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Abstract: The analysis of social and biological networks often involves modeling clusters
of interest as cliques or their graph-theoretic generalizations. The k-club model, which
relaxes the requirement of pairwise adjacency in a clique to length-bounded paths inside
the cluster, has been used to model cohesive subgroups in social networks and functional
modules/complexes in biological networks. However, if the graphs are time-varying, or if
they change under different (experimental) conditions, we may be interested in clusters that
preserve their property over time or under changes in conditions. To model such clusters
that are conserved in a collection of graphs, we consider a cross-graph k-club model, a subset
of nodes that forms a k-club in every graph in the collection.

In this dissertation, we consider the canonical optimization problem of finding a cross-graph
k-club of maximum cardinality. The overall goal of this dissertation is to develop integer
programming approaches to solve the problem. We establish computational complexity of
the problem and its related problems. We introduce a naive extension of the cut-like for-
mulation for the maximum k-club problem and offer ideas to strengthen it. We introduce
valid inequalities for the problem and extend existing inequalities valid for the single-graph
problem to the cross-graph setting. We introduce algorithmic ideas to solve this problem
using a decomposition branch-and-cut algorithm. For scale reduction, we explore prepro-
cessing procedures and extended formulations. We assess computational effectiveness of the
techniques we propose and evaluate their performance on benchmark instances.

We introduce and study in this dissertation, the maximum k-club signature problem, which
aims to find a maximum cardinality cross-graph k-club in τ consecutive graphs in a sequence
of graphs, where the parameter τ is specified by the user. We propose a “moving window”
method that solves a sequence of several maximum cross-graph k-club problems, and assess
the performance of the approaches we propose in solving the signature variant.
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CHAPTER I

INTRODUCTION

In graph-based data mining (or graph mining), a node models a data item with different

attributes, and two nodes are joined by an edge if they are “close” to each other based

on similarity measures. Graph mining in social and biological networks involves modeling

clusters of interest using cliques and their graph-theoretic generalizations. In these graphs,

a cohesive/tight-knit subset is a group whose member nodes are believed or verified to inti-

mately cooperate with each other towards some specific goal. Cohesive subgroups in social

networks could be identified for use in recommender systems, marketing campaigns, commu-

nity detection, influence maximization, and so forth (Alhajj and Rokne, 2018). In biological

networks like protein interaction networks, gene co-expression networks, and metabolic net-

works, clusters and network motifs are commonly used to identify functional modules that

could represent protein complexes, transcriptional modules, or signaling pathways (Junker

and Schreiber, 2008).

To model tightly knit clusters in graphs, the clique and its graph-theoretic relaxations

have been extensively studied (Pattillo et al., 2013b). Major categories of clique relaxation

models include the distance based relaxations like k-clique and k-club (Luce, 1950; Alba,

1973; Mokken, 1979), and edge count, degree, and density based relaxations like k-defective

clique (Trukhanov et al., 2013), k-plex (Balasundaram et al., 2011), and quasi-clique (Pattillo

Portions of this chapter are reprinted with permission from:
Balasundaram, B., Borrero, J. S., and Pan, H. (2022). Graph signatures: Identification and optimization.

European Journal of Operational Research, 296(3):764–775.

1



et al., 2013a), respectively. These clique relaxations have found applications in modeling

clusters in different fields.

A significant body of literature on optimization methods for cluster detection seeks to

find a subset of nodes satisfying a graph property while optimizing a measure of fitness like

cluster size or weight. One common characteristic shared by optimization approaches to

graph mining is that they identify cohesive subgraphs, critical nodes, most central actors, or

other graph structures of interest in a single graph.

1.1 Motivation

However, in many settings the graphs are time-varying as the underlying dynamic systems

they are modeling evolve over time. In this case, a single graph is typically a snapshot that

reflects node relationships at the point in time it is recorded. The motivating applications in

social and biological network analysis as well as in other areas often yield time-series data,

which in turn corresponds to a sequence of graphs over time in which the nodes and the

edges change (Hu et al., 2005; Li et al., 2011; Hellmann and Staudigl, 2014; Paranjape et al.,

2017). Independently analyzing each snapshot graph ignores dynamic characteristics like the

persistence of a pattern in time.

Alternatively, relationships between a group of nodes may be different under different

(experimental) conditions, which corresponds to a collection of graphs. In this condition, we

say a collection instead of a sequence of graphs because order is of no significance. Jointly

mining node relationships under different conditions, or a collection of graphs, might uncover

novel clusters that cannot be found by individually analyzing each condition, or each graph.

An example in cross-market customer segmentation is finding customers who have similar

behaviors across different markets as a more robust cohesive subgroup than those found in a

single market (Pei et al., 2005b). Similarly, systems biologists are interested in finding groups

of co-expressing genes or interacting proteins that are conserved under different biological

conditions or between different species (Pei et al., 2005a).

2



In this dissertation, we consider a cross-graph k-club model to represent clusters that

are conserved in a collection of graphs and induce low-diameter subgraphs (with diameter

bounded above by a positive integer k). A graph collection may represent temporal graphs

with an implicit ordering, or may be obtained under different conditions without any natural

ordering. Although the focus of this dissertation is on clusters that induce low-diameter

graphs, one may investigate any clique relaxation or other graph properties in the cross-

graph setting.

1.2 Notations and Definitions

For a simple, undirected graph G, we use V (G) ≔ {1, 2, . . . , n} and E(G) to denote its node

and edge sets respectively. For simplicity we use uv to denote an edge {u, v} ∈ E(G). For a

subset of nodes S ⊆ V (G), G[S] denotes the subgraph induced by S, obtained by deleting

nodes outside S and their incident edges. We use distG(i, j) to denote the distance between

nodes i and j in graph G and define its diameter as diam(G) ≔ max{distG(i, j) ∶ i, j ∈

V (G)}.

Definition 1 (Luce (1950)). Given a graph G and a positive integer k, a subset of nodes

S ⊆ V (G) is called a k-clique if distG(i, j) ≤ k for every pair of nodes i, j ∈ S.

A k-clique S allows two vertices u and v to be in S even if every path between u and v

of length at most k in G includes vertices outside S (see Figure 1). By contrast, in a k-club,

at least one of those paths should be contained in S as the definition below states.

Definition 2 (Mokken (1979)). Given a graph G and a positive integer k, a subset of nodes

S ⊆ V (G) is called a k-club if diam(G[S]) ≤ k.

When k = 1, k-clique and k-club coincide with the clique model, essentially a subset of

nodes inducing a complete subgraph. Node set {2, 3, 4} in Figure 1 forms a clique. For low

values of parameter k, typically no more than four, the k-club can be an appropriate choice

for modeling cohesive social subgroups or tightly knit clusters. We define the cross-graph

3



1 2

5 4

6 3

1 2

5 4

6 3

Figure 1: The set {1, 2, 4, 5, 6} forms a 2-club; the set {1, 2, 3, 4, 5} forms a 2-clique, but does
not form a 2-club Alba (1973).

counterpart of the k-club, based on the cross-graph quasi-clique model introduced by Pei

et al. (2005b), which also appears to be the earliest formal study of a cross-graph cluster

model. Let G = {G1, G2, . . . , Gp} denote a collection of p simple, undirected graphs, all

defined on a common node set denoted by V (G) ≔ {1, 2, . . . , n}.

Definition 3. A subset of nodes S ⊆ V (G) is called a p-graph k-club if S is a k-club in each

graph in the collection G.

This dissertation focuses on the maximum p-graph k-club problem, which seeks to find a

p-graph k-club of maximum cardinality given a graph collection. We use the prefix “p-graph”

when we know or wish to specify that there are p graphs in the collection. Otherwise, in

line with past usage, we simply refer to the graph model as a cross-graph k-club (Pei et al.,

2005b).

A closely related problem to the maximum p-graph k-club problem is the maximum k-

club signature problem on a graph sequence. The special case of the problem when k = 2 has

been introduced and preliminarily tackled by Balasundaram et al. (2022). In contrast to the

p-graph k-club problem, order of graphs is of significance in the signature problem. Given

a graph sequence G = (G1, G2, . . . , GT ) and positive integers k and τ , a maximum k-club

signature problem seeks to find a maximum cardinality τ -persistent k-club signature of G,

which is defined next.

Definition 4. A subset of nodes S ⊆ V (G) is called a τ -persistent k-club signature if S is a

k-club in at least τ consecutive graphs in G.

4



The k-club signature problem and the cross-graph k-club problem are closely related

because the former can be solved by solving several cross-graph k-club problems, i.e., a

maximum k-club signature problem can be decomposed into a sequence of maximum cross-

graph k-club problems. Due to this relationship, we verify the computational effectiveness

of the techniques we introduce for solving the maximum cross-graph k-club in solving the

signature counterpart in Chapter VI.

We acknowledge that part of results in Chapters I, II, VI has appeared in Balasundaram

et al. (2022).
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CHAPTER II

LITERATURE REVIEW

The (1-graph) maximum k-club problem is a well-known NP-hard problem (Bourjolly

et al., 2002; Balasundaram et al., 2005). A comprehensive survey on the complexity results

and algorithmic approaches for the maximum k-club problem can be found in Shahinpour

and Butenko (2013). In Section 2.1, we briefly review integer programming (IP) approaches

to the maximum k-club problem in the literature, and in Section 2.2 we review prevailing

works on cross-graph models. Because we are solving the maximum k-club signature problem

as a case study for the application of the techniques for the maximum cross-graph k-club

problem, we also review works on mining temporal graphs in Section 2.3.

2.1 IP Approaches to the Maximum k-Club Problem

The first IP formulation in the literature for the maximum k-club problem was introduced

by Bourjolly et al. (2002). It is known as the chain formulation because it introduces a binary

variable for each path of length less than or equal to k connecting a nonadjacent pair of nodes

i and j. For the special case of k = 2, the aforementioned binary variables can be replaced

by those binary variables for the inclusion of the common neighbors of a nonadjacent pair

of nodes. In doing so, we obtain the so-called common neighbor formulation (2.1.1) for the

maximum 2-club problem. We use G and NG(u) to denote the complement of graph G and

Portions of this chapter are reprinted with permission from:
Balasundaram, B., Borrero, J. S., and Pan, H. (2022). Graph signatures: Identification and optimization.

European Journal of Operational Research, 296(3):764–775.
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the neighbors of node u in G respectively. We use NG(u, v) = NG(u)∩NG(v) to denote the

common neighborhood of u and v in graph G. We use the short form x(V (G)) to denote

∑u∈V (G) xu. The common neighbor formulation has O(n2) constraints.

max x(V (G)) (2.1.1a)

s.t. xu + xv − x(NG(u, v)) ≤ 1 ∀uv ∈ E(G) (2.1.1b)

xu ∈ {0, 1} ∀u ∈ V (G). (2.1.1c)

Note that an IP formulation for the maximum cross-graph k-club problem can be obtained

by simply taking the conjunction of any IP formulation for the maximum k-club problem over

all graphs in the collection. We refer to this straightforward formulation as the conjunctive

formulation. For example, if G = {G,H}, the maximum 2-graph 2-club problem admits

formulation (2.1.2).

max x(V (G)) (2.1.2a)

s.t. xu + xv − x(NG(u, v)) ≤ 1 ∀uv ∈ E(G) (2.1.2b)

xu + xv − x(NH(u, v)) ≤ 1 ∀uv ∈ E(H) (2.1.2c)

xu ∈ {0, 1} ∀u ∈ V (G). (2.1.2d)

Because path enumeration gets increasingly challenging as k takes values bigger than

2, it can take up to O(nk+1) binary variables and constraints to fully describe the chain

formulation. To the best of our knowledge, no systematic computational studies have been

reported on the chain formulation when k ≥ 3.

Veremyev and Boginski (2012) introduced two polynomial-sized IP formulations with one

using binary variables and the other using integer variables. Both of them are fully described

by O(kn2) variables and constraints, they are known to be the first compact formulations

for the maximum k-club problem for general k. These two formulations are obtained by

7



linearizing a polynomial formulation in which each term is a monomial of up to k variables.

The authors circumvent path enumeration while simultaneously enforcing that at least one

path of length less than equal to k between any selected pair of nodes must also be selected.

Moradi and Balasundaram (2018) (see also Lu et al. (2018)) proposed a decomposition

and branch-and-cut (BC) algorithm to find a maximum k-club. This algorithm employs

canonical hypercube cuts (CHC) as delayed constraints. The algorithm begins with solving

a maximum k-clique IP formulation as the master relaxation. A CHC will be added to the

formulation as a delayed constraint when the algorithm encounters an integral solution that

does not correspond to a k-club.

Salemi and Buchanan (2020) introduced a cut-like formulation and a path-like formula-

tion by using length-bounded separators and connectors. Generally, the cut-like formulation

could use exponentially many constraints, but only n binary variables. The computational

superiority of this formulation has been demonstrated by the reported numerical results,

which makes it the state-of-the-art mathematical programming approach to solve the maxi-

mum k-club problem for arbitrary k.

2.2 Cross-Graph Models in Graph Mining

Previous works on cross-graph models in the literature are limited. To extract hidden pat-

terns crossing multiple pieces of data, Pei et al. (2005b,a) investigated mining cross-graph

quasi-cliques and developed algorithms to enumerate every cross-graph quasi-clique across

multiple graphs. Jiang and Pei (2009) extended this work to a more general problem of find-

ing “frequent” cross-graph quasi-clique. In this setting, the detected clusters are required to

form a quasi-clique in at least a fixed number of graphs.

Sim et al. (2011) introduced an approach to clustering stocks that exhibit homogeneous

financial ratio values by mining the complete set of cross-graph quasi-bicliques in a bipartite

graph. This bipartite graph has stocks as nodes in one partition and different features of the

stock data in the other partition. The cross-graph quasi-biclique model was used to handle

8



the issue of missing values in stock data. Models and methods for mining conserved clusters

in a collection of graphs without strictly imposing the cross-graph requirement can also be

found in the literature (Jiang et al., 2013a; Viard et al., 2016; Himmel et al., 2017; Charikar

et al., 2018; Bentert et al., 2019; Semertzidis et al., 2019).

2.3 Temporal Graph Mining

As noted in Section 1.1, individually analyzing each snapshot graph in a graph sequence over

time ignores dynamic characteristics of the sequence. Mining a sequence of graphs simul-

taneously might uncover novel clusters which could not be found by independently mining

each graph. Works that recognize and aim to address these challenges have appeared in lit-

erature. A popular approach involves finding frequent subgraphs in multiple graphs (Jiang

et al., 2013b), similar to the use of frequently occuring network motifs in social and biological

network analysis (Paranjape et al., 2017). The sequence of graph snapshots are referred to as

relational graphs or transactional graphs in this literature. In this setting, one seeks to find

a subgraph, typically required to be dense or connected, that is recurrent, i.e., present in at

least a minimum number of snapshots; or alternately, find a subgraph of an auxiliary graph

(that summarizes the information) whose edges are present in at least a minimum number

of snapshots (cf. Kuramochi and Karypis (2005); Hu et al. (2005); Yan et al. (2005)). How-

ever, counting occurrences alone may not be a satisfactory surrogate for persistency, as it is

insensitive to the ordering of the snapshots.

More recently, some authors have taken the following approach to find ∆-cliques in

temporal networks (Viard et al., 2016; Himmel et al., 2017). Consider a subset of nodes

C and an interval of consecutive graph snapshots I that share a common node set. The

subset C is called a ∆-clique in I if every pair of nodes in C are adjacent in at least one

snapshot out of every ∆ consecutive snapshots in I. In other words, any pair of nodes in a

∆-clique over an interval of snapshots cannot be non-adjacent for more than ∆ consecutive

snapshots. The general approach here is to impose a minimum periodicity in the “atomic”
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property (required of each vertex, edge, vertex-pair etc.) that the subgraph must satisfy in

the static counterpart. Although when ∆ > 0, it is possible that C may not be a clique in

any graph in the subsequence I, when ∆ = 0, C is a clique in every snapshot in I.

Viard et al. (2016) propose an algorithm to enumerate all maximal ∆-cliques, where

maximality is by inclusion with respect to both C and I. Viard et al. (2018) generalize

their ∆-clique model for instantaneous link streams to enumerating maximal cliques that

are persistent over a duration. Bentert et al. (2019) extended the ∆-clique approach to ∆-

k-plexes, based on a clique relaxation model for cohesive social subgroups in social network

analysis (Seidman and Foster, 1978). The recent work of Latapy et al. (2018) to generalize

many basic graph theory concepts to deal with temporal networks, or what they refer to as

stream graphs, is also of interest in this context.

Another branch of relevant literature introduces the following ideas. Jethava and Beeren-

winkel (2015) considered the problem of finding a densest common subgraph (DCS) in a

sequence of graphs with a common node set. That is, a subset of nodes that maximizes

the minimum average degree
1

over the subgraphs it induces in every graph in the sequence.

Semertzidis et al. (2019) extended this idea in two directions: first, they introduce four vari-

ants of the DCS problem by considering average or minimum degree of the subgraph induced

by a subset of nodes, aggregated into an objective function by considering the minimum or

average over all the snapshots in the sequence; second, they introduce a relaxation that re-

quires the subset of nodes to optimize one of the measures of density over a subsequence of

k snapshots. It is important to note that the k snapshots need not be consecutive in their

framework. The four variants introduced by Semertzidis et al. (2019) were further investi-

gated by Charikar et al. (2018), with both studies offering greedy algorithms, approximation

and complexity results for these problems.

Balasundaram et al. (2022) introduced a graph-theoretic paradigm called a graph sig-

1
Note that the authors define as density, the number edges in the induced subgraph divided by the order,

i.e., half the average degree of the induced subgraph. Hence, the density metric they optimize is proportional
to average degree of the induced subgraph.
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nature to describe persistent patterns in temporal networks, and proposed a dynamic pro-

gramming based algorithmic framework, the moving window method, for the graph signature

identification problem. The authors demonstrated how this generic framework can be tai-

lored to exploit property-specific decomposition and scale reduction techniques, and reported

computation results on clique, 2-club, and core signature problems. We extend some of these

results for general k-club signatures in this dissertation.
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CHAPTER III

RESEARCH STATEMENT

The overall goal of this dissertation is to develop integer programming approaches to solve

the maximum p-graph k-club problem in an effective manner on established testbeds. We

also aim to verify the effectiveness of the developed techniques by solving the maximum

k-club signature problem as a case study. We list our main research objectives below, and

then describe the organization of the dissertation.

(1) Establish computational complexity of the maximum p-graph k-club and associated

problems.

(2) Investigate IP formulations and valid inequalities for the maximum p-graph k-club prob-

lem.

(3) Investigate effective BC schemes for the maximum p-graph k-club problem.

(4) Verify the computational effectiveness of the developed techniques in solving the maxi-

mum k-club signature problem.

We organize the rest of the dissertation in the following manner. In Chapter IV, we es-

tablish computational complexity of three problems, the maximum p-graph k-club problem,

bounded enlargement of a k-club, and bounded enlargement of a p-graph k-club. The latter

two problems will be defined in the same chapter. Each of the three problems turns out to be

NP-hard to solve. Interestingly, the first and third problems share a common reduction pro-

cedure devised for showing the NP-hardness of the maximum k-clique and k-club problems
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in Balasundaram et al. (2005). In Chapter V, we present IP formulations and valid inequal-

ities for the maximum p-graph k-club problem. We also extend existing valid inequalities

for the maximum k-club problem to the p-graph setting. In addition, we introduce algorith-

mic approaches to the maximum k-club signature problem based on techniques established

for the maximum cross-graph k-club problem. In Chapter VI, we conduct a computational

study to assess and compare the approaches introduced, BC algorithms based on different

IP formulations, for solving the maximum p-graph k-club problem. We also introduce pre-

processing procedures for scale reduction. In the last section of the chapter, we verify the

computational effectiveness of the established techniques for the maximum p-graph k-club

problem in solving the maximum k-club signature problem. In Chapter VII, we conclude

the dissertation and discuss future research directions.
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CHAPTER IV

COMPUTATIONAL COMPLEXITY

The (1-graph) maximum k-club problem is NP-hard for every value of parameter k fixed in

the problem (Bourjolly et al., 2002). Consequently, the maximum p-graph k-club problem

is NP-hard for every fixed positive integer k as it includes the maximum k-club problem as

special case. In this chapter, we present a direct proof showing that the decision version

of the maximum p-graph k-club problem is NP-complete for every fixed positive integer p

and k. In addition, we show that the bounded enlargement of a k-club for every fixed k

is NP-hard and so is the bounded enlargement of a p-graph k-club for every fixed p and

k. Bounded enlargement of a k-club is of interest because it is related to the maximality

testing of a k-club, which is proven to be coNP-complete for every fixed k ≥ 2 (Pajouh and

Balasundaram, 2012).

In the proofs, we reduce the Clique problem defined below to the problems of interest,

and our reduction procedure is based on reductions used by Balasundaram et al. (2005).

Clique

Input: A graph G, a positive integer `.

Question: Does there exist a clique of size at least ` in G?

4.1 Bounded Enlargement of a k-Club

Verifying maximality by inclusion of a k-club, or maximality testing a k-club defined below,

is proved to be coNP-complete for every fixed k ≥ 2 by reduction from the 3-SAT problem
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by Pajouh and Balasundaram (2012). When k = 1, the problem reduces to maximality

testing a clique (MTC), which is solvable in polynomial time by checking if any node outside

the clique is adjacent to every node inside.

Maximality Testing A k-Club (MTkC)

Input: A graph G, a k-club S.

Question: Is S a maximal k-club in G?

Equivalently, given a k-club S in G, one may ask if a k-club containing S with exists

with size at least ∣S∣ + 1? The answer to this question is yes if and only if the answer to

maximality testing S is no, and consequently this problem is NP-complete. Note that a

k-club S
′
containing S with ∣S ′∣ ≥ ∣S∣+ 1 may exist in G even though no k-club exists that

contains exactly one more node. This is due to the nonhereditary nature of k-clubs, i.e., a

proper subset of a k-club is not necessarily a k-club (Mokken, 1979); see Figure 2.

5 2

4 3

1

Figure 2: Set {1, 2, 3, 4, 5} is the only 2-club strictly containing 2-club {1, 2, 5}.

The equivalent question discussed above is a special case of the bounded enlargement

of a k-club (BEkC) problem defined next. Due to this observation, the BEkC problem

is NP-complete for every fixed k ≥ 2. Observe that when k = 1, this problem reduces to

bounded enlargement of a clique (BEC). BEC, when ` = 1, always assumes an opposite

answer to MTC, and therefore solvable in polynomial time. Next, we offer an alternate

proof showing that BEkC is NP-hard for every fixed k ≥ 2, and we also show that BEC is

NP-hard. Consequently, BEkC is NP-hard for any fixed k ≥ 1.
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Bounded Enlargement Of A k-Club (BEkC)

Input: A graph G, a k-club S, a positive integer `.

Question: Does there exist a k-club containing S of size at least ∣S∣ + ` in G?

Proposition 1. The BEkC problem is NP-complete for every fixed k ≥ 2.

Proof. It is easy to verify that BEkC belongs to class NP. Next, we prove the NP-hardness

by reduction from the Clique problem, and we borrow the instance construction procedure

directly from Balasundaram et al. (2005).

Let ⟨G, `⟩ be an instance of the Clique problem. Without loss of generality, we assume

G to be connected. We construct another graph G
′
based on the parity of k.

Case 1: k is odd. For V (G′), we take the union of ⌊k/2⌋ copies of V (G), one copy of E(G),

and an auxiliary node 0, i.e.,

V (G′) = (
⌊k/2⌋

⋃
i=1

V
i) ∪ E(G) ∪ {0},

with V
i
= {1

i
, 2

i
, . . . , n

i} denoting the i-th copy of V (G) and v
i

denoting the i-th copy

of node v ∈ V (G). For the edge set of G
′
, we let

E(G′) =
⌊k/2⌋−1

⋃
i=1

{{vi, vi+1} ∶ v ∈ V (G)}

∪ {{v⌊k/2⌋, e} ∶ v ∈ e, e ∈ E(G)}

∪ {{e, 0} ∶ e ∈ E(G)}.

As the equations above show, graph G
′
contains a node {u, v} for every edge {u, v} ∈

E(G), and every such node is made adjacent to a new node 0. Every such node is

also attached to a pendant path (u1, u2, . . . , u⌊k/2⌋) at node u
⌊k/2⌋

and another path

(v1, v2, . . . , v⌊k/2⌋) at node v
⌊k/2⌋

. See an example of construction in Figures 3 and 4.
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1 2 3

Figure 3: An instance graph G for the Clique problem.
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Figure 4: Illustration of graph G
′

for the BEkC problem when k is odd, corresponding to
G in Figure 3.

Case 2: k is even. For V (G′), we take the union of k/2 copies of V (G), one copy of E(G),

that is,

V (G′) = (
k/2

⋃
i=1

V
i) ∪ E(G).

For the edge set, we let

E(G′) =
k/2−1

⋃
i=1

{{vi, vi+1} ∶ v ∈ V (G)}

∪ {{vk/2, e} ∶ v ∈ e, e ∈ E(G)}

∪ {{e1, e2} ∶ e1, e2 ∈ E(G), e1 ≠ e2}.

In other words, graph G
′

contains a node {u, v} for every edge {u, v} ∈ E(G), and
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every such node {u, v} is also attached to a pendant path (u1, u2, . . . , uk/2) at node

u
k/2

and another path (v1, v2, . . . , vk/2) at node v
k/2

. In addition, there is an edge

between e1 and e2 for any e1, e2 ∈ E(G) with e1 ≠ e2. See an illustration of graph G
′

in Figure 5 constructed based on graph G in Figure 3.
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{1, 2}

{2, 3}

E(G)

Figure 5: Illustration of graph G
′

for the BEkC problem when k is even, corresponding to
G in Figure 3.

Observe that in both constructions, for odd and even k, V (G′) \ V 1
is a k-club in G

′
.

So given an instance ⟨G, `⟩ of Clique, we have constructed an instance ⟨G′
, S

′
, `⟩ of BEkC

with S
′
= V (G′) \ V 1

.

We claim that ⟨G, `⟩ is a yes-instance of Clique if and only if ⟨G′
, S

′
, `⟩ is a yes-instance

of BEkC.

Case 1: k is odd.

(⇐) Suppose G
′
has a k-club S

′′
containing S

′
with ∣S ′′∣ ≥ `+ ∣S ′∣. Since S

′′
is a k-club

in G
′
, distG′(u1, v1) ≤ k for any u

1
, v

1
∈ S

′′ ∩ V 1
, and so {u, v} is a node in G

′
and an

edge in G. Thus, S = {u ∈ V (G) ∶ u1 ∈ S ′′ ∩ V 1} forms a clique in G. Note that ∣S∣
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is at least `, because ∣S ′′∣ will be strictly less than ` + ∣S ′∣ otherwise. Thus, ⟨G, `⟩ is

a yes-instance of Clique.

(⇒) Suppose G has a clique S of size `. For arbitrary u, v in S, there exists a node

{u, v} in H which is on a path of length 2 ⌊k/2⌋ connecting u
1

and v
1
. Let S

′′
=

{u1 ∶ u ∈ S}∪S ′. Note that distG′[S ′′](u1, v1) ≤ k and S
′′

forms a k-club containing S
′
.

Thus, ⟨G′
, S

′
, `⟩ is a yes-instance of BEkC.

Case 2: k is even.

(⇐) This direction is identical to its counterpart when k is odd.

(⇒) SupposeG has a clique S of size `. For arbitrary u, v in S, there exists a node {u, v}

in H which is on a path of length k connecting u
1

and v
1
. Let S

′′
= {u1 ∶ u ∈ S}∪ S ′.

Note that distG′[S ′′](u1, v1) ≤ k and S
′′

forms a k-club containing S
′
. Thus, ⟨G′

, S
′
, `⟩

is a yes-instance of BEkC.

Proposition 2. The BEC problem is NP-complete.

Proof. We prove this result by reduction from the Clique problem.

Let ⟨G, `⟩ be an instance of the Clique problem. Again, we assume G to be connected.

We construct another graph G
′
by letting V (G′) = V (G)∪{0}, where 0 is an auxiliary node;

and E(G′) = E(G) ∪ { {u, 0} ∶ u ∈ V (G)}. See illustration of G
′

in Figure 6 constructed

from G in Figure 3.

It is easy to verify that G has a clique S of size ` if and only if G
′
has a clique S

′
containing

clique {0} with ∣S ′∣ = ` + 1. Clearly BEC belongs to class NP.

Propositions 1 and 2 imply the following theorem.

Theorem 1. The BEkC problem is NP-complete for every fixed k ≥ 1.
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0

1 2 3 A copy of G

Aux. Node

Figure 6: Illustration of graph G
′
for the BEC problem, corresponding to G in Figure 3.

4.2 The p-Graph Extensions

In the previous section, the BEkC problem is proved to be NP-complete for every fixed

k ≥ 1, and therefore bounded enlargement of a cross-graph k-club (BECkC) defined below

is NP-complete for every fixed k ≥ 1 because it generalizes BEkC. However, this result

is trivially true for arbitrary G, because BEkC on an instance ⟨G,S, `⟩ is equivalent to

BECkC on ⟨G, S, `⟩ with G containing p duplicates of G. As duplicate copies of graphs

can be removed from the collection, we show that BECkC is NP-complete for every fixed k

containing an arbitrary number of distinct graphs. Because of these two reasons, we switch

to showing BECkC is NP-complete for every fixed k ≥ 1 on graph collections containing

an arbitrary number of nonidentical graphs. We prove this result by showing the special

case where graph collections contain two distinct graphs. For reduction, we present different

procedures for k ≥ 2 and k = 1. In addition, we prove analogous results for the p-Graph

k-Club (CkC) problem, the decision counterpart of the optimization problem of interest.

Bounded Enlargement Of A p-Graph k-Club (BECkC)

Input: A graph collection G, a p-graph k-club S, a positive integer `.

Question: Does there exist a p-graph k-club containing S of size at least ∣S∣ + ` in G?

Proposition 3. The BECkC problem is NP-complete for every fixed k ≥ 2 on graph

collections containing an arbitrary number of nonidentical graphs.

Proof. It is easy to verify that BECkC is in class NP. We prove the NP-hardness by reduction

from the Clique problem.
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Let ⟨G, `⟩ be an instance of the Clique problem. Without loss of generality, we assume

G is connected and ∣E(G)∣ ≥ 2. We partition E(G) into two subsets, Q1, Q2. Define a

graph collection G = {G1, G2} by letting V (Gi) = V (G) and E(Gi) = Qi for i = 1, 2. Due

to this construction, E(G) = E(G1) ∩ E(G2). Next, we define another graph collection

H = {H1, H2} based on the parity of k, with Hi constructed based on Gi same way G
′

is constructed based on G in the proof of Proposition 1. Further, we build a third graph

collection J = {J1, J2}, again based on parity of k.

Case 1: k is odd. Let V (Ji) = V (Hi) ∪ E(Gi) and E(Ji) = E(Hi) ∪ {{0, e} ∶ e ∈ E(Gi)},

for each i = 1, 2.

Case 2: k is even. Let V (Ji) = V (Hi) ∪ E(Gi) and E(Ji) = E(Hi) ∪ {{e1, e2} ∶ e1, e2 ∈

E(Gi), e1 ≠ e2}, for each i = 1, 2.

See illustrations of G in Figure 8, H in Figures 9 and 11, and J in Figures 10 and 12,

constructed based on G in Figure 7.

Observe in both constructions, for odd and even k, V (J ) \ V 1
is a 2-graph k-club in

J . So given an instance ⟨G, `⟩ of Clique, we have constructed an instance ⟨J , S ′, `⟩ of

BECkC with S
′
= V (J ) \ V 1

.

We claim that ⟨G, `⟩ is a yes-instance of Clique if and only if ⟨J , S ′, `⟩ is a yes-instance

of BECkC.

Case 1: k is odd.

(⇐) Suppose J has a 2-graph k-club S
′′

containing S
′

with ∣S ′′∣ ≥ ` + ∣S ′∣. Then

distJi(u
1
, v

1) ≤ k for any u
1
, v

1
∈ S

′′ ∩ V 1
and for i = 1, 2, and so {u, v} is a node in Ji

for i = 1, 2 and an edge in G. Thus, S = {u ∈ V (G) ∶ u1 ∈ S ′′ ∩ V 1} forms a clique in

G. Note that ∣S∣ is at least `, because ∣S ′′∣ will be strictly less than `+ ∣S ′∣ otherwise.

Thus, ⟨G, `⟩ is a yes-instance of Clique.

(⇒) Suppose G has a clique S of size `. For arbitrary u, v in S, there exists a node

{u, v} in Ji which is on a path of length 2 ⌊k/2⌋ connecting u
1

and v
1

for i = 1, 2. Let
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S
′′
= {u1 ∶ u ∈ S} ∪ S

′
. Note that distJi[S ′′](u

1
, v

1) ≤ k for i = 1, 2 and S
′′

forms a

2-graph k-club containing S
′
. Thus, ⟨J , S ′, `⟩ is a yes-instance of BECkC.

Case 2: k is even.

(⇐) This direction is identical to its counterpart when k is odd.

(⇒) Suppose G has a clique S of size `. For arbitrary u, v in S, there exists a node

{u, v} in Ji which is on a path of length k connecting u
1

and v
1

for i = 1, 2. Let

S
′′
= {u1 ∶ u ∈ S} ∪ S

′
. Note that distJi[S ′′](u

1
, v

1) ≤ k for i = 1, 2 and S
′′

forms a

2-graph k-club containing S
′
. Thus, ⟨J , S ′, `⟩ is a yes-instance of BECkC.

1

2 3

4

Figure 7: An instance graph G for the Clique problem.

G1

1

2 3

4

G2

1

2 3

4

Figure 8: Illustration of G = {G1, G2} constructed based on graph G in Figure 7. Set E(G) =
{{1, 3}, {1, 4}, {2, 4}} is partitioned into E(G1) = {{1, 3}, {2, 4}} and E(G2) = {{1, 4}}.

When k = 1, BECkC reduces to bounded enlargement of a cross-graph clique (BECC).
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Figure 9: Illustration of H = {H1, H2} constructed based on G in Figure 8, when k is odd.

Proposition 4. The BECC problem is NP-complete on graph collections containing an

arbitrary number of distinct graphs.
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Figure 10: Illustration of J = {J1, J2} constructed based on H in Figure 9, when k is odd.

Proof. Again, we prove this result by reduction from the Clique problem.

Let ⟨G, `⟩ be an instance of the Clique problem. We assume G to be connected and

24



H1

1
1

2
1

3
1

4
1

V
1

1
2

2
2

3
2

4
2

V
2 . . .

. . .

. . .

. . .

. . .

1
i

2
i

3
i

4
i

V
i . . .

. . .

. . .

. . .

. . .

1
k/2

2
k/2

3
k/2

4
k/2

V
k/2

{1, 2}

{2, 3}

{3, 4}

{1, 4}

E(G1)

H2

1
1

2
1

3
1

4
1

V
1

1
2

2
2

3
2

4
2

V
2 . . .

. . .

. . .

. . .

. . .

1
i

2
i

3
i

4
i

V
i . . .

. . .

. . .

. . .

. . .

1
k/2

2
k/2

3
k/2

4
k/2

V
k/2

{1, 2}

{1, 3}

{2, 3}

{2, 4}

{3, 4}

E(G2)

Figure 11: Illustration of H = {H1, H2} constructed based on G in Figure 8, when k is even.
To avoid clutter, nodes inside an orange rectangle are pairwise adjacent, but the edges are
not shown in the illustration.
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Figure 12: Illustration of J = {J1, J2} constructed based on H in Figure 11, when k is even.
To avoid clutter, nodes inside an orange rectangle are pairwise adjacent, but the edges are
not shown in the illustration.
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∣E(G)∣ ≥ 2. We partition E(G) into 2 subsets, Q1, Q2. Define a graph collection G =

{G1, G2} by letting V (Gi) = V (G), and E(Gi) = Qi for i = 1, 2. We construct another

graph collection H by letting V (Hi) = V (Gi) ∪ {0}, where 0 is an anxiliary node; and

E(Hi) = E(Gi)∪ { {u, 0} ∶ u ∈ V (Gi)} for i = 1, 2. In other words, Hi is constructed based

on Gi same way as G
′
is constructed based on G in the proof of Proposition 2.

It is easy to verify that G has a clique S of size ` if and only if H has a cross-graph clique

S
′
containing cross-graph clique {0} with ∣S ′∣ = `+1. Clearly BEC belongs to class NP.

Propositions 3 and 4 imply the following theorem.

Theorem 2. The BECkC problem is NP-complete for every fixed k ≥ 1 on graph collections

containing an arbitrary number of distinct graphs.

Lastly, we consider the computational complexity of the p-graph k-club problem defined

below.

p-Graph k-Club (CkC)

Input: A graph collection G, a positive integer `.

Question: Does there exist a p-graph k-club of size at least ` in G?

Proposition 5. The CkC problem is NP-complete for every fixed k ≥ 2 on graph collections

containing an arbitrary number of distinct graphs.

Proof. Let ⟨G, `⟩ be an instance of the Clique problem and consider the J constructed in

the proof of Proposition 3. The claim in that proof implies that ⟨G, `⟩ is a yes-instance of

Clique if and only if ⟨J , ∣S ′∣+ `⟩ is a yes-instance of CkC with S
′
= V (J ) \V 1

, and CkC

belongs to class NP.

When k = 1, CkC reduces to the cross-graph clique (CC) problem. It is easy to ver-

ify that CC on a graph collection G = {G1, G2} is equivalent to Clique on the graph

(V (G), E(G1) ∩ E(G2)).
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Proposition 6. The CC problem is NP-complete on graph collections containing an arbi-

trary number of distinct graphs.

Proof. Consider a Clique instance ⟨G, `⟩. Without loss of generality, we assume G is

connected and E(G) ≥ 2. We construct a graph collection G = {G1, G2} based on G same

way as in the proof of Proposition 4, and the validity of this reduction is easily verified.

Propositions 5 and 6 imply the following theorem.

Theorem 3. The CkC problem is NP-complete for every fixed k ≥ 1 on graph collections

containing an arbitrary number of distinct graphs.
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CHAPTER V

IP FORMULATIONS AND VALID INEQUALITIES

In this chapter, we consider IP approaches to solving the maximum p-graph k-club problem.

This involves identifying IP formulations and valid inequalities to the maximum p-graph

k-club problem. We introduce an IP formulation which is an extension of the cut-like formu-

lation of Salemi and Buchanan (2020) for the maximum k-club problem to the cross-graph

setting. We present ideas which strengthen this formulation, and eventually reach a new

formulation based on what we refer to as “pairwise peeling”. In addition, we identify valid

inequalities for the problem and cross-graph extensions of existing valid inequalities in the

literature.

5.1 IP Formulations

Given a graph G and a pair of nonadjacent nodes u and v, define length-k u, v-separator as

follows. We use G\S to denote the graph obtained from G by deleting the nodes in S along

with its incident edges.

Definition 5 (Salemi and Buchanan (2020)). A subset of nodes S is called a length-k u, v-

separator if distG\S(u, v) > k.

By this definition, every path of length at most k in G between u and v uses nodes from

S. By SG(u, v), we denote the collection of all length-k u, v-separators that are minimal

by exclusion. For the case k = 2, the unique minimal length-2 u, v-separator is the set of

common neighbors, i.e., nodes adjacent to both u and v in G. Given a graph collection G,
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consider the following optimization problem:

max x(V (G)) (5.1.1a)

s.t. xu + xv − x(S) ≤ 1 ∀S ∈ SG(u, v), uv ∈ E(G), G ∈ G (5.1.1b)

xu ∈ {0, 1} ∀u ∈ V (G). (5.1.1c)

Formulation (5.1.1) is a conjunction of the cut-like formulation of the maximum k-club

problem introduced by Salemi and Buchanan (2020), across all the graphs in G. Henceforth,

we refer to formulation (5.1.1) as the conjunctive cut-like formulation (CCF). It is readily

verified that the CCF is a correct formulation in the sense that x is an incidence vector of a

cross-graph k-club if and only if it is feasible to the CCF.

Formulation (5.1.1) can be strengthened by noting that if a node w that belongs to some

minimal length-k u, v-separator of graph Gi ∈ G (i.e., w ∈ S ∈ SGi(u, v)) is also at a distance

strictly greater that k from either u or v in some other graph Gj in the collection, then w can-

not be in a cross-graph k-club that contains both u and v. Consequently, constraints (5.1.1b)

can be replaced by

xu + xv − x(S ∩Duv) ≤ 1, (5.1.2)

where,

Duv ≔ {w ∈ V (G) \ {u, v} ∶ distG(u,w) ≤ k and distG(v, w) ≤ k ∀G ∈ G} (5.1.3)

is the set of nodes that are at a distance of at most k from u and v in all the graphs in G.

The validity of constraints (5.1.2) follows from the observation that if xu = xv = 1,

then x(S \ Duv) = 0 as no nodes from the set S \ Duv can be included in a cross-graph

k-club containing u and v. Alternately, we can think of S ∩ Duv as further minimalizing

the separator S by removing nodes that are not on any path of length at most k between u
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and v, in some graph in the collection. Observe that the resulting formulation is at least as

tight as the CCF. Moreover, there are instances where x(S ∩Duv) < x(S) for at least one

separator S ∈ SG(u, v), as illustrated next.

1 2

34
5

67

G

1 2

34
5

67

H

Figure 13: Inequality x1 + x2 ≤ 1 is valid for the problem on G = {G,H} when k = 2.

Consider the maximum 2-graph 2-club problem on the graph collection in Figure 13.

Formulation (5.1.1), for node pair 1 and 2, includes the constraints x1+x2−x3 ≤ 1 due to G

and x1 + x2 − x6 ≤ 1 due to H. Note that distH(1, 3) = 3, and therefore we can tighten the

first constraint by intersecting the separator {3} with D1,2 = {5, 6, 7} to obtain the constraint

x1 + x2 ≤ 1 that dominates both previous constraints.

The validity of constraints (5.1.2) can also be seen from a lifting point of view. Consider

constraint (5.1.1b) for a particular nonadjacent node pair u, v and S. Suppose S \Duv is not

empty and w ∈ S \Duv. We are interested in finding the smallest αw such that inequality

xu + xv − x(S \ {w}) − αwxw ≤ 1 remains valid. Thus we need

αw ≥ max{xu + xv − x(S \ {w}) ∶ x ∈ CCLUB(G), xw = 1} − 1,

with CCLUB(G) denoting the p-graph k-club polytope of G, i.e., the convex hull of feasible

solutions to formulation (5.1.1). Because w ∈ S \ Duv, there exists G ∈ G with either

distG(u,w) > k or distG(v, w) > k. Without loss of generality, we assume the former is true,
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and it follows that,

max{xu + xv − x(S \ {w}) ∶ x ∈ CCLUB(G), xw = 1} ≤ 1.

As a result, the inequality remains valid if αw = 0. If we repeat this procedure on each node

in S \Duv, the validity of constraints (5.1.2) follows.

If we take a constraint (5.1.2) for a particular nonadjacent node pair u, v and S, and

apply the same lifting procedure on a node w with distG1
(u,w) > k and distG2

(v, w) > k for

some G1, G2 ∈ G, then we obtain a lifted coefficient of 1 and hence,

xu + xv + xw − x(S ∩Duv) ≤ 1 (5.1.4)

is a valid inequality. By repeating this argument, we can conclude that xu + xv + x(I) −

x(S ∩Duv) ≤ 1 is a valid inequality for CCLUB(G) if the following conditions hold:

(1) I is a maximal cross-graph distance-k independent set of G, i.e., distG(a, b) > k for

every distinct a, b ∈ I for some G ∈ G;

(2) for each w ∈ I, there exist G1, G2 ∈ G (not necessarily distinct) with distG1
(u,w) > k

and distG2
(v, w) > k.

Based on the idea of intersecting the length-k u, v-separator S in constraint (5.1.1b)

with Duv to obtain a tighter constraint (5.1.2), we can envision an approach in which we

further tighten the constraints with respect to each u, v pair, by recursively deleting nodes

which are too far away from either u or v in any graph in the collection. As the deletion

of nodes tends to have a domino effect on pairwise distances in graphs, leading to more

nodes meeting the condition for deletion. The resulting inequalities will be at least as strong

as their counterpart in constraints (5.1.2). However, it is important to recognize that this

operation is node pair specific, i.e., the graph collection obtained by deleting nodes based on

a particular u, v pair is only valid for generating constraints with respect to that pair. This
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is because nodes deleted based on u and v might be within distance k of a different node

pair.

2 4

3 5

1 6

G

2 4

3 5

1 6

H

Figure 14: Inequality x1 + x6 ≤ 1 is valid for the problem on {G,H} when k = 3.

To illustrate this idea, consider the maximum 2-graph 3-club problem on the graph

collection in Figure 14. Constraints (5.1.2) are listed below for the node pair 1 and 6, for

graphs G and H, by noting that D1,6 = {3, 4, 5}, SG(1, 6) = {{2, 3}, {2, 5}, {3, 4}, {4, 5}}, and

SH(1, 6) = {{3}, {4}}.

x1 + x6 − x3 ≤ 1

x1 + x6 − x5 ≤ 1

x1 + x6 − x3 − x4 ≤ 1

x1 + x6 − x4 − x5 ≤ 1

x1 + x6 − x3 ≤ 1

x1 + x6 − x4 ≤ 1

However, the inequality x1 + x6 ≤ 1 that can replace all of the foregoing constraints for

the node pair 1 and 6 can be derived as follows: observe that distH(2, 6) = 4 > 3, thus

if we want to simultaneously include nodes 1 and 6 in a 2-graph 3-club, then we cannot

include node 2 and it can be deleted from G and H. Then, the distG\{2}(1, 4) = 4 > 3, and

consequently we cannot include node 4 either. Upon deleting nodes 2 and 4 from G and H,

we find that nodes 1 and 6 are disconnected in H; so, x1 + x6 ≤ 1 is valid.

Algorithm 1 formalizes the idea illustrated by the foregoing example to generate tighter
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constraints, and we refer to it as the pairwise peeling algorithm. We denote by J the node

pairs that are nonadjacent in some graph in the collection G, that is,

J ≔ {{u, v} ⊂ V (G) ∶ u ≠ v, uv ∈ E(G) for some G ∈ G} .

Algorithm 1: Pairwise Peeling

Input: G, k, uv ∈ J

Output: Guv

1 do

2 W ← ∅

3 for G ∈ G do

4 for w ∈ V (G) \ (W ∪ {u, v}) do

5 if distG(u,w) > k or distG(v, w) > k then

6 W ← W ∪ {w}

7 delete w from every graph in G

8 while W ≠ ∅;

9 return Guv ← G

The algorithm takes a graph collection G, a positive integer k, and a node pair uv ∈ J

as input, and creates an auxiliary graph collection Guv by recursively deleting from every

graph in the collection, nodes that are more than distance k from either u or v in some graph

in the collection. The constraints for the node pair u and v can then be generated based

on the minimal separators of graphs in this auxiliary collection Guv. Thus, we can replace

constraints (5.1.1b) by the following based on the pairwise peeled collection:

xu + xv − x(S) ≤ 1 ∀S ∈ SG(u, v) and

∀G ∈ Guv such that uv ∈ E(G), uv ∈ J . (5.1.5)
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Proposition 7. If constraints (5.1.1b) in formulation (5.1.1) are replaced by constraints (5.1.5),

the resulting formulation is correct for the maximum p-graph k-club problem.

The claim follows from the observation that the incidence vector of a p-graph k-club

satisfies constraints (5.1.5) and every binary vector satisfying these constraints also satisfies

constraints (5.1.1b). Observe that constraints (5.1.2) and (5.1.5) coincide when k = 2. This

is because deleting nodes in this manner will not turn a common neighbor of u and v into a

nonneighbor of u or v.

Proposition 8. The pairwise peeling algorithm will delete the same set of nodes independent

of the order in which the graphs in G are processed by the algorithm.

Proof. Suppose for a specific uv ∈ J , (w1, w2, . . . , wq) is the order in which nodes were

deleted using an ordering π of the graphs in G. Then, w1 is too far from either u or v

in some graph in the original collection, and hence, must be deleted by Algorithm 1 using

any other ordering of graphs in G. If w2 was deleted following w1 when using π, then in

any other ordering, after w1 is deleted, we know that w2 must be too far from either u or

v, and therefore, must also be deleted. By repeating this argument, {w1, w2, . . . , wq} must

be deleted under any ordering that is different from π. As π is arbitrary, we can conclude

that the final outcome of Algorithm 1 is independent of the order in which graphs in G are

processed.

Henceforth, we refer to the new formulation as the pairwise peeled cut-like formula-

tion (PPCF). For each uv ∈ J , constraint (5.1.5) is at least as strong as constraint (5.1.2)

(which in turn dominates constraint (5.1.1b)). Through our computational experiments re-

ported in the next chapter, we assess the gains made by using Algorithm 1 to generate

potentially stronger constraints.

The lifting approach to deriving inequalities (5.1.4) also applies here. If we take con-

straint (5.1.5) for a particular nonadjacent node pair u, v and S, and apply the same proce-

dure on a node w with distG1
(u,w) > k and distG2

(v, w) > k for some G1, G2 ∈ G, then the
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inequality below is valid:

xu + xv + xw − x(S) ≤ 1. (5.1.6)

By repeating this argument, we can conclude that xu + xv + x(I) − x(S) ≤ 1 is a valid

inequality for CCLUB(G) if the following conditions hold:

(1) I is a maximal cross-graph distance-k independent set of G, i.e., distG(a, b) > k for

every distinct a, b ∈ I for some G ∈ G;

(2) for each w ∈ I, there exist G1, G2 ∈ G (not necessarily distinct) with distG1
(u,w) > k

and distG2
(v, w) > k.

5.2 Additional Inequalities of Interest

In this section, we consider three classes of inequalities and prove their validity for the

corresponding problems. The second and third classes are extensions of their single-graph

counterparts which are already known to be valid for the maximum 2-club and k-club prob-

lems respectively. For the second class, we present an alternative proof for the validity of its

single-graph counterpart so that we can easily extend it to the p-graph setting.

5.2.1 A Special Inequality for the Maximum p-Graph 2-Club Problem

For the maximum p-graph 2-club problem, consider the class of inequalities defined below,

xu + xv − x(
p

⋂
i=1

NGi(u, v)) ≤ 1. (5.2.1)

Notice that these inequalities are not valid in general to the maximum p-graph 2-club prob-

lem. Consider the example in Figure 15; inequality x1 + x2 − x (NG(1, 2) ∩NH(1, 2)) ≤ 1

is not valid because it is violated by the incidence vector of {1, 2, 3, 4}, which is a 2-graph

2-club of G.
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Figure 15: Inequality x1 + x2 − x (NG(1, 2) ∩NH(1, 2)) ≤ 1 is not valid to the maximum
2-graph 2-club problem on G = {G,H}.

Proposition 9 gives a necessary and sufficient condition for the validity of these inequal-

ities. We use G \ (⋂p

i=1NGi(u, v)) to denote the graph collection after deleting node subset

⋂p

i=1NGi(u, v) from each graph in G.

Proposition 9. An inequality (5.2.1) is valid if and only if there does not exist a p-graph

2-club S with S ⊃ {u, v} in G \ (⋂p

i=1NGi(u, v)).

Proof. We prove both directions by contradiction.

(⇐) Suppose the inequality is not valid, then there exists some p-graph 2-club S with

its incidence vector x
S

violating the inequality, i.e., x
S
u + x

S
v − x

S (⋂p

i=1NGi(u, v)) > 1. This

implies that S ⊃ {u, v} and S ∩ (⋂p

i=1NGi(u, v)) = ∅.

(⇒) Suppose there exists a p-graph 2-club S ⊃ {u, v} in G \ (⋂p

i=1NGi(u, v)), then its

incidence vector x
S

violates the inequality.

3 6

5 1

2

4

G

3 6

5 1

2

4

H

Figure 16: Inequality x1+x2−x(NG(1, 2)∩NH(1, 2)) ≤ 1 is valid to the maximum 2-graph
2-club problem on {G,H}.
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Figure 16 gives an example where the condition in Proposition 9 is satisfied for node

pair 1 and 2. See that NG(1, 2) ∩ NH(1, 2) = {4}. In {G,H} \ {4}, node 3 and 6 must be

selected due to G and H respectively if we want to select 1 and 2 together. The only common

neighbor of 1 and 6 is 5 in G, therefore 5 must also be selected. However, distH(2, 5) = 3 > 2,

which means we are not able to select 5. Therefore, there does not exist a 2-graph 2-club

which satisfies the necessary and sufficient condition.

5.2.2 The Independent Set Inequality

In this section, we consider the independent set inequality (5.2.2) introduced by Pajouh et al.

(2016) for the 2-club polytope. We present a new proof of the validity of inequality (5.2.2),

which enables us to extend the result to the p-graph setting. The new proof of Theorem 4

requires Lemma 1.

Theorem 4 ((Pajouh et al., 2016)). Given a graph G and an independent set C ⊆ V (G),

the inequality,

x(C) − ∑
u∈V (G)\C

(∣NG(u) ∩ C∣ − 1)+xu ≤ 1, (5.2.2)

is valid for the maximum 2-club problem on G.

Lemma 1. Given a graph G, an arbitrary 2-club S, and an independent set C ⊂ S, the

following inequality is true:

∣C∣ − ∑
u∈S\C

(∣NG(u) ∩ C∣ − 1)+ ≤ 1.

Proof. We prove the lemma by induction. If ∣C∣ = 1, the inequality is trivially true. Assume

that the inequality is true for an independent set C such that ∣C∣ ≤ `, for some ` ≥ 2.

Suppose that ∣C∣ = ` + 1, and arbitrarily pick a node a ∈ C. We use Ca to denote C \ {a}.
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Note that Ca is an independent set and ∣Ca∣ = ` ≥ 2 and Ca ⊂ S. By induction hypothesis,

∣Ca∣ − ∑
u∈S\Ca

(∣NG(u) ∩ Ca∣ − 1)+ ≤ 1.

As a ∈ S \ Ca, we obtain the following inequality:

∣Ca∣ − ∑
u∈(S\Ca)\{a}

(∣NG(u) ∩ Ca∣ − 1)+ − (∣NG(a) ∩ Ca∣ − 1)+ ≤ 1.

Since C is an independent set and contains a, ∣NG(a)∩C∣ = 0, and hence ∣NG(a)∩Ca∣ = 0.

As (∣NG(a) ∩ Ca∣ − 1)+ = 0 and given the following inequality,

∣Ca∣ − ∑
u∈(S\Ca)\{a}

(∣NG(u) ∩ Ca∣ − 1)+ ≤ 1,

we obtain the inequality,

∣C∣ − 1 − ∑
u∈S\C

(∣NG(u) ∩ Ca∣ − 1)+ ≤ 1. (5.2.3)

By hypothesis Ca ≠ ∅, and let b be a node in Ca. Because a, b ∈ C ⊂ S, distG(a, b) = 2,

and so ∣S ∩NG(a, b)∣ ≥ 1. Let w be a node in S ∩NG(a, b). Since C is an independent set,

w ∉ C, and so w ∈ S \ C. Note that NG(w) ∩ C ⊃ {a, b}, and therefore ∣NG(w) ∩ C∣ ≥ 2.

Since C = Ca ∪ {a} and a ∈ NG(w),

∣NG(w) ∩ Ca∣ − 1 = ∣NG(w) ∩ C∣ − 2 ≥ 0.
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It follows from inequality (5.2.3) that,

∣C∣ − 1 − ∑
u∈S\C

(∣NG(u) ∩ Ca∣ − 1)+

= ∣C∣ − 1 − ∑
u∈(S\C)\{w}

(∣NG(u) ∩ Ca∣ − 1)+ − (∣NG(w) ∩ Ca∣ − 1)+

= ∣C∣ − 1 − ∑
u∈(S\C)\{w}

(∣NG(u) ∩ Ca∣ − 1)+ − (∣NG(w) ∩ C∣ − 2)+

= ∣C∣ − 1 − ∑
u∈(S\C)\{w}

(∣NG(u) ∩ Ca∣ − 1)+ − (∣NG(w) ∩ C∣ − 2)

= ∣C∣ − ∑
u∈(S\C)\{w}

(∣NG(u) ∩ Ca∣ − 1)+ − (∣NG(w) ∩ C∣ − 1)+

≤ 1.

As a result,

∣C∣ − ∑
u∈S\C

(∣NG(u) ∩ C∣ − 1)+

= ∣C∣ − ∑
u∈(S\C)\{w}

(∣NG(u) ∩ C∣ − 1)+ − (∣NG(w) ∩ C∣ − 1)+

≤ ∣C∣ − ∑
u∈(S\C)\{w}

(∣NG(u) ∩ Ca∣ − 1)+ − (∣NG(w) ∩ C∣ − 1)+

≤ 1.

Alternate proof of Theorem 4. Let S be an arbitrary 2-club in G and x
S

be its incidence

vector. It suffices to show that,

∣C ∩ S∣ − ∑
u∈S\C

(∣NG(u) ∩ C∣ − 1)+ ≤ 1.
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Note that C ∩ S ⊂ S is an independent set and S is a 2-club. By Lemma 1,

∣C ∩ S∣ − ∑
u∈S\(C∩S)

(∣NG(u) ∩ (C ∩ S)∣ − 1)+ ≤ 1.

Therefore,

∣C ∩ S∣ − ∑
u∈S\C

(∣NG(u) ∩ C∣ − 1)+ ≤ ∣C ∩ S∣ − ∑
u∈S\(C∩S)

(∣NG(u) ∩ (C ∩ S)∣ − 1)+ ≤ 1.

Next, we extend the independent set inequality to the p-graph setting, i.e., showing the

p-graph independent set inequality (5.2.4) is valid to the maximum p-graph 2-club problem.

We use N
2
G(u) to denote subset of nodes which are within distance 2 from node u in all

graphs in G, i.e., N
2
G(u) = {v ∈ V (G) ∶ distGi(u, v) ≤ 2 ∀i = 1, 2, . . . , p}.

Theorem 5. Given a graph collection G and a set C ⊂ V (G) that is independent in some

graph G ∈ G, the following inequality,

x(C) − ∑
u∈V (G)\C

(∣NG(u) ∩ C ∩N2
G(u)∣ − 1)+xu ≤ 1 (5.2.4)

is valid for the maximum p-graph 2-club problem on G.

Again, we first prove Lemma 2 needed to prove Theorem 5.

Lemma 2. Given a graph collection G, a p-graph k-club S, and a set C ⊂ S that is

independent in some G ∈ G, the following inequality is true:

∣C∣ − ∑
u∈S\C

(∣NG(u) ∩ C ∩N2
G(u)∣ − 1)+ ≤ 1.

Proof. We prove this lemma by induction. If ∣C∣ = 1, the inequality is trivially true. Assume

that the inequality is true for ∣C∣ ≤ `, for some ` ≥ 2. Suppose that ∣C∣ = `+ 1. Arbitrarily
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pick a node a ∈ C and let Ca ≔ C \ {a}. Note that Ca ⊂ S is an independent set in G and

∣Ca∣ = ` ≥ 2. By induction hypothesis,

∣Ca∣ − ∑
u∈S\Ca

(∣NG(u) ∩ Ca ∩N2
G(u)∣ − 1)+ ≤ 1.

As a ∈ S \ Ca, we obtain the following inequality:

∣Ca∣ − ∑
u∈(S\Ca)\{a}

(∣NG(u) ∩ Ca ∩N2
G(u)∣ − 1)+ − (∣NG(a) ∩ Ca ∩N2

G(a)∣ − 1)+ ≤ 1.

Since C is an independent set in G and contains a, ∣NG(a) ∩ C∣ = 0, and therefore

∣NG(a) ∩ Ca∣ = 0. Consequently,

(∣NG(a) ∩ Ca ∩N2
G(a)∣ − 1)+ = 0,

and it follows that,

∣Ca∣ − ∑
u∈(S\Ca)\{a}

(∣NG(u) ∩ Ca ∩N2
G(u)∣ − 1)+ ≤ 1.

Therefore,

∣C∣ − 1 − ∑
u∈S\C

(∣NG(u) ∩ Ca ∩N2
G(u)∣ − 1)+ ≤ 1. (5.2.5)

Observe that Ca ≠ ∅, and let b be a node in Ca. Because a, b ∈ C ⊂ S, distG(a, b) = 2,

and so ∣S ∩ NG(a, b)∣ ≥ 1. Let w be a node in S ∩ NG(a, b). Since C is an independent

set in G, w ∉ C, and so w ∈ S \ C. Note that {a, b} ⊂ NG(w) ∩ C ∩ N
2
G(w), and so

∣NG(w) ∩ C ∩N2
G(w)∣ ≥ 2. As a result,

∣NG(w) ∩ Ca ∩N2
G(w)∣ = ∣NG(w) ∩ C ∩N2

G(w)∣ − 1 ≥ 1.
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It follows from inequality (5.2.5) that,

∣C∣ − 1 − ∑
u∈S\C

(∣NG(u) ∩ Ca ∩N2
G(u)∣ − 1)+

= ∣C∣ − 1 − ∑
u∈(S\C)\{w}

(∣NG(u) ∩ Ca ∩N2
G(u)∣ − 1)+ − (∣NG(w) ∩ Ca ∩N2

G(w)∣ − 1)+

= ∣C∣ − 1 − ∑
u∈(S\C)\{w}

(∣NG(u) ∩ Ca ∩N2
G(u)∣ − 1)+ − (∣NG(w) ∩ C ∩N2

G(w)∣ − 2)+

= ∣C∣ − 1 − ∑
u∈(S\C)\{w}

(∣NG(u) ∩ Ca ∩N2
G(u)∣ − 1)+ − (∣NG(w) ∩ C ∩N2

G(w)∣ − 2)

≤ 1.

Therefore,

∣C∣ − ∑
u∈(S\C)\{w}

(∣NG(u) ∩ Ca ∩N2
G(u)∣ − 1)+ − (∣NG(w) ∩ C ∩N2

G(w)∣ − 1)+ ≤ 1

(5.2.6)

As a result of inequality (5.2.6),

∣C∣ − ∑
u∈S\C

(∣NG(u) ∩ C ∩N2
G(u)∣ − 1)+

= ∣C∣ − ∑
u∈(S\C)\{w}

(∣NG(u) ∩ C ∩N2
G(u)∣ − 1)+ − (∣NG(w) ∩ C ∩N2

G(w)∣ − 1)+

≤ ∣C∣ − ∑
u∈(S\C)\{w}

(∣NG(u) ∩ Ca ∩N2
G(u)∣ − 1)+ − (∣NG(w) ∩ C ∩N2

G(w)∣ − 1)+

≤ 1.

Proof of Theorem 5. Let S be an arbitrary p-graph 2-club of G and x
S

be its incidence vector.
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It suffices to show that the following inequality holds,

∣C ∩ S∣ − ∑
u∈S\C

(∣NG(u) ∩ C ∩N2
G(u)∣ − 1)+ ≤ 1.

Note that C ∩ S ⊂ S is an independent set in G and S is a p-graph 2-club. By Lemma 2,

∣C ∩ S∣ − ∑
u∈S\(C∩S)

(∣NG(u) ∩ (C ∩ S) ∩N2
G(u)∣ − 1)+ ≤ 1.

Therefore,

∣C ∩ S∣ − ∑
u∈S\C

(∣NG(u) ∩ C∣ − 1)+ ≤ ∣C ∩ S∣ − ∑
u∈S\(C∩S)

(∣NG(u) ∩ (C ∩ S) ∩N2
G(u)∣ − 1)+ ≤ 1.

5.2.3 The Cross-Graph Distance-k Independent Set Inequality

In this section, we extend the distance-k independent set inequality that is known to be

valid for the maximum k-club problem. The inequality is facet-inducing when the distance-

k independent set is maximal by inclusion (Balasundaram et al., 2005; Balasundaram, 2007).

In the cross-graph setting, Theorem 6 below, follows trivially from Definition 6 of the p-graph

distance-k independent set. However, the arguments showing that it induces a facet do not

extend in a straightforward manner. Specifically, for a node v ∉ I, the maximal cross-graph

distance-k independent set, has a path of length at most k to some node u ∈ I in some

graph G ∈ G. But this u, v-path need not form a cross-graph k-club, make it nontrivial to

demonstrate the required number of affinely independent solutions on the face.

Definition 6. A subset of nodes I ⊂ V (G) is a p-graph distance-k independent set if for

every pair of distinct nodes u, v ∈ I, there exists a graph G ∈ G with distG(u, v) > k.

Theorem 6. Given a graph collection G, suppose I ⊆ V (G) is a p-graph distance-k inde-

pendent set. The p-graph distance-k independent set inequality x(I) ≤ 1 is valid for the
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maximum p-graph k-club problem on G.

2 4

3 5

1 6

G

2 4

3 5

1 6

H

Figure 17: Cross-graph distance-2 independent set {1, 6} is maximal, but inequality x1+x6 ≤
1 is not facet inducing.

For the maximum p-graph k-club problem, inclusionwise maximality is a necessary but

not sufficient facet-inducing condition of a cross-graph distance-k independent set inequality.

The necessity is obvious, and Figure 17 gives a counterexample for sufficiency. Observe that

distances from node 1 to nodes 2, 3, 4, 5 are at most 2 in both G and H, and therefore

cross-graph distance-2 independent set {1, 6} is maximal. However, x1 + x4 + x6 ≤ 1 is a

valid inequality which dominates x1+ x6 ≤ 1, and hence the latter cannot be facet inducing.

Because distG(1, 6) > 2 and distG(4, 6) > 2, it suffices to verify that there does not exist a 2-

graph 2-club which simultaneously contains 1 and 4 for the validity of x1+x4+x6 ≤ 1. For 1

and 4 to be contained in a same 2-club in G, node 2 must be selected. However, distH(2, 4) =

3 > 2. Therefore, there does not exist a 2-graph 2-club simultaneously containing 1 and 4.
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CHAPTER VI

ALGORITHMS AND COMPUTATIONAL STUDY

In this chapter we report results from a computational study to assess and compare

techniques we introduce—BC algorithms based on different IP formulations—for solving the

maximum p-graph k-club problem (Section 6.1). We also introduce preprocessing procedures

for scale reduction in this chapter. In Section 6.2, we verify the computational effectiveness

of the techniques we developed for the maximum p-graph k-club problem in solving the

maximum k-club signature problem.

6.1 The Maximum p-Graph k-Club Problem

The goal of this section is to compare the performance of a general purpose IP solver when

using CCF and PPCF introduced in Chapter V to solve the maximum p-graph k-club prob-

lem. As either formulation uses exponentially many constraints in the worst case, we generate

them in a delayed fashion and implement two decomposition branch-and-cut algorithms that

use the same master problem based on cross-graph k-cliques defined below.

Definition 7. Given a graph collection G, a subset of nodes S ⊆ V (G) is called a p-graph

k-clique if S is a k-clique in each graph in G.

Like the single-graph counterparts, a cross-graph k-clique is a graph-theoretic relaxation

of a cross-graph k-club. The maximum p-graph k-clique problem is equivalent to the classical

Portions of this chapter are reprinted with permission from:
Balasundaram, B., Borrero, J. S., and Pan, H. (2022). Graph signatures: Identification and optimization.

European Journal of Operational Research, 296(3):764–775.
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maximum clique problem on the power intersection graph of G, i.e., the graph with node set

V (G) and edge set containing every pair of distinct nodes that are at distance at most k in

every graph in the collection. We can then define the complementary edge set Ê containing

all the conflicting pairs of nodes as:

Ê ≔ {{u, v} ⊆ V (G) ∶ distG(u, v) > k in some graph G ∈ G},

and we use it in our master IP formulation (6.1.1):

maxx(V (G)) (6.1.1a)

s.t. xu + xv ≤ 1 ∀uv ∈ Ê (6.1.1b)

xu ∈ {0, 1} ∀u ∈ V (G) (6.1.1c)

The two decomposition branch-and-cut algorithms, simply referred to as CCF and PPCF

henceforth, would add constraints (5.1.1b) and (5.1.5), respectively, whenever a feasible solu-

tion to the master problem (6.1.1) that is not a cross-graph k-club is encountered anywhere

in the BC tree.

6.1.1 Preprocessing and Extended Formulations

Our implementations are also enhanced by preprocessing (see Algorithm 2) based on a fea-

sible solution S to the problem obtained using the “DROP heuristic” for k-clubs (Bourjolly

et al., 2000; Salemi and Buchanan, 2020) on the intersection graph J with node set V (G)

and edge set ⋂
G∈G

E(G). Once a feasible solution is obtained in this manner, we implement

core peeling (Abello et al., 1999) followed by community peeling (Verma et al., 2015) pro-

cedures on the power-intersection graph of G, denoted by J
k
; the actions are mirrored on

G. If node u has fewer than ∣S∣ neighbors in J
k
, it cannot belong to a cross-graph k-club

larger than S (because if it did, node u would have degree at least ∣S∣ in J
k
). Core peeling

recursively deletes nodes with degree less than ∣S∣ in J
k
, and also from every graph in G.
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After core-peeling, as long as V (Jk) is nonempty, J
k

will be an ∣S∣-core as every node that

survives will have at least ∣S∣ neighbors. Now, a pair of nodes u and v that are adjacent

in J
k

can belong to a cross-graph k-club larger than S only if they have at least ∣S∣ − 1

common neighbors in J
k
. If not, during community peeling step, the edge uv can be deleted

from J
k

and from every graph in the collection where u and v are adjacent.

Algorithm 2: Preprocessing

Input: A graph collection G, a positive integer k ≥ 2

Output: A preprocessed graph collection G

1 obtain the intersection graph J of all graphs in G

2 compute a k-club S of J using the DROP heuristic

3 obtain the power-intersection graph J
k

of G

4 CorePeel(G, Jk, ∣S∣)

5 CommunityPeel(G, Jk, ∣S∣)

6 recursively delete edge uv from every graph G ∈ G and J
k

in which it is present, if u

and v are in distinct connected components of some graph G ∈ G or J
k

7 return G

Graph J
k

may contain more connected components after core and community peeling

than before. As a result, there may exist an edge uv ∈ E(G) for some G ∈ G whose end

points u and v belong to different connected components of J
k
. These edges can be removed

from every G ∈ G containing the edge. Doing so may disconnect a graph G ∈ G so that

not only u and v belong to different components, but so do some other nodes a and b that

are adjacent in J
k
; then, we can delete edge ab from J

k
. Hence, we can recursively delete

edges from every graph in the expanded collection G ∪ {Jk} until all of them have identical

connected components (in terms of the node subsets inducing the components).

To avoid unnecessary constraints (6.1.1b) added for pairs of nodes which reside in different

components of J
k
, we extend formulation (6.1.1) to (6.1.2) by introducing a binary variable

y for each of the connected components of J
k

and enforce that nodes selected must belong
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to the same component. We use C(Jk) to denote the set of components of J
k
, and short

form ∀(u, v, C) to denote “for each component C in J
k

and each nonadjacent node pair

u, v ∈ C”. In the master problem, only conflict constraints related to a pair of nonadjacent

nodes in a same connected component would be enumerated. Similarly, any node pair for

which a lazy constraint is generated must also belong to the same connected component of

J
k
.

max x(V (G)) (6.1.2a)

s.t. xu + xv ≤ 1 ∀(u, v, C) (6.1.2b)

y (C(Jk)) ≤ 1 (6.1.2c)

xu ≤ yC ∀u ∈ C and C ∈ C(Jk) (6.1.2d)

xu ∈ {0, 1} ∀u ∈ V (G) (6.1.2e)

yC ∈ {0, 1} ∀C ∈ C(Jk). (6.1.2f)

6.1.2 Experimental Settings

We report computational experiments conducted on 64-bit Linux
R○

compute nodes with

dual Intel
R○

“Skylake” 6130 CPUs with 96 GB RAM. Optimization models are solved us-

ing Gurobi
TM

Optimizer v9.0.1 (Gurobi Optimization, LLC, 2020) and the algorithms are

implemented in C++.

We consider the following parameter values in our experiments: k ∈ {2, 3, 4} and p ∈

{2, 3, 4, 5}. For each problem, we allow a time limit of 7200 seconds. Our test bed is generated

from three sets of graphs, the Tenth DIMACS Implementation Challenge (DIMACS-10)

benchmark graphs (Bader et al., 2013), uniform random graphs from Veremyev and Boginski

(2012) (VB graphs), and graphs generated by the algorithm described in (Bourjolly et al.,

2002) (BG graphs), which are known to be challenging for the (single-graph) maximum

k-club problem. Generation of graph collections based on these three sets of graphs are
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different, and details are given below.

DIMACS-10 graphs. We take 12 graphs from DIMACS-10. Each of these graphs serves

as a seed graph to generate an instance for the maximum p-graph k-club problem.

We create a collection of 10 graphs generated by the same procedure used to generate

graph sequences in (Balasundaram et al., 2022). We summarize these 12 graphs in

Table 1. We use ρ to denote edge density of a graph. In Section 6.1.3, each graph

collection is simply refered to by its corresponding graph name.

Table 1: DIMACS-10 graphs

G ∣V (G)∣ ∣E(G)∣ ρ(%)
karate 34 78 13.90
lesmis 77 254 8.68
polbooks 105 441 8.08
adjnoun 112 425 6.84
football 115 613 9.35
celegans 453 2025 1.98
email 1133 5451 0.85
polblogs 1490 16715 1.51
netscience 1589 2742 0.22
power 4941 6594 0.05
hep-th 8361 15751 0.05
PGPgiantcompo 10680 24316 0.04

VB graphs. For each VB instance, we directly take 10 VB graphs with same setting of edge

density parameters a and b from Veremyev and Boginski (2012) as a graph sequence.

We consider three different settings of a and b summarized in Table 2. We refer to the

three graph collections of different edge density parameters in Table 2 as VB 1, VB 2,

and VB 3 respectively.

BG graphs. BG instances are generated same way as VB instances. And we consider four

different setting of parameters summarized in Table 3. We refer to the four graph

collections of different edge density parameter in Table 3 as BG 1, BG 2, BG 3, and

BG 4 respectively.
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Table 2: The setting of ∣V (G)∣, and edge density parameters a and b.

∣V (G)∣ a b

300 0.3% 0.7%
300 0.5% 1.5%
300 1.0% 2.0%

Table 3: The setting of ∣V (G)∣, and edge density parameter ρ.

∣V (G)∣ ρ

200 15%
200 5%
200 2.5%
200 10%

6.1.3 Computational Results

From our preliminary results, BG 1 and BG 4 are challenging instances when k = 2. Collec-

tion BG 2 and BG 3 are challenging instances when k = 3 and 4 respectively. For each p, k

pair, we report computational results for the corresponding challenging instances in Table 4.

Each row of Table 4 reports results averaged over 11 − p runs, i.e., on graph collections

{G1, . . . , Gp}, {G2, . . . , Gp+1}, . . . , {G11−p, . . . , G10}. Except for BG 1 instance when p = 2

and k = 2, where both approaches did not reach optimality, PPCF based branch-and-cut

takes significantly shorter running times than CCF for the rest of the instances. For example,

on BG 2 instance when p = 4 and k = 3, CCF took 1079.11 seconds while PPCF only took

47.11 seconds (over 20 times faster than CCF). Overall, PPCF is over 6 times faster than

CCF in terms of average running time on challenging instances.

The columns labeled #NCT in Table 4 report the average number of terms with coef-

ficient -1 on the left hand side of the added lazy constraint xu + xv − x(S) ≤ 1, i.e., ∣S∣.

This is another indirect indicator of the strength of the lazy constraints. Generally, the

smaller this number, the stronger the constraint. For most of the instances, we observed a

significantly smaller value under PPCF than CCF. Note that the value of #NCT is zero for
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Table 4: Comparison of CCF and PPCF on BG instances.

CCF PPCF

k p Instance obj time(s) #LC
a

#NCT
b

obj time(s) #LC #SLC
c

#NCT

2 2 BG 4 9.44 88.01 12116.22 2.26 9.44 54.77 8085.56 6887.00 0.53

2 2 BG 1 ≥16.33
d

7200.23 20353.00 4.32 ≥16.22 6973.67 17958.22 1310.33 4.00
2 3 BG 4 4.63 55.22 12564.38 2.27 4.63 38.41 9807.00 9802.25 0.00
2 3 BG 1 7.88 3074.61 24496.13 4.39 7.88 760.30 19702.88 3214.00 3.48
2 4 BG 4 2.43 49.74 11712.43 2.27 2.43 44.59 10442.00 10441.86 0.00
2 4 BG 1 4.43 1982.95 25226.43 4.39 4.43 338.92 20934.71 5719.86 2.94
2 5 BG 4 2.00 40.70 10166.33 2.27 2.00 36.36 9253.67 9253.67 0.00
2 5 BG 1 2.50 1533.07 25121.67 4.41 2.50 201.43 21074.00 8851.50 2.36
3 2 BG 2 12.00 3008.56 47557.00 4.54 12.00 576.44 26125.44 6079.22 3.46
3 3 BG 2 3.13 1748.18 45065.50 4.52 3.13 105.67 21304.25 12592.63 1.91
3 4 BG 2 3.00 1079.11 40636.29 4.55 3.00 47.11 17284.29 15254.00 0.61
3 5 BG 2 3.00 818.45 36544.33 4.47 3.00 40.02 15971.67 15687.17 0.10
4 2 BG 3 8.78 192.51 23791.11 3.60 8.78 40.72 12169.78 10365.56 0.79
4 3 BG 3 4.00 99.02 18502.13 3.37 4.00 31.06 11116.88 10921.00 0.01
4 4 BG 3 4.00 59.55 13925.57 3.21 4.00 30.74 9216.86 8992.71 0.00
4 5 BG 3 4.00 46.07 11001.67 3.16 4.00 29.12 7622.17 7406.50 0.00

a
Average number of lazy constraints added.

b
Average number of negative terms in a lazy constraint.

c
Average number of strengthened lazy constraints added.

d
On instances not solved to optimality we report the lower-bound provided by the best solution found.

five instances under PPCF. The lazy constraints of this type are actually conflict constraints

with no negative terms on the left hand side.

For PPCF, column #SLC reports average number of strengthened lazy constraints added.

These are constraints which belong to (5.1.5) but not (5.1.1b). For PPCF, over 52% of lazy

constraints added are of this type. The foregoing observations strongly suggest that PPCF

approach based on pairwise peeling constraints significantly improves our ability to find

maximum p-graph k-clubs.

Tables 10 to 21 in Appendix A contain results on DIMACS-10 and VB instances. Each

row of these tables reports results on collection {G1, . . . , Gp} only instead of an average like

in Table 4. Observe that there are few or even zero lazy constraints added by both CCF

and PPCF when solving most of these instances. This implies that the master problem

is “nearly sufficient” to describe the convex hull, therefore no significant improvements by

using PPCF over CCF are observed on these instances. In these 12 tables, we take those

instances where over 100 lazy constraints are reported using either CCF or PPCF, and rerun
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Table 5: Comparison of CCF and PPCF on DIMACS and VB instances.

CCF PPCF

k p Instance obj time(s) #LC
a

#NCT
b

obj time(s) #LC #SLC
c

#NCT

3 2 email 127.22 1246.08 2403.78 3.24 127.22 1101.27 2125.00 136.78 3.06
4 2 email 462.89 11.26 237.33 1.62 462.89 11.63 234.44 10.56 1.52
3 3 email 113.00 1629.76 5375.38 3.60 113.00 1120.17 4086.63 468.88 3.21
4 3 email 432.50 17.08 353.63 1.79 432.50 17.88 358.25 31.00 1.68
3 4 email 104.14 1540.83 7813.00 3.86 104.14 1188.20 4217.57 681.86 3.14
4 4 email 411.14 24.40 505.71 1.96 411.14 25.93 467.43 54.57 1.75
3 5 email 97.33 1824.62 10716.67 4.13 97.33 1076.25 6878.00 1340.00 3.33
4 5 email 396.17 32.08 753.00 1.97 396.17 34.46 718.67 97.50 1.72
3 2 football 30.67 0.46 448.11 2.18 30.67 0.44 400.67 32.11 1.89
3 3 football 26.13 0.47 485.75 2.35 26.13 0.52 391.88 62.88 1.80
3 4 football 25.14 0.48 404.43 2.47 25.14 0.47 307.43 67.57 1.79
3 5 football 24.67 0.41 334.50 2.53 24.67 0.40 217.50 61.00 1.77
4 3 hep-th 175.88 256.12 496.00 2.81 175.88 280.60 457.75 57.13 2.50
4 4 hep-th 154.57 293.25 872.71 2.84 154.57 261.54 871.57 155.71 2.41
4 5 hep-th 139.50 939.83 1240.00 3.04 139.50 811.85 1189.33 253.50 2.49
4 2 VB 2 4.00 5.55 632.44 1.14 4.00 4.63 594.56 525.44 0.00
4 2 VB 3 4.78 195.94 19245.78 2.05 4.78 122.62 14857.78 14672.89 0.00
4 3 VB 3 4.00 99.93 9695.38 1.92 4.00 75.09 8217.63 7987.38 0.00
4 4 VB 3 4.00 49.03 4359.71 1.83 4.00 43.83 3962.71 3754.14 0.00
4 5 VB 3 4.00 15.37 1803.67 1.72 4.00 11.32 1727.83 1592.67 0.00

a
Average number of lazy constraints added.

b
Average number of negative terms in a lazy constraint.

c
Average number of strengthened lazy constraints added.

the two algorithms and report results averaged over 11 − p runs in Table 5. Because a fair

number of lazy constraints are used in solving these instances, the advantage of PPCF over

CCF is revealed again.

Figure 18 shows the performance profiles (Dolan and Moré, 2002) based on running times

of CCF and PPCF algorithms for solving the maximum p-graph k-club problem on all BG

instances and those DIMACS-10 and VB instances listed in Table 5. The red (dash-dotted)

and blue (dotted) lines plot the fraction fi(τ) of instances solved within a factor τ of the

shortest running time (over all values of parameters p, k, and all challenging instances) by

solvers i = CCF and PPCF. The profiles indicate that the computational benefits of using

lazy constraints strengthened by pairwise peeling is quite significant. Same conclusions can

be drawn if we group running times by p or k; see Figures 19 and 20.
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Figure 18: Performance profiles of CCF and PPCF algorithms.
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Figure 19: Performance profiles of CCF and PPCF algorithms differentiated by p.
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Figure 20: Performance profiles of CCF and PPCF algorithms differentiated by k.

6.2 The Maximum k-Club Signature Problem

This section serves as a case study to assess the computational effectiveness of the approaches

developed for solving the maximum p-graph k-club problem in solving the maximum k-club

signature problem. Recall from Chapter I that the k-club signature problem and the cross-

graph k-club problem are closely related because a maximum k-club signature problem can

be decomposed into a sequence of maximum cross-graph k-club problems. Given a graph

sequence G = (Gt, t ∈ [T ]) and positive integers k and τ , the maximum k-club signature

problem seeks to find a maximum cardinality τ -persistent k-club signature of G. We use [T ]

to denote the index set {1, 2, . . . , T}. By definition, each τ -persistent k-club signature on a

subsequence H of τ graphs is also a τ -graph k-club on graph collection H. We regard H as

a graph collection in the cross-graph setting because a τ -graph k-club of H must be a k-club

in each graph in H and thus order of graphs in H is of no significance.

In Balasundaram et al. (2022), a monolithic IP formulation (6.2.1) and a dynamic pro-

gramming based moving window (MW) method are introduced to solve the maximum 2-club

signature problem. Given a graph sequence G, the MW method involves solving T − τ + 1
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maximum τ -graph k-club problems on T − τ + 1 graph collections of length τ . Each con-

secutive subsequence H of τ graphs is referred to as a window, and solving for a maximum

τ -graph k-club of a window is referred to as a window problem.

max x(V (G)) (6.2.1a)

s.t. xu + xv − x(NG(u, v)) ≤ 2 − zt ∀uv ∈ E(G), G ∈ G, t ∈ [T ] (6.2.1b)

yt ≤ zj ∀j = t, t + 1, . . . , t + τ − 1,

t = 1, 2, . . . , T − τ + 1 (6.2.1c)

T−τ+1

∑
t=1

yt ≥ 1 (6.2.1d)

xu ∈ {0, 1} ∀u ∈ V (G) (6.2.1e)

yt ∈ {0, 1} ∀t = 1, 2, . . . , T − τ + 1 (6.2.1f)

zt ∈ {0, 1} ∀t ∈ [T ]. (6.2.1g)

In Balasundaram et al. (2022), two versions of MW methods are compared for solving the

maximum 2-club signature problem, MW-2CLB and MW-F2. Each of the subproblems

in MW-F2 is solving a conjunction of τ common neighbor formulations, while a subprob-

lem of MW-2CLB exploits decomposition and scale reduction techniques based on specific

properties of 2-clubs (see Algorithm 3). By the reported computational results, MW-2CLB

is preferable over MW-F2 and the monolithic IP formulation (6.2.1) for the problem. Due

to this reason, we do not extend MW-F2 and the monolithic formulation to the p-graph

setting.

Proposition 10 that follows forms the basis for Algorithm 3 for finding a maximum τ -

persistent 2-club signature in Gt,τ , which denotes the subsequence {Gt, Gt+1, . . . , Gt+τ−1}.

First we define a τ -persistent k-clique signature, which is necessary to formulate the master

relaxation problem.
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Definition 8. A subset of nodes S ⊆ V (G) is called a τ -persistent k-clique signature if S is

a k-clique in at least τ consecutive graphs in G.

Proposition 10. Consider a sequence of graphs G = (Gr, r ∈ [T ]), and a pair of integers

t, τ ∈ [T ]. Define the square intersection graph J
t,τ
2 as,

J
t,τ
2 ≔ (V (G),

t

⋂
r=t−τ+1

E
r,2) , (6.2.2)

where E
r,2
≔ {{u, v} ∶ 1 ≤ distGr(u, v) ≤ 2}. A subset of nodes S is a τ -persistent 2-clique

signature in G if and only if there exists a t = τ, . . . , T such that S is a clique in the

square-intersection graph J
t,τ
2 .

Algorithm 3: (MW-2CLB) Finding a maximum cardinality 2-club signature us-

ing the moving window method.

Input: G = (Gt
, t ∈ [T ]), τ ≥ 1, ` = 0.

Output: A maximum cardinality 2-club signature S.

1 v ← arg max{∣NHτ,τ (u)∣ ∶ u ∈ V (G)}

2 S ← {v} ∪NHτ,τ (v)

3 for t = τ, . . . , T do

4 `← ∣S∣

5 J
t,τ
2 ← CorePeel(J t,τ2 , `)

6 J
t,τ
2 ← CommunityPeel(J t,τ2 , `)

7 S
′
← solve for a maximum τ -persistent 2-club in Gt,τ using delayed generation of

common neighborhood constraints applied to the maximum clique master

relaxation formulation (6.1.2) on J
t,τ
2

8 S ← arg max{∣S∣, ∣S ′∣}

9 return S

Step 7 of Algorithm 3 starts by solving the master relaxation, the maximum clique prob-

lem on J
t,τ
2 , using a general purpose branch-and-cut solver. Observe that by Proposition 10,
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such a maximum clique is a τ -persistent 2-clique on Gt,τ . Whenever an integral solution

is encountered, it must be verified if this τ -persistent 2-clique signature in Gt,τ is indeed a

τ -persistent 2-club signature in Gt,τ . If it is, then the corresponding node of the search tree

can be pruned by feasibility; if not, lazy constraints will be added to cut off this infeasible

integral solution. The infeasible solution can be removed by noting that it must violate

some common neighbor constraint for some graph Gr in Gt,τ , and we add the first violated

constraint detected into the lazy constraint pool, and the node subproblem is re-solved.

The effectiveness of the core and community peeling steps relies on having a good initial

heuristic solution. Because a 2-club that exists in the intersection graph H
τ,τ

of Gτ,τ exists

in every graph in Gτ,τ , a node of maximum degree and its neighbors in H
τ,τ

is used as an

initial heuristic solution in step 2 of Algorithm 3.

Algorithm 3 can be extended and improved for solving the maximum k-club signature

problem by borrowing a few preprocessing ideas from Algorithm 2. We use J
t,τ
k to denote

the power-intersection graph of Gt,τ , that is,

J
t,τ
k ≔ (V (G),

t

⋂
r=t−τ+1

E
r,k) , (6.2.3)

where E
r,k
≔ {{u, v} ∶ 1 ≤ distGr(u, v) ≤ k}. In step 1 of Algorithm 4, we compute a heuristic

k-club instead of 2-club. Each iteration inside the for-loop (step 2 of Algorithm 4) involves

solving a maximum τ -graph k-club problem. In step 6, if a node pair u, v are in disinct

connected components of some graph G in the extended collection Gt,τ∪{J t,τk }, we recursively

remove edge uv from every graph G ∈ Gt,τ ∪ {J t,τk } in which it is present. Eventually, all

graphs in G ∈ Gt,τ ∪ {J t,τk } share a same set of connected components. In step 7, different

inequalities can be chosen as lazy constraints. If inequalities (5.1.1b) are added as lazy

constraints, we refer to the algorithm MW-CCF , and call it MW-PPCF if inequalities (5.1.5)

are added. Although a maximum k-club signature problem can be solved by decomposing

it into a series of maximum τ -graph k-club problems, it is more effective to not treat them
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independent of each other. This is because the peeling procedures between two consecutive

window problems may effectively reduce the size of the subsequent window problems, and

hence, reduce the scale of the problem as the window slides further along the sequence.

Algorithm 4: (MW-kCLB) Finding a maximum cardinality k-club signature us-

ing the moving window method.

Input: G = (Gt
, t ∈ [T ]), τ ≥ 1, ` = 0.

Output: A maximum cardinality k-club signature S.

1 compute a k-club S of H
τ,τ

using DROP heuristic

2 for t = τ, . . . , T do

3 `← ∣S∣

4 J
t,τ
k ← CorePeel(J t,τk , `)

5 J
t,τ
k ← CommunityPeel(J t,τk , `)

6 (Gt,τ , J t,τk ) ← EdgePeel(Gt,τ , J t,τk )

7 S
′
← solve for a maximum τ -persistent k-club in Gt,τ using delayed generation of

CCF constraints (5.1.1b) or PPCF constraints (5.1.5) applied to the maximum

clique master relaxation (6.1.2) on J
t,τ
k

8 S ← arg max{∣S∣, ∣S ′∣}

9 return S

In the rest of this section, we compare the performance of MW-CCF and MW-PPCF in

solving the maximum k-club signature problem. We consider k = 2, 3, 4 and τ = 2, 3, 4, 5

in our experiments. For each window problem, we allow a time limit of 3600 seconds. We

terminate the algorithm if two consecutive window problems are not solved to optimality. We

first test the two algorithms on the challenging instances identified for each k in Section 6.1.3.

Tables 6 and 7 summarize the results. MW-CCF failed to solve three instances to optimality,

while MW-PPCF did not solve one to optimality; a better lower bound of 17 was reported

by MW-PPCF than that of 15 reported by MW-CCF. Overall, MW-PPCF is over 6.4 times

faster than MW-CCF on BG instances, and over 1.09 times faster on DIMACS-10 and
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VB instances. The advantage of MW-PPCF on DIMACS-10 and VB instances are not as

obvious because significantly fewer lazy constraints were added on these instances than on

BG instances.

Table 6: Comparison of MW-CCF and MW-PPCF on BG instances.

MW-CCF MW-PPCF

k τ Instance obj time(s) obj time(s)

2 2 BG 4 10 791.4 10 487.22
2 3 BG 4 5 437.18 5 304.52
2 4 BG 4 3 341.48 3 308.55
2 5 BG 4 2 238.28 2 215.66
3 2 BG 2 ≥ 13

a
26475.81 14 5194.38

3 3 BG 2 4 14265.58 4 844.06
3 4 BG 2 3 7744.9 3 320.33
3 5 BG 2 3 5121.59 3 236.92
4 2 BG 3 11 1738.8 11 357.91
4 3 BG 3 4 748.36 4 238.95
4 4 BG 3 4 379.32 4 188.99
4 5 BG 3 4 242.02 4 164.16
2 2 BG 1 ≥ 15 7203.65 ≥ 17 7204.42
2 3 BG 1 ≥ 10 24144.99 10 6074.36
2 4 BG 1 5 13602.42 5 2343.89
2 5 BG 1 3 9023.71 3 1183.58

a
Instance not solved to optimality.

The DIMACS-10 instances in Section 6.1.3 are generated in a different way from VB

and BG instances. Because BG instances are consistently challenging to the problem based

on results reported in Tables 4 and 6. Due to these two observations, we are interested in

running MW-CCF and MW-PPCF on more BG instances. We use the instance generator

from Balasundaram et al. (2022) to generate sequences BG 5, BG 6, BG 7, BG 8, each based

on a BG graph with edge densities of 15%, 5%, 2.5%, and 10%, respectively. Each graph in

these sequences contains 200 nodes. Results are reported in Table 8. Overall, MW-PPCF

is 2.03 times faster than MW-CCF on average. It is over 3 times faster on BG 6 with k = 3

and τ = 5 and BG 7 with k = 4 and τ = 5, which stand out in particular.

We also consider instances with long graph sequences. We use the instance generator

from Balasundaram et al. (2022) to generate 12 sequences based on the 12 DIMACS-10

graphs. Each instance is a sequence containing 100 graphs. For these instances, we consider
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Table 7: Comparison of MW-CCF and MW-PPCF on DIMACS-10 and VB instances.

MW-CCF MW-PPCF

k τ Instance obj time(s) obj time(s)

3 2 email 135 6563.29 135 5557.29
4 2 email 473 76.13 473 76.46
3 3 email 123 7245.76 123 6145.28
4 3 email 440 92.22 440 92.6
3 4 email 114 5769.38 114 4405.68
4 4 email 419 109.82 419 111.78
3 5 email 107 4848.66 107 3943.77
4 5 email 403 120.98 403 140.93
3 2 football 35 3.55 35 3.76
3 3 football 28 4.06 28 4.13
3 4 football 26 3.64 26 3.57
3 5 football 25 2.16 25 2.14
4 3 hep-th 198 1343.74 198 1469.24
4 4 hep-th 171 676.92 171 706.27
4 5 hep-th 143 952.09 143 926.79
4 2 VB 2 4 28.71 4 26.44
4 2 VB 3 7 1700.82 7 1098.69
4 3 VB 3 4 734.61 4 572.61
4 4 VB 3 4 313.66 4 297.6
4 5 VB 3 4 59.34 4 46.21

Table 8: Comparison on additional BG instances.

MW-CCF MW-PPCF

k τ Instance obj time(s) obj time(s)

2 2 BG 8 24 92.64 24 113.41
2 2 BG 5 35 15981.49 35 7612.34
2 3 BG 8 22 66.35 22 64.07
2 3 BG 5 30 7058.1 30 3749.54
2 4 BG 8 19 58.25 19 31.73
2 4 BG 5 25 5516.52 25 2351.31
2 5 BG 8 18 58.77 18 49.62
2 5 BG 5 22 2683.21 22 1274.49
3 2 BG 6 45 2970.63 45 1549.62
3 3 BG 6 39 2046.51 39 984.33
3 4 BG 6 35 1659.85 35 692.59
3 5 BG 6 29 1633.83 29 435.69
4 2 BG 7 56 116.45 56 79.19
4 3 BG 7 45 218.69 45 116.18
4 4 BG 7 36 229.67 36 115.88
4 5 BG 7 27 239.93 27 64.39

τ = 10 and k = 2, 3, 4. Results are reported in Table 9. To differentiate these instances from

the DIMACS-10 instances generated in Section 6.1.2, we use 100 as a suffix in instance names,

e.g., adjnoun 100. For most instances in this group, we do not observe an obvious advantage
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Table 9: Comparison of MW-CCF and MW-PPCF on long sequences.

CCF PPCF

k τ Instance obj time(s) obj time(s)

2 10 adjnoun 100 12 2.35 12 2.27
3 10 adjnoun 100 53 3.71 53 4.47
4 10 adjnoun 100 89 1.8 89 1.91
2 10 celegans metabolic 100 40 10.19 40 10.39
3 10 celegans metabolic 100 185 52.58 185 61.58
4 10 celegans metabolic 100 352 76.18 352 81.76
2 10 email 100 21 27.08 21 27.54
3 10 email 100 92 56867.72 92 26963.66
4 10 email 100 371 3379.66 371 3682.71
2 10 football 100 12 0.75 12 0.71
3 10 football 100 23 42.89 23 45.56
4 10 football 100 89 1028.32 89 666.18
2 10 hep-th 100 24 84.22 24 85.14
3 10 hep-th 100 40 525.12 40 519.3
4 10 hep-th 100 ≥ 124

a
23577.59 ≥ 124 19765.49

2 10 karate 100 8 0.45 8 0.42
3 10 karate 100 16 0.33 16 0.31
4 10 karate 100 26 0.46 26 0.44
2 10 lesmis 100 14 0.69 14 0.69
3 10 lesmis 100 33 0.9 33 0.97
4 10 lesmis 100 50 0.78 50 0.76
2 10 netscience 100 20 7.49 20 6.63
3 10 netscience 100 26 7.71 26 7.57
4 10 netscience 100 41 9.04 41 8.6
2 10 PGPgiantcompo 100 64 414.86 64 418.27
3 10 PGPgiantcompo 100 191 491.98 191 500.75
4 10 PGPgiantcompo 100 392 1163.71 392 1134.68
2 10 polblogs 100 164 987.33 164 1002.6
3 10 polblogs 100 579 597.37 579 571.13
4 10 polblogs 100 947 808.9 947 720.98
2 10 polbooks 100 16 1.16 16 1.09
3 10 polbooks 100 35 1.19 35 0.77
4 10 polbooks 100 53 1.92 53 1.66
2 10 power 100 9 35.57 9 35.06
3 10 power 100 17 64.36 17 61.02
4 10 power 100 27 78.31 27 66.42

a
Instance not solved to optimality.

of MW-PPCF over MW-CCF, except on email 100 with k = 3 and τ = 10 and football 100

with k = 4 and τ = 10. MW-PPCF is 1.5 and 2.1 times faster on these two instances,

respectively. Notice that τ is set to 10 in these instances, and this could significantly reduce

the size of the master relaxation problems on the power-intersection graphs. Recall from

Section 6.1.3, the master problem constraints appear to provide very tight relaxations on

DIMACS-10 instances, which could explain the limited impact of lazy constraints.
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From these observations we can conclude that computational benefits of using lazy con-

straints strengthened by pairwise peeling is quite significant when solving the maximum

k-club signature problem. Same conclusions can be drawn by looking at the performance

profiles in Figures 21, 22, and 23.
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Figure 21: Performance profiles of MW-CCF and MW-PPCF algorithms.
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Figure 22: Performance profiles of MW-CCF and MW-PPCF algorithms differentiated by p.
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Figure 23: Performance profiles of MW-CCF and MW-PPCF algorithms differentiated by k.
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CHAPTER VII

CONCLUSION AND FUTURE WORK

The p-graph k-club model is designed to mine low-diameter clusters conserved in graph col-

lections. A graph collection may represent a time-varying graph or a graph where node

relationships change under different conditions. This dissertation develops integer program-

ming approaches to solve for a maximum p-graph k-club given a graph collection. In this

chapter, we summarize our theoretical and algorithmic contributions and identify possible

future research directions.

7.1 Contributions

We started by establishing NP-completeness of several bounded-enlargement problems in

Chapter IV. The BEkC problem, when ` = 1, always assumes an opposite answer to

the MTkC problem which is proved to be coNP-complete for every k ≥ 2 by Pajouh and

Balasundaram (2012). Therefore, BEkC is NP-complete for every fixed k ≥ 2. We offered

an alternate proof of this result by reduction from the Clique problem, and borrowed the

instance construction procedure from Balasundaram et al. (2005). We then showed that

BEkC is NP-complete when k = 1. Consequently, BEkC is NP-complete for every fixed

k ≥ 1. We also extended this result to the p-graph case, i.e., showing that the BECkC

problem is NP-complete for every fixed integer k ≥ 1. As a corollary, we obtained the same

result for the CkC problem, the decision counterpart of the maximum cross-graph k-club

problem.

In Chapter V, we explored IP approaches to solving the maximum p-graph k-club prob-
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lem. We presented a naive conjunctive formulation (CCF) based on cut-like formulation for

the maximum k-club problem proposed by Salemi and Buchanan (2020), and offered ideas

to strengthen this formulation. Eventually, we reached a new formulation (PPCF) based on

a “pairwise peeling” algorithm. In addition, we identified a special class of inequalities fo

the maximum p-graph 2-club problem, and provided a necessary and sufficient condition for

its validity. For the independent set inequality introduced by Pajouh et al. (2016) for the

maximum 2-club problem, we gave an alternative proof of its validity, which enabled us to

extend the result to the p-graph setting. And lastly, we extended the distance-k independent

set inequality introduced by Balasundaram (2007) to the p-graph setting.

In Chapter VI, we conducted a computational study to compare the performance of a

general purpose IP solver when using CCF and PPCF formulations to solve the maximum

p-graph k-club problem. For scale reduction, we introduced preprocessing procedures and an

extended formulation. For preprocessing, we implemented core peeling (Abello et al., 1999)

followed by community peeling (Verma et al., 2015). Then, we recursively deleted edges until

all graphs of interest share a common set of connected components, enabling a component-

wise extended formulation. We conducted a computational study and concluded that PPCF

based on pairwise peeling significantly improves our ability to solve for a maximum p-graph

k-club. Our computational study on the maximum k-club signature problem also led us to

the same conclusions.

7.2 Future Work

In the p-graph setting, identifying facet-inducing conditions of valid inequalities is more

challenging due to the difficulty of finding enough affinely independent incidence vectors of

p-graph k-clubs. For a nonadjacent node pair u, v, there might not exist a cross-graph k-club

containing them even if distG(u, v) ≤ k for all G ∈ G. Identifying facet-inducing conditions

would offer insights into the strength of inequalities. One possible direction of future work

is to find sufficient conditions under which our proposed valid inequalities to the maximum
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p-graph k-club problem induce facets of the associated convex hull.

In Chapter V, we introduced a special class of inequalities (5.2.1) and offered a necessary

and sufficient condition for its validity. However, complexity of testing this condition remains

open. Similarity of this testing problem with MTkC can be observed, and we conjecture

it is NP-hard to check if this condition holds. Establishing the complexity of testing this

condition is of interest.

Although our focus in this dissertation is on clusters that induce low-diameter subgraphs,

one may investigate any clique relaxation or another graph property in the p-graph setting.

A third direction of future work is to investigate the p-graph extension of other cluster

models, including those whose single-graph counterparts are polynomially solvable. This

entails establishing computational complexity of the new problems, finding IP formulations,

identifying valid inequalities, developing algorithmic approaches to solve the new problems.

Once computational tool-kits are available for a variety of cross-graph cluster models, we may

explore applications of these models and algorithms in the analysis of social and biological

network collections, including temporal networks.
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APPENDICES

Appendix A

Table 10: Comparison of CCF and PPCF on DIMACS-10 and VB instances.

CCF PPCF

k p Instance obj time(s) #LC
a

#NCT
b

obj time(s) #LC #SLC
c

#NCT

2 2 adjnoun 1-2 34 0 - - 34 0 - - -
2 2 celegans metabolic 1-2 142 0.04 - - 142 0.04 - - -
2 2 email 1-2 50 0.71 1 1 50 0.73 1 0 1
2 2 football 1-2 12 0.33 9 1.11 12 0.32 9 2 0.89
2 2 hep-th 1-2 34 0.57 - - 34 0.61 - - -
2 2 karate 1-2 13 0 - - 13 0 - - -
2 2 lesmis 1-2 26 0 - - 26 0 - - -
2 2 netscience 1-2 27 0.03 - - 27 0.05 - - -
2 2 PGP 1-2 133 0.64 - - 133 0.91 - - -
2 2 polblogs 1-2 220 14.61 5 1.6 220 14.85 5 0 1.2
2 2 polbooks 1-2 20 0.02 3 0.33 20 0.02 3 0 0.33
2 2 power 1-2 13 0.26 - - 13 0.26 - - -
2 2 VB 1 1-2 3 0.01 0 0 3 0.01 0 0 0
2 2 VB 2 1-2 2 0.32 0 0 2 0.32 0 0 0
2 2 VB 3 1-2 3 1.37 12 1 3 1.56 15 13 0

a
Average number of lazy constraints added.

b
Average number of negative terms in a lazy constraint.

c
Average number of strengthened lazy constraints added.
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Table 11: Comparison of CCF and PPCF on DIMACS-10 and VB instances.

CCF PPCF

k p Instance obj time(s) #LC
a

#NCT
b

obj time(s) #LC #SLC
c

#NCT

3 2 adjnoun 1-2 66 0.06 4 1 66 0.06 4 0 1
3 2 celegans metabolic 1-2 283 0.74 4 0.5 283 0.74 4 0 0.5
3 2 email 1-2 124 1148.39 4797 3.22 124 727.52 1212 75 2.87
3 2 football 1-2 31 0.44 454 2.13 31 0.38 270 14 1.84
3 2 hep-th 1-2 72 16.42 8 3.25 72 16.69 8 0 2.88
3 2 karate 1-2 21 0 - - 21 0 - - -
3 2 lesmis 1-2 44 0.01 0 0 44 0.01 0 0 0
3 2 netscience 1-2 39 0.03 - - 39 0.04 - - -
3 2 PGP 1-2 257 6.07 7 1.14 257 5.88 7 0 1.14
3 2 polblogs 1-2 660 7.7 9 1.22 660 7.72 9 0 1.22
3 2 polbooks 1-2 40 0.05 1 1 40 0.06 1 1 0
3 2 power 1-2 20 0.6 0 0 20 0.87 0 0 0
3 2 VB 1 1-2 3 0.01 0 0 3 0.01 0 0 0
3 2 VB 2 1-2 3 2.31 15 1.2 3 1.97 15 13 0
3 2 VB 3 1-2 4 5.98 715 1.32 4 5.77 794 789 0

a
Average number of lazy constraints added.

b
Average number of negative terms in a lazy constraint.

c
Average number of strengthened lazy constraints added.

Table 12: Comparison of CCF and PPCF on DIMACS-10 and VB instances.

CCF PPCF

k p Instance obj time(s) #LC
a

#NCT
b

obj time(s) #LC #SLC
c

#NCT

4 2 adjnoun 1-2 94 0.05 0 0 94 0.06 0 0 0
4 2 celegans metabolic 1-2 402 0.92 2 1 402 0.96 2 0 1
4 2 email 1-2 457 11.12 204 1.69 457 12 211 9 1.56
4 2 football 1-2 111 0.04 1 1 111 0.04 1 0 1
4 2 hep-th 1-2 214 37.6 10 3.6 214 37.23 10 0 3.5
4 2 karate 1-2 28 0 - - 28 0 - - -
4 2 lesmis 1-2 59 0.01 0 0 59 0.01 0 0 0
4 2 netscience 1-2 59 0.13 0 0 59 0.11 0 0 0
4 2 PGP 1-2 663 56.93 7 1.57 663 56.59 7 0 1.57
4 2 polblogs 1-2 1032 8.88 0 0 1032 8.9 0 0 0
4 2 polbooks 1-2 56 0.07 3 1.33 56 0.07 3 2 0.67
4 2 power 1-2 31 1.02 0 0 31 1.01 0 0 0
4 2 VB 1 1-2 3 0.02 0 0 3 0.02 0 0 0
4 2 VB 2 1-2 4 9.04 719 1.23 4 6.47 687 637 0
4 2 VB 3 1-2 6 218.02 21273 2.22 6 119.75 16075 15768 0

a
Average number of lazy constraints added.

b
Average number of negative terms in a lazy constraint.

c
Average number of strengthened lazy constraints added.
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Table 13: Comparison of CCF and PPCF on DIMACS-10 and VB instances.

CCF PPCF

k p Instance obj time(s) #LC
a

#NCT
b

obj time(s) #LC #SLC
c

#NCT

2 3 adjnoun 1-3 27 0.02 0 0 27 0.02 0 0 0
2 3 celegans metabolic 1-3 115 0.06 - - 115 0.06 - - -
2 3 email 1-3 41 0.2 0 0 41 0.21 0 0 0
2 3 football 1-3 12 0.31 1 1 12 0.32 1 0 1
2 3 hep-th 1-3 29 0.72 - - 29 0.81 - - -
2 3 karate 1-3 10 0 - - 10 0 - - -
2 3 lesmis 1-3 19 0 - - 19 0 - - -
2 3 netscience 1-3 26 0.05 - - 26 0.07 - - -
2 3 PGP 1-3 104 0.81 - - 104 1.2 - - -
2 3 polblogs 1-3 182 75 32 2.16 182 66.47 26 3 2.31
2 3 polbooks 1-3 16 0.02 7 1.14 16 0.02 7 2 0.86
2 3 power 1-3 12 0.18 - - 12 0.18 - - -
2 3 VB 1 1-3 1 0 - - 1 0 - - -
2 3 VB 2 1-3 1 0.24 0 0 1 0.22 0 0 0
2 3 VB 3 1-3 1 0.37 0 0 1 0.37 0 0 0

a
Average number of lazy constraints added.

b
Average number of negative terms in a lazy constraint.

c
Average number of strengthened lazy constraints added.

Table 14: Comparison of CCF and PPCF on DIMACS-10 and VB instances.

CCF PPCF

k p Instance obj time(s) #LC
a

#NCT
b

obj time(s) #LC #SLC
c

#NCT

3 3 adjnoun 1-3 58 0.1 13 1.23 58 0.1 11 3 0.73
3 3 celegans metabolic 1-3 239 1.19 7 1.43 239 1.24 7 1 1.29
3 3 email 1-3 109 1246.25 8406 3.54 109 699.4 2401 333 2.92
3 3 football 1-3 26 0.44 342 2.39 26 0.67 550 84 1.77
3 3 hep-th 1-3 57 9.71 34 2.91 57 8.95 35 5 2.37
3 3 karate 1-3 20 0.01 0 0 20 0.01 0 0 0
3 3 lesmis 1-3 39 0.01 0 0 39 0.01 0 0 0
3 3 netscience 1-3 37 0.06 - - 37 0.03 - - -
3 3 PGP 1-3 221 7.83 2 0.5 221 7.23 2 0 0.5
3 3 polblogs 1-3 629 11.93 10 2.2 629 11.13 10 0 2.2
3 3 polbooks 1-3 39 0.02 0 0 39 0.02 0 0 0
3 3 power 1-3 18 0.94 1 1 18 0.84 1 1 0
3 3 VB 1 1-3 1 0 - - 1 0 - - -
3 3 VB 2 1-3 1 0.37 0 0 1 0.42 0 0 0
3 3 VB 3 1-3 3 5.05 14 1.21 3 6.72 14 14 0

a
Average number of lazy constraints added.

b
Average number of negative terms in a lazy constraint.

c
Average number of strengthened lazy constraints added.
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Table 15: Comparison of CCF and PPCF on DIMACS-10 and VB instances.

CCF PPCF

k p Instance obj time(s) #LC
a

#NCT
b

obj time(s) #LC #SLC
c

#NCT

4 3 adjnoun 1-3 92 0.07 2 1 92 0.06 2 0 1
4 3 celegans metabolic 1-3 395 1.33 5 1 395 1.32 5 0 1
4 3 email 1-3 423 15.58 191 1.73 423 15.85 230 22 1.7
4 3 football 1-3 107 0.07 11 1.18 107 0.09 9 2 1
4 3 hep-th 1-3 161 1110.12 1399 2.66 161 1184.37 524 62 2.35
4 3 karate 1-3 27 0.01 0 0 27 0.01 0 0 0
4 3 lesmis 1-3 53 0.01 0 0 53 0.01 0 0 0
4 3 netscience 1-3 50 0.19 0 0 50 0.17 0 0 0
4 3 PGP 1-3 561 44.47 3 2 561 46.04 3 0 1.67
4 3 polblogs 1-3 995 10.48 1 0 995 10.44 1 0 0
4 3 polbooks 1-3 53 0.07 2 1.5 53 0.08 2 1 1
4 3 power 1-3 28 1.27 10 1.2 28 1.25 9 3 1
4 3 VB 1 1-3 1 0 - - 1 0 - - -
4 3 VB 2 1-3 1 0.65 0 0 1 0.71 0 0 0
4 3 VB 3 1-3 4 100.44 10039 2.04 4 69.72 8705 8417 0

a
Average number of lazy constraints added.

b
Average number of negative terms in a lazy constraint.

c
Average number of strengthened lazy constraints added.

Table 16: Comparison of CCF and PPCF on DIMACS-10 and VB instances.

CCF PPCF

k p Instance obj time(s) #LC
a

#NCT
b

obj time(s) #LC #SLC
c

#NCT

2 4 adjnoun 1-4 20 0.04 5 1.6 20 0.04 5 1 1.4
2 4 celegans metabolic 1-4 94 0.07 - - 94 0.07 - - -
2 4 email 1-4 32 0.23 0 0 32 0.2 0 0 0
2 4 football 1-4 12 0.22 4 2.25 12 0.22 4 2 1.75
2 4 hep-th 1-4 24 1.01 - - 24 0.95 - - -
2 4 karate 1-4 9 0.01 4 0 9 0.01 4 0 0
2 4 lesmis 1-4 17 0 - - 17 0 - - -
2 4 netscience 1-4 23 0.09 - - 23 0.09 - - -
2 4 PGP 1-4 80 6.01 0 0 80 5.92 0 0 0
2 4 polblogs 1-4 175 42.59 40 3.73 175 48.51 32 3 3.62
2 4 polbooks 1-4 15 0.03 3 1.67 15 0.03 3 1 1.33
2 4 power 1-4 12 0.25 - - 12 0.27 - - -
2 4 VB 1 1-4 1 0 - - 1 0 - - -
2 4 VB 2 1-4 1 0.01 - - 1 0.01 - - -
2 4 VB 3 1-4 1 0.38 0 0 1 0.37 0 0 0

a
Average number of lazy constraints added.

b
Average number of negative terms in a lazy constraint.

c
Average number of strengthened lazy constraints added.
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Table 17: Comparison of CCF and PPCF on DIMACS-10 and VB instances.

CCF PPCF

k p Instance obj time(s) #LC
a

#NCT
b

obj time(s) #LC #SLC
c

#NCT

3 4 adjnoun 1-4 54 0.09 12 1.42 54 0.1 12 4 1
3 4 celegans metabolic 1-4 223 1.29 7 1.71 223 1.32 7 1 1.43
3 4 email 1-4 100 1426.61 13617 3.93 100 863.25 4170 723 3.08
3 4 football 1-4 25 0.81 790 2.37 25 0.78 569 112 1.72
3 4 hep-th 1-4 51 211.27 24 3.54 51 169.33 76 11 2.16
3 4 karate 1-4 20 0.01 0 0 20 0.01 0 0 0
3 4 lesmis 1-4 37 0.01 0 0 37 0.01 0 0 0
3 4 netscience 1-4 32 0.06 0 0 32 0.06 0 0 0
3 4 PGP 1-4 213 6.67 0 0 213 6.74 0 0 0
3 4 polblogs 1-4 613 12.85 10 3.2 613 13.74 13 1 2.54
3 4 polbooks 1-4 36 0.05 0 0 36 0.08 0 0 0
3 4 power 1-4 18 0.66 2 0 18 1.04 2 0 0
3 4 VB 1 1-4 1 0.01 - - 1 0.01 - - -
3 4 VB 2 1-4 1 0.66 0 0 1 0.65 0 0 0
3 4 VB 3 1-4 1 1.37 0 0 1 1.41 0 0 0

a
Average number of lazy constraints added.

b
Average number of negative terms in a lazy constraint.

c
Average number of strengthened lazy constraints added.

Table 18: Comparison of CCF and PPCF on DIMACS-10 and VB instances.

CCF PPCF

k p Instance obj time(s) #LC
a

#NCT
b

obj time(s) #LC #SLC
c

#NCT

4 4 adjnoun 1-4 88 0.08 2 1 88 0.08 2 0 1
4 4 celegans metabolic 1-4 384 1.4 6 1.17 384 1.4 6 0 1.17
4 4 email 1-4 403 21.82 344 1.78 403 22.91 391 50 1.68
4 4 football 1-4 104 0.13 21 1.95 104 0.13 18 2 1.67
4 4 hep-th 1-4 147 375.4 864 3.04 147 313.11 937 164 2.5
4 4 karate 1-4 27 0.01 0 0 27 0.01 0 0 0
4 4 lesmis 1-4 50 0.02 0 0 50 0.02 0 0 0
4 4 netscience 1-4 48 0.19 0 0 48 0.19 0 0 0
4 4 PGP 1-4 487 66.8 19 2.26 487 61.93 17 1 2.18
4 4 polblogs 1-4 979 12.56 1 0 979 12.5 1 0 0
4 4 polbooks 1-4 49 0.09 7 2.29 49 0.1 7 3 1.57
4 4 power 1-4 25 2.55 4 0.5 25 2.19 6 2 0.33
4 4 VB 1 1-4 1 0.01 - - 1 0.01 - - -
4 4 VB 2 1-4 1 0.45 0 0 1 0.76 0 0 0
4 4 VB 3 1-4 4 64.61 4307 1.95 4 49.06 3913 3751 0

a
Average number of lazy constraints added.

b
Average number of negative terms in a lazy constraint.

c
Average number of strengthened lazy constraints added.
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Table 19: Comparison of CCF and PPCF on DIMACS-10 and VB instances.

CCF PPCF

k p Instance obj time(s) #LC
a

#NCT
b

obj time(s) #LC #SLC
c

#NCT

2 5 adjnoun 1-5 18 0.04 7 2.14 18 0.05 7 1 1.86
2 5 celegans metabolic 1-5 76 0.06 - - 76 0.09 - - -
2 5 email 1-5 27 4.21 15 2.67 27 4.22 13 7 1.92
2 5 football 1-5 12 0.08 0 0 12 0.09 0 0 0
2 5 hep-th 1-5 24 2.58 0 0 24 2.69 0 0 0
2 5 karate 1-5 8 0.01 0 0 8 0.01 0 0 0
2 5 lesmis 1-5 15 0.01 0 0 15 0.02 0 0 0
2 5 netscience 1-5 21 0.08 - - 21 0.1 - - -
2 5 PGP 1-5 64 5.98 0 0 64 6.09 0 0 0
2 5 polblogs 1-5 162 52.24 55 2.27 162 55.57 62 6 2.16
2 5 polbooks 1-5 13 0.04 5 1.4 13 0.03 5 3 0.8
2 5 power 1-5 10 0.29 - - 10 0.27 - - -
2 5 VB 1 1-5 1 0.01 - - 1 0.01 - - -
2 5 VB 2 1-5 1 0.01 - - 1 0.01 - - -
2 5 VB 3 1-5 1 0.01 - - 1 0.01 - - -

a
Average number of lazy constraints added.

b
Average number of negative terms in a lazy constraint.

c
Average number of strengthened lazy constraints added.

Table 20: Comparison of CCF and PPCF on DIMACS-10 and VB instances.

CCF PPCF

k p Instance obj time(s) #LC
a

#NCT
b

obj time(s) #LC #SLC
c

#NCT

3 5 adjnoun 1-5 54 0.08 4 1.5 54 0.08 4 1 1.25
3 5 celegans metabolic 1-5 200 1.79 5 1.8 200 1.76 5 1 1.6
3 5 email 1-5 91 1444.98 8993 3.85 91 1510.47 10639 2126 3.32
3 5 football 1-5 24 0.54 424 2.51 24 0.36 116 34 1.75
3 5 hep-th 1-5 47 110.88 28 2.04 47 121.08 45 12 1.53
3 5 karate 1-5 16 0.01 6 1.5 16 0.01 6 4 0.83
3 5 lesmis 1-5 34 0.02 1 4 34 0.02 1 0 4
3 5 netscience 1-5 31 0.12 0 0 31 0.08 0 0 0
3 5 PGP 1-5 204 11.76 0 0 204 11.27 0 0 0
3 5 polblogs 1-5 599 14.16 15 2.73 599 15.25 15 1 2.33
3 5 polbooks 1-5 34 0.11 5 1.2 34 0.12 5 1 1
3 5 power 1-5 15 1.03 0 0 15 1.08 0 0 0
3 5 VB 1 1-5 1 0.01 - - 1 0.01 - - -
3 5 VB 2 1-5 1 0.95 0 0 1 0.98 0 0 0
3 5 VB 3 1-5 1 0.92 0 0 1 0.91 0 0 0

a
Average number of lazy constraints added.

b
Average number of negative terms in a lazy constraint.

c
Average number of strengthened lazy constraints added.
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Table 21: Comparison of CCF and PPCF on DIMACS-10 and VB instances.

CCF PPCF

k p Instance obj time(s) #LC
a

#NCT
b

obj time(s) #LC #SLC
c

#NCT

4 5 adjnoun 1-5 85 0.09 4 1.25 85 0.09 4 0 1
4 5 celegans metabolic 1-5 375 1.68 4 1 375 1.48 4 0 1
4 5 email 1-5 388 36.07 780 2.07 388 42.54 798 114 1.81
4 5 football 1-5 103 0.14 27 1.74 103 0.14 22 2 1.55
4 5 hep-th 1-5 137 614.78 1390 3.38 137 564.66 1213 220 2.72
4 5 karate 1-5 26 0.01 0 0 26 0.01 0 0 0
4 5 lesmis 1-5 49 0.03 0 0 49 0.02 0 0 0
4 5 netscience 1-5 44 0.22 0 0 44 0.27 0 0 0
4 5 PGP 1-5 437 134.87 14 1.93 437 123.16 8 1 1.75
4 5 polblogs 1-5 960 13.85 1 0 960 15.02 1 0 0
4 5 polbooks 1-5 48 0.16 4 3.5 48 0.19 9 3 1.56
4 5 power 1-5 21 1.23 37 1.46 21 1.34 37 19 0.73
4 5 VB 1 1-5 1 0.01 - - 1 0.01 - - -
4 5 VB 2 1-5 1 0.88 0 0 1 0.96 0 0 0
4 5 VB 3 1-5 4 13.77 2153 1.86 4 12.33 1987 1863 0

a
Average number of lazy constraints added.

b
Average number of negative terms in a lazy constraint.

c
Average number of strengthened lazy constraints added.
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