information (history) until next input token arrives. We

28

combine these two ideas to develop the memoryless scheme. · Simplicity is a major

characteristic of this scheme which is illustrated in Figure-7;

{ I 2 3 4 }
X1 ,X2 ,X3 ,X4 , ...

input input (0111 1) initial token

(Oil) initial token

output output {y1 1,y/,y/,y44, ... }

(a) In static dataflow environment (b) In dynamic (tagged token) dataflow environment

Figure-7. Memoryless scheme for the accumulator based model.

In Figure-7, "op" represents an operation and one single data token feeds back to the

operation node. The initial token (0 or 1) depends on the operation; i.e. 0 for"+", and 1

for "*". Unlike the automata based scheme, it does not have state variables stored in

memory. This design can be modified appropriately to accommodate more complex

problems which consist of both history sensitive and non sensitive computation parts.

Figure-7(a) shows the static firing rule which permits only one token on each arc at a time.

Thus the concept is simple. Input stream elements arrive one at a time in the generated

order and "op" performs the operation with token from feed back arc. Also we can think

of this model as a dynamic dataflow model in which multiple tokens can reside on each arc

and queued in a FIFO queue in the arrival (stream generation) order. This FIFO queue.

model is used in RMIT machine [1] which is a hybrid of static and dynamic dataflow

architectures. More details on how to keep multiple tokens on arc's can be found in

[35]. Figure-7(b) shows the memoryless scheme in dynamic (Tagged Token) dataflow

29

environment. It uses token relabeling scheme [38, 39]. Token relabeling function F is

analogous to the tagging actor D in the MIT's tagged token machine [9, 10]. It

increases the tag value of input token by 1 and passes it. In Figure-7(b), input stream

element carries its tag value (the superscript) and can arrive irt any order. Initially 01 and

xi1 match, and output y/ is generated. The tag value ofy/ is increased toy/ by F and
~ . ·.

sent to "op" node to match x/ from inpufar~. This.process is repeated.

4.2 Working-Set Based Model

For the workip.g-set based model of history sensitive problems, we introduce a

synchronization actor which is a unary actor like. th~ D actor. .. Up~n arrival. of a token,

this synchronization actor- simply passes it. Since the data flow model of computation is

asynchronous, we have t_o provide synchronization, which is required in history sensitive

problem solving, without storing history in memory .. · We name this synchronization actor

as S · and Figure-8 shows how this actor is used in our design.

input input ·~·· .. o .no ~o. , ----+ s s ... ·s
' . . . ·._. · .. · . ,.· . . :·· :

. . . ; . .

computation part c<m:iputation part

· .. 1
output

(a) Working set window size 3
output

· (b) Working set window size n

. Figure-8. Memoryless scheme for the working-set based model in static dataflow environment

Figure-9 shows the snap shots of history sensitive part as computation progresses with

working-set window size 3 based on static firing rule in static dataflow environment. The

30

computation part component shown in Figure-8 does not contain history sensitivity and so

we omit that part in the snap shots shown in Figure-9 .

< initial condition >

.. x.i----+

3rd output: X3 X2 XJ
2nd output: Xz x, O'

1.•t output: X1 O' 0

< after consumption of X3 >

..... ~.x,,x, ~ x·

1•t output: x, O' 0
. => < after consumption of x1 >

u

·.'4Xs~~

<=

2i:id output: x2

1st output: x,
x,
O'

O'
0

< after consumption of x2 >

Figure-9. Snap shots of working-set based model with window size 3.
. .

With the static firing rule, input stream token enters into .our design one at a time in the

stream generation order. An arc between two S actors serves to memorize one previous

input token. Similar to the accumulator based model part, this design can also be used in

dynamic dataflow environment in which multiple tokens on each arc are queued in a FIFO

queue in the generation order. Maintaining such ordered queue is difficult and thus

expensive [1, 35].

For the dynamic cjataflow machine environment, we ,slightly modify our model in

Figure-8. Instead of using synchronization actor S, the D actor or the token relabeling ·

function F [38, 39] is used. Figure-IO shows our scheme in tagged token architecture.

In this scheme we use the D actor. So, replacing the S actor by D actor we get the

scheme shown in Figure- IO. Note that we removed the 1st D actor for making

31

optimized design smce multiple tokens can reside on each arc m dynamic dataflow

environment

n
tagged input
stream ------.i

tagged input o0 o0 o0

stream--......---~ry

computation part computation part

output . output .
(a) Working set window size 3 case (b) working set window size n

Figure-to. Memoryless scheme for the working~set based model in clynarruc (tagged token)
data:flow environment

. . . . : . . .

In Figure- I 1, we will show how this scheme works for ihe tagged token architecture with

the Example-2 (defined in III-1) which is the moving average problem with working-set

window size 3. In the figure, a subscript represents index (generation order) of each

stream element and the superscript represents the tag of the token. The initial tokens

(O's) in front of 1st D actor and between 1st and 2nd D actors have tag values O's initially.

Upon receiving a token the D actor increments the tag value of that token by one and

passes it. Input stream elements can reside on input arc in multiple and can be fired in

any order. In Figure-11 fo~ example; with the input~tream {x/,x/,x/,x/, } we

h fi . d { 2 . 4 l 3 . } . .h fi . b h h fi. assume t e mng or er x2 ,'X.4 ,x1 ,x3 ,...... . Int e 1gure,.we cano serve t at t e rst

column from the history sensitive part contains same tokens as in input stream with same

tag values. The 2nd column and 3rd column also contain same tokens but tag values are

increased by 1 for the 2nd column and 2 for the 3rd column. Thus we made the

synchronization for the window size 3 working-set based history sensitive problem:

32

Each binary operation m the computation part is fired upon matching the two input

tokens' tag values. Matching mechanism in tagged token architecture can handle this.

arrival (firing) order:
3 1 4 2

..... X3 ,XJ ,~ ,X2.

any order
is possible

x/
x/

4
~

x}

initial tokens (have tags 0)
00 00

any order in
each column
is possible

computation part

I ' 3 4 outputstream Y1 ,Y2-,Y3 ,Y4 ,

(any order is possible)

Figure-11. The MAV problem with the Memoryless scheme in dynamic (tagged token)
dataflow environment

For generating output y11, for example, the first addition in computation part acts on

matching X1 1 from its left input arc arid 01 from its right input arc. Then it passes

(x/ + 01)1 to the second addition's left input arc. Second addition acts on matching this

left input and O 1 from its right input arc because they have same tag values 1. Output

from the second addition is (x11 + 01 + 01)1 and passed to the division function "/3" to

generate ((x/ + 01 +0 1) I 3)1 as the final output y/ In general, with working-set

33

window size n, tokens which are used in the computation part for making output y/ are

x/, Xi-1\ Xi-2\ Xi-(n-1/ which have all same tag values i.

4.3 Language Constructs

In this part, we relate the ideas described in the previous parts to a high level language.

The language chosen is Backus' FP [12] and the static dataflow environment is assumed

for simplicity. Thus high level languages can be used to design solutions to problems.

We design WS(n) for the history sensitive part of the working-set based model with the

window size n which is shown in Figure-8 (excluding computation part). Thus WS(3)

represents dataflow graph sh.own in Figure-8(a) which has one input port and 3 output

ports (to the computation part).

Let S1 be the function which produces the 1st (left most) output,

S2 be the function which prod~ces the 2nd output,

Sn be the function which produces the last (right most) output.

Def WS(n) = [S1, S2, ... , Sn]

where S 1 = id,

-
S2 = <8'J O [S1, OJ,

... '

Sn = Q9 o [Sn-1, OJ.

In the definition above, (8) is defined as follows:

Def <8'J = eq_init ~ select 2nd ; select 1st

34

where eq_init : x = T if x is the initial token

= F otherwise.

Another construct is ACC(op) which represents the history sensitive part of the

accumulator based model shown in Figure-7(a). The "op'1 .represents a binary operation

and the initial token dep~nds on "op" (i.e. 0 for"+" operation arid 1 for"*" operation).

Def ACC(op) =op O [id, c]

where c ~ 0 ° [ACC(op), 0 11].

With the above definitions, Example..,2 which,is window size 3 moving average problem

(MA V) can be represented as follows:

MA V3 = div3 ° + 0 WS(3)

- -
where div3 = I O [id, 3].

35

ChapterV

COMPARISON

Since static schemes and the automata based scheme use memory, they all have memory

management overheads. In fact, memory size for storing large amounts of data really

matters. In the automata based scheme, updating the state (structure in memory)

requires excessive amount of.. memory because entire· hew structure is created at each

update. In addition, static. schemes suffer from deferred access overheads. In this

section, we compare the Memoryless scheme with these schemes based on processing time

regardless of the above disadvantages of other schemes using an example. For the sake

of ease and simplicity of comparison, we introduce the following example (Example-3)

which is a special case of the working-set based history sensitive problems with the

window size 2. The input arrival rate is controlled by the problem itself

[Example-3) Fi~onacci number generation.

given xo=l and x1=1,

Xi= Xi-1 + Xi-2 (for all i .:::0: 2).

Instead of input arriving from the stream generation module, each current output becomes

the next input. For example, with current input x1 computation of current output needs

xo and x1 and (xo + x1) is produced as current output. This output becomes the next

input x2 and so on. Thus we expect the outputs {2, 3, 5, 8, 13, 21, 34, }. We ignore

36

the stopping condition in this example and assume that the mechanism runs continuously.

Figure-12 shows the major parts of dataflow graph for this problem in the iterative (a), the

recursive (b), the automata based (c), and the memoryless (d) schemes.

given structure A
with A[O]=x0, A[l]=x1

output

(a) Body of each iteration

Update State (g)

.___~-1 [xo] init. state

(f)

output

(c) The automata based scheme

given list L with
First(L)=x0, Rest(L)=(x1)

L L

output

(b) Instance of each recursion

+

output
{2,3,5,8, 13,21, }

(d) The memoryless scheme
in static environment

Figure-12. Dataflow graphs for Fibonacci number generation

37

5.1 Iterative Scheme

In Figure-12(a), the 1st Select and the 2nd Select can be done in parallel since deferred

access is possible. With loop unfolding, these Select operations in all iteration bodies can

conceptually be processed in parallel. But in the Example-3, the 2nd (right) Select of

iteration i+ 1 can not be done until the Store of iteration i completes. Thus in each

iteration, we need tirrie for loop control (TwoP), one Select (TREAD), one addition (TADD),

and one Store (T WRrTE). Over all, for producing N fibonacci numbers starting from 2, time

required is:

T LOOP + N * (TREAD + TADD + T WRITE)

5.2 Recursive Scheme

In Figure-12(b), we observe that the critical path is the right most path which starts

from "Rest", followed by "First", followed by "Add", and followed by "Append". Same

as the iterative scheme, successive activations of recursive bodies can not exploit full

parallelism since there exist dependencies among the instances.

produce N fibonacci numbers is:

T PROBLEM-SPLIT + N * (TREST + T FIRST + TADD + T APPEND)

Thus time needed to

= T PROBLEM-SPLIT+ N * (T POINT+ T REF+ TREAD+ TADD+ T POINT+ T ALLOC + TwRITE)

In above equation, "TPOINT" means time for ·pointer traversal and .,,!REF" means time for

increasing reference counter because the garbage collection mechanism needs reference

counter for multiple access of same node.

38

5.3 Automata Based Scheme

In Figure-12(c), the new state generation (update state) function g needs time for

updating the state and the output generation function f needs time for selecting the first

element in the state and addition. Since g and f can be done concurrently, time needed

for producing N Fibonacci numbers is:

N * (Max (T g, Tr))

where T g = T UPDATE = T ALLOc + T coPY + T wRrrE, and Tr= TREAD + TADD·

For Example-3, fortunately this scheme uses only one element state but, with large

window size (i.e. output depends on current input and number of previous inputs) the

state is multi-element structure and the "T vPDATE" will be a serious problem as we

mentioned in section 3 .2.3.

5.4 The Memoryless Scheme

From the Figure-12(d), we can observe that the 1st S actor and addition constitute the

critical path to produce each output, we can easily configure the needed time for

producing N fibonacci numbers as follows:

N * (Ts+ TADD)

where Ts means time needed for S actor.

In this expression, Ts is almost negligible because the only action it performs is pass the

token along. Therefore, the computation time for the memoryless scheme 1s

approximately N * TADD· This is significantly better than those for the other schemes.

39

Chapter VI

EXPLOITING MAXIMUM PARALLELISM

In the case of stream generation in an iterative construct, it is possible that stream

elements can be produced in parallel or at very high speed by using loop unfolding

mechanism. This is possible when each iteration does not incur any data dependencies

from previous iterations. For example, each stream element is computed independently or

accessed from other structured data .or data bases. The functional language VAL has a

forall construct which provides this parallelism [30, 65]. Even when there exist some

dependencies between iterations, pipeline mechanism makes it possible to overlap some

portions of operations. For this reason, in approaches of handling history sensitive

computations in dataflow execution models, mechanisms for exploiting maximum

parallelism should be provided to gain high performance.

In the recursive scheme, pipelined parallelism is possible with the linear recursive

structure shown in the Figure-3(a). The eager evaluation mechanism with parallel

evaluation of arguments (dataflow computation model makes this possible) enables the

parallel execution of each function instances. In Figure-3(a), multiple instances of

"solve l" can be activated successively and executed in parallel. In the iterative scheme,

loop-unfolding mechanism enables each iteration done in parallel.

Unfortunately, with these static schemes parallel processing 1s impossible in

accumulator based model of history sensitive problems because there exist data

40

dependencies among instances of iteration (iterative approach) or recursion (recursive

approach). Figure-3 (b) shows these data dependencies in the recursive scheme.

Similarly, iterative scheme has loop dependencies (i.e. sequential loop problem). In

working-set based model, these static schemes suffer from, memory access latencies.

Since each stream element in memory is redundantly accessed working-set window size

times by adjacent instances (See Figure-4), parallel processing. of these instances causes

memory contentio.n problem and this latency degrades the parallelism gained. . If the

window size is very large, great performance degradation is anticipated.

On the other hand, the automata based scheme which is a dynamic scheme can not

provide any parallelism in both accumulator based and working:-set based models. It

processes one stream element at a time and the critical path includes the state (structure in

memory) update part.

With the memoryless scheme, our effort has been to exploit maximum pipelined

parallelism in accumulator based model and explicit parallelism comparable to side effect

free loop unfolding in working-set based model. In this chapter, mechanisms for

exploiting maximum parallelism with the memoryless scheme are presented in both static

and dynamic dataflow environments. Since we divide the history sensitive problems into

two major groups, namely accumulator based and working-set based models, the two

models are handled separately.

6.1 Explicit Parallelism in Accumulator Based Mod.el

With the memoryless scheme, we can exploit high performance pipelined parallelism in

accumulator based model by using a forwarding mechanism (P ACC). From now on,

41

"ACC block" represents the memoryless scheme for the accumulator based model of

history sensitive computation problems. The name P ACC stands for parallel ACC block.

Theoretically, any depth of pipeline is possi~le with this mechanism. The forwarding

mechanism is represented in both static and dynamic dataflow environments.

6.1.1 Forwarding Mechanism (PACC)

Fin;t we consider the static dataflow environment for the sake of simplicity of

presenting the concept. Instead of using single stream input and output, multiple stream

input and output are used to exploit· explicit parallelism. · The forwarding mechanism

receives multiple input streams and· generates multiple output streams in parallel. We call

the forwarding mechanism with parallelism degree d at the ACC block level PACC(d).

For creating multiple input streams from a single stream, we arrange each input stream

as illustrated in Figure-13,

gnput (input
s eam,) stream2)

(input
streaillc!)

X3d+1 X3d+2 "4d
X2d+l X2d+2 X3d
Xd+i Xd+2 X2d
x, X2 Xd

C d

PACC (d): degree dforwarding
mechanism for ACC based model

----+------1----------1-........, d

(output (output
stream,) stream2)

(output
strealll,/)

output stream,= {y,, Yd+1, Y2d+1, Y3d+J, }
output stream2 = {y2, Yd+2, Y2d+2, Y3d+z, }

output streaillc! = {yd, Y2d, Y3d, Y 4d, . . . }

Figure-13. Input/output arrangements of forwarding mechanism (PACC(d))

42

For parallelism degreed, we need d distinct input streams and d distinct output streams as

illustrated in Figure-13. In dataflow environment this arrangement of multiple input

streams can be done in the stream generation modules by· using counters and MOD

functions. Output from P ACC(d) block consists of d distinct streams. The ith (from

left, and ls is d) output stream has output data corresponding to the ith input stream; i.e.

they have same order. We will describe this relationship and contents of output streams

in detail later. Figure-14 illustrates high level dataflow organization of degree 3

forwarding mechanism (P ACC(3)).

X7 X3 X9

X4 X5 x6
X1 X2 X3

+ + +
forwarding mechanism

PACC(3)

{Y1,Y4,Y1, .. } {y2,Ys,Ys, .. } {y,.y6,Y9,··}

(a) Input/output arrangements

fACC(3)
.······

Oil

(b) Degree 3 forwarding mechanism

Figure-14. Concept of forwarding mechanism with degree d=3 case (PACC(3))

In Figure- l 4(b), operation nodes "op" are either "+" or "*". In the figure, the left most

operation receives two operands, the 2nd (from left to right) operation receives three

operands, and the 3rd (the right most) operation receives four operands. The idea is that

during op1 (the 1st (left most) operation) computes the y1 (the 1st output) by using input

token x1, op2 computes Y2 by using input tokens x1 and x2, and op3 computes y3 by using

input tokens x1, x2, and x3 . These operations are done simultaneously. At next time

slice, op1 can compute y4, op2 can compute y5, and op3 can compute y6 simultaneously

43

because they receive y3 which was computed one time slice ago on op3. For instance, at

second time slicei op2 receives y3 . from op3, which is the result of accumulating

computations on x1, x2, and x3, and input tokens :x,i and x5 from the 1st and znd input

streams. Thus it can generate the y5 which is the result ofaccumulating computations on

X1, X2, X3, X,i, and Xs. . . In gerieral, the 1st operation receives 1 + 1 operands, the 2nd

d .
operation receives. 2+1 operands, the 3r operation receives 3+ 1 operands, and so on.

Thus in P ACC(d), the dth operation receives d+ 1 operands with this concept.

Since each operation in the concept (refer Figure- l 4(b)) · uses different numbers of

operands it makes the evaluation of performance difficult. So, to examine performance

the design of the forwarding mechanisrn with only binary operations is presented below.

Optimized design with identical binary operators is shown in Figure-15. Figure-15(a)

shows the operation of degree d=3 forwarding mechanism applied to cumulative sum

problem. In fact, the operations are done in a pipelined manner; i.e. it performs like

depth d pipeline. In general, degree d (arbitrary d) forwarding mechanism (PACC(d))

can be derived easily and is depicted in Figure-15(b). In Figure-15(a), actual data values

are used to make the concept clear. The numbers associated with each operators are

identification numbers and will be used in t!J.e performance measurement part later. With

static firing rule, this forwarding mechanism works like the pipeline in a von Neumann

computer. · After the d initial trigger time slices, d outputs are available every unit of time
. .

(time for one "op") and it makes the total execution tiine lid of the sequential execution in

the ideal case with no other overhead. With a depth d pipeline (PACC(d)), d + (d - 1)

binary operators are needed in data flow graph, but their executions are done in pipelined

manner. . It reduces the total execution time by a factor of d.

44

Xg=8
x5=5
x2=2

yg=36
Ys=15

x9=9
XtF6
x3=3

yQ=45
YG"'.°21
y3=6

0

:5th output
:4th output
:3rd output J .
:2nd output . initial
: 1st output . triggers

(a) Depth 3 case with cumulative sum example

d----~

op

(b) Depthd case

Figure-15. Optimized forwarding mechanism (PACC) with binary operators·

0

After the first d initial triggers, we can get d outputs at a time. For the static dataflow

environment, we should provide a merging mechanism for the outputs to combine the

different. streams into one:·
. . . .

In applications with multiple input and output streams,

spliting and merging of streams is not :necessary. In that case there is no overhead

associated to the pipeline. . · In the case of single input streall) and single output stream, a

spliting node and a merging node are required. However, the overhead associated to

these nodes are relatively low compared to the operation nodes. Therefore, their impact

on speed up is minimal.

45

For the dynamic dataflow environment we modify our design slightly and Figure-16

shows our forwarding mechanism (i.e. the depth 3 case) in the dynamic (tagged token)

environment. In Figure-16(a), we. use · D actors for token relabeling. The D2 and D3

actors are variations of the D actor and they increase tag value by 2 and 3 respectively.

In general, for the depth.cl forwarding mechanism, we need (d-1) D actors, and d Di

actors (one for each i, 1 :::; i :::; d) or analogous functions which increase the tag value by i.

For example with d=3, which is depicted in Figure.;;16(a), two D actors, a Dl (same as D),

a D2, and a D3 actors are used. Pesign of the general case (depth d) is straightforward

and thus the illustration is skipped.

input in any order
{x11,x22,x/,x/,xs5 }

split part

initial

(a) Depth 3 fonvarding mechanism

input in any order
l 2 3 4 5

{ X1 ,X2 ,X3 ,X4 ,X5 }

X7
7 X 8

8 x/
4 ' x/ X4 xs·
l 0 3

X1 X2- X3

any order in
each stream
possible

(b) One possible scheme for the split part

Figure-16. Forwarding mechanism (depth 3 case) in dynamic (tagged token) dataflow environment

46

The split part copies given input stream (tagged tokens) into d (depth of pipeline) input

arcs and by using tag matching mechanism: this design works the same as the one in

Figure-15(a). Since each output token has unique tag value, the merging part is not.

necessary.
' .. .

. . . ' . . .

One possible approach which can save the matching mechanism from useless work is

illustrated in Figure-16(b). In the figure, functions Fl, F2, and·F3 work as follows:

Upon receiving a tagged token, Fl checks the condition "tag MOD 3 · = l" and if true, it

passes that token otherwise consumes it. F2 and F3 work similarly with checking "tag

MOD 3 = 2" and "tag MOD 3 = O" '. In general, ''tag MOD n" should be used with depth

n forwarding mechanism. With this splitting schenie, each input ire has. only required

input stream tokens in any order. The order of a token is kept in its tag.

6.2 Explicit Parallelism in Working-Set Based Model

With the memoryless scheme, we can exploit explicit parallelism in working-set based

model by using a forward1ng mechanism (PWS). From now on, "WS block" represents

the memoryless scheme for the working-set based model of history sensitive computation

problems. The name PWS stands for parallel WS block. Theoretically,. any degree of

parallelism is possible with this mechanism. The forwarding mechanism is represented in

both static and dynamic dataflow environments.

6.2.1 Alternative Representation of WS Block

Before we describe the forwarding mechanism which explicitly speeds up the

memoryless scheme for handling working-set based history sensitive problems, an •

alternative scheme for the WS, which is more profitable for exploiting maximum ..

47

parallelism, will be introduced first. In the description of the working-set based model in

section 4 .2, there exist data dependencies in the history senr:.itive part (connected S actors

or D actors) and it can be an obstacle. to seeking explicit parallelism. Thus we need a

more elegant design which does not have data dependencies among input arcs to the

computation part. Figure-17 shows alternate designs in both. static and dynamic (tagged

token) dataflow environments.

input (ordered)
{ X1 ,X2,X3,"4,X5, }

w~.(J) .. .

X2 X3 "4
X1 X2 X3
0 X1 X2
0 0 X1

Computation part (CP)

output stream (ordered)
{Y1,Y2,Y3,y4,Ys, }

(a) In static dataflow environment

input stream (tagged)
{x11,x/,x/,"4 4,x/, } : any order

WS.(J)

x/ x/ "4 4

x/ xl xl
02 x/ x/
01 01 x/

Computation part (CP)

output stream (tagged)
{ I 2 3 4 5 }· d Y1 ,Y2 ,Y3 ,Y4 ,Ys ,..... . any or er

(b) In dynamic (tagged token) dataflow environment

.

Figure-17. Alternative scheme for the working-set based model (window size 3 case)

In the static dataflow environment, no arc can have more than one token at a time. Thus

in Figure-17(a), input arcs to the computation part have synchronization actors "S" which

we defined in section 4.2 for controlling initial tokens to meet the static firing rule. In

48

general, for working-set window size m, m-1 initial tokens (zeros) with m-1 "S" actors are

needed on the 1st (left most) input arc to the computation part, m-2 initial tokens with m-2

"S" actors on the znd input arc, and so on; With the alternative representation of the

WS(m) block, the forwarding mechanism can make the action of the WS(m) block

parallel; i.e. it receives multiple input streams instead of single input stream and forwards

them to the multiple. computation parts so that the multiple computation parts can ·

generate multiple output streams in parallel. In the next section, we will describe how to

build.the d*dm forwarding mechanism of WS(m) block. We naµi,e this PWS(d*dm)

block. PWS stands for parallel WS block and, d and ni are the parallelism degree and

the size of the working-set window respectively: . In fact, the alternative representation in
·. . ' . .

Figure-17 is a (1 *3} forwarding mechanism (PWS0*3)) in which the parallelism degree ·

is d=l (i.e. serial case), and the working-set window size ism~3.

Figure-17(b) shows the alternative scheme in the dynamic (tagged token) data.flow

environment. This dynamic design provides more implicit parallelism than static design.

In the fine grained analysis, any operation which received same tag valued operands in the

computation part can be processed in parallel since input arcs do not have data

dependencies among themselves. This implicit parallelism comes from the . dynamic
' '

nature of the architecture.· Figure- I 7 shows the alternative representation with window

size 3. The generalization to the case of window size m is straightforward. Therefore

the description is skipped.

49

6.2.2 Forwarding Mechanism (PWS)

The forwarding mechanism ,which will be described in this section, provides explicit

parallelism which speeds up the execution of the memoryless scheme for the working-set

based history sensitive computations. ·. · The arrangement of multiple input streams is same

as one described in forwarding mechanism for accumulator based model (P ACC(d)).

The forwarding mechanism is described ih static dataflow environment first. Also this

mechanism can be. used in dynamic (tagged token) dataflow environment with little

modification by using token relabeling method similar to the forwarding mechanism

(dynamic) used in accumulator based model earlier. High level concept and input output
. .

stream arrangements of the forwarding mechanism·(PWS) are illustrated in Figure-18.

gnput (input
s eam1) stream2)

(input
streamd)

X3d+I X3d+2 '4d
X2d+J X2d+2 X3d
Xd+1 Xd+2 X2d
X1 X2 ~

C d

PWS(d*dm): WS(m) with degreed
forwarding m.echanism

output output
st;ream1 stream2

output
streaIIl,/

output stream1 = {y1, Ytl+I, Y2d+1, Y3d+1, }
output stream2 = {Y2, Ytl+2, Y2d+2, Y3d+2, }

output streaffid = {yd, Y2d, Y3d, Y 4d,... }

Figure-18. Input/output arrangements of the forwarding mechanism PWS(d*dm)

50

For parallelism degree d, we need d distinct input streams and d identical computation

parts each of which generates one output stream. Parallelism degree d is controllable and

is independent from working-set window size m. High level concept of the forwarding

mechanism is illustrated in the Figure-19 with example cases.

PWS(4*12) PWS(3*12)

(4*12) Forwarding mechanism (3*12) Forwarding mechanism

(a) d=4, m=3 case (b) d=3, m=4 case

Figure-19. Concept of the forwarding mechanism

Theoretically, we can design this explicit forwarding mechanism in any parallelism degree

d with any working-set window size m. For example, for any working-set window size

m (arbitrary m) history sensitive computation problem, we can design parallelism degree d

(arbitrary d) forwarding mechanism which produces lid total execution time. The

following algorithm generates the forwarding mechanism for degree d parallelism.

Algorithm- I: Parallel Working-set (PWS(d *dm)) : forwarding mechanism

Assumption: For degreed forwarding, inputs are arranged ind different input streams;

the 1st (left most) input stream consists of (order MOD d = l) input elements,

the 211d input stream consists of (order MOD d = 2) input elements,

the 3rd input stream consists of (order MOD d = 3) input elements,

51

the d1h input stream consists of (order MOD d = 0) input elements.

Let Stream-i represents the ith (from left) input stream.

Let CPi represents the ith (from left) computation part

(each CPi has m input ports and 1 output port).

Let m be the working-set window size and dbe the degree of the parallelism.

INITIALIZE:

fori := 1 to (m-1)

{k := i MOD d;

ifk = 0 then k := d;

Assign (m-1) "S" actors (and initial tokens) on input ports

of CPk from left to right;

}

ASSIGN ARCs from input streams (Stream-i) to Computation Parts (CP):

for i = l to d

{p :=m;

for j = Oto (m-1)

{k := j + (i - l);

Assign an Arc from Stream-i to pth input port (froin left) of CP<k MOD dJ+1;

}

p := p - l;

}

52

In Algorithm-I, each CP (computation part) corresponds to the function/ we defined with

working-set based model in section III(a). Input ports to a CP correspond to parameters

off By using this algorithm, any degree of forwarding mechanism with any working-set

window size can be generated. For example, Figure-20(a) shows a degree 4 forwarding

mechanism for working-set window size 2 (PWS(4*8)) and, Figure-20(b) shows a

degree 2 mechanism for window size 3 (PWS(2*6)). Figure-17 shows the case where

d = 1 and n = 3.

X9 X10 XJJ X12 X5 X6

X5 X6 X7 Xg X3 X4

X1 X2 X3 X4 XJ X2

(a) d=4. m=2 case (PWS(4*8)) (b) d=2. m=3 case (PWS(2*6))

Figure-20. Examples of forwarding mechanisms generated by Algorithm-1

The forwarding mechanism illustrated in the Figure-21 is PWS(3 *9) m which the

parallelism degree is d=3 and the window size is m=3 in static dataflow environment. In

Figure-21, we observe that three outputs from three computation parts come out in

parallel. Output streami has corresponding order of input streami. For example with

d=3 case as illustrated in Figure-21, CP1 (left most CP) generates {y1,y4,y7, ... } which has

corresponding order of the 1st input stream { x1,X4,X7, ... }, CP2 generates {y2,Ys,Ys, ... }

which has corresponding order of 211d input stream { x2,x5,x8, ... } , and CP3 generates

{Y2,Ys,Ys, ... } which has corresponding order of3'd input stream {x2,xs,Xs, ... }. In static

53

dataflow environment, when system needs one ordered output stream these outputs

should be merged into one. As in the accumulator based model case, this is not a serious

matter since the disorder can happen only within the range of parallelism degree d. For

example with degree d=3 in Figure-21, outputs y1, y2, and y3 can be generated at the same

time and no Yi (i > 3) can precede these three. Then y4, ys, and Y6 can be generated at the

next time period and no Yi (i > 6) can precede these three and so on.

Xg Xg X10

X5 x6 X7

X2 X3 X4

0 0 X1

Computation part

output (ordered)
{Y1,Y4,Y7,Y10, }

arranged inputs

X9 XJo X11

X6 X7 Xg

X3 X4 X5

0 X1 X2

Computation part

output (ordered)
{Y2,Ys,Ys,Y11, }

X10 X11 X12

X7 Xg X9

X4 X5 X5

X1 X2 X3

X10 X11 X12 4th
X7 Xg Xg 3rd
X4 X5 x6 2nd
XJ X2 X3 1st

l
Computation part

output (ordered)
{y3,Y6,Y9,Y12, }

Figure-21. F01warding mechanism (depth= 3, window .size= 3 case) for the working-set based
history sensitive problems in static dataflow enviromnent

We can adapt our forwarding mechanism described for the static dataflow environment

so far to the dynamic (tagged token) dataflow environment by using token relabeling

methods. As shown in Figure-22, the dynamic scheme uses D actors, which are token

54

relabeling actors, instead of S actors used in static scheme. The forwarding mec.hanism is

the same as one described in Agorithm-1 except assigning D actors and initial tokens.

Thus the detailed description is skipped. In dynamic dataflow environment, we do not

have to order the output because each output token has its unique tag value.

any order in
in each stream
possible

· Computation part Computation part

output (any order) output (any order)
{ 1 4 7 } Y1 ,Y4 ,Y1 , .•.... { 2 5 8 } Y2 ,Ys _,Ys ,.······

x/
"4 4

X1 1

x/
"46

x/

Xg8

x/
x/·

...
x/
Xr,6

x/

. Jany order
x/ in each
Xr,6 stream
x/ possible

Computation part

output (any order)
. 3 6 · 9
{y3 ,Y6 ,Y9 , }

Figure-22. Degree 3forwarding mechanism (window size m=3 case) in dynamic (tagged token)
data:flow environment

6.3 Performance Measurements

In this section, we analyze performances of the forwarding mechanisms proposed in

previous sections. We assume that.all input stream elements are generated and available.

for use and there are enough resources. In the accumulator based history sensitive

problems, no existing schemes (iterative, recursive, and automata-based approaches)

55

provide parallelism. The dependency graph shown in Figure-23(a) applies to those

methods. The forwarding mechanism with the memoryless scheme presented in section

6.1 of this chapter exploits remarkable pipelined parallelism and the dependency graph

with pipelined operations for the depth 3 forwarding mechanism (refer to Figure-15(a)) is

illustrated in Figure~23(b). In the figure, the numbers associated with operators are

analogous to the operator identification numbers shown in Figure-15(a).

0 X1 X2 X3 X7 Xg X9 .. .

:: :~~J
~3- :--·-··----··---- qt

)(

t7---·--···-·------·-··-------~

tg·--·---····----····-···--··--·· ~

t9 ·--······---·····--·--·-·-·--·-----· er
9th output

output

(a) Without forwarding mechanism (b) With depth 3 forwarding mechanism (PACC(3))

Figure-23. Dependency graphs in accumulator based model

In Figure-23, up to the 9th output, sequential scheme requires 9 units of time (a) but the

forwarding mechanism with the memoryless scheme needs only 5 units of time (b). In

Figure-23(b), after initial trigger time (t1, h, and h), three outputs are produced in each

unit of time. After the 3rd output is available at time t3, the 6th output is available at time

t4 and the 9th output is available at time t5 and so on. With a large stream size, the initial

trigger time (depth of pipeline) can be ignored and the performance gain is 1/depth of total

execution time (or speed up= depth of pipeline). More precisely, with stream size N

56

-~
C:
::I
Q)

:§

en -~
C
::I
Q)

E
:;::::;

700

~o --------------------------------------

500 --------------------------------------

400

300

200

100

0
1 5 10 15 20 25 30

pipeline depth

(a). Depth V.s. performance

20

15 ---------------------------------------

10

5 - - - - - - - - - - - - ·: - - ·. -·: .'- - - - - - - -.- - - - - - - - - - - - -

0
0 10 20 30 40 50

stream size

(b). Relative weight ofN and d V.S. performance

stream size
• N=100
c N=200
.,. N=400
+ N=600

pipeline depth
• d=3

* d=5
o d=7

Figure-24. Pipeline performances with stream size (N) and pipeline depth (d)

57

and pipeline depth d, total execution time needed to perform the entire computation is

N-d
rd + d l units of time and it reduces the original execution time by the factor of d

(pipeline depth) when stream size N is relatively large compared to d. In fact, the

performance depends on the relative weights of N and d. Figure-24(a) shows the

performance with various N and d. Each line in the graph shows bitonic curve since it

decreases until the optimal d (i.e .. gives the best performance) and then increases because d

becomes relatively big compare to N. For example with N = 100, the optimal d is 10

which gives 19 time units on y axis. It gives 21 time units with d= 15. In general,

the bigger the stream size N the bigger the optimal pipeline depth. Figure-24(b) shows

performances for different pipeline depths. In Figure-24(b), with stream size 10, 20, and

30 corresponding performances of depth 7 are worse than those of depth 5 because with

those stream sizes the depth 5 is closer to the optimal depths. With given stream size N,

the optimal depth which gives the best performance can be found around the ..[ii . The

following lemma gives a formal estimate:

Lemma-I. Let d be pipeline depth and let N be the stream size. Then the minimum

execution time is 2../N - 1 with the optimal pipeline depth Int.(..[ii).

Proof'
N

Given formula for the total execution time: d + - - 1 --------(1)
d

case 1 : d = ..[ii

Substitute d = ..[ii into (1) and get the total execution time 2../N - 1.

58

Case 2: d < ffe

Substitute .d = ffe - x (1::::: x < ffe) into (1) and get the total execution time

ffe-x-1+(N 2)(Jii +x)
N-x

because (1 ::::: x < ffe), the term (N 2) is G. T. 1 and we have the total
N-x ·

execution time ffe - x - 1 + ffe + x + y = 2,fii - 1 + y (y is positive number).

Case 3: d > ffe

Substitute d = JN + x (1 ::::: x < (N - ffe)) into (1) and get the total execution

Sub easel: x < ffe

The term (N 2) is G. T. 1 and we have the total execution time
N-x

ffe+x-l+ffi-x+y 2,fii - 1 + y (y is positive number).

Sub case2: x > ffe

The term (N 2) (JN - x) is positive (·: neg. * neg. = pos.) and the
N-x

term ffe + x - 1 is G. T. 2JN - 1 .

Therefore the total execution time is 2ffe - 1 + y (y is positive number).

Thus we have the minimal total execution time 2,fii - 1 when we have the

optimal pipeline depth d = Int. (ffe) . 0

59

Chapter VII

APPLICATION TO PARALLEL PREFIX COMPUTATION

The memoryless scheme presented in previous chapters is a pure dataflow scheme

which does not use any memory references. Therefore it can be applied to design

hardware solutions of some real life problems. In this chapter, a parallel solution to the

prefix computation problem is presented based 011 P ACC which is parallel memoryless

scheme for accumulator ·· based history sensitive computations. Also, we describe a

special purpose hardware (VLSI chip) design scheme for the parallel prefix computation.

The scheme is also an efficient solution to the problem in dataflow environment. A

design methodology of linear systolic array of simple cells derived from the forwarding

scheme of the accumulator based · memoryless scheme to address the parallel prefix

computation problem is presented in this chapter.

7.1 Prefix Computatio1,1 Problem

Prefix computation is a basic operation of many important applications including the

Grand Challenge problems, . circuit design, digital signal processing, and graph

optimazations [91]. In section 4.1, we introduced the accumulator based model of the

history sensitive problems and it is analogous to the definition of the prefix computation

problem; i.e. the cumulative sum (or product) problem is analogous to the prefix sum (or.

product) problem. The prefix computation problem (i.e. an accumulator based history

61

sensitive problem) contains the loop carried dependencies (i.e. sequential loop problem)

and we developed the pipelined parallelization scheme (P ACC) in the dataflow

environment. In this section, we apply that scheme to design a special purpose hardware

namely parallel prefix computator. For the sake of simplicity, we refer to prefix sums in

this section since the results of the prefix sums can be readily applied to prefix

computation with other associative op~rations [91].

7 .2 Implementation Methodologies

For the hardware solution, the design should use the clock concept instead of the data

dependencies used for the dataflow environment. Thus latches are used in the design to

hold the data for synchronization. Figure-25 shows the high level design scheme of the

size 4 (pipeline depth=4) parallel prefix sum computator.

9th 10th 11th 1th
5th 6th 7th gth
1st 2nd ,rd 4th .)

Figurc-25. Parallel prefix sum computator of size 4 (pipeline depth=4).

In the figure, black rectangles in each cell are latches which hold the data for a period of

one clock cycle. The design in the figure is based on the assumption that each addition

62

operation takes one clock cycle time. The detailed VLSI implementation is

straightforward and thus skipped in this dissertation. . In the design, each cell has two

adders except the left-most cell and each cell has different arrangements of latches. The

method to assign those latches in each ceH is provided ·in Algorithm-2. Figure-26 shows

the concept of latch arrangements with an example of size 5 (pipeline depth=5) parallel

prefix computation hardware. Except the left-most and the right-most cells, each cell has

same structure except the latch arrangements. Thus we · can easily design any sized

parallel prefix computator by connecting those cells and arranging the latches according to

Algoritm-2.

Algorithm-2.

Assumption: For degre~ d (pipeline depth=d) parallel prefix computation hardware,

we assume d different input streams;

the 1st (left most) input stream consists of (order MOD d = 1) input elements,

the 2nd input stream consists of (order MOD d = 2) input elements,

the 3rd input stream consists of (order MOD d = 3) input elements,

the dth input stream consists of (order MOD d = 0) input elements.

Initial step: The Cell-1 (left-mo~t cell) has only one operator and we arrange (d-1)

latches before this operator in CeU- i.

i = O;

j = d - 2;

63

fork= 2 (from left) to d

{ arrange i latches before 1st (upper) operator in Cell-k;

arrange j latches before 2nd (lower) operator in Cell-k;

i = i + 1;

j =j + 1;

}

input input input input input
stream-I stream-2 stream-3 stream-4 stream-5

. .
llth 13th 14th 15th
6th gth 9th ·. 10th

3rd 4th 5th

(cell-1) (ce1F2) · (cell-3) (cell-4) (cell-5)

Figure-26. Latch arrangements in parallel prefix computator (pipeline depth= 5 case)
(Each column corresponds to each cell of the design.

The circles are the operators and the rectangles are latches.)

For the degree d (pipeline depth=d) parallel prefix computator, each cell has two

operators and (d-2) latches except the first (left-most) cell which has one operator and

(d-1) latches. Data dependencies used in the dataflow environment are handled by using

64

these latch arrangements. The initial tokens which input to the 2nd (lower) operators in

the dataflow environment (refer to the Figure-15) are handled as follows: at clock d (

d = pipeline depth), load the initial data. value (0 for the prefix sum and, 1 for the prefix

production) to each cell's 2nd (lower)operators' right input port. This can be done by

using the clock counter. Of course the first (left-most) cell has only one operator and it

receives the initial data value at clock d. · Another method is using registers. At

initialization time, initial values are preloaded in registers. For a stream size N, we can

design the optimal parallel prefix computator with ,size =. Int(.[ii) which is the optimal

pipeline depth aswe verified in the previous chapter. As we see in the Figure-26, after d

(= 5) initial trigger time, all cells generate one output at each·clock cycle time.

65

ChapterVID

APPLICATION TO PARALLEL STRING MATCHING

8.1 String Matching Problem

String matching is the problem of finding all occurrences of a pattern string in· a

reference string with or without errors. It has been one of the most extensively studied

problems in computer science during the past two decades. It performs important tasks .

in many applications including information retrieval, library systems, artificial intelligence,

. pattern recognition, molecular biology, and text search and edit systems. . Survey and

comparison of well known algorithms can be found in [3, 5 2, 5 7]. The string matching

problem is subdivided into two major categories, namely "exact string matching problem"

and "approximate string matching problem". Algorithms have been developed separately

for both problems. There exist two variations of the approximate string matching

problem namely k-differences and k-mismatches problems. Remaining chapters deal ·.

with all three subproblems; i.e. the k-differences problem, k-mismatches problem and the

exact matching problem.

Since VLSI technology has develop~d rapidly and building special purpose hardware is

not a difficult problem, hardware approaches also have been proposed [22, 34, 49, 66, 67, ·

80]. Since high performance software algorithms are mostly multiphase (mark and scan)

algorithms which use preprocessings with table look up methods, they cannot be applied

to design special purpose hardware string matcher. Thus, we need high performance

65

algorithms for building special purpose hardware for string matching tasks. This is the

motivation for developing efficient dataflow solutions to the problems.

Following chapters provide elegant parallel schemes for handling the k-differences, the

k-mismatches, and the exact matching problems based on dataflow which are suitable for

VLSI implementation. Then we apply these dataflow algorithms to design special

purpose hardware (VLSI chip) string matcher which can function as a component device

of a general-purpose computer. The designs are based on linear systolic array of basic

cells and our pure dataflow algorithms are well suited for these. Thus our goal includes

the design of efficient dataflow algorithms and parallelization schemes which provide

parallel solutions to the string matching problems and, applying those algorithms to build

special purpose parallel string matching hardwares. Since dataflow graph is the machine

language of dataflow architectures, we will present the algorithms at the dataflow graph

level. Thus, our schemes are also the efficient parallel solutions to the string matching

problems in the dataflow machines which are attractive instruction level parallel

architectures.

In the next section, problems are defined and related works in both software and

hardware approaches are briefly reviewed. General design strategy of proposeddataflow

schemes is described in section 8.3. In chapters IX, X, and XI, the k-differences, the k-

mismatches, and the exact matching problems are discussed separately. Dataflow

scheme and implementation methodologies of each subproblem is described in each

chapter. The edit distance computation, which is essential task in approximate string

matching, based on dynamic programming method is represented differently for the k

differences and the k-mismatches problems in corresponding chapters (chapters IX and

66

X). Since we specify the exact matching problem reside in the scope of the k-

mismatches problem, it uses same schemes and the implementation methodologies with

the k-mismatches problem with little variation. Chapter XI is devoted to exact string

matching.

8.2. Problem Definitions and Related Work

String matching algorithms are used in many applications including genetic database

search, speech recognition, text search and editing, and error-correcting compilers. In

such applications, finding substrings both with and without errors are frequently needed.

In this section we define three variations of the problem and software and hardware

approaches to the problems are briefly reviewed. Before providing detailed descriptions,

we categorize the subproblems according to their characteristics. Table-I shows

characteristics of three subproblems. As we see in the table, the super set is the k-

differences problem. It contains the k;.mismatches problem which contains the exact

matching problem. Thus, the relationship among subproblems is as following:

k-differences problem :2 k-mismatches problem ;;;2 exact matching problem

Subproblem k-differences k-mismatches exact matching

Lengths of !pattern! ± k !pattern! jpatternl
substrings

Edit cost "k k 0

Edit insertion substitution 0
operations deletion

substitution

Table-1. Characteristics of string matching subproblems

67

8.2.1 K-differences Problem

With given ,reference string T (\T\ = n) and pattern P (\P\ = m), n >> m, k-differences

problem consists of finding all occurrences (ending positions) of substrings of T which

need at most k editing operations to convert to P. Editing operations include insertion

(i::: ~ c), deletion (c ~ i:::),and substitution (c1 ~ c2). For the sake of simplicity, in this

work we assign edit cost of one to theses edit operations. The solution to this problem is

very useful in fields including molecular biology.

There are several algorithms prnposed for this problem. The problem can be solved in

O(mn) time by dynamic programming [90]. For finding the minimum edit distance

between two strings, dynamic programming technique uses table look up method. The

main idea in dynamic. programming method is that computed information is kept in

memory space (table) and used for later computations instead of recomputing that. All

existing algorithms use this technique with variations. Thus they need to keep and look.

up a table of size (n+l)*(m+l) [52]. Some optimized algorithms use preprocessing

method with extra storage [52, 77, 88, 94]. They can reduce the worst case time and

currently O(kn) is the best worst-case bound known if the preprocessing time is allowed to

be at most O(m2). But these··algorithms are two:.phase algorithms which.preprocess the

pattern and keep the useful information in extra memory space in addition to the size

(n+ l)*(m+ 1) table for the scan phase. The best time bound O(kn) stands for only the
. , I·· .

scan phase. A parallel algorithm based on PRAM model which can be simulated on a

bounded degree network is proposed in [16]. It provides parallel scheme which has

complexity O(mn) for the product of time and number of processors used, but the

implementation is vague.

68

8.2.2 K-mismatches Problem

K-mismatches problem is a subset of the k-differences problem in which the only editing

operation permitted is substitution (c1 ---+ c2). Thus, with given reference string T (ITI =

n) and pattern P (IPI = m), n << m, k-mismatches problem consists of finding all

occurrences (ending positions) of substrings of T which are of the same length as the

pattern and contains at most k mismatches.

Naive dynamic programming method [90] can solve this problem in O(mn) time and

O(mn) space similar to the k-differences problem. Landau and Vishkin [56] presented

O(k(n + m log m)) time and O(k(n :+- m)) sp~ce algorithm. Galil and Giancarlo [36]

improved this algorithm with O(kn + m log m) time and O(m) space although it performs

worse in practice. Generalized Boyer-Moore algorithm [88] was developed to solve this

problem in O(kn(l/(m-k)+(k/c))) expected time where "c" denotes the size of the

alphabet. Automata based method with linear time complexity can be found in [13].

Except the naive dynamic programming method, all the algorithms require extra time and

space for preprocessings that are not included in the complexities shown above. The

preprocessing part consists either of gathering useful information about pattern and

reference strings or of building the finite state machine.

8.2.3 Exact Matching Problem

With given reference string T (ITI == n)' and pattern P (IPI = m), n << m, exact matching

problem consists of finding all occurrences (starting positions) of substrings in T which are

exactly same as pattern P. The naive algorithm to solve this problem has a quadratic

O(nm) worst case time complexity [25]. Each attempt takes m comparisons and there

69

exist n-m+ 1 attempts. Several linear time algorithms have been developed in the last

twenty years [13, 24, 25, 57]. They could reduce the expected time to O(n+m) in

practice but, the worst case time could not be changed. Most of the linear string

matching algorithms preprocess the pattern before the scan phase. Others impose certain

restrictions. The work done during the preprocessing phase is kept in extra space which

is linear in the length of the pattern. Then this space is referenced in each attempt to

minimize the comparison time. Automata-based algorithms also need preprocessing for

buildingfinite statemachine, which corresponds to each pattern, in memory space [13, 55,

57].

With the conceptual CRCW-PRAM model, 0(1) algorithm can exist theoretically but, it

requires m*n processors. Optimal algorithms presented in [19, 37] have constant and

O(loglog m) time complexities with n and (n I loglog m) processors respectively. But,

these parallel algorithms also need extra preprocessing time and additional space.

8.2.4 Need for Special Purpose Architecture

Most software algorithms for string matching need to store entire reference string in

main memory to manipulate the algorithm. For speed up, they use. preprocessing time

and extra memory space for storing useful information. Automata based algorithms

use complex control and spaces for the finite state machine simulation. Parallel

algorithms work on conceptual CRCW-PRAM modeLtheoretically but how to assign

processors to the operations is vague.

Because speed is the essential factor of those applications that need string matching

tasks, special purpose hardware should be attached to the host computer as a peripheral

70

device like sorter or FFT device. Figure-27 shows the organization of general purpose

computer with such special purpose devices attached. In addition, the high level

language code needs several levels of translations before execution, the software control

required to execute the basic instructions results in longer execution times. Using special

purpose VLSI chips, most of the basic operations can be completed in a single clock.

System Bus---------------------------

Main
Processor

Primary
Memory

String
Matcher

Sorter FFT

Figure-27. System block diagram of general purpose computer

For example the Splash-I [32], which is special purpose hardware attached to a Sun

workstation for DNA sequence searching (approximate string matching), outperformed a

Cray-2 super computer by a factor of 325. The Fast Data Finder (FDF) [51], which is a

hardware accelerator coupled with the Pracel's Biology Tool Kit (BTK) for DNA

sequencing or the 3-dimensional visualization of complex biomolecules, performed 1700

times faster than a Sparc-5. Unix workstation without FDF. .The FDF accelerator

performed the sequence match in less than a minute, compared with 21 hours on a high

performance workstation [51].

8.2.5 Hardware Approaches

8.2.5.1 K-differences problem

Since the solution to the k-differences string matching problem, which is mostly

represented as the approximate string matching problem, is very useful in the molecular

71

biology area (i.e. DNA sequence checking), there have been many research projects .

exploring hardware solution. .· Prominent hardware approaches found in the literature that

are related to the k-difterences problem are briefly reviewed in this section. Cheng and

Fu [22] proposed a VLSI architecture for computing the edit distance and sequence

between two strings. In this approach, two dimensional arrangement of n*m processing

elements were used for processing strings of lengths n and m which leads the cost .

problem. In addition, in each clock cycle time it needs n + m inputs to be provided to the

architecture. Proposed 2.,.dimensional array of cells is illustrated in Figure-28.

bn

bn-1

dataflow-.

b3

b2

bl

output

(0,0)

.•. am-I

dataflow

Figure-28. 2-dimensional structure for string distance computation by Cheng and Fu

72

P-NAC (Princeton Nucleic Acid Comparator) [61] was built using linear systolic array

architecture for comparing DNA sequences. Similarly, Sastry et al [80] presented a

VLSI architecture for computing similarity between two strings based on linear systolic

array of cells. In these linear approaches, two strings to be compared are entered from

the opposite sides of the array of cells. These approaches · require m+n-1 processing

elements to process stings of lengths n and m. It is better than n*m but, when string

lengths are very long it still has problems of space and cost. · In [79], partitioning idea is

suggested when strings are too long to be compared by given array of processing

elements. But it requires multiple passes of processing and it degrades the performance.

The above approaches suffer from the extreme hardware space and cost when dealing

with very long reference strings which are commonly used in many applications. Also

they do not work on infinite length strings. Another draw back of these hardware

approaches is that they only compute similarity between two complete strings; i.e. they

cannot check similarities between pattern and all substrings of reference string (text).

In real world, implemented products have been used· in molecular biology area. Two

generations of the Splash processors (Splash-I and Splash-2) which are based on systolic

arrays of FPGAs (field~programmable gate arrays} have been designed at the Super

computing Research Center (SRC) [32]. The Splash-I includes a 32-stage linear logic

array with a VME interface to a Sun workstation. Each stage consists of an XC3090

FPGA and a 128-kbyte static memory buffer. The Splash-2 is an attached processor with

an Sbus interface to a Sun Sparcstation. Each card holds 16 XC40 IO FPGA devices

coupled with 256 * 16-bit RAMs; up to 16 cards can be used in a system.

73

The Fast Data Finder (FDF) [51] is a hardware accelerator coupled with the Pracel' s

Biology Tool Kit (BTK) for DNA sequencing or the 3-dimensional visualization of

complex biomolecules. The FDF was developed in partnership with Perkin-Elmer

Corp.' s Applied Biosystems Division as a SCSI peripheral to a Unix host. Its speed

comes from its parallel internal architecture, which uses multiple. VLSI processor chips to

divide and conquer tough searching problems (from biological sequencing to ordinary text

database searches [51]).

8.2.5.2 Exact matching problem

Some serial and automata based hardware algorithms and implementations for the exact

matching problem arefound in the literature. Mukhopadhyay [67] proposed a primitive

nonnumeric processor scheme in which the characters of pattern string are preloaded in

each processing element and input characters. of the reference string are applied

(broadcast) to all processing elements. Foster and Kung [34] proposed design of VLSI

chip for which linear systolic array of cells (processing elements) are used. This scheme

uses alternative input of pattern and reference string characters one at a time into the array

of cells from both directions. During each pair of consecutive time slices·the chip inputs ·

two characters and return~ one output. Thus the required time slices to process entire

reference string of length n is 2n slices which is twice its length. To minimize. the number

of cells to the number of characters in the pattern, ·the pattern recirculation method (i.e.

the last character of the pattern followed by the first character of the pattern again) can be

used in this approach. Architectural design scheme and the simulation of the automata

based approach are found in [49]. Since this scheme needs to construct the finite state

74

machine, complex control communications and memory spaces to manage the automata

action are required.

8.3 Design Strategy

As we mentioned m earlier chapters, dataflow machines have been proposed and

developed steadily as an attractive instruction level parallel computation model [8, 29, 45].

In the dataflow environment, an operation (instruction) is executable if all its required

operands are available based on data driven mechanism and any set of enabled operations

can be executed in parallel. To be a good parallel architecture, it should also provide

good performance on nona..computational tasks such as string matching problems. In

dataflow environment, array or table handling is a critical problem [38, 59] and we should

not use multi-phase (i.e. mark and scan phases) table look up methods that most high

performance string matching algorithms use. They are also not proper for the VLSI

implementation which needs elegant systolic algorithm. Thus we need efficient single

pass dataflow scheme using only data flow without preprocessing and table look up

methods. This pure dataflow scheme can be used to build VLSI chip since it does not

use any memory referen.ces and can be converted to systolic array of cells easily.

In hardware approaches which use linear systolic array of processing elements, two

ways of matching each pattern character with each reference character have been

proposed in literature. One method used in [34, 61, 80] is processing both pattern and

reference strings moving through the array of cells from opposite directions. This

method has the disadvantage of using many cells. Indeed in [80], m+n-1 cells

(processing elements) are needed where m and n are the lengths of pattern and reference

75

strings respectively. The other method used in [66, 67] stores pattern string in the array

of cells and processes the reference string from one direction into the array of cells. Our

approach uses the later method which stores the pattern string in the structure.

As Foster and Kung [34] mentioned, the good algorithms for VLSI implementation are

not necessarily those requiring minimal computation. Computation is cheap in VLSI and

the communication determines the performance. This matter is also applicable to the

dataflow environment. As used in high performance software string matching

algorithms, trial of skipping operations will degrade the over all performance of the

pipelining in the dataflow algorithm. In VLSI special purpose chip design, the most

important thing is choosing good algorithm since it determines the cost and performance

of the design. The good algorithm for this purpose is called systolic algorithm and has

the following properties [34]:

• The algorithm can be implemented by only a fevy different types of simple cells.

• Its data and control flow is simple and regular; i.e. cells are connected by local and

regular interconnections.

• The algorithm uses extensive pipelining and multi-processing. Multiple data streams

move at constant speed over fixed paths in the structure. Thus, large number of cells

are active at one time so that the computation speed can keep up with the data rate.

Systolic algorithms have several advantages which help reduce the VLSI implementation

cost:

• Since most cells are copies of few basic cells, one can design and test only few cells.

• Regular interconnection implies that the design can be modular and extendible.

76

• Pipelining and multi-processing by including many identical cells provide high

performance.

Proposed dataflow schemes m the following chapters meet above characteristics . of

systolic algorithm very well. The next chapter will show how the implicit parallelism in

the proposed dataflow scheme provide time complexity O(n + m) for the k-differences

problem. The k-mismatches problem and the exact matching problem, for which we can

exploit explicit parallelism: in addition to the implicit parallelism of dataflow method, will

be considered separately in the following chapters. Time complexities of these explicit

parallel schemes are 0((n/ d) + a) where d represents the number of streams used

(controllable parallelism degree) and, a = 0, log m, or m.

The schemes are presented at the dataflow graph level. For simplicity, the static

dataflow environment is assumed because it is easy to implement. In static dataflow

environment, only one token can reside on an arc at a time. Upon arrival of all required

operands, the operation fires according to data driven mechanism.

77

Chapter IX

K-DIFFERENCES PROBLEM

As defined in preVIous chapter,· the k.:.differences problem consists of finding all

. .

occurrences (ending positions) of substrings of a reference string (T), which need at most

k editing operations to convert to pattern (P). Editing operations include insertion,

deletion, and substitution.

9.1 Edit Distance Computation

In approximate string matching, the essential task is computing edit distance between

two strings; i.e. the pattern string and any substring of the reference string (text). In this

section, we introduce the dynamic programming strategy [90] for finding minimum edit

distance between pattern string and any substring of reference string. For computing the .

minimum edit distance, we need a table of size (m+ 1)*(n+ 1) where m and n are the lengths

of pattern and reference strings.· . Let D be the table in whi.ch e£1.ch entry DiJ represents

the minimum edit distance between p1 .. pi and any substring of the reference string T

ending at tj. Then solutions to the k-differences problem can be found in mth (last) row

of the table D; i.e. if Dm,j ~ k where 1 ~ j · ~ n, then there is an approximate occurrence of

pattern ending at position j of the reference string with edit distance less than or equal to

k. The .minimum edit distance table D for the k-differences problem is defined as

following:

78

Do,j=O, Osjsn

D- · = min I, J Di-t,j + 1 /* for deletion * I

D,. 1, i· l + 0, if p, - ti /* for substitution * I

+ 1, else.

Di,j-1+ 1 I* for insertion */

For the k-differences problem, allowed editing operations are:

insertion (s ---+ c) : a character c is inserted into the empty position.

deletion (c ~ s) : a character c is deleted.

substitution (Ct ---+ c2) : a character c2 is substituted by new character Ct.

Each edit operation has corresponding cost and we assume cost 1 for all operations for the

sake of simplicity. In the table D, edit sequence from left to right implies insertion, from

top to bottom implies deletion, and from left_upper to right_down (diagonal) implies the

substitution operation. Fallowing example illustrates the idea:

Example-1. Pattern(P) = "cacd", Text(T) = "bcbacddc"

Minimum edit distance table D looks like:

b C b a C d d C
.·

0 0 0. 0 0 0 0 0 0

C 1 1 0 1 1 0 1 1 0

a 2 2 1 1 1 1 1 2 1

C 3 3 2 2 2 l 2 2 2

d 414 3 3 3 2~ 2

D4,5

3

79

Initial values are kept in 0th row and oth column. For k = 2, for instance, there are

approximate occurrences of P ending at ts, t6, and t1 because D4.s, D4.6, and D4,7 are 2, 1,

and 2 respectively which are less than or equal to k=2. For example with D4,s which

represents the approximate occurrence of pattern with edit distance 2, one possible edit

sequence is depicted (dotted lines) in the table of Example-1. Clearly the pattern "cacd"

can be converted into "bac" · which is a substring of T ending at t5 with edit cost 2. The

edit sequence consists of substitution (c~b), substitution_ 0 (a~a) , substitution _O (c---+c),

and deletion (d--..+i::). Substitution _:_a represents the self substitution and has cost 0. Of

course there are other possible edit sequenses which leads the pattern to be converted into

same substring or other substrings of T ending at same position ts with same edit cost 2.

For example, pattern "cacd" can be converted into other substrings of T "cbac", and "ac"

which end at position ts with edit cost 2. In fact, "cbac" needs an insertion (i::--..+b) and a

deletion (d---+i::), and ''ac" needs two deletions (c---+i::, d--..+i::). When the case of tie, the

edit sequence depends on the algorithm used.

Table D can be evaluated column by column m time O(mn) by naive dynamic

programming method. Our dataflow scheme, which is suitable for the VLSI

implementation, parallelizes this table computation by the order of m (pattern length)

without using any memory space and preprocessing, It calculates m entries of table D at

once. In fact, the calculation is done in pipelined manner. Our parallel scheme is

represented in the next section.

80

9.2 Dataflow Scheme: Implicit Parallelism

We start from the edit distance table represented in previous section. Our design

implements and parallelizes this table computation by the order of m (pattern size) without

using any memory space to keep information needed. It calculates m entries of table D at

once. In fact, the calculation is done in pipelined manner and one diagonal {m entries)

of the table can be evaluated at a time.

Figure-29 illustrates the very high level dataflowused in the scheme. To arrange the

reference characters for our rieed in static dataflow environment, we use the WS block ,

which is the memoryless scheme for handling working-set based history sensitive

computation presented .in Chapter 4.

, , . .
WS(4)

i....- 11, tz, t3, ti, ts, ••••
(reference string)

k
\P1 CP3

-.a........-1 0

output { 1/0}
. PE4 . •..... .-........ • PE2 . PE1 . ·--· • •

'----------'---· m= 4 .-----~
. . .

Figure-29. High lev~l dataflow in parallel scheme (ni=4 case).

In Figure-29, WS(4) is the window size 4 working-set based model of history

sensitive block. Each unary actor "S" is a synchronization actor and simply passes one

data token upon receiving it; i.e. it acts like a latch in hardware. In general, the block

WS(m) is used for pattern size m and acts as a size m shift register. The behavior of the

81

WS(m) block used in the scheme in static dataflow environment is shown in Figure-30.

The definition and language construct of WS(m) in dataflow environment are described in

detail in Chapter 4.

< initial condition > ·

t1 t2 t3 : 3rd output
t1 tz : 2nd output

t1 : 1st output

=>

< after consumption of t3 > <=

ti : 1st output

< after consumption of t1 >

Jj.

t1 .. ti

~~t,,4,,,

t1 t2 : 2nd output
t1 : 1st output

< after consumption of tz >

Figure~30. Behavior snap shots of WS(m) block in the scheme (m=3 case) ..

Our intention with the design in Figure-29 is that, for instance, CP 4 computes D4,1 while

CP3 computes D3,2, CP2 computes D2,3, and CP1 computes D1,4. Thus one diagonal of

the table can be evaluated at the same time and we cart achieve 1/m total processing time

by using m processing elements. The output of the sc~eme is a boolean.string of length n

(same length as the reference string): If any substring of the reference string ending at

position tj matches the patt~rn with edit distance at most k, the t output is 1 otherwise it

is 0. Thus, with the example of the previous section in which pattern(P) ~ "cacd", ·

text(T) = "bcbacddc", and k=2 corresponding output string generated is { 00001110}

because D4,s, D4,6, and D4,7 of the minimum edit distance table D are less than or equal to

k=2. The history sensitivity required to compute each entry of the table D resides in our

82

design. Each computation ofDi,j needs previous entries Di-1,j-1, Di-1,j, and Di,j-1 in addition

to current inputs (Pi and tj). Thus computation parts (CP1 .. CP4) are connected from right

to left to preserve the histories of Di-1,j-1 and Di-1,j . The history of Di,j-1 is kept by using

feed back arc in each CPi. In our scheme, all required histories are kept in dataflow

graph itself during run time without using any memory space and preprocessing times.

Each CPi evaluates table entries Di,j for all j (l::::;j::::; n). A refined scheme is depicted in

Figure-31.

k

WS(4) .- .. ~ ---. ---.. -----. -. --. -... ----------. --. ---.. -. -... -.. ------. -. -..... -,

•.... '.f -~--I··· '··l·'~· .. 1 __ 1 __ 5r'.·. ';;;~;.~~~ (~;;) ·

output { 1/0}

t5 ------- 6th
ts ------~ 5th
t4 ~------ 4th
t 3 ------- 3rd

t2 ------- 2nd

t1 ___ _;___ 1st output from WS(4)

l

0

Figure-31. Refined scheme for approximate string matching (m=4 case)

In Figure-31, initial tokens are used to assign values ofthe 0th column in the edit distance

table D. Initial values of oth row of the table D are embedded in the operation block

"Main" of the 1st (right most) PE. The operation block "Eq" compares two operands

(tj and Pi) and if they are same, it returns O otherwise it returns 1. This data is needed for

83

the edit operation substitution. The major operation block "Main" finds optimal edit

pass, which has the minimum edit cost, from the left (for insertion i::~c), upper (for

deletion c~i::), and diagonal (for substitution c1~c2) entries of the table D. To Compute

the table entry DiJ, its feed back arc provides left (Dij,1) entry and two input arcs from the

right side provide upper (Di~tJ) and diagonal (Di-lJ-i) entries 0f the table D. Value for the

diagonal entry is passed through a synchronization actor "S" to create one delay so that

the Di-1J-1 can meet the equality information of Pi and tj for evaluating DiJ· Details of the

block "Main" is illustrated in Figure-32.

iz+-·······: ..

Main =>

01

---·

Figure-32. Refined operation block "Main"

In Figurn-32, the operation block "min" does the companson work·. and outputs the

smaller operand from two input operands. By using formal dataflow graph notation [47],

it can be depicted in detail as shown in Figure-33. Figure-33(a) shows the typical

sort of merging actor in dataflow environment and Figure-33(b) illustrates the "min"

block by using it. In the figure, synchronization actor "S" is used for the static dataflow

environment. The block "min" can be implemented by using · a comparator and

multiplexer. "S'' actors can be implemented with latches.

84

a b

! ! (boolean ?+--e c control token)

a; if c=T(l)
b ; else (c=F(O))

(a). Merging actor

1/0(T/F)

i1 ; ifi1 :S i2
. i2 ; else (i1 > h)

(b). Refined operation block "min"

Figure-33. Dataflow graph (static) for the operation block "min"

We will explain our scheme with the. ''Main" block depicted in Figure-'32. Let's assume

the "Main/' block in ith (from right to left} PE (refer to Figure-29) which evaluates Dij

(l::;;j::,;n). Input i1 which is a binary value resulting from equali~y checking (i.e. 0 if equal,

or 1 else) of Pi and tj is added to i4 which is diagonal entry Di-lj-1 computed in "Maini .. i"

block of PEi-1 at two time periods before. Since i4 is supplied l:Jy a synchronization actor

"S", it can provide the value of the diagonal entry (refer to Figure-:31). Thus we have

information for the edit operation substitution which we defined in section 9.1; i.e. Di-l,j-1 +

0 if Pi = tj, else + 1. Input ii is feed back data which corresponds to the left entry Di,j-1

and computed in same "Main(block (in PEi) at the previous time period. It provides the

data for the edit operation insertion. Input h corresponds to the upper entry Di-lj and is

produced by ''Maini .. i" in PEi~l at one previous time. h provides the data for the edit

operation deletion.. Then the lesser of ii and h is chosen by block "min" and added with

1. This provides the information min(Di-l,j + 1, Di,j-r + 1). · This data and the other data

which we mentioned earlier for the substitution operation are compared in the other "min"

block and the smaller one is output (o1) as the value of Di,j. This output is then sent to

itself (feed back) for evaluating Di,j+l during the next time period. It is sent to "Maini+i"

85

· in PE;+1 for evaluating Di+lJ- It is sent to "Maini+1" in PEi+1 for evaluating Di+1j+1 two

. .

time periods later. Thus we achieved the goal of computing the minimum edit distance

between p1'..pi and any substring of T which ends at position tj; i.e. min(Di-Ij + 1, Dij-1 + 1,

and CDi-1j-1 + 0 if pi= tj, else t 1)): The final output of the scheme is generated through

"Mainm" of PEm which computes the entries of mth row of the minimum edit distance table

D.. D ~ l<"< , 1.e. . mj .1,0r --'J-n. The output from PEm is compared with err9r bound k and if it is

less than or equal to k, 1 is generated, otherwise O is generated, at a time as the final

output. For e~ample the t output· l means that 'approximate occurrence of the pattern

(P1--Pm) with edit distance less than or equal to k is found at ending position j of the

reference string (text).

Our proposed scheme is a linear systolic array of processing elements (PEs) which is

suitable for VLSI implementation. . . The framework of the array and optimized dataflow ·

graph for each PEi is depicted in Figure-34. In Figure-34, operation blocks. ''Eq" and ·

"min" are same as we defined and illustrated previously .

........... . .
. · .•

\ PE;+1 -:...

.. ··-

(b). Dataflow graph for each PE;

.
..
: PE: ·.
·: 1-l ·:

·--

Figure-34. Linear systolic array for the k-differences problem

86

9.3 Performance

In this section, we analyze the performance of the parallel scheme. With serial

dynamic programming method, quadratic time complexity (O(mn)) is needed to evaluate

the minimum edit distance table D. Since data dependencies among entries in table D

allow us to evaluate one diagonal (dotted lines in Figure-35(a)) of entries at same time,

our proposed parallel scheme reduces the total processing time by a factor of m (pattern

size). Figure-35(a) illustrates the data dependencies and parallel timing on the table D.

As we see in the figure, we cannot process more than one diagonal at a time because each

diagonal is dependent on its previous diagonal. For example, D3,4 which belongs to the

6th diagonal (marked with virtual time T6) is dependent on D2,4 and D 3,3 which belong to

the 5th diagonal (marked with virtual time T 5), and so on. For parallel processing of m

entries on each diagonal at a time, we used the mechanism WS(m) to arrange the reference

characters and connected each CPs horizontally (see Figure-29). Figure-35(b) shows the

corresponding data dependencies and timing on the reference characters arranged.

(a). Data dependencies & timing on table D

From WS(4)

CP4•CP3•CP2•CP1

(b). Corresponding dependencies & timing
on reference characters from WS(4)

Figure-35. Data dependencies and paralleism on table D (m=4 case) .

87

At initial time (T 1), CP1 processes t1 and computes D1,1. At time T2, CP1 and CP2

process tz and t1, and compute D1,2 and D2,1 accordingly and so on. Thus, beginning the

time period Tm, all m CPs work and compute one diagonal entries (m) of the table D in

parallel; i.e. at time T4, CP1 processes t4, CP2 processes t3, CP3 processes tz, and CP4

processes t1 simultaneously and they generate D1,4, D2,3, D3,2, and D4,1 respectively in

parallel. Entries of edit distance table D evaluated from our scheme, which is a linear

systolic array ofm processing elements, at each time slice is illustrated in Figure-36.

tl ,t2,t3,t4,

D4,3······ D3,4···--· D2,s D1,6 T6

D4,2----·· D3,3·'···· D2,4 D1,s ······ Ts
D4,1--·,·· D3,2 D2,3 D1,4 T4

D3,1----·· D2,2 D1,3 T·.3 J
D2,1 D1,2 T2

D1,1 T1
initial
trigger times

Figure-36. Parallel evaluation of the table D (m=4 case)

As we see in the figure, each PEi is responsible for evaluating one row (Di,j for all l::=;;j:s;n)

of the table D. PEm generates the last row of the table which is the solution to the

problem. After m-1 initial trigger time slices, one output is generated from PEm at each

time slice. Since there is n columns in the table D, required time to evaluate the entire

table is (m - 1) + n time slices. The actual clock cycle time in each time slice is decided

by the critical path in the PE. With considerably long pattern string, the initial trigger

time m - 1 cannot be ignored and the time complexity of the scheme is O(n + m).

88

9.4 Implementation Methodologies

Since the proposed dataflow scheme is simple and easy to be modularized, we can build

VLSI chip for the approximate string matching problem in a straightforward way. Our

scheme can be easily converted into the systolic array architecture. The linear systolic

array architecture of our scheme is depicted in Figure-34(a). The structure of each cell

(PE) is identical and thus we need only one type of basic cell to build any size special

purpose hardware. The architecture can be extended by copying and connecting the PE

cells to the array. · For checking error bound k for. the final output of the scheme, a

comparator which checks the condition L.E. should be connected to the final PE (PE,..)· as

we see in Figure-34(a} To convert our dataflow . scheme into hardware design, we

should use the clock concept instead of the data dependency. Thus latches are used for

synchronization. We present very high level design methodologies to develop special

purpose VLSI chip namely parallel approximate string matcher (P ASM) by using high

level block diagram. Dataflow graph representation of each PEi is depicted in Figure-

34(b) and the corresponding implementation scheme is illustrated in Figure-37. In

Figure-37, latches are used for synchronization between clock phases. The right most

latch is used for holding data for one clock cycle to reserve the diagonal (substitution)

information. Register R1 is preloaded with the pattern character Pi at initialization time.

Another register Ri2 is preloaded with the value 1 for the acldition operations. For the

optimal design, we used a 3-way minimum comparator for finding the minimum value

from three input values. This design can work on two-phase nonoverlaping clocking

scheme. A reference character is entered and the character equality checking (dotted

box) is done in each odd (even) numbered PE during clock phase ¢1 (r/Ji). Minimum

89

computation in each odd (even) numbered PE is done during the clock phase ¢>i (</Ji).

Thus, each PE is active in both phases. The initial tokens used in the dataflow graph

representation can be preloaded appropriately by using registers or latches if needed .

8
....... ----'----+-- ti . ___ ... 8

Comparator
. for blo.cks "S"
~ ", ':' ..

and''Eq"

-----tLatch

·, ..
. Adder

Figure-37. Structure of each PE; for the k-differences problem

90

Chapter·x

K-MISMATCHES PROBLEM

As defined in Chapter VIII, k-mismatches problem consists of finding all occurrences

(ending positions) of substrings of T which are same length of the pattern and contains at

most k mismatches. The k-mismatches problem is a subset of the k-differences problem

with substitution as the only permitted editing operation.

Since the exact matching problem is a subset of the k-mismatches problem, the schemes

described in this chapter are also applicable to the exact matching problem.

10.1 Edit Distance Computation with K-mismatches

Since k-mismatches problem is a subset of the k-differences problem, we start from the

edit distance computation described in previous chapter. The only allowed edit operation

in the k-mismatches problem is substitution (c1---?" c2). Since all substrings of reference

string (text) searched are same length of the pattern, edit operations insertion and deletion

are not needed and thus not allowed.

Let D' be the (m+l)*(n+l) table. in which each entry D\,j represents the edit distance

between P1--Pi and a substring of the reference string T ending at tj which has length i. ·

Then solutions to the k-mismatches problem can be found in mth (last) row of the table D';

i.e. if Dm,j ::; k where 1 ::; j ::; n, then there is an approximate occurrence of pattern ending

91

at position j of the reference string with number of mismatches less than or equal to k.

The edit distance table D' for the k-mismatches problem is defined as following:

D' o,j = 0, 0 :s; j :s; n /* initial values * I

D\ 0 = m, 0 :s; i :s; m I* initial values * I

D\j = Di-1,j-1 [+ 0, if p, - ~ I* for substitution*/

+ 1, else.

In the table D', edit sequence from left_ upper to right_ down (diagonal) implies the

substitution operation. Following example illustrates the idea:

Example-2. Pattern(P) = "cacd", Text(T)= "bcbacddc"

Edit distance table D' looks like:

b C b a C d d C

0 0 0 0 0 0 0 0 0.

c 4 1 0 \. 1 0 ·· .. 1 1 0 : . dummy data

a 4 ; __ 2 1 \. 2 /· .. ~ 2 r··:.--··
C 4 ~ 5 \) 2 l._ 3 2··· .. ~.:

d 14 ~ ,~ ~\.4 3 !~ 3

duinmy data D4,6

Initial values are kept in 0th row and 0th column. Since all substrings searched have same

lengthes (m) with pattern string, first (m-1) solutions are dummy.. Thus we assigned

initial values m in the 0th column. That makes solutions D'n,,1 .. D'n,,m-1 have values

outside the bound of the k. For the k=2 with Example-2 for instance, there are

approximate occurrences of pattern (P) ending at t6 because D4,6 is 1 which is less than or

equal to k=2. Edit sequence ,which includes all substitutions, is depicted (dotted lines) in

92

the table ofExample-2. Clearly the substring "bacd" is converted to the pattern ("cacd")

by substitution (b---+c), substitution_O (a---+a) , substitution~O (c---+c), and substitution 0

(d---+d). As mentioned earlier, substitution_ 0 does not cost any.

Three dataflow schemes, which are suitable for the VLSI implementation, are presented

in the next section. Those schemes evaluate entries of edit distance table D' one

diagonal or one column (i.e. m entries) at once in pipelined manner. Thus the gain is

reduced time complexity by a factor of m. Furthermore parallel schemes based on

multiple input and output streams will reduce the time complexity by a factor of d, where

d stands for the number of input/output streams us~d (parallelism degree).

schemes are described in following sections;

10.2 Dataflow Scheme: Implicit Parallelism

These

Different from k-differences problem, there are no vertical (from top to bottom) and

horizontal (from left to right) data dependencies among entries of table D'. That leads

our dataflow schemes evaluate entries of table D' one diagonal or one column (m entries,

where m stands for the length of pattern) at a time and accommodate explicit parallelism

(i.e. multiple diagonals or columns are computed at a time). In this section, three

different dataflow schemes such as the hierarchical, the linear, and the broadcasting

schemes· are presented. Based on these serial. schemes, parallel schemes are developed

and represented in the next section. The hierarchical and the linear schemes are based on

WS block which is the Memoryless scheme for working-set based history sensitive

computations defined in chapter IV. The broadcasting scheme is based on BC block

which is a variation of the WS block and does not use any synchronization actors. The

93

name BC stands for Broadcasting and the BC block is represented in section 10.2.3.

With these schemes, m entries of the table D' are evaluated at a time and ~ne element of

the last row, which contains the solution to the problem, is generated at a time slice. In

fact, the calculations are done in pipelined manner. With the linear and the broadcasting

schemes, one column (m entries) of the table D' is. evaluated at a time. . With these three ·

dataflow schemes (serial schemes), the gain is O(n + a.) time complexity of evaluating all

entries of table D' where n stands for the length of reference string and a. is log m for the

hierarchical, m for the linear, and O for the ·broadcasting scheme. When the reference

string is very long (n >> in) and the pattern string length isconsidered as a constant, the a

(initial trigger time) can be ignored in the hierarchical and the linear schemes. Based on

these serial schemes, parallel schemes are developed by using multiple stream input and

output; i.e. parallel hierarchical, parallel linear, and parallel broadcasting schemes. The

parallel hierarchical and the parallel linear schemes use PWS block which is parallel· WS

block and defined in Chapter VI. The parallel broadcasting scheme uses PBC block

which is parallel broadcastin~ (BC) block. The PBC block is a variation of the PWS

block and it is represented in section 10.3.2. These three parallel schemes are presented

in section 10.3.

10.2.1 Hierarchical Scheme

In previous chapter, the dataflow scheme for the k:-differencesproblem, which evaluates

one diagonal (from left-bottom to right top) of the edit distance table D at a time by using

WS block, was represented. That method with simplification can be used for the k-

mismatches· problem but, it does not accommodate more parallelism because there exist

94

dependencies among such diagonals. Based on that mechanism, parallel scheme can not

be exploited. Since entries of the edit distance table D' for the k-mismatches problem

still have diagonal data dependencies (fot edit operation substitution), evaluation of more

than one diagonal with that mechanism· is impossible. Thus we design the dataflow

scheme for the. k-mismatches problem to evaluate one diagonal of the table D' which has

opposite sequence from the diagonal considered in k-differences problem; ie. diagonal

entries from left top to right bottom: · Figure-38 illustrates the data dependencies and the

conceptual timing of the scheme on the edit distance table D' for the k-mismatches

problem. . Since there exist no dependencies among such diagonals, parallel approach,
. .

which evaluates multiple diagonals at a time, can be derived from this concept.

Fi~re-38. Data dependencies & conceptual timing on table D' (m=4 case)

In this section, a serial data:flow scheme named the hierarchical scheme which evaluates

one diagonal (from left...:_top to right_bottom direction} of the table D' at a time is

presented by using the WS block. ln fact the evaluation is done in a pipelined manner.

·. The parallel scheme, which evaluates multiple diagonals at a time, is presented in the next

section. As shown in Figure-38, entries in each diagonal have data dependencies among

them; i.e. dependencies :from each D'y to each D'i+ij+1. For evaluating the D' mj,

diagonal entries D' 1j-(m-1) .. D' m-Ij-I should be evaluated serially. But, since the solution

95

to the k-mismatches problem needs only the last low of the table D', we do not have to

evaluate entries in each diagonal serially. The intention of the hierarchical scheme is that

in each diagonal, matching information (0 if Pi and 1j are matched, else 1) of m entries are

all added to produce the last entry (D' m) of the t diagonal. The addition is done

hierarchically by using binary addition operations in a pipelined manner. After log m

initialtrigger times (pipeline depth), one output (each entry of the last row of the table D')

is generated from the scheme at a time. We name this dataflow scheme the hierarchical

scheme since its computation part consists of hierarchically (binary tree structure)

connected operation blocks.

In the static dataflow environment, to arrange the characters of the reference string for

our need, we use WS(m) block as shown in Figure-39; i.e. 11 meets p1, ti meets P2, t3

meets p3, and so on. Figure-39 illustrates a high level concept of the scheme. In the

. ' .

figure, WS(4) is the window size 4 working-set based model of history sensitive block as

we used in the scheme for the k-differences problem in previous chapter. After the initial

trigger time of m-1 (= 3 in the Figure-39), "t1,tz,t3,t4" comes out from the WS(4) the first

time, "t2, t3, t4, ts" comes out next, "t3, t4, ts, tl' next, and so on. The special dummy

character'\," is used to handle the initial cases and shown in the WS(4) block as initial

tokens in the figure. By the nature of dataflow environment, instruction level parallelism

is gained and the time complexity for evaluating thetable D' is reduced by a factor of m.

The scheme illustrated in Figure-39 is a pipelined execution scheme. The operation

block "Eq" is same as one used in the scheme for the k-differences problem in the previous

chapter. It compares two characters (ti and Pi) and if they are same, returns O otherwise

it returns 1.

96

t2
t1

initial.trigger [~
(dummy data) s

Computation ·
Part (CP) k

output string {0/1}

t1, t2, t3, ~' ts, 1:t,, •••••
reference string (text)

ts ------- 5th
t4 ----~-- 4th
t3 ~~----- 3rd

tz ------- 2nd

t1 ---~--- 1•t outputfrom WS(4)

Figure-'39. Dataflow scheme for the k-mismatches problem (pattern length m=4 case)

The operation block "Add" performs the addition operation upon receiving two operands

and returns the sum. The final block "~" checks whether the number of mismatches are

less than or equal to k and if so, it returns 1 otherwise returns O as the final output of the

scheme. All blocks are assumed to have constant execution time and all operations· in a

level . (separated by dotted lines in the figure) execute simultaneously. With length m

pattern, levels needed for "Add" blocks are !log ml. Thus flog m 1- 1 time slices after

the first (upper most) level "Add" operations were activated, all levels of "Add" blocks •

are activated in a pipelined manner. We can replace these "Add" blocks with one global

block with constant execution time and thus achieving time complexity O(n). But, with

97

considerably long pattern string if the initial trigger time of I log ml can not be bounded by

a constant, then the time complexity of this hierarchical scheme is O(n + log m).

As same as the scheme for the k-differences problem, output of the scheme is a length n

boolean string. The scheme _receives the reference string one character at a time and

returns the output stream which consists of O's and 1 's only. If a substring oflength m

ending at position y matches the pattern ~ith at most k substitutions, the t output is 1

otherwise it is O. With the Example-2 in which pattern(P) = "cacd", text(T) =

"bcbacddc", and k=2 output string generated is {00000100} because only D' 4,6 meets the

condition; i.e. substring of length m=4 whose ending position is 6 ("bacd") can be

converted to pattern with edit operations ·1ess than or equal to k=2. As illustrated in

Figure-39, each "Eq" operation receives m-1 dummy data initially and outputs (ending .

positions) having value 1 come out after m-1 dummy outputs (0'.s). The pipelined
. .

execution is discussed_ in more detail in the performance section (10.2.2.4).

10.2.2 Linear Scheme: Linear representation of the computation part

So far, we represented a scheme which evaluate m entries in each diagonal

hierarchically. There Js tlle alternative way of evaluating entries; in each diagonal linearly.

Since this scheme uses . linear evaluation, the initial trigger time expected in the

computation part is m which is greater than that (I log ml) of the hier~chical scheme.
. . .

The ~eason for . develo~ing the . linear scheme is that it' can·. be converted to the linear •

· systolic array of identical cells which has advantages in hardware implementation (special

purpose VLSI chip for the string matching). The design will be easily extended by

connecting same type of cells linearly.

98

Different from the hierarchical scheme, entries m each diagonal (from left _top to

right_bottom direction) of the table D' are evaluated serially. Thus it needs m time slices

to evaluate one diagonal. But the computations are done in a pipelined manner and, after

m-1 initial trigger time slices (pipeline depth), one output (one entry of the last low) is

generated at a time. Figure-40 illustrates the timing concept ofthe scheme. In fact, all

(m) entries in each column are computed at a time with the linear scheme. In the figure,

after 3 (m-1) initial trigger time, the first column entries (D'i,1, D'2,1, D\1, D'4,1) are

evaluated and one output is available. At the next time slice, entries in the second

column are computed and the next output is available, . and so on.

Figure-40. Evaluation timing of the linear scheme on table D'

The high level dataflow concept of the linear scheme for the k-mismatches problem is

illustrated.in Figure-41. PEs are identical and play the same role. In the figure "GB"

~-------------~ ~---·------~---~

WS(m ti, h, t3, t4, ts, t6,•
reference string (text)

CP
k

output string { 1/0}

Figure-41. The linear scheme for the k-mismatches problem

99

represents the global block which consists of some refined operation blocks. Same as the

hierarchical scheme, the linear scheme uses WS block. Entries of one column of the edit

distance table D' are evaluated at a time. Computations are done in a pipelined manner.

Behavior of each global block "GB" in the computation part (CP) in Figure-41 is

illustrated in Figure-42 and the refined computation part is shown in Figure-43. . In the

refined scheme in Figure-43, the left most operation block "Add" is useless and skipped

for the optimal design.

t

GB
a

b

if (ti= pi)
=> b := a

else
=>b:=a+l;

Figure-42. Behavior of each global block (GB) in the computation part

12 t3 t4
t, t2 t3

initial trigger [~
11 12
t 11

(dummy data) i, t t

CP

ts
ti
t3
ti
t,

t,, 12, 13, ti, ts, ~ •.••..
reference string (text)

------- 5th

------- 4th

------- 3rd

------- 2nd

------- 1•t output from WS(4)

Figure-43. Refined linear scheme for the k-mismatches problem (m=4 case)

100

"Add" blocks are serially connected. M-2 time slices after the first (left most) block is

activated, all "Add" operations are active at each time slice in a pipelined manner. The

linear scheme has same output as the hierarchical scheme; i.e. after m-1 dummy outputs

(O's), the first outputs (ending positions) having values 1 can· come out. The initial

trigger times required to generate the first output data are little different depending on the

method used to represent the computation part. With both the hierarchical and the linear

schemes, reference characters enter the scheme one at a time and all "Eq" blocks receive

data simultaneously. From "Eq" blocks, time required to generate the first binary output

is 1log ml for the hierarchical scheme and m (m~l with optimized design) for the linear

scheme. But, once the first output comes out, both methods generate one output data at

every time unit in a pipelined manner. As discussed in the hierarchical scheme, with

considerably long· pattern string, the initial trigger. time (m - 1) can not be ignored and the

time complexity of the linear scheme is O(n + m).

One obstacle of the linear scheme is that the synchronization problem. As seen in

Figure-43, reference characters from the WS(m) block (say tj .. tj+m-i) enter "Eq" blocks at

same time and matching information from "Eq" blocks (say x1,.i .. Xm,j+m-i) are produced at

same time. Since the adder blocks are connected linearly, x3,j+2 should wait on the 3rd

adder block one tim~ slice, X4,.i+3 should wait on 4th adder block 2 time slices, and so on.

These data dependencies bring about multiple tokens stacked on an arc. In dynamic

dataflow environment, this does not cause any problem but, in static dataflow environment

synchronization should be managed so that only one token can reside on an arc at a time.

For the hardware implementation, schemes are described in the static dataflow

101

environment and thus the static synchronization should be provided. In the static

dataflow environment, the synchronization actor "S" which is defined in Chapter IV is

used to handle the problem. In the hardware design, latches are used to hold the data to

enforce synchronization in the place of "S" actors in the dataflow scheme. Thus the

computation part depicted in Figure-43 should be changed by using "S" actors as

illustrated in Figure-44. Thus in the PEk (kth from left), we should assign k-2 "S" actors

(latches in hardware) between "Eq" il,nd "And" blocks.

Inputs from WS(4) block

CP , ·' '
GB2

Figure-44. Linear computation part for the static dataflow environment (m=4 case)

For the hardware implementation, since each PE of the design has different number of

latches, we need many different types of basic cells with the linear scheme. If the pattern

size m is very small, this matter can be ignored. Otherwise it can cause the cost problem ..

Thus more efficient dataflow scheme which does not have such synchronization problem

should be designed. In the next section (10.2.3) the broadcasting scheme which does not
. ..

cause such synchronization problem is represented. Only one basic cell type is needed to

design the entire string matcher with the broadcasting scheme.

102

10.2.3 Broadcasting scheme

Similar to the linear scheme, the broadcasting scheme< evaluates all entries (m) in each

column at once. Figure-40 in the previous section also illustrates the timing concept of

the broadcasting scheme. The difference is the initial trigger time. In the broadcasting

scheme, initial trigger time is not needed. Thus the first column entries· (D' 1,1, D' 2,1,
' '

D\1, D\1) are computed at the first time slice and the 1st output is available at time T 1.

At the 2nd time slice (T 2), entries in the second column are computed and the 2nd . output is

available, and so on ..

In order to evajuate each column of the table D' simultaneously without the initial

trigger time, we use the broadcasting method.· with.·. which each. reference character tj

(1 :s j :s n) is compared with all pattern characters (p1 .. Pm) at the same time. Thus

instead of using the working-set based history sensitive block WS(m) which we used in

schemes so far, we broadcast each input reference character to all processing elements

(PEs). Figure-45 illustrates the high level concept and dataflow used in the broadcasting

scheme.

CP

JBC(m)
•............. I:······.-······:

PE1 PE2
...... ---...... -- -.... -. ~

,
t, ,· tz, t3, Li, ts, 45, ••••.
reference string (text)

output string { 1/0}

Figure-45. Concept and dataflow of the broadcasting .scheme

103

In Figure-45, BC(m) stands for the size m(m-way) broadcasting and GB stands for global

operation block. This dataflow scheme can be implemented with linear systolic array of

simple identical cells. In the figure, processing elements (PEs) are identical and play the

same roles. GBs are also identical components.

Our intention with the design in Figure-45 is that, for instance with pattern size m=4,

GB1 computes D'1,1 while GB2 computes D'2,1, GB3 computes D\1, and GB4 computes

D\1. Thus one column of the table D' can be evaluated at the same time and we can

achieve O(n) worst case time by using m processing elements. Each computation ofD\

needs previous entry D\i,j-i (diagonal entry) in addition to current inputs Pi and tj. Thus

GBs are connected linearly (from left to right) to reserve the history of the diagonal (from

left upper to right down in table D') entries. All GBs are active at each time slice with

new inputs (reference character and diagonal entry). They work in pipelined manner.

Output of the scheme is also a length n boolean string. If a substring of length m ending

at position tj matches the pattern with edit distance at most k, the jth output is 1 otherwise

it is 0.

Same as the linear scheme, required histories (information from diagonal entries)· are

kept in dataflow graph itself during. run time without using any memory space and

preprocessing times. Each GBi evaluates tableentries Di,j for all j (l:s;j:Sn). Refined

illustration of the broadcasting scheme is depicted in Figure-46. In the refined scheme in

Figure-46, the left most (PE1's) operation node "+" can be omitted for the optimal

design. But it should be kept in VLSI implementation because one type of basic cell

(PE) is used to build linear systolic array of cells and it will reduce the cost of

implementation.

104

Broadcasting (BC(4))

'_1.-__ -__ -_. _-__ -__ -_ .. ~. _-_ .~J--_-__ -_. _-__ -__ -___ -__ ~1-___ -__ -__ -___ -__ -__ -__ ~_ 1 ______ ~_]41-- t1 ,h,h,ti,ts,!:i;, .••..

ts ts
ti -~---··: dummy data

.-----······t3 ~
h :

0 k

GB1 GB2
Computation Part (CP)

Figure-46. The broadcasting scheme (m=4 case)

Initial tokens of values m are assigned on each connection between adjacent GBs to

reserve the values of the 01h column in edit distance table D'. In fact, we can assign all

"O" initial tokens instead of "m" because the first m-1 outputs .are dummy and we do not

care what their values are. The operation block "Eq" is same as one we used in previous

schemes. It compares two operands (Pi and ti) and if they are same, it returns 0

otherwise it returns 1. This data is then added to data passed from diagonal entry (D' i-1,.i-

1) to generate D' i,i; i.e. for example with i1h GB, operation "+" receives one operand from

"Eq" and the other operand from operation "+" in GBi-l which is generated one time unit

before. In fact,· GBm generates D';,,,i at virtual time Ti by using D' m-1,j-1 which was

generated at time Tj-1 by using D' m-2,j-2 which was generated at time Tj.2 by using D' m-3,j-3

and so on. In this manner values oft diagonal entries are accumulated on D 'm,.i which is

the t output in the design (broadcasting scheme). In pipelined manner, all components

105

are active at each time slice and this scheme generates one output data at each time unit.

Since this scheme does not suffer from the initial trigger time,· the worst case time hotJnd. is

O(n). Thus itis the most efficient scheme among three schemes.

For the hardware implementation, the structures of PEs are same and one basic cell can

. be used for hardware extension for_making linear systolic array;

10.2.4 Performance

Timing. concepts of three schemes were described in corresponding sections with

figures. Figure-'38 in section 10.2.1 illustrates virtual timing of the hierarchical scheme

on the edit distance table D'. Figure-40 in section 10.2.2 illustrates entry evaluation

timing on the table D' for both the linear and the broadcasting schemes. In this section,

pipelined operation in each scheme is illustrated with the initial trigger time analysis.

Illustrations use the pattern length as 4 an example, Figure-47 shows the pipelining in

three schemes. Analysis are done on adder blocks · since their performances are

dependent on the pattern length m. Each input XiJ represents datum from "Eq" block; i.e.

result of matching Pi arid tj. '. Since the·hierarchical and the linear scheme use the WS(m)

blocks with. initial dummy. tokens "E", illustrations in Figure-4 7 (a), (b Y use input Xi,e•

Four instances (snap shots) in each scheme are depicted. . Each instance has different

input data. Figures are simplified and each empty block in figures represents an adder

. ' . . .

block. In the Figure-4 7 (b), black rectangles between input data and add blocks represent

. the "S" actors used for synchronization in static dataflow environment.

As illustrated in Figure-47(a), in the hierarchical scheme, after 1log m 1-I initial trigger

time slices, one output (D' mJ ; 1 ::s:: j ::s:: n) is produced during every time period. Thus the

106

time complexity of the hierarchical scheme is O(n + log m). The last entry in each

diagonal (from left_ top to right_ bottom direction) of the edit distance table D' for the k-

mismatches problem is evaluated by adding all entries in that diagonal hierarchically.

Pipelined computations among diagonals make the scheme . generate one output at each

time slice after the initial· triggers (pipeline depth). In · fact, the hierarchical scheme

computes only the last row ofthetable D' which·contains the solution to the problem.

X1,s X2,s X3,s X4,I X1,s X2,s X3,1 X4,2 X1,s X2,1 X3,2 X4'.3 X1,1 X2,2 X3,3 X4,4

T1····tj, tj -.. t:\ tj -.. t:\ M .. · ., ... t:\ tj ·'·.·
T/1;f~.--·····~ T¥-___ ~ T.;¥----/~Ts~---··...- · · ·

(D\1) (D\2) (D\3) (D' 4,4)

(a). Hierarchical scheme (m=4 case)

(b). Linear scheme (m=4 case)

X1,1 X2,1 X3,J X4,! . X1,2 X2,2 X3,2 X4,2 XJ,3 X2,3 X3,3 X4,3 XJ,4 X2,4 X3,4 X4,4

-0000-,: -6c!1-6-ci--: --cS-tJ-d:i-c±t. ·-0000-:
' . . .
T1 T2 T3 T4

(D\1) (D' 4,2) (D' 4,3) (D' 4,4)

(c). Broadcasting scheme (m=4 case)

Figure-47. Computation time analysis of dataflow schemes for the k-mismatches problem

107

In the linear scheme illustrated in Figure.:.47(b), after m - 1 initial trigger time slices,

one output (D' mJ ; 1 s j ~ n) is produced during eyery time slice. Thus the time ·

complexity of the linear scheme is O(n + m). The last entry in each diagonal (from

left_top to right_bottom direction) of the e,dit distance table D' is available one at each

time slice after the initial trigger time (pipeline depth). Computations among diagonals

are done in a pipelined manner. In. fact, all entries in each column of the table D' are

. evaluated. at a time. slice after the initial triggers (m -:- 1).

On the other hand,· the broadcasting scheme sho~ in Figure-4 7(c) does not need the

initial trigger time since it uses_ broadcasted input and. initial tokens between adder blocks.

Thus the time complexity of the broadcasting scheme is O(n). Among those three

dataflow schemes, this scheme has the best time complexity. By the way, this does not

guarantee the best time in the parallel designs which will be described in the next section.

Same as the linear scheme, the last entry in each diag~nal (from left_top to right_bottom

direction) of the edit distance table D' is available one at each time slice but, there is no

initial trigger time. Also in this scheme, computations among diagonals are done in a

pipelined manner and, in fact all (m) entries. in each column·ofthe table D' are evaluated at ·

a time slice. C~mpared to. the linear scheme which also has a linear structure, the

broadcasting scheme does not need . the initial trigger time and provides better

implementation scheme which is explained in sections 10.2.2.and 10._2.3.

Figure-48 illustrates the evaluations of table D' by the linear scheme (a) and the

· broadcasting scheme (b). The pattern size m=4 is used for the simplicity. Entries of the

.· table evaluated in each time slice are depicted for both schemes. . In the figure, arrows

imply data movements of the pipelined operations. With the linear scheme, the first ·

108

useful solution D' m,m is generated at time Tm+(m-l) and the final solution D' m,n is generated

at time Tn+(m-l)· On.the other hand, with the broadcasting scheme the first useful solution

D' m,m is generated at time Tm and the final solution D' m,n is generated at time Tn.

(a). The linear scheme

ti ,t2,t3,t4,

0

(b). The broadcasting scheme

Figure~48. Evaluation of table D' by the linear and the broadcasting schemes (m=4 case)

10.3 Parallelization with Multiple Streams: Explicit Parallelism

. So far we described serial schemes for the k-mismatches problem which are basic

designs for building parallel schemes. In this section, mechanism for exploiting maximum

parallelism on the hierarchical, the linear, and the broadcasting schemes are represented in

the static dataflow environment. Instead of using single stream input and output,

multiple stream input and output are used to exploit explicit parallelism. We can exploit

any degree of parallelism by using the forwarding mechanism developed for the WS and

109

the BC blocks. In the illustrations of the serial schemes, two parts (CP and WS (or BC))

have been separately depicted because the separate concepts are needed to describe

parallelization schemes. Since the hierarchical and the linear schemes use the WS block,

parallelized WS block named PWS block is used for those schemes. The PWS block,

which is the parallelized memoryless scheme for working-set based history sensitive

computations, is defined in Chaper VI. On the other hand, since the broadcasting

scheme uses the BC block, which is a variation of the WS block, parallelized BC block

named PBC is used for this scheme. · The .PBC block is described in this section. The

contents of the computation parts remain the same and multiple computation parts are

connected to the parallelized WS block (PWS) or parallelized BC block (PBC). For the

sake of convenience, the names HCP, LCP, and BCP are used to represent the

computation parts . of the hierarchical scheme, the linear scheme, and the broadcasting

scheme respectively.

Forwarding mechanisms PWS and PBC make the actions of the WS and the BC blocks

parallel; i.e. they receive multiple input streams instead of single input stream and forward ·

them to the multiple computation parts (HCPs, LCPs, and BCPs) so that multiple

computation parts can generate multiple output streams in parallel. From the point of

view of the special purpose hardware. string matcher. based pn these parallel schemes, the

string matching component receives multiple input streams from the host computer and

returns multiple output streams to the host.' Multiprocessor or pipelined host computer

can manipulate these multiple streams. Since the hierarchical and the linear schemes use

the PWS block, their parallel schemes are described together in section 10 .3 .1. The

parallel broadcasting scheme is described separately with its forwarding mechanism PBC.

110

10.3.1 Parallel Approaches for Hierarchical and Linear Schemes

By using the PWS block, very high level conceptual view of the parallel hierarchical and

the parallel linear schemes are illustrated in Figure-49. PWS(d*dm) block which is

degree d parallel WS(m) block is defined in Chapter VI. In the figure, CPs can be HCPs

for the hierarchical scheme and LCPs for the linear scheme. Each HCP (or LCP) is

exactly same as the computation part (CP) which .is described in the serial hierarchical (or

serial linear) scheme. Each input token tj is an element of the reference string and, all

CPs used are identical components.

input input
stream1 stream2

t3d+I t3d+2
t2d+I t2d+2
~I ~+2
t1 ti

input
streama

c:-+-~-t-~~~~~--+-~
d

PWS(d*dm): WS(m) with degreed
forwarding mechanism

output output
stream1 stream2

output
streama

Figure-49. Concept of the parallel hierarchical I linear schemes

As described in Chapter VI, for the parallelism ;degree d, the parallel scheme needs d

distinct input streams and d identical computation parts. Parallelism degree d is

independent of the length of the pattern (m). For the k-rnismatches problem with any

pattern length, we can design any degree parallel hierarchical (and· linear) scheme which

produces 1/d total execution time for any degree. Algorithm-I in Chapter VI is used to

111

generate the forwarding mechanism (PWS block) at compile time in the static dataflow

environment. The working-set window size (m) in the algorithm is applied to the pattern

length (m) in the parallel schemes (hierarchical and linear) for the k-mismatches problem.

By using the PWS block and computation parts used in the serial hierarchical (HCP) and

the serial linear schemes. (LCP), any degree (arbitrary d) of parallel schemes can be

represented for any length (arbitrary m) pattern. Figure-50 shows two examples of the

parallel scheme.

PWS(4*8)

(a) d=4, m=2 case

ts
t3
t1

PWS(2*6)

(b) d=2, m=3 · case

Figure-50. Examples of parallel schemes (hierarchical I linear)

Figure-51 shows the parallel dataflow scheme for the k-mismatches string matching

problem with parallelism degree d=3 and the pattern length m=4 case.
.

. .
With the parallel schemes (hierarchical and linear) forthe k-mismatches string matching

. problem, the total processing times. are reduced by factors of d which is the controllable

degree of the parallelism. The worst case time complexities become O((n/d) + a), where

a is the initial trigger time bound in the computation part; i.e. a= log m for the parallel

hierarchical schenie and, a = m for the parallel linear scheme. Since each computation

112

part has identical initial trigger time, the initial trigger times for these two parallel schemes

are same as those in the serial schemes. They can not be reduced by a factor of the

parallelism degree d.

t10 t11 t12
t7 ts 1:g
4 ts 4,
t1 t2 t3

PWS(3*12)
·····················--···-····--·········

: 8

t7 ts t9 t10 ts t9 t10 t11 t9 t10 t11 t12
4 ts t5 t7 ts 4, t7 ts 4, t7 ts t9
t1 t2 t3 t4 t2 t3 4 ts t3 4 ts t6
8 8 8 t1 8 8 t1 t2 8 t1 . t2 t3

i i i i
HCP /LCP HCP/LCP HCP/LCP

{Y1 ,Y 4,Y1,Y10, } {Y2,Ys,Ys,Y11, } {y3,Y6,Y9,Y12, }
output stream1 output stream2 output stream3

Figure-51. Parallel string matching for the k-mismatches problem (d=3, pattern size m=4 case).
HCP is used for the hierarchical scheme and, LCP is used for the linear scheme

Output manipulation of the parallel scheme:

Outputs from the parallel schemes are different from those of the serial schemes since

multiple computation parts work in parallel and g~nerate d different output streams

simultaneously. So far, outputs from schemes are assumed the ending positions of the

substrings ofthe reference string. For example with an output yj = 1, it means that a

substring which ends at position j of the reference string matches the pattern (with error

113

bound k). In parallel schemes, outputs (ending positions) from CPi (HCPi for the

hierarchical and LCPi for the linear scheme) have corresponding orders on the elements. of

the input streami. In Figure-51 which illustrates the d=3 and m=4 case, output stream1 .

from the CP1 is {Y1,Y4,Y1,Y10, ... } which has same order 9f the input streami which is

{ti,t4,i?,t10, ... } .. In general with the parallelism degreed, output streami from CPi is

{Yi,Yi+d,Yi+2d,Yi+3d, ... } which has same order of the input streami which. is

{ ti,ti+d,ti+2d,ti+3d, ... }.

With parallel schemes using the PWS block (hierarchical and linear schemes) for the k-
. .

mismatches problem (and the exact matching problem), output manipulation problem

occurs when the consideration is the starting positions of the substrings instead of the

ending positions; i.e. an output yj means that a substring which starts at position j of the

reference string matches the pattern. When starting positions are considered for the
. .

output, following algorithm is used. to manipulate outputs from the parallel scheme; i.e. it

tells what ordered outputs are generated from each computation part.

Algorithm-3: Output (starting positions) manipulation of the parallel hierarchical

and the parallel lin~ar schemes

Let m be the pattern length and, d be the parallelism degree.

i := ((m-1) MOD d) + l;

forj := 1 to d

{ q:= ((m-1) DIV d);

if((m-1) MOD d) 2:: i then q := q + l; /*#of dummy outputs*/

CPi has corresponding outputs of the j111 (from left) input stream to the PWS block

114

after q dummy outputs;

i:=i+l;

if (i > d) then i := i MOD d;

}

When considering the . starting positions of the substrings as outputs from the parallel

schemes (the hierarchical and the linear) we can manage the outputs from each CP in the

parallel scheme by using Algorithm-3. For example with d=3 and m=4, which Figure-51

illustrates, corresponding outputs of the 1st (from left) input stream {t1,t4, h, t10, } to the

PWS block is generated by CP1 after 1 dummy output; i.e. { O,y1,y4,Y1,Y10, }. The first

one (0) is dummy output and if each yj is 1, it means that the pattern matches at the

starting position j of the reference string. Otherwise (yj is 0), mismatch occurs at that

starting position G). The corresponding output stream of the 2nd input stream

{ ti, ts, ts, t 11, } to the PWS block is generated by CP2 after 1 dummy output

{ O,y2,Ys,Ys,Yu, }, and so on. For another example with d=2 and m=4, CP1 generates

output {O,O,y2,Y4,Y6,· .. } and CP2 generates output {O,y1,y3,ys, ... }. In this example, CP1

produces output stream which has same order of the input stream2 after 2 dummy outputs

and, CP2 produces output stream which has same order of the input stream1 after 1

dummy output. Figure-52 illustrates this.

In the parallel hierarchical and the parallel linear schemes, when outputs represent the

ending positions, CPi (i1h from left, and 1::;; is d) produces outputs having corresponding

orders of the input streami. When outputs represent the starting positions, each CP

produces outputs according to the Algorithm-3. The methods of considering outputs

115

t7 ts .
ts 4
t3 t4
11 h

I
J. J.

PWS (2*8)

i i i i i i i i . . .
t4 ts 4 t7 ts 4 t7 ts
t2 t3 4 ts t3 4 ts t6
E t1 12 t3 11 12 t3 ~
E E E 11 E

i i
E 11 12

output as starting positions: {O, 0, Y2,Y4, } {O, Y1,Y3,Ys, }
output as ending positions: {Y1,Y3,Ys,Y7, } {Y2,Y4,Y6,Ys, }

output stream1 output stream2

Figure-52. Outputs from the parallel hierarchical I linear schemes

(i.e. ending positions or starting positions) do not affect the number of outputs generated

and thus the time complexities of the parallel schemes are not affected by those methods.

The initial trigger times in the computationparts (llogm l -1 for the hierarchical and, m -1

for the linear) are also not affected.

10.3.2 Parallel Broadcasting Scheme

Since the broadcasting scheme uses the BC block which is a variation of the WS block,

parallel broadcasting scheme can not use the PWS block which are used for the paralell

hierarchical and the parallel linear schemes. . In this part, the parallel broadcasting scheme

which uses parallelized broadcastingblock is presented. Description of how to build the

parallel broadcasting mechanism is provided. We name this PBC(d*dm) block. PBC

stands for "parallel broadcasting" and d is controllable parallelism degree as used in PWS

block. In fact in the serial broadcasting scheme representation in section 10.2.J, the

116

broadcasting block BC(m) is (1 *m) parallel broadcasting mechanism (PBC(l *m)) in which

the parallelism degree (d) is 1 and broadcasting size is m.

Very high level conceptual view of the parallel broadcasting scheme is depicted in

Figure-53. In the figure, each BCP (broadcasting computation part) is exactly same as

the CP · described in serial broadcasting scheme. All BCPs used. are identical components.

Arrangement of the multiple input streams is same as that in the PWS block. For

parallelism degree d, we need d distinct input streams and d identical computation parts

(BCPs). Parallelism degree d is independent of the size of the broadcasting block (BC)

m (i.e. pattern length).

t3d+l t3d+2 4d
t2d+l t2d+2 hd
~+] td+2 lid
11 12 ~

C d

PBC(d*dm): BC(m) with degreed
Parallel Broadcasting Mechanism

output output
stream1 stream2

output
streama

Figure-53. Concept of the parallel broadcasting scheme and input arrangement

Output · from parallel broadcasting scheme consists of d distinct streams smce d

computation parts (BCPs) work in parallel. Relationships and contents of output

streams are described in detail later. Figure-54 shows some examples of the scheme in

conceptual view. The parallel broadcasting mechanism provides explicit parallelism

117

which speeds up the execution of the serial broadcasting scheme for the k-mismatches

problem by a factor of d (number of streams used).

.PBC(4*12) mechanism PBC(3*12) mechanism

(a) d=4, m=3 case (b) d=3, m=4 case

Figure-54. Conceptual view of the parallel broadcasting scheme

Parallel broadcasting mechanism: PBC(d*dm) · ·

We can generate the parallel broadcasting mechanism (PBC) with any parallelism

degreed and any broadcasting size {pattern length) m. The PBC(d*dm) blockprovides

lid total execution time of the BC(m) block. The following algorithm is used to

generate . the parallel broadcasting mechanism at compile time in the static dataflow

environment. This algorithm is also used for building PBC block component in hardware
. ., . . .

implementation by substituting latches for the synchronization actors "S".

Algorithm-4: Parallel Broadcasting mechanism (PBC(d*dm))

Assumption: For degree d forwarding, we assume inputs are arranged in d different

input streams;

the 1st (left most) input stream consists of (order MOD d =·I) input elements,

118

the 2nd input stream consists of (order MOD d = 2) input elements,

the 3rd input stream consists of (order MOD d = 3) input. elements,

the dth input stream consists of (order MOD d = 0) input elements.

Let Stream-i represents the ith (from left) input stream.

Let BCPi represents the ith (from left) broadcasting computation part.

(each BCPi has m input ports and 1 output port).

Let m be the broadcasting size and d be the degree of the parallelism.

INITIALIZE: .·

1) for i := 1 to d /*number ofinput streams (degree of parallelism)* I

2)

3)

4)

5)

6)

7)

8)

9)

10)

{k ·= 1· . '

for j := 2 tom

{Assign k "S" actors (and initial tokens) onjth input port ofBCPi;

k:=k+l;

}}

ASSIGN ARCs from input streams (Stream-i) to Computation Parts (BCPs):

for i = 1 to d ·/*number of input streams (degree of parallelism)*/

{k ·= i· . , /*streaini is assigned to BCP1 initially (on the 1st port)*/

for p = 1 tom /*number of ports on each BCP* I

{q=(k+(p-1)-i)DIVd; J
On the pth input port (from left) ofBCPk . /*input alignment*/

Deassign q "S" actors with initial tokens;

119

11) Assign an Arc from Stream-i to pth input port (from left)ofBCPk;

12) k := k- l;

B) if k = 0 then k = d;

}

}

Each BCPi (1 ~ i ~ d) receives m consecutive reference characters on a diagonal (left

b · · h d" ·) · " " h 1st .d. · 1 " ottom to ng t top 1rect1on ; 1.e. ti, ti+1, ... , ti+(m-1) on t e iagona, ti+d, ti+d+1, ... ,

ti+d+(m-1)" on the 2"d diagonal, and so on. · These consecutive m reference characters are

used to generate one output D' m,i+{m-1) (i.e. Yi+(m-1)) from BCPi. Figure-55 illustrates the

diagonal entries to each BCP.

from PBC block

f·
1<i+2d)+l

ti+2d 1<,+d)+l • •. •

ti+d tjtl- •••.•
t ...

::f·. f

t(i+2d)+(m-l)

t(i+d)+(m-1)

ti+(m-1). • • ..

Figure-55. Diagonal entries to each computation part (BCP)

By usmg Algorithm-4, any degree of parallel broadcasting mechanism with any

broadcasting size (pattern length) can be generated. For example, Figure-56(a) shows

degree 4 parallel broadcasting mechanism for the broadcasting size m = 2 and, Figure-

56(b) shows degree 2 mechanism for the broadcasting size m = 3. In the figures,

120

computation parts (BCPs) are identical. The broadcasting block (BC(4)) depicted in

Figure-45 (and Figure-46) is a PBC with parallelism degree d=l and m=4 (i.e. PBC(l *4)).

Figure-57 shows an example in which d=3 and m=4.

PBC(4*8)

X9

Xs
X1

X10

Xis
X2

(a) d=4, m=2 case.

X12

Xg

X4

X5

PBC(2*6)

(b) d=2, m=3 case.

Figure,-56. Examples of parallel broadcasting blocks

Input alignment mechanism (line 9 and 10) in the Algorithm-4 is explained with the

illustration in Figure-57. As seen in Figure-57, for the 3rd (from left to right)

computation part (BCP3) for instance, consecutive 4 (m=4) reference characters h, t4, ts,

and t6 must be aligned on a diagonal (left-bottom to right-top) over the dummy data

(dotted triangle). Since positions of the dummy data are fixed in the broadcasting

scheme (i.e. right bottom (m-l)*(m-1) triangle), we assigned that many "S" actors and

initial tokens (i:,) onto input arcs to BCP3 at the initialization part of the algorithm

(line 1-5). Without doing the alignment (line 9 and 10), effect of this initialization after

assigning the input streams to BCP3 is illustrated in Figure-58(a). Thus the alignment is

needed and the result of applying it is illustrated in Figure-5 8(b); i.e. "t3, t4, ts, t6" are aligned

on a diagonal (from left bottom to right top direction).

121

PBC(3*12)

{O,O,Y1,Y4,Y1, }
output stream1

tn tg · t1 t~.~
ts ti, .. • 4>-"f2 !
ts t3 /ti· . a :
fz .. ·t'" 8 8 :

{O,O,y2,Ys,Ys, }
output stream2

{O,O,y3,y5,y9, }
output stream3

Figure-57. Parallel broadcasti11g scheme fork-mismatches problem (d=3, m=.4 case)

from PBC(3 * 12)

* } { & 112 t7 {Q t3_
t9 © t7-.···(/ dummy data

t6 tv··s 8 ~-"' .. /

@,:::a 6 .•... e .. !
. l l t. t
I BCP3 , ..

(a). before alignment

from PBC(3 * 12)

i i i l

(b). afteralignment

Figure-58. Inputs to BCP before and after the alignment mechanism

With the parallel broadcasting scheme, the total processmg time of the serial

broadcasting scheme is reduced by a factor of d which is the controllable degree of the

parallelism. In fact, the gain is not exactly lid total execution time. Since each BCP in

122

the parallel scheme needs aligned inputs (i.e. consecutive m input reference characters are

arranged on a diagonal as illustrated in Figure-55 and Figure-57), each BCP receives

dummy data (dotted triangle in Figure-57). Thus required time to generate the output Ym

is same as the serial broadcasting scheme (i.e. m time slices). Parallel scheme can not

reduce that time by a factor of the parallelism degree d. After m-1 time slices (when m -

1 outputs are generated), d outputs are generated from the parallel broadcasting scheme at

a time. Therefore the time complexity of the parallel scheme is O(m + ((n - m) I d)).

Time complexity is discussedmore in detaihn the performanc~ part.

Output manipulation of the parallel broadcasting scheme:

Output manipulation of the parallel broadcasting scheme is different from that of the

parallel hierarchical (and linear) scheme. The reasonis using the PBC block instead of

the PWS block used in other parallel schemes. Outputs shown irt Figure-57 is based on

the ending positions of substrings. The fact is opposite from other parallel schemes.

When considering the starting positions as the outputs, output manipulation of the parallel

broadcasting scheme is simple because it has a fixed rule. Each BCPi generates an

output stream which has the same order as the input streami after m -1 dummy outputs

(O's). Thus each output streami, which is from BCPi, consists of first m-1 O's, Yi, Yi+d,

Yi+2d,Yi+3d, and so on; i.e. outputstreami= {01,02, ... ,om-i, Yi,Yi+d,Yi+2d,Yi+3d, }. Ifyj (l sj

s n-m) is 1, it means that length m substring, whose starting position is j, matches the

pattern oflength m with error bound k (less than or equal to k substitutions). Otherwise

(yj = 0), it implies that a match did not occur .at starting position j on the reference string.

For example with d=3 and m=4 which Figure-57. illustrates, BCP1 produces

123

{O,O,O,y1,Y4,Y1,Y10, ... }, BCP2 produces {0,0,0, Y2,Ys,Ys,Y11, ... }, and BCP3 produces

With parallel scheme using the PBC block (parallel broadcasting scheme) for the k-

mismatches problem (and the exact· matching problem), output manipulation problem

occurs when the consideration is the ending positions of the substrings instead of the

. .

starting positions. This is different from other parallel schemes (i.e. hierarchical and

linear). When ending. positions are considered Joi the. output, following. algorithm is used ' .

to manipulate outputs from the parallel broadcasting scheme; i.~. it tells what ordered

outputs are. generated from each computation part ..

Algorithm-5: Output (ending positions) manipulation of theparallel broadcasting scheme

Let m be the pattern length and, d be the parallelism degree. ·

1) k= l;

2) for i = 1 to (m - 1)

3) { k ·= k- l · . ' /*finds a BCP which generates output corresponding to

4) ifk = 0 then k := d;
i

the 1st input stream*/

!
} _j

5) for i := 1 to d /*number' of input streams* I

6) {q :=m-1; · /*initially the last .port of each BCP has m-1 dummies* I

7) r := (k +{m - 1) - i) DIV d; /*number of qeassigned dummis*/

8) q := q - r; /*number of dummy outputs*/

9) BCPk has corresponding outputs of the ith (from left) input stream

after q dummy outputs;

124

10) k := k + l;

if (k> d) then k := kMOD d;

}

Using Algorithm-5, outputs from the parallel broadcasting scheme can be managed when

the consideration is endi~g positions of the substrings. For example with d=3 and m=4,

which Figure-57 ill~strates, corresponding outputs (ending positions) of the 1st (from left)

input stream {ti,4, h, t1o, } to the PBC block is generated by.BCP1 after 2 dummy

outputs; i.e. { O,O,y1,Y4,Y7,Y10; } . The corresponding output stream of the 2nd input

stream {t2,ts,ts,t11, } to the.PBC block is generated by CP2 after 2 dummy output

{O,O,y2,Ys,Ys,Y11, }, an:d so on. If each yj is 1, it means that the pattern matches at the

ending position j of the reference string. Otherwise (yj is 0), mismatch occurs at that

ending position G). For another example with d=2 and m=4, BCP1 generates output

{O,O,y2,Y4,Y6, ... } and BCP2 generates output {O,Y1,Y3,Ys,Y1, ... }. In this example, BCP1

produces output stream which has same order of the input stream2 after 2 dummy outputs

and, CP2 produces output stream which has same order of the input stream1 after 1

dummy output. Figur.e-59 illustrates this.
. .

In the parallel broadcasting scheme, when outputs represent the starting positions, BCPi

(ith from left, and 1 s is d) produCes outputs having co;e~ponding orders of the input

streami after m -1 dummy outputs (O's). When outputs represent the ending positions,

each BCP produces outputs according to the Algorithm-5. The methods of considering

outputs (i.e. ending positions or starting positions) do not affect the number of outputs

generated and thus the time complexity is not affected by those methods.

125

t7 tg
ts 45
t3 t4
t1 t2
i i

I PBC (2*8)

i i i i i i i i
~ ts 45 t7 ts 45 t7 ts
f2 h ~ ts h ~ ts 45
8 t1 1z t3 t1 t2 t3 t4
8 8 8 t1

~
output as starting positions: {0,0,0,y1 ,Y3,Ys, }

8 .8 t1 1z

+ {O,O,O,y2,Y4,y6,····}
output as ending positions: {O,O,Y2,Y4,Y6,Ys, } {O,y1,Y3,Ys,Y7,Y9,····}

output streatn1 output stream2

Figure-59. Outputs from the parallel broadcasting scheme

10.3.3 Performances

For the parallel hierarchical scheme, it is difficult to show· all entries· of the edit distance

table D' (for the k-mismatches problem) evaluated in each time slice. Instead of

computing all entries, the hierarchical scheme computes only the last row of the table (i.e.

D'm,j (1 :S:j :S: n)) since the last row of the table D' is the solution to the problem. Figure-

· 60 shows entries of the last row of the table D' produced from the parallel hierarchical

scheme at each time slice. Example case of d=3 and m=4 which Figure-51 iUustrates is

used. The figure is simplified. Figute-61 shows data dependencies of the edit distance

table D' and time analysis of the parallel hierarchical scheme. Available entries of the last

row are marked for each time slice. Same example case of d=3 and m=4 is used for the

purpose of illustration. In Figure-61, CP represents the hierarchical computation part

(HCP). After I log ml - 1 initial trigger times (T 1 not shown in the figure), d solutions

(entries of the last row) are available at a time slice.

126

PWS (3*12)

D'4,1

D\4
D'4,1

logm-1 C --

D'·4,9 ····-······ T4
D\.6 ··········· T3
D\.3 ··········· T2

. -. . . . T 1 :J initial trigger

Figure-60. Evaluation of table D' by parallel hierarchical scheme (d=3, m=4 case)

Since there are n entries in the last low of the table D', time slices required to evaluate

entire table is (Jlog ml - 1) + n/d.· · This yields the time complexity of the parallel

hierarchical scheme O((n/d) +login).

reference string (text)
l1 l2 l3 ~ ts 4; t1 ts · lg ti o t11 t12-

Ts

Figure-61. Entries of table D' available on time slices of the parallel hierarchical scheme
(d=3, m=4 case)

In Figure-61, CP represents the hierarchical computation part (HCP). After Jlog m 1- l

initial trigger times (T 1 not shown in· the figure)1 d solutions (entries of the last low) are

available at a time slice. Since there are n entries in the last row of the table D', time

127

slices required to evaluate entire table is (!log ml - 1) + n/d. This yields the time

complexity of the parallel hierarchical scheme O((n/d) + log m).

For the parallel linear scheme, entries of table D' evaluated in each time slice are

illustrated in Figure-62. Corresponding reference characters processed in each GB in

each time slice are also marked (diagonal dotted lines in the figure). "GB'' represents the

global block which are depicted in Figure-41..44 Each computation part (LCP) is

depicted in simplified form. Actually each LCP is exactly same as we illustrated in

Figure-44. In Figure-62, arrows imply the data movements among processing elements

(GBs) for the pipelined operation. The last processing element (GBm) in each

computation part (LCP) generates the solutions to the k-mismatches problem. Each

LCP has identical initial trigger time (m - 1) and the parallel scheme does not reduce this.

Thus, in general, after m-1 initial trigger times, d solutions are generated in each time slice

from d identical LCPs. Therefore the total execution time of evaluating the table D' is

(m - 1) + n/d which yields the time complexity O((n/d) + m).

i i i
I PWS (3*12)

Ts .. ··l. i t i i i
*

i T4._
T 3 •. :··t, .. ····ts.:---t.,__·_···ti.Q ts t9 t10 t11
T 2 ..:·t"4 .. ····ts.. ···tu. ···t, .. ts ~ t7 ts
T1 .. ··tr-. ."···tz. ·· .. 4 ····t4. t2 t3 t4 ts

···a ... ····s..":··-~ ····tl 8 8 t1 t2

LCPl L

D' 1,19.D' 2.2___.D\6___.D\4 ·· ·· D' 1.11....D'i.9D\1 ..D'4,5
0·~·9·r,;·o-.., o\j;oj;o~D".2
D'~D'i.2 ···· D'~'i.3 D'3,1
D',., ···· D'1.2 ····

i i l i
t9 t10 t11 t12
t6 t7 ts t9
t3 t4 ts t6
8 t1 tz t3

D'~D~D~D"..6
D'~D ,;?-YD ~'4.3

.... D'~D~',.2
···· D',., D 2,1

LCP3

...... T,

---·· T4
.. ... T, J
..... T 2 initial trigger
····· T1 (m - 1)

Figure-62. Evaluation of table D' by parallel linear scheme (d=3, m=4 case)

128

Figure-63 shows qata dependencies of the edit distance table D' and time analysis of the

parallel linear scheme. Same example case of d=3 and m=4 is used for the illustration.

reference string (texi)
11 12 t3, t4 ts 1<5. t7 . ts tg 110 tll 112-

CP1 CP2 CP3 . ,
~J CP1 CP2 CP3 CP1Cl;'2 Cl\ CP1 CP2 CP3 CP1 CP2 CP~

T3 , L____J

Figure-63. Entries oftable D' available on.time slices of the parallel linear scheme
(d=3, m=4, case)

In Figure-63, arrows. ·represent data dependencies of· the fable D' and dotted line

represents all entries evaluated in one. LCP at a time slice. . "CP" stands for the LCP and .

Ti represents the time unit. As we see in Figure-63, one diagonal (from left-up to right-

down arrows) entries cah be processed in one specific LCP during m consecutive time

units; i.e. for example, D'u is processed in LCP1 at time T2; D'2,2 is processed in LCP1 at

time T 3,, D \3 is processed in LCP 1 at time T 4, and D '4,4 is processed in LCP 1 at time Ts

and so on. All d LCPs are activ~ at each time unit with pipelined operations and d

solutions are generated at e~cl'l unit of tiine after the initial trigger time of m - 1 slices. In

figure-63, after T3 (m-l = 3) d LCPs. gen¢rate d solutions (entries of the last low of the

table D') at a time. Thus total execution time of evaluating entire table is (m - 1) + n/d

time slices which yields the time complexity O((n/d) + m).

For the parallel broadcasting scheme, entries of table D' evaluated in each time slice are

illustrated in Figure-64.

129

i i i
I PBC (3*12)

i i t i i i t i i i t i
T 4. · ·· · · · trn · · · t-s · · · · l:ii· · · · · ·4-i" · ·······-tr,···· t~- · · · ·h · · · · !"'.J,:1• • • • • • • • • • • t1-i · · · -tro· ···ts···· ·!6~,
T3 ·····--t,--··-ty····fJ·/·fr·,···'·····tg-····ts····tr.o···tz·,···········t9·····tr···ts-:;"'t3 , dummy data

~ . ? 7 . I -----z._::;-
T 2 ······-tr·····t2~· ~-'E·····-8··:· ·········ts-· ···t3~·~·"tT· · ··e·f ···········to····br;-,,-1:2···,·.s· ,
T1 ·····-ti·-~·'.:..&_:·_:·-_-~_-:_:·.::~·::;·········· t2-~-:::~·_:·-_· ~:: ·..:·§>·::;··········· -t,--"'-::'..ft: :: ::£:·.:·-.-~ ~

······ T5
····· T4
..... T,

····· T2
..... T,

Figure-64. Evaluation of table D' by parallelbroadcasting scheme (d=3, m=4 case)

Each computation part (BCP) is depicted in simplified form. In fact, each BCP is exactly

same as illustrated in Figure-46. In Figure-64, arrows imply the data movements among

GBs (global blocks) for the pipelined operation. The last global block (GBm) in each

computation part (BCP) generates the solutions to the k-mismatches problem.

Lemma-2. In parallel broadcasting scheme, time slices to produce the output Ym (D' m,m)

does not exceed m.

proof·

Since the parallel broadcasting mechanism (Algorithm-4) initially assigns dummy

characters (c)to each BCP (line 1..5 of the Algorithm-4), the last global block (GBm)

receives m - 1 dummy characters initially. The input alignment mechanism

(line 9 .. 10 of the Alogrithm-4) does not increase the number of dummy characters and

thus the maximum number of dummy characters in the mth GB in each LCP is m - 1.

130

The mth solution D 'rn,m is generated from GBm of a BCP.

Therefore the D 'm.m is generated within m time slices. D

In general, after m-1 time slices, d solutions are generated in each time slice. Figure-65

illustrates the concept of the total execution time using serial and parallel broadcasting

scheme.

n :······,·· (m-1) + (n - (m-1))/d ········:

m-1 n - (m-1) 111-l (n-(m-1))/d :

Ym Yn Ym Yn

(a). Serial scheme (b). Parallel scheme

Figure-65. Total execution times on serial and parallel broadcasting schemes

Time to generate the output Ym (i.e. D' rn,m) is same as the serial broadcasting scheme.

Thus, total execution time for evaluating the entire table is (m-1) + (n - (m-1)) I d time

slices. This yields the time complexity of the parallel broadcasting scheme O(((n - m)/d)

+ m). Note that the initial trigger time (which other parallel schemes have) in the

computation part does not exist in both serial and parallel broadcasting schemes.

Figure-66 shows data dependencies of the edit distance table D' and time analysis of the

parallel broadcasting scheme. Same example case of d=3 and m=4 is used for the

illustration. In Figure-66, arrows represent data dependencies of the table D' and dotted

line represents all entries evaluated in one BCP at a time slice. CP in the figure stands

for the BCP and Ti represents the time unit. As shown in Figure-66, one diagonal (from

left-up to right-down arrows) entries can be processed in one specific BCP during m

131

reference string (text)
11 12 t3 t4 ts ~ t7 ts t9 110 111 112-

T2

Figure-66. Entries of table D' available on time slices of the parallel broadcasting scheme
(d=3, m=4 case)

consecutive time units; i.e. for example, D' 1,1 is processed in BCP1 at time T 1, D' 2,2 is

processed in BCP1 at time T2, D'3,3 is processed in BCP1 at time T3, and D\4 is processed

in BCP 1 at time T 4 and· so on. All d BCPs are active at each time unit with pipelined

operations and d solutions are generated at each unit of time from the mth time slice.

Thus time complexity of evaluating entire table D' becomes O(((n - m) Id)+ m).

Table-2 shows time complexities of three schemes (i.e. hierarchical, linear, and

broadcasting) in both serial and parallel cases.

Scheme •· Serial Parallel

Hierarchical O(n + Jon m) O((n Id) + log m)

Linear O(n + in) O((n Id)+ m)

Broadcasting O(n) O(((n - m) Id) + 111)

Table-2. Time complexities of schemes fork-mismatches (and exact matching) problem

132

10.4 Implementation Methodologies

Since our data:flow schemes are simple and easy to be modularized, we can build VLSI

chip for the k-mismatches problem in a straightforward way. Using dataflow schemes

described so far, we can \1se. a few simple basic cells and most of the cells are copies of

these basic cells. · For the hierarchical scheme, cells are connected hierarchically. The

linear scheme and the broadcasting scheme can be implemented· as linear systolic array of

cells. In our design, interconnection of thes~ cells are regular which implies that our

. design can be modular and extensible to build large chips. This section presents very .
'

high level design methodologies to develop special purpose VLSI chip for the k- .

mismatches problem. With consideration of the clock synchronization, the data:flow

schemes can be pipelined hardware solutions to the k-mismatches problem. By.using the ·

forwarding mechanisms PWS and PBC blocks, the schemes protjde high performance

parallel hardware solutions.

10.4.1 Hierarchical Scheme

For the hierarchical scheme illustrated in Figure-39, two basic cells are used. We

combirie the "S;, actor and the "Eq" block vertically ·and i;nake tqe "S-~q" cell. The

second basic cell is the "Adder" .. cell .. "Adder" ,cells are hierarchically connected.

Figure-67 illustrates the design. The "S-Eq" cell can be implemented with 8..:bit

comparator, which compares two 8-bit. charac:ters, a register in which the pattern

character is preloaded at initialization time. An 8-bit latch can be used for the action

of the "S" actor. The initial tokens "e" which are special dummy characters are loaded

into these 8-bit latches (except the right most one) at the initialization time.

133

k

output string {0/1} ·

t,,t2,t3,l\,t5,45,
reference string

Figure-67. Hierarchicalarray ofcells for the k-mismatches problem
(serial scheme with m=4 case)

Figure-68(a) shows the structure of the kth(from left to right) "S-Eq" cell. In the figure,

Rk is the register in which the kth pattern character is preloaded. For the "Adder" cell,

we can use an adder.. When the pattern size ism (:;t: 2k), we should use latches in the

hierarchical connections of the "Adder" cells for· synchronization of the data.

For the parallel design, we should not use the "S-Eq" cell. Instead, we can simply

connect multiple number of the computation parts (HCP) which consist of "Eq" and

"Adder" cells to the parallel WS block (PSW). The computation part shown in the

Figure-39 is used and the implementation of the "Eq" cell is shown in the Figure-68{b).

The PSW(d*dm) block illustrated in Figure-SO and Figure-51 can be implemented with

wires and the 8-bit latches for the ''S" actors. Initial tokens "s" are loaded into the

latches at the initialization time. Connection of the PWS block and HCPs are depicted in

Figure-49. The implementation is straightforward and thus the illustration of the parallel

hierarchical design is skipped.

134

---- 8-bit latch -.....-ii--
8 8

(a). "S-Eq" cell

Comparator

.. 1

(b). "Eq" cell

Figure-68. The structures of basic cells "S-Eq" and "Eq"

10.4.2.Linear Scheme

The linear scheme can be implemented as a linear systolic array of cells. For the serial

design, each PE is connected linearly as illustrated in Figure:..41. We can implement each

PE as a basic cell and simply copy and connect multiple PEs linearly: For a pattern

length m, we need m PE cells for the serial design. Thus the array looks like the one in

Figure-69. The structure of each PE is illustrated inFigure-70.

PEI PE2 PE3 · PE4
-----+ ---+ comparator k

. output
'.Figure~69. Systolic array of PEs for serial linear sch~me (m=4 case)

................................... . . . ' . .
· 8-bit latch--·-+--
: 8 8 :

.. ·· .. -·· S-Eq

I :
• ,

(1/0)-. -+--->1.--+i Adder ___ _. (1/0) ·_ ____ _.

Figure-70. Structure of each PE of the linear scheme

135

But, with this design scheme we encounter the synchronization problem. As described

in section 10.2.2, the linear scheme should use the synchronization actor "S" in the static

dataflow environment. This brings about the usage of latches for the synchronization in

hardware implementation. Thus in the PEk (kth from left), we should assign k-2 latches

between "S-Eq" and "Adder" blocks. Positions of these 1-bit latches in each PE

depicted in Figure-70 are between the components ''Comparator" and "Adder". Figure-

71 illustrates the array using these latches.

Since each PE of the design has dift'erent number of latches, m different types of basic

cells are needed with this design. If the pattern size m is very small and the parallelism

degree d is big, this c>Verhead can be ignored. Otherwise it can cause the design cost

problem.

···.········' : ~ • :
output to

comparator
PEI PE2 PE3 PE4

Figure"-71. Latches llSed in implementation of the linear scheme (m=4 case)

For the parallel design, we can simply connect multiple number of computation part

(refer Figure-44) to the PWS block. Connection of the PWS block and LCPs are

depicted in Figure-49. The implementation is straightforward andthus the illustration of

the parallel linear.design is skipped.

136

10.4.3 Broadcasting Scheme

Since the broadcasting scheme is simple and easy to· be modularized, we can build

VLSI chip for the k-mismatches problem in a straightforward way. As same as the design

for the linear scheme, broadcasting scheme can also be ,implemented as a linear systolic
. ' .

array of basic cells. · · Only one basic ·cell is needed and it is extended to build the linear

systolic array architecture'. This is the advantage over the linear scheme. As used in

design for other schemes, we conn~ct one comparator to the end of the systolic array to

check the error bound k. · In this ~art, very high level design methodologies to develop

special purpose · VLSI chip · for the k-;mismatches problem by· using the broadcasting

scheme is presented. For the- serial broadcasting. schem~, we use the design depicted in

Figure-45 in which the broadcasting part is included in each processing element (PE).

Organization of the linear systolic array is depicted in Figure-72. Components and

'.

dataflow of each processing element is illustrated in Figure-73. As described earlier, the

first (left most) PE .does not have to have the adder. ·· For making identical basic cell, all

PEs should have same structure. · Initial tokens shown in dataflow environment can be

preloaded into.the last (right-bottom) latch at initialization time.

· PEI PE2 . PE3 PE4
:_...+ ---+ ·.·.· .

comparator k

output

Figure-72.. Systolic. array of PEs for serial broadcasting schem (m=4 case)

137

+-+-~~~~~~-,-~----,,,--ii--~

························ 8
·····---·-·········-········· 8 : . .

/ . .':Eq" ~· ..

............ "(!165··· •

Adder Latch

(a). for single_phase clock
(b). for two_phase clock

Figure-73. Structure of each PE (PE;) of the broadcasting scheme

For implementation of the parallel broadcasting scheme the broadcasting part, which is

included in each PE in serial design, is excluded and d identical computation parts (BCPs)

are connected to parallel broadcasting block (PBC) as illustrated in Figure-53. Thus

structure of each PE is same as the serial case except the input reference characters come

from PBC block. Each computation part (BCP) has m (pattern length) identical such

PEs and d identical BCPs are connected to the PBC(d*dm) block. Dataflow version of

the BCP block is illustrated in Figure-46 and each BCP block can be implemented same as

the serial implementation we described so far with the exception that the input reference

characters come from the PBC block. The PBC block can be implemented simply with

wires and latches (for the "S" actors) as shown in Figure-56 and Figure-57. The

implementation of the parallel broadcasting scheme is straightforward and the detailed·

illustration is skipped.

138

·. CbapterXI

EXACT MATCHING PROBLEM ..

For the exact matching problem; solution scheme· is exactly same as the one we

designed for the k-mismatches problem since the problem can be considered .as a special
. ,' :; (·. . .

case of the k-mismatches problem in which the only difference is that the error bound

k = 0. On the schemes.which we described for the k-mismatches problem in previous

chapter, we simply set the value of the err.or bound k = d for th.e exact matching problem.

They can find all substrings of the text (reference string) which have same length (m) with

the pattern and need O substitutions to convert to the pattern. ·· .. The hierarchical, the

linear, and the broadcasting s.chemes for the k-mismatches problem also work for the

exact matching problem. Both serial and parallel versions of those schemes are used.

Implementations are also the same as those described in the chapter of the k- ·

mismatches problem. Proposed dataflow schemes (both serial and parallel) in previous
,. ,

chapter accommodate both k-mismatches and exact matching problems. The only

difference is setting of the error bound k. This· leads the cost efficiency . of the special

purpose VLSI chip design for both subproblems.

11.1 Alternative Schemes

There are alternative schemes for the exact matching problem which do not need adders

and the comparator for checking error bound k. Since the value of the k is fixed to 0, we

139

do not need to add matching results of pattern characters and reference characters to

compute D' mJ (1 ~ j ~ n) in the edit distance table of the k-mismatches problem. Instead,

AND gates are used.

Instead of using the dynamic programming method, which is used for the approximate

string matching problems and requires edit distance table computation, the naive algorithm

for the exact matching problem is used since it provides good systolic mechanism for

implementation. Thus, the alternative scheme starts from the naive algorithm in which

the pattern string Pis compared to all same sized substrings of the reference string T:

Naive-String-Matching (T, P)

n := length [T]; /*reference string*/

m := length [P]; /*pattern string*/

for s := 0 to (n-m)

if P[l..m] = T[s+ 1 .. s+m] then

output "pattern occurs with shifts";

. The naive algorithm requires n-m+ 1 attempts and each attempt takes m comparisons.

Comparison results are passed through binary two-input AND gates to produce the

solutions (i.e. binary stream). AND gates are simply implemented and this design

eliminates the need of adders and a comparator in the computation part (CP).

Alternative methods for the hierarchical, the linear, and the broadcasting schemes are

illustrated in Figure-74, Figure-75, and Figure-76 respectively. From the schemes

presented for the k-mismatches problem, only computation parts (HCP, LCP, and BCP) ·

are changed. Number of AND gates required in the alternative scheme is same as that of

140

adders used in original schemes. In figures, AHCP represents the alternative HCP,

ALCP represents the alternative LCP, and ABCP stands for the alternative BCP.

AHCP (Computation Part)

output string (0/1)

Figure-74. Alternative hierarchical scheme for the exact matching problem (serial, m=4 case)

WS(4

ALCP

.............. . .

output
. ____________

PE2 PE3 PE4

Figure-75. Alternative linear scheme for the exact matching problem{serial, m=4 case)

BC-4_,___,[_··_···_··_···_·;~~[~··_··_···_··_··~;~_··~···_··_··_···~~:_···_··_··_···-,-,·;

ABCP
. ---. ~ .·

·········-··" : ·····------·
PE2

Figure-76. Alternative broadcasting scheme for the exact matching problem (serial, m=4 case)

141

Refined dataflow graph representation of each "And" block is depicted in Figure-77.

Merging actor is used and the definition of that actor is illustrated in Figure-33(a).

For the implementation,. a simple binary two input. AND gate is used for the operation

"And". Since the implementations are same as those_ described for the k-mismatches

problem except the AND gates are used in place of adders and the comparators are

eliminated, the description is skipped. ··

And

(1/0) ·. (1/0)

i1 ii

(1/0)

i1 (1/0); ifii = 1
ii (0) ; else (ii=: 0)

Figure-77: Refined dataflow graph (static) for the operation block "And"

For the parallel design, we can simply connect multiple number of the alternative way of

computation parts (AHCPs, ALCPs, or ABCPs) to thePWS block or the PBC block as

we described in the chapter for the k-mismatches problem.

Time analysis with alternative computation part is same as the original· schemes. Time

complexities of all schemes (i.e. the .. hierarchical, the linear,. the broadcasting) are not

affected by using alternative computation parts for the exact matching problem.

142

Chapter-XU

CONCLUSION

In this dissertation, a new scheme . namely the memoryless . scheme of handling the

history sensJ.tive computations ~n dataflow execution model is proposed. This scheme is

a real dataffow scheme which does not use · any memory references. to stdre the stream or
' '

the history required to .solve the given history sensitive problems, T_hus it fulfills the

principles of dataflow execution model. · At run time, the required history is preserved in

dataflow graph itself As a dynamic scheme, this memoryless scheme can support infinite

length stream manipulation. Designs for both static and dynamic dataflow environment

were provided. The memoryless scheme is described on two primitive models of the

history sensitive problems such as the accumulator based model and the working-set based

model. Without incurring overhead caused by memory references, the scheme provides

an elegant solution to the history sensitive computation problems in dataflow execution

model. Language constructs are defined and performance advantage of the memoryless

scheme over the methods found· in the literatures were analyzed ..

To gain high performance, forwarding mechanisms which exploit maximum parallelism

in both accumulator based and working-set based models are designed and adapted in the

memoryless scheme. They provide high performance pipelined parallelism in

accumulator based model and explicit parallelism which is comparable to loop unfolding in

working-set based model. With these forwarding mechanisms namely PACC and PWS,

143

degree of parallelism is controlled explicitly. This is a great advantage over·· other

schemes for handling history sensitive computations.

Developing elegant memoryless scheme for handling the history sensitive problems in

dataflow execution model has important role in the digital signal processing. The

memoryless scheme provides efficient systolic algorithms for the prefix computation

problem and the string matching problem. These systolic algorithms are parallel

hardware solutions to the problems since they can be used to design special purpose VLSI

chip for those problems. Chapters VIII . . XI are devoted· to the application of the

memoryless scheme to the string matching problem. Based on the memoryless scheme,

efficient dataflow schemes for. three subproblems· of the .. string matching were presented.

Proposed schemes provide elegant parallel solutions to those three subproblems (i.e. k

differences, k-mismatches, and exact matching) of string matching in dataflow

environment. Since these schemes are one-pass pure dataflow (i.e. systolic) algorithms,

they do not need any preprocessing or extra memory space. Thus, they are suitable for

VLSI implementation. By using few simple basic cells, those schemes can be

implemented as linear (or hierarchical) systolic arrays of cells and easily extendible.

For the k-differences problem, implicit parallelism of the dataflow scheme reduces the

total processing time of evalµating m*n edit distance table by the factor of m. The result

is O(n + m) time complexity which includes the initial trigger time (rn - 1), where n and m

are the lengths of reference and pattern strings. The design is a linear systolic array of m

identical processing ~lements (PEs). Advantage over other hardware approaches in

literature includes that the proposed scheme checks similarities between pattern and all .

144

substrings, which have lengths m ± k, of the text and reports all approximate occurrences

of the pattern in the text.

For the k-mismatches and the exact matching problems, three versions of dataflow

schemes are presented. They are the hierarchical, the linear, and the broadcasting

schemes. For a reference string length n and a pattern length m, implicit parallelism of

the dataflow provides linear time complexities O(n + a) to those three schemes. The a

in the time complexity is log m for the hierarchical, m for the linear, and O for the

broadcasting scheme. To gain high performances parallel schemes are developed by

using the forwarding mechanisms PWS and PBC; i.e. parallel hierarchical scheme, parallel

linear scheme, and parallel broadcasting scheme. The PWS is the forwarding mechanism

of the working-set based memoryless scheme for the history sensitive problems and, the

PBC is a variation of that. They exploit explicit parallelism based on multiple input (and

out) streams. They can provide any degree of explicit parallelism which other hardware

approaches do not provide. With these parallel schemes, degree of the parallelism is

controlled explicitly. This is an important factor for resource management in dataflow

machine environment and special purpose hardware implementation. In dataflow

environment, the language constmcts which invoke the string matching scheme may

include a parameter for controlling the degree of the parallelism. Otherwise the compiler

should do this job automatically. :For the special purpose hardware design, there should

be the limit of system bus bandwidth and number of processors for the multi-stream

manipulation. Building the special purpose hardware should include the careful

consideration of the system resources to choose the number of multiple streams (degree of

parallelism) to gain the maximum benefit of the parallelism. Those three parallel schemes

145

solve the k-mismatches and the exact matching problems with time complexities reduced

by a factor of d where d represents the controllable degree of the parallelism. The

parallel hierarchical scheme has time complexity O((n I d) + log m), the parallel linear

scheme has time complexity O((n Id)+ m), and the parallel broadcasting scheme has time

complexity O (((n ., m)/d) + m). The hierarchical scheme can be implemented by

hierarchical systolic array of few basic cells. The design can be extended easily. With

linear systolic array architectures, design of serial and parallel broadcasting schemes need

m and d*m identical processing·elements respectively.

In general, proposed dataflow schemes for the string matching problems can work on

both on-line and off-line inputs; i.e. they can work on unknown sized reference strings.

They check similarities between pattern and all possible substrings of the text for given

problem and, report all occurrences (approximate or exact) of the pattern in the texL

In this dissertation, we applied the memoryless scheme for handling history sensitive

computation to one-dimensional pattern matching (i.e. string matching problems).

Future work should focus on two-dimensional pattern matching by developing efficient

mechanism based on methods developed for string matching problems.

146

REFERENCES

[1] D. Abramson, and G. Egan, " The RMIT Data Flow Computer : A Hybrid
Architecture," The Computer Journal, Vol. 33, No. 3, pp'. 230-240, March 1990.

. .

[2] .· William B. Ackerman, "Data Flow :Languages," Computer, Vol. 15, pp. 15..:25, Feb. ·
1982.

[3] A. V. Aho, "Algorithms for Finding Pattern's in·Strings," Handbook of Theoretical
Computer Science, Vol.· A, J. van Leeuwen, ed., Elsevier Science Publishers B. V.,
New York, 1990, pp. 257-297.

[4] Makoto Amamiya, Masaru Takesue, Ryuzo Hasegawa, and Hirohide · Mikami,
"Implementation and Evaluation of A List..:Processing-Oriented Data Flow Machine,"
Proc. 13th Annual Symposium on Computer Architecture, pp. 10-19; ·1986.

[5] Makoto Amamiya, Masaru Takesue, Ryuzo Hasegawa, and Hirohide Mikami, "A
Data Flow Machine Architecture for Highly Parallel Symbol Manipulations," Journal
of Information Processing, VoL 10, No. 4, pp. 227-236, 1987. ·

[6] Amihood Amir, Gary Benson,. and Martin Farach, "An Alphabet Independent
Approach to Two-Dimensional Pattern Matching," Siam J. Comput., Vol. 23, pp.
313-323, April 1994.

[7] Alberto . Apostolico and Dany Breslauer, "An Optimal O(log log N)-Time Parallel
Algorithm for Petecting All Squar~s in a String," Siam J. Compµt., Vol. 25, pp.
1318-1331,Dec. 1996. · · · ·

[8] Arvind, and D~vid E. Culler, "Dataflow Architectures," Annual Review in Computer ..
Science, Vol. 1, pp. 225-253, 1986.

[9] Arvirid, and Kim P. Gostelow, :'The CT-Interpreter," Computer Vol. 15, pp. 42-49,
Feb. 1982.

[10] Arvind, and Rishiyur S. Nikhil, "Executing a Program on the MIT Tagged-Token
Dataflow Architecture,'' IEEE Trans. on Computers, Vol. 39, No. 3; pp. 300-318,
March 1990.

147

[11] Arvind, and Robert E. Thomas, "I-Structures: An Efficient Data Type for Functional
Languages," MIT Lab. for Computer Science Technical Report TM-178, Cambridge,
MA, Sept. 1980.

[12] J. Backus, "Can Programming Be Liberated From The Von Neumann Style? A
Functional Style and Its Algebra Of Programs/' Comm. ACM, 21, No. 8, Aug. 1978.

[13] Ricardo Baeza and G. H. Gannet, "A New Approach to Text Searching," Comm.
ACM, Vol. 35, pp. 74-81, Oct. 1992.

[14] S. Bandyopadhyay, S. Ghosh, C. Mazumdar, and S. Bhattacharya, "An Alternative
Approach to History Sensitive Computation in Dataflow Model," Journal of
Information Processing, Vol. 12, No. 1, pp. 16.:..19, 1988.

[15] J. Backus, "Can Programming Be Liberatyd From The Von Neumann Style? A
Functional Style and Its Algebra Of Programs," Comm. ACM, 21, No. 8, Aug. 1978.

[16] A. A. Bertossi, F. Luccio, L. Pagli, and E. Lodi, "A Parallel Solution to the
Approximate String Matching Problem," The Computer Journal, Vol. 35, pp. 524-
526, 1992.

[17JR. Boyer and S. Moore, "A Fast String Searching Algorithm," Comm. ACM, Vol.
20,pp. 762-772, 1977.

[18] David F. Brailsford, and R. James Duckworth, "The MUSE Machine-an Architecture
for Structured Data Flow Computation," New Generation Computing, pp. 181-195,
March 1985.

[19] Dany Breslauer and Zvi Galil, "An Optimal O(log log n) Time Parallel String
Matching Algorithm," SiamJ. Comput., Vol. 19, pp. 1051-1058, Dec. 1990.

[20] Dany Breslauer and Zvi Galil, "A Lower Bound for Parallel String Matching," Siam
J. Comput., Vol. 21, pp. 856-862, Oct. 1992.

[21] L. J. Caluwaerts, J. Debacker, and l A Peperstraete, "Implementing Streams on a
Data Flow Computer System with Paged Memory," Proc. 10th Annual Symposium
on Computer Architecture, pp. 76-83, 1983.

[22] H. D. Cheng and K. S. Fu, "VLSI Architecture for String Matching and Pattern
Matching," Pattern Recognition, Vol. 20, pp. 125-141, 1987.

[23] Richard Cole, "Tighter Bounds on the Complexity of the Boyer-Moore String
Matching Algorithm," Siam J. Comput., Vol 23, pp. 1075-1091, Oct. 1994.

148

[24] Richard Cole, Ramesh Hariharan, Mike Paterson, and Uri Zwick, "Tighter Lower
· Bounds on the Exact Complexity of String Matching," Siam J. Comput., Vol. 24, pp.
30-45, Feb. 1995.

[25] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Introduction to
Algorithms, McGraw Hill, 1990.

[26] D. E. Culler et al., "Fine-Grain parallelism with Minimal Hardware Support: A
Compiler-Controlled Threaded Abstract Machine," Proc. Fourth International Con£
on Architectural Support for Programming Languages and Operating Systems, 1991.

[27] David E. Culler and Arvincl, "Resource Requirements of Dataflow Programs," Proc.
15th Annual Symposium on Computer Architecture, pp. 141-150, 1988.

[28] Alan L. Davis, and Robert M. Keller, "Data Flow Program Graphs," Computer, Vol.
15, pp. 26-41, Feb. 1982.

[29] Jack B. Dennis, "Data Flow Supercomputers," Computer, Vol. 13, pp. 48-56, Nov.
1980.

[30] Jack B. Dennis and Gao Guang Rong, "Maximum Pipelining of Array Operations on
Static Data Flow Machine," · Proc. 1983 International Conference on Parallel
Processing, pp. 331-334, 1983.

[31] Jack B. Dennis, and Ken K. S. Weng, "An Abstract Implementation for Concurrent
Computation with Streams," Proc. 1979 Int. Conference on Parallel Processing, pp.
35-45, Aug. 1979.

[32] Bradly Fawcett, "Reconfiguring a Computing Pattern," Electronic Engineering
Times, Manhasset, pp. 64-, April 1995.

[33] Hose A B. Fortes, and Benjamin W. Wah, "Systolic Arrays - A Survey of Seven
Projects," Computer, July 1987, pp.91-103.

[34] M. J. Foster and H. T. Kung, "The Design of Special-Purpose VLSI Chips,"
Computer, pp. 26-38, Jan. 1980.

[35] D. D. Gajski, D. A. Padua, D. J. Kuck, and R. H. Kuhn, "A Second Opinion on Data
Flow Machines and Languages," Computer, Vol. 15, pp. 58-69, Feb. 1982.

[36] Z. Galil and R. Giancarlo, "Improved String Matching with K Mismatches," SIGACT
News 17, pp. 52-54, 1986.

[37JZvi Galil, "A Constant-Time Optimal Parallel String-Matching Algorithm," Journal of
the ACM, Vol. 42, pp. 908-918, July 1995.

149

[38] Jean-Luc Gaudiot, "Structure Handling in Data-Flow Systems," IEEE Trans. on
Computers, Vol. C-35, No. 6, pp. 489-502, June 1986.

[39]Jean-Luc Gaudiot, and Yi-Hsiu \Vei, "Token Relabeling in a Tagged Token Data
Flow Architecture," IEEE Trans. on Computers, Vol. 38, No. 9, pp. 1225-1239,
Sept. 1989.

[40] Narain Gehani, and Andrew D .. McGettrick, Concurrent Programming, Addison
Wesley, 1988. ·

[41] Dipak Ghosal, and Laxmi N. Bhuyan, "Performance Evaluation of a Dataflow
Architecture," IEEE Trans. on Computers, vol.39, no.5, pp. 615-627, May 1990.

[42] V. G. Grafe, and J. E. Hoch, "The Epsilon-2 Hybrid Dataflow Architecture,"
COMPCON 90, 35th IEEE Computer Society International Conference, pp. 88-93,
1990.

[43] J. R. Gurd, C. C. Kirkham, and I. Watson, "The Manchester Prototype Dataflow
Computer," Communications of the ACM, Vol. 28, No. 1, pp. 34-52, Jan. 1985.

[44] James Hicks, Derek Chiou, et al., "Performance Studies of Id on the Monsoon
Dataflow System," Journal of Parallel and Distributed Computing, 18, pp. 273-300,
1993.

[45] Kei Hiraki et al., "The Sigma-I Dataflow Supercomputer: A Challenge for New
Generation Super Computing Systems," Journal of Information Processing, Vol. 10,
No. 4, pp. 219-226, 1987.

[46] Herbert H. J. Hum and Guang R. Gao, "Summary of the Second Workshop on
Frontier in Functional Programming and Dataflow Architecture;" ACM SIGARCH ·
Computer Architecture News, vol. 16, no.5, pp. 12-19, Dec. 1988.

[47] K. Hwang and F. A. Briggs, Computer Architecture and Parallel Processing, New
York: McGraw-Hill, 1984.

[48] Robert A. Iannucci, "A Dataflow/von Neumann Hybrid Architecture," Technical
Report, MIT/LCS/TR-Al8, May 1988.

[49] Merrill E. Isenman and Dennis E. Shasha, "Performance and Architectural Issues for
String Matching," IEEE Trans. on Computers, Vol. 39, No. 2, pp. 238-250, Feb.
1990.

150

[50] Noriyoshi Ito, Eiji Kuno, and Temhiko Oohara, "Efficient Stream Processing in GHC
and Its Evaluation on a Parallel Inference Machine," Journal of Information
Processing, Vol. 10, No. 4, pp. 237-243, 1987.

[51] R. Colin Johnson, "Desktop CAD comes to bioengineering," Electronic Engineering
Times, Manhasset, Issue 925, pp. 40-, Oct. 1996.

[52] Pettery Jokinen, Jorma Tarhio and Esko Ukkonen, "A Comparison of Approximate
String Matching Algorithms," Software-Practice and Experience, Vol. 26, pp. 1439-
1457, Dec. 1996.

[53] Ian Kaplan, "The LDF 100: A Large Grain Dataflow Parallel Processor, 11 ACM
SIGARCH Computer Architecture News, vol. JS, no.3, pp. 5-12, June 1987.

[54] K. Kawakami, and J. R. Gurd, ·"A Scalable Dataflow Structure. Store," Proc. 13th
Annual Symposium on Computer Architecture, pp. 243-250, 1986.

[55] D. E. Knuth, J. Morris, and V. Pratt,'' Fast Patern Matching in Strings," SIAM J. of
Comput., Vol. 6, pp. 323-350, 1977.

[56] G. Landau and U. Vishkin, "Efficient String Matching with K Mismatches,"
Theoretical Comput. Sci., 43, pp. 239-249, 1986.

[57] Thierry Lecroq, "Experimental Results on String Matching Algorithms," Software
Practice and Experience, Vol. 25, pp. 727-765, Jul. 1995.

[58] Ben Lee and A. R. Hurson, "A Dataflow Architectures and Multithreading,"
COMPUTER, pp. 27-39, August 1994.

[59JBen Lee, A. R. Hurson, and Behrooz Shirazi, "A Hybrid Scheme for Processing Data
Structures in a Dataflow Environment," IEEE Trans. on Parallel and :Qistributed
Systems, Vol. 3, No. 1; pp. 83-96, Jan. 1992.

[60] David R. Lester, "Stacklessness: Compiling Recursion for a Distributed
Architecture," Proc. 4th.Int. Conference on Functional Programming.Languages and
Computer Architecture (FPCA 89), pp. 116-127, 1989.

[61] Daniel P. Lopresti, "P-NAC : A Systolic Array for Comparing Nucleic Acid
Sequences," Computer, pp. 98-99, July 1987.

[62] Maurice Maes, "Polygonal Shape Recognition Using String Matching Techniques,"
Pattern Recognition, Vol. 24, pp. 433-440, 1991.

[63] G. M. Magson, "Efficient Systolic String Matching," Electronics Letters, Vol. 26,
No. 24, pp. 2039-2041, Nov. 1990.

151

[64] Udi Manber and Gene Myers, "Suffix Arrays: A New Method for On-Line String
Searches," Siam J. Comput., Vol. 22, pp. 935-948, 1993.

[65] James R. McGraw, and Stephen K. Skedzielewski, "Streams and Iteration in VAL,
Additions to A Data Flow Language," 3rd International Conference on Distributed
Computing Systems, pp. 730-739, Oct. 1982.

[66] Amar Mukherjee, "Hardware Algorithms for Determining Similarity Between Two
Strings," IEEE Trans. on Computers, Vol. 38, No. 4, pp. 600-603, April 1989.

[67] Amar Mukhopadhyay, "Hardware Algorithms for Nonnumeric Computation," IEEE
Trans. on Computers, Vol. C-28, No. 6, pp. 384-394, June 1979.

[68] Rishiyur S. Nikhil, and Arvind, ''Can Dataflow subsume von Neumann computing?,"
Proc. 16th Annual Symposium on Computer Architecture, pp. 262-272, 1989.

[69] Rishiyur S. Nikhil, Gregory M. Papadopoulos and Arvind, "*T: a Killer Micro for a
Brave New World," Technical Report, MIT Laboratory for Computer Science, 545
Technology Square, Cambridge, MA 02139, July 1991.

[70] Rishiyur S. Nikhil, Gregory M. Papadopoulos and Arvind, "*T: A Multithreaded
Massively Parallel Architecture," Proc. 19th Annual Symposium on Computer Arch.,
pp. 156-169, 1992.

[71] Gregory M. Papadopoulos, "Implementation of a Dataflow Multiprocessor,"
Technical Report, MIT/LCS/TR-432, Aug. 1988.

[72] Gregory M. Papadopoulos, and David E. Culler, "Monsoon: an Explicit Token-Store
Architecture," Proc. 17th Annual Symposium on Computer Architecture, pp. 82-91,
1990.

[73] Jin H. Park, and K. M. George, "A Memoryless Scheme for History Sensitive
Problems in Dataflow Machines," Proceedings of the Second International
Conference on Massively Parallel Computing Systems, pp. 64-71, May 1996.

[74] Jin H. Park, and K. M. George, ''Parallel History Sensitive Computations in
Dataflow Architecture," Proceedings of the IEEE Second International Conference
on Algorithms & Architectures for Parallel Processing, pp. 522-529, June 1996.

[75] L. M. Patnaik, R. Govindarajan, and N. S. Ramadoss, "Design and Performance
Evaluation of EXMAN: An EXtended MANchester Data Flow Computer," IEEE
Trans. on Computers, Vol. C-35, No. 3, pp. 229-243, March 1986.

152

[76] John Peterson, "Untagged Data in Tagged Environments: Choosing Optimal .
Representations at Compile Time," Proc. 4th Int. Conference on Functional
Programming Languages and Computer Architecture (FPCA 89), pp. 89-99, 1989.

[77] P. A. Pevzner and M. S. Waterman, "Multiple Filtration and Approximate Pattern
Matching," Algorithmica, 1995, pp. 135-154,

[78] J. Sargeant, and C. C. Kirkham; "Stored Data Structures on the Manchester Dataflow
Machine," Proc. 13th Annual Symposium on Computer Architecture, pp. 235-242,
1986.

·'

[79] Raghu Sastry, N. Ranganathan, "A Systolic Array for Approximate String Matching,"
Proc. Int'l Con£ Computer Design, pp. 402-405, Cambridge, Mass., i993.

[80] Raghu Sastcy, N. Ranganathari, and Klinton Reinedios, "CASM: A VLSI Chip for
Approximate String Matching," IEEE Trans. on Pattern Analysis and Machine

. Intelligence, Vol. 17, pp. 844-830, Aug. 1995.

[81] M. Sato, Y. Kodama et al., 11 Thread-based Programming for the EM-4 Hybrid
Dataflow Machine, 11 Proc. 19th Annual Symposium on Computer Architecture, pp.
146-155, 1992.

[82] Carlo H. Sequin, Advanced Research in VLSlProceedings,ofthe 1991 University of
California/Santa Cruz Conferel).ce, 1'he MIT Press, Cambridge, MA, pp. 290·306,
1991.

[83] Toshia Shimada, Kei Hiraki, et al., "Evaluation of A Prototype Data Flow Processor
of The SIGMA-1 for Scientific Computations," Proc. 13th Annual Symposium on
Computer Architecture, pp. 226-234, 1986.

[84] Gregory B. Shippen, and James K. Archibald, "A Tagged Token Dataflow Machine
for Computing small, Iterative Algorithms," ACM SIGARCH Computer Architecture
News, Vol. 15, No. 6, pp. 9-18, Dec. 1987.

[85]M. Sowa, ''A Method for Speeding up Serial Processing in Dataflow Computers by
Means of a Program Counter,": The Computer Journal, Vol. 30, No. 4, pp. 289-294,
1987.

[86]Tatsuo Suzuki et al., "Procedure Level Data Flow Processing on Dynamic
Structure Multimicroprocessors," Journal ofinformation Processing, vol. 5, no. l, pp.
12-16, 1982 .

. [87] Masura Takesue, "A Unified Resource Management and Execution Control
Mechanism for Data Flow Machines," Proc. 14th Annual Symposium on Computer ·
Architecture, pp. 90-97, 1987.

153

[88] Jorma Tarhio and Eska Ukkonen, "Approximate Boyer-Moore String Matching,"
Siam J. Comput., Vol. 22, pp. 243-260, April 1993.

[89] Mario Tokoro, J. R. Jagannathan, and Hideki Sunahara, "On The Working Set
· Concept for Data-Flow Machines," Proc. 10th Annual Symposium on Computer

Architecture, pp. 90-97, 1983. '

[90] Robert A. Wagner, "The String.:to-String Correction Problem," Journal of the ACM,
Vol. 21, pp. 168-173, Jan. 1974.

[91] Haigeng Wang, Alexandru Nicolau, and Kaj.:Yeng S. Siu, "The Strict Time Lower
Bound and. Optimal Schedules for Parallel Prefix with Resource Constraints," IEEE
Trans. on Computers, Vol. 45, No. 11, pp. 1257-1271, Nov. 1996.

[92] Ian Watson, and John Gurd, "A Practical Data Flow Computer," Computer, Vol. 15,
pp. 51-57, Feb. 1982. ·

[93] Alden H. Wright, "Approximate String Matching using Within-Word Parallelism,"
Software-Practice and Experience, Vol. 24, pp: 337-362, April 1994:

[94] Sun Wu and Udi" Manber, "Fast Text Searching Allowing Errors," Comm. ACM,
Vol. 35, pp. 83-91, Oct. 1992. ·

[95] Toshitsugu Yuba, "Research and Development Efforts on Dataflow Computer
Architecture' in Japan," Journal of Information Processing, vol. 9, no.2, pp. 52-60,
1986.

[96] Toshitsugu Yuba, Tashina Shimada, et al., "Dataflow. Computer Development in
Japan,11 ACM SIGARCH Computer Architecture News, vol.. 18, no.3, (1990
International Conference on Supercomputing) pp. 140-14 7, Sept.1990.

154

VITA
,,,,,

JIN HW AN.PARK·

Candidate for the Degree of

Bodor of Philosophy

.·

Thesis: STREAM ORIENTED COMPUTATION IN DATAFLOW EXECUTION
MODEL AND APPLICATION TO STRING MATCHING PROBLEMS

Major Field: Computer Science

Biographical:

Personal Data: Born in Pusan, Korea, on August 07, 1958, the son of Sang-Ho Park
. and Ki-Nam Jeong. . .

Education: Received Bachelor 'of Science degree in Physics in 1985. Received
· Master of Science degree in. Computer Science from The Ohio University in 1987.

Completed the requirements for the Doctor of.Philosophy degree with a major in
Computer" Science at Oklahoma State University in :December 1998.

Professional Memberships: ACM SigArch and SigDA.

