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ABSTRACT

An analytic investigation has been made of the problem of 

determining the electric potential field and the aerodynamic moments 

for a steady rarefied plasma flow past a sphere by means of the Vlasov- 

Poisson set of equations. The equations are attacked by means of a 

perturbation method exploiting the features of an ionospheric satellite, 

i.e., the velocity of the satellite is much larger than the thermal 

velocity of ions, but much smaller than that of electrons, and the Debye 

length is much smaller than the characteristic length of the satellite. 

The effects of photoemission, the secondary emission of electrons, and 

the earth's magnetic field are neglected.

The electric potential, especially in the vicinity of the 

sphere, has been examined. This part of the investigation gives the 

nature of the electric field and provides a number of useful approxi

mate formulas including the one for the Maxwell drag. The Maxwell drag 

is found to be negative and actually a thrust when the surface potential 

is large. The first-order approximation to the ion distribution func

tion is obtained for the special case of a spherical potential, which 

is suitable for the sphere problem. The first-order approximate ex

pressions of floating potential, slip velocity, molecular drag, and 

energy transfer are obtained as a function of the ion speed ratio, 

surface potential, and the Debye length. The molecular drag is found 

to increase with the increase of the Debye length.
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CHAPTER I 

INTRODUCTION

A detailed knowledge of flowfields around ionospheric satellites 

is required in many practical applications. The prediction of satellite 

decay times, as well as the use of measured rates of decay to gain in

formation about the properties of the upper ionosphere requires accurate 

knowledge of the forces acting on a satellite. Owing to the high tem

perature generated during the re-entry into the earth's atmosphere, a 

space vehicle becomes enveloped by a sheath of partially ionized gas 

which affects radio transmission to and from the vehicle. Knowledge 

of the plasma flowfield around a re-entry vehicle is important in 

tracking and detecting it by radar. The aerodynamic effects of an ion- 

ized environment on a vehicle, such as drag and heat transfer, are also 

important in engineering applications. Owing to these applications, 

the problems of steady rarefied plasma flows past solid bodies have re

ceived considerable attention in recent years.

To clearly understand the problem, it is useful to examine 

briefly the properties of the ionosphere. The upper ionosphere is ex

tremely rarefied and partially or fully ionized depending on the alti

tude. The mean free path of neutral particles is extremely large. It 

is about 80 m at the relatively low altitude of 200 km and increases 

rapidly to about 8000 km at an altitude of 1000 km. The mean free path 

of ions and electrons is also rather large. It is about 0.1 km at an

1
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altitude of 200 km and increases considerably more slowly to about 8 km 

at an altitude of 1000 km. The thermal velocities of neutral particles 

and of ions are of the same order of magnitude, 0.4 to 6 km/sec. On the 

other hand, the thermal velocity of electrons is extremely large, of the 

order of 100 to 400 km/sec. The Debye length (Debye shielding distance), 

i.e., the distance over which a static electric charge is screened by 

polarization of the plasma, is extremely small in the ionosphere, of the 

order of 0.1 to 4 cm. The characteristic length of artificial satellites 

moving through the upper ionosphere is of the order of one or a few meters. 

The velocity of the satellites is about 8 km/sec (the data are taken from 

Ref. 1).
From the brief data given above, it can be seen that the fea

tures of the motion of a body in the ionosphere are that the character

istic length of the body is smaller than the mean free path but larger 

than the Debye length, and that the velocity of the body is larger than 

the thermal velocity of neutral particles or ions but smaller than the 

thermal velocity of electrons. Because the thermal velocity of electrons 

is much higher than that of the ions, a net negative current will flow 

initially from the ambient atmosphere to an uncharged body. The flow 

will continue until the body accumulates an equilibrium charge suffi

ciently negative to repel enough low-energy electrons that the total 

electron flux to the body surface just equals the ion flux to the sur

face. The equilibrium condition is altered somewhat by the other sources 

of current, e.g., the photoemission of electrons by solar radiation, etc. 

The flowfield will be highly asymmetric, and significant electric fields 

will appear near the surface of the body and in the wake, which have 

effects on the trajectories of the charged particles and hence on the 

drag force experienced by the body. For a description of the motion of
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a body in a highly rarefied medium, the conventional methods of con

tinuum fluid mechanics are inapplicable, and the problem must be at

tacked from the standpoint of kinetic theory. Some of the basic fea

tures of the physics of bodies in ionized atmospheres are discussed 

by Brundin [1963], Al’pert, Gurevich, and Pitaevskii [1965], Singer 

[1965], and in a recent review article by Liu [1969].

Jastrow and Pearse [1957] were among the first to consider the 

drag on a spherical satellite in the ionosphere. Using the Maxwellian 

distribution for the electron number density and the free stream values 

for the ion number density, they numerically integrated the resulting 

spherically symmetric Poisson's equation to obtain the electric poten

tial. The charged drag, in addition to the neutral drag, was obtained 

numerically by computing the change in momentum flux of the cold ions 

(thermal motion neglected) as they traversed the potential field. The 

assumption of the Maxwellian distribution for the electron number den

sity is not valid near the sphere surface where electrons are absorbed 

by the surface. Also the assumption of uniform ion density is not 

valid in the wake, since the ion density is very small aft of the sphere.

Extending the method used by Jastrow and Pearse, Davis and 

Harris [1961] tried to account for the asymmetry in the problem by using 

iterative procedure to solve the axisymmetric Poisson's equation. 

Starting from an assumed ion distribution, the procedure is repeated 

until a self-consistent solution is obtained. The wake they obtained 

is not completely realistic, because the basic scheme of Jastrow and 

Pearse does not account for the ion thermal motion in the structure of 

the wake. Hohl and Wood [1963] tried further improvements in this type
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of investigation by accounting for the absorptive effect of electrons 

at the surface of the sphere and also included some of the effects of 

the earth's geomagnetic field. Their electron density distribution, 

however, did not have the correct behavior at infinity.

Kiel, Gey, and Gustafson [1968] also numerically integrated 

the Poisson's equation by using more realistic models for the ion and 

electron number densities and were able to obtain results which are 

in agreement with the experimental measurements on the satellites.

They found that upstream of the satellite the potential decays quickly 

and raonotonically to the ambient potential and the electrostatic field 

is spherically symmetric, and that downstream of the satellite the po

tential will either increase first to a maximum value and then decrease, 

or decrease monotonically to the ambient potential depending on the 

value of the ratio of the Debye length to the radius of the satellite, 

and the electrostatic field is far from spherically symmetric. They 

did not consider the drag force.

The above investigations were principally numerical. Aside 

from various theoretical difficulties, they failed to bring out the 

functional relationships between the pertinent combinations of para

meters that governs the problem. Except in the work of Kiel, Gey, and 

Gustafson [1968], the trends that result from variation of the governing 

parameters were not clearly exhibited, if at all. Pitts and Knechtel 

[1965], by means of the theory of Jastrow and Pearse, devised a semi- 

empirical correlation equation to relate the drag of the sphere to the 

parameters that governs the problem and used it to interpret experi

mental drag data they obtained. The effect of the ratio of surface



potential energy to mean ion energy and the ratio of Debye length to 

sphere radius were shown to be key parameters that govern the drag. 

Their work was not "rational" in the sense that the results were not 

obtained from a well-posed boundary-value problem followed by a sys

tematic analysis.

Al'pert, Gurevich, and Pitaevskii [1965] in their monograph 

studied rarefied plasma flow past a sphere by means of the Vlasov- 

Poisson set of equations and obtained various important results. They 

were interested primarily in the density and electric fields, however, 

as opposed to such aerodynamic features as drag and heat transfer. 

Prager and Rasmussen [1967] also studied the sphere problem by means 

of the Vlasov-Poisson equations, and, by means of an ad hoc approxima

tion in the characteristics-solution of the Vlasov equation, were able 

to obtain analytic expressions for the drag and heat transfer. Whereas 

the drag formulas agreed in some respects with the available data of 

Pitts and Knechtel [1965], a desired dependence on the Debye length 

was not obtained.

Taylor [1967 a,b] in two papers considered two methods for ana

lyzing rarefied plasma flow past a cylinder. He used the Maxwellian 

distribution for the electron number density and discussed a so-called 

heuristic method for determining the electric potential field in the 

first paper and a formal perturbation scheme in the second. His as

sumption that the body size and the Debye length are of the same order 

of magnitude is rarely true for the ionospheric satellite. He did not 

obtain a general expression for the drag. Flow past a cylinder is also 

studied by Pashchenko [1964] by means of singular perturbation methods.



One of the objects of the present investigation is to derive a formal 

perturbation method akin to that of Taylor and apply it to the sphere 

problem.

Lam and Greenblatt [1965] and Lam [1967] developed a theory 

for the flow of a collisionless plasma past an arbitrary body for which 

the mode of analysis is through the moment equations instead of the 

direct use of the kinetic equation. One of the main restrictions of 

the theory is that the ion temperature is much less than the electron 

temperature. In this cold-ion approximation the ion streamlines are 

the same as the ion trajectories, and thus the theory is not valid in 

the wake. Nevertheless various features of the far field and plasma 

sheath are exhibited. In the present investigation we wish to work 

directly with the kinetic equation and eliminate the cold-ion approxi

mation. In this way, corresponding situations with free-molecule 

theory and accompanying boundary conditions are easy to perceive.

There are several investigations that deal primarily with the 

wake. Among these are those of Pan and Vaglio-Laurin [1967], Kiel, Gey 

and Gustafson [1968], and Vaglio-Laurin and Miller [1970]. These studies 

of the electric-potential field can be important in connection with de

termining the drag on a body, as will be clear later.

In view of the above discussion, the object of the present in

vestigation is to formulate and treat the problem of rarefied plasma 

flow past a sphere in a systematic kinetic analysis. In particular, 

drag and heat transfer will be the primary goals in mind. Although the 

particular shape of a sphere will be studied, the methodology can be 

adapted for other shapes. In this connection some preliminary work has
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been done for a cone by Elliott and Rasmussen [1969]. It is hoped 

that the present analysis will reveal the basis of various approxi

mations and serve as a foundation for further investigations.



CHAPTER II 

FORMULATION OF THE PROBLEM

Vlasov-Poisson Equations

Consider a rarefied mixture of ions, electrons, and neutral 

particles such as exist in the ionosphere flowing past a solid body.

If we assume that binary collisions are unimportant, the distribution 

function fg(r,ç) for species s in steady flow is governed by the Vlasov 

equation:
^
K  ' — --- =—  V((|— 5T- = 0 C2.1)

9r "'s as

where
q = + e ions

= - e electrons

= 0 neutrals

The mass of species s is denoted by mg, Ç is the molecular velocity, 

r is the position vector, (|)(r) is the electric potential. Magnetic 

effects are neglected, which is a usual assumption in this type of pro

blem. The electric potential is governed by the Poisson equation:

v2(j) = _ 4ne(nu-n^) (in Gaussian units) (2.2)

Here the ion and electron number densities are defined by the moments

n. (r) = /f.d^S 

n^(r) =



We have assumed that the ions are singly ionized. The Vlasov equations 

(2.1) are coupled nonlinearly to the Poisson equation (2.2) by means of 

the moments and ng.

Infinity Conditions 

We assume that the plasma is neutral at infinity so that

(|)(r)->0 as (2.4)

Further, each species will be considered to be in thermodynamic equili

brium with itself at infinity. Thus, the distribution functions, with 

respect to an observer on a fixed rigid body, will be Maxwellian dis

placed with the free stream velocity

f3(î,?) = (2.5)

where
A - ,3/2
s " s“ 2irkT ^Soo

mg
- 2kT

S “

Here the temperatures of the different species T^^ need not be equal 

and k is the Boltzmann constant.

Surface Boundary Conditions 

There are several boundary conditions required at the surface 

of a solid body. First, the mean mass flux normal to the surface must 

vanish. Second, the distribution function for the emitted particles 

must be specified and be compatible with the zero normal mass flux con

dition. We assume that the ions and electrons are absorbed at the sur

face and emitted as neutrals. This is the usual assumption for this 

type of problem, and now only an emission distribution function for
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neutral particles is needed. We shall assume a diffuse emission at an 

arbitrary temperature, T^, that is constant on the surface. Third, 

the current at the body surface or the surface potential must be speci

fied. We shall assume that the body is perfectly conducting and hence 

that the electric potential is constant on the surface. Assuming that 

the net current to an isolated body is zero provides a condition for 

determining the so-called floating potential.

Zero Mass Flux Normal to Surface 

The condition for zero mass flux normal to the surface can be

written

m^/ç*nf^d^ç + m^/ç*hf^d3ç + m^/t’hf^d^Ç + râ /|*nf^d^Ç = 0  (2.6)
t’ftS-O t'Az.0

where h is the unit normal pointing outward from the solid surface.

Here f^ is the diffuse distribution function defined by

fdCts.C) = "dtfs^tzmkT  ̂ ^w w
where rg is a position on the body surface, n^Cr^) is the number dens

ity of the diffusely emitted neutral particles determined so that Eq. 

(2.6) is identically satisfied, and T^ is the temperature of the solid 

body. Substitution of expression (2.7) into (2.6) and evaluation of 

the integral gives
nj(rg) = -(jĵ Ĵ:|r-)̂ [m̂ jt*ûf̂ d3ç + m̂ ft'Af̂ dh + mj|*hf^d3ç] (2.8)

° t*n<.0 t*n<.0 t*n<.0

Current at the Surface 

We assume that all incident electrons and ions are absorbed, 

recombine, and are emitted as neutrals. In addition the
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surface will be considered a perfect conductor. Because of steady- 

state conditions, the net current to an isolated body is zero:

- [e/t*nf^d^Ç - e/ç*nfgd^Ç]dS + J = 0 (2.9)
S t*n±0 t*n<.0

Here S is the surface area of the body and J is the contribution of 

current from sources such as photoemission, thermoelectric emission, 

and the "knocking out" of ions or electrons from the surface because 

of collisions with neutral particles. For some details of these addi

tional sources, one should consult Brundin [1963], Hall, Kemp, and 

Sellen [1964], and Medved [1965]. Equations (2.9) determines the value 

of the electric potential on the surface of the body. For purposes of 

simplicity, it is convenient to set J equal to zero; Eq. (2.9) then 

yields a negative surface potential.

Force on ̂  Solid Body 

Let S denote an arbitrary surface that encloses a solid body 

but does not necessarily coincide with the surface of the solid body. 

Let n denote the unit outward normal. From momentum considerations, 

the force exerted

Body

on the body by the flowing plasma is given by the following surface
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integrals :

,dS + Rn*0j^dS (2.10)
S

The first integral evaluates the contribution from the momentum-flux 

tensor

s (2.11)

and the second evaluates the contribution from the electric Maxwell 

stresses

^  = [̂̂ <l>V<l)-i(V(|)) n] (2.12)

where IT is the unit second-order tensor. Appropriate choices for the 

surface S in the evaluation of f are when S coincides with the actual 

surface of the solid body, or when S moves outward asymptotically to 

infinity. The case when S coincides with the body surface has the ad

vantage that the distribution function for the emitted neutral particles 

is specified at the body surface. Conventional drag and lift formulas 

for free-molecule flow are obtained by means of this choice. We will 

also use this choice to determine the effect of the induced electric 

field.

Effects of the electric potential arise explicitly from the 

Maxwell stress tensor, but they arise implicitly also from the gas 

dynamic stress tensor because fĵ and fg depend on 4i through the Vlasov 

equation. We wish to isolate this dependence on the electric potential.
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CHAPTER III

APPROXIMATIONS FOR THE DISTRIBUTION FUNCTIONS

Flow Past a Sphere

Consider a rarefied plasma flow past a sphere of radius a.

Let the free stream be in the z direction and introduce spherical co

ordinates r, e, as shown in Fig. 1.

Figure 1. Configuration for a Sphere.

Let Çgj denote the rectangular components of the molecular 

velocity corresponding to r, 6, \Ij .

Ion Distribution Function 

Under the practical ionospheric conditions envisaged for a 

typical satellite problem, we assume that the mean speed of the free 

stream ions is much greater than the mean thermal speed of the ions. 

In terms of the ion speed ratio, S^, we have
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Si = /ôT UL = /^- u^»i (3.1)ioo

Typically, lies in the range between 5 and 8, and thus can be con

sidered asymptotically as a large parameter. The maximum potential 

energy of the electric field is found to be much less than the mean 

kinetic energy of the ions. If is the surface potential of the 

sphere and is regarded as the same order of magnitude as the maximum 

potential, then the ratio of the electric potential energy to the mean 

ion kinetic energy can be regarded as a small parameter for the pro

blem
-ecj)

Ô = ---  « 1  (3.2)
»"i"^

The factor i has been omitted from the ion kinetic energy for conven

ience, and the negative sign has been inserted to keep 6 positive since

(f)g is usually negative. Because is large, most of the ions will

have the characteristic speed Uœ. It is now convenient to normalize 

the variables in the ion Vlasov equation as follows:

«' - é ’ " a ■ ♦' = 1̂ ,  5' = av

The ion Vlasov equation now takes the form 

+ 3fi afi5'.-^4+ 6V'*'.-qA= 0 (3.3)Sr* 3Ç»

Consider now series expansions for f̂  and (j)' in terms of the 

small parameter 6. We assume
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f. = f.^[l+6f.j+ô2f.2+...] (3.4a)

(j) ' = + 6(J)j + ••• (3.4b)

Substituting expansions (3.4) into Eq. (3.3), collecting like orders 

of 5, and requiring each order to vanish gives for the first two 

orders
-> ^^io€’• — = 0  (3.5a)

9r’

9f.. 9£nf.
C3.5«

Equation (3.5a) is the same as for neutral particles. Thus we assume 

that the heavy ions have so much energy compared to the electric field 

that they move undisturbed, to a zeroth approximation, through the 

electric field as if it were not present. The perturbation caused by 

the electric field is described in Eq. (3.5b). Equation (3.5b) cannot

be solved completely until the potential <|>̂ is known. Analysis of this

equation must be deferred until the electron Vlasov equation and the 

Poisson equation are treated.

The solution to Eq. (3.5a) that satisfies the infinity condi

tion (2.5) is the same as for neutral particles in free-molecule flow. 

It is not difficult to verify that

f.^(r,t) = (3.6)

where

\  ~  "i-^ZnkT.  ̂ ®i 2kT.XOO 103

Substituting this result into (3.5b) gives for the first-order pertur

bation
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I • Ü ü
8r' 2SfC5'- g-) (3.7)

Part of the solution for f̂ j is easy to determine. If we write

^il  ̂2S?C*^+fi) (3.8)

then the first-order problem reduces to solving the equation

tioo (3.9)

for the function f̂ . As mentioned previously, this equation cannot 

be treated completely until the potential is known.

Zeroth Approximation for Ion Density 

A zeroth approximation for the ion number density is obtained 

by integration of f^^ over all ion velocities. Some ion velocities do 

not exist, however, because of collisions with the sphere. The con

figuration of the ion velocity space, according to the zeroth approxi

mation, is shown in Fig. 2 [see Prager and Rasmussen [1967]).

sin

Figure 2. Ion Velocity Space [Zeroth Approximation)
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The integration is to be taken over the region outside a cone of semi

vertex angle = sin'l ^ , that is,

"io = !
y»o

As shown by Al'pert e t  a t .  [1965], Kiel e t  a l .  [1968], and Prager and 

Rasmussen [1967], as well as others, the ion number density n̂ ĝ takes 

the form

-sfsin^er" _,2 / - r ----
n. (f,e) = n. e xe I (2S.xsin0)erfc(S.cose-x/r ̂ -i)dx10 1“  0 1  1■' 0

(3.10a)

or
-Sisin^e

n.̂ j(r,0) = n.^[i+e

2where f = r/a, erf(x) = ^

xe* I^(2S^xsin0)erf(xi^^-l-S^cos6)dx]

(3.10b)
X _„2
e dz, erfc(x) = 1 - erf(x), and I

is the modified Bessel function of the first kind and order zero. For 

the cases 0 = ir (upstream) and 0 = 0 (downstream) the integrals in

(3.10) can be evaluated in terms of tabulated functions:

9 = ir (upstream)
2 ^

n. (f,ïï) = in. [erfc(-S.)+/l— ^  e erfc(S./l- -L)] (3.11a)10 “ ico"- 1' ^2 1 T

0 = 0  (downstream)

n^^(f,0) = in^^[erfc(S^)+/- —  e erfc(-S^/l- ^)] (3.11b)

Near the surface of the sphere (f •> 1), the ion number density has the 

asymptotic behavior

n. (r,0)~in. [erfc(S.cos0)+ == e ^ / i  -1 x lor i»>- '' 1 /ir x^e I^(2S^xsin0)dx]

(3.12)
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These expressions will be useful later.

Electron Distribution Function 

Under the practical conditions of an ionospheric satellite, 

the mean speed of the free stream electrons is much less than the mean 

thermal speed of the electrons. In terms of the electron speed ratio, 

Sg, we have

000

The electron speed ratio is much smaller than the ion speed ratio be

cause the electron mass is very much smaller than the ion mass. Thus 

Sg, or the ratio is to be regarded as a small parameter in the

problem.

Because of the small mass of the electron, the characteristic 

speed is the thermal speed, and the appropriate nondimensional velocity 

is

r0C»

If the other variables remain as before, the electron Vlasov equation 

takes the form

s"' a; = o (3.i4)

The combination of parameters

 ̂ eoo

is now assumed to be of order unity, which is consistent with our pres

ent problem of ionospheric aerodynamics. It is thus necessary that the 

potential <{)* enter into the zeroth approximation for the electron 

distribution function.
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We now assume that the potential is expanded by the series 

(3.4b), that is

i|) ' “ ‘J’q + ••• (5,4b)

We further assume that the electron distribution function can be ex

panded in the series

f̂  = f̂  [l+6f^,+62f^,+...] (3.15a)

where

Cq e (3.15b)

The zeroth-order function (3.15b) satisfies the infinity condition

(2.5), Substituting (3.4b) and (3.15) into Eq. (3.14), retaining terms 

to order 6, and eliminating terras that cancel because of Eq. (3.15b), 

gives

3f f 1 3f f . af^„
-2Kf ^ -V'*' + 6 [!"• ■ - KV'*' • — - KV'<|)’-^r— ] = 0So e 0̂ 3?. 0 9|m 1

(3.16)

A consistent ordering of terms can now proceed if we set S q  = 0(6), in 

which case 6 cancels out of Eq. (3.16). This means, however, that the 

zeroth-order function fĝ , given by (3.15b), contains the parameter 6. 

This ad hoc approximation is made so that the infinity conditions are 

satisfied and the current at infinity will vanish uniformly in the 

zeroth approximation. If Sg is of order 6, then it follows, since K 

is of order unity, that mg/m^ is of order 6̂ . This ordering is consis

tent with practical values associated with ionospheric aerodynamics.

The higher approximation f̂ ĵ  can now be pursued by solving Eq. (3.16).



20
Zeroth Approximations for Electron Densities 

In order to obtain a self-consistent zeroth approximation for 

the electron number density it is necessary to know the electric po

tential field (j)̂ (r). Because the electric field does not affect the 

ions to a zeroth approximation, the ion trajectories are straight lines. 

The electron trajectories, however, are curved lines that depend on the 

nature of the electric field. Thus the region of velocity space for 

which no electrons exist because of collisions with the sphere is not 

known ahead of time. In order to make progress, it is thus necessary 

to make several ad hoc approximations concerning the structure of the 

electron velocity space.

Spherically Symmetric Approximation 

As will be shown later, the electric potential upstream of the 

sphere is approximately spherically symmetric. Downstream of the 

sphere a wake exists and the potential is far from spherically symmetric. 

Moreover, the potential field does not decrease monotonically in the 

wake. Nevertheless, it is a useful approximation to assume that the 

electric field is spherically symmetric and monotonically decreasing, 

at least for the region upstream of the sphere.

As shown by Prager and Rasmussen [1967], the surface that 

separates the region of absorbed electrons in velocity space for spher

ical-symmetric potential is a hyperboloid of revolution given by

sinvj H .HoJiL = I [1. (3.17)

where
2e<|)

si = (- - (- %  >0
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This surface is shown in Fig. 3.

Eq. (3.17)

sin0

Electrons lost due to 
collisions with sphere

Figure 3. Electron Velocity Space

In terms of this configuration, the electron number density is

Y>Yi
n , *------   /-- ^  A*-#)*

= 6“*̂ [l+erf/*^'*+/l^ -p- exp(--^Y)erfcy/-— j-]

+ 0(Sg) (3.18)

where
-e(J)

(j)* a kT6“

and (j)* is the value of the potential at the sphere surface. Formula 

(3.18) was obtained by Al’pert et a t .  [1965], Kiel e t  a t .  [1968], and 

Prager and Rasmussen [1967], among others.

Linear-Trajectory Approximation 

Because formula (3.18) does not allow for non-monotonic behav

ior, that is, <|)* cannot be greater than (J)*, it is not useful for the 

wake. Near the surface aft of the sphere, the electrons will be
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attracted rather than repelled to the sphere. We approximate the 

average behavior by assuming the electron trajectories are straight 

lines. The hyperboloid in Fig. 3 then reduces to the cone of semivcr- 

tex angle Yq = sin"^ The electron density under this approximation 

is given by

n. _ Y>Yo
= 0(S^)1 (3.19)

We shall neglect the small asymmetry introduced by the presence of the 

higher-order parameter Sg.

Maxwellian Approximation 

A common approximation in ionospheric aerodynamics is so-called 

Maxwellian distribution

ng = n e  ̂ (3.20)

This approximation is valid for an equilibrium situation and does not

account for absorption of electrons by a solid body. It is thus only

valid for the far field. It is of interest to compare this approxima

tion with results obtained with the previous more accurate approxima

tions .



CHAPTER IV

THE ELECTRIC FIELD

The electric potential field can now be obtained to a zeroth 

approximation in terms of the leading terms of the expansions utilized 

in the previous section. If we neglect terms of order 5, we can write 

Poisson's equation (2.2) in the following dimensionless form:

e2v'2<j,* = N^(r,9) - Ng(**,r,8) (4.1)

where

N ^ ( r » 6 )  =

N g ( * * , r ,8) E neo /n *.

* *  =  _

e E Xp/a

The parameter X^ is the Debye length. The ratio of Debye length to 

sphere radius, e, is typically a small parameter for ionospheric con

ditions . Thus
e<<l

and e is another small parameter in the problem. The boundary condi

tions for Eq. (4.1) are

(j)*-> 0 as r -»oo
(4.2)

23
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If we now seek a solution to Eq. (4.1) by means of a series 

expansion for small e, we find because the highest derivative is 

multiplied by the small parameter that the problem is a singular 

perturbation problem. Thus an electric boundary layer will be present 

and more than one series expansion will be required. The so-called 

inner and outer expansions must be matched together by means of asymptotic 

methods outlined in the book by Van Dyke [1964].

Outer Expansion or Quasi-Neutral Approximation 

Let us seek a straightforward series expansion of the form

+ ê<()j + E^$2 (4.3)

Here it has been found that the appropriate expansion is in powers of

ê . The electron number density Ng($*,f,0) now has the expansion

3N
Ng(4*,f,e) = Ne(+°,r,8) + eZĈ T*.) + 0(2̂ ) (4.4)

 ̂ (j)0
0

Substitution of expansions (4.3) and (4.4) into Eq. (4.1), collection 

of like orders of e ,̂ and setting each order equal to zero gives for 

the first two orders

£°: N.(r,e) - Ng(*°,r,8) = 0 (4.5a)

o (4.5b)
*0

Equation (4.5a) is an implicit equation for the zeroth-order function 

(|)°(r,0). It can be solved when the particular model for Ng(<j)°,r,0) is 

specified. When <|)° has been obtained, then the first-order function (|)° 

can be obtained from Eq. (4.5b). We shall concern ourselves with the 

zeroth-order function (|>° in this study.
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Electron Density Model Based on Spherical Syjnmetry 

The electron density according to the assumptions underlying 

expression (3.18) is

^
N (4°,f) = ie“‘*’°[l+erf 4 % ^  + / 1 - ry exp(_|-- °)erfc/—  |°~]® o 5 o r^-1 / I__

(4.6)

The ion number density is given by expression (3.10). It is not pos

sible to solve explicitly for ij)° from Eq. (4.5a) by means of this 

model. It is useful, however, to obtain the asymptotic behavior as 

f » and as f ->-1.

As it can be shown that is a solution to Eq. (4.5a).

Thus the infinity condition is satisfied. If we assume that 0° vanishes 

like 1/r^ as r->“, then Ng as given by (4.6) behaves asymptotically like

Np, -1 - + -HM<|)M)erfc4Y--- + 0(tV) (4.7)e o s b 2/tt r

On the other hand, it can be shown that the ion number density N^, as 

given by (3.10), varies asymptotically for f l i k e

1 2  -Si . . -Sjsin^e 1N. - 1 ---- [-7=S.cos0e +(l-!-2S?coŝ 0)e erfc(-SiCos0) ]+0(—r-)
1 4 j 2 /it 1 1 r^

(4.8)

Substituting (4.7) and (4.8) into Eq. (4.5a), and retaining terms to 

order l/r^, we obtain for large f; *
„ 1 24; , -s|

C  Jp-lC2*J-l)erfc4; - ^  S.cosee

_ . -sfsin^O
+ (l+2S?cos^0)e erfc(-S^cos0)] (4.9)
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On the axis upstream of the sphere (0=ir) , expression (4.9) 

takes the form
e-*B ^

+ (l+2S?)erfc(S^)] (4.10)

If we now recall that is large and assume that is large enough 

to make use of the asymptotic expansion

-x2
erfc(x) ~ -7= —  , X ->“> (4.11)

VTT X

we find that expression (4.10) takes the approximate value for large 

({)* and S.s 1 2
o 1 , f.. (4.12)

Thus the potential (|)° far upstream of the sphere is very small and

negative since S? is in general much larger than (j)*. For 0 = ir/2, 

we find
o 1 e"4s -sf TT

and again the potential is very small and negative. For large the 

dependence on 6 is very weak, and hence the potential is nearly spher

ically symmetric in front of the sphere.

On the axis in the wake of the sphere (0=0), expression (4.9)

yields for large and (j)* :

-<()g
<1)°--—  ^  + 2(1+2S2)] 0 = 0, f-v» (4.14)
° 4r“̂ /n^s

Here we find that the term involving ** is negligible and the potential
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is positive. Thus aft of the sphere, that is, in the wake, the poten

tial depends strongly on 0.

Consider now the value of (|)° when f = 1 according to the quasi

neutral approximation (4.5a). Setting (j)° = {j>°̂ when f = 1, we obtain

from (4.6)

Ng(*2g,l) = °S[l+erf/**-*°g] (4.15)

For the ion density N.(1,0), we get from (3.12)1

N^(l,e) = ierfc(S^cose) (4.16)

Substituting into (4.5a) then yields

e [ 1 + e r f = erfc(S^cosG) f = 1 (4.17)

This expression does not satisfy the surface boundary condition 

(j)* = ({)* when f = 1. Nevertheless, it will be used as a matching con

dition for the outer limit of an inner expansion that does satisfy the 

surface boundary condition. Note that no real value of ({)°̂ greater 

than (Ji* satisfies Eq. (4.17). Thus no solutions exist when 0 is less

than a critical angle 0„ defined by

-ij)*
e ® = erfc(S^cosO^) (4.18)

This situation arises because the potential ()i* increases from (|)* when

0<0̂ ; thus the electron density Ng given by (4.6) is not valid in the

near wake. Expression (4.18) is plotted in Fig. 4.

We further ascertain from (4.17) that (j)°̂ is zero when 0 has

C0S9 = - /F/Sj . (4-19)
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0
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Sj cos #w

Fig. 4. Position of Zero Potential Gradient on Sphere Surface.
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At this angle changes sign, and at 0 = n, is negative, which 

it is far upstream of the sphere according to (4.12). If we assume 

that (j)°̂ is small at 0 = ir, then we can obtain from (4.17) the approx

imate value
erf S.-erf

*05  -------- ^ (4-20)
l+erf^Y + - y =

VT\

If we assume that (])* and are large enough to use the asymptotic ex

pansion (4.11), we get

e-*: e-Si= - [— -------   ] 8 = n, f = 1 (4.21)
2 Æ  2 Æ  Sis ^

The term involving Si can be neglected, since Si is usually much 

greater than

Electron-Density Model Based on Straight-Line Trajectories

By means of the electron density model (3.19) we can solve 

Eq. (4.5^ for <1)° and get (neglecting terms of order Sg):

2N.(r,0)
C  (4.22)

where Ni = nî /nioo is determined from expression (3.10). By means of 

expression (4.8), we expand for large r and obtain

(|)°~ -^[-1+ ~  S.cos0e ^+(l+2S?cos20)e  ̂ erfc(-S.cos0)]
o  4 ^ .2  / i r  1 ^  ^

f->oa (4.23)

On the axis upstream of the sphere (0=n), this expression takes the 

form for large Si
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-Si
— ^[-1+  -- 1 9 = ir, r->-“ (4.24)

0 4r2 /7S,

Thus the potential is negative for this model, but much more negative

than the corresponding value (4.12) for the previous model. On the

wake axis (0=0), we get for large f and large Si

<t>°~ -^[-1+2(1+28?)] 6 = 0, r ^ “ (4.25)

For large Sĵ , this result is effectively the same as for the previous

model.

Near the surface of the sphere, f^l, we can use expression 

(3.12) for the ions and obtain

<()° — £n[erfc(S^cos0)] 

r i .
__S? 2

[ ~  e x^e"^ I (2S.xsin0)dx-erfc(S.cos0)]
erfc(SjCos0)

f->l (4.26)

This expression is valid all around the sphere, but note that it is 

not analytic at r = 1. The value on the sphere surface is

(j)°s = - &n[erfc(S^cos8)] (4.27)

Upstream of the sphere at 0 = it, the potential cj)°̂ is negative and has 

the approximate value (|)°̂ = - &n 2 for large Sĵ . Aft of the sphere at

6 = 0, the potential c()°̂ is very large and for large has the approxi

mate value <î>Qg~Ŝ  + £n(/Trŝ ). These values, of course, do not satisfy 

the surface boundary condition, and thus must be regarded as the inner 

limit of the outer expansion.
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The advantage of this particular model is that it is simple 

and yields results all around the sphere. On the other hand, it gives 

values of the potential outside the wake that are far too negative, as 

can be seen by comparison with the model in the previous section.

Maxwellian Electron Density 

It is interesting to examine the results yielded by the Maxwellian 

model Ng = exp(-ÿ°). In this case we get

= - %n (4.28)

For large r, we get by means of expression (4.8) 

n 1 ? -sf „ o -sfsin^e(j,----[— S.cosee +(l+2S?cos^0)e erfc(-Sĵ cos0)] (4.29)
0 yir  ̂ 1

This value is positive all around the sphere. On the upstream and wake

axis we get for large
-sf

e = tt: (4.30)o 4f2

0 = 0: [2(1+2S?)] (4.31)0 4Î

Near the sphere surface f->l, we obtain from Eq. (3.12)

0°-- £n[ierfc(S.cos0)]O 1 2-S« 2
  JL e f̂ x^e ^ I (2S.xsin0)dx

_ /fin Æ  n  2L .1_______
erfc(S.cos0)

 ̂ f ̂ 1

On the sphere surface, we have

(4.32)

(j)°̂ = - £n[ierfc(S^cos0)] (4.33)
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Upstream of the sphere (9=n), we have for large Sĵ

o o-"i

This value is positive, but exceedingly small for large Aft of

the sphere (8=0), we have for large

(j)°s= S? + JlnC2v/̂ Si) (4.35)

This value is nearly the same as obtained from expression (4.27) for 

the previous model.

Inner Expansion or the Boundary-Layer Approximation 

As we have seen in the previous section, the quasi-neutral so

lution, or outer expansion, cannot satisfy the surface boundary condi

tion. It is thus necessary to consider a new expansion that is valid 

near the surface of the sphere. Near the surface of the sphere, the 

second derivative 92**/3f2 becomes large enough to compensate for the 

small parameter that multiplies it. To account for this, it is use

ful to introduce a new variable, ç, measured normal from the sphere 

surface :

Ç = or r = 1 + eç (4.36)

In terms of this variable the Laplacian and Poisson's equation (4.1) 

now expand to read

= N L ( l + E C , e )  - Ne(<|)*,l+eç,e) (4.37)
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We now wish to construct a series expansion for small e in terms of 

the new variable ç. To see how the expansion should proceed, note 

from expression (3.12) that behaves in the following way for e^O:

N^(l+EÇ,e) = Nk(l,8) + yrN^j(ç,e) + 0(e) (4.38)

where

NL(1,6) = ierfc(S^cos8) 

f “ A 2N^^(ç,6) = / | ^ e  ^/Ve"^ I^(2S.xsine)dx

Thus expands in terms of powers of the square root of e.

Motivated by this result, we assume an inner expansion for (j)* 

in the following form:

(j)*(l+eç,6) = (f)̂ (ç,e) + /ë'<t)j(ç,e) + e^gCC.G) + (4.39)

The corresponding expansion for Ng(()>*, 1+eç,9) reads

i /— GNg i 9Ng
Ne(0*,l+ES,8) = Ng(({) ,1,8) + /Ë[(-r^ ((), + (— ^ )  /ç]+0(e)

° E=0  ̂ 9/eÇ
(4.40)

Substituting (4.38), (4.39) and (4.40) into Eq. (4.37), 

collecting like orders of e, and requiring each order to vanish yields 

for the two lowest orders:

- “ = N. (1,8) - N (<!,;,1,8) (4.41)1 e o

1 3^*1 3N . aw

Note for the two lowest-order functions that 0 appears as a parameter. 

Thus the equations for tj)̂ and (j)̂ are to be treated as ordinary
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differential equations.

The inner expansion must satisfy the surface boundary condi

tion. Thus we have

4,̂ (0,6) = (4.43a]

*1(0,8) = 0 (4.43b)

The outer boundary condition must be obtained by matching with the 

inner limit of the outer expansion. We shall concern ourselves here 

with only the lowest-order solution.

Electron-Density Model Based on Spherical Symmetry 

For the electron density (3.18), we have

Ne(<j)p»l,6) = ie *o[l+erf/**-*i] (4.44)

and thus Eq. (4.41) becomes

82*1 .  _
—^  = N.(l,e) - ie“ o[l+erf/**-*i] (4.45)

This equation is the same as given by Al’pert e t  a t .  [1965] except 

that Nĵ (l,e) has been replaced by unity. Multiply Eq. (4.45) by

8*^/3ç and integrating from ç = 0 yields 

9*^ 7  9*1 -  .

(9(2-) - (9(2), = 2(*;-+:)Ni(l,8)

-*Âr____+ e" 0{l+erf/**-*i} - e" ^{l+ -— J (4.46)

Because the derivative 3*^/9^ depends only on and not explicitly on 

C, we can integrate Eq. (4.46) by means of a quadrature
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♦I cf-)
(4.47)

where

- e"*s{i+ A  } + C ^ ) Y  (4.48)

According to the so-called "limit matching principle" of Van 

Dyke [1965], the outer limit of the inner expansion equals the inner 

limit of the outer expansion, that is,

lim (j)̂ = lim <()° ^o o
Ç -»-oo f ■> 1

= +2s

Thus from Eq. (4.47) we can see that for ç to go to infinity when

(6° , the derivative 96^79^ must vanish when This cc0 os 0 0 os
tion enables the gradient at the wall (9(()̂ /9ç)_ to be evaluated;s

9 (j)̂ —A* n i i
" ■ [2(4;-4*s-l)N.(l,8)+e S{1+ }]̂  (4.49)

where Eqs. (4.17) and (4.38) have been utilized. This value vanishes

when 6° = 6*, that is when 0 = 9  as defined by (4.18). No solutionos s w
exists for this electron-density model when 8<8̂ ,. The value of <|)°̂ 

in general is obtained from (4.17). Al'pert e t  a t .  [1965] obtained 

a similar expression to that of (4.49) except that they set = o,
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which is not strictly correct according to asymptotic matching 

principles. Setting (|)°g equal to zero is a good approximation only 

for 0 = ir and when (j)* is large, as can be seen from (4.21).

Electron-Oensity Model Based on Straight-Line Trajectories 

For the electron density (3.19) we have

Ng(*i,l,8) = (4.50)

and now Eq. (4.41) becomes

= N.(1,0) - ie 0 (4.51)

Integration as for the previous model yields

(~ ) ^  - (^)g = 2(*i-**)N.(l,0) + e"*o - e"*s (4.52)

Another integration yields (4.47) as before. The matching condition 

yields

(^)^ = ±[2(*;-*2g-l)N.(l,8)+e"*S]* (4.53)

where now is given by (4.27), and has been utilized in obtaining 

(4.53). In this case, however, values of the gradient exist for all 

6. The gradient vanishes when 0 = 8̂ , as given by (4.18). The minus 

sign is to be used when 8>8% and the plus sign when 0<8̂ .̂

Maxwellian Electron-Density Model 

For the Maxwellian electron density, Ng = exp(-(j)̂ ), Eq. (4.41)

becomes

--=2 = N,(l,8) - e ^0 (4.54)
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Integration and the matching condition give

3*0 ? 3*0 2 i -‘f’n - K
■ ^9F^s " 2(<f.J-4.pN.(l,0) + 2(e °-e (4.55)

= ±[2(**-4°g-l)N.(l,8)+2e'*S]i (4.56)

where <{)°̂ is given by (4.33). This gradient vanishes when 0 = 9̂  as 

before. In this case, however, 0̂  is determined by

e  ̂= ier£c(S^cos9^) (4.57)

The minus sign is to be used when 0>0^ and the plus sign when 8<8̂ .̂

Potential Gradient on the Sphere Surface

The potential gradient on the surface of the sphere is plotted

as a function of 0 in Fig. 5 for the straight-trajectory model (4.53) 

and the Maxwellian model (4.56). For this comparison typical values 

of ÿ* = 3 and S^ = 5 were used. The spherical-symmetry model (4.49) 

gives nearly the same values as the Maxwellian model, except that no so

lution exists aft of the sphere (0<74°). Because the Maxwellian model 

is nearly the same as the spherical-symmetry model in front of the 

sphere, and the spherical-symmetry model is the best approximation in 

this region, it can be seen that the straight-trajectory model gives 

gradients that are too large in front of the sphere. Aft of the sphere, 

the straight-trajectory model is the best approximation since it allows 

for absorption of electrons, and it gives gradients that are smaller 

than the Maxwellian model in this region. Figure 6 shows the effect 

of changing from 5 to 8 for the straight-trajectory model. The other 

models show qualitatively the same effects.
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STRAIGHT TRAJ. 
APPROX. (4.53)
MAXWELLIAN 
APPROX. (4.56)

60 30 0180 150 120
e, DEGREES

Fig. 5. Potential Gradient on Sphere Surface.
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Fig. 6. Effect of on Potential Gradient on Sphere Surface,
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Maxwell Drag

The electric Maxwell drag is determined from the Maxwell 

stresses as given by expression (2.12). If ê  is a unit vector in the 

direction of the free stream, the Maxwell drag is

2

^M = 87
sp lere

5_4
m 2
(■ĝ ) cos6 sin0 de

0

For the zeroth approximation we thus have

 ̂3*0 2 
(%— ) cose sine de

0 s
(4.58)

In terras of the drag coefficient

%

we have
» r , a < 2

K  ' s! ’'i. J
(r— ) cose sine de 4Ç s (4.59)

where a = n /(n. +n ) is the degree of ionization.000 ' '* xoo
For the straight-line trajectory model (4.53), substitution 

into (4.59) yields

s.1
Xerfc X £n(erfc x)dx] (4.60)

while for the Maxwellian model (4.56), the Eq. (4.59) yields



41

-4

' 4 %

s.1
X erfc X £n(erfc x)dx] (4.61)

-S,

•
As mentioned in the previous section, the best approximation 

aft of the sphere is the straight-line trajectory model, and in front 

of the sphere the spherical-symmetry model, hence the best approxima

tion of the Maxwell drag is the combination of these two models.

Since the Maxwellian model is nearly the same as the spherical-symmetry 

model, this simpler model (4.56) is used in front of the sphere along 

with the straight-line trajectory model (4.53) used aft of the sphere 

to obtain
T -Si

.*• ,+ i(&n2-e S)+ __
S?

xerfc X &n(erfc x)dx] (4.62)
-Si

The last term in the brackets has the limiting value - £n 2 for large 

Ŝ . Hence for large we obtain

%  = - ^  (4 63)o i“

The Maxwell drag is negative when ** ^ 1, and is thus actually a thrust,

Potential Near the Wake Axis 

The electric potential in the near wake can be examined by 

means of the straight-trajectory or Maxwellian models. For either of
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these models the zeroth-order inner expansion for the electric poten

tial can be expressed by means of (4.47) in the form

Y
= + dx

where
/2Nf(l,0) Y (1+x)

(4.64)

Y = - *0

The plus sign is to be used when

Y < Yg or *1 >** (8<8̂ ^

and the negative sign when

Y > Yg or *1 <*; (8>8yP

The inner limit of the outer expansion <{)° has the value <j>° = -£n.N-(l,0) ̂ os os 1
for the Maxwellian model and = -&n 2Nh(l,8) for the straight-trajec

tory model.

When cos 8 is large, (1)°̂ is of the order of S? cos^G, and

thus Y^ is very large when (j>* has the typical value of 3. Near the

sphere surface in the region of the wake axis both Y^ and Y will be 

large, and we can gain an approximation for (4.64) as follows:

/2N^(i,e)

/2N.(1,8)

' e-'/^dx 
Y

2
   '■■ (e - e )

/2N.(1,8)
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If we now solve for , we get

i C “‘{’c/2 2
*0 = + An[lH-| e s (4.65)

for the straight-trajectory model, and

(j)̂ = (j)* + £n[l+-~e ] (4.66)

for the Maxwellian model. These expressions are valid near the sphere 

surface when 0 is small and Sĵ is large, and are independent of both 

and 0. The Maxwellian model gives larger values of ij)̂ than the 

straight-trajectory model.

It is interesting to compare the results of the present analyses 

with the numerical results of Kiel e t  d l .  [1968]. Because of the singu

lar behavior of the Laplacian operator when sin 0 ->■ 0, numerical dif

ficulties arise near the axis of the wake. Because of this, the poten

tial curve for 0 =4.5° is plotted by Kiel e t  d l .  In order to make a 

comparison of results, it is useful to obtain an approximation for the 

outer expansion (quasi-neutral) that is valid for small 0. It is pos

sible to expand the general expression (3.10) for N^(r,0) for small e 

and obtain, keeping only the largest term for large S.,

N-(f,e) = i'A- i  e erfc(-s/l- -y) [1+ -i.̂ .̂ - — (l_ -^)]
1 r  ̂ r'̂ f

0^0 (4.67)

Keeping only the largest terms in and l/f̂ , and solving (j)° by means 

of (4.22), we obtain

*0 = - %n[l + 0^0 (4.68)

This is an approximation valid near the wake axis for large and 

away from the sphere surface.
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The potential near the wake axis is plotted in Fig. 7 for the 

typical ionospheric values = 3, = 8, and e = 0.001. The outer

expansion (4.68) and inner expansion (4.65) are compared with the 

numerical results of Kiel et a l .  The results of the numerical inte

gration by Kiel agree well with the quasi-neutral (outer) approxima

tion (4.68) for large r. Near the sphere, the present formula (4.65) 

gives.values of (])* that are larger than those of Kiel. This discre

pancy arises because of the different model for the electron density 

used by Kiel in the near wake. The simple formulas for the inner and 

outer regions of the near wake allow rapid computations to be made.

They agree qualitatively with the more sophisticated (and more compli

cated) results of numerical integration.

The effect of varying the ratio of Debye length to sphere radius 

is shown in Fig. 8. These curves are for the same values as the pre

vious figure except that e is ten times larger, e = 0.01. The same

qualitative agreement with the results of Kiel are found. The present

theory gives a better approximation as e becomes smaller.

Higher-order approximations in the inner expansion should im

prove the accuracy near the sphere surface, especially since the inner 

expansion proceeds in a series expansion in the square-root of c. A 

composite formula would give a smooth variation between the inner and 

outer expansions, but such a composite expression does*not give fruit

ful results unless e is exceedingly small or unless higher-order terms 

are obtained for the inner expansion.

With some knowledge of the behavior of the potential field, we 

can now proceed to obtain a higher-order approximation for the ion dis

tribution function.
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€ = 0.001

Eq. (4.65)

o o o
-%:

Eq. (4.68) 
9 = 0 
9  = 4.5®

6

o-K IEL  eî g !. (!968)  
8=4.5®

r = r/G

Fig. 7. Electric Potential in the Near Wake, g = 0.001.
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I2r
S; =8 € = 0.01

Eq. (4.65)

Eq.(4.68)

o -K IE L  et al. (1968) 
6  =4.5®

r = r/o
Fig. 8. Electric Potential in the Near Wake, e = 0.01.



CHAPTER V

FIRST-ORDER CORRECTION FOR THE ION DISTRIBUTION FUNCTION

Method of Characteristics

We now return to the first-order distribution function f̂  

given as part of f̂  ̂by Eq. (3.8). In dimensional velocity and space 

variables, Eq. (3.9) for fĵ reads

3f

where

♦ i ' l l
Consider a solution to Eq. (5.1) by means of the theory of 

characteristics. If the right-hand side is regarded as known, the 

characteristic equations are

dfj ^ K

(S':*)

^  = 1  (5.2b)

^  = 0 (5.2c)

The characteristics of Eq. (5.1) in physical space are the free- 

particle trajectories, which are straight lines. The value of the 

function fj varies along the straight-line trajectories depending on 

(|)̂. By contrast, note that the characteristics for the Vlasov Eq. (2.1)

47
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are curved trajectories in physical space, depending on *, and that 

is a constant on these trajectories.

There are three physical constants of motion of interest along 

a free-particle trajectory: the energy, E, angular momentum about the

origin, L, and the z-component of angular momentum, L̂ .

E = im^^z = -y (5.3a)

l2 = m|r2(ç2+çp (5.3b)

L_ = m.rÇsinO (5.3c) ̂ 1  yj

In terms of these constants, the variation of velocity components along 

a trajectory (or characteristic) can be expressed as

S = v/2l7m7 (5.4a)

= ±/2E/m. - L2/m?r2 (5.4b)

(5.4c)

The orbit equation relates 0 as a function of r along a particle 

trajectory. The orbit equation can be obtained from Eq. (5.4). Since 

Çj. = dr/dt, Çg = r d0/dt, we obtain from Eq. (5.4c) by separation of

variables

/
-d(cos0)  ̂  ̂J A L _  (5.5)
L1  m.r2ç

1--  - cos^0
\ }

1 r

The integration of this equation along a particle trajectory gives

cos-1 _£2|1 _ _ cos-1 = ±i (5.6)

^  ^  ■
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where cos6 is a constant, and

(5.7)
r'Sr

Solving Eq. (5.6) for cos 6̂  and making use of (5.4c) gives

m. r
COS0 = cosGcosI + Ç- sines ini (5.8)

00 00 L 0 00

In the same manner the Eq. (5.6) can be solved for cos0 to give

COS0 = COS0 cosi + /sin^e - — sini (5.9)CO 00 y 00 r z 00L=

It can be shown from expressions (5.4b) and (5.7) that cosl^ = 

and sinl^ = L/m^rg. Hence the Eqs. (5.8) and (5.9) become

c o s 0 ^  = -  —  COS0 + —  s in 0  (5.10a)

cos 0 = - COS0 + — ~  %in^0 - ^  (5.10b)Ç “ murg / ^2

where the minus sign is used when Sg>0 and the plus sign when gg<0 .

Since = dr/dt, the solution for fĵ can be expressed from 

(5.2a) as
(•r 9())' . 9({i' j

^1 = - 0̂0 - F  1)0-- sine) ^  (5. II)

This integral can be evaluated when (|)̂ = (|)̂ (r,0) is known, since 0 is 

given as a function of r by (5.10).

Expression (5.11) is the formal solution for f̂ , but its use 

remains difficult because is a complicated function of r and 0.

For practical approximation purposes, it is therefore useful to con

sider the special case of a central potential (|)̂ = (̂ (̂r). This is not
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a bad approximation for the region in front of a sphere.

Spherical Potential 

For a spherical potential, we have 90^/38 = 0, and expression

(5.10b) substituted into Eq. (5.11) yields
_  d(j)'
i fr ̂  dr

] (5.12)

The constant of the motion cos 0^ is given in terms of the local posi

tion and velocity by (5.10a). The other constant of the motion can be 

evaluated in terms of the local variables by (5.10b):

" i T f /
L2

sin^9   = r[cos0 + -p- cos0 ] (5.13)" [2 5

Again using (5.10a), we get

/  g2+g2 g Ç
+ - ^ / s i n ^ 0 ^ -------  = t [— COS0 + sin0] (5.14)m.g/ « gZ

Equation (5.12) can now be written

U O' C K a
fl = ------ (-— - COS0-Y" sin0)

- -r- (-- 5̂  cosG + — ^  sin0)I(<()') (5.15)Ç Ç2 ç2 0

where dé’
rr drdr (5.16)

Making use of expressions (5.4) for and substituting the dummy

variable u for r, we express the integral I(#̂ ) as
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r j—  du
S_lO (5.17a)

CO

d(J) ' d({) '
, 0Â T ^ u

m
5j>0 (5.17b)

where

‘m ' - ç2
ç2+ç2

r2 = -A_^ (5.18)

The integral I(<|)q) is the term that contains the Debye length in the 

first approximation for the ion distribution function.

A compact form for the first-order function f\=f^g[l+6f̂ ]̂ 

can be obtained by introducing spherical coordinates in velocity space 

as follows:

S]. = 5 cosy

Cg = Ç siny cose (5.19)

= Ç siny sine

By means of (3.4a), (3.8) and (5.15), we have for the first-order 

function
S?6 (j)' 3f. . 9f.

. e(() 3f. . 9f. eij)
“ ^ i o  4  't t ) ^  ^  - i f

The first and second terms on the right-hand side are equivalent to 

the ad hoc approximation used by Prager and Rasmussen [1967].

Models for Spherical Potential 

It is useful to evaluate the integral I ((jî) for various spherical
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models. A simple model that represents the electric field qualitatively 

in front of the sphere at least is the linear model shown in Fig. 9. 

Because the density of the ions in the near wake is practically zero 

for large and small e, the nature of ij)̂ aft of the sphere is incon

sequential for computing moments of the distribution function on the 

sphere surface.

1

ra o

Figure 9. Linear Potential Model 

For the above model, we have

9r 9r = const,

=  0

a < r < r

r > r
(5.21)

where

r = a + 0 9(j>o
3r

(5.22)

If we now make use of the analysis in Inner Expansion or the Boundary- 

Layer Approximation, we can use the value of (8(j)̂/9£j) near 6 = tt and
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write

dr ae^* 3; = const.

= 0

a ± T ± r

r > r
(5.23)

where

a[l+ e-J i
3*0
a;

(5.24)

On the surface of the sphere, r = a, we now get for 1(4̂ ) from Eqs.

(5.17a) and (5.23)

!(<{>;) = a
W o  ,

■•od a - w
a /u^-r^

s<D* 3Ç
r + Zr2-r2

&n[-2---
s a + /a2-r̂  m

(5.25)

where
ç2+ç2

r± = â  — = â  sin^ y,2
'm

on the surface of the sphere. Further, expanding the Eq. (5.25) in 

the series in small e, we obtain when Y y

1 j,:
I (*") = - , - -T + ie — ^

! cosy I 9<})
3;

|cos3y|
0(e2) (5.26a)

and when y =

= - 4 ; 3; [/2 - 4 e12
3*0

0(e2)l (5.26b)

H
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Another simple model that represents the electric field 

qualitatively in front of the sphere at least, but does not have an 

abrupt change of the potential gradient at the point r̂  as in the pre

vious linear model and thus is more realistic, is the parabolic model 

shown in Fig. 10.

1

Figure 10. Parabolic Potential Model. 

For this model, we have

where

K
9r

3*0 3<i>; 2
9r + i

s 9r (r-a) a<y<.r̂
s

= 0

^o ^  ̂ ,9*'
9r

r>rr
(5.27)

(5.28)

As mentioned in the previous model, we can use the value of Cg^)^ 

near 0 = tr and write

'̂ ô 1 3*0 1.. 3*;
dr ae^* 9Ç s (aE**)2 3; (r-a)

= 0 r>r<-
(5.29)
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where

r = a[l+2e  r
o ia*&

3Ç

..(5.30)

On the surface of the sphere, r = a, we now obtain for 1(4̂ ) from 

Eqs. (5.17a) and (5.29)

a /u^-r^ m

9'(>è
a;

a_l
E*![1+ 2.4* a;

+/r^-r^

a+i/â -r̂m

2* (e*S)2
3*0a; [/i-2_r2 - /a^-r^] ̂ o m ra-* (5.31)

where

p 9 8 til 9 . 9r^ = â  ---   = a'̂ sinrym 2

on the surface of the sphere. Further, expanding Eq. (5.31) in the

series in small e, we obtain when y

“ ■ I cosy I 3^ iĝ i
a;

I cosI
+ 0(cZ) (5.32a)

and when y =

!(*;) = E** a; [j
3%-

(5.32b)

Equations (5.25) and (5.31) evaluated at y = ir/2 have singular

ities as e tends to zero, as can be seen from Eqs. (5.26b) and (5.32b).
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This singularity as e tends to zero arises because of the behavior of

the integrand l/i/r̂ -r̂  in the integral (5.17a). It is not possible 

to remove the singularity by assuming the similar simple models for 

the spherical potential such as Eq. (5.21) or (5.27). Nevertheless, 

the expressions (5.26a) and (5.32a) illustrate how the Debye length, 

or e, enters the first-order perturbation away from y = tt/2.

The next step is to compute the induced drag and the energy 

transfer by evaluating the appropriate moments on the sphere. Except 

for the term containing 1(0̂ ) the results are the same as that of Prager 

and Rasmussen [1967]. It will be seen later that it is necessary to find 

a spherical model which will produce 1(<̂ q) free from singularity at 

Y  = tt/2 as e tends to zero in order to obtain meaningful results of the 

moments on the sphere.



CHAPTER VI 

MOMENTS ON THE SURFACE

Moments for the Ions

The distribution function for the ions is nonzero on the sur

face only for ^̂ <0. The first-order ion distribution function on the 
surface of the sphere is, from Eq. (5.20a) and (5.17a)

2e<j)
where é  = ------   2U^6

= a (6.2)
a /u^-a^sin^

In rectangular coordinates, f̂ ^̂  is given as

£io = A^exp[-B^{c2+u2-2U^(Ç^cos9-ÇgSin0)}] (6.3a)

while in spherical coordinates as

f^^ = A^exp[-B^{ç^+U^-2U^Ç(coSY cos0-rsiny cose sin0)}] (6.3b)

The negative surface potential causes the potential field to be 

attractive for the ions. Since the total energy of an ion particle is 

conserved, there is a restriction on the surface of

the sphere. It is convenient to write the moments with the velocity

57
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components expressed in spherical components given by (5.19), In 

spherical coordinates in velocity space we have

d^Ç = siny dç dy de (6.4)

The general tensor moments on the surface for the ions can 

now be written as

r2ïï■ÏÏ

U J
TT-'
2
•ÏÏ

• ' h
ir-'
2

^r^e^"^i siny dg dy de

2ir

where

g&+m+n+2g^^^^j2 d̂% dy de

. . .  X, . ra+n+1 m . ng(y,e) = cos y sin y cos e sin e

(6.5a)

(6.5b)

(6.6)

Substitution of Eq. (6.1) for f^ gives

2tt
ç£+m+n+2 g(Y,E)f\Qdg dy de

IT 0

.00 •IT

Æ TT-'
2

2ir „. - 9f.
C g(y,c) dC dy de

2 n  9f.
 ̂Ç g(y,e)siny I(*^)dS dy de

(6.7)

Since ÿg is of order 6, it can be shown that the moments for the ions 

can be approximated to the order as
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•1[

0"̂If*

2ir
dy du

2

•IT

O'* IT''
2

.00
["

0 /

2tt „ , 8f.
Ç "‘"n^lgCY.e) 3̂  dS dy de

Ç̂ '̂ "‘̂ ^g(Y.e)sinY ICO^^dg dy de

(6.8)

The second and the third integrals can be integrated by parts with 

respect to Ç and y respectively. It is more convenient to carry out 

the integrations in rectangular coordinates, The first

integral can be easily written in rectangular coordinates, but to do 

so for the second integral after integration by parts is not as easy.

It can be done by making use of the rewritten form of f.10

f.^ = A. ç2 exp[-B.(u2-2U„Ç^cose+2U„ÇgSin0)] e-CE=dC (6.9)
Bi

which provides the needed factor to write the integral in rectangular 

coordinates. Now we can rewrite the moments for the ions in the more 

convenient form

if S L ^  0  (6.10a)

if & = 0 (6.10b)
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where

=
(6 . 11)

= (&+m+n+l)A^

/b7

° f f ^ : , J e . p , - c ( c v ^ V o s e )
J —00/ —00

/bT-
- 00/ — 00/ —00

+ (Sg+ '-^ S.sine)^+ç2^+S^(^ -DjdCdç^dÇgdç^ (6.12)

3̂ =
■ITf Ztt_£+m+n mÇ cos £

qJTT̂ 0
- d r  I . m+n+2 
"io  ̂ >

(6.15)

=4=
2tt
Ç COS e sin £ exp[-(/FTg+Sj^cose sin9)

- S?(l-cos% sin^G)]dç de (6.14)

The term arises because the integrated part does not vanish for 

& = 0. Either Eq. (3.6) or (6.3a) for f^^ in rectangular coordinates 

can be used to evaluate the integral (6.11). To evaluate the integral 

(6.13), the Eq.(6.3b) for f^^ in spherical coordinates should be used.

Moments for the Electrons 

The zeroth-order electron distribution function on the surface 

of the sphere for small electron speed ratio, Sg<<l, can be written

from (3.15b) as
fg^(rs,Ç) = A^e e-n.-(Ælî-îe)'

-Yc -R rZ
=  k  e  s e + o(SJ (6.15)
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The tensor moments on the surface for the electrons is ob

tained by integrating over velocity space for <. 0. In rectangular 

coordinates in velocity space, we have

■0 .00

-00.
(6.16)

Neglecting terms of order Sg in fê , we write the tensor moments for 

the electrons

4sr° (6.17)

The potential enters exponentially for the electrons, whereas it enters 

algebraically for the ions in these approximations.

Moments for the Neutral Particles 

The neutral particles are not affected by the potential. For

Çj. <• 0, the distribution function on the surface of the sphere is

(6.18)

The tensor moments for <. 0 is then written as

r0/ -o (6.19)

For Ĉ >0, the particles are emitted from the surface with a diffuse 

distribution given by (2.7) as

(2.7)

where

^w " 2kT.w
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and n^(r^) is a function determined from the condition of zero mass 

flux normal to the surface or Eq. (2.8). The tensor moments for the 

emitted particles at the surface is then given by

00 fOO
(6.20)

The Floating Potential 

The floating potential is the value of c|)̂ that satisfies Eq.

(2.9), which for J = 0 can be written as 

1 n < g  >sin0 de = e r n.<ç >sin0 de 1 r (6 . 21)

The radial electron number flux can be obtained by setting

£ = 1, m = n = 0 in Eq. (6.17)

V (6.22)

Hence
"T "ea, -<f>sn <Ç >sin0 de =  rr= e (6.23)

Similarly setting £ = 1, m =n =0 in Eq. (6.10a), the radial ion number

flux n.<£ > is obtained as 1 r

W  = Il + IT ̂ 2 - IT ̂ 3(0 (6.24)

where

 ̂ 2Ab^
-/irŜ cose erfc(S^cose)] (6.25)
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2̂ =
Ib Ï  -s|cos^0 -Si

Si2 / T -e -/îTŝ  COS0 erfc(S^ cos0) 
2

+ / tTc o s O e
[Si v2

e er£c(x cos0)dx] (6.26)

.00 •IT f2lT ,

0-̂ TT'̂ 0  d f
(6.27a)

/b7 -Si'"'
= 2n. /—  e100/ TT

* X e-(*'-2*Slcosy cose)j (2xS.siny sine)
0 1

2Y  [cosy sin^Y IC<f>Q)]dxdY (6.27b)

Hence

n.<Ç >sin0d0   [(i+S?)erf S.+ -& e ** erf S.]
y  ̂ ^ 2S.ÆT  ̂ ^  A  4o= 5 ^1 1

i l
2 .sin0d0

0
(6.28)

From (6.21), (6.23) and (6.28) we obtain

eoo 1 1 6 “

T e  U
+ <f>*{erf + 

i“ - *i“

A

I 5 U  de}]
ïï

O ' T
(6.29)

where  ̂is given by (6.27). This expression is the same as that

obtained by Prager and Rasmussen [1967] except for the last term involving 

^3(Ç )" This additional term contains the Debye length, and provides 

the dependence of the floating potential on the Debye length.

It is not possible to evaluate the extra term exactly, even 

if the simplest spherical potential model is used. However, for large
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ion speed ratio, Su>>l, an asymptotic expression of tliis term can be 

obtained without specifying a certain model for the spherical potential 

by means of Laplace's method of asymptotic integration (see Appendices 

A and B).

Substituting Eq. (B.8), we can write Eq. (6.29) for S^>>1 as 

-<t>s Hi* *^i A e  T'im r, 1
[1 +Ti 2 V in. T nc2eoo 1 eoo

T
+ I" erfc(S.cos0)de}] (6.30)

* TT
T

1“

It is interesting to observe that  ̂ = 0  when = 0, and 

the expression (6.29) reduces to

Qco X e“> 1“

In this case, the floating potential is independent of the Debye length.

Determination of the Diffuse Function nd(rg)

The condition for zero mass flux normal to the surface is sat

isfied when the function n^(r^) in the diffuse distribution function 

is determined so that Eq. (2.6) is identically satisfied. The function 

”d^^s^ is determined from Eq. (2.8) which can be written as

The radial ion and electron number fluxes, n^<S^> and have

been obtained in the previous section. The radial number flux for
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the incoming neutral particles nQ<C^> can be obtained by setting 

£ = 1, m=n=0 in Eq. (6.19).

r -SqCOs^Q
n <5 >  ---= =  [e - /rrS COS0 er£c(S cos0)] (6.33)
° ^  2/n^Q ° °

Substitution of (6.22), (6.24) and (6.33) to Eq. (6.32) gives

B,., m; /B i
" d ^ V  V r  ni=Gi(S.,0) +"000/ 1^ Gj(S^,0) + ̂ n ^ ^ y ^ e  

1 0  0 o e

M h < . (Qi _  _ _
100 l œ  1 " r

(6.34)
where

G^(S,0) = g-S2cos20_ cose erfc(S cose) (6.35)

G^(S,0) = Gj(S,0) - e  ̂+ /tTcosB e ^ fS x2e erfc(x cos0)dx
(6.36)

and Igçç j is given by (6.27). Prager and Rasmussen [1967] obtained 

the same expression as Eq. (6.34) except for the last term involving 

^3(Ç )’ which contains the Debye length and provides the dependence of 

nj(r^) on the Debye length. Although  ̂ can not be determined ex

actly even for the simplest spherical potential model, asymptotic ex

pressions of . for large ion speed ratio, 8.>>1, are obtained1
without specifying a certain model for the spherical potential in Ap

pendix A. The third term in the brackets in the expression (6.34) is 

negligible because the ratio mg/mg is a very small number. The ratio 

m^/mg can be taken as unity.
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The Slip Velocity 

The mean velocity at the surface of the sphere will have only 

a component in the direction because the component is zero due 

to mass conservation, and component is zero owing to symmetry. The 

mean value of velocity at the surface is defined as follows:

Zmun_<gA>
''e =

where the summation is over all the electron, ion, and neutral species.

Setting m = 1, £ = n=0 in Eqs. (6.19), (6.20), (6.17) and (6.10b)

gives

n <E_> = - in U sin0 erfc(S cos0) (6.38a)0 0 o« ™ o

I W ' e m l t  = “ (G'SGb)

ng<Sg> = 0(Sg) (6.38c)

(6.38d)

where

I, = - in. U sin0 erfc(S.cos0) (6.39)1 < 1% œ 1
2 2 R. -Si _ S^sin^0

'2 = - V  sine[erfc(S.cose)- ^

fS „2
e erfc(x cos0)dx}] (6.40)
o

(•<» flT (•2iT
:3(Sg) =

= - 2n

Çcose f^^ g— [sin^Y If^^^jdgdyde (6.41a)
0-* tt/  o  ^

e'Si r r  , e-‘’'̂ -“ i“ ^ “ =®hj(2xSjSinYSin6)
JL 2

^  [sin^Y I(*')]dxdY (6.41b)
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2ïï 2 o . 2r
Sj cos^Esine e®l“ " = ‘

erfc(S^cose sin9)de (6.42)

The number densities on the surface can be obtained by setting 

d = m = n = O i n  the Eqs. (6.19), (6.20), (6.17) and (6.10b)

n = in erfc(S cose) 0 0“  0

".emit “

4* < 4̂s
»i = Il + T  l2 - -T (l3+l4)n.

(6.43a)

(6.43b)

(6.43c)

(6.43d)

V are

I, = in. er£c(S.cos0) 1 1“ 1

Bi -S^
l2 = "i. sT *

i y-2e erfc(x cos6)dx

3("i) J
'Tf

O'* Tr**

27T
^io ^  [sin̂ Y I(<î>ô)]dÇdYde

= 2n.1“  /rr
^ g ^ ( x 2 - 2 x S j C o s y  COS0)

Ig(2xS^sinY sine) ^  [sin/y I(^^)]dxdy

(6.44)

(6.45)

(6.46a)

(6.46b)

^i“ î ~̂ i 
l4(ni) I(*0)y=n/2j

2 tt 2
gSiCOS e sin cose sin0)de

0
(6.47)

Contribution of the electrons is small and can be neglected. Substi

tution of (6.38) and (6.43) to expression (6.37) gives'
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T ({)* e»m n erfc(S cos0)+m.n. {erfc(S.cose)+ — -7 G-(S. ,0)}+K o o “ 0 1 1 . gf 2 1' j o
V. = -U sin0[-

q100 1
T A* e«j <Psm n erfc(S cos0)+m n.(r )+m.n. {erfc(S.cos0)+ = ^ G„(S.,e)}+K,0 0” 0 o d s  1 1 T. c2 3 r ' 11” a.

(6.48)

where
S^sin^f

G (S,0) = erfc(S cos0)- [-— A — —    ^ + ̂ v'ir sinZQ

Gg(S,0) = S e e erfc(x cos0)dx

e erfc(x cos6)dx]

(6.49)

(6.50)

"1 “ 1”  1

(6.51)

(6.52)

The Integrals I;;,., and are given by Eqs.

(6.41), (6.42), (6.46) and (6.47) respectively. Although and

l3(n-) be integrated exactly, asymptotic expressions of

and I_, . for large ion speed ratio, S.>>1, are obtained in Appendix A. o(.nĵj 1
Consider a simplified special case of the slip velocity. Let

T. = T = T = T and introduce the degree of ionization, a, as X” e® 0“ “>

a =
m.n.1 1®

m.n. +m nXI® 0 0“
(6.53)

Then 5^=5^, since mĵ /m̂ = 1. The slip velocity then becomes
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aerfc(S.cos8)+a
V„ = -U sine[-  ̂ ^0 00 •■

erfc(S.cos0) + / ^  G (̂S. ,6) + a % y ^  Go+Gg)+^(K^+K^]
W w 1 1“>

(6.54)

where

■'2 = ^ | " i " i ' ^ ' 3 ( î p  (S-SS)

The integral I»,_ .is given by Eq. (6.27) and its asymptotic express- 
Jl̂ rJ

ions for S^>>1 in Appendix A.

The expressions (6.48) and (6.54) are the same as those obtained 

by Prager and Rasmussen [1967] except the terms K̂ , and which con

tain the Deybe length and provide the dependence of the slip velocity 

on the Debye length. In the expression (6.48), the term is included

in the diffuse function, n^(r^).

Molecular Drag

The drag induced by rarefied plasma flows past a sphere con

sists of two parts. One part is due to the contribution from the

electric Maxwell stresses, and the other part is due to the contribu

tion from the momentum flux of the ions, electrons and neutral particles. 

The former is called Maxwell drag which has been obtained in Chapter IV. 

The Maxwell drag is negative and hence actually is a thrust. The latter 

is called molecular drag and will be evaluated in this section.

The molecular drag is determined from the momentum flux tensor 

as given by expression (2.11) which can be written as
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i,e,o
5 - I (6-56]

If ê is a unit vector in the direction of the free stream, the z
molecular drag is

Bf = ^
sphere

= 2 - n a ^ [ -  y m n <Ç Ç >cos6 sinede + y m L £, s s r r  ̂ Îo s

i,e,oIs
71
ns<Cr50^sin20de]
o

(6.57)

The term involving is the contribution from the normal stress

and from the tangential stress.

Setting I  = 2, m =n =0 in Eqs. (6.19), (6.20), (6.17) and 

(6.10a) gives

"nco  ̂ 1 -SqCOS^S
"o^^r^r^ 2 B ~  [C^+S^‘̂ °s20)erfc(S^cos0)- ÿ= S^cos0 e ]

0
(6.58a)

° 41“w
*e® "'Kgn   -(j)

e

r
where

}.1
îoo    1 . „ -Sicos^e1 = [(i+S?cos20)erfc(S.cos0)- -^S,cos0 e ] (6.59)1 zo. 1 r /tt 1

^2

—5— x^e* [(i+x^cos^e)erfc(x cosG)- x cos6e ̂  ®

(6.60)

2
•S

I2 = S"!. î
]dx
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•00 "IT

O' TT-*

2ti
—  [cos^Y sin^Y I (cj)̂) Jd^dydE (6.61a)

-S ■
= 2n. - ( x ^ - Z x S i C O S y  COS0)x^e Ig(2xS^sinY sin0)

^[cos^Y sin^Y I(<J>Q)]dxdY (6.61b)

Hence

m n <ç Ç >cos6 sinede o r r
m n

O 0

_S2
-^e °(4+is2)]
/T7 O

(6.62a)

m [*o<GrSr>]emit si*8d8

r  Ŝ +m.n.*, ~  {S.-D(Sp}]
1 0

w

IT

I,, .cose sinede 
o r-̂

(6.62b)

where D(Ŝ ) is the Dawson function given by

-s^fS 2 
D(S) = e e dx

J n

and  ̂ is given by (6.27)

m n <C E > cose sinede = m 0(Se)e r r  e ^ (6.62c)
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m.1 n.<Ç f, > C O S 0  sinede 1 r r

r.l 1
2B.S:

s 2S
S, -Si

p [ ( f - j S p a r f S i - ^ e  ]r r i - l c 2

rïï
^scs!) C O S 0  sinede (6.62d)

Setting £=m=l, n=0 in Eqs. (6.19), (6.20), (6.17) and 

(6.10a) gives

o~  ̂ - r i  -SqCos^O 
n.<S_Sa>= 9ô- sine e

n
o r 0 2B 0 o '/F

S^ cose erfc(S^ cos0)] (6.63a)

= 0(Sg)

(6.63b)

(6.63c)

(6.63d)

where
’̂100 1 -S; cos 8I = s. sin0[-= e -S. cos0 erfc(S.cos0)] (6.64)1 l ü ^  1 /ir 1

-S
® e^ [x COS0 erfc(x cose)— p  e

i rSi

i "O

2ïï

]_ -x^cos^e
/tT ](-sine)dx 

(6.65)
1*00•TT

o-'ÏÏ-'
cose ^[cosy sin^y I(<Î>q)l̂ Çdyde (6.66a)

' -s'e2n.
S i  fOOfiT ^  - ( x ^ - 2 x S f [ C 0 S y  c o s e )

i» /F x'̂ e
IL 
2

I^(2xSusiny sine)

2̂  [cosy sin^y I(^^)jdxdy (6.66b)
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Hence

mo

m0

m.1

ir
"o^^rG^sinfe de
O

= g ï  t |  e-=“ ( U i S ^ ) - t i 4  S j - i s j ) e r f  S J (6.67a)

t W e ' l e m i t  ‘*® = ° (G.67b)O

TT
n^<^r^Q>sin^e de = 0(Sq) (6.67c)
0

ni<SrSa>sin2e d8
0

= - 1  «i - 1

s 2 S {

T "'i■ ‘*’s T I„. .sin^e de (6.67d)
0 '•̂ r̂e-'

The contribution of the electrons to the drag is small and 

can be neglected. Substitution of (6.62) and (6.67) to Eq. (6.57) 

gives the desired molecular drag. In terms of a drag coefficient, we 

can write the molecular drag as

Cd  ̂ i(mini*+mono,)U%%a2

= (Cof), + (COf)* (6.68)

where (Cp^^ is independent of the floating potential, <j>*, and the 

Debye length, and (Cp̂ )^ contains the floating potential and the Debye
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length. In terms of the degree of ionization, a, we have

(COf)o = ( l -a)Cp(S^, + (xCpCS., (6.69)
O'» i”

T X* "p
(Cr, ) ,  = « T ^ - |  [F(S + H(4* ,e ) ]  (6.70)
"f 'P îco Sf  ̂ ‘ioo s

where
_s?

CgCS^, ^ )  = 2[(1+ — ^)erf S .  +  -̂pr- ( ^ + ::&!)+s2 4S% i Si 2s3' 3Si' Ti.

F(S , ^ )  = 3[(1- -^)erf S. + [1-
1 ‘icc 2s l  ^  >^i 1 I-» 1

(6.71)

(6.72)

100 w

TT

I_, ..cose sinede 
0 r

TT
+ 2{ I-x .sin^e de - I , 2-|'̂°s0 sine de}] (6.73)

0 l̂ r̂ ê  ■'o l̂ r̂

Here D(Ŝ ) is the Dawson function as given after Eq. (6.62b), and 

^3 (̂ 1.)’ ^3(ç2)’ ^3(ç ç ) given by Eqs. (6.27), (6.61) and (6.66)
respectively. For a = 0, the expression (6.68) yields the usual formula 

for free-molecule drag with diffuse reflection. The expression (6.68) 

for the molecular drag is the same as that obtained by Prager and 

Rasmussen [1967] except the term H(#*,E) in (Cq^^. This additional 

term contains the Debye length, and provides the dependence of the 

molecular drag on the Debye length.

It is not possible to evaluate the extra term exactly, even 

if the simplest spherical potential model is used. However, for large 

ion speed ratio, S^>>1, an asymptotic expression of this term is
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obtained without specifying a certain model for the spherical poten

tial in Appendix B. Since the Maxwell drag is negative as has been 

shown in Chapter IV, the molecular drag given by Eq. (6 .68) yields 

the maximum value of drag.

Energy Flux to the Sphere 

The energy gained or lost by the sphere is equal to the total 

kinetic energy flux to the sphere due to the incident and emitted 

particles plus the energy gained because of recombination of the ions 

at the surface. Other changes in internal energy of the molecules shall 

be neglected. Assuming that recombination occurs immediately with the 

impact of an ion with the sphere, we express the local energy flux to 

the sphere surface as

d3s (6.74)

where the summation is over the ions, electrons, and neutral particles 

incident on the sphere and the neutral particles emitted diffusely from 

the sphere. The symbol € denotes the ionization potential per molecule. 

The Eq. (6.74) can be written as

q = - I -y (6.75a)
s

i,e,o m
= - I [ng<s|> +ns<SrCg> +ng<SrG2>]-(gn.<G,> (6.75b)

Evaluating ng<g3>, and from Eqs. (6.19), (6.20),

(6.17) and (6.10a), and adding together, we have



76

-Ŝ coŝ f
=- 2/nB

[»o<SrS'>]emit = y T - 3/2 "4 (̂ 5)/TT
C6.76b)

/tT B,
6“ e3/2 (6.76c)

n. r -Ŝ -005^6
 -----— --------- [ (S?+ ^(Sj^,8)- i e ]1 r 2/ir B̂ '

-  ̂ n't T
- *s /i=gr GiCSi'G) - ~ h u e ^ ) (6.76d)

where G^(S,8) is given by (6.35), and

•TT

IT-'

2tt
ç3 £^0 ^  [cosy s i n ^ Y  I(cj)p]dÇ dY d e  (6.77a)

— 2n.
i” / T E

■" ^3 3-fc^-2xSicosv cose); (2xS.slnv sine)
i ' O ' 0  1

2^  [ c o s y  sin^Y I(<t>Q)]dxdY (6.77b)

The radial ion number flux n.<Ç^> is given by (6.24) which can be 

written as

n. T  A* 6“ Ŝ

where G^(S,8) is given by (6.36) and  ̂by (6.27). Substitution

of (6.76) and (6.78) to the expression (6.75a) gives the desired energy 

flux to the surface of the sphere. The contributions to the heat
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transfer can be divided into a part corresponding to the usual free- 

molecule heat transfer, a part due to electron heating, a part due to 

the excess over the free-molecule heat transfer caused by the floating 

potential, and a part due to recombination of the ions at the surface. 

It is convenient to represent the heat transfer by the nondimensional 

form

(6.79)
"I ' iCmin.^+m^n^JuS

We then have

Cq = ( V o  * ' V a  * ( V +  * ( V ê  (G 80)

The term (Cq)  ̂does not depend on the floating potential 4» 

and comes from the ions and neutral particles. It is given by

(Cq)o = Cl-a)G4CS^,e) + aG^CS. ,0)

. T

where
I r -S^COS^G

G, (S,0) = — ~  [(S2+ j ) G  (S,e) - ie ] (6.82a)
4 2y ^  S ^ 1

-S^cos^B
= ( ~  + ̂ )  —̂ 7=-----^  (^+2)erfc(S cosB) (6.82b)

g3  Zb 4

For a = 0, the Eq. (6.81) which is the same as that obtained by Prager 

and Rasmussen [1967] yields the free-molecule energy transfer for dif

fuse reflection.

The heating due to the transport of kinetic energy by incoming 

electrons is (neglecting the term containing mg/m^ which is very small)
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   . *
/mi ^

= S3 ?!. ^n*. / Me Ti« /7 ̂

The electron heating is symmetric because terms of order S q  were 

neglected in the electron distribution function. The expression (6.83) 

is the same as that obtained by Prager and Rasmussen [1967]. If the 

floating potential is determined by Eq. (6.29) then,(Cq)^ becomes

+ fT- :2 (erf S. + Ijj ) slnedo}] (6.84)
1 0

This expression is the same as that obtained by Prager and Rasmussen 

[1967] except for the last term involving ^, which contains the

Debye length, and provides the dependence of (Cq)^ on the Debye length. 

For large ion speed ratio, S^»l, an asymptotic expression for the 

extra term is obtained without specifying a certain model for the 

spherical potential (see Appendices A and B). Substituting Eq. (B.8), 

We can write Eq. (6.84) for S^»l as

" 5 [ fc  iif
IT

T (|) ̂ * 2
+ --- r-{l-i I ((j)') erfc (S. COS 6) de}] (6.85)

‘ioo S? o Y=tt/2 j, '1 0

The contribution (Cq)  ̂comes from the additional ions that 

strike the sphere owing to the floating potential. We have
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( s'* ' °(?i. sf '- Æ  Sj ■ s? \  Ti„ ’ A- Sj 

* 2 V D r  *^3Kr5") ■ ^  '3(epl'

where G^CS,8), G^(S,0), ^2) and are given by Eqs.

(6.35), (6.36), (6.77) and (6.27) respectively. The contribution of 

electrons that enters through the diffuse function nd(r^) given by 

(6.34) was neglected. The expression (6 .86) is the same as that ob

tained by Prager and Rasmussen [1967] except that the expression (6.86) 

has an extra term, i.e., the last term involving and ^,

which contains the Debye length and provides the dependence of (Cq)̂  on 

the Debye length, and that it has not a quadratic term,

risiîi,"
' V s f  '

as their result does. This is because the present analysis is confined 

to the first order of 6, and it can be shown that a linear term

is of order 5. Although the exact evaluation of the extra term is not 

possible even for the simplest spherical potential model, asymptotic 

expressions of  ̂ and 2̂) for large ion speed ratio, S^>>1,

are obtained without specifying a certain model for the spherical po

tential in Appendix A.

The heating of the sphere because of the recombination of the 

ions is given by
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'S>6 = f  ^
(6.87)

where
£ *  5 r #1,’r (6.88)ioo

The expression (6.87) is the same as that obtained by Prager and 

Rasmussen [1967] except for the last term involving ^, which 

contains the Debye length, and provides the dependence of (Cq)g on 

the Debye length.

Discussion

General expressions of floating potential, slip velocity, 

molecular drag, and energy transfer are obtained. The integral in 

these expressions can not be evaluated exactly even for the simplest 

spherical potential model. However, asymptotic expressions of the in

tegral Ij for large ion speed ratio, Sĵ >>l, are obtained in Appendix A 

without specifying a particular model for the spherical potential by 

means of Laplace's method of asymptotic integration. The results of 

the computation of the moments are the same as those obtained by Prager 

and Rasmussen [1967] except the term containing the integral which 

in turn contains the integral I(#^). The integral I(̂ )̂ contains the 

Debye length and provides the required dependence of the moments on 

the Debye length.

The linear and parabolic models are used to evaluate the in

tegral I(<I>q) in Chapter V. The results, Eqs. (5.25) and (5.31), 

evaluated at y  = ir/2 have singularities as e  tends to zero, as can be 

seen from Eqs. (5.26b) and (5.32b). Nevertheless, Eqs. (5.26a) and (532a)
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serve to illustrate how the Debye length, or r enters the first-order 

approximation of the moments on the sphere away from y = v / 2 .  The asym

ptotic expressions of the integral I3 for large ion speed ratio, Sĵ >>l, 

obtained in Appendix A indicate that the integral and its derivative

I ' (({)p must not have singularities at y = 'n/2 as e tends to zero, otherwise 

the results of the moments on the sphere would be meaningless. Thus it is 

necessary to find a spherical model which will produce 1(4/) and I'[4̂ ) 

that are free from singularities at y=n/2 as etends to zero in order to 

obtain meaningful results of the moments on the sphere.

It was pointed out in Chapter V that the singularity arises be

cause of the behavior of the factor l//r^-r^ in the integrand of the 

integral Eq. (5.17a), and that it is not possible to remove the

singularity by assuming the similar simple models for the spherical 

potential such as Eq. (5.21) or (5.27). The desired spherical poten

tial model must satisfy the boundary conditions

3r at r = a (6.89a)

34>;
(j)* =0, -— = 0 at r = r (6.89b)^0 9r 0

At the same time the model should be able to eliminate the cause of 

the singularity, the factor 1//r^-r^ in the integrand of the integral 

I(4)p. Also the model should be simple enough so that the integration, 

Eq. (B.7), of the additional term H(4>*,g) of the molecular drag can be 

carried out. This difficult task has to be left for the future inves

tigation.
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For the present, however, we can observe the general trend 

of the effect of the Debye length or e on the moments from the simple 

model Eq. (5.21) or (5.27), although the integral 1(4̂  ̂has singularity 

at y = it/2 as e tends to zero. From Appendix A we can see that the term 

containing I(4Q)^_^y2 enters the integral Ig only on the downstream face 

of the sphere. Since the density of the ions in the near wake is prac

tically zero for large and small e, the term containing I ^-11/2 

negligible compared to its counterpart on the upstream face of the 

sphere.

For example, from Eq. (B.7), the additional term H((j)*,e) of 

the molecular drag using the linear model Eq. (5.21) and neglecting 

the term containing I(4̂ )y_^y2 compared to its counterpart, the first 

term, is

H(*!,e) = [- 0(e)] (6.90)S S. / 3 3 / 18*1
I9Ç s

When e goes to zero, the term H(^*,c) goes to a finite negative value.

= 2.03 near 6 = ir
s

For the typical values of = 3 and = 5, 

for Maxwellian electron-density model. When e = 0.001, 0.01, and 0.1, 

the second term in the brackets is 0.0364, 0.115, and 0.364 respectively. 

We can see that H(<()*,e) is always negative when e<<l, and becomes less 

negative when e increases. Thus the term H(^*,c) reduces the molecular 

drag, and the molecular drag increases with increasing e. Therefore 

the result of Prager and Rasmussen [1967] gives larger value of drag 

than that of the present more accurate drag.
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For the linear model, Eq. (5.21), the integral 1 (<1>q) "̂(1 its 

derivative I'(#^), when expanded in the series in small e, are

I C O S Y  I
[1- ie ŝ

a;
COS^Y

—  + 0 ( e2)] y  ̂T (6.91)

I'u;) = sin Y 
cos^Y

[ 1- cos^Y
+ 0(e2)] Y 7̂ (6.92)

When E goes to zero, 1(4̂ ) goes to a finite negative value and I'(ÿ̂ ) 

to a finite positive value. For the typical values of <f)* = 3 and

S. = 5, 9*0 = 2.03 near 6 = ir for Maxwellian electron-density model

as mentioned before. When e = 0.001, 0.01, and 0.1, the second term

in the brackets of I(*̂ ) is 0.00074/cos^y> 0.0074/cos^Y) and 0.074/cos^y 

respectively, and that of I'(4/) is 0.00222/cos^y> 0.0222/cos^y> and

0.222/cos^Y respectively. We can see that 1(4̂ ) is always negative 

and becomes less negative when e increases and that I '(4 )̂ is always 

positive and becomes less positive when e increases, if e « 1  and y  is 

not too close to v/2. The trend of the effect of the Debye length or 

E on the integrals I3 can be observed by substituting Eqs. (6.91) and

(6.92) into the expressions of in Appendix A.



CHAPTER VII 

CONCLUDING REMARKS

An analytic investigation has been made of the problem of a 

steady rarefied plasma flow past a sphere by means of the Vlasov-Poisson 

set of equations. The equations are attacked by means of a perturbation 

method exploiting the features of an ionospheric satellite, i.e., the 

velocity of the satellite is much larger than the thermal velocity of 

ions, but much smaller than that of electrons, and the Debye length is 

much smaller than the characteristic length of the satellite. The ef

fects of photoemission, the secondary emission of electrons, and the 

earth's magnetic field are neglected.

The ion distribution function is found to be independent of the 

electric field to a zeroth-order approximation. Thus the zeroth-order 

ion number density is the same as that of neutral particles. The 

zeroth-order electron number density is obtained by assuming three dif

ferent models for the structure of the electron velocity space. The 

zeroth-order ion and electron number densities are used in the Poisson's 

equation, which is a singular perturbation problem, to obtain the 

zeroth-order solutions for the potential field and the potential grad

ients at the sphere surface, which in turn are used to obtain the Maxwell 

drag. A simple formula of the Maxwell drag for die large ion speed ratio 

shows that it is negative and actually a thrust when the surface poten

tial is large. Simple formulas are also obtained for the potential near
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the wake axis, which allow rapid computations to be made. They agree 

qualitatively with more sophisticated (and more complicated) results 

of numerical integration.

The first-order approximation to the ion distribution func

tion is obtained for the special case of a spherical potential, which 

is suitable for the sphere problem. The first-order approximate ex

pressions of floating potential, slip velocity, molecular drag, and 

energy transfer are obtained. The results are the same as those ob

tained by Prager and Rasmussen [1967] except for the term involving 

integral I3 which contains the integral The integral 1(0̂ )

contains the Debye length and provides the required dependence of the 

moments on the Debye length.

The asymptotic expressions of the integral for large ion 

speed ratio are obtained without specifying a particular model for the 

spherical potential. It is found that it is necessary to find a 

spherical potential model which will produce the integral I(<l>̂) and 

its derivative I'(4̂ ) that are free from singularities at y = ir/2 as e 

tends to zero in order to obtain meaningful results of the moments on the 

sphere. Although the desired spherical potential model is not obtained, 

the requirements for obtaining it are pointed out.

The simple linear potential model is used to observe the gen

eral trend of the effect of the Debye length or e on the moments, al

though it has a singularity at y = ir/2 as e tends to zero. It is found 

that the molecular drag increases with increasing e, and that the re

sults of Prager and Rasmussen [1967] gives a larger value of drag than 

that of the present more accurate drag.
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Prager and Rasmussen [1967] obtained the moments by an ad hoc 

approximation of ion distribution function. Present systematic ana

lysis shows that although they obtained a part of the first-order 

approximation, they missed the other part, i.e., the part involving 

the integral I3 which contains the Debye length and provides the de

pendence of the moments on the Debye length. As a result, their re

sults are independent of the Debye length and are not realistic.

It is hoped that the present investigation will serve as a 

basis for further research. In particular, it is desirable to ob

tain higher order approximations of the potential near the wake axis.

It is also desirable to obtain a spherical potential model which will 

produce the integral I(^^] and its derivative I'(̂ )̂ free from singu

larities at Y = tt/2 as e tends to zero, so that the explicit expressions 

of the moments can be obtained. In this way, the expressions for the 

drag and energy transfer can serve as a useful guide for the conducting 

and interpretation of experiments. Systematic experimental investiga

tions indicating the role of the pertinent parameters are especially 

needed since data are very scarce.
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APPENDIX A

EVALUATION OF INTEGRALS I

, I3(n.)' "3(Sg)' 3(GrS^' 3(S^S^)

The integral, 1̂ , appearing in the moments for the ions can

not be integrated exactly, even if the simplest spherical potential

model is used. However, for large ion speed ratio, SL>>1, asymptotic

expressions for 1  ̂may be obtained without specifying a certain model

for the spherical potential by means of Laplace's method of asymptotic

integration outlined in the book by Erdelyi [1956]. As an example

1_,_ . will be evaluated in detail.
^  UrJ

From Eq. (6.2), we have

du du

d 1 (<!>')
dy a/siny cosy du

ITY

du

a (u^-a^sin^y)3/2

(A.l)

(A.2)

(1) From Eq. (6.27a)

O-̂ TT 
2

2ir
çfio [cosy sin^y l((j>̂ )]dÇ dy de (A. 3)
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where

exp[-B̂ {£.2+U^-2U^Ç(cosy cosO-siny cos?. sin»)}j

(A.4a)

3/2 Sĵ cosy cose)
’̂icô  TT ̂ ® ®

-2Æ Y 5 S; siny sin0 cose e  ̂  ̂ (A.4b)

For large ion speed ratio, S^>>1, we can see that the exponent in the

integrand has a sharp maximum at e = tt. According to Laplace, the

major contribution to the value of the integral with respect to e arises 

from the immediate vicinity of e = it. Carrying out an expansion in 

powers of x = e - TT and replacing the limits of the x integration by

«> and we obtain

j-TT 2/Bi Ç Si (cosycos9+sinysin6)
o

e 
2L 2

^  [cosy sin^y I((f>̂ )]
-/Bi C Sisiny sin0 x̂  
e dx

-s'
B; e ^  r  r- - B i g Z  r  r-____= n .  6 dg /siny [cosy siny I'(<{>')
 ̂ ^  sine Jo L  °IL2

2/57 gS; cos(y-0)
+ (2coŝ y-sin̂ y)IC<|)̂ )]e dy (A. 5)

(i) When O<0< ~  , S^»l

The exponent in the integrand has a maximum at y = ^ in the 

range ir/2£y ■<_ ir. Expanding in powers of y = y- tt/2 and replacing the 

upper limit on the integral with respect to y by ®, we obtain
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V  -BL(f/-2fU_sin(l), 
/c e Je

“ -2/B; eSiCosG y
e dy

n. -Sicos^e 
1“ e

Uo^cose/UooSine °  Y -T f/2 j

r  1

The exponent has a sharp maximum at Ç = U^sin0. Expanding in powers 

of z = e - U^sin0 and replacing the lower limit on the integral with 

respect to z by we finally obtain

2 2n -Si COS (
1» e ^

~ 2ir U„cos0U„sin0
® -B^z^

e dz

n -sfcos^B 
V  e_J;________ L _  Tfén
2 /FS^cosO U«sin0 ^̂ o''y=ti/2

erfc(Sj^cos0)
2 U sin0 ^^^o^Y=n/2

(A.7a)

(A.7b)

(ii) When -j <0<ïï, S^»1

In this case the exponent in the integrand of Eq. (A,5) has a 

sharp maximum at y=0. Expanding in powers of y = y-0 and replacing 

the limits of the y integration by “ and we obtain

-S ‘
‘3 C y  i'»i)̂ ,„*C2cos2e-sin2e)ift')̂ J

= - £ / - 7  lcos0 sin0 +C2cos20-sin20)I(O^ly^g] de

(A.8)
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The exponent has a sharp maximum at 5 = Û . Changing the variable to 

z = and replacing the lower limit on the integral with respect

to z by we finally obtain

n. / B
—  [cose sine _ +(2cos^e-sin^e) I (())') _ ]3(5?) U„/ TT

-EUzZ 
e  ̂ dz

n.^
[cose sine I'(40)^,=0 +(3cos26-l)I(0^)^=g] (A. 9)

(iii) When e = y ,

From Eq. (A.5)

S.>>11

“ ̂  -6.52 fTT
/Ë e dç /siny [cosy siny I'(<J)̂ )

2Æ T  5S;siny 
+ (2cos2y-sin2y)I(^^)] e dy (A.10)

The exponent in the integrand has a sharp maximum at y = ^ - Expanding 

in powers of y = y - tr/2 and replacing the upper limit on the integral 

with respect to y by «>, we obtain

2Bi
T  I(+o)y=n/2 

y/Bl

"» -Bi(52-25Uoo) r  -ÆT gS^y
/r dS dy

2U / TT ^^^o^y=n/2
r" -Birg-u.)6
e dC0 (A. 11)

The exponent has a sharp maximum at 5 = Û . Applying the same method 

used in Eq. (A.8), we finally obtain
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, V  /Bi 
’3(5P'- 2Û : / ~ " * o ’ï=it/2

"i.

-B̂  
e dz

2U. I(*ô)Y=n/2 (A.12)

It is interesting to observe that this result can be obtained from 

the approximate equation (A.7b) by setting 0 = tt/2.

(iv) When 0 = 0, it. S,>>1

From Eqs. (A.3) and (A.4b)

Çe de [cosy sin^Y I'Ct̂ )

±2/B^g S^cosY 
+ (2siny cos^y-sin Y)IO&')]e dy (A.13)

where the plus sign is used when 6 = 0 and the minus sign when 6 = ir.

For the case 0 = 0, the exponent has a maximum at y = tt/2 in 

the range tt/2 _< y_< TT. Expanding in powers of y = y-ir/2 and replacing 

the upper limit on the integral with respect to y by », we obtain

2

hi, '(*oW2J Çe
■Bi?'

d?
•2/b^ ?SiX

dx

"i. e'®‘
2 S. :(*;)Y=./2 (A.14)

For the case 0 = it, the exponent has a sharp maximum at y = tt. 

Expanding in powers of y = y-tt, we find that Î .̂  ̂  ̂ is asymptotically

equal to zero

(A.15)
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The other I^'s can be evaluated in the same manner. The re

sults are given as follows.

(2) From Eq. (6.46a)

r2ir
I3 ( n . )

■V

O"'If'
fio ^  [sin^Y I((|)̂ )]dÇ dy de (A.16)

(i) When 0 < 6 < — , S^>>1

*i= g-SicosZe ^
3(n̂ ) 2 g c Q g0 ij2 sinZg o y = i r / 2

1  00

(A.17a)

ioo erfc (Sĵ cose)
5" U2 sinZe

(A.17b)

(ii) When ir/2 < 0 < IT, S^>>1

^i“ (A.18)

(iii) When 0 = tt/2, S.>>1

(A. 19)

(iv) When 0 = 0, tt. S.»l

^3(n.)~ 0 (A. 20)

(3) From Eq. (6.41a)

'3(S.)
fw rTT /•2tT 

O'*TT 0 
2

geos e J—  [sin^Y IC^gjjdg dy de (A.21)
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(i] When 0 < 0 < n/2. S.>>!

(A.22a)

(A.22b)

(ii) When n/2 < 0 < n, S.>>I1

îoo (A. 23)

(iii) When 0 = n/2, S.»l1

^3(ÇJ 2U_ I'(*è)y=n/2 (A. 24)

(iv) When 0 = 0, n

^3(ÇJ = 0 (A.25)

(4) From Eq. (6.61a)

-00

^3(52)
rn f 2nf/n ,
j ^  [cos^Y sin^Y I(Og)]dS dY de (A.26)
n'' o 
2

(i) When 0 < 0 < n/2, S^>>1

(A. 27)

(ii) When n/2 < 0 <n, S.>>1

I3(Ç2)^ V  cos8[cos6 sin0 +2(2cos20-l)I (<1,^^^^] (A.28)
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(iii) When 9 = 0, -ir/2, it, S^>>!

(A.29)

(5) From Eq. (6.66a)

3(SrSg)
•TT

■'o' TT"'

2ir
cos e ^  [cosy sin^y dy de

r (A.50)

(i) When 0 < 0 < it/2 , S.>>!

n - S ? C O S ^ 0  
i°° ©

‘3(5^Sg) ~ ~  /F S.C0S8 ' ‘*0’y =,t/2
(A.31a)

n.1“= -2- erfc(SiC0s6)I(*;)^^^y2 (A.31b)

(ii) When ïï/2<6<tt, S^>>!

I3ÇÇ Ç sin0[cos0 sin0 I'(*0)y=G +(4cos28-l)I(*^)y^Q] (A.32)

(iii) When 0 = ir/2. Su>>l

l3(SpCg)~ 2 I(*o)y=%/2 (A.33)

(iv) When 0 = 0, it

:3(SrSg) = 0 (A.34)

(6) From Eq. (6.77a)

r2TT<00 ■TT

J 0̂ TT'̂
fio [cosy sin^y I((j)̂ )]dÇ dy de (A. 35)
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(i) When 0 < 8 < n/2, S.>>1

^ -S^cos^O 
~ - -4^  --------- UcoSine I3(Çj.Ç ) 2 COS0 o Y=ir/2 (A.36a)

n.100 erfc(S.cos0)U sinB I (<])')2  1 " 0 Y=7r/2 (A.36b)

(ii) When 7r/2 < 0 <îr, S.>>!

ha ç2) ' '« y Y = e  *(3cos2e-i)iw p^ ,g ] CA.37)

(iii) When 0 = n/2. S.»l1

'3(Ç^Ç2) ~ -
^i“
r " . (A.38)

(iv) When 0 , S^»l

e-Si'
1"!

(A. 39)

(v) When 0 = ir. S.»l1

'3(£,£2)~ “ (A.40)



APPENDIX B 

EVALUATION OF

The term H((j)*,e) in the molecular drag coefficient can not be 

evaluated exactly even for the simplest spherical potential model. 

However, for large ion speed ratio, S^>>1, an asymptotic expression 

for H((|)*,e) may be obtained without specifying a certain model for the 

spherical potential by utilizing the results in Appendix A.

From Eq. (6.73)

w
1_, .COS0 sine de

o

2{ Ig^gZjCOse sine de}] (B.l)

From Eq. (A.7a)

n.1°°1„._ .cose sine de'v y
o 2SÎ

—  2 (■2 -S^cos^e
e de

The exponent has a sharp maximum at 6 = ir/2 for S^>>1. Expanding in 

powers of X = e-ir/2 and replacing the lower limit by we obtain

n. /B.
„ Sins de . -

fO -S?x^ 
e dx

(B.2)
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From Eq. (A.9)

ÏÏ
I_, .cose sine de 

ir I

or' coŝ e sin̂ e i'C'f’0^^=e + C3cos^e-l)cose sine i(^^^Y_gde]

Substituting Eqs. (A.l) and (A.2) for I(#̂ )̂ and I*(<1)̂ ), and carrying 

out the integration, we obtain

I„, .cose sine de
IT r'̂

n. f”1°°

U_ 3 a3 a 3 a 3 du du (B.3)

From Eqs. (A.31b) and (A.27)

erfc(S^cose)sin^e de (B.4)

JL
2
l3(ç2^cose sine de ~ 0 (B.5)

From Eqs. (A.32) and (A.28)

I„, .sin^e de 
IT '-Ve-'

I , 2-1 cose sine de
IT

IT flT

(cose-cos^e)i'((|)') _gde + (3cos^e-i)sine i(c{)') _Qde]=o
IT ^ TT ^

(B.6)
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Substituting Eqs. (B.2) (B.6) into Eq. (B.l), we obtain

r”
[- Y ~  + i/u^-a2 + I -y(u2-a^)3̂/2, ffodu du

+ 1 ^  /Bi
48-

er£c(S^cos0)sin^G d0] (B.7)

We can also obtain from Eqs. (A.7b) and (A.9) 

’S K  2C ' “ o\="/2

2L
(2
erfc (S^cos0)d0

U ^(cos0-cos30)I'(O^)y=Qd0 + ^(3cos20-l)sin0 I(*^)y=gd0] 
J

^i“
2U "iVo/y=w/2 erfc(S^cos0)d0 (B.8)


