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Title of Study: STABILITY AND REGULARITY PROBLEMS ON THE MAGNETOHY-
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Abstract: The stabilizing and damping phenomenon of a background magnetic field on elec-
trically conducting fluids has been observed in various physical experiments and numerical
simulations. The first chapter here establishes this observation as mathematically rigorous
facts on a 2D magnetohydrodynamic (MHD) system with only partial dissipation. Without
the magnetic field, the fluid velocity obeys a 2D anisotropic Navier-Stokes equation and is not
known to be stable in the Sobolev setting H? due to the potential double exponential growth
of its H*norm in time. Under the influence of a background magnetic field, the velocity
field is shown here to stabilize and decay in time through the coupling and the interaction.
Mathematically we reduce the MHD system concerned here to a system of degenerate and
damped wave equations and exploit the smoothing and stabilizing effects of the wave struc-
ture. We are able to prove that any perturbation near a background magnetic field remains
asymptotically stable. In addition, certain explicit large time behavior is also established.
In chapter 2, we show that the H?-norm of any perturbation near a background magnetic
field actually decays algebraically in time. Mathematically this result along with its proof
offers a new and effective approach to the large-time behavior on partially dissipated systems
of partial differential equations (PDEs). Existing methods are mostly designed for systems
with full dissipation and do not apply when the dissipation is anisotropic. In chapter 3, we
focuses on a 2D MHD system with only horizontal dissipation in the domain 2 = T x R with
T = [0, 1] being a periodic box. We solve the desired stability problem by simultaneously
exploiting two smoothing and stabilizing mechanisms: the enhanced dissipation due to the
coupling between the velocity and the magnetic fields, and the strong Poincaré type inequal-
ities for the oscillation part of the solution, namely the difference between the solution and
its horizontal average. In addition, the oscillation part of the solution is shown to converge
exponentially to zero in H' as t — oco. As a consequence, the solution converges to its
horizontal average asymptotically.
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CHAPTER I

INFLUENCE OF A BACKGROUND MAGNETIC FIELD ON A 2D
MAGNETOHYDRODYNAMIC FLOW

1.1 Introduction

The stabilization and smoothing effect of a background magnetic field on electrically con-
ducting fluids has been observed in physical experiments and numerical simulations, and
demonstrated in theoretical analysis (see, e.g., [1, 2, 3, 6, 27, 28]). In addition, the stabi-
lization effect of a strong magnetic field has been employed in the development of magnetic
polymers and paints (see, e.g., [35]). One goal of this paper is to understand the mechanism
of the stabilization and establish the observations as a mathematically rigorous fact on a sys-
tem modeling the electrically conducting fluids. We consider the following 2D incompressible
magnetohydrodynamic (MHD) system

O+ u-Vu+ VP =vdypu+b-Vb+ Ohb,
Ob+u-Vb+nb=>b-Vu+ 0u,
V-u=V-b=0,

u(z,0) = ug(x), b(x,0) = bo(x).

(1.1.1)

where u denotes the velocity field, b the magnetic field and P the pressure, and v > 0 and
1 are the viscosity and the damping coefficient, respectively. Here the velocity u obeys a
degenerate Navier-Stokes equation with only vertical dissipation v0su and with a Lorentz
forcing term. The magnetic field b satisfies the induction equation. The extra two terms 01b
and Oju are created when we write the original magnetic field as the sum of a background
magnetic field and a perturbation, namely (1,0) + b. The system focused here governs the
motion of the perturbation near a background magnetic field.

The justification for including only one-directional dissipation in (1.1.1) is two fold. The
first is that the Laplacian dissipation in some partial differential equation systems modeling
fluids reduces to the degenerate case in certain physical regimes and after suitable scaling.
One prominent example is Prandtl’s boundary layer equation. The second justification is to
demonstrate the smoothing and stabilization effect of the magnetic field. Mathematically
only one directional dissipation in the Navier-Stokes equations makes the stability problem
much more difficult. Without the coupling with the magnetic field, the velocity of the
Navier-Stokes equation with only vertical dissipation

(1.1.2)

Ou~+u - Vu+ VP = voyu, $€R2,t>0,
V.u=0.



is not known to be stable near the trivial solution. Some physically relevant infinite energy
solutions of (1.1.2) can grow rather rapidly [13]. One expects the solution of (1.1.2) in the
Sobolev space setting to be unstable, but a proof is currently lacking. When there is no
dissipation at all, the 2D Euler equation

Ou+u-Vu+VP =0, z€R%t>0,
V-u=0.

can generate solutions that grow exponentially or even double exponentially in time (see, e.g.,
(17, 34, 73]). In contrast, solutions to the 2D Navier-Stokes equations with full dissipation

ou+u-Vu+VP=vAu, z€R?t>0,
V-u=0.

in the Sobolev spaces are always asymptotically stable with explicit decay rates (see [47, 49]).

Since the partially dissipated Navier-Stokes equation itself alone is not known to be
stable, we must seek the stabilizing effect from the magnetic field in order to achieve any
stability. The two terms in (1.1.1) related to the magnetic field, namely b - Vb and 0,b, do
not appear to be helpful at first glance, but the smoothing and damping effect would emerge
when we convert the MHD system in (1.1.1) into an equivalent form. To do so, we first apply
the Helmholtz-Leray projection operator

P:=1-VA~'V.
to eliminate the pressure term to obtain
8tu:1/822u+81b+]\f1, N1 :IP’(—uVu+be) (113)

By separating the linear terms from the nonlinear ones in (1.1.1), the equation of b can be
written as
&b: —nb+81u+N2, NQ = —qu+qu (114)

Differentiating (1.1.3) and (1.1.4) in time and making several substitutions, we find

{@tu — (Vagg — n)@tu — (811u -+ nvaggu) = Ng, (1 1 5)

6ttb — (V@QQ — n)@tb — (3111) + nyéggb) = N4,
where N3 and Ny are given by
N3 = (8t—|—77)N1—|—81N2, N4 = (&5—1/822)]\72—1—81]\[1.

Surprisingly, both v and b are found to satisfy nonhomogeneous wave equations with exactly
the same linear parts. Clearly, (1.1.5) exhibits much more regularization than its original
counterpart in (1.1.1). Similarly, the equations of the vorticity w = V x u and the current
density j = V x b given by

(1.1.6)

Ow +u - Vw = vipw +b-Vj+ 0],
Oj+u-Vi+nj=>b-Vw+Q+ Ow,



with
Q = 201b1(0ruy + 31“2) — 201u1 (021 + 31[?2)

can also be converted into the following system of wave equations

{@tw — (Vas — N)Ohw — (11w + NUdasw) = N, 117

Onj — (V02 — n)0j — (O11] + nvdazj) = N,
where N5 and Ny are given by
NG = (0t—1/822)(bVw—uVJ+Q)+01(—uVw—i—ij)

Again w and j share the same wave structure as that for u and b. In particular, (1.1.5) and
(1.1.7) brings in the much-need horizontal regularization even though it is lacking in the
original system (1.1.1).

Our first effort is devoted to understanding how the wave structure affects the regularity
and large-time behavior. For simplicity, we consider the linearized portion of (1.1.5), namely

8ttu — (VaQQ — n)@tu — ((911u + 7]V(922u) = 0,
8ttb — (Vagg — 7’])@,5() — (011b + T]Vaggb) = O,

(1.1.8)
V-u=V-b=0,
u(z,0) = ug(x), b(z,0) = by(z)
or equivalently, the linearization of the original system
Oyu = vOyu + 01 b,
8tb = —T]b + (91u, (1 1 9)

V-u=V-b=0,
u(x,0) = ug(x), b(x,0) = by(x).

The goal here is to obtain all possible regularization due to the dissipation and dispersion
effects and to provide a sharp large-time decay rate. To give a precise statement of our
result, we define a Fourier multiplier operator @,

~

OF(€) =W(E) f(e). (1.1.10)

A very important class of ® is the fractional Laplacian operator (—A)Y with v € R, which
can be defined in terms of the Fourier transform,

(CAYF(&) = ¢ Flo).

It is clear that the norm in the standard homogeneous Sobolev space H*® with s € R is given
by
[f 1l e = 11(=2)2 flz2.

For the sake of conciseness, we shall write ||(f, g)||3. for ||f]13. + |93



Theorem 1.1.1 Consider the linearized system (1.1.8). Let ® be a given Fourier multiplier
operator. Assume the initial data (ug, by) satisfies

(IDUO, (I)bo, V(I)UO, V(I)bo, 822<I)u0 S L2, V- Uy = V- bo =0.

Let (u,b) be the corresponding solution of (1.1.8). Then (u,b) obeys the following requlariza-
tion and decay estimates.

(1) (u,b) is uniformly bounded for all time with the following explicit bounds,
2
n 5
10 Pb(E) 172 + L 1PBE)I[Z2 + 2@ + 1 [102(1) [
t
0
< C(v,n) ([Pboll72 + [01®(uo, bo) |72 + [|02Pbol|72) - (1.1.11)
and
2 n? 2 2 5 2
10:Du(t)l|z2 + -1 Pu(t) 72 + 2101 Pu(®)]z2 + 1w (|02 Pu(t) 22
t
+ [ (whoe0 @l + 300 0ule + nlos@ulis + v fouul.) dr
0
< C(w,n) ([[Puollzz + 101®(uo, bo) |72 + 102Puol[72 + (|22 Puo|72) - (1.1.12)

Especially, for any s € R and for ® = (—A)2, we have the uniform bounds in Sobolev
(or L?) spaces,

2

2 772
e T+ ZHb(tN s

t
+ / (4y||aQaTb|
0

5
10:0(2)] i + 5 19:0(0)]

2.+ 2(|010(t))|

2
s + 3n(|0-0|

2+ nllonbl 2. ) dr

%[S + vn?|| 9o

< C(vyn) (1bollF. + 1101 (o, bo)[I3;. + 1020l 7. ) - (1.1.13)
and
2 n? 2 2 5 2
10 (@). + a7, + 20100u®)ll. + Snv |02u(t) .
t
+/O (419207l + 3nllorul?. + nllovully, + vn?|Dpul, ) dr
< C(v,n) (lluollz. + 1101 (w0, bo) e + 102w01 e + 1022u0l3.) - (1.1.14)

(2) (u,b) obeys the following decay properties, ast — oo,

(L+1t) (0:@b(t)[17> + [|Pb(H)[| 7 + [VPD(E)||72) — O,
(1+1)|Vou(t)|3. — 0.



In particular, the following pointwise estimates hold,

[0:@b() |2 + (| R6()[| L2 + [[VOb(2)] 12

< C(v,m) (|®bol2 + 1010 (o, bo) | 2 + [|102Pbo[2) (1 +1)72. (1.1.15)
and

[V®u(t)]| 2 < C(v,n)
X (19 (uo, bo)l| 22 + [|B(Vuo, Vo)l 22 + (|02 Puol|z2) (1 +1)72.

SIS

(1.1.16)
When ® = (—=A)z, we obtain, as t — 0o,

(L+1) (19:b(t) 1. + l1b(1)]
(L +D)[Vu®) %, =0,

2
ire T IVO(?)]

i) =0,

which especially imply

10:0(0) | gz + 6| 15 + [IVO(D)]] 5

< C(v,n) (Iboll o + 101 (uo, bo) || o + 1|82bol| ) (1 + )72,
and
IVu(t)| 4. < C(v,n)
% (10, bo)|l g + 1| (Vg Vbo)|| g + [[00atio |l o) (1 +1)72.

We notice from the statement of Theorem 1.1.1 that u and b obey slightly different reg-
ularization upper bounds and exhibits slightly different large-time behavior. When (ug, by),
(Vug, Vby) and Ogoug are all in the homogeneous Sobolev space H?® for a real number s,
then b, Vb and 0;b are all bounded uniformly in H* and their H*-norms are all square time
integrable. The H*-norms of b, Vb and d;b all decay faster than the rate (1+¢)~2. However,
the H*-norm of u itself is not known to be square time integrable and we do not have a
decay rate for it. Another remark is that, if the initial data is more regular, we can establish
higher time regularity estimates and decay bounds for ||0;Vu(t)|

Hs*

Next we explore the large-time behavior of the frequency piece of the solution (u,b) to
(1.1.8) that is supported away from the origin. We take advantage of the wave structure in
(1.1.8) to derive energy inequalities that imply an exponential decay rate for the frequency
piece away from the origin. These inequalities also allow us to conclude that if the Fourier
transform of the initial data (ug,by) is supported away from the origin, then the solution
(u,b) decay exponentially in time. To state our result precisely, we define a Fourier cutoff
function. Let a > 0 be arbitrarily fixed and define

1 i ez
¢<§>—{O oo (1.1.17)



Theorem 1.1.2 Consider the linearized system in (1.1.8). Assume that the initial data
(uo, bo) satisfies

ug, bo, Vg, Vby, Onug € L, YV -uy=V by =0.
Then (u,b) decays exponentially in time in the following sense

10:(¢* w) ()| 22 + ([ (¢ * w) (£)]]

< C(v,n) ([((¢ * ug), (¢ % bo)) || 1 + [|D22( * ug)|| 2) e, (1.1.18)
10:(¢ % b) ()|l L2 + [|(d * b)(£)]] 12
< C(v,n) (¢ * uo), (¢ b))l g1 e, (1.1.19)

where H denotes the inhomogeneous H'-norm and cy > 0 is a constant.

Theorem 1.1.1 and Theorem 1.1.2 tell us about how much regularity we can extract from
the wave structure and how fast the solution decays. To deal with the full nonlinear system
in (1.1.1), we take full advantage of the smoothing and stabilization effect generated by the
wave structure to control the nonlinearity. We are able to establish the following nonlinear
stability and large-time behavior result.

Theorem 1.1.3 Let n and v > 0. Consider (1.1.1) with the initial data (ug,by) € H*(R?),
and V -uyg =V - by = 0. Then there exists a constant € = e(v,n) > 0 such that, if

[[wollzz + [[boll = < e,

then (1.1.1) has a unique global classical solution (u,b) satisfying, for any t > 0,

t
()32 + 16(E) 172 +/0 (10vullZ: + [102ullz + 1Bl[32) dr < C'e?

for some universal constant. In addition, the solution obeys the following large-time decay
estimates, for some constant C,

IVu(t)||z2 + || VB2 < C (14 t) 2. (1.1.20)

Theorem 1.1.3 is a consequence of the smoothing and stabilization effect of the magnetic
field. In particular, the time integrability

/ |Ovu(t)|2s dt < <2
0

is not a consequence of the vertical dissipation in the velocity equation, but an exhibition
of the smoothing effect of the magnetic field. We explain why the stability for the 2D
Navier-Stokes equation with only vertical dissipation, namely (1.1.2) remains open and what
makes the stability problem for the MHD system solvable. It follows from (1.1.2) and the
corresponding vorticity equation

Oww + u - Vw = vdgw (1.1.21)



that the H'-norm of u is uniformly bounded,

lu()||ar < |luoll a1

The difficulty is how to control the H%norm of u or ||Vwl||z:. When we estimate ||Vw]|p2
via (1.1.21), the nonlinear term becomes an insurmountable hurdle. In fact, it follows from
(1.1.21) that

d

EHVwH%Q + 20| 0 Vwl32 = — / Vw-Vu-Vwdz.
The right-hand side can be further decomposed into four terms

/Vw -Vu-Vwdr = /Glul (O\w)* dx (1.1.22)
+ / O1ue01w Ohw dx + /82u1 Ohw Oow dx + /82u2(62w)2 dx.

Due to the lack of the horizontal dissipation, the first two terms can not be suitably bounded.
When we deal with the stability problem on the MHD system (1.1.1), we need to control
exactly the same nonlinearity. It is the coupling and interaction in the MHD system that
allows us to have more maneuver. When we estimate the H?-norm via the equations of the

vorticity and current density in (1.1.6), we also encounter the term (1.1.22). The idea of
bounding the first two terms in (1.1.22) is to replace djw by the equation of j,

Ow=0]+u-Vj+nj—5b-Vw—Q.

For example, the first term on the right of (1.1.22) would become
/81u1 (O\w)?*dx = /81u1 Ohw(yj+u-Vj+nj—b-Vw—Q)dz. (1.1.23)
We further shift the time derivative in the first term in (1.1.23), namely
. d .
/am Owoyjdr = 7 /81u1 Oww jdx
- / 8t81u1 81wj dr — /81u1j afalw dzx. (1124)

By substituting 0;u; and dyw by their corresponding equations in (??), we find that the first
term in (1.1.22) is then converted to

/6111,1 (alw)Q dxr = %/éﬁul ale dx
— / 81L¢Jj 81(—u . Vu1 — 81P + Vaggul + b- Vbl + 81b1> dx
—/alulj(?l(—u -Vw —+ VaQQW + b- Vj + 313) dz

+/81u1 Ow(u-Vj+nj—b-Vw—Q)dz. (1.1.25)



Even though the original one term is converted into fourteen terms, but all of the terms can be
bounded suitably by applying anisotropic inequalities such as the one stated in the following
lemma. The second terms on the right of (1.1.22) can be treated similarly. Estimating all
these terms is a tedious and long process.

Lemma 1.1.1 Assume that f, g, Oog, h and O1h are all in L*(R?). Then, for some constant
C >0,

1 1 1 1
/ Fgh| dw < C||f|l 2191122 | Oagl| 22 1 l| 22 O 2
RQ

This lemma is taken from [10]. It is very useful in dealing with partial differential equations
with anisotropic dissipation and allows us to selectively put directional derivatives on the
components of a triple product.

To prove the stability part of Theorem 1.1.3, we use the bootstrapping argument (see,
e.g., [52, p.21]). It starts with the definition of a suitable energy functional E(t). We set

t t
B(t) = sup {lu(r) s + [0} + 20 [ 00l dr 20 [ [0l

The main efforts are then devoted to proving that for some constants C|,
E(t) < E(0) + CE=(0) + CE*(t) + CE>(t). (1.1.26)

This is a long process including estimating the term (1.1.22) and making the substitution as
in (1.1.25). The bootstrapping argument applied to (1.1.26) allows us to conclude that, if
E(0) or ||(ug, bo)||z2 is sufficiently small, say

E(O) S 82 or ||(U0,b0)||H2 S g
for some sufficiently small € > 0, then E(¢) remains small for all time ¢ > 0 and
E(t) < Cé? (1.1.27)

for some constant C' > 0.

In order to prove the large-time decay estimates stated in Theorem 1.1.3, we further show
that the solution (u,b) obtained above has the following properties,

| ol a< e (1128
0

and
|(Vu(t), Vb(t))|| 2 < C|[(Vu(s), Vb(s))||z2 for any 0 < s <t (1.1.29)

(1.1.28) is not a direct consequence of the dissipation in the velocity equation. It is shown
by taking into account of the coupling of the system. We replace d,u by

ou=0b+u-Vb+nb—>b-Vu



in the L2-norm,
/ /81u~(6tb+u-Vb+nb—b-Vu)dxdt.
0

By shifting the time derivative and applying various anisotropic inequalities, we are able to
prove (1.1.28). The generalized monotonicity in (1.1.29) is established by estimating ||w|| 12
and |[|j]|z2 via (1.1.6). Then (1.1.27) and (1.1.28) together leads to the time integrability of

| vuolBs + 190 13:) de < . (1.1.30)

(1.1.29) and (1.1.30) then fulfill the two conditions of Lemma 1.2.1 and the desired decay
estimate in (1.1.20) follows as a consequence.

Finally we remark that there are substantial recent developments on fundamental issues
concerning the MHD equations such as the global regularity and stability problems. One
recent focus is on the MHD equations with only partial or fractional dissipation. Significant
progress has been made (see, e.g., [6, 8, 9, 10, 11, 18, 20, 21, 22, 26, 29, 30, 31, 32, 33, 36,
39, 37, 43, 45, 46, 48, 51, 53, 54, 57, 58, 59, 60, 63, 64, 65, 66, 67, 69, 70, 71, 72]).

The rest of this paper is divided into two sections. Section 1.2 presents the proofs of
Theorem 1.1.1 and Theorem 1.1.2 while Section 1.3 proves Theorem 1.1.3.

1.2 Regularization and Large-Time Decay Rate Result

This section is devoted to proving Theorem 1.1.1 and Theorem 1.1.2. The proof of Theorems
1.1.1 makes use of the wave structure to construct a suitable Lyapunov functional, which
allows us to eliminate some unfavorable terms. The decay estimates are obtained by using
a tool lemma stated below and the key components are the verification on the conditions of
the lemma. The proof of Theorem 1.1.2 also involves the combination of energy estimates to
form a suitable Lyapunov functional. The frequency part of the solution that is supported
away from the origin allows the application of Poincare type inequalities.

The following lemma provides a precise decay rate for a nonnegative integrable function,
which is also monotonic in a generalized sense.

Lemma 1.2.1 Let f = f(t) be a nonnegative function satisfying, for two constants ag > 0
and a; > 0,

/Oof(T)d7'§6lo<OO and  f(t) <ay f(s) forany0<s<t. (1.2.1)
0

Then f(t) decays at a rate faster than (1+t)~', or
(14+¢t) f(t) =0 ast— oo.
In particular, for a = max{2a, f(0),4apa:} and for any t > 0,

f(t) <as(1+1)7"



Proof of Theorem 1.1.1. We start with the estimates on the norms of b. Let ® be the Fourier
multiplier defined in (1.1.10). Applying ® to the equation of b in (1.1.8) and then taking the
L?-inner product with 9,®b, we obtain after integrating by parts and invoking V - b = 0,

1d

2 dt (|]8t<I>bHL2 + ||81(I)b||L2 + 77V||82(I)bHL2> + 1/||828t<1>b||L2 + 77H8tCI>b||L2 =0 (122)

Applying @ to the equation of b in (1.1.8) and then taking the L%-inner product with ®b, we
have

1d

S IRV + V]| 0a0b]32) + 010b] 3 + w020 + / 0y @b - B d = 0.

We further rewrite the last term as
/@t@b - b dr = /(&(&@b - db) — |9,Pb|*) da
d 2
= — (0, Pb, Pb) — |0, PY||5 -,

dt

where we have introduced the notation for the L2-inner product,
(f.9) = / frgdz.
R2

Therefore,

&l&

- (mll @3 + V|2 b3 + 2(0,0b, 2b))
+ [101®b]|2: + ]| u0b]22 — (|0, D2, = 0

1
2 (1.2.3)
Let A > 0 be a parameter to be determined later. Then, (1.2.2)4+X(1.2.3) yields

1d
57 (HatfbeLQ +100®b|2 + (v + 1) [|02®b]|2. + An||Db||Z. + 2A(9,Db, Bb)

+I/||828tq)b”L2 + (77 — )\)||8tq)b”L2 + )\Haﬁpanz + /\771/”82(I)bHL2 =0.. (124)

N—

By Holder’s and Young’s inequality,

10:b] 7> + Anl| b7 + 2A(0, Db, Db)
> [|0:Dbl 72 + M| PD|IZ> — 2X]|0:Pb(t) | 2| DB .2

1
> 00013 + Mllovl3: ~ ( Globlzs + 2o

1
> §|yat<1>b||i2 + (A — 2X\2)||®b||2.. (1.2.5)

In particular, for A\ = 7, (1.2.5) becomes

2
10,012, + = ||<I>b||L2 + = (@Cbb db) > —||at<I>bH%2 + %H@bniz. (1.2.6)

10



Integrating (1.2.4) in time and invoking (1.2.6), we find, for any 0 < s <,
2 Uk 2 2 5 2
10:2b(E)Iz2 + - |2O(E)I 2 + 2|01 @) 22 + v [| B2 b(E) 22
t
2 3n? 2 2 5 2
< BOBD)(5) 3 + - |90(s) [ + 20 8b(5) 3 + v |02b(s)]Fe,  (1.27)
where we have used the following upper bound to obtain the right-hand side
1@BB) ()2 + " [Bb(s) (2 + L(0,0D, D) (5) < 2 [[(0,0D) (5|2 + 2L ||b(s)|2
(®b)(s)l[22 + L I1Pb(s)z2 + 5 (0:@b, Bb)(5) < SII(0 @) ()T + —o=[IPb(s) ][z
Since v and b satisfy exactly the same wave equation, the bound above also holds for u,
ADu(t) |2 + "L 0u(t)|2s + 2100 ut) |2 + v |0sDu(t) 2
10:2u(E)l|z> + - 1Pu(®)]z2 + 2101 Pult)lz2 + 51w (|02 Pu(t) 22
t
S 2 3n? 2 2
< 310 @u)(s)llz2 + =1 Puls)lz2 + 2] 01 Pu(s)|z-
5
o [|02@u(s)]|7e. (1.2.8)
Invoking the original linearized system of (u,b), namely (1.1.9) and letting ¢ — 0, we obtain

(Otu) (O) = V@QQUJU + 61b0, (0,51))(0) = —7750 + 81U0. (129)

By setting s = 0 in (1.2.7) and (1.2.8), and using (1.2.9), we obtain the desired global bound
in (1.1.11) and (1.1.12). By taking the Fourier multiplier operator ® to be the fractional
Laplacian operator,

Of = (=A)f
and identifying the homogeneous Hé-norm as the following L?-norm,

£l = N(=2)2 f ]Iz,
we can then reduce (1.1.11) and (1.1.12) to (1.1.13) and (1.1.14), respectively.

Next we show the decay rates in (1.1.15) and (1.1.16). The idea is to apply Lemma 1.2.1.
We set

2
i 5
F(t) := [|0:Bb(t)[|7- + ZH‘Pb(t)Hiz +2[|0,@0(t)[ 7 + U 10290(1) 17

and verify that F'(t) obeys the conditions in (1.2.1). It is clear from (1.2.7) that, for any
0 < s <t < oo, there is a constant C' independent of s and t satisfying

F(t) < C F(s). (1.2.10)

11



In addition, by taking s = 0 in (1.2.7) and invoking (1.2.9), we have

| (salo@bls + nlos@bi + v o0 d
0

2
<1577
- 4

5
1Pbol[Z2 + 3101 (wo, bo)[72 + S¥ml|02Pbo| 72 (1.2.11)

In addition, a simple L2-energy estimate on (1.1.9) leads to

t
1@ (u(t), b)) |2 +2 / (]| Dyl + 7l|B]22) dr = | (uo, bo) 2.
In particular,
. / |®b|% dt < | ®(ug, bo) . (12.12)
0

Adding (1.2.11) and (1.2.12) yields
/ F(t)dt < C(v,n) (19 (uo, bo)lI72 + 101D (uo, bo) |72 + [|82Pbol|72) - (1.2.13)
0

(1.2.10) and (1.2.13) then verify (1.2.1). Lemma 1.2.1 then implies
(I14+t)F(t) >0 ast— oo. (1.2.14)
As a special consequence,
F(t) < Clorn) (180, b2 + 01D (uor bo) 2 + [8abol2s) (1 + 1),

which is (1.1.15). The process of showing the decay rate for b does not work for u. The
reason is that we do not have the corresponding time integrability bound (1.2.12) for u. We
do not know if ||Pu(t)||r2 decays or not. What we can obtain is an explicit decay rate for
|V®u(t)]|z2. According to (1.1.9) and (1.2.14), we have

(1+ t)||81<1>u(t)||%2 <C(1+41) (||c9t<I>b(t)||2LQ + 7]||<I>b(t)|]%2) —0 ast—
and

101 Pu(t)[ 2 < [|9:@b(E)]| 2 + 1l PO() [ 2
S C(V, T]) (||(I)(U0,b0)HL2 + H@1<I>(u0,b0)HL2 + H(92<I>bo||L2) (1 + t)ié (1215)

To obtain the decay rate for dy®u, we apply 0»® to (1.1.9) and then dot with (OyPu, 02Pb)
to obtain
1d
24t
Therefore, for 0 < s <'t,

(102@ull7> + [[0:2b72) + v[|D22Pul[7> + 1020|172 = 0.

102@u(t)[[72 + 10:2b(t)[|Z2 < [|02Pu(s)|[7> + [|92Db(s)]Z-

12



Furthermore, (1.2.8) with s = 0, together with (1.2.9), gives

| 1estuol ar
0
< Clovm) (ol + [V + |10l + [Oual)  (1:2:16)

Combining (1.2.11) and (1.2.16) leads to

/0 (10:u(t) |25 + |1820b(t)]%) dt
< Clvym) (19 (o, bo)|% + @ (Vao, Vbo) | + [[9s®rig]Zs)
It then follows from Lemma 1.2.1 that

(L+t) (|02Pu(®)]|72 + |02Pb(t)[|72) — 0 ast — oo

and

102Pu(t)|I72 + [10:20(2) |72

< Cv,n) (I19(uo, bo)lIZz + |2(Vuo, Vbo)[I72 + 1022Pug|[72) (14+8)7"  (1.2.17)
(1.2.15) and (1.2.17) yield (1.1.16). This completes the proof of Theorem 1.1.1. |

We now turn to the proof of Theorem 1.1.2.

Proof of Theorem 1.1.2. We make use of some of the estimates from the proof of Theorem
1.1.1. Recall the definition of ¢ in (1.1.17). By taking ® to be the convolution operator ¢,
namely

~

Of =pxf or BFE) = (&) (),
we obtain from (1.2.4) that
d
S G () +2v]|020,(¢ b)[[72 +2(n — A)[|0:(¢ % b) 172
F2M|01(6 # D) (|72 + 22X (|95(¢ % b) |17 = 0,
where

G(t) = 0@ * )2+ 101(¢  D)I7> + (Av + 1) [[Da( * b) |7
+A[|(¢ % b)[[ 72 + 2X(94( x b), (6 % b)).

By setting A = 7, we find

d 3 vn?
ZG(t) + 10 * )lIE= + 2101(0 5 b)lF2 + T 100 5 D)2 < 0. (1.2.18)
In particular, if we set
_ 30 vy
C’1 - mln{ 92 9 27 9 )

13



then (1.2.18) yields

d
G0+ Cu (1910 D)7 + V(@ b)[[72) < 0.

By Plancherel’s Theorem and the definition of (Z,

2

A~

2
bl dx

o

16 % b2 = 11 - B2 = /
|€]>a

< /ﬂﬁ 3 [ dr < 51V <)

a2
Therefore,

d 2 1 2 a’? 2

G+ C{110(@* D)1z + 5[V(0* b)lIz2 + S ll(@*b)]22 ) < 0.
If we write o

C5 = min {71, 71a2} ,
then p
Z G+ Co([10:(8 # D)l[z2 + V(& D) 172 + (@ % D)][72) < 0. (1.2.19)

Clearly, for A = 7,

onv

3 3n?
G(t) < 5106 5 D)+ Z L1165 D) + 101(6 % D) + 220 4 B)[F. (1.220)

For any constant C satisfying

0<00§min{202 8C, 402}7

3 7 3n% bun
(1.2.20) implies
Co([10(¢ * D) |72 + V(¢ % D)IZ2 + [[(6  D)I72) = CoG ().

(1.2.19) then implies

%G(t) +CoG <0 or G(t) <G(0)e (1.2.21)

By the definition of G,
2 2 ony 2
G(0) = 11(@:(& * 0))(0) [z + 101(& * bo) 72 + == [102(d * bo) |7

+ L1l(@ # bo)ll72) + 5 (06  B))(0), (&% bo))-

14



By (1.1.9),
(0(¢ 5))(0) = —n(¢ * bo) + D1 (¢ * uo).

Setting A = 7 and applying Hélder’s and Young’s inequalities, we have

G(O) < 2106 * DO + 16+ bl

onv
+ 11016+ )72 + 21926 * bo) -
< C3(v,n) || * uo, ¢ * bo) |71 (1.2.22)

Clearly, for A = 7, G(t) admits the lower bound
G(t) > Cu(|0:( * D)Lz + 1I(¢ % b) [171), (1.2.23)

where Cy = Cy(v, ) is a constant. Hence, (1.2.21), (1.2.22) and (1.2.23) lead to

10:(6 % D)1 Z2 + (& * D)7 < C5(Il(¢ % wo) Iz + 11(6  bo) [ )e ™,

which is (1.1.19). The proof for (1.1.18) is very similar and we omit the details. This
completes the proof of Theorem 1.1.2. [ |

1.3 Nonlinear Stability and Large-Time Behavior Result

This section proves Theorem 1.1.3. This theorem consists of two main parts, the stability
and the large-time behavior estimate. Naturally our proof is divided into two main parts
with the first devoted to the stability and the second to the proof of (1.1.20). Due to the
lack of the horizontal dissipation in the velocity equation, the main difficulty in the proof
of the stability is how to bound the velocity nonlinear term, namely (1.1.22). This is the
reason that the 2D Navier-Stokes with degenerate dissipation is not known to be stable. We
fully exploit the smoothing and stabilization effect of the magnetic field to overcome this
difficulty.

The proof of the decay estimate (1.1.20) focuses on the time integrability
/ |O1ul|72 dt < C €2,
0

which is not a consequence of the vertical dissipation in the velocity equation. It is established
by making use of the regularization effect of the magnetic field through the coupling and
interaction.

In order to make efficient use of the anisotropic dissipation, we employ several anisotropic
tools to control the nonlinear terms. One of them is Lemma 1.1.1 stated in the introduction.
Another anisotropic inequality we also use extensively is given in the following lemma. A
proof is also presented for the convenience of readers.
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Lemma 1.3.1 The following estimates hold when the right-hand sides are all bounded.

1 1 1 1
[fllzoe@2) < ClFN Lo @) 101 F N 22 o) 1021 £ m2y P12 F 1| 12 g2y

Consequently,

1 1
[fl[zoe < ClLfF 1O0f | s
1 1
[fllzee < CNAN 2102 -
Proof. We recall the following inequality, for a one-dimensional function g € H'(R),
1 1
gl < V2l Eam 19|22 (1.3.1)

By (1.3.1) and Minkowski’s inequality,

Iy = [ ezeo .

1 1
3 2

S [ LY

) 1
<2 i H 0 2
< \/_ HfHLiz(R) L ®) H 2f“L%Q(R) L2 (R)

) 1
< V2| lzw, o (10N
<V2|IIflles @) 2® 102/ 1| 35 ) 12,2

1
2

1 1
< 2|11, oy 191132,

1
1 1 2
2 2
L2, (R) H”82f||L51<R> ||6182f“L%1<R>HL32<R>

1 1 1 1
< 2| F 11 22 ey 100 1| 22 oy N 02 F W £2 oy [ Or2 F 1| 2 2y

Here we have written ||f||Lg<; &) With j = 1,2 to denote the L>-norm of f in terms of z; on

R, and, similarly, ||f|/z2 (r) denotes the L*-norm. [
J

We are ready to prove Theorem 1.1.3.

Proof of Theorem 1.1.3. The framework of the proof is the bootstrapping argument. We
define the energy functional to be

t t
E(t) = sup {lu(m) 13 + ||b<T>||§{2}+2v/ [ren] d7+2n/ 16l Z= dr (1.3.2)
<<t 0 0

an show that , ,
B(t) < B(0) + CyE3(0) + CaE*(t) + CyEA (1), (1.3.3)

(1.3.3) is established by estimating the H*-norm of (u,b). As aforementioned in the intro-
duction, it is extremely difficult to obtain suitable upper bounds for some of the terms such
as the nonlinear term in the momentum equation. We can only control them through the
coupling with the equation of the magnetic field. Equivalently we exploit the regularization
and damping effects of the wave structure derived from the coupling and interaction of the
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velocity and the magnetic fields. The estimates of ||(u, b)|| g2 will involves various operations
such as repeated substitutions to take the full advantage of the wave structure.

Due to the equivalence of the inhomogeneous norm ||(u,b)|| 2 with the sum of the L*-
norm and the homogeneous norm ||(u, b)|| g2, it suffices to bound the homogeneous norm
|(w,b)] 72- The uniform L*-bound is an easy consequence of the system in (1.1.1) itself.
Taking the inner product of (1.1.1) with (u,b), we obtain, after integrating by parts and
using V-u=V-b=0,

t t
lu)lZ2 + Ib() 122 + 27//0 102ullZ> dr + 277/0 IBlIZ> dr = lluollZ + [IbollZ--  (1.3.4)

To estimate the homogeneous norm ||(u, b)|| 2, we make use of the equations of the vorticity
w =V X u and the current density j = V x b, namely (1.1.6),

{atw+u.v¢u:y822w+b~Vj+31j, (1.3.5)

Oj+u-Vji+nj=>b-Vw+Q+ow,
where Q = 281()1 (8211,1 + 817,1,2) - 281’&1 (82b1 + 81b2). Due to
1(w, D)l g2 = [[(Vw, V)| 2,

we focus on ||(Vw, Vj)||L2. Applying the gradient V to (1.3.5) and taking the inner product
of the resultant with (Vw, Vj), we find, after integration by parts and the divergence-free
conditions,

1d . .
5 77 IVllze + [V]lIZ2) + w102V wllzz + 0l VillZ:

:—/Vw-Vu-de:v—/Vj-Vu-Vjdx—i—/Vw-Vb-dex (13.6)

+/Vj-Vb-dex+/VQ-dea:
=J+K+L+ M-+ N.

J is the most difficult term and its estimate is long and tedious. We start with the easy
terms. Even though L and M are not exactly the same, they obviously admit the same
upper bound. To bound L, we further decompose it into four terms in order to make use of
the anisotropic dissipation,

L:/Vw-Vb~dea:
:/81w81b1 81j dl’—i-/@lwalbgazj dx
+/82w82b1 81] d:z:+/82w82b2 82] dx

Z:L1+L2+L3+L4.

17



By Lemma 1.1.1,

1 1 1
L= [ 0w ibi 01 dx < Con | |0sbu 12100l 9w . |00 .
1 1 1 3
< Cllul 721101152 | O2wl| 52 [[B]] 72
1 1 1
Ly = /31W Oiby By dx < C|0aj|12]|01a | 2. |07 b (172 010172 | 0201w 7.
1 1 1 3
< Cllull 10l 721102l 172 161 72
where we have used the basic facts,

1017][L2 = 101Vl 2 < [[blla2, (|01l 2 = 100 Vul[r2 < [ullm2,
H@g@leLz = Hag(alVUHLQ S H@guHHz

L3 and L4 can be bounded similarly. Therefore,

1 1 1 3
L < Cllul| grol|bl 72 | B2 772161l 72 (1.3.7)
Similarly,
1 1 1 3
M < Cllull g2 10l G2l O2wll £ 161 - (1.3.8)

We now turn to K. Again, in order to make efficient use of the anisotropic dissipation, we
decompose K into four terms,

K:—/Vj-Vu-dex
:—/6’1j81u181j dli—/aljal’ljgagj dx

—/82j82u1 813 dm—/82j82u282j dl‘
:K1+K2+K3+K4.

By Holder’s inequality and Lemma 1.3.1,
Ky = —/81j Ovuy 01 dx < ||Ovun || oo || 01 || 2 || Ovg || 2
1 1 N 1 3 1 1
< [|Ovun |l g2 1920vua (| 5 [1011 772 < 192l e 101 e [l el 2 10]] -
The other three terms K5, K3 and K, all admit the same upper bound. Therefore,

1 3 1 1
K < C| 0wl g2 16l 72 llwll 72 101l 772 (1.3.9)
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We now bound N. We write out all the component terms in ) explicitly,
N = / VQ-Vjdz

= 2/ <8fl)182u18%b2 + 8%b131u28fbl - 8121)13214181821)1 - 8§b181u28182b1

+ 81b18182u16fb2 + 81[)18121“8%()2 — 81b18182u18182b1 — alblc’“)qu@lagbl
— 8fu182b18f62 — 8fu281b28fbg + 812u182b18182b1 + 8fu1(91b28182b1

— 8111,18182[)1612172 - 81u18fb28fb2 + 81u18182b18182b1 + 81u185628182b1) dz.

Even though N contains sixteen terms, but all of them can be bounded suitably using
Holder’s inequality, Lemma 1.1.1 and Lemma 1.3.1. Since the details are quite similar to
those in the estimates of K, we omit them for conciseness. The upper bound is

N < Cbll3z2 lull 72 1 9xul - (1.3.10)

We now turn to the most difficult term J. Again, we split J into four terms,
J:—/Vw-Vu-deaz
= —/81w 01u1 81w dr — /8lw 31u2 82(,0 dx

— /agw 82u1 81w dx — /82w (92u2 62(4) dx

As we have explained in the introduction, due to the lack of the horizontal dissipation, J;
and Jy can not be bounded suitably. It is the smoothing and stabilization effect of the
magnetic field that makes it possible to control these two terms. To incorporate this effect,
we make use of the equation for the magnetic field. By replacing 0,w by the second equation
in (1.3.5), namely

Ow=07+u-Vj+nj—b-Vw—Q,

then J; is converted into five terms,

Jl = —/alul(atj+uVj+7]j—bvw—Q>81Wd.§C
= Jii+Jig+Jig+Jia+ Jis.
We shift the time derivative in J; 1, namely

J171 = — /81u1 (9t] 81(4.) dx

= —% Ouy j Orw dx + /81(8tu1)jalw dr + /61u1j81(8tw) dx

=Jiag+ i+ Jias
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Replacing dyu; by the first equation of (1.1.1), we have

JLLQ = /j@lw (—81(u . Vul) — 811P + 1/8221161 + 81<b . Vb1> + 811[)1) dx

= Jii21+ 1122+ Ji123+ Ji124 + J1125-

yLysy

Similarly, we replace dyw by the first equation in (1.3.5),

J1,1’3 = /alulj (—81 (u . Vw) + Vagzlw + 61 (b . V]) + 811j) dx
=Jias1+Jiis2+ 1133+ Ji134
We thus have rewritten J; as

Jio = S+ Jig+Jig+Jia+ Jis
= Jiggt+tdetJiast+Jigt+Jig+Jia+ Jis
= Jiiga+ 22+ Jia3+ 124+ Ji125

s Ly &y s L9y s Ly IR Et]

+Jia31+ Jii32 +Ji133+ Ji134

[k ied]

+<]1,1,1 + J1,2 + J1’3 + J1,4 + J175. (1.3.12)

We estimate the fourteen terms on the right of (1.3.12). By Holder’s inequality, Lemma 1.1.1
and Lemma 1.3.1,

Jii21 = — /jalwalu -Vuy dx — /jalwu -Voiuy dx

S 10l 01wl i2 [V unl2: 102V |22 13121047125
+ullioe 100l V|20V v 12,1511 2. 1015112

< (100l 19Dl 0122 1V | 25 10257 | 22 15112 19451
-l 2 10l 2 [Orol] 219 Byt [ 22029 By [ 2 1122 101 2

S Nz 1020l 2 [b] =

Applying the divergence operator V- to the first equation of (1.1.1) and invoking V - u = 0,
we have

0P =011 (—A)"'V - (u-Vu—b-Vb) (1.3.13)
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By substituting (1.3.13) into Ji 122,
Ji100 = —/jalwan(—A)—lv (u-Vu—0b-Vb) dv
_ / 01w0 (—A) 0y (u - V) da — / 101w (=) Dy - Vuip) da
+/j81w811(—A)‘181(b~Vb1) dm+/j81w811(—A)_182(b-Vbz) dx
= —/j@lwan(—A)_l(alu-Vul) d:zc—/j@lw(?ll(—A)_l(u-V(?lul) dx
—/j@lwﬁll(—A)l((?ngug) dx—/j@lwan(—A)1(u-V82u2) dx
+/jalw811(—A)‘1(81b~Vb1) da:+/jalw(?n(—A)‘l(b-Valbl) dx
+/j61w811(—A)_1(82b-Vb2) dm+/j81w811(—A)_1(b-V@gbg) dx
= —/j@lwﬁll(—A)_l(81u~Vu1) dx — /jalwan(—A)—l(agu-qu) dx
+/j81w811(—A)1(81b~Vb1) da:+/j81w811(—A)1(826~Vb2) dx
=2 / 301w (—A) L (Oyur Dyuy) da — 2 / GO w1 (—A) L (Druzdouy) da
+2 / §01w0 1 (—A) L (O1b101by) da + 2 / §01w0 1 (—A) 7L (D1byDoby) da.

The four terms on the right can be estimated as follows. We use Holder’s inequality, Lemma
1.1.1 and Lemma 1.3.1, and the fact that the double Riesz transform 9;; A~! is bounded on
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L? for any 1 < p < o0.

Jiaza S 131000112 101002, 192000125 1011 (=A) ™ (Breasran) | 12
G 1015112 1025 19201012, 1011 (=) (Bruzdoun ) | 12
G218 112 19022 19201012 1011 (—A) (8101 1ty |
10112 19125 19201012, 1911 (=) (31 badaby) |

S 1G1EN0n11Es 0w 00l
% (l10vus vz + | uadun |2 + 91010ub | 22 + 19162850112
S 11200071125 0nel| 2. 1182010 22 | Onall o 11512
1712100125 [010]1 2, 10010124 V12
< 191200071122 0wl 1102810 22 Brl) s 118281l B 10t 2
+ 13112100122 10112, 1001012, [Vl 22 | A2
< 11050l 2 b1 2l + 10l 2 01 el ] o

By Lemma 1.1.1,

1 1 1 1
Ji123 = V/jalwazzlul dr S H(9221U1||L2||31w||22||3281W||22Hj”iz”alezz
S 02wl 216l 22 [l wll 222
By Lemma 1.1.1 and Sobolev’s inequality,
J1717274 = /j@lwal(b . Vbl) dr = /j@lwé?lb . Vbl dx + /]81&)() : 81Vb1 dx
1 1 1 1
S 016~ Vb2 (|52 101172 [[01w]] 72| 0201011 7
1 1 1 1
+ 110+ 01 Vb2 (|71 7211015117 1010]| 22 [ D2010]1 7
1 1
S (IVOl[7a + (10l |01V | 2) 1Dl 122 [[uell 772 (102|772
1 1
S0l Fre [l 7 102l 2
The last term J; ;25 can also be bounded via Lemma 1.1.1,

1 1 1 1
Jiins — / §0wdnby di < 00bn 2] Ouwl|Eal|8a0rw 22 1711 121511

1 3 1 1
S 12ull g2 10l 7 el 772 1011 72

We rewrite J; 137 as

J1717371 = —/81u1j81u -Vw dr — /81u1ju . 81V(JJ dx

=Jii310+ Ji1312-
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By Holder’s inequality, Lemmas 1.1.1 and 1.3.1,

Ji1311 = /aluljalqu dx

1 1 1 1
S 10l L= [Vl 22| Oy 22| 020vua || 72 171 22 1001l 22

1 1 1 1 1 1
S 0wul| 7 [10201u| 3 | Vwl| 2 | Orus || ;2 |02 01ua || 211711 72 |01 | 72
< [|O2ul| gr2][b]] g2 w32

By integration by parts, Lemma 1.1.1 and Lemma 1.3.1,
Ji1312 = —/81u1ju -01Vw dz

= /811u1ju -Vw dx + /81u181ju -Vw dx + /81u1j81u -Vw dx

1 1 1 1 1 1
S ullill02ullf 10n w2 [Vl 7210 Vel 72 171172 101717
1 1 , 1 1 1 1
+ [Jull 7 1020l £ (|01 ]| L2 | Orun || 72 |01 Orun || 72 [ V| 72| 02 V]| 72

1 1 1 1 1 1
+ l|0vull g2 1020vul 7 [ Vel 22 | Ovua || 22 | O20r || Lo 511721 917 2
< 10sull 2 1B 2 || 7o

Similarly,

J171,372 = V/81u1j3221w dr = —V/auuljaggw dr — V/alulaljﬁggw dz

1 1 1 1
S |02w]| 2711 7211007172 [|O11ua || 72 | 02011 s || 7
1 1
+ [|O1ua ] 1 (| 0201 s || £11 | 017 || 22 || O2aw]| L2

3 1 1 1
. ”aQUHJQLprH[QﬁHu||12qz||b||[212
By integration by parts, Lemma 1.1.1 and Lemma 1.3.1,
Ji133 = /81U1j31(b -Vj) dx
= —/auuljb . VJ dr — /81u15’1jb . Vj dx

1 1 1 1
S0l Vil 2l 72101511 72 | 911 ua |72 [| 0201w | 7
+ [[Orun || Lo bl Loe |01 5| 22 |V [ 22
1 1 ) 1 ! 1 1
S 0N 10100 5 [V 5l 251122 (10111 2 [|O11wa || £2 (| Q2011 ua [| 7 5
1 1 1 1
+ |01 | 2 [|020vwn || 7 (1611 72 10201 £ 1015 22|V 5 | 22

1 3 1 3
N ||82u||12{2||b||;12||u||12{2||b||i12
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By integration by parts and Lemma 1.1.1,

Ji1,34 = /(91U1]611j dr = —/311U1181j dr — /5’1U1alj31j dx
1 1 1 .
S 100 r2l|Oviun || 22 (| 02011wa || 211511 2211007 || 22 + 101w || oo 1015172
1 3 1 1 1 1
S 0wl B 100 2wl 22 101 3 4 (|01 | 10201 ua || 11612
1 3 1 1
N ||82u||12{2||b||12{2||u||12{2||b||12{2

The next term in (1.3.12) is Jy 11, which involves the time derivative. Its handling is easy
and it will be bounded after we take the time integral. We turn to the next term in (1.3.12),
namely J; o. By Lemma 1.1.1 and then Lemma 1.3.1,

JLQ = /81u1u . Vj@lw dx

1 1 1 1
S Il IVillz 0|12 107w ] 22 1010172 192010 .2

1 1 ) 1 1 1 1
< Mull 7 102ul 2 1Vl 22 10|72 10w |12 1010l 72 | G210 .

S l10xull a2 1bll 22l 5o

By integration by parts, V - u =0, and Lemma 1.1.1,
J173 = — /n@luljalw dx

= /n@fuljw dx+/7782u281jw dzx
. 2 1 9 1 1 1
S Ml eel|0run || [|0207un || 25 [|wl| £2 (| G175

1 1 1 1
+ (10171 21| Oz | £ 105 ual| 72 1wl 7. | 010l 2

S 110zul|pr2 1] 2 ]| 122

By Lemmas 1.1.1 and 1.3.1,
J174 = /81u1b . Vw@lw dx

1 1 1 1
S [0vun [ o= [Vl 2| 1wl 22 |0201w]| 12 161 22 [| 910 Z2

1 1 1 1 1 1
S [0vur [ | 020r || 7 [ Vel 22 | 010]| 22| 02010 22 161l 72 | 011 £

S l102ull a2 bl 22l 7o

J1,5 is written more explicitly into four pieces by the definition of @),
J1,5 = /61u1Q81w dx
= /81u1(91w (281[)1 (61U2 + agul) — 2(91161 (81172 + 821)1)) dx

=Jisg+Jis2+ Jisz+ Jisa.
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By Lemmas 1.1.1 and 1.3.1,
J1’571 = 2/81u181b181u281w dx

1 1 1 1
S 101wzl o< (|01 2 (| Ovun [| 72| 020vua [| 219101 | 72 (| 01911 [ 7.

1 1 1 1 1 1
S [[01ual| F2 | O201ual| fra || 01| 22 (| Orwn || 72 (| 0201 wa || £2 | 0101 [| - | 0101 b | 72

S 1100l 2 1] 22 |2
It is easy to check that Ji 529, Ji53 and Ji 54 all obey the same bound. Therefore,
[Tl S N0l (10| 22 |2

We have completed the estimates of the terms of J; in (1.3.12). Collecting the upper bounds
leads to

d .
Ji< =5 [ G iow do+ C 0wl el
1 3 1 3
4 C 0l s e B + €19l ]
1 3 1 1
+ Clwull sl s 01 (1.314)

We now turn to the second term J, in (1.3.11). As we have explained before, we need to
invoke the smoothing and regularization effect of the magnetic field in order to bound this
term suitably. By replacing 0;us by (1.1.1), namely

O1ug = Oibg + u - Vby +nby — b - Vo,
we can write
Jo = —/810.; (Opby + w - Vb +nby — b - Vuy) ow dx
= Jo1+ oo+ Jos+ Joa.
We bound Jy9, Jo3 and Jy 4 first. By Lemmas 1.1.1 and 1.3.1,

J272 = —/6lwu . ngﬁgw dx

1 1 1 1
S llullzee 02| 2| 1wl 72 10201 | 22 [V 0o | 22 1|01 Vb |

1 1 1 1 1 1
S llull g l10zull 7 [[02w| 22|01l 72 | G201 ]l 72 |V b2 | 22101 Vba | 72

S 102ullaz bl 2l =

By Lemma 1.1.1,

J273 = —77/810) bQ 820} dx

1 1 1 1
S [0aw]| 2 [|01w]| f 2 | 0201|172 (| b2 || 2 || O 2| 7 2

3 1 1 1
< ||82u||12{2||b||12{2||u||12{2||b||12{2
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Again, by Lemmas 1.1.1 and 1.3.1,

J274 = /Olwb . VUQ@QW dx

1 1 1 1

S Bl Lo || Oaw|| 22|10 72| 0201w ]| 12 [V ua |2 |01 Vus |7 -
1 1 1 1 1 1
S0l 71 102011 711 [| 0o ]| 2| 010 72| 201w | 12 (| Vo | 72 | 01 Vi || 7 2

3 1 3 1
S 12wll g 1101 7 el 772 1011 72

To deal with J5 1, we shift the time derivative,

J21

= —/éhwﬁtbg@gw dx

— —%/alwbgﬁgw dx + /81(8tw)b282w dr + /8lwb282(8tw) dx

= Jo11+ Ja12+ Jais

By invoking the vorticity equation in (1.3.5), we can write

JQ’LQ = /81(—16 -Vw —+ V822w + b- Vj + 81j)b282w dx

= Ja121+ S22+ J2123+ Jo124.

By integration by parts, and Lemmas 1.1.1 and 1.3.1,

and

J2717271 = /U . Vw@lbgﬁgw dx +u- Vwbgﬁlagw dx

1 1 1 1
S IV 2l 02wl 72 102020 22101021 22110702 .

1 1 1 1
+ lullL<[010xw] 2 [Vl 72 182 V| L2 b2 | 72 101621 7

S N 0ull e Bl g2 [ ullZ + 1102 2 1] 2l =,

(]2 122 = —l//aggwalbgagw dr — V/@QQWanlagw dx

sy

1 1 1 1
< [|020w]| 2| 0o || 22 [| 02 02w]| 2 |1 b 22| b2 || 2

+ [|ba | oo || 022w || £2 || 0102w || 2

1 1
S N02ull bl 2 + 10217 101021 1 1022 2
S N10xull [1b1] 2.
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Similarly,

J2123 = —/b - VjO1byO0hw dx — /b - Vb0 00w dx

1 1 1 1
S bl 2o [1V75]1 22 (|02l 2110200011 72 11012 | 72 1| 05 b 72
+ [[bl] oo [[b2| 2 IV ]| 12|01 D2 [ .2

1 1
S o1 1010171 102l 22 11 2 + 11012 19101 18] 222 | Ol 112
S N1 0vull a2 1Bl

and
Ja1924 = /511jb282w dx

= —/61j81b232w dr — /aljbgalagw dx

1 1 1 1
S 1017112210217 1020201 2 |91 72 [|07b 72
+ (102l e 1015]] 22[| 01 Do | 2

1 1
S N10xull a2 [1bl72 + 1102 7 10102 7 1B 2 | O 72
S N10xullz2 1Bl 32-

To bound J;; 3, we invoke the vorticity equation in (1.3.5) again,
J27173 = /82(—U -Vw + Vaggw + b- Vj + 01j)bg81w dx
= Joaz1+ Joize + Jo133+ J2134-
By integration by parts, and Lemmas 1.1.1 and 1.3.1,
J2717371 = /U . Vw626281w +u- VOJanQalw dx

1 1 1 1
S lJullze [Vl g2 010|221 02010 2 [|0202 12 [| 01 Dabe | 2

1 1 1 1
+ [|uf| Lo | 02010 || L2 [| VW | ;2 |02 VW || 2 (| b2 || 72 || 012 £

S N 0aull a2 b 22 |l 2 + 1102l [1Bl] 22 122,

J27173,2 = —V/822w82b201w dx — I//agg(,c.)bgagalw dx

1 1 1 1
S 0a2w]| 2[|01w]| 71| 0201w]| 2 [| 0202 || 7 21|01 02ba || 7 2
+ || ba| oo || Ozow || £2 || 201w ]| 2

3 1 1 1 1 1
S N0l a1l 7z Ml 2 1011 772 + B2l 2 101021 7 (1Ol 2,
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J2717373 = — /b . ij)gbg@lw dr — /b . ij26281w dx
S bl V| 22 10100]| 22 10201 £ 21| Oaba |1 72| 01 Daba | .2
+ (1Bl o [[b2] o< [V || L2 [| 0201w ]| 12
1 1 1 1
SN0l 1000117 102wl o 1wl Frz 10 22 + 1101 e 000 a1 [[B]] 22 | O] a2

1 3 1 3
S N10aull a2 101172 1 22 181 72+ N[Ol 22 10| 2,
and
J2,1,3,4 = /312jb281w dx
= —/81j82b281w dr — /8ljb28281w dx

1 1 1 1
S 01| 2 |01 720201012 || O2ba || ;2 | 0102b2 || 7 -
+ |1b2]| 2o (|01 || 2| 0201w || 12
1 1 1 1
S NOull 2 ull 22 1007 + 102l 32 [|01b2]| 3o 6] 272 | 02| 172

1 3 1 1
< 102ull 21811 7o 1l 72 1811 772 + [[9a2] 2 [[b e
Collecting the estimates for .Jo, we obtain
d
Ja < —E/alw%aw dx + C || 0ul g2 |[b]| 2 |ul| 2 + C [|Ozul G2 b 12

1 1 3 1 1 1
+ C || Oaull e lb2l 1 101021 71+ C 1l Ol 2 1Bl 72l 2 16112

3 1 3 1
+ C |00t Fa 10| 7 [[ull 72 101 72 + C |00l 2 1B 21
+ C |0l 2 1D]| 7> + C 1| Ozl 2 BII7

1 3 1 1
+ C [ Oxull fral|bl Fr2 [l 77211011 772

(1.3.15)

The last two terms in (1.3.11) are J3 and J;. We now evaluate them. By Lemma 1.1.1,

J3 = — /82w82u181w dx

1 1 1 1
S 1102w 22 [|02un || 72101 02ua [| 72| 1w | 72| 02010 7.

< [|0ulFe || ul a2
and
J4 = — /82w82u282w dx
1 1 1 1
S |Oaw]| 2| Oxuia |72 | 0100us || 7 21| Oow || 7 21| 0202w} -

S N 0aull [l 2.
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Adding (1.3.4) and (1.3.6), integrating in time, and recalling the definition of £ in (1.3.2),
we have

E(t)<E(0)+/t(J+K+L+M+N)dT.

Collecting the upper bounds in (1.3.7), (1.3.8), (1.3.9), (1.3.10), (1.3.14), (1.3.15), (1.3.16)
and (1.3.17), we find

E(t) S E(O) — /81u1j81w dx + /81’&01 jo 81(,00 dz (1318)
— /81&) b2 82wdar + /c%wo bOQ 82w0 dz (1319)
+C E(t) + C E2(t). (1.3.20)

The last two terms on (1.3.18) come from the time integral of the first term in (1.3.14), and
the two terms on (1.3.19) are from the time integral of the first term in (1.3.15). The two
terms on (1.3.20) are obtained by integrating the aforementioned upper bounds and applying
Holder’s inequality. For example, when we integrate one of the upper bounds in (1.3.14),
say C [|Ozullz2 |0l 2 [|ull,

t t
/C|\32UIIH2 [Bllz72 JullZ> dr < € sup IIU(T)II?p/ 10zul| 22 [[0]] 72 d7
0 0<7<t 0

t L .
< CE(t (/H@w@ﬂh) (/|w@ﬂh)
0 0

)
< C E*(t).

The four terms on (1.3.18) and (1.3.19) can be further bounded as follows. By Hoélder’s
inequality and Lemma 1.1.1,

—/éhulj(?lw d$+/01U01 jo 01600 dx

1 1 1 1
< Clloww]| 2 ||01ur ||} 2 |0201us || 72171172 |01 72
1 1 o
+ Cl|01wo || 2 [|O1uo1 || 2 || 0201 w01 || ;2 | Jol| 72 1| Ordoll 7 2
< CE2(t)+ CE*(0).

By Holder’s and Sobolev’s inequalities,

— / 81w b2 (92(4.) dx + / 610.10 b[)g 32w0 dx

< O ||ba[ Lo [|O1w]| 22 || Oaw] L2 + C'||boz]| Lo [|O1wol| 2 [| oo ]| L2
< C|b]| g2 ||01w]| 2 ||Oaw]| 2 + C ||bol| 22 [|Or0]| ]| oo || 22
< CE2(t)+CE*(0).
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We have finally obtained (1.3.3), namely
E(t) < E(0) + C1E2(0) + CoE2(t) + C3E (2). (1.3.21)

A bootstrapping argument applied to (1.3.21) would lead to the desired stability. We show,
by the bootstrapping argument, that if the initial data is sufficiently small, say

[ (w0, bo) ||z < e,

with e satisfying

. 1 1
452+40153 < 50 = mln{ﬁ, (403>2},

then, for any 0 <t < oo,
[(u(t),0(t) 172 < E(t) < do.

In fact, if we make the ansatz that, for 0 <t < T,
E(t) < o,
then (1.3.21) implies
E(t) < 2+ Cie® + CLE(t) E(t) + C5E= (1) E(t)

1 1
< 2 3 R R
S € +018 +02 4CQE(t)+CS 403 E(t)

or
L 1
GEO <&+ or B(r) <22 +20:° = 5.

The bootstrapping argument then implies that 7' = oo and E(t) < dp. This completes the
proof for the stability part of Theorem 1.1.3.

Next we prove the large-time behavior estimates stated in Theorem 1.1.3, namely (1.1.20).
We make use of Lemma 1.2.1. The main efforts are devoted to verifying that

F(t) = IVu®)z2 + [IVh(t) 22

satisfies (1.2.1), namely
/ ft)ydt < Ce* < (1.3.22)
0

and, for any 0 < s < t,
f(t) <Cf(s). (1.3.23)
The proof of (1.3.23) is relatively easy while the proof of (1.3.22) is more complex. Since

IVu(@)[r2 = [lwl[r2 and  [[Vb(#)]|z2 = [l 2,
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we resort to the equations of w and j in (1.3.5). By taking the inner product of (1.3.5) with
(w,7), we find

Ld
2dt
= 2/81b1821b1j dx+2/81b181u23dx

ﬂM%er@%+M@M%+wMﬁz=/ij

- 2/81u182b1j dr — 2/81u101b2j dx. (1324)

The four terms on the right-hand side can be estimated very similarly. We bound the second
term as an example. By Lemma 1.1.1,

1 1 1 1
2/315131U2jd$ < C|0nb1 || L2[|Oruzl| f2 (| 0201us | 2 |11 72 191311 7-

v , 2 .2
< Tl @druallie + Clljlzallwllz2 10151

IN

v , 2 2
o102z + Clljlzellwll 22 1015117

The other three terms obey the same bound. Invoking these bounds in (1.3.24) yields
31/|
2

2 . g .
Wil + 1132) + S 10wl +2 (= Cllwll 21005 1312 < 0. (13.25)

—
According to the first part of our proof, if the initial data (ug, by) satisfies

(o, bo)l| > < €

for sufficiently small ¢ > 0, the solution (u,b) remains small,
[(u(t), b(t)) |2 < Ce.
When ¢ > 0 is taken to be small enough such that
2 2 4
n = Cllwlz2101jl 7. = n—Ces =0,
then (1.3.25) implies, for any 0 < s < t,
lo @z + 17OI7: < lw()Ize + 1i(s)lze or f(£) < f(s).

We now prove (1.3.22). We have shown in the previous part that

/ |0au(t)|| 32 dt < C'€?, / 16(t)|152 dt < C €. (1.3.26)
0 0

To prove (1.3.22), it remains to prove

/ [Ovul|72 dt < Ce*. (1.3.27)
0
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The proof for this upper bound is not trivial. We need to take advantage of the regularization
of the magnetic field. We replace one of dyu in (1.3.27) by the equation of the magnetic field

Ou=0b+u-Vb+nb—>b-Vu
and obtain
|O1ul|72 = /alu~81u dx = /81u-(3tb+u-Vb+nb—b~Vu) dx
= Ny + Ny + N3+ Ny. (1.3.28)

We first estimate N,, N3 and N, and then come back to N;. We write out all component
terms explicitly,

N2 = /3111, . (U . Vb) dr = / (alul(u . V)bl + 01u2u . ng) dx

= / ((—32U2)(u . V)bl + 81U2<U18162 + u282b2)) dx

= No1+ Noo+ Nas.
By Lemma 1.1.1,

NQJ = /(—62’&2)(?,6 : V)bl dx
1 1 1 1
< Cl|Oqual| 2 ul| 72 102ul| 22 Vo1 £21]01 V01 |72 < Cllullm2|[Oaul| 2 |0 222

By integration by parts and Lemma 1.1.1,

Nyo = — /(U251U18152 dx + uguy011bs) dx

1 1 1 1
< C'|ugl| 2 ||0aus ||} 2 ||0202us]| 72 [|01b2| ;2| 010162 |} -

1 1 1 1
+ C'[|011ba| 2| Oaua | 7 |ua || 22 |wr || 72 |01 || 2
< Ollul| g2 [|02u|| 2 |b]| 222

Again, by integration by parts and Lemma 1.1.1,
u2
N273 = /(91U2U282b2 dr = /61(32)(92[72 dx

2
= /82(%)81()2 dr = /UQ62U281Z)2 dx

< Cllullg2|0xull 2 6] -

Clearly,
1
N3 = n/(?lu b de < Clowul 2 [bllz < Z19vullz: + ClIb]Za.
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To bound N4, we again write out the component terms explicitly,

N4 — _/alu. (b VU) dxr = —/81u1(b- V)u1 dr — /81&2(19 V)UQ dx

== /82u2(b . V)Ul dr — /81U2b181ﬂ2 dr — /81U2b282U2 dx

= Ny1 + Nyo + Nys.
By Lemma 1.1.1,

N4,1 + N4’3 == /82u2(b . V)Ul dr — /81U2b282ﬂ2 dz

1 1 1 1
< Cl|0yus|| g2 |[bl| 22110101 22 [ Ve[| 22 1|02V ua [ 7

1 1 1 1
+ C [|Oxuz|| 2 [|b2]| f 2 | 0102 || 72 || Orua |} 2 [| 0201z |} -
< Cl|ul| 2|02 g2 ||| 772

By Sobolev’s inequality,
Nia == [ (@us)bi do < Clbla Oy

1
< Ol [10vuall 2 VOrwall 2 < Fl1Ovuallze + Cllbl lull -
We now return to estimate Nj. Shifting the time integral and invoking (1.1.1), we obtain

Nl = /aluatb dx

:%/alu'bdx+/al(U'VU+VP—V822U—b-Vb—@lb).bdx

= Nig+Nigog+ Nig+ Nig+ Nis+ Nig.

Ny is the time derivative term and we bound it later after we integrate it in time. To
estimate N; o, we rewrite it into sums of component terms to reveal the terms with favorable
partial derivative such as Oyu,

Nl,g:/81(u-Vu)-bdx:/(alu-Vu)~bd:L’+/(u-V31u)-bdx
= /81u181u -bdx + /81uQ82u ~bdx + /u1811u1b1 dx
+/U1811U2b2 dx—i—/uﬁg@lu-bdx
= /(—82u2)81u . bdx+/81uQ82u ~bdx + /U]_(_aQ]_UQ)b]_ dx
+ /(81(u181u2) by — O1ugOyugby) da + /uﬁg@lu ~bdx
= /(—821L2)81u ~bdx + /81U282U ~bdx + /ul(—821u2)b1 dx

— /(U,181U2)8162 dx + /82U281U252 dx + /uﬁz@lu -bdx.
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By Sobolev’s inequality and Lemma 1.1.1,

N1 < ||Oaus||p2 [[O1ul| Lo [|b]| Lo + [|Ovua || La]| 2wl £z [|]| Lo

1 1 1 1
+ ||url|zal|O2rua L2 |01 | o + Jua |72 [[Ovua |72 |01us]| 72 [|0201us ]|} 2 | O1D2 || 2
+ || Oxua| 22 [|Orua || L4 ||ba| Lo + [Juz | La]|O201ul| L2[|D]| Lo
< C||Oaul| g2 ||b]] 22 [Jw]| 2

Ni3 contains the pressure term P. By (1.3.13),

N1,3:/81VPbdx:—/VP81bdx

Q/V7 (u-Vu—0b-Vb)-0b dx

/V( AV - (u- Vu) - 8lbdx+/v IV (b-Vb) - 01b do
/v (D000 (u2) + 200D (urtiz) + DoDa(1i2)) - Oub
/v (b-Vb) - &b da.

By Holder’s inequality and using the fact that the singular integral operators are bounded
on LP for 1 < p < oo, namely

IV(=2)""0ufllr < Clifllee,  IV(=2)"0efllzr < ClIfllze,

we have

Nig < C([|00(w?)] 2 + [|02(waus) ||z + 105(u3) | £2) 1010 2
+ C b~ V| 2 [|010]| 2
< C([luallpee[|Ovunllpe + [[wllzee (| Oaull L2) [|010]| 2
+ C[|bl| e [[ VO] 22 [|010]| 2
< C'||Oaus|| 2|l g2 |b]l 2 + C [|b]| -

We now estimate the rest of the terms. By integration by parts,

Nig = —y/81822u -bdr = 1//822u - Ohb dx
< Cl|ozulll bl 2,

Nis= —/81(b-Vb)-bdx——/(81b'Vb)-bdx—(b-81Vb)~bdx
< ClIblf2,

Nyg = —/8116 b de < Clfb|e.
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Collecting the upper bounds for N; through N, and inserting them in (1.3.28), we find
2 d 3
|0ru(®)llz> < — [ dvu-bdw + Cl|Oull = 1Bl a2 [lull 2 + C[|Bl]7:
1
+ Cll0yull i [Bll = + C (1Bl + S 10rullz2 + C 1Bl [1ull7=-

Combining some of the terms and integrating in time, we obtain, for any 7" > 0,

T
/ | O1u(t)]|3. dt < 2/(81u b)(x,T) dx — 2/81u0 by dx
0

T
[ (10uulle 18 o + 1813 + 0l s ]
0
+ 1eliEe + lblie Nl ) dt

< 2[|0vu(T) |2 16(T) 22 + 2| Ovuoll 22 [[bo [ 2

+C sup II(u,b)(lf)llez/0 (102u()]32 + 16(t)|I72) dt

0<t<T
T
+C(1+ sup [u(t)|l3) / ([192u(t) 772 + [16(8)[[772) lt
0<t<T 0
<O 48+ &Y. (1.3.29)

Since the upper bound in (1.3.29) is uniform in time, we have thus verified (1.3.27), which,
together with (1.3.26), confirms (1.3.22). This completes the proof of Theorem 1.1.3. |
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CHAPTER II

STABILITY AND LARGE-TIME BEHAVIOR OF 2D MHD SYSTEM WITH
VERTICAL DISSIPATION

2.1 Introduction

This paper intends to understand the stability problem and especially the precise large-time
behavior on the perturbations near a background magnetic field governed by the incompress-
ible magnetohydrodynakic (MHD) system. This study is partially motivated by a remarkable
stabilizing phenomenon exhibited by electrically conducting fluids. Extensive physical ex-
periments and numerical simulations have performed to understand the influence of the
magnetic field on the bulk turbulence involving various electrically conducting fluids such as
liquid metals. These experiments and simulations have observed a remarkable phenomenon
that a background magnetic field can smooth and stabilize turbulent electrically conducting
fluids (see, e.g., [2, 3, 7, 14, 15, 16, 27, 28]).

We focus on a very special 2D incompressible MHD system with anisotropic dissipation,

u+u-Vu+ VP =vdpu+ B-VB,
OB +u-VB+nB=B-Vu, (2.1.1)
V-u=V-B=0,

where u represents the velocity field, P the total pressure and B the magnetic field, and v
and 7 denote the viscosity and the magnetic damping coefficients, respectively. The MHD
systems, the center piece of the magnetohydrodynamics initiated by H. Alfvén [3], models
electrically conducting fluid such as plasmas, liquid metals and electrolytes, and have a
very wide range of applications in astrophysics, geophysics, cosmology and engineering (see,
e.g.,[4, 16, 44]). The MHD equations are also mathematically important. They not only
share many crucial features with the Euler or the Navier-Stokes equations, but also exhibit
many more fascinating characteristics such as various wave phenomena that the Euler or the
Navier-Stokes equations lack.

Clearly, (2.1.1) admits a special class of steady-state solutions represented by the back-
ground magnetic field. Attention is focused on the steady-state solution

u® =(0,0), BO(z)=-e =(1,0).
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The perturbation (u, b) around this steady solution with b = B — e; obeys

Ou+u-Vu+ VP =vdpu+b-Vb+ Ohb,
Ob+u-Vb+nb=10b-Vu+ ou,
V-u=V-b=0,

u(z,0) = ug(x), b(x,0) = by(x).

(2.1.2)

The system (2.1.2) differs from the original system (2.1.1) by two extra terms, ;b and 0;u.
As we shall see later, these two terms generated due to the background magnetic field play
an important role in the stability properties of the perturbation as well as in the large-time
behavior. These terms reflect the influence of the background magnetic field on the behavior
of the fluids.

Our goal has been to understand the stability problem and the large-time behavior of
solutions to (2.1.2). Due to the lack of the horizontal dissipation, these problems are not
trivial. even when the magnetic field is identically zero, b = 0, the velocity u satisfies the
2D anisotropic Navier-Stokes equation

du+u-Vu=—VP+vdpu, x€R%t>0, (2.1.3)
or, in terms of the vorticity w = V x u,
u = VLA_I(JJ = (_827 al)A_lw' -

The stability problem on (2.1.4) in the Sobolev setting H? remains an open problem in the
whole space case, although this problem in some other domains such as R x T has been
resolved [19]. In the case of the whole space domain, the dissipation in one direction is
insufficient to control the nonlinearity when we estimate the H2-norm of u or the H'-norm
of w. In fact, in the estimate of ||Vw||z,

d
ZIVw@)]3 + 20 Ve(t) 3 = —2/Vw Vu-Vwdr,

the nonlinear part contains four component terms

Hard := — | Vw-Vu-Vwdr
R2
= — (91u1 (81w)2 dr — 81U2 81w 5’2w dx
R2 R2
- 02u1 61&) 82(,0 dx — (72u2 (82w)2 dx (215)
R2 R2

and the first two terms in (2.1.5) do not admit any time-integrable upper bound. As a
consequence, the best upper bound for the gradient of the vorticity ||Vw(t)||r« with 1 < ¢ <
oo is double exponentially in time,

Clw(O) oot

IVw(@®)]ze < ([[Vw(0)[10)

(2.1.6)
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Indeed in the case of the 2D Euler equation in a unit disk, Kiselev and Sverak were able
to construct an explicit vorticity solution whose gradient grows double exponentially [34].
Furthermore, classical approaches on the MHD well-posedness problem treat the magnetic
field related terms as bad terms. As a consequence, the stability problem and large-time
behavior concerned here in the classical framework appear to be hopeless.

The novel idea here is to treat the magnetic field related terms as good terms and to
explore the smoothing and stabilizing effects of the magnetic field through coupling and
interaction. In a previous work [25], the authors were successful in implementing this strategy
to establish the stability of solutions to (2.1.2). For the sake of convenience of later references,
we reproduce Theorem 1.3 from [25] here.

Theorem 2.1.1 (Theorem 1.3, [25]) Let v > 0 and n > 0. Consider (2.1.2) with the
initial data (ug,by) € H*(R?), and V -uy = V - by = 0. Then there exists a constant
e =¢e(v,n) >0 such that, if

[wollzr2 + [|bol| 2 < e,

then (2.1.2) has a unique global classical solution (u,b) satisfying, for any t > 0,

t
() 32 + 16(t)]1Z- +/0 (I0vullZ> + [1Oaullzy + 1Bl[2) dr < C'€?

for some universal constant C' > 0.

The goal of this paper is to give a precise account on the large-time behavior of these
stable solutions. Clearly we need to continue to pursue the stabilizing and damping effect
of the magnetic field. To do so, we combine the equations of u and b to derive an equivalent
system of wave equations to reveal the stabilizing mechanism. We start by separating the
linear terms in (2.1.2) from the nonlinear ones. Applying the Helmholtz-Leray projection
operator

P:=1—- VATV
to the velocity equation in (2.1.2), we eliminate the pressure to obtain
8tu:1/822u+81b+]\f1, N1 :P(—uVu+be) (217)

By separating the linear terms from the nonlinear ones in (2.1.2), the equation of b can be
written as

atb:—nb—i—@lu—l—NQ, NQI—UVb+bVU
Thus, (2.1.2) can be written as

8tu = Vagzu + (91b + Nl,
3tb = —nb —f- 81U + NQ,

(2.1.8)
V-u=V-b=0,
u(z,0) = ug(x), b(x,0) = bo(x).
Differentiating (2.1.8) in time and making several substitutions, we find
Opt — (VOaa — M)Opu — (O11u + Nrdxpu) = Ns, (2.1.9)
attb — (V822 — n)@tb — (anb —+ 77V822b) = N4,
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where N3 and N, are given by
N3 = ((9,5 + ?7>N1 + 81N2, N4 = (8t — VaQQ)NQ + (91]\[1.

Surprisingly, both v and b are found to satisfy nonhomogeneous wave equations with exactly
the same linear parts. Clearly, (2.1.9) exhibits much more regularization than its original
counterpart in (2.1.2). The stabilizing and damping properties of (2.1.9) is a consequence of
the background magnetic field and interactions within the MHD system. By exploiting these
properties, we are able to establish the following theorem assessing the large-time behavior
of the solutions of (2.1.2).

Theorem 2.1.2 Letv > 0 andn > 0. Assume (ug, by) € H>NL' satisfies V-ug = V-by = 0,
| (w0, b0) || 2nrr < O for sufficiently small § > 0. Let (u,b) be the corresponding solution
obtained in Theorem 2.1.1, then, for a pure constant ¢ > 0,

1(u(t), b(t)) 12 < ed(1+1)72, (2.1.10)
1@ru(t), Dib(t))]| 2 < (1 + )72,
| (Bau(t), Dob(t))]| 22 < (1 +1)71 (2.1.11)

In contrast to the potential double exponential growth rate in (2.1.6), Theorem 2.1.2
asserts that the solution of (2.1.2) actually decay algebraically in time. This result rigor-
ously confirms the experimentally observed stabilizing and damping effect of the background
magnetic field. The decay rates in (2.1.10) and (2.1.11) are the same as those for the fully
dissipative heat equation, and reveal the stabilizing and damping effect of the magnetic field.

Theorem 2.1.2 is also mathematically important. It establishes the precise large-time
behavior of a partially dissipated system. Many powerful classical methods designed for the
large-time behavior of fully dissipated systems such as Schonbek’s Fourier splitting scheme
([47, 48, 49]) may not apply to partially dissipated systems. The approach presented in this
paper serves as a new method that work for some partially dissipated systems of partial
differential equations.

Due to its physical applications and mathematical significance, the stability and large-
time behavior problems on the MHD equations near a background magnetic field have re-
cently attracted considerable interests. The stability problem on either the ideal MHD
system or the fully dissipated MHD system with identical viscosity and resistivity has been
thoroughly investigated and significant results have been obtained [3, 6, 8, 29]. The require-
ment that the viscosity coefficient be the same as the resistivity coefficient comes from the
use of the Elsésser variables. [54] allows these two coefficients to be slightly different. The
paper of Lin, Xu and Zhang [37] initiated the study on the stability problem of the 2D MHD
system with only velocity dissipation. By using the Lagrangian approach and controlling all
quantities in terms of the trajectory, they were able to establish the desired stability. The
work of Ren, Xiang, Wu and Zhang [45] examined the stability and the large-time behavior
simultaneously of the 2D MHD system without resistivity in an anisotropic Besov setting.
The approach in [45] is Eulerian and establishes extensive anisotropic energy estimates. In-
stead of the velocity dissipation, Wu, Wu and Xu studied the stability of the 2D MHD
system with only velocity damping and without resistivity [59]. Their paper exploits the
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wave structure of the system. More recent studies on the MHD stability problem focuses
on the anisotropic MHD systems. The paper of Boardman, Lin and Wu [5] deals with the
stability problem on the 2D MHD system with the fluid vorticity satisfying an Euler-like
equation. Wu and Zhu established the stability of the 3D anisotropic MHD system with
velocity dissipation in two directions and the magnetic diffusion in only one direction [60].
We remark that there are substantial recent developments on the well-posedness and stabil-
ity problems on the MHD systems and many other important results are also available (see,
e.g., [9, 10, 11, 18, 20, 21, 22, 26, 30, 31, 32, 33, 41, 36, 39, 40, 43, 46, 51, 53, 57, 58, 60, 63,
64, 65, 66, 67, 69, 70, 71, 72]). This list is by no means exhaustive.

We explain the main idea in the proof of Theorem 2.1.2. Clearly Theorem 2.1.2 can not
be established via direct energy methods. Instead the approach here is to represent (2.1.2)
in an integral form and then apply the bootstrapping argument. To convert (2.1.2) into an
integral form, we first take the Fourier transform of (2.1.8) to obtain

{ata:_yg§a+z’g£+ N1, (21.12)

(2.1.12) can be written as a 2D system associated with a matrix A,

a\ _  (a N,
@(z>—A(a)+<@>'
_ —sz &1
A= ( Zle =1 > '

(38) () [ (] o

At

where

By Duhamel’s principle,

The fundamental solution matrix e”* can be made more explicit via the eigenvalues and
eigenvectors of A. In fact, if \; and A\ are the roots of the characteristic polynomial associ-
ated with A,

N+ (n+ VA + & +vngg =0

or

_ ) VT ) £ VT

A
! 2 ’ 2

with
[ = (n+v&)* — 4(& +vné3),

then e?* can be written explicitly as

eAt: }:(\\1 l:\(\2
Ky, K; )’



where

6)\1t _ 6)\2t /\16/\1t _ )\26A2t

L s v S W T
)\1t_6/\2t

K2 Zgl )\2 )

o )\16)\2t o /\26)‘1t e)qt . 6)\2t

K==, "
1 — A2 1 — A2

Thus we have converted (2.1.2) into the integral form

() K1U0+Kgbo+/K1t—7‘)N1()+K2(t—T)N2()d (2114>

b(t) = K2u0+Kgbo—|—/ Ka(t — T)Ni(7) + K3(t — 7)Na(7) dr.

More technical details are provided in Proposition 2.2.1.

The next step is to extract the desired large-time decay estimates from the integral
representation in (2.1.14). We use the bootstrapping argument (see, e.g., [52, p.21]). As
a preparation, we first derive suitable upper bounds for the kernel functions. Clearly the
kernel functions are anisotropic and frequency dependent. By dividing the frequency space
R? into suitable subsets, we are able to obtain definite upper bounds for the kernel functions
in each subset. The details are given in Proposition 2.2.2. To implement the bootstrapping
argument, we make the ansatz

[(u(@), b(t))]|2 < e6(1 + )"
[(Bru(t), dib(t))|| 2 < E5(1+1t)~
[(Bau(t), Dab(t))]| 2 < E(1 + 1)~

where ¢ will be specified later. We show through the integral representation of u and b in
(2.1.14) that

(2.1.15)

H wh—- m\»—\

Iult), (e 22 < 5601+ ),
1@ru(t), dub(1))| = < 55(1 413, (2.1.16)
[(@ult). D:b() 12 < 56(1+8)7!

with the coefficients being half of the corresponding ones in (2.1.15). Then the bootstrapping
argument implies that (2.1.16) holds for all 1 <t < co. The process of establishing upper
bounds in (2.1.16) is very long and tedious, and the details are presented in three subsections
in Section 2.3. We just want to mention some of the technical points. Due to the higher decay
rate for the vertical derivative than the horizontal one, efforts have been made throughout
to replace the horizontal derivatives by the vertical ones. One way to do so is to make use
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of the divergence-free condition, V- u = V - b = 0. Another helpful way is to invoke the
anisotropic type inequalities such as

1 1 1 1
[l ey < CUI oy 101y 192 1 oy 1912 U g

These type of technicalities are used throughout the proof such as in (2.3.30) and many
other places. The proof also employs many other helpful strategies such as dividing the time
integral involving the nonlinear terms into two parts such as

t
/ ||K1(t — T)u . VU||L2(A1) dT
0

2 . t .
:/ HKl(t—T)u-VUHLz(Al)dT—F/ HKl(t—T)u~V’LLHL2(AI)dT.
0 t/2
This division would help distinguish different properties of the integrand in different time
intervals. The decay of the first piece relies on the kernel function while the decay of the
second piece comes from the nonlinear term. We leave more technical details to Section 2.3.

The rest of this paper is divided into two main sections. Section 2.2 provides the details
in the derivation of the integral representation (2.1.14). In addition, this section divides
the frequency space R? into suitable subdomains and establishes explicit upper bounds for
the kernel functions in each subdomain. Section 2.3 presents the proof of Theorem 2.1.2 by
applying the bootstrapping argument to (2.1.14). This is a very long and tedious process.
For the sake of clarity, we divide this section into three subsections with each devoted to one
of the inequalities in (2.1.16).

2.2 The integral representation and bounds for the kernels

This section details the derivation of the integral representation and establishes upper bounds
for the kernel functions involved in the integral representation. These upper bounds will be
used in the proof of Theorem 2.1.2. Proposition 2.2.1 and its proof are devoted to the integral
representation while Proposition 2.2.2 focuses on the upper bounds for the kernel functions.

Proposition 2.2.1 Letv >0 andn > 0. Assume (u,b) is a solution of (2.1.2). Then (u,b)
satisfies

t
ﬁ(t) = Kl’lﬂ) -+ KQbQ -+ / Kl(t — T)Nl(T) + Kg(t — T)NQ(T) dT,
R . A % . . N (2.2.1)
b(t) = KQ% + Kgbo -+ / Kg(t — T)Nl(T) + Kg(t — T)NQ(T) dT,
0

where the kernel functions }?1 through 1?3 are given by

e)qt _ e)\Qt )\16)\1t _ )\2€>\2t

[/(\ = = G G
Py ex\lt _ e)\gt
Ky =i ——— = 1i4G
2 = 1§y M — i&1GH,
Py )\16)\2t o )\2€A1t e}\lt _ 6/\2t
Ky = - — Gy + Gs.
3 = 77)\1_)\2 NG+ Gs
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with A\ and Ay being the roots of
N+ (n+vEA+ & +vnés =0

or
—(n+v&) - VT —(n+ve)+VT
A= (77 22) s A= (77 22) , I'= (77+V§§)2_4(§%+V77§§)7
and G1, Gy and G3 given by
Gl _ 6)\1t _ e/\2t7 G2 _ )\16/\1t _ )\26)\2t7 G3 _ )\16)\2t _ )\26)\1t
)\1—)\2 )\1—)\2 )\1_/\2

In the case when \y = Ao or I' =0, the formulas of the kernel functions K, through IA(;J, are
replaced by the corresponding limiting formulas

[/(\1 =n lim G+ lim Gy =nte™ + (1 + M\t)e,
Ao— A1 A2— A

[/(\2 — Zflte)\lt, (2.2.2)

Ky = —nteMt + (1 — Agt)eM?,

Proof. As explained in the introduction, any solution (u,b) of (2.1.2) would solve (2.1.13),

namel
y ( %&) ) = e < %s ) + /Ot AT ( %\g ) dr (2.2.3)

_ —V§2 &1
A_( i§12 —77>'

The characteristic polynomial of A is

with

N+ (n+vE)A+ & +vné =0
and thus the eigenvalues of A are

R L R Ry

The eigenvectors corresponding to A\; and Ay are given by

m_(nth @ _ [ 1+ A
v ( 1€ )’ v ( &1 ’

respectively. Therefore,

At

pA — 1 (77+/\1 77+)\2)(€)‘1t 0 )( i§1 —(77+)\2))
i& (A1 — A2) i§1 &y 0 Mt —i& n+M
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where

E _ ne)\lt . 6)\2t + /\16/\1t _ )\26A2t7
)\1 - )\2 >\1 - )\2
o 6)\1t . 6)\2t
Ky =i ———
2 Zgl )\1 _ )\2 )
'k\g _ )\16)\2t o /\26)‘1t B neklt . 6)\2t '
/\1 — /\2 )\1 - )\2
To simplify the notation, we define
G B e)qt _ ex\zt G B /\16)\1t _ )\26>\2t B >\1€/\2t _ )\26>\1t
1 — N N 2 — ) 3 —
Al — Ay Al — A2 AL — A
and write P
K, K Go+nG 164G
At 1 2 2 1 1G1
= PR = : . 224
‘ <K2 K3> (%o &%, (224)

Inserting (2.2.4) in (3.2.5) yields (2.2.1). In the case when \; = Ay, the associated eigenvector

of Ais \
n_(nta

and the general solution of &f/ = AV is given by
ap v et 4 ay (vt 4 o),
where a; and ay are to be determined by the initial data, and o solves
(A= XMIo =oW.

After some simple computation, we find

-(3)

We determine a; and ay by the initial data @y and /50. This process leads to the kernel
functions in (2.2.2) when A\; = A\y. This completes the proof of Proposition 2.2.1. |

The next proposition provides upper bounds for the kernel functions IA(l through [?3.
It is clear that the kernel functions depend on the Fourier frequency and are anisotropic.
Consequently we need to divide the frequency space R? into suitable subsets so that the
behavior of these kernel functions are definite. Our decomposition will be based on the
second eigenvalue,

(n+v&3) + VT

)\2:_ 9 )

[= (n+v&3)° —4(& +vné3).
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A natural choice is to separate the domain where Ao behaves like —}1(77 +v£€2) from the rest.
In particular, this occurs if

1 3
VT < 5+ vés) or wvnés +& > 0+ vE3)?.

This explains the decomposition in the following proposition.

Proposition 2.2.2 Let v > 0 and n > 0. We decompose R? into two subsets A; and A,

with
3
A ={£€R? v& + & > 0+ v&3)*,
3
A= {6 € B2, v+ < —(n+ v}

Ag is further divided into Asy and Ase with

A21 :{£€R27 5€A27 1/53 Sn}a

Apy = {E €R2, €€ Ay, vE2 > ). (2.2.5)

Then
1. For any & € Ay, there is cg > 0 and C' > 0 such that

K|, | K, |Ks| < Cemeot+e

2. For any £ € Asq, there is cg > 0 and C' > 0 such that

|f(\1|7 |]’(\2|7 |_f(\3| <C <e—co(1+£§)t + 6—60\5|2t) .
3. For any & € Ass, there is ¢ > 0 and C > 0 such that

52
ﬁ@,ﬁﬂu@§0<eﬂw%+{mw@j_

Proof of Proposition 2.2.2. We start with the case when £ € A;. For any £ € Ay,
3 1
D= (n+vG)’ = 4w + &) < 1 +v8)” — 11 +v&)”* = 70 +v&)”

Therefore, either v/T is pure imaginary or vI' < 2 (n+v€3). Hence, the real parts R();) and
R(A2) are bounded by

ROW) < —5(n408),  ROw) < 10+ v8))
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To bound f(\l, I/(\Q and [/(\3, we realize that they all involve only A;, A\ and G. In fact, since
G5 and G5 can be written as

)\16)\1t — )\16)\2t + )\1€>\2t — )\2€A2t

_ _ Aot
G2 = )\1 _ )\2 =€ + /\1G1
_ Aot Aot At
Gy — (A — Ag)e™ + g (e ety _ G
AL — Ao
we have
f?l = 6>\2t + /\1G1 + nGl, [?\2 = iflGl, Kg = 6 )\QGl 77G1. (226)

When I' > 0, both A\; and Ay are real. Then the mean-value theorem implies that there is
}l < a < 1 such that

(& 2
G = ————— = te dE
D VD

When I' = 0, A\; = Ay and (2.2.2) implies that G is replaced by
Gy =teMt.

When I' < 0, both A; and A\, are imaginary and

—

isin(—%-t)

G =e —s(n+ved)t is
2

Therefore we always have
G| < to— 1 (HvEdt

Using the simple fact that pe=¢* < C, for anyp > 0 and C; > 0 and suitable Cy > 0, we
have, for ¢g > 0 and C' > 0,

K|, | K3 < e 308 4 o(n 4 ped)te st < Cemeo(+8)
To bound [/(\2, we divide the consideration into two cases:

&l |&1]
<1 d ——
YOIy

When l‘f}" < 1, we write, due to A\; — Ay = —V/T,

> 1.

’51’ (| )\1t| + |€)\2t|) S e—é(n—l—u{%)t _'_e—i(n—‘rufg)t S Ce—i(l-l—ﬁ%)t'

=l

When |‘\5}|‘ > 1, then

K>

(i +v€3)* — 4(vnés + &) < &
which is equivalent to
0<(n+v&)" —4wng +&) <& (2:2.7)
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or

0 <4(vn& +&) — (n+v&)* <& (2.2.8)
Clearly, (2.2.7) implies

—(n+v&)* < —4(wn&; + &) < —4g

while (2.2.8) yields
—(n+v&3)* < —4(ng; + &) + £ < -3¢

In either case, we have, for ¢ > 0
—(n+v&) < —cl&l.

Therefore,
K| < [afte oDt = |g e sOrtvediem s nvedr

< \51|t€*gc‘§1|t€7%("+”£§)t < Ce @+t for ¢y > 0 and C > 0.

We now turn to the case when £ € A,. For & € Ay,
1 2
A1 < _5(774’”52)-

By I = (n+v&)? —4(vn&s + &) < (n+ v&3)?,

~(+v&) + VT _ (= +v&) + VT)(—=(n +v&) — VT)

>\2:

2 —2((n +v&3) + VT)
_ 2G4 2mG+ &) v+ &
—(n+ve+VT) ~  2(n+vE) n+vés

Since I' = (n + v&5)* — 4(wn&3 + &) > (n +v&3)* — 1(n + v€3)* > 1(n + v€3)?, we obtain
VT > 1+ vé2). It follows that

o Aot un§2+52
it b 2 <6;<n+us;>t+e‘nisg”>. (2.2.9)

G| = = <
' vI  ~ n+vé

Furthermore, for £ € Ay, we have

3 €1 V3
2 o 9 212 < V2o
51 — 16(77+V§2) 77+I/§2 — 4
and thus
_ vngd4el
o < &]|lGh < C (e‘é(”“gg)t +e TG >
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In addition, by (2.2.6),

un£5+§1 vngd+€3
— — — t
|K1| <e e + 477 + 1/52 6_%(T7+V55)t +e n+ve3

n+vé&

e
< Cle 2 (n+vés)t +e n+ves )

|l/(\3| admits the same upper bound. By further using the definitions of As; and Agy in (2.2.5),
we obtain the desired upper bounds. This completes the proof of Proposition 2.2.2. [ |

2.3 Large-time Decay Estimates

This section is devoted to the proof of Theorem 2.1.2. The framework of the proof is the
bootstrapping argument. The proof involves the estimates of many terms and is a long
and tedious process. It will be divided into three subsections after we present several tool
lemmas.

We need several basic tool lemmas. The first one provides the LP — L7 estimate for a
general fractional Laplacian heat operator e’*A”. The fractional Laplacian operator A® with
a € R is defined via the Fourier transform

ASf(€) = [E17f(&)-
The proof of this LP — L9 estimate can be found in many references (see, e.g., [56]).

Lemma 2.3.1 Leta >0, >0 and 1 <p < q < oo. There is a constant C' > 0 such that
fort >0,

e _B_d(1_1
||Aﬁ coA tf||Lq(Rd <Ct e a(p 3 ||f||Lde)

The next lemma presents an 1D Sobolev inequality involving fractional derivatives. This
1D inequality is at the core of many higher dimensional anisotropic Sobolev inequalities.
The proof of this lemma can be found in [68].

Lemma 2.3.2 Assume that f is in LY(R),

1_1 s ,_l)
1/l 2o <CHfHL2 A Al

where 2 < q < 00 and (%—%)gl.

Anisotropic Sobolev inequalities have become a necessary tool in the study of anisotropic
equations. The next lemma states a 2D anisotropic inequality, which can be seen as a
consequence of the previous lemma.

Lemma 2.3.3 The following estimates hold when the right-hand sides are all bounded.

1 1 1 1
[f 1z @) < CNAN L2 @) 100 F | 22y 102 F 11 Lo oy Or2 N 22 2y
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For the convenience of later reference, we also provide two standard inequalities. The
first one is a Sobolev inequality while the second one is a calculus inequality on the fractional
derivative of a product.

Lemma 2.3.4 Assume that [ € LI(R?) with 2 < q < co. Then

2 1—2
[ llze < CUANZNV A"

Lemma 2.3.5 For any s > 0, then for all f,g € H* N L, and we have the estimates

A (FDlle < C A Fllollgllzee + 1 f [ os [A°gll2oa)

where % = pil + == pis + p%‘ and p, pa, p3 € (1,00). In particular,

1
p2
1A (f9llez < CINFllz2llgllee + (1 f ]l [ A9l 22) -

We are ready to prove Theorem 2.1.2.

Proof of Theorem 2.1.2. We prove Theorem 2.1.2 by the bootstrapping argument. We make
the ansatz, for 1 <t < T,

[(u(®), ()2 < E0(1+1)"2,
(t)aalb(t)>||L2 < 55(1 + t)_ )
(£), Dub(t)) | 2 < E6(1 + )",

where ¢ will be specified later. We show through the integral representation of u and b in
(2.1.14) that

I( (2.3.1)

c%u
1(Ozu

Lol T =

Iult), (e 22 < 5601+ 1),
[ @vut). drb(8) 2 < S6(1+8)72, (2.3.2)
| (@eu(r). 02b(0)) 2 < 561 +1)7"

Since the coefficients in (2.3.2) are just half of those in (2.3.1), the bootstrapping argument
then implies (2.3.2) holds for all 1 <t < occ.

The main efforts are devoted to the inequalities in (2.3.2). This process involves the
estimates of many terms and is very long. For the sake of clarity, we divide the rest of
this section into three subsections with each subsection devoted to one of the inequalities in
(2.3.2).
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2.3.1 Estimates of ||(u(t),b(t))]| 2

This subsection proves the first inequality in (2.3.2). To estimate [|(u(t),b(t))| r2®2), we
estimate it in the three subdomains A;, As; and A,y defined in Proposition 2.2.2. By
(2.1.14),

¢
[l 2y < B (E) ol 22y + [HL2(E)boll 2 (ar) +/0 I3 (= T) N (7) | 2y dr
¢
N N A AT PR
0
=nL + L+ I3+ Iy
By Part (1) in Proposition 2.2.2,

Iy = || Ky ()t 2,y < Clle™ M | paa,)
< Ce @]l 2gmz) < C(1+ ) Juo]l e, (2.3.3)

where we have used e~ < C'(1 + t)_% for ¢ > 0. Similarly,
Iy = [|Ka(£)bo| r2(ary) < C(1+ )72 byl . (2.3.4)

Noticing that N; = (I — %)(—ﬁu + b/%) and using the boundedness of the Riesz

transform on L?, we have
t —_~ —_~
13 _/ HKl(t_T>N1(T)HL2(A1) dT
0

< ¢ [ (IR Vs + 1Rt Tl i
= I31+ 3.
I3, is further decomposed into two parts,
t/2 - —
I3, < C’/O | K1(t — 7)u - Vu(T)|| 124, dT
+0 [ IRt = 7 Tl i

/2
=1I311+ 131

20



By Proposition 2.2.2, Holder’s inequality and Ladyzhenskaya’s inequality,

t

t/2 t/2
I311 < C’/ e_co(t_T)Hu -Vu(r)| g2 dr < C’e_c(’?/ |ul|pa||Vul|ps dr
0 0

L2

W [U2
< Ce ¥ / a2Vl e A2 dr
cq t/2 1.1 1 1
< 06_2t/ (eo(14+7)72)2(¢0(1+7)"2)(cd)2 dr
0

C t/2 C
< 053/252e5t/ (14 7)73 dr < C&¥26% % (1 + 1)/
0

where we have used the ansatz in (2.3.1) and the fact that ||u||g2 < ¢d. In addition, in the
last step, we have used e~ 2 < C(1+t)"%/* for C > 0. We estimate I3 .

t
]3,172 = C HKl(t — T)U . VU<T>HL2(A1) dT
t/2

¢
<C ||e*c°(1+§§)(t77)u -Vu(&, 7)|| r2(ay) dT
t/2
¢
<C | el ||em sty Vu(&, 7)|2ca,) dr (2.3.5)
t/2
t 1 1 3
<C | e — 1) |u(m))| 2 Vul|Z, dr
t/2
¢
<C [ et — 1) TEER (14 7)1 dr < CES(14+) 7,
t/2

o1



t

where we have used / e~col=T)(t — ’7')_% dr = C for C > 0 in the last inequality of (2.3.5),

t/2
and invoked the following estimate in the fourth inequality of (2.3.5),

e 0BG, ) Baa,y = Ml S0V ulE, 7l |22
_ / / o= 0SNG u(E, 7)[? dés dey
< [ [lesenp dgla Ve n)l
= [ [e=ntetan)a Ve de
=t -7t [0 Vae i de

< Ct =) u- Vallly, i,

< C(t—7) 77| full 2, I Vullz, |17z,
< Ot —7) 2 ||ule, 1 | VUl
<C(t—7)" %||u||m||81u||Lz||Vu||iQ.

Similarly, .
Lo < C@+ &5 (1 +1) 2.

Therefore, for a constant C' > 0,

I3 < C(@ + )52 (1 + 1)z
By invoking Nj in (2.1.7) and going through a very similar process, we have

L <C@+&)5(1+1) 2.
Combining (2.3.3), (2.3.4), (2.3.6) and (2.3.7) yields

lu(Ollzzan < OO+ 0 luollz2 + boll2) + CE28(1+ 1),
We now turn to ||(u(t),b(t))||z2(a,,)- By (2.1.14),
1@ 22(2) < IELE @ 22820) + 1 K2 ()0 22(200)
+ [ IR = DTl dr

t
4 / | Balt — ) Na () 12y d
0

2:J1+J2+J3+J4.
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By Part (2) in Proposition 2.2.2 and Lemma 2.3.1,

Ji = 1Ky () Gol| 2ag) < Clle™ 0D G| 12 gay) + Clle™ P G| 2 agy)
< Cem |l 22y + Clle™ uol 22y
< C(1+1) 7% Juoll 2qee) + O 2079 [up |1 gy
< C(1+ )72 |ugll 2nr -

where we have used e=®! < C(1+¢)~2 for ¢ > 0. Similarly,

Jo < C(1+ )" 2||bo]| r2npr-

By Proposition 2.2.2,
t —~ —~
Ja= [ IRt = DN dr
0
t
<C [ e DN € )2 dr
0
t —_—
+C / e~ 15 Vb| (€, 7)|| 22y dT
0
t
+ C/ e~ 0l T (€, )| 22y dT
0

t
+€ [ e DG € 1) 12 dr
0
=Js1+ J3o+ J33+ J34.

By (2.3.6), for C >0,
Jsit Jsa < C@ + &) (1+1) 2,

We further decompose Js 3 as
t ) e
Jys—C / e POl (€, )| ey dr
0
t/2 , .
= [ e T 6 7
0

t
+ C/ HeiCOK‘Q(tiT)’U : Vu](f, T)HLQ(]RQ) dr
t/2

= J331 + J3329.
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By Lemma 2.3.1, and the ansatz (2.3.1),

t/2 -
Bas=C [ e DT € 7l dr
0

t/2

0

t/2
g(Jt—l/ ulfadr
0

t/2 )
< Ct—l/ (&5(1+7)"2)%dr
0
< C&E&t 1 In(1+t/2) < C(o)s*t 11,

where we have used t~7In(1+¢/2) < C(o) for ¢ > 0 and for all ¢ > 1. By Lemma 2.3.1, the
ansatz (2.3.1) and Hélder’s inequality,

t
Jsgo = C/ e~ 0P| | (&, 7)||| 2 dr
t/2

t
< c/ (t—7)" 2072w V|2 dr
t/2

t
< C//Q(t = 7) 2 lu(m) |2 [IVu(r) 2 dr
t

t
< 0/ (t—71)"288(1+7)"286(1+ 1) 2 dr
t

/2
t
< 052(52/ (t — 7')_%(1 +7)tdr
t/2
t
< &5 (1 +t/2)_1/ (t—7)"2 dr
t/2

< CEPA+ )71 (t)2)M?
< CP6(1+1)77.

J3 4 admits the same upper bound as J3 3,
Jsa < C(0)@6% 7 + CP* (1 +1) 2.
J4 admits the same bound as J;. By taking o sufficiently small, say o < %, we have

[ 2240 < CQ+ 878 (uollzns + Mollzas) + C@ + @221+ (2:39)
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We estimate ||u|12(a,,)- By (2.1.14),

020y < I3 200 + 1R (Ol 120000

t

+ [ IRt = DR 2000
0
t

+ [ IRl = DRl d
0

= M1—|—M2—|—M3—|—M4.
By Part (3) in Proposition 2.2.2,

Ml = ||Kl(t)%||L2(A22)

§2
—co(1+25)t

< COle” DG || 124y + e 2 o[ £2(a50)
€2
—co(1+21
S C||e_00(1+£§)tﬁb“L2(R2) + ||6 ol +g)t%”L2(R2)

< Cem|ug|| 2 < C(1 + )7 ||uo] 2.

Similarly,
My < C(1+1)2||by| 2.

By Proposition 2.2.2,

52
—co(1+2L)(t—7 —_— —
< | ettt TR (T + B Vb)) 2 dr

t
= C/ e~ (|lu - Vu(r)|| 2 + ||b- Vb(7)||12) dr
0
t/2
< c/ e (|lu - V|2 + ||b- V|| 2) dr
0
t
+ C/ e_co(t_T) (HU : VU||L2 + ||b : Vb||L2) dr = M3’1 + M372.
t

/2

We set
Mz = Ms; 1+ Ms;o.

For 2 < ¢ < o0 and ¢ satisfying % + % = %, we have, by Lemma 2.3.4,

2 1—2 1—2 2
[ulle < Cllull VUl 2", [[Vulls < Cl[Vul . * | Au] 2.

95

(2.3.10)



and thus

L2 t/2
mugkﬁfuuwwww<%v/rwmwmw
0 0

1]

ey [TP2 20-2) \ id
<Cez [ull 721Vl ([ Aullf.dr
0

)2 .
< Ce ¥t [T @ 7 AP EB(1 ) A )
0
. t/2
< Ce$1P2 21 / (14 1)~y < CE252 (14 1)1,
0

where we have used (1 + t)%e’%ot < C(1 +t)~Y2. Similarly, M3, 5 obeys the same bound,
M,y < CE218%(1 +1)71/2,

M3 5 is naturally divided into two parts,

t
M, < C/ et <HU ’ V“HL2 + ”b ’ VbHLQ) dr = Ms1 + Ms2s.
t/2

By Holder’s inequality and (2.3.10),

mm<c/ () 2oVl s dr

B 2(1-2) 5
<C [ et |IUHL2|!Vu|!Lz |Aul|7.dr

t/2
t

<C [ emot(@s(1+ )TV a(Es(1 + 7)) 207D (e5)2/ dr
t/2
t

< CE (1 t/2) 1 / e =7 dr
/2
< CFHg2 (1 4-t)2) 71 e,

By taking ¢ = 3, we obtain
Msoq < CEB82(1 +1)723.

M 5 5 admits the same bound,
Mz < CES* (1 + )72 + CEB36%(1 + 1)72/3.
Similarly, M, obeys the smae upper bound. Therefore,

() 12400y < C(L+ 1) ([futoll 22 + [[Boll z2)
+ CEP (A + 1) V2 4+ OB (1 + )23, (2.3.11)
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By (2.3.8), (2.3.9) and (2.3.11),

lu(®)z2 < Cr(1 + )72 || (uo, bo)| 12
+ CoP82 (14 1)72 + C328%(1+ 1) "2 + Cue 3o (1 + )23, (2.3.12)

Therefore, if we choose ¢ and § satisfying

c 1 1 1 1 1
< — co < — c2 < — c3) < —
01_8, 0265_32, 03C25_32, 0403(5_16,
then (2.3.12) implies
()2 < S6(1+)72 + —6(1+1)7% + ~—=6(1+ 1)
8 16 16
2 (2.3.13)

Similarly, ||b||z2 obeys the same bound. Therefore,
¢ 1
(@), b2 < 5oL +1)72.
This completes the proof of the first inequality in (2.3.2).

2.3.2 Estimates of ||(Oyu(t), 02b(t))|| L2
The goal of this subsection is to prove the third inequality in (2.3.2), namely

| @2u(t), D:b(e))]] 22 < 50(1+ )7
Applying 0 to (2.1.14),

t —_— — —_—
yu(t) = K100uq + K202bo + / Ky (t — 7)0aNi(7) + Ka(t — 7)02No(7) dr
0 (2.3.14)

—

t —_— — —_—
82b(t) = KQ@QUO —|' Kgagbg -+ / Kg(t — 7)82N1(T) —|— Kg(t — T)azNQ(T) dT.
0

We estimate ||Oaul|z2¢4,), [|O2t]|r2(a,) and ||Oaul|r2(a,,). We start with [[Ooul[z2(a,). By
(2.3.14),

[02u(t)]|L2(a,) < 1K1 (£)Oauo|lL2(ayy + [[EK2()bol 22 (a,)
t
+ / HKl(t — T)agNl(T)HLz(Al) dT
0

t —_—
—f-/ ||K2(t—T)62N2(T)||L2(A1) dT
0

3201+02+03+O4.
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By Proposition 2.2.2,
Oy < [le™ 0+ Qg || 12 g2y < 0| By 12 < C(1 +1)7,
where we have used (1 + t)e~ " < C'. Similarly,
Oy < O6(141t)71
O3 is naturally decomposed into two parts,
t . I t /\ I
03 S / ||K1(t — T)ag<u . VU)(T)||L2(A1) dT —|— / ||K1(t — T)ag(b . Vb)(7)||L2(A1) dT
0 0
== 03,1 + 0372.

We further write

O31 = / | K1 (t — 7)02(u - V) (7)| 1204,y dT + / | K1 (t —7)02(w - Vu)(7) || 2040y dT
0 t/2
= 0311+ 031 9.

By Ladyzhenskaya’s inequality, Proposition 2.2.2 and Lemma 2.3.3,
t/2
11 = / e Oy (u - V)| dr
0
o (12
< 6“/ (I02ull e[ Vull s + (lull o |0:Vul| 22) dr
0
T . L 1 1 L 2.3.15
<Cet [ 1ol Aula IVl + lul s loral ol o8l ar 251
0
_f0¢+ t/2~ _3 9 ~3 _1
< (Ce 2 c(l4+71)" 16"+ c1(l+7)"20% dr
0
< Ce*(1+t) "+ Card*(1+1)7,

where we used e~ 3(1 + )7 < C() for any v > 0. To bound Os1 5, we write the norm in
Os1 2 from the frequency space to be in the physical space, and then use Holder’s inequality,

o8



Lemma 2.3.1 and Lemma 2.3.2 to obtain

t
0371’2 = / 6760@77)) Hefcogg(t”)ag(u . VU) HL2 dr
t

dr

2
LI1

t -
S C/ efco(t*T)(t — 7-)7% Hu . quL;Q dT
t

/2 =
t
) 2.3.16

gc>/°ew@7mt—wqi ez, IVullp || . dr .

/2 ’ L,

t
gcfeﬂ“Wtﬂ*mmnﬁwwmm

t/2 27z

t 3 1 1
g(:/“e—waxt—Tywumgamﬂm;HVum;dT

/2
< CEFP(1+1)7,

where we have used / e~col=T) (¢ — 7')_% dr < oo. Since O3z admits the same bound as

t/2
03,17 5
O3 < Ced* (1 +t) 4+ Ce1d?(1+ )L+ CE5% (1 + 1)~

Oy obeys the same bound as O3z. Therefore,

105u(t) || 2 (ay) < CO(1+)"" + CE6*(1+ 1) + CEL6* (1 + 1)
+ CESP(1+1)h (2.3.17)

Next we bound ||0aul| 12(4,,). By (2.3.14),
02 (t)]| 22 (a0) < 1K1 (1) 02| L2(00) + [[E2(2)O2bo || L2 (401)

t —
+/HK@—ﬂ®MUWanW
0

t
+ [ 1Rl = Nz
=P+ Py+ P+ P,.
By Part (2) in Proposition 2.2.2 and Lemma 2.3.1,
Py = || K (8) 0| 2400
< Clle M D Qaug | 2(ay0) + Clle 1 Dyug | 124
< Clle™ M Doup|| 1204y + Cll€e™ G| 12 (a0
< Cem|Dug| 2 + Clle™™ Ao 12s2)

< C(l + t)*lHaguoHLz(Rz) + Ct71Hu0HL1(R2)
<O+t Y uollgrar < CS(1+1)7

(2.3.18)
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where we have used e~®! < C'(1+¢)~! for t > 0. Similarly,
Py < C(1+ )" bollwrar < Co(1+1)7"

We rewrite P; as
t — —_
Ps = / | K1(t — 7)o N1 (T) || 2(asy) dT
0
t
S C/ ||€_CO(1+£%)(t_T)@2(u . VU)”L2(R2) dT

0

t

+ C/ HeicO(lJrég)(tiT)aQ(b : Vb)”LQ(RQ) dr
0
t
+ C/ ||e_c°|§|2(t_7)82(u : VU)HL2(R2) dr
0

t
+C / e P10, (b - VD) | 12 (gey dT
0
= P31+ P3o+ P33+ Psa

P;; can be bounded similarly as Os,
Pyy < CE*(1+1) '+ CE16*(1+ 1) ' + 03821+ 1) (2.3.19)

P55 admits the same bound as the one for Ps;. To bound Ps 3, we divide it into two parts,
t/2 , -
P373 = C/ ||€_CO|£| (t_T)ag(U . VU>HL2(R2) dT
0

t
+ C/ He’co‘flz(t’T)ag(u . VU’)”LQ(RQ) dT
t/2

= P331+ P339.

By Lemma 2.3.1 and Holder’s inequality,
£/2 L
Pyza < C/ le= "0y (u - V) || 22y dr
0
£/2 . -
<C [ lgale T e dr
0
t/2 2 —
= C/ 117~ D10 @ || o gey dr
0
t/2 \ L, 2
< C/ (t—7)"2|lu®ulp dr <C(t/2)" 2 / |ul|2 dr
0 0
3 t/2 1 3
< Ct 2 / (&5(1+7)72)* dr < CE&* 2 1n(1 +t/2)
0

< CEP(1+t)7N
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where we have used t~2 In(1 +¢/2) < C for all ¢t > 1. By Lemma 2.3.1, Lemma 2.3.4 and
Holder’s inequality,

t
P32 SC/ le= Py (- V)| 2y dr
£/2

- —

t
: C/ l1]e 8y (w @ ul| 2 dr
t

/2
t 2/1 1
= C/ (t—7)72720 2|0 (u ® u)|| padT
t/2
t 1
< C’/ (t — 1) 4||Ogul| p2||w|| LrdT (I1<g<2, r>2)
t/2
t
_1 2 1-2
sc/;@—ﬂqwmmmmmvarm
t
t
< C/ (t—7)"a(&5(1+ 7)) (E5(1 + r)‘%) dr
t/2
t
< CAEP(141)2 / (t—7)"a dr
t/2

< CEP(1+1)7 370 < OB (1+1) 270 < C282(1+1) "

Therefore,
Py < CESP(1+1) (2.3.20)

Similarly, P54 obeys the same bound. By (2.3.19) and (2.3.20),
Py < CE(1+1) '+ Ceis?(1+ 1) 1 + CP>(1+ )" (2.3.21)

Furthermore, P, admits the same bound as P; in (2.3.21). By collecting all the bounds for
Py, Py, Py and Py from (2.3.18) to (2.3.21), we obtain

1090 (t)]| 12 (any < CO(L+ 1)1+ CE2(1 4+ ) "' + CEI > (1 + 1) + CP* (1 + 1)1 (2.3.22)
Next we estimate ||Opul|12(4,,)- By (2.3.14),
[Oau(t) || 12(40) < [ EK1(8) 020l L2(50) + [|H2(8)Oabol| £2(a50)
t —_—
+ [ IR = DR ey
0
t
+ [ Nl = 13N sy
0
= Q1+ Q2+ Q3+ Q4.
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By Part (3) in Proposition 2.2.2,

Q1 = ||K1 (t)a2u0||L2(A22)

§2
Co(1+%)t —

< O™ D Dyug | 2 agsy + lle " E Datiol 12 (400)
- 2.3.2
o T (2323
< C’He’co(l*@)t@guoHLQ(RQ) =+ He & 82u0]|L2(R2)
S Ce_cot||62uO||L2 S C(l + t)_1||82U0||L2 S 05(1 + t)_l.
Similarly, ()5 admits the same bound, namely,
Qy < C(1+t)7Y|Dabol| 2 < C5(1+ 1)~ (2.3.24)

The bounds in Proposition 2.2.2 are not sufficient for estimating ()3 and )4, so we drive
some alternative upper bounds. Recall that

3
A22 = {f € RZ? Vﬁfg +€% < E(W‘i‘ 1/522)27 V£§ > 77}7

and G and G5 can be rewritten as

B )\26)\2t — )\1€>\1t )\2<€>\2t — eAlt) —+ ()\2 — )\1)6)\1t

G — = — Alt )\ G .

2 N — N N — A e+ Al
)\26)\11‘/ — )\1€A2t )\1(€A1t — 6)\2t) + ()\2 — )\1)6)\1t At

Gs N — M Xe — ‘ 1

Furthermore, by the statement of Proposition 2.2.1,
Ky = M4 MG+ 0Ghy, Ky = i6,Gy, Ky =M — MGy —1Gh.

By (2.2.9), we obtain the new upper bounds for I/(\l and I/(;,

— e 2 1/77§2 + 52
‘Kl‘ <e o(1465)t —|—C< 7]—12_”5221 +77)|G1|
9 2 vngs+€3
< eeo(ed)t iC@ <’”7§2_ +§§1 —l—n) (e—é(nw&%)t +e Z+2”531t> , (2.3.25)
n+ v n+ vé;
- _ wned+ed
|K2| < |i§1|§2 (e—%(W—Vﬁ%)t +e n+ves t) . (2326)
T Ve

To bound ()3, we first decompose it as
t
Q3 2/ [ K1 (t — 7)O0aN1(7) || 2(400) AT
0
= [ 1B = 0N s dr + [ R~ DN 1200 d
0 t

/2
= Q31+ Qs2.
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Invoking the upper bounds in Part (3) in Proposition 2.2.2 and further dividing @3 into
four parts, we can show via similar techniques as for Oz in (2.3.15) that

t/2 - /\
Qo = / IR (= )0 (7)1 (4
t/2 , o
< 0/ He—co(1+§2)(t—7)52(u . VU)HP(RQ) dr
0
2 S
+C/ He 1+£2 8 (b Vb)HLQ R2 7'
e+ ) s
+C ’ Oo(u -V d
/ (- Vu)leeee) dr (2.3.27)
1 —
+0/ e 8 - D850 V)| 2z dr
0

t/2
= C/ e ((|0x(u - V)| 2 + |02(b - Vb)||12) dr
0

. t/2
< 06‘2%/ (102(u - Vu)|lr2 + [|02(b - Vb)||r2)dr
0
< CE*(1+1)" + Card>(1+ 1)

To bound 32, we use the new bounds in (2.3.25) and (2.3.26). By Hélder’s inequality and
(2.3.25),

t
Q2 < C/ e 0G| g2 + [lem D36 - VB |2 dr

t/2
Cll vngd + & -
+C/ <#+1) ~oH ) (10 (u - V)| + 180 - Vb dr
t/2 (n + vE€3)? <| ( )| =+ [0a( )|> L
! 1 vnE2 + &2 _vng3+ed (bor) [ -
¢ el ) s D5(u - V)| + |95(b - Vb d
* /t/2 N+ v&3 ( N+ v tnje (| h(u - Vu)| + [0( )|> B T

=321+ @322 + Q323

We rewrite (0321 into two parts,

t
Q321 =C / e~ 00+ |5, (4 - Vi) ||| 2 dr
t/2

t
+C / e+ =15, (b - Vb)||| 2 dr
t/2

= Q3211 + Q32,12
Following similar estimates as those for Os; 5 in (2.3.16), we have

Q3011 < CEFP(1+1)1
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Clearly, Q3212 admits the same bound,

Q31 < CEF(1+1)" (2.3.28)

v 2 2
For £ € Ay, we have (n"fgz‘gﬁg < 3. By (2.3.28),

' vnés + & 2 = o
Q322 < C/ (# + 1) e~ @)D 9, (u - V) dr
t/2 (77 + V€§)2 L2
t 2 | g2 -
+ 0/ (% + 1> e—co(1+£§)(t—f)|32(b - Vb)]| dr
t/2 (n + v&3) 12
t
<C [ e Mg, (0 V)| 2 dr
t/2
t
+O [ et D9, (b - V)| 2 dr
t/2
<CQ3z91 < CEF(141t)7"
(0323 can be further rewritten as
Y (gt g ()
(323 = C/ 3 5 t+n)e "R |02 (u - V)| dr
12 |[m+ vés n+ vé; 12
t 1 2 4 ¢2 _wmgdHet
+c/ . (”"52 o +n) e i gV dr
¢/2 ||+ 23 n+vé; 12

= 3231+ Q3232-
We first estimate Y3231,

t

2 le|2
’ﬂ 6760 15—5% (¢

S P
Q3231 < C/ 5 10y (- V)| dr
t/2 (1 + 52)2 12
t —c i t—7) ———
+C/ % g V|| dr
t/2 B Lo

= Q32311+ W32312.
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The process of controlling (32311 is tedious, so we first estimate (J3231.2. By Lemma 2.3.3,

Q < C/t |€| (t )%(t )_% _Col‘iljz(t_T)/v\ d
3,2,3,1,2 > e — T — T (& 2 u - u T
/2 ||V 1+ &3 12

t -1 ﬁ t—7) ——
gc/ (t—m) 3 T dr
t/2

t
C’/ (t—T)’%e’TO(t’T)Hu-VuHLz dr
t/2

IN

IN

t
C’/ (t—T)*%effo(t”)uuumHVuHLz dr
t/2

1]

t 1 1 1 1
C/ (t—7)72e” T || | 0vul| L Do 22 | Vul| 2 || Au| £ dr
t/2

IN

t
< c/ (t— ) 2e” D@1+ 7)72) 2 (@0(1 + 7)) (e8)Tdr
t/2

<O +t/2)7 < CEP(1+1),

t
where we have used the facts that / (t — T)’%effo(t’f) dr < oo and ye~ 27" < C or more
t/2
explicitly

—|€| (t — 7')% e 2148 < C.
VI+E

As (2.3.1) indicates, the decay rates associated with the horizontal and the vertical derivatives
are different. To bound ()323 11 properly, we need to distinguish the horizontal derivative
from the vertical one. By V - u = 0, we write

62(U . VU) = 6182 (uul) + 8282 (UUQ)

and divide ()323.1,1 into two parts,

t 2 B 1
32311 < C/ %6 g )|0182(uu1) + 0205 (uug)| dr
12 || (1 +&3) Lo
3 —
< C/ e 8 |0102 (uuy)| dr
t/2 (1 + f%)Q 12
[ —
+ C’/ ———e % |00 (wug)| dr
t/2 (1 =+ §§>2 12

= 323111 + @3231,1,2-
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Since £ € Agp, we have [£]? < C(1 + £2)?. By Lemma 2.3.5 and Lemma 2.3.3,

. 5 - 2—0
Q3*273’171’1§/t/2 (1?53“_7)) ((1 El@)

e iy
Xl — 7)o " E T G| dr
L2
t 1o~ RO )
<o) [ o-mmare g0 e
t/2 12

t
< (o) / (t — 7)o PO AW(aZ(uul))HLQ dr
t

/2
1— 29

t . . ” 20
< C(U)/ (t—7)7e Dl %Vl | Aull s |0yl 2 dr
t/2

t
+Clo) / (t = 7)) Oy 72110115
t/2

1 1 1 1
x| 0l g2 l|Ovull o lull 22 | Aul+ dr

t
< C(o) / (t—7) e TEN(E(1+ 7)) F(Co) T (1 +7) T dr
t

/2
t
+C(0) / (t—7) % TED(ES(1 + 7)) 5 (CO) T (@5(1+7)72)7 dr
t/2
< C(0)eT (1 +1)775 + C(o)e 8% (L + )7

C(o)c
C(o)c282(1 + 1),

IA

t
where we have set ¢ = 2, and used / (t—7)%e ¢ < 00, and
t/2

4 < C(0) (K'Q <t—7>>a€_?lﬁé(t_ﬂ<0<0> (2.3.29)
1+¢ =" 1+¢2 ' >

In addition, we have used the following upper bound on [[A{~7(dy(uu,))|| in the fourth
inequality above, by Lemma 2.3.5,

AT (02 (uur)) || 2 < [|AT7(Oouwr)|| 2 + [|A]7 (uour) || 2
< CllQqull 2| A1 Tusll Lo + Cl AT Ogul| 12| ua || oo
+ C|Oaur || 2| AT ul| oo + C|IATDowr || 12| w1 (2.3.30)

g a 1— 22
< Cllull 2 Vull 221 Aul 2 * ([ 92ul] 2

1 1 1 1
+ Cl0sul| 2101 05ull 127 || Oull 2 || Ovull ol ull £ [| Al 7.
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Similarly, by (2.3.29),

Q323112</t ( L3 (t—T))U( € )20
””” e |\1+E (14&3)
1 ,COle(t,T) —
X|& Tt —T1) % e | 0o (uus)| dr
L2
! R
<0 [ e-niere T ma)| o
t/2 1o
t -
SC(U)/ (t—7) e 4t A%_U(GQ(U/UQ))’ L dr
t/2 L
t ; a a _ 20
< C(o) // (t—7) 77 T )| 5|V 2 | Al | 0aull e dr
t/2

t
+ 0(0>/ (t—7) 7+ 0yul 7| 0202ul 12
t/2

1 1 1
x || Bgull 2 |yl o lull 2| Aul|+ dr

< C(o)E2 6> (1+1)7Y,

where we have set o0 = %, and used (2.3.30) and the following estimate

1—20

10577 (e (uu2)) |22 < Cllull 22 Vull 2l Aull 2 * [[9yull e
1 1 1
+ Cll0aul| 2 10205ull 127 [|Oull 2 172 [| Al 7.

Therefore, ,
Q3231 < CEP(1+1t) '+ C(0)c28°(1+ 1)

Similarly, ()32 32 admits the same bound. Collecting the bounds for (321,322 and Q323
yields

Q52 < CEP(1+1)" + C(0)&2 6 (1 + 1)\ (2.3.31)
Combining the estimates for ()37 and Q32 in (2.3.27) and (2.3.31) respectively, we obtain

Qs < (E+c1+E 4081 +1) L (2.3.32)
Next we bound Q4. By (2.3.26), we rewrite @4 as

t
Qs = / 1 Ralt — )32 (7|2 a7
0

t

- / | Balt — ) 33Na(r) | 12y A7 + / 1Rt — 7)3aNa (7|2 ay I
0 t

/2
= Qa1+ Quo.
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By Part (3) in Proposition 2.2.2 and by (2.3.27), Q41 obeys the same bound as @3 1, namely,
Qu1 < CE8*(1+ 1) '+ Ceig?(1+ 1)\ (2.3.33)

Since the bound for K in (2.3.26) is not the same as the bound for K; in (2.3.25), we need
to estimate ()40 differently from s .

&l - S L AT S
<C e~ 00+E)E=) (18, (u - V)| 4 |92(b - Vu dr
QusC ng (12atu D)1+ 1220Vl ) |
_wmgdtet o, -
wof 1|f|£ g )(lag(u-Vb)|+]32(b~Vu)|) dr
2 2
= Q21+ Qoo

Since & € Agg, [£]? < C'(1+&2)2. By the same process as in (2.3.16),
Quua <€ [ e DG T s dr
12

t
+C / e+ =78, (b . V)| 12 dr
t/2
< OEP(1+t)

We further decompose Q422 into two parts,

 ungd+ed —y
Qa2 < / . |f_1|€ e | )|52(u -VO)[||  dr
2 12
_wnedret
+C/ ol et )laz(b-wﬂ dr
1+ 52 12

= Q4727271 + Q472’272'

As before, we write Oa(u - Vb) = 0102(buy) + 0202 (bus) and thus decompose Q4221 into two
parts,

¢
— 2(15 T, ———————————
Qa221 < C 1|§_1|§ Hg |0109(buy) + 0202(bus))| dr
t/2 p L
¢ ol iy
<C |§1| “ig )|8132(bU1)| dr
t2 || 1+ 52 L2
+C el - ot amtw)|  d
1+§ 202 0U2 T
2 L2

= Q4,2,2,1,1 + Q12212
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The first part Q42211 can be bounded by

140 2
2 Y _l4o —C L€] t—7) —7——
Qu2211 < ( -7 ) |f1|1 (t—7)" 2e P |02 (buy)|
L2
o s ~D 40—
1|77t —71)" 2 e 2 |02 (buy )| dr
L2

/t—r ¥ -f°<t—r>\Ai—/“<a\2<bm>>HL2 ir
t/2

/ (t =) 5 F (= )llul | Vul Gl Aul 7 102bl]2e dr

+C(0) / (t — 1)~ e T 35b)1 2. 10,05 17 10zl
t/2

1 1 3
X |Ovul fallull Lol Aull 2 dr

t
+Clo) //2@—7)-3 et — 1) Bl VO E | AB ¥ 0 12
t
t
1 Co) / (6 — 1) (¢ — 1) O[5 | 01Dt |15
t/2

1 1o 1
X || 020l 12 (|00 22 1011 22 [ Al 7 d

20

§C’(J)/t (t— 1) 5 2@+ 1) H E (0 F (1 + 1) dr

t
+C0) [ (4= ) TN @(14 ) (o) @1+ ) D)
t

/2
< C(@)ET P21 +6) 5+ Co)E@ 181 +1) 72
< CEP(1+1)7",
t
where we set o = 3, and have used / (t — T)’HTUG’TO(“T) < 00 and
t/2

€] S ey e
- t—1
(Ege-n) * 7 <
2
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In addition, we have also used the following upper bound on ||A1™7(dy(buy))|, by Lemma
9.3.5,

AT (02 (bun)) |12 < IAT77(D2bua)|| 12 4 [| AL (bOauy) || 12
< C||b| r2]| A} Tur || oo + CJIAT700b| 2 ||t || o
+ C||Oour || 2 || A1~7b] oo + ClIAT7 Ooua || £2]|b]| Lo
z fos 1-22
< Ollull 2 IVl L[| Aull 2 ® 1|02 2
1 1 1 1
+ C||02b]|7211010:0]| 127 |O2| 12 (| Orel| 2 [l 2 || A
g a 1— 29
+ C|[b]| 22 IV ][ F2 [|Ab][ 2 2 [|Opur || 2
1 1 1 1
+ C||O2ur || 7210102y || 157 1|02b]| Lo |01| L2 [16]) L2 || AD]| £

Similarly,

Since (04222 obeys the same bound as (4221, we find
Q22 < 0(0)5%52(1 +t)7"

Therefore, \
Quo < CEP(1+t) 1+ 081 +1)7L (2.3.34)

Putting (2.3.33) and (2.3.34) together yields
Qu< G+ +2+)008%1+1) L (2.3.35)
Combining (2.3.23), (2.3.24), (2.3.32) and (2.3.35), we have
1020(t) || 24y < CO(1+ 1) + (64 & 4 2)C6* (1 +1) " (2.3.36)
Collecting the estimates in (2.3.17), (2.3.22) and (2.3.36), we find
Do) 2 < C1O(1 4+ 8) " + EC82(1+ )" + (61 + & + 2)Cs0* (1 + 1) "

If we choose ¢ and ¢ satisfying

1 3 3
. O < — (61 4+ +¢62)C36 <

<
¢ < =16’

0| ™

then we obtain
c c c
Olle < <61+ + —0(1+t) "+ —0(1+¢)"
b0z < GO+ 07"+ 501+ 07 + o1+
¢
= -5(14+t)"L.
4(5( +t)
The same upper bound holds for ||0:b[| 2. Thus we have obtained
c
1(@2u(t), Dab(D)) ][z < (1 +)7".

This completes the proof of the third inequality in (2.3.2).
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2.3.3 Estimates of ||(0u(t), 01b(t))|| L2

This subsection establishes the second inequality in (2.3.2), namely

I(@vut). 100 12 < o1+ 8)73.
Applying 9y to (2.1.14) yields

t —_— — —_—
du(t) = K101ug + K201bo + / Ki(t = 7)0iNi(7) + Ka(t — 7)1 Na(7) dr
0 (2.3.37)

—~

t —_— — —_—
81b(t) = K281u0 + K381b0 + / Kg(t — T)alNl(T) + K3(t - 7)81N2(7_) dT-
0

To estimate ||01u| 22y, we estimate ||O1u|[r2(a,), [|O1u]l12(45,) and [|O1ul|12(a,,). We start
with H&luHLz(Al). By (2337),

|9vu(t) | 2ar) < 1B (Dol zan) + 1K )boll 2
+ [ IR = B (i o
[ 1R = BN o
= H, + Hy + Hy + Hy.
By Proposition 2.2.2,
H, < ||€_CO(1+£§)t(i?70||L2(R2) < e M Orug|| 2 < CS(1+ t>_%7

where we have used (1 + t)e~" < C. By the same technique, Hy obeys the same bound,

namely, )
Hy < C6(1+1t) 2.

Hj can be decomposed into two parts,
t
H3 S / ||K1(t — T)@l(u . Vu)(T)l|L2(A1) d’T
0

t
—l—/ | Ki(t —7)01(b- VO)(T) |l L2(ay) dT
0
= H3 1 + H3s.

We further divide H3; into two parts,
2 __ S
= [ IR = 10 V) ()2, dr
0

t
+ / | K1 (t = 7)01 (u - Vu)(7)| 22(ay) dT
t/2

= Hs11+ Hs .
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By Ladyzhenskaya’s inequality, Proposition 2.2.2 and Lemma 2.3.3,

t/2
Hypy < / e 10y (u - Vu)|| 2 dr
0

. t/2
<e# / (9l | Vs + ]z~ 04 V] =) dr
0

e N L ' 1 1 ; 9.3.38
<cet [ ol dul1Vuls + ol 1o ol du)f ar - 255
0

T ,

< C’e?ot/ G(1+7) 2824+ &1(1+7) 28 dr
0

1

< CE(1+1t)72 + Ceis*(1+1) 2,

where we have used e~ 3(1 + 1) < C(y) < oo for v > 0. We write the norm in Hs; 5 from
frequency space to physical space, by Holder’s inequality, Lemma 2.3.1 and Lemma 2.3.2,

t
oy — / e t=) ||~ 0S5 (0 V) |2 dr

dr

2
L3,

/ 7co(t77')) H HG*CoA%(th)al (u . Vu) HL%Q
C

/ 6—co(t—7'
t/2
t
/ 6—co(t—7'
t/2

)( dr
)
[ eaee-n) ‘1*(HH@1UHL2 Va2,
)
)

7')_%

IN

[01(u - V)1,

2
Lz,

[

t—
t—T1

IN
Q

-1 (Hualu Vallgs, + lu- 0Vl H %)dT

~

~+

IN
Q

(2.3.39)

t/2

~

+ |tz 91 Vel

11
dr

L _1
[ e =) (1000l 1Vl + sz | Sl

2

IN
Q

t

~

IN

1 L 3
C [ et — 1) 5|0yl | Aull 7| Vull 2dr

t/2

t 1 1
+C / e~ (¢t — 7)1 ||ul| 2, || Oyul| || Al 2 dr
t/2

2 -1 =52 -3
< CEIF(1+1)"2 + CEs* (1 +1) 2

t

where we used / e~colt=7) (t — T)’% dr < 0o. Since Hj o admits the same bound as Hj,
t/2

Hy < Cé8*(1+1)"2 + C&16*(141) 2.
H, obeys the same bound as Hj, hence,

101u(t) || 124y < CO(141)"2 + CE6>(1+1) 72 + CE16%(1 +1) 2, (2.3.40)
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Now we estimate ||01ul|r2(a,,). By (2.3.37),

01w ()] 22 a0y < 1K1 (£)01uo || L2(a00) + [[E2(2)O1bo || L2 (A1)

t ———
+ [ IR = DB g
0

t —
T / 1ot — )0 No(7) | 2aay)
0
I:L1+L2+L3+L4.

By Part (2) in Proposition 2.2.2 and Lemma 2.3.1,

Ly = | K1(t)uoll 12 (aa)
< C||e_c°(1+53)t5/1\w)HL2(Azl) - C||€_CO|£‘2ta/1-170||L2(A21)
< CHefco(Hg%)t@T\w)HLZ(Agl) + CH@*COIE‘%%HLZ(AM)
< Ce™|Druoll 22 + Clle™ Aol 2wy
< C(L+ )M |0vuol| 2@y + O luol p1 re)
< C(1+ 1) ol s < CH(1+1)"2.

where we have used e~%! < C(1 +¢)~! for ¢t > 0. Similarly,

[SIES

L2 S C(l + t)_1||b0||HlﬂL1 S 05(1 ‘l— t)_ .

We divide L3 into four parts,
t — —
L3 = / ||K1(t — 7)81N1<7_)HL2(A21) dT
0
t
<c / e DENF 0 V) | ey dr
0
t
+ C/ ||e_c°(1+55)(t_7)81(b V)| 22y dT
0
t
+ C/ ||e_c°|§‘2(t_7)81(u : VU)||L2(R2) dr
0

t
+ 0/ e <0lFEDF (b - V)| 12 g2y dr
0
= L3y + L3y + L33+ L3y

Clearly, L3 ; can be bounded similarly as H3, namely,

Lsy < Ce*(1+1)"2 + CE182(1+1)72. (2.3.41)
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L3 5 admits the same bound as Lz ;. Ls3 is decomposed into two parts,
t/2 , -
Lys—C / e P (- V) | gy dr
0
t
+ C ||€7CO|£|2(t77)81 (U . VU>HL2(R2) dT

t/2
= L3311+ Laso

By Lemma 2.3.1 and Holder’s inequality,

t/2 -
Loan <C [ e 90500 e dr
0

t/2
<C [ llgle T e dr
0

t/2 ,
< C/ |||§|26_c°|§‘ (t_T)|u ® ul|| w2y dr

0

t/2 \ L, [
< C’/ (t—7)2|lu@ulp dr < C’(t/2)_2/ ||u||%2 dr

0 0

3 t/2 1 3 1
< Ct—z/ (@5(1+7)"2)* dr < CE&* 2 In(1 +t/2) < CE6*(1+t) 2.

0

where we have used ¢z In(1 +¢/2) < C for all ¢ > 1. By Lemma 2.3.1, Lemma 2.3.4 and
Holder’s inequality,

t
L3z <C | (e 0, (u - V)| ooy dr
t/2

t
<c [ e e e dr
t/2

t
<c [ -t Daus w)udr
12
t 1
<c [ @-rioulpludr  (<q<2 r>2)
12

1—2

t 2
< C/t/2(t—T)_qH<91UHHUHEQHWHL2’“ dr
t
< c/ (t—7) 0 (E8(1+ 1) %) (@ (1 + 7)"%) dr
t/2
t

§06252(1+t)‘1/ (t—7)+ dr

t/2
< CER(L+1) 470 < OB (1 +1) "7 < CE*(1 +1) 2.
Therefore,

Lss < CP82(1+1)2. (2.3.42)
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Similarly, Ls 4 obeys the same bound. By (2.3.41) and (2.3.42),
Ly < Ce8*(1+ )72 + CE16%(1+ 1) 2 + CP6*(1 + 1) 2. (2.3.43)

L, admits the same bound as L3 in (2.3.43). By collecting all the bounds for Ly, Lo, L3 and
L4, we obtain

1010(t) || L2(an) < CO(1+1)77 + CE6*(1+1)"2 + CE182(1+1) 72 + CE6 (1 +1) 7. (2.3.44)
Next we estimate [|0yul|12(a,,)- By (2.3.14),
[Ovu(t)] L2 (a00) < [H1L(E)Ortto]| 12 (00) + 1 K2(8)O1bol| L2 42)
t
+ [ IR = DO )
0
t
+ [ Nt = 1O gy
0
= Sl+52+53+84.
By Part (3) in Proposition 2.2.2,

St = || K1 (t)01uo || L2 (4s0)

52
—co(1+25)t ——

—e 2y 5
< Clle™ gl 2(agy) + Ile = Onto| 2 an (2.3.45)
—co(1+€3t 5y *CO(1+%)t ~
< CHG 0 2 81u0||L2(R2) + ||€ &2 81u0||L2(R2)
< Ce !|Dyug|ze < C(1+ )2 ||Dyugl| 2 < C5(1 + 1) 2.
Similarly, S; admits the same bound, namely,
Sy < C(141)"2||91bo|l 2 < CS(1+ ) 2. (2.3.46)

We decompose S3 into two parts,

t
53 :/ HKl(t—7)81N1(7)|]L2(A22) dT
0

t/2
-

=531+ S39.

t
[ K (t = 7)O1N1(T) 22 (400) dT+/ [ K1 (t = 7)O1 N1 (7) [ L2 (a00) AT
12
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To bound Ss 1, we first apply Part (3) in Proposition 2.2.2 to decompose it into four terms
/2 -
5371 :/ ”Kl(t—T)alNl(T)HLQ(AQQ) dT
0

t/2 o
S C/ Heico 1+£2)( 77)81(U . VU’)”LQ(RQ) dT
0

C/
0

le= DG (b - Vb)|| 2 (g2 dr

t/2 1+ (t—7) ————

+C/ e 2)( )81(u-VU)||L2(R2> dr
0

t/2 —c ﬁ —T) ————
+C/ le T8 V) ey dr
0

Then we use the same techniques as in the estimates of Hs;; in (2.3.38) to obtain

t/2
S31 < C/ e~ ((|0y (u - Vu)|[ g2 + (180 (b - VD) ||2) dr
0

w, [? 2.3.47
< Ce?t/ (|01 (w - Vu)||zz + |01 (b - V)| p2)dT ( )
0

< CeP(1+1)"2 + CEid>(1+1) 2.

Now we use the new bounds in (2.3.25) and (2.3.26) to estimate Ss2. By Hélder’s inequality
and (2.3.25),

t
S50 < C / e+ D15 (0 - Vu)||| 12 + [|e 0D |9 (b - V)| 12 dr
t/2

t U77§2—|—€2 [ _

+C/ <#+1) —co(1+€3)(t O1(u-Vu)| +01(b-Vb dr
o (18- V)| + 36 VD) ) )
t 1 V7752‘|‘52 _wned+ed (t-1) [ o

—|—C/ < 2 1+77)€ vl O1(u-Vu)| +|0(b- Vb dr
e G (1810~ V)l + 18,0 - V) }

= 9391+ 5322+ S323.

We further rewrite S3; into two parts,

t
537271 = C/ He 1+£2)(t T \8 (U VU)lHLZ dr
t/2

+c/ e~ =15 (b - V)| || 2 dr
t/2

= 53211+ 53212

By the same estimates as for Hz 1 in (2.3.39),

S3011 < 05%52(1 + t)_% + Ce0%(1 + t)_%
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Clearly, S32,12 admits the same bound, namely,
S0 < CEO*(1+1)77 + Ceo*(1 1) 2. (2.3.48)

. €242
Since &€ € Ay, we have (ﬁf,—g)lz < <. By (2.3.48),

t
337272 S C/ dr
t/2

L2

v 2_|_ 2 -
(e + 1) e
2

t 2 2 -
i 0/ (Mﬁ + 1) e 9, (b- VD)I||  dr
t/2 (n + v&3) L
t
S O/ ||€—co(1+§%)(t—’r)al (u ] vu) ||L2 dr
t/2
¢ 2 _—
+C’/ ||e—co(1+§2)(t—T)al(b.Vb)||L2 dr
t/2
< CS391 < 05362(1 + t)—% + O (1+ t)_%,
Furthermore, S35 can be rewritten as
T g+ T P
5329 = C/ 2 ( et 77) e e |01 (u- Vu)|||  dr
2 ||n+ s\ n+vé; .
¢ 1 2 2 7V7I§§+§% Yy
+C’/ i (vnéz +§1 +77) e il )|61(b-Vb)| .
t2 ||+ v\ 0+ v .

= 53231+ 53232

Ss3.9.31 is naturally divided into two parts,

2
e / | ity oVl dr
3231 < — (-
t/2 (1 + 6%)2 L2
t en JER oy
+ C’/ § s€ Oirg )u -Vu dr
2 || 1+& 12

= S5392311+ 532312
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The process of estimating S52311 is tedious, so we first estimate S39312. By Lemma 2.3.3,

' €] 1 L1 et ()
S32312 < C ————(—T7)i(t—7)Ze % w-Vu|| dr

t/2 (1+&) 12
¢ —%1 Yt—T

<c/ R e e T

< / (t—7) "2 T u- V|2 dr

< C/ (t—1) éef%o(tff)HuHLooHVuHLz dr
t/2
! L O(t T)

<C [ (t=7)72e el l9yuall s ol |Vl 2 | Al b
t/ 2

< / (t—71) " 2e” TE(@ES(1+7)72)2(E5(1 + 7)) a(c8)idr

t/2

~

NG

CEP(1+1/2)7 1 <CEP*(1+1) 2,

t
where we have used ye~®"" < (' and / (t — T)’%e’TO(t’T) dr < oo. To estimate S32311,
t/2
we first write 0 (u - Vu) = 0105(uuz) + 0101 (uuy),

dr

L2

S < / | et s )
3,2,3,1,1 > P EET T 102 2 101 1
12 || (L+&3)?

' \5I2 oS (t-r) S
t 2 2
' ’5‘2 e 5L (t— |'a/a(\)|
+C/ —_— L¢3 uw dr
o || T+ 7 rtuall)

= 5323111+ 5323112
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Since € € Ag, |£|> < C(1 + £2)%. By Lemma 2.3.5 and Lemma 2.3.3,

(e S
83’2’3’1’171§/t/2 <1+£§(t_7)) ((1—1-5%))

el iy
< 6ot —m)oe 8 gl dr
L2
t 2—o g 1, &3
. L)
<co) [ (1) tare-ne L g o
t/2 +£2 L2
: ot 1o~ RO )
< C(o) (t—7)"7] e 2 |02 (uug)|||  dr
t/2 Lo

t
<C(o) [ (t=ryoe 1O AT @ufu))||, dr
t/2 L?

t
o S04 z 2 1-2¢
SC(U)/ (t =7) 7 A lull LIVl Ll Aullz 7 |9sull= dr
t/2

t
Y Nt R L LR A
t/2
1 1 1 1
< ol ol ful Al dr

t
< C(o) / (t— 1) e PED(G5(1 4 7)) F(C6) - Fes(1 + 7)) dr
t/2

/2
(0)ET T2 (1+ 1) 5 + C(0)@ 562 (1 + 1) 2

C
C(o)E26%(1+1t)72,

+ C(o) / t (t —7) e T (ES(1+ 7)1 (C8) i (E5(1 + 7)"2)2 dr
<

IN

t

where we have set o = 2, and used / (t—7)% 1077 < 00, (2.3.29) and the following
t/2
inequality from (2.3.30),

_ a s 1—2¢
1A (2 (uwa)) [ r2 < Cllull 22 [ Vull 2| Aull 2 * (102wl 2

1 1 1 1
+ Cll0aul 2 1010yul| 127 | Oul| o | Ovul| ol ull 2 [| Al 7
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Similarly, by (2.3.29),

t
S32311,2 < /
t/2

(gt~ ”)U (5 |+5|5§>>H

o JE2 (4
&t — 1) 8 15wyl dr
L2
t 2—0o _cq 54 ) —
< O(O’)/ ( |§| 2) |§1|1_0(t—7)_06 2 ( +5%)(t )|81(UU1)| dr
2 || \1+& L2
: 1o~ RO D))
<cto) [ |e-rrotare gy o
t/2 L2
t ——
< C(O’)/ (t—7) % TED N7 (@, (uwy ) dr
t/2 L?
t o o 20
—0 —(t—7) 3 3 1=
<C(o) // (t—7) % lull 22|Vl 2| Au|| ;2 * |01l dT
t/2
t
Clo) / (t — 7)o R | 0yu)| 2. | 0rul 15
t/2

1 1 1 1
X | Ozull ol Ovull f2 [lull 72 [ Aul[* dr

< C(0)E282(1+ 1)z,

where we have set 0 = %, and used the inequality below following from (2.3.30),

_ a o 1—20
1A (O (wwn)) 2 < Cllull [ Vull 2| Aull 2 101wl e
1 1 1 1
+ C||0vul| 2 ]1010vul| 27| Bl L2l Ol ol 72 | A

Therefore, 1 . 1
Ssoa1 < CEP(1+1)72 +c26°(1+1) 2.

Similarly, S5939 admits the same bound. Collecting the bounds for Ss91, 5322 and S393
yields

S35 < CE16%(1+1)2 + CPS2(1+1)"2 + C(0)E26%(1 + 1) 2. (2.3.49)
Combining the estimates for S;; and Sso in (2.3.47) and (2.3.49) respectively, we have
S5 < (G4 +FE+E2)C83(1+1) 2. (2.3.50)

Next we estimate Sy. We first divide Sy into two parts according to (2.3.26),

t
54 :/ ||K2(t—7)81N2(7)||L2(A22) dT
0

t

_ / 1Rt — )3 Vo ()| 2anmy d + / 1ot — 7)3 Mo ()| s2aay
0

t/2
= 8471 + 5472.
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By Part (3) in Proposition 2.2.2 and by (2.3.47), Sy obeys the same bound as Ss 1, namely,
Si1 < CE8*(141)77 + CE16*(1 + 1) 2. (2.3.51)

Since the bound for K in (2.3.26) is not the same as the bound for K; in (2.3.25), we need
to estimate Sy o differently from Sj 5.

54,2 S C dr

L2

&l o1 +€3 T on L AT o
1+£2 1+63) (\a (w-V0)| + 91 (b- Vu)|)

| 3 | _wned+ed

S R e
n+vEs . .
g (1810 B)| + 1010 - V)

= S401+ 54,2,2.

+C dr

L2

Since £ € Ago, (ng < C. By the same process as in (2.3.39), we write

t
Sio1 < O/ ||6_00(1+§%)(t_ﬂ81(“ - Vb)||z dr
t/2

t
+C / e+ =77, (b . V)| 12 dr
t/2

[un

<CES(1+1)2 +Ces*(1+1)2

l\?

We rewrite Syo9 as
¢2+¢2
ST

Si22 < C/ mives
2 || 1+ 52
|£1| Vn§§+§% (t—T)

+ C/ 7I+V5%
I+ 52
= S4221 + S1222.

01 (u- V)| dr

L2

01~ V)| dr

L2
To bound Sy2.1, we write 01 (u - Vb) = 0105(bug) + 0101 (buy),

t €12 -
Si221 < 0/ |§1| g ’(91(92(5162) + 010; (buy)| dr

¢/2 |1 +£2

L2

<o [ |l e a5
< o 1+§2 102(bug

He
—co iy (t=7)
2

= 54,2,2,1,1 + S42212-

dr

L2

—|—C dr

L2
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The first piece is bounded by

¢
Si2211 < /
12

o+1

35 2 Y o1 —eodS (4o
(1|+|g2(f—f) Gt =) TE 0y (buy)|
2

20 &
ot1 — 2 (+35)t-7) =7

&'t —T1)" e Da(bug)l||  dr

L2

o+1

< (o) /tt (t—m)FePi—r) HAT’@\Q@W))HL dr

o+1 1_L

t a a a
< C(U)/ (t =) e O ull LA Vull 2 | Aull (102012 dr
t

t
+Clo) [ (t= ) H e O bl oy 0ub
t

1 1 1 1
X || 0l g l|Ovull e llull 72 | Aull . dr

o+1 Ci 1—

t a s 20
+ C(o) / e AN AT A L P
t

o+1 <0

t
+C0) [ (=) H e O o 50400
t
1 1 1 1
 ll9ubl £ 900l 0] | A . dr

_o+1 2

t
< 0lo) [ (¢ e H s+ ¥ (00K es(t 4 1) dr
t

t
o) / (t—7)" % e T @ (L + 7)) (O8I (@ (L + 1) 72)2 dr
t
< O(o)FF (148175 + o) 82 (1 4 )7
C
t
o+1

where we have set ¢ = 3, and used / t—7)"7 e 7 < o0, and
t/2

€[ T e
- t—7
({E0-n) " H <0
5
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In addition, we have used the following estimate above, due to Lemma 2.3.5,

AT (2 (bus)) |12 < AT (D2bug)|| 12 4 [|AL 7 (bOaus)]| 12
< C|02b|| 2| A1 Tun| oo + Cl|AT70ab]| 12 ||uz]|
+ C||O2us || 2[|A77b] oo + Cl|AT7 Oaua]| 12]|b]| oo

< Cllull 5 IVl L)l Aull ) ¥ 102511
- C0bl1% 010205 1Ol o Dl o ] | Al
AN TATN e A
o N A N [ L FA L R A T

Similarly,
Sia012 < CE262(1+1)7 2.

Since Sy 222 obeys the same bound as Sy291, we obtain

[NIE

Sias < C(0)E26%(1 4+ 1) 2.

Therefore,

(NI

Sio < CEP(1+1)77 + CE26%(1+1) 2 + CE10>(1+1) 2.
Collecting (2.3.51) and (2.3.52) yields

(2.3.52)

Sy < (64 481 +2)C6 (1 +1) 2. (2.3.53)
Combining (2.3.45), (2.3.46), (2.3.50) and (2.3.53), we obtain

N[

101(t) || L2(ag) < CO(1+1)72 + (G4 T3 + & +2)C* (1 4+ 1) (2.3.54)

Putting (2.3.40), (2.3.44) and (2.3.54) together leads to
101u(t)|| e < C18(1 + )72 4+ ECo0* (1 +1) "2 + (63 + & + ¢

If we choose ¢ and ¢ satisfying
¢
C; < -
Sy =16
then we obtain

10vu(t)|| 2 < S6(1+ )% + S+ 55(1 )T

R

o
D=

W~

O
D=

=-0(1+1t) 2.

(]

A similar bound holds for ||0b||z2. Therefore,
c 1
1(Oru(t), 21b(2))l]12 < S0(1 +1)72.

This completes the proof of the second inequality in (2.3.2). [ |
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CHAPTER III

STABILITY AND EXPONENTIAL DECAY FOR
MAGNETOHYDRODYNAMIC EQUATIONS

3.1 Introduction

Let 2 = T x R with T = [0, 1] being a one-dimensional (1D) periodic domain and R being
the real line. Consider the 2D incompressible magnetohydrodynamic (MHD) equations with
horizontal dissipation

ou+u-Vu=—-VP+rvou+B-VB, reQ t>0,
O0B+u-VB+nB =DB-Vu,

V-u=0, V-B=0,

u(z,0) = ug(x), B(x,0) = By(z),

(3.1.1)

where u denotes the velocity field, B the magnetic field and P the pressure, and v > 0 and
n are the viscosity and the damping coefficients, respectively. Here the velocity u obeys a
degenerate Navier-Stokes equation with only horizontal dissipation v0y;u and with a Lorentz
forcing term. The magnetic field B satisfies the induction equation with a damping term. The
goal of this paper is to understand the stability and the large-time behavior of perturbations
near a background magnetic field.

This study is partially motivated by the stabilizing phenomenon of a background magnetic
field on electrically conducting fluids that has been observed in physical experiments and
numerical simulations (see, e.g., [2, 3, 7, 14, 15, 16, 27, 28]). Since the dynamics of electrically
conducting fluids is governed by the MHD equations (see, e.g., [4, 44]), the aim here is
to establish this remarkable observation as a mathematically rigorous fact on the MHD
equations.

We take the background magnetic field to be the unit vector in the z;-direction, B() =
(1,0). The corresponding steady-state solution of (3.1.1) is given by

u® = (0,0), BY=(1,0).

We write (u,b) with b = B — B for the perturbation near (u(®, B(). Our attention will
be focused on the following new system

u+u-Vu+ VP =voju+b-Vb+ b, x€Q, t>0
Ob+u-Vb+nb=">b-Vu+ ou,

V-u=V-b=0,

u(z,0) = ug(x), b(x,0) = bo(x).

(3.1.2)
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In comparison with the original system in (3.1.1), there are two extra terms 0;b and dyu in
(3.1.2). We aim to achieve a complete understanding on the stability of solutions to (3.1.2)
in the Sobolev setting. In addition, we also attempt to obtain the precise large-time behavior
of (u,b) and establish the eventual dynamics of (3.1.2).

Due to the lack of vertical dissipation in (3.1.2), the resolution of the stability problem
is not direct. If we follow the standard energy method approach, the difficulty is immediate.
The divergence-free conditions V-u = V-b = 0 allow us to obtain a suitable upper bound on
the H'-norm of (u,b), but it does not appear to be possible to control the H?-norm directly.
Even if we completely ignore the terms related to the magnetic field and simply consider the
2D anisotropic Navier-Stokes equations

ou+u-Vu+ VP = voyu,

direct energy estimates fail to generate a suitable H*-bound. In fact, when we resort to the
corresponding vorticity formulation

Ow +u - Vw = vijw,

the one-directional dissipation is insufficient to bound the nonlinearity directly. In the esti-
mate of Vw,

1d
§£HV¢UH%2 + |01 Vwl[7, = —/Vw - Vu - Vwdr,

the right-hand side does not admit a suitable upper bound. In fact,
/Vw -Vu-Vwdr = /81u1(81w)2 dx + /81u281w82w dx
+ /82u131w Oow dx + /82u2(82w)2 dx (3.1.3)

and the two terms in (3.1.3) can not be controlled suitably.

One novel idea to overcome this difficulty is to explore the stabilizing effect of the mag-
netic field on the fluids as hinted by the aforementioned experimental results. Mathematically
we make full use of the coupling and interaction in the MHD system in (3.1.2) to unearth the
hidden smoothing and stabilizing properties. To do so, we first apply the Leray projection
P =1— VA~V to the velocity equation to eliminate the pressure,

atu = l/anu + alb + P(b -Vb—u- VU)
By differentiating the linearized system in time

8tu = V@llu + 81b, (314)
atb = —77b + 81u

and making several substitutions, we can convert (3.1.4) into a system of wave equations

(3.1.5)

8ttu -+ (7] + V(?H)(?tu — (1 + VT])&HU = O,
Oy + (n 4+ vd11)0ib — (1 4+ vn)dr1b = 0.
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(3.1.5) allows us to decouple u and b and exhibits more smoothing and stabilizing properties
than (3.1.4). In particular, both w and b gain weak horizontal dissipation as can be seen
from the pieces (14 vn)dj1u and (14 vn)di1b. Unfortunately, this extra regularization does
not appear to help with the deficiency of vertical dissipation in the velocity equation. As a
consequence, this approach fails.

We remark that a previous work of Feng, Hafeez and Wu [25] explored the extra stabilizing
and smoothing of the wave structure, and successfully resolved the stability problem on the
same MHD system near the background magnetic field B = (0,1). When the background
magnetic field is (0, 1), the extra regularity is in the vertical direction and complements with
the horizontal dissipation in the velocity equation. Therefore, the direction of the background
magnetic field plays a crucial role in the stabilizing phenomenon on electrically conduction
fluids.

This paper seeks a different approach to resolve the stability problem concerned here.
The spatial domain here is 2 = T x R and we take full advantage of the geometry of this
domain. The horizontal direction is periodic and we can separate the zeroth Fourier mode
from the non-zero ones. The zeroth Fourier mode corresponds to the horizontal average.
This hints the decomposition of the physical quantities into the horizontal averages and the
corresponding oscillation parts. More precisely, for a function f that is integrable in x € T,
we define

f($2):Af($17$2)d$1, f:f_+f

This decomposition is orthogonal in the Sobolev space H¥(Q2) for any integer & > 0 (see
Lemma 3.2.2 in Section 3.2). More crucially, the oscillation part f obeys a strong version of
the Poincaré type inequality

1 fllz2) < C 01 fllz2(e)-

This inequality allows us to control some of the nonlinear parts in terms of the horizontal
dissipation. By invoking the decompositions

u=1u+1u b=b+b

and applying the aforementioned Poincaré inequality together with various anisotropic in-
equalities, we are able to successfully bound the nonlinearity and establish the following
stability result.

Theorem 3.1.1 Let n > 0 and v > 0. Consider (3.1.2) with the initial data (ug,by) €
H3(Q), and V -ug =V - by = 0. Then there exists a constant ¢ = e(v,n) > 0 such that, if

luol s + [|bollms < e,

then (3.1.2) has a unique global classical solution (u,b) satisfying, for any t > 0,

t
la(®) 12 + 5% + / (10vul%s + [Bl1%) dr < C 22,

where C' > 0 s independent of € and t.
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Theorem 3.1.1 successfully resolves the stability problem on a partially dissipated MHD
system near a background magnetic field even when the smoothing effect of the magnetic
field is not sufficient to deal with the dissipation deficiency.

Efforts are also devoted to understanding the precise large-time behavior of the perturba-
tion. We expect the horizontal average (u,b) to behave differently from the oscillation part

(1, b). Intuitively (i, b) corresponds to the zeroth horizontal Fourier mode and the associated
dissipation term vanishes. Thus (@, ) may not decay in time. In contrast, (@,b) consists of
non-zero horizontal Fourier modes and the horizontal dissipation effectively plays the role of
damping. As a consequence, (u,b) could decay exponentially in time. Our second theorem

rigorously confirms this intuition.

Theorem 3.1.2 Let ug, by € H*(Q) with V -ug =0 and V - by = 0. Assume that |Juo| gs +
lbollzrs < e for sufficiently small € > 0. Let (u,b) be the corresponding solution of (3.1.2).

Then the H' norm of the oscillation part (u,b) decays exponentially in time,

0 e+ 1B < (ol + ), (3.16)
for some contant C; > 0 and for all t > 0.

We explain the main lines in the proof of Theorem 3.1.1. The local well-posedness
of (3.1.2) in the Sobolev space H*(Q2) can be shown via standard procedures such as the
approach in the book of Majda and Bertozzi [42]. Our attention is focused on the global
bound of (u, b) in H3(€2). One of the most suitable tools for this purpose is the bootstrapping
argument [52]. To set up the argument, we first construct the energy functional. For the

MHD system in (3.1.2), the energy functional E(t) is naturally given by the H*norm of
(u,b) together with the time integrals from dissipative and damping terms, namely

t t
B(t) = sup {llr)s + (60} + 20 [ ovull dr-+2 | bl dr
STS 0 0

The main effort is then devoted to proving the energy inequality
E(t) < E(0) + CE>(t). (3.1.7)

Once (3.1.7) is at our disposal, the bootstrapping argument then implies that, if F(0) :=
| (uo, bo) ||35 is sufficiently small, say

[(o, bo) ls < &
for some suitable € > 0, then E(t) remains uniformly bounded for any t > 0,
E(t) < Ce?,

which gives us the desired global bound on |[(u(t), b(t))||gs. To prove (3.1.7), we invoke the
orthogonal decompositions u = @+ % and b = b+ b, apply the Poincaré type inequalities and

anisotropic upper bounds for triple products. More technical details are provided in Section
3.3.
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To prove Theorem 3.1.2, we first take the horizontal average of (3.1.2) to obtain the
equations of (u, b),

- 0 —
ou+u-Vu+ | =b-Vb,
0o

(3.1.8)
Ob+u-Vb+nb=Db-Va.
We then write the equations of (@, b) by taking the difference of (3.1.2) and (3.1.8),
O + u - VU + upDoti + VP — v — b - Vb — bydob — O1b = 0, (319

Ob + - Vb4 usdsb + b — b - Vi — bydoti — O = 0.

The proof of (3.1.6) is divided into the estimates of ||(u,b)||zz and ||(Vu, Vb)||zz. The
efforts are devoted to bounding the nonlinearity in terms of the horizontal derivatives of
u. Poincaré’s inequality and anisotropic upper bounds for the triple products are used
extensively. After a tedious process of evaluating many terms, we obtain

d, - ~ .
(Wl + 1Bl + (2 = Cli(w, b)) |01 71

+ (20 = O (u, 0) || z3) |16l e <0,
which yields the decay rate in (3.1.6). A detailed proof is provided in Section 3.4.

Finally we briefly summarize some of related results to provide a broader view on the
studies of the MHD equations. Fundamental issues on the MHD equations such as well-
posedness and stability problems have attracted a lot of attention. Substantial progress
has recently been made on the well-posedness problem concerning the MHD equations with
various partial or fractional dissipation (see, e.g., [9, 10, 11, 20, 21, 22, 26, 23, 24, 33, 36,
39, 48, 50, 53, 57, 61, 63, 64, 65, 66, 68, 67, 69]). Since the pioneering work of Alfvén [3],
the stability problem on various MHD systems has recently gained renewed interests and
there are substantial developments. By taking advantage of the Elsasser variables, several
papers have successfully solved the stability problem on the ideal MHD equations or the
fully dissipated MHD equations with identical (or almost identical) viscosity and magnetic
diffusivity (see [6, 8, 29, 54]). The stability problem on the MHD equations with only
kinematic dissipation in R? or R? have been solved via different approaches [18, 30, 31,
37, 38, 45, 46, 51, 58, 59, 70, 71]. The same problem in the periodic setting T® has been
investigated by [43]. The MHD equations with only magnetic diffusivity have recently been
studied for the small data global well-posedness near the trivial solution or a background
magnetic field [12, 32, 55, 62, 72], although a complete solution on the stability problem
near a background magnetic field is currently lacking. When the velocity equation involves
only horizontal or vertical dissipation, the velocity equation itself alone may not be stable
and the stability problem relies on the enhanced dissipation resulting from the coupling
and interaction. Several such MHD systems with degenerate velocity dissipation have been
shown to be stable near suitable background magnetic fields [5, 25, 41, 40, 60].

The rest of this paper is divided into three sections. Section 3.2 states several properties
on the aforementioned decomposition and provides several anisotropic inequalities. Section
3.3 proves Theorem 3.1.1 while Section 3.4 presents the proof of Theorem 3.1.2.
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3.2 Preliminaries

This section states several properties on the decomposition defined in the introduction and
provides several anisotropic inequalities to be used in the proofs of Theorems 3.1.1 and 3.1.2.
Some of the materials presented here can be found in [10, 19].

We start by recalling the definition of the horizontal average and the oscillation part. Let
Q=T xR and let f = f(z1,x2) with (z1,22) € Q be sufficiently smooth, say integrable in

x1 € T. The horizontal average f is given by
flas) = /f($1,$2) dzy. (3.2.1)
T

We decompose f into f and the oscillation portion f,
f=F+F (322)
The following lemma is a direct consequence of (3.2.1) and (3.2.2).

Lemma 3.2.1 The average operator and the oscillation operator commute with the partial
derivatives, fori=1,2,

az? - W’ 8Zf: é’;./fv al? = 07 f = 07

As a special consequence, if V - f =0, then

V-F=0, V-f=0.

The second lemma states that the decomposition in (3.2.2) is orthogonal in any Sobolev
space H*(Q).

Lemma 3.2.2 Let Q=T X R. Let k > 0 be an inleger. Let f € H*(Q). Then f and f are
orthogonal in H*(QY), namely

(?7 f)Hk = /QDk? Dkf dr = 0. Hfo'{k(Q) = H?H?{k(g) + Hin[k(Q)
In particular, || fl| g < || fllge and || Fll g < 1F 1l

The oscillation part obeys the following Poincaré type inequalities.

Lemma 3.2.3 If H(?lfHLz(Q) < 00, then

HfHLQ(Q) < C”alme(Q)-
In addition, if HalfHHl(Q) < 00, then

£l ey < CllO | ey-
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Proof of Lemma 3.2.3. Since the horizontal average of ]?is zero, for any fixed xo € R, there
is a € T such that

f(av 'rQ) = 0.
Then, for any (x1,z5) € €,

flay, 20) = / h 0. f(z,m5) dz < /T 10.f (2, 22)| dz < |0n, fl 22 (r). (3.2.3)

Squaring each side of (3.2.3) and integrating over (2 yields the first inequality. The sec-
ond inequality is obtained by taking the L>°(Q) in (3.2.3) and using the simple fact that
| fllzeo@) < C'||f|l 2wy for any 1D function f € H'(R). |

Next we present several anisotropic inequalities. Anisotropic upper bounds for triple
products are frequently used to bound the nonlinear terms when only partial dissipation is
present. In the case when the spatial domain is the whole space R?, Cao and Wu [10] showed
and applied the following inequality

1 1 1 1
Ajgﬂscwm;ww&mgwwméwm@mgwwmmmw (3.2.4)
(3.2.4) is a consequence of the elementary 1D inequality

RTL
1z < V2IF 2oy 1172 q): (3.2.5)

Another consequence of (3.2.5) is the following inequality

1 1 1 1
1oy < O ey 1007 Wiy 192 | o ey 10102 11 ey

When the 1D spatial domain is a bounded domain, say T,

D=

1
1 lzeery < C U2 emy (W llzzery + 1LF p2ry)

Since the oscillation part fhas mean zero, for ]?6 HY(T),

~ 1 ~, 1
1 [zoecmy < CUFN 2 IO N Z2 -
As a consequence of these elementary inequalities, the following two lemmas hold.

Lemma 3.2.4 Let Q=T x R. For any f,g,h € L*(Q) with 0, f € L*(Q) and d2g € L*(9),
then

1 1 1
/Qlfghl de < CIfII2(fllzz + 190 1122)% g1 22 1Dag I 2

For any f € H*(Q), we have

11l () < ClI g (1F N2y + 101 Fll2@) F 1021l 2
x (102f 1 22 + 10102f || L2 (@) T
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After replacing f by the oscillation part, we have the following inequalities.

Lemma 3.2.5 Let Q =T x R. For any f,g,h € L*(Q) with O, f € L*(Q) and dag € L*(Q),
then

/Qlfghl de < O\ F1I21100 117 Nl91 210291 2 |11 2-

For any f € H*(Q), we have

~ ~ 1 ~ 1 ~ 1
||fHL°°(Q) < C|\f||}iz<m||<91f||}‘,2(9)||52f”p 10105 f ||}i Q-

3.3 Nonlinear Stability Result

This section is devoted to the proof of Theorem 3.1.1 on the stability of (3.1.2).

Proof of Theorem 3.1.1. The local well-posedness of (3.1.2) in the Sobolev space H*(2) can
be shown via standard procedures such as the approach in the book of Majda and Bertozzi
[42]. Our attention is focused on the global bound of (u,b) in H3(Q).

The framework of the proof is the bootstrapping argument. To proceed, we define the
energy functional as

t t
E(t) = sup {lu(m)1Zs + IIb(T>||?qs}+2v/ |Ovu| [ dT+2n/ 16l Zs dr. (3.3.1)
<7<t 0 0

Our main efforts are devoted to proving the following energy inequality
E(t) < E(0) + CE>(t). (3.3.2)

As we explain later, a direct application of the bootstrapping argument to (3.3.2) implies
the desired global uniform bound on ||(u, b)|| gs.

Attention is first focused on proving (3.3.1). Due to the equivalence of the inhomogeneous
norm ||(u,b)| s with the sum of the L?-norm and the homogeneous norm ||(u,b)||zs, it
suffices to bound the homogeneous norm ||(u,b)|/;73. The uniform L?-bound is an easy
consequence of the system in (3.1.2) itself. Taking the inner product of (3.1.2) with (u,b),
we obtain, after integrating by parts and using V-u =V -b =0,

t t
)= + BN +20 [ 0wl dr +20 [ [0l dr = ol + ol (333
0 0

To estimate the homogeneous norm ||(u, b)|| 73, we apply 97(i = 1,2) to (3.1.2) and then dot
with (03w, 92b) to obtain

2 2 2
Z (102ullze + 110700172) + Y vldforullza + Y nllo?ol3

i=1 i=1

&lg‘

1
2dt (3.3.4)

—J+K+L—I—M—|—N
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where

2
J = Z/ 200D - Bu+ 20y - O2b du,
i=1 79
2
K = —Z/@f(u-Vu)-@fu dx,
i=1 v
2
L= Z/(@f’(b -Vb) —b-V3b) - dPu dz,
i=1 Y
2
M= —Z/af(u-vz))-afb dz,
i=1 7%
2
N = Z/(af(b V) — b VoPu) - b da.
i=1 79

By integration by parts, J = 0. The estimate of K is long and tedious, and is provided in
the later part of the proof. To bound L, we decompose it into two parts,

(/ (b Vb) - BPu dx—/b-vafb-afu d:zc)
Q Q

Cg/@fb-@f’_ka-(??u dx
Q

L

]~

i=1

-
Il
A

Mw
I

C

W

]

3
/ Ofb - 7FVb - Ofu de + > Cf / O5b - 037*Vb - O3u dw
Q k=1 Q

Il
i

~

1+L27

where CF = ﬁ is the binomial coefficient. By Lemma 3.2.1 and Lemma 3.2.5,

3
Ly=)» Cf /Q b - B Vb - 93U dx
k=1

2
~ ~ 1 ~ 1 SR B
S 07V 2 (|05 2. 100 0Fb]| 2. |05 | 2. | 02051 2

k=1
~ ~ 1 ~ 1 SO J
+ 1107022 VBl 72 100 VO I 22 107 72 || 9207

< |16]|7s]|Ovul 2.

We further decompose Ly into three terms,

L2=3/62b-a§vza-a§udx+3/a§b-a2w-6§udm+/a§b~w-a§udx
Q Q Q

= Lo1+ Los+ Las.
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By Holder’s inequality and Lemma 3.2.4,
Loy < [|0sb]| o |02V | 12 || 03] 12
1 1
< 119ab]| 2, (1|2b]| 2 + [|10b]] 12) ]| D30]) 2.
X ([|02b]| 12 + |6102b]| 12) 1 | 92V 12 || D3| 2

<l s |B |-
Similarly,
Log < ||V 1o | 03b]] 2|03 2
S|V 4[|V 22 + [|01Vb] 12) 182 V0|
X (([102Vb]] 12 + [|0105Vb]| 12) T (| 03b]| 12| D] .2

< Nl 10l s

By Lemma 3.2.1, 9yby = —01b1 = 0 and Lemma 3.2.5,
Loy = 3/ d3b - 0, Vb - Oau dx
Q

=3 ( / 20101 - Bu d + / 02b1991b - D3u d + / D2b,02b
Q Q Q
< (103wl 22 [|921b]| 2211102112, (| 03b1 || 2211920301 || 2
~ 1 ~ 1 ~ 1 ~ 1
+ (|05 ul| £2]|021D| 22 [| 01 021b]| 2 |03b1 || 2 | 0205 b1 || 2.
+ (103wl 121|025 | 2, (| 0102 | 2, || 02D 2, || 92020 2,

S | zs ][0l s
Combining the estimates of L; and Lo, we obtain
L < [10vull s lbll Frs + Nlull s [[B]1 -

Now we estimate M,

2
M:—Z/Qé)f’(u-Vb)-(’)f’bda:,
=1

:—/af(u~Vb)-8fb dx—/ag(u-Vb)-agb dx,
Q Q
= My + M,.

By Lemma 3.2.1,

3
M, = —ch/ﬂafa-af’fvﬂafz dx — /sz.afvﬁ-ai%
k=1

= M1 + M.
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By Lemma 3.2.5, Holder’s inequality, and Lemma 3.2.3,

3
~ 1 SR I TR
Mg <1108l 2|08 2. 1|00 O ]| 2. |05 Vb 2. 110208+ V|2,
k=2
+ (|01 oo |2V D | 2] 95D 2
S bl 100l prs + 1|OFT] g ||b]| s
S Bl | 0| .

By integration by parts and V - u = 0,
- ~ 37 I [ ~
M, = —/u~8be-8fb dr = ——/u'V(afb)de = 0.
’ Q 2 Jq
To estimate My, we split it into four terms,

—/8§(u-Vb)-a§b dz,
Q

3
= —Zq’;/ Obu - 957FVb - 03b da:—/u-agw-agb da
k=1 Q

Q
= My + Moo + Moz + My 4.

M4 =0 due to V- u = 0. By Holder’s inequality and Lemma 3.2.4,

My, = —3/ Ao - 03Vb - O3b dx
Q
< (102wl o< (|03 V0| 21|00 2

S N102ull £ (1020l 2 + [[Ov2ull2) 3|05 ull 12 (|10 ull 2 + [|0105ullc2) ¥ [[b] s
S Mlull s 151175
~ H H3

Similarly,
Q
IVl o[O3l 2] 03D 2
IVl (V022 + 191B]|2) |95Vl £ (|02 V8 2

+ 11010, V0] 2) 103w 21| 03D) 12
S Nl 10l s

By Lemma 3.2.1, dyuiz = —0,u; and Lemma 3.2.5,

AR A

M22 = —3/3§u 82Vb 83b dx

=-3 </ 0210, b - a3bd:c+/82 101b - b dx+/82 203b - 8bdm)

S Nl =101 s
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Combining the estimates for M; and M, we obtain
M < [|Ovul| s b1 Fs + Il s [10][ s (3.3.6)

Now we estimate the term N,

2
N:Z(/Q@f’(b-Vu)-8fbdm—[2b-vafu-ﬁfbdx>
=1
2 3
=> ) ¢4 / - 837 Vu - 9% da
Q

=1 k=1
3 3
=> % / Ofb - 07 FVu - b dv + Y C4 / b - 37 Vu - 93b dx
k=1 Q k=1 Q
- N1 -+ Nz.

By Lemma 3.2.1, Lemma 3.2.5, Holder’s inequality, and Lemma 3.2.3,

3
Ny =Y ch / b - 3V - 93 dx
k=1 Q

2

~ 1 1 ~ 1 ~ 1

< D102 107Vl 2210107 Vil 10Tl 221102070
k=1

+ [IVal| o 1070 £, 107D 2
S bl 0rullaz + 100Vl mIbllzs < 161175 10rull -

To bound Ny we further decompose it into three terms as

Ngzg/glaQb-agvu-agb dx+3/98§b-82Vu~8§’b dx+/ﬂ@§b-Vu-8§’b dx
— Nyy + Nyy + Ny
By Holder’s inequality and Lemma 3.2.4,
Noi S 1050|0011 05V ]| 12|93 | 2
< 1192l 22 (182bl 2 + 1zbll =) H103b1 -
X (105022 + 1015b]| 2) ¥ |95 V] 12| O3 .2

< Nl s [b) e
Similarly,
Nog S [Vl |03b] 12 1103b)] 12
S IVullL (V2 + 100Vl z2) |0l
% (102l 2 + 1|2105 V]| 12) ¥ (|50 32

S Nl 2101175
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By Lemma 3.2.1, Dsby = —01by = 0 and Lemma 3.2.5,
Ny = 3/ 93b - 0,V - 03b dx
Q

=3 ( / O2b109170 - Db da + / 2b10o10 - O2b da + / 2byd2u - b da:)
Q Q Q

S llullas 16l s -
Combining estimates of N; and N,, we have
N S l|0vull s 1ol 7s + [Jull s ][bll s (3.3.7)

We now turn to the term K. We split K into two terms,
K = —/8?(1@ - Vu) - Oju dr — / 95 (u - Vu) - dyu dz,
Q Q

=K + K.
By integration by parts, Lemma 3.2.1, Lemma 3.2.5 and Lemma 3.2.3,

K, :—/8f(u-Vu)-8§’u dx
Q

= / 03 (u - Vu) - Otu dx
Q
2
= Z 05/ N - 07 *Vu - Otu do
k=0 @
=>4 | fu-07 V- 0fi de

2
1 SO PRt PR
< > oyl 2 10fal 22 l1owotull 22 10F Vil 7. 110:0F Vi 7.

k=1
1 1 1 !
+ (|01l g2 1@ 22 10121 72 107 V| .1 9:0 V] 7.
2
1 1 1 P |
<Y N0t e |05 2. | 0108 2. 107 Vil 2. 10,07 Vi 2.
k=1

+ |01l r2]| 0| 2. |01l 721107 V| 22 | 0207 V2.
Therefore,
Ky < 0va|%s )@ are- (3.3.8)

To bound K5, we further decompose it into four terms,

K, = —/ d5(u - Vu) - dyu dx,
Q

3
= — Z Cgf/ Obu - 05 *Vu - O3u dx
k=0 @

=Ko1+ Koo+ Ka3+ Kou. (3.3.9)
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By integration by parts and V - u = 0,
K, :—/Qu-ag’Vu-agu dx = 0.
Next we bound Kj5. By Lemma 3.2.1 and V - u = 0,
Koo = —3/082u . 622Vu . 8§u dx
= -3 (/Q Doy 020w - O3u dx + /Qagu282282u - Osu dx)
=-3 /Q Qo1 0301u - Osu dx — 3 /Q o030\ - O3 d
3 /Q Oyt 02001 - 0T dlr — 3 /Q Oyl G201 - O
+3 /Q 01, 030070 - D5 dx + 3 /Q 11 03051 - D3 d:

+ 3/ 311718%826- GS’U dx + 3/ 81[[183826 . 8;’6 dx
Q Q
= Koo1+ Koo+ Kooz + Koou+ Koos+ Koog+ Kooz + Koog.

By integration by parts and Lemma 3.2.1,
Kjoq =3 /Q Q03001 - O3u da
=3 (/Q 10,1051 - O3 d + /Q Dot 031 - 0,031 dx) =0.
Similarly, Ks95 = 0. By Lemma 3.2.5 and Lemma 3.2.3,
Kioo = —3 /Q Dot 053011 - Dyt dx:

1 1 L —~ i
< 05| 219571 1101 057 1| 0300l 7 [| 9203 0h | .

1 L S i
S 110231 121101 05| 7. 1101 05| 71105 01| 711020500 2

< NovullFslull as.
K324 and K39 can be bounded similarly as Kj29. By Lemma 3.2.5 and Lemma 3.2.3,
K2,273 == —3/ 821718381& . 83@ dz
Q

1 .1 L _—n i
S 1103 21|02 |1 72110102t [ 72|05 01 72 10205 01t 72

1 .1 L .1
S 1105 12|01 0atin || 221101 0ot || 7. 10500 || 0205 00 »

< lovulls lull -
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By Lemma 3.2.5 and Lemma 3.2.3,
K27276 == 3/ altﬂﬁgaﬂ . 836 dz
Q

1 IO S 1
< (10305 12]| 05| 2. || 0105 | 3, || Oy | 22| D201 01 || 22

1 1 .1 .1
< (103051 12]| 01050 | 2, |01 05| 2, || Oy | 22 || 020y 20y || 2

< lovulls [l -

K2’2,7 == 3/ 8117183826 . ag’ﬂ dz
Q

1 L .1 ~ i
< 11030 2105 711010571 7. [|Ov i 1| 02011 | 7.

1 L . L .1
< (103050 12]| 01050 | 2. (| 0105 | 2, || Oy | 22 || 02010y || 2

S N10vullZys | s

Therefore,
Ky < [|0vul s |ul s

Now we bound K33. By Lemma 3.2.1 and the divergence free condition,
Ky3 = —3/ O3u - Vu - Oiu dw
Q

=-3 (/Q D3u10500u - O3u d + /9822112(9282u - Osu dx)
_ 3 /Q OB OO0 - O dr — 3 /Q RO - O
-3 /Q 03,0201 - 3w dx — 3 /Q O3110,01 - O3t d
+3 /Q 02011105051 - 5 dx + 3 /Q 020111020570 - O3 d
+3 /Q Dp0111 02051 - O3 dwv + 3 /Q Do0111 02051 - D3t dx
= K31+ Kozo+ Kozs+ Koga+ Kogs+ Ko+ Kozr+ Koss.

Clearly K331 = 0 and K335 = 0. To bound the remaining terms of Kj;3 we use Lemma
3.2.5 and Lemma 3.2.3,

K2,372 = —3/ 8%171828152 . 6:2317 dx
Q

1 1 1 O
S 1057 2211057110105l 7. [| 92001 .| 0501 | 7.

1 L L i
S 11057 221101 957 721101 05| 72 [| 0201 .| 05 0n |

< [1ovul|Fs || wl) a2
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Ky 34 and K37 can be bounded similarly,
K2,373 = —3/ 8%17182816 . agﬂ dx
Q

1 L L ~n L
< 1105 210540117110, 05l 7. [| 92001 .| 0301l .

1 L L i
S 1105 21101 951 || 721101 0571 7. [| 0201 .| 05 9n | .
< lovullis s,

K273’6 = 3/ 82811718282@ : (923ﬂ dx
Q

1 UM ., L .1
S 1052 210571 7. 10105l 7. || 920v a1 .|| 0391 ]| 7.

1 L ot . L
< (103]| 12]|0105]| 2. (|01 05| 2 || 02001 | 72105 01 i | 2

S N10vullZys | o
K, 35 can also be bounded similarly. Hence,
Ka3 S 10wl s a5

Now we bound the last term K54 in (3.3.9). By Lemma 3.2.1 and V - u = 0,

Koy = / O3u - Vu - Oqu dx
Q

= — </Q O3u101u - O3 dx + /Qag’uy?gu - Osu dm)
= — /Q O5ur0v - Oy da — /Qagu_lﬁlﬂ- o5t dx
— /Q Ou vt - 95 da — /Q 3 01 - O3t dx
+ /Qagalaaaza - 03T dx + /Qagalaaazu - 037 dx
+ /Q 020, 6,057 - 0% d + /Q 020,051 - BT d
=Koy + Koso+ Kossz+ Kosa+ Kous+ Koupg+ Koar+ Koyg.

Again Ky 41 = 0 and K45 = 0. To bound the remaining terms of K34 we use Lemma 3.2.5
and Lemma 3.2.3,

K27472 = —/ 8§’u_131’17 : 85’77 dx
Q

1 " 1 I
S 11057 211051 .| 01 05l 7. |90l 7. [| 0201 7.

1 L L —_n i
S 1105 221101 957 71101 05 | 72 |90l 72 [| 9201 .

< llovullzs .
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Ky 44 and K47 can be bounded similarly.
K27473 = —/ 832710117 : 823ﬂ dx
Q

1 S S SO
S 11057 2210317211010 | 72 104771 72 10201 2

1 .1 L —_—
S 1105 21101031 || 71101 05| 7. [|9n | 7. [| 9201 .

S lovullis lull o

K27476 == / 838@](%@ . 836 dx
Q

1 S S St
S 11002121031 22 10102 | 72 | 95 0 || 22 | 95 0h i | 72

1 L .1 L
< |02 2|01 05 || 22| 01050 | 2. || 0501y | 22| 0501 | 2.

< Nl0vullzs [l s
K545 can be bounded similarly. Hence,
Ko S N0l zs [l s
Putting together the upper bounds for K, through Kj 4, we find
Ky < |0vullgps lull - (3.3.10)
Collecting the upper bounds in (3.3.8) and (3.3.10) yields
K < [|ovullgps]|ul s (3.3.11)

Integrating (3.3.4) in time and then adding to (3.3.3), we have, after recalling the definition
of Ein (3.3.1),

E(t)gE(O)+/t(J+K+L+M+N)dT.

Collecting the upper bounds in (3.3.5), (3.3.6), (3.3.7)and (3.3.11) leads to the desired in-
equality in (3.3.2),

t
E(t) < E(0) +/0 (lovull s lull = + lOvull = 1Bl3s + llullz=[1Bl[%) dr

<  E(0)+CE(t). (3.3.12)

We apply the bootstrapping argument to (3.3.12). The initial data is taken to be sufficiently
small, say

(o, bo)l| s < €

with ¢ satisfying



We make the ansatz that, for 0 <¢ < T
E(t) < .
Then (3.3.12) implies
E(t) < &2+ CE2(t) B(t)

1
< 2 R
<eg +CQCE(t)

or
1 1
§E(t) <e? or E(t)<2®= 550.

The bootstrapping argument then implies that T = oo and E(t) < dy. As a consequence,
for any 0 <t < oo,
1(u(t), b(t) |75 < B(t) < .

This completes the proof for Theorem 3.1.1. [ |

3.4 Exponential Decay of the oscillation part (u,b) Result

This section proves Theorem 3.1.2, which assesses that the oscillation part (u,b) decays

exponentially to zero in the H!'-norm as t — oo. We consider the equations of (u,b) and
apply the properties of the orthogonal decomposition and several anisotropic inequalities.

Proof of Theorem 3.1.2. We first write the equation of (@,b). By taking the average of
(3.1.2), we have

i+ u-Vau+ 0_ =b- Vb,
Oop

(3.4.1)
Ob+u-Vb+nb=Db-Va.
Taking the difference of (3.1.2) and (3.4.1), we obtain
O+ u - VU + upDoli + VP — v — b - Vb — bydob — O1b = 0, (3.42)

b+ u - Vb4 usdsb + b — b Vi — bydoti — O = 0.

Taking the inner product of (3.4.2) with (u, b), after integration by parts and divergence-free
conditions, we find

1
2dt
= — m-ﬂdx—/u28gﬂ'ﬂdx—/u~vg'gdx

v [o-5badrs [nopuae— [wopTa (3.4.3)

+ m-gdx+/b282ﬂ-gdm

| =

([l 2z + 11Bll2) + v O + nllblIZ

QU

= A+ Ag+ As+ As+ As + Ag + Ar + As.
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By Lemma 3.2.1,
A1:—/U-Vﬁ-ﬂdx+/u-Vﬂ~ﬁdm:0.

Similarly, A3 = 0. By Lemma 3.2.5, Lemma 3.2.3 and the divergence-free conditions,
Agz—/[{g@guﬂdx

1 11 1
S 10aal| 2 [|ual| 22 | Oxz | 7o [[a]| 22 || Ova]| 7

1 1 1 1
S |02l 2 |0vuz || 72| Ovun || 72 (| Ovul 7 |01l 72

S Nl 101 2.

By Lemma 3.2.1 and the divergence-free conditions,

—_——

A4+A7_/b-v"5-ad:c+ b-Vi-bde
:/b-VZ-adx+/b-va-de—/b-vE-adx
—/b-va-de
=0.
By Lemma 3.2.5 and Lemma 3.2.3,
A5:/b2626-ﬁdx:/l;;82b-ﬂdx

~ _ 1 -1 1 1
S N[b2ll 2 [|0201[ 72 [| 020201 2o ]| 221 Oyl 7.
S N0l 110]] 22 |0y 2

< bl = (101172 + [|0val[72)-

Similarly, by Lemma 3.2.5, Lemma 3.2.3 and the divergence-free conditions,
Ag = —/a;agb-zdx
~ _ 1 1 1 1
S 110122110261 7211020261 7o 2| 72 (| O1 2 £
S 10l 2216l 22 || Oraz | 2
S Ibllz= (01172 + 1017l [72)-
By Lemma 3.2.4 and Holder’s inequality,
A= [ 80,08 dn 5 0wl B
1 1 1
S 021l 72 (102l 12 + (01021 | £2) | 0201 2 (3.4.4)
L~
X ([|0200]| 12 + (|01 03 a]| 12) B 7

< lulla b2
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Collecting the estimates for A; through Ag in (3.4.3), we obtain

d ~ -
2l + [1BlIZ2) + (20 = Cll(u, b)) | Or 7
+ (20 — O (u, b) || 3) [l 22 < 0.

According to Theorem 3.1.1, if ¢ > 0 is sufficiently small and ||ug||gs + ||bo]|gz < €, then

|lul|zs + ||b]| gz < Ce and
2v = C||(u, b)|| 3 > v, 2n — C|(w, b)|| s > n.

By Lemma 3.2.3, _
@@z + 15)]z2 < (luollzz + Nbollz2)e™",

where C = Cy(v,n) > 0.

(3.4.5)

Next we consider the exponential decay for ||(Va(t), Vb(t))| 2. Taking the gradient of

(3.4.2) yields

(9,V + V(u- V) + V(usdott) + VVP — vV

—_—

—V(b- Vb) — V(bydsb) — 8,V = 0,

Vb + V(u-Vb) + V(uadob) + nVb — V(b - V)

\

Dotting (3.4.6) with (Vu, Vb), we have

1d - ~ ~ ~
5 (192 + 18] 22) + V0, Va3 + 9]l VDI

:—/V(U-Vﬂ)-Vﬂdm—/V(ugaﬂ)-Vﬂdx—/V(ng)-ng:U

+/V(b-v6)-vad+/V(b2825)-va dx—/V(lmagl_))-Vg dx

+/V(b-va)-v3 dx+/V(b202u)-vE dz
Z:B1+B2+Bg+B4+B5+Bﬁ+B7+B8.

By Lemma 3.2.1, B; can be written as
B1:—/V(u-Vﬂ)~Vﬂdx+/V(m)-Vﬂdm
= —/61u16127- Oyu dx — /81u2826- o dx
— /82u18117- Ostt dx — /82u282ﬂ - Oyt dx

=Bi1+Bia+ Biz+ Bia.
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By Lemma 3.2.5 and Lemma 3.2.3, By ; can be bounded by

1 1 1 1
Biy S l|0vun || 21042l 2 1072l 22 (| 01| £ | 9201 7.
1 1 1 .1
S 10| 2|07 22| 07Tl 221|910 | 72| D201 2| 7
S Ml s (|00 V][
B, and B 3 can be bounded similarly and

Bia, Bis S llullms[|01Vllz..

For B4, using the divergence-free condition of u and by Lemma 3.2.5, Lemma 3.2.1 and
Lemma 3.2.3, we obtain

B174 == /81U1826 . 826 dr = /8117182& . 826 dx

1 1 ! !

S 102ull 2 [[Ovan || 72| 0201w || 1 |02l 72 || 01 D2 | 7
1 1 .1 S

S 1100|2110 i [| 72 | 0201 i1 || 72191 D[ 72 |01 Do
< llull =100 V@ 2.

Hence, B, is bounded by

By < |lull s [|0n V|22
Similarly, we can bound Bs by Lemma 3.2.4 and Holder’s inequality,

—_——

Bgz—/V(u-v'E)-v'de

= —/V(u-vE)-vde+ V(u-Vb)- Vb dx
_ —/w Vb Vb dz < [ull s | VDI,
In order to bound B, we rewrite it as
By = — / V(ug0ui) - Vu dx
=— / Vusdhti - Vu dx — /UQV(?Q@ -Vu dx
E— / O ua050 - O dx — /u281(92u -O01u dx

+ /81U182U . 82& dr — /u28262u : 8227 dx
= By1 + By + B3+ Baa.

According to the definition of u,
3272 =0.
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Using Lemma 3.2.3, Hélder’s inequality and proceeding as in (3.4.4) for ||0xu|| e, we find

BQ’l = —/81{[282’27, . 016 dx
S 102 pe< 017l 72 S [l ms (|01 Va7

Similarly, B 3 has the same bound as By ;. By Lemma 3.2.5 and Lemma 3.2.3,
B274 = —/172828271 . (926 dx

1 1 1 1
S 102001l p2|[uz| 72 || Otz || - |02l 72 |1 Do) 7

1 ~ 1 . 1 _ 1
< || 020y]| 12|01 01 G| 2, || 01 Datia | 2, || 01 Datl]| 2, || 01 Dol | 2,
S Ml s (|00 V|7

Hence, the bound for B, is
By < |lull s |00 V][22

Similarly,
= — /3162825 . 816 dr — /b281821_7 . 816 dx

+ /8161826 . 82& dr — /bgagagb . 62’17 dx
= B5’1 + B5’2 + B573 + B574.

By the definition of b, Bs; = 0. By Lemma 3.2.1, Lemma 3.2.4, Lemma 3.2.3, Holder’s
inequality and Young’s inequality,

Bsy = — / O1badob - OV da
< || oo || B1b2 | 12| 01| 2
< 1920172 ([|02b]] 2 + ”8182BHL2)%”82826H%2
% ([|0205D| 2 + [|81020 12) (| D1 ba| 2 || 01 D1 | .2
S bl = | VO 2|00V 2 S 10l as (V0|72 + (|01 VE|72).

Similarly, Bs 3 obeys the same bound. By Lemma 3.2.5, Lemma 3.2.3 and Young’s inequality,
B5,4 = — /1;2828217 . 62ﬁ dx

_ ~ 1 ~ 1 ! 1

S ||02020]| 12| b2 || 2 || O2b2]| 72 || D2t 7 2 || 01 02| 7 2

< 110202D]| 121910212, (| 0o |22 1|01 Do .

S bl s | VO] 2|00Vl 2 S 10l as (11 VO]) 72 + (|01 VE|72).
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Collecting the bounds for Bs 1, Bs2, Bss and Bs 4,
Bs S 1[0 s ([ V0] 72 + 101Vl |72)- (3.4.8)
Similarly, Bg and Bg are bounded by
Bs, By S (|Ibllas + lullms) x (IVD]72 + |01 VE72). (3.4.9)

By Lemma 3.2.1 and the divergence-free condition V - b = 0,

P

B4+B7=/V(b-Vb)-vadx+/v<z7\v/a)-v’Eda;
:/V(b-v?;)-vada;+ V(b-va)-v%’dx—/wﬁ)-vadx
- / V(b-Va)- Vb da
=/Vb-v’é-vadx+/vza~va-vde+/b-va-vadx
+/b-vva-v3dx
:/Vb~VZ~Vﬂdx+/Vb~Vﬁ-V5d:c
‘= By, + Byo.
We can rewrite By as
By = / Obyd1b - DU d + / B1bydab - Oy da
+ / Osb101b - Dot da + / Babydob - Ol da:
= Byy1 + Bito + Birs + Buia
By Lemma 3.2.4, Lemma 3.2.3, Holder’s inequality and Young’s inequality,
Buix S [101ba| o[ 01]| 2 | Ov 2
S |’3151||%2(|’3151||L2 + ||816161HL2)%H@z@lbﬂli

 (||8201b1 | 12 + [|010201by || 12) 7 || 01| 12
S |10l s |00 2| OvO1 | 2 S Bl s (IVD]|7 + |01V 72).

Byi2,Bs13 and By 4 can be bounded similarly as By ; and
Bis, Bias, Buaa S bllus(1VD] 72 + 01 Val[72).

Therefore, By ; is bounded by

Buy S [1bllms (IVI[72 + 100V 72).
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Similarly, By obeys the same bound as B, ;. Hence,
B+ Br < b (9072 + |01Vl 7).
Inserting the estimates for B; through Bs in (3.4.7),
d ~12 TP ~12
o UIVallze +1Vollze) + (20 = Cll(w, b)ll ) [0, V|7
+ (20 = Ol b)l| )| VD]l 2 < 0.

Choosing ¢ > 0 sufficiently small and by Theorem 3.1.1, if |lug|lgs + ||bol|zz < e, then
l|lu||zs + ||b]|zs < Ce and

2v—Cll(w,b)||lgs > v, 2n—C||(u,b)]lgs > n.
By Lemma 3.2.3, we obtain the exponential decay result for ||(Va(t), V(1)) 2,
IVa(®)122 + VB2 < (IVuollz2 + Vol z2)e (3.4.10)

where C; = C1(v,n) > 0. Cominbing the estimates in (3.4.5) and (3.4.10), we obtain the
desired decay result in Theorem 3.1.2. [ |
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