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Abstract: In real-world situations, multidimensional data may appear on large-scale tests or 

attitudinal surveys. A simple structure, multidimensional model may be used to evaluate the 

items, ignoring the cross-loading of some items on the secondary dimension. The purpose of this 

study was to investigate the influence of structure complexity magnitude of the data incorporating 

the degree of cross-loading on secondary dimensions and model specification, especially when 

the model was misspecified as a simple structure, ignoring the cross-loading, while the data are 

truly complex on item parameter recovery in MIRT models. In order to address the research 

question a simulation study that replicated this scenario was designed in order to manipulate the 

variables that could potentially influence the precision of item parameter estimation in the MIRT 

models. Item parameters were estimated using marginal maximum likelihood (MML), utilizing 

the expectation-maximization (EM) algorithms. A compensatory 2PL-MIRT model with two 

dimensions and dichotomous item response type (Reckase, 1985) was used to simulate and 

calibrate the data for each combination of conditions across 500 replications. The result of this 

study indicated that ignoring complex structure of the multidimensional data 

incorporating the degree of cross-loading and model specification severely impact item 

discrimination estimations resulting biased and inaccurate item discrimination 

parameters. When the complex structure of the data was misspecified, whether the data 

were correlated or uncorrelated, item discrimination parameters were adversely affected. 

As the complexity magnitude incorporating the degree of cross-loading increased, the 

error and bias estimates of item discrimination worsened. Furthermore, the results of this 

study indicated that if the data are correlated and the correlation is not specified nor are 

the item cross-loadings, item discrimination estimates, specifically for the truly cross-

loaded items had extremely poor error and bias estimates. 
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CHAPTER I 
 

 

INTRODUCTION 

 

 

Item Response Theory (IRT) 

Item Response Theory (IRT) refers to a family of mathematical and statistical models 

that explain the relationship between examinees’ latent ability, and the responses to items 

manifesting that latent ability. The ultimate goal of IRT is to measure the location of examinees 

in terms of the underlying latent ability that is hypothesized to be measured utilizing a test, survey 

or an instrument (Reckase, 2009). Generally, based on examinees’ item response patterns, IRT 

analyzes the data and estimates the examinees’ ability and item parameters such as measures of 

item location, item discrimination, etc. (Reckase, 2009). Mathematically, IRT relates an 

examinee’s ability level (θ) to the probability of endorsing or responding correctly to an item 

(Lord, 1980). Technically, IRT estimates unique item parameters such as item location, item 

discrimination, and item guessing parameter, and then estimates examinees’ latent ability based 

on their item response patterns. IRT models can be classified into two categories of dichotomous 

and polytomous. Dichotomous IRT models can be used for response data to items with two 

possible response categories such as “Yes/No” or “True/False”, etc. Polytomous IRT models, on 

the other hand, can be used for response data to items having more than two response categories 

such as five-level Likert scale (e.g., “Strongly agree”, “Agree”, “Neutral”, “Disagree”, “Strongly 

disagree”) (Reckase, 2009).  
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Unidimensional IRT Models (UIRT) 

 
Unidimensional IRT models (UIRT) measure only a single ability that the item response 

data may represent. One of the underlying assumptions of unidimensional IRT is that all of the 

items in an instrument, survey, or a test measure a single ability (unidimensionality). Generally, 

in UIRT models a single ability is required for examinees in order to correctly respond to a set of 

items. In addition, it is assumed that examines respond to each test item as an independent event 

(Reckase, 2009). For example, the reading section (sub-test) of the Test of English as a Foreign 

Language (TOEFL iBT®) is hypothesized to measure the ability of the English as a Second 

Language (ESL) learner’s English reading skills (TOEFL iBT, 2020).  

Multidimensional IRT Models (MIRT) 

In practice and real-world situations, the assumption of unidimensionality is less likely to 

hold. Therefore, multidimensional IRT (MIRT) models have been utilized to model and estimate 

multiple latent abilities of the examinees at the same time (Ackerman, 1996; Ansley & Forsyth, 

1985; Reckase, 1985). Dimensionality is related to the number of underlying latent abilities 

assessed by an exam, survey or set of items in an instrument. In real world situations, it is 

common that multiple latent abilities are present in a single educational test or psychological 

survey that leads to a potentially multidimensional structure of item response data (Svetina & 

Levy, 2016).  

For instance, in the Quantitative Reasoning sub-test of GRE® exam especially for long 

word problems, the sub-test may be hypothesized to measure the single ability of examinees in 

terms of quantitative reasoning skills (GRE, 2018). However, in reality if the examinee has 

limited vocabulary inventory and reading skills the examinee may not successfully respond to an 

item that is supposed to measure quantitative reasoning skills even if the examinee is competent 

in this area. Thus, the data may be multidimensional, requiring vocabulary and reading skills in 

addition to quantitative reasoning.  
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There are many ways of describing MIRT models according to the assumed relationship 

among latent abilities and dimensional structure of a set of items in a test measuring those 

abilities. For example, in a mathematic test, some items may be hypothesized to measure algebra 

skills, and some other items may be hypothesized to measure geometry skills (two sub-tests in 

which each measures one ability). In addition, it is likely that in a mathematics test some items 

may be hypothesized to measure algebra skills, but also require some geometry skills in order for 

an examinee to respond to that particular item correctly. This means a set of items measuring two 

abilities at the same time or the items might be hypothesized to measure one ability but in reality, 

it requires two abilities for an examinee to respond to the set of items successfully (Reckase, 

2009).  

Compensatory and Non-compensatory MIRT Models 

MIRT models can also be categorized into two types:  compensatory and non-

compensatory. A compensatory MIRT model measures multiple abilities in such a way that a low 

ability on one dimension to be compensated for by a high ability on another dimension. 

Mathematically, this is modeled by summing the probabilities of a correct response across 

dimensions (Fox, Klein, Entink & Avetisyan, 2014; Reckase, 1985). An example of an 

application of a compensatory MIRT model could be a TOEFL test that measures multiple 

abilities such as speaking, listening, reading and writing skills in ESL learners (TOEFL iBT, 

2020). If the examinee is strong on writing ability then the strength on the writing ability can 

compensate for the speaking weaknesses on the speaking sub-test.  

On the other hand, the non-compensatory MIRT model assumes a high ability on one 

dimension does not compensate for a lower ability on the other dimension. Mathematically, a 

non-compensatory model uses multiplication to calculate the probability of a correct response as 

opposed to summing the probabilities of a correct response across dimensions in a compensatory 

MIRT models (Ackerman, 1992; Sympson, 1978). An example of a non-compensatory MIRT 
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model could be the MCAT test where it measures the examinees’ abilities in the areas of 

Biological and Biochemical Foundations of Living Systems; Chemical and Physical Foundations 

of Biological Systems; Psychological, Social, and Biological Foundations of Behavior; and 

Critical Analysis and Reasoning Skills (MCAT®, 2020). If an examinee demonstrates strength in 

the area of Biological Foundations it might not compensate for the weaknesses in the area of 

Physical Foundations (Biology knowledge versus Physics knowledge of the examinee). 

Technically, compensatory and non-compensatory MIRT models analyze the response 

data patterns and how the examinees utilize their multiple abilities to respond to a set of items. 

Compensatory and non-compensatory MIRT models differ based on the theoretical foundation 

whether multiple abilities work together or the fact that abilities are independent of one another. 

Generally, non-compensatory MIRT model is more complex in terms of parameter estimation and 

interpretation (Ackerman, 1992; Fox et al., 2014; Reckase, 1985; Sympson, 1978). 

Structure Complexity of MIRT Models 

When data are multidimensional, it may be that the complete set is made of multiple 

unidimensional data sets or that, in a set of items, each individual item measure multiple abilities. 

A simple structure concept was initially introduced in the area of factor analysis (Thurstone, 

1947). In the area of psychometry and measurement a simple structure refers to the fact that 

within a set of items, subsets of items highly load on, or measure, one of the multiple dimensions 

and has no loading on the other dimensions (Finch, 2006). Technically, a simple structured test is 

a multidimensional test that is composed of multiple unidimensional sub-tests in which subsets of 

items measure only a single ability (Finch, 2011; Svetina & Levy, 2016). Structure of a set of 

items for a population of examinees is simple if items depend on only one underlying latent 

ability (McDonald, 1999). For instance, in the TOEFL test each sub-test is hypothesized to 

measure one ability of the examinee. The, reading sub-test is hypothesized to measure the 

examinees’ ability in the area of reading skills in English language. The listening sub-test is 
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supposed to measure the examinees’ ability in the area of listening skills in English language 

(TOEFL iBT, 2020).  

A complex structure, on the other hand, consists of unique sets of items that are 

associated with more than one dimension (Finch, 2011; Svetina & Levy, 2016). Technically, the 

structure of a set of items for a population of examinees is complex if the items depend, or load, 

on multiple underlying latent abilities (McDonald, 1999). As a result, a complex structure refers 

to a condition where at least one item requires an examinee to demonstrate more than one 

underlying latent ability in order to respond to the item successfully (McDonald, 1999; Reckase, 

2009). For example, in a mathematics test it is likely some items may be hypothesized to measure 

algebra skills, but also require some geometry or trigonometry skills in order for an examinee to 

respond to that particular item correctly (an individual item measuring multiple abilities at the 

same time). 

Understanding the structure complexity of the data is imperative in order to utilize the 

correct MIRT model and to make appropriate and accurate inferences about the data especially 

when appropriate interpretation of examinees’ score across tests is considered. Parameter 

estimation such as item location and item discrimination may be affected if a unidimensional 

model is applied to multidimensional data (Finch, 2011; Svetina & Levy, 2016). In addition, item 

parameter estimates such as item location, item discrimination and examinees’ ability estimation 

and their interpretation may also be affected if a simple structure model is applied to the data with 

a complex structure, or vice versa (Svetina & Levy, 2016). 

It is worth mentioning that sometimes a complex structure can be approximated to a 

simple structure where each item depends predominantly and strongly on one primary underlying 

latent ability and relatively weakly on other secondary latent abilities (Hulin et al., 1983; Strachan 

et al., 2020; Svetina & Levy, 2016).  In this study, this phenomenon is referred to as the “degree 

of cross-loading” where it defines how strongly underlying latent abilities in complex structure 

MIRT models are related to the items. The degree of cross-loading is an indication of how 
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strongly primary and secondary dimensions are associated with the item. Are these dimensions 

being measured equally strongly by the item? It should be considered if the item measures a 

dominant dimension and potentially one or more weaker dimensions or the item measures both 

dimensions equally strongly. Additionally, in this study, “structure complexity magnitude” is 

referred to as the percent of the items in a test or sub-test that demonstrate a complex structure. If 

5 of the 10 items in a test or subtest display a complex structure, the structure complexity 

magnitude would be 50%. If 10 of 10 items have a complex structure, this would be 100%. 

Furthermore, in this study, model specification, or the degree to which the true structure 

of the data meets the structure fit to the data, will be one of the variables that will be evaluated in 

terms of item parameter estimation precision. Misspecification refers to the situation where the 

true dimensionality of the data does not equal the dimensionality of the model fit to the data. One 

of the situations that misspecification can occur and is the interest of this study is when fitting a 

simple structure model to data that have a true complex structure MIRT model. Investigation of 

model specification is important due to the fact that sensitivity to model specification can either 

result in biases and inaccuracy in item parameter estimation and interpretation or the estimation 

procedure is robust to the model misspecification. 

Statement of the Problem 

 

One of the assumptions of standard item response theory (IRT) models is that the 

underlying latent ability being measured is unidimensional in nature (Finch, 2011). However, 

there are a great number of surveys, instruments and tests that measure multiple latent abilities, 

which leads to a potentially multidimensional structure of item response data. Even when data are 

multidimensional, structure complexity (simple structure or complex structure) of the data should 

be considered in order to ensure the precision of item parameter or examinees’ ability score 

estimation and appropriate interpretation of examinees’ score and item characteristics. Therefore, 

understanding the true structure of the data is imperative in order to make appropriate inferences 
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about the underlying latent abilities (Svetina & Levy, 2016; Sevetina et al., 2017; Zhang 2007; 

Zhang, 2012). In addition, understanding the effects of model specification, i.e., when the 

structure of the model applied is not that of the true structure of the data, is imperative to ensure 

the precision of item parameter estimation and appropriate interpretation of examinees’ score and 

item characteristics when dealing with multidimensional data. As a result, assessing 

dimensionality is beneficial and necessary prior to applying item response theory (IRT) models in 

social sciences (Finch 2010; Finch, 2011; Strachan et al., 2020; Svetina & Levy, 2016).  

In this study, cross-loading refers to the items in a test, survey, or an instrument that are 

associated with multiple abilities at the same time or those items that require an examinee to 

demonstrate knowledge on multiple underlying abilities at the same time whether it is 

hypothesized that those items measure all underlying latent abilities equally strongly or not. Thus, 

the degree of cross-loading is an indication of how strongly primary and secondary dimensions 

are associated with the items. In addition, in this study, structure complexity magnitude refers to 

the number or percentage of the items in a test, survey or an instrument that exhibit cross loading.  

Previous research studies discussed dimensionality assessment and its performance precision with 

various structure complexity levels (Finch & Habing, 2005; Svetina, 2013, Svetina & Levy, 

2016). Some other researches have taken into account multidimensionality and structure 

complexity in order to evaluate item parameter estimation precision (Finch, 2011, Svetina et al., 

2017; Zhang, 2012).  

In practice and in real-world situations, it is very likely that when the items in a test 

exhibit a complex structure with a strong loading on one ability but a small loading on the other 

ability (small degree of cross-loading), the data are treated as having a simple structure, ignoring 

the small cross-loading of some items. For example, let’s consider a mathematics test with 20 

items. The assumption is that the 10 algebra items measure only algebra knowledge and the 10 

geometry items measure only geometry knowledge. However, in the reality some of the items 

might primarily measure ability of the examinee in algebras skills, but also require for an 
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examinee to have some geometry knowledge in order to respond to the item successfully (cross-

loading). Similarly, for those items that primarily test examinees ability related to geometry may 

require some algebra skills for an examinee in order to respond to the item correctly.  

Previous studies have investigated the effects of structure complexity, the correlation 

between the underlying latent abilities, sample size, distribution of examinees on dimensionality 

assessment and item parameter recovery on complex structure MIRT models (Finch, 2011; Finch 

& Habing, 2005; Svetina, 2013; Svetina & Levy, 2016; Svetina et al., 2017; Zhang 2012). 

However, previous studies did not consider the degree of cross-loading on secondary dimension 

(how strongly each ability is being measured with an item) and model specification (misspecified 

simple structure model when the data are truly complex) and their effects on item parameter 

estimation precision. In addition, previous studies did not collectively discuss the effects of 

structure complexity magnitude of the data incorporating the degree of cross-loading on 

secondary dimension, and model specification on item parameter estimation in complex structure 

MIRT models. 

  Purpose of the Study 

  

The purpose of this study is to investigate the impact of structure complexity magnitude 

of the data incorporating the degree of cross-loading on secondary dimension, and model 

specification (misspecified simple structure model when data are truly complex) on item 

parameter estimation in Multidimensional Item Response Theory (MIRT).  

Research Question 

 

What are the effects of structure complexity magnitude of the data incorporating the 

degree of cross-loading on secondary dimension, and model specification on item parameter 

estimation in Multidimensional Item Response Theory (MIRT)? 
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

 

Item Response Data 

Item response data refers to data collected from responses to sets of items on an 

instrument, e.g., test, survey, etc.). Dichotomous data refers to the items with two possible 

response categories such as “Yes/No” or “True/False”, etc. On the other hand, polytomous data 

refers to the items having more than two response categories such as five-level Likert scale 

(“Strongly agree”, “Agree”, “Neutral”, “Disagree”, “Strongly disagree”) (Reckase, 2009). This 

study primarily utilizes dichotomous data. 

Multidimensional Item Response Theory (MIRT) Models 

 
As it was stated in the first chapter, one of the assumptions of IRT is unidimensionality. 

Unidimensional item response theory models measure one underlying latent ability of the 

examinees. However, in practice and real-world situations this assumption is less likely to hold 

within educational tests and psychological instruments (Ackerman, 1992; McDonalds, 1999; 

Reckase, 1985; Sympson, 1978).  As a result, multidimensional item response theory (MIRT) was 

introduced to address the complexity of educational tests and psychological instruments in terms 

of measuring multiple underlying latent abilities concurrently (Reckase & McKinley, 1982; 

Reckase, 1985; Reckase, 1997; Sympson, 1978).  

Assumption of MIRT Models 
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Mathematically speaking MIRT models explain the relationship between an examinee’s 

underlying ability, or location along an ability scale, and the probability of responding to an item 

correctly. This relationship is also associated with item parameters such as item location and item 

discrimination. Item parameter values such as item location and item discrimination can be 

estimated from the examinees’ response data. The development of IRT models are based on a 

number of assumptions (Reckase, 2009).  

In addition to the assumed number of dimensions in a dataset, the assumption of local 

independence in IRT models refers to the fact that probability of responding to an item 

successfully by an examinee with a certain level of ability is independent of the probability of 

responding correctly to the other items in a test (Lord, 1980). Moreover, it is assumed that the 

location of the examinee, i.e., an examinee’s underlying ability, does not change or is 

independent of the set of items within the assessment. However, this assumption may not hold in 

practice and real world as examinees may learn from the interaction with the other items or even 

cheating may result in some learning or changing the location of the examinee (Reckase, 2009).  

The assumption of monotonicity in MIRT models refers to a situation that the probability 

of responding to an item correctly by an examinee increases as the locations of examinees 

increase on any of the dimensions. Reckase (2009) noted that “the relationship between locations 

in the multidimensional space and the probabilities of correct response to a test item can be 

represented as a continuous mathematical function.” This means that for every ability location 

there is one and only one value of probability of correct response associated with it and that 

probabilities are defined for every location in the multidimensional space and there are no 

discontinuities. This assumption is important for the mathematical forms of models that can be 

considered for representing the interaction between persons and test items.” (Reckase, 2009) 

MIRT models can be categorized in various ways. In what follows, MIRT models will be 

elaborated based on response category type (dichotomous or polytomous), MIRT models based 
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on the way they explain how examinees utilize their multiple abilities to respond to an item 

(compensatory or non-compensatory), and MIRT models based on structure complexity (simple 

or complex structure). 

Dichotomous and Polytomous MIRT Models 

 
MIRT models are mathematical expressions considering multiple abilities that are 

required for an examinee in order to respond to an item successfully (Reckase, 2009). MIRT 

models can be categorized in terms of response types of dichotomous or a polytomous response 

type (Reckase, 1985; Sympson, 1978). Dichotomous IRT models refers to the items with two 

possible response categories such as “Yes/No” or “True/False”. Polytomous IRT models, on the 

other hand, can be used for items having more than two response categories such as five-level 

Likert scale (“Strongly agree”, “Agree”, “Neutral”, “Disagree”, “Strongly disagree”) (Reckase, 

2009).  

Compensatory and Non-compensatory MIRT Models 

 

MIRT models can also be categorized into two types of compensatory and non-

compensatory. Technically, compensatory and non-compensatory MIRT models analyze the 

response data patterns and how the examinees utilize their multiple abilities to respond to an item. 

Compensatory and non-compensatory MIRT models differ based on the theoretical foundation 

whether multiple abilities work together or that abilities are independent of one another. 

Generally, a non-compensatory MIRT model is more complex in terms of parameter estimation 

and interpretation (Ackerman, 1987a; Ackerman, 1992; Reckase, 1985; Sympson, 1978). 

A compensatory MIRT model measures multiple abilities in such a way that a low ability 

on one dimension to be compensated for by a high ability on another dimension. Mathematically, 

this is modeled by summing the probabilities of a correct response across dimensions (Ackerman, 

1987a; Ackerman, 1992; Reckase, 1985). An example of an application of a compensatory MIRT 

model could be a TOEFL test that measures multiple abilities such as speaking, listening, reading 
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and writing skills in ESL learners (TOEFL iBT®, 2020). If the examinee is strong on writing 

ability then the strength on the writing ability can compensate for the speaking weaknesses on the 

speaking sub-test.  

On the other hand, the non-compensatory MIRT model assumes a high ability on one 

dimension does not compensate for a lower ability. Mathematically, a non-compensatory model 

uses multiplication to calculate the probability of a correct response as opposed to summing the 

probabilities of a correct response across dimensions in a compensatory MIRT models 

(Ackerman, 1992; Sympson, 1978). An example of a non-compensatory MIRT could be MCAT 

test where it measures the examinees’ abilities in the area of Biological and Biochemical 

Foundations of Living Systems; Chemical and Physical Foundations of Biological Systems; 

Psychological, Social, and Biological Foundations of Behavior; and Critical Analysis and 

Reasoning Skills (MCAT®, 2020). If an examinee demonstrate strength in the area of Biological 

Foundations it might not compensate for the weaknesses in the area of Physical Foundations 

(Biology knowledge versus Physics knowledge of the examinee). 

The focus of this study is a compensatory dichotomous two-parameter logistic (2PL) 

MIRT model. Reckase (1985) introduced Equation 1 that expresses a multidimensional 

compensatory 2PL item response theory. The probability of examinee j responding correctly to 

item i, (𝑈𝑖𝑗 = 1) is a function of a vector of the discrimination parameters for item i (𝒂𝒊
′) across m 

dimensions, a vector of person j’s ability on the 𝑚 dimensions (𝜽𝒋) and the multidimensional 

location of item i (𝑑𝑖); 

𝑃(𝑈𝑖𝑗 = 1 |𝒂𝒊
′, 𝜽𝒋, 𝑑𝑖) =

𝑒𝒂𝒊
′𝛉𝒋+𝑑𝑖

1 +  𝑒𝒂𝒊
′𝜽𝒋+𝑑𝑖

 
(1) 

where 𝑃(𝑈𝑖𝑗 = 1) is the probability of a correct response (1) to item i by examinee j in a 

dimensional ability space. 𝜽𝒋 is a  𝑚 ×  1 vector of person j’s ability on the m dimensions, 𝒂𝒊
′ is a  
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𝑚 ×  1 vector of the discrimination parameters for item i across m dimensions, and 𝑑𝑖 is measure 

of the multidimensional location of item i. 

Lastly, MIRT models can be categorized in terms of dimensional structure of the items 

on an educational test or a psychological instrument. Multidimensionality can be categorized as 

between item or within item multidimensionality. Between item multidimensionality is associated 

with a test consisting of several unidimensional parts; that is referred to as simple structure. 

Within item multidimensionality, on the other hand, is associated with an item in a test that 

measures more than one underlying latent ability; that is referred to as complex structure MIRT 

model (Adam, Wilson & Wang,1997). When data are multidimensional, it may be that the 

complete set is made of multiple unidimensional data sets (between multidimensionality or 

simple structure) or that each individual item measure multiple abilities (within 

multidimensionality or complex structure). The simple structure concept was initially introduced 

in the area of factor analysis (Thurstone, 1947).  In the area of psychometry and measurement, a 

simple structure refers to the fact that a few items load primarily and highly on an underlying 

latent ability and low on the other underlying latent abilities suggesting an association between 

the underlying latent ability and the item (Finch, 2006).  

Simple Structure MIRT Model 

 

A simple structured test is a multidimensional test that is composed of multiple 

unidimensional sub-tests in which each item measures a single ability (Finch, 2011, Svetina & 

Levy, 2016). Structure of a set of items for a population of examinees is simple if some sets of 

items depend on only one underlying latent ability and other sets of items depend on a different 

single latent ability (McDonald, 1999; Zhang & Stout, 1999). Technically, in a simple structure 

MIRT model the vector of discrimination parameters for each item on the 𝑚 dimensions has only 

one non-zero value, meaning the item discriminates on a single dimension. Typically, there is a 

correlation between the abilities in simple structure MIRT models (Finch, 2011). Generally, 
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simple structure MIRT models were introduced to minimize the number of factors needed to 

explain each variable where additional complexities associated with MIRT models can be 

decreased if the simple structure model fits the data reasonably (McDonald, 1999; Reckase, 

2009).  

For instance, in a TOEFL test each sub-test is hypothesized to measure one ability of the 

examinee (TOEFL iBT®, 2020). For example, the reading sub-test is hypothesized to measure 

the examinees’ ability in the area of reading skills in English language. The listening sub-test is 

intended to measure the examinees’ ability in the area of listening skills in English language 

(TOEFL iBT®, 2020). Figure 2.1 demonstrates a simple structure MIRT model where two 

underlying abilities (𝜃1 and 𝜃2 ) with a correlation of  𝜌 are measured by 10 items, five for each 

ability. 

 

Figure 2. 1.  A simple structure MIRT model with two underlying abilities (𝜃1 and 𝜃2) and 
correlation ρ. 

Complex Structure MIRT Model 

MIRT models that are associated with within item multidimensionality in which an item 

in a test measures more than one underlying latent ability. Within item dimensionality is referred 

to as complex structure (Wilson & Wang, 1997). In MIRT models, structure complexity has to do 

with allowing the discrimination parameter on each dimension to vary and indicates the degree to 

which the item measures that dimension. Technically, in a complex structure MIRT model each 



15 
 

item loads on multiple abilities (items exhibit cross loadings on multiple dimensions) (Finch, 

2011; Mc Donald, 1999; Svetina & Levy, 2016). 

Educational tests and psychological instruments are more likely to represent a complex 

structure MIRT model where more than one underlying latent abilities are being measured 

simultaneously (Finch, 2011; Reckase, 2009).  For example, in a mathematics test it is likely 

some items may be hypothesized to measure algebra skills, but also require some geometry or 

trigonometry skills in order for an examinee to respond to that particular item correctly (an 

individual item measuring multiple abilities at the same time). Figure 2.2 illustrates a complex 

structure MIRT model where two underlying abilities (𝜃1 and 𝜃2) with a correlation of  𝜌 are 

measured by 10 items. As shown in Figure 2.2, item 4 and item 7 load on both abilities of 

𝜃1 and 𝜃2, meaning some amount of ability on both dimensions is required to answer these items 

correctly. When an item is associated with multiple abilities it is referred to as “cross-loading”. 

For example, item 4 and item 7 in figure 2 demonstrate cross-loading in which they are associated 

with both abilities of 𝜃1 and 𝜃2. 

 

Figure 2. 2. A complex structure MIRT model with two underlying abilities (𝜃1 and 𝜃2) and 
correlation ρ. 

Understanding the structure complexity of the data is imperative in order to utilize the 

correct MIRT model and to make appropriate and accurate inferences about the data, especially 

when appropriate interpretation of examinees’ score across tests is considered. Parameter 

estimation such as item location and item discrimination may be affected if a unidimensional 
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model is applied to multidimensional data (Finch, 2011, Matlock & Turner, 2016; Svetina & 

Levy, 2016). In addition, item parameter estimates such as item location, item discrimination and 

examinees’ ability estimation and interpretation may also be affected if a simple structure model 

is applied to the data with a complex structure, or vice versa (Svetina & Levy, 2016).  

It is worth mentioning that sometimes a complex structure can be approximated to a 

simple structure where each item depends predominantly and strongly on one underlying latent 

ability while the items may depend on the other underlying latent ability relatively weakly. That 

means a test may not measure all dimensions equally (Hulin et al., 1983; Strachan et al., 2020; 

Svetina & Levy, 2016). 

 Variables with Potential Influence on Item Parameter Estimation in MIRT Models 

There are a number of variables that could potentially influence item parameter 

estimation, or recovery, and must be taken into account to evaluate the precision of item 

parameter estimation when applying a MIRT model. These variables include but are not limited 

to sample size, correlation level between the latent abilities, estimation method, number of items, 

distribution of the latent abilities, structure complexity of the data, etc. Previous studies in the 

area of item recovery applying MIRT models have frequently investigated variables such as 

sample size, correlation level between the abilities, distribution of the latent abilities and the 

number of items (Bolt & Lall, 2003; Finch, 2010, 2011; Svetina et al., 2017; Zhang, 2012). 

Bolt and Lall (2003) investigated item parameter estimation precision of 

multidimensional compensatory and non-compensatory item response models. In this study, the 

authors performed a simulation study in order to evaluate parameter recovery for the 

multidimensional two-parameter logistic model (M2PL) and the multidimensional latent ability 

model (MLTM) under various conditions. Manipulated variables were including sample size at 

two levels (1,000, 3,000), number of items at two levels (25, 50), and three levels of correlation 

between abilities (.0, .3, and .6). In addition, Latent ability parameters were generated from a 
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multivariate normal distribution, with each latent ability dimension having a mean of 0 and 

variance of 1. Item parameter estimation results were evaluated in terms of the root mean square 

error (RMSE) for each parameter. The results suggested that for M2PL model parameter recovery 

appeared to be reasonably good using the MCMC algorithm in terms of RMSEs. However, it was 

consistently inferior to NOHARM method. For the MLTM, on the other hand, sample size, 

number of items and latent ability correlation had noticeable effects on parameter recovery. 

Relative to the M2PL, less precise item parameter estimations were obtained for the MLTM 

model. Further, the authors noted that MCMC method for M2PL model was more successful and 

accurate than MLTM method especially as the correlation between latent abilities increased (Bolt 

& Lall, 2003). 

Finch (2010) investigated the accuracy of item parameter estimates in the area of MIRT 

model context. In this study, the author examined the two MIRT estimation methods of 

unweighted least squares (ULS) and robust weighted least squares (RWLS), and the 

unidimensional estimation approach under a variety of conditions such as sample sizes, test 

lengths, intertrait correlations, pseudo-guessing, and latent ability distribution using a simulation 

study and software packages such as NOHARM, MPlus, and BILOGMG. The results were 

evaluated based on overall accuracy, bias, and standard error of item parameter estimates. Results 

indicated that regardless of the distribution of the latent ability, MPlus bias was much higher in 

the 3PL than the 2PL case. Results also indicated that estimates provided by both methods were 

influenced by the distribution of the latent abilities where, in skewed cases, larger standard errors 

were calculated for NOHARM and MPlus estimates of item location and discrimination. In 

addition, both techniques exhibited greater location bias in the skewed condition. Moreover, in 

this study, the author, noted that higher correlation values in the skewed conditions demonstrated 

a greater bias in ULS discrimination and location estimates. However, the standard errors of the 

unidimensional estimates were not greatly influenced by any of the manipulated variables in this 

study. 



18 
 

Finch (2011), investigated the accuracy of item location and discrimination parameter 

estimation using NOHARM in the multidimensional Item Response Theory (MIRT) models 

when some items exhibit a complex structure. In this study, the author performed a simulation 

study in order to evaluate item parameter recovery for MIRT models. In this study, manipulated 

variables were including the number of examinees at four levels (250, 500, 1,000, and 2,000), 

four level of correlation between latent abilities (.0, .3, .5, or .8), distribution of latent abilities at 

two level of normal and non-normal, and three level of structure complexity (simple, semi-

complex and complex). In this study, the results indicated that MIRT model parameter estimates 

including both item location and item discrimination exhibited lower levels of bias for items that 

did not exhibit simple structure when two latent abilities were present compared to a 

unidimensional estimation approach. In addition, the results in this study indicated that item 

discrimination parameters were consistently underestimated when the latent abilities were non-

normal. Further, the author noted that both bias and standard error increased when item response 

data did not conform simple structure (Finch, 2011). This study did not investigate the complexity 

magnitude in a more detailed approach and more of a general definition of semi-complex and 

complex structure were introduced compared to a detailed complexity magnitude. In addition, this 

study did not investigate the effect of complex structure incorporating the effect of the degree of 

cross-loading on secondary dimension (how strongly each ability is being measured with an item) 

and model specification (misspecified simple structure model when the data are truly complex) 

and their effects on item parameter estimation precision.  

Zhang (2012) conducted a simulation study in order to compare the unidimensional and 

multidimensional approaches with the marginal maximum likelihood method (MMLE) when a 

test or an assessment instrument is composed of several unidimensional subtests or it exhibit a 

simple structure. In this study, a simulation study was utilized in order to evaluate item parameter 

estimation under various conditions such as sample size at six levels (500, 1,000, 2,000, 3,000, 

4,000, and 5,000), the number of items at three levels of 30, 46, or 62, and three levels of 
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correlation between abilities (.0, .5, and .8). RMSEs and average of RMSEs (ARMSE) were used 

to evaluate the item parameter estimations. The author in this study noted that the unidimensional 

and multidimensional approaches are equivalent in parameter estimation if the joint maximum 

likelihood method was used as a method of estimation. However, estimation results of these two 

approaches differ if the marginal maximum likelihood method (MMLE) is applied. In this study, 

the simulation results indicated that item parameter estimation utilizing a multidimensional 

approach was more precise than item parameter estimation utilizing a unidimensional approach 

when the number of items in a test or an instrument was small. In addition, the author, 

investigated the effect of structure complexity on the item parameter estimation. Results of this 

study indicated that the correlation coefficients between abilities were overestimated when a set 

of response data did not have a simple structure but was specified as a simple structure (Zhang, 

2012). This study did not discuss a detailed complexity magnitude and its effect on the precision 

of item parameter estimation and was only performed on comparing a simple structure and a 

mixed structure and their effect on item parameter estimation performance. In addition, this study 

did not address the degree of cross-loading on secondary dimension and its effect on the precision 

of item parameter estimation. In addition, this study did not discuss model specification and its 

effect on item parameter estimation in MIRT models. As it was stated in the previous chapter 

sometimes a complex structure can be approximated to a simple structure where each item 

depends predominantly and strongly on one primary underlying latent ability and relatively 

weakly on other secondary latent abilities (Hulin et al., 1983; Strachan et al., 2020; Svetina & 

Levy, 2016). The degree of cross-loading is an indication of how strongly primary and secondary 

dimensions are associated with the item and should be considered if the item measures a 

dominant dimension and potentially one or more weaker dimensions or the item measures both 

dimensions equally strongly. 

Svetina et al. (2017) utilizing a simulation study investigated the effects of complex 

structures and the distribution of examinees’ latent ability on item parameter recovery in 
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dichotomous compensatory MIRT models. In this study, manipulated variables were including 

two levels of model type, three levels of correlation between dimensions (.0, .4, or .7), three 

levels of distribution of the latent variables (normal-skewed, skewed-skewed or normal-normal), 

five levels of complexity (simple, balanced 20%, balanced 40%, imbalanced 20% and imbalanced 

40%). The fully crossed design yielded 180 conditions with 500 replications each. Evaluation 

criteria in this study were bias and root mean square error (RMSE). The authors in this study 

noted that when latent abilities were skewed, item parameter recovery was generally adversely 

impacted. In addition, the presence of complexity contributed to decreases in the precision of 

parameter recovery, particularly for discrimination parameters along one dimension when at least 

one latent ability was generated as skewed (Svetina et al., 2017). This study did not address the 

effect of degree of cross-loading on secondary dimension when item response data represent a 

complex structure. Sometimes a complex structure can be approximated to a simple structure 

depending on the degree of cross-loading where each item depends predominantly and strongly 

on one primary underlying latent ability and relatively weakly on other secondary latent abilities. 

Therefore, model specification incorporating the degree of cross-loading could affect the 

precision of item parameter estimation. This study did not investigate the effect of model 

specification incorporating the degree of cross-loading on the precision of item parameter 

estimation.  

Conditions of the Current Study 

Components of the aforementioned studies investigated the effects of sample size, model 

type (2PL or 3PL), correlation between latent abilities, the distribution of examinees’ ability, 

structure complexity magnitude of the data, but none investigated , structure complexity 

magnitude incorporating the degree of cross-loading on secondary dimension (low, medium, 

high), and model specification. Though there exists a wide collection of variables that may affect 

item parameter estimations in MIRT models, the following were chosen as the focus of this study: 
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sample size, correlation between latent abilities, structure complexity magnitude of the data, the 

degree of cross-loading on secondary dimension, and model specification. 

Sample Size (Number of Examinees) 

One of the variables that may influence the item parameter estimation in the MIRT 

models is the number of examinees or the sample size. Previous studies have investigated the 

effect of a broad range of sample size from a small (500) to very large sample size (5,000) on the 

item parameter estimation in the MIRT models (Bolt & Lall, 2003; Finch, 2010, 2011; Jing et al., 

2016; Zhang, 2012). Bolt and Lall (2003) explored the effect of sample size at two levels of 1,000 

and 3,000 on item parameter estimation in compensatory and non-compensatory MIRT models. 

Finch (2010) and Finch (2011) simulated the number of examinees at four levels of 250, 500, 

1,000 and 2,000 in order to investigate the item parameter precision under the influence of 

various sample sizes. Zhang (2012) evaluated item parameter estimation under various conditions 

and six levels of sample sizes (500, 1,000, 2,000, 3,000, 4,000, and 5,000). In this study, in order 

to stay with a manageable number of conditions three level of sample sizes of 500, 1,000 and 

2,000 examinees will be selected in order to investigate the effect of sample size on the item 

parameter estimation in MIRT models.  

Correlation between Latent Abilities 

One of the variables that might affect the precision of item parameter estimation in MIRT 

models is the correlation between latent abilities. Previous research studies (Bolt & Lall, 2003; 

Finch, 2010, 2011; Svetina et al., 2017; Zhang, 2012) have investigated correlation between latent 

abilities and its effects on item parameter estimation in MIRT models. Those studies have utilized 

a wide range of correlation values from relatively small values of correlations (.0 and .3) to larger 

values of correlation (.8 and .9) to investigate the influence of the correlation between latent 

abilities on item parameter estimation (Bolt & Lall, 2003; Finch, 2010, 2011; Svetina et al., 2017; 

Zhang, 2012). Bolt and Lall (2003) utilized three levels of correlation between abilities (.0, .3, 
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and .6) in order to investigate item parameter estimation precision (Bolt and Lall, 2003). Using a 

simulation study Finch (2010) and Finch (2011) investigated the effect of correlation between 

latent abilities on item parameter estimation in 2PL-MIRT model. The two latent abilities were 

simulated to be correlated at .0, .3, .5, or .8. The results indicated that that correlated latent 

abilities had an influence on item parameter estimation (Finch, 2010, 2011). Zhang (2012) 

utilized three levels of correlation between abilities (.0, .5, and .8) in order to investigate item 

parameter estimation precision. Svetina et al. (2017) simulated the latent abilities to be correlated 

at three levels of .0, .4, or .7. In the current study, in order to investigate the effect of correlation 

between latent abilities on the precision of item parameter estimation in MIRT model the latent 

abilities were simulated to be correlated at three levels of .0, .6 or .9. 

Structure Complexity Magnitude  

In this study, “structure complexity magnitude” is referred to the percent of the items in a 

test or sub-test that demonstrate a complex structure. For instance, if 5 of 10 items display a 

complex structure, the structure complexity would be 50%. If 10 of 10 items have a complex 

structure, this would be 100%. Finch (2011) introduced one of the first examinations of parameter 

estimation in the non-simple structure case. Finch (2011) investigated item parameter estimation 

precision in MIRT models under two latent abilities with an equal number of items per dimension 

in two levels of complex and semi-complex. Unfortunately, Finch (2011) did not indicate the 

exact complexity magnitude in each condition. Finch (2011) noted that “parameter estimates 

obtained using the MIRT model exhibited lower levels of bias in both discrimination and location 

parameter estimates for items that do not exhibit simple structure when two latent abilities are 

present than did unidimensional estimation” (Finch, 2011).  

In another study, Zhang (2012) investigated the impact of the violation of the simple 

structure assumption (structure complexity) on item parameter estimation precision in MIRT 

models in two levels of simple structure and mixed structure. The results in this research 
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indicated that when a set of response data does not have a simple structure but is specified as such 

the models will be incorrectly estimated and the correlation coefficients between abilities will be 

overestimated (Zhang 2012). Svetina et al. (2017) also considered a simple structure and two 

levels of complexity magnitude (20% and 40 % of items represent a complex structure) and its 

effect on item parameter estimation in MIRT models. The authors in this study noted that the 

recovery of item discrimination in imbalanced complexity conditions was generally poorer for 

complex items in comparison to their simple item counterparts. However, item guessing 

parameter recovery was better for complex item compared to the simple structured items (Svetina 

et al., 2017). In order to further investigate the effect of complexity magnitude on item parameter 

estimation in MIRT models, in the current study, three levels of complexity magnitudes (when 

10%, 30% or 50% of items represent a complex structure) incorporating a low, medium, or high 

degree of cross-loading on secondary dimension will be considered.  

Degree of Cross-Loading on Secondary Dimension 

As it was stated in the previous chapter, in MIRT models sometimes a complex structure 

can be approximated to a simple structure where each item depends predominantly and strongly 

on one primary underlying latent ability and relatively weakly on other secondary latent abilities 

(Hulin et al., 1983; Strachan et al., 2020; Svetina & Levy, 2016). In this study, this phenomenon 

is referred to as the “degree cross-loading” where it defines how strongly underlying latent 

abilities in complex structure MIRT models are related to the items. The degree of cross-loading 

is an indication of how strongly primary and secondary dimensions are associated with the item. 

Are these dimensions being measured equally strongly by the item? It should be considered if the 

item measures a dominant dimension and potentially one or more weaker dimensions or the item 

measures both dimensions equally strongly. In this study, three levels of low, medium or high 

degree of cross-loading on secondary dimension will be considered. 
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Model Specification 

One of the variables that can affect the item parameter estimation precision is model 

specification prior to MIRT estimation procedures (Chen & Jiao, 2013; Strachan et al., 2020). As 

it was mentioned before, In the MIRT models misspecification refers to the situation where the 

true dimensionality of the data does not equal the dimensionality of the model fit to the data. One 

of the situations that misspecification can occur and is the interest of this study is when fitting a 

simple structure model to data that have a true complex structure MIRT model. Investigation of 

model specification is important due to the fact that sensitivity to model specification can either 

result in biases and inaccuracy in item parameter estimation and interpretation or the estimation 

procedure is robust to the model misspecification (Strachan et al., 2020). 

Summary 

The purpose of this study was to investigate the impact of structure complexity 

magnitude of the data, the degree of cross-loading on secondary dimension, and model 

specification (misspecified simple structure model when data are truly complex) on item 

parameter estimation in MIRT model. When the item response data are multidimensional, 

structure complexity (simple structure or complex structure) and complexity magnitude of the 

data should be considered in order to ensure the precision of item parameter estimation and 

appropriate interpretation of item characteristics. In addition, understanding the effects of model 

specification, i.e., when the structure of the model applied is not that of the true structure of the 

data, is imperative to ensure the precision of item parameter estimation and appropriate 

interpretation item characteristics when dealing with multidimensional data.  In practice and in 

real-world situations, it is very likely that when the items in a test exhibit a complex structure 

with a strong loading on one ability but a small loading on the other ability (small degree of 

cross-loading), the data are treated as having a simple structure, ignoring the small cross-loading 

of some items.  
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As it was mentioned in the previous sections, past studies have investigated the effects of 

structure complexity, the correlation between the underlying latent abilities, sample size, 

distribution of examinees on dimensionality assessment and item parameter recovery on complex 

structure MIRT models (Finch, 2011; Svetina & Levy, 2016; Svetina et al., 2017; Zhang 2012). 

However, previous studies did not consider the degree of cross-loading on secondary dimension 

(how strongly each ability is being measured with an item) and model specification (misspecified 

simple structure model when the data are truly complex) and their effects on item parameter 

estimation precision. In addition, previous studies did not collectively discuss the effects of 

structure complexity magnitude of the data incorporating the degree of cross-loading on 

secondary dimension and model specification on item parameter estimation in complex structure 

MIRT models. 
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CHAPTER III 
 

 

METHODLOGY 
 

 

This study was designed to investigate the impact of structure complexity magnitude of 

the data, the degree of cross-loading on secondary dimension, and model specification 

(misspecified simple structure vs correct specified model when data are truly complex) on item 

parameter estimation in Multidimensional Item Response Theory (MIRT). In this chapter, model 

specifications and simulation factors, item parameter specifications, structure complexity 

features, data generation procedure and evaluation criteria of the simulation results are presented.    
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Simulation Study Design  

A simulation study was designed to address the research question regarding the variables 

influencing the precision of item parameter estimation in the MIRT models. These variables are 

including structure complexity magnitude of the data, the degree of cross-loading on secondary 

dimension, and model specification (misspecified simple structure vs correct specified model 

when data are truly complex). In order to simulate the data, a compensatory MIRT model with 

two dimensions and dichotomous items response type (Reckase, 1985) was considered for the 

data generation procedure. Item specifications of the 20 items reported in Svetina (2016) were 

used to simulate item response data pattern in each condition using geometry and codes written in 

R Studio (RStudio Team, 2018) and the “mirt” package (Chalmers, 2012).  

Manipulated Variables  

The following variables were manipulated in order to address the research question 

regarding the item parameter estimation precision. The discrimination of items on the primary 

dimension (𝑎𝑝) was fixed for all conditions. At different levels of structure complexity magnitude 

and degree of cross-loading, the discrimination on the secondary dimension (𝑎𝑠) was adjusted. 

For items with no cross-loading, 𝑎𝑠 = 0. For those with some magnitude or level of cross-

loading, the discrimination on the secondary dimension was less than the discrimination on the 

primary dimension, i.e., 𝑎𝑠 < 𝑎𝑝. 

Three levels of structure complexity magnitude. Finch (2011) introduced one of the first 

examinations of MIRT parameter estimation in the non-simple structure case with an equal 

number of items per dimension in two levels of complex and semi-complex. Unfortunately, Finch 

(2011) did not indicate the exact complexity magnitude in each condition. Svetina et al. (2017) 

considered a simple structure and two levels of complexity magnitude (when 20% and 40 % of 

items represent a complex structure) and its effect on item parameter estimation in MIRT models. 

In another study, Svetina and Levy (2016) considered three levels of structure complexity 
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magnitude. Three levels of complexity magnitudes in this study are including when 10% (one 

complex item of 10 items on each dimension), 30% (three complex items of 10 items on each 

dimension) or 50% (five complex items of 10 items on each dimension) of items represent a 

complex structure.  

Three levels of cross-loading discrimination. In the MIRT models, sometimes a complex 

structure can be approximated to a simple structure where each item depends predominantly and 

strongly on one primary underlying latent ability and relatively weakly on other secondary latent 

abilities (Hulin et al., 1983; Strachan et al., 2020; Svetina & Levy, 2016). The degree of cross-

loading is an indication of how strongly primary and secondary dimensions are associated with 

the item. In this study, three levels of low, medium or high degree of cross-loading on secondary 

dimension will be considered. Exact values from the Svetina and Levy (2016) for the high degree 

of cross-loading were used, where the discrimination on the secondary dimension of items ranged 

from 0.80 to 1.40. A modified medium degree of cross-loading, where the degree of association 

(as measured by discrimination) ranged from 0.40 to 0.70. A modified low degree of cross-

loading was specified where the discrimination on the secondary dimension of items ranged from 

0.20 to 0.35. 

Three levels of correlation between dimensions. Previous studies investigated the effect 

of correlation between the dimensions within a variety of simulated correlation levels ranging 

from .0 to .95 (Bolt & Lall, 2003; Finch, 2010, 2011; Svetina et al., 2017; Zhang, 2012). Bolt and 

Lall (2003) utilized three levels of correlation between abilities (.0, .3, and .6) in order to 

investigate the accuracy of item parameter estimation. Using a simulation study Finch (2010) and 

Finch (2011) investigated the effect of correlation between latent abilities on item parameter 

estimation M2PL model. The two latent abilities were simulated to be correlated at .0, .3, .5, or .8. 

Zhang (2012) utilized three levels of correlation between abilities (.0, .5, and .8) in order to 

investigate the precision of item parameter estimation. Svetina et al. (2017) utilized a simulation 

study in order to investigate the accuracy of item parameter estimation where the correlations 
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between abilities were set to .0, .4, or .7. In the current study, the data were simulated considering 

when the correlation between the dimensions was set to .0, .6, or .9. 

Three levels of sample size. Previous studies have investigated the effect of a broad range 

of sample size from a small (500) to very large sample size (5,000) on the item parameter 

estimation in the MIRT models (Bolt & Lall, 2003; Finch, 2010, 2011; Zhang, 2012). Bolt and 

Lall (2003) explored the effect of sample size at two levels of 1,000 and 3,000 on item parameter 

estimation in compensatory and no compensatory MIRT models. Finch (2010) and Finch (2011) 

simulated the number of examinees at four levels of 250, 500, 1,000 and 2,000 in order to 

investigate the item parameter precision under the influence of various sample sizes. Zhang 

(2012) evaluated item parameter estimation under various conditions and six levels of sample 

sizes (500, 1,000, 2,000, 3,000, 4,000, and 5,000). In this study, in order to stay with a 

manageable number of conditions three levels of sample sizes of 500, 1,000 and 2,000 examinees 

were selected in order to investigate the effect of sample size on the item parameter estimation in 

MIRT models.  

Two levels of model specifications. Sometimes a complex structure can be approximated 

to a simple structure where each item depends predominantly and strongly on one primary 

underlying latent ability and relatively weakly on other secondary latent abilities (Hulin et al., 

1983; Strachan et al., 2020; Svetina & Levy, 2016). In practice and in real-world situations, it is 

very likely that when the items in a test exhibit a complex structure with a strong loading on one 

ability but a small loading on the other ability (small degree of cross-loading), the data are treated 

as having a simple structure, ignoring the small cross-loading of some items. One of the variables 

that can affect the accuracy of item parameter estimation is model specification prior to MIRT 

estimation procedures (Chen & Jiao, 2013; Strachan et al., 2020). As it was mentioned before, in 

the MIRT models misspecification refers to the situation where the true dimensionality of the data 

does not equal the dimensionality of the model fit to the data. One of the situations that 

misspecification can occur and is the interest of this study is when fitting a simple structure model 
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to data that have a true complex structure MIRT model considering a high, medium or low degree 

of cross-loading. Investigation of model specification is important due to the fact that sensitivity 

to model specification can either result in biases and inaccuracy in item parameter estimation and 

interpretation or the estimation procedure is robust to the model misspecification (Strachan et al., 

2020). In order to investigate the effect of model specification on item parameter estimation, two 

levels of model specification including the misspecified simple structure model when data are 

truly complex and the correct model specification were considered in this study.  

Item Parameter Specifications 

Table 3.1 reports the item parameter specifications for two dimensional compensatory 

MIRT model for 10 primary items per dimension for three different types of structure complexity 

magnitude from Svetina and Levy (2016) and three levels of degree of cross-loading, the first of 

which was taken from Svetina and Levy (2016) and additional medium and low degree of cross-

loading on secondary discrimination values. 
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Table 3. 1. Item Parameters for 2D Compensatory MIRT Model for 10 Items per Dimension for Three Types of Complexity Structures Including 
Low Degree of Cross-Loading on Secondary Discrimination. 

    10% Complex structure 30% Complex structure 50% Complex structure 

    High  Medium Low High Medium Low High Medium Low 

Item d 𝑎1 𝑎2 𝑎1 𝑎2 𝑎1 𝑎2 𝑎1 𝑎2 𝑎1 𝑎2 𝑎1 𝑎2 𝑎1 𝑎2 𝑎1 𝑎2 𝑎1 𝑎2 

1 -1.5 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 

2 -0.75 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 

3 0 1.00 0.80 1.00 0.40 1.00 0.20 1.00 0.80 1.00 0.40 1.00 0.20 1.00 0.80 1.00 0.40 1.00 0.20 

4 0.75 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 

5 1.5 1.20 - 1.20 - 1.20 - 1.20 - 1.20 - 1.20 - 1.20 1.00 1.20 0.50 1.20 0.25 

6 -1.5 1.20 - 1.20 - 1.20 - 1.20 - 1.20 - 1.20 - 1.20 1.00 1.20 0.50 1.20 0.25 

7 -0.75 1.40 - 1.40 - 1.40 - 1.40 1.20 1.40 0.60 1.40 0.30 1.40 1.20 1.40 0.60 1.40 0.30 

8 0 1.40 - 1.40 - 1.40 - 1.40 - 1.40 - 1.40 - 1.40 - 1.40 - 1.40 - 

9 0.75 1.60 - 1.60 - 1.60 - 1.60 1.40 1.60 0.70 1.60 0.35 1.60 1.40 1.60 0.70 1.60 0.35 

10 1.5 1.60 - 1.60 - 1.60 - 1.60 - 1.60 - 1.60 - 1.60 - 1.60 - 1.60 - 

11 1.5 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 

12 0.75 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 

13 0 0.80 1.00 0.40 1.00 0.20 1.00 0.80 1.00 0.40 1.00 0.20 1.00 0.80 1.00 0.40 1.00 0.20 1.00 

14 -0.75 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 

15 -1.5 - 1.20 - 1.20 - 1.20 - 1.20 - 1.20 - 1.20 1.00 1.20 0.50 1.20 0.25 1.20 

16 1.5 - 1.20 - 1.20 - 1.20 - 1.20 - 1.20 - 1.20 1.00 1.20 0.50 1.20 0.25 1.20 

17 0.75 - 1.40 - 1.40 - 1.40 1.20 1.40 0.60 1.40 0.30 1.40 1.20 1.40 0.60 1.40 0.30 1.40 

18 0 - 1.40 - 1.40 - 1.40 - 1.40 - 1.40 - 1.40 - 1.40 - 1.40 - 1.40 

19 -0.75 - 1.60 - 1.60 - 1.60 1.40 1.60 0.70 1.60 0.35 1.60 1.40 1.60 0.70 1.60 0.35 1.60 

20 -1.5 - 1.60 - 1.60 - 1.60 - 1.60 - 1.60 - 1.60 - 1.60 - 1.60 - 1.60 

M 0 1.16 1.16 1.13 1.13 1.11 1.11 1.18 1.18 1.05 1.05 0.99 0.99 1.16 1.16 0.98 0.98 0.89 0.89 

SD 1.09 0.31 0.31 0.37 0.37 0.41 0.41 0.29 0.29 0.38 0.38 0.48 0.48 0.27 0.27 0.41 0.41 0.51 0.51 
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For example, considering the 30% complex structure item specifications introduced in 

Table 3.1, if we suspect that the 20 items in the Svetina and Levy (2016) study are a mathematics 

test. The assumption is that the 10 algebra items measure only algebra knowledge and the 10 

geometry items measure only geometry knowledge. However, in reality items 3, 7, and 9 might 

primarily measure algebra, but also require some geometry skills; items 13, 17, and 19 primarily 

test geometry, but require some algebra skills.  

In this study, the effects of misspecified simple structure and ignoring the need of the 

secondary dimension of complex data on item parameter estimates by manipulating the 

complexity magnitude (when 10%, 30%, or 50% of the items represent a complex structure) and 

the degree of cross-loading on secondary dimension (low, medium or high degree of cross-

loading on secondary dimension) on item parameter estimation in MIRT models was 

investigated. As reported in Table 3.1, the high degree of cross-loading on secondary dimension 

(0.80 to 1.40) are the exact values from the Syetina & Levy (2016). In this study, we also 

investigated the effect of the misspecified model (simple structure) in the presence of medium 

(0.40 to 0.70) and low (0.20 to 0.35) degree of cross-loadings on the secondary dimension.  

Analysis 

The described manipulated variables influencing the precision of item parameter 

estimation in this study led to 162 simulated item response data sets. Each condition combination 

was replicated 500 times. A compensatory 2PL-MIRT model with two dimensions and 

dichotomous items response type was used to simulate and calibrate the data for every replication 

for each condition combination, with a standard bivariate normal 𝜃 distribution with three levels 

of correlation. Parameters were estimated using marginal maximum likelihood (MML), utilizing 

the expectation-maximization (EM) algorithms. According to Chalmers (2012), the EM algorithm 

is considered generally as an effective estimation method with few dimensions (Chalmers, 2012).  
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Instrument 

R Studio (RStudio Team, 2018) was used for both data generation and item parameter 

estimation and analyses. The “mirt” package (Chalmers, 2012) was used in order to generate the 

simulated item response patterns for a sample size of 500, 1,000 and 2,000 examinees based on 

the designated distribution of the examinees on latent abilities within each combination of 

conditions. In addition, item parameters of the correct specified or misspecified MIRT models 

were estimated using “mirt” package (Chalmers, 2012).  

Evaluation Criteria 

For each combination of conditions, 500 replications were simulated and item parameter 

estimates were averaged resulting in mean (M) and standard deviation (SD) of the estimated 

parameters across replications. In order to investigate the effect of the complexity magnitude of 

the data, the degree of cross-loading on secondary dimension, and model specification on item 

parameter estimation, estimated item parameters were compared to true item parameter 

specifications. Root mean square of error (RMSE), bias (B), and standard error of estimate (SEE) 

were calculated to evaluate the performance and accuracy of item parameter estimation within 

each combination of conditions across 500 replications.  

The RMSE can be defined as; 

 

𝑅𝑀𝑆𝐸𝑗 = √
1

𝑟
∑(�̂�𝑗𝑟 − 𝑣𝑗)2
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where 𝑟 is the number of replications, �̂�𝑗𝑟  is an estimate for parameter 𝑗 at replication 𝑟, and 𝑣𝑗 is 

a true value of parameter 𝑗.  

The Bias (𝐵) can be defined as; 
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where 𝑟 is the number of replications, �̂�𝑗𝑟  is an estimate for parameter 𝑗 at replication 𝑟, and 𝑣𝑗 is 

a true value of parameter 𝑗. In the case of MIRT, the term 𝑣𝑗 can be the discrimination or 

location parameter for the 𝑗𝑡ℎ item. Technically, bias is an indicator of whether the parameters 

were overestimated or underestimated and how much and in what direction the estimated 

parameters differ from the true value of parameter. 

The SEE can be defined as follows; 

𝑆𝐸𝐸𝑗 = √
1

𝑟
∑(�̂�𝑗𝑟 − �̂�𝐽)2

𝑟

𝑟=1

 

 

(3.3) 

Where 𝑟 denotes the number of replications, �̂�𝐽 is an average of �̂�𝑗𝑟 across the 𝑟 replications. 
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CHAPTER IV 
 

RESULTS 
 

 

The purpose of this study was to investigate the impact of structure complexity 

magnitude of the data, the degree of cross-loading on secondary dimension, model specification 

(misspecified simple structure model when data are truly complex), sample size and correlation 

between abilities on item parameter estimation in MIRT model. Simulated item response patterns 

for sample size of 500, 1,000 and 2,000 examinees were generated and item parameters were 

estimated within each combination of conditions. Estimated item parameters were compared with 

the true item parameter specifications in order to investigate the influence of the manipulated 

variables on item parameter recovery in each combination of conditions. 
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The described manipulated variables influencing the precision of item parameter 

estimation in this study led to 162 simulated item response data sets. Each condition combination 

was replicated 500 times. A compensatory 2PL-MIRT model with two dimensions and 

dichotomous item response type with a standard bivariate normal θ distribution with three levels 

of correlation between abilities was utilized to simulate and calibrate the data for every 

replication for each combination of conditions. Parameters were estimated using marginal 

maximum likelihood (MML), utilizing the expectation-maximization (EM) algorithms. Within 

each combination of conditions across the 500 replicated datasets of item response data, the 

estimated item discriminations on each dimension (𝑎1̂ and 𝑎2̂ ) and item location (�̂�) were 

calculated.  

In this chapter, results are reported in three main sections. Within each section, the results 

are shown considering the structure complexity magnitude of the data (when 10%, 30% or 50% 

of items represent a complex structure) incorporating the degree of cross-loading (low, medium 

and high), sample size (500, 1,000 and 2,000), and model specification (correct specified model 

compared to misspecified model) at three levels of correlation (.0, .6, and .9). Section I elaborates 

on the effect of the studied variables (sample size, correlation between the abilities, model 

specification, structure complexity magnitude and the degree of cross-loading) on the item 

parameter estimation in terms of average RMSE of the item parameter recovery (true item 

parameters compared with the estimated item parameters). Section II illustrates the average bias 

of the item parameter recovery results considering the effect of studied variable across the 

combinations of conditions. Section III demonstrates the standard error of estimate of the item 

parameter estimation across the conditions. 
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Section I: Item Parameter Recovery Results in Terms of Average RMSE 

Correct Specified Models 

In order to investigate the effect of the manipulated variables on the precision of item 

parameter estimation the RMSEs were calculated comparing the true item parameter specification 

with the estimated item parameters across 500 replications. The RMSEs were averaged for the 

estimated item discrimination parameters (𝑎1 and 𝑎2) and the estimated item location parameter 

(𝑑) within each combination of conditions for three sets of item cross-loading. For the item 

discrimination parameters (𝑎1 and 𝑎2) in correct specified models, the RMSEs for the primary 

cross-loaded item discriminations on first and second dimensions (𝑎1𝑝𝑐𝑙  and 𝑎2𝑝𝑐𝑙) were 

averaged based on those items that had a primary item discrimination and were cross-loaded on 

both dimensions. Likewise, the RMSEs for the primary non-cross loaded item discriminations on 

first and second dimensions (𝑎1𝑝𝑛𝑐𝑙  and 𝑎2𝑝𝑛𝑐𝑙) were averaged based on the items that had a 

primary item discrimination but were not cross-loaded on both dimensions. For the secondary 

item discriminations (𝑎1𝑠 and 𝑎2𝑠) the RMSEs were averaged based on the items that had a 

secondary item discrimination.  

Primary item discrimination parameters. Table 4.1 reports the average RMSEs of the 

estimated item discrimination parameters when the models were correctly specified considering 

three levels of structure complexity magnitude incorporating low, medium or high degree of 

cross-loading. As shown in table 4.1, the average RMSEs for the primary cross-loaded item 

discrimination parameters on the first dimension (𝑎1𝑝𝑐𝑙) ranged from 0.078 to 0.334. The average 

RMSEs for the primary non-cross loaded item discrimination parameters on the first dimension 

(𝑎1𝑝𝑛𝑐𝑙) ranged from 0.092 to 0.221 across all combination of conditions. On the other hand, the 

average RMSEs for the primary cross-loaded item discrimination parameters on the second 

dimension (𝑎2𝑝𝑐𝑙) ranged from 0.075 to 0.340. The average RMSEs for the primary non-cross 

loaded item discrimination parameters on the second dimension (𝑎2𝑝𝑛𝑐𝑙) ranged from 0.091 to 
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0.216 across all combination of conditions. Item discrimination estimates on the primary 

dimension tended to have larger RMSEs when the item was cross-loaded than when it was non-

cross loaded. 

Secondary item discrimination parameters. The average RMSEs for the secondary item 

discrimination parameter for the first dimension (𝑎1𝑠) ranged from 0.062 to 0.617. On the other 

hand, the average RMSEs for the secondary item discrimination parameter on the second 

dimension (𝑎2𝑠) ranged from 0.061 to 0.619 across all combination of conditions. It was 

interesting to observe that secondary item discrimination parameters on first and second 

dimensions had a very similar patterns and values in terms of average RMSEs. However, 

compared to the RMSEs of corresponding items on the primary dimension (𝑎1𝑝𝑐𝑙 and 𝑎2𝑝𝑐𝑙), the 

RMSEs were larger on the secondary dimension than on the primary dimension. 

Item location parameter (𝒅). Table 4.3 reports the average RMSEs for the item location 

parameter (𝑑) for both correct specified and misspecified models across all combination of 

conditions. The average RMSEs for item location parameter when the model was correctly 

specified ranged from 0.067 to 0.169. The lowest average RMSE for item location parameter was 

associated with the condition when the correlation between the abilities was .0 and the sample 

size was 2,000. The highest average RMSE for item location parameter was associated with the 

condition when the correlation between the abilities was .9 and the sample size was 500. 

Misspecified Models 

The RMSEs were averaged for the estimated item discrimination parameters (𝑎1 and 𝑎2) 

and the estimated item location parameter (𝑑) within each combination of conditions for three 

sets of item cross-loading. For the item discrimination parameters (𝑎1 and 𝑎2) in misspecified 

models, the RMSEs for the truly primary cross-loaded item discriminations on first and second 

dimensions (𝑎1𝑝𝑐𝑙  and 𝑎2𝑝𝑐𝑙) were averaged based on those items that had a primary item 

discrimination and were supposed to be specified as cross-loaded items on both dimensions (these 
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are the items that were misspecified in the model). Likewise, the RMSEs for the truly primary 

non-cross loaded item discriminations on first and second dimensions (𝑎1𝑝𝑛𝑐𝑙  and 𝑎2𝑝𝑛𝑐𝑙) were 

averaged based on the items that had a primary item discrimination but were not truly cross-

loaded on both dimensions. It should be noted that there was no secondary item discrimination 

defined for the first and second dimension in the misspecified models (𝑎1𝑠 and 𝑎2𝑠). 

Primary item discrimination parameters. Table 4.2 reports the average RMSEs of the 

estimated item discrimination parameters when the models were misspecified considering three 

levels of structure complexity magnitude incorporating low, medium or high degree of cross-

loading. As shown in table 4.2, the average RMSEs for the truly primary cross-loaded item 

discrimination parameters on the first dimension (𝑎1𝑝𝑐𝑙) ranged from 0.080 to 1.119. The average 

RMSEs for the truly primary non-cross loaded item discrimination parameters on the first 

dimension (𝑎1𝑝𝑛𝑐𝑙) ranged from 0.083 to 0.262 across all combinations of conditions. On the 

other hand, the average RMSEs for the truly primary cross-loaded item discrimination parameters 

on the second dimension (𝑎2𝑝𝑐𝑙) ranged from 0.075 to 1.144. The average RMSEs for the truly 

primary non-cross loaded item discrimination parameters on the second dimension (𝑎2𝑝𝑛𝑐𝑙) 

ranged from 0.084 to 0.269 across all combinations of conditions. Item discrimination estimates 

on the truly primary dimension tended to have much larger RMSEs when the item was supposed 

to be specified as cross-loaded than when it was non-cross loaded. In addition, it should be noted 

that very similar patterns and values in terms of average RMSEs were observed for the truly 

primary item discrimination parameters on the first and second dimensions.  

Item location parameter (𝒅). Table 4.3 reports the average RMSEs for the item location 

parameter (𝑑) for both correct specified and misspecified models across all combinations of 

conditions. The average RMSEs for item location parameter when the models were misspecified 

ranged from 0.067 to 0.165. The lowest average RMSE for item location parameter was 

associated with the condition when the correlation between the abilities was .0 and the sample 
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size was 2,000. The highest average RMSE for item location parameter was associated with the 

condition when the correlation between the abilities was .9 and the sample size was 500. 
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Table 4. 1. Average RMSE of the primary (cross-loaded and non-cross loaded items) and secondary discrimination on the first and second dimensions when the 
models were correctly specified. 

       LOW MED HGH 

       𝑎1 𝑎2 𝑎1 𝑎2 𝑎1 𝑎2 

Complexity Correlation N  𝑎1𝑝 

𝐶𝐿 

𝑎1𝑝 

𝑁𝐶𝐿 

𝑎1𝑠 
 

𝑎2𝑝 

𝐶𝐿 

𝑎2𝑝 

𝑁𝐶𝐿 

𝑎2𝑠 
 

𝑎1𝑝 

𝐶𝐿 

𝑎1𝑝 

𝑁𝐶𝐿 

𝑎1𝑠 
 

𝑎2𝑝 

𝐶𝐿 

𝑎2𝑝 

𝑁𝐶𝐿 

𝑎2𝑠 
 

𝑎1𝑝 

𝐶𝐿 

𝑎1𝑝 

𝑁𝐶𝐿 

𝑎1𝑠 
 

𝑎2𝑝 

𝐶𝐿 

𝑎2𝑝 

𝑁𝐶𝐿 

𝑎2𝑠 
 

10% .0 500  0.156 0.199 0.124 0.163 0.200 0.122 0.151 0.197 0.129 0.165 0.199 0.123 0.168 0.198 0.155 0.170 0.194 0.151 

1000  0.111 0.135 0.087 0.111 0.138 0.09 0.114 0.139 0.091 0.114 0.135 0.091 0.115 0.140 0.109 0.114 0.138 0.112 

2000  0.081 0.095 0.062 0.075 0.096 0.061 0.078 0.097 0.065 0.079 0.096 0.064 0.083 0.095 0.077 0.084 0.098 0.077 

.6 500  0.174 0.202 0.24 0.180 0.198 0.24 0.188 0.195 0.246 0.182 0.198 0.231 0.225 0.198 0.235 0.207 0.196 0.24 

1000  0.128 0.137 0.221 0.125 0.135 0.221 0.120 0.138 0.211 0.123 0.143 0.213 0.152 0.134 0.192 0.159 0.137 0.19 

2000  0.094 0.100 0.207 0.091 0.098 0.207 0.086 0.094 0.197 0.083 0.096 0.19 0.125 0.096 0.164 0.125 0.097 0.168 

.9 500  0.256 0.203 0.419 0.248 0.199 0.423 0.214 0.198 0.392 0.222 0.200 0.392 0.244 0.197 0.313 0.231 0.199 0.29 

1000  0.224 0.138 0.414 0.240 0.138 0.395 0.164 0.138 0.36 0.163 0.136 0.355 0.162 0.138 0.272 0.175 0.137 0.264 

2000  0.216 0.098 0.393 0.214 0.095 0.389 0.142 0.096 0.337 0.138 0.098 0.341 0.123 0.096 0.239 0.130 0.096 0.242 

30% .0 500  0.211 0.189 0.14 0.207 0.196 0.142 0.204 0.194 0.149 0.202 0.196 0.15 0.210 0.195 0.194 0.213 0.195 0.189 

1000  0.137 0.130 0.103 0.141 0.133 0.101 0.143 0.131 0.108 0.140 0.133 0.103 0.145 0.137 0.134 0.147 0.131 0.135 

2000  0.098 0.096 0.069 0.097 0.092 0.068 0.101 0.095 0.074 0.099 0.095 0.074 0.098 0.093 0.093 0.101 0.095 0.092 

.6 500  0.215 0.195 0.345 0.216 0.194 0.339 0.225 0.201 0.334 0.224 0.194 0.327 0.293 0.191 0.335 0.300 0.198 0.328 

1000  0.158 0.136 0.319 0.159 0.136 0.314 0.147 0.137 0.305 0.152 0.135 0.299 0.226 0.135 0.277 0.228 0.136 0.272 

2000  0.118 0.096 0.31 0.119 0.097 0.304 0.104 0.097 0.284 0.110 0.094 0.281 0.186 0.094 0.242 0.191 0.096 0.246 

.9 500  0.308 0.201 0.596 0.318 0.206 0.593 0.253 0.203 0.543 0.241 0.199 0.524 0.315 0.196 0.422 0.325 0.199 0.422 

1000  0.284 0.139 0.579 0.292 0.141 0.581 0.191 0.142 0.503 0.187 0.135 0.505 0.246 0.135 0.357 0.266 0.138 0.386 

2000  0.259 0.098 0.568 0.266 0.098 0.562 0.150 0.096 0.49 0.154 0.098 0.484 0.210 0.098 0.341 0.201 0.096 0.336 

50% .0 500  0.204 0.188 0.147 0.204 0.196 0.151 0.206 0.190 0.156 0.209 0.190 0.158 0.207 0.199 0.189 0.208 0.200 0.194 

1000  0.142 0.132 0.104 0.144 0.131 0.103 0.145 0.137 0.11 0.145 0.135 0.11 0.142 0.138 0.131 0.143 0.140 0.132 

2000  0.101 0.093 0.073 0.103 0.091 0.073 0.100 0.092 0.078 0.100 0.091 0.077 0.100 0.097 0.095 0.101 0.092 0.092 

.6 500  0.213 0.203 0.354 0.219 0.202 0.359 0.223 0.206 0.355 0.223 0.199 0.355 0.305 0.213 0.343 0.300 0.204 0.347 

1000  0.153 0.142 0.335 0.155 0.141 0.328 0.154 0.139 0.315 0.152 0.143 0.322 0.244 0.146 0.285 0.234 0.148 0.295 

2000  0.117 0.098 0.324 0.116 0.098 0.323 0.102 0.101 0.305 0.108 0.103 0.304 0.193 0.104 0.262 0.193 0.108 0.262 
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.9 500  0.304 0.216 0.617 0.308 0.216 0.619 0.241 0.213 0.56 0.244 0.215 0.554 0.334 0.221 0.441 0.340 0.210 0.442 

1000  0.266 0.147 0.593 0.267 0.146 0.594 0.180 0.152 0.528 0.183 0.149 0.519 0.261 0.147 0.397 0.259 0.155 0.386 

2000  0.247 0.108 0.58 0.246 0.108 0.579 0.142 0.108 0.509 0.143 0.109 0.506 0.222 0.110 0.367 0.223 0.112 0.365 

 

 

 

Table 4. 2. Average RMSE of the truly primary (cross-loaded and non-cross loaded items) on the first and second dimensions when the models were misspecified. 
      LOW MED HGH 

      𝑎1 𝑎2 𝑎1 𝑎2 𝑎1 𝑎2 

Complexity Correlation N 𝑎1𝑝 

𝐶𝐿 

𝑎1𝑝 

𝑁𝐶𝐿 

𝑎1𝑠 
 

𝑎2𝑝 

𝐶𝐿 

𝑎2𝑝 

𝑁𝐶𝐿 

𝑎2𝑠 
 

𝑎1𝑝 

𝐶𝐿 

𝑎1𝑝 

𝑁𝐶𝐿 

𝑎1𝑠 
 

𝑎2𝑝 

𝐶𝐿 

𝑎2𝑝 

𝑁𝐶𝐿 

𝑎2𝑠 
 

𝑎1𝑝 

𝐶𝐿 

𝑎1𝑝 

𝑁𝐶𝐿 

𝑎1𝑠 
 

𝑎2𝑝 

𝐶𝐿 

𝑎2𝑝 

𝑁𝐶𝐿 

𝑎2𝑠 
 

10% .0 500 0.153 0.199 –– 0.161 0.200 –– 0.148 0.198 –– 0.162 0.199 –– 0.184 0.200 –– 0.181 0.197 –– 

1000 0.110 0.135 –– 0.109 0.138 –– 0.111 0.140 –– 0.110 0.136 –– 0.145 0.141 –– 0.147 0.140 –– 

2000 0.080 0.095 –– 0.075 0.097 –– 0.083 0.097 –– 0.082 0.097 –– 0.135 0.096 –– 0.133 0.099 –– 

.6 500 0.215 0.201 –– 0.217 0.198 –– 0.294 0.194 –– 0.304 0.197 –– 0.448 0.197 –– 0.426 0.196 –– 

1000 0.170 0.137 –– 0.167 0.135 –– 0.248 0.138 –– 0.251 0.142 –– 0.392 0.134 –– 0.395 0.136 –– 

2000 0.139 0.099 –– 0.144 0.098 –– 0.238 0.094 –– 0.242 0.095 –– 0.385 0.096 –– 0.387 0.097 –– 

.9 500 0.263 0.200 –– 0.267 0.196 –– 0.420 0.196 –– 0.417 0.196 –– 0.746 0.194 –– 0.740 0.195 –– 

1000 0.220 0.137 –– 0.215 0.137 –– 0.387 0.136 –– 0.392 0.134 –– 0.711 0.135 –– 0.711 0.135 –– 

2000 0.190 0.097 –– 0.201 0.094 –– 0.364 0.095 –– 0.370 0.097 –– 0.691 0.094 –– 0.697 0.094 –– 

30% .0 500 0.209 0.189 –– 0.204 0.194 –– 0.209 0.189 –– 0.207 0.191 –– 0.261 0.202 –– 0.261 0.198 –– 

1000 0.137 0.129 –– 0.141 0.132 –– 0.148 0.130 –– 0.143 0.131 –– 0.196 0.154 –– 0.199 0.149 –– 

2000 0.098 0.095 –– 0.098 0.091 –– 0.109 0.095 –– 0.107 0.095 –– 0.153 0.126 –– 0.156 0.123 –– 

.6 500 0.297 0.186 –– 0.294 0.184 –– 0.449 0.183 –– 0.460 0.182 –– 0.839 0.178 –– 0.837 0.181 –– 

1000 0.241 0.131 –– 0.237 0.130 –– 0.395 0.127 –– 0.402 0.127 –– 0.789 0.130 –– 0.791 0.128 –– 

2000 0.214 0.092 –– 0.209 0.093 –– 0.368 0.091 –– 0.377 0.088 –– 0.765 0.099 –– 0.770 0.101 –– 

.9 500 0.379 0.186 –– 0.369 0.188 –– 0.615 0.184 –– 0.613 0.181 –– 1.119 0.174 –– 1.144 0.176 –– 

1000 0.318 0.129 –– 0.307 0.130 –– 0.557 0.128 –– 0.564 0.124 –– 1.092 0.120 –– 1.093 0.122 –– 
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2000 0.289 0.091 –– 0.288 0.090 –– 0.541 0.087 –– 0.540 0.089 –– 1.061 0.087 –– 1.053 0.086 –– 

50% .0 500 0.206 0.184 –– 0.206 0.191 –– 0.228 0.182 –– 0.231 0.185 –– 0.410 0.262 –– 0.407 0.269 –– 

1000 0.145 0.130 –– 0.147 0.129 –– 0.171 0.136 –– 0.171 0.136 –– 0.367 0.237 –– 0.363 0.242 –– 

2000 0.104 0.092 –– 0.106 0.091 –– 0.128 0.101 –– 0.127 0.105 –– 0.338 0.226 –– 0.339 0.223 –– 

.6 500 0.290 0.185 –– 0.294 0.181 –– 0.448 0.173 –– 0.454 0.170 –– 0.887 0.183 –– 0.886 0.180 –– 

1000 0.233 0.128 –– 0.241 0.126 –– 0.414 0.122 –– 0.407 0.122 –– 0.850 0.146 –– 0.836 0.146 –– 

2000 0.208 0.088 –– 0.209 0.088 –– 0.383 0.088 –– 0.388 0.091 –– 0.816 0.123 –– 0.816 0.122 –– 

.9 500 0.344 0.175 –– 0.348 0.181 –– 0.584 0.171 –– 0.590 0.170 –– 1.098 0.167 –– 1.103 0.167 –– 

1000 0.301 0.124 –– 0.302 0.121 –– 0.537 0.125 –– 0.542 0.119 –– 1.054 0.114 –– 1.053 0.120 –– 

2000 0.272 0.086 –– 0.274 0.086 –– 0.519 0.083 –– 0.519 0.084 –– 1.033 0.084 –– 1.034 0.085 –– 

 

 

 

Table 4. 3. Average RMSEs of the item location parameter (d) for the correct and misspecified models. 
      Correct Specified Models Misspecified Models 

Complexity Correlation N LOW MED HGH LOW MED HGH 

10% .0 500 0.139 0.140 0.139 0.139 0.140 0.138 

1000 0.096 0.097 0.099 0.096 0.096 0.098 

2000 0.069 0.069 0.067 0.069 0.069 0.067 

.6 500 0.138 0.140 0.142 0.137 0.140 0.140 

1000 0.097 0.098 0.097 0.096 0.097 0.096 

2000 0.069 0.068 0.069 0.069 0.067 0.069 

.9 500 0.138 0.143 0.140 0.137 0.143 0.139 

1000 0.098 0.099 0.099 0.098 0.099 0.098 

2000 0.070 0.069 0.070 0.069 0.069 0.070 

30% .0 500 0.144 0.141 0.147 0.143 0.138 0.144 

1000 0.097 0.098 0.102 0.097 0.096 0.106 

2000 0.068 0.069 0.070 0.067 0.069 0.079 
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.6 500 0.142 0.143 0.151 0.141 0.140 0.145 

1000 0.100 0.101 0.108 0.099 0.099 0.105 

2000 0.069 0.072 0.073 0.068 0.071 0.074 

.9 500 0.144 0.145 0.155 0.142 0.142 0.151 

1000 0.100 0.104 0.108 0.099 0.102 0.105 

2000 0.069 0.074 0.077 0.068 0.072 0.075 

50% .0 500 0.140 0.141 0.147 0.139 0.137 0.145 

1000 0.099 0.101 0.103 0.098 0.099 0.108 

2000 0.069 0.071 0.072 0.069 0.070 0.082 

.6 500 0.145 0.149 0.163 0.143 0.146 0.157 

1000 0.101 0.103 0.112 0.100 0.101 0.110 

2000 0.071 0.073 0.079 0.070 0.071 0.079 

.9 500 0.148 0.154 0.169 0.145 0.149 0.165 

1000 0.104 0.107 0.117 0.103 0.104 0.115 

2000 0.072 0.075 0.081 0.070 0.073 0.079 
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Effect of Sample Size on Item Parameter Recovery in Terms of Average RMSE 

Correct Specified Models 

Item discrimination parameters. Figures 4.1 to 4.3 show the average RMSEs for item 

discrimination parameters when models were specified correctly with a low, medium or high 

degree of cross-loading across combinations of conditions. As shown in figures 4.1 to 4.3, all of 

the item discrimination parameters including primary and secondary item discrimination on first 

and second dimensions (𝑎1𝑝𝑐𝑙 , 𝑎1𝑝𝑛𝑐𝑙 , 𝑎1𝑠 𝑎2𝑝𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙 , 𝑎2𝑠) had a consistent decreasing trend in 

terms of average RMSE as the sample size increased from 500 to 2,000 across all combinations 

of conditions. The lowest average RMSE of item discrimination for correct specified models 

(0.061) was associated with the sample size of 2,000 and the highest average RMSE of item 

discrimination for correct specified models (0.619) was associated with the sample size of 500.   

Item location parameter (𝒅). Figure 4.7 shows the average RMSEs for item location 

parameter (𝑑) when models were specified correctly with a low, medium or high degree of cross-

loading across combinations of conditions. As shown in figure 4.7, item location parameter had a 

consistent decreasing trend in terms of average RMSE as the sample size increased from 500 to 

2,000 across all combinations of conditions. The lowest average RMSE of item location for 

correct specified models (0.67) was associated with the sample size of 2,000 and the highest 

average RMSE was associated with the sample size of 500 (0.169).   

Misspecified Models 

In misspecified models, the misspecification specifically occurs on the cross-loaded 

items. In misspecified models, it is assumed that none of the items are cross-loaded. Therefore, 

for the low, medium, and high degree of cross loading conditions, the cross loading is ignored on 

those items. Investigating these situations will provide a better understanding to real-world 

situations when a few or a lot of items within multidimensional data are cross-loaded, but the 

cross loading is unaccounted for. 
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Item discrimination parameters. Figures 4.4 to 4.6 show the average RMSEs for item 

discrimination parameters when models were misspecified with a low, medium or high degree of 

cross-loading across combinations of conditions. As shown in figures 4.4 to 4.6, all of the 

primary item discrimination parameters on first and second dimensions 

(𝑎1𝑝𝑐𝑙 , 𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) had a consistent decreasing trend in terms of average RMSE as the 

sample size increased from 500 to 2,000 across all combinations of conditions. The lowest 

average RMSE of item discrimination for misspecified models (0.75) was associated with the 

sample size of 2,000 and the highest average RMSE of item discrimination for misspecified 

models (1.144) was associated with the sample size of 500.   

Item location parameter (𝒅). Figure 4.8 shows the average RMSEs for item location 

parameter (𝑑) when models were misspecified with a low, medium or high degree of cross-

loading across combinations of conditions. As shown in figure 4.7, item location parameter had a 

consistent decreasing trend in terms of average RMSE as the sample size increased from 500 to 

2,000 across all combinations of conditions. The lowest average RMSE (value) was associated 

with the sample size of 2,000 and the highest average RMSE The lowest average RMSE of item 

location for misspecified models (0.067) was associated with the sample size of 2,000 and the 

highest average RMSE of item location for misspecified models (0.165) was associated with the 

sample size of 500. 

Effect of Correlation on Item Parameter Recovery in Terms of RMSE 

Correct Specified Models 

Item discrimination parameters. Figures 4.1 to 4.3 show the average RMSE trends 

considering the effect of the correlation between abilities on the precision of item discrimination 

parameters including primary and secondary item discrimination on first and second dimensions 

(𝑎1𝑝𝑐𝑙 , 𝑎1𝑝𝑛𝑐𝑙 , 𝑎1𝑠 𝑎2𝑝𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙 , 𝑎2𝑠). When the sample size and complexity magnitude were held 

constant for each section while the correlation between abilities varied across the conditions, the 
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average RMSEs increased consistently for the primary and secondary item discriminations on 

both dimensions (𝑎1𝑝𝑐𝑙 , 𝑎1𝑝𝑛𝑐𝑙 , 𝑎1𝑠 𝑎2𝑝𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙 , 𝑎2𝑠) as the correlation increased from .0 to .9 

across combination of conditions.  

It was interesting that this increasing trend was more obvious for the secondary item 

parameter discriminations on both dimensions (𝑎1𝑠 and 𝑎2𝑠) compared to the primary item 

discrimination parameters (𝑎1𝑝𝑐𝑙 , 𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙). When the true correlation was zero, 

estimated item discrimination on the secondary dimension was estimated with the smallest 

RMSE, and item discrimination on the primary dimension (both cross-loading items and non 

cross-loading items) was slightly larger.  On the primary item discrimination parameters, the 

RMSE values for the cross-loaded items (𝑎1𝑝𝑐𝑙 , 𝑎2𝑝𝑐𝑙) tended to increase at a higher rate as 

correlation increased than for the RMSE of the non-cross loaded items (𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙).  

Correlation had very little to no effect on the RMSE of estimated item discrimination for 

the primary non-cross loaded items; as correlation increased, the RMSE of the estimated item 

discrimination for primary cross-loaded items tended to decrease (a slight increase in RMSE 

when correlation increased from .0 to .6 and a larger increase when RMSE increased from .6 to 

.9). As correlation increased, the RMSE of the estimated item discrimination on the secondary 

dimension increased substantially. This may be due to the lack of freely estimated correlation in 

the model specification when calibrating the simulated data; all models assumed a correlation of 

.0. 

Item location parameter (𝒅). Figure 4.7 shows the average RMSEs for item location 

parameter (𝑑) when models were specified correctly with a low, medium or high degree of cross-

loading across combinations of conditions. As shown in figure 4.7, item location parameter had a 

consistent constant trend in terms of average RMSE as the correlation between abilities increased 

from .0 to .9 across all combinations of conditions.  
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Misspecified Models 

Item discrimination parameters. Figures 4.4 to 4.6 show the average RMSE trends 

considering the effect of the correlation between abilities on the precision of item discrimination 

parameters on first and second dimensions (𝑎1𝑝𝑐𝑙 , 𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙). When the sample size 

and complexity magnitude were held constant for each section while the correlation between 

abilities varied across the conditions, the average RMSEs of the item discrimination parameter for 

the truly cross-loaded item (i.e., the model did not account for these cross loadings) on first and 

second dimensions (𝑎1𝑝𝑐𝑙 , 𝑎2𝑝𝑐𝑙) increased consistently as the correlation increased from .0 to .9 

across combinations of conditions. This increase was much greater when the complexity 

magnitude was highest (i.e., 50%) and the degree of cross-loading was highest. On the other 

hand, the average RMSEs of item discrimination parameters for the truly non-cross loaded items 

(𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) decreased slightly as the correlation increased from .0 to .9 across combinations 

of conditions. This decreasing trend was more obvious when the complexity magnitude was 

highest at 50% and the degree of cross-loading was highest. The RMSE values for the truly cross-

loaded items (i.e., those that were misspecified, 𝑎1𝑝𝑐𝑙 , 𝑎2𝑝𝑐𝑙) were similar to the RMSE values on 

the non-cross loaded items (𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) when correlation was zero, but increased to be 

greater than the discrimination on the non-cross loaded items as the correlation increased from .0 

to .9 across combination of conditions. 

Item location parameter (𝒅). Figure 4.8 shows the average RMSEs for item location 

parameter (𝑑) when models were misspecified with a low, medium or high degree of cross-

loading across combinations of conditions. As shown in figure 4.8, item location parameter had a 

constant trend in terms of average RMSE as the correlation between abilities increased from .0 to 

.9 across all combinations of conditions.  
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Effect of Structure Complexity Magnitude on Item Parameter Recovery in Terms of 

RMSE 

Correct Specified Models 

Item discrimination parameters. When holding the correlation and sample size constant, 

figures 4.1 to 4.3 represent the average RMSE trends considering the effect of the three levels of 

complexity magnitude on the precision of item discrimination parameter estimates including 

primary and secondary item discrimination on first and second dimensions 

(𝑎1𝑝𝑐𝑙 , 𝑎1𝑝𝑛𝑐𝑙 , 𝑎1𝑠 𝑎2𝑝𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙 , 𝑎2𝑠). As shown in figures 4.1 to 4.3, the average RMSEs 

increased consistently for the primary and secondary item discriminations on both dimensions 

(𝑎1𝑝𝑐𝑙 , 𝑎1𝑝𝑛𝑐𝑙 , 𝑎1𝑠 𝑎2𝑝𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙 , 𝑎2𝑠) as the structure complexity magnitude increased from 10% 

to 30% to 50%. This increase was much greater for the secondary items parameter 

discriminations on both dimensions (𝑎1𝑠 and 𝑎2𝑠) compared to the primary item discrimination 

parameters (𝑎1𝑝𝑐𝑙 , 𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) especially when the degree of cross-loading was low or 

medium.  

The RMSE values of the primary item discrimination parameters for the cross-loaded 

items (𝑎1𝑝𝑐𝑙 , 𝑎2𝑝𝑐𝑙) were greater than the values on the non-cross loaded items (𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) as 

the complexity magnitude increased from 10% to 50% across combinations of conditions when 

correlation was greater than zero. The RMSE values for the discrimination of the non-cross 

loaded items on both dimensions (𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) had a constant trend with slightly increasing 

pattern as the complexity magnitude increased from 10% to 50%. 

Item location parameter (𝒅). Figure 4.7 shows the average RMSEs for item location 

parameter (𝑑) when models were specified correctly with a low, medium or high degree of cross-

loading across combinations of conditions. Figure 4.7 shows as the complexity magnitude 

increased from 10% to 50%, the item location parameter had a constant trend with negligible 

changes in terms of average RMSE across all combinations of conditions.  
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Misspecified Models 

Item discrimination parameters. Figures 4.4 to 4.6 show the average RMSE trends 

considering the effect of structure complexity magnitude incorporating the degree of cross 

loading for primary item discrimination parameters (𝑎1𝑝𝑐𝑙, 𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑐𝑙   𝑎2𝑝𝑛𝑐𝑙) when the models 

were misspecified. When the sample size and the correlation between abilities were held constant 

and the complexity magnitude varied across the conditions, the average RMSEs for the truly 

cross-loaded item discrimination parameters on first and second dimensions (i.e., those that were 

misspecified, 𝑎1𝑝𝑐𝑙 , 𝑎2𝑝𝑐𝑙) increased consistently across combinations of conditions as the 

complexity magnitude increased from 10% to 50% for the high degrees of cross-loading. When 

there was a low or medium degree of cross-loading, RMSE of the truly cross-loaded item 

discrimination increased when complexity increased from 10% to 30%, but had little to no 

change when complexity increased from 30% to 50%. On the other hand, the average RMSEs for 

the item discrimination parameters for non-cross loaded items (i.e., no misspecification, 𝑎1𝑝𝑛𝑐𝑙 ,

𝑎2𝑝𝑛𝑐𝑙) decreased slightly as the complexity magnitude decreased from 10% to 50% across 

combinations of conditions. When correlation was zero, the RMSE of estimated item 

discrimination was slightly higher for non-cross loaded items (𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) than for truly 

cross-loaded (𝑎1𝑝𝑐𝑙 , 𝑎2𝑝𝑐𝑙); however, as correlation increased, the RMSE of the truly cross-loaded 

item discrimination was higher than for the non-cross loaded items.  

Item location parameter (𝒅). Figure 4.8 shows the average RMSEs for item location 

parameter (𝑑) when models were misspecified across combinations of conditions. Figure 4.8 

shows as the complexity magnitude increased from 10% to 50% item location parameter had a 

constant trend in terms of average RMSE across all combinations of conditions.  
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Effect of Degree of Cross-Loading on Item Parameter Recovery in Terms of RMSE 

Correct Specified Models 

Item discrimination parameters. By holding the complexity magnitude level, correlation 

and sample size constant, figures 4.1 to 4.3 show the average RMSE trends considering the effect 

of the degree of cross-loading on the precision of item discrimination parameters including 

primary and secondary item discrimination on first and second dimensions 

(𝑎1𝑝𝑐𝑙 , 𝑎1𝑝𝑛𝑐𝑙 , 𝑎1𝑠 𝑎2𝑝𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙 , 𝑎2𝑠). As shown in figures 4.1 to 4.3, the changes in the degree of 

cross loading from low to medium to high had very little effect on the average RMSEs of item 

discrimination on non-cross loaded items on both dimensions ( 𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙). On the other 

hand, the average RMSEs of the item discrimination on cross-loaded items on both dimensions 

( 𝑎1𝑝𝑐𝑙 , 𝑎2𝑝𝑐𝑙) decreased slightly as the degree of cross-loading increased from low to medium, 

and remained constant as the degree of cross-loading increased to high.  

The RMSEs for the item discrimination parameters were larger for the cross-loaded items 

compared to non-cross loaded items only when correlation was .9 for the low and medium 

degrees of cross loading, and only when correlation was .6 or higher for the high degree of cross 

loading. For the secondary item discrimination parameters (𝑎1𝑠 and 𝑎2𝑠) the average RMSEs was 

not affected by changes in the dgree of cross-loading when correlation was .0 and .6; when 

correlation was .9, the RMSE of the secondary item discrimination parameters  had a decreasing 

trend on both dimensions.  

Item location parameter (𝒅). Figure 4.7 shows the average RMSEs for item location 

parameter (𝑑) when models were specified correctly with a low, medium or high degree of cross-

loading across combination of conditions. As shown in figure 4.7, the average RMSEs for item 

location parameter had a constant trend with a very slight increase as the degree of cross-loading 

shifted from low to high. 
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Misspecified Models 

Item discrimination parameters. Figures 4.4 to 4.6 show the average RMSE trends 

considering the effect of the degree of cross-loading on the precision of item discrimination 

parameters on first and second dimensions (𝑎1𝑝𝑐𝑙 , 𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) when the models were 

misspecified. By holding the complexity magnitude level, correlation and sample size constant, 

the average RMSEs for the item discrimination on non-cross loaded items on both dimensions 

( 𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) remained constant for low, medium and high degrees of cross-loading. On the 

other hand, the average RMSEs for the item discrimination on cross-loaded items on both 

dimensions (i.e., those that were misspecified, 𝑎1𝑝𝑐𝑙 , 𝑎2𝑝𝑐𝑙) had a large increasing pattern across 

the combinations of conditions as the degree of cross-loading increased from low to high.  

Item location parameter (𝒅). Figure 4.8 shows the average RMSEs for item location 

parameter (𝑑) when models were misspecified with a low, medium or high degree of cross-

loading across combination of conditions. As shown in figure 4.8, the average RMSEs for item 

location parameter had a constant trend with a very slight increase as the degree of cross-loading 

shifted from low to high. 
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Figure 4. 1. Average RMSEs for item discrimination parameters when models were specified correctly with a low degree of cross-loading 
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Figure 4. 2. Average RMSEs for item discrimination parameters when models were specified correctly with a medium degree of cross-loading 
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Figure 4. 3.  Average RMSEs for item discrimination parameters when models were specified correctly with a high degree of cross-loading 
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Figure 4. 4.  Average RMSEs for item discrimination parameters when models were misspecified with a low degree of cross-loading 
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Figure 4. 5. Average RMSEs for item discrimination parameters when models were misspecified with a medium degree of cross-loading 
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Figure 4. 6.  Average RMSEs for item discrimination parameters when models were misspecified with a high degree of cross-loading 
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Figure 4. 7. Average RMSEs for item location parameter when models were specified correctly. 
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Figure 4. 8. Average RMSEs for item location parameter when models were misspecified. 
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Section II: Item Parameter Recovery Results in Terms of Average Bias 

Correct Specified Models 

Average bias in each combination of conditions was calculated comparing the true item 

parameter specification with the estimated item parameter. The biases were averaged for the 

estimated item discrimination parameters (𝑎1 and 𝑎2) and the estimated item location parameter 

(𝑑) within each combination of conditions. For the item discrimination parameters (𝑎1 and 𝑎2) in 

correct specified models, the bias for the primary cross-loaded item discriminations on first and 

second dimensions (𝑎1𝑝𝑐𝑙  and 𝑎2𝑝𝑐𝑙) were averaged based on those items that had a primary item 

discrimination and were cross-loaded on both dimensions. Likewise, the biases for the primary 

non-cross loaded item discriminations on first and second dimensions (𝑎1𝑝𝑛𝑐𝑙  and 𝑎2𝑝𝑛𝑐𝑙) were 

averaged based on the items that had a primary item discrimination but were not cross-loaded on 

both dimensions. For the secondary item discriminations (𝑎1𝑠 and 𝑎2𝑠) the biases were averaged 

based on the items that had a secondary item discrimination.  

Primary item discrimination parameters. Table 4.4 reports the average bias of the 

estimated item discrimination parameters when the models were correctly specified considering 

three levels of structure complexity magnitude incorporating low, medium or high degree of 

cross-loading. The average bias for the primary cross-loaded item discrimination parameters on 

the first dimension (𝑎1𝑝𝑐𝑙) ranged from -0.206 to 0.242. The average bias for the primary non-

cross loaded item discrimination parameters on the first dimension (𝑎1𝑝𝑛𝑐𝑙) ranged from -0.071 to 

0.001 across all combination of conditions. On the other hand, the average bias for the primary 

cross-loaded item discrimination parameters on the second dimension (𝑎2𝑝𝑐𝑙) ranged from -0.212 

to 0.253. The average bias for the primary non-cross loaded item discrimination parameters on 

the second dimension (𝑎2𝑝𝑛𝑐𝑙) ranged from -0.060 to 0.003 across all combination of conditions.  

Secondary item discrimination parameters. The average bias for the secondary item 

discrimination parameter for the first dimension (𝑎1𝑠) ranged from -0.583 to 0.006. On the other 



62 
 

hand, the average bias for the secondary item discrimination parameter on the second dimension 

(𝑎2𝑠) ranged from -0.586 to 0.007 across all combinations of conditions. It was interesting to 

observe that secondary item discrimination parameters on first and second dimensions had a very 

similar patterns and values in terms of average bias. 

Item location parameter (𝒅). Table 4.6 reports the average bias for the item location 

parameter (𝑑) for both correct specified and misspecified models across all combinations of 

conditions. The average bias for item location parameter when the model was correctly specified 

ranged from -0.157 to 0.244.  

Misspecified Models 

The biases were averaged for the estimated item discrimination parameters (𝑎1 and 𝑎2) 

and the estimated item location parameter (𝑑) within each combination of conditions for three 

sets of item cross-loading. For the item discrimination parameters (𝑎1 and 𝑎2) in misspecified 

models, the biases for the truly primary cross-loaded item discriminations on the first and second 

dimensions (𝑎1𝑝𝑐𝑙  and 𝑎2𝑝𝑐𝑙) were averaged based on those items that had a primary item 

discrimination and were supposed to be specified as cross-loaded items on both dimensions (these 

are the items that were misspecified in the model). Likewise, the biases for the truly primary non-

cross loaded item discriminations on the first and second dimensions (𝑎1𝑝𝑛𝑐𝑙  and 𝑎2𝑝𝑛𝑐𝑙) were 

averaged based on the items that had a primary item discrimination but were not truly cross-

loaded on both dimensions. It should be noted that there was no secondary item discrimination 

defined for the first and second dimension in the misspecified models (𝑎1𝑠 and 𝑎2𝑠). 

Primary item discrimination Parameters. Table 4.5 reports the average bias of the 

estimated item discrimination parameters when the models were misspecified considering three 

levels of structure complexity magnitude incorporating low, medium or high degree of cross-

loading. As shown in table 4.5, the average bias for the truly primary cross-loaded item 

discrimination parameters on the first dimension (𝑎1𝑝𝑐𝑙) ranged from -1.062 to 0.114. The 
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average bias for the truly primary non-cross loaded item discrimination parameters on the first 

dimension (𝑎1𝑝𝑛𝑐𝑙) ranged from -0.021 to 0.211 across all combinations of conditions. On the 

other hand, the average bias for the truly primary cross-loaded item discrimination parameters on 

the second dimension (𝑎2𝑝𝑐𝑙) ranged from -1.080 to 0.112. The average bias for the truly primary 

non-cross loaded item discrimination parameters on the second dimension (𝑎2𝑝𝑛𝑐𝑙) ranged from -

0.018 to 0.212 across all combinations of conditions. In conclusion, It should be noted that item 

discrimination estimates tended to have generally negative values when the item was supposed to 

be specified as cross-loaded (𝑎1𝑝𝑐𝑙, 𝑎2𝑝𝑐𝑙) suggesting that estimated primary item discrimination 

parameters on the truly cross-loaded items were somewhat smaller than their true values. On the 

other hand, item discrimination estimates on the primary dimension tended to have positive 

values generally closer to 0.000 when the item was supposed to be specified as non-cross loaded 

(𝑎1𝑝𝑛𝑐𝑙, 𝑎2𝑝𝑛𝑐𝑙)  suggesting that estimated primary item discrimination parameters on the truly 

non-cross loaded items were somewhat close to or slightly greater than their true values. 

Item location parameter (𝒅).  Table 4.6 reports the average bias for the item location 

parameter (𝑑) for both correct specified and misspecified models across all combinations of 

conditions. The average bias for item location parameter when the models were misspecified 

ranged from -0.011 to 0.010.  
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Table 4. 4. Average bias of the primary (cross-loaded and non-cross loaded items) and secondary discrimination on the first and second dimensions when the 
models were correctly specified. 

      LOW MED HGH 

      𝑎1 𝑎2 𝑎1 𝑎2 𝑎1 𝑎2 

Complexity Correlation N 𝑎1𝑝 

𝐶𝐿 

𝑎1𝑝 

𝑁𝐶𝐿 

𝑎1𝑠 
 

𝑎2𝑝 

𝐶𝐿 

𝑎2𝑝 

𝑁𝐶𝐿 

𝑎2𝑠 
 

𝑎1𝑝 

𝐶𝐿 

𝑎1𝑝 

𝑁𝐶𝐿 

𝑎1𝑠 
 

𝑎2𝑝 

𝐶𝐿 

𝑎2𝑝 

𝑁𝐶𝐿 

𝑎2𝑠 
 

𝑎1𝑝 

𝐶𝐿 

𝑎1𝑝 

𝑁𝐶𝐿 

𝑎1𝑠 
 

𝑎2𝑝 

𝐶𝐿 

𝑎2𝑝 

𝑁𝐶𝐿 

𝑎2𝑠 
 

10% .0 500 -0.010 -0.016 -0.010 -0.013 -0.014 0.007 -0.011 -0.015 0.006 -0.011 -0.011 0.004 -0.014 -0.014 -0.003 -0.013 -0.013 -0.016 

1000 0.002 -0.009 0.002 -0.013 -0.005 -0.002 -0.014 -0.008 <0.001 -0.013 -0.007 -0.007 -0.009 -0.007 -0.003 -0.007 -0.008 -0.006 

2000 -0.004 -0.002 -0.002 0.001 -0.002 <0.001 -0.001 -0.001 0.001 -0.002 -0.001 -0.005 -0.002 0.001 -0.001 -0.004 -0.004 -0.004 

.6 500 0.038 -0.016 -0.195 0.034 -0.013 -0.198 -0.005 -0.009 -0.186 -0.019 -0.018 -0.175 -0.106 -0.022 -0.151 -0.089 -0.014 -0.163 

1000 0.046 -0.009 -0.195 0.047 -0.003 -0.199 0.004 -0.008 -0.182 0.005 -0.006 -0.184 -0.084 -0.005 -0.145 -0.084 -0.005 -0.145 

2000 0.051 -0.003 -0.194 0.045 -0.005 -0.194 <0.001 -0.005 -0.181 -0.003 -0.002 -0.174 -0.081 -0.003 -0.139 -0.083 0.000 -0.143 

.9 500 0.181 -0.014 -0.386 0.170 -0.013 -0.388 0.093 -0.014 -0.347 0.101 -0.019 -0.346 -0.087 -0.013 -0.233 -0.080 -0.019 -0.213 

1000 0.188 -0.006 -0.396 0.207 -0.006 -0.377 0.098 -0.006 -0.334 0.097 -0.005 -0.330 -0.079 -0.008 -0.224 -0.074 -0.007 -0.221 

2000 0.201 -0.003 -0.382 0.194 -0.002 -0.378 0.110 -0.001 -0.324 0.103 -0.003 -0.328 -0.067 -0.005 -0.213 -0.074 -0.004 -0.217 

30% .0 500 -0.022 -0.013 -0.001 -0.017 -0.019 -0.001 -0.014 -0.016 -0.006 -0.018 -0.012 -0.002 -0.019 -0.009 -0.009 -0.022 -0.018 -0.015 

1000 -0.006 -0.006 0.002 -0.006 -0.004 -0.007 -0.010 -0.005 <0.001 -0.006 -0.004 -0.004 -0.010 -0.009 -0.014 -0.011 -0.008 -0.006 

2000 -0.002 -0.001 -0.001 -0.004 -0.002 0.001 -0.004 -0.002 -0.001 -0.005 -0.003 -0.003 0.001 0.001 -0.005 -0.001 -0.005 -0.003 

.6 500 0.042 -0.018 -0.306 0.053 -0.021 -0.296 -0.020 -0.029 -0.282 -0.029 -0.023 -0.272 -0.169 -0.024 -0.238 -0.165 -0.030 -0.228 

1000 0.053 -0.013 -0.297 0.060 -0.010 -0.291 -0.008 -0.019 -0.277 -0.007 -0.017 -0.272 -0.147 -0.024 -0.225 -0.151 -0.023 -0.216 

2000 0.059 -0.010 -0.299 0.065 -0.011 -0.293 0.003 -0.014 -0.268 -0.004 -0.014 -0.265 -0.142 -0.017 -0.215 -0.147 -0.014 -0.218 

.9 500 0.220 -0.029 -0.564 0.234 -0.035 -0.559 0.081 -0.027 -0.495 0.083 -0.030 -0.478 -0.172 -0.033 -0.331 -0.186 -0.029 -0.333 

1000 0.242 -0.023 -0.562 0.253 -0.021 -0.564 0.110 -0.025 -0.479 0.100 -0.022 -0.482 -0.158 -0.026 -0.307 -0.184 -0.029 -0.336 

2000 0.240 -0.015 -0.558 0.246 -0.016 -0.553 0.103 -0.018 -0.477 0.107 -0.017 -0.472 -0.161 -0.021 -0.315 -0.152 -0.021 -0.310 

50% .0 500 -0.021 -0.011 -0.004 -0.021 -0.017 0.002 -0.015 -0.016 -0.006 -0.015 -0.010 -0.006 -0.020 -0.014 -0.021 -0.008 -0.013 -0.013 

1000 -0.007 -0.005 -0.001 -0.012 -0.005 -0.003 -0.011 -0.009 -0.003 -0.011 -0.008 0.001 -0.010 -0.010 -0.003 -0.007 -0.003 -0.011 

2000 -0.008 -0.001 -0.002 -0.002 0.003 0.001 -0.004 -0.005 -0.003 -0.002 <0.001 <0.001 -0.003 -0.002 -0.002 -0.003 -0.004 <0.001 

.6 500 0.041 -0.036 -0.311 0.042 -0.033 -0.316 -0.016 -0.046 -0.302 -0.022 -0.042 -0.301 -0.182 -0.060 -0.255 -0.180 -0.052 -0.255 

1000 0.054 -0.027 -0.313 0.047 -0.026 -0.305 -0.016 -0.034 -0.288 -0.012 -0.038 -0.295 -0.168 -0.044 -0.237 -0.161 -0.044 -0.246 

2000 0.057 -0.022 -0.312 0.056 -0.021 -0.312 -0.006 -0.033 -0.290 -0.007 -0.031 -0.288 -0.153 -0.037 -0.236 -0.153 -0.041 -0.235 
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.9 500 0.221 -0.056 -0.583 0.217 -0.048 -0.586 0.070 -0.058 -0.515 0.075 -0.056 -0.505 -0.206 -0.071 -0.355 -0.212 -0.060 -0.359 

1000 0.223 -0.043 -0.575 0.223 -0.045 -0.576 0.086 -0.048 -0.505 0.089 -0.050 -0.496 -0.193 -0.053 -0.353 -0.181 -0.057 -0.343 

2000 0.227 -0.042 -0.570 0.225 -0.041 -0.570 0.092 -0.044 -0.496 0.093 -0.046 -0.494 -0.180 -0.049 -0.343 -0.181 -0.051 -0.342 

 

 
 

 

Table 4. 5. Average bias of the truly primary (cross-loaded and non-cross loaded items) on the first and second dimensions when the models were misspecified. 
      LOW MED HGH 

      𝑎1 𝑎2 𝑎1 𝑎2 𝑎1 𝑎2 

Complexity Correlation N 𝑎1𝑝 

𝐶𝐿 

𝑎1𝑝 

𝑁𝐶𝐿 

𝑎1𝑠 
 

𝑎2𝑝 

𝐶𝐿 

𝑎2𝑝 

𝑁𝐶𝐿 

𝑎2𝑠 
 

𝑎1𝑝 

𝐶𝐿 

𝑎1𝑝 

𝑁𝐶𝐿 

𝑎1𝑠 
 

𝑎2𝑝 

𝐶𝐿 

𝑎2𝑝 

𝑁𝐶𝐿 

𝑎2𝑠 
 

𝑎1𝑝 

𝐶𝐿 

𝑎1𝑝 

𝑁𝐶𝐿 

𝑎1𝑠 
 

𝑎2𝑝 

𝐶𝐿 

𝑎2𝑝 

𝑁𝐶𝐿 

𝑎2𝑠 
 

10% .0 500 0.001 -0.016 –– 0.000 -0.014 –– 0.024 -0.015 –– 0.025 -0.012 –– 0.108 -0.014 –– 0.106 -0.014 –– 

1000 0.012 -0.009 –– -0.003 -0.005 –– 0.023 -0.008 –– 0.022 -0.007 –– 0.107 -0.008 –– 0.108 -0.009 –– 

2000 0.005 -0.002 –– 0.010 -0.002 –– 0.034 -0.001 –– 0.032 -0.001 –– 0.114 0.001 –– 0.112 -0.005 –– 

.6 500 -0.124 -0.016 –– -0.126 -0.013 –– -0.223 -0.008 –– -0.238 -0.017 –– -0.393 -0.021 –– -0.377 -0.014 –– 

1000 -0.118 -0.008 –– -0.116 -0.002 –– -0.213 -0.007 –– -0.213 -0.005 –– -0.366 -0.005 –– -0.366 -0.004 –– 

2000 -0.110 -0.003 –– -0.117 -0.005 –– -0.218 -0.005 –– -0.223 -0.002 –– -0.370 -0.002 –– -0.373 0.000 –– 

.9 500 -0.192 -0.013 –– -0.202 -0.012 –– -0.370 -0.014 –– -0.362 -0.018 –– -0.699 -0.012 –– -0.695 -0.017 –– 

1000 -0.181 -0.005 –– -0.172 -0.005 –– -0.361 -0.005 –– -0.365 -0.004 –– -0.690 -0.007 –– -0.687 -0.006 –– 

2000 -0.169 -0.002 –– -0.179 -0.001 –– -0.349 -0.001 –– -0.354 -0.003 –– -0.678 -0.004 –– -0.684 -0.003 –– 

30% .0 500 -0.021 -0.007 –– -0.015 -0.013 –– -0.026 0.007 –– -0.030 0.010 –– -0.115 0.083 –– -0.111 0.072 –– 

1000 -0.008 0.000 –– -0.008 0.002 –– -0.025 0.018 –– -0.022 0.019 –– -0.102 0.081 –– -0.106 0.084 –– 

2000 -0.005 0.005 –– -0.007 0.005 –– -0.023 0.021 –– -0.023 0.021 –– -0.095 0.090 –– -0.095 0.084 –– 

.6 500 -0.195 -0.005 –– -0.186 -0.008 –– -0.368 -0.001 –– -0.384 0.006 –– -0.778 0.044 –– -0.776 0.042 –– 

1000 -0.181 -0.001 –– -0.176 0.002 –– -0.356 0.008 –– -0.359 0.010 –– -0.754 0.046 –– -0.757 0.045 –– 

2000 -0.179 0.003 –– -0.176 0.002 –– -0.345 0.013 –– -0.353 0.013 –– -0.746 0.052 –– -0.751 0.054 –– 

.9 500 -0.288 -0.013 –– -0.277 -0.016 –– -0.546 -0.005 –– -0.551 -0.007 –– -1.062 0.004 –– -1.080 0.008 –– 

1000 -0.270 -0.006 –– -0.259 -0.004 –– -0.521 -0.003 –– -0.528 -0.001 –– -1.059 0.011 –– -1.061 0.004 –– 
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2000 -0.264 -0.001 –– -0.262 -0.001 –– -0.521 0.003 –– -0.521 0.004 –– -1.042 0.014 –– -1.035 0.015 –– 

50% .0 500 -0.034 0.004 –– -0.034 -0.001 –– -0.085 0.043 –– -0.085 0.048 –– -0.329 0.204 –– -0.326 0.212 –– 

1000 -0.024 0.011 –– -0.028 0.010 –– -0.082 0.048 –– -0.082 0.050 –– -0.323 0.207 –– -0.320 0.211 –– 

2000 -0.024 0.013 –– -0.020 0.018 –– -0.074 0.052 –– -0.073 0.057 –– -0.314 0.211 –– -0.315 0.209 –– 

.6 500 -0.192 -0.004 –– -0.188 0.000 –– -0.377 0.021 –– -0.385 0.024 –– -0.832 0.079 –– -0.832 0.085 –– 

1000 -0.175 0.004 –– -0.184 0.005 –– -0.376 0.028 –– -0.368 0.023 –– -0.820 0.090 –– -0.807 0.088 –– 

2000 -0.176 0.009 –– -0.177 0.010 –– -0.364 0.028 –– -0.367 0.031 –– -0.800 0.095 –– -0.800 0.092 –– 

.9 500 -0.259 -0.008 –– -0.261 -0.004 –– -0.521 -0.002 –– -0.524 0.002 –– -1.045 0.010 –– -1.047 0.015 –– 

1000 -0.254 -0.001 –– -0.255 -0.001 –– -0.505 0.005 –– -0.508 0.005 –– -1.027 0.021 –– -1.024 0.021 –– 

2000 -0.246 0.000 –– -0.248 0.001 –– -0.500 0.009 –– -0.501 0.008 –– -1.017 0.026 –– -1.018 0.024 –– 

 

 

Table 4. 6. Average bias of the item location parameter (d) for the correct and misspecified models. 
      Correct Specified Models Misspecified Models 

Complexity Correlation N LOW MED HGH LOW MED HGH 

10% .0 500 -0.003 -0.001 -0.005 -0.003 -0.001 -0.005 

1000 -0.002 0.003 0.005 -0.002 0.003 0.005 

2000 <0.001 0.001 -0.001 <0.001 <0.001 -0.001 

.6 500 <0.001 -0.001 -0.003 <0.001 -0.001 -0.003 

1000 0.002 0.001 0.001 0.002 0.001 0.001 

2000 0.001 0.002 <0.001 0.001 0.002 <0.001 

.9 500 -0.002 <0.001 0.002 -0.002 <0.001 0.002 

1000 0.001 <0.001 -0.005 0.001 <0.001 -0.005 

2000 -0.002 -0.003 0.005 -0.002 -0.003 0.005 

30% .0 500 0.003 -0.003 0.001 0.002 -0.003 0.001 

1000 0.003 0.004 <0.001 0.003 0.004 <0.001 

2000 -0.001 -0.001 0.003 -0.001 -0.001 0.003 
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.6 500 0.002 0.001 0.010 0.002 <0.001 0.010 

1000 0.005 -0.002 0.001 0.005 -0.002 0.001 

2000 <0.001 <0.001 -0.002 0.001 0.000 -0.002 

.9 500 0.006 -0.002 0.003 0.006 -0.003 0.003 

1000 0.001 0.001 0.002 0.001 0.001 0.002 

2000 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

50% .0 500 -0.005 0.010 0.001 -0.005 0.010 <0.001 

1000 0.003 -0.001 -0.002 0.003 -0.002 -0.002 

2000 -0.002 0.003 0.001 -0.002 0.003 <0.001 

.6 500 -0.001 0.003 0.002 -0.001 0.004 0.003 

1000 -0.004 -0.003 0.003 -0.004 -0.002 0.002 

2000 0.004 -0.001 0.002 0.004 -0.001 0.003 

.9 500 0.001 0.006 -0.012 0.001 0.006 -0.011 

1000 <0.001 -0.002 0.008 0.001 -0.001 0.008 

2000 -0.001 -0.002 <0.001 -0.001 -0.002 <0.001 
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Effect of Sample Size on Item Parameter Recovery in Terms of Average Bias 

Correct Specified Models 

Item discrimination parameters. Figures 4.9 to 4.11 show the average bias for item 

discrimination parameters when models were specified correctly with a low, medium or high 

degree of cross-loading across combinations of conditions. As shown in figures 4.9 to 4.11, all of 

the item discrimination parameters including primary and secondary item discrimination on first 

and second dimensions (𝑎1𝑝𝑐𝑙 , 𝑎1𝑝𝑛𝑐𝑙 , 𝑎1𝑠 𝑎2𝑝𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙 , 𝑎2𝑠) had very small or no change of 

average bias as sample size changed. Average bias of item discrimination for correct specified 

models increased as the sample size increased from 500 to 2,000 across all combinations of 

conditions with the lowest associated with the sample size of 500 and the largest associated with 

sample size of 2,000.  

Item location parameter (𝒅). Figure 4.15 shows the average bias for item location 

parameter (𝑑) when models were specified correctly with a low, medium or high degree of cross-

loading across combinations of conditions. As shown in figure 4.15, the average bias for item 

location parameter was near zero, with no effect as the sample size increased from 500 to 2,000 , 

suggesting that the estimated item location parameter were close to the true values (ranged from -

0.012 to 0.010).  

Misspecified Models 

Item discrimination parameters. Figures 4.12 to 4.14 show the average bias for item 

discrimination parameters when models were misspecified with a low, medium or high degree of 

cross-loading across combinations of conditions. As it was mentioned in the previous sections 

there was no secondary item discrimination defined in the misspecified models. As shown in 

figures 4.12 to 4.14, the average bias of the item discrimination parameters on the first and 

second dimensions (𝑎1𝑝𝑐𝑙 , 𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) tended to be closer to zero as sample size 

increased, but differences across sample sizes were small. It should be noted that average bias of 
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item discrimination estimates tended to be negative when the item was supposed to be specified 

as cross-loaded (𝑎1𝑝𝑐𝑙, 𝑎2𝑝𝑐𝑙) suggesting that estimated primary item discrimination parameters 

on the truly cross-loaded items (misspecified in the estimations) were somewhat smaller than 

their true values. On the other hand, discrimination estimates of non-cross loaded items (𝑎1𝑝𝑛𝑐𝑙, 

𝑎2𝑝𝑛𝑐𝑙) tended to be near zero or have positive values suggesting that estimated primary item 

discrimination parameters on the truly non-cross loaded items (not misspecified) were somewhat 

close to or slightly greater than their true values. 

Item location parameter (𝒅). Figure 4.16 shows the average bias for item location 

parameter (𝑑) when models were misspecified with a low, medium or high degree of cross-

loading across combinations of conditions. As shown in figure 4.16, the average bias for item 

location parameter was not affected by changes in sample size with average bias close to zero 

suggesting that the estimated item location parameter were close to the true values (ranged from -

0.011 to 0.010).  

Effect of Correlation between Abilities on Item Parameter Recovery in Terms of 

Average Bias 

Correct Specified Models 

Item discrimination parameters. Figures 4.9 to 4.11 show the average bias for item 

discrimination parameters when models were specified correctly with a low, medium or high 

degree of cross-loading across combinations of conditions. As figures 4.9 to 4.11 show, when the 

degree of cross-loading was low or medium, the discrimination of cross-loaded items on both 

dimensions (𝑎1𝑝𝑐𝑙  𝑎𝑛𝑑 𝑎2𝑝𝑐𝑙) was equal to or near zero when data were truly uncorrelated; as 

correlation increased, the average bias of cross-loaded items departed from zero in the positive 

direction.. These positive values indicate that estimated cross loaded primary item discrimination 

parameters on both of the dimensions were somewhat greater than their true values. However, 

when the degree of cross-loading was high, the item discrimination of cross-loaded items on both 
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dimensions (𝑎1𝑝𝑐𝑙  𝑎𝑛𝑑 𝑎2𝑝𝑐𝑙) departed from zero in the negative direction as the correlation 

between abilities increased from .0 to .9. These negative values indicate that estimated item 

discrimination parameters of cross-loaded items on both of the dimensions were somewhat 

smaller than their true values.  

For non-cross loaded items’ discrimination on both dimensions (𝑎1𝑝𝑛𝑐𝑙  𝑎𝑛𝑑 𝑎2𝑝𝑛𝑐𝑙), the 

average bias had a constant pattern with values close to 0.000 when data were truly uncorrelated, 

and approaching -0.05 as correlation increased to .9. Secondary item discrimination parameters 

on both dimensions (𝑎1𝑠 , 𝑎2𝑠) had a consistent changing pattern with increasing negative values 

as the correlation increased from .0 to .9 across combinations of conditions. These negative 

values indicate that estimated cross-loaded secondary item discrimination parameters on both of 

the dimensions were smaller than their true values.   

Item location parameter (𝒅). Figure 4.15 shows the average bias for item location 

parameter (𝑑) when models were specified correctly with a low, medium or high degree of cross-

loading across combinations of conditions. As shown in figure 4.15, the average bias for item 

location parameter had a constant trend with values close to zero as the correlation increased from 

.0 to .9.  

Misspecified Models 

Item discrimination parameters. Figures 4.12 to 4.14 show the average bias for item 

discrimination parameters when models were misspecified with a low, medium or high degree of 

cross-loading across combinations of conditions. As figures 4.12 to 4.14 show, the truly cross-

loaded primary item discrimination on both dimensions (i.e., misspecified items 𝑎1𝑝𝑐𝑙  𝑎𝑛𝑑 𝑎2𝑝𝑐𝑙) 

had an increasing pattern in absolute value (with negative values) as the correlation between 

abilities increased from .0 to .9. These negative values indicate that estimated cross-loaded 

primary item discrimination parameters on both of the dimensions were somewhat smaller than 

their true values. When the degree of cross-loading was low or medium, non-cross loaded item 
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discriminations on both dimensions (i.e., not misspecified, 𝑎1𝑝𝑛𝑐𝑙  𝑎𝑛𝑑 𝑎2𝑝𝑛𝑐𝑙) had a constant 

pattern with values close to 0.000 as the correlation between abilities increased from .0 to .9. 

However, when the degree of cross loading was high, non-cross loaded item discrimination on 

both dimensions (𝑎1𝑝𝑛𝑐𝑙  𝑎𝑛𝑑 𝑎2𝑝𝑛𝑐𝑙) remained constant with values near zero when complexity 

was 10% and increased (in the positive direction) as correlation increased when complexity was 

30% or 50%. 

Item location parameter (𝒅). Figure 4.16 shows the average bias for item location 

parameter (𝑑) when models were misspecified with a low, medium or high degree of cross-

loading across combinations of conditions. As shown in figure 4.16, the average bias for item 

location parameter had a constant trend as the correlation between abilities increased from .0 to .9 

with values close to 0.000 suggesting that the estimated item location parameter were close to the 

true values (ranged from -0.011 to 0.010).  

Effect of Structure Complexity Magnitude on Item Parameter Recovery in Terms of 

Average Bias 

Correct Specified Models 

Item discrimination parameters. As shown in figures 4.9 to 4.11, by holding the 

correlation and sample size constant, the average bias trends considering the effect of the three 

levels of complexity magnitude on the precision of item discrimination parameters including 

primary and secondary item discrimination on first and second dimensions 

(𝑎1𝑝𝑐𝑙 , 𝑎1𝑝𝑛𝑐𝑙 , 𝑎1𝑠 𝑎2𝑝𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙 , 𝑎2𝑠) can be investigated. When the degree of cross-loading was 

low or medium, the average bias of the item discrimination parameters on cross-loaded items 

(𝑎1𝑝𝑐𝑙 , 𝑎2𝑝𝑐𝑙) had an increasing pattern with positive values as the structure complexity increased 

from 10% to 50% (holding all other variables constant). However, when the degree of cross-

loading was high, as the structure complexity increased from 10% to 30% and 50%, the average 
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bias of the item discrimination on cross-loaded item departed from zero in the negative direction, 

suggesting that the estimated item parameters were smaller than the true item parameters.  

The average bias for the item discrimination on non-cross loaded items (𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) 

had a constant trend with values close to 0.000 across all levels of structure complexity. The 

average bias for the secondary item discriminations on both dimensions (𝑎1𝑠 , 𝑎2𝑠) departed from 

zero in the negative direction as the structure complexity magnitude increased from 10% to 50% 

especially when the correlation between abilities was either .6 or .9. The average bias for 

secondary item discrimination parameters were generally negative suggesting that the estimated 

item parameters were smaller than the true item parameters. It seemed that when the correlation 

between the abilities was .0, as the complexity magnitude increased from 10% to 50%, the 

average bias of secondary item discrimination parameters had a constant trend with values closer 

to 0.000 in correctly specified models. 

Item location parameter (𝒅). Figure 4.15 shows the average bias for item location 

parameter (𝑑) when models were specified correctly with a low, medium or high degree of cross-

loading across combination of conditions. As the complexity magnitude increased from 10% to 

50%, item location parameter had a constant trend in terms of average bias across all 

combinations of conditions with values closer to 0.000.  

Misspecified Models 

Item discrimination parameters. As shown in figures 4.12 to 4.14 by holding the 

correlation and sample size constant the average bias trends considering the effect of the three 

levels of complexity magnitude on the precision of item discrimination parameters including 

primary and secondary item discrimination on first and second dimensions 

(𝑎1𝑝𝑐𝑙 , 𝑎1𝑝𝑛𝑐𝑙 , 𝑎1𝑠 𝑎2𝑝𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙 , 𝑎2𝑠) can be investigated. The primary item discrimination 

parameters on truly cross-loaded items (i.e., misspecified items, 𝑎1𝑝𝑐𝑙 , 𝑎2𝑝𝑐𝑙) had an increasing 

pattern in absolute value with generally negative values as the structure complexity increased 
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from 10% to 50%. These negative values indicate that the estimated item parameters were smaller 

than the true item parameters. When the degree of cross-loading was low, the average bias for the 

primary item discrimination on non-cross loaded items (𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) had a constant trend with 

values close to 0.000 as the structure complexity increased from 10% to 50%. However, when the 

degree of cross-loading was medium or high, for the primary item discrimination on non-cross 

loaded items (𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) as the structure complexity increased from 10% to 50%, the 

average bias increased with positive values when correlation was greater than zero, suggesting 

that estimated values were greater than the true values. 

Item location parameter (𝒅). Figure 4.16 shows the average bias trends for the item 

location parameter (𝑑) when models were misspecified across combination of conditions. As 

shown in figure 4.16, as the complexity magnitude increased from 10% to 50% item location 

parameter had a consistent steady trend in terms of average bias with values closer to 0.000 

across all combination of conditions.  

Effect of Degree of Cross-Loading on Item Parameter Recovery in Terms of 

Average Bias 

Correct Specified Models 

Item discrimination parameters. Figures 4.9 to 4.11 show the average bias trends related 

to item discrimination parameters including primary and secondary item discrimination on first 

and second dimensions (𝑎1𝑝𝑐𝑙 , 𝑎1𝑝𝑛𝑐𝑙 , 𝑎1𝑠 𝑎2𝑝𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙 , 𝑎2𝑠) when the models were correctly 

specified and the degree of cross-loading was low, medium and high, respectively. As the degree 

of cross-loading increased from low to medium the average bias decreased with values close to 

zero for the primary item discrimination parameters on cross-loaded items on both dimension 

(𝑎1𝑝𝑐𝑙 , 𝑎2𝑝𝑐𝑙) with generally positive values, and continued to decrease, departing farther from 

zero in the negative direction for high degree of cross-loading. This pattern was more obvious 

when the correlation between abilities was .6 or .9 compared to a correlation of .0.  
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The primary item discrimination parameters on non-cross loaded items on both 

dimension (𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) had a constant trend in terms of average bias as the degree of cross-

loading changed. As shown in figures 4.9 to 4.11 the average bias for the secondary item 

discriminations on both dimensions (𝑎1𝑠  , 𝑎2𝑠) was near zero when correlation was .0 at all levels 

of cross loading. When correlation was greater than zero, the average bias departed from zero in 

the negative direction, and to a greater degree when the degree of cross-loading was low or 

medium. The negative values suggested that the estimated parameter were smaller than the true 

item parameters. 

Item location parameter (𝒅). Figure 4.15 shows the average bias for item location 

parameter (𝑑) when models were specified correctly with a low, medium or high degree of cross-

loading across combination of conditions. As shown in figure 4.15, the average bias for item 

location parameter was near zero, with no effect as the degree of cross-loading changed , 

suggesting that the estimated item location parameter were close to the true values (ranged from -

0.012 to 0.010).  

Misspecified Models 

Item discrimination parameters. Figures 4.12 to 4.14 show the average bias trends 

related to item discrimination parameters on the first and second dimensions 

(𝑎1𝑝𝑐𝑙 , 𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) when the models were misspecified and the degree of cross-loading 

was low, medium or high, respectively. As the degree of cross-loading increased from low to high 

the average bias had larger departures from zero in the negative direction for the primary item 

discrimination parameters on truly cross-loaded items on both dimension (i.e., misspecified items, 

𝑎1𝑝𝑐𝑙 , 𝑎2𝑝𝑐𝑙). The item discrimination parameters on non-cross loaded items on both dimension 

(𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) remained near zero at all levels of cross-loading.  

Item location parameter (𝒅). Figure 4.16 shows the average bias trends for item location 

parameter (𝑑) when models were misspecified across combination of conditions. As shown in 
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figure 4.16, as the degree of cross-loading increased from low to high, item location parameter 

had a constant trend in terms of average bias with values close to zero across all combinations of 

conditions.  
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Figure 4. 9. Average bias for item discrimination parameters when models were specified correctly with a low degree of cross-loading 
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Figure 4. 10. Average bias for item discrimination parameters when models were specified correctly with a medium degree of cross-loading 
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Figure 4. 11. Average bias for item discrimination parameters when models were specified correctly with a high degree of cross-loading 

 



79 
 

 

Figure 4. 12. Average bias for item discrimination parameters when models were misspecified with a low degree of cross-loading 
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Figure 4. 13. Average bias for item discrimination parameters when models were misspecified with a medium degree of cross-loading 
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Figure 4. 14. Average bias for item discrimination parameters when models were misspecified with a high degree of cross-loading 
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Figure 4. 15. Average bias for item location parameter when models were specified correctly. 
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Figure 4. 16. Average bias for item location parameter when models were misspecified. 
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Section III: Item Parameter Recovery Results in Terms of Average Standard Error 

of Estimate (SEE) 

Correct Specified Models 

The SEEs were averaged for the estimated item discrimination parameters (𝑎1 and 𝑎2) 

and the estimated item location parameter (𝑑) within each combination of conditions. For the 

item discrimination parameters (𝑎1 and 𝑎2) in correct specified models, the SEEs for the primary 

cross-loaded item discriminations on first and second dimensions (𝑎1𝑝𝑐𝑙  and 𝑎2𝑝𝑐𝑙) were 

averaged based on those items that had a primary item discrimination and were cross-loaded on 

both dimensions. Likewise, the SEEs for the primary non-cross loaded item discriminations on 

first and second dimensions (𝑎1𝑝𝑛𝑐𝑙  and 𝑎2𝑝𝑛𝑐𝑙) were averaged based on the items that had a 

primary item discrimination but were not cross-loaded on both dimensions. For the secondary 

item discriminations (𝑎1𝑠 and 𝑎2𝑠) the SEEs were averaged based on the items that had a 

secondary item discrimination.  

Primary item discrimination parameters. Table 4.7 reports the average SEEs of the 

estimated item discrimination parameters when the models were correctly specified considering 

three levels of structure complexity magnitude incorporating low, medium or high degree of 

cross-loading. As reported in table 4.7, the average SEEs for the primary cross-loaded item 

discrimination parameters on the first dimension (𝑎1𝑝𝑐𝑙) ranged from 0.078 to 0.262. The average 

SEEs for the primary non-cross loaded item discrimination parameters on the first dimension 

(𝑎1𝑝𝑛𝑐𝑙) ranged from 0.091 to 0.202 across all combinations of conditions. On the other hand, the 

average SEEs for the primary cross-loaded item discrimination parameters on the second 

dimension (𝑎2𝑝𝑐𝑙) ranged from 0.078 to 0.263. The average SEEs for the primary item 

discrimination parameters for non-cross loaded items on the second dimension (𝑎2𝑝𝑛𝑐𝑙) ranged 

from 0.091 to 0.201 across all combinations of conditions.  
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Secondary item discrimination parameters. As reported in table 4.7, the average SEEs 

for the secondary item discrimination parameter for the first dimension (𝑎1𝑠) ranged from 0.061 

to 0.258. On the other hand, the average SEEs for the secondary item discrimination parameter on 

the second dimension (𝑎2𝑠) ranged from 0.062 to 0.257 across all combinations of conditions. It 

should be noted that secondary item discrimination parameters on first and second dimensions 

had a very similar patterns and values in terms of average SEE. 

Item location parameter (𝒅). Table 4.9 reports the average SEEs for the item location 

parameter (𝑑) for both correct specified and misspecified models across all combinations of 

conditions. The average SEE for item location parameter when the models were correctly 

specified ranged from 0.068 to 0.159. The lowest average SEE for item location parameter was 

associated with the condition when the correlation between the abilities was .0 and the sample 

size was 2,000. The highest average SEE for item location parameter was associated with the 

condition when the correlation between the abilities was .90 and the sample size was 500. 

Misspecified Models 

The SEEs were averaged for the estimated item discrimination parameters (𝑎1 and 𝑎2) 

and the estimated item location parameter (𝑑) within each combination of conditions for three 

sets of item cross-loading. For the item discrimination parameters (𝑎1 and 𝑎2) in misspecified 

models, the SEEs for the truly primary cross-loaded item discriminations on first and second 

dimensions (𝑎1𝑝𝑐𝑙  and 𝑎2𝑝𝑐𝑙) were averaged based on those items that had a primary item 

discrimination and were supposed to be specified as cross-loaded items on both dimensions (these 

are the items that were misspecified in the model). Likewise, the SEEs for the truly non-cross 

loaded item discriminations on first and second dimensions (𝑎1𝑝𝑛𝑐𝑙  and 𝑎2𝑝𝑛𝑐𝑙) were averaged 

based on the items that had a primary item discrimination but were not truly cross-loaded on both 

dimensions. It should be noted that there was no secondary item discrimination defined for the 

first and second dimension in the misspecified models (𝑎1𝑠 and 𝑎2𝑠). 
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Primary item discrimination parameters. Table 4.8 reports the average SEEs of the 

estimated item discrimination parameters when the models were misspecified considering three 

levels of structure complexity magnitude incorporating low, medium or high degree of cross-

loading. As shown in table 4.8, the average SEEs for the truly primary cross-loaded item 

discrimination parameters on the first dimension (𝑎1𝑝𝑐𝑙) ranged from 0.073 to 0.344. The average 

SEEs for the truly primary non-cross loaded item discrimination parameters on the first 

dimension (𝑎1𝑝𝑛𝑐𝑙) ranged from 0.078 to 0.197 across all combinations of conditions. On the 

other hand, the average SEEs for the truly primary cross-loaded item discrimination parameters 

on the second dimension (𝑎2𝑝𝑐𝑙) ranged from 0.073 to 0.348. The average SEEs for the truly 

primary non-cross loaded item discrimination parameters on the second dimension (𝑎2𝑝𝑛𝑐𝑙) 

ranged from 0.078 to 0.197 across all combinations of conditions. In conclusion, item 

discrimination estimates on the truly primary dimension tended to have larger SEEs when the 

item was supposed to be specified as cross-loaded than when it was non-crossloaded. In addition, 

it should be noted that very similar patterns and values in terms of average SEEs were observed 

for the truly primary item discrimination parameters on the first and second dimensions.  

Item location parameter (𝒅).  Table 4.9 reports the average SEEs for the item location 

parameter (𝑑) for both correct specified and misspecified models across all combinations of 

conditions. The average SEEs for item location parameter when the models were misspecified 

ranged from 0.067 to 0.160. The lowest average SEE for item location parameter was associated 

with the condition when the correlation between the abilities was .0 and the sample size was 

2,000. The highest average SEE for item location parameter was associated with the condition 

when the correlation between the abilities was .9 and the sample size was 500. It is worth 

mentioning that the SEEs for item location parameter (𝑑) had a very similar pattern and values 

comparing the misspecified and correct specified models. 
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Table 4. 7. Average SEE of the primary (cross-loaded and non-cross loaded items) and secondary discrimination on the first and second dimensions when the 

models were correctly specified. 
      LOW MED HGH 

      𝑎1 𝑎2 𝑎1 𝑎2 𝑎1 𝑎2 

Complexity Correlation N 𝑎1𝑝 

𝐶𝐿 

𝑎1𝑝 

𝑁𝐶𝐿 

𝑎1𝑠 
 

𝑎2𝑝 

𝐶𝐿 

𝑎2𝑝 

𝑁𝐶𝐿 

𝑎2𝑠 
 

𝑎1𝑝 

𝐶𝐿 

𝑎1𝑝 

𝑁𝐶𝐿 

𝑎1𝑠 
 

𝑎2𝑝 

𝐶𝐿 

𝑎2𝑝 

𝑁𝐶𝐿 

𝑎2𝑠 
 

𝑎1𝑝 

𝐶𝐿 

𝑎1𝑝 

𝑁𝐶𝐿 

𝑎1𝑠 
 

𝑎2𝑝 

𝐶𝐿 

𝑎2𝑝 

𝑁𝐶𝐿 

𝑎2𝑠 
 

10% .0 500 0.157 0.196 0.124 0.158 0.196 0.124 0.159 0.195 0.130 0.159 0.195 0.130 0.165 0.194 0.152 0.164 0.194 0.153 

1000 0.110 0.137 0.087 0.111 0.137 0.087 0.112 0.137 0.091 0.112 0.137 0.091 0.115 0.136 0.107 0.115 0.136 0.107 

2000 0.078 0.096 0.061 0.078 0.096 0.062 0.078 0.096 0.064 0.078 0.096 0.064 0.081 0.096 0.075 0.081 0.096 0.075 

.6 500 0.167 0.196 0.140 0.167 0.196 0.140 0.173 0.195 0.150 0.174 0.196 0.148 0.187 0.194 0.175 0.186 0.194 0.177 

1000 0.117 0.137 0.098 0.117 0.137 0.098 0.121 0.137 0.104 0.121 0.137 0.105 0.130 0.135 0.123 0.130 0.135 0.123 

2000 0.082 0.096 0.069 0.082 0.096 0.069 0.085 0.096 0.074 0.085 0.096 0.074 0.092 0.095 0.087 0.092 0.095 0.087 

.9 500 0.181 0.196 0.168 0.181 0.196 0.168 0.190 0.195 0.180 0.189 0.196 0.180 0.212 0.193 0.207 0.211 0.194 0.205 

1000 0.126 0.137 0.118 0.126 0.137 0.118 0.133 0.137 0.126 0.133 0.137 0.126 0.148 0.135 0.145 0.148 0.135 0.145 

2000 0.089 0.097 0.083 0.089 0.097 0.083 0.093 0.096 0.088 0.094 0.096 0.088 0.104 0.095 0.102 0.104 0.095 0.102 

30% .0 500 0.202 0.189 0.140 0.201 0.189 0.140 0.201 0.190 0.150 0.202 0.189 0.150 0.205 0.189 0.188 0.205 0.190 0.189 

1000 0.140 0.132 0.098 0.140 0.132 0.098 0.141 0.132 0.105 0.141 0.132 0.106 0.143 0.133 0.132 0.143 0.133 0.132 

2000 0.099 0.093 0.069 0.099 0.093 0.069 0.099 0.093 0.074 0.099 0.093 0.074 0.100 0.093 0.093 0.100 0.094 0.093 

.6 500 0.209 0.191 0.159 0.208 0.192 0.159 0.217 0.192 0.177 0.219 0.191 0.176 0.239 0.189 0.226 0.239 0.191 0.225 

1000 0.146 0.134 0.112 0.145 0.134 0.112 0.151 0.134 0.124 0.151 0.134 0.123 0.165 0.133 0.157 0.166 0.133 0.157 

2000 0.102 0.094 0.079 0.102 0.094 0.079 0.106 0.094 0.087 0.107 0.094 0.087 0.116 0.093 0.110 0.117 0.093 0.110 

.9 500 0.212 0.195 0.190 0.210 0.196 0.190 0.228 0.193 0.211 0.228 0.193 0.209 0.262 0.191 0.258 0.263 0.190 0.257 

1000 0.147 0.137 0.133 0.146 0.137 0.133 0.158 0.135 0.147 0.158 0.135 0.147 0.183 0.133 0.179 0.183 0.133 0.180 

2000 0.104 0.096 0.094 0.103 0.096 0.094 0.111 0.095 0.103 0.111 0.095 0.103 0.128 0.094 0.125 0.127 0.094 0.125 

50% .0 500 0.201 0.185 0.147 0.201 0.186 0.147 0.201 0.189 0.156 0.202 0.188 0.156 0.205 0.193 0.189 0.204 0.193 0.189 

1000 0.140 0.130 0.103 0.140 0.130 0.103 0.141 0.132 0.109 0.141 0.132 0.109 0.143 0.135 0.132 0.143 0.134 0.133 

2000 0.099 0.091 0.073 0.099 0.091 0.073 0.099 0.093 0.077 0.099 0.092 0.077 0.100 0.095 0.093 0.101 0.095 0.093 

.6 500 0.209 0.193 0.165 0.209 0.193 0.166 0.216 0.195 0.182 0.218 0.194 0.181 0.236 0.195 0.224 0.237 0.194 0.225 

1000 0.145 0.135 0.116 0.146 0.135 0.116 0.152 0.135 0.127 0.151 0.136 0.127 0.165 0.136 0.156 0.164 0.136 0.157 

2000 0.102 0.095 0.082 0.102 0.094 0.082 0.106 0.095 0.089 0.106 0.095 0.089 0.115 0.095 0.110 0.115 0.095 0.110 
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.9 500 0.212 0.202 0.195 0.212 0.201 0.195 0.227 0.198 0.212 0.226 0.199 0.212 0.257 0.197 0.252 0.258 0.195 0.252 

1000 0.148 0.140 0.136 0.148 0.140 0.136 0.157 0.138 0.148 0.158 0.139 0.148 0.179 0.136 0.176 0.178 0.137 0.175 

2000 0.104 0.099 0.096 0.104 0.099 0.096 0.110 0.097 0.104 0.110 0.097 0.104 0.125 0.096 0.123 0.125 0.096 0.123 

 
 

 

 
 

Table 4. 8. Average SEE of the truly primary (cross-loaded and non-cross loaded items) on the first and second dimensions when the models were misspecified. 
      LOW MED HGH 

      𝑎1 𝑎2 𝑎1 𝑎2 𝑎1 𝑎2 

Complexity Correlation N 𝑎1𝑝 

𝐶𝐿 

𝑎1𝑝 

𝑁𝐶𝐿 

𝑎1𝑠 
 

𝑎2𝑝 

𝐶𝐿 

𝑎2𝑝 

𝑁𝐶𝐿 

𝑎2𝑠 
 

𝑎1𝑝 

𝐶𝐿 

𝑎1𝑝 

𝑁𝐶𝐿 

𝑎1𝑠 
 

𝑎2𝑝 

𝐶𝐿 

𝑎2𝑝 

𝑁𝐶𝐿 

𝑎2𝑠 
 

𝑎1𝑝 

𝐶𝐿 

𝑎1𝑝 

𝑁𝐶𝐿 

𝑎1𝑠 
 

𝑎2𝑝 

𝐶𝐿 

𝑎2𝑝 

𝑁𝐶𝐿 

𝑎2𝑠 
 

10% .0 500 0.156 0.196 –– 0.156 0.196 –– 0.153 0.196 –– 0.154 0.196 –– 0.147 0.197 –– 0.147 0.197 –– 

1000 0.109 0.137 –– 0.110 0.137 –– 0.108 0.137 –– 0.108 0.137 –– 0.103 0.138 –– 0.103 0.138 –– 

2000 0.077 0.096 –– 0.077 0.096 –– 0.076 0.096 –– 0.076 0.096 –– 0.073 0.097 –– 0.073 0.097 –– 

.6 500 0.167 0.195 –– 0.168 0.195 –– 0.178 0.194 –– 0.179 0.194 –– 0.196 0.193 –– 0.194 0.193 –– 

1000 0.117 0.137 –– 0.117 0.136 –– 0.124 0.136 –– 0.124 0.136 –– 0.136 0.135 –– 0.136 0.135 –– 

2000 0.082 0.096 –– 0.083 0.096 –– 0.088 0.096 –– 0.088 0.096 –– 0.096 0.095 –– 0.096 0.095 –– 

.9 500 0.174 0.194 –– 0.175 0.194 –– 0.194 0.193 –– 0.192 0.193 –– 0.237 0.191 –– 0.235 0.191 –– 

1000 0.122 0.136 –– 0.121 0.136 –– 0.135 0.135 –– 0.136 0.135 –– 0.165 0.134 –– 0.165 0.134 –– 

2000 0.085 0.096 –– 0.086 0.096 –– 0.095 0.095 –– 0.095 0.095 –– 0.115 0.094 –– 0.116 0.094 –– 

30% .0 500 0.201 0.188 –– 0.200 0.188 –– 0.202 0.186 –– 0.202 0.186 –– 0.217 0.179 –– 0.216 0.180 –– 

1000 0.140 0.131 –– 0.140 0.131 –– 0.142 0.130 –– 0.142 0.130 –– 0.150 0.126 –– 0.151 0.126 –– 

2000 0.099 0.092 –– 0.099 0.092 –– 0.100 0.092 –– 0.100 0.092 –– 0.106 0.089 –– 0.106 0.089 –– 

.6 500 0.221 0.184 –– 0.220 0.184 –– 0.242 0.181 –– 0.244 0.180 –– 0.300 0.172 –– 0.300 0.172 –– 

1000 0.154 0.129 –– 0.153 0.129 –– 0.168 0.127 –– 0.169 0.126 –– 0.208 0.121 –– 0.208 0.121 –– 

2000 0.108 0.091 –– 0.108 0.091 –– 0.118 0.089 –– 0.119 0.089 –– 0.145 0.085 –– 0.146 0.085 –– 

.9 500 0.232 0.183 –– 0.230 0.184 –– 0.265 0.179 –– 0.266 0.179 –– 0.344 0.173 –– 0.348 0.172 –– 

1000 0.161 0.128 –– 0.160 0.128 –– 0.183 0.126 –– 0.184 0.125 –– 0.240 0.121 –– 0.240 0.121 –– 

2000 0.113 0.090 –– 0.113 0.090 –– 0.129 0.088 –– 0.129 0.088 –– 0.167 0.085 –– 0.167 0.085 –– 
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50% .0 500 0.202 0.182 –– 0.201 0.183 –– 0.207 0.177 –– 0.207 0.177 –– 0.236 0.158 –– 0.236 0.158 –– 

1000 0.141 0.128 –– 0.141 0.128 –– 0.145 0.124 –– 0.145 0.124 –– 0.165 0.111 –– 0.165 0.111 –– 

2000 0.099 0.090 –– 0.099 0.090 –– 0.102 0.087 –– 0.102 0.087 –– 0.116 0.078 –– 0.116 0.078 –– 

.6 500 0.215 0.178 –– 0.216 0.178 –– 0.234 0.172 –– 0.236 0.171 –– 0.288 0.160 –– 0.288 0.159 –– 

1000 0.150 0.125 –– 0.151 0.125 –– 0.164 0.120 –– 0.164 0.121 –– 0.201 0.112 –– 0.199 0.112 –– 

2000 0.106 0.088 –– 0.106 0.088 –– 0.115 0.085 –– 0.115 0.085 –– 0.140 0.079 –– 0.140 0.079 –– 

.9 500 0.222 0.177 –– 0.222 0.177 –– 0.249 0.171 –– 0.250 0.171 –– 0.313 0.163 –– 0.314 0.163 –– 

1000 0.155 0.124 –– 0.156 0.124 –– 0.174 0.120 –– 0.174 0.120 –– 0.217 0.114 –– 0.217 0.115 –– 

2000 0.109 0.087 –– 0.109 0.087 –– 0.122 0.084 –– 0.122 0.084 –– 0.152 0.081 –– 0.152 0.081 –– 

 

 

Table 4. 9. Average SEE of the item location parameter (d) for the correct and misspecified models. 

      Correct Specified Models Misspecified Models 

Complexity Correlation N LOW MED HGH LOW MED HGH 

10% .0 500 0.138 0.138 0.139 0.138 0.138 0.138 

1000 0.097 0.097 0.098 0.097 0.097 0.097 

2000 0.068 0.068 0.069 0.068 0.068 0.068 

.6 500 0.139 0.139 0.140 0.138 0.139 0.139 

1000 0.097 0.097 0.098 0.097 0.097 0.098 

2000 0.068 0.069 0.069 0.068 0.069 0.069 

.9 500 0.138 0.139 0.140 0.138 0.139 0.140 

1000 0.097 0.098 0.098 0.097 0.098 0.098 

2000 0.068 0.069 0.069 0.069 0.069 0.069 

30% .0 500 0.139 0.140 0.144 0.138 0.137 0.135 

1000 0.097 0.098 0.101 0.097 0.096 0.095 

2000 0.068 0.069 0.071 0.068 0.068 0.067 

.6 500 0.140 0.143 0.149 0.140 0.141 0.145 

1000 0.098 0.100 0.104 0.098 0.099 0.101 
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2000 0.069 0.070 0.073 0.069 0.070 0.071 

.9 500 0.141 0.144 0.151 0.141 0.144 0.150 

1000 0.099 0.101 0.106 0.099 0.101 0.106 

2000 0.070 0.071 0.074 0.070 0.071 0.074 

50% .0 500 0.139 0.141 0.146 0.138 0.138 0.139 

1000 0.097 0.099 0.103 0.097 0.097 0.098 

2000 0.069 0.069 0.072 0.068 0.068 0.069 

.6 500 0.142 0.146 0.156 0.141 0.145 0.153 

1000 0.099 0.102 0.109 0.099 0.102 0.107 

2000 0.070 0.072 0.076 0.070 0.072 0.076 

.9 500 0.143 0.148 0.159 0.143 0.148 0.160 

1000 0.100 0.103 0.111 0.100 0.104 0.112 

2000 0.070 0.073 0.078 0.071 0.073 0.079 
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Effect of Sample Size on Item Parameter Recovery in Terms of SEE 

Correct Specified Models 

Item discrimination parameters. Figures 4.17 to 4.19 show the average SEEs for item 

discrimination parameters when models were specified correctly with a low, medium or high 

degree of cross-loading across combinations of conditions. As shown in figures 4.17 to 4.19, all 

of the item discrimination parameters including primary and secondary item discrimination on 

first and second dimensions (𝑎1𝑝𝑐𝑙 , 𝑎1𝑝𝑛𝑐𝑙 , 𝑎1𝑠 𝑎2𝑝𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙 , 𝑎2𝑠) had a consistent decreasing 

trend in terms of average SEE as the sample size increased from 500 to 2,000 across all 

combinations of conditions. The lowest average SEE of item discrimination for correct specified 

models was associated with the sample size of 2,000 and the highest average SEE of item 

discrimination for correct specified models was associated with the sample size of 500.  

Item location parameter (𝒅). Figure 4.23 shows the average SEE trends for item location 

parameter (𝑑) when models were specified correctly with a low, medium or high degree of cross-

loading across combinations of conditions. As shown in figure 4.23, item location parameter had 

a consistent decreasing trend in terms of average SEE as the sample size increased from 500 to 

2,000 across all combinations of conditions. The lowest average SEE of item location for correct 

specified models was associated with the sample size of 2,000 and the highest average SEE of 

item location for correct specified models was associated with the sample size of 500.   

Misspecified Models 

Item discrimination parameters. Figures 4.20 to 4.22 show the average SEEs for item 

discrimination parameters when models were misspecified with a low, medium or high degree of 

cross-loading across combination of conditions. As shown in figures 4.20 to 4.22, all of the item 

discrimination parameters on the first and second dimensions (𝑎1𝑝𝑐𝑙 , 𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) had a 

consistent decreasing trend in terms of average SEE as the sample size increased from 500 to 
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2,000 across all combinations of conditions. The lowest average SEE was associated with the 

sample size of 2,000 and the highest average SEE was associated with the sample size of 500.  

Item Location parameter (𝒅). Figure 4.24 shows the average SEEs for item location 

parameter (𝑑) when models were misspecified with a low, medium or high degree of cross-

loading across combination of conditions. As shown in figure 4.25, item location parameter had a 

consistent decreasing trend in terms of average SEE as the sample size increased from 500 to 

2,000 across all combination of conditions. The lowest average SEE of item discrimination for 

misspecified models was associated with the sample size of 2,000 and the highest average SEE of 

item discrimination for misspecified models was associated with the sample size of 500.   

Effect of Correlation between Abilities on Item Parameter Recovery in Terms of 

SEE 

Correct Specified Models 

Item discrimination parameters. Figures 4.17 to 4.19 show the average SEE trends 

considering the effect of the correlation between abilities on the precision of item discrimination 

parameters including primary and secondary item discrimination on first and second dimensions 

(𝑎1𝑝𝑐𝑙 , 𝑎1𝑝𝑛𝑐𝑙 , 𝑎1𝑠 𝑎2𝑝𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙 , 𝑎2𝑠). When the correlation between abilities varied across the 

conditions while the sample size and complexity magnitude were held constant the average SEE 

increased consistently for the primary and secondary item discriminations on both dimensions 

(𝑎1𝑝𝑐𝑙 , 𝑎1𝑝𝑛𝑐𝑙 , 𝑎1𝑠 𝑎2𝑝𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙 , 𝑎2𝑠) as the correlation increased from .0 to .9 across combination 

of all conditions. As the correlation increased from .0 to .9 the increasing pattern in terms of 

average SEE was greater for the primary item discrimination parameters on cross-loaded items 

(𝑎1𝑝𝑐𝑙 , 𝑎2𝑝𝑐𝑙) and the secondary item discrimination parameters (𝑎1𝑠  , 𝑎2𝑠) compared to the item 

discrimination parameters on non-cross loaded items ( 𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙). 

Item location parameter (𝒅). Figure 4.23 shows the average SEE patterns for item 

location parameter (𝑑) when models were specified correctly with a low, medium or high degree 
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of cross-loading across all combinations of conditions. As shown in figure 4.23, item location 

parameter had a constant trend with relatively slight increases in terms of average SEE as the 

correlation between abilities increased from .0 to .9 across all combinations of conditions.  

Misspecified Models 

Item discrimination parameters. Figures 4.20 to 4.22 show the average SEE trends 

considering the effect of the correlation between abilities on the precision of item discrimination 

parameters. When the sample size and complexity magnitude were held constant , the average 

SEE increased consistently for the primary item discriminations on truly cross-loaded items on 

both dimensions (i.e., misspecified items, 𝑎1𝑝𝑐𝑙 , 𝑎2𝑝𝑐𝑙) as the correlation increased from .0 to .9 

across combinations of conditions. For the item discrimination parameters on the truly non-cross 

loaded items (𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) the average SEE decreased slightly as the correlation between 

abilities increased from .0 to .9 

Item location parameter (𝒅). Figure 4.24 shows the average SEE patterns for item 

location parameter (𝑑) when models were misspecified with a low, medium or high degree of 

cross-loading across combination of conditions. As shown in figure 4.24, item location parameter 

had a constant trend in terms of average SEE as the correlation between abilities increased from 

.0 to .9 across all combination of conditions.  

Effect of Structure Complexity Magnitude on Item Parameter Recovery in Terms of 

SEE 

Correct Specified Models 

Item discrimination parameters. By holding the correlation and sample size constant, 

figures 4.17 to 4.19 show the average SEE trends considering the effect of the three levels of 

complexity magnitude on the precision of item discrimination parameters including primary and 

secondary item discrimination on first and second dimensions. The average SEEs for the primary 

item discriminations on cross-loaded items on both dimensions (𝑎1𝑝𝑐𝑙 , 𝑎2𝑝𝑐𝑙) increased as the 
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structure complexity magnitude increased from 10% to 30% then decreased slightly as the 

complexity magnitude increased from 30% to 50%. The average SEE on non-cross loaded items 

(𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) had a constant trend with values close to zero or slight decreases as the 

complexity magnitude increased from 10% to 50%. The average SEE for the secondary item 

discrimination (𝑎1𝑠 , 𝑎2𝑠) had an increasing pattern as complexity magnitude increased from 10% 

to 30% and then a decreasing pattern as the complexity magnitude increased from 30% to 50%.  

Item location parameter (𝒅). Figure 4.23 shows the average SEEs for item location 

parameter (𝑑) when models were specified correctly with a low, medium or high degree of cross-

loading across combination of conditions. As shown in figure 4.24, item location parameter had a 

constant trend with slight increases in terms of average SEE as the complexity magnitude 

increased from 10% to 50% across all combination of conditions.  

Misspecified Models 

Item discrimination parameters. By holding the correlation and sample size constant, 

figures 4.20 to 4.22 show the average SEE trends considering the effect of the three levels of 

complexity magnitude on the precision of item discrimination parameters on first and second 

dimensions when the models were misspecified. The average SEEs for the primary item 

discriminations on truly cross-loaded items on both dimensions (𝑎1𝑝𝑐𝑙 , 𝑎2𝑝𝑐𝑙) increased as the 

structure complexity magnitude increased from 10% to 30% then decreased slightly as the 

complexity magnitude increased from 30% to 50%. The average SEE on non-cross loaded items 

(𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) tended to slightly decrease as the complexity magnitude increased across all 

levels from 10% to 50%.  

Item location parameter (𝒅). Figure 4.24 shows the average SEEs for item location 

parameter (𝑑) when models were misspecified with a low, medium or high degree of cross-

loading across combination of conditions. As it can be seen in figure 4.25, item location 
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parameter had a constant trend with slight increases in terms of average SEE as the complexity 

magnitude increased from 10% to 50% across all combination of conditions.  

Effect of the Degree of Cross-Loading on Item Parameter Recovery in Terms of 

SEE 

Correct Specified Models 

Item discrimination parameters. Figures 4.17 to 4.19 show the average SEE trends 

related to item discrimination parameters including primary and secondary item discrimination on 

first and second dimensions (𝑎1𝑝𝑐𝑙 , 𝑎1𝑝𝑛𝑐𝑙 , 𝑎1𝑠 𝑎2𝑝𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙 , 𝑎2𝑠) when the models were correctly 

specified and the degree of cross-loading was low, medium and high, respectively. As the degree 

of cross-loading increased from low to high the average SEE increased for the item 

discrimination parameters on cross-loaded items on both dimension (𝑎1𝑝𝑐𝑙 , 𝑎2𝑝𝑐𝑙). This pattern 

was more obvious when the correlation between abilities were .6 or .9 compared to a correlation 

of .0. The primary item discrimination parameters on non-cross loaded items on both dimension 

(𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) had a constant trend in terms of average SEE as the degree of cross-loading 

increased from low to high. The average SEE for the secondary item discriminations on both 

dimensions (𝑎1𝑠 , 𝑎2𝑠) increased as the degree of cross-loading increased from low to high. 

Item location parameter (𝒅). Figure 4.23 shows the average SEEs for item location 

parameter (𝑑) when models were specified correctly with a low, medium or high degree of cross-

loading across combinations of conditions. As shown in figure 4.23, item location parameter had 

a constant trend in terms of average SEE as the degree of cross-loading increased from low to 

high. However, when the complexity magnitude was 50% and the correlation was either .6 or .9 

the average SEE had a slightly increasing pattern as the degree of cross-loading increased from 

low to high. 
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Misspecified Models 

Item discrimination parameters. Figures 4.20 to 4.22 show the average SEE trends 

related to item discrimination parameters on the first and second dimensions when the models 

were misspecified and the degree of cross-loading was low, medium and high, respectively. For 

the primary item discrimination parameters on truly cross-loaded items on both dimension 

(𝑎1𝑝𝑐𝑙 , 𝑎2𝑝𝑐𝑙) the average SEE increased as the degree of cross-loading increased from low to 

high. This pattern was more obvious when the complexity magnitude was 30% or 50% compared 

to a complexity magnitude of 10%. On the other hand, when the complexity magnitude was 10% 

the primary item discrimination parameters on truly non-cross loaded items on both dimension 

(𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) had a constant trend in terms of average SEE as the degree of cross-loading 

increased from low to high. However, when the complexity magnitude was 30% or 50% the 

average SEEs on truly non-cross loaded items had a decreasing pattern as the degree of cross-

loading increased from low to high. 

Item location parameter (𝒅). Figure 4.24 shows the average SEEs for item location 

parameter (𝑑) when models were misspecified with a low, medium or high degree of cross-

loading across combination of conditions. As can be seen in figure 4.24, item location parameter 

had a constant trend in terms of average SEE as the degree of cross-loading increased from low to 

high. However, when the complexity magnitude was 50% and the correlation was either .6 or .9 

the average SEE had slight increases as the degree of cross-loading increased from low to high. 
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Figure 4. 17.  Average SEE for item discrimination parameters when models were specified correctly with a low degree of cross-loading 
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Figure 4. 18. Average SEE for item discrimination parameters when models were specified correctly with a medium degree of cross-loading 

 



99 
 

 

Figure 4. 19.  Average SEE for item discrimination parameters when models were specified correctly with a high degree of cross-loading 
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Figure 4. 20.  Average SEE for item discrimination parameters when models were misspecified with a low degree of cross-loading 
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Figure 4. 21. Average SEE for item discrimination parameters when models were misspecified with a Medium degree of cross-loading 
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Figure 4. 22. Average SEE for item discrimination parameters when models were misspecified with a high degree of cross-loading 
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Figure 4. 23. Average SEE for item location parameter when models were specified correctly. 
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Figure 4. 24. Average SEE for item location parameter when models were misspecified. 
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CHAPTER V 
 

 

DISCUSSION 
 

 

Previous studies have investigated the effects of structure complexity (i.e., the proportion 

of items that are cross-loaded), the correlation between the underlying latent abilities, sample 

size, distribution of examinees on dimensionality assessment and item parameter recovery on 

complex structure MIRT models (Finch, 2011; Svetina & Levy, 2016; Svetina et al., 2017; Zhang 

2012). However, these did not consider the degree of cross-loading on secondary dimension (how 

strongly each ability is being measured with an item, specifically the secondary dimension) and 

model specification (misspecified simple structure model when the data are truly complex) and 

their effects on item parameter estimation precision. In addition, previous studies did not 

collectively discuss the effects of structure complexity magnitude of the data incorporating the 

degree of cross-loading on secondary dimension and model specification on item parameter 

estimation in complex structure MIRT models. 
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The purpose of this study was to investigate the influence of structure complexity 

magnitude of the data incorporating the degree of cross-loading on secondary dimensions and 

model specification, especially when the model was specified as simple structure, ignoring the 

cross-loading, while the data are truly complex on item parameter recovery in MIRT models.  

In real-world situations, multidimensional data may appear on an educational test or 

attitudinal survey. For example, a math test measuring algebra and geometry. Designers of the 

test may structure 10 items to measure algebra and 10 items to measure geometry. However, one 

or more of the primarily algebra items may require some secondary geometry knowledge to 

answer the item correctly, or some of the primarily geometry items may require some secondary 

algebra knowledge to answer the item correctly. In these situations, a simple structure, 

multidimensional model may be used to evaluate the items, ignoring the cross-loading of some 

items on the secondary dimension. By utilizing simulated data which replicated this scenario and 

then applying a simple structure model, i.e., misspecifying the model and ignoring the cross-

loading, the potential consequences of the misspecification was investigated. 

The primary research question of interest in this study was: what are the effects of 

structure complexity magnitude of the data, the degree of cross-loading on secondary dimension, 

and model specification on item parameter estimation in MIRT models? In order to address the 

research question a simulation study was designed to manipulate the variables that potentially 

influence the precision of item parameter estimation in the MIRT models. The manipulated 

variables in this study were three levels of structure complexity magnitude, three levels of the 

degree of cross-loading on secondary dimension, model specification, three levels of sample size 

and three levels of correlation between abilities. The described manipulated variables influencing 

the precision of item parameter estimation in this study led to 162 simulated item response data 

sets. Parameters were estimated using marginal maximum likelihood (MML), utilizing the 

expectation-maximization (EM) algorithms. A compensatory 2PL-MIRT model with two 

dimensions and dichotomous item response type (Reckase, 1985) was used to simulate and 
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calibrate the data for every replication for each combination of conditions. A standard bivariate 

normal distribution was considered for the distribution of abilities and each combination of 

conditions was replicated 500 times.  

Summary of Results 

Effect of Structure Complexity Magnitude (RMSE, Bias and SEE) 

Effects of this may be seen in application when on one form of a math test, one (of 10, 

10%) of the primarily algebra items requires some secondary geometry knowledge to answer the 

item correctly; but, on a second form, three (of 10, 30%) of the primarily algebra items requires 

some secondary geometry knowledge to answer the item correctly.   

Correct specified models. When the model correctly took into account the secondary 

loadings of cross-loaded items, the average RMSE, bias and SEE of the item discrimination on 

cross-loaded items on primary dimension (𝑎1𝑝𝑐𝑙 , 𝑎2𝑝𝑐𝑙) and secondary dimension (𝑎1𝑠 and 𝑎2𝑠) 

increased (in absolute value for bias) as structure complexity magnitude increased from 10% to 

30%, but had little change when 50% of the items cross-loaded. The RMSE, bias and SEE of the 

non-cross loaded items on both dimensions (𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) had a little to no effect of the 

increases as the complexity magnitude increased from 10% to 50%.  

Misspecified models. Item discrimination estimates when the model was misspecified 

and ignored the cross-loadings worsened compared to correctly specified models under most 

conditions of the structure complexity. The RMSE and SEE worsened as complexity increased 

from 10% to 30% to 50%, even when data were truly uncorrelated. Bias of the estimates of cross-

loaded and non-crossloaded were adversely affected by increasing the proportion of complex 

items for correlated and uncorrelated data, holding all other variables constant; truly cross-loaded 

items had much more severe estimations.  
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Effect of the Degree of Cross-Loading (RMSE, Bias and SEE) 

As it was mentioned before, one of the understudied variables that can affect the 

precision of item parameter estimation in MIRT models under complex structure of the data is the 

degree of cross-loading on secondary dimension. Effects of this may be seen in application when 

on one form of a math test, one or more of the primarily algebra items require very little 

secondary geometry knowledge to answer the item correctly; but, on a second form, the same 

cross-loaded primarily algebra items require a moderate or high secondary geometry knowledge 

to answer the item correctly. To our knowledge, none of the past studies regarding complex 

structure MIRT models addressed the possible influence of the degree of cross-loading 

incorporating model specification on item parameter estimation in MIRT models (e.g., Finch, 

2011; Svetina et al., 2017; Zhang 2012). The results of this study indicated that item parameter 

recovery was influenced by the degree of cross-loading on secondary dimension.  

Correct specified models. The average RMSE, bias and SEE of the item discrimination 

on cross-loaded items on both dimensions ( 𝑎1𝑝𝑐𝑙 , 𝑎2𝑝𝑐𝑙) and the secondary item discrimination 

parameters (𝑎1𝑠 and 𝑎2𝑠) had an increasing trend across the combinations of conditions as the 

degree of cross-loading increased from low to high. The average RMSEs for the primary item 

discrimination on non-cross loaded items on both dimensions ( 𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) was not affected 

by changes in the degree of cross-loading increased from low to high.  

Misspecified models. The average RMSE, bias and SEE for the item discrimination on 

cross-loaded items on both dimensions ( 𝑎1𝑝𝑐𝑙 , 𝑎2𝑝𝑐𝑙) was adversely affected when the degree of 

cross-loading increased from low to medium to high and the model ignored the cross-loading. 

The average RMSEs for the item discrimination on non-cross loaded items on both dimensions 

(𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) was not affected by changes in the degree of cross-loading increasing from low 

to high. The RMSEs for the primary item discrimination parameters were much larger for the 

cross-loaded items compared to non-cross loaded items.  
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Effect of Sample Size (RMSE, Bias and SEE) 

Previous studies have investigated the effect of a broad range of sample size from a small 

(500) to very large sample size (5,000) on the item parameter estimation in the MIRT models 

(e.g., Bolt & Lall, 2003; Finch, 2010, 2011; Zhang, 2012). Aligned with the previous studies 

considering MIRT models, the results of this study indicated that item parameter recovery 

performed better as the sample size increased. 

Correct specified models. RMSE and SEE of the item discrimination parameters, 

including primary and secondary item discrimination (𝑎1𝑝𝑐𝑙 , 𝑎1𝑝𝑛𝑐𝑙 , 𝑎1𝑠 𝑎2𝑝𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙 , 𝑎2𝑠), had a 

consistent decreasing measure as the sample size increased from 500 to 1,000 to 2,000 across all 

combinations of conditions. Effects of changes in sample size had very little effect on average 

bias.  

Misspecified models. Trends of RMSE, bias and SEE were similar for correct specified 

models and for misspecified models. RMSE and SEE of the item discrimination parameters, 

including primary and secondary item discrimination (𝑎1𝑝𝑐𝑙 , 𝑎1𝑝𝑛𝑐𝑙 , 𝑎1𝑠 𝑎2𝑝𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙 , 𝑎2𝑠), had a 

consistent decreasing measure as the sample size increased from 500 to 1,000 to 2,000 across all 

combinations of conditions. Effects of changes in sample size had very little effect on average 

bias.  

A minimum sample size for item parameter estimation was not the primary focus of this 

study. However, aligned with the past studies (Bolt & Lall, 2003; Finch, 2010, 2011; Jing et al., 

2016; Zhang, 2012) the results of this study indicated that as the number of examinees increased 

item parameter estimations were more accurate whether the model was correctly specified or 

misspecified. This means that in large-scale tests, test developers should consider a sufficient 

amount of sample size regarding item parameter estimations for designing multiple forms of a 

math test even if the item response data represent a complex structure (i.e., measuring algebra and 

geometry knowledge utilizing cross-loaded items). 
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Effect of Correlation (RMSE, Bias and SEE) 

In practice, when a math test with algebra and geometry is administered, some may view 

the two subjects as related and correlated, and others may not. The data were simulated as being 

uncorrelated, having moderate correlation (.6) and high correlation (.9). When estimated, all 

conditions were assumed to be uncorrelated to replicate situations when the underlying 

correlation is ignored, even when dimensions may have moderate or high correlation. 

Correct specified models. When other variables were held constant for each combination 

of conditions while the true correlation between abilities varied and the model did not account for 

correlation, the average RMSE, bias and SEEs increased consistently when items cross-loaded for 

the primary and secondary item discriminations on both dimensions (𝑎1𝑝𝑐𝑙 , 𝑎1𝑠 𝑎2𝑝𝑐𝑙 , 𝑎2𝑠) as the 

correlation increased from .0 to .9. The non-cross loaded item discriminations (𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) 

had a consistent measure of bias across all levels of correlation. 

Misspecified models. The average RMSE, bias and SEEs increased consistently when 

items cross-loaded for the primary and secondary item discriminations on both dimensions 

(𝑎1𝑝𝑐𝑙 , 𝑎2𝑝𝑐𝑙) as the correlation increased from .0 to .9. The non-cross loaded item discriminations 

(𝑎1𝑝𝑛𝑐𝑙 , 𝑎2𝑝𝑛𝑐𝑙) had a consistent measure of bias across all levels of correlation. 

Item Location 

Sample size was the only variable that influenced item location estimation. As the sample 

size increased the RMSE and SEE of the item location decreased across all combinations of 

conditions.  Item location parameter had a consistent measure of bias with no effect across all 

combinations of conditions. As the complex structure of multidimensional data in this study 

reflected more on item discrimination parameters (i.e., cross-loading), whether the model was 

correctly specified or misspecified, variables such as complexity magnitude, degree of cross-

loading, and the correlation between abilities had no effect on item location parameter in terms of 

average RMSE, bias and SEE. 
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Summary of Results Compared to the Literature 

It should be noted that it is difficult to compare the result of this study to those of Finch 

(2011), Zhang (2012) and Svetina et al. (2017) due to different structure complexity of the data in 

terms of item discrimination and item location specifications, structure complexity magnitude, the 

degree of cross-loading, model specification or the distribution of latent abilities. Comparison of 

the results of this study to studies of Finch (2011), Zhang (2012) and Svetina et al. (2017) should 

be made with caution as those studies focused on different combinations of influencing variables 

and conditions. For instance, Finch (2011) focused on the complex MIRT models when the 

distribution of latent abilities were non-normal. Zhang (2012) focused on comparing the precision 

of item parameter estimation in unidimensional and multidimensional estimation approaches 

within simple structure and mixed structure environments. This study primarily was an extension 

of Svetina et al. (2017) in which the authors focused on comparison of item parameter estimation 

under complex structure when the distribution of abilities were non-normal with balanced and 

imbalanced item discriminations but not incorporating the degree of cross-loading and model 

specification effects.  

Implications and Suggestions 

There are a great number of instruments, including surveys and tests that measure 

multiple latent abilities, which leads to a potentially multidimensional structure of item response 

data. In practice and in real-world situations, it is very likely that when the items in a test exhibit 

a complex structure with a strong loading on a primary ability and a small loading on a secondary 

ability (small degree of cross-loading), the data are treated as having a simple structure, ignoring 

the small cross-loading of some items.  

The results of this study have implications for test or instrument developers and 

practitioners especially for those that are involved with complex structure multidimensional item 

response data. If the data are uncorrelated and the complex structure of the data is correctly 
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specified, then changes in the degree of cross loading or percentage of complexity of the data has 

little effect on the estimations; most notably, a larger sample size produces better estimates and a 

smaller sample size produces worse estimates. If the data are correlated and the complex structure 

of the data is correctly specified but data are assumed to be uncorrelated, then changes in the 

degree of cross-loading has little effect on item discrimination estimations, but the percentage of 

complexity of the data does have an effect on the item discrimination estimations. Increases in 

percentage of complexity worsens as complexity increases from 10% to 30%, but having more 

than 30% complexity doesn’t produce additional adverse effects.  

It is very likely that ignoring complex structure of the multidimensional data severely 

impact item discrimination estimation that could result in biased item discrimination parameters. 

When the complex structure of the data is misspecified, whether data are correlated or 

uncorrelated, item discrimination parameters are adversely affected. If the data are uncorrelated 

and the complex structure of the data is misspecified, then a low or medium degree of cross 

loading and 10% or 30% of complexity of the data has little effect on the item discrimination 

estimations. However, as the degree of cross-loading increases or the percentage of complexity 

increases, the error and bias estimates of item discrimination worsen. Furthermore, if data are 

correlated and the correlation is not specified nor are the item cross-loadings, item discrimination 

estimates, specifically for the truly cross-loaded items has extremely poor error and bias 

estimates. 

Under all circumstances, a larger sample size improves the item discrimination 

estimations, but even with a sample as large as 2,000, if cross-loadings and correlation are 

ignored and data are treated as having a simple structure, item discrimination estimates are 

severely adversely affected. This can ultimately result in inaccurate inferences regarding the 

examinees’ abilities on each dimension. Therefore, it is imperative that test designers take 

variables such as complexity magnitude of the data incorporating the degree of cross-loading and 
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model specification into account in order to have accurate inferences about the item parameter 

recovery and ultimately examinees’ abilities on multiple dimensions.  

First, test designers should be aware that the accuracy of item discrimination estimations 

could be potentially influenced by the structure complexity magnitude and correlation of the item 

response data. This means that as the number of cross-loaded items increases the item 

discrimination estimation might be less accurate. Test designers, should take into account the 

complexity magnitude of the data when designing multiple forms of the test. For example, in a 

math test one form might have three items out of the 10 (%30) that are cross-loaded (algebra and 

geometry) on both dimensions and the other form might have 5 items out of 10 (%50) that are 

cross-loaded (algebra and geometry) on both dimensions. Test designers should take into account 

the complexity structure of the data when designing multiple forms of a large-scale test. 

Second, test designers should consider the fact that even if the model is correctly 

specified and the complexity magnitude is taken into account, still there are some effects of the 

degree of cross-loading on the secondary dimension on item discrimination estimation precision. 

For instance, one or some of the primarily algebra items may require some little, moderate or high 

secondary geometry knowledge to answer the item correctly (degree of cross-loading). Test 

developers should take into account the degree of cross-loading when designing multiple forms of 

a large-scale test.  

Third, test designers should be aware of and cautious that utilizing a misspecified simple 

structure multidimensional model to evaluate the items, ignoring the cross-loading of some items 

on the secondary dimension could have serious consequences regarding item discrimination 

estimation accuracy. i.e., misspecifying the model and ignoring the cross-loading on the items 

that primarily measure algebra knowledge and require some geometry knowledge. 

The results of this study support the conclusion that the complexity magnitude of the data 

incorporating the degree of cross-loading and model specification had an influence on the 
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precision of item discrimination recovery that ultimately result in inappropriate inferences about 

the latent abilities of the examinees.  

Limitations and Future Studies 

In this simulation study, there exist some limitations that should be noted for future 

studies. First, the item response data were generated and analyzed utilizing R programing and 

simulation study techniques and it is possible that the results in real world situation differ when 

actual data from instruments such as tests and surveys are analyzed. Example of such factors 

could be the distribution of the examinees’ abilities (i.e., depression), testing environment 

conditions, etc. 

Second, item response data in this study were simulated considering the sample size of 

examinees similar to large-scale tests and surveys, and it is likely that the results differ when the 

number of examinees are relatively small. While many variables were manipulated within the 

context of this simulation study, correlation was not freely estimated; in future studies, allowing 

correlation to be freely estimated to (1) evaluate how well correlation is estimated and (2) 

understand how this may affect item parameter estimation, either better or worse. 

For future studies, it should be noted that in addition to the variables manipulated in this 

study, there are a number of other variables that could influence the precision of item parameter 

recovery in MIRT models. For instance, a compensatory 2PL-MIRT model with two dimensions 

and dichotomous items response type was considered to simulate and calibrate the data for every 

replication for each condition combinations. It would be interesting to further investigate the 

effect of the manipulated variables in this study on other MIRT models, such as having more than 

two dimensions or bifactor and higher order models. In addition, it would be interesting to see 

how items would be recovered under a non-compensatory MIRT model considering the 

manipulated variables in this study. 
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Furthermore, in this simulation study a bivariate normal distribution was utilized for 

generating item response data and item recovery. However, in real world situation, the 

distribution of the latent ability is not always normal and it can influence item parameter recovery 

in MIRT models. It would be interesting to investigate violation of the normality assumption 

especially in the presence of skewed abilities considering structure complexity of the data 

incorporating the degree of cross-loading on secondary dimension and its influence on item 

parameter recovery. 

As mentioned before, in this study, item parameters were estimated using marginal 

maximum likelihood (MML), utilizing the expectation-maximization (EM) algorithms. Marginal 

maximum likelihood (MML) method is considered generally as an effective estimation method 

with few dimensions (Chalmers, 2012; de Ayala, 2009; Stone, 1992). However, depending on the 

MIRT model specification and especially the distribution of the underlying abilities other 

estimation methods should also be considered for future studies.  

Lastly, not only is IRT used for item evaluation, it is used for scoring respondents. Scores 

may be used to diagnose depression or anxiety, to classify respondents into groups, or to 

benchmark students in education. In any situation, it is imperative that scores provide accurate 

understandings of underlying abilities. Model misspecification, degree of cross loading, and 

structure complexity often affect item parameter estimates, which then is likely to affect 

estimated trait scores. Future analysis may also investigate the effects of these variables on 

estimated trait scores. 
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