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Abstract

Relative to their various land and air-based counterparts, swarm unmanned aerial sys-

tem (SUAS) platforms, being comprised of many separate airborne bodies, or elements,

possess a number of unique and advantageous characteristics, whether in the context

of radar, or communications. These advantages include reduced element complexity,

minimal size, weight, and power (SWaP) requirements, and a high degree of redun-

dancy, among others. Because individual bodies in an SUAS are generally smaller than

single UAS systems, however, it is generally imperative that the overall electromag-

netic performance of the entire swarm match or even exceed that of its single-bodied

counterpart, compensating for any reduction in the capabilities of individual radiators

within the SUAS. Consequently, even with reduced complexity in the individual ele-

ments, the design and control of such large arrays of radiating bodies often presents

a very significant challenge. Previous work has demonstrated the efficacy of design

techniques involving widely-spaced, sparse arrays, and deliberate use of aperiodicity

in order to maximize array radiation performance, while minimizing any deleterious

effects. Such design techniques, however, are quite limited in their use, often requiring

very large numbers of electromagnetically large elements, whilst only achieving fairly

narrowband solutions. Consequently, attempts to make use of these techniques require

both a high degree of control complexity, and vast amounts of space, being unable to

bring elements close together, lest detrimental phenomena like mutual impedance arise.

To enable the design of more tightly-spaced SUAS with fewer, and potentially smaller,

xii



elements, a fairly new antenna array design technique will be utilized, being now ap-

plied to the more challenging domain of SUAS for the first time. In particular, the

following will be the application of tight-coupling, which exploits rather than mitigates

the presence of mutual impedance, to closely-spaced antenna arrays. Thus, the ability

of tight-coupling techniques, when applied to SUAS, to generate useful antenna array

apertures will subsequently investigated. This exploration will pay particular attention

to arrays comprised of elements with poor individual radiative capabilities. The perfor-

mance of these SUAS arrays will be assessed primarily in terms of spectral impedance,

efficiency, and realized gain behavior.
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Chapter 1

Motivation of SUAS

1.1 The Utility of Airborne Radar Systems

Radar systems, categorically speaking, have been one of the most useful innovations

of the past hundred years, being ubiquitous throughout science and technology, as well

as everyday life. Myriad examples of this exist whether taken from geological explo-

ration, meteorology, astronomy, or even from more commonplace cases such as air

traffic control, law enforcement, or various military applications. Of the plethora of

distinct incarnations of radar that have come into existence, however, airborne radar

systems have, with respect to their ground and sea-based counterparts, gained particu-

lar prominence. This fact is likely due to the variety of advantages possessed by such

airborne systems.

Principal among these advantages is an airborne radar system’s range. Whether

used for target identification, environmental mapping, or any application in between, a

radar system’s range is of primary concern. As noted in [1] for example, for a moving

target identification (MTI) system, the difference in detection range between a 100-ft

antenna mast, and that flying at 25,000-ft can be as great as 183 nautical miles (nmi).

Simply put, this figure means that, even when barring physical obstructions and is-

sues with refraction for the ground-based radar, the airborne system will outperform its

1



counterpart by more than 1500%, as the latter is limited to about 12 nmi [1]. The reason

for this is of course clear, as the increased elevation of the airborne system drastically

increases the number of potential targets within the system’s line of sight, among other

reasons.

Additional advantages of airborne radars include reduced ground clutter and of

course the mobility of the platform itself, being able to not only cover greater ranges

than stationary systems, but also change locations much more rapidly. Land-based

radars, by contrast, beyond being unable to relocate rapidly, must also generally avoid

low beam angles with respect to the ground, as pointed out in [1], in order to avoid

significant ground clutter in the back-scattered signal. This is especially true in heav-

ily populated environments, whether in the form of urban areas with densely crowded

buildings, heavily wooded regions with dense foliage, etc. Airborne platforms, by

virtue of elevation, obviate this challenge.

Finally, a number of further, radar-based applications such as synthetic aperture

radar (SAR) [2]-[3], foliage penetrating radars [4], and “the characterization of pre-

cipitation micro-physics and other meteorological phenomena” [5] exist exclusively

because of, or have been revolutionized by, the advent of airborne radar systems.

1.2 Swarm-based Unmanned Aerial Systems (SUAS)

Now, while airborne radar systems do possess numerous performance advantages on a

systems level as was stated above, such systems at the same time do present a signif-

icant challenge in terms of design, especially with respect to a given radar’s antenna.

As is discussed in [6], the electromagnetic environment in which an airborne antenna is

placed is often far more complex than that of its ground-based counterpart, let alone the

standard, open, free-space environment upon which much of antenna theory is based;

2



this is due in large part to the conflicting structural and electromagnetic needs of typi-

cal aircraft, wherein some optimization is required. For example, for externally located

antennas, it is often a requisite that the antenna’s profile be minimized in order to limit

unwanted drag on the body of the aircraft; this requirement however, often comes at the

expense of electromagnetic performance, particularly in the form of poor antenna effi-

ciency, gain, or bandwidth. Furthermore, because unmanned aerial systems are often

required to be self-sufficient for the duration of their operation, limitations involving

size, weight, and power (SWaP), as discussed in [7]–[11], are often of critical impor-

tance during design. In particular, as the size of an airborne radar platform scales lin-

early, its weight and power requirements, as well as the complexity of its power control

systems, will much more climb rapidly [7].

One increasingly common way to circumvent these and other concerns regard-

ing solitary airborne platforms is the move towards swarm unmanned aerial systems

(SUAS). SUAS possess considerable advantages over the single UAS, the first of these

being the aforementioned SWaP constraints. Because each individual UAV body in

an SUAS is scaled to much smaller dimensions than the typical single-body UAS, the

design complexity of each unit is enormously reduced, which in turn is multiply ben-

eficial, as both the cost and requisite power needs of each unit drop significantly. In

fact, the cost of an entire swarm is, in many cases, a fraction of that of its singular

counterpart, as was the case with the US Navy’s LOCUST program [12]. With respect

to performance, while each individual element in a SUAS will of course not be able to

match the capabilities of the larger UAS, a number of techniques exist to ensure that

the performance of the overall SUAS matches or even exceeds that of the large UAS,

as will be discussed in the next chapter.

Secondly, for a variety of both military and non-military applications, the presence

of a substantial number of small UAV bodies is greatly advantageous over a single,
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larger body. In the event of military engagement or even volatile weather, the greater

number of aircraft in the SUAS provides a degree of redundancy that allows continued

operation of the swarm even if a few aircraft are rendered non-operational. Addition-

ally, being smaller in size, SUAS bodies provide both a smaller physical target and a

smaller radar cross-section (RCS) [12], granting them a greater likelihood of survival.

Clearly, the larger UAS lacks these advantages. Additionally, for reasons that will be

discussed throughout this thesis, the SUAS provides a much greater degree of mechan-

ical, and therefore operational, reconfigurability, when compared to, for example, a

large phased array mounted on a single, large UAS.

1.3 Thesis Outline

In the following chapters, this thesis explores methods by which the apertures gener-

ated by SUAS may be analyzed, and subsequently, evaluates the performance of such

apertures. In chapter 2, various design techniques by which antenna arrays may be

constructed are introduced and briefly evaluated, and in particular, the concept of tight-

coupling is investigated. This chapter continues with a brief sketch of the anticipated

mutual coupling expected to exist between elements of an SUAS when these elements

are assumed to be large-radius, radiating cylinders. In fact, this assumption that the

SUAS’s array characteristics may be well approximated by replacing the elements with

fuselage-representing cylinders will be maintained throughout the duration of this the-

sis. Consequently, this thesis focuses specifically on the results that may be achieved

under these assumptions.

The physical theory of radiating cylinders is then discussed at length in chapter 3,

particular attention being given to the derivation of integro-differential equations use-

ful in the analysis of dipole antennas. Chapter 4 then gives a survey of the method
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of moments, a series technique by which the complex derivations of chapter 3 may be

readily evaluated. In chapter 5, the behavioral trends of individual radiating cylinders

is then evaluated, multiple baselines for later comparison being devised. The approx-

imate, simulated mutual impedance between two cylinders is then analyzed in chapter

6, wherein the efficacy of SUAS inter-element coupling used in this thesis is explored.

Subsequently, chapter 7 and 8 discuss the generation of antenna apertures in parasitic

and driven cylinder arrays, respectively. Finally, chapter 9 serves as the conclusion to

this thesis, summarizing the previous and future work involved in this project.
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Chapter 2

Introduction to Tightly-Coupled Arrays in SUAS

2.1 Introduction

As discussed in the previous chapter, SUAS-based radars hold several advantages over

their single-bodied counterparts. One of the principal advantages is the ability of SUAS

to mechanically reconfigure and thus provide a greater number of operational capabili-

ties due to the vast number of arrangements into which the SUAS may configure itself.

Nonetheless, as is commonplace with antenna arrays, a wide variety of array ordering

techniques exist [13], and understanding the relative advantages of each is of course

critical. In the case of SUAS, the most common approach is the aperiodic sparse array.

Before discussing sparse arrays, however, it’s important to note that traditionally

popular phased, and more generally periodic, arrays tend to be undesirable for SUAS

applications, due to their extreme sensitivity to element positioning in terms of side-

lobe levels (SLL) and antenna gain [14]. Specifically, because positional and orienta-

tional errors tend to be high in an SUAS due to weather and control complexity, the

sensitivity of such arrays are almost always incompatible with SUAS applications, es-

pecially for arrays operating at higher frequencies.

In addition to sparse arrays, this thesis will present tightly-coupled arrays, a rela-

tively newer method of organizing antenna arrays that has not previously been applied
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to airborne swarms, yet presents many advantages therein.

2.2 On Frequency Selection in Radar

Before discussing specific array types however, it will be beneficial to clarify the rele-

vance of frequency and electrical size in SUAS design. Specifically, in order to meet the

performance specifications of any application, identification of the optimal frequency

band in which to operate, as well as the ideal electrical size of the respective SUAS ele-

ments, will be absolutely paramount. In many cases in fact, the operational frequency of

an SUAS will be at least partially determined by its intended application. For example,

as [15] mentions, radar imaging systems, whether used for surveillance or geographic

mapping, often benefit from higher signal frequencies, as such will increase the res-

olution of the constructed image depending on the waveform used. Additionally, in

the case of more complex beam-forming techniques, higher frequencies are useful in

producing smaller beam angles for an array with a given element size [16]-[17]. In

other words, given that the range of manufacturable antenna sizes is limited, higher

frequencies will always permit the narrowest beams by noting that

θ3dBφ3dB ∝
1

Af 2
, (2.1)

where Θ3dB and φ3dB are the azimuthal and elevation beam-widths (assuming a general-

ized elliptical beam), and A is the antenna’s aperture. This in turn improves resolution,

as previously mentioned in [15], as

∆V =
π

4
R2θ3dBφ3dB∆R . (2.2)
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Here, ∆V is the radar’s unit cell volume, and R is the radar range. ∆R is then related

to the radar pulse envelope in that

∆R =
cτ

2
, (2.3)

where c is the speed of light, and τ is the pulse duration. Additionally, as noted in [18],

for applications such as communications where high data rates are crucial, the choice

of higher frequencies leads to greater data rates as

Rb = Rslog2M . (2.4)

Here, Rb is the bit rate of the communication channel, M is related to the modulation

scheme, andRs is the symbol rate which is directly proportional to the channel’s carrier

frequency.

Conversely, lower frequencies have their own unique set of benefits; one of these

is attenuation. Because a transmitted signal’s maximal range drops off rapidly with

increasing frequency according to the radar range equation, which states that

Rmax = 4

√
PtG2c2σ

(4π)3Pminf 2
, (2.5)

lower operational frequencies allow an SUAS to both operate farther from its target

and have greater inter-element spacing. This of course, may be useful depending on

the type of antenna array being employed. Here, Pt and Pmin are related to signal

power, G is the antenna’s gain, and σ is the target’s RCS. The radar range equation also

demonstrates how SUAS operating at longer wavelengths are often be able to reduce

power requirements, as transmitted signals attenuate significantly more slowly. Addi-

tionally, depending on the application, various lower frequency bands such as HF and
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VHF may present advantages in terms of lower absorption, as higher frequencies tend

to be much more readily absorbed, whether by dense foliage, atmospheric water, or

materials found in urban environments such as concrete [19]. This, in turn, presents

bands like HF and VHF with certain superior capabilities including greater foliage pen-

etration in geographic mapping and imaging, and enhanced atmospheric penetration in

high-altitude applications.

However, one important disadvantage of lower frequencies, especially for HF and

below, is antenna efficiency. Because most UAV bodies are size-limited, meaning build-

ing electrically large aircraft for long wavelengths is almost always prohibitively ex-

pense, when at all possible, one common yet severe disadvantage of SUAS operating

in bands around HF is small electrical size, which always means reduced antenna ef-

ficiency and thus wasted power, usually in the form of thermal noise or impedance

mismatch. Tightly-coupled arrays however, the technique applied to SUAS in this the-

sis, often partially circumvent this issue by synthesizing larger antenna apertures from

smaller elements, thus reducing the detrimental effects of being electrically small.

2.3 Aperiodic Sparse Arrays

Unlike phased arrays, aperiodic sparse arrays do not in general suffer heavily from noise

related to element positioning errors; in fact, being derived from random arrays, ape-

riodic arrays are usually designed specifically to avoid these issues. Where as phased

arrays are cleverly designed to selectively cancel out the detrimental effects of mutual

impedance normally present in antenna arrangements with close inter-element spacing,

aperiodic sparse arrays, by virtue of being sparse, do the opposite. These arrays gener-

ally circumvent the issue of mutual impedance by increasing this inter-element spacing

until mutual impedance is effectively mitigated, or at least until the designer feels safe
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in ignoring such effects. This is shown in greater detail in [20], where floquet theory

is applied to 2D planar arrays to demonstrate significantly decreased sensitivity in the

field response under increased positional errors.

From here, a variety of techniques can be used to properly arrange the array such

that the field patterns of each element can be summed into a single resultant field match-

ing the desired array performance. [21], for example, investigates the performance of

an array in an urban environment using four pre-determined array configurations, de-

termining in this case, linear arrays to be beneficial for multiple input, multiple output

(MIMO) applications. In [14] and [22], the effect of positional noise on array perfor-

mance is characterized, and methods by which to mitigate these effects are developed.

Specifically, for some N-element array, the array factor, AF, with current magnitude

and phase terms In and βn, is defined such that

AF (θ, φ) =
1

N

N∑
n=1

Ine
j[kn̂·(rn+r̃n)+βn] , (2.6)

where k is the wave number, and rn and r̃n are the nominal position and positional noise

of the nth element. Here, setting βn equal to the nominal phase term plus an additive

correctional term by stating that

βn = βin + βcn , (2.7)

serves as one method of error minimization via phase modulation. By adding this

correctional phase term, the effects of positional noise in the nth term may clearly be

minimized whenever

βcn ≈ kn̂ · r̃n , (2.8)

which, if the noise is assumed Gaussian, leads to a maximum system variance, σ2
system,
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where

σ2
system ≤

2k2σ2(1− cosψ)

N
. (2.9)

Under these assumptions, σ2 is the variance of a single element in the array, assumed

to be equal in the far field for every element, while ψ is the angle from the array’s bore-

sight direction to the observation direction. The above expression for the system noise

variance, equation (2.9), immediately illustrates several important aspects of this strat-

egy of error correction. Firstly, it’s easily observed that the upper limit on an array’s

noise variance drops quickly as the size of the array scales. Larger arrays may be jus-

tified in this way, being significantly more tolerant to positional errors. Secondly, this

upper limit increases quadratically with wave number, demonstrating how the afore-

mentioned strategy functions more reliably in lower frequency bands, but weakens as

frequency is scaled upwards. Finally, as is visible in the 1−cosψ term in equation (2.9),

large observation angles, relative to the direction of bore-sight, can lead to significant

variance in the system’s array factor.

[14] also discusses how, by means of genetic algorithms, array element arrange-

ments may be found such that the system’s side-lobe level (SLL) is minimized as shown

in fig. 2.1 and fig. 2.2.
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Figure 2.1: Optimized 505-element array configuration designed by genetic algorithm

in [14].

Figure 2.2: Optimized 505-element array SLL designed by genetic algorithm in [14].
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It’s worth noting that in order to produce usefully low SLL for arrays designed in this

way, a very large number of radiating elements are needed, as is visible in fig. 2.1,

where 505 elements were optimized. Additionally, by virtue of using genetic algo-

rithms involving a very large number of variables, the operational reconfigurability of

such an array is reduced. This is due, specifically, to the long solve-time requirement

typically associated with such search methods. A similar field-optimization approach

is described in [23] using many fewer elements, albeit with substantially higher SLL,

as shown in fig. 2.3.

Figure 2.3: Optimized 8-element array. DEMO is the optimal search method proposed

in [23].

Following [14], [24] and [25] extend the idea of aperiodic arrays to include ran-

dom array swarms, which are of course necessarily aperiodic; in doing so, the previous

characterization of positional error is transformed into one involving time-varying, in-

determinate positioning. In particular, [24] describes how the use of amplitude tapering
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and phase modulation may be used to achieve desirable SLL values as show in fig.

2.4. Note once again that the method presented functions most reliably when uncon-

strained by array size and spread limitations. From here, in the next section, focus will

be placed on elements of tight-coupling techniques, in particular those contrasting the

characteristics of aperiodic arrays just mentioned.

Figure 2.4: Effect on SLL of Amplitude Tapering method proposed in [24].

2.4 Theory of Tightly-Coupled Arrays

2.4.1 Mutual Impedance and Network Theory

In order to properly understand the way in which tight-coupling functions, it’s worth-

while to first review some aspects of mutual coupling in general array theory and its

relationship to input impedance. Specifically, beginning with two-port network theory,

it has long been established, as is shown in [26], that for a two-port network like that
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shown in fig. 2.5, the relevant circuit properties are well-defined.

Figure 2.5: Two-Port Network circuit model taken from [24], pg. 468.

The voltage current relations for such a network may be stated as

V1 = Z11I1 + Z12I2 and

V2 = Z21I1 + Z22I2 ,

(2.10)

where the various Zij are often referred to as impedance parameters or Z-parameters.

These equations can clearly be extended to the more general N-port case by now defin-

ing the ith port voltage such that

Vi =
N∑
j=1

ZijIj . (2.11)

Using circuit model approximations, it is often possible to derive values for these

parameters by rearranging the above relations to state that

Zij =
Vi
Ij

∣∣∣∣
In = 0 ∀ n 6=j

. (2.12)

Here, a zero-valued port current corresponds to that same port being held open to pre-

vent current flow, or in other words, an open-circuit. In the case of antennas, particu-

larly in the context of arrays, these parameters are often referred to as self- and mutual
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impedances; an impedance Zii, for example, is then defined as the ith element’s self-

impedance in said space, independent of any mutual coupling effects. Therefore, Zij

with i 6= j, is by contrast the mutual impedance of the ith element due to the jth, or

rephrased, the variation in the ith port voltage due to the jth port current. An N-element

antenna array can then be said to have an N-by-N impedance matrix, Zmn, defined such

that

Zmn ≡


Z11 Z12 . . . Z1N

... . . . . . . ...

ZN1 . . . . . . ZNN

 . (2.13)

Finally, the driving-point impedance of an antenna element, Zd,i, is typically then de-

fined such that

Zd,i ≡
Vi
Ii

= Zii +
∑
j 6= i

Zij
Ij
Ii

, (2.14)

an equality clearly found by dividing the ith voltage in equation (2.11) by the ith cur-

rent. Qualitatively speaking, the driving-point impedance, also referred to as the input

impedance, is that to which any connecting transmission line will need to be matched,

being a numeric representation of both the individual element’s structure, as well as

that of the element’s radiative environment.

For moderately complex arrays, whether in size or element topology, circuit ap-

proximations are often insufficiently precise to determine an array’s impedance matrix;

in such cases, other strategies, such as the Method of Moments discussed in Chapter 4,

will be necessary.
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2.4.2 On Tight-Coupling in Standard Arrays

The designs of traditional phased arrays and aperiodic sparse arrays, unlike tightly-

coupled arrays, seek to minimize the role of mutual impedance, in line with the general

observation that the effects of such are predominantly detrimental to array performance.

This design process typically begins by selecting and optimizing a single representa-

tive antenna element, before introducing it into an array setting. Array techniques such

as periodicity, sparsity, and phase control are then implemented to limit the de-tuning

of the already tuned element, now within an impedance environment very different

from free space. Tight-coupling, by contrast, seeks the opposite. In particular, the

main principle of tight-coupling is in the utilization of the impedance environment cre-

ated by an array to not only impedance-tune the array elements, but often extend the

array’s bandwidth well beyond that of the individual element. This technique, unlike

the others mentioned thus far, typically employs un-optimized elements, relying on the

introduction of the element into the array’s coupling environment to improve element

performance and bandwidth.

One of the early studies on the application of tight-coupling to full-scale arrays was

conducted by [27] where a unique type of Foursquare antenna, shown in fig. 2.6, is

characterized and implemented into a tightly-coupled array.
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Figure 2.6: Model of planar “Foursquare” antenna used to build array in [27], pg. 48.

By controlling the geometric properties of a 3x3 array of Foursquare antennas, Buxton

in [27] is able to affect the magnitude of mutual impedance present in the array, and

by extension, both the impedance bandwidth and center frequency of the array. This

strategy was then re-attempted using an approximate, FDTD-based approach in [27],

with some of the results displayed in fig. 2.7-2.9.

Figure 2.7: Geometry Configuration II - 35% Bandwidth for 100Ω VSWR in [27], pg.

115.
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Figure 2.8: Geometry Configuration III - 25% Bandwidth for 100Ω VSWR in [27], pg.

116.

Figure 2.9: Geometry Configuration V - 58% Bandwidth for 100Ω VSWR in [27], pg.

118.

Additionally, by making positive use of the mutual impedance present, [27] was able

to reduce the inter-element spacing necessary for a particular impedance bandwidth,

allowing for the creation of more compact arrays.

Later on, this topic was further expanded upon in [28], sparking a great number

of new studies in the area of ultra-wideband (UWB) antenna arrays, as demonstrated
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in [29]–[38]. In detail, [28] describes how the method of tight-coupling essentially

seeks to counteract the narrow impedance bandwidth of its elements via the introduc-

tion of additional reactances with opposite spectral behavior. In this way, the undesir-

able impedance of one element may be intentionally negated by that of a collection of

other elements or electromagnetically-relevant structures. As an example, [28] goes on

to describe how the impedance behavior of a classic dipole antenna, which is capaci-

tive at frequencies below resonance and inductive at those above, as shown in fig. 2.10,

may be brought close to match for an extended bandwidth using the parallel combina-

tion of a ground plane and free space (when seen through a dielectric layer acting as a

λ
4

impedance inverter). The individual impedance behaviors of these two structures as

well, are shown below in fig. 2.11 and fig. 2.12.

Figure 2.10: Impedance behavior of thin-wire dipole antenna designed in FEKO, 0.1-

2.0GHz. Note the locations of the low and high frequencies. Reactive portion will be

referred to as XA.
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Figure 2.11: Impedance behavior of ground plane spaced by λ
4

away from antenna.

Taken from [28]. Will be referred to as Z+
1 .

Figure 2.12: Impedance behavior of free space seen from antenna through a dielectric

sheet acting as a λ
4

impedance inverter. Taken from [28]. Will be referred to as Z−1 .

In using smith charts to visualize how the impedances of these three structures behave
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around resonance, it becomes clear how a useful combination thereof could make for

a broadband match. Inspecting the low and high frequency regions specifically, the

reflection behavior of the ground plane very usefully diametrically opposes that of the

dipole and the dielectric sheet, allowing for mutual negation. The resulting broadband

match is visible (gray trace) in fig. 2.13.

Figure 2.13: Broadband match created by careful impedance balancing. Note that the

parallel combination of ground plane and dielectric sheet is in black, while the aggre-

gate of all three is in gray. Taken from [28].

On the level of an array, inter-element coupling also comes into effect in the form of

element spacing. Closely spaced series dipoles allow the dipoles’ ends to couple capac-

itively, while parallel dipoles brought near enough may of course inductively couple.

Additionally, [28] demonstrates an additional mode by which to add reactance, specif-

ically capacitance, to a dipole array, employing inter-digital coupling between dipole
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elements, as shown in fig. 2.14. This added method creates strong inter-element cou-

pling, allowing greater control over the impedance environment seen by each dipole’s

terminals.

Figure 2.14: Interdigitally-coupled dipole array making use of tight-coupling. Taken

from [28].

In summary, a few major aspects of tightly-coupling are worth reiterating. Firstly,

in order to take advantage of tight-coupling as a technique, it is of course critical to

have precisely characterized the spectral impedance behavior of not only the array ele-

ments to be used, but also the reactive mechanisms by which the broadband match will

be created. In [28], these included ground planes, dielectric layers, and inter-digital ca-

pacitances; a multitude of other structures could be used, however, and it is necessary to

understand the behavior of such. Secondly, it is inevitable that element spacing, given

the compact nature of tightly-coupled arrays, will be one of these mechanisms. As such,

it is often advantageous to regard this element spacing as a form of variable impedance
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control, rather than as only a quantity extremized for the sake of maximizing array scan

angles. Having stated this, however, it is simultaneously true, as previously mentioned

in [27], that arrays making use of tight-coupling can in fact, sometimes be made more

compact than traditional arrays, as the effects of mutual impedance are exploited rather

than evaded. Finally, it will be necessary, as was the case in [28], to evaluate both ca-

pacitive and inductive mechanisms that cover the entire band(s) of interest. A single

mechanism of course need not itself be only capacitive or only inductive over all such

bands, but at every relevant frequency, some capacitance source and some inductance

source must exist for a broadband match to be made.

2.4.3 Application to SUAS

In moving to a theoretical tightly-coupled SUAS-based array, a couple of considerations

and adaptations must be made. Of primary concern is the category of aircraft to be used

in modeling each SUAS element, along with the placement and style of antenna on said

element, as all subsequent work will hinge upon these choices. Additionally, as was

stressed in the previous section, the choice of coupling mechanisms will also be of

great significance. To this end, for the purposes of this thesis, fixed-wing UAV aircraft,

like those shown in fig. 2.15, will be used as both the modeled aerial platform, as well

as the radiating bodies themselves.
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Figure 2.15: Examples of fixed-wing UAV. Left: SP7 Fixed Wing Drone. Right: MQ-9

Reaper.

In this way, by using the entire outer surface of the fixed-wing structure as a con-

toured, conductive sheet, the array element calculation complexity may, in a manner,

be reduced, as the presence of parasitic conductances, namely defective ground planes,

will be eliminated. Naturally though, this choice will make the excited portion of each

element more complex; this complexity trade-off, however, does yield other, further

advantages useful for array design. Specifically, by allowing the entire, metallized sur-

face of the aircraft to radiate, omni-directional patterns, an essential property in the

design of highly re-configurable, free space arrays, are much more easily achieved.

Omni-directionality, in particular, permits fewer and narrower nulls, meaning a greater

number of array configurations is possible; for SUAS, this property is especially bene-

ficial as, from an aerodynamic viewpoint, a single UAV will likely only have a limited

range of feasible orientations during any given SUAS operation. Consequently, omni-

directionality allows multiple aircraft to more simply re-position themselves relative to

each other, rather than re-orienting multiple elements such that their near-fields align

more compatibly. In other words, the customary trade-off between aerodynamic and

electromagnetic function is somewhat alleviated.

Furthermore, by utilizing the entirety of an aircraft’s surface, larger antenna aper-

tures are possible, before even accounting for the greater context of the SUAS array.
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This of course follows from the fact that each element in the array will have increased

electrical size (electrical size roughly follows physical size) for some given operating

frequency, an attribute of enormous import, especially at lower operating frequencies,

such as around the HF band. Consequently, this increased electrical size will allow

each element to operate at higher efficiencies, thus reducing power consumption in al-

ready SWaP-constrained arrays. Secondly, as was first pointed out in a discussion by

[39], and later improved upon by [40], the soft limit for antenna gain, G, of a radiating

structure of given size can be defined such that

G ∼=
4a

λ
, (2.15)

where a is the maximum dimension of the antenna. Gain values above this soft limit

require massive degradation in impedance bandwidth, and are almost always undesir-

able for broadband applications. For the purposes of this theoretical SUAS-based array,

this means that by increasing the physical size of each element, the maximum usable

gain value can be increased as well, without damaging the element’s bandwidth. Ad-

ditionally, by increasing the SUAS elements’ electrical size in this way, the effective

volume per unit height is increased, which, according to [41], leads to a decreased an-

tenna quality factor (Q-factor), or in other words increased impedance bandwidth, an

antenna’s Q-factor being inversely proportional to impedance bandwidth.

Additionally, in order to partially narrow the scope of this thesis, a large simplifi-

cation will be made regarding the UAV bodies. Specifically, rather than dealing with

the electromagnetic behavior of the entire, complex form of a fixed-wing aircraft, only

the fuselage of each element will be considered, which will in turn be represented as

large-radius, cylindrical dipole antennas, allowing the necessary electromagnetic field

and impedance calculations to be carried out with greater ease. In a future work, the
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entire aircraft may be considered, viewing the fixed-wing form as a type of crossed

dipole with topological perturbations; for this thesis, however, large-radius dipoles will

be of sufficient complexity, the necessary coupling mechanisms being more readily

apparent. In particular, for a given array of cylindrical antennas, two main forms of

inter-element coupling will be prevalent. For the first, consider two co-axial cylindrical

antennas, spaced some distance, z, apart. Because these cylindrical antennas have radii

comparable both to their lengths, and in some cases to the operating wavelength, the

characterization of the end-cap behavior thereof will be unusually important, as both

charges and currents will accumulate on said caps rather than vanishing. The first re-

active coupling mechanism, consequently, will involve the parallel plate capacitance

and inductance between the ends of each pair of co-axially aligned cylindrical antenna

elements, represented in fig. 2.16 shown below.

Figure 2.16: Concept of first reactive mechanism via parallel LC circuit in gap region

between elements.

This first mechanism will be shown to be predominantly capacitive, as the excess of

charge and parallel plate-like geometry at the dipole ends lend themselves to such ef-

fects more easily. This can be demonstrated by defining the capacitive reactance, XC ,

between the two ”plates” specifically, such that
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XC =
1

−2πfC
=
−2s

π2εfd2
, (2.16)

where s and d are the plate separation and diameter, respectively. Defined in this way,

it becomes clear how a negative reactance will be more dominant, especially at mod-

erately small element separations; the only sources of inductive reactance, by contrast,

will be somewhat negligible, resulting from the small, radial current paths on each plate,

either converging to, or diverging from, the center of each plate. As a brief aside, it’s

worth noting that any actual calculation of self- or mutual-inductances between these

plates is quite involved, well beyond its capacitive counterpart. If, for example, a static,

radially-outward directed, rational current density, J , is defined on one plate such that

J̄(ρ) =
2J0

ρd
ρ̂ (A/m), (2.17)

then the mutual inductance on plate two due to plate one, L12, may be found by noting

that

L12 ≡
Φ2

I1

=

∫
S2

(∇× Ā) · ds̄∮ 2π

0
J̄ · ds̄

=

∫
S2

(∇× µ
4π

∫
S1

J̄
R
ds) · ds̄∮ 2π

0
J̄ · ρ̂ρdφ

(H), (2.18)

where Φ2 is the magnetic flux through S2, S1 and S2 are the plate surfaces, Ā is the

magnetic vector potential, and R is the distance from a differential current source on

S1 to an observation point on S2. R in this case would defined such that

R =
√
z2 + ρ2 + ρ′ 2 − 2ρρ′ cos (φ− φ′) , (2.19)

where primed and unprimed coordinates indicate location on S1 and S2, respectively;

note that S1 has been assumed to be located at z′ = 0 for simplicity. However, even
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with this simplification, as well as that of assuming magnetostatic forms for both J̄ and

the Green’s function in the innermost integral, equation 2.18 for the mutual inductance

between the two plates is nonetheless comparable in difficulty, as would be the self-

inductance of the entire gap region, to those to be solved via computational methods

in later chapters. This difficulty is primarily due to the form of R, and consequently,

the integration of similar integrals will become a primary focus in the more general

time-varying case.

For the second mechanism, consider these same two cylindrical elements arranged

in parallel, or more generally in echelon; in this case, an LC-circuit similar to that of

the first mechanism can be used in modeling the reactance between the two antenna

lengths. For this mechanism, however, inductance is expected to be the more dominant

reactive effect. Using formulas derived in [42] and [43] in fact, a cursory analysis may

be quickly made. Specifically, define an inter-element reactance, Xparallel, such that

Xparallel = XC

∣∣∣∣XL ≈
cosh−1( s

2−2a2

2a2
)

−4π2εf`

∣∣∣∣2µf`cosh−1(
s

2a
) , (2.20)

where s is the axial separation of the elements, a represents element radius, ` repre-

sents element length, and
∣∣∣∣ represents the placement of two impedances in parallel.

Here, XC grows more rapidly than XL, being proportional to cosh−1(x2) rather than

just cosh−1(x), and thus contributes significantly less to the total reactance, per unit

variability in XC and XL, at even moderate separations. In fact, using the realistic an-

tenna parameters displayed in table 2.1, a clear example of how the reactance defined

in equation 2.20 is determined almost exclusively by XL is visible, as XC can be easily

replaced with an open-circuit with only negligible changes toXparallel. While not an es-

pecially accurate model of the reactance between two parallel elements, equation 2.20

does provide a general way to predict qualitatively how this second coupling mech-
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anism functions. More precise analysis of these mechanisms, however, will be con-

ducted in a later chapter. In the next chapter though, will begin a review of the general

theory and behavior of cylindrical antennas, focusing primarily on the less common,

large-radius variant.

ε µ a (m) s (m) l (m) f (MHz) XL(Ω) XC(Ω) Xparallel(Ω) Xparallel(2×XL) Xparallel(XC = inf)

ε0 µ0 0.1 5 1 1 8.0859 -1.8409 ×104 8.0894 16.1860 8.0859

Table 2.1: Note how the capacitance, XC , has little effect on the total reactance,

Xparallel .
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Chapter 3

Theory of Cylindrical Antennas

3.1 Basic Dipole Theory

3.1.1 Introduction

Being perhaps the simplest of all antennas, in terms of both excitation and electro-

magnetic field response, the thin-wire dipole antenna has been studied and analyzed

ad nauseam, almost every major literary work on antennas usually beginning with the

thin dipole as an introductory example. As such, the survey of dipoles reviewed here,

while necessary, will be kept as brief as possible, before moving into more rigorous,

and consequently less common, analyses of dipoles that will directly aid in the eventual

examination of thick dipoles. Additionally, the focus of this section will remain on the

methods of analysis themselves, and less so on the actual results obtained therein.

3.1.2 The Infinitesimal Dipole Antenna

The first dipole form worth reviewing is the infinitesimal dipole. Being only a one

dimensional structure, and having only minute length, the infinitesimal dipole is useful

in demonstrating the general approach by which antennas may be analyzed, whilst

minimizing the very real complexity typical of realizable antennas. As with almost
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any vacuum electromagnetic calculation, the electromagnetic fields, Ē and H̄ , will of

course be of primary interest. In antenna theory, these are very often found by way of

the auxiliary magnetic potential, Ā, defined very generally such that

Ā =
µ

4π

∫
V

J̄
e−jkR

R
dV , (3.1)

where J̄ is the current density distribution, and R relates the source and observation

field points. Here in fact, the only limitation on generality is in the use of the the free-

space Green’s function for Helmholtz’s equation, defined in [44]. However, in making

use of the various assumptions inherent to the infinitesimal dipole, such as allowing a

constant-valued Iz to replace J̄ by noting the antenna’s small, one-dimensional nature,

this generality can be traded for simplicity. In this way, the current distribution has

also been assumed to be exclusively axially directed, specifically along ẑ. After includ-

ing a few other assumptions, the only remaining non-trivial magnetic vector potential

component, Az, can now be simplified, as

Az =
µIze

−jkr

4πr

∫ `/2

−`/2
dz′ =

µ`Ize
−jkr

4πr
. (3.2)

Here, the infinitesimal physical size of the antenna has been used to reduce R to r

by treating R as constant over the minuscule radiating length such that r =
√
z2 + ρ2.

The magnetic and electric field intensities, Ē and H̄ , can subsequently be found by

noting that

Hφ =

[
1

µ
∇× Ā

]
φ

=
`Izρ

4πr2

[
1

r
+ jk

]
e−jkr , (3.3)

Eρ =

[
1

jωε
∇× H̄

]
ρ

=
j`Izρz

4πωεr3

[
−3

r2
+
−3jk

r
+ k

]
e−jkr , and (3.4)
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Ez =

[
1

jωε
∇× H̄

]
z

=
−j`Iz
4πωεr2

[
−3ρ2

r3
+
−3jkρ2

r2
+
k2ρ2 + 2

r
+ 2jk

]
e−jkr .

(3.5)

From here, with respect to the infinitesimal dipole, the next quantity of interest is an-

tenna gain. Making use of the time-averaged Poynting vector, W̄av, which can be de-

fined as 1
2
Re
[
Ē × H̄∗

]
, where H̄∗ is the conjugate magnetic field, the gain of this

antenna may then be found such that

GdB = 10 log10

(
4πr2

Pin
|Wav|

)
= 10 log10

(
4πr2

2Pin

∣∣Re
{
Ē × H̄∗

}∣∣)
= 10 log10

(
I2
z `

2ηk

8πPin
sin2 θ

[
1 +

(
k2 − 1

)
sin2 θ

] 1
2

)
.

(3.6)

Here, spherical coordinates are now in use, η is the wave-impedance, and Pin is the

power input to the system, excluding losses due to reflections along the transmission

line. It is, however, vitally important to note that this relatively simplistic gain pattern

was only found by excluding a number of the terms in r2
∣∣Re

{
Ē × H̄∗

}∣∣, specifically

those decaying faster than 1
r
, an action analogous to, but weaker than, the Sommerfeld

radiation condition. This simplification, sometimes referred to as the far-field approx-

imation, is of course valid only in a radiator’s far-field, where more rapidly decaying

terms contribute negligibly to the overall field pattern. Additionally, one other feature

of note in this analysis is the way in which it deviates from slightly more standard

ones, such as that given in [26]; specifically, by applying the far-field approximation

while in cylindrical coordinates, the resulting gain pattern is mildly more complex. The

above equation for antenna gain, consequently, hints at some of the subtler frequency-

dependent behaviors of the infinitesimal antenna. The gain pattern of the infinitesimal

dipole is pictured in fig. 3.1, demonstrating a very nearly isotropic pattern.
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Figure 3.1: Gain (dB) Pattern of λ/1000 Infinitesimal Antenna Operating at 100 MHz.

Finally, the last relevant element of this infinitesimal analysis is the characterization

of radiation resistance. Specifically, as is done in [26], the radiation resistance, Rr, of

an antenna will be here defined such that

Prad =
1

2
|Iz|2Rr , where (3.7)

Prad ≡
∮
S

W̄av · ds̄ , (3.8)

S is generally taken to be a spherical surface of arbitrary radius, and Rrad is the total

power radiated by the antenna. Prad is of course related to Pin such that Prad = ecdPin,

where ecd is the efficiency of the antenna, having losses due to conductive and dielectric

heating. When defined in this way, Rr for the infinitesimal dipole is such that
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Rr =
π`2η

λ2

(
2

15
+

3π

16r

)
=
π`2η

λ2

(
2

15
+

3π

16Nλ

)
; (3.9)

here, the extra 1
r

term remains due to having taken the far-field approximation while in

cylindrical coordinates. Consequently, this form of Rr gives mildly more information

than, for example, its counterpart in [26], demonstrating easy observation, if r is taken

such that r = Nλ, of the effect of choosing different limiting values for boundary

between the radiating and non-radiating near-fields. In particular, it should be noted

that, as mentioned in [45], the radiative near-field for a very electrically small antenna

has an approximate range of [λ, 2λ]. Thus, using (3.9) as the formula for radiation

resistance, the formula given on pg. 155 of [26], which states that

Rr = 80π2

(
`

λ

)2

, (3.10)

may then be recovered by assuming an N -value of 1.84, meaning the radiation re-

sistance value given by [26] considers all radiated power beyond 1.84λ, when operating

at 500 MHz. Alternatively, the formula given in [26] may also be approximately recov-

ered by forgoing the second term in (3.10), or in other words, allowing r → ∞ such

that

Rr ≈ 32π3

(
`

λ

)2

, (3.11)

where η ≈ 120π (Ω).

3.1.3 The Hertzian Dipole

In moving to moderately longer dipoles
(
` ∈

[
λ
50
, λ

10

])
, an additional assumption is

needed in order to maintain accuracy, as shown in [26]. Specifically, it will be as-

35



sumed, though innumerable empirical measurements have approximately verified this

assumption, that the current along the length of the dipole is triangular, corresponding

to a distribution like that shown in fig. 3.2.

Figure 3.2: Triangular current distribution of Hertzian dipole antenna. Taken from [26],

pg. 163.

Using the same analytical process as in the previous section, the Hertzian dipole may

be easily inspected, the only distinction being the use of a piece-wise, linear current

distribution. In this way, the axial current, Az, may be found such that

Az =
µIze

−jkr

4πr

(∫ 0

−`/2

[
1 +

2

`
z′
]
dz′ +

∫ `/2

0

[
1− 2

`
z′
]
dz′

)
=
µ`Ize

−jkr

8πr
;

(3.12)

this is exactly one half that of the infinitesimal dipole, which intuitively makes sense,
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the relevant triangular current-area being half that of the rectangular constant current-

area. The fields, Ē and H̄ , then naturally possess half the magnitude of those in section

3.1.2, while the Poynting vector, by virtue of its definition, will be one-fourth its previ-

ous value. With respect to radiation resistance however, the presence of a non-constant

current distribution does necessitate a marginally greater degree of definitional preci-

sion. Specifically, because radiation resistance is defined to be inversely proportional to

the square of the magnitude of axial current, Iz, it becomes necessary to denote specif-

ically where said current is located on the antenna. Thus, for a wire antenna, radiation

resistance, Rr will be defined at the location of maximum current, while the input re-

sistance, Rin, will be defined to correspond to the current at the antenna’s terminals.

In many cases, these two current locations will be identical, especially for symmet-

ric topologies like the center-fed dipole; in the general case with arbitrary excitations,

however, this overlap is not guaranteed. Additionally, other resistances, such as that

corresponding to the average current value, may of course be defined, but the two de-

fined defined thus far will be of primary focus in this thesis. Following this improved

delineation, the radiation resistance of the Hertzian dipole will be one-fourth that of its

predecessor, the maximum current value being unchanged.

3.1.4 The Thin-Wire Dipole

Unsurprisingly, the next topic of review, the thin-wire dipole
(
` > λ

10

)
, permits even

fewer of the initial infinitesimal assumptions, the most significant of these being the

supposed quasi-constant behavior of the quantity R. Specifically, because the antenna

is of size comparable to λ itself,R can no longer be presumed independent of the source

position
(
ρ

′
, φ

′
, z′
)
, meaning now
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R =

√
z2 + ρ2 + (z′)2 − 2zz′ =

√
r2 + (z′)2 − 2rz′ cos θ , (3.13)

where the spherical coordinates (r, θ, φ) have been mixed in. In particular, because the

integral of a Green’s functioning containing the quantity R is no longer trivial, and in

fact can often be unsolvable depending on the choice of current distribution, a method

by which to overcome this difficulty is needed. A common solution thereof is the

generation of approximate series expansions; the form of R lends itself especially well

to binomial series.

Binomial series, as discussed in [46] and [47], is a generalization of the binomial

theorem, which states that

(x+ y)k =
k∑

n=0

(
k

n

)
xr−kyk , where (3.14)(

k

n

)
≡ k!

n!(k − n)!
for k, n ∈ N. (3.15)

The important distinction between the binomial theorem and its corresponding gener-

alization is in their respective limitations; specifically, the former allows any complex-

valued x and y but only non-negative integers for k, while the latter, by contrast, may

have any complex k, but requires that |x| > |y|. This restriction on the generalization

is itself the convergence condition for binomial series, as this generalization, unlike its

predecessor, will typically have an infinite number of terms. This in turn is due to the

way in which the binomial coefficient, defined in equation (3.15), is itself extended to

arbitrary k, as factorials are not typically defined for values other than non-negative in-

tegers (though the gamma function can sometimes be used to overcome this limitation).

As a result, binomial series is then defined such that
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(x+ y)k =
∞∑
n=0

(
k

n

)
xr−kyk , where (3.16)(

k

n

)
≡ (k)n

n!
, (3.17)

and (k)n is the nth falling Pochhammer function of k.

Thus, the quantity R may be represented via binomial series such that

R =
([
r2
]

+
[
(z′)

2 − 2rz′ cos θ
]) 1

2
=
∞∑
k=0

k∑
n=0

(
1
2

)
k

n! (k − n)!
r1−k−n (z′)

k+n
(−2 cos θ)k−n ,

(3.18)

where an application of the standard binomial theorem has been utilized as well. In this

way, the terms of an approximate binomial expansion of R may be easily generated,

especially with the aid of symbolic algebra systems, such as those in MATLAB and

Wolfram Mathematica. Consequently, the first several terms of this expansion, when

rearranged, are such that

R ≈ r − z′ cos θ +
1

r

(
(z′)2

2
sin2 θ

)
+

1

r2

(
(z′)3

2
cos θ sin2 θ

)

+
1

r3

(
(z′)4

2

[
5

8
sin2 θ cos2 θ − 1

8
sin2 θ

])
.

(3.19)

Given that this expansion yields a power series in terms of z′ (or a Laurent series in

terms of r), the benefit in using this method to approximate R is now quite clear, power

series being much more easily integrated than radicals. The desired accuracy of the ex-

pansion will then of course be directly determined by the number of terms used; for an
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antenna’s far-field, the first two terms alone are often considered sufficient. It is worth

repeating here that in order for R to be well represented by the above expansion, it is

imperative that |r2| >
∣∣(z′)2 − 2rz′ cos θ

∣∣, lest the full binomial series fail to converge.

This requisite is easily fulfilled whenever r � z′, and consequently this expansion is of

general use only in the radiating near- and far-fields (Fresnel and Fraunhofer regions)

of the antenna.

The second complication in moving to longer dipole antennas is in the form as-

sumed by the current distribution. Being a significant portion of λ lengthwise, it is

no longer appropriate, in general, to presume simple current schemes like the constant

current or triangular current models. That being said however, for wire antennas whose

radii a are sufficiently close to zero (a ≪ λ), it has been empirically found that the

current distribution is closely approximated by a sine wave, in a fashion similar to fig.

3.3.

Figure 3.3: Assumed sinusoidal current distribution. Valid when a ≪ λ. Taken from

[26], pg. 176.

In the more general case of cylindrical dipoles, however, the aforementioned sine-
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wave presumption is not entirely appropriate, and even for very thin dipoles, more

accurate analyses may be made by avoiding such assumptions. Consequently, the ob-

vious question becomes what current distribution should be presumed, or better still,

how might such an ideal distribution be determined analytically? In the following sec-

tions, the development of such an analytical method will be reviewed. Additionally, the

now relevant question of antenna excitations will necessarily be addressed.

3.2 Analysis of Thin Cylinders

3.2.1 On The Formulation of R and Other Assumptions For Thin

Cylinders

When thin dipole antennas with non-zero radii, which will often be referred to as thin

cylindrical antennas, are considered, several adjustments to the form of the magnetic

vector potential integral formula, equation (3.1), will necessarily be made. The first of

these will be the way in which the current density, J̄ , is treated. Specifically, as was

mentioned in the previous section, the current density along even a quasi-1D dipole an-

tenna is best calculated directly, rather than assumed a priori. For even slightly thicker

cylindrical antennas, this is doubly true. In its place however, a different assumption

will be made by utilizing the thin nature of the cylindrical antennas discussed here; in

particular, by assuming the current density distribution to be entirely z-directed, or in

other words having only components in the ẑ direction, the complexity of calculating

said current will be drastically reduced. Rephrased, this is to say that said antenna will

be of a sufficiently small, cylindrical radius, (a � λ), such that the antenna may be

assumed too thin to host radially or circumferentially directed oscillations. In fact, by

presuming this singly-directed current distribution, in coordination with one other as-

41



sumption, the current density, J̄ may be replaced entirely with a scalar axial current, Iz.

Here, the aforementioned additional assumption is that of rotational, as well as radial,

symmetry; specifically, due to the topological symmetry of the antenna and its corre-

sponding excitation, this presumption regarding azimuthal independence will be able

to be leveraged quite frequently.

The next major distinction when analyzing three-dimensional antennas will be in

the form of the Green’s function used. While the Green’s function will maintain the

same form with respect to the quantity R, R itself however, being the distance be-

tween differential source and observation segments, will require re-examination. Con-

sequently, it will be useful here to discuss how the most general form of R for cylindri-

cal coordinates may be achieved, and subsequently which assumptions may be used to

lessen the soon to be accumulated complexity. By inspecting fig. 3.4,

Figure 3.4: Visualization of a cylindrical coordinate system. Taken from [48].

a position vector R1 for arbitrary (ρ, φ, z) may be generated, as
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R1 = ρ cosφx̂+ ρ sinφŷ + zẑ ; (3.20)

here obviously, the R1 has been held in Cartesian coordinates to avoid the inconstancy

of cylindrical unit vectors. Thus, as R = |R2 −R1| where R2 and R1 are the position

vectors of the differential observation and source segments respectively, R may then be

expressed such that

R = |R2 −R1| = |[ρ cosφ− ρ′ cosφ′] x̂+ [ρ sinφ− ρ′ sinφ′] ŷ + [z − z′] ẑ|

=

√
(z − z′)2 + ρ2 + (ρ′)2 − 2rr′ cos (φ− φ′) .

(3.21)

From here, using the assumption of small radii (a � λ) once again, ρ′ may then be

allowed to vanish (ρ→ 0) such that

R =

√
(z − z′)2 + ρ2 . (3.22)

Proof for the accuracy of this simplification is given in section 1.7 of [49]. When R in

this form is substituted back into the free-space Green’s function of equation (3.1), that

Green’s function becomes what is commonly referred to as the approximate kernel

of Hallén’s equation. By contrast, R in its unabridged form corresponds to the exact

kernel.

Finally, given that current density distributions may no longer be assumed, a brief

discussion on antenna excitations is necessary, before beginning the derivation of Hallén’s

equation. With particular respect to dipole antennas, two common forms of excitation

are common, with the second one, the magnetic frill source, being purely theoretical.

Because, for the purposes of this thesis, the focus will be centered primarily on the

determination of largely source-independent impedance matrices of both individual an-
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tenna elements, as well as entire arrays, the precise method by which the elements are

excited is not of great importance. It is nonetheless useful, however, to at least dis-

tinguish, for a given analysis, which excitation is being presently considered such that

appropriate comparisons may be made. The first of the aforementioned methods of

excitation is the more classical voltage-gap excitation, which presumes some constant

voltage, V0 drop across the antenna terminals, and will be assumed in the following sev-

eral sections. The magnetic frill source, however, can be of great usefulness at times,

as demonstrated in [50].

3.2.2 Derivation of Hallén’s Equation

The goal of the section will be the demonstration of how a fairly general equation, from

which an axial current Iz may be determined, may itself be derived from Maxwell’s

equations; this integral equation is most often known as Hallén’s equation. As many

parts of this section will contain well-worn aspects of electromagnetic theory, the or-

dering of this section will be based heavily upon the presentations made in [49], [51],

[52]. For the sake of continuity, Maxwell’s equations may be restated such that

∇ · Ē =
ρ

ε
, (3.23)

∇ · B̄ = 0 , (3.24)

∇× Ē +
∂B̄

∂t
= 0 , and (3.25)

∇× B̄ − µε∂Ē
∂t

= µJ̄ . (3.26)

Linear, homogenous, and isotropic material assumptions have of course been made.

Thus, noting that B̄ is purely solenoidal by equation (3.24), B̄ may then, by Helmholtz’s
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decomposition theorem, be set equal to the solenoidal portion of an otherwise arbitrary

vector field, Ā, such that B̄ = ∇×Ā. Additionally, because Ā is partially arbitrary, and

thus has an unspecified irrotational term, Ā may be defined such that Ā ≡ Ā0 − ∇ψ,

where then B̄ = ∇ × Ā = ∇ × Ā0. Assuming the vector field Ā to have continuous

second derivatives everywhere outside the antenna,∇× Ā may then be substituted into

Faraday’s law, equation (3.25), such that

∇× Ē +
∂

∂t

(
∇× Ā

)
= ∇×

(
Ē +

∂Ā

∂t

)
= 0 , (3.27)

where the order of partial derivatives applied to Ā has been reversed. Here, the sum in

the middle portion of equation (3.27) is visibly lamellar, such that it may itself be freely

equated, once again by Helmholtz decomposition theorem, to the negative gradient of

a scalar field, φ, meaning

Ē = −∇φ− ∂Ā

∂t
. (3.28)

If Ā is then substituted for Ā0 −∇ψ, then

Ē = −∇φ− ∂

∂t

(
Ā0 −∇ψ

)
= −∇φ− ∂Ā0

∂t
+∇

(
∂ψ

∂t

)
= −∇φ0−

∂Ā0

∂t
, (3.29)

where φ has been set equal to φ0 + ∂ψ
∂t

. This last substitution is valuable in and of

itself as it demonstrates how the two potential functions defined thus far, Ā and φ,

may be inter-related, as well as how the assumption of potential functions for B̄ and

Ē has lead to the creation of an entirely unspecified scalar function, ψ. Specifically, ψ

represents a degree of freedom in the treatment of these fields, and will consequently be

of paramount importance in defining the Lorenz gauge shortly. In order to define this
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Lorenz gauge, however, the degree of freedom represented by ψ must first be utilized;

ψ, in particular, will be defined such that

∇ · Ā0 −∇2ψ + µε
∂φo
∂t

+
∂2ψ

∂t2
= 0 . (3.30)

Satisfaction of this partial differential equation is exceptionally useful as it leads

directly to the Lorenz gauge, equation (3.31), by making use of the definitions of Ā and

φ, or namely that

∇ · Ā+ µε
∂φ

∂t
= 0 , as (3.31)

∇ · Ā = ∇ · Ā0 −∇2ψ , and (3.32)

∂φ

∂t
=
∂φ0

∂t
+
∂2ψ

∂t2
. (3.33)

This established gauge condition is in turn worthwhile, as it functions as a de-

coupling mechanism when Maxwell’s equations are raised to the second order via sub-

stitution of the potential functions such that

∇×∇× Ā− µε∂
2Ā

∂t2
+ µε∇

(
∂φ

∂t

)
= µJ̄ , and (3.34)

∇2φ+
∂

∂t

(
∇ · Ā

)
= −ρ

ε
. (3.35)

Specifically, equations (3.34) and (3.35) may be de-coupled such that
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∇×∇× Ā− µε∂
2Ā

∂t2
−∇∇ · Ā = µJ̄ , and (3.36)

∇2φ− µε∂
2φ

∂t2
= −ρ

ε
. (3.37)

Finally, using the vector identity that

∇×∇× Ā−∇∇ · Ā = −∇ · ∇Ā = −∇2Ā , (3.38)

which may be taken as the definition of the vector laplacian in arbitrary coordinates,

equation (3.36) is transformed such that

∇2Ā+ µε
∂2Ā

∂t2
= −µJ̄ ; (3.39)

this equality is typically referred to as the inhomogenous Helmholtz equation.

From here, Helmholtz’s equation, along with equation (3.37), where φ corresponds

to the scalar charge potential, may be simplified by the application of some of the afore-

mentioned assumptions regarding thin cylindrical antennae. Firstly, because all antenna

systems mentioned throughout this thesis are strictly linear, and thus no frequency scal-

ing of any kind occurs, the time-harmonic condition, ∂
∂t
→ jω, may be introduced into

equation (3.39) such that

∇2Ā+ k2Ā = −µJ̄ , (3.40)

where k is once again the operational wave number. Additionally, by assuming a

strictly z-directed current density, such that J̄ = Iz, where Iz is a scalar function of z,

the magnetic vector potential will be similarly transformed such that Ā = Az ẑ, as the
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direction of Ā follows that of J̄ by equation (3.1). This transformation is visible when

∇2Az + k2Az = −µIz . (3.41)

By subsequently assuming circumferential symmetry of Az, and by picking ρ to

be just beyond the boundary of the cylindrical antenna, equation (3.41) may then be

further simplified such that

[
d2

dz2
Az + k2Az

]
ρ=a

= −µIz . (3.42)

Now, because the voltage-gap excitation model has been used in the preceding anal-

ysis, a couple of brief caveats are in order. Firstly, by virtue of assuming a physical

gap in the center of the cylindrical antenna, say from −δ to δ, there exists a small re-

gion between the antenna halves through which no current may flow. Consequently,

the domain over which equation (3.42) is applicable is reduced from [−`/2, `/2] by re-

moving this gap region. Additionally, because the excitation is centrally located along

the length of the dipole, exclusively even-symmetric current modes will exist, meaning

the subsequent analysis, despite being restricted to just the upper half of the antenna,

will apply equally well to both halves. Finally, equation (3.42) may be generalized to

partially include the effects of conduction loss, as is done in [49], by equating Ohm’s

law for electromagnetics, which states that

(
Ēz
)
ρ=a

=
1

σ
J̄ =

1 + j

2πa

√
ωµ

2σ
Iz = ziIz , (3.43)

to the time-harmonic definition of Ē, where, due to the Lorenz gauge,

Ē =
ω

jk2

(
∇∇ · Ā+ k2Ā

)
. (3.44)
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Thus, by forming this equality, the −µ term of equation (3.42) may be replaced with

the more general jωµεzi, such that

[
d2

dz2
Az + k2Az

]
ρ=a

= jωµεziIz ; (3.45)

here, zi may be viewed as the surface impedance of the cylindrical dipole, the exact of

derivation of which is contained in [53].

In order to continue progressing towards Hallén’s equation, a general solution to

equation (3.45) will be necessary; from the theory of ordinary differential equations, it

is well-established that this may be achieved through the superposition of homogenous

solutions, along with a particular solution of the inhomogenous form. The general

homogenous solution for differential equations of this sort is well known, where

Ahomogenous = C1 cos kz + C2 sin kz , (3.46)

and where C1 and C2 are of course as of yet undetermined. The particular solution is

provided by [49], where

Aparticular = jωµεzi
∫ z

δ

I(s) sin k(z − s)ds ; (3.47)

that this particular solution is indeed a solution to equation (3.45) may be verified by

use of the general formula for derivatives of a definite integral, which states that when

Ψ =

∫ b

a

f(s, z)ds , (3.48)

dΨ

dz
=

∫ b

a

df

dz
ds+ f(b, z)

db

dz
− f(a, z)

da

dz
. (3.49)
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It is worth noting here that, in order to maintain even-symmetry, Ahomogenous has its

second term negated for the lower half of the antenna, while the lower limit ofAparticular

becomes −δ.

Before synthesizing the full form of Hallén’s equation, however, analysis of the

charge potential function described in equation (3.37) will allow the determination of

one the undetermined constants in equation (3.46). In particular, (3.37) has a time-

harmonic form where

[
d2

dz2
φ+ k2φ

]
ρ=a

=
1

jωε

dIz
dz

, as (3.50)

jωρ+
dIz
dz

= 0 (3.51)

by the principle of charge conservation. Additionally, similar to equations (3.43) and

(3.44), the differential equation for scalar charge potential may be generalized to in-

clude the effects of surface impedance. This is done by first noting that the Lorenz

gauge has a simplified, time harmonic form such that

dAz
dz

= −jωµεφ , (3.52)

before then re-equating, and subsequently differentiating, Ohm’s law with the definition

of Ē in terms of the potential functions. Consequently,

− d

dz

(
Ēz
)
ρ=a

=
d2φ

dz2
+ jω

dAz
dz

=
d2φ

dz2
+ k2φ = −zidIz

dz
, (3.53)

where φ has similar upper-half solutions defined such that
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φhomogenous = jν [−C1 sin kz + C2 cos kz] , and (3.54)

φparticular = −kzi
∫ z

δ

I(s) cos k(z − s)ds . (3.55)

Here, ν is the phase velocity of propagation. The constants C1 and C2 are maintained

through application of the time-harmonic Lorenz gauge, equation (3.52), which leads

to an expected odd-symmetry in the scalar charge potential function. Thus, the voltage-

gap, Vδ is then subsequently determined such that

Vδ = φ(δ)− φ(−δ) = 2φ(δ) = 2jν [−C1 sin kδ + C2 cos kδ] , (3.56)

which in turn leads to a value for C2, as now

C2 =
C1 sin kδ − jVδ

2ν

cos kδ
. (3.57)

Now, finally, by equating equation (3.1) with the general solution to equation (3.45),

Hallén’s equation for a thin cylindrical antenna (upper-half only) may be obtained such

that

(∫ −δ
−h

+

∫ h

δ

)
Iz(z

′)Kthindz
′ =

2π

η cos kδ
[2νC1 cos (k [z − δ])− jVδ sin kz] + 4πjωεzi

∫ z

δ

I(s) sin (k [z − s]) ds ,

(3.58)

where
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Kthin =
e−jkR

R
, and (3.59)

R =

√
(z − z′)2 + a2 . (3.60)

The value η is of course the relevant wave-impedance. For the lower half of the antenna,

the first of the two terms on the right in equation (3.58), as well as the lower limit on

the rightmost integral, are negated. Additionally, when the voltage-gap is assumed to

be negligible in terms of physical size such that δ → 0, equation (3.58) reduces to the

more common form, stating that

∫ h

−h
Iz(z

′)Kthindz
′ =

2π

η
[2νC1 cos (k [z − δ])− jV0 sin k|z|] . (3.61)

From here, as pointed out in [54], C1 may be determined by making use of another

assumption reserved for thin cylindrical antennas, namely that the current distribution

vanishes at the ends of the antenna, Iz(±h) = 0. Interestingly, this assumption also

hold for cylinders with semi-spherical end caps. Equation (3.61), consequently, is one

of the more common forms of Hallén’s equation, which may be used to solve for the

approximate current distribution, when used in conjunction with equations (3.59) and

(3.60).

3.3 Notes on General Cylindrical Antenna Analysis

The derivation of the previous section does of course come with some significant

caveats and limitations, however. In particular, aside from the assumption of a purely
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axial, z-directed current distribution along the radiating cylinder, a vital assumption

made was that of a thin dipole structure, (a � h). If this assumption is restricted, the

previously defined Kthin quantity is necessarily substituted for Kthick, where

Kthick =

∫ π

−π

e−jkR

R
dφ , and (3.62)

R =

√
(z − z′)2 + ρ2 + a2 − 2ρa cos (φ− φ′) . (3.63)

Here, it is important to note that the inclusion of this ”exact” kernel into Hallén’s

integral equation drastically complexifies any potential solution to such an extent that

virtually all analytical solutions involve method of moments (MoM) formulations like

those described in the next chapter. In fact, while [49] does offer some non-MoM, series

solutions to the approximate kernel formulation in equation (3.61), this equation too,

is now virtually always solved via MoM-based methods. Nonetheless, a useful series

representation of Kthick, first presented in [55], is such that

Kthick =
e−jkR

R
− jk

∞∑
n=1

(k2ρa)
2n

(2n− 1)!!h
(2)
2n [kR]

(2n)! (2n)!! (kR)2n , (3.64)

where h(2)
2n [kR] is the spherical Hankel function of the 2nd kind and order 2n.

Another formulation of Hallén’s equation useful for excitation via external, incident

waves, often referred to as Pocklington’s equation, can be found in [50]. Here,

(
∂2

∂2z
+ k2

)∮
S′
Jz(r̄

′)Kthick (r̄, r̄′) dS ′ = −jωεEi
z (r̄) . (3.65)

In equation (3.64), the presumption of the homogeneity of the z-directed current den-

sity, J̄z, with respect to azimuth and radius has notably been dropped.
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Chapter 4

The Method of Moments

4.1 General Methodology

Broadly speaking, the Method of Moments is a generalized procedure by which inho-

mogenous linear equations may be solved. In particular, as is done in [56], consider the

general linear form where

Lf = g . (4.1)

Here, f , g, and L are defined such that f : U → V , g : U ′ → V ′, and L : V → V ′

respectively, though it will be assumed herein that U = U ′. In using moment methods,

it is also generally the case that g, being the “system input”, is assumed known, while f ,

being the “system response”, is not. Additionally, let f be such that it may be expanded

in an infinite series such that

f =
∑
n

αnfn , (4.2)

where αn are as of yet undetermined constants, and fn are pre-selected basis functions.

In the case of time-harmonic electromagnetics, these basis functions are often trigono-

metric functions, complex exponential functions, Bessel functions, or something simi-
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larly useful. It is important to note here that, now that f has been expanded into a series

wherein only the constants αn are undetermined, the subsequent steps described herein

will seek to determine the values αn rather than f directly, as equation (4.2) will yield

f from αn.

Furthermore, the question of whether f may in fact be represented by such an ex-

pansion is not necessarily trivial. Because equation (3.61) for example, whether in the

approximate or exact form, contains a factor of 1
R

, and is thus prone to singularities

near the voltage gap at the center of the cylinder, this question is often, surprisingly, of

great import. In fact, attempts to efficiently circumvent the singularities that do arise

is a very common theme in MoM-related antenna literature, as can be seen in [50],

[57]–[59]. For the sake of computability, equation (4.2) is also typically reduced to

an approximate, finite sum of size N , wherein solution convergence is then partially

dependent upon the size of this sum.

Subsequently, this sum may be substituted back into equation (4.1), where, by the

linearity of the operator L,

∑
n

αnLfn = g . (4.3)

Next, in order to reduce equation (4.3) into a matrix problem from which αn may be

extracted, the known product Lfn will necessarily be made the argument of a linear

functional. Typically, this functional is an inner product defined such that

〈wm, Lfn〉 =

∫
wmLfndU . (4.4)

The function wm is a “weighting” function, and the choice of such will, like the

basis functions, greatly impact the rate at which the end solution for f will converge,

as N and M are increased. M is of course the number of unique but related weighting
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functions, wm, used to form an M × N matrix, although setting M equal to N is also

common. As such, more often than not, the functions wm are either chosen to match

the basis functions fn (Galerkin’s method), or are selected to be Dirac delta functions

that “sample” Lfn and g across the domain U (point matching). Thus, in the case of

Dirac delta functions,

〈wm, Lfn〉 =

∫
δ(m)LfndU = Lfn

∣∣∣∣
m

. (4.5)

This also means equation (4.3) may now be re-written such that

∑
n

αn〈wm, Lfn〉 = 〈wm, g〉 . (4.6)

Finally, the constants αn may then be extracted via inverting, or in some other manner

solving, the matrix equation that states


〈w1, Lf1〉 〈w1, Lf2〉 . . . 〈w1, LfN〉

... . . . . . . ...

〈wM , Lf1〉 . . . . . . 〈wM , LfN〉



α1

...

αN

 =


〈w1, g〉

...

〈wM , g〉

 . (4.7)

Consequently, the Method of Moments, while not necessarily complex when treated

in a generalized manner, does hinge on a few key factors. Firstly, as was discussed

above, it is critical to ensure that the function f is unlikely to possess discontinuities or

any other abnormalities that would render its representation by way of series expansion

invalid. In the case that such an abnormality does appear, efforts to isolate and extract

the singularity-causing portion of f are often advisable, as is done in [57], [58].

Secondly, as appropriate choice of basis functions can greatly reduce computation

times, it is often useful to choose basis functions close in shape to the expected solu-
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tion, when known. To this end, it can also be tremendously convenient to use “sub-

sectional” basis functions, wherein each fn is non-vanishing for only a small subset

of U. Common examples of these include pulse functions, triangle functions, and win-

dowed trigonometric functions like those used in [58], [60], [61]. Additionally, when

using subsectional bases, it is interesting to note that the M × N matrix of equation

(4.7), when applied to radiators like those described in equations (3.64) and (3.67), is

equivalent to the impedance matrix described in equation (2.13), the cylinder forming

an N-port matrix that relates every subsection to every other.

Finally, while point-matching may be an especially convenient choice of weighting

function, Galerkin’s method does at times hold an advantage, in particular when the

basis functions in use have orthogonality conditions over the domain U. This is in fact

typical in cases such as Fourier series, or Chebyshev, Legendre, or Laguerre polynomi-

als, etc.

4.2 Intricacies Related to The Modeling of Cylindrical Antennas

In this thesis, because common antenna properties have been assumed, namely prop-

erties such as passivity and linearity, a few useful insights regarding the modeling of

cylindrical radiators may be noted. Firstly, by virtue of the two aforementioned prop-

erties, it can be expected that the response spectrum of such an antenna system will

very closely match that of the initial excitation. Consequently, as opposed to using,

for example, whole-domain, Fourier series basis terms, wherein a single term, αi, may

be defined such that αi = ai sin(ωit), subsectional basis terms may be quite advanta-

geous. Specifically, while whole-domain αn will have a single term corresponding to

the modeled excitation frequency, every term in subsectional αn will be at the appro-

priate frequency, in a form similar to αi = ai sin(ωt)wi(t), where wi(t) is an arbitrary
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windowing function. Further advantages of subsectional bases are discussed in [58],

where particular focus is placed on the limited accuracy of whole-domain techniques

with respect to electrically shorter, thicker cylinders.

Additionally, as one considers the specific strategy by which to model a cylindri-

cal antenna, the electrical and relative proportions of the antenna become a significant

factor. In particular, as the electrical size, length-to-radius ratio, and subsection, or

“mesh”, size of the cylinder shrink, significant limitations and restrictions may become

relevant. Specifically, if one were to take the operator L as the integral of equation

(3.64), wherein the simpler, approximate kernel is utilized, the approximate nature of

Kthin would greatly affect the accuracy of any solution to the currents on the cylinder.

The bounds suggested in [58] are such that use of Kthin should be limited to cylinders

where

∆

a
≥ 10 and, (4.8)

λ

a
≥ 100 . (4.9)

Here, ∆ is the size of a single subsection, and a is of course the cylinder radius. These

bounds prevent the radius from becoming large relative to either the excitation wave-

length or the subsection size, at which point the accuracy of Kthin has been shown to

be minimal. Further restrictions are of course implicit in the aforementioned ones, as a

sufficient number of subsections are required in any moment method in order to ensure

accuracy. Thus, as the radius, a, becomes larger, it becomes increasingly necessary that
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L

λ
≮ 0.5 and, (4.10)

L

a
≮ 100 , (4.11)

lest the previous limitations be encroached upon. L, here, is the length of the cylinder

in question.

Utilization of the kernel in equation (3.67), Kthick, will of course, by contrast, obvi-

ate the need for any of these restrictions, as it represents the “exact” kernel to Hallén’s

equation, maintaining only a few of the initial assumptions made early in the derivation

of Hallén’s equation. This increase in accuracy does, however, naturally come with a

tremendous increase in complexity; the nature of analytical solutions under such added

complexity is visible in works such as [58], [60], [61]. Even so, the model studied

in [60] and [61] is of particular value as it also takes into account the ramifications

of charges collected at the end caps of the radiating cylinder, in addition to axially-

directed current distributions. As this thesis concerns itself with the study of the serial

coupling between coaxially-aligned cylinders, this added consideration would under-

standably be immensely useful. However, at this point, while the combined works of

[60] and [61] do present an extremely comprehensive analysis of the cylindrical radia-

tor, the computational costs of utilizing closed-form analytical solutions become more

relevant. In particular, many of the numerous integrals involved in [60] are necessarily

solved via intricate series solutions; many of these series solutions, in turn, converge

rather slowly relative to their purely numerical counterparts. In fact, in comparison to

the speed of common commercial electromagnetic solving software like Ansys HFSS

or CST, such analytical methods are highly impractical, presenting less converged solu-

tions in a greater amount of time. This problem is then, of course only exacerbated by
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extending the analysis to an array of large-radius cylinders. Consequently, the remain-

der of this thesis, starting in chapter 5, will focus exclusively on analyses performed in

Ansys HFSS.
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Chapter 5

Trends in the Singular Thick Dipole

5.1 Degradation in Impedance Behavior

As discussed at the end of the previous chapter, because of the tremendous complex-

ity involved in seeking purely analytical solutions to the fields of not only individual

cylinders with substantial radii, but also cylindrical antenna arrays, the results demon-

strated herein will be taken from simulations built in Ansys HFSS. Furthermore, when

discussing cylindrical antennas, it is rather useful to highlight how the behavior of such

antennas is related to, and deviates from, that of more idealized wire antennas. In fig.

5.1, for example, the impedance behavior of an ideal dipole is shown, where the half-

wave behavior (at 3 MHz) is around the expected value.
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Figure 5.1: Spectral Impedance Behavior of an Ideal, Half-wave (at 3 MHz) Dipole

However, as shown in fig. 5.2 and 5.3, these same curves change drastically as the ra-

dius of the wire antenna grows with respect to the dipole’s length. The first observation

to be made here, in fig. 5.2, is how both the peak resistance and that corresponding to a

half-wavelength (3 MHz) drop off rather rapidly as the antenna radius grows, or equiv-

alently, as the length-to-radius ratio shrinks, the metric used in the legend in fig. 5.2

and 5.3. Understandably, this trend is troublesome for most applications for a number

of reasons. In particular, this trend will be most problematic for performance metrics

like radiation efficiency and mismatch loss. As is described in [26], radiation efficiency,

ecd, is such that
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Figure 5.2: Degradation in Resistance of a Half-wave (at 3 MHz) Dipole

Figure 5.3: Degradation in Reactance of a Half-wave (at 3 MHz) Dipole
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ecd =
Rr

Rr +RL

, (5.1)

where Rr is the same radiation resistance as shown in fig. 5.1 and 5.2, and RL is

the equivalent loss resistance due to the thermal dissipation of energy in the antenna’s

conducting and dielectric materials. Thus, as the radiation resistance of the cylindrical

antenna drops, even if the antenna can still be matched to some low-impedance system,

the radiation efficiency of the antenna would nonetheless continue to plummet. This

in turn of course means an increase in the amount of waste heat present in the system,

indicating poor use of the system’s available resources. Additionally, for the majority

of more realistic systems which cannot be easily designed to have arbitrarily small

characteristic impedance, the mismatch loss between the antenna and system will also

grow rapidly.

A readily obtained, albeit somewhat simplified, explanation for this behavior is pos-

sible by relating the current paths along the surface of a cylindrical dipole to the lumped

resistors found in basic circuit theory. Specifically, if one pictures the ideal, infinites-

imally thin, half-wave dipole, wherein only a single current path exists, as a singular,

high-valued resistor (the reactive portion of the dipole being momentarily ignored), then

a thicker, cylindrical dipole may in turn be viewed as any number of similar resistors,

connected in parallel, as a large number of parallel current paths exist on the surface of

a thick cylinder. Additionally, as the “resistance” of these current paths is primarily de-

termined by said path’s length, it is understandable how the cumulative effect of these

parallel paths is to reduce the “equivalent resistance” of the overall cylinder, analogous

to the behavior of parallel resistors in elementary circuit theory. Thus, this also ex-

plains the asymptotic behavior of the cylinder’s resistance as it drops toward zero with

increasing radius, as, in the lumped case,
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lim
N→∞

N∑
i=1

[
1

Ri

]−1

= 0 (5.2)

with asymptotic decay. Similarly, with respect to reactances, hypothetical, parallel ca-

pacitors and inductors may of course be conceived. In this case, the change in frequency

behavior in fig. 5.3 is reasonably explained by way of analogy to lumped components

once again. In particular, as capacitances and inductances act oppositely when situ-

ated in parallel, it is easy to imagine how, with increasing cylinder radius, the resultant

effects on the cylinder’s effective capacitance and inductance will also be opposites.

Consequently, the overall cylinder reactance will of course be affected, as the ratio ZL
ZC

will change proportionally to LC, L now being the cylinder’s effective inductance.

Furthermore, as the electrical length of this single dipole shrinks, it is to be expected

that the antenna’s total resistance would shrink even more, as the current paths’ lengths

will naturally be reduced. Therefore, as is visible in fig. 5.4, it is clear that a cylinder

with a length of λ/20 would be expected to have minimal radiation resistance, making

it a very poor radiator in isolation. In fig. 5.5, similar effects of short electrical length

are present; namely, the relatively flat, monotonic spectral behavior observed is easily

explained by the inability of such an electrically small structure to support resonant

modes anywhere in the tested band.
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Figure 5.4: Degradation in Resistance of a λ/20 (at 3 MHz) Dipole

Figure 5.5: Degradation in Reactance of a λ/20 (at 3 MHz) Dipole
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In summary, as is visible throughout this section, any move away from the ideal,

half-wave dipole towards a more cylindrical radiating body serves as a detriment to

performance. In particular, the hardest-hit property is that of radiation resistance. In

terms of performance, this defect will naturally manifest as poor radiation efficiency

and increased return loss. Thus, it is these two performance factors that will be of

central importance moving forward, and, in the context of tightly-coupled dipole arrays,

it will be these negative trends that this thesis aims to counter.

5.2 Introduction of Total Efficiency

As was discussed in the previous section, losses due to heating and mismatch are of

primary importance in the coming analyses. Consequently, in this section, a somewhat

more atypical metric will be introduced that effectively combines the two types of loss

into a more useful, single parameter, namely total efficiency. In particular, radiation

efficiency, in addition to the definition presented in equation (5.1), is also often defined

such that

ecd =
Radiated Power

Delivered Power
where, (5.3)

(5.4)

RadiatedPower =
1

2

∮
S

Re
[
Ē × H̄∗

]
dS . (5.5)

Mismatch efficiency is, by contrast, typically such that

em =
Delivered Power

Incident Power
, (5.6)

which in turn means that total efficiency is easily defined so that
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etot =
Radiated Power

Incident Power
=

Radiated Power

Delivered Power +Reflected Power
. (5.7)

Applying this new metric to the data presented in section 5.1 tells a clearer story of the

previously discussed trends. In particular, as can observed in fig. 5.6, the total efficiency

for varying cylinder dimensions is now a single metric through which the performance

of later arrays may also be measured, without concern about the individual impedances

and port parameters of each element in the array. In other words, total efficiency here

gives a clear measurement regarding the ability of any radiating aperture to efficiently

radiate, relative of course to some characteristic system impedance (typically 50 or

75 ohms). Returning to fig. 5.6, it is evident that the most significant detriment to

a cylinder’s ability to radiate is its electrical length, though a clear drop in radiative

ability is also visible as a cylinder’s radius increases relative to its length. Note that

for electrical lengths less than about 0.35λ, the cylinder has vanishingly small total

efficiency, irrespective of radius (within the realm of large-radius dipoles). If tightly-

coupled arrays are to address these issues, any such improvements will be visible in the

arrays’ total efficiencies.
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Figure 5.6: Degradation in Total Efficiency of a Single Cylindrical Antenna (5 MHz

center). Note that 6 of the traces have vanishingly small total efficiency over the entire

band of interest.

As a brief final remark for this section, realized gain measurements will also be of

immense importance in the coming array analyses, as it will be important obviously

to know not only an array’s ability to radiate, but also the radiation pattern that is

subsequently yielded. Fig. 5.7, for example, displays the azimuthal patterns for the

same configurations used in fig. 5.6.
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Figure 5.7: Degradation in Realized Gain of a Single Cylindrical Antenna (5 MHz).

Note that the inner 6 traces have extremely low realized gain.

5.3 Array Factor-based Analysis

In this final section of chapter 5, the dipole array configurations to be used will be

introduced, and some final baseline measurements of the single, cylindrical radiator

will be established. In particular, as inter-element coupling will not be discussed until

chapter 6, the array analyses presented here in this section will be based purely on the

concept of array factors, a notion heavily employed in phased-array theory, for example.

The radiation pattern of the single cylinder introduced in section 5.2 will be replicated

for each of the 5-elements such that far-field interference patterns may be developed.

Consequently, no inter-element coupling is allowed in this section’s analysis. While this

baseline is somewhat artificial in nature, as the array patterns shown will technically be

non-physical given the close proximity of the elements, it nonetheless serves as an
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interesting baseline against which to compare the performance of later arrays. In other

words, given some cylinder dimensions, and some array configuration, can the array

that makes proper use of tight-coupling outperform even the “best possible” mutual

impedance-free array? As will be discussed in future chapters, the answer, in some

cases, is yes.

To begin, the three 5-element array configurations used in this thesis are displayed

in fig. 5.8-5.10. In particular, the three were chosen such that different combinations of

inductive coupling could be studied (as will be discussed in the next chapter, the capac-

itive, series coupling mechanism mentioned previously will turn out to be minimally

useful). These configurations specifically include a classic broadside array, as well as

a cornered array configuration and a crossed one, two additional formations in which

a small swarm of UAS could plausibly fly. As will be seen shortly, each formation

will have its own characteristic radiation patterns, which may or may not be useful,

depending heavily on the desired application.

Figure 5.8: 5-element Broadside Cylinder Array Configuration
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Figure 5.9: 5-element Cornered Cylinder Array Configuration

Figure 5.10: 5-element Crossed Cylinder Array Configuration

Beginning with the largest dimensions and the broadside formation, the realized

gain patterns of several half-wavelength dipole arrays with varying inter-element sep-

arations are visible in fig. 5.11-5.13. The most noteworthy outcomes amount to the
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following. Firstly, it’s worth noticing the general shape of the gain patterns in each

of these figures; the broadside array, classically, has two opposite beams that become

more focused with increased separation, albeit with increased side-lobe levels (SLL)

as well. It is a common focus of phased array theory to minimize such SLL, while

maximizing the gain of the main beam, as well the maximum scan angle achievable by

the array. Here, however, it is sufficiently useful to note this trend in gain pattern be-

havior. Secondly, it will be one of the goals of this project to have each tightly-coupled

array, presented in chapters 7 and 8, surpass the maximum gain value of its respec-

tive coupling-free counterpart, presented in this section. For this particular setup, the

maximum gain achieved is around 9 dB.

Figure 5.11: 5-element Broadside Cylinder Array Configuration w/ no side lobes
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Figure 5.12: 5-element Broadside Cylinder Array Configuration w/ mild side lobes

Figure 5.13: 5-element Broadside Cylinder Array Configuration w/ drastic side lobes
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In fig. 5.14-5.16, the same broadside array’s realized gain patterns are visible, with the

physical dimensions of the broadside array shrinking with each step. In particular, it

can be seen, when comparing these figures to fig. 5.11-5.13, how the maximal gain is

dependent entirely on the physical dimensions of the individual radiators, rather than

the inter-element separation itself. Likewise, the precise pattern shape is primarily

dependent on the element spacing, as opposed to other factors; the SLL however, can

be somewhat affected by reduced element size, as seen in fig. 5.18. Additionally, once

again, it can be noted how reductions in electrical length lead to more drastic drops in

performance than similar changes in radius.

Figure 5.14: 5-element Broadside Cylinder Array Configuration w/ mild side lobes
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Figure 5.15: 5-element Broadside Cylinder Array Configuration w/ mild side lobes
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Figure 5.16: 5-element Broadside Cylinder Array Configuration w/ mild side lobes and

a moderate-width ”beam”

Finally, as can be seen in fig. 5.17-5.18, while a change in the configuration of

the cylinder array does result in a change in the pattern, neither the maximal realized

gain, nor the SLL, is especially affected. In fact, this trend continues for the rest of

the possible dimensions for both the cornered and crossed arrays. As such, further

analysis here of the cornered and crossed arrays is not needed, the baseline having been

well established by the broadside parallel array. The pattern for the crossed array will

consequently be introduced in chapter 7.
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Figure 5.17: 5-element Cornered Cylinder Array Configuration w/ significant side lobes
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Figure 5.18: 5-element Cornered Cylinder Array Configuration w/ extreme side lobes
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Chapter 6

Coupling Mechanisms Revisited

6.1 Mutual Impedance Calculations

As was discussed in chapter 2, one of the central preliminary analyses needed in the

exploration of the feasibility of tightly-coupled airborne arrays is on the ability of two

elements to couple, using only mechanisms available to such arrays. In the context of

this thesis, those two mechanisms are once again, serial plate coupling between the end

caps of cylindrical elements, and longitudinal, parallel coupling between the lengths of

two elements. In particular, this “coupling ability” will be assessed in two ways: firstly,

by measuring the coupling strength in terms of mutual impedance, and secondly, by

measuring the usefulness of said coupling in terms of total efficiency improvement, or

at least deviation. Beginning with the longitudinal mechanism, it can be seen in fig.

6.1, how, for a wide variety of inter-element separations, the coupling strength between

two parallel, half-wave dipoles (represented by the real part of the Z-parameter, Z21)

varies significantly in both its strength and the frequency location of its extrema. This

behavior is rather auspicious, as it demonstrates the ability of just two elements to

couple fairly strongly, the mutual resistance being often on the same order as, if not

much stronger than, the self-resistance of the singular cylinders, described in chapter

5. Additionally, the moderate variation in location of the extrema is also particularly
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useful, as it suggests potential for later arrays to possess some degree of frequency

reconfigurability.

At this point, however, a few major limitations should be noted. Specifically, it can

be seen that for the data displayed in fig. 6.1, the inter-element separations with the

strongest coupling are of course those with the closest spacing; in fact, this spacing be-

comes quite infeasible at the smallest separations, especially for separate aircraft where

significant inter-craft spacing is typically imperative. Additionally, this strong coupling

displayed thus far is of course limited exclusively to the largest length cylinders, at a

half-wavelength. Subsequent similar observations can be made with respect to the data

displayed in fig. 6.2; here, the mutual reactance between the same two cylinders is

shown. Once again, variation in impedance strength and extrema location should be

noted.

Figure 6.1: Variation in the strength and extrema location of the mutual resistance be-

tween two half-wavelength cylinders (L/r = 15). Notice how the strength in coupling

generally decreases as the inter-element separation is increased.
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Figure 6.2: Variation in the strength and extrema location of the mutual reactance be-

tween two half-wavelength cylinders (L/r = 15). Notice how the resonant location

cycles around the band as the inter-element separation is increased.

In the next two data sets, fig. 6.3-6.4, very similar measurements are represented,

save for a single change in the cylinder radii, namely the decrease from a length-to-

radius of 15, to one of 5. In doing so, fig. 6.3-6.4 demonstrate how larger radii weaken

the ability of two cylinders in parallel to couple effectively. In particular, two obser-

vations should be made, the first being the notable decrease in the magnitude of the

extrema of both the mutual resistance and mutual reactance between the two cylinders,

across all variations. This decrease, of course, indicates a weaker ability for currents on

one cylinder to influence the open-circuit voltage at the port of the other cylinder, per

equation (2.12), meaning the role of tight-coupling as a technique is correspondingly re-

duced. The second change worth noting is the reduced number of distinct inter-element

separations corresponding to significant coupling strengths. This in turn, of course,

indicates both a reduced ability for frequency tuning to exist between two cylinders,
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as well as a decrease in the feasibility of application to airborne systems, as only the

more infeasible separations remain significant. Nonetheless, this does not yet indicate

(and will turn out to not indicate at all) that tight-coupling is not applicable to larger

radii-cases; rather, it merely demonstrates how SUAS incorporating wider cylindrical

forms will likely require somewhat greater numbers of swarm elements in order to

compensate appropriately.

Figure 6.3: Variation in the strength and extrema location of the mutual resistance

between two half-wavelength cylinders (L/r = 5). Notice how the strength in coupling

is everywhere weakened relative to the (L/r = 15) case.
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Figure 6.4: Variation in the strength and extrema location of the mutual resistance

between two half-wavelength cylinders (L/r = 5). Notice how fewer distinct resonant

locations are present relative to the (L/r = 15) case.

Now, in the previous four figures, all of the measurements were restricted to half-

wavelength (at 5 MHz) cylinders, demonstrating the capabilities of the parallel coupling

mechanism without electrical size constraints. In fig. 6.5-6.8, however, the mutual

impedance for very electrically small, specifically λ/10, cases is considered. In these

cases, however, unlike those of fig. 6.3-6.4 where the only constraint involved increased

radii, the additional constraint of diminished electrical size has an incredibly detrimen-

tal effect on the coupling strength of the two cylinders in question. Particularly, for fig.

6.5 and 6.7, the displayed mutual resistance, for both the (L/r = 15) and (L/r = 5)

cases, displays nearly trivial magnitudes, ranging from a couple of ohms, down all the

way to a few hundredths of an ohm, even for infeasibly close inter-element separations.

As such, unlike in the preceding paragraph where sufficient compensation via addi-

tional elements may be reasonably expected, it is unlikely that mutual resistance of this
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magnitude will allow for the use of tight-coupling at such small electrical dimensions.

Consequently, for the parallel coupling mechanism, it can be reasonably assumed that

the boundary separating the applicability and inapplicability of tight-coupling corre-

sponds to an electrical length somewhere between λ/2 and λ/10 (it will turn out to be

at around 0.35λ in the L/r = 15 case). Additionally, in fig. 6.6 and especially in fig.

6.8, it is once more clear how the reduction in electrical length has also caused drastic

degradation in the magnitude of inter-cylinder mutual reactance. While these decre-

ments are not necessarily comparable to those corresponding to mutual resistance, they

also do little to compensate for the minute self-resistance typical of cylinders at such

small electrical lengths.

Figure 6.5: Variation in the strength and extrema location of the mutual resistance be-

tween two λ/10 cylinders (L/r = 15). Notice how the strength in coupling is minimal.
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Figure 6.6: Variation in the strength and extrema location of the mutual reactance be-

tween two λ/10 cylinders (L/r = 15). Notice how the strength in coupling is minimal.

Figure 6.7: Variation in the strength and extrema location of the mutual resistance be-

tween two λ/10 cylinders (L/r = 5). Notice how the strength in coupling is minimal.
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Figure 6.8: Variation in the strength and extrema location of the mutual reactance be-

tween two λ/10 cylinders (L/r = 5). Notice how the strength in coupling is minimal.

The other coupling mechanism explored in this thesis, as previously mentioned, is

the serial plate coupling between coaxially aligned cylinders. Similar to that of fig. 6.1-

6.2, the data displayed in fig. 6.9-6.10 corresponds to the half-wavelength, smaller radii

case, wherein the inter-element coupling is strongest. However, by directly comparing

the two mechanisms themselves in terms of mutual resistance and reactance, it is also

clear that the serial mechanism falls short of its parallel counterpart by roughly a factor

of 10, making it the weaker mechanism by far. That being said, the serial mechanism

does, nonetheless, have one interesting characteristic relative to the previous mecha-

nism; specifically, for two cylinders designed to be a half-wavelength each at 5 MHz,

the spectral location of the extrema displayed in fig. 6.9-6.10 is somewhat low, espe-

cially in comparison to their parallel coupling counterparts. Were the magnitudes of

these extrema moderately greater, this plate coupling mechanism as a whole may have
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even proved to be of some significant value.

However, for a few reasons, this coupling mechanism will not, moving forward, be

used in the design of tightly-coupled apertures in this thesis. The first of these reasons

is of course visible in this section alone; specifically, the order of magnitude of the

mutual impedance observed between two serial cylinders is quite weak relative to the

parallel mechanism. Consequently, as will be seen in the next section, this factor will

act as a significant setback for the serial mechanism, in terms of improving the total

efficiency of the total radiating aperture, relative to the singular cylinder discussed in

chapter 5. Secondly, while both inter-element coupling mechanisms available to UAV

bodies have been hereto explored, it is worth noting that the second of these mecha-

nisms presents some difficulty in physical realizability. To be precise, it is obvious that

any functioning, fixed-wing aircraft will not possess flat ends on its fuselage, but rather

some degree of curvature or tapering. Electromagnetically, this distinction is critical as

it vastly reduces the ability for any form of serial coupling to occur. In particular, while

this serial coupling was previously described as being heavily capacitive, it is clear

from fig. 6.10 that this coupling has some significant degree of inductivity involved

as well, given the positive reactance present for parts of the observed band. Thus,

as the currents hosted on these end caps will naturally be less able to couple under

non-parallel conditions, the inductive portion of the mechanism will be considerably

weakened. Additionally, as is described in [60] and [61], it is the presence of these end

caps, specifically their edges perpendicular to the cylinder’s length, that allows for the

accumulation of charges, without which the serial mechanism becomes less capacitive.

Rephrased, this means that as the well-defined end cap is deformed towards a more

rounded, even semi-spherical shape, thus being more representative of a true fuselage,

the existence of serial, inter-cylinder coupling is minimized. Furthermore, it is easily

imagined how coaxial alignment, unlike longitudinal alignment, may present an espe-
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cially difficult control problem, even without consideration of weather-related factors.

In summary, a number of physical issues specific to the serial-coupling mechanism ex-

ist, and as such, only the parallel mechanism will be considered, starting with the next

chapter.

Figure 6.9: Variation in the strength and extrema location of the mutual resistance be-

tween two half-wavelength cylinders (L/r = 15). Notice how the strength in coupling

is low relative to that in fig. 6.1, and also somewhat lower in frequency.
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Figure 6.10: Variation in the strength and extrema location of the mutual reactance be-

tween two half-wavelength cylinders (L/r = 15). Notice how the strength in coupling

is low relative to that in fig. 6.1, and also somewhat lower in frequency.

Reinforcing the previous discussion, when the larger radii case of the serial coupling

mechanism is observed in fig. 6.11-6.12, very little -inter-element interaction is visible,

a drop in performance even worse than that experienced by the parallel mechanism. In

fact, the coupling present in this case is comparable to the λ/10 case discussed for fig.

6.5-6.8, meaning that this coupling mechanism is likely to be of little use, even at larger

electrical lengths. Therefore, the possible applicability of this second mechanism is

clearly narrower, meaning it will not likely be useful for a large number of the project

goals presented in this thesis. If there is one interesting characteristic of this L/r = 5

case, nonetheless, it is in the fact that its most significant extrema occurred for moderate

separations, as opposed to the numerous cases wherein coupling strength was strongly

inversely proportional to element separation.
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Figure 6.11: Variation in the strength and extrema location of the mutual resistance

between two half-wavelength cylinders (L/r = 5).

Figure 6.12: Variation in the strength and extrema location of the mutual reactance

between two half-wavelength cylinders (L/r = 5).
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6.2 Total Efficiency Calculations

In this section, the two coupling mechanisms are briefly analyzed once more, this time

in terms of their radiative performance, the utilized metric now being total efficiency. In

fig. 6.13 the total efficiency of the two-cylinder aperture is displayed, with the dashed

line indicating the total efficiency of the singular cylinder first discussed in chapter 5.

Several important aspects here should be noted. Firstly, relative to the single cylinder

case, mild improvements in the maximum total efficiency are clear for several distinct

inter-element separations, improving the efficiency from around 85% to upwards of

90%. While this improvement may not necessarily be drastic, the fact that it is visible

at all for the two cylinder case is auspicious for larger element apertures, as it can

be expected that as the number of elements in the array increase, the total efficiency

will, in the best case, approach 100% asymptotically. Secondly, while not all of the

different separation values have extrema exceeding the base case, a number of very

non-trivial extrema exist nonetheless, suggesting that in larger arrays, some amount

of frequency tuning may be possible, as each separation obviously corresponds to a

different physical reconfiguration of the dipole array. Moreover, the ability of active

arrays (here meaning non-parasitic, not non-passive) to utilize phase control will be

particularly useful to this end. Thus, by merely shifting the relative positions of the

elements within the aperture, the operational band’s center and extents may possibly

be shiftable. Alternatively, this result may be interpreted as yielding a small degree of

positional tolerance; specifically, this means that even in poorly controlled arrays where

significant instability in the relative positioning of the elements is present, some usable

operational frequency may still exist.

Finally, it should be noted that, despite the results of the previous section, the most

significant extrema here in fig. 6.13 correspond to the largest separation values, with
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even moderately useful traces extending all the way down to 0.02λ, as displayed in the

green trace. This is, of course, a very worthwhile point as it grants greater likelihood to

the realizability of a full, tightly-coupled SUAS.

Figure 6.13: Variation in the total efficiency of the parallel coupling mechanism for

various inter-element separation lengths. (L/r = 15) case.

In fig. 6.14, even more meaningful results can be seen, where the focus is now on

the coupling performance for two (L/r = 5) cylinders. While the traces in fig. 6.14

do of course have somewhat diminished extrema compared to those in fig. 6.13, those

same peaks relative to the single dipole, (L/r = 5) base case are an excellent improve-

ment. In fact, many of the previously discussed points regarding the (L/r = 15) case

are present again here; in particular, much greater frequency separation in the extrema

can be observed, thus reinforcing the notion of a frequency reconfigurable system. If

this case does have a drawback, however, it can be seen in the particular traces having

the greatest extrema. Specifically, the separation values providing the greatest improve-
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ment in total efficiency are among the smaller and more moderate cases, the largest ones

now having little to offer.

Figure 6.14: Variation in the total efficiency of the parallel coupling mechanism for

various inter-element separation lengths. (L/r = 5) case.

In fig. 6.15-6.16, two similar cases are displayed, now focusing on the serial cou-

pling mechanism. While, like the parallel coupling case, some change in the shape of

the frequency response is clearly visible here, it is also clear that these changes are less

significant than in the previous pair of cases. This speaks to this mechanism’s decreased

ability to affect each cylinder’s performance away from that of the singular case. This

is especially accurate for the (L/r = 5) case, where only minimal deviation at all is

observable. Deviation aside, however, the other aspects mentioned for the previous

mechanism are readily observed for this one as well.
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Figure 6.15: Variation in the total efficiency of the serial coupling mechanism for vari-

ous inter-element separation lengths. (L/r = 15) case.

Figure 6.16: Variation in the total efficiency of the serial coupling mechanism for vari-

ous inter-element separation lengths. (L/r = 5) case.
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Chapter 7

Five-element Parasitic Dipole Arrays

In much the same way as was done in chapter 6, this chapter will serve as an analysis

of the improvements that can be made to an antenna aperture’s total efficiency. In this

case, however, the main focus will be on apertures comprised of parasitic, 5-element

arrays using the same array configurations as were introduced in chapter 5. For each

of the array configurations discussed, the central element will be driven by a lumped

excitation, in line with the theoretical voltage-gap of chapter 3, while the remaining

cylinders will be purely parasitic, metalized bodies.

Beginning with the half-wave, (L/r = 15) case, as is presented in fig. 7.1, the

efficiency behavior of the broadside array, for a number of different separation values,

is visible. While this particular figure doesn’t offer much in the way of demonstrated

improvement, it does still demonstrate one variation for which some improvement ex-

ists, namely for the plenty physically realizable inter-element separation of 0.5λ. For

this particular variation, while the maximum value is not improved, but rather reduced,

it does present some improvement in the bandwidth over which the array is measured,

assuming the mild decline in efficiency is operationally tolerable, or can be partially

alleviated through the use of matching networks, mismatch loss being a factor in total

efficiency.

Another interesting, albeit not necessarily useful, characteristic found in the explo-
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ration of these parasitic arrays is displayed in fig. 7.2. Namely, this figure shows how,

for the single mentioned circumstance in fig. 7.1 (the blue trace with improved effi-

ciency), the realized gain pattern (H-cut plane only) varies across the useful portion of

the band (roughly 3.25 MHz - 5.25 MHz, moving from a more end-fire beam shape

to a more traditional broadside beam shape. Additionally, the maximum realized gain

for a number of these traces greatly exceeds that of the single dipole (displayed with a

dashed line); these traces also perform reasonably well relative to the arrays mentioned

in section 5.3, those idealized results being non-physical anyway. While the discus-

sion thus far does suggest that this particular array may not necessarily be applicable

to wide-band transception, it may be so for narrowband operations wherein both beam

and frequency reconfiguration are needed.

Figure 7.1: Variation across element separation in total aperture efficiency of a parasitic,

broadside array (L/r = 15).
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Figure 7.2: Variation across frequency in realized gain of a parasitic, broadside array

(L/r = 15). Note that all traces here correspond to the single, dark blue trace in fig.

7.1

In moving to the (L/r = 5) case (fig. 7.3), the magnitudes of these improve-

ments are much improved, whether in an absolute sense with respect to their single

dipole baseline, or in a relative sense with respect to the data of fig. 7.1; note that

this trend very much parallels that found in section 6.2, and will, in fact, be a common

one throughout the remaining chapters. Moreover, the data in fig. 7.3 demonstrates a

moderate degree of frequency tuning; by merely shifting the relative separation of the

aperture’s elements, different operational bands become achievable, which may well be

of application-specific use.

Another useful discussion worth raising here is in the concept of efficiency and

bandwidth. Particularly, many common antenna metrics have similarly common, well-
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established standards for what distinguishes a “good” radiator from a “bad” radiator

or a “wide-band” system from a “narrow” one; for VSWR bandwidth, for example, a

common standard distinguishes a narrowband antenna from a wideband one at a frac-

tional bandwidth of 20%, and a wide band antenna from an ultra-wideband one at 50%,

wherein VSWR is below some threshold, such as 1.5 or 2. Total efficiency, however,

being an atypical metric, does not have such standards. In fact, even the more com-

mon metric of radiation efficiency tends to have only application-specific standards, as

opposed to industry-wide ones. Consequently, for the sake of consistency, if total effi-

ciency bandwidth is to be discussed in a precise manner in this thesis, it will be useful

to define a cursory standard with which to operate. To this end, if the numbers provided

in [62], for example, can be utilized, then a “good” antenna may be viewed as having

a radiation efficiency of “50 − 60%”. Total efficiency of course, compared with radia-

tion efficiency, factors in mismatch loss as well, meaning it provides a somewhat more

conservative measurement of the amount of energy dispersed throughout a radiative

system. Consequently, subsequent discussion of efficiency bandwidth will be relative

to a total efficiency of 50%, the boundaries between narrowband and wideband systems

being unchanged. In this way, the single, useful trace of fig. 7.1 may be viewed as hav-

ing an approximately 50% fractional bandwidth, as opposed to the 2− 3% bandwidths

of fig. 7.3.

In fig. 7.4, the traces displayed are once again realized gain, but, unlike those in fig.

7.2, each one of these traces corresponds to one of the worthwhile extrema from fig.

7.3. Of particular note here is how the several beams produced by these extrema are

predominantly end-fire in shape. Additionally, it is easily observed that the maximum

realized gain values achieved by this larger radii case are comparable to those of the

smaller, (L/r = 15) case; in fact, even relative to the goal of -2 dB set for half-wave,

(L/r = 5) apertures set in chapter 5 (fig. 5.14), the patterns presented demonstrate
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a very successful improvement in the radiative ability of the array. Consequently, fig.

7.3 and 7.4 together suggest a system wherein frequency tuning by way of mechanical

reconfiguration may indeed be quite realizable, albeit only with narrow bands, as a fair

degree of beam stability is also present across extrema.

Figure 7.3: Variation across element separation in total aperture efficiency of a parasitic,

broadside array (L/r = 5).

100



Figure 7.4: Variation across frequency in realized gain of a parasitic, broadside array

(L/r = 5). Note that each trace here corresponds to a different trace’s extremum in fig.

7.3.

As was discussed previously in this thesis, the threshold for dipole electrical length,

beyond which the parallel coupling mechanism becomes only minimally useful, is at

around 0.35λ, for the (L/r = 15) case. As can be seen in fig. 7.5-7.6 with λ/4

length elements, this value holds, as the efficiency curves only become “significant’,

now roughly defined as etot > 50%, at around 7 MHz. At this frequency, an antenna,

corresponding to λ/4 at 5 MHz, has an electrical length of almost exactly 0.35λ at 7

MHz. In the case of fig. 7.6, this threshold is obviously pushed closer to the λ/2 mark.

While both of these figures do demonstrate efficiency improvements relative to their

base cases (etot � 1%), these improvements are nonetheless of little use.
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Figure 7.5: Variation across element separation in total aperture efficiency of a λ/4,

parasitic, broadside array (L/r = 15).
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Figure 7.6: Variation across element separation in total aperture efficiency of a λ/4,

parasitic, broadside array (L/r = 5).

In addition to the broadside array, the cornered and crossed arrays’ results have

interesting aspects worth discussing. In particular, for the (L/r = 15) case, the total

efficiency profiles of these two additional configurations, as displayed in fig. 7.7 and

7.11, align very closely to that of the broadside array, the only marked difference being

the increase in depth in the dip present in the middle of the band of the singularly

improved trace, which corresponds to an inter-element separation of 0.5λ in each case.

As this dip brings a possibly advantageous increase in the two extrema at the end of

the band, the variation in efficiency pattern across these three configurations may hold

some application-specific benefits.

In terms of the realized gain patterns yielded by these two alternate configurations,

very distinct behavior is visible not only between the two configurations themselves,

but also across their respective bands, very similarly to fig. 7.2. Specifically, in fig.
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7.8, a single, moderately focused beam is produced by the cornered aperture, with

significant variation over the band, while in fig. 7.12, the crossed configuration yields

a multi-beam pattern that shifts mildly, in terms of beam and null location across the

band. Relative to their shared, single dipole, base case, both of these configurations

have field patterns that, much like the broadside aperture, have increased realized gain,

reaching maximums of 5-6 dB. Once again, moreover, these patterns do not quite meet

the 9 dB goal put forth by the idealized, but non-physical, arrays presented in chapter

5.

The total efficiency of the cornered and cross configurations, when changed to the

(L/r = 5) case (fig. 7.9 and 7.13), once again behave extremely similarly to that of

the broadside array, save for the shape of the field patterns of course. These patterns,

as previously noted in chapter 5, depend almost exclusively on factors such as element

configuration, and to a lesser extent, element separation and excitation frequency, as

opposed to efficiency. In contrast, total efficiency of an aperture, as suggested in fig.

7.3-7.4, is dependent also on element spacing, but does not itself greatly impact the

shape of the radiated fields. Further evidence of this trend is clearly visible in fig. 7.10

and 7.14, where, despite plotting the realized gain for extrema with different magni-

tudes from different traces, the approximate shapes of the field patterns remained un-

changed. Rather, only the magnitude of the realized gain achieved by each of the two

alternate configurations varies in fig. 7.10 and 7.14, as this metric is directly impacted

by total efficiency. Additionally, one final observation on this topic can be easily made;

specifically, in comparing fig. 7.8 to fig. 7.10, and fig. 7.12 to fig. 7.14, the resulting ef-

fect of increasing the elements’ radii can be described as a broadening, or de-focusing,

of the generated beams. The multi-beam pattern of the crossed aperture in fig. 7.12

especially, is deformed into a much more omni-directional pattern.
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Figure 7.7: Variation across element separation in total aperture efficiency of a parasitic,

cornered array (L/r = 15).

Figure 7.8: Variation across frequency in realized gain of a parasitic, cornered array

(L/r = 15). Note that all traces here correspond to the single, green trace in fig. 7.7
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Figure 7.9: Variation across element separation in total aperture efficiency of a parasitic,

cornered array (L/r = 5).

Figure 7.10: Variation across frequency in realized gain of a parasitic, broadside array

(L/r = 5). Note that each trace here corresponds to a different trace’s extremum in fig.

7.9.
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Figure 7.11: Variation across element separation in total aperture efficiency of a para-

sitic, crossed array (L/r = 15).

Figure 7.12: Variation across frequency in realized gain of a parasitic, broadside array

(L/r = 15). Note that all traces here correspond to the single, green trace in fig. 7.11
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Figure 7.13: Variation across element separation in total aperture efficiency of a para-

sitic, crossed array (L/r = 5).

Figure 7.14: Variation across frequency in realized gain of a parasitic, broadside array

(L/r = 5). Note that each trace here corresponds to a different trace’s extremum in fig.

7.13.
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In summary, many of the total efficiency and realized gain calculations in this chap-

ter suggest various application-specific utilities, especially in the case of the larger radii

apertures, wherein a degree of frequency reconfigurability was evident. Additionally,

the variation in azimuthal field patterns across the three aperture configurations was

useful in characterizing the causal relationships between various metrics such as total

frequency, efficiency magnitude, total efficiency bandwidth, gain shape, gain magni-

tude, and so on. Of particular interest was the direct relationship between field pattern

shape and array configuration, the only other significant factor being frequency, sug-

gesting how knowledge of the total efficiency of one configuration lends great insight

into that of another. Finally, it’s worth remarking that these trends continue with driven

dipole arrays, which are explored in the next chapter.

109



Chapter 8

Five-element Driven Dipole Arrays

8.1 Chapter Overview

In this chapter, the same array configurations from chapter 7 will be considered anew,

now with all 5 elements in each aperture driven by a gap-voltage source. One par-

ticularly important distinction between this chapter and the previous one, however, is

in the control mechanisms used to reconfigure the given aperture. Specifically, while

the tuning control mechanism used in chapter 7 was limited to array configuration and

inter-element spacing, the arrays explored in this chapter will have the added control

mechanism of phase shifting. Specifically, within a measured aperture, the elements

will have relative phase offsets in order to properly make use of tight-coupling; the

mutual impedance curves described in chapter 6 can thus be used more effectively,

as, per equation (2.14), the driving-point impedance of a radiator at its port is heavily

influenced by not only the self- and mutual impedances present in the nearby envi-

ronment, but also by the ratio of currents on these nearby structures. Therefore, the

relevance of this ratio, naturally, is not limited to the magnitudes of said currents, but

rather includes the differences in excitation phase as well. While the precise nature of

the phase relationship between a voltage excitation and the resulting current, that is the

degree of either leading or lagging present in said current, is of course a function of
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the self- and mutual impedances present, control over voltage phase is nonetheless a

useful tool, as will be demonstrated. Additionally, for the sake of somewhat simplify-

ing the subsequent analyses, all excitations will have unitary magnitudes, leaving the

aforementioned current ratio as solely a ratio of phase angles.

Furthermore, beyond the discussion of phase control, this chapter will also treat

the two different radii cases common in previous chapters, (L/r = 5) and (L/r =

15), with increased distinction, hence the subsequent section titles of “Larger Radii”

and “Smaller Radii”. Both of these cases are of course, in the more general study of

radiating cylinders, well described as having “large” radii; the terminology presented

herein serves only to better distinguish the two analyzed cases. While other dipole

length-to-radius ratios may of course be of interest depending on the application, the

two used throughout this thesis simply represent the bounds of the region of immediate

interest. Finally, while the previous chapter focused fairly evenly on all three of the

named array configurations in order to demonstrate the differences in their respective

radiation pattern shapes, this chapter will focus primarily on the cornered array, as

well as the broadside array to a lesser extent, for a couple of reasons. In particular,

beyond just brevity, the trends that will be seen in this chapter, just as was the case in

the previous chapter, will apply very similarly to all three configurations, consequently

limiting the utility of showing the entire breadth of calculated variations.

8.2 The Larger Radii Case

As was observed in the previous chapter, the larger radius case, (L/r = 5), when set

in the context of a parallel coupling-based array, has a tendency to produce peaks in

total aperture efficiency such that different inter-element spacings have extrema at dif-

ferent frequencies. In other words, as long as the previously established threshold of
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50% total efficiency can be reached, this larger radii case often demonstrates a strong

potential for frequency reconfigurability applications. This trend visibly continues in

the driven array domain as well, specifically in fig. 8.1-8.3, where each figure dis-

plays variation in the efficiency extrema with changing inter-element spacing; fig. 8.2

and 8.3 are particularly well suited as evidence of this trend, having both reasonably

large extrema and significant separation in the bands corresponding to different spac-

ings. Furthermore, these three figures together begin to demonstrate an exceptionally

important characteristic specific to driven arrays with phase control.

To expand on this characteristic, note firstly that the three figures differ only in terms

of the phase step, ∆θ, present between each of the elements in the observed aperture.

In other words, if the central cylinder in the array is defined to have an “initial” phase of

0◦, then the immediately adjacent elements would be assigned a phase addend of±∆θ,

while the outer elements would likewise be assigned addends of±2∆θ. Secondly, note

that as this phase step grows across the three figures, so too do the separations values

possessing significant extrema for that phase step. Accordingly, this proportionality

speaks to the expected, larger three-way relationship that exists for tightly-coupled ar-

rays between frequency, phase length, and physical size; this relationship of course is

quite similar to that common to virtually all electromagnetics. In particular, for any

constancy in one of the three aspects, there exists a specific proportionality between

the other two. To be explicit, firstly, as was just mentioned, as the size of the antenna

array is increased by way of the inter-element spacing, it follows that in order for the

aperture’s peak operating frequency (defined here in terms of total efficiency) to remain

unchanged, the phase length of the array should necessarily be increased proportion-

ally. This is obviously achieved via control of the inter-element phase-step. Secondly,

for a single phase step value, it should be expected that the peak operating frequency

follows the physical size of the array; this is easily observed in fig. 8.1-8.3, as increas-
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ing the physical spacing is shown to lead to extrema at lower frequencies. Finally, the

third proportionality will be elaborated upon shortly, as well as in the next section.

The preceding discussion is rather useful as it partially clarifies the nature of a

tightly-coupled array, in contrast to both single-body radiators, and more traditional,

mutual impedance-free arrays. In particular, it should be noted here that the above

references to phase length are, in a sense, distinct from electrical size, as the phase

length is artificially controlled via the excitation phase step, while electrical length is

of course directly determined by physical size. Consequently, tightly-coupled arrays

like those in this thesis, which do not experience currents (save for possibly displace-

ment currents) across their lengths, are unlike single radiators, wherein electrical and

phase length are mutually determined, all other factors being the same. Additionally,

relative to phased array-type structures, wherein mutual impedance is necessarily miti-

gated such that each element experiences minimal change in impedance behavior upon

insertion into the larger array, tightly-coupled arrays, as hereto presented, drastically

change the behavior of the individual elements. This is evidenced by the previously

described proportionalities presented in fig. 8.1-8.3, as well as those throughout the

rest of this chapter.
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Figure 8.1: Separation values with total efficiency curves possessing significant ex-

trema at ∆θ = 60◦. Half-wave broadside array. (L/r = 5).

Figure 8.2: Separation values with total efficiency curves possessing significant ex-

trema at ∆θ = 120◦. Half-wave broadside array. (L/r = 5).

114



Figure 8.3: Separation values with total efficiency curves possessing significant ex-

trema at ∆θ = 180◦. Half-wave broadside array. (L/r = 5).

A more complete transition across phase step, this time for the cornered array, can

be seen in fig. 8.4-8.13, where 20◦ phase steps are used. Note how many of the pre-

viously characterized relationships are once again present in this series of figures. In

particular, notice how the smallest two separations have their maximal extrema in the

range of 60◦− 100◦, the middle few spacing values are approximately maximized from

120◦ onward, and the largest separation values only reach maximal peak values close

to 180◦. This transitional series provides a very clear example of how certain antenna

apertures may achieve frequency reconfigurability by way of control mechanisms such

as physical reconfiguration and excitation phase adjustments.

Additionally, with the respect to the third proportionality relationship referred to

above, this is reasonably visible in these figures, as, for any choice of a separation

value, and by extension some physical array length, the extremum of that curve moves

up in frequency with increasing phase separation. This trend can in fact be observed
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throughout much of this chapter.

Figure 8.4: All total efficiency curves at ∆θ = 0◦. Half-wave cornered array. (L/r =

5).

Figure 8.5: All total efficiency curves at ∆θ = 20◦. Half-wave cornered array. (L/r =

5).
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Figure 8.6: All total efficiency curves at ∆θ = 40◦. Half-wave cornered array. (L/r =

5).

Figure 8.7: All total efficiency curves at ∆θ = 60◦. Half-wave cornered array. (L/r =

5).
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Figure 8.8: All total efficiency curves at ∆θ = 80◦. Half-wave cornered array. (L/r =

5).

Figure 8.9: All total efficiency curves at ∆θ = 100◦. Half-wave cornered array. (L/r =

5).
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Figure 8.10: All total efficiency curves at ∆θ = 120◦. Half-wave cornered array.

(L/r = 5).

Figure 8.11: All total efficiency curves at ∆θ = 140◦. Half-wave cornered array.

(L/r = 5).
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Figure 8.12: All total efficiency curves at ∆θ = 160◦. Half-wave cornered array.

(L/r = 5).

Figure 8.13: All total efficiency curves at ∆θ = 180◦. Half-wave cornered array.

(L/r = 5).

Finally, it is worthwhile describing here how the frequency reconfigurability de-
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scribed in this section may also prove useful with respect to increasing the positional

error tolerance of an SUAS. Specifically, small deviations away from the desired rela-

tive element positioning will produce naturally small detriments in the efficiency, and

thus maximal gain, of the array. This is of course due to the fact that in moving in-

advertently from one spacing scheme to another, the new spacing will not likely host

the operational frequency with quite the same efficiency. However, so long as these

deviations are detectable, they may likely be corrected by utilizing the proportionality

between frequency and phase step described above. In particular, because the phase

step has only a rather slow effect on the frequency shifting of efficiency extrema, as

seen above, minor deviations may be stably corrected without concern that very precise

phase control be needed. In the same way though, this correction technique is likely

limited to more minor deviations, those being on the same order of magnitude as the

original spacing serving as a rough upper bound. Nonetheless, it is the case that the

tightly-coupled arrays described thus far are not especially sensitive to phase errors, as

evidenced by the limited changes between 20◦ phase step changes.

8.3 The Smaller Radii Case

In this final section, the last class of analysis, the (L/r = 15) case, will be discussed.

To begin, in fig. 8.14-8.18, the total efficiency of both the broadside and the cornered

array are visible for a small variety of phase steps. In particular, while a more gradual

transitional series, like that of the previous section, may be easily shown, as these five

figures demonstrate, the results relative to the single dipole are not nearly as impressive,

only in part due to the (L/r = 15) cylinder already being a fairly decent radiator for not

too small of a band. What positive results these graphs do demonstrate, however, are

best seen in fig. 8.16-8.18, specifically. In these three, considerable frequency shifting
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under changes in element spacing is visible, and, depending on the application-specific

performance requisites, some of these variations may indeed be useful. The four tallest

traces in fig. 8.16 are particularly interesting as they demonstrate frequency shifting

similar to that of the previous section, but with both better magnitude of the extrema

(only relative to the previous section’s traces, not this section’s base case), and wider

bandwidths. Thus, while not as great an improvement over the base case compared to

the previous section, the variations presented for the cornered array here are nonetheless

somewhat successful as a proof-of-concept.

Figure 8.14: All total efficiency curves at ∆θ = 180◦. Half-wave broadside array.

(L/r = 15).
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Figure 8.15: All total efficiency curves at ∆θ = 40◦. Half-wave cornered array. (L/r =

15).

Figure 8.16: All total efficiency curves at ∆θ = 60◦. Half-wave cornered array. (L/r =

15).
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Figure 8.17: All total efficiency curves at ∆θ = 120◦. Half-wave cornered array.

(L/r = 15).

Figure 8.18: All total efficiency curves at ∆θ = 180◦. Half-wave cornered array.

(L/r = 15).

Finally, in fig. 8.19-8.24, similar data for the broadside and cornered arrays is pre-
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sented, this time showing the variation in maximal total efficiency across phase step

size for a small number of inter-element separation distances. With this new data set,

the previous discussion of this section is reinforced; specifically, these figures further

evince the notion that tightly-coupled arrays may be able to achieve frequency recon-

figurability. It is, however, the case that the specific degree of frequency reconfig-

urability achieved in this section can be interpreted as inferior to that of the previous

section as the improvement relative to the base is weaker, implying less effect from

any tight-coupling present, although this interpretation is likely application-dependent.

At this point, one last interesting question that may be raised is whether any further

improvement, and if so, how much, may be achieved through the construction of larger

arrays, numbering perhaps ten or twenty elements, instead of the five-elements arrays

presented thus far. That answer, however, is not addressed here.

Figure 8.19: All total efficiency curves with separation 0.5λ. Half-wave broadside

array. (L/r = 15).
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Figure 8.20: All total efficiency curves with separation 0.25λ. Half-wave broadside

array. (L/r = 15).

Figure 8.21: All total efficiency curves with separation 0.1λ. Half-wave broadside

array. (L/r = 15).
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Figure 8.22: All total efficiency curves with separation 0.5λ. Half-wave cornered array.

(L/r = 15).

Figure 8.23: All total efficiency curves with separation 0.4λ. Half-wave cornered array.

(L/r = 15).
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Figure 8.24: All total efficiency curves with separation 0.15λ. Half-wave cornered

array. (L/r = 15).
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

In summary, this thesis has reached and elucidated a number of meaningful insights

and conclusions regarding topics related to the nature and behavior of cylindrical radi-

ators, whether in isolation or in various contexts. Primarily however, this work was an

exploration into the feasibility of tightly-coupled SUAS under a number of simplifying

constraints, the most significant of these being the reduction of the complex physical

shape of a fixed-wing aircraft to a single, considerably thick cylinder, and the limita-

tion of usable inter-element coupling mechanisms to the two mechanisms most feasibly

achieved by airborne bodies. Furthermore, when discussing the “feasibility” of tight-

coupling in the context of SUAS, this was predominantly defined as the transformation

of a single cylinder’s aperture into an entirely new, synthetic one constructed by way

of array formation, wherein performance could be most easily evaluated with metrics

such as total efficiency and realized gain.

To this end, a baseline used to define the realistic and idealized behavior of single

cylindrical radiators was created. It was therefore observed that as the length-to-radius

ratio and electrical length of a cylindrical dipole decreases, so too does its ability to radi-

ate, possessing neither sufficient radiation resistance to form an appropriate impedance
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match with realistic electronic systems, nor to prevent the accumulation of excess waste

heat caused by poor radiation efficiency. Subsequently, the coupling strength and appli-

cability of the two inter-element coupling mechanisms were analyzed; it was found that

the parallel, longitudinal coupling between the axially-directed currents on the cylinder

bodies was superior on both counts, as it allows for greater mutual impedance with

which a single cylinder’s aperture may be transformed.

In the analysis of arrays, configurations of tightly-coupled but poor radiators were

constructed and studied, such that from the mutual interaction of these elements, the

synthesis of an entirely new aperture may result, wherein performance factors would be

improved, and additional features like frequency reconfigurability could be utilized. In

this way, both parasitic arrays with only a single driven element, and fully-driven arrays

with five driven elements were found to possess this potential. In particular, arrays with

especially radii were found to be especially suitable for tight-coupling techniques, as

immense changes relative to the singular, base-case cylinder were found. Moreover,

significant insight into the general relationship between an array’s physical size, phase

length, and ideal operating frequency was developed; in particular, it was found that

when one of these aspects is held constant, a specific proportionality exists between

the other two. It was also subsequently found that the fully-driven arrays, in having

multiple control mechanisms, possessed significant potential to be useful in increasing

the positional error tolerance of SUAS.

Additionally, the variation in radiation patterns due to distinct array configurations

was studied. Cornered arrays were subsequently found to produce the most focused

beams, while crossed arrays, by contrast, were found to often produce very omni-

directional patterns. Finally, it was also determined that in the context of tightly-

coupled apertures, the shape of an array’s radiation pattern shape is largely independent

of the elements’ physical dimensions and relative spacing, demonstrating how changes
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in the array’s total efficiency acted only to scale the radiation pattern.

9.2 Scientific Impact

In being an exploratory project, this work has been largely successful simply in inves-

tigating the degree to which a tightly-coupled SUAS may be usefully modeled under

the aforementioned constraints. In particular, this serves as a contribution to the general

understanding of both cylindrical radiators and tightly-coupled arrays. To be even more

precise, chapter 5 serves as an extension to general scientific knowledge on the topic

of large-radius cylindrical radiators, while chapter 6 does the same for two forms of

inter-radiator coupling therein.

Beyond the successful exploration of poorly documented regions in antenna the-

ory, this work also makes considerable strides in the development of knowledge re-

lated to airborne-based radiating systems. Specifically, by demonstrating in chapters 7

and 8 how tight-coupling can be positively used to synthesize larger antenna apertures

with features such as improved bandwidth, improved total efficiency, and potentially

frequency reconfigurability, the scientific understanding of techniques for developing

wideband and reconfigurable systems is augmented. This is doubly true in the con-

text of small-bodied SUAS where SWaP constraints are often very restrictive, and thus

require new and increased understanding of specialized systems development.

9.3 Future Work

In moving forward with this project, several significant possibilities for the extension

and improvement of this work are readily conceived. In particular, it will be of great

use, as was previously mentioned, to extend these analyses to arrays with greater num-

bers of elements, in an attempt to assess the limit behavior of the techniques evaluated
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hereto. Furthermore, as one of the principles drawbacks discussed in chapters 7 and 8

is the weakness of the two studied inter-element coupling mechanisms, a step that will

necessarily be taken in the future will be in the development of a somewhat more com-

plex model that allows for these mechanisms to function with greater efficacy. Whether

this manifests as a model for analyzing the wings of an aircraft, or perhaps modeling

its wings and fuselage as a sort of crossed dipole- that much of course has yet to be

determined. These possibilities, nonetheless, would be likely to improve the results

found hereto. Extending this notion, further work will likely also involve the use of

characteristic modes and perturbation analyses, as such allow for vastly more accurate

modeling of fixed-wing structures, albeit with an unavoidable increase in computational

complexity.

Additional aspects that will most likely be of great importance to this project mov-

ing forward include the development and analysis of more realistic UAV-body excita-

tions, the voltage gap model used in this work being largely unsuitable for real-world

UAS, for obvious mechanical reasons. Beyond this, more detailed studies on the rele-

vance of positional error tolerance will assuredly be vital, as the control issue surround-

ing SUAS is still a very considerable hurdle in the development of SUAS. Finally, some

minor studies into the effect of very non-ideal conductivity will likely be of use, as it

cannot be expected that all UAV bodies, even when metalized, will be of an ideal con-

ductivity, copper and silver being fairly expensive construction materials.
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