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ABSTRACT

An analytic investigation has been made of the problem of
determining the electric potential field and the aerodynamic moments
for a steady rarefied plasma flow past a sphere by means of the Vlasov-
Poisson set of equations. The equations are attacked by means of a
perturbation method exploiting the features of an ionospheric satellite,
i.e., the velocity of the satellite is much larger than the thermal
velocity of ions, but much smaller than that of electrons, and the Debye
length is much smaller than the characteristic length of the satellite.
The effects of photoemission, the secondary emission of electrons, and
the earth's magnetic field are neglected.

The electric potential, especially in the vicinity of the
sphere, has been examined. This part of the investigation gives the
nature of the electric field and provides a number of useful approxi-
mate formulas including the one for the Maxwell drag. The Maxwell drag
is found to be negative and actually a thrust when the surface potential
is large. The first-order approximation to the ion distribution func-
’tion is obtained for the special case of a spherical potential, which
is suitable for the sphere problem. The first-order approximate ex-
pressions of floating potential, slip velocity, molecular drag, and
energy transfer are obtained as a function of the ion speed ratio,
surface potential, and the Debye length. The molecular drag is found

to increase with the increase of the Debye length.
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CHAPTER 1
INTRODUCTION

A detailed knowledge of flowfields around ionospheric satellites
is required in many practical applications. The prediction of satellite
decay times, as well as the use of measured rates of decay to gain in-
formation about the properties of the upper ionosphere requires accurate
knowledge of the forces acting on a satellite. Owing to the high tem-
perature generated during the re-entry into the earth's atmosphere, a
space vehicle becomes enveloped by a sheath of partially ionized gas
which affects radio transmission to and from the vehicle. Knowledge
of the plasma flowfield around a re-entry vehicle is important in
t‘racldng‘ and detecting it by radar. The aerodynamic effects of an ion-
iied e;;ironment on a vehicle, such as drag and heat transfer, are also
important in engineering applications. Owing to these applications,
the problems of steady rarefiea plasma flows past solid bodies have re-
cg}ved considerable attention in recent years.
| To clearly understand the problem, it is useful to examine
briefly the properties of the ionosphere. The upper ionosphere is ex-
tremely rarefied and partially or fully ionized depending on the alti-
tude. The mean free path of neutral particles is extremely large. It
is about 80 m at the relatively low aititude of 200 km and increases
rapidly to about 8000 kﬁ at an altitude of 1000 km. The mean free path
of ions and electrons is also rather large. It is about 0.1 km at an

1




2
altitude of 200 km and increases considerably more slowly to about 8 km

at an altitude of 1000 km. The thermal velocities of neutral particles
and of ions are of the same order of magnitude, 0.4 to 6 km/sec. On the
other hand, the thermal velocity of electrons is extremely large, of the
order of 100 to 400 km/sec. The Debye length (Debye shielding distance),
i.e., the distance over which a static electric charge is screened by
polarization of the plasma, is exéremely small in the ionosphere, of the
order of 0.1 to 4 cm. The characteristic length of artificial satellites
moving through the upper ionosphere is of the order of one or a few meters.
The velocity of the satellites is about 8 km/sec (the data are taken from

Ref. 1).
From the brief data given above, it can be seen that the fea-

tures of the motion of a body in the ionosphere are that the character-
istic length of the body is smaller than the mean free path but larger
than the Debye length, and that the velocity of the body is larger than
the thermal velocity of neutral particles or ions but smaller than the
thermal velocity pf electrons. Because the thermal velocity of electrons
is much higher than that of the ions, a net negative current will flow
initially from the ambient atmosphere to an uncharged body. The flow
will continue until the body accumulates an equilibrium charge suffi-
ciently negative to repel enough low-energy electrons that the tota
electron flux to the body surface just equals the ion flux to the sur-
face. The equilibrium condition is altered somewhat by the other sources
of current, e.g., the photoemission of electrons by solar radiation, etc.
The flowfield will be highly asymmetric, and significant electric fields
will appear near the surface of the body and in the wake, which have
effects on the trajectories of the charged particles and hence on the

drag force experienced by the body. For a description of the motion of




3
a body in a highly rarefied medium, the conventional methods of con-
tinuum fluid mechanics are inapplicable, and the problem must be at-
tacked from the standpoint of kinetic theory. Some of the basic fea-
tures of the physics of bodies in ionized atmospheres are discussed
by Brundin [1963], Al‘pert, Gurevich, and Pitaevskii [1965], Singer
[1965], and in a recent review article by Liu [1969].

Jastrow and Pearse [1957] were among the first to consider the
drag on a spherical satellite in the ionosphere. Using the Maxwellian
distribution for the electron number density and the free stream values
for the ion number density, they numerically integrated the resulting
spherically symmetric Poisson's equation to obtain the electric poten-
tial. The charged drag, in addition to the neutral drag, was obtained
numerically by computing the change in momentum flux of the cold ions
(thermal motion neglected) as they traversed the potential field. The
assumption of the Maxwellian distribution for the electron number den-
sity is not valid near the sphere surface where electrons are absorbed
by the surface. Also the assumption of uniform ion density is not
valid in the wake, since the ion density is very small aft of the sphere.

Extending the method used by Jastrow and Pearse, Davis and
Harris [1961] tried to account for the asymmetry in the problem by using
iterative procedure to solve the axisymmetric Poisson's equation.
Starting from an assumed ion distribution, the procedure is repeated
until a self-consistent solution is obtained. The wake they obtained
is not completely realistic, because the basic scheme of Jastrow and
Pearse does not account for the ion thermal motion in the structure of

the wake. Hohl and Wood [1963] tried further improvements in this type
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of investigation by accounting for the absorptive effect of electrons
at the surface of the sphere and also included some of the effects of
the earth's geomagnetic field. Their electron density distribution,
however, did not have the correct behavior at infinity.

Kiel, Gey, and Gustafson [1968] also numerically integrated
the Poisson's equation by using more realistic models for the ion and
electron number densities and were able to obtain results which are
in agreement with the experimental measurements on the satellites.
They found that upstream of the satellite the potential decays quickly
and monotonically to the ambient potential and the electrostatic field
is spherically symmetric, and that downstream of the satellite the po-
tential will either increase first to a maximum value and then decrease,
or decrease monotonically to the ambient potential depending on the
value of the ratio of the Debye length to the radius of the satellite,
and the electrostatic field is far from spherically symmetric. They
did not consider the drag force.

The above investigations were principally numerical. Aside
from various theoretical difficulties, they failed to bring out the
functional relationships between the pertinent combinations of para-
meters that governs the problem. Except in the work of Kiel, Gey, and
Gustafson [1968], the trends that result from variation of the governing
parameters were not clearly exhibited, if at all. Pitts and Knechtel
[1965]), by means of the theory of Jastrow and Pearse, devised a semi-
empirical correlation equation to relate the drag of the sphere to the
parameters that governs the problem and used it to interpret experi-

mental drag data they obtained. The effect of the ratio of surface
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potential energy to mean ion energy and the ratio of Debye length to
sphere radius were shown to be key parameters that govern the drag.
Their work was not ''rational' in the sense that the results were not
obtained from a well-posed boundary-value problem followed by a sys-
tematic analysis.

Al'pert, Gurevich, and Pitaevskii [1965] in their monograph
studied rarefied plasma flow past a sphere by means of the Vlasov-
Poisson set of equations and obtained various important results. They
were interested primarily in the density and electric fields, however,
as opposed to such aerodynamic features as drag and heat transfer.
Prager and Rasmussen [1967] also studied the sphere problem by means
of the Vlasov-Poisson equations, and, by means of an ad hoc approxima-
tion in the characteristics-solution of the Vlasov equation, were able
to obtain analytic expressions for the drag and heat transfer. Whereas
the drag formulas agreed in some respects with the available data of
Pitts and Knechtel [1965], a desired dependence on the Debye length
was not obtained.

Taylor [1967 a,b] in two papers considered two methods for ana-
lyzing rarefied plasma flow past a cylinder. He used the Maxwellian
distribution for the electron number density and discussed a so-called
heuristic method for determining the electric potential field in the
first paper and a formal perturbation scheme in the second. His as-
sumption that the body size and the Debye length are of the same order
of magnitude is rarely true for the ionospheric satellite. He did not
obtain a general expression for the drag. Flow past a cylinder is also

studied by Pashchenko [1964] by means of singular perturbation methods.
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One of the objects of the present investigation is to derive a formal
perturbation method akin to that of Taylor and apply it to the sphere
problem.

Lam and Greenblatt [1965] and Lam [1967] developed a theory
for the flow of a collisionless plasma past an arbitrary body for which
the mode of analysis is through the moment equations instead of the
direct use of the kinetic equation. One of the main restrictions of
the theory is that the ion temperature is much less than the electron
temperature. In this cold-ion approximation the ion streamlines are
the same as the ion trajectories, and thus the theory is not valid in
the wake. Nevertheless various features of the far field and plasma
sheath are exhibited. In the present investigation we wish to work
directly with the kinetic equation and eliminate the cold-ion approxi-
mation. In this way, corresponding situations with free-molecule
theory and accompanying boundary conditions are easy to perceive.

There are several investigations that deal primarily with the
wake. Among these are those of Pan and Vaglio-Laurin [1967], Kiel, Gey
and Gustafson [1968], and Vaglio-Laurin and Miller [1970]. These studies
of the electric-potential field can be important in connection with de-
termining the drag on a body, as will be ciear later.

In view of the above discussion, the object of the present in-
vestigation is to formulate and treat the problem of rarefied plasma
flow past a sphere in a systematic kinetic aﬁalysis. In particular,
drag and heat transfer will be the primary goals in mind. Although the
particular shape of a sphere will be studied, the methodology can be

adapted for other shapes. In this connection some preliminary work has
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been done for a cone by Elliott and Rasmussen [1969]. It is hoped
that the present analysis will reveal the basis of various approxi-

mations and serve as a foundation for further investigations.



CHAPTER 11

FORMULATION OF THE PROBLEM

Vlasov-Poisson Equations

Consider a rarefied mixture of ions, electrons, and neutral
particles such as exist in the ionosphere flowing past a solid body.
If we assume that binary collisions are unimportant, the distribution

function f5(¥,€) for species s in steady flow is governed by the Vlasov

equation:
of q of
> S S S
g . —:——- - m———v¢0—:—-= 0 (2-1)
dr s 13
where
qg = *+ e ions

n

- e electrons

0 neutrals

The mass of species s is denoted by mg, E is the molecular velocity,

T is the position vector, ¢(;) is the electric potential. Magnetic
effects are neglected, which is a usual assumption in this type of pro-
blem. The electric potential is governed by the Poisson equation:

v2¢ = - 4re(n;-n))  (in Gaussian units) (2.2)

Here the ion and electron number densities are defined by the moments

ni(;)

n_(¥)

ffid3g

(2.3)
[£,43%




We have assumed that the ions are singly ionized. The Vlasov equations
(2.1) are coupled nonlinearly to the Poisson equation (2.2) by mecans of
the moments n; and ng.

Infinity Conditions

We assume that the plasma is neutral at infinity so that

$(T)>0 as Foo (2.4)
Further, each species will be considered to be in thermodynamic equili-
brium with itself at infinity. Thus, the distribution functions, with
respect to an observer on a fixed rigid body, will be Maxwellian dis-

placed with the free stream velocity ﬁw:

B (£-U.) 2
£ (r,F) = Ae s (-0) (2.5)

s s
where

_ Mg 3/2
As B nsw(ZWkTsw)
Mg
Bs = 2xr
S&

Here the temperatures of the different species T need not be equal

and k is the Boltzmann constant.

Surface Boundary Conditions

There are several boundary conditions required at the surface
of a solid body. First, the mean mass flux normal to the surface must
vanish. Second, the distribution function for the emitted particles
must be specified and be compatible with the zero normal mass flux con-
dition. We assume that the ions and electrons are absorbed at the sur-
face and emitted as neutrals. This is the usual assumption for this

type of problem, and now only an emission distribution function for
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neutral particles is needed. We shall assume a diffuse emission at an
arbitrary temperature, T,, that is constant on the surface. Third,

the current at the body surface or the surface potential must be speci-
fied. We shall assume that the body is perfectly conducting and hence
that the electric potential is constant on the surface. Assuming that
the net current to an isolated body is zero provides a condition for

determining the so-called floating potential.

Zero Mass Flux Normal to Surface
The condition for zero mass flux normal to the surface can be

written
Af. 43 Af d3 . 3 CAf d3f =
m, [E-Af,d% + m_[Z-Af a3 + m_[E-Af d3¢ + m [E-A€ % = 0 (2.6)
L-f<0 Z-1<0 E-fi<0 2-1i20
where fi is the unit normal pointing outward from the solid surface.

Here fy is the diffuse distribution function defined by

/Zexp tope- £2) (2.7)
w

G0 = ny G )’
where ?s is a position on the body surface, nd(?s) is the number dens-
ity of the diffusely emitted neutral particles determined so that Eq.
(2.6) is identically satisfied, and T, is the temperature of the solid
body. Substitution of expression (2.7) into {2.6) and evaluation of

the integral gives

> 21 % A A > .
ng(ry) = -G Ing [E-Ag d% + m fE-Af a3 + m [E-Rf %]  (2.8)
o w > > >
£+n<0 £-n<0 £-n<0

Current at the Surface
We assume that all incident electrons and ions are absorbed,

recombine, and are emitted as neutrals. In addition the
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surface will be considered a perfect conductor. Because of steady-

state conditions, the net current to an isolated body is zero:

H[eﬁ-ﬁf.d% - efE-Aif d%]dS + J = 0 (2.9)
> A 1 > A e
s &+ng0 g+ng0

Here S is the surface area of the body and J is the contribution of
current from sources such as photoemission, thermoelectric emission,
and the "knocking out'" of ions or electrons from the surface because

of collisions with neutral particles. For some details of these addi-
tional sources, one should consult Brundin [1963], Hall, Kemp, and
Sellen [1964], and Medved [1965]. Equations (2.9) determines the value
of the electric potential on the surface of the body. For purposes of
simplicity, it is convenient to set J equal to zero; Eq. (2.9) then

yields a negative surface potential.

Force on a Solid Bodx

Let S denote an arbitrary surface that encloses a solid body
but does not necessarily coincide with the surface of the solid body.
Let N denote the unit outward normal. From momentum considerations,

the force exerted .
f

#

on the body by the flowing plasma is given by the following surface
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F= Hn Teds + H -S*Mds (2.10)

The first integral evaluates the contribution from the momentum-flux

integrals:

tensor

i,e,o
PR m [EEE_(7,8)d% (2.11)
S

and the second evaluates the contribution from the electric Maxwell
stresses
1 26>
Gy = 7-1V6v0-2(76) 7T] (2.12)

—

whéreiﬁfis the unit second-order tensor. Appropriate choices for the
surface S in the evaluation of F are when S coincides with the actual
surface of the solid body, or when S moves outward asymptotically to
infinity. The case when S coincides with the body surface has the ad-
vantage that the distribution function for the emitted neutral particles
is specified at the body surface. Conventional drag and lift formulas
for free-molecule flow are obtained by means of this choice. We will
also use this choice to determine the effect of the induced electric
field.

Effects of the electric potential arise explicitly from the
Maxwell stress tensor, c , but they arise implicitly also from the gas
dynamic stress tensor because fi and fe depend on ¢ through the Vlasov

equation. We wish to isolate this dependence on the electric potential.
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CHAPTER III

APPROXIMATIONS FOR THE DISTRIBUTION FUNCTIONS

Flow Past a Sphere

Consider a rarefied plasma flow past a sphere of radius a.
Let the free stream be in the z direction and introduce spherical co-

ordinates r, 6, ¢ as shown in Fig. 1.

v

y
Figure 1. Configuration for a Sphere.

Let Ep Ee, Ew denote the rectangular components of the molecular

velocity corresponding to r, 6, ¢.

Ion Distribution Function

Under the practical ionospheric conditions envisaged for a
typical satellite problem, we assume that the mean speed of the free
stream ions is much greater than the mean thermal speed of the ioms.

In terms of the ion speed ratio, S;, we have
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_ AL
S = /B, U, = T, u>>1 (3.1)

Typically, S; lies in the range between 5 and 8, and thus can be con-
sidered asymptotically as a large parameter. The maximum potential
energy of the electric field is found to be much less than the mean
kinetic energy of the ions. If b is the surface potential of the
sphere and is regarded as the same order of magnitude as the maximum
potential, then the ratio of the electric potential energy to the mean
ion kinetic energy can be regarded as a small parameter for the pro-

blem

<<l (3.2)

The factor % has been omitted from the ion kinetic energy for conven-
ience, and the negative sign has been inserted to keep § positive since
¢s is usually negative. Because S; is large, most of the ions will
have the characteristic speed Un. It is now convenient to normalize

the variables in the ion Vlasov equation as follows:

- =9
T = s ¢'=$‘;, V' = av

The ion Vlasov equation now takes the form

- Bfi Bfi
Elees— + §V'¢p' o= = 0 (3.3)
ar!’ 3g!

Consider now series expansions for fi and ¢' in terms of the

small parameter §. We assume
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+h
n

2
£, [1+6F, +62£, +...] (3.42)

' 240
¢ ¢é + 8¢) + ) oy + ... (3.4b)

Substituting expansions (3.4) into Eq. (3.3), collecting like orders

of §, and requiring each order to vanish gives for the first two

orders
> 3fio
e — =10 (3.5a)
or'
N afil aznfio
EV. =T = - V'Cb(;’ BE' (3.5b)

Equation (3.5a) is the same as for neutral particles. Thus we assume
that the heavy ions have so much energy compared to the electric field
that they move undisturbed, to a zeroth approximation, through the
electric field as if it were not present. The perturbation caused by
the electric field is described in Eq. (3.5b). Equation (3.5b) cannot
be solved completely until the potential ¢é is known. Analysis of this
equation must be deferred until the electron Vlasov equation and the
Poisson equation are treated.

The solution to Eq. (3.5a) that satisfies the infinity condi-
tion (2.5) is the same as for neutral particles in free-molecule flow.

It is not difficult to verify that

B, (8-T,)2
37y = pe bl (3.6)
where
M
KT,
1&

- mj 3/2 -
Ai = nim(-i-T-‘_-K—f;;) and Bi =

Substituting this result into (3.5b) gives for the first-order pertur-

bation
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13 b
—>'. 11 = 2 —>'— "'——w . ! 3
te A ast@n gD vy (3.7)

Part of the solution for fil is easy to determine. If we write

fil = 28%(¢é+fi) (3.8)

then the first-order problem reduces to solving the equation

)

|

¢
—

.

|

°V'¢$ (3.9)

ol

1

=Y

)

]

for the function f}. As mentioned previously, this equation cannot

be treated completely until the potential ¢6 is known.

Zeroth Approximation for Ion Density

A zeroth approximation for the ion number density is obtained
by integration of fio over all ion velocities. Some ion velocities do
not exist, however, because of collisions with the sphere. The con-
figuration of the ion velocity space, according to the zeroth approxi-
mation, is shown in Fig. 2 (see Prager and Rasmussen [1967]).

4 (eg+s@)*

= sin]
Ys

H

\' 4
[

Figure 2. Ion Velocity Space (Zeroth Approximation)
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The integration is to be taken over the region outside a cone of semi-

a

vertex angle y_ = sin™1 -, that is,

= 3
Mo = J £109°¢
Y2Y 4

As shown by Al'pert et al. [1965], Kiel et al. [1968], and Prager and

Rasmussen [1967], as well as others, the ion number density n;, takes

the form
- -S%Sinze * _x2
n, (¥,8) =n, e xe © I (2S.xsind)erfc(S.coso-xv/T 2 -1)dx
10 1 o [o] 1 1
(3.10a)
or
nio(f,e) = nim[&+e 1 J xe IO(ZSixsine)erf(xlrz-l-sicose)dx]

(o]
(3.10b)

X _,2
where T = r/a, erf(x) = 5&:[ e 2 dz, erfc(x) = 1 - erf(x), and I

T Jo o)
is the modified Bessel function of the first kind and order zero. For
the cases 6 = 7 (upstream) and 6 = 0 (downstream) the integrals in
(3.10) can be evaluated in terms of tabulated functions:

0 = 7 (upstream)

2
-S5 /32 [ 1.
&niw[erfc(-si)+ll- f%—e i/T erfc(Si 1- f%a] (3.11a)
by ¥

nio(f,n) =
0 = 0 (downstream)
2,.2
"S'/I‘
n, (£,0) = #n,_[erfe(S,)+/l- ¢ ' erfe(-S./1- 23] (3.11b)
io joo i § i F

Near the surface of the sphere (¥ +1), the ion number density has the

asymptotic behavior

2 )
. 4 -Sip——" , -x? .
nio(r,e) %niw[erfc(sicose)+/$ e T —ljox e Io(ZSixs1n6)dx]
r>1 (3.12)
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These expressions will be useful later.

Electron Distribution Function

Under the practical conditions of an ionospheric satellite,
the mean speed of the free stream electrons is much less than the mean
thermal speed of the electrons. In terms of the electron speed ratio,

Se’ we have

- .
S, = VB, U, = T U <<l (3.13)

The electron speed ratio is much smaller than the ion speed ratio be-
cause the electron mass is very much smaller than the ion mass. Thus
Se, or the ratio me/mi, is to be regarded as a small parameter in the

problem.
Because of the small mass of the electron, the characteristic
speed is the thermal speed, and the appropriate nondimensional velocity

> me >
T

e

is

If the other variables remain as before, the electron Vlasov equation

takes the form

N afe
3

-(68 Ti.sz)vl¢v. Eff.: 0 (3.14)
e e ) )

En

The combination of parameters

mj -ed
6 —_— Sz = S
Mg e = ZT__- "

1t

is now assumed to bc of order unity, which is consistent with our pres-
ent problem of ionospheric aerodynamics. It is thus necessary that the
potential ¢' enter into the zeroth approximation for the electron

distribution function.
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We now assume that the potential is expanded by the series

(3.4b), that is

' =9l + 8o) + 52¢é + ... (3.4b)

We further assume that the electron distribution function can be ex-

panded in the series

= 2
fo feo[1+6fel+6 fez+...] (3.15a)

where )
_ [ ll_§
o oK% JE-Se)

e (3.15b)
The zeroth-order function (3.15b) satisfies the infinity condition
(2.5). Substituting (3.4b) and (3.15) into Eq. (3.14), retaining temms

to order &, and eliminating terms that cancel because of Eq. (3.15b),

gives
-2Kf § et + 5[+"..a_f_<?_o_f_e_l. - KV'o!' - afeofel - Ky ._afeo] =0
€ © ¢0 g 3-‘[‘)' ¢0 a_g" ¢1 BEH
(3.16)

A consistent ordering of terms can now proceed if we set Sg = 0(8), in
which case § cancels out of Eq. (3.16). This means, however, that the
zeroth-order function feo’ given by (3.15b), contains the parameter &.
This ad hoc approximation is made so that the infinity conditions are
satisfied and the current at infinity will vanish uniformly in the
zeroth approximation. If S, is of order §, then it follows, since K
is of order unity, that mg/m; is of order 63. This ordering is consis-
tent with practical values associated with ionospherié aerodynamics.

The higher approximation f,; can now be pursued by solving Eq. (3.16).
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Zeroth Approximations for Electron Densities

In order to obtain a self-consistent zeroth approximation for
the electron number density it is necessary to know the electric po-
tential field ¢o(;§. Because the electric field does not affect the
ions to a zeroth approximation, the ion trajectories are straight lines.
The electron trajectories, however, are curved lines that depend on the
nature of the electric field. Thus the region of velocity space for
which no electrons exist because of ccllisions with the sphere is not
known ahead of time. In order to make progress, it is thus necessary
to make several ad hoc approximations concerning the structure of the
electron velocity space.

Spherically Symmetric Approximation

As will be shown later, the electric potential upstream of the
sphere is approximately spherically symmetric. Downstream of the
sphere a wake exists and the potential is far from spherically symmetric.
Moreover, the potential field does not decrease monotonically in the
wake. Nevertheless, it is a useful approximation to assume that the
electric field is spherically symmetric and monotonically decreasing,
at least for the region upstream of the sphere.

As shown by Prager and Rasmussen [1967], the surface that
separates the region of absorbed electrons in velocity space for spher-

ical-symmetric potential is a hyperboloid of revolution given by

(62+£2)% £2 4
siny, = —-—0—33"——— =2 n- E%] (3.17)
where
2ed 2
2 = - S = _ ecb
Ee = ( Me ) ( me) >0
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This surface is shown in Fig. 3.

2,£2)%
(eg+el)
t 7
7/
4 _—Ea. (3.17)
- oain~l 2 Y
Y, = sin © o p /
/ Electrons lost due to
collisions with sphere
7/ Yo
>
Ee t

Figure 3. Electron Velocity Space

In terms of this configuration, the electron number density is

° Y>Y1 ©
n - _ ¢*_¢* ¢*_.¢*
= —%— e d)’k[1+eri-‘»/4>“-cb*-h/l-- —l-exp(-g———aerfc = |
s 12 £2-1 1- 1
~2
+0(S,) T (3.18)
where
_e¢
= o r = .{
v Eyre TER
eoo

and ¢; is the value of the potential at the sphere surface. Formula
(3.18) was obtained by Al‘pert et al. [1965], Kiel et al. [1968}, and

Prager and Rasmussen [1967], among others.

Linear-Trajectory Approximation
Because formula (3.18) does not allow for non-monotonic behav-
ior, that is, ¢* cannot be greater than ¢;, it is not useful for the

wake. Near the surface aft of the sphere, the electrons will be
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attracted rather than repelled to the sphere. We approximate the
average behavior by assuming the elcctron trajectories arc straight
lines. The hyperboloid in Fig. 3 then reduces to the cone of semiver-
tex angle vy, = sin~! %u The electron density under this approximation

is given by

Ne

n
——
o

(=}

[«W)

w
a2

° ¥y,

— i St——

> R + o) (3.19)

L}
=]
(¢
8
o
-
*
r—
P
+
(=1
]
i
o
O
O
wn
[e>]
o
r~
wn
N
N

We shall neglect the small asymmetry introduced by the presence of the

higher-order parameter Sg.

Maxwellian Approximation
A common approximation in ionospheric aerodynamics is so-called

Maxwellian distribution

-¢*
ng =n_e (3.20

This approximation is valid for an equilibrium situation and does not
account for absorption of electrons by a solid body. It is thus only
valid for the far field. It is of interest to compare this approxima-
tion with results obtained with the previous more accurate approxima-

tions.



CHAPTER IV

THE ELECTRIC FIELD

The electric potential field can now be obtained to a zeroth
approximation in temms of the leading terms of the expansions utilized
in the previous section. If we neglect terms of order §, we can write

Poisson's equation (2.2) in the following dimensionless form:

e2v'2p* = N, (%,0) - N_(¢*,%,6) (4.1)
where
Ni(r,e) = nio/niw

Ne(¢*,r,9) = neo/neoo
o* = - e¢0/kTeco
€ = AD/a
A. = (KT /4me?n )%
D ew e

The parameter AD is the Debye length. The ratio of Debye length to
sphere radius, €, is typically a small parameter for ionospheric con~
ditions. Thus
e<<1
and € is another small parameter in the problem. The boundary condi-
tions for Eq. (4.1) are
$*>0 as T -+

(4.2)
¢*=¢; at 1r=1

23
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If we now seek a solution to Eq. (4.1) by means of a series
expansion for small e, we find because the highest derivative is
multiplied by the small parameter e2 that the problem is a singular
perturbation problem. Thus an electric boundary layer will be present
and more than one series expansion will be required. The so-called
inner and outer expansions must be matched together by means of asymptotic

methods outlined in the book by Van Dyke [1964].

Outer Expansion or Quasi-Neutral Approximation

Let us seek a straightforward series expansion of the form
*_4° 2490 440 .o
¢ ~¢0 + € ¢1 + € ¢2 + (4'3)

Here it has been found that the appropriate expansion is in powers of

2

e?. The electron number density Ng(¢*,r,0) now has the expansion

oN
N_(6%,%,0) = N_(67,F,0) + 62(535—)‘1)04)(1) + 0(e*) (4.4)

[¢]
Substitution of expansions (4.3) and (4.4) into Eq. (4.1), collection
of like orders of €2, and setting each order equal to zero gives for

the first two orders

e N, (£,0) - Ne(qsz,i',e) = 0 (4.52)
aN
2. 2,0 _ _ ,0.7€
e2: v'%0 = ¢1(3¢*)¢0 (4.5b)
(o]

Equation (4.5a) is an implicit equation for the zeroth-order function
¢g(i,6). It can be solved when the particular model for Ne(¢g,i,e) is
specified. When ¢g has been obtained, then the first-order function ¢g
can be obtained from Eq. (4.5b). We shall concern ourselves with the

veroth-order function ¢g in this study.
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Electron Density Model Based on Spherical Symmetry
The electron density according to the assumptions underlying

expression (3.18) is

—T  b.-%0 b2 -02
N (¢ ,B) = ke °[1+erf ¢¢* 6 + 1- 5 eXp (g 22 )erfc S f ]
1 —
i_z
(4.6)
The ion number density is given by expression (3.10)J. It is not pos-

sible to solve explicitly for ¢g from Eq. (4.5a) by means of this
model. It is useful, however, to obtain the asymptotic behavior as
T >~ and as T +1.
As T -+«, it can be shown that ¢g-+0 is a solution to Eq. (4.5a).
Thus the infinity condition is satisfied. If we assume that ¢g vqnishes

like 1/72 as ¥+«, then No as given by (4.6) behaves asymptotically like

0 /F—é ¢s 1
No~1 - ¢+ ——-[{;(d:*—-lc)erfc 0% -—————} + 0w 4.7)

£2 2/

On the other hand, it can be shown that the ion number density Nj, as

given by (3.10), varies asymptotically for r -+« like

2 2¢3n2
-s¢ -8%sin“6
N,- 1 - —l—-jé-s.cosee 1,(1+252¢cos28)e erfc(—sicose)]+0(g§
432 * * T

N

(4.8)
Substituting (4.7) and (4.8) into Eq. (4.5a), and retaining terms to

order 1/72, we obtain for large T:

-4)5
2Vo* e -g?
0 1 s 2 i
~ 2¢*-1erfcvp* - ————— + — §.cosbe
¢0 —'2'4.1.. [( ¢5 ) ¢s = = 04

Q2. 26

s o {sin
+ (1+ZSicos 8)e erfc(-Sicose)] (4.9)
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On the axis upstream of the sphere (8=n), expression (4.9)

takes the form
*

2/5% % 2
o 1 " S 2 -51
9o 41_‘2[(24>;-1)erfc ¢S - T - 7?=Sie
+ (1+25§)erfc(si)] T (4.10)

If we now recall that S; is large and assume that /Eg'is large enough

to make use of the asymptotic expansion
e-xz
erfc(x) ~

YT x

X > (4.11)

we find that expression (4.10) takes the approximate value for large
*
¢s and Si ,
"¢S -S55

- v =1
% 4-2 /75* /S5

= , T o (4.12)

Thus the potential ¢g far upstream of the sphere is very small and

negative since S% is in general much larger than ¢;. For 6 = n/2,

we find
os 2
o_1 e 'S -8 _m -
b 4?2[ /m_;+e ]6-2, T~ (4.13)

and again the potential is very small and negative. For large S; the
dependence on 6 is very weak, and hence the potential is nearly spher-
ically symmetric in front of the sphere.

On the axis in the wake of the sphere (6=0)}, expression (4.9)

yields for large Si and ¢;:

+ 2(1+zs§)] 8 =0, FTro (4.14)

Here we find that the term involving ¢* is negligible and the potential
S p
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is positive. Thus aft of the sphere, that is, in the wake, the pbten—
tial depends strongly on 8.

Consider now the value of ¢g when T = 1 according to the quasi-

neutral approximation (4.5a). Setting ¢g = ¢gs when T = 1, we obtain
from (4.6)
N (40.,1) = %e_¢8s[l+erf¢¢*-¢ ] (4.15)
e "os’ S '0S ’

For the ion density Ni(l,e), we get from (3.12)

Ni(l’e) = ierfc(sicose) (4.16)

Substituting into (4.5a) then yields

_40
e ¢°S[1+erf ¢¢;-¢zs] = erfc(Sicose) r=1 4.17)

This expression does not satisfy the surface boundary condition

o* = ¢; when T = 1. Nevertheless, it will be used as a matching con-
dition for the outer limit of an inner expansion that does satisfy the
surface boundary condition. Note that no real value of ¢25 greater
than ¢; satisfies Eq. (4.17). Thus no solutions exist when 6 is less

than a critical angle 6, defined by

bs _
e = erfc(sicosew) 4.18)
This situation arises because the potential ¢* increases from ¢; when
6<9w; thus the electron density N, given by (4.6) is not valid in the
near wake. Expression (4.18) is plotted in Fig. 4.
We further ascertain from (4.17) that ¢gs is zero when 6 has

the value (4.19)

cosb = - /$§781 .
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Sijcos 6

Fig. 4. Position of Zero Potential Gradient on Sphere Surface.
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At this angle ¢gs changes sign, and at 0 = w, ¢gs is negative, which
it is far upstream of the sphere according to (4.12}. If we assume
that ¢2S is small at 6 = w, then we can obtain from (4.17) the approx-

imate value
erf Si-erf /32

o - -
Pos ) R (4.20)
l+erfvo* +
S Vr /et

If we assume that ¢; and Si are large enough to use the asymptotic ex-

pansion (4.11), we get

o

2

e-¢; e_Si
dos - ] e6=m, T=1 (4.21)
2/m Vor 2/m 83

The term involving S; can be neglected, since Si is usually much

greater than /$§1

Electron-Density Model Based on Straight-Line Trajectories
By means of the electron density model (3.19) we can solve

Eq. (4.53 for ¢g and get (neglecting terms of order Sg):

o ZNi(i,e)
b =~ Lnf————=j (4.22)

1+ /1-1.

72

where Nj = nio/niw is determined from expression (3.10). By means of

expression (4.8), we expand for large T and obtain

o 1 2 -s% s%sin20
. fl1e A 1 2c0s20)e * -
% 4T2[ 1+ e Sicosee +(1+zsicos 8)e erfc( Sicose)]
foe (4.23)

On the axis upstream of the sphere (8=w), this expression takes the

form for large Sj
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0 [S]

¢~ [-1+ ] =7, Forew (4.24)
0 482" T /75 ’

Thus the potential is negative for this model, but much more negative
than the corresponding value (4.12) for the previous model. On the

wake axis (6=0), we get for large T and large S;

42 4—;5[-1+2(1+25§)] 6 =0, Frw (4.25)

For large S;, this result is effectively the same as for the previous
model.
Near the surface of the sphere, T+ 1, we can use expression

(3.12) for the ions and obtain
0
N ~—zn[erfc(s.lcose)]

‘Si 00 2
2 =X . _
e fox e IO(ZSix51n9)dx erfc(sicose)]

4
A

erfc(Sicose)
r>1 (4.26)

This expression is valid all around the sphere, but note that it is

not analytic at ¥ = 1. The value on the sphere surface is

¢gs = - Rn[erfc(Sicose)] (4.27)

Upstream of the sphere at 6 = n, the potential ¢gs is negative and has
the approximate value ¢gs = - gn 2 for large S;. Aft of the sphere at
6 = 0, the potential ¢gs is very large and for large S; has the approxi-
mate value ¢gsz 52 + RnCJFSi). These values, of course, do not satisfy

the surface boundary condition, and thus must be regarded as the inner

limit of the outer expansion.
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The advantage of this particular model is that it is simple
and yields results all around the sphere. On the other hand, it gives
values of the potential outside the wake that are far too negative, as

can be seen by comparison with the model in the previous section.

Maxwellian Electron Density
It is interesting to examine the results yielded by the Maxwellian

model Ng = exp(-¢g). In this case we get

o
¢o = - &n Ni (4.28)

For large r, we get by means of expression (4.8)

2 2es
-§2 -S%sin?p
¢g ~Z%E{é%:sicosee l+(1+ZS%cos7—e)e 1 erfc(-S;jcos8)]  (4.29)
iy

This value is positive all around the sphere. On the upstream and wake

axis we get for large S;

2
-8§

O - (4.30)

6 = m: ¢ - — o .
0 452 /iS5
= 0. 0.1 2 m
6 = 0: ¢°~'4T2 [2(1+ZSi)] T > (4.31)
Near the sphere surface r—+1, we obtain from Eq. (3.12)
¢° ~ - n[terfc(S.cos6)]
° Y sl 2
4 e ij‘mxze"x I (2S.xsing)dx
- /F2-1 LI 2 e - (4.32)

erfc(Sicose)

r—>1

On the sphere surface, we have

¢gs = - tn[¥erfc(S;coso)] (4.33)
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Upstream of the sphere (6=m), we have for large S;

4.34
os™* o7, (4.34)

This value is positive, but exceedingly small for large S;. Aft of

the sphere (6=0), we have for large S;
0 .g2
bos™ ST + an(2vrS;) (4.35)

This value is nearly the same as obtained from expression (4.27) for

the previous model.

Inner Expansion or the Boundary-Layer Approximation

As we have seen in the previous section, the quasi-neutral so-
lution, or outer expansion, cannot satisfy the surface boundary condi-
tion. It is thus necessary to consider a new expansion that is valid
near the surface of the sphere. Near the surface of the sphere, the
second derivative 32¢*/3%2 becomes large enough to compensate for the
small parameter €2 that multiplies it. To account for this, it is use-
ful to introduce a new variable, r, measured normal from the sphere

surface:

i
p—

;= or T =1+¢€g (4.36)

ml

In terms of this variable the Laplacian and Poisson's equation (4.1)

now expand to read

32¢* e  Ap* g2 d . 99*
ac2  1+eg 3T 7 s (5ind 557)
g (1+ez)“sind

= N.i(1+€C:e) - Ne(¢*’1+5C,e) (4°37)
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We now wish to construct a series expansion for small e in terms of
the new variable z. To see how the expansion should proceed, note

from expression (3.12) that N; behaves in the following way for e ~0:

N; (1+ez,0) = N;(1,0) + /ENiI(;,e) + 0(e) (4.38)
where
Ni (1,86) = 2erfec(S icose)

s2
_ [t 4 Si 26
Ny, €.8) = //; = e f X I o (28, xsin6)dx

Thus N; expands in terms of powers of the square root of e.
Motivated by this result, we assume an inner expansion for ¢*

in the following form:
9*(1+eT,0) = §_(5,8) + Veo](2,0) + eb,(z,0) + **- (4.39)
The corresponding expansion for Ne(¢*,1+s:,e) reads

VFEJ /£}+0(e)
e=0

Ne(¢*,1+ez,0) = N (¢ 1,0) + Vel ¢*) ¢1+(

(4.40)
Substituting (4.38), (4.39) and (4.40) into Eq. (4.37),

collecting like orders of e, and requiring each order to vanish yields

for the two lowest orders:

!
e "% - N.(1,0) - N_(65,1,0) (4.41)
. BCZ i 2 e ¢0, 2 .
'l' 32(1);: aNe i 3Ne /—
€ —— = N. ,0) - (—= - 4.42)

Note for the two lowest-order functions that 6 appears as a parameter.

Thus the equations for ¢; and ¢i are to be treated as ordinary
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differential equations.
The inner expansion must satisfy the surface boundary condi-
tion. Thus we have

i
q)o(oae) =

§
-©-
*

(4.43a)

\
(o]

¢}(0,6) = (4.43b)

The outer boundary condition must be obtained by matching with the
inner limit of the outer expansion. We shall concern ourselves here

with only the lowest-order solution.

Electron-Density Model Based on Spherical Symmetry

For the electron density (3.18), we have
. i _
N (61,1,0) = 4o ¥o[1sers/yz-o1] (4.44)

and thus Eq. (4.41) becomes

i

%4 i :
. N; (1,8) - %e"¢°[1+erf¢¢;—¢g] (4.45)

52

This equation is the same as given by Al'pert et al. [1965] except
that N; (1,6) has been replaced by unity. Multiply Eq. (4.45) by
3¢;/8c and integrating from z = 0 yields
i i
3¢0 2 a"50

2 i«
Gp) " - G = 2005-05N; (1,0)

i - *
+ e~¢°{1+eer¢;-¢g}-e-¢s{1+ fé"¢§'¢%} (4.46)
m

Because the derivative 8¢;/3c depends only on ¢; and not explicitly on

¢, we can integrate Eq. (4.46) by means of a quadrature

P




o i
0 d¢0
= +J a¢i (4.47)
or (o
s (BC )

where

901 . e = -
L T ey

_¢; 2
-e {1+ =

- Bt,b% 2.}
Jo*-ol A
=lereg b G ] (4.48)
According to the so-called "limit matching principle'" of Van

Dyke [1965], the outer limit of the inner expansion equals the inner

limit of the outer expansion, that is,

i _ 4. .0
1im ¢0 = lim ¢o
7 > T~>1

_ .0
= %s

Thus from Eq. (4.47) we can see that for ¢ to go to infinity when

(o]

i o R . i . i_
¢0+-¢os, the derivative 8¢0/3c must vanish when ¢o = ¢os'

This condi-

tion enables the gradient at the wall (8¢1/8c) to be evaluated:
0 [

Bd)é 0 "b; 2 " 3
Gp, = - (2003405~ 1IN; (1,0)ve {1+ =Vor-o0 17 (4.49)

where Eqs. (4.17) and (4.38) have been utilized. This value vanishes
when ¢25 = ¢;, that is when 6 = ew as defined by (4.18). No solution
exists for this electron-density model when e<ew. The value of ¢gs
in general is obtained from (4.17). Al'pert et al. [1965] obtained

a similar expression to that of (4.49) except that they set ¢gs = 0,
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which is not strictly correct according to asymptotic matching
principles. Setting ¢gs equal to zero is a good approximation only

for 6 = 7 and when ¢; is large, as can be seen from (4.21).

Electron-Density Model Based on Straight-Line Trajectories

For the electron density (3.19) we have

. i
1 _ -¢o
Ne(¢031,e) = i’e (4-50)
and now Eq. (4.41) becomes
32¢i _¢i
© = N.(1,6) - e © (4.51)
g2 1
Integration as for the previous model yields
252 M8 i b -6}
e e = b _
Gr2™ - Gpoe = 260N (1,0) + e © - e (4.52)

Another integration yields (4.47) as before. The matching condition
yields .

(?-f-‘i - £[2005-62-DN, (1,0 v P51 (4.53)
3z ‘g s '0s it '
where now ¢gs is given by (4.27), and has been utilized in obtaining
(4.53). In this case, however, values of the gradient exist for all

6. The gradient vanishes when 6 = 6y, as given by (4.18). The minus

sign is to be used when 6>9, and the plus sign when 6<8,,.

Maxwellian Electron-Density Model

For the Maxwellian electron density, Ng = exp(-¢;), Eq. (4.41)

becomes
324t e
%

= Ni(l,e) - e (4.54)

ar?
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Integration and the matching condition give

i i :

¢ 9d . ~dhl _¢*

(—529-)2 - GEIZ = 200,-eN L0) + 2(e O-e %) (4.55)
i
¢ ~¢¥

(D), = (200540, 1IN; (1,0)+2¢ 5] (4.56)

where ¢gs is given by (4.33). This gradient vanishes when 6 = b, 25

before. In this case, however, 8, is determined by
¢*
e S = &erfc(sicosew) (4.57)
The minus sign is to be used when 6>6 and the plus sign when 6<6 .

Potential Gradient on the Sphere Surface

The potential gradient on the surface of the sphere is plotted
as a function of 6 in Fig. 5 for the straight-trajectory model (4.53)
and the Maxwellian model (4.56). For this comparison typical values
of ¢; = 3 and S§; = 5 were used. The spherical-symmetry model (4.49)
gives nearly the same values as the Maxwellian model, except that no so-
lution exists aft of the sphere (6<74°). Because the Maxwellian model
is nearly the same as the spherical-symmetry model in front of the
sphere, and the spherical-symmetry model is the best approximation in
this region, it can be seen that the straight-trajectory model gives
gradients that are too large in front of the sphere. Aft of the sphere,
the straight-trajectory model is the best approximation since it allows
for absorption of electrons, and it gives gradients that are smaller
than the Maxwellian model in this region. Figure 6 shows the effect
of changing S; from 5 to 8 for the straight-trajectory model. The other

models show qualitatively the same effects.
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- —— STRAIGHT TRAJ.
_ . APPROX. (4.53)

=== MAXWELLIAN
APPROX. (4.56)
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Fig. 5. Potential Gradient on Sphere Surface.
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Fig. 6. Effect of Si on Potential Gradient on Sphere Surface.
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Maxwell Drag

The electric Maxwell drag is determined from the Maxwell
stresses as given by expression (2.12). If &, is a unit vector in the

direction of the free stream, the Maxwell drag is

o
=
1
o0
3 l"‘
=
—
Ll
sl
'
o
H.
o
™
[e N
N

sphere

2 (7 2
%r-I (%%D cos6 sind de
0

For the zeroth approximation we thus have

) mag2
DMo = ra newk Témjo(gz—ascose sin6 do (4.58)

In terms of the drag coefficient

) Dy

Cn =
Dy 2. .2
%mi(nim+n0m)Umna

we have .
T T 3¢t
o e 0,2 .
C = ——) “cosd sing de 4.59
DM g2 T JO(B; )s ( )

where ¢ = n_ /(n. +n_ ) is the degree of ionization.
g’ ~im oo
For the straight-line trajectory model {4.53), substitution

into (4.59) yields

T -s2
o = % 2 [-(o2-1){(1- —yerss + S |
Mo S% Tioo s 23% i /Esi
53
1
+ gg-J xerfc x gn(erfc x)dx] (4.60)
i "Si

while for the Maxwellian model (4.56), the Eq. (4.59) yields
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o Te { 1 e—SJ% }
c = e =2 [~(¢*-1-2n2)1 (1- —5)erfS, +
) =
DMO bi Ti°° S 28% 1 v ui
S.
1 i
+ —E-f xerfc x fn(erfc x)dx] (4.61)
Si ..si

®
As mentioned in the previous section, the best approximation

aft of the sphere is the straight-line trajectory model, and in front
of the sphere the spherical-symmetry model, hence the best approxima-
tion of the Maxwell drag is the combination of these two models.

Since the Maxwellian model is nearly the same as the spherical-symmetry
model, this simpler model (4.56) is used in front of the sphere along

with the straight-line trajectory model (4.53) used aft of the sphere

to obtain
Te°° { 1 e-S% }
C = & = [-(¢*-1-%202){(1- —)erfS, + -
My 2 Ty S 252 o /mSi
S.
b5 1 [?*
+ 3(2n2-e "S)+ EE-J xerfc x gn(erfc x)dx] (4.62)
. 7-S,
i

- The last term in the brackets has the limiting value - n 2 for large

Si' Hence for large Si we obtain

*

*sepz-1) (4.63)

CD = - 2—2— _._eio. (%e-
M0 Si Tiw

The Maxwell drag is negative when ¢; > 1, and is thus actually a thrust.

Potential Near the Wake Axis

The electric potential in the near wake can be examined by

means of the straight-trajectory or Maxwellian models. For either of
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these models the zeroth-order inner expansion for the electric poten-

tial can be expressed by means of (4.47) in the form

Ys
=g ek J dx (4.64)
/2Ni(1,6) Y /ex_(1+x)
where
- ,0 i
Y2055 " %
= o - *
Y= ¢os ¢s
The plus sign is to be used when
i *
Y < YS or ¢o >¢s (e<ew)
and the negative sign when
i *
Y > YS or ¢° <¢s (e>ew)
The inner limit of the outer expansion ¢gs has the value ¢gs = -znmgﬁlﬁ)

for the Maxwellian model and ¢gs = -%n 2Ni(l’e) for the straight-trajec-
tory model.

When S, cos © is large, ¢gs is of the order of S% cos2¢, and
thus YS is very large when ¢; has the typical value of 3. Near the
sphere surface in the region of the wake axis both Ys and Y will be

large, and we can gain an approximation for (4.64) as follows:

Ys
= —-:—4L———— J e—x/zdx
/2Ni(1,e)

Y
_ 2 (e-Y/z_e-Ys/z)
/2Ni(1,e)

(o] i
- 2 e'¢05/2 (e¢o/2 —.e¢;/2)

V2N, (1,6)
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If we now solve for ¢;, we get

*
i T '¢s/22
¢y = ¢; + 2n[1-+2 e ] (4.65)
for the straight-trajectory model, and
i L -95/2,2
¢, = ¢; + ¢nfl+ 7 e ] (4.66)

for the Maxwellian model. These expressions are valid near the sphere
surface when 6 is small and S; is large, and are independent of both
S; and 6. The Maxwellian model gives larger values of ¢i than the
straight-trajectory model.

It is interesting to compare the results of the present analyses
with the numerical results of Kiel et al. [1968]. Because of the singu-
lar behavior of the Laplacian operator when sin 6 - 0, numerical dif-
ficulties arise near the axis of the wake. Because of this, the poten-
tial curve for 6 = 4.5° is plotted by Kiel et al. In order to make a
comparison of results, it is useful to obtain an approximation for the
outer expansion (quasi-neutral) that is valid for small 6. It is pos-
sible to expand the general expression (3.10) for N;(%¥,6) for small ¢

and obtain, keeping only the largest term for large Sis

. 2,52 b . o
i -s%/r *sin26
N, (7,0) = $/1- e i/ peros. /o Dyps S1310°0 0 1y,
1 7 1 I—,2 r2 f.2

6 +0 (4.67)

Keeping only the largest terms in S; and 1/5¥2, and solving ¢g by means

of (4.22), we obtain

2 y
: S;sin?e
o0 = <L _gn[1. 2200 60 (4.68)

This is an approximation valid near the wake axis for large S; and

away from the sphere surface.
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The potential near the wake axis is plotted in Fig. 7 for the
typical ionospheric values ¢; =3,S5; =8, and ¢ = 0.001. The outer
expansion (4.68) and inner expansion (4.65) are compared with the
numerical results of Kiel et al. The results of the numerical inte-
gration by Kiel agree well with the quasi-neutral (outer) approxima-
tion (4.68) for large T. Near the sphere, the present formula (4.65)
gives.?alues of ¢* that are larger than those of Kiel. This discre-
pancy arises because of the different model for the electron density
used by Kiel in the near wake. The simple formulas for the inner and
outer regions of the near wake allow rapid computations to be made.
They agree qualitatively with the more sophisticated (and more compli-
cated) results of numerical integration.

The effect of varying the ratio of Debye length to sphere radius
is shown in Fig. 8. These curves are for the same values as the pre-
vious figure except that € is ten times larger, € = 0.01. The same
qualitative agreement with the results of Kiel are found. The present
theory gives a better approximation as € becomes smaller.

Higher-order approximations in the inner expansion should im-
prove the accuracy near the sphere surface, especially since the inner
expansion proceeds in a series expansion in the square-root of e. A
composite formula would give a smooth variation between the inner and
outer expansions, but such a composite expression does’not give fruit-
ful results unless € is exceedingly small or unless higher-order terms
are obtained for the inner expansion.

With some knowledge of the behavior of the potential field, we
can now proceed to obtain a higher-order approximation for the ion dis-

tribution function.
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Fig. 7. Electric Potential in the Near Wake, ¢ = 0.001.
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Fig. 8. Electric Potential in the Near Wake, ¢ = 0.01.



CHAPTER V

FIRST-ORDER CORRECTION FOR THE ION DISTRIBUTION FUNCTION

Method of Characteristics

We now return to the first-order distribution function ?1
given as part of fil by Eq. (3.8). In dimensional velocity and space

variables, Eq. (3.9) for fl reads

Fom = - U =2 (5.1)

where

Consider a solution to Eq. (5.1) by means of the theory of
characteristics. If the right-hand side is regarded as known, the

characteristic equations are

df 3!

_1__9 .9

=" g (5.2a)
> .

g%- =3 ' (5.2b)
_).

i _ |

-&Tt- =0 (S.ZC)

The characteristics of Eq. (5.1) in physical space are the free-
particle trajectories, which are straight lines. The value of the
function %1 varies along the straight-line trajectories depending on

¢6. By contrast, note that the characteristics for the Vlasov Eq. (2.1)

47
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are curved trajectories in physical space, depending on ¢, and that
f; is a constant on these trajectories.
There are three physical constants of motion of interest along

a free-particle trajectory: the energy, E, angular momentum about the

origin, L, and the z-component of angular momentum, LZ.

ms
= 2 = L (p2,£2422

E=am g% = 5 (Ep+E+Ey) (5.3a)

2 = m2y2(r2452

L, = mirgwsine (5.3¢)

In terms of these constants, the variation of velocity components along

a trajectory (or characteristic) can be expressed as

£ = v2E/m1 (5.43.)
£, = */2E/m, - L2/m?r? (5.4b)

£, = + —2— /sin26- L2/L2 (5.4c)

0 mirsine

The orbit equation relates 6 as a function of r along a particle
trajectory. The orbit equation can be obtained from Eq. (5.4). Since
Er = dr/dt, Ee = r d6/dt, we obtain from Eq. (5.4c) by separation of

variables

-d(cosp) _, _Ldr (5.5)

2
L2 mir gr
/Q~ —% - cos?e
L

The integration of this equation along a particle trajectory gives

coso cos6,,

cos~1 = - cos~1 = = 1 (5.6)
1- Lz /1 Lz
L2 12
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where cosé  is a constant, and

T
_ L dr
I = ]-n-—Lo (5.7)

-

Solving Eq. (5.6) for cos 6_ and making use of (5.4c) gives

m.r

cosg_ = cosbcosI  + —%f-ge sinesinlm (5.8)

In the same manner the Eq. (5.6) can be solved for cosé to give

LZ
cos® = cos6_ cosl + /sinze -~ —%—sinl (5.9)
oo [e2] L o]

It can be shown from expressions (5.4b) and (5.7) that cosl = -&r/E,

and sinl_ = L/mirg. Hence the Eqs. (5.8) and (5.9) become

Er £

cos6_ = - E—-cose + Eg sin® (5.10a)
E'.[' - L 2 L2
= - - i - 22

cos 6 E cosé_t+ mir€ sin“6_ 2 (5.10b)

where the minus sign is used when £,>0 and the plus sign when £,<0.
Since £, = dr/dt, the solution for El can be expressed from
(5.2a) as

f, =

T 9¢' 99!
g J 0 1 %0 . dr (5.11)

m(g;—~cose - 5-56—-51n6) E;
This integral can be evaluated when ¢6 = ¢é(r,e) is known, since 6 is
given as a function of r by (5.10).

Expression (5.11) is the formal solution for ?1’ but its use
remains difficult because ¢ is a complicated function of r and 6.
For practical approximation purposes, it is therefore useful to con-

sider the special case of a central potential ¢6 = ¢$(r). This is not
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a bad approximation for the region in front of a sphere.

Spherical Potential

For a spherical potential, we have a¢é/ae = 0, and expression

(5.10b) substituted into Eq. (5.11) yields
do!

: % [0 BT
f1 = - Um[— T Cosem+ﬁl—'—g- sin“f_- Eé- L, T E ] (5.12)

1 °’T

The constant of the motion cos 6_ is given in terms of the local posi-
tion and velocity by (5.10a). The other constant of the motion can be

evaluated in terms of the local variables by (5.10b):

/ L2 £
rt EEE- sinzem ~ £§-= r{cosd + 7; cost_] (5.13)

Again using (5.10a), we get

2 2.2
- E= r[£e+£w cost + bt
m.§g ® L2 EZ 52

sin@] (5.14)

Equation (5.12) can now be written

Usl & ;

= T g .
f1 = - (7; cos@-;; sin6)
U, E5+E] £
-+ egz‘p cos6 + 226 sin0)1(61) (5.15)
where do!
0
o L dr
I(o)= rgL T (5.16)

Making use of expressions (5.4) for gr/E, and substituting the dummy

variable u for r, we express the integral I(¢8) as
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d¢!
T aﬁg-du
[(¢') = -7 £ <0 5.17a
G = -1 = < (5.172)
m
do} dg!
Tm FTE du T I du
I(¢") = - rJ L rJ ——— £ >0 (5.17b)
© w Yul-r2 r Vu2-r2 T
m m m
where -
EL+E
2 = .2 9 7Y
=T 2 (5.18)

The integral I(¢é) is the term that contains the Debye length in the
first approximation for the ion distribution function.
A compact form for the first-order function fi==fio[1+6fil]

can be obtained by introducing spherical coordinates in velocity space

as follows:
Er = & cosy
E;e = £ siny cose (5.19)
£, =& siny sine

b

By means of (3.4a), (3.8) and (5.15), we have for the first-order

function
S%G ¢$ 3fio siny afio
= —_— e — '
£ = 50" B, e TR [z oy I(s2)] (5.20a)
1 (e¢0 afio siny afio e¢0) )
=fotE ) - I( (5.20b
10 3 mi of EZ a'Y mi

The first and second terms on the right-hand side are equivalent to

the ad hoc approximation used by Prager and Rasmussen [1967].

Models for Spherical Potential

It is useful to evaluate the integral I(¢$) for various spherical
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models. A simple model that represents the electric field qualitatively
in front of the sphere at least is the linear model shown in Fig. 9.
Because the density of the ions in the near wake is practically zero

for large S; and small ¢, the nature of ¢6 aft of the sphere is incon-
sequential for computing moments of the distribution function on the

sphere surface.

o5 A
1
_>r
a T,
Figure 9. Linear Potential Model
For the above model, we have
¢! 9¢!
~2= . -2 = const. a<r<r
T b s o]
(5.21)
=0 r>r
0
where
1
T = a+ - (5.22)
° 3o
or

S

If we now make use of the analysis in Inner Expansion or the Boundary-

Layer Approximation, we can use the value of (a¢;/a;)s near 6 = w and
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write
d¢' 3 i
dro = - 1* 320% = const
aedg s
=0
where
bs
r, = afl+ e 9 ]
30,
I

(5.23)

(5.24)

On the surface of the sphere, r = a, we now get for I(¢é) from Egs.

(5.17a) and (5.23) dog
I(¢}) = aJ
0 a Vuz—ré
i
N 1 8¢0
= - = -5—-— R,n[
edg 198 g
52 +£2
where 2 = a2 2 ¥ _ 22 gin2 ¥
m g2

L Vrg-rZ

=

a+ ¢a2-r$

(5.25)

on the surface of the sphere. Further, expanding the Eq. (5.25) in

the series in small ¢, we obtain when y # %

*
1 ¢ 1
I1(6') = = ———— & . 0(ec2
0 " Taom] " gl Teesi
(o]
14 s
and when y = %
/i |aed ot
_ 1 0 V2 s
I(cb")) = - E-a)-;— -a-i— . [»/—2— “j7 € laq)i + 0(82)]
o

(5.26a)

(5.26b)
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Another simple model that represents the clectric field
qualitatively in front of the sphere at least, but does not have an
abrupt change of the potential gradient at the point ry as in the pre-
vious linear model and thus is more realistic, is the parabolic model

shown in Fig. 10.

]
¢01l
1
a T, T
Figure 10. Parabolic Potential Model.
For this model, we have
3¢é 3¢5 3¢é 2
-5?-= - '5-1:— -5_1-‘-_ (r-a) .':1<1‘<1‘o
s
(5.27)
=0 r>1‘o
where
r =a+ —2__ (5.28)
o ¢! ’
G
or
s
303

As mentioned in the previous model, we can use the value of (sz—
s

near 8 = 1 and write

L}
d¢0 1
*
dr aedy

203 |2

34’3 1 ' (r-a)

+ Ir--a asrsr
3 1g 7 (aset)? 192 I © (5.29)
=0 ™>Tg
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where

1 (5.30)

On the surface of the sphere, r = a, we now obtain for I(¢(‘)) from

Eqs. (5.17a) and (5.29)

1]

1(s)

1]

1,2
— [x/:r'z—rlfl - J'az-rri] (5.31)

where

on the surface of the sphere. Further, expanding Eq. (5.31) in the

. . . o
series in small ¢, we obtain when y # 1

¢*
1 2 S 1
I(¢!) = ~ ~—=7+ 3¢ - + 0(e2) (5.32a)
° |cosy| 3 Iaq% | cos3y]
5T g
and when y = 'TQT'
s 2 %
- 4 _ & S5 2
1(¢l) = [3 5 e yS + 0(e?)] (5.32b) |
3T |

Equations (5.25) and (5.31) evaluated at y = m/2 have singular-

ities as € tends to zero, as can be seen from Egs. (5.26b) and (5.32b).
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This singularity as e tends to zero arises because of the behavior of
the integrand l/fgzj;g.in the integral (5.17a). It is not possible
to remove the singularity by assuming the similar simple models for
the spherical potential such as Eq. (5.21) or (5.27). Nevertheless,
the expressions (5.26a) and (5.32a) illustrate how the Debye length,
or €, enters the first-order perturbation away from y = n/2.

The next step is to compute the induced drag and the energy
transfer by evaluating the appropriate moments on the sphere. Except
for the term containing I(¢é) the results are the same as that of Prager
and Rasmussen [1967]. It will be seen later that it is necessary to find
a spherical model which will produce I(¢8) free from singularity at
y = n/2 as ¢ tends to zero in order to obtain meaningful results of the

moments on the sphere.



CHAPTER VI

MOMENTS ON THE SURFACE

Moments for the Ions

The distribution function for the ions is nonzero on the sur-

face only for gr<0. The first-order ion distribution function on the

surface of the sphere is, from Eq. (5.20a) and (5.17a)

% of. 6 .. of.
S sl _"do | Ts siny 10 y 4 (6.1)
fi(rs,ﬁ) = fio'— 2 £ 3¢ + 2 gz oY (¢0)
2ed
where § = - —== 2026
s m. ©
i
d¢!
oo E-P-du -
I(¢') = J R -z-s_y_g-u (6.2)
0 a Yu2-a?sin?y

is given as

In rectangular coordinates, fio

£, = Aiexp[-Bi{£2+U§-2Uw(£rcose-gesine)}] (6.3a)

while in spherical coordinates as

fio = AieXP[‘31{52+Ui-2Um€(605Y cosf-siny cose sin6)}] (6.3b)

The negative surface potential causes the potential field to be

attractive for the ions. Since the total energy of an ion particle is

. . . [/ 2e o
conserved, there is a restriction &> /- m?s = V¢S on the surface of
i

the sphere. It is convenient to write the moments with the velocity

57
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components expressed in spherical components given by (5.19). In

spherical coordinates in velocity space we have

d3¢ = £2 siny dg dy de (6.4)

The general tensor moments on the surface for the ions can

now be written as

<g*emehs = [~ n'zﬁs“g“‘g“f £2 siny dg dy de (6.5a)
n rew_J_“Jo’rewi Y Y .
/q')s >
[ ann L+m+n+2
= J £ g(y,s)fidg dy de (6.5b)

where

m+n+1

gly,e) = cosgy sin Y cos™e sin"e (6.6)

Substitution of Eq. (6.1) for fi gives

© 2T
gm.n_ L+m+n+2
ni<£rﬁeiw> = j J J £ g(y,s)fiodg dy de
=~ T O
/85 Vi
. (™ (me2w of.
) "2§‘J J 7™M gy e) ———aglo dg dy de
o
m
s >

6s ® (me2m L+m+n Bfio
+ TJ J J £ g(y,e)siny I(¢l)dE dy de

P
/5 (o} Y

Ll
52

(6.7)

Since &5 is of order §, it can be shown that the moments for the ions

can be approximated to the order 65 as
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g m n @ (2 L4m+n+2
n.<g'£ £ > = J J J £ g(y,r.)fiodg dy de
0

n 0

Roa

 p1f 02 of.
- 1; J J J £ g (ye) 3219-d£ dy de
0’ T’ 0

]

) :E. ® 0T 27 g+men . afio '
2 ). 3 g(y,e)siny 5y L(0g)dE dy de
T’ 0
2
(6.8)
The second and the third integrals can be integrated by parts with
respect to £ and y respectively. It is more convenient to carry out

the integrations in rectangular coordinates, Er’ ge, £ The first

v
integral can be easily written in rectangular coordinates, but to do
so for the second integral after integration by parts is not as easy.

It can be done by making use of the rewritten form of fio

£. = A, t2 exp[-B. (U2-2U & cos8+2U_£_.sind)] ) e_ngdC (6.9)
io i PL-5; WemeUa5y ©>g :

1 B.
i

which provides the needed factor £2 to write the integral in rectangular

coordinates. Now we can rewrite the moments for the ions in the more

convenient form

L.m.n_ _ _s _ 55 -
ni<grgegw> = I1 + 7;—12 —5-13 if 2#0 (6.10a)
bs ds

Lt I - 2 (IgrDy) if =0 (6.10b)
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where

0 (® [
= £.m_n
T J_mJ_m[_wgrgegwfio e, dge»dgw (6.11)

© (Q o o . /Ef 2
2 (2+m+n+1)AiJB J-mj_mf_w%§g£$exp[-c{(Er- —Ei-sicose)
i

i
!}

+(E_+ {Ei S.si 9)2+ 2}+Szfgi -1)]dCdg_dg dE (6.12)
ot T SpS1n0) +E, 15, r¢%%%y .
“(T(2" gemin_ m n d % m+n+2
13 = J J J £ cos € sin € £. a—[cos y sin vy I(¢')]dE dy de
ol i io dy 0
2
(6.13)
: 2w m+n__ m n 2
I4 = Ai 1(¢')Y=“/2 JOIO £ “cos e sin ¢ exp{-(/§;E+Sicoss sind)
- sg(l-cos%:sinZe)]dg de (6.14)

The term I4 arises because the integrated part does not vanish for
& = 0. Either Eq. (3.6) or (6.3a) for fio in rectangular coordinates
can be used to evaluate the integral (6.11). To evaluate the integral

(6.13), the Eq.(6.3b) for fio in spherical coordinates should be used.

Moments for the Electrons

The zeroth-order electron distribution function on the surface
of the sphere for small electron speed ratio, Sy<<l, can be written

from (3.15b) as

- — =+ 2
A e(b; e‘( Be F:“ge)
e

fo, (FsE)

- 2
Ae Se Bet”, 0(s,) (6.15)

il
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The tensor moments on the surface for the electrons is ob-
tained by integrating over velocity space for gr < 0. In rectangular

coordinates in velocity space, we have

0 (™ pr®
Lm.n_ _ £.m.n

ne<grge ¢> = J—mJ_mJ-wgr£e£¢ feo dgrdgedgw (6.16)

Neglecting terms of order S, in feo, we write the tensor moments for

the electrons

—-b* - 2
£€m€n> ¢s L. m_n Beg

0 Jor] <«
rPoby” = A [_J_J_frgegw € dg dgde, (6.17)

n <
o <&

The potential enters exponentially for the electrons, whereas it enters

algebraically for the ions in these approximations.

Moments for the Neutral Particles

The neutral particles are not affected by the potential. For
€, < 0, the distribution function on the surface of the sphere is

-B_(¢-U)?
> > 0 LY
fo(rs,g) = Ao e (6.18)

The tensor moments for &r < 0 is then written as

0 (® pxo
g.m.n_ _ £,.m._n
n0<grgegw> = J_mJ_MJ_wgrgegw fo dgrdgedg (6.19)

¥

For gr>0, the particles are emitted from the surface with a diffuse

distribution given by (2.7) as

B -B,£2
> -+ __\13/2 W
£4(rs:8) = ny(r I () e (2.7)
where
m
B = —2_
w 2kTw
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- . .
and nd(rs) is a function determined from the condition of zero mass
flux nommal to the surface or Eq. (2.8). The tensor moments for the

emitted particles at the surface is then given by
v d *y

£,.m_n _ " {* o.mn
(<€ 508y T emit = U_J_maraeg £q de dgod (6.20)

The Floating Potential

The floating potential is the value of ¢ that satisfies Eq.

(2.9), which for J = 0 can be written as

™
m . .
Jone<gr>51ne do = Joni<gr>51n6 de (6.21)

The radial electron number flux ne<gr> can be obtained by setting
£ =1, m=n=0 in Eq. (6.17)
- F
New ¥

N<E>= - ———¢g (6.22)
e &r 2/mBg

Hence

T nem - ¢;
f n < >sinf do = - ——= e (6.23)
o e 'r ‘/,n. Be

Similarly setting £ = 1, m=n=0 in Eq. (6.10a), the radial ion number

flux ni<gr> is obtained as

S
ni<gr> = I1 + 72—1

s
2" 3 :[3(E ) (6.24)
T
where )
n.. -S:cos?e
I, == ———1[e 1 -/;Sicose erfc(Sicose)] (6.25)

1 ZVﬂBi
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. 2
N, [By  -Sicos?e -Sj
I. = - 2 J7L 171 e -/FSi cosf erfc(S; coso)

2 5,27/ 7 2
-5; (51 42
+ Yrcose e I e” erfc(x cos6)dx] (6.26)
0
o7 ¢ 2T d
I3(&; ) T J J J Ef., 3;‘[C°5Y sin?y I(¢;)]1dedyde (6.27a)
T LY
2

. - 2_ .
x ¢ (X°-2xSjcosy °°59)10(2xsisiny sins)

it
N
=3
e
8
4§ W
7
o
1
wn
e N
\'ﬁ-'_h
(] 8
——y
3

T
2
%— [cosy sinZy I(¢')]dxdy (6.27b)
Y 0
Hence
m n, §:. -S: T
. iw i i, ‘e
n.<g _>sin6do = - [(3+S2)erf S.+ —e ~+ ¢¥ erf S.]
Jo i°r 251/§; i 1 & T. 'S i
_SJ“
- = I sin6de -(6.28)
2), 3(,)

From (6.21), (6.23) and (6.28) we obtain

2
W e T 5, -5}
= ) = == (82 L !
n 7S,V m T [(S{+})erf S, t=e
+ Lo *lerf S b " ing d
7 ¢aterf S, + — 3k 4Sind 6}1 (6.29)
iw jo ’0 T’

where IS(gr) is given by (6.27). This expression is the same as that
obtained by Prager and Rasmussen [1967] except for the last term involving
13(€r)' This additional term contains the Debye length, and provides
the dependence of the floating potential on the Debye length.

It is not possible to evaluate the ektra term ekactly, even

if the simplest spherical potential model is used. However, for large
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ion speed ratio, Si>>1’ an asymptotic expression of this term can be
obtained without specifying a certain model for the spherical potential
by means of Laplace's method of asymptotic integration (sece Appendices
A and B).

Substituting Eq. (B.8), we can write Eq. (6.29) for Si>>1 as

*
-4 w V785
es- _J__[l_;__
n_ 2 m T 252
e i
m
+ _9_.35.{1 110" E-e fc (S, cos6)de}] (6.30)
TlooS o’ y=m/2 * i .
i

It is interesting to observe that IS(F y = 0 when Si = 0, and

by
the expression (6.29) reduces to
b Mo Mo Tio  Tea
- — *
© “n m, T (1+'T. ¢s) (6.31)
g i e i

In this case, the floating potential is independent of the Debye length.

Determination of the Diffuse Function nd(;s)

The condition for zero mass flux normal to the surface is sat-
> . . . .
isfied when the function nd(rs) in the diffuse distribution function
is determined so that Eq. (2.6) is identically satisfied. The function

nd(;s) is determined from Eq. (2.8) which can be written as

-
nd(rs) = - /m kT [m n. <§ Lm0 < Rar <g >] (6.32)

The radial ion and electron number fluxes, ni<§r> and ne<§r>, have

been obtained in the previous section. The radial number flux for
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the incoming neutral particles no<gr> can be obtained by setting

£ =1, m=n=0 in Eq. (6.19).

2
oo ['S°c°526 /7S fc ( )] (6.33)
n<g>= - e - ¥nS _coso erfc(S coso 6.33
o°r 2 qﬁi; 0 o

Substitution of (6.22), (6.24) and (6.33) to Eq. (6.32) gives

/ /B, m fB; -os
= e L X s
d(r ) [ nlm 1(S ,0) +n o Bo Gl(So,e)+ =1, Be e

)
m. T . ¢%
i ex s
+a-niw-,r—§-2-{e (s; e)+ / Is(g)
) je
(6.34)
where
_G200c2
Gl(S,e) = e S%cos®6_ /1S cos® erfc(S cos6) (6.35)
-g2 -g2 (S y2
G (5,8) = Gl(S,e) - e + /rcose e e erfc(x cosf)dx
° o (6.36)

and I3(£r) is given by (6.27). Prager and Rasmussen [1967] obtained
the same expression as Eq. (6.34) except for the last term involving
IS(gr)’ which contains the Debye length and provides the dependence of
ndC;s) on the Debye length. Although Is(gr) can not be determined ex-
actly even for the simplest spherical potential model, asymptotic ex-

. pressions of IS(Er) for large ion speed ratio, Si>>1, are obtained
without specifying a certain model for the spherical potential in Ap-
pendix A. The third term in the brackets in the expression (6.34) is
negligible because the ratio mg/my is a very small number. The ratio

m;/m, can be taken as unity.
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The Slip Velocity

The mean velocity at the surface of the sphere will have only

A

a component in the €y direction because the ér component is zero due

to mass conservation, and &6 component is zero owing to symmetry. The

v

mean value of velocity at the surface is defined as follows:

_ IMgng<Eg>

6 = Tmong (6.37)

where the summation is over all the electron, ion, and neutral species.

Setting m = 1, £=n=0 in Eqs. (6.19), (6.20), (6.17) and (6.10b)

gives
: no<ge> = - {;nowU°° 5ing erfc(Socose) (6.38a)
[no<£e>]emit =0 (6.38b)
ne<ge> = O(Se) (6.38c)
n.<g > = I. + :E-I - is--(I +1) (6.38d)
i%e” T M1t 7 Y2 T 7 Uit '
where
I1 = '%’Hypm sind erfc(Sicose) (6.39)
2 2
-85 SisinZe
B 1 - 1
I,=-n —&‘Uw siné[erfc(S, coso)- eS {cose(l 2 )
i g2 i i /1 sin2e
sz
+ J e erfc(x cosd)dx}] (6.40)
(o]
0 o7 o270 d 3
= b yand i !
IS(ie) J [ I £ cose fio Iy [sin°y I(¢o)]d£dyds (6.41a)
o’n’o
2
Fr -si ([ 2
=-2n J2e ? J J x e (X“-2x8icosycosd), (2xS. sinysine)
iV 7 1 i
o'm
2

d
& [sin3y I(¢é)]dxdy (6.41b)
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f— 2
n, VB: -S; 2
_ i i i '
I4(Ee) B 2 7 © I(¢0)Y=n/zj

2
A 2 s .2
S; cosZesin® gSicos’e sin®e

0
erfc(Sicose sind)de (6.42)

The number densities on the surface can be obtained by setting

£ =m=mn=0 in the Eqs. (6.19), (6.20), (6.17) and (6.10b)

n, = inOWerfc(Socose) (6.43a)
n = 3n, () (6.43b)
Oemit d*’s )
*
-4’5
n, = %nem e (6.43c)
ds bs
ng = I+ 5 I, - = (Ig+,) (6.43d)
voere
I1 = %niw erfc(sicose) (6.44)
By "Si 5i x2
12 =n, g-e J e” erfc(x cosf)dx (6.45)
i o]
0 o 27 d )
- —a— 3 t
I3ty = JOIHJO £i0 @ [sin®y 1(¢g)1dEdyde (6.46a)
z 2
Bi <=S:i(®(™ _(y2_9yQ.
=, 7; o 1I J e (x<-2xS; cosy cosb)
0 oln
2
. . d . 9
IO(ZXSis1nY sind) &y [sin4y I(¢é)]dxdy (6.46b)
n, B 52 21 2
I Gt s | , Sjcos2e sin26 .
I4(ni) - e I(¢°)Y=H/ZI erfc(S; cose sind)de

(o]
(6.47)

Contribution of the electrons is small and can be neglected. Substi-

tution of (6.38) and (6.43) to expression (6.37) gives*
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T ¢*
m n_erfc(S cose)+mn, {erfc(s cos0)+ 77— 57 G, (S, 9)}+K
B 1oo
Ve = -U sind| -
mn_ erfc(S cosé)+m n,(r )+m,n {erfc(S.cose)+ = 22 6.(5.8) }+K
0 0w o o0d s’ iiw i Tiw g2 377
i
(6.48)
where
-2 82sin2¢, s _o
GZ(S,e) = erfc(S cos8)- eS [c053£}~e D, e~ erfc(x cos6)dx]
m Sinze o)
(6.49)
-§2(5 2
GS(S,G) =S e e erfc(x cos6)dx (6.50)
)
K—e°°¢Si (1.+1,) (6.51)
o T. g2 sinb 3 4'¢ '
io 1 0
*
= .2 ’S 2
Kl = -7 Sz m, U (I 4)nl (6.52)
100
i
The integrals I and I are given by Egs.

> I » 1
3(gg)” "4(Eg)’ "3(ny) 4(n;)
(6.41), (6.42), (6.46) and (6.47) respectively. Although IS(ge) and
IS(ni) can not be integrated exactly, asymptotic expressions of 13(59)
and I

Consider a simplified special case of the slip velocity. Let

T. =T =T =T and introduce the degree of ionization, o, as
Jo e o® ©
m.n,
O = ————t 6.
m.n. +mn (6.53)
i"ie "0 o0

Then Si=So, since mi/mo= 1. The slip velocity then becomes

3(ns) for large ion speed ratio, §,>>1, are obtained in Appendix A.
i
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*

s (
erfc(S; cose)+a-—7 G (b L0} 4 —

K
)
Vg = -U_sino i i ]
erfc(Sicose)+/ 6 (S ,0)+ a (/ G +G3)+ +K2)
(6.54)
where
o 85 v
K., = ——— — U I 6.55
2 T _g2" 3(&y) (6.55)
i

The integral I is given by Eq. (6.27) and its asymptotic express-

3(&y)
ions for S;>>1 in Appendix A.

The expressions (6.48) and (6.54) are the same as those obtained
by Prager and Rasmussen [1967] except the terms Ko, K1 and K2 which con-
tain the Deybe length and provide the dependence of the slip velocity
on the Debye length. In the expression (6.48), the term K2 is included

in the diffuse function, nd(;s).

Molecular Drag

The drag induced by rarefied plasma flows past a sphere con-
sists of two parts. One part is due to the contribution from the
electric Maxwell stresses, and the other part is due to the contribu-
tion from the momentum.flux;of the ions, electrons and neutral particles.
The former is called Maxwell drag which has been obtained in Chapter IV.
The Maxwell drag is negative and hence actually is a thrust. The latter
is called molecular drag and will be evaluated in this section.

The molecular drag is determined from the momentum flux tensor

as given by expression (2.11) which can be written as



i,e,o s
o = - é m n <t £> (6.56)

If éz is a unit vector in the direction of the free stream, the

molecular drag is

sphere
X i,e,o m i,e,o ¢
= - 3 2
2ma?[- ) msJ n_<g £ >cosd sinede + N msJ n <g £,>5in?0d6)
S Q S 0O
(6.57)

The term involving grgr is the contribution from the normal stress
and Erge from the tangential stress.
Setting £ = 2, m=n=0 in Eqs. (6.19), (6.20), (6.17) and

(6.10a) gives

Mo 3+52¢0520) oc (S 1o -S2co0s26
n0<€rEr> = EE;'[( +Socos 8)erfc( ocose)- = 0cose e
(6.582)
<g £ > = 0 (F) 6.58b
[no Erby ]emit " 4B ng(rs (6.58b}
n _*
n<geg>-= —Ef.e S, 0(Se) (6.58¢c)
e r’r 4Be J (6.58¢c)
n.<g > = I RLER -151 (6.58d)
icrer 1 22 2 3(&;%)
where
2 .2
0w ) c 1 -§;¢0s“6
I1 = EE;-[(%+Sicos 8)er c(Sicose)-~7% Sicose e ] (6.59)
SZ
o3 Si 2 2 2
I, = 3n, 2 I x2e*" [ (4+x2cos28) erfe (x cos6)- —= x cosbe X °°5 O1dx
ie g3 |, VT
i

(6.60)
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o ¢ 21
d .
= 2 a. 2 2 1
13(52) J I £ fio & [cos?y sin4y I(¢°)]dgdyde (6.61a)
T o'7’0
2
82
UL oy -(x2-2xS;jcosy cosh)
_ e 2 1Cosy . .
= 2nim 7 J J x<e Io(2x8151ny sinb)
o’n
2
%—{coszy sin?y I(¢')]}dxdy (6.61b)
Y 0
Hence

Al
m J n <§_ & >cosd sin6do
o] o ‘r’r

m°n°°°11211+ So _8‘2)112
= - SZ [(‘-8—-—2- SO— '2- SO) erf SO - ‘/-1? e (7;+'zso)] (662&)
0”0
m
moJo[no<£rEr>]emit cos8 sineds
T *
AT i ex Ps
= - 55/ B MRS GRou/5 SotMMie T g7 155061
W i ) iw 9F
3 i [ Jﬁ 1 6 sinodo (6.62b)
+ 5. = =— cosf sin .
s 4 Bw o S(Er)

where D(Si) is the Dawson function given by

..Sz S xz
D(S) = e J e dx
o

and I is given by (6.27).

3 (&)

ki)
meJO ne<grgr> cosf sinéde = meO(Se) | (6.62c)
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m
m.J n.<E_&_> cos® sinods
i i rr

o
mln;l‘m 1 2 u i —Si 2
- _ -~ — )
2, 52 [(8 5 s L gt Herf S; = +1 $D)]
3m.n, S.  .g?
- iie 1 1 5 i i
+ — [(g-7 S5)erf S, - —=e
¢s 28 [(8 4 1) i 4/7 ]
5 ok r I 6 sinod (6.62d)
- ¢ = 2y €0sO® sinbdé .62
s 2 o S(gr)

Setting 2=m=1, n=0 in Eqs. (6.19), (6.20), (6.17) and

(6.10a) gives

L . 1 -Sicosze
no<grge>— Eﬁ;-so s1ne[7? e —S0 cos6 erfc(So c0s96) ] (6.63a)
0 <€,85”Temit = (6.63b)
ne<grge> = 0(Se) (6.63c)
n<EE> =1 + =1 - =1 (6.63d)
i°r-e 1772 727 72 T3(EE)
where 2
ni°° 1 —Sicosze o
I1 = igz S. 51n6[;;-e -Si cos6 erfc(Sicose)] (6.64)
2
-Si s
- e i 5 x2 1 -xZcos?6 .
2 = 3nico Si3 Jo x° e [x cos® erfc(x cos6)- Y e 1 (-sin6)dx
(6.65)
0, 027 ) d 5
= ———] 3 t
Is(g £) I J f E4 cose fio dY[cosy sin®y I(¢o)]d£dyde (6.66a)
o‘nr’o
2
-Sl o0 T 2
=-2n, = J J x2 ¢~ (X°-2xSjcosy cosé) 1 (2xS. siny sin®)
iy 1 i
o'm
2

g-; [cosy sindy I(s)]dxdy (6. 66b)
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Hence

ki
et
mojono<§r€651n 6 de

2
_ Mol geo SO —SO 2 1 1 2 1 I
= '5;3—-52- [—f:r_- e (z‘;+-{;SO)-(—8--—2- So- 5 So) erf SO] (6.67a)
0“0
v
=2 =
mOJO[n0<grge>]emit sin4g do = 0 (6.67b)
™
meJ ne<grge>51n26 de = m, 0(Se) (6.67¢c)

o

™
02
miJoni<£r€e>51n 6 de

2
Mifjew 1 1., 1 o 8; -S5 ,
= - 75,52 [(g-7 85~ 5 S}erf §; - e (3+152)]
2
- Minje .1 1 1 -85
- ——— [(5 -5 S2 _
s ZS‘% [(8 7 Si)erf Si -—.-.4/1? Sie ]
i J"I in®6 do (6.67d)
- 7 . ySin .
s 2 ] 388y

The contribution of the electrons to the drag is small and
can be neglected. Substitution of (6.62) and (6.67) to Eq. (6.57)
gives the desired molecular drag. In terms of a drag coefficient, we
can write the molecular drag as

Dg

1 (mjn;,+Mgng,,) Usra?

CDf

(Cp)y * €0y (6.68)

where (Cp ) is independent of the floating potential, ¢*, and the
De'o s

Debye length, and (CDf)¢ contains the floating potential and the Debye
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length. In terms of the degree of ionization, o, we have

i Ty i T,
(Cpgly = (1-2)Cp (5, 'T;) + oCy(S;, T;‘) (6.69)
Too O T
= g2 S W *
(CDf)¢ - aTim g.f [F(Sl, Tim) + H(¢5a€)] (6-70)
1
where
T -s%
= W 11 e T 1 1 r /T
Cn(S.y =) = 2[(1+ —-—)erf S. + (=—+ )+ 1
DUt T s% 4sg T 252 35;" Tiw
(6.71)
-4 T DGsy)
T i T .
RSy, 1) = 3L~ “lerf s, + s 2 /¥ 1
o 282 ™ i e i
(6.72)
H(¢*,e) = - L [/ " I cosf sinode
s’ n, B 3(8.)
1 w (0] T
([ ' }
+ 2 J I sinZp de —J I, .»,C0s0 sind do}] (6.73)
o 3(e.8.) . 33

Here D(Si) is the Dawson function as given after Eq. (6.62b), and
IS(gr)’ Iz(gi)’ IS(ﬁrﬁe) are given by Eqs. (6.27), (6.61) and (6.66)
respectively. For a = 0, the expression (6.68) yields the usual formula
for free-molecule drag with diffuse reflection. The expression (6.68)
for the molecular drag is the same as that obtained by Prager and
Rasmussen [1967] except the term H(¢;,e) in (CDf)¢' This additional
term contains the Debye length, and provides the dependence of the
molecular drag on the Debye length.

It is not possible to evaluate the extra term exactly, even
if the simplest spherical potential model is used. However, for large

ion speed ratio, Si>>1, an asymptotic expression of this term is
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obtained without specifying a certain model for the spherical poten-
tial in Appendix B. Since the Maxwell drag is negative as has becn
shown in Chapter IV, the molecular drag given by Eq. (6.68) yields

the maximum value of drag.

Energy Flux to the Sphere

The energy gained or lost by the sphere is equal to the total
kinetic energy flux to the sphere due to the incident and emitted
particles plus the energy gained because of recombination of the ions
at the surface. Other changes in internal energy of the molecules shall
be neglected. Assuming that recombination occurs immediately with the
impact of an ion with the sphere, we express the local energy flux to

the sphere surface as
i,e,o Mg
Q=- ) - Jgrngsd%— éfgrfi d3g (6.74)
s

where the summation is over the ions, electrons, and neutral particles
incident on the sphere and the neutral particles emitted diffusely from
the sphere. The symbol € denotes the ionization potential per molecule.

The Eq. (6.74) can be written as

i,e,o0
T 2 6.75
q= - Z -5 D<€ E°> -~@n.<E > (6.75a)
i,e,o0 mg )
= - — 3 2 -
é 5 [ns<gr> +ns<grge> +ns<gr€w>] gni<gr> (6.75b)

s 3 2 2
Evaluating ns<£r>, ns<£rge> and ns<gr£¢> from Eqs. (6.19), (6.20),

(6.17) and (6.10a), and adding together, we have
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2

2 o 152+ 36, (5,60~ 4 Socos™?)

n_<g _£%> =- L — + 8 e (6.76a)
o°r 2/;3 3/2 2
1 ->
2 = ————
[n0<£r£ >]emi'c /= B 3/2 nd(rs) (6.76b)
w
2 neoo —(D;
N <€ %> = = ememi——— g (6.76¢)
e T Yo Be3/2
2 2
: Be(s2e B 5,0 de )
N.<E £%> = = ———"r—r C4 = .,0)-%e
1T 2/_{;‘ BiS/Z i 2 1M1
- ¢ G, (S;,0) - ‘5 (6.76d)
s [—'n B; 3(& £2) '
where Gl(S,e) is given by (6.35), and
© o ¢ 2T d )
= 3 — i
I3(£ £2) I f J £ fio 3 [cosy sin4y I(¢é)]dg dy de (6.77a)
T o’‘1’0
2
‘Siz © oy 2
- -2xS4 0
=2n, < J J x3 e (x"-2xSjcosy cos )Io(ZxSisiny sine)
1% Bl o l
2

g;~[cosv sin?y I(¢6)]dxdy (6.77b)

The radial ion number flux n.,<g > is given by (6.24) which can be

written as

nioc ex® ¢;
ng<E > = - [6,(S;,0)+ —-————2—G (8;,0)1-
i

6.78
2/ B, Tiw S 2 3(£r) 6.78)

where GO(S,S) is given by (6.36) and I by (6.27). Substitution

3(&,)
of (6.76) and (6.78) to the expression (6.75a) gives the desired energy

flux to the surface of the sphere. The contributions to the heat



77
transfer can be divided into a part corresponding to the usual free-
molecule heat transfer, a part due to electron heating, a part due to
the excess over the free-molecule heat transfer caused by the floating
potential, and a part due to recombination of the ions at the surface.
[t is convenient to represent the heat transfer by the nondimensional

form

C = 9 (6.79)

3
a %(miniw+m0n0m)uw

We then have

Cq = (Cq)o + (Cq)e + (Cq)¢ + (Cq)é (6.80)

The term (Cq)o does not depend on the floating potential ¢;

and comes from the ions and neutral particles. It is given by

(Cq)o = (1—&)G4(So,e) + QG4(Si,9)

. T Gy (S, 8) G4 (S ,6)
m 2 ’
- LA 0 S e (6.81)
where
1 5. 5 1 -82¢0s20
G4(S,6) = 2/? 83 [(S + -E)Gl(s,e) -%e ] (6.823)
11 -S2cos26 -
- o1y € _cos ,
= (S3 +2S} = 7 (S2 2)erfc (S cosb) (6.82b)

For o = 0, the Eq. (6.81) which is the same as that obtained by Prager
and Rasmussen [1967] yields the free-molecule energy transfer for dif-
fuse reflection.

The heating due to the transport of kinetic energy by incoming

electrons is (neglecting the term containing mg/m, which is very small)
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(6.83)

The electron heating is symmetric because terms of order Sg were
neglected in the electron distribution function. The expression (6.83)
is the same as that obtained by Prager and Rasmussen [1967]. If the

floating potential is determined by Eq. (6.29) then,(Cq]e becomes

g2
(Cq)e = .-.q.i. ;g.c: [(1+ —Lz—-)erf Sl + j_ :
T.o On U n
e® Y§ ) .
+ -T-l—; -5-2- {erf Si + Hi—: fo I3(Er) 51n0d0}] (6.84)
1

This expression is the same as that obtained by Prager and Rasmussen
[1967] except for the last term involving IS(gr)’ which contains the
Debye length, and provides the dependence of (Cq)e on the Debye length.
For large ion speed ratio, Si>>1, an asymptotic expression for the
extra term is obtained without specifying a certain model for the
spherical potential (see Appendices A and B). Substituting Eq. (B.8),

We can write Eq. (6.84) for Si>>1 as

@ 1
(€, = —5 7— [1+
e T. 2
23% fo0 285
T
Tow 0F jz
gx ?s
o ——11-3I(9' erfc(S.cose)ds 6.85
Timsg{ FT0) )y | oTEes yde}]  (6.85)

The contribution (Cq)¢ comes from the additional ions that

strike the sphere owing to the floating potential. We have



79

< - Te ¢;)[G 1(5+8) ~__1_(111_1_1‘“, )GO(Si,())
1 2
" I {Is(grgz) -5 Iz(gr)}] (6.86)

where Gl(S,e), Go(S,e), I and I

3(£r€2) 3(Ep) are given by Egs.

(6.35), (6.36), (6.77) and (6.27) respectively. The contribution of
electrons that enters through the diffuse function nd(;s) given by
(6.34) was neglected. The expression (6.86) is the same as that ob-
tained by Prager and Rasmussen [1967] except that the expression (6.86)

has an extra term, i.e., the last term involving I and I

3(64£2) 3(E,)°
which contains the Debye length and provides the dependence of (Cq)¢ on

the Debye length, and that it has not a quadratic term,

as their result does. This is because the present analysis is confined

to the first order of §, and it can be shown that a linear term

is of order §. Although the exact evaluation of the extra term is not
possible even for the simplest spherical potential model, asymptotic

expressions of I and I

3(6p) 3(5r52) for large ion speed ratio, Si>>l,
are obtained without specifying a certain model for the spherical po-
tential in Appendix A.

The heating of the sphere because of the recombination of the

ions is given by
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G, (85,00 U

« G,(5.,8) T o*
cy. =2 (&L 1 e 5 — 1
Cole = 2 (sf)[ ms T s? (=7 5 M 3000
(6.87)
where
£ Eﬁg.— (6.88)
1

The expression (6.87) is the same as that obtained by Prager and

Rasmussen [1967] except for the last term involving I )? which

3(¢
contains the Debye length, and provides the dependence o; (Cq)8 on
the Debye length.
Discussion

General expressions of floating potential, slip velocity,
molecular drag, and energy transfer are obtained. The integral I3 in
these expressions can not be evaluated exactly even for the simplest
spherical potential model. However, asymptotic expressions of the in-
tegral I for large ion speed ratio, S;>>1, are obtained in Appendix A
without specifying a particular model for the spherical potential by
means of Laplace's method of asymptotic integration. The results of
the computation of the moments are the same as those obtained by Prager
and Rasmussen [1967] except the term containing the integral 13 which
in turn contains the integral I(¢é). The integral I(¢é) contains the
Debye length and provides the required dependence of the moments on
the Debye length.

The linear and parabolic models are used to evaluate the in-
tegral It¢é) in Chapter V. The results, Eqs. (5.25) and (5.31),

evaluated at y = n/2 have singularities as ¢ tends to zero, as can be

seen from Eqs. (5.26b) and (5.32b). Nevertheless, Eqs. (5.26a) and (5.32a)
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serve to illustrate how the Debyc length, or ¢ enters the first-order
approximation of the moments on the sphere away fromy= /2. The asym-
ptotic expressions of the integral I3 for large ion speed ratio, 5;>>1,
obtained in Appendix A indicate that the integral I(¢é) and its derivative
I'(¢é) must not have singularities at y=7/2 as etends to zero, otherwise
the results of the moments on the sphere would be meaningless. Thus it is
necessary to find a spherical model which will produce I(¢é) and I'(¢$)
that are free from singularities at y=7/2 as etends to zero in order to
obtain meaningful results of the moments on the sphere.

It was pointed out in Chapter V that the singularity arises be-
cause of the behavior of the factor 1//;Ej;3.in the integrand of the
integral I(¢é), Eq; (5.17a), and that it is not possible to remove the
singularity by assuming the similar simple models for the spherical
potential such as Eq. (5.21) or (5.27). The desired spherical poten-

tial model must satisfy the boundary conditions

' 39, 368

¢y = 1» 57 |5m . at r=a (6.89a)
. %

95 = 0> B Tak 0 at  T=r (6.89Db)

At the same time the model should be able to eliminate the cause of

the singularity, the factor 1//551;§.in the integrand of the integral
I(¢é). Also the model should be simple enough so that the integfétion,
Eq. (B.7), of the additional temm H(¢;,e) of the mqlecular drag can be
carried out. This difficult task has to be left for the future inves-

tigation.
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For the present, however, we can observe the general trend
of the effect of the Debye length or ¢ on the moments from the simple
model Eq. (5.21) or (5.27), although the integral I(¢8) has singularity
at y=7n/2 as ¢ tends to zero. From Appendix A we can see that the term
containing I(¢$)Y=W/2 enters the integral Iz only on the downstream face
of the sphere. Since the density of the ions in the near wake is prac-
tically zero for large S; and small ¢, the term containing I(¢5)Y=ﬂ/2 is
negligible compared to its counterpart on the upstream face of the
sphere.

For example, from Eq. (B.7), the additional term H(¢;,e) of

the molecular drag using the linear model Eq. (5.21) and neglecting

the term containing I(¢')

o) y=r/2 compared to its counterpart, the first

term, is
H(o* )_ﬁ EJ;[ g.+.__._2/2—,/— ¢; + 0 (6.90
vo8) =5 /B L3t o+ 0(el] +90)
1 w Ia(bo
3z g

When e goes to zero, the temm H(¢;,s) goes to a finite negative value.
a¢3

—— = 2.03near 6 =71
T |g

for Maxwellian electron-density model. When € = 0.001, 0.01, and 0.1,

For the typical values of ¢; = 3 and Si =5,

the second tevrm in the brackets is 0.0364, 0.115, and 0.364 respectively.
We can see that H(¢g,e) is always negative when e<<1l, and becomes less
negative when ¢ increases. Thus the term H(¢;,s) reduces the molecular
drag, and the molecular drag increases with increasing ¢. Therefore

the result of Prager and Rasmussen [1967] gives larger value of drag

than that of the present more accurate drag.
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For the linear model, Eq. (5.21), the integral 1(¢é) and its

derivative I'(¢6), when expanded in the series in small ¢, are

o% .
I(¢") = 1- 0(e2 Lk 6.91
(¢,) Icosvl [1- % —5— ia¢° cosly + 0(e9)] v #3 ( )
S
I'(e)) = 2L 1. St 0] Y AT (6.92)

cos2y 2 l3¢1 cos?y

When ¢ goes to zero, I(¢8) goes to a finite negative value and I'(¢é)

to a finite positive value. For the typical values of ¢; = 3 and

3ok
522 = 2.03 near 6 = 1 for Maxwellian electron-density model
s

S.

1 S’

as mentioned before. When ¢

0.001, 0.01, and 0.1, the second term
in the brackets of I(¢!) is 0.00074/cos?y, 0.0074/cos2y, and 0.074/cos?y
respectively, and that of I'(¢é) is 0.00222/cos?y, 0.0222/cos?y, and
0.222/cos2y respectively. We can see that I(¢é) is always negative
and becomes less negative when e increases and that I'(¢é) is always
positive and becomes less positive when e increases, if e<<l and y is
not too close to w/2. The trend of the effect of the Debye length or
e on the integrals Iz can be observed by substituting Eqs. (6.91) and

(6.92) into the expressions of I5 in Appendix A.




CHAPTER VII
CONCLUDING REMARKS

An analytic investigation has been made of the problem of a
steady rarefied plasma flow past a sphere by means of the Vlasov-Poisson
set of equations. The equations are attacked by means of a perturbation
method exploiting the features of an ionospheric satellite, i.e., the
velocity of the satellite is much larger than the thermal velocity of
ions, but much smaller than that of electrons, and the Debye leﬁgfh is
much smaller than the characteristic length of the satellite. The ef-
fects of photoemission, the secondary emission of electrons, and the
earth's magnetic field are neglected.

The ion distribution function is found to be independent of the
electric field to a zeroth-order approximation. Thus the zeroth-order
ion number density is the same as that of neutral particles. The
zeroth-order electron number density is obtained by assuming three dif-
ferent models for the structure of the electron velocity space. The
zeroth-order ion and electron number densities are used in the Poisson's
equation, which is a singular perturbation problem, to obtain the
zeroth-order solutions for the potential field and the potential grad-
ients at the sphere surface, which in turn are used to obtain the Maxwell
drag. A simple formula of the Maxwell drag for the large ion speed ratio
shows that it is negative and actually a thrust when the surface poten-
tial is large. Simple formulas are also obtained for the potential near

84
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the wake axis, which allow rapid computations to be made. They agree
qualitatively with more sophisticated (and more complicated) results
of numerical integration.

The first-order approximation to the ion distribution func-
tibn is obtained for the special case of a spherical potential, which
is suitable for the sphere problem. The first-order approximate ex-
pressions of floating potential, slip velocity, molecular drag, and
energy transfer are obtained. The results are the same as those ob-
tained by Prager and Rasmussen [1967] except for the term involving
integral Iz which contains the integral I(¢é). The integral I(¢;)
contains the Debye length and provides the required dependence of the
moments on the Debye length.

The asymptotic eXpressions of the integral I3 for large ion
speed ratio are obtained without specifying a particular model for the
spherical potential. It is found that it is necessary to find a
spherical potential model which will produce the integral I(¢é) and
its derivative I'(¢é) that are free from singularities at y = 7/2 as ¢
tends to zero in order to obtain meaningful results of the moments on the
sphere. Although the desired spherical potential model is not obtained,
the requirements for obtaining it are pointed out.

The simple linear potential model is used to observe the gen-
eral trend of the effect of the Debye length or € on the moments, al-
though it has a singularity at y=7/2 as € tends to zero. It is found
that the molecular drag increases with increasing e, and that the re-
sults of Prager and Rasmussen [1967] gives a larger value of drag than

that of the present more accurate drag.
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Prager and Rasmussen [1967] obtained the moments by an ad hoc
approximation of ion distribution function. Present systematic ana-
lysis shows that although they obtained a part of the first-order
approximation, they missed the other part, i.e., the part involving
the integral I3 which contains the Debye length and provides the de-
pendence of the moments on the Debye length. As a result, their re-
sults are independent of the Debye length and are not realistic.

It is hoped that the present investigation will serve as a
basis for further research. In particular, it is desirable to ob-
tain higher order approximations of the potential near the wake axis.
It is also desirable to obtain a spherical potential model which will
produce the integral I(¢é) and its derivative I'(¢$) free from singu-
larities aty= n/2 as € tends to zero, so that the explicit expressions
of the moments can be obtained. In this way, the expressions for the
drag and energy transfer can serve as a useful guide for the conducting
and interpretation of experiments. Systematic experimental investiga-
tions indicating the role of the pertinent parameters are especially

needed since data are very scarce.
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APPENDIX A

EVALUATION OF INTEGRALS I s
I

13(ni)’ Is(ge)’ 13(55)’ 13(51,&9)’ IS(Ersz)

The integral, 13, appearing in the moments for the ions can
not be integrated exactly, even if the simplest spherical potential
model is used. However, for large ion speed ratio, Si>>1’ asymptotic
expressions for I, may be obtained without specifying a certain model
for the spherical potential by means of Laplace's method of asymptotic
integration outlined in the book by Erdelyi [1956]. As an example
IS(ET) will be evaluated in detail.

From Eq. (6.2), we have

do!
© —2 du
I(e') = aJ T S Leyen (A.1)
° q Yu2-a2sin?y 2
d¢é
d 1($)) ® — du
I'(¢c')) =—7 9. a3siny COSYJ du 7 %S_Y <m (A.2)
Y a (u2-a2sin?y)
(1) From Eq. (6.27a)
o 277 d )
I3(£r) = JOJ“JO Efio a;-[cosy sin4y I(¢é)]d£ dy de (A.3)

2
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where
3/2 2,112 s
io = (-—0 exp[—Bi{g +UZ-2U_€(cosy cosb-siny cose sino)}j
(A.4a)
2
(i 3/2 -Si -(BiEZ-ZA;;ESiCOSY cos6)
joo w) e
—Z/ET S;siny sinb cose

R (A.4b)

For large ion speed ratio, Si>>1, we can see that the exponent in the
integrand has a sharp maximum at e = m. According to Laplace, the
major contribution to the value of the integral with respect to e arises
from the immediate vicinity of € = m. Carrying out an expansion in
powers of x = ¢ - 7 and replacing the limits of the x integration by

© and -, we obtain

2 o 2 T . . .
B3 3/2 -Sj -B;¢& 2/Bj £ Si(cosycosp+sinysing)
3 " M=t Lge d’éj e

U
2
©  _/B: £Sisiny sin® x?
%— [cosy sin2y I(¢')]J e 77t dx
Y Y e
g2
n °i e— - Im/g e_Bigzd&;JTr vsiny [cosy siny I'(¢')
=N, T T Y Y Y
2 T Vy_sin® T 0
2
2VB; £S; cos(y-6)
+ (2cos?y-sin?y) I(p!)]e 1o dy (A.5)
(i) When 0<8< 5-, Si>>1
The exponent in the integrand has a maximum at y = T in the

2

range m/2<y < w. Expanding in powers of y = y- /2 and replacing the

upper limit on the integral with respect to y by =, we obtain
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2
B, -Si ® _ -B;(F”-2fU,s5in0)
T TR BT I L
367 e s 02,
Jm -2v/B; £S;5c0s0 ¥
e d
(8]
-52cos26 .87 2
N, o1 ® -Bj (£-U,sind)

dt  (A.6)

1
=- Iy _ I —e
2T ycosovlisine  © y=r/2 o e

The exponent has a sharp maximum at & = U_sin6. Expanding in powers

of z = £ - U sin6 and replacing the lower limit on the integral with

respect to z by -», we finally obtain

n. ‘Sicosze e} "B' 22
I PR o c - 1(e") e ' dz
S(Qr) 2n  U_cos6U_siné o’ y=w/2

-0

,. -Sicos?e
__ _i= e - I(6") (A.7a)
2 Jr S;jcos® U,sind o’ y=u/2
n.  erfc(Si;coss)
2 i® 1 t
2 U_sin® I(cbo)y=7r/2 (A.7b)
(ii) When %-<e<n, Si>>1

In this case the exponent in the integrand of Eq. (A.5) has a
sharp maximum at y=6. Expanding in powers of y = y-9 and replacing

the limits of the y integration by « and -«, we obtain
2
-S%

B 1
e __ s 1 ' 20 . cin2 ]
Vo [cos® sind I (¢0)Y=0+(2cos 8~-sin e)I(¢O)Y=O]

1
T3 )" M= T

a

© B (82-28U.) [®  -/B: £S:y2
J e 1( )dEJ e i E 1y dy
0 -0

oo 2

n. /B -B; (£-Uy)

= s [ 1 NS 20 _cind 1 . 115 Fe
o=/ [cos® sin6 I (q)o)Y=e +(2cos“6-sin 6)1(¢0)Y=9]J0e dg

(A.8)
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The exponent has a sharp maximum at & = U_. Changing the variable to
z = &-U_ and replacing the lower limit on the integral with respect
to z by -», we finally obtain
—Biz2

n. /B o
i i . Vot 20 _cinl )
IS(Er)m i 75-[cose sing 1 (¢0)y=6+(2c°5 f-sin e)I(¢0)Y=9]J_ e dz

(e

. ; 2.
i [cos® siné I'(¢5)y=e +(3cos48 1)I(¢6)Y=e] (A.9)
. T
(iii) When 6 = > Si>>1
From Eq. (A.5)
2
: By ¢ 1 r‘/— -B3€? fﬂ '
vn, - Vsi i '
3(£r) ., ol P £ e £ ] siny [cosy siny I (¢o)
2
2/B; £S;siny
+ (2c0s2y-sin?y)I(6!)] e P Ny (A.10)

The exponent in the integrand has a sharp maximum at y =

(SIE

Expanding
in powers of y = y - n/2 and replacing the upper limit on the integral

with respect to y by «», we obtain

2
_Si

ie ' ”
Iscgr)'\:-nim —1—_!_— /[T; I(¢0)Y=‘ﬂ'/2 Jo/g—e

-B; (E2-28U,) (= -VB; £S;y?
dEJ e dy

(o]

n. R
R Sy et S '
2U b I (¢0) y=m/2

2
® —B' (E_Uco)
J 1 de (A.11)

The exponent has a sharp maximum at £ = U_. Applying the same method

used in Eq. (A.8), we finally obtain
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n, B: © _B.z2
R Sl e % ' 1
IS(gr)m 2U,, m I(¢o)y=W/2 J_we dz

- 2 109! Dyen/2 (A.12)

It is interesting to observe that this result can be obtained from
the approximate equation (A.7b) by setting 6 = =/2.

(iv) When 6 = 0, w, Si>>1

From Eqs. (A.3) and (A.4b)

2

B; 3/2 -Si[® -BjEZ (T
I =21 n, (— 1) / e 1[ ge * deJ [cosy sinZy I'(¢!')
3(¢.) 1 0 T °

r —

2

12/535 S;cosy
+(2siny coszy-sin3y)1(¢é)]e - dy (A.13)

where the plus sign is used when & = 0 and the minus sign when 6 = .
For the case 6 = 0, the exponent has a maximum at y = 7/2 in
the range /2 <y< n. Expanding in powers of y = y-n/2 and replacing

the upper limit on the integral with respect to y by =, we obtain

2 L 2 ® /B.
! 3/2 ~° 51 -BjE -2VB; £8;x
13(5 )" 2m 3,03 I(¢$)Y=n/2j Ee dgj e dx
T S o o
N, VB o1
-7 s, My (A.14)

For the case 6 = w, the exponent has a sharp maximum at y=m.
Expanding in powers of y = y-m, we find that IS(g ) is asymptotically
T

equal to zero

Is(gr)“‘o (A.15)
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The other 13'5 can be evaluated in the same manner.

sults are given as follows.

(2) From Eq. (6.46a)

o ot 27 a .,
I3(ni) = JOJ J f. =— [sin4y I(q)(;)]dg dy de

o io dy
2
(i)Whm10<e<§, S.>>1
1
2
n -Sjcos?e

i e
Iem)"™ 1161 _
3(ni) 2 /fr S;cos0 Ui sin2e o'y=r/2

. Mo erfc (Sjcose)
2

I| ]
U2 sin2e (¢°)Y=“/2

(ii) When /2 <9 <, Si>>1

n.
1 3 1 1 1
IS(ni)m —— [sin6 I (¢0)Y=e + 2cosH I(¢O)Y=e]

b
(iii) When 8 = /2, 5.>>1
I3(n.)w —12 I'(¢5)Y=w/2
i 202
(iv) When 6 = 0, m, §;>>1
IS(ni)qJO

(3) From Eq. (6.41a)

o o p 21 d
IS(E ) = J J J ECOSE:fio e [sin3y I(%]]d&; dy de
) o'm’o

2

The re-

(A.

(a

(A

(A.

(A.

(A.

(A.

16)

.17a)

.17b)

18)

19)

20)

2)
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(i) When 0<0<7/2, Si>>l

2
-S3cos?e
Niw e 1

| A — 1" (") _
3(56) 2 /;'Si c0s6 Um sind o' y=n/2

n,
foo erfc(?icose) 16!
2 U sind o'y=m/2

(ii) When w/2<6<m, Si>>1

oo

Iscge)m - U sin6[sind I‘(¢(‘))Y=e +3cos0 I(¢é)y=6]
(iii) When 6 = w/2, Si>>1
N
Tsceg) ™ 20 T o) y=n/2
560 7 °

(4) From Eq. (6.6la)
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'3(e2) JJ Io 62 £, g [cos?y sin®y I(60)1deE dy de
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(1) When 0<g<m/2, Si>>l
I 25V 0
3(62)
(ii) When m/2<8 <, Si>>1

IS(Ei)q'niw cosO[cosH sind I'(¢s)y=6 +2(2c0529—1)1(¢é)Y=e]
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(iii) When 6 =0, =/2, m, Si>>1
I v 0 A.29
3(£2) (A.29)

(5) From Eq. (6.66a)

o7 2
= 2 d, in3
IB(grge) - Jof J £° cose fio dy [cosy sin®y I(¢é)]d€ dy de

™ 0
z (A.30)
(i) When 0<0<7/2, Si>>1
n. -S%cosze
i» e
I n 1(o! (A.31a)
3(51,59) 2 S S;cos8 (¢0)y=1r/2
o~ .._—i_o.o. 1
3 erfc(Sicose)I(¢o)Y=“/2 (A.31b)
(ii) When w/2<6<m, Si>>1

- i 3 1 ' 2q_
Iscgrge)m n,  sin6[cos® sing I (¢O)Y=6 +(4c0s20 1)1(¢é)y=6] (A.32)

(iii) When 6 = 7/2, Si>>1

nim

56 60" 7 T 00)y=n/2 (A.33)

T30 = ° (A.34)

(6) From Eq. (6.77a)
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2



97

(i) When 0<6<n/2, Si»>1

—SicosQO
I oy - i e
3(E,E%) 2 /7 S; cosd

n

= - —%ﬁ erfc(Sicose)Uwsine I(¢$)
(ii) When n/2<86<T, Si>>1
Is(grgz)ﬁaninm[cose sine I'(¢('))Y=6 +(3c0s26-1)I(4
(iii) When 6 = 7/2, Si>>1
L
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I3(€r52) YT e I(¢é)y=n/2

(iv) When 6 =0, Si>>1
o0 e“Si2
I 2y vV - (¢! _
3(€r5 ) 4 ¢§Isi o’y=m/2
(v) When 8 =, Si>>1

Unsine T(s0),

(A.36a)

(A.36b)

(A.37)

(A.38)

(A.39)

(A.40)



APPENDIX B

EVALUATION OF H(¢;,e)

The term H(¢;,s) in the molecular drag coefficient can not be
evaluated exactly even for the simplest spherical potential model.
However, for large ion speed ratio, Si>>1, an asymptotic expression
for H(¢;,e) may be obtained without specifying a certain model for the
spherical potential by utilizing the results in Appendix A.

From Eq. (6.73)

1 T m .
* T em e——— —
H(¢?,€) nn [ /Bw Jo Is(gr)cose sind de
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i
+ Z{J I sin%e d6 - J I,,,2,c0s0 sind de}] (B.1)
o 35y , 132

From Eq. (A.7a)
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JZ P //4;; 2 -Sicos?s
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The exponent has a sharp maximum at ¢ = n/2 for Si>>l' Expanding in

powers of x = 6-7/2 and replacing the lower limit by -~, we obtain

(STE]

n

ioo /§-1- ° -S%xz
. o iw /73 '
. Is(gr)cose sind de ~ ZS% p I(¢o)y=w/2 J_me dx
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From Eq. (A.9)

m
I cosd sinb de
[1 3(¢,)
2
Dy (T T
N ﬁ;_[ Jﬂcosze sin26 I'(¢8)Y=e de +Jﬂ(3c0526-1)cose sind I(¢5)Y=ede]
2 P

Substituting Eqs. (A.1) and (A.2) for I(¢6) and I'(¢é), and carrying

out the integration, we obtain
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1% 2 u3 _]; 2 .2 _‘_2___]_-__ 2 .2 3/2 ___C_)_
i J [- 3-;3-+ S /uc-a® + 3 3 (u%-a4)"" 7] o du (B.3)
© Jg
From Eqs. (A.31b) and (A.27)
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From Eqs. (A.32) and (A.28)
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Substituting Eqs. (B.2) ~ (B.6) into Eq. (B.1), we obtain

i /Bi (. 2ud 1 2 1 2312 d“’é
* Ly /s _ e L u2aa? v £ Ay2-a
Higev -5/ 5, L[ PERr A e A G B B vy
T
/B (2 L,
+ I(¢! )Y TT/2[ B, " erfc(Sicose)sm o do] (B.7)
S; 0
We can also obtain from Eqs. (A.7b) and (A.9)
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