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Abstract 

The current study examined the treatment effects of a newly adapted in-home training program 

for families at risk of child abuse and neglect. In-home interventions for child abuse and neglect 

have proven effective for reducing risk in low to mid-risk families, but high-risk families are 

underserved and have a pattern of high recidivism post-treatment. This study compared the 

standard training (Services as usual; SAU) to the new program, SafeCare+ (SC+), for impact on 

three different predictors of risk: depression, social support, and access to resources. Subjects 

were assigned using a tie breaker regression discontinuity design (LTBRDD) which allowed for 

experimental and ethical outcomes. Multilevel piecewise growth modeling was employed to 

capture pre-treatment, post-treatment, and follow-up data nested within subjects so that 

differences in treatment, assignment method, and change in time could all be modeled. 

Significant moderator effects of treatment on slope in two of the three outcomes, depression and 

social support, supported the hypothesis that SC+ recipients experience greater positive change 

in risk factors than SAU recipients. This significant treatment effect on slope also indicated a 

continued growth from post-treatment to follow-up, supporting the efficacy of SC+ to not lead to 

high recidivism. Due to the complexity of the design, there is not much in the literature to guide 

analytic procedures for LTBRDD, so future research should test, compare, and validate different 

analytic methods to make this design more approachable.
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Introduction 

 The current study evaluated the outcomes of a novel hybrid research design to evaluate 

the efficacy of a newly adapted intervention for families at risk of child abuse and neglect. 

Addressing and reducing risk factors of child abuse and neglect is an important field of research 

as child abuse and neglect is a serious public health concern. Clinical trial research typically 

implements one of two designs, randomized controlled trials (RCT) or regression discontinuity 

designs (RDD), to assign treatment and analyze results. The current study implemented a 

longitudinal tie-breaker regression discontinuity design (LTBRDD), a longitudinal hybrid design 

that combined RCT and RDD, in order to benefit from the strengths of both designs in providing 

treatment to participants and for understanding treatment effects. The study’s data is derived 

from grant-funded research of a newly adapted in-home training program, SafeCare+ (SC+), as 

an intervention for reducing the risk of child abuse and neglect. The following introduction will 

establish the severity of child abuse and neglect, the SC+ intervention, and the LTBRDD to 

establish the framework of the current study. 

Background 

Child Abuse and Neglect 

 Child abuse and neglect is a serious public health concern (Owora, Silovsky, Beasley, 

DeMoraes-Huffine, & Cruz, 2012). According to the National Child Abuse and Neglect Data 

System (NCANDS), a federally sponsored data collection and analysis program approximately 

4.4 million referrals were sent to CPS agencies in 2019 (U.S. Department of Health & Human 

Services, 2021). In 2019, 8.9 per 1,000 children were victims of child maltreatment with 

approximately 656,000 victims of child abuse and neglect nationally. The youngest children are 
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at the greatest risk of maltreatment; during their first year, 25.7 per 1,000 children are victims 

and they make up 45.4 percent of child fatalities due to maltreatment.  

 Neglect is the most common type of maltreatment at about six times the rate of abuse, 

with sexual abuse being the lowest reported (U.S. Department of Health & Human Services, 

2021; Fettes, Aarons, Brew, Ledesma, & Silovsky, 2020). Parents are the most common 

perpetrator of abuse and neglect (77.5%). In 2019, Oklahoma reported referrals for 86.6 per 

1,000 children (U.S. Department of Health & Human Services, 2021). The risk factors that 

increase the likelihood of child abuse and neglect are characteristics of a child or caregiver, 

NCANDS collects data for 12 caregiver risk factors and nine child risk factors that fall into the 

following categories: alcohol abuse, domestic violence, drug abuse, financial problem, 

inadequate housing, public housing, public assistance, and caregiver disability.  

 Child maltreatment is a serious public health issue that has stayed relatively consistent 

from 2015 to 2019 (U.S. Department of Health & Human Services, 2021). The trauma caused by 

child maltreatment has serious societal and individual impacts on the victims leading to negative 

effects on social, emotional, and behavioral development, and health (Fettes et al., 2020; Owora 

et al., 2012). Some maltreatment is unintentional, resulting from preventable events, and most 

injuries experienced by children six years or younger are unintentional and occur in their homes 

(Slemaker, Espleta, Heidari, Bohora, & Silovsky, 2017). The data show a clear need for child 

maltreatment interventions and education. Unintentional abuse is often the result of an event that 

could be prevented if the perpetrator was better educated about safety (Slemaker et al., 2017). 

SafeCare is a promising in-home, skills-based training program that has consistently 

demonstrated support for prevention of maltreatment and positive behavior change of parents 

(Owora et al., 2012; Slemaker et al., 2017; Silovsky et al., 2011). 
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In-Home Training Programs 

Home-based training programs, primarily for families with child neglect, provide services 

to families in the Child Protective Services (CPS). As mentioned earlier, neglect makes up the 

largest proportion of annually reported child maltreatment. The commonly provided services 

have demonstrated poor effectiveness and result in high neglect recidivism (Chaffin, Hecht, 

Bard, Silovsky, & Beasley, 2012). The highest-risk populations - families with parental 

depression, parental substance use disorders, intimate partner violence, and/or other risk factors - 

are not being adequately served by these prevention services (Silovsky et al., 2011). As stated, 

the youngest children are at the greatest risk for maltreatment, especially those that are in 

families that are high-risk of imminent child abuse and neglect. These children and their high-

risk families need prevention models that target imminent maltreatment behaviors, are developed 

and evaluated for child welfare populations, and that provide interventional trainings that address 

changeable risk factors (Silovsky et al., 2011).  

The SafeCare (SC) model is a promising prevention program designed to prevent child 

maltreatment and increase protective factors. Trainings from the SC program cover three 

modules: health, home safety, and parent-child/parent-infant interactions (Beasley. Silovsky, 

Owora, Nurris, Hecht, Demoraes-Huffine, Cruz, & Tolma, 2014). As an in-home training 

program, providers meet with caregivers in their natural environment, increasing the ability to 

target home hazards and teaching skills-based parenting. It has demonstrated support for 

positively affecting caregiver behavior and reducing first-time reports and recidivism. SC+ is 

augmented SC that adds services to address risk factors for child abuse and neglect. It has the 

addition of motivational interviewing and teaches the in-home providers how to identify and 

respond to risk factors of depression, substance abuse, and intimate partner violence, as well as 

imminent child maltreatment (Silovsky et al., 2011). The target population for SC+ are families 
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with a young child, in the age range from birth to 5 years old, that demonstrate risks, such as 

intimate partner violence and substance abuse, and do not have any active child welfare 

involvement. 

SafeCare+ 

 In Spring 2010 researchers at the Center on Child Abuse and Neglect (CCAN) at the 

University of Oklahoma Health Sciences Center (OUHSC) conducted a study to examine and 

compare the effectiveness of a newly adapted at-home service for families at risk of child abuse 

and neglect. The at-home service was a new version of SafeCare+ (SC+), a training program that 

CCAN has a well-established history of studying and contributing to the literature on, adapted 

for Latinx families. The study implemented a unique design merging randomized controlled trial 

(RCT), regression discontinuity design (RDD), and a longitudinal pre, post, and follow-up 

timeline. CCAN partnered with a local agency, the Latino Community Development Agency 

(LCDA) in Oklahoma City, to provide the in-home training services. Individuals participating in 

the study either received the newly adapted SC+ or the standard in-home training, services as 

usual (SAU). 

 The goal of in-home trainings, both SAU and SC+, is to provide services to at-risk 

families to decrease risk going forward, assist in creating a safe home environment, and provide 

helpful information for support and community. The study collected data over three waves using 

a battery of surveys and observations. The majority of the survey focused on predictors of risk 

including depression, perceived community support, and partner violence. A hybrid RDD was 

implemented so that participants demonstrating the greatest risk of child abuse and neglect 

would receive SC+, while also obtaining data from a randomized control trial. Data collection 

concluded in 2014 with roughly 300 families participating. The outcomes from the study provide 
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two areas of interest: the outcomes for understanding the effect of SC+ versus SAU and the 

implementation of a hybrid longitudinal RDD. The current project examines the outcomes of the 

SC+ study and investigates the longitudinal tie-breaker regression discontinuity design. 

 In partnership with the LCDA, researchers at CCAN led by Dr. Jane Silovsky, provided 

participating families with free in-home services to reduce risks of and help prevent child abuse 

and neglect. Families either received SAU or SC+ based on their baseline data determining their 

risk score and their assignment method. The longitudinal tie-breaker regression discontinuity 

design ensured both ethical and experimental treatment and outcomes.  

Longitudinal Tie-Breaker Regression Discontinuity Design 

 For medical studies and intervention evaluations, researchers typically implement one of 

two research designs, randomized controlled trials (RCT) or regression discontinuity designs 

(RDD).  

Regression Discontinuity Designs 

 The regression discontinuity design (RDD) was first presented by two psychologists 

Thistlethwaite and Campbell in 1960 and has since been implemented in statistics, economics, as 

well as psychology (Cook, 2008). TRDD’s primary use is assessing the causal effect of a binary 

intervention to which participants are assigned based on their a priori score on the assignment 

variable and its relationship with the cut-off score (Campbell & Stanley, 1963; Imbens & 

Lemieux, 2008). This design has many potential applications. As Campbell (1969) stated, an 

RDD can be implemented in any scenario in which randomization of assignment is not 

“politically feasible” or “morally justifiable”. Using this design, those individuals who are most 

deserving or exhibiting the greatest need are sure to receive the treatment. These scenarios have a 

wide range from airlines offering their most loyal flyers free upgrades to the effects of 
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mandatory remedial summer school for students with low test scores to timing of antiretroviral 

therapy treatment for patients with HIV (Owen & Varian, 2020; Imbens & Lemieux, 2008; Bor 

et al., 2014). 

 Let 𝑌𝑖(0) and 𝑌𝑖(1) represent the potential outcomes for participant i, where 𝑌𝑖(0) is the 

participant’s outcome without the intervention and 𝑌𝑖(1) is the participant’s outcome with the 

intervention. The causal effect of the binary intervention, if present, would be shown in the 

comparison of  𝑌𝑖(0) and 𝑌𝑖(1), specifically in the difference between them, 𝑌𝑖(1) - 𝑌𝑖(0). Due 

to the nature of the RDD, the pair of outcomes will not occur together, so a comparison can be 

made in the average effects of the intervention, 𝑌𝑖(1) - 𝑌𝑖(0) at the group level rather than at the 

individual level. Let 𝑊𝑖 𝜖 {0,1} represent assigned intervention, where 𝑊𝑖 = 0 for no exposure to 

intervention and 𝑊𝑖 = 1 otherwise (Imbens & Lemieux, 2008). Then the observed outcome can 

be written as: 

𝑌𝑖 = (1 −  𝑊𝑖) ∙  𝑌𝑖(0) +  𝑊𝑖  ∙  𝑌𝑖(1) =  {
𝑌𝑖(0)   𝑖𝑓   𝑊𝑖 = 0,

𝑌𝑖(1)   𝑖𝑓   𝑊𝑖 = 1.
 

Along with the assignment 𝑊𝑖 and outcome 𝑌𝑖 variables, there are also the covariates 𝑋𝑖 and 𝑍𝑖, 

where 𝑋𝑖 is a scalar denoting the assignment variable that determines if intervention will be 

assigned and 𝑍𝑖 is a random vector where additional covariates can be continuous, discrete, or 

mixed (Imbens & Lemieux, 2008). It is important to note that 𝑋𝑖 and 𝑍𝑖 are known to be 

independent of the treatment. For each observation there is a (𝑌𝑖, 𝑊𝑖, 𝑋𝑖, 𝑍𝑖). Assignment to the 

binary intervention is determined completely (or in the case of fuzzy regressions, partly) by the 

value of the assignment variable, covariate 𝑋𝑖, being on either side of a fixed threshold, the cut-

off point. As mentioned in the previous paragraph, this assignment variable, 𝑋𝑖, is assumed to 

have a smooth association with potential outcome, 𝑌𝑖, so any discontinuity of the conditional 
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distribution of 𝑌𝑖 as a function of 𝑋𝑖 at the cut-point is interpreted as evidence of a causal effect 

of the treatment, 𝑊𝑖 (Imbens & Lemieux, 2008). 

 RDDs must meet several requirements pertaining to participant assignment in order to 

maintain internal validity (Jacob, Zhu, Sommers, & Bloom, 2012; Shadish, Cook, & Campbell, 

2002). The assignment variable must be measured before the treatment or be a variable that stays 

constant, and thus it cannot be affected by the treatment. The cut-point must be established 

without regard to the candidates’ scores on the assignment variable, so that the cut-off value is 

not biased by desire to assign certain candidates to treatment or control. Receiving or not 

receiving treatment is the only element of the study that is discontinuous, in all the other ways 

participants should be treated similarly. The assignment variable, also known as a predictor or a 

forcing variable, is assumed to have a smooth association with the outcome of interest, so if there 

is a discontinuity present in the distribution at the cut-point then it is interpreted as the presence 

of a causal effect (Imbens & Lemieux, 2008). This discontinuity, or jump, in the distribution 

conveys with its direction and magnitude, the causal effect experienced by participants around 

the cut-point (Jacob et al., 2012).  

 There are two general types of RD designs: sharp and fuzzy. In a sharp RD (SRD) design, 

the assignment, 𝑊𝑖 is a deterministic function of the forcing (a priori assignment) variable, 𝑋𝑖 

(Imbens & Lemieux, 2008): 

𝑊𝑖 = 1{𝑋𝑖 ≥ c}. 

Participants whose covariate  𝑋𝑖 is equal to or higher than the cut-off, c, are assigned to the 

intervention condition and participants whose covariate 𝑋𝑖 is less than c are assigned to the 

control group, so that the probability of receiving treatment is 0 or 1 (Imbens & Lemieux, 2008). 
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In the sharp design, the discontinuity in the conditional expectation of 𝑌𝑖 given 𝑋𝑖 shows the 

average causal effect of 𝑊𝑖:     

    lim
𝑥↓𝑐

𝔼[𝑌𝑖|𝑋𝑖 = x] − lim
𝑥↑𝑐

𝔼[𝑌𝑖|𝑋𝑖 = x],  

which is interpreted as the average causal effect of the treatment, 𝑊𝑖, at the discontinuity point 

𝜏𝑆𝑅𝐷 = 𝔼[𝑌𝑖(1) − 𝑌𝑖(0)|𝑋𝑖 = 𝑐]. 

 In FRD the probability of receiving treatment does not jump from 0 to 1 at the cut-off, c, 

as it does with a SRD (Imbens & Lemieux, 2008). Instead, the design allows for a smaller jump 

in probability of assignment to the treatment at the threshold, c: 

lim
𝑥↓𝑐

Pr (𝑊𝑖 = 1|𝑋𝑖 = x) ≠ lim
𝑥↑𝑐

𝑃𝑟(𝑊𝑖 = 1|𝑋𝑖 = x),  

without requiring the jump to equal 1 (vs. Pr (𝑊 = 1|𝑋 = 𝑥) the conditional probability of 

receiving treatment in SRD (Imbens & Lemieux, 2008). This fuzzy cut-off could occur in several 

ways. The cut-off in fuzzy designs varies as an effect of other variables that the data analyst may 

not have access to (Owen & Varian, 2020). A fuzzy RD could also be the result of people within 

the study, participants or study personnel, manipulating the value of the assignment variable to 

increase chance of receiving treatment (Owen & Varian, 2020). Because the SC+ study design 

has groups that were created by the investigators and they control the treatment, the study is 

considered a SRD. 

Tie-Breaker Regression Discontinuity 

 The tie-breaker regression discontinuity design is a hybrid research design that embeds an 

RCT in an RDD (Boruch, 1975; Owen & Varian, 2020). The combination of randomized 

experiment and RDD was first introduced by Boruch in 1975 who proposed “nesting” the 
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randomized experiment within an RDD. RDD is most similar to a randomized experiment right 

around the cut-point, so this proposition entailed spreading that area out into a middle, 

randomized group. This model became known as a “tie-breaker” experiment (Cook, 2008). 

Participants that are a priori determined to be randomly assigned to treatment or control are 

typically those with a score in the middle of the assignment variable distribution, between the 

two cut-off scores. RD examines just the data points on either side of the one cut-off score while 

tie-breaker RD creates an entire group to examine in the middle of two cut-off scores. A RDDs’ 

causal estimate is only available at x = c, but an RCT makes the intervention a random variable 

that is independent of x (Owen & Varian, 2020). Therefore, by embedding an RCT in the middle 

of the RDD, the conditional expectation of the outcome occurs between two cut points (vs. 

jumping at x = c in RDD).  

 In tie-breaker designs, the assignment variable, x, assigns participants to the control 

condition if 𝑥 ≤ 𝐴, to the intervention condition if 𝑥 ≥ 𝐵, or randomly assigns them to control or 

intervention if 𝐴 < 𝑥 < 𝐵. The RDD has 𝐴 = 𝐵, where no participants receive a random 

assignment. Alternatively, if 𝐴 < 𝑥 > 𝐵 then all participants receive a random assignment and 

the design is an RCT (Owen & Varian, 2020). Randomized experiments are the superior choice 

for a research design whenever possible. They have greater statistical power, more 

straightforward implementation and analyses, and the literature is rich in providing methods for 

its use with great credibility. When a randomized experiment is not possible or appropriate for 

the context, RDD is a good design to study treatment effect. As is the case in the LCDA study, 

there are scenarios in which RDDs and experiments can be combined to boost the power of the 

study and the causal inference. Areas of research that could implement the longitudinal 

tiebreaker RDD are those which typically use random assignment to assign treatment conditions 
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in the experiment, where it might be more ethical to assign those in greatest need to receive 

treatment. Some examples are medical trials, needs-based scholarship programs, and government 

assistance.  

Current Study 

 The data gathered for the SC+ study was used in this study to determine the treatment 

effect of the newly adapted SC+ compared to SAU for the Latinx population at risk of child 

abuse and neglect. The unique design implemented in the SC+ study provided the current study 

with many options for variables of interest and analytic approaches to model the relationship 

between treatment and outcome. Three outcome variables related to risk are of interest: 

depression, partner conflict, perceived support, and family resources. Based on the goals of SC+ 

to reduce risk factors and the severity of need between participants at high risk and those at low 

risk, the following hypotheses are tested: 

H1: Compared to SAU, participants who received SC+ treatment will have greater 

improvements on risk factors, specifically that (a) depression scores will decrease, (b) perceived 

social support will increase, and (c) adequacy of resources will increase 

H2: The participants that received SC+ will exhibit better sustained treatment effects for the 

three outcomes, (a) depression, (b) perceived support, and (c) adequacy of resources, at follow-

up than those who received SAU. 

Method 

Sample 

For the LCDA study, a participant was the family member with primary responsibility for 

providing care for the target child, typically a parent, and was enrolled in the home visiting 
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program. The target child is the child selected for family-child measures data collection as part of 

the evaluation process. Participants were referred to participate in the study through a variety of 

referral sources including hospitals, faith-based organizations, law enforcement, and mental 

health agencies.  

 Following recruitment and screening potential participants for meeting inclusion criteria, 

347 participants were enrolled to participate in the study (n = 347). Some attrition occurred 

between waves causing sample sizes to decrease at the following waves (n = 303 for Wave 2; n = 

295 for Wave 3). The average age of participants was 28 years old (SD = 6). The majority of 

participants were from Mexico (n = 279, 80.4%), then Guatemala (n = 36, 10.4%), United States 

(n = 23, 6.6%), and three or fewer participants were from El Salvador, Honduras, Ecuador, 

Nicaraugua, Peru, Venezuela. The largest proportion of the sample’s marital status was married 

(n = 158, 45.5%), with the next largest proportions living with their partner (n = 117, 33.7%) or 

never married (n = 43, 12.4%). 

Study Inclusion/Exclusion Criteria 

 There were several requirements for inclusion in the LCDA study. The study was 

designed to use the Latino adaptation of the SC+ model, so only Latino participants were 

recruited. Participants had to be at least 16 to be enrolled. To participate in the study, families 

had to have at least one child aged 5 years or younger. Conditions that resulted in being excluded 

from the study are: (1) current child welfare case or current service involvement due to a recent 

welfare case or history of more than two past child welfare referrals, (2) there is a substantiated 

report of the primary caretaker perpetrating child sexual abuse, and (3) if the primary caregiver 

has any conditions that would prevent ability to provide valid self-report day (e.g., severe 

psychosis, severe mental retardation). 
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Program Groups 

 Participants were assigned a risk level from 1 to 10 based on their scores on baseline 

measures (Wave 1) that are predictive of being at risk for child abuse and neglect. These risk 

scores were grouped into three levels that determined experimental group. Based on risk level (1 

to 10) each person was assigned to either high (risk scores 8 to 10), low (risk score 1), or 

medium risk (risk scores 2 to 7). Participants were either deterministically assigned to the control 

(low risk), deterministically assigned to the treatment (high risk), or randomly assigned to the 

control or the treatment (medium risk). In this way there were four groups: 

1. Low risk deterministically assigned to control treatment (SAU) 

2. Medium risk randomly assigned to control treatment (SAU) 

3. Medium risk randomly assigned to treatment condition (SC+) 

4. High risk deterministically assigned to treatment condition (SC+) 

All groups received home-based training delivered by trained providers who visited and provided 

services at their homes. 

Measures 

 Participants responded to a battery of self-report measures at each wave of data 

collection, providing investigators a wealth of data. All participant responses were collected 

through a secure, web-based data entry system on a notebook computer that the service providers 

brought to each visit. For the current project, scores on the following measures were selected for 

analysis. All measures were offered in Spanish and English. 
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Demographics 

 The demographic questionnaire used for this study was developed to measure basic 

demographic information. The current questionnaire is based on an earlier version that was pilot 

tested on 100 parents in similar programs. Items in the pilot tested questionnaire that were 

confusing or answered inconsistently were corrected (Silovsky et al., 2011). The current version 

collects information on age, country of origin, education level, income, number of children in the 

home, primary language, and years in the United States. 

Depression 

 The Center for Epidemiology Studies Depression-Short Form (CESD-SF; Radloff, 1977) 

was implemented to measure depression. This scale was not created with the intention of 

diagnosis, but to measure an individual’s depressive symptomatology at the time of responding 

to the scale (Radloff, 1977). The CESD-SF is a 12-item measure in which greater levels of 

depressive symptomology are indicated by higher scores (Slemaker et al., 2017). The scale has 

demonstrated good reliability in many applications including those with Latino samples 

(Slemaker et al., 2017). The CESD-SF showed good reliability at each wave (Wave 1 α = .93, 

Wave 2 α = .91, Wave 3 α = .93). 

Family Resources 

 The Family Resources Scale-revised (FRS; Dunst & Leet, 1987) was used in the study to 

measure the adequacy of a family’s resources. Scores on this scale can be used for assessment 

and intervention purposes because they indicate how much time and energy the parents have for 

working on interventions (Dunst & Leet, 1987). When families are struggling to have their basic 

needs met, participation in interventions could actually have a negative effect on their health and 

well-being. The FRS is a 30-item scale with items loading on seven scales corresponding to 
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health/necessities, physical shelter, communication/employment, income, intrafamily support, 

childcare, and growth/social support (Silovsky et al., 2011). The scale has demonstrated good 

reliability in previous studies (Silovsky et al., 2011). The measure demonstrated good reliability 

at each wave of the current study (Wave 1 α = .89, Wave 2 α = .91, Wave 3 α = .91). 

Social Support 

 Participants’ perceived social support was measured using the Social Provision Scale-

short form (SPS; Cutrona & Russell, 1987). The 12-item scale consists of six subscales, one for 

each of the social provisions which are attachment, social integration, reassurance of worth, 

reliable alliance, guidance, and opportunity for nurturance (Cutrona & Russell, 1987). These 

provisions are social functions that occur through relationships with others and are necessary for 

feeling supported and connected to others (Cutrona & Russell, 1987). Higher scores on the SPS 

are indicative of higher perceived social support (Slemaker et al., 2017). The scale has 

demonstrated good reliability in previous applications with a variety of cultures (Slemaker et al., 

2017). The measure’s reliability for the current study was acceptable (Wave 1 α = .73, Wave 2 α 

= .74, Wave 3 α = .77).  

Analyses 

 Data from the three waves of data collection were imported into R for all analyses. The 

first analytic step entailed exploratory data analysis (EDA) to get an initial understanding of the 

data. Data cleaning included coding treatment variables as binary and categorical and ensuring 

all outcome variables were coded similarly across waves. Checking for patterns of missing data 

and deciding method of handling missingness was next, followed by covariate selection and 

propensity scoring. In preparation for modeling measure outcomes, data was transformed from 

wide to long format. In the initial dataset each subject had one row and a column for every 
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outcome variable. In long format each subject has three rows, one for each collection time 

(waves 1, 2, and 3), and each measure has one column that contains all three outcome values 

(Kwok, Underhill, Berry, Luo, Elliott, & Yoon, 2008). A new variable called “wave” was 

created as an index variable. Finally, multilevel modeling for each measure’s outcome over the 

three waves will be executed to test the hypotheses. 

Missing Data 

 Missing data is a common and important issue in research. Longitudinal studies are 

especially at-risk for missing data due to attrition. Many methods exist for handling missing data 

that account for several characteristics of the dataset and the analytic goals of the research. 

Common methods for handling missing data include complete case analysis, single imputation, 

multiple imputation (MI) and full information maximum likelihood (FIML) (Jakobsen, Gluud, 

Wetterslev, & Winkel, 2017). The latter two, MI and FIML, are perhaps the two most popular in 

the behavioral sciences as approaches for handling missing data (Graham, Olchowski, & 

Gilreath, 2007; Enders, 2001). FIML has the ability to be applied to a wide range of data because 

of its flexibility, however it only estimates model parameters and does not impute the missing 

values (Enders, 2001). MI is an extension of the single imputation approach that creates multiple 

complete datasets by imputing missing values based on the observed data (Enders, 2001; Sterne 

et al., 2009). The validity of MI is determined by the statistical modelling applied to the imputed 

datasets (Sterne et al., 2009). In this case, it is very important the model selected for MI is 

appropriate for the data. There are several methods of MI such as nearest neighbor estimation 

(NN), multivariate imputation by chained equations (MICE), and random forest (RF) (Waljee et 

al., 2013). The current study requires a method that provides flexibility to account for the 

complexities of the design and can handle nonparametric data. As a more robust method of 
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imputation, RF has abilities that help it out-perform the competition with the only drawback 

being computational expense (Tang & Ishwaran, 2017; Stekhoven & Bühlmann, 2011).  

 RF is a machine learning algorithm commonly used for variable selection problems that 

has become increasingly more popular as an imputation method (Tang & Ishwaran, 2017). RF 

has several advantages as a method for data imputation. First, it is robust enough to handle input 

data of various types, like continuous and categorical variables, without making many 

assumptions about the data’s structure. RF has the ability to address interactions and 

nonlinearity, to handle mixed types of data and missingness, and to scale to high-dimensions 

while avoiding over-fitting (Stekhoven & Bühlmann, 2011, Waljee et al., 2013). Its ability to 

handle high-dimensional data is an important advantage in the context of this study because the 

data contain many variables. Because it is a nonparametric method of imputation, RF handles 

interaction and nonlinear effects in the data well (Breiman, 2001; Tang & Ishwaran, 2017). This 

sets it apart from more popular approaches like MICE which assume linearity in the data.  

 Random forest for data imputation was implemented using the missForest package in R 

(Stekhoven & Buhlman, 2011; Starkweather, 2014). This function has demonstrated promising 

outcomes when used to impute values in laboratory data, consistently producing the lowest error 

rates when compared to competing methods, including other RF functions (Waljee et al., 2013, 

Tang & Ishwaran, 2017). The missForest function creates a RF model for each variable in the 

dataset that is based on the all variables in the dataset, and from this model, each variable with 

missing data uses the RF model to impute (Waljee et al., 2013). Missing data imputation 

performed via RF can follow different strategies; in missForest the strategy is to preimpute the 

data then grow a forest using in turn each variable that has missing values then predicts the 

missing values using the grown forest, then iterates for improved results (Tang & Ishwaran, 
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2017; Stekhoven & Bühlmann, 2011). The function has been shown to perform better against 

other RF functions in all missing data patterns when the data have high correlation, even when 

data are missing not at random (Tang & Ishwaran, 2017). Another advantage of missForest is 

that it provides error rate estimates, the out-of-bag (OOB) error estimate, without requiring a test 

and training set (Stekhoven & Buhlman, 2011). By not requiring a test and training set for 

imputation, missForest simplifies the imputation procedure for the user, as it creates its own. In 

the first step of its iterative imputations, missForest trains a RF on all observed values and, from 

this, predicts the missing values, then proceeds to iteratively impute until the stopping criterion is 

met (Stekhoven & Bühlmann, 2011). The stopping criterion, which is often met by the 5th 

iteration, occurs when the newly imputed dataset has an increased difference from the previous 

imputed dataset for the first time. 

 Where standard RF algorithms handle missing values by weighting the frequency of 

values that are observed in a variable with RF proximities following initial training on mean 

imputed dataset, missForest algorithm directly predicts missing values using a RF trained on 

observed parts of the dataset (Stekhoven & Bühlmann, 2011). The missForest function conducts 

imputation by first using mean imputation to provide a guess as to the value that is missing 

(Stekhoven & Bühlmann, 2011). It then sorts the variables in the dataset by the amount of 

missingness from lowest number of missing values to highest number of missing values. Each 

variable with missingness is then imputed by fitting a random forest using observed values of the 

variable with missingness and the observed values of all variables other than the variable with 

missingness. Missing values are predicted using the trained random forest. The function 

continues the two-step process of fitting a random forest then predicting the missing values until 
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a stopping criterion is met (Stekhoven & Bühlmann, 2011). The stopping criterion is reached 

when a newly imputed dataset has a higher error rate than the preceding imputed dataset.  

 To impute the missing values for this study, the data was imputed at the item level, which 

would then be summed for outcome value of the measure. Within-measure correlations are 

stronger for predicting an outcome than between-measure correlations for deriving outcome 

values, and item-level imputation has been shown to produce smaller MSE, especially as the 

number of items increases (Gottschall, 2012). One concern with item-level imputation is 

convergence which occurs as variable count and sample size lessen in size difference, such that 

larger sample sizes are needed for greater quantities of variables. This is why the data were 

separated at each wave of data collection for item-level imputation before combining for the full 

dataset. The strategy used by missForest is an appropriate method for imputing at the item level 

because it does not utilize outcome data for imputation, rather it is for imputing features (Tang & 

Ishwaran, 2017; Stekhoven & Bühlmann, 2011).   

 For information regarding amount of missingness per measure in the study, see Table 1. 

The total percentage of outcome value missingness in the table represents observations with as 

few as one missing item, with eight items being the greatest number of missing values for a 

given measure, and with FRS having the most missingness at each wave. For counts of missing 

items per wave per treatment method, see Table 2. 

 Logistic regressions modeling attrition as a binary variable (0 = retained; 1 = lost) 

regressed on covariates in the sample were used to assess possible significant differences 

between subjects who were not retained. A regression was conducted for wave 1 to wave 2 and 

wave 2 to wave 3 attrition. The models assessed the same covariates including, treatment 

received, assignment method, subjects’ marital status, age, education, gender, race, and income. 



 

19 
 

For wave 1 to wave 2, age was the only significant predictor of subject attrition (β = -0.11, SE = 

0.03, p < .05). For wave 2 to wave 3 attrition, there were no significant predictors of subject 

attrition.  

Propensity Scoring 

 Prior to modeling the full dataset, propensity scoring was conducted to detect potential 

bias present in treatment effect due to nonrandom assignment of participants to groups (Zhao, 

Luo, Su, Zhang, Tu, & Luo, 2021; Leite, 2016). Propensity scores (PS) represent an individual’s 

likelihood of receiving treatment as a function of covariates present at time of assignment to 

either treatment or control. Perhaps the most popular PS equating method is matching, but there 

is some concern about its behavior with smaller samples. Another equating method considered in 

this study, and compared to matching, was the matching weights (MWs) method. MW is an 

approach analogous to 1:1 pair matching, but with a more straightforward theoretical analysis (Li 

& Greene, 2013). Both methods were used following PS modeling for deriving a propensity 

variable for inclusion in modeling and were compared using resulting standardized mean 

differences and changes in covariate balance. Propensity analysis is multistep procedure of (1) 

covariate selection, (2) PS modeling to derive subjects’ scores, (3) balance diagnostics to check 

for model overfitting, (4) equating methods (i.e., matching and MWs), and (5) checking 

covariate balance between treatment groups (SAU or SC+) (Cham & West, 2016; Li & Greene, 

2012). All steps for propensity analysis in this project were completed using various methods 

and functions in R. 

Covariate Selection & Propensity Score Modeling 

 To fulfill the first step for PS estimation, covariate selection was conducted. In order to 

balance the treatment groups, it is important to check imbalance of covariates between treatment 
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groups to select those that account for the greatest variability. Six covariates in the dataset, 

subjects’ race, gender, age, income, marital status, and education, were considered for the 

propensity model, see Table 3. By stratifying the dataset by treatment group and comparing the 

six covariates using the CreateTableOne function, standardized mean differences (SMD) were 

produced for consideration, see Table 3. SMD indicate the disparity existing between groups for 

the given variable, and an SMD > 0.1 is indicative of non-negligible difference (Austin, 2011, Li 

& Greene, 2013). Four of the six covariates, subjects’ (1) race, (2) marital status, (3) income, and 

(4) age, all showed a standardized mean difference between treated and untreated of SMD > 0.1.  

 These four covariates were then modeled using logistic regression with a binary outcome 

of treatment assigned (SAU = 0; SC+ = 1) (Zhao et al., 2021). The model regressed treatment on 

the four covariates to obtain each participant’s propensity score, their probability of being 

assigned to SC+. The PS model was fit using the glm function from R’s stats package (R Core 

Team, 2022). Following PS modeling, balance diagnostics were conducted to check for 

overfitting. Overfitting is indicated by groups’ PS being biased to the minimum and maximum 

values (0 and 1), as can be seen by their respective PS distributions, see Figure 1 for SC+ and 

SAU groups’ density plots (Cham & West, 2016). The region of common support exists in the 

overlap of the treatment groups’ PS distributions. By stacking these distributions in one density 

plot, the region of common support can be examined as a visual representation for model fit 

(Leite, 2016; Bergsta, Sepriano, Ramiro, & Landewé, 2019). When a model is overfitted, the 

region of common support shrinks and thus generalization of results is limited due to 

probabilities shifting toward extremes. The control group’s propensity scores move toward 0.0 

and the treatment group’s propensity scores shift toward 1.0, violating the strong ignorability 

assumption which states that each participant must have a nonzero probability of being in either 
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group (Cham & West, 2016). The region of common support for the PS model used in this study 

indicated good model fit as can be seen by the density within the overlap, see Figure 1.  

Equating Methods 

 The next step was to conduct the equating methods. The two equating methods, matching 

and MW, are both considered for reducing group assignment bias. Matching creates strata of 

paired subjects with similar PS from different treatment group, resulting in a dataset of matched 

subjects. Matching was conducted using the Match function in R’s Matching package (Sekhon, 

2011). The variable for treatment was set as a binary factor (0 = SAU; 1 = SC+) for the 

function’s treatment argument. The caliper was set to 0.2, meaning that observations had to be 

within 0.2 standard deviation to be a match or they were dropped (Olmos & Govindasamy, 

2015). The function was set to match with replacement, giving more flexibility in the order of 

matching and helping to reduce bias. From the dataset of n = 344, n = 278 were matched, 

resulting in 139 matched pairs. The remaining n = 66 subjects were not matched and therefore 

not included in the resulting dataset. After matching, the matched dataset was examined for 

resulting SMD of the four covariates used for PS modeling. One covariate, income, still showed 

a non-negligible difference (SMD > 0.1), see Table 4. 

 The second equating method implemented with the PS was MW. This method creates a 

match weight for each participant equal to the lower probability of assignment (pMin, SAU or 

SC+) divided by the probability that they received the treatment they received (pTX, Elze et al., 

2017). For example, if a subject in the SAU group had a pSC+ = 0.44, with an inverse pSAU = 

0.56, their pMin = 0.44 (pSC+ < pSAU) and their pTX = 0.56 (pTX  = pSAU), resulting in a MW 

= pMin/pTX = 0.44/0.56 = 0.79. This MW is then used for matching. Matching was completed 

using the svydesign function in R’s survey package (Lumley, 2020). This function is used to 
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evaluate a dataset based on provided arguments, in this case, the function analyzed the full 

dataset based on the MW values of the participants (Lumley, 2020). The function is set to cluster 

at the subject level, for every subject in the study, and the MW was provided for the weights 

argument, telling the function to use this variable as the sampling weight. Of the n = 344 

participants’ match weights, n = 238 were matched, so 119 pairs were used for balancing. The 

remaining n = 106 were not matched using this procedure. Following this, standardized mean 

difference of the covariates was assessed. All resulting standardized mean differences of the 

covariates for the score match weighting were sufficiently negligible (SMD < 0.1), see Table 5. 

 Based on the area of common support mentioned earlier, the PS model shows good fit. 

Comparing the resulting standardized mean differences after matching and WM that followed the 

PS model, it is clear that the latter performed better at balancing the covariates. This change in 

covariate balance from the three tests of standardized mean difference, unmatched, propensity 

score matched, and weight matched, were plotted as well for easy comparison, see Figure 2. 

Because it performed better and resulted in good covariate balance, the match weight will be 

used as a covariate in modeling the three longitudinal measure outcomes.  Table 6 shows the 

comparison of standardized mean difference between the sample without matching, sample with 

score matching, and with MWs. For a visual representation of the change in covariate balance 

across the three, unmatched, score matched, MW, see Figure 2. There is concern, however, in the 

resulting sample sizes of the matched and MW datasets. It is likely that the subjects at the 

extreme ends of the PS distribution are those that were deterministically assigned, and as the 

most extreme values in the distribution, were left out of the matching and MW. This would mean 

that the matched datasets were mostly those subjects that were randomly assigned, thus not truly 

accounting for bias resulting from assignment.   
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Multilevel Piecewise Growth Modeling 

 To model the outcome of the three measures and the treatment effect, multilevel 

piecewise growth modeling was implemented (Seltzer & Svartberg, 1998; Curran, Obeidat, & 

Losardo, 2010; Liu, Liu, Li, & Zhao, 2015). The goal of modeling the outcomes is to analyze the 

entire dataset together without separating the middle RCT from the RD sections of the sample, 

while also accounting for nonlinear growth, and capturing the treatment effect. Multilevel 

modeling was chosen because the design of the study indicates likely nesting within the subjects 

(Curran, 2010). Pre-treatment, post-treatment, and follow-up outcomes are expected to be nested 

within the subject because they are expected to have higher within-subjects correlation than 

between-subjects. Nesting within subject may also help to account for the difference amongst 

subjects in assignment method and treatment, given the four different possible combinations 

(SAU RDD, SAU RCT, SC+ RDD, and SC+ RCT). Piecewise growth was chosen for the 

modeling because the slope between pre-treatment and post-treatment is expected to differ from 

the slop between post-treatment and follow-up. This allows the change over time to be non-

linear, broken by a knot point at wave 2, so treatment effect can be understood by two slopes 

(Liu et al, 2015).  

 The multilevel models were two-level models with level-1 capturing the effects of time 

and time-varying covariates, and level-2 capturing individual differences modeled by time-

invariant covariates. All variables modeled in the study, other than slopes, are time-invariant, and 

thus level-1 will only account for the effect of time. Time invariant covariates to be modeled are 

treatment effect, assignment method, and MW (representing propensity score). The following 

variables were used in modeling the outcomes, 
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𝑇𝐼𝑀𝐸1 
The first slope variable accounting for change in score from 

wave 1 to wave 2; coded 0, 1, 2 

𝑇𝐼𝑀𝐸2 
The second slope variable accounting for change in score from 

wave 2 to wave 3; coded 0, 0, 1 

𝑆𝐶 
The dummy-coded treatment variable for treatment; SAU = 0; 

SC =1 

𝐴𝑆𝑆𝐼𝐺𝑁 
The dummy-coded treatment variable for assignment; RDD = 0; 

RCT =1 

𝑀𝑊 The MW variable accounting for PS 

 

The non-linear change over time was captured by the two slope variables coded by centering on 

wave 1 such that base slope, or 𝑇𝐼𝑀𝐸1, was coded by wave – 1, resulting in a (0,1, 2) coding 

scheme. The second slope variable, 𝑇𝐼𝑀𝐸2, was coded using an incremental slope such that it 

was coded (0, 0, 1) (Seltzer & Svartberg, 1998; Zvoch & Stevens, 2011, Duncan & Duncan, 

2004). The coding scheme can be seen in Table 7. Treatment effect was dummy coded for 

assignment to SC (1) or not (SAU = 0). Assignment method was also dummy coded, so that a 

binary variable accounted for RCT or RDD assignment (RCT = 1; RDD = 0). Lastly, subjects’ 

MW were considered in the models to control for bias due to assignment method that might not 

be captured by the assignment method variable.  

 The modeling process used in the study followed four major steps for each outcome, (1) 

null modeling, (2) checking the intraclass correlation (ICC), and if the ICC supports within-

subject nesting then the next two steps are performed iteratively, (3) add to the model (i.e., main 

effects, interactions, and residual effects), and (4) checking and comparing model fit. The first 

two steps of the modeling process, null modeling and checking ICC, follow the same process for 

all three outcomes. After establishing via ICC that outcomes are in fact nested within-subjects, 
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model building will start similarly across outcomes, but covariate effects and interactions are 

expected to differ, such that final models will be measure-specific. Model fit comparison will 

occur by checking the change in model AIC, BIC, and Log-likelihood estimates, as well as 

parsimony, at each iteration of model building. Modeling was completed using the lme function 

from the nlme package in R (Pinheiro & Bates, 2022). The nlme package was created for non-

linear mixed effects models, and the lme function is the linear mixed effects model function. The 

lme function allows the user to specify fitting the model by either maximum likelihood (ML) or 

restricted maximum likelihood (REML). To compare the different models, ML must be used 

because REML doesn’t accurately compare models with different fixed effects (Snijders & 

Bosker, 2012). Following model comparison and best-fitting model selection, models were fit 

again with REML. 

Null Models & ICC 

 The first model fit to the data was the null model, or the unconditional means model, 

which models only random intercepts. In this model, only the intercepts of each subject are 

modeled, while slopes are held constant,  

𝑦𝑡𝑖 =  𝜋0𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 = 𝛽00+ 𝑟0𝑖 

The first level contains the outcome variable for subject i at time t (𝑦𝑡𝑖), the initial intercept for 

subject i at time t (𝜋0𝑖), and the residual variance for subject i at time t (𝑒𝑡𝑖). The second level 

specifies the initial intercept for subject i at time t (𝜋0𝑖) as the result of the fixed intercept, or 

grand mean, (𝛽00) and individual deviation around the grand mean (𝑟0𝑖). 
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 After running the null model, ICCs were calculated for each measure. In multilevel 

modeling, ICC is the proportion of variability that exists between level-2 clusters, so in this study 

it indicates the amount of variability within the model that is accounted for by between-subjects 

variance (McCoach & Adelson, 2010). Variability in the modeling is composed of two sources 

of variation, between-subjects variance (𝜏00) and within-subjects variance (𝜎2). ICC (ρ; rho) is 

calculated as the ratio of variance between-subjects (𝜏00) to total variance (𝜎2 +  𝜏00) (McCoach 

& Adelson, 2010; Kwok et al., 2008).  

𝜌 =  
𝜏00

𝜎2 +  𝜏00
 

The higher the ICC, the higher the variance between-subjects and, inversely, the lower the 

variance within-subjects (McCoach & Adelson, 2010). This is also indicative of the level of 

correlation within-subjects, such that the higher the ICC, the stronger the within-subject 

correlation, indicating nesting of level-1 outcomes within-subjects. If the ICC does not indicate 

nesting, no further multilevel modeling will occur because lack of nesting indicates that between-

subjects correlations are higher than within-subjects. 

Model Building & Fit Comparison 

 After establishing ICC, further modeling occurred iteratively and subsequently, model fit 

comparison to determine the best-fitting model by examining changes in AIC, BIC, and log-

Likelihood estimates. An example of a two-level piecewise growth model has the following 

characteristics. The level-1 part of the model contains the linear growth for an individual within 

the sample, it is the effects that are nested within level-2 clusters, the individual subjects in this 

study (Kwok et al., 2008). Level-1 captures the effect of time and any additional time-varying 
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covariates. The only time-varying covariates considered in the current study are the two separate 

time variables. The level-1 equation for this study would be as follows, 

𝑦𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖(𝑇𝐼𝑀𝐸1𝑡𝑖) + 𝜋2𝑖(𝑇𝐼𝑀𝐸2𝑡𝑖) + 𝑒𝑡𝑖 

The outcome, 𝑦𝑡𝑖, is for subject i at time t, the intercept is indicated by 𝜋0𝑖, and the two slopes 

are 𝜋1𝑖, for growth at TIME1, and 𝜋2𝑖, for growth at TIME2 (Leroux, 2019). The residuals, 𝑒𝑡𝑖, 

capture the within-subject error variance, which is assumed to be normal, but could display 

heteroscedasticity.  

 The level-2 model is subject-level data, containing individual intercepts, slopes, and 

deviations (Kwok et al., 2008). Level-2 captures any added time-invariant covariates, such as 

covariates measured at baseline, or wave 1. The addition of covariates to level-2 equations, 

following the null model, is determined through model fitting and fit comparison. An example of 

the level-2 model with all time-invariant covariates having fixed effects and cross-level 

interactions with slopes would be as follows, 

𝜋0𝑖 = 𝛽00 + 𝛽01(𝑆𝐶) +  𝛽02(𝐴𝑆𝑆𝐼𝐺𝑁) + 𝛽03(𝑀𝑊)+ 𝑟0𝑖 

𝜋1𝑖 = 𝛽10 + 𝛽11(𝑆𝐶) +  𝛽12(𝐴𝑆𝑆𝐼𝐺𝑁) + 𝛽13(𝑀𝑊)+ 𝑟1𝑖 

𝜋2𝑖 = 𝛽20 + 𝛽21(𝑆𝐶) +  𝛽22(𝐴𝑆𝑆𝐼𝐺𝑁) + 𝛽23(𝑀𝑊)+ 𝑟2𝑖 

The expected initial status on average for all individuals is represented by 𝛽00, the average 

intercept at baseline, also known as the grand mean (Kwok et al., 2008). The expected growth 

rates on average, for all individuals are 𝛽10 for TIME1 and 𝛽20 for TIME2 (Leroux, 2019). Cross-

level interaction between level-2 covariates and the first slope are represented by 𝛽11, 𝛽12, and 

𝛽13. Cross-level interaction between level-2 covariates and the second slope are represented by 
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𝛽21, 𝛽22, and 𝛽23. The level-2 residuals,  𝑟0𝑖,  𝑟1𝑖, and  𝑟2𝑖, are measurements of variance, 

specifically the residual variance of intercept, TIME1, and TIME2, respectively (Liu et al., 2015). 

These residuals correspond to the covariance matrix for random effects (Curran, 2010), 

(
𝑟0
𝑟1
𝑟2

) ~N  (
0
0
0

,
𝜏00

𝜏10 𝜏11

𝜏20 𝜏21 𝜏22

) 

 Combining level-1 and level-2 equations to make one model: 

𝑦𝑡𝑖 =  𝛽00 + 𝛽01𝑆𝐶 + 𝛽02𝐴𝑆𝑆𝐼𝐺𝑁 + 𝛽03𝑀𝑊 + 𝛽10𝑇𝐼𝑀𝐸1 + 𝛽20𝑇𝐼𝑀𝐸2 + 

𝛽11𝑇𝐼𝑀𝐸1 ∗ 𝑆𝐶 + 𝛽12𝑇𝐼𝑀𝐸1 ∗ 𝐴𝑆𝑆𝐼𝐺𝑁 + 𝛽13𝑇𝐼𝑀𝐸1 ∗ 𝑀𝑊 + 

𝛽21𝑇𝐼𝑀𝐸2 ∗ 𝑆𝐶 + 𝛽22𝑇𝐼𝑀𝐸2 ∗ 𝐴𝑆𝑆𝐼𝐺𝑁 + 𝛽23𝑇𝐼𝑀𝐸2 ∗ 𝑀𝑊 + 

𝜇0 + 𝜇1𝑇𝐼𝑀𝐸1 + 𝜇2𝑇𝐼𝑀𝐸2 + 𝑒𝑖𝑗 

It is important to note that this is strictly an example of a level-2 model with all fixed effects and 

cross-level interactions possible. There are also possible within-level interactions, such as 

SC*ASSIGN, which may capture the differences in the four treatments by assignment groups. 

 The first model fit to the data following the null model was the unconditional growth 

model. This model only accounts for time variables in the level-1 model, the slope, still ignoring 

individual differences possible from addition of covariates to level-2 models. The unconditional 

growth model takes the random slope from the null model and fixes the effect by adding time 

covariates and keeps the random intercepts. After establishing significant effects for the random 

effects of time as measured by the two slope variables, covariates were added iteratively to the 

level-2 models (Kwok et al., 2008). Adding covariates to level-2 creates conditional growth 

models with fixed effects for the intercepts. Treatment was the first effect tested as the treatment 



 

29 
 

effect and interaction with time of SC+ is the greatest interest in the study. Arguments were also 

added to account for heteroscedasticity of level-1 residuals if assessment of residuals indicated a 

likelihood of heterogenous variance. Multilevel piecewise growth modeling was completed for 

each measure and model fit was compared for each model to determine the model with the best 

fit.  

Results 

Preliminary Analyses 

 All preliminary analyses for this project were conducted in R using the psych and stats 

package. Tests of the internal consistency of measures used in the study were conducted and the 

results were provided in the measures section. All measures had good or adequate internal 

consistency as demonstrated by their alpha coefficient at each wave. Descriptive information 

regarding the participants in the sample was reported in the participant section. Missing data 

were examined and random forest imputation was conducted to impute the missing values. 

Propensity score analysis provided a method for controlling for bias due to selection that can be 

added to regression equations as another predictor. 

 Raw trajectories of individual’s growth were examined prior to implementing the 

multilevel growth modeling approach, using ggplot in R’ ggplot2 package (Wickham, 2011). 

Examination of the trajectories for the individuals based on treatment received, as well as 

assignment method, indicated random slopes and random intercepts across groups. After fitting 

null models, the ICC for each of the measure outcomes was conducted using the performance 

package in R (Lüdecke et al., 2021). The ICC for all three measures was adequate to consider 

clustering level-1 within-subjects as the level-2 and indicated multilevel growth modeling was an 
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appropriate approach. Modeling processes and comparison of fit and main effects estimates were 

conducted for all three measures. 

 Several visualizations of the data were created to aid in prediction and modeling of the 

longitudinal outcomes for each measure. Bearing in mind that treatment group x assignment 

method creates four groups, raw trajectories for each group and each measure were modeled 

using ggplot in R, see Figures 3, 4, and 5. In preparation for modeling, another useful set of 

visual comparisons was made to further understand the difference in slopes in each group over 

time. Lattice plots of 20 random participants in SAU and SC were created for each outcome, see 

Figures 6, 7, 8. The lattice plots provide a clearer view of what was occurring at the individual 

level in the study, helping to support the multilevel piecewise growth models where measures are 

nested in individuals.  

Multilevel Piecewise Growth Models 

  As mentioned earlier, best-fitting multilevel piecewise growth models were determined 

for each of the three outcomes, CESD, FRS, and SPS. Preliminary analyses of the data indicated 

trends for separate slopes from pre- to post-treatment and post-treatment to follow-up, supporting 

the implementation of piecewise modeling to account for the separate slopes. The first model in 

every outcome model building process was the unconditional model, and the process goes from 

there. For reporting model outcomes, standardized outcomes, betas with standard deviation as 

their units, will be reported because they are easier to understand for comparison, and because of 

their range from 0 to 1 (and 0 to -1), their strength is easy to interpret. 

The Null Model 

 As explained in the Analyses section of this paper, the first step in modeling the 

outcomes for this study was to fit a null model. The null model, also known as the unconditional 
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means model, was fit to the data. In the unconditional model, the data have random slopes and 

random intercepts. Each measure outcome starts with the same formula and Model (Model A). 

Following the null model, the intraclass correlation (ICC) was calculated to further support the 

implementation of MLM (Garson, 2013). After each outcome’s Model A, the ICC was checked 

to ensure that multilevel modeling was appropriate.  

 The resulting ICC for CESD (ICC = 0.40) indicated that nesting was occurring in the data 

and multilevel modeling was appropriate. The value tells us that 40% of the variability in 

outcome, CESD scores, is accounted for by between-subjects variability (McCoach & Adelson, 

2010). Inversely, for CESD, within-subjects variability accounts for 60% of the total variance in 

the model. For fitting FRS, following the null model, the check on ICC was conducted to ensure 

nesting in the data. The value for the ICC (ICC = 0.61) indicated that multilevel modeling was 

appropriate and that 61% of the variability in the outcome of FRS scores is accounted for 

between-subjects. Inversely, within-subjects variability accounted for 39% of the variance in the 

model. Following SPS’s null model, ICC was measured to justify using a multilevel model. The 

ICC (ICC = 0.52) indicated that nesting was occurring within individuals and that a multilevel 

model was appropriate. The value for ICC indicated that 52% of the variability in SPS outcomes 

can be explained between-subjects (McCoach & Adelson, 2010). Inversely, 48% of the total 

variance in the model is accounted for within subjects. 

Model Comparison 

 Subsequent model building following the null model follow a similar pattern for all three 

measures until model building shifts based on how the data fit with the measure outcome. In this 

way, model building processes were as similar as possible in the beginning of the iterative 

process, until deviations had to occur. The goal for each of the three measure outcomes was to 



 

32 
 

find the best-fitting, most parsimonious model to describe the relationship between the predictors 

and the given outcome. The first model following the null model was Model A which added the 

two slope variables TIME1 and TIME2 to the level-1 model of the null model, and not altering 

the level-2 models. Model A only accounts for the effect of time on the slope and does not model 

any individual differences, it models unconditional growth with fixed slopes.  Next was Model B 

which added the treatment effect to Model A, making Model B a conditional growth model with 

fixed slopes. As fixed slopes indicate no between-subject differences, the next model, C, adding 

random slopes. So Model C accounts for the two slope effects, the main effect of treatment (SAU 

or SC+), and allows slopes to vary between subjects.  

 Following Model C, more fixed and random effects were added, and model fits were 

checked for each of the three outcomes. Fixed effects included the main effects of the other 

predictor variables, ASSIGN and MW, as well as interactions. Cross-level interactions were 

tested by checking interactions between level-2 variables, SC, ASSIGN, and MW, with the two 

level-1 slope variables, TIME1 and TIME2. Within-level interactions were tested by checking the 

interaction between level-2 variables to assess their relationship. The level-2 variable interaction 

between ASSIGN and SC was of special interest to account for the difference in RDD and RCT 

assignment on the treatment effect of SC+. Additional random effects that were added to models 

were added to account for the existence of heteroscedasticity in level-1 residuals. Added random 

effects arguments to model residual variance differences based on level-2 variables accounted for 

the expected heteroscedasticity as appropriate based on specific group membership. Residual 

variance differences of two different strata of subjects based on assignment method or treatment 

assigned. Further details will be provided in outcome-specific model results. 
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Final Models 

CESD  

 The final CESD model had a good R2
 (R

2 = 0.80) indicating that the model captured 80% 

of the data’s variance. Models’ added effects and fit comparison can be seen in Table 8 tested for 

CESD can be seen in Appendix A. The model for CESD was 

𝐶𝐸𝑆𝐷𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖𝑇𝐼𝑀𝐸1𝑡𝑖 +  𝜋2𝑖𝑇𝐼𝑀𝐸2𝑡𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝛽01𝑆𝐶 +  𝛽02𝐴𝑆𝑆𝐼𝐺𝑁 +  𝛽02𝑀𝑊 +  𝑟0𝑖 

𝜋1𝑖 =  𝛽10 + 𝛽11𝑆𝐶 +  𝑟1𝑖 

𝜋2𝑖 =  𝛽20 + 𝑟2𝑖 

𝑒𝑡𝑖 = ~1|𝐴𝑆𝑆𝐼𝐺𝑁, Ɲ(0, 𝜎2) 

The model had seven fixed effects, including the intercept, two main effects for slope, three 

level-2 main effects, and a cross-level interaction. It also had five random effects, one for the 

intercept, one for each slope, and heteroscedastic level-1 residuals based on assignment methods 

giving two residual variances.  

 The intercept (β00 = 7.45, SE = 0.75, p < .001) indicated that the grand mean for CESD 

scores was 7.45. This intercept value is the average expected CESD score when all other 

variables are 0, such that this would be the expected average CESD score for deterministically 

assigned SAU recipients at wave 1. The main effect of TIME1 (β10 = -2.49, SE = 0.39, p = <.001) 

was negative and significant indicating that the change in trajectory from wave 1 to wave 2 data 

collection decreased significantly. CESD scores, on average, decreased by 2.49 points from wave 

1 to wave 2 for SAU recipients. This slope effect was moderated by SC as indicated by the 

interaction effect. The main effect of TIME2 (β20 = 2.60, SE = 0.54, p = <.001) was positive and 

significant which indicated an average increase in CESD scores from wave 1 to wave 2 by 2.60 
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points. The main effect of SC (β01 = 5.73, SE = 0.70, p < .001) was positive and significant which 

indicated that SC+ recipients on average had a baseline CESD score that was 5.73 points higher 

than SAU recipients. The main effect of ASSIGN (β02 = 1.50, SE = 0.59, p < .01) was positive 

and significant which indicated that RCT assigned subjects had an average baseline CESD score 

1.50 points higher than RDD assigned subjects. The main effect of MW (β03 = -2.66, SE = 1.01, 

p <0.01) was negative and significant which indicated that for every unit increase in MW, a 

subject’s baseline CESD scores were expected to decrease by 2.66 points. The interaction 

between TIME1 and SC (β11 = -2.01, SE = 0.36, p < .001) was significant and negative which 

indicated that the change in trajectory from pre-treatment to post-treatment was moderated by 

treatment. SC+ recipients had a significantly greater change in slope from pre-treatment to post-

treatment of decreasing by 2.01 points on average. The level-1 residual variance differed by 

ASSIGN (𝜎0
2 = 8.12, 𝜎1 = 1.43) which indicated that level-1 residuals for RCT assigned subjects 

had greater variance than RDD assigned subjects. 

FRS  

 The final FRS model provided a good R2
 (R

2 = 0.84) indicating that the model captured 

84% of the data’s variance. Models’ effects and fit comparison can be seen in Table 9 and 

models tested for FRS can be seen in Appendix B.  The final model for FRS was 

𝐹𝑅𝑆𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖𝑇𝐼𝑀𝐸1𝑡𝑖 +  𝜋2𝑖𝑇𝐼𝑀𝐸2𝑡𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 +  𝛽01𝑆𝐶 +  𝑟0𝑖 

𝜋1𝑖 =  𝛽10 + 𝑟1𝑖 

𝜋2𝑖 =  𝛽20 + 𝑟2𝑖 

𝑒𝑡𝑖 = ~1|𝑆𝐶, Ɲ(0, 𝜎2) 
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The model had four fixed effects, the intercept, two main effects for slope, and a main effect for 

SC. The model had five random effects, one for intercept, one for each slope, and two residual 

level-1 variances based on treatment. 

 The intercept (β00 = 130.07, SE = 1.22, p < .001) indicated that the grand mean for FRS 

score was 130.07. This intercept value is the average expected FRS score when all other 

variables are 0, such that this would be the expected average FRS score for deterministically 

assigned SAU recipients at wave 1. The main effect of TIME1 (β10 = 7.29, SE = 0.81, p = <.001) 

was positive and significant which indicated that the slope from wave 1 to wave 2 increased 

significantly. From pre-treatment to post-treatment, on average, FRS scores increased by 7.29 

points. The main effect of TIME2 (β20 = -5.00, SE = 1.29, p = <.001) was negative and significant 

which indicated that the slope from wave 2 to wave 3 decreased significantly. On average, the 

effect of post-treatment to follow-up time had a negative effect on slope with an expected 

decrease of 5 points. The main effect of SC (β01 = -6.66, SE = 1.77, p < .001) was negative and 

significant which indicated a significant difference in baseline FRS scores for SC+ recipients. On 

average, SC+ recipients were expected to have a pre-treatment FRS score 6.66 points lower than 

SAU recipients. The level-1 residual variance differed by SC (𝜎0
2 = 7.85, 𝜎1 = 0.96) which 

indicated that the variance for SC+ recipients was smaller than for SAU recipients. SAU 

recipients had greater deviation from the average slope for SAU recipients than SC+ did for 

average SC+ recipients’ slope. 

SPS 

 The SPS model had a decent R2
 (R

2 = 0.78) indicating that the model captured 78% of the 

data’s variance. Comparison of modeled effects and fit can be seen in Table 10 and models 

tested for SPS can be seen in Appendix C. The final model for SPS was Model I, 
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𝑆𝑃𝑆𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖𝑇𝐼𝑀𝐸1𝑡𝑖 +  𝜋2𝑖𝑇𝐼𝑀𝐸2𝑡𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝛽01𝑆𝐶 +  𝛽02𝐴𝑆𝑆𝐼𝐺𝑁 +  𝑟0𝑖 

𝜋1𝑖 =  𝛽10 + 𝛽11𝑆𝐶 + 𝑟1𝑖 

𝜋2𝑖 =  𝛽20 + 𝑟2𝑖 

The model had six fixed effects, one for the intercept, two main effects for slope, a main effect 

for treatment, a main effect for assignment method, and an interaction between the first slope and 

treatment. The model also included four random effects, one for the intercept, one for each slope, 

and one for the level-1 residual variances. 

 The intercept (β00 = 35.87, SE = 0.41, p < .001) indicated that the grand mean for SPS 

score was 35.87. This intercept value is the average expected SPS score when all other variables 

are 0, such that this would be the expected average SPS score for deterministically assigned SAU 

recipients at wave 1. The main effect of TIME1 (β10 = 0.95, SE = 0.30, p = <.001) was positive 

and significant, which indicated that SPS scores increased significantly from pre- to post-

treatment. SPS scores, on average, increased by 0.95 points from wave 1 to wave 2 collection. 

This slope effect was moderated by SC as was seen in the interaction effect between TIME1 and 

SC. The main effect for TIME2 (β20 = -1.31, SE = 0.42, p = <.01) was negative and significant, 

which indicated a significant decrease in SPS scores on average. SPS scores from post-treatment 

to follow-up decreased by 1.31 points due to change in time. The main effect of SC (β01 = -1.36, 

SE = 0.57, p < .05) was negative and significant. This effect indicated that SC recipients had a 

significantly different intercept that SAU recipients by 1.36 points on average. The main effect 

of ASSIGN (β02 = -1.37, SE = 0.48, p < .01) was negative and significant which indicated that 

individuals in different assignment methods had significantly different baseline SPS scores. RCT 

assigned subjects, on average, had a baseline SPS score that was 1.37 points lower than RDD 

assigned subjects. The interaction between TIME1 and SC (β11 = 0.90, SE = 0.30, p < .005) was 
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positive and significant which indicated that the change in SPS scores from pre- to post-

treatment were moderated by treatment. SC+ recipients had a 0.90 increase in SPS points on 

average from wave 1 to wave 2 more so than SAU recipients. 

Hypotheses 

 The first hypothesis predicted that SC+ recipients would have greater improvements on 

risk factors than SAU recipients. This would be a greater decline in CESD scores and a greater 

increase in FRS and SPS scores. Hypothesis 1 was supported by the findings for CESD and SPS. 

Both measures had significant interactions between TIME1 and SC which indicated that SC+ had 

a significant effect in change of slope. For CESD, SC+ recipients had a significantly greater 

decrease in depression symptoms than SAU recipients by 2.01 CESD points on average. For 

SPS, SC+ recipients had a significantly greater increase in perceived social support than SAU 

recipients such that SC+ recipients’ SPS scores increase by 0.90 points more than SAU 

recipients. Hypothesis 1 was not supported by the modeled FRS outcome. There were no effects 

of treatment method on change in FRS score slope. 

 The second hypothesis predicted that SC+ recipients would sustain their treatment effect 

from post-treatment to follow-up such that their outcome scores would deviate less than SAU 

recipients. This would be indicated by no significant increase or decrease in outcome scores from 

wave 2 to wave 3 for SC+ recipients as compared to SAU recipients. Hypothesis 2 was not 

supported by any of the three modeled outcomes. None of the models indicated a sustained 

outcome for SC+ recipients. FRS indicated no treatment effect on slope, meaning that change 

from post-treatment to follow-up was not significantly different between SC+ and SAU. There 

was no treatment effect on FRS. CESD and SPS had significant slope and treatment interactions, 

such that SC+ recipients had greater change over time than SAU recipients. This supported the 
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first hypothesis, however, this means that Hypothesis 2 was not supported because the change in 

score was not sustained from post-treatment to follow-up for these outcomes. 

Discussion 

 The current study was an examination of data collected by OUHSC’s CCAN in 

partnership with the LCDA. The data was derived from a LTBRDD to compare a newly adapted 

in-home training program, SC+, to the standard program, SAU, in their efficacy for Latino 

families at risk of child abuse and neglect. Child abuse and neglect have serious lifelong effects 

on the victims, making it a serious public health concern (Owora et al., 2012). One effective 

method for reducing risk of child abuse and neglect is by providing services and training to 

families at-risk, however they might lose their effectiveness as families trend to higher risk 

(Chaffin et al., 2012). The highest-risk populations, families with parental depression, parental 

substance use disorders, intimate partner violence, and/or other risk factors are not being 

adequately served by these preventions (Silovsky et al., 2011). The SafeCare (SC) model is a 

promising prevention program designed to prevent child maltreatment and increase protective 

factors. SC+ is augmented SC that adds services to address risk factors for child abuse and 

neglect. It has the addition of motivational interviewing and teaches the in-home providers how 

to identify and respond to risk factors of depression, substance abuse, and intimate partner 

violence, as well as imminent child maltreatment (Silovsky et al., 2011). The goal of the study 

was to assess and compare the effects of SC on a multitude of outcomes, especially those tied to 

child abuse and neglect, such as partner violence and depression. 

 The data was collected over the span of a year with pre-treatment, post-treatment, and 

follow-up times of collection. Eligible participants completed a battery of baseline measures at 

the pre-treatment wave prior to assignment. These pre-treatment measure outcomes dictated the 
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subjects’ method of assignment to their treatment condition, deterministic via RDD or random 

via RCT. Participants were either randomly assigned to SC+ or SAU or they were 

deterministically assigned to SC+ or SAU. A priori cut-scores for risk, based on baseline 

measures, were used so that participants’ baseline responses coordinated to a risk score and 

subsequently, an assignment method. Following TBRDD (Owen & Varian, 2020), the two cut-

scores, A and B, create three areas of baseline distribution. If participants’ scores fell between 

the two cut-scores, 𝐴 < 𝑥 > 𝐵, they were randomly assigned to either SAU or SC. If 

participants’ risk scores fell below the first cut-score, 𝐴 < 𝑥, they were deterministically 

assigned to SAU, and if the scores fell above the second cut-score, 𝑥 > 𝐵, they were 

deterministically assigned to SC.  

 Measures administered at the first wave, were administered at the second and third wave, 

for post-treatment and follow-up outcomes. This longitudinal design allowed for a comparison in 

effectiveness of the treatment for each assignment method and treatment group. By having 

repeated measures outcomes for each participant, within-subject nesting was useful for modeling 

the treatment effect. Outcomes from this complex design, specifically for three measures: CESD 

to measure depression, FRS to measure resources, and SPS to measure social support, were 

modeled to understand how effective SC is for reducing risk. These three outcomes were of 

interest because of how closely tied they are to risk of child abuse and neglect. All three 

measures were delivered the same way at two different 6-month dates, post-treatment and 

follow-up. Due to the design of the study, analyses were not particularly straightforward. There 

was concern for bias due to the two types of treatment assignment, specifically the RDD portion 

of the study that operated more like an observational study. There was also concern for sample 

attrition affecting sample size.  
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 The study began with n = 344 subjects, with roughly one third constituting the RCT 

group (n = 136) and two thirds in the RDD group (n =208), which are further split by treatment 

received. From the RCT group, n = 66 were SAU recipients and n = 70 were SC+ recipients. 

From the RDD group, n = 136 were SAU recipients and n = 72 were SC+ recipients. Once 

sample is split into these four categories it is clear that retaining data from each subject is 

important because the sizes of the four groups are not large. To counteract the negative effects of 

sample attrition, random forest algorithm for missing data multiple imputation was applied. Data 

were separated by wave and for the second and third wave, separated again by treatment, before 

imputing at the item level. Then all waves were combined and imputation was used to maintain 

sample sizes throughout all waves. 

 Propensity score analysis was conducted to compare the treatment groups in terms of 

probability of receiving treatment. A particular concern in approaching the data from this study 

design was accounting for all the potential sources of variance and bias. One large source of 

potential bias is assignment. In an RCT the propensity scores on average are around 0.5 and not 

statistically significant for comparison if sampling was done well. Opposite of this is the RDD 

where assignment is directly related to one of more measured characteristics, inherently affecting 

the probability of being assigned to treatment instead of control group. Because the current study 

is both RCT and RDD, it was determined that propensity analysis and covariate balancing could 

provide a way to control for bias present in the models of outcomes. From the propensity score 

analysis, two methods of matching occurred, score matching where participants in the control 

and treatment group become subclasses of pairs with matching propensity scores, and score 

match weighting, where each participant was given a weight based on probabilities of receiving 

the treatment they received and whichever probability was smaller between their probability of 
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receiving treatment or probability of being assigned to the control group. A check on 

standardized mean differences of covariates, prior to propensity scoring, after matching, and 

after matched weighting, it was determined that the latter provided the best covariate balance. 

Participant’s match weight (MW) was tested as a predictor of each outcome in the study. For the 

CESD outcomes, MW has a significant negative effect on CESD score at the intercept. For the 

other two measures, MW did not provide a significant ability to predict the scores.  

 To tackle modeling the data, multilevel growth models (MLM) were implemented. The 

structure of multilevel growth models allows for time-series data, like the longitudinal pre-

treatment, post-treatment, and follow-up data that was collected for this study. The models also 

allow for grouping at the individual level. This was useful because early visualizations of the 

data indicated large variance in slopes between individuals, even within the same treatment and 

assignment groups. Thanks to propensity score analysis, covariates considered to have an effect 

on the measure outcomes were controlled for and the matched weight could be added as a 

predictor in the MLMs as a proxy for the covariates (Olmos & Govindasamy, 2015). Other 

predictors considered were wave, SC, and assignment method. A dummy variable was created 

for assignment method such that 0 = deterministic and 1 = random. This was created to help 

control for the difference within treatment groups based on assignment method. Models were 

also tested for heteroscedasticity at level-1 and for autoregressive correlation between slopes 

between wave 1 and wave 2, and wave 2 and wave 3. All of these modeling considerations were 

implemented during the model building process and model outcomes were compared iteratively 

to determine the best-fitting model. The considerations were to account for variance in the data 

due to different aspects of the design so that a model could be built to measure all participants 

simultaneously regardless of assignment method. 
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Key Findings 

 Multilevel piecewise growth modeling results provided insights into treatment effects, as 

well as the moderating effects of assignment condition and subject-level residuals. For all 

measures, regardless of treatment, there was a significant slope effect indicating that treatment, 

SAU or SC+, is effective for all subjects in reducing the risks of child abuse and neglect from 

pre- to post-treatment and post-treatment to follow-up. It was also seen that for all outcomes, 

SC+ had a significant main effect, such that the intercept for SC+ recipients was significant 

higher or lower than SAU recipients.  

 The first hypothesis stated that SC+ recipients were expected to have greater changes in 

slope than SAU recipients, which would indicate that over time, subjects receiving SC+ 

treatment have greater changes in outcomes of risk predictors than SAU recipients. Further, this 

would indicate that SC+ may be a more effective treatment for risk factors than SAU. Two of the 

three modeled outcomes captured this slope moderated by treatment effect. For both CESD and 

SPS, treatment received moderated the slope from pre-treatment to post-treatment. Receiving 

SC+ resulted in greater changes of risk factors from wave 1 to wave 2 such that depression 

decreased and social support increased significantly more than for SAU recipients. 

 The second hypothesis stated that SC+ recipients were expected to have better sustained 

treatment effects when subjects were assessed at wave 3, which would indicate no recidivism 

following treatment. This hypothesis was not supported by any of the final modeled outcomes. 

Slopes changed significantly for all subjects for all outcomes from wave 2 to wave 3. This 

indicated that treatment continued to have an effect for subjects following treatment. The 

significant interaction between treatment and the first slope also affects the second slope due to 

the coding scheme for time, so not only did SC+ recipients have a greater change in risk factors 
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than SAU for CESD and SPS, but they also continued to have a greater change for the second 

slope. While this does not support the hypothesis, this finding is perhaps even more promising. 

These modeled outcomes for CESD and SPS support that SC+ treatment leads to continued 

positive changes even after treatment ends. 

 Another important aspect of the final models were the effects of heteroscedasticity 

captured by assignment method, RDD or RCT, for CESD, and treatment, SC+ or SAU, for FRS. 

Level-1 residuals varied differently for each subject as an effect of which assignment method or 

treatment they received for CESD and FRS respectively. Heteroscedasticity via assignment 

method for CESD indicated that subjects who were randomly assigned (via RCT) to treatment 

had greater deviation from the modeled slope than those who were deterministically assigned 

(RDD). Subjects in this group have higher variability and thus less certainty in the modeled 

outcomes. Heteroscedasticity via treatment method for FRS indicated that subjects who received 

SAU had greater deviation from the modeled slope than those who received SC+. SC+ recipients 

have more consistently modeled outcomes than SAU recipients. 

Limitations 

 Due to the nature of the study design, the analytical plan was exploratory because a deep 

literature search produced no other LTBRDD to inform the analytic method. The analytic 

process used in this study was the implemented to best capture all sources of variance in the 

design. Because this is the first implementation of these methods for analyzing a LTBRDD, the 

work requires further validation. The model building process for the MLMs was a tedious 

procedure because it occurs iteratively, so it is not an efficient method. Also, due to the nature of 

building and comparing, the resulting best-fitting model is subject to researcher error. 

Determining a best-fitting model can be subjective, so results comparing models may not be as 
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meaningful between different analyses. A more consistent, efficient approach would be 

beneficial.  

 The missing data present in the study was a weakness. The sample size was roughly 350 

at wave one and lost nearly 50 participants by wave 2, with a few more lost to attrition before 

wave 3. Missing data imputation via random forest algorithms allowed for quality data 

imputation and a retention of n = 344 for all three waves. The study would be strengthened by 

having a larger sample, especially given the design. When considering the sample as being made 

up of four different groups (treatment x assignment), even with an equal split, n = 86 is not a 

very large sample. An increase in sample size would help with predictive power and ability to 

draw meaningful conclusions from the data. There are methods to increase the sample, such a 

bootstrapping, and these could also be considered in future modeling endeavors. 

 Another weakness of the study was that the design only included three measurement 

moments. Typically, it is preferred to have four or more waves of data collection to truly dissect 

a meaningful interpretation of the behavior of the data over time for a growth model. If time 

points existed during treatment, treatment effect could be understood at a more detailed level. It 

would also be greatly beneficial to have more follow-up time points to better understand the 

longevity of the treatment’s effects. Recidivism is a large concern for high-risk families, so 

capturing follow-up data at only six months after treatment does not provide the full story. 

Future Research 

 Due to the severity of child abuse and neglect, continued efforts in improving and/or 

creating interventions is necessary. Child abuse and neglect is a serious public health concern 

and the victims of abuse and neglect experience lifelong negative impacts. The leading issue is 

neglect and the leading abuser is parents. In-home interventions are able to work with parents to 
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address the safety and treatment of their children, and to mitigate neglect. A majority of child 

abuse and neglect can be counteracted or prevented, so continued efforts should be made. 

 Future research should continue to explore effective methods for addressing risk of child 

abuse and neglect and/or ways to implement already existing methods. One concern in 

interpreting the impact of training is the accuracy of respondents’ provided responses to sensitive 

items such as those regarding substance use and partner violence. Would conducting the study 

over a longer period of time, allowing for deepening of trainer trainee trust and more 

measurement waves produce more reliable responses to sensitive questions? The effort made to 

adapt SafeCare for Latino families and assess its efficacy could be replicated for other ethnicities 

because equity in services is important. To demonstrate the power that an adapted study can 

have, a comparison to the standard, majority group serving, programs and services could be 

conducted.  And future implementation of study designs such as the one implemented in the 

study, would allow for ethics and experimentation to be considered.  

 This study implemented SC+ for high-risk because it has been established that standard 

treatment is not as effective for high-risk populations as it is for low to medium-risk populations. 

Assigning low-risk subjects to SC+ would allow for a direct comparison of the treatment effects 

of a more intensive intervention for different risk levels. Because medium-risk subjects were 

randomly assigned to either SC+ or SAU, comparison of treatment effect for just the medium-

risk, RCT portion, subjects would help to provide a more direct comparison of treatment effect.  

 Future research into valid modeling and data interpretation for data from a LTBRDD is a 

necessary move for the design to become more approachable. The LTBRDD should become a 

more popular approach for testing treatment effects, especially in scenarios where both 

experimentation and ethics are being considered. Because the design is relatively novel, further 
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exploration for modeling the data from the design is necessary. Comparison of different 

approaches to every step of the analytic plan for analyzing this design should be conducted to 

provide guidance for best methods. Approaches that are tested, along with their outcomes and 

efficacy in capturing treatment effect, should be made available for other researchers so that 

continued research can expand on these attempts and improve them.  

 Finally, if possible, it would be interesting if future studies could collect and analyze 

child-specific data, especially long-term. Children of families who participate in interventions 

could be studied for health outcomes, education outcomes, and so on. Because child abuse and 

neglect has lifelong impacts for the victims, understanding the lifelong impacts of intervention 

services will provide a valuable illustration of the power and necessity of intervention.  
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Table 1. Descriptive and Rate of Missingness for each Measure by Treatment Condition 

Measure 
 

N Min Max Mean SD Median Skew Kurtosis % Missing 

CESD W1 SAU 202 0 35 6.15 16.13 4 1.93 4.09 0 

 
SC 142 0 35 12.39 7.93 11 0.74 0.06 0 

 
Total 344 0 35 8.73 7.79 6.5 1.21 1.04 0 

CESD W2 SAU 177 0 25 4.53 5.18 3 1.92 3.57 0 

 
SC 117 0 31 6.73 6.28 5 1.38 2.22 0 

 
Total 294 0 31 5.4 5.73 4 1.68 2.98 0 

CESD W3 SAU 174 0 29 3.96 4.96 2 2.35 7.04 0 

 
SC 118 0 35 6.21 7.42 4 2 3.8 0 

 
Total 292 0 35 4.87 6.16 3 2.35 6.29 0 

FRS W1 SAU 133 79 160 126.29 16.13 128 -0.15 -0.41 34.16 

 
SC 97 54 158 119.42 18.54 118 -0.34 0.42 31.70 

 
Total 230 54 160 123.4 17.48 125 -0.32 0.25 33.13 

FRS W2 SAU 109 83 166 127.72 18.03 128 -0.15 -0.35 38.42 

 
SC 76 74 171 125.7 18.94 128 -0.26 0.36 35.04 

 
Total 185 74 171 126.89 18.39 128 -0.21 0.04 37.07 

FRS W3 SAU 105 85 212 135.77 20.5 136 0.39 1.18 39.65 

 
SC 70 0 35 6.21 7.42 4 0.08 -0.37 40.68 

 
Total 175 85 212 133.99 19.98 134 0.3 0.79 39.04 

SPS W1 SAU 201 18 42 35.51 5.42 35 -0.23 -0.08 0.50 

 
SC 142 20 48 33.7 5.72 33 0.14 -0.27 0 

 
Total 343 18 48 34.76 5.61 35 -0.08 -0.25 0.29 

SPS W2 SAU 176 20 48 36.31 5.23 36 0 -0.05 0.56 

 
SC 117 23 48 36.04 5.51 36 0.15 -0.72 0 

 
Total 293 20 48 36.2 5.34 36 -0.21 -0.34 0.34 

SPS W3 SAU 174 19 48 36.04 5.28 36 0.07 0.41 0 

 
SC 118 25 47 36.31 5.79 36 0.09 -1.02 0 

 
Total 292 19 48 36.15 5.48 36 0.08 -0.25 0 

Note. Percent missingness is a measure of percent of observations with at least 1 missing value 

for the outcome measure; sum scores were marked as NA if at least 1 item was missing for the 

measure 
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Table 2. Count of Missing Items for FRS per Treatment per Wave 

Note. Counts of subjects with SAU and SC+ for number of missing items per wave for FRS. 

Percent of total FRS items missing in parentheses, there are 40 total FRS items.  

 Wave 1 Wave 2 Wave 3 

# NA (%) SAU SC+  SAU SC+ SAU SC+ 

1 (2.5) 33 34 29 23 27 24 

2 (5) 18 6 15 8 16 9 

3 (7.5) 12 3 13 5 13 9 

4 (10) 4 0 6 1 5 3 

5 (12.5) 2 2 4 2 5 2 

6 (15) 0 1 0 1 1 0 

7 (17.5) 0 0 1 2 2 1 

8 (20) 0 1 0 0 0 0 
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Table 3. Standardized Mean Difference in Covariates Prior to Propensity Scoring 

 SAU SC SMD 

n 202 142  

Age 29.92 (5.39) 26.33 (6.00) 0.629 

Education 1.35 (0.62) 1.35 (0.56) 0.009 

Marital Status 1.46 (0.83) 1.30 (0.85) 0.181 

Gender 0.99 (0.10) 0.99 (0.12) 0.038 

Income 1404.92 (658.96) 1273.32 (709.39) 0.192 

Race 1.01 (0.10) 1.04 (0.18) 0.171 
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Table 4. Standardized Mean Difference in Covariates after Propensity Matching 

 SAU SC SMD 

n 139 139  

Age 26.33 (6.01) 26.52 (5.90) 0.033 

Marital Status 1.29 (0.78) 1.31 (0.85) 0.018 

Income 1361.54 (709.53) 1285.70 (698.91) 0.108 

Race 1.01 (0.12) 1.02 (0.15) 0.054 
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Table 5. Standardized Mean Difference of Covariates after Propensity Score Match Weighting 

 SAU SC SMD 

n 119 118  

Age 27.73 (5.02) 27.52 (5.73) 0.041 

Marital Status 1.38 (0.82) 1.38 (0.81) 0.001 

Income 1338.61 (633.37) 1327.51 (706.81) 0.017 

Race 1.02 (0.13) 1.01 (0.11) 0.032 
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Table 6. Covariate Differences in SC and SAU prior to and after Propensity Scoring 

 Unmatched Matched Match Weight 

 SAU SC SAU SC SAU SC 

n 119 118 139 139 119 118 

Age 27.73 (5.02) 27.52 (5.73) 26.33 (6.01) 26.52 (5.90) 27.73 (5.02) 27.52 (5.73) 

Marital 

Status 
1.38 (0.82) 1.38 (0.81) 1.29 (0.78) 1.31 (0.85) 1.38 (0.82) 1.38 (0.81) 

Income 1338.61 (633.37) 1327.51 (706.81) 1361.54 (709.53) 1285.70 (698.91) 1338.61 (633.37) 1327.51 (706.81) 

Race 1.02 (0.13) 1.01 (0.11) 1.01 (0.12) 1.02 (0.15) 1.02 (0.13) 1.01 (0.11) 
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Table 7. Coding Scheme of Slope Variables 

 Wave 

Slope Variable 1 2 3 

TIME1 0 1 2 

TIME2 0 0 1 

Note. To model piecewise growth, change in slope over time was split into two slope variables; 

TIME1 is centered at baseline and TIME2 is an increment decrement variable beginning after the 

knot point at wave 2.  
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Table 8. Fixed Effects, Random Effects, and Fit of Models Tested for CESD 

Model Fixed Effects 
Random 

Effects - 𝜏 

Random 

Effects – 𝜎2 
Model Fit 

Null 𝛽00 = 6.13, p 

<0.001 

𝜏0 = 17.95 𝜎2 = 26.89  

A 𝛽00 = 8.73, p 

<0.001 

𝛽10 = -3.57, p 

<0.001 

𝛽20 = 2.91, p 

<0.001 

 

𝜏00 = 19.59 

 

𝜎2 = 21.72 ΔAIC = 6709 – 6566.22 = 

142.78 

df = 5 – 3 = 2 

p < .0001 

B 𝛽00 = 7.31, p 

<0.001 

𝛽10 = -3.57, p 

<0.001 

𝛽20 = 2.91, p 

<0.001 

𝛽01 = 3.43, p 

<0.001 

 

𝜏00 = 16.74, 

 

𝜎2 = 21.72 ΔAIC = 6566.22 – 6529.54 = 

36.68 

df = 6 – 5 = 1 

p < .0001 

C 𝛽00 = 7.60, p 

<0.001 

𝛽10 = -3.57, p 

<0.001 

𝛽20 = 2.91, p 

<0.001 

𝛽01 = 2.72, p 

<0.001 

 

𝜏00 = 44.74 

𝜏01 = 30.77 

𝜏02 = 42.84 

𝜏10 = 0.57 

𝜏12 = 0.40 

𝜏20 = 0.81 

𝜎2 = 7.42 ΔAIC = 6529.54 – 6466.77 =  

62.77 

df =11 – 6 = 5  

p < .0001 

D 𝛽00 = 7.17, p 

<0.001 

𝛽10 = -3.57, p 

<0.001 

𝜏00 = 42.96 

𝜏01 = 30.85 

𝜏02 = 43.06 

𝜏10 = 0.55 

𝜎2 = 9.28 ΔAIC = 6466.77 – 6463.63 = 

3.14 

df = 12 – 11 = 1 

p < 0.05 
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𝛽20 = 2.91, p 

<0.001 

𝛽01 = 2.60, p 

<0.001 

𝛽02 = 1.23, p <0.05 

𝜏12 = 0.38 

𝜏20 = 0.81 

E 𝛽00 = 8.71, p 

<0.001 

𝛽10 = -3.57, p 

<0.001 

𝛽20 = 2.91, p 

<0.001 

𝛽01 = 3.25, p 

<0.001 

𝛽02 = 1.48, p <0.01 

𝛽03 = -2.78, p <0.01 

𝜏00 = 42.06 

𝜏01 = 30.9 

𝜏02 = 43.20 

𝜏10 = 0.55 

𝜏12 = 0.38 

𝜏20 = 0.81 

𝜎2 = 9.26 ΔAIC = 6463.63 – 6458.25 = 

5.38 

df = 13 - 2 = 1 

p < 0.01 

F 𝛽00 = 7.31, p 

<0.001 

𝛽10 = -1.84, p 

<0.001 

𝛽20 = 1.22, p 

=0.078 

𝛽01 = 6.65, p 

<0.001 

𝛽02 = 1.48, p <0.01 

𝛽03 = -2.78, p <0.01 

𝛽11 = -4.17, p 

<0.001 

𝛽21 = 4.11, p 

<0.001 

𝜏00 = 39.45 

𝜏01 = 27.06 

𝜏02 = 41.40 

𝜏10 = 0.52 

𝜏12 = 0.34 

𝜏20 = 0.78 

𝜎2 = 9.07 ΔAIC = 6458.25 -6427.73= 

30.52* 

df = 15-13 = 2 

p < 0.0001 

G 𝛽00 = 7.45, p 

<0.001 

𝛽01 = 5.74, p 

<0.001 

𝛽10 = -2.49, p 

<0.001 

𝜏00 = 34.49 

𝜏01 = 22.27 

𝜏02 = 37.93 

𝜏10 = 0.49 

𝜏12 = 0.33 

𝜏20 = 0.80 

𝜎2 = 8.09 

𝜎1
2 = 1 

𝜎2
2= 2.02 

 

ΔAIC = 6427.73-6431.303=     

-3.57 

df = 15-15=0 

p > 0.05 
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𝛽21 = 2.60, p 

<0.001 

𝛽02 = 1.50, p <0.01 

𝛽03 = -2.66, p <0.01 

𝛽11 = -2.01, p 

<0.001 

 

  

* denotes increase in deviance, new model fits worse than previous model, so not appropriate for the data 
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Table 9. Fixed Effects, Random Effects, and Fit of Models Tested for FRS 

Model Fixed Effects 
Random 

Effects - 𝜏 

Random 

Effects – 𝜎2 
Model Fit 

Null 𝛽00 = 132.96, p 

<0.001 

𝜏0 = 226.55 𝜎2 = 145.10  

A 𝛽00 = 127.31, p 

<0.001 

𝛽10 = 7.31, p <0.001 

𝛽20 = -4.97, p <0.001 

 

𝜏00 = 234.98 

 

𝜎2 = 119.81 ΔAIC = 8669.12 – 8541.37 

= 127.75 

df = 5 – 3 = 2 

p < .0001 

B 𝛽00 = 129.83, p 

<0.001 

𝛽10 = 7.31, p <0.001 

𝛽20 = -4.97, p <0.001 

𝛽01 = -6.10, p <0.001 

 

𝜏00 = 225.96 

 

𝜎2 = 119.81 ΔAIC = 8541.37 – 

8531.88= 9.49 

df = 6 – 5 = 1 

p < .0001 

C 𝛽00 = 130.07, p 

<0.001 

𝛽10 = 7.31, p <0.001 

𝛽20 = -4.97, p <0.001 

𝛽01 = -6.69 p <0.001 

 

𝜏00 = 261.46 

𝜏01 = 103.65 

𝜏02 = 203.92 

𝜏10 = 0.038 

𝜏12 = 0.0003 

𝜏20 = 0.59 

 

𝜎2 = 60.33 ΔAIC = 8531.88– 8518.45 

=  

13.43 

df =11 – 6 = 5  

p < .0001 

D 𝛽00 = 131.12, p 

<0.001 

𝛽10 = 7.31, p <0.001 

𝛽20 = -4.97, p <0.001 

𝛽01 = -6.10, p <0.001 

𝛽02 = -3.27, p > 0.05 

𝜏00 = 261.79 

𝜏01 = 103.59 

𝜏02 = 203.92 

𝜏10 = 0.04 

𝜏12 = 0.00003 

𝜏20 = 0.59 

 

𝜎2 = 60.49 ΔAIC = 8518.45 – 8517.21 

= 1.24* 

df = 12 – 11 = 1 

p > 0.05 

E 𝛽00 = 130.18, p 

<0.001 

𝛽10 = 7.31, p <0.001 

𝜏00 = 261.47 

𝜏01 = 103.63 

𝜏02 = 203.92 

𝜎2 = 60.33 ΔAIC = 8517.21 – 8520.45 

=    -3.24* 

df = 12 – 12 = 0 
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𝛽20 = -4.97, p <0.001 

𝛽01 = -6.64, p <0.001 

𝛽03 = -0.17, p >0.05 

𝜏10 = 0.04 

𝜏12 = 0.0003 

𝜏20 = 0.59 

 

 

 

F 𝛽00 = 130.66, p 

<0.001 

𝛽10 = 5.73, p <0.001 

𝛽20 = -2.73, p =0.103 

𝛽01 = -8.10, p <0.001 

𝛽11 = 3.81, p <0.05 

𝛽21 = -5.45, p <0.05 

𝜏00 = 261.47 

𝜏01 = 101.20 

𝜏02 = 200.11 

𝜏10 = 0.04 

𝜏12 = 0.0005 

𝜏20 = 0.58 

 

𝜎2 = 59.79 ΔAIC = 8520.45 – 

8516.89= 3.56 

df = 13-12 = 1 

p < 0.05 

G 𝛽00 = 130.09, p 

<0.001 

𝛽10 = 7.27, p <0.001 

𝛽20 = -4.49, p <0.001 

𝛽01 = -6.69, p <0.001  

 

𝜏00 = 260.08 

𝜏01 = 101.20 

𝜏02 = 197.40 

𝜏10 = 0.04 

𝜏12 = 0.0006 

𝜏20 = 0.59 

𝜎2 = 59.44 

𝜎1
2 = 1 

𝜎2
2= 1.07 

 

ΔAIC = 8516.89 - 

8520.32=     -3.43 

df = 13 – 12 = 1 

p < 0.05 

 

 

 

 

 

  

* denotes increase in deviance, new model fits worse than previous model, so not appropriate for the data 
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Table 10. Fixed Effects, Random Effects, and Fit of Models Tested for SPS 

Model Fixed Effects 
Random 

Effects - 𝜏 

Random 

Effects – 𝜎2 
Model Fit 

Null 𝛽00 = 35.65, p <0.001 𝜏0 = 14.38 𝜎2 = 13.25  

A 𝛽00 = 34.77, p <0.001 

𝛽10 = 1.32, p <0.001 

𝛽20 = -1.31, p <0.001 

 

𝜏00 = 14.59 

 

𝜎2 = 12.67 ΔAIC = 6100.67 – 

6074.02 = 26.65 

df = 5 – 3 = 2 

p <0.0001 

B 𝛽00 = 35.06, p <0.001 

𝛽10 = 1.32, p <0.001 

𝛽20 = -1.31, p <0.001 

𝛽01 = -0.70, p > 0.05 

 

𝜏00 = 14.51 

 

𝜎2 = 12.67 ΔAIC = 6074.82 – 

6073.03=   1.79* 

df = 6 – 5 = 1 

p > 0.05 

C 𝛽00 = 35.35, p <0.001 

𝛽10 = 1.32, p <0.001 

𝛽20 = -1.32, p <0.01 

𝛽01 = -0.62, p <0.005 

 

𝜏00 = 24.81 

𝜏01 = 14.07 

𝜏02 = 23.06 

𝜏10 = 0.29 

𝜏12 = 0.12 

𝜏20 = 0.71 

 

𝜎2 = 6.08 ΔAIC = 6073.82 – 

6056.14 =  

17.68 

df =11-6 = 5 

 

D 𝛽00 = 35.34, p <0.001 

𝛽10 = 1.32, p <0.001 

𝛽20 = -1.31, p <0.005 

𝛽02 = -1.43, p < 0.005 

𝜏00 = 24.48 

𝜏01 = 14.08 

𝜏02 = 23.11 

𝜏10 = 0.30 

𝜏12 = 0.13 

𝜏20 = 0.71 

 

𝜎2 = 6.07 ΔAIC = 6056.14 – 

6048.75 = 7.39 

df = 11 – 6 = 5 

p > 0.05 

E 𝛽00 = 35.62, p <0.001 

𝛽10 = 1.32, p <0.001 

𝛽20 = -1.31, p <0.001 

𝜏00 = 24.47 

𝜏01 = 14.08 

𝜏02 = 23.11 

𝜎2 = 6.07 ΔAIC = 6048.75 – 

6050.48 =    -1.73* 

df = 12 – 11 = 1 

p = 0.60 
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𝛽02 = -1.37, p <0.001 

𝛽03 = -0.45, p >0.05 

𝜏10 = 0.30 

𝜏12 = 0.13 

𝜏20 = 0.71 

 

F 𝛽00 = 35.33, p <0.001 

𝛽10 = 1.32, p <0.001 

𝛽20 = -1.30, p <0.005 

𝛽02 = -1.43, p <0.005 

 

𝜏00 = 24.47 

𝜏01 = 14.37 

𝜏02 = 24.99 

𝜏10 = 0.29 

𝜏12 = 0.12 

𝜏20 = 0.71 

 

𝜎2 = 6.35 

𝜎2
2= 0.81 

 

ΔAIC = 6050.48 – 

6049.87 =  

0.61* 

df = 12 – 1 = 0 

 

G 𝛽00 = 35.86, p <0.001 

𝛽10 = 0.95, p <0.005 

𝛽20 = -1.31, p <0.005 

𝛽01 = -1.34, p <0.05 

𝛽02 = -1.37, p <0.005 

𝛽11 = 0.88, p <0.005  

 

𝜏00 = 23.98 

𝜏01 = 14.01 

𝜏02 = 25.01 

𝜏10 = 0.28 

𝜏12 = 0.11 

𝜏20 = 0.71 

 

𝜎2 = 6.28 

𝜎2
2= 0.83 

 

ΔAIC = 6049.87 – 

6044.30 =     5.57 

df = 14 – 12 = 2 

p < 0.005 

H 𝛽00 = 35.87, p <0.001 

𝛽10 = 0.95, p <0.005 

𝛽20 = -1.31, p <0.005 

𝛽01 = -1.36, p <0.05 

𝛽02 = -1.37, p <0.005 

𝛽11 = 0.90, p <0.05  

 

𝜏00 = 23.93 

𝜏01 = 13.72 

𝜏02 = 23.33 

𝜏10 = 0.29 

𝜏12 = 0.12 

𝜏20 = 0.71 

𝜎2 = 6.054 

 

ΔAIC = 6044.30 – 

6043.03 =     1.27* 

df = 14 – 13 = 1 

p > 0.05 

Note. * denotes nonsignificant change in fit. Main effect for SC, 𝛽01, was not significant in 

Model B, however, when modeling interactions, main effects for the moderating variable should 

be added to models, thus it is added back in Model G and H. 
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Note. Separate histograms depict distribution of propensity scores for visualization of probability 

of receiving SC+ in each treatment group. If propensity scores fall too close to either end of the 

distribution (0 or 1) that indicates difficulty in balancing. The overlap represents the region of 

common support. 

 

 

  

Figure 1. Density Plot depicting Histograms for each Treatment Method and the Region of 

Common Support for Propensity Analysis 
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Note. Unmatched SMD values are the covariate differences between SAU and SC+ treatment 

groups prior to propensity equating methods, all are non-negligible, SMD > 0.1. Score matching 

has one non-negligible covariate, subjects’ income. MW has no non-negligible covariates. 

 

 

  

Figure 2. Change in Covariate Balance prior to and after Propensity Scoring 
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Figure 3. Raw Trajectories for CESD Score Outcomes by Treatment Condition and Assignment 

Method 

 

Note. The columns are assignment method (0 = deterministic (or RDD); 1 = random (or RCT)) 

and the rows are treatment condition (0 = SAU; 1 = SC)  
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Figure 4. Raw Trajectories for FRS Score Outcomes by Treatment Condition and Assignment 

Method 

 

Note. The columns are assignment method (0 = deterministic (or RDD); 1 = random (or RCT)) 

and the rows are treatment condition (0 = SAU; 1 = SC)  
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Figure 5. Raw Trajectories for SPS Score Outcomes by Treatment Condition and Assignment 

Method 

 

Note. The columns are assignment method (0 = deterministic (or RDD); 1 = random (or RCT)) 

and the rows are treatment condition (0 = SAU; 1 = SC) 
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Figure 6. Lattice Plot of CESD Scores by Wave for 20 Random Participants in SAU and SC 
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Figure 7. Lattice Plot of FRS Scores by Wave for 20 Random Participants in SAU and SC 
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Figure 8. Lattice Plot of SPS Scores by Wave for 20 Random Participants in SAU and SC 
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Appendix A. CESD Models Tested 

Model A: 

𝐶𝐸𝑆𝐷𝑡𝑖 =  𝜋0𝑖 +  𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝑟01 

 

Model B: 

𝐶𝐸𝑆𝐷𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖𝑇𝐼𝑀𝐸1𝑡𝑖 +  𝜋2𝑖𝑇𝐼𝑀𝐸2𝑡𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝑟0𝑖 

 

Model C: 

𝐶𝐸𝑆𝐷𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖𝑇𝐼𝑀𝐸1𝑡𝑖 +  𝜋2𝑖𝑇𝐼𝑀𝐸2𝑡𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝛽01𝑆𝐶 +  𝑟0𝑖 

 

Model D: 

𝐶𝐸𝑆𝐷𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖𝑇𝐼𝑀𝐸1𝑡𝑖 +  𝜋2𝑖𝑇𝐼𝑀𝐸2𝑡𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝛽01𝑆𝐶 +  𝑟0𝑖 

𝜋1𝑖 =  𝛽10 +  𝑟1𝑖 

𝜋2𝑖 =  𝛽20 + 𝑟2𝑖 

 

Model E: 

𝐶𝐸𝑆𝐷𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖𝑇𝐼𝑀𝐸1𝑡𝑖 +  𝜋2𝑖𝑇𝐼𝑀𝐸2𝑡𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝛽01𝑆𝐶 +  𝛽02𝐴𝑆𝑆𝐼𝐺𝑁 +  𝑟0𝑖 

𝜋1𝑖 =  𝛽10 +  𝑟1𝑖 

𝜋2𝑖 =  𝛽20 + 𝑟2𝑖 

 

Model F: 

𝐶𝐸𝑆𝐷𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖𝑇𝐼𝑀𝐸1𝑡𝑖 +  𝜋2𝑖𝑇𝐼𝑀𝐸2𝑡𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝛽01𝑆𝐶 +  𝛽02𝐴𝑆𝑆𝐼𝐺𝑁 +  𝛽03𝑀𝑊 +  𝑟0𝑖 

𝜋1𝑖 =  𝛽10 +  𝑟1𝑖 

𝜋2𝑖 =  𝛽20 + 𝑟2𝑖 

 

Model G: 

𝐶𝐸𝑆𝐷𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖𝑇𝐼𝑀𝐸1𝑡𝑖 +  𝜋2𝑖𝑇𝐼𝑀𝐸2𝑡𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝛽01𝑆𝐶 +  𝛽02𝐴𝑆𝑆𝐼𝐺𝑁 +  𝛽03𝑀𝑊 +  𝑟0𝑖 

𝜋1𝑖 =  𝛽10 + 𝛽11𝑆𝐶 +  𝑟1𝑖 

𝜋2𝑖 =  𝛽20 + 𝛽21𝑆𝐶 + 𝑟2𝑖 

 

Model H: 

𝐶𝐸𝑆𝐷𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖𝑇𝐼𝑀𝐸1𝑡𝑖 +  𝜋2𝑖𝑇𝐼𝑀𝐸2𝑡𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝛽01𝑆𝐶 +  𝛽02𝐴𝑆𝑆𝐼𝐺𝑁 +  𝛽03𝑀𝑊 +  𝑟0𝑖 

𝜋1𝑖 =  𝛽10 + 𝛽11𝑆𝐶 +  𝑟1𝑖 

𝜋2𝑖 =  𝛽20 + 𝑟2𝑖 

𝑒𝑡𝑖 = ~1|𝐴𝑆𝑆𝐼𝐺𝑁, Ɲ(0, 𝜎2) 

 

Note: Model H accounted for heteroscedasticity at level-1 residuals varying with assign 
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Appendix B. FRS Models Tested 

Model A: 

𝐹𝑅𝑆𝑡𝑖 =  𝜋0𝑖 +  𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝑟01 

 

Model B: 

𝐹𝑅𝑆𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖𝑇𝐼𝑀𝐸1𝑡𝑖 +  𝜋2𝑖𝑇𝐼𝑀𝐸2𝑡𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝑟0𝑖 

 

Model C: 

𝐹𝑅𝑆𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖𝑇𝐼𝑀𝐸1𝑡𝑖 +  𝜋2𝑖𝑇𝐼𝑀𝐸2𝑡𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝛽01𝑆𝐶 +  𝑟0𝑖 

 

Model D: 

𝐹𝑅𝑆𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖𝑇𝐼𝑀𝐸1𝑡𝑖 +  𝜋2𝑖𝑇𝐼𝑀𝐸2𝑡𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝛽01𝑆𝐶 +  𝑟0𝑖 

𝜋1𝑖 =  𝛽10 +  𝑟1𝑖 

𝜋2𝑖 =  𝛽20 + 𝑟2𝑖 

 

Model E: 

𝐹𝑅𝑆𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖𝑇𝐼𝑀𝐸1𝑡𝑖 +  𝜋2𝑖𝑇𝐼𝑀𝐸2𝑡𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝛽01𝑆𝐶 +  𝛽02𝐴𝑆𝑆𝐼𝐺𝑁 +  𝑟0𝑖 

𝜋1𝑖 =  𝛽10 +  𝑟1𝑖 

𝜋2𝑖 =  𝛽20 + 𝑟2𝑖 

 

Model F: 

𝐹𝑅𝑆𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖𝑇𝐼𝑀𝐸1𝑡𝑖 +  𝜋2𝑖𝑇𝐼𝑀𝐸2𝑡𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝛽01𝑆𝐶 +   𝛽03𝑀𝑊 +  𝑟0𝑖 

𝜋1𝑖 =  𝛽10 +  𝑟1𝑖 

𝜋2𝑖 =  𝛽20 + 𝑟2𝑖 

 

Model G: 

𝐶𝐸𝑆𝐷𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖𝑇𝐼𝑀𝐸1𝑡𝑖 +  𝜋2𝑖𝑇𝐼𝑀𝐸2𝑡𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝛽01𝑆𝐶 +  𝑟0𝑖 

𝜋1𝑖 =  𝛽10 + 𝛽11𝑆𝐶 +  𝑟1𝑖 

𝜋2𝑖 =  𝛽20 + 𝛽21𝑆𝐶 + 𝑟1𝑖 

 

Model H: 

𝐶𝐸𝑆𝐷𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖𝑇𝐼𝑀𝐸1𝑡𝑖 +  𝜋2𝑖𝑇𝐼𝑀𝐸2𝑡𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝛽01𝑆𝐶 +  𝑟0𝑖 

𝜋1𝑖 =  𝛽10 + 𝑟1𝑖 

𝜋2𝑖 =  𝛽20 + 𝑟2𝑖 

𝑒𝑡𝑖 = ~1|𝑆𝐶, Ɲ(0, 𝜎2) 

 
Note: Model H accounted for heteroscedasticity at level-1 residuals varying with treatment method 
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Appendix C. SPS Models Tested 

Model A: 

𝑆𝑃𝑆𝑡𝑖 =  𝜋0𝑖 +  𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝑟01 

 

Model B: 

𝑆𝑃𝑆𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖𝑇𝐼𝑀𝐸1𝑡𝑖 +  𝜋2𝑖𝑇𝐼𝑀𝐸2𝑡𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝑟0𝑖 

 

Model C: 

𝑆𝑃𝑆𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖𝑇𝐼𝑀𝐸1𝑡𝑖 +  𝜋2𝑖𝑇𝐼𝑀𝐸2𝑡𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝛽01𝑆𝐶 +  𝑟0𝑖 

 

Model D: 

𝑆𝑃𝑆𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖𝑇𝐼𝑀𝐸1𝑡𝑖 +  𝜋2𝑖𝑇𝐼𝑀𝐸2𝑡𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝛽02𝐴𝑆𝑆𝐼𝐺𝑁 +  𝑟0𝑖 

 

Model E: 

𝑆𝑃𝑆𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖𝑇𝐼𝑀𝐸1𝑡𝑖 +  𝜋2𝑖𝑇𝐼𝑀𝐸2𝑡𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 +  𝛽02𝐴𝑆𝑆𝐼𝐺𝑁 +  𝑟0𝑖 

𝜋1𝑖 =  𝛽10 +  𝑟1𝑖 

𝜋2𝑖 =  𝛽20 + 𝑟2𝑖 

 

Model F: 

𝐹𝑅𝑆𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖𝑇𝐼𝑀𝐸1𝑡𝑖 +  𝜋2𝑖𝑇𝐼𝑀𝐸2𝑡𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝛽02𝐴𝑆𝑆𝐼𝐺𝑁 +   𝛽03𝑀𝑊 +  𝑟0𝑖 

𝜋1𝑖 =  𝛽10 +  𝑟1𝑖 

𝜋2𝑖 =  𝛽20 + 𝑟2𝑖 

 

Model G: 

𝑆𝑃𝑆𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖𝑇𝐼𝑀𝐸1𝑡𝑖 +  𝜋2𝑖𝑇𝐼𝑀𝐸2𝑡𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝛽02𝐴𝑆𝑆𝐼𝐺𝑁 +  𝑟0𝑖 

𝜋1𝑖 =  𝛽10 + 𝛽11𝑆𝐶 +  𝑟1𝑖 

𝜋2𝑖 =  𝛽20 + 𝛽21𝑆𝐶 + 𝑟2𝑖 

𝑒𝑡𝑖 = ~1|𝐴𝑆𝑆𝐼𝐺𝑁, Ɲ(0, 𝜎2) 

 

Model H: 

𝑆𝑃𝑆𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖𝑇𝐼𝑀𝐸1𝑡𝑖 +  𝜋2𝑖𝑇𝐼𝑀𝐸2𝑡𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝛽01𝑆𝐶 +  𝛽02𝐴𝑆𝑆𝐼𝐺𝑁 +  𝑟0𝑖 

𝜋1𝑖 =  𝛽10 + 𝛽11𝑆𝐶 + 𝑟1𝑖 

𝜋2𝑖 =  𝛽20 + 𝑟2𝑖 

𝑒𝑡𝑖 = ~1|𝑆𝐶, Ɲ(0, 𝜎2) 
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Model I: 

𝑆𝑃𝑆𝑡𝑖 =  𝜋0𝑖 + 𝜋1𝑖𝑇𝐼𝑀𝐸1𝑡𝑖 +  𝜋2𝑖𝑇𝐼𝑀𝐸2𝑡𝑖 + 𝑒𝑡𝑖 

𝜋0𝑖 =  𝛽00 + 𝛽01𝑆𝐶 +  𝛽02𝐴𝑆𝑆𝐼𝐺𝑁 +  𝑟0𝑖 

𝜋1𝑖 =  𝛽10 + 𝛽11𝑆𝐶 + 𝑟1𝑖 

𝜋2𝑖 =  𝛽20 + 𝑟2𝑖 

 

Note: Models G and H accounted for heteroscedasticity at level-1 residuals varying with 

assignment method 

 


