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Abstract

Position navigation and timing (PNT) is the concept of determining where an ob-

ject is on the Earth (position), the destination of the object (navigation), and when

the object is in these positions (timing). In autonomous applications, these three

attributes are crucial to determining the control inputs required to control and move

the platform through an area. Traditionally, the position information is gathered

using mainly a global positioning system (GPS) which can provide positioning suf-

ficient for most PNT applications. However, GPS navigational solutions are limited

by slower update rates, limited accuracy, and can be unreliable. GPS solutions up-

date slower due to the signal having to travel a great distance from the satellite to

the receiver. Additionally, the accuracy of the GPS solution relies on the environ-

ment of the receiver and the effects caused by additional reflections that introduce

ambiguity into the positional solution. As result, the positional solution can become

unstable or unreliable if the ambiguities are significant and greatly impact the accu-

racy of the positional solution. A common solution to addressing the shortcomings

of the GPS solution is to introduce an additional sensor focused on measuring the

physical state of the platform. The sensors popularly used are inertial measurement

units (IMU) and can help provide faster positional accuracy as the transmission

time is eliminated. Furthermore, the IMU is directly measuring physical forces that

contribute to the position of the platform, therefore, the ambiguities caused by addi-

tional signal reflections are also eliminated. Although the introduction of the IMU

helps mitigate some of the shortcomings of GPS, the sensors introduce a slightly

different set of challenges. Since the IMUs directly measure the physical forces

experienced by the platform, the position is estimated using these measurements.

The estimates of position utilize the previously known position and estimate the

changes to the position based on the accelerations measured by the IMUs. As the

xvii



IMUs intrinsically have sensor noise and errors in their measurements, the noise er-

rors directly impact the accuracy of the position estimated. These inaccuracies are

further compounded as the erroneous position estimate is now used as the basis for

future position calculations. Inertial navigation systems (INS) have been developed

to pair the IMUs with the GPS to overcome the challenges brought by each sensor

independently. The data provided from each sensor is processed using a technique

known as data fusion where the statistical likelihood of each positional solution is

evaluated and used to estimate the most likely position solution given the observa-

tions from each sensor. Data fusion allows for the navigation solution to provide a

positional solution at the sampling rate of the fastest sensor while also limiting the

compounding errors intrinsic to using IMUs.

Synthetic aperture radar (SAR) is an application that utilizes a moving radar

to synthetically generate a larger aperture to create images of a target scene. The

larger aperture allows for a finer spatial resolution resulting in higher quality SAR

images. For synthetic aperture radar applications, the PNT solution is fundamental

to producing a quality image as the range to a target is only reported by the radar.

To form an image, the range to each target must be aligned over the coherent pro-

cessing interval (CPI). In doing so, the energy reflected from the target as the radar

is moving can be combined coherently and resolved to a pixel in the image prod-

uct. In practice, the position of the radar is measured using a navigational solution

utilizing a GPS and IMU. Inaccuracies in these solutions directly contribute to the

image quality in a SAR system because the measured range from the radar will not

agree with the calculated range to the location represented by the pixel. As a result,

the final image becomes unfocused and the target will be blurred across multiple

pixels.

For INS systems, increasing the accuracy of the final position estimate is de-
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pendent on the accuracy of the sensors in the system. An easy way to increase

the accuracy of the INS solution is to upgrade to a higher grade IMU. As a result,

the errors compounded by the IMU estimations are minimized because the intrin-

sic noise perturbations are smaller. The trade-off is the IMU sensors increase in

cost, size, weight, and power (C-SWAP) as the quality of the sensor increases. The

increase in C-SWAP is a challenge of utilizing higher grade IMUs in INS naviga-

tional solutions for SAR applications. This problem is amplified when developing

miniaturized SAR systems. In this dissertation, a method of leveraging the benefits

of data fusion to combine multiple IMUs to produce higher accuracy INS solutions

is presented. Specifically, the C-SWAP can be reduced when utilizing lower-quality

IMUs. The use of lower quality IMUs presents an additional challenge of provid-

ing positional solutions at the rates required for SAR. A method of interpolating the

position provided by the fusion algorithm while maintaining positional accuracy is

also presented in this dissertation.

The methods presented in this dissertation are successful in providing accurate

positional solutions from lower C-SWAP INS. The presented methods are verified

in simulations of motion paths and the results of the fusion algorithms are eval-

uated for accuracy. The presented methods are instrumented in both ground and

flight tests and the results are compared to a 3rd party accurate position solution

for an accuracy metric. Lastly, the algorithms are implemented in a miniaturized

SAR system and both ground and airborne SAR tests are conducted to evaluate

the effectiveness of the algorithms. In general, the designed algorithms are capa-

ble of producing positional accuracy at the rate required to focus SAR images in a

miniaturized SAR system.
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1 Introduction

Advancements in vehicles and moving platforms are allowing for an increasing

amount of sophisticated systems to be deployed for accomplishing various tasks.

The vehicles have made it possible to reach areas and traverse terrain with greater

efficiency. As the development of these platforms has evolved the need for accurate

position solutions has increased. The systems deployed on these vehicles are be-

coming more and more reliant on knowing where the platform is at any given time.

For systems that are traversing an area, it is crucial to know the current position,

relative to the destination, to reach the desired destination. Other systems that are

gathering intelligence over an area rely on the position of the platform to understand

the information received. In both applications, positional accuracy plays a big role

in producing the desired outcome. Additionally, these applications rely on accurate

timing to understand how to navigate the platform to the desired destination or how

the intelligence collected is changing with time.

The concept of navigation is the act of monitoring and controlling the movement

of a platform from one location to another. The location of a vehicle or platform

at a specific time are needed to navigate and control the trajectory of the platform.

Depending on the abilities of the platform, parameters of the platform will need

to be manipulated to control or change the trajectory of the platform. How these

parameters are manipulated rely on knowledge of where the platform is relative

to the destination at any point in time. Navigational systems are used to produce

the position of the platform at any given time satisfying a concept known as po-

sition, navigation, and timing (PNT). The concept of PNT is self explanatory but

presents a significant challenge in practice and current solutions focus on provid-

ing solutions on Earth. Methods used to produce the location on Earth includes

but are not limited to the use of navigating using the stars, satellites, and inertial

1



measurements. Navigation by the stars is done by determining the location of the

platform relative to the constellations. The main limitation of navigation by the

stars is that it is less effective during the day as the constellations are not visible.

Satellite navigation overcomes the limitation as the solution is available during the

day as well as the night. In addition, the satellites produce a location that is relative

to the satellites that are placed in geosynchronous orbit. All these concepts share a

similar basis where the PNT solution is relative to a known position in Euclidean

space. The core issue becomes how is the Euclidean space defined for the known

position compared to the PNT solution. As a result, the core challenge of produc-

ing an accurate PNT solution is reliant on a deep understanding of what the PNT

solution is relative to. This challenge is amplified when system and measurement

uncertainty is taken into account.

Traditionally, PNT solutions use a global positioning system (GPS) to deter-

mine the location of the navigating body. GPS provides PNT by creating a network

of satellites that are deployed such that the location of each satellite relative to the

Earth’s surface is known for any given time. The range to each of these satellites

can be estimated for a given point on the Earth and the position can be triangulated

using these ranges. One drawback for radar applications is GPS typically updates

at lower frequencies than traditional radar pulse repetition frequencies (PRFs), typ-

ically on the order of 50 Hz. Furthermore, the accuracy is approximately 30 cen-

timeters using the recently established L5 band. As known, the L-band is the IEEE

designation for the range of frequencies in the radio spectrum from 1 to 2 GHz [5].

Within the L-band, L5 is a new signal designed for civilian use and it is centered at

1176 MHz. However, utilization of the L2 band produces a positional accuracy on

the order of 1 meter.

Modern-day synthetic aperture radar (SAR) systems require a precise position,
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navigation, and timing (PNT) solution to accurately determine its relative position

in space. This allows for the range from the navigating body to any scatterer in

the target scene, over the coherent processing interval (CPI), to be precisely known.

During radar signal processing of the captured data, such as the backprojection al-

gorithm [18], phase correction of the slow-time data is performed before Doppler

processing so that all of the power is compressed into the appropriate range bins.

However, to achieve a focused image as described, the relative position in space

must be accurate to within a fraction of a wavelength [19], which is determined

by the frequency of the transmitted signal. Therefore, for higher transmitted fre-

quencies, such as those used in millimeter-wave SAR, a highly precise navigation

solution is required. Moreover, since several pulses of data will be captured over

the CPI, it is highly desirable to have a PNT solution on a pulse-by-pulse basis so

that the phase can be accurately compensated on each fast-time data set during pro-

cessing. If implemented correctly, the resultant is a focused black and white image

of the target scene.

1.1 Motivation

Recent developments in small-form unmanned aerial vehicles (UAV) have dras-

tically accelerated the need for miniaturization of aerial payloads such as target

detection and imaging [16]. In SAR systems, the miniaturization of the antenna

drives an increase in operational frequency. Increases in operational frequency re-

sults in a lower error tolerance in radar imaging techniques. As a result, reliable

timing and position systems are required of the platform. As the development of

smaller autonomous vehicles continue the goal of miniaturization of platforms is

a large area of interest [55]. The effort in miniaturization of SAR systems is two-

fold, one is to miniaturize the platform as a whole and the other is to miniaturize the
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systems deployed to the platform. The first effort allows for smaller platforms are

developed such as drones and quad-copters to accomplish specialized tasks that do

not require a large vehicle. The other effort allows for additional versatility as more

systems to be deployed to the platform without increasing the size of the platform

as a whole. Overall, the miniaturization effort is often measured by the reduction

in cost, size, weight, and power (C-SWAP) of the system. As the PNT solution is

a critical component of a radar, the reduction of C-SWAP in the PNT subsystem is

critical in the miniaturization of imaging radars.

The utilization of satellite navigation alone is insufficient for SAR applications

due to a multitude of limitations. The main limitation of satellite navigation for

radar imaging is that the update rate of the position estimates is often slow due to

the long transmission range of the satellite. Furthermore, these transmissions are

calculations of the range between the receiver and the satellite. The location of

the platform on earth can then be calculated from the range given the location of

the satellite. Another limitation to satellite communication is that the communica-

tions rely on line of sight and the range measurement can be inaccurate if the signal

is reflected before it is received by the receiver. One method of overcoming the

limitations of satellite navigation is the use of inertial sensors which measure the

accelerations undergone by the platform. Using these sensors the initial position

is used to calculate the new position given the change in time δt. Inertial sensors

often update at faster rates than satellite receivers and can more reliably produce a

navigation solution. However, these sensors can produce inaccurate position solu-

tions as the sensor errors are compounded as the accelerations are integrated and the

calculated position estimate is the basis of the next position calculation. The true

location of the platform is non-trivial to obtain as the sensors used to measure the

location all introduce some amount of uncertainty. In addition, the reference point
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used to determine the location is different for each coordinate frame. The coordi-

nate frames are discussed in section 2. In order to produce a high quality product

in radar imaging applications it is of great interest to increase the frequency of PNT

solutions to be synchronous with radar PRFs.

Most navigation systems leverage multiple sensors to overcome the shortcom-

ings of each independent sensor. A common approach is to use a global positioning

system (GPS) satellite receiver to achieve accurate position measurements and an

inertial measurement unit (IMU) to capture and estimate the position when GPS

updates are unavailable [64, 74]. In this configuration, the accuracy and timing of

the GPS satellites are leveraged to overcome the errors caused by IMU and the IMU

helps produce position solutions at a faster rate than GPS. Additionally, the IMU is

also able to produce position solutions in the event the GPS signal is unavailable.

The integration of these measurements is commonly done by data fusion.

Another challenge of satellite navigation is GPS requires an open sky to ob-

tain a signal to provide a viable position solution, and signal integrity can degrade

significantly as the navigating body traverses different environments. The low up-

date rate and the possibility of signal loss contribute to the main disadvantages of

GPS [12, 60]. An inertial measurement unit (IMU), commonly used in conjunction

with GPS, often provides data at a higher PRF, typically on the order of 100 to 200

Hz. The IMU provides data that allows for the estimation of the navigating body’s

current position, and the faster update rate of the IMU data allows for position esti-

mates to be reported more often than GPS. One major advantage of the IMU is that

it can provide position estimates down to an accuracy of 1 millimeter if an ultra-

low bias navigational grade unit is used. However, this increased accuracy comes

at the expense of a higher cost, bulkier, and heavier unit. Additionally, IMUs will

drift or “walk”, and the associated errors are compounded as the position estimate
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is made over time [27]-[30]. Moreover, IMUs provide position estimates based on

acceleration and gyroscopic measurements, and the error increases at a significant

rate since the position is calculated by integrating the drifting IMU accelerometer

and gyroscope measurements [53]. For SAR, either of these solutions can be used

independently in low transmitted frequency or short-duration applications. If either

of these criteria are to be exceeded, a more complex PNT solution is required.

Given the shortcomings of current PNT solutions that utilize a single IMU and

GPS, a solution of producing accurate PNT solutions at the rates on the order of

SAR PRFs is needed. In addition, the PNT solution developed needs to also min-

imize the C-SWAP in order to be deployed on the new miniaturization of SAR

systems.

The application of reduced C-SWAP PNT solutions extends beyond SAR. The

technology will enable the development of smaller platforms that require PNT so-

lutions. These applications include miniature unmanned aerial vehicles (UAV), au-

tonomous cars, and other autonomous systems. Furthermore, the use of data fusion

to achieve more accurate positional accuracy by adding more sensors is a key en-

abler to reducing C-SWAP without having to sacrifice positional accuracy in these

applications.
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2 Navigation Basics

In order to determine the location of an entity, measurements of the entity rel-

ative to external reference point is required. These measurements can be ranges to

known locations and the location of the entity is triangulated based on measure-

ments relative to the known locations. In the case of self-locating, the measure-

ments can be the external forces experienced by the platform. The forces can be in

the form of accelerations and angular rotations experienced by the platform. In this

chapter, the devices, or sensors, used to obtain the measurements and the reference

external reference points are detailed. In addition, the challenges of utilizing these

sensors in a PNT solution are described. Similarly, methods of utilizing the infor-

mation gathered by the sensors to find produce the positional solution are presented

in this chapter. The errors and challenges from the methods and sensors described

in this chapter are a major cause of poor quality SAR images that are described in

future chapters.

2.1 Sensors

The information required to calculate the position of the platform is measured

using GPS, gyroscopes, and accelerometers. These three sensor types are used to

measure and quantify the position and physical forces the platform experiences.

The physical forces can be used in with the last known position to estimate the cur-

rent position of the platform. Gyroscopes and accelerometers measure the angular

rate and specific force, respectively. Inertial sensors are sensors that measure physi-

cal forces on the platform with no external reference. Sensors like GPS that measure

the position and velocity of the platform relative to an external source are not con-

sidered to be inertial sensors. In addition, inertial measurement units (IMUs) are

combinations of accelerometers and gyroscopes. IMUs typically are comprised of 3
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of each sensor to sense the physical forces in the three-dimensional Cartesian coor-

dinate system. The IMU is the primary sensor in an inertial navigation system. The

construction of accelerometers generally uses a mass coupled with a spring system

along the sensitive axis. As the mass is displaced by acceleration, the displacement

of the mass can be sensed by the springs. Based on the known spring constant

and the amount of the known mass was displaced the acceleration experienced can

be reported. As a result, the bigger the mass the more sensitive the accelerome-

ter. In the same vein, gyroscopes use a similar concept and larger masses lead to a

more sensitive gyroscope. The larger, more sensitive sensors also scale in costs as

the sensors are larger and have to be more precisely manufactured to optimize the

performance. Micro-electromechanical systems (MEMS) sensors are also available

and offer lower-cost manufacturing in smaller packages at the cost of performance.

MEMS sensors can provide the optimal solutions for specific applications where

factors such as shock tolerance or size, weight, and power (SWaP) restrict the use

for larger more precise sensors. As a result, there are five categories of these sen-

sors that help engineers narrow the quality of the sensor for the specific application.

The five categories are marine, aviation, intermediate, tactical, and consumer. Each

of these categories provides a performance of ∼ 1.8 km in the first 24 hours, ∼ 1.5

km in the first hour, and ∼ 15 km in the first hour for marine, aviation, and inter-

mediate grades respectively. In addition, the tactical grade IMUs can only be used

for inertial navigation systems for a few minutes and the consumer-grade requires

significant calibration to be able to be used for inertial navigation applications.

2.1.1 GPS

GPS sensors calculate the range the platform is from the network of satellites in

geostationary orbit. Geostationary orbit means the satellites are in the same location
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relative to the rotation of the Earth. The more satellites the range is calculated from

the more accurate the position is. The platform range to a single satellite produces

a sphere of possible locations the platform can be. As the number of satellites in the

network is increased the position possibilities are limited by the intersection of each

of the spheres created by the different satellites. These ranges are calculated using

a stable clock signal and transmitting when and where the satellite was when the

signal was transmitted. The range can then be calculated by taking the difference

between the time the signal was received and the time the signal was transmitted

and multiplying by the propagation speed (i.e, speed of light). The ranges from

each satellite can then be used to triangulate the location of the platform relative to

the satellite network. Since the satellite network is synchronous to the Earth’s orbit

the location on the earth can accurately be calculated.

2.1.2 Issues with GPS

Since GPS range is based on the transmissions from the satellite, the signal can

only be received if there is a line-of-sight (LOS) between the satellite and the re-

ceiver. In many cases, the line of sight may not be achievable to multiple satellites

in the network. In urban environments, signals can be obstructed by buildings and

structures and can get erroneous signals that are reflections from the surrounding

buildings. The reflections are not the expected direct path from the satellite to the

receiver and translate to an often longer range as the signal is a sum of the distance

from the satellite to the reflection point and the receiver distance from the reflec-

tion point. Environmental terrain can also obstruct the signal from lower elevation

satellites. In addition to signal obstructions, GPS errors can come from transmis-

sion delays as the signal propagates through the ionosphere and troposphere [52].

These delays increase the possible range of the platform, resulting in less accuracy.
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Signal attenuation also introduces error into the position estimation of the platform.

As the receiver moves into an environment that contains overhead cover such as

indoors or areas with dense foliage, the signal becomes attenuated. The attenuation

causes poor signal-to-noise ratios and the receiver is unable to receive the informa-

tion required to triangulate position. The same scenario occurs when the signal is

severely degraded due to jamming or RF interference in dense RF environments.

Furthermore, these issues cause difficulty in obtaining the positional solution mak-

ing the accuracy of GPS systems to be limited to meter accuracy.

2.1.3 Real-Time Kinematic (RTK)

Rover

Correction Data

GPS Signals 

Base 

Station

Figure 2.1: Concept of RTK GPS. GPS signals are received at the base station and

the rover the position errors are estimated at the base station and the correction data

is sent to the rover.
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One way to improve the accuracy of the GPS sensors is to utilize a technique

known as Real-Time Kinematic positioning. The technique utilizes multiple ground

stations to help correct the errors caused by satellite transmission of GPS signals.

RTK is a surveying technique that takes GPS measurements at a base station and

calculates the pseudo-range errors for the received signals. The idea is that the

position of the base station is known as it is stationary. When the base station is

deployed the GPS positions are accumulated for a long time and the positions are

averaged to obtain an accurate position of the base station. In general, the longer the

GPS positions of the base station are accrued the better the accuracy of the position

of the base station. As a result, the pseudo-range errors are more accurate. The

pseudo-range errors are calculated using a binary sequence that is known between

the satellite and the receiver. As the receiver’s sequence is delayed to match the

satellite, the transmission delay can be calculated. This delay is used to correct

the GPS errors caused by transmission delays from the satellite. In addition, the

range to the rover from the base station can be calculated and position corrections

calculated at the base station can be transmitted to correct the rover’s position.

2.1.4 Accelerometers

Accelerometers are sensors that measure acceleration along a sensitive axis. The

design of these sensors utilizes a mass-spring system to measure the displacement

experienced by the mass during acceleration. The idea is that the mass is suspended

between two springs and encased in a case. As the sensor accelerates the position

of the mass relative to the case changes and the forces the springs exert on the mass

change. As the spring constants are known, the position of the mass relative to the

case can be used to calculate the acceleration undergone by the sensor.

In three-axis IMUs, there are 3 mass-spring systems with each of their sensi-
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tive axes making up a Cartesian coordinate frame. This coordinate frame is often

aligned or transformed to the coordinate frame of the navigational body based on

the mounting orientation of instrumentation.

One limitation to accelerometers is the measurement of gravitational forces

where gravity applies a force to the frame and the mass of the sensor equally.

As a result, there is no positional change between the mass and the case result-

ing in no acceleration in measurement. Furthermore, accelerometers measure only

non-gravitational acceleration. Measurements from the accelerometers are often

expressed in g where 1g = 9.80665
m

s2
.

2.1.5 Gyroscopes

Gyroscopes, or gyros for short, measure the angular velocities experienced by

the sensor. A common implementation of gyros is the utilization of a spinning disk.

The free-spinning disk is mounted in such a way that the axis of rotation of the

disk is perpendicular to the sensitive axis. As this mass spins Newton’s third law

of motion applies where the angular momentum is conserved. In this way, the free-

spinning disk will remain rotating in the same axis even if an angular velocity is

applied to the case. As a result, the angular difference between the spinning disk

and the case can be used to measure the angular velocity experienced by the sensor.

Other designs of gyros involved fiberoptics arranged in a ring. As a signal is

transmitted through the fiberoptic ring the time the signal takes to traverse the ring

is measured. As angular rotation is applied to the sensor, the time for the signal to

traverse the ring changes proportionally with the angular velocity experienced. In

this way, the fiberoptic ring can sense the angular velocity experienced. The angular

velocity is often measured in
◦
s

or
radians

s
. Gyros also are often aligned to the

same axis as accelerometers in instrumentation. Doing so allows for acceleration
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and rotations to be measured by the accelerometers and gyros for that Cartesian

coordinate frame. This allows for characterization of how the sensor is moving

along the axes and how the orientation of the sensor is changing with respect to the

axes. Inertial measurement units(IMUs) are often instrumented this way where 3

accelerometers and 3 gyros are packaged to sense rotations and accelerations of the

coordinate frame.

2.2 Coordinate Frames

In navigation there are many frames of reference to describe the location of an

object on Earth. These coordinate frames help link the measurement of a sensor

to the physical location on the planet. In general, the coordinate frames all have a

different point of reference. For example, the sensor has a coordinate frame defined

where the origin is centered on the sensor whereas the Earth-centered coordinate

frames have the core of the earth as the origin. Understanding the differences be-

tween these coordinate frames for navigation is crucial to obtaining an accurate

position estimate. These coordinate frames give context to the location or orienta-

tion given. The systems define key references to describe an object. For example,

an arbitrary position point of X, Y, Z does not give context to how the location is

changing relative to the planet. However, an X, Y, Z value in a specific coordinate

system can help distinguish if the position is rotating with the planet or staying

constant independent from the rotational effects of the planet. This key detail is

important when describing a location on the surface of the Earth as opposed to an

object in space. In addition, some of the frames are better at distinguishing the atti-

tude of the navigational body as opposed to the physical location of the body. For

instance, the coordinate frame that is tied and oriented to the navigational platform

is useful for measuring the attitude changes of the platform instead of the location
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of the platform. The frames relevant to this paper are the Earth-centered inertial

(ECI), Earth-centered Earth Fixed (ECEF), north, east, down (NED), and the body

frame. A picture of each of the relevant coordinate frames is shown in Fig. 2.2.
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Figure 2.2: Coordinate frames used in navigation. ECI frame is shown in blue,

ECEF frame is shown in orange, NED frame is shown in green, and body frame is

shown in light blue on the aircraft.

2.2.1 Earth-Centered Inertial (ECI)

The origin of the ECI frame is defined at the center of the Earth and does not

accelerate or rotate with the Earth. The z-axis points to the north pole and is along

the Earth’s axis of rotation. The X and y-axis are aligned with the equator complet-

ing a right-hand Cartesian coordinate system. The X-axis is aligned with pointing

to the Sun at the vernal equinox. This coordinate frame is useful for interpreting the

measurements from inertial sensors which take measurements in an inertial coordi-

14



nate frame. As this coordinate system does not rotate, it is useful for determining

the location of spacecraft and other navigational entities in space. The ECI frame is

denoted by i in this dissertation.

2.2.2 Earth-centered Earth Fixed (ECEF)

The ECEF frame is defined with the origin at the center of the Earth. There are

2 key points for the ECEF frame the first is the intersection between the equator

and the 0◦ longitude, popularly known as the IERS Reference Meridian (IRM). The

second key point is the north pole. The x-axis of the ECEF frame points to the first

key point and the z-axis points to the north pole with the y-axis completing the right-

hand Cartesian coordinate system pointing at 90◦ longitude. The ECEF coordinate

plane rotates along the z-axis at a rate equivalent to the rotation of the Earth. As

a result, the coordinate frame is useful for determining the location relative to the

Earth. The ECEF frame is denoted by e in this dissertation.

2.2.3 North, East, Down

The NED frame is defined to be on the surface of the earth where the z-axis

is pointing toward the center of the earth. The x-axis is aligned with the north

pole and the y-axis points East to complete the coordinate frame. This coordinate

frame is useful for determining the orientation of the navigational body relative to

North, East, and Down. This frame’s origin is not fixed and is based on the location

on Earth and as a result, this frame is not used as a reference frame but is useful

for understanding attitude and velocity changes in position relative to the surface

of the Earth. These attitude and velocity changes can then be used to align the

measurements from the navigating body to a fixed orientation. Due to the frame

definition pointing to the north pole, the frame has a major limitation at the poles of
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the Earth as the North axis becomes undefined. The NED frame is denoted as n in

this dissertation.

2.2.4 Body frame

The body frame is the coordinate frame that is tied to the navigational body. The

x-axis points to the forward direction of the navigational body and the z-axis points

down on the navigational body and the y-axis completes the right-hand Cartesian

coordinate system. The origin of this frame is the same as the NED frame and

is useful for understanding the orientation of the navigational body. In addition,

the changes in attitude measured by the onboard sensors can be aligned with this

frame. Onboard sensors often have their orientation fixed to this frame. This frame

is denoted by b in this dissertation.

2.2.5 Coordinate Transformations

In order to resolve the location of a navigational body, a way to transform mea-

surements, orientations, and locations in the multiple coordinate frames is neces-

sary. Transformations between these frames can be done based on resolving the

orientations of each of these coordinate frames with respect to each other. To put it

simply, the measurements in one coordinate frame can be expressed in a different

coordinate frame through a series of rotations and projections. These rotations and

projections can be done using Euler angles and trigonometry. In the 2-dimensional

case with two coordinate systems that share a similar origin. The transformation

can be done by projecting the location from one coordinate frame onto another. An

example of the 2d transformation case is shown in 2.3.
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Figure 2.3: 2d transformation of a point between two coordinate systems. The

dotted coordinate system is a rotation of the solid coordinate frame by the angle θ.

For example, in 2.3 the transformation of point P from the solid coordinate

frame to the dotted coordinate frame can be calculated by

PY ′ =
√

(P 2
X + P 2

Y ) sin(φ) (2.1)

and

PX′ =
√

(P 2
X + P 2

Y ) cos(φ) . (2.2)

where PX and PY are the x and y coordinates of point P in the solid coordinate

system and PX′ and PY ′ are the x and y coordinates in the dotted coordinate frame

in Fig. 2.3. Furthermore, the angles φ is the angles from the solid coordinate system

to vector P and θ is the angle of rotation between the solid coordinate system and
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the dotted coordinate system. Conversely, the point P can be converted back from

the dotted coordinate frame to the solid frame by

PY =
√

(P 2
x′ + P 2

y′) sin(φ+ θ) (2.3)

and

PX =
√

(P 2
x + P 2

y ) cos(φ+ θ) . (2.4)

The magnitude of the vector P can be simplified to r =
√

(P 2
x + P 2

y ) and using the

trigonometric identity of

cos(A+B) = cos(A) cos(B)− sin(A) sin(B) (2.5)

The transformation between the two coordinate frames can be generalized to any

points by using a transformation matrix shown by

X ′
Y ′

 =

cosφ −sinφ

sinφ cosφ

X
Y

 (2.6)

where

CXX′ =

cosφ −sinφ

sinφ cosφ

 (2.7)

is defined as the rotation matrix required to transform from the dotted coordinate

frame X ′, Y ′, Z ′ to the solid coordinate frame X, Y, Z. Extrapolating this concept

to 3 dimensions is similar in concept where the location is rotated to the new coor-

dinate frame. The key difference in the 3-dimensional case is that rotations along

one dimension can cause additional changes in rotations for other axes. As a re-

sult, the order of rotation is important when transforming 3-dimensional coordinate

frames. Euler rotation matrices in 3 dimensions are calculated by combining the ro-
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tation matrix in each Cartesian axis. For instance, an Euler rotation that is done by

rotating about the x, y, and z-axis in the respective order can be calculated by mul-

tiplying the rotation matrix about x (Cx), the rotation matrix about y (Cy), and the

rotation matrix about z (Cz). The rotation matrix in each of these axis are expressed

by

Cx =


1 0 0

0 cosφ −sinφ

0 sinφ cosφ

 (2.8)

Cy =


cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ

 (2.9)

Cz =


cosψ −sinψ 0

sinψ cosψ 0

0 0 1

 (2.10)

where θ, φ,and ψ are the angle of rotation about the respective x, y, z axes. As a re-

sult. the Euler rotation matrix in the order of X, Y, Z, denoted by Cxyz is equivalent

to

Cxyz = CxCyCz =


1 0 0

0 cosθ −sinθ

0 sinθ cosθ



cosφ 0 sinφ

0 1 0

−sinφ 0 cosφ



cosψ −sinψ 0

sinψ cosψ 0

0 0 1


(2.11)
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and is evaluated to

Cxyz =


Cxyz(11) Cxyz(12) Cxyz(13)

Cxyz(21) Cxyz(22) Cxyz(23)

Cxyz(31) Cxyz(32) Cxyz(33)

 (2.12)

where each element in the 3d rotation matrix is defined as

Cxyz(11) = cos(φ) cos(ψ) (2.13)

Cxyz(12) = − cos(θ) sin(ψ) + sin(θ) sin(φ) cos(ψ) (2.14)

Cxyz(13) = sin(θ) sin(ψ) + cos(θ) cos(ψ) sin(φ) (2.15)

Cxyz(21) = cos(φ) sin(ψ) (2.16)

Cxyz(22) = cos(θ) cos(ψ) + sin(θ) sin(φ) sin(ψ) (2.17)

Cxyz(23) = − sin(θ) cos(ψ) + cos(θ) sin(φ) sin(ψ) (2.18)

Cxyz(31) = − sin(φ) (2.19)

Cxyz(32) = cos(φ) sin(θ) (2.20)

Cxyz(33) = cos(θ) cos(φ) (2.21)

(2.22)

In changing the order of the rotations, the structure of the rotation matrix remains

the same but the elements of the matrix are calculated by by multiplying the rotation

matrices in a different order. For example, a rotation sequence of Z, Y, X, denoted

by Czyx, is accomplished by performing the rotations in (2.11) in reverse. Doing so
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the rotation matrix calculation as described by (2.11) becomes

Czyx = CzCyCx =


cosψ −sinψ 0

sinψ cosψ 0

0 0 1



cosφ 0 sinφ

0 1 0

−sinφ 0 cosφ



1 0 0

0 cosθ −sinθ

0 sinθ cosθ

 .

(2.23)

The resulting elements of the rotation matrix Czyx evaluate to

Cxyz(11) = cos(ψ) cos(φ) (2.24)

Cxyz(12) = cos(ψ) sin(φ) + sin(θ)− sin(ψ) cos(θ) (2.25)

Cxyz(13) = cos(psi) sin(φ) cos(θ + sin(θ) sin(ψ) (2.26)

Cxyz(21) = cos(φ) sin(ψ) (2.27)

Cxyz(22) = sin(ψ) sin(φ)sin(θ) + cos(ψ) cos(θ) (2.28)

Cxyz(23) = sin(ψ) sin(φ) cos(θ)− cos(ψ) sin(θ) (2.29)

Cxyz(31) = − sin(φ) (2.30)

Cxyz(32) = cos(φ) sin(θ) (2.31)

Cxyz(33) = cos(θ) cos(φ) (2.32)

(2.33)

In navigation applications, the rotation order of Z,Y,X are useful when orient-

ing the body frame to the NED frame. In doing so allows for the acceleration in

the body frame as measured by the IMU to be transformed to the acceleration in

the NED frame. Accelerations in the NED frame allow for the calculation of the

change in latitude, longitude, and altitude. An example of transforming from the 3-

dimensional NED frame to the body frame using a the rotation matrix Cbn is shown
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in 2.34-2.43.

Cbn(11)(k) = cos(φ(k)) cos(θ(k)) (2.34)

Cbn(12)(k) = cos(φ(k)) sin(θ(k)) sin(ψ(k))− cos(ψ(k)) sin(φ(k)) (2.35)

Cbn(13)(k) = sin(φ(k)) sin(ψ(k)) + cos(φ(k)) cos(ψ(k)) sin(θ(k)) (2.36)

Cbn(21)(k) = cos(θ(k)) sin(φ(k)) (2.37)

Cbn(22)(k) = cos(φ(k)) cos(ψ(k)) + sin(φ(k)) sin(θ(k)) sin(ψ(k)) (2.38)

Cbn(23)(k) = cos(ψ(k)) sin(φ(k)) sin(θ(k))− cos(φ(k)) sin(ψ(k)) (2.39)

Cbn(31)(k) = − sin(θ(k)) (2.40)

Cbn(32)(k) = cos(θ(k)) sin(ψ(k)) (2.41)

Cbn(33)(k) = cos(θ(k)) cos(ψ(k)) (2.42)

(2.43)

The GPS latitude, longitude and height are expressed in the NED frame and are

converted to the ECEF Cartesian coordinate system by applying a transform. The

transform used to convert the GPS coordinates to the ECEF Cartesian coordinates

is shown in (2.44)


X

Y

Z

 =


(RE +Hb) cos(Lb) cos(λb)

(RE +Hb) cos(Lb) sin(λb)

((1− e2)RE +Hb) sin(Lb)

 (2.44)

where Lb is the GPS latitude, λb is the GPS longitude, Hb is the GPS height, e

is the eccentricity of the Earth and RE is the radius of the earth. This conversion

allows for easier plotting and visualization. ECEF coordinates can be visualized

in a Cartesian coordinate system whereas the latitude, longitude, and height values
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are visualized on a globe. As a result, the latitude, longitude, and height values are

often distorted when plotted on a Cartesian system.
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2.3 Dead Reckoning

A popular method of predicting a positional solution is known as dead reckon-

ing. Dead Reckoning is the method of estimating the position of a moving platform

by using speed and heading to predict the position over a specific time. The method

uses a motion model to calculate the next known position using information from

sensors that measure speed and heading. Given the time elapsed from the last sen-

sor update the position can be calculated by taking the previous known position

estimate and adding the velocity vector multiplied by the elapsed time to get the

position distanced traversed by the moving platform. This process is done by uti-

lizing

Pk = Pk−1 + vkdt (2.45)

where Pk is the current position, Pk−1 is the position calculated at the previous time

step and vkdt is the current velocity multiplied by the elapsed time.

Extrapolating the equations to include acceleration allows for the position to be

estimated more accurately based on the acceleration experienced by the platform.

These accelerations can be measured using an IMU or accelerometers. As a re-

sult, The position can be estimated from the IMU measurements using (2.46). In

addition, the velocity of the navigating body can be estimated using (2.47).

pk = pk−1 + vkδt+
1

2
akδt

2 (2.46)

vk = vk−1 + akδt (2.47)

Where pk is the position at the current time step, pk−1 is the position at the previous

time step, vk is the velocity at the current time step, ak and ak−1 are the accelerations

at the current and previous time steps, respectively, and δt is the time difference

between the previous and current time steps.
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The main limitation of this method of producing a navigational solution is er-

rors in the sensor measurements. The errors caused by the sensor measurements

compound and cause the navigation solution to become more erroneous over time

as the method is recursive. As shown in equation 2.45, the errors from the current

sensor measurement are added to the sensors errors that were included in the previ-

ous sensor measurement. As a result, the deviation over time from the true position

traversed by the platform is known as sensor walk or sensor drift. One popular way

to combat this is to use higher precision and ultra-low noise sensors that minimize

the errors introduced into the system. The current trade-off is that the accuracy of

the sensors is proportional to the C-SWAP of the sensors. In general, the C-SWAP

of the sensors increases as the accuracy of the sensors increase.

2.4 Motion Model

The values recorded from the instrumented NovAtel IMU unit are acceleration

expressed in the body coordinate frame. To process the data in the local north, east,

down (NED) frame, the raw IMU values are rotated using an Euler rotation matrix

shown in (2.34). These rotation values are used to build the rotation matrices de-

scribed in the previous section. The rotation sequence used for the rotation matrix is

ZYX. The rotation angles of φ, θ, and ψ are defined as roll, pitch, and yaw, respec-

tively, as shown in Fig. 2.4, and are acquired from the gyroscope. As explained in

[46], the gyroscope measurements can cause errors in attitude determination which

significantly impacts the accuracy in the final predicted location of the navigating

body. The Earth spin rate and the rate of the NED frame are also included in these

measurements and need to be removed to obtain accurate attitude estimation. A de-

tailed explanation of determining attitude from the gyroscope measurements while

accounting for Earth effects is explained in [33]. The Earth spin rate (ωn
ie) is notated
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Figure 2.4: Euler angles defined as rotations around the axis as follows: Roll (φ)
is the rotation around X , Pitch (θ) is the rotation around Y , and Yaw (ψ) is the
rotation around Z.

as the rate of the Earth-centered Earth fixed frame (e) with respect to the inertial

frame (i) resolved in the NED frame (n). Similarly, the rate of rotation of the n

frame is represented as the e frame with respect to the n frame resolved in the n

frame. In short, ωn
ie represents the Earth spin rate transformed to the NED frame

and ωn
ne is the rate of change the NED frame experiences as the Earth rotates. To

remove the Earth rotation rate, ωi
ie = [ 0 0 7292115e−11 ](rad/s), is converted to the

body frame by multiplying the previous rotation matrix Cbn(k−1), given in (2.34),
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with ωi
ie. The same is done for the rate experienced by the NED frame by

ωe
en(k) =



vE(k − 1)

rneff

−vN(k − 1)

rmeff

vE(k − 1) tan(pL(k − 1)

rneff

 (2.48)

where the latitude (pL) and the velocity of the navigating body, [ vN vE vD ], are

combined with the effective meridian (rmeff) and transverse radius (rneff) of the

Earth to get ωn
ie. The meridian and transverse radii of the Earth are calculated using

rm(k) =
R0(1− e2

c)

(1− e2
c sin

2(pL(k)))3/2
(2.49)

and

rmeff(k) = rm + palt(k) (2.50)

where rm is the meridian radius of curvature, R0 is the Earth’s equatorial radius, ec

is the Earth’s eccentricity, and rmeff is the effective meridian radius at the current

altitude (palt(k)) and latitude (pL(k)). The corrected gyroscope measurements are

calculated by

ωtrue(k) = ω̃ − CT
bn(k − 1)((ωn

ne) + (ωn
ie)) (2.51)

where ωtrue(k) is the true attitude rates and ω̃ are the measured gyroscope values

[32]. The values are added to the previous attitude to produce the current attitude

of the platform. The attitude is used in (2.34) to calculate the rotation matrix for

converting from the body frame to the NED frame. The rotation matrix (Cbn) is

used to rotate the acceleration vector to the NED frame. The transformation of the
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acceleration vector can be calculated using

a(k) = (Cbn(k − 1)− Cbn(k))(IMUmeas)
dt

2
+ E (2.52)

where a(k) is the current acceleration, IMUmeas are the accelerometer values in

the body frame, and dt is the change in time. Lastly, E is the Earth’s accelerations

measured by the accelerometer. The Earth’s accelerations include gravity as well as

the rotation of the Earth. The current acceleration values are then used to calculate

the current velocity v(k). The position is then calculated from v(k). For the altitude

component of the position, the calculation is straightforward and can be calculated

using

palt(k) = palt(k) + vD(k)
dt

2
(2.53)

where palt is the altitude component of position and vD(k) is the velocity in the

down component of the NED frame. As for the latitude, the equation must take

into account the curvature of the Earth. Combining (2.49) and (2.50) allows for the

latitude rate of change to be calculated as

ṗL =
vN(k)

rmeff(k − 1)
+

vN(k)

rmeff(k)
(2.54)

where vN(k) is the current velocity in the north direction of the NED coordinate

frame. Finally, the latitude coordinate is calculated by

pL(k) = pL(k − 1) + ṗL(k)
dt

2
(2.55)

where pL(k) is the current latitude coordinate and pL(k − 1) is the latitude coor-

dinate for the previous time step. Similarly, the calculation of the longitude value

requires taking into account the curvature of the Earth. However, instead of using
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the meridian radius of the Earth, the transverse curvature of the Earth must be cal-

culated. The calculation of the transverse curvature of the Earth differs from the

meridian as

rn =
R0√

1− e2 sin(pL(k))
(2.56)

and the effective transverse curvature is calculated by

rneff(k) = rn + palt(k). (2.57)

The rate of change in longitude is then calculated very similarly to the rate of change

in latitude as shown by

λ̇(k) =
vE(k)

rneff(k) cos(pL(k))
+

vE(k)

rmeff(k) cos(pL(k))
(2.58)

where vE(k) is the velocity in the east component of the NED frame. The final

longitude coordinate is then calculated using λ̇ and the duration of the time step as

shown by

pλ(k) = pλ(k − 1) + λ̇(k)
dt

2
. (2.59)
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2.5 Summary

In this chapter, the relevant sensors utilized to obtain positional solutions is

described. In addition, the challenges that are inherent to the use of each of the

sensors are also described. These challenges create challenges to utilizing a single

sensor to measure the position of the moving platform.

The coordinate frames used to expressed the positional solution is also detailed

in this chapter. These coordinate frames provide reference points that are crucial in

determining the location of a platform. The meaning of the position solution is only

meaningful when expressed in these coordinate frames. Otherwise, the positional

solution is only a mere set of numbers with no definition of what the position is

relative to.

Lastly, the methods used in calculating a positional solution from the measure-

ments received by IMUs is described. These methods assume the measurements are

error free and does not provide any correction for the errors in the actual measure-

ments. In the next chapter, techniques used to overcome these errors are described.

The techniques utilize multiple sensors to overcome the challenges of any single

sensor used in calculating a positional solution.
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3 Data Fusion

In this chapter, the errors of the sensors are minimized by using a technique

called data fusion. Data fusion is a modern technique that utilizes estimation theory

and data from multiple sources to provide a more accurate position estimate [72].

In general, the goal is to use the best aspects of each sensor, which ideally com-

pensate for the weak points of any other given sensor when fused. Although the

technique allows for more accurate positional solutions, the technique still presents

two challenges for SAR. The first challenge is producing positional solutions at the

rate required to form a SAR image. The second challenge is producing positional

accuracy required for SAR imaging. In this chapter interpolation techniques are

presented to address the first challenge.

The integration of GPS sensors with multiple additional inputs has been used in

autonomous vehicles for navigation purposes as discussed in [62, 71]. One popular

method of fusing data from multiple sources is the utilization of the Kalman filter.

Examples in the literature are abundant, including Nallapu et. al. [28, 45, 46,

57]. In brief, the attitude determination system in [45] executes a pre-programmed

Kalman filter that combines a micro-electromechanical system (MEMS) gyroscope,

a magnetometer, and an accelerometer. The Kalman filter has also been shown to

provide the ability to estimate the errors of an INS system as described in [66].

The idea of data fusion is used to combine the data from the GPS and the IMU

in order to produce a single position solution. It should be noted that the Kalman

filter can be utilized for the fusion of multiple disparate sensors such as LIDAR and

even cell towers shown by [38]. Data fusion combines the accuracy of the GPS

solution as well as the faster, more stable IMU measurement resulting in a single

position solution that is stable, accurate, and updated rapidly. Traditional applica-

tions of IMU and GPS fusion combine the measurements from a single IMU with
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the solution from GPS. In order to increase the accuracy of the position solution, an

ultra-low bias navigational grade IMU can be used to offer superior sensor perfor-

mance. While a navigational grade IMU will produce the best positional estimation,

these modules are typically large in size, expensive, heavy, and consume a signif-

icant amount of power. Therefore, there is a trade-off between a more accurate

position solution and an increase in C-SWaP. This becomes a significant challenge

for navigating bodies, such as unmanned aerial vehicles, that may require extremely

accurate position solutions but are SWaP constrained.

3.1 Kalman Filter

The Kalman Filter is a method of fusing sequential measurements by utilizing

the statistical errors in the system. The Kalman filter uses a model to make predic-

tions on the system state at the next time step. The measurements of the system state

are then fused with the model by estimating the joint distribution of the measure-

ment and the predicted system state. As a result, the prediction model is improved

using the joint distribution and the results are often more accurate than the mea-

surement alone. The filter is a recursive method that utilizes the weighted average

that favors measurements with more certainty. This is done utilizing the process

and measurement co-variances. The Kalman filter assumes a normal Gaussian dis-

tribution of the system errors.

The Kalman filter can be used to fuse two measurements with a weighting func-

tion. The Kalman filter typically is implemented with predicting the state at a future

timestep with an uncertainty value. The uncertainty in this measurement grows until

a measurement is observed. The measurement is then used to correct the predictions

using the weighted average. As a result, the uncertainty of the fused state estimation

is decreased and the process is repeated to form a recursive process. The weighted
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average of the two measurements is calculated using the prediction uncertainty di-

vided by the sum of the prediction uncertainty and the measurement uncertainty as

calculated by

Kn =
pk|k−1

pk|k−1 +Rk

. (3.1)

In (3.1), Kn is the Kalman gain used to represent the weighted average between the

estimation uncertainty, pk|k−1 at the current state k given the previous state k − 1,

and the measurement uncertainty Rk. The Kalman gain is used to weigh the impact

of the measurement and the predictions in the final estimation of the current state

xk. In general, the state update equation can be written as

xk = xk−1 +Kk(yk − xk−1) (3.2)

where xk−1 is the previous state estimation and yk is the measurement of the cur-

rent state. The weight of the impact of the measurement vs prediction is inversely

proportional to the respective uncertainties. Additionally, the Kalman gain is bound

between 0 and 1 to ensure the contribution of the measurement and the prediction

does not exceed the reported value. For example, if the Kalman gain is greater than

one the weight on the prediction is negative and introduces error if the prediction

is estimating positive values. Similarly, the weight on the measurement is greater

than 1 and the measurement becomes amplified and errors can be introduced by a

false amplification. This becomes obvious when expanding the equation in (3.2), to

xk = (1−Kk)xk−1 +Kkyk . (3.3)

As a result, low uncertainty, or high confidence, in the measurements results in a

highKk causing the weight on xk−1 to be low meaning the measurement contributes

more to the final estimation of the current state. This logically makes sense as
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the high confidence in the measurement should result in the final estimation being

closer to the measurement. Similarly, high uncertainty, or low confidence, in the

measurement results in a high weight (1 − Kk) in the state prediction. Logically,

this means that the prediction should contribute more to the final estimation if the

received measurement is highly uncertain.

The Kalman filter also allows for the estimation of uncertainty using the Kalman

gain. The concept is similar to the state estimation where the uncertainty at state k

can be estimated using

pk = (1−Kk)pk|k−1 . (3.4)

The rate of convergence for the uncertainty is controlled by the Kalman gain in this

case. High confidence in the measurement value equates to a low (1 − Kk) term

which results in a large decrease in uncertainty based on the previously estimated

uncertainty value. Conversely, low confidence in the measurement value results in a

high (1− kk) which means the change in uncertainty is decreased by a small incre-

ment. Using these relationships the Kalman filter can adjust the uncertainty of the

estimation of the current state based on the covariance matrices of the measurement

and predictions. Intuitively, the concept makes sense as more measurements are

observed the confidence in the estimation should increase which equates to a lower

uncertainty value. This allows for the filter to converge to true values as the filter

recursively makes more estimates.

For system states that are more than 1 dimension, the Kalman filter can be ex-

trapolated to multiple dimensions by converting the equations to handle matrices.

For example, estimating the location of a moving vehicle is often expressed in 3

dimensions. In this scenario, the state Xk in (3.3) becomes a vector containing the

X, Y, and Z coordinate of the vehicle’s location. Furthermore, the dimension of the

vehicle state can be further extended to contain velocity and acceleration converting
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Xk into

xk =



X

Y

Z

Vx

Vy

Vz

ax

ay

az



(3.5)

where X, Y, and Z are the location coordinates, Vx, Vy, and Vz are the velocity in

each coordinate axis and ax, ay, and az are the acceleration in each coordinate axis.

Similarly, the covariance matrix pk in (3.4) is converted to

pk =



COV (x, x) COV (x, y) COV (x, z) COV (x, Vx) COV (x, Vy) COV (x, Vz) COV (x, ax) COV (x, ay) COV (x, az)

COV (y, x) COV (y, y) COV (y, z) COV (y, Vx) COV (y, Vy) COV (y, Vz) COV (y, ax) COV (y, ay) COV (y, az)

COV (z, x) COV (z, y) COV (z, z) COV (z, Vx) COV (z, Vy) COV (z, Vz) COV (z, ax) COV (z, ay) COV (z, az)

COV (Vx, x) COV (Vx, y) COV (Vx, z) COV (Vx, Vx) COV (Vx, Vy) COV (Vx, Vz) COV (Vx, ax) COV (Vx, ay) COV (Vx, az)

COV (Vy, x) COV (Vy, y) COV (Vy, z) COV (Vy, Vx) COV (Vy, Vy) COV (Vy, Vz) COV (Vy, ax) COV (Vy, ay) COV (Vy, az)

COV (Vz, x) COV (Vz, y) COV (Vz, z) COV (Vz, Vx) COV (Vz, Vy) COV (Vz, Vz) COV (Vz, ax) COV (Vz, ay) COV (Vz, az)

COV (ax, x) COV (ax, y) COV (ax, z) COV (ax, Vx) COV (ax, Vy) COV (ax, Vz) COV (ax, ax) COV (ax, ay) COV (ax, az)

COV (ay, x) COV (ay, y) COV (ay, z) COV (ay, Vx) COV (ay, Vy) COV (ay, Vz) COV (ay, ax) COV (ay, ay) COV (ay, az)

COV (az, x) COV (az, y) COV (az, z) COV (az, Vx) COV (az, Vy) COV (az, Vz) COV (az, ax) COV (az, ay) COV (az, az)



.

(3.6)

The diagonal of the matrix in (3.6) simplifies to the variance of the state parameter

as the covariance of a parameter with itself is the variance. The covariance between

two-state parameters can be calculated using

COV (X,Y) = E[(X− E[X])(Y − E[Y])] (3.7)

where E is the expected value operator. The covariance of a variable with itself is
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simplified to

COV (X,X) = E[(X− E[X])2] = σ2
x (3.8)

These concepts are fundamental to the Kalman filter as it is implemented in nav-

igation applications. As result, the Kalman filter utilizes several matrices to model

the state prediction and the covariance of the state parameters. In inertial navigation

applications, the position is the state being predicted using a motion model and the

measured acceleration from the IMU. The predicted position is then fused with the

GPS measurement using the Kalman gain. An example of the uncertainty of the

inputs into the Kalman filter is shown in Fig. 3.1. The figure illustrates the uncer-

tainties and errors that are associated with the predicted location and the measured

GPS position. The blue dots represent the possible GPS measurements that could

be provided. Similarly, the orange shows the possible predictions provided from

using a motion model and the IMU measurements. In this case, the GPS position

provides a more precise measurement relative to the predicted location. This can

be seen by the relative size of the GPS possible values compared to the size of the

predicted values. In 3.1 precision of the measurement is proportional to the size of

the point cloud and the smaller the point cloud means the more precise the mea-

surement is. Regardless, both the predicted state and the GPS measurements are

erroneous as indicated by the center of these point clouds being different from the

true value.

Breaking the point clouds into a single dimension, the probability of the mea-

surements can be represented as a histogram. The histogram shows the concentra-

tion or density of the point cloud and the width of the histogram is proportional

to the uncertainty of the measurement. In Fig. 3.2, the histograms for the point

cloud in 3.1 are depicted. It can be seen that the uncertainty of the GPS is less

than the uncertainty of the predictions as indicated by the width of the histograms.
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Figure 3.1: Image of the uncertainty of the inputs of the Kalman filter. The true X,
Y coordinate is indicated as the green cross. The possible GPS measurements are
shown in orange and the possible predicted values are shown in blue.

Generically, the Kalman filter recursively calculates the weighted average between

the predicted positions, calculated from the IMU measurements, and the measured

position from the GPS. The Kalman estimation of the final state can be seen in Fig.

3.2, where the estimate shown in green provides a more precise measurement. The

increase in precision can be attributed to the Kalman gain causing the uncertainty

to converge as shown in (3.4).

Implementation of the Kalman filter requires a prediction of the system position

that is then fused with the measurement. The prediction requires the previously

known position and the acceleration measured from the IMU. In addition, the co-

variance of the system state is also predicted according to the prediction model.
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Figure 3.2: Probability density of a 1-dimensional Kalman fusion. The yellow
histogram is the probability density of the prediction of the X coordinate. The blue
histogram is the probability density of the GPS measurement. Lastly, the green
histogram is the probability density of the final estimate of the X coordinate from
the Kalman filter.

The Kalman gain is then calculated using the measurement covariance and the pre-

dicted state covariance. Lastly, the final state estimation is calculated using the

calculated Kalman gain and the final state covariance is updated. Implementation

of the Kalman filter is broken into two stages: the prediction stage and the update

stage.

Prediction In the prediction stage, a prediction of where the measurement should

be is calculated using a mathematical model of the system. In addition, given the

error covariance of the system, the Kalman filter will also predict the covariance of
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the predicted measurement. The result of the prediction stage is an expected value

and the variance of the measurement is calculated. The equation for the prediction

step of the Kalman filter is shown in (3.9),

X̂k = Fxk−1 +Buk (3.9)

where X̂k is the position estimated by the mathematical model, F is the state transi-

tion matrix, xk−1 is the estimation in the previous time step, B is the control vector,

and uk is the system influence matrix. For example, a GPS and IMU implementa-

tion can be modeled by (2.46) and (2.47) for position and velocity respectively. In

order to represent the GPS and IMU system in the Kalman filter, (3.9) will need to

be expanded to contain position velocity in the x, y, and z dimensions in the Earth-

centered inertial (ECI) frame. Equations (2.46) and (2.47) can be transformed into

the following form to match the form in (3.9). The resulting form of the Kalman

filter prediction is shown in (3.10).

pk
vk

 =

1 δt

0 1

pk−1

vk−1

+

12δt2
δt

[ak] (3.10)

From equations (3.9) and (3.10), the following can be defined X̂k = [ pkvk ], F =

[ 1 δt
0 1 ], xk−1 = [

pk−1
vk−1 ], and B = [ 0.5δt2

δt ]. The Kalman filter can now take accelera-

tion (ak) measurements from the IMU and estimate the next position by taking the

velocity and position from the previous estimate or time step. In addition to the pre-

diction of the expected value of the measurement, the prediction step also predicts

the new covariance based on the state transition matrix given. The equation for the

prediction of the covariance matrix is given by (3.11)

Pk = FPk−1F
T +Qk (3.11)
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where Pk is the new covariance, and Pk−1 is the covariance of the previous time

step. In equation (3.11), Pk and Pk−1 are the covariances of the X̂k and xk−1 in

(3.9) respectively and Qk is the process noise.

Update In the update step, the Kalman filter takes the measurement produced by

the sensor and fuses it with the estimated measurement. The fusion happens by first

calculating the covariance of the measured value based on the specified noise of

the sensor. The Kalman filter then determines the probability that the measurement

from the sensor is the truth value. The final value produced by the Kalman filter is

the estimation from the math model corrected by the sensor compensated by a factor

of confidence known as the Kalman gain. The factor of confidence is calculated

based on the mean and variance of the measurement. The equations to calculate the

update step are shown in (3.12) through (3.15).

Sk = HkPk−1Hk
T +Rk (3.12)

Kk = P̂kHk
T (Sk)

−1 (3.13)

Xk = X̂k +Kk(yk −HkX̂k) (3.14)

Pk = P̂k −KkHkP̂k (3.15)

Equation (3.12) defines Hk as the measurement matrix and Rk as the measure-

ment noise variance. For the IMU and GPS application the measurement matrix

Hk = [ 1 0 ] since the measurement given to the Kalman filter is the GPS position

measurement and does not include velocity. In addition, P̂k is the estimation of the

covariance calculated in the prediction step. X̂k is the predicted measurement cal-

culated in the prediction step. Equation (3.13) is the confidence factor, also known

as the Kalman gain, that determines how much of the measurement is incorporated
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into the final estimate of the Kalman filter. In equation (3.14), the final corrected

estimate is calculated by adding the difference of the measurement yk and the esti-

mate calculated in the prediction step, scaled by the Kalman gain. The final result

contains a combination of the data obtained by the IMU and the GPS calculated by

the Kalman filter. Lastly, (3.15) calculates the covariance of the fused result given

the Kalman gain and the covariance estimated by the prediction step.

The results of the Kalman filter can be fed back into the algorithm as the esti-

mate for the previous time step (xk−1) allowing the Kalman algorithm to be exe-

cuted recursively to produce a fusion of two sensors at every time step. In the GPS

and IMU application, the Kalman filter algorithm was used only when a GPS mea-

surement was present. For instance, the GPS position is fused with the most recent

estimated position to provide a more precise position estimate. In between the GPS

position updates, the prediction state of the Kalman filter was calculated for every

data point of the IMU. As the GPS measurement became available, the fusion via

the update step of the Kalman filter was utilized to incorporate the GPS values into

the new prediction. The product of the Kalman filter fusion created an aided Inertial

Navigation System (INS) solution capable of producing position estimations when

the GPS sensor is unavailable.

It should be noted that the Kalman filter is limited to linear systems with White

Gaussian noise. In order to address non-linear systems, different flavors of the

Kalman filter have been presented in literature [41, 42, 47, 68]. The most common

flavor are the extended Kalman filter and unscented Kalman filter which addresses

the linear systems limitation of the Kalman filter[34, 56, 58, 69, 70]. The particle

filter is shown to have the capabilities of outperforming the Kalman filter in many

applications [3]. The particle filter also has different flavors such as the unscented

particle filter [48] to address different limitations of multiple model filters and also
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show the particle filter can outperform the Kalman filter. In literature the particle

filter has been shown to provide better results than the flavors of Kalman filter [4].

For this reason the flavors of the Kalman filter are not analyzed in this dissertation.
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3.2 Particle Filter

The particle filter is another method of fusing data measurements and has drawn

increasing attention during recent years because of its superior ability to deal with

processes that have non-linear models and contain non-Gaussian noise sources [3,

17, 21, 22, 77]. The method has been proven to produce superior results in the

application of fusing IMU and GPS measurements [9]. The navigation application

does not guarantee the noise sources are non-linear and non-Gaussian in nature. The

particle filter is a sequential Monte Carlo method based on Bayesian theory, for in-

stance [14, 22, 23, 51] and others. The idea is to calculate several possible outcomes

for each state of the system. The number of possible outcomes is represented as a

cloud of particles. At each state, every value of the particle cloud is propagated to

the next state. In doing so, a Monte Carlo method is sequentially implemented at

each state. The particle cloud is meant to represent the distribution of the estimated

system state. In propagating the particle cloud, the posterior probability distribu-

tion of the system state is estimated. The state estimation is then done by taking the

sample mean of the particle cloud as the sample representation of the posterior dis-

tribution. The posterior distribution is then recalculated given a new measurement

of the system state. The recalculation of the posterior distribution is done using a

concept known as resampling. The concept of resampling requires each sample of

the particle cloud to be weighted with an importance value. The importance value

represents how likely the particle is representative of the true posterior distribution.

The particle cloud is then resampled where the particles with higher weights are

drawn more often to replace the unlikely particles in the cloud. As a result, the

new particle cloud is more representative of the true posterior distribution of the

system state. As more measurements are observed, the representation of the pos-

terior distribution becomes increasingly accurate. As a result, the final estimation
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of the system state is estimated from a more accurate probability distribution which

directly translates to a more accurate system state estimation.

The particle filter estimates the system state from a representation of the pos-

terior distribution. The representation is not restricted to any one distribution and

allows for the filter to be flexible and accurate regardless of the true distribution. In

addition, particle filters are capable of handling large systems as the filter does not

require the covariance of each system state to be estimated and modeled. This is a

byproduct of the particle filter performing state estimations from the posterior dis-

tribution directly. As a result, the estimations are not altered given the covariance

of the measurements. As shown by (3.6) the covariance matrix increases with the

number of state variables being estimated. Particle filters can be applied in remote

sensing applications to perform tasks such as object and target tracking [6, 79, 81],

and have been used to fuse data from multiple sensors to track target location over

a sensor network that covers an area of interest [80]. Moreover, particle filters can

be used in conjunction with inertial sensors for motion tracking applications as de-

scribed in [65] where fused data from visual sensors and an inertial sensor are used

to track the motion of a robotic arm. Lastly, the authors in [7] implemented a hybrid

approach using a particle filter and Kalman filter to produce accurate navigation so-

lutions during GPS outages.

While the particle filter can be used to fuse the GPS and IMU data to provide a

highly-precise (high-frequency applicable) and long-term PNT solution, the update

rate of the said data will be limited by the highest PRF sensor.

Consider a system where position (pk) and velocity (vk) at state k are modeled

by two non-linear functions given by

pk = F (x) +Qk (3.16)
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and

vk = G(x) +Rk , (3.17)

where F (x) and G(x) are non-linear functions, Qk is the process noise, and Rk is

the measurement noise. Applying Bayes’ theorem, given by

P (A|B) =
P (B|A)P (A)

P (B)
(3.18)

in conjunction with the law of probability given by

P (B) =
∑

P (B|A)P (A) (3.19)

, shows that Bayes’ theorem may be extended to represent the posterior distribution

by

P (A|B) =
P (B|A)P (A)∑i=N

i=1 P (B|A)P (A)
. (3.20)

Combining (3.16), (3.17), and (3.20) allows for the posterior distribution of the

non-linear system be modeled as

P (p0:k|v1:k) =
P (v1:k|p0:k)P (p0:k)∑i=N

i=1 P (v1:k|p0:k)P (p0:k)
. (3.21)

Particle filters utilize the importance sampling concept, as discussed previously

in [20], where each particle in the cloud is assigned a weight, as our team has suc-

cessfully demonstrated in the past [76, 81–83]. The weights need to be normalized

when used in the importance sampling which can be accomplished using

wik = wik−1

P (vk|pik)P (pik|pik−1)

ρ(pik|pi0:k,v1:k)
(3.22)

where wik is the weight for sample i and ρ(pik|pi0:k,v1:k) is the proposal probability
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function. The proposal probability function is the joint probability of the position

at state k, given the previous positions and velocity. As a result, the calculated

weights are normalized to represent a probability bound by the proposal probability

function. The weights are used to estimate the posterior distribution of the estimated

position and velocity. Lastly, the posterior particles for position and velocity are

drawn from the posterior distribution of position and velocity, respectively. An

implementation and derivation of the particle filter are described in [78].

The particle filter is broken down into multiple steps. The first step initializes

a particle cloud with an expected value equal to the initial position of the plat-

form. The second step moves the point cloud by the motion model of the system

described by (2.53), (2.55), and (2.59). The third step re-samples the values in the

point cloud and the last step produces the position estimate by calculating the ex-

pected value of the re-sampled point cloud. The re-sampling step is required to

remove samples in the point cloud that are the least likely to be the true position

while maintaining an appropriate number of particles in the point cloud. An exam-

ple of the effects of re-sampling is shown in Fig, 3.3. Removing samples with the

least likelihood of being the true position allows for the particle filter to converge to

the true position. As a result, the particle cloud begins to converge the true value.

In Fig.3.3, the orange cloud is fed forward to the next re-sampling iteration to be

re-sampled given a new measured value. In addition, the measurements produced

should be within the black ring representing the measurement uncertainty. It can

be seen that the estimation from the particle filter increases with accuracy as more

measurements are provided and the particle cloud is re-sampled repeatedly. How-

ever, If the re-sampling technique is not effectively implemented, the particle cloud

could degenerate as described in [50], meaning the particle cloud will produce erro-

neous predictions. The degeneration is caused by the loss of diversity in the particle
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Figure 3.3: The effects of re-sampling. The blue cloud shows the particle cloud
before the re-sampling is done. the orange cloud shows the re-sampled particles.
The true value of the state being estimated is shown by the green cross and the
uncertainty of the measurements is shown by the black ring. Lastly, the particle
filter estimation is shown by the cyan cross.
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Figure 3.4: The degenerative effects of re-sampling. The colors represent the same
values as described by Fig. 3.3. It can be seen that the diversity of the particle cloud
is lost resulting in an erroneous estimate from the particle filter.

cloud. This happens when the number of likely particles diminishes. As a result,

the particle cloud becomes multiple copies of the same value in the worst case. The

particle state estimate becomes the value of the particle which can be erroneous if

the particle cloud had not converged to the true value. An example of this is shown

in Fig. 3.4 where it can be seen that the diversity of the particle cloud quickly di-

minishes due to re-sampling. In Iteration 6, the particle cloud has been reduced to

multiple copies of a few samples. As a result, the particle estimation is erroneous

as the particles are poorly representing the posterior distribution causing the state

estimation to be inaccurate. However, re-sampling introduces variance into the fil-

ter results and in practice, it is best to limit the number of times a particle cloud is

re-sampled[75].

Particle filters allow for a distribution to be proposed in providing a position

estimation. Assuming the samples within the particle cloud are independent, the

expected value of the particle cloud will be an unbiased estimate of position. Fur-
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thermore, the law of large numbers shows that the position estimates from the par-

ticle filter will converge to the true position [51]. Using particle filters, the posterior

position estimate can be calculated using

pk =
1

N

N∑
i=1

F(xi)ω(xi) , (3.23)

where pk is the posterior distribution at time k, ω(xi) = fx(x)
q(x)

and fx(x) is the

true probability distribution function (PDF) of the position measurements and q(x)

is the PDF of the particle cloud. This feature allows for the particle filter to use

and estimate distributions that are not Gaussian and is the distinct advantage over

the Kalman filter. An example of the re-sampling using a uniform distribution is

shown in Fig. 3.5 where the proposal distribution is a uniform distribution. Since

the weights of each particle are calculated based on the proposal distribution, the

posterior distribution represented by the particles is also uniform. In this way, par-

ticle filters are capable of modeling multi-model distributions and can provide the a

set of most likely outcomes of the estimated state. This phenomenon is leveraged in

simultaneous location and mapping applications (SLAM) as demonstrated in [10].
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Figure 3.5: The re-sampling technique using a uniform distribution. The colors rep-
resent the same values as described by Fig. 3.3. It can be seen that the distribution
of the particle cloud is a 2-dimensional uniform distribution.
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3.3 Interpolation

As previously mentioned, in SAR applications, it is ideal for the update rate of

the PNT data to match the PRF of the radar system such that the relative position

of the moving platform to some reference point of the observed scene could be pre-

cisely known on a pulse-by-pulse basis. As reported by Llaveria et al. in [40], data

coming from gyroscopes can be linearly interpolated to improve the temporal reso-

lution as long as the change in angular velocity of the platform is minimal at each

time step. As a result, the improvement in image quality was always better when

the interpolation was utilized. For airborne SAR imaging applications, the goal is

to minimize angular velocity (i.e. keep the platform wings parallel to the Earth)

and fly straight at a constant altitude. Thus, it is hypothesized that this temporally

interpolated technique can be applied to the IMU data, which utilizes a series of

gyroscope and accelerometer sensors to produce its position estimate and increase

overall image quality.

The data was processed using two methods; the first is aiding without the Kalman

filter. The aiding method involved predicting the next location based on the acceler-

ation values in each direction. When a GPS position becomes available, the current

position is set equal to the GPS value at the time step. The method used provided a

sawtooth-like estimation. The sawtooth pattern is caused by the uncertainty in the

IMU data contributing to the estimated position. The position is then aided with

the GPS position which corrects for the uncertainty in the IMU data. The results of

the aided algorithm are displayed in Fig. 3.6. In order to show the resulting accu-

racy, Fig. 3.6 is zoomed to a subset of the route taken. The results show that the

algorithm predicts position given the acceleration measured by the IMU. However,

the variance of the position estimated is large due to the sawtooth pattern of the

estimated patterns. The variance being large shows that the system is uncertain that
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Figure 3.6: Results of the aided algorithm without the Kalman filter

the position estimated is the true position. In addition, the difference between the

estimated position before the correction and the value of the GPS position used for

correction is significantly large which creates the sawtooth pattern. It is preferred

to have a smoother position pattern from one GPS time to the next. In addition, the

position estimate needs to be consistent and the drift in error must be minimized in

order to reduce the variance or uncertainty of the position estimate. The results of

the aided method without the Kalman filter are already drifting at 0.05 seconds or

20 Hz, meaning the algorithm is not suitable for having large outages of the GPS

sensor. The Kalman filter is needed to improve the drift rate of the aided IMU and

GPS. The results of the Kalman filter fusion algorithm are shown in Fig. 3.7.

It can be seen that compared to the aided method the Kalman filter smoothed the

estimated position pattern and controls the drift of the IMU sensor estimations. The
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Figure 3.7: Results of the aided algorithm with the Kalman filter

position estimates using the Kalman filter do not provide drastic corrections and do

not produce the sawtooth pattern of the position estimates. The estimated positions

from both the aided without the Kalman filter and the Kalman filter method have a

slight bias. The algorithms implemented did not currently account for biases. The

final result with the GPS solution, aided method, and Kalman filter is shown in Fig.

3.8. The estimated results of the whole route traveled show that the algorithms are

all very similar in the position estimate. More details on the issues that arise from

interpolation are detailed by [63].

In the NovAtel SPAN system, the GPS is updated at a rate of 20 Hz whereas

the IMU is updated at a faster rate of 200 Hz; therefore, on average, ten IMU

measurements are made between any two GPS position measurements. The IMU

measurements provide acceleration of the navigation body in the Cartesian coordi-

nate system where the origin of this system is centered on the navigating body’s
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Figure 3.8: Results of the GPS positions and the results of both algorithms

center of gravity. The position and velocity of the navigating body can be estimated

from the IMU measurements using the system model in (3.10).

As previously mentioned, radar applications require a faster rate of producing

accurate data measurements. Radars detect moving targets by utilizing a fast sam-

pling rate to increase velocity resolution. Typically, radars sample at rates on the

order of kHz to achieve the desired velocity resolution. One method of increasing

the resolution of the position estimates provided by the INS system is to interpolate

the time vector used to estimate the position updates. The interpolated time vector is

then used to estimate positions more frequently. This proposed method up-samples

the position solutions, given by the INS, by applying a linear interpolation in time to

produce time epochs at the desired resolution. In this dissertation, two estimation

methods are implemented that utilize an up-sampled time vector to achieve finer
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resolution position estimates as discussed in the next two sub-sections.

3.4 Kalman Filter Interpolation

The Kalman filter implemented in this paper uses the interpolated time vector

and the most recent position, velocity, and acceleration to model the position at

each time step. The Kalman filter then estimates the position at each up-sampled

time epoch using the model described in (3.10) and fuses the estimates with the

GPS sensor provided solutions. The model estimates are used to provide position

estimates at a more frequent rate while the fusion technique minimizes the drift of

the model estimates. The result is position updates that occur on the specified time

resolution.

The algorithm uses the latest acceleration data from the IMU with the previous

position, pk−1, to estimate the new position, pk. The last known IMU measure-

ment is used to predict the next position until a new IMU measurement is provided.

The algorithm detects if a new measurement is available by comparing the next

time epoch (k) to the timestamp of the latest acquired IMU data. The algorithm

continues to predict positions during the up-sampled time epochs. The IMU mea-

surements are only updated when the up-sampled time epoch aligns with the next

IMU measurement’s timestamp. The estimated position is fused via the Kalman fil-

ter with GPS to produce a position update accurate with GPS data. The flow chart

for the described algorithm is shown in Fig. 3.9.
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Figure 3.9: Flowchart for the proposed up-sampled algorithm. The latest IMU data

is used to propagate the previous position pk−1 as a prediction for the next state. If

a GPS measurement is available, it is fused with the prediction to produce the new

position pk. The latest IMU measurement is used to predict the next position at the

up-sampled time epochs.
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3.5 Up-sampled Particle Filter (UPF)

The particle filter implementation utilizes the same up-sampled time vector and

the latest IMU values to propagate the particle cloud to the next position. The

process for the UPF is the same as the flowchart shown in Fig. 3.9 where each

sample in the particle cloud is propagated to the next position using (3.10). In this

implementation, the proposed distribution is Gaussian with a variance equal to the

variance in GPS measurements when the platform is stationary. The particle cloud

is initialized with the proposed distribution with an expected value equal to the first

GPS measurement. Each time the particle filter is propagated, a small amount of

process noise is added to incorporate compounding errors. The weighting function

used to determine the importance of each sample is the probability density function

of a normal distribution shown in (3.24) as

f(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 (3.24)

where σ is the standard deviation and µ is the mean. This equation is used to calcu-

late how likely it is to receive the GPS measurement given that each particle position

is assumed to be correct. As a result, the weights will be smaller for particles far-

ther away from the GPS measurement and larger for the particles closer to the GPS

measurement. The process allows for the possibility of non-Gaussian distributions

in the particle cloud as the weights can cause the particles to converge to multiple

values before finally converging to the true value. This concept is demonstrated

in the simultaneous location and mapping (SLAM) algorithm used in autonomous

navigation [10]. The weight values are then used to re-sample the particle cloud.

The re-sampling algorithm randomly samples the point cloud based on the cumula-

tive sum of the weighting values. This technique allows for values that have a larger
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likelihood of being correct to be chosen and allows the algorithm to converge on the

true value over time. The re-sampling step is done only when a measurement based

on sensor data is available. Re-sampling the particle cloud when there is GPS data

available allows for the cloud to converge towards the true position. An example of

the particle cloud compared to the GPS measurement is shown in Fig. 3.10.

Figure 3.10: Example of a particle cloud. This is a particle cloud of 2×103 particles
with a mean close to the GPS measurement.
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3.6 Summary

Techniques used to overcome the challenges presented by the utilizing any one

sensor are described in this chapter. The Kalman filter is a tried and true technique

that leverages the assumptions of Gaussian sensor noise and linear models. The

technique utilizes a weighted average of the predicted location and each GPS sensor

measurement. The weighted average is calculated based on the covariance of the

state space vector and results in an intelligently fused combination of the predicted

and the measured positions to provide highly likely position solutions.

This chapter also presents the increasingly popular particle filter which creates

a sample representation of the posterior distribution of the position estimates. The

sample representation is refined using the measured positions from GPS. The idea

is the positional accuracy increases proportionally with the accuracy of the sample

representation of the positions solution.

Although these techniques allow for accurate positional estimates and are effec-

tive in overcoming the challenges provided by the sensors, increasing the frequency

of which these positions are provided are helpful in the SAR application. Inter-

polation methods applied to these algorithms are applied to both methods and are

effective in increasing the frequency of positional solutions. The increased fre-

quency of the positional solutions is critical for the SAR application. In the next

chapter, the basics of SAR are described and the effects of positional inaccuracies

on the SAR product are presented.
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4 SAR Basics

In this chapter, the signal model and the effects of position perturbations on

the final SAR product is discussed. The basics of SAR including the advantages

and motivation of SAR are presented. Furthermore, the SAR processing technique

utilized in this dissertation is the backprojection algorithm. The backprojection al-

gorithm is described in brief to provide background on how the images are formed.

Additionally, the effects of position perturbations are universal regardless of the al-

gorithm used as the effects largely impact the signal received and will need to be

compensated for.

Synthetic aperture radar (SAR) is a radar signal processing technique to form

images from successive radar pulses. The technique utilizes a mobile radar to gen-

erate a synthetic aperture that allows for increased spatial resolution as compared to

non-mobile radar techniques. In general, the larger the synthetic aperture the finer

the spatial resolution of the final image is. The core concept of SAR is that mobile

radar projects radio frequency (RF) energy with successive pulses of the radar. The

energy reflected from a scatterer of each pulse is then processed in a way such that

the effects from the motion of the radar are removed. As a result, the energy from

any specific scatterer is focused on a single-pixel representing the location of the

scatterer. This process is done for each pulse transmitted during the aperture and

the result is an image of all the scatterers illuminated during the aperture. In order

to accurately focus the image, the location of the radar must be intimately known

for each pulse transmitted to accurately combine the energy reflected from the scat-

terers. If the position of the radar is not accurately known, the energy reflected

from the scatterer could span multiple pixels which results in a blurred image of the

target scene. An example of the SAR collection geometry is shown in Fig. 4.1.
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Figure 4.1: A picture of the SAR concept where multiple pulses are transmitted

as the radar moves. In doing so, the scene is illuminated as depicted by the gray

ovals. In addition, the distance between the minimum range and the maximum

range illuminated is known as the swath.

In general, radars detect the distance a target is from the radar by transmitting

an electromagnetic pulse and listening for the reflection of the pulse from the target.

The range to the target is extracted by measuring the time between the end of the

transmitted pulse to when the reflected pulse is received [61]. In doing so the range

to the target is extracted by

R =
c(τ)

2
(4.1)

where τ is the measured time from transmission to receipt of the reflected pulse.

The range is calculated using the measured time that is representative of the two-

way transmission and is divided in half and multiplied with the velocity of the
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transmitted signal is the speed of light c. Equation (4.1) is known as the cross-track

resolution defined as the resolution perpendicular to the motion path. In applica-

tions where the radar is measuring the distance from the radar along a Cartesian

axis with the radar at the origin, the cross-track resolution can be directly calcu-

lated using equation (4.1) [49]. However, the cross-track resolution is different in

applications, such as side looking airborne radar (SLAR), where the radar is imag-

ing the ground at an angle. As shown by Fig. 4.2, the ranges from each end of the

swath will produce a different return based on the incident angle.

Figure 4.2: A picture of the effects of changing the incident angle of the radar

in ground imaging applications. The detection of R1 will be different than the

detection at R2.
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As a result, the resolution in cross track becomes

4Rc =
c(τ)

2 sin θ
(4.2)

where 4Rc is the cross-track resolution and θ is the incident angle used in the

ground imaging radar or SLAR applications. From equation (4.2), the range reso-

lution becomes equation (4.1) as the incident angle becomes broadside or θ = 90◦.

The cross track resolution can be increased by using the pulse compression con-

cept where the relationship of the bandwidth and pulse width is exploited to increase

the energy on target. The relationship between bandwidth and pulse width, τ is de-

fined by

B =
1

τ
. (4.3)

In non-modulated scenarios, the length of the pulse is increased in order to in-

crease the amount of energy on the target. With an increased amount of energy,

the resolution is increased as evident by equation (4.1). Pulse compression utilizes

equation (4.3) to trade length of the pulse for bandwidth. As a result, the resolution

in the cross-track dimension described by equation (4.2) can be transformed and

expressed by

4Rc =
c

2B sin θ
. (4.4)

As shown by equation (4.4), the increase in bandwidth directly translates to a in-

crease in resolution that can be resolved by the radar. The pulse compression tech-

nique modulates a waveform to increase the bandwidth while maintaining a short

pulse length and the most common waveform utilized is the linear frequency modu-

lated (LFM) waveform also known as a “chirp”. The LFM waveform is aptly named

as it linearly increases the frequency throughout the pulse length and is shown in

Fig. 4.3.
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Figure 4.3: A Linear Frequency Modulated Signal (Chirp)

The equation for the LFM pulse can be tuned to increase and decrease band-

width by changing the chirp rate of the waveform. The chirp rate at which the

frequency changes in the waveform. The mathematical representation of the LFM

pulse is represented by

a(t) = AejπBTt
2

(4.5)

where A is the amplitude of the waveform, T is the pulse width and t is the time

vector. The pulse compression technique is realized by processing the received

signal using the matched filter concept. Matched filtering is conducted by first

taking the time reversed complex conjugate of the transmitted signal. The time

reversed complex conjugate is then convolved with the received signal.

In terms of radar, the larger the antenna means the larger the aperture, and the

more information obtained by the radar. The increase in information provides a

proportional increase in resolution. For airborne radars, a challenge of flying large

antennas arise and systems have to trade-off between resolution and physical aper-

ture size. The resolution obtained by physical aperture antennas are dependent on

the beam width of the antenna, β. The resolution in the along track dimension, or
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the resolution parallel to the direction of motion, can be calculated by

4Ra = βR (4.6)

where Ra is the along track resolution, β is the azimuth 3-dB beam width of the

physical aperture and R is the range calculated by equation (4.1). For physical

antenna apertures the 3-dB beam width can be estimated using the physical dimen-

sions of the antennae. The estimation for beam width is

β = λ/D (4.7)

where λ is the wavelength of the transmitted signal and D is the azimuth dimension

of the physical antenna. Combining equations (4.6) and (4.7). The along-track

resolution is expressed by

4Ra =
λR

D
. (4.8)

In SAR, the aperture of the system is not acquired by increasing the physical size

of the radiating and receiving antennas. Instead, the aperture is created by moving

a physically smaller antenna and using signal processing to synthetically create

a bigger aperture by combining the information such that the results are similar

to a larger physical antenna. In this way, a larger aperture is synthesized. The

increased aperture increases the spatial resolution in the image axis that coincides

with the axis of motion, also known as the along-track dimension, and is the x-axis

in Fig. 4.1. The introduction of SAR solves the issue and allows airborne systems

to maintain resolution while flying small antennas.

In order to accomplish higher resolution in the along track dimension using

smaller physical antennas requires the exploitation of the Doppler effects on the

received reflection from the target scene. The Doppler shift created by the motion
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of the radar allows for the signals to distinguish targets between pulses within the

aperture. As a result, the azimuth resolution is directly coupled with the amount of

Doppler shift that can be distinguished by the system. A detailed introduction to

SAR signal processing is presented by [11]. In short, the frequency shift introduced

by the motion of the radar is calculated by

4fd =
v4Ra

Rλ
sin θ (4.9)

where4fd is the differential frequency, θ is the squint angle or the beam width, and

v is the velocity of the platform. Understanding the differential Doppler frequency

4fd drives a requirement of sampling for a time approximately to T ≈ 1/4fd

yields the aperture length, L, to be calculated by

L =
v

4fd
=

Rλ

4Ra sin θ
. (4.10)

Solving for4Ra results in the azimuth resolution for SAR to be determined by

4Ra =
Rλ

L
. (4.11)

As a result, the larger aperture increases the resolution in the along-track dimension

which can be accomplished by moving a smaller physical aperture to achieve a

larger synthetic aperture. It should be noted that the azimuth resolution 4Ra is

dependent on the line of sight range to the target scene R. As a result, the azimuth

resolution needs to be determined by balancing the distance to the scene and the

length of aperture flown to obtained the desired resolution.
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4.1 Navigation effects

Capturing the precise motion of the radar is crucial in SAR applications in order

to create a focused image of the target scene. Fundamentally, SAR requires coher-

ent phase history from scatterers in the aperture on a pulse-by-pulse basis. These

phase histories allow for the pulses to be coherently integrated after Doppler pro-

cessing to form an image of the scatterers within the scene. Ideally, GPS and IMU

systems are chosen that have the same, or similar, sampling rates as the PRF of the

radar. This allows the radar pulses to be synchronized with the position estimates

from the GPS and IMU. In general, this is most applicable if a pulsed-Doppler radar

architecture is being used. This is not as critical for frequency modulated contin-

uous wave (FMCW) radar architectures where the system is continuously trans-

mitting and receiving. However, the use of FMCW radar architectures for SAR

imaging has its complications such as intra-pulse range migration [54].

In addition to synchronization between the PNT solution and the radar, it is also

critically important for the PNT data output to be incredibly accurate. If low-quality

GPS and IMU sensors are used, techniques such as autofocus are often employed

to compensate for the inaccuracies of the IMU and GPS systems. Autofocus algo-

rithms estimate the phase errors caused by the SAR system, including the position

measurement errors, and compensates for the errors when forming a SAR image [8,

26, 29, 67, 73]. For SAR systems that do not use autofocus algorithms as part of

the motion compensation, the phase alignment is strictly accomplished by using the

data output from the navigation system [36]. As a result, high-accuracy GPS and

IMUs are required for most SAR applications [19]. The selection of high-accuracy

navigation sensors are typically constrained by the available sampling frequency

and the associated cost, size, weight, and power (C-SWaP) of these units. If C-

SWaP is not a constraint, then the primary consideration is choosing a system that
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can meet the desired sampling requirements. For the remainder of this paper, it is

assumed that the C-SWaP of navigational-grade IMUs is not a factor, but the sam-

pling frequency is significantly lower than the PRF of the system and autofocus

techniques are not available.

To understand the impact of misaligned sampling frequencies between the GPS,

IMU, and radar, it is important to understand how phase plays an important role in

SAR image formation. The phase of a SAR waveform is affected by the modulation

from the radar transmitter and the two-way free-space wave propagation to and from

a scatterer. The total phase measured by a SAR system is calculated as

φ(t) =
4π

λ
R(t) + φT (t) (4.12)

where φT (t) is the modulation caused by the transmitter and λ is the center fre-

quency wavelength, and R(t) is the range to the scatterer. In most SAR systems,

φT (t) and λ are intimately known and the range to the scatterer is the parameter be-

ing estimated given the estimated relative position of the radar from the GPS/IMU.

However, the sensitivity to phase accuracy increases with an increase in the radar

carrier frequency as the radar wavelength proportionally decreases. From (4.12), as

the wavelength decreases, the amount of phase change for a given range increases.

Thus, any inaccuracies in the estimated range to the target will result in poor phase

estimation, which becomes excessively large at high frequencies. Therefore, it is

essential to use a high-quality GPS/IMU to ensure that the relative position of the

radar platform is accurately defined such that phase errors are minimized and can

be compensated during SAR processing. More specifically, the accuracy required

to focus a SAR image requires the errors in range, R(t) to be limited to λ/16. The
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phase errors tolerable by the SAR system is estimated by

φ(t) =
4π

λ

λ

16
= π/4 . (4.13)

Given the required range accuracy is limited by the carrier frequency wavelength,

the tolerance for positional errors is increasingly smaller as the carrier wavelength

is increases. This is a fundamental constraint for high frequency SAR systems as

highly accurate position solutions become increasingly harder to obtain. The desire

to increase frequency of SAR radars is driven by the ability to miniaturize physical

apertures and components of the system.

However, a SAR system with error-free position solutions can still have issues

creating a focused image if the sampling rate of the positions is not synchronized

with the SAR PRF. While the above equation allows for the calculation of the

total phase change on a single pulse, the radar will transmit and receive several

pulses throughout the coherent processing interval (CPI), and thus the range from

the radar platform to any given scatterer will change on a pulse-by-pulse basis.

Before Doppler processing in traditional SAR algorithms, the individual phase his-

tories, correlated to the range profiles of each scatterer, are aligned along the slow-

time radar data such that all the power will compress into a single range bin after

Doppler processing. This “alignment” is accomplished by slightly increasing or de-

creasing the phase change of each fast-time radar data set, which can be precisely

determined if the position of the radar platform is known on each pulse of the radar

throughout the CPI. This is why it is important for the PNT solution to be accurate

but also produce position estimates at the same rate as the radar. If the position esti-

mation data is not available for each radar pulse, the phase for each fast-time radar

data set cannot be adequately compensated for and the resulting SAR image will

look blurry as the power will smear across multiple bins after Doppler processing
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instead of being “focused” into a single bin.

As a result, popular interpolation techniques have been introduced in scenarios

like this to estimate the position at the radar PRF between GPS/IMU data samples.

However, if the data GPS/IMU data samples are too spread apart temporally, tech-

niques such as the linear or spline interpolation are inadequate in SAR imaging

applications. The primary reason these interpolation techniques are insufficient is

that they are polynomial interpolations and do not capture the external forces acting

on the radar. As a result, the interpolation introduces its own phases errors rather

than compensating for them. In order to provide a position solution capable of

coherently integrating the phase histories from a SAR scene, an interpolation tech-

nique is required that accurately estimates the position of the radar when GPS/IMU

data is not available. Such a technique would allow for pulsed SAR systems to no

longer be constrained by the sampling rates of the IMU and GPS systems.

4.2 Backprojection

In order to synthesize a larger aperture, the signals received for each location of

the SAR system need to be processed in such a way that energy reflected by targets

is coherently added. The additive combination of the reflected energy simulates the

additional energy that would be received from a physically larger aperture. How-

ever, the challenge is the motion of the SAR system adds variation to the informa-

tion that causes the reflected energy to misalign. In addition, the physical position

of the receiving antenna changes meaning the range to a scatterer is not necessarily

directly the same as the range detected in other pulses. These errors need to be

corrected and compensated for so that the received data to correctly synthesize a

single aperture.

One method of correcting for these errors is an algorithm known as backpro-
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jection. The backprojection method works by first defining a grid with each space

associated with specific locations within the area of interest. The grid serves as the

image representation of the area illuminated by the radar and is predefined. Each

received pulse is interpolated to the ranges represented in the grid [2]. For each

space in this grid, the phase of the range profiles is corrected based on the distance

between the radar. The correction is done for every pulse within the aperture and

the resulting image produced by each pulse is summed. As a result, the effects of

motion are corrected for each pulse so that when summed the targets illuminated in

the scene coherently sum to produce a high intensity in the final image. Conversely,

pixels representing a space with no targets do not coherently sum and result in a

low intensity in the final image. When the pixels are displayed as an intensity map,

an image of the illuminated scene can be seen. As the backprojection algorithm

processes each pixel of the image for every pulse in the aperture it is flexible to dif-

ferent motion paths and SAR modes. Additionally, the method allows for flexibility

in the size and resolution of the image formed as shown in [15]. A more in-depth

derivation of the backprojection algorithm is given in [18][25].
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4.3 Summary

In this chapter, an introduction to SAR signal model and the methodology of

producing an image from the SAR data is presented. The effects of phase errors

caused by inaccurate position solutions are mathematically shown. Additionally,

the concept of SAR is described where an aperture is physically synthesized by

intelligently processing echoes from a smaller moving aperture. In short, the con-

cept of SAR relies on the Doppler shift introduced by radar motion to distinguish

targets between echos. In doing so the radar is able to coherently combine the en-

ergy reflected by a target to synthesize the behavior of a larger physical aperture.

The result is a higher spatial resolution in the produced SAR image. It is estab-

lished that this resolution requires the Doppler error caused by range to be limited

to λ/16. With such a constraint, the importance of an accurate position solution

from the PNT system is emphasized. The backprojection algorithm is presented as

a popular method of processing the data obtained by the SAR technique in order

to produce an image. As a result, the algorithm depends on accurate position solu-

tions in order to correctly account for the SAR signal properties in order to produce

a 2-dimensional reconstruction of the illuminated scene. Furthermore, the effects

of positional inaccuracies are also presented in this chapter. In the next chapter,

an approach to overcoming the challenge large, accurate INS systems pose when

miniaturizing the SAR system is described.
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5 Multi-IMU Fusion

This chapter presents an approach to addressing the second challenge of pro-

viding accurate positional accuracy for SAR. Additionally, the technique utilizes

the benefits of data fusion to also minimize the C-SWAP required to provide the

required positional accuracy. This method is counter intuitive as it requires the ad-

dition of sensors in order to decrease C-SWAP. Simulations used to validate the

method are also described. Furthermore, the simulations used to validate the inter-

polation methods presented in previous chapters is also shown. Finally, the instru-

mented setup used to verify the techniques during ground tests and flight tests are

presented along with the results validating the methods. The results in this chapter

allow for the confidence to move forward with the next step of utilizing the methods

in a SAR system.

The multi-IMU fusion method combines the particle clouds from multiple par-

ticle filters each propagated from different sensor measurements. The particle filter

is chosen for its ability to scale to additional sensors without increasing the com-

plexity in the algorithm as discussed by [43]. Unlike the Kalman filter, the particle

filter does not rely on a covariance estimation between the additional sensors and is

ideal for this application of adding additional IMUs to the system. A block diagram

of the algorithm is shown in Fig. 5.1. The proposed method uses sequential im-

portance sampling principles and the performance is evaluated based on the mean

squared error (MSE). Sequential importance resampling is used to increase the ac-

curacy of the sample representation of the particle filter. In doing so, the samples

that are the most likely are weighted based on an observed measurement. The

weights are then used to draw samples and replace the unlikely samples within the

particle cloud. The logical idea is that the measurements provide observed changes

in motion experienced by the platform and the measurements are used to increase
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the accuracy of the final position estimate. In addition, the particle clouds are syn-

thetic sample representations of the posterior probability distribution. According to

the sampling theorem more samples allow for a more accurate PDF of the measured

variable. The additional measurements act as additional observed samples used to

represent the probability distribution accurately. In addition, the particle filter is a

sequential Monte Carlo technique which allows for more accurate state estimations

as the number of Monte Carlo simulations are increased [59]. Utilizing this prin-

ciple, the core of the multi-IMU measurements is to incorporate more observations

of the physical motion changes experienced by the platform in order to more ac-

curately represent the posterior distribution of the platform position. The proposed

method is compared to the traditional method of combining measurements, such as

taking the mean of the particle filter estimations, to directly compare performance

accuracy of the two different methods. As a result, the true value of the measured

state can be more accurately estimated. More specifically, the proposed method

uses each sensor measurement as additional samples to more accurately estimate

the measured acceleration and ultimately position of the platform.

The method of utilizing multiple particle filters in navigation applications is

growing where additional particle filters are used to correct for errors [44]. This

technique utilizes the second particle filter to estimate the most likely correction

value to be applied to the original particle filter. In this way, the two particle filters

estimate different parameters of the navigational platform. The first particle filter

estimates the position of the platform by performing data fusion on the sensor in-

formation obtained and the second particle filter estimates a correction factor given

a corrected GNSS solution. The work presented in this dissertation differs where

the first particle filter estimates the position solution from each individual IMU and

GPS to address the sensor drift from each IMU. The SIR method is then used to
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Figure 5.1: Block diagram of the proposed algorithm. To begin, GPS measurements
are fed to each sensor particle filter and the sequential importance resampling tech-
nique. Each sensor weight is calculated based on the likelihood that the sensor is
accurate compared to GPS. The weights are then normalized using (5.3). The final
position is calculated using (3.23).

evaluate the accuracy of these solutions to better represent the posterior distribu-

tion of the platform position. In this work, the particle filters are not estimating

any correction factors and is instead evaluating the likelihood of the positional so-

lutions provided by each sensor. From these likelihood, the posterior distribution

of the platform position can be more accurately estimated which increases the final

estimate of the position solution for the platform.

The increased accuracy provided by the algorithm allows for smaller and lower-

grade IMUs to be used to achieve better accuracy than a single IMU of similar

quality. This feature can be used to utilize multiple lower-grade IMUs to match the
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positional accuracy of a larger higher-grade sensor. As a result, the low C-SWAP

of lower-grade sensors can be leveraged without sacrificing the accuracy provided

by higher-grade sensors. The proposed method is inspired by the sequential impor-

tance resampling (SIR) principle where weights are assigned to each of the parti-

cles and then used to re-sample a set of new particles comprised of more highly

weighted particles. The proposed method applies the same methodology by assign-

ing weights to the outcomes of each sensor estimation. The sensor weights do not

take into account the particle weights computed by the particle filter. The sensor

weights are a measure of how accurate the particle filter solution is for that sensor

are not dependent on the particles that were used to compute the estimation. The

sensor weights can be calculated similarly to the particle weights calculated in the

particle filter as the principles still apply. In this paper, the particle filters used 1000

particles to resolve the position solution for each sensor. The weighted estimations

are then used as the proposal distribution for a new particle filter, which then draws

a set of particles from the proposal distribution according to the weighted sensor

estimations. A new estimate is then calculated by taking the expected value of the

new particle cloud and the weights are calculated using (3.22). The new particle

cloud collects several samples (N = 50) from the weights and the respective sensor

estimation is used as part of the new particle cloud. By doing so, the sensor with the

highest weight is selected more often during the creation of the new particle cloud.

The pseudo-code for the implemented algorithm is illustrated as Algorithm 1.

The algorithm first resolves each of the sensor measurements using a particle fil-

ter. The results of each of the particle filters are then fused. The method used to

fuse each sensor output is based on the re-sample step in particle filtering, where a

weight is assigned to each sensor measurement calculated based on the likelihood of

the position solution compared to a GPS solution. The sensor weights are then used
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Algorithm 1: Implemented Algorithm.
// Initialize cloud with N number of particles

1 for Each Sensor do
2 InitializeCloud(mean,variance,N )
3 Set Nth; // Set threshold of Effective particles

// For Each Sensor Measurement, Propagate the
respective cloud by motion model

4 for Each State(k) do
5 for Each Sensor do
6 for Each Particle do

// pk−1 is the previous position
7 Propagate(pk−1,dt,SensorMeasurement)
8 CalculateParticleWeights(cloud)
9 NormalizeParticleWeights; CalculateNeffective(wik)

10 if Neffective < Nth then
11 Resample(cloud)

12 CalculateEstimation

13 Calculate sensor weights
14 Normalize sensor weights
15 for i=1:N do
16 CombinedCloud(i) = Draw particles from sensor proposal

17 FinalMeasurement pk = E[CombinedCloud]

to produce several samples according to the weighted sensor outputs. The expected

value of the samples is then used as the final position estimate for the navigating

body.

5.1 Cramer Rao Lower Bound

The sensor weights are normalized and can be used to estimate an effective

number of independent samples. The sample space is given by each of the sensor

outputs as defined by

x1, x2, x3, ..., xs (5.1)
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where s is the number of sensor outputs. When using SIR to resample the sensor

spaces given a set of weights the sample space is given by

x1, x2, x3, ..., xN (5.2)

whereN is now the number of samples drawn from the sample space S. As a result,

the sensor weights can be used to calculate the effective samples (Ns). The weights

correspond to ws(1 ≤ s ≤ N) and the normalized form becomes

ŵs =
ws∑N
s=1 ws

. (5.3)

The effective independent samples are then calculated by

Ns =
1∑N

s=1 ŵs
2

(5.4)

where Ns is bound by 1 ≤ Ns ≤ N showing that resampling the sensor outputs

using sensor weights do not introduce a dependency between sensors. Further-

more, resampling produces independent, identically distributed (i.i.d) samples that

are drawn from a discrete density as explained by [3]. As a result, the independent

samples drawn from the sensor measurement can be applied to the central limit the-

orem (CLT). The CLT states that the normalized sum of independent samples can

be approximated as a normal probability distribution with a fixed mean and vari-

ance. This assumption allows for the use of the simplified Gaussian form of the

Cramer Rao lower bound (CRLB)[35].

The CRLB establishes the lowest amount of variance of an unbiased estimator.

Applied to the proposed algorithm the CRLB expresses the lowest amount of vari-

ance that is expected in the navigation solution when fusing multiple sensors [39].
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The Cramer Rao lower bound calculated using

CRLB =
1

−E

(
d2 ln(p(x;µ))

dµ

)∣∣∣∣∣
µ=true

(5.5)

where the denominator is the Fisher information matrix. The sensors in a navigation

platform produce independent samples of the platform position and the SIR method

uses the principle of weighted sampling described by 5.4, where the solution from

each sensor is represented as

ˆx[n] = x+ w[n] . (5.6)

In equation (5.6), x is the true position of the platform and w[n] is white Gaus-

sian noise with a given variance σ2. Given the sensors are independent, identically

Gaussian distributed with the expected value being the true platform position then

the probability distribution for the sensor estimates can be expressed by

P (x̂;x) =
N−1∏
k=1

1√
2πσ2

e−
1

2σ2
( ˆx[k]−x)2

=
1

(
√
2πσ2)N/2

e−
1

2σ2

∑N−1
k=0 ( ˆx[k]−x)2

(5.7)

where N is the number of sensor solutions. The first step in evaluating the Fisher

information matrix is taking the first derivative of the natural log of equation (5.7).

The result can be shown by

∂ ln(p(x̂;x)

∂x
=

∂

∂x

(
− ln((2πσ2)N/2)− 1

2σ2

N−1∑
k=0

( ˆx[k]− x)2

)
(5.8)

=
1

σ2

N−1∑
k=0

( ˆx[k]− x) (5.9)

Evaluating the summation and taking the second derivative simplifies the solution
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in equation (5.8) as demonstrated by

=
1

σ2

N−1∑
k=0

( ˆx[k]− x) (5.10)

=
N

σ2
((̂x)− x) (5.11)

∂ N
σ2 (x̂− x)
∂x

= −N
σ2

(5.12)

Combining the solution obtained in equation (5.10) with the definition of the CRLB

expressed in equation (5.5) allows for the CRLB to be

V ar{x̂} ≥ σ2

N
. (5.13)

Equation (5.13) establishes the variances of the positional estimates from each sen-

sor is bound by a single sensors positional variance divided by the number of sen-

sors used. Although this is applicable to a single time step and can be used for a

back of the envelope calculation for the number of sensors needed.

For the SIR method, the CRLB is insufficient in estimating the variance because

the method is recursively used to represent the posterior distribution. As a result,

the CRLB for a single time step only provides a first order approximation of the

positional accuracy of the SIR method. In order to more accurately approximate

the SIR method, the variance can be of the estimator using the sequential Monte

Carlo where the variance of the Monte Carlo solution cam be estimated using

V ar{x̂} ≈ n

N

[∫
π2
n(x̂1)

q1(x̂1)
∂x̂1 − 1 +

K∑
k=2

∫
π2
n(x̂k)

qk(x̂k)
∂x̂k − 1

]
. (5.14)

In equation (5.14), the probability density of the sensor estimates is represented by

πn(x̂k) where n is the sensor and k is the time step. Furthermore, the proposal dis-

tribution is represented qk(X̂k) and is the distribution used to calculate the weights
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of each sample during the SIR process. Equation (5.14) captures the recursive na-

ture of the SIR method where the first time-step,
∫ π2

k(x̂1)

q1(x̂1)
∂x̂1 − 1, is distinguished

from the future time steps,
∑K

k=2

∫ π2
k(x̂k)

qk(x̂k)
∂x̂k − 1. This distinction allows for the

distribution of the previous time step to be utilized as the proposal distribution in the

next time step. The proposal distribution for time steps 2 through N are described

by

qk(x̂k) = πk−1( ˆx1:k−1)qk( ˆx1:k−1) . (5.15)

A full derivation of the sequential Monte Carlo variance is presented in [24].

In the multi-IMU fusion technique qk is used to calculate the sensor weights and

is a distribution representing the GPS sensor. Furthermore, πn(x̂k) is a distribution

representing the positional solutions from the IMUs. As a result, solving equation

(5.14) for N gives an estimate of the number of sensors needed to accomplish a

desired positional accuracy V ar{X̂} and the desired number of time steps k.

In order to both calculate the CRLB or the sequential Monte Carlo a distribution

for the IMU sensors needs to be represented. Assuming the distribution can be

model by an expected value and variance, the variance of the positional solution

needs to be estimated. The expected value can be assumed to be the true position of

the platform. The variance of the positional solution can be viewed as the errors in

the position estimates from the IMUs. In this case, the positional errors are caused

by integrating the errors from the accelerometers, the initialization error in velocity,

and the initial position error, calculated by

Pe(t) =

t∫∫
τ=0

ae(τ)dτdτ +

t∫
τ=0

ve(0)dτ + Pe(0). (5.16)

The errors in the acceleration measurement from the IMUs can be calculated by ac-

counting for the errors in measured acceleration, the errors in rotating the measured
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accelerations to the right coordinate frame, and the errors in the gravity and earth

rotation models.

ae(t) = Rt(t)a
′

e(t) +R
′

e(t)
(
a
′

t(t)− a
′

g(t)− a
′

r(t)
)
+

Re(t)a
′

r(t) +R
′

e(t)a
′

g(t)
(5.17)

In equation 5.17, Rt(t)a
′
e(t) is the errors in the measured acceleration where Rt(t)

represents the true rotation matrix for rotating the accelerations to the correct coor-

dinate frame. To represent misalignment, or errors in rotation,R′e(t)(a
′
t(t)−a

′
g(t)−

a
′
r(t)) is the errors caused by rotating the true accelerations (a′t(t)), gravity (a′g(t))

and earth rotation (a′r(t)) to the desired coordinate frame with the misaligned rota-

tion matrix (R′e(t)). Lastly, the errors in rotating the estimated earth rotation rate,

Re(t)a
′
r(t) and estimated gravity R′e(t)a

′
g(t) are all combined to estimate acceler-

ation errors. The errors caused by angular random walk are accounted for in the

rotation errors R′e(t) and is represented in

R
′

e(t) =


0 θz,e(t) −θy,e(t)

θz,e(t) 0 θx,e(t)

θy,e(t) θx,e(t) 0

 (5.18)

where θx,e, θy,e, θz,e are the errors in the estimated x, y, and z errors of the attitude

of the platform, respectively. The error effects from the IMU can be estimated

from the specification provided by the manufacturer of the sensors. In equation

5.17 the scale factor errors at a give acceleration, B(at), are combined with the

misalignment, θm, and non-orthogonality, θn. In addition, bias instability, b, white

noise, N, and random walk, RW (f) = K2/(2πf)2 are also contributing factors to
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errors from the IMU.

a
′

e(t) = B(at) + sin(θm + θn) + b+N2 +K2/(2πf)2 (5.19)

Lastly, the IMU errors can be used with the true acceleration, at, and the dura-

tion, T , in which the acceleration is experienced to calculate the positional standard

deviation calculated by

σ2 = at(
T 2

2
)a
′

e(t) (5.20)

Using equation 5.13, and equation 5.20, the variance of the fusion solution can

be calculated to have a lower bound of
σ2

N
. As a result, the effects of the additional

sensors can be estimated. Given a variance in the positional accuracy of all the sen-

sors used, the number N can be varied to achieve the desired positional accuracy

needed for the desired application. This can be used as a design tool to understand

and select the appropriate sensors in order to satisfy the C-SWAP and accuracy con-

straints in estimating the position of a navigational platform. A simulation of 1000

measurements for a single time step are simulated and resampled using the SIR

technique with a variable number of sensors. The sample variance of the position

solution using is calculated across the sensors. The results were compared against

sample variance of a single sensor divided by the number of sensors used in the SIR

technique and shown in Fig. 5.2. As a result, the plot shows great agreement be-

tween the results of the SIR technique and the theoretical estimation using equation

(5.13).
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Figure 5.2: The variance of the Multi-IMU fusion method compared to the simu-

lated sample variance for a single time step. The blue line is the variance across

the 1000 position solutions created by the SIR technique. The orange is the sample

variance of a single sensor divided by N sensors.

Additionally, the mean squared error of the SIR technique as compared to GPS

is shown in Fig 5.3. It can be seen that the addition of more sensors results in a

decrease in MSE compared to the error of the GPS measurement used to calculate

the sensor weights. As more additional sensors are added the solution begins to

converge to the GPS measurement. As the particle filter predicts and resamples

more the MSE will continue to decrease. In Fig 5.3, the results are for a single

time step and it is illustrated that the accuracy for a single timestep can be greatly

increased given the addition of sensors and the SIR technique.
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Figure 5.3: MSE of the SIR solution as compared to the GPS measurement error.

The blue line represents the MSE achieved by the SIR technique for a single time

step. The orange line is the error of the GPS measurement used for this single time

step.

In Fig. 5.3, the error from the fusion technique is improved as sensors are

added, however, the MSE does not converge to GPS completely because the MSE

is only shown for a single time step. As a result, the sequential benefits of the SIR

technique are not displayed. It should be noted that the law of diminishing returns

is likely to contribute to designing multi-IMU navigational systems using the pro-

posed method. As shown by Fig. 5.3 and Fig. 5.2, the benefits of adding additional

sensors exponentially decrease with each sensor added. However, there is a point

where the additional sensors do not provide a significant accuracy increase to the
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final position estimated. In general, at some point, it will become unfeasible to

add additional sensors due to other constraints in the desired application. Using the

CRLB to estimate the number of sensors required to achieve a specific accuracy also

allows for an estimation of C-SWAP required for the multi-IMU navigation system.

As a result, the estimations allow designers to quickly determine if the chosen sen-

sors are a benefit in decreasing C-SWAP while obtaining the positional accuracy

desired. Other considerations also apply to the design of multi-IMU navigation

systems such as the computational bandwidth and storage to be able to collect the

additional data from the added sensors plays a significant factor in the number of

sensors that can be added. In addition, the computational time to achieve a posi-

tional solution may be unfeasible for the intended applications. Space constraints

may also be another factor in the design of a multi-IMU system as the constraint

for lower C-SWAP may be based on limitations in the platform size.
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5.2 Limitations

Although the Multi-IMU fusion method provides results on par with a higher

grade IMU there are limitations of the fusion method. The first limitation is that

there is an exponential decay in the benefits added with each additional IMU. In

general, the accuracy of the position solution does not continually increase as more

IMUs are added. In addition, the benefits gained in C-SWAP are minimized with

the addition of each sensor. As a result, the positional accuracy desired may require

several sensors that negate the benefits gained in C-SWAP. As a result, a trade-off

between C-SWAP and accuracy exists when using lower grade IMUs that require

a significantly large number of sensors in order to achieve the desired positional

accuracy.

Furthermore, the addition of more sensors equates to a proportional increase in

processing complexity required to obtain a positional estimate. The implemented

algorithm utilizes the particle filter to fuse the GPS measurements with the each

IMU. As a result, a complete particle filter implementation is added with each addi-

tional IMU. In addition to the additional particle filter, the weight for each additional

sensor is required to be calculated based on the GPS measurement. The additional

weight calculation proportionally increases the computation required for the SIR

step.

Another limitation is the weights for each sensor are calculated based on the

GPS measurements received. This causes the weights to be reliant on the accuracy

of the GPS measurement and assumes that the GPS measurement is highly accurate.

As a result, the accuracy of the state estimation is limited by the accuracy of the GPS

measurements. In a scenario where the GPS measurements are highly inaccurate,

the IMU weights are calculated from the erroneous measurement and result in IMUs

that are proportionally inaccurate based on the GPS are sampled more during the
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SIR step. This equates to the final state estimation because the basis on which the

final particle cloud is used to estimate the state contains inaccuracies that are biased

towards the GPS measurements.
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5.3 Simulations

To validate the proposed algorithm’s ability to accurately estimate position, two

three-dimensional paths of a navigating body are simulated. The first simulated

path is calculated using 
x

y

z
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(5.21)

and is shown in Fig. 5.4. The sensor measurements of the path are simulated by

corrupting the position with three different sets of randomly generated Gaussian

noise with standard deviations shown in Table 5.1. The calculated error between

the algorithm’s estimated position and the actual simulated path of each sensor is

shown in Fig. 5.5 as a function of time. It should be noted that the error portrayed

in Fig. 5.5 represents the error in position estimates of each sensor after using a

particle filter. This simulation shows the process noise introduced by the particle

filter as represented by the blue line. Each subsequent line shows the errors caused

by having sensors with different variances after being processed by the particle

filter. As expected, the sensor error is proportional to the variance of the sensor

measurements. In other words, if a single sensor is to be used for position estimation

(brute force method), an ultra-low bias sensor such as a navigational grade IMU

should be used for best results.

Table 5.1: Noise standard deviation values for three different simulated sensors.
Sensor Number Noise Standard Deviation (m)

1 0.50
2 1.00
3 0.10
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Figure 5.4: Simulated path of a navigating body. The acceleration values were
calculated by calculating velocity in x, y, and z and then calculating acceleration.

Figure 5.5: Root mean squared error of noisy sensor estimates. The blue line rep-
resents the output of the particle filter being fed with true sensor measurements.
The other lines represent the output of the same particle filter being fed with noisy
sensor measurements with different noise variations.

5.4 IMU Simulations

The proposed fine resolution position estimation algorithms are evaluated against

simulated GPS and IMU measurements to validate the concept. The simulation
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Figure 5.6: Graphical overlay of the flight path simulated by Acienna. The path
included an initial rise to altitude and then has several switchbacks. This path is
simulated based on a series of defined change rates and duration values. This map
was obtained using Google Earth.

Table 5.2: NovAtel IMU-ISA-100C Specifications
Parameter Value
Gyro Bias 0.0 deg/hr

Gyro Angle Random Walk 0.012 deg/
√
hr

Gyro Bias Stability 0.5 deg/hr
Accelerometer Bias 0.0 m/s2

Accelerometer Velocity Random Walk 100 µg/
√
hr

Accelerometer Bias Stability 1250 µg

leveraged the open-source GNSS-INS-Simulator developed by Aceinna [1], and a

path was simulated as shown in Fig. 5.6. The simulator also generated the truth

and measured values for the gyroscope and accelerometer. Similarly, the simulator

produces the true path and the measured GPS values for position and velocity. The

simulator produced IMU measurements utilizing the characteristics of the NovAtel

IMU and is shown in Table 5.2. The simulator also provided true attitude determi-
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nations for each sample in time. The Kalman and the particle filter interpolation

methods are applied to the measurements produced by the simulator and the accu-

racy of each method is calculated. Just like the NovAtel unit, the IMU acceleration

values produced by the simulator are rotated using the matrix shown in (2.34) and

processed in the NED coordinate frame. The results of the processed simulation

values are shown in Fig 5.7 and show that the estimated path (est) closely follows

Figure 5.7: Results of simulated values. The results are produced using the simu-
lated measured values. The reference path, shown in blue, is the true path generated
by the simulator. The estimated path, shown in orange, is the path calculated by the
algorithm.

the true path (ref) over an extended period.

A performance baseline for both the Kalman and particle filter method, without

the proposed interpolation, are obtained using the simulated data values. As a result,

the MSE of the longitude is shown in Fig.5.8 to illustrate the performance baseline
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of the Kalman and particle filter independently. In the same way, the performance

Figure 5.8: Latitude and longitude positional errors, in radians, and altitude errors
in meters, of the simulated values without interpolation technique. The blue line
shows the particle filter results compared to the simulated true path. The yellow line
represents Kalman results compared with the simulated true path. The interpolated
results for both particle and Kalman are shown in orange and purple respectively.

of the proposed interpolated Kalman and particle filter algorithms are obtained by

using the same simulated data set and the longitude MSE is again calculated and

shown in Fig. 5.8. It is readily seen that the particle filter outperforms the Kalman

filter in terms of accuracy. Furthermore, the interpolated algorithm provides a slight

increase in positional estimation accuracy; however, the major advantage here is

the increased temporal resolution of the interpolated output. It should be noted that
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the particle filter does require an increase in computational complexity and thus

processing time. The focus of this paper is on maximizing the accuracy of the

computed results while increasing the temporal resolution of the output; therefore,

the in-depth computational requirements are left for future evaluation.

For quick reference though, the implemented algorithm performance times are

noted in Table 5.3. These performance times indicate that the particle filter does

Table 5.3: Performance of implemented algorithms
Algorithm Time for 1 iteration

Kalman 0.1 ms
Kalman Interpolated 0.1 ms

Particle 0.5 ms
Particle Interpolated 0.5 ms

require an additional computational burden. The times reported are for a single

time step and can be used to approximate the total execution time for data of ar-

bitrary lengths. It should be noted that the implemented algorithms were written

in MATLAB and are not optimized for performance; thus, the reported times are a

testament, not to the implemented algorithms not the true performance that can be

achieved with optimized algorithms. In addition, for this initial study, the position

estimates are not required to be done in real-time and therefore the implemented al-

gorithms are used to post-process collected data from the IMU easing. Overall, the

simulated IMU values give promising results for the interpolated Kalman and parti-

cle filter algorithms. These results show that the interpolation method will produce

fine resolution position estimations at the rates required for SAR applications.

5.5 Multi-IMU Simulations

In order to emulate a more realistic navigation scenario, the second path is

shown in Fig. 5.9, simulated using three IMUs integrated with a GPS solution. The
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Table 5.4: Analog Devices ADIS16465 Specifications
Parameter Value
Gyro Bias 0.0 deg/hr

Gyro Angle Random Walk 0.15 deg/
√
hr

Gyro Bias Stability 2.0 deg/hr
Accelerometer Bias 0.0 m/s2

Accelerometer Velocity Random Walk 0.012 m/s/
√
hr

Accelerometer Bias Stability 3.6e−3 m/s2

IMU parameters used to simulate the scenario are derived from the Analog Devices

ADIS16465 precision IMU are specified in Table 5.4.

For this simulation, each particle filter was initialized to the starting position

and velocity of the navigating body with the variance of the particle cloud equal to

the uncertainties of the Analog Devices IMU. These uncertainties are derived from

the IMU specifications. Each IMU measurement is transformed into the local nav-

igation frame (North, East, and Down) using measured gyro angular rotation rates.

In addition, acceleration values from the IMUs were used to resolve the velocity of

the body in the local navigation frame. The velocity was then used to update the po-

sition in geodetic coordinates (latitude, longitude, and altitude). The error between

the algorithm’s predicted position based on defined IMU characteristics and the ac-

tual simulated path is calculated for each sensor independently and is shown in Fig.

5.10 as a function of time. Note that the three IMUs used in this simulation had

the same noise and biasing characteristics, but yielded different error values. This

shows that the inaccuracies of an IMU are not deterministic even if the IMU specs

are the same. Therefore, the individual IMUs can be treated as independent sam-

ples, which is required by the fusion algorithm. The positions are resolved using a

particle filter fused with simulated GPS measurements.

As previously mentioned, the errors in the estimated positions from sensors with

the same specifications are different. Each IMU produces statistically independent
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Figure 5.9: Simulated path for the three IMU scenario. The
path is generated using Acienna’s gnss-ins-sim python library. This path simulates
a more complex path that has changes in latitude, longitude, and altitude. The
python library simulates the gyroscope measurements as well as the accelerometer
measurements to fully simulate measurements from an IMU.

samples of the position of the navigating body. Therefore, these statistically inde-

pendent samples are much like the particles in a particle filter and can be re-sampled

like those in a particle filter to converge on the true position. Each traditional par-

ticle filter result is fused using the proposed algorithm and compared to the truth

positions pulled directly from the simulated path.

error =

√√√√ 1

N

N∑
i=1

(xi(k)− xt(k))2 , (5.22)

where xi(k) are the particles at state k and xt(k) is the simulated true path with no

noise corruption at state k. In the previous section, two different flight paths are de-
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Figure 5.10: Mean squared error of three ADIS16465 sensor simulations.

fined and individual sensor capabilities to estimate position are investigated. Here,

the individual sensor results, for each simulated path respectively, are fused using

the proposed algorithm. The error is calculated between the simulated ”truth” po-

sition and the estimated position from the proposed fusion algorithm. Furthermore,

the same error calculation is done with the position estimations from a ”traditional”

fusion method of taking a normal average of the multiple sensor estimations. This

not only allows a direct comparison of the enhanced positional estimation between

the proposed algorithm compared to individual sensor estimations but also allows a

direct comparison between the proposed algorithm and a more traditional averaging

fusion method as disclosed in [31].

The error of the traditional and proposed fusion method is shown in Fig. 5.11
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for the first simulated path and associated sensors. Note that the traditional fusion

provides a substantial reduction in positional error compared to Fig. 5.5, as to be

expected, but the proposed fusion method is approximately three times more accu-

rate than the traditional method. The same comparison is shown in Fig. 5.12 for

the second simulated flight path and the associated Analog Devices IMUs. Again,

there is a significant reduction in error using a traditional fusion method (almost

five times reduction), but the proposed fusion algorithm provides approximately an

additional two times improvement. Based on the results in Fig. 5.11 and Fig. 5.12

, the proposed fusion algorithm is shown to provide excellent position estimations

of a navigating body compared to individual sensor capabilities and traditional av-

eraging fusion algorithms. The error calculated between the proposed method and

the traditional method highlights the performance differences of each method.

Given the proposed algorithms´ excellent ability to estimate position, the final

task is to compare the performance between a single navigational grade IMU and

the fused output of the three precision MEMS grade Analog Devices IMU mod-

ules. Given the increased C-SWAP of navigational grade IMUs, their usability in

C-SWAP constrained environments, such as airborne platforms, is drastically lim-

ited. Therefore, the position, navigation, and timing (PNT) module could be greatly

limited in these situations to smaller, lower quality IMU modules. However, the po-

sition estimation accuracy of the system will more than likely need to be maintained

albeit these constraints, and the use of multiple reduced C-SWAP (quality) IMUs

with the proposed fusion algorithm could be an ideal solution.

The navigational grade IMU chosen for this comparison is the NovAtel IMU-

ISA-100C and its specifications are shown in Table 5.2. While the biasing and

error characteristics of the NovAtel unit are significantly smaller, the unit has an

increased order of magnitude in cost, size, and power consumption and is three
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Figure 5.11: Error of both algorithms calculated by (5.22). The blue line is the
traditional method of taking the mean and the red line shows the results for the SIR
method of fusing multiple IMUs.

and a half times heavier compared to the multi-IMU solution with three Analog

Devices IMUs. Therefore, it is clear that there is a C-SWAP vs. performance trade-

off between the different position, navigation, timing (PNT) solutions.

The second flight path is simulated with the single NovAtel IMU and a GPS

solution, and the data from each are fused with a particle filter to yield the esti-

mated position. Next, the positional error between the simulated true path and the

estimated path by the fused GPS/navigational grade IMU is calculated as a func-

tion of time and shown in Fig.5.13. The error for a single ADIS16465 and three

ADIS16465 IMUs are shown as well. The single navigational grade IMU (NovA-

tel) has a lower error when compared to the precision MEMS grade Analog Devices
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Figure 5.12: Error of the three IMU scenario calculated by (5.22). The blue line
represents the traditional method of taking the mean and the red line shows the
results for the SIR method of fusing multiple IMUs.

IMU. However, the three ADIS16465 IMU fused solution results in an error that is

on par with the NovAtel unit. This indicates that a highly precise PNT solution can

indeed be achieved by fusing multiple lower grade IMUs using the proposed fusion

algorithm.
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Figure 5.13: Error of NovAtel unit compared to the ADIS16465 IMUs calculated
by (5.22). The blue line represents the NovAtel unit and the red line represents the
ADIS16465 position solution. The yellow line represents the 3 ADIS16465 IMUs
fused using the proposed method.
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5.6 Instrumentation

The system obtained is the NovAtel Synchronous Position, Attitude and Navi-

gation (SPAN) IMU-ISA-100C system utilizing the ProPak6™ interface shown in

Fig. 5.14. The system provides a GPS position at a rate of 20 Hz and an IMU

measurement at a rate of 200 Hz. The system is comprised of a ProPak6™ receiver,

a GPS antenna, and the IMU unit. The system contains a high-performance IMU

that utilizes low noise optical gyroscopes and Micro-Electro-Mechanical Systems

(MEMS) accelerometers. The ProPack6 receiver allows for the user to connect via

Figure 5.14: The NovAtel SPAN System

an Ethernet cable. The user can then use the NovAtel connect application to con-

trol and configure the system for data capture. The application allows a user to

monitor the GPS satellite constellation as well as signal strength along with other

diagnostics information. The user can also configure what logs are saved to the

disk. The logs contain a variety of different information pertaining to GPS and IMU

measurements. In addition, the NovAtel connect application provides flexibility in

what information is logged. The logs chosen contained the navigation body’s lat-

itude, longitude, and altitude from the GPS sensor. In addition, the accelerometer
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and gyroscope readings were recorded. Each log entry from both sensors is marked

by a GPS timestamp. The final log was encoded as ASCII and saved as a text file.

The file was then parsed into a table with columns containing: the GPS timestamp,

latitude, longitude, height, accelerometer, and gyroscope data.

The NovAtel Span system was instrumented on a vehicle and driven around

Oklahoma City, Oklahoma. The GPS antenna was mounted in an open sunroof and

the IMU was placed near the center of the vehicle. The ProPak6™ unit was placed

in the passenger seat of the vehicle. The ProPak6™ unit was connected via an

Ethernet crossover cable to a laptop that recorded the data. The drive took roughly

30 minutes and included stopping at stoplights as well as highway travel. The

path taken is shown in Fig.5.15 where the latitude, longitude, and height have been

converted to the earth-centered earth fixed Cartesian representation of the positions.

Figure 5.15: Route taken in ECEF Cartesian coordinates
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Figure 5.16: IMU Acceleration values

The accelerometer values measured from the route taken are shown in Fig.5.16.

Validating the proposed up-sampled algorithms in simulations is crucial since the

simulator provides an absolute “truth” position that allows for mathematical com-

parisons to the algorithm’s estimated positions. However, it is also crucial to val-

idate the fusion method in an actual instrumented test setup. The NovAtel Span

system is instrumented on a vehicle and driven around Oklahoma City, Oklahoma

where the GPS antenna was mounted in an open sunroof and the IMU was placed

near the center of the vehicle. The ProPak6™ unit was placed in the center con-

sole of the vehicle and connected via an Ethernet crossover cable to a laptop that

recorded the data. The NovAtel system performs a kinematic alignment to initialize

the orientation of the IMU. The kinematic alignment method uses the GPS velocity

vector to determine the heading. For the implemented algorithms, the heading was
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initialized to true north. This was achieved by turning the vehicle until the NovAtel

GUI indicated that the vehicle was facing north and the kinematic alignment was

initiated. Data for the traversed path was only captured after the alignment and

initialization process was complete. The paths were then processed with both the

Kalman and particle filters, with and without the interpolation method proposed,

and are shown in the following subsections. In general, the path taken is shown in

Fig. 5.17 as geodetic coordinates overlaid on a Google Earth image.

Figure 5.17: Route taken in geodetic coordinates. The path is a low-speed drive

around a neighborhood. The distance traveled is half a mile. This map was obtained

using Google Earth.

Measuring the performance of the instrumented system is more difficult than

the method used in the simulated results as the absolute true path is not captured.

While GPS could be used as the “truth” path traversed, GPS itself has some inherent

noise (position error) that would bias the calculated MSE. In order to remedy this
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issue and evaluate the accuracy of the algorithms, a real time kinematic (RTK)

differential GPS with centimeter accuracy instrumented with the NovAtel system

was used. The RTK system is the ArduSimple simpleRTK2B kit and consisted

of a base station and a rover receiver. The system is capable of producing cm-level

position solutions. The base station was stationary and communicates with the rover

receiver using a pair of Xbee radio transceivers. In addition, the base station is then

set up prior to the test to allow for the system to determine an accurate location of

the base station. The algorithmś position results are compared to the RTK collected

path. The MSE of each algorithm compared to the RTK solution is calculated and

shown in Fig. 5.18. The implemented particle filter produced results that were

closer to the RTK’s cm-level accuracy than the implemented Kalman filter. To show

the performance of the up-sampled algorithms, the estimated paths are overlay-ed

on Google Earth images and shown in the next two subsections.

106



Figure 5.18: MSE of the particle filter and Kalman filter compared to RTK GPS.

5.7 Kalman Results

The instrumented data are processed using both the regular Kalman filter and

the interpolated Kalman filter. The results from both algorithms are shown in Fig.

5.19. The results show that the algorithm accurately predicts position given the ac-

celeration measured by the IMU. The fine resolution method described in Section
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3.3 produced position estimates at a higher frequency than the output of the GPS

and IMU. More specifically, the algorithm up-sampled the 200 Hz update rate of

the IMU to a faster rate of 3 kHz, or 15 times faster providing 15 times the temporal

resolution. Furthermore, the higher frequency positions agree with the values pro-

duced by the NovAtel system as well as the GPS coordinates and did not introduce

additional errors when producing higher frequency position estimations. By using

a Kalman filter to fuse sensor positions with the up-sampled predictions, the algo-

rithm preserves the benefits of drift correction provided by the Kalman filter while

providing faster position updates. Furthermore, the positional solution provided is

based on measured physical state changes in the navigational body. As a result,

the interpolation captures behavior of the system that is not apparent to traditional

polynomial interpolation techniques.
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Figure 5.19: Kalman algorithm results. The left image shows the Kalman results

plotted on top of the GPS coordinates and the navigation solution given by the

NovAtel system. The right image shows the Kalman interpolated results plotted on

top of GPS and NovAtel coordinates. These maps are obtained using Google Earth.

5.8 UPF Results

Similar to the interpolation results obtained by the upsampled Kalman filter,

the same data collected from the instrumented NovAtel system is processed using

the presented UPF method. The results of the UPF are plotted on top of the GPS

measurements and shown in Fig. 5.20.
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Figure 5.20: Results of the GPS positions and the results of particle filter algo-

rithms. These maps were obtained using Google Earth.

The particle filter provided a similar solution to the Kalman method and, in gen-

eral, the position estimates are accurate and aligned with the GPS measurements.

The proposed normal distribution is sufficient in allowing the particle filter to con-

verge on the GPS measured values. The results of the particle filter presented uti-

lized a particle cloud with 2× 103 samples and are resampled based on the method

described in Section 3.2. The evolution of the particle cloud distribution over time

is shown in Fig. 5.21.
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Figure 5.21: PDF evolution of the particle filter over time. The variance of the

particle cloud distribution shrinks with every resample of the cloud. As a result, the

cloud converges to an answer closer and closer to the true value.

Notice that the distribution of the particle cloud initially has a large variance,

but as the particle filter transitions in states and is resampled, the variance of the

particle cloud decreases. As the variance decreases, the mean of the particle cloud

becomes more accurate and can be used as a more accurate estimated position at

each time step. The particle filter is also modified to produce finer resolution po-

sition estimates, as described in Section 3.5, which successfully up-sampled the

temporal resolution to 3 kHz providing position estimates 15 times faster than the

IMU sampling speed.
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5.9 Muti-IMU

The multi-IMU method is verified by using the same radar configuration and

a similar ground experiment to the one shown in Fig. 6.4. The multi-IMU system

with the ARENA control and timing unit (CTU) is instrumented directly on the No-

vAtel system to directly compare the images focused by each navigational solution.

The ARENA CTU is utilized to capture the data from each of the low-grade IMUs.

In addition, the CTU provides a timestamp for each of the captured IMU measure-

ments. Each IMU is connected to the CTU by a ribbon cable the CTU provides

the power and clock signal required by the IMUs. The measurements are streamed

to the CTU via the Serial Peripheral Interface (SPI) communication protocol. As a

result, the CTU is responsible for the data acquisition of the IMU data and is syn-

onymous with the NovAtel receiver. In the instrumented setup, the IMUs were pre

configured using the evaluation board compatible with the IMUs. The configura-

tion uploaded allowed for an external clock to be utilized. A synchronous external

clock is useful for attributing coherent timestamps to the measurements from the

IMU. The coherent timestamps are crucial to the alignment of the data in the fu-

sion algorithm and are described in chapter 3.3. Furthermore, the configuration set

the sampling rate to 100 samples per second in order to prevent the CTU buffers

from overflowing. An image of the instrumented multi-IMU system mounted on

the NovAtel IMU is shown in Fig. 5.22. The NovAtel receiver and IMU are visibly

larger than the multi-IMU system. As a result, the weight of the multi-IMU solution

weighs significantly less than NovAtel IMU thus, decreasing the C-SWAP for the

navigational system.
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Figure 5.22: An image of the multi-IMU instrumentation setup. The gold box

mounted on the NovAtel IMU is the ARENA CTU and the silver boxes with the

ribbon cables are the 3 ADIS-16465 IMUs.

Similar to the NovAtel system, the multi-IMU is connected to a computer via

Ethernet where the data from each IMU is buffered to respective files within the

computer file system. The GPS measurements are recorded independently from the

multi-IMU. As a result, the NovAtel GPS measurements are currently being used

for both the multi-IMU solution and the NovAtel solution. Additionally, this allows

for the errors caused by GPS to be the same for both solutions and allows for a more

direct comparison between the multi-IMU alternative and the single high-quality

IMU approach.

In order to validate the simulated results, an experiment deployed instrumenta-
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tion of the NovAtel system and three ADIS 16465 to a vehicle. The vehicle drove

through an urban environment and the results of the NovAtel system are directly

compared to the fusion of the three ADIS IMUs using the proposed method. The

instrumented system collects GPS latitude, longitude, and altitude from the NovA-

tel system. In addition, the angular velocities and acceleration values from the No-

vAtel IMU-ISA-100C is collected from the NovAtel synchronized position attitude

navigation (SPAN) receiver. The angular velocities and acceleration values from

each of the three IMUs are collected using a control and timing unit (CTU) from

Remote Sensing Solutions (RSS). The data collected from each sensor is times-

tamped from the CTU and the NovAtel SPAN receiver. The data from the NovAtel

IMU is fused with the NovAtel GPS data using the traditional particle filter fusion

method. In addition, the experiment also utilizes a real-time kinematic (RTK) GPS

with centimeter-level accuracy to capture the path the vehicle traverses. The RTK

measurements are used as a highly accurate third-party ground truth of the path

traversed in order to measure the accuracy performance of each IMU configuration.

For a fair comparison, the three ADIS IMUs are also fused with the NovAtel

GPS measurements using the proposed fusion method. Fusing each IMU configu-

ration with the same GPS measurements allows for the uncertainty of the GPS mea-

surements to affect all the IMU configurations equally. As a result, the differences

in errors from each of the IMU configurations are largely sourced by the errors

from the IMU and the fusion method. Using Fig 5.13, the simulations showed three

ADIS 16465 IMUs can provide comparable performance to the NovAtel IMU. The

experiment is designed to confirm these results from the simulation and three ADIS

16465 is used for direct comparison with the NovAtel system. The path traversed

by the system is shown in Fig. 5.23.

The results of the experiment for a single ADIS 16465, the NovAtel system,
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and the three ADIS 16465 system is shown in Fig. 5.24. The results are compared

to the RTK GPS and the error of each of the IMU configurations are calculated.

From Fig. 5.24, it can be seen that the three IMU configuration performs the best

followed by the NovAtel and the single ADIS configuration respectively. These

results are expected as the NovAtel system is a more accurate sensor compared to

the single ADIS 16465. Similarly, the NovAtel system and the ADIS start with

similar accuracy but the single ADIS solution begins to ”walk” 20 seconds faster

than the higher quality NovAtel. The 3 IMU configuration with the proposed fusion

method improves the initial accuracy of the navigational solution and minimizes the

walking effects of the sensors.

Figure 5.23: The urban path traversed by the deployed NovAtel and ADIS 16465
system. This image is a screenshot from Google Earth.
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Figure 5.24: Error of 3-dimensional positional accuracy in meters. The blue line is
the error of the fusion of 3 ADIS16465 IMUs. The red line is the error of a single
ADIS16465 IMUs and the yellow line is the error of the NovAtel system.

5.10 Flight Test

In addition to ground-based testing, the NovAtel unit is instrumented within a

small cargo bay of the Piper Warrior aircraft near its center of gravity, as shown in

Fig. 2.4. The plane flew a test path, shown in Fig. 5.25, to evaluate the UPF algo-

rithm on an airborne platform that possesses six degrees of freedom. The flight be-

gan in the upper-middle portion of the figure, then the aircraft flew in the southwest

direction (lower-left portion). Next, the plane flew nearly due east and subsequently

turned northeast. It executed a series of figure-eight maneuvers and racetrack ma-

neuvers, then it finally flew in a northwest direction back to the airport. The duration

of the flight was 3,591 seconds or approximately 1 hour. The path is selected since

it included simple elevation maneuvers such as takeoff and landing, as well as more
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complex maneuvers, such as figure-eights. The recorded flight path from the GPS

unit (green curve) and the calculated position estimates of the UPF algorithm (red

curve) are shown in Fig. 5.25.

Figure 5.25: Map representation of GPS and UPF results of the flight path flown

by the Piper Warrior aircraft. The green line represents the GPS measurements

captured by the NovAtel unit. The red line represents the results of the proposed

UPF algorithm. This map was obtained using Google Earth.

Fig. 5.26 depicts the normalized variance for the UPF cloud for the latitude,

longitude, and altitude, respectively, versus time. The figure illustrates how the par-

ticle clouds for each of the position components decrease rapidly, which indicates

a quick convergence to the optimal solution. The behavior of the variance is due to

the re-sampling process which draws a new particle cloud based on the weights cal-

culated by (3.22). These weights allowed for the unlikely particles to be removed

from the cloud, which causes the variance to converge to the optimal solution.
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Figure 5.26: Variance of latitude, longitude, altitude particle clouds plotted against

time. As shown, the variance of all three components converge to a solution. Each

component was calculated from a particle cloud with 2000 particles.

Given that all particle filters converge rapidly (i.e. less than 75 seconds), the

full flight can be studied. Consequently, Fig. 5.27 confirms that the proposed UPF

algorithm functioned correctly since it tracked the GPS coordinates accurately from

take-off to landing.
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Figure 5.27: Latitude, longitude, and altitude of the flight test plotted against time.

The UPF results are shown in blue and the GPS results are shown in orange. Total

flight time was 3591 seconds.

Given the GPS measurements contain inherent errors, a direct error-level com-

parison is not warranted but was done to verify that the Euler rotation mathematics

were implemented correctly to be able to accurately estimate the complex flight

path flown. The calculation of the difference, or residuals, between GPS and the

UPF algorithm can further confirm the algorithm functioned correctly and illustrate

the algorithmś ability to track with GPS measurements. These residuals for each of

the position components are shown in Fig. 5.28.
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Figure 5.28: The residuals of the UPF position solutions compared to the GPS

position solutions
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5.11 Summary

In summary, this chapter presents an approach to miniaturizing the INS systems

without compromising the accuracy of the positions provided. The technique re-

quires leveraging the benefits of data fusion to obtain a higher accuracy solution

and the use of multiple lower-quality IMUs. In doing so, lower C-SWAP sensors

can be used to produce an INS system that is capable of providing accurate posi-

tional solutions capable for the SAR application.

Design tools to estimate the number of sensors to utilized in the technique is

also described in this chapter. The tools allow for both a back of the envelope

estimation of the number of sensors to utilize is presented. In addition, a higher

fidelity estimation of the number of sensors needed in recursive applications is also

presented. As a result, implementations of the multi-IMU fusion technique can be

designed based on the design tools. These tools allow for engineers to evaluate the

benefits of lower C-SWAP and the accuracy degeneration of the algorithm.

The multi-IMU approach is validated in simulations and further verified in in-

strumentation. The results from simulations of both interpolation techniques and

the full multi-IMU techniques are detailed in this chapter. The simulations showed

the proposed method of interpolation provides positional accuracy at the sampling

frequency equal to the PRF of the SAR system. In addition, the interpolation

method is validated through a flight test where the interpolation method provided

adequate results at a higher frequency. Lastly, the result of the multi-IMU technique

is also shown to provide better accuracy with lower C-SWAP components as com-

pared to a high-grade, bulky INS system. With the results shown in this chapter,

the interpolation technique paired with the multi-IMU fusion method is validated to

successfully address the issues of providing accurate positional solutions at the rate

equal to the PRF of SAR systems and the issues of minimizing C-SWAP without
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compromising the accuracy of the positional solution. The techniques presented

and validated in this chapter are the novel contribution of this dissertation. In the

next chapter, the INS system utilizing the techniques explained in this dissertation

are applied to a radar configured to capture data that can be processed to produce

SAR images.
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6 SAR Tests

In this chapter, methods are verified that the proposed algorithms may be used in

a practical SAR imaging scenario. This is accomplished through a series of ground

test performed using the NovAtel Span system in conjunction with a custom Ku-

band pulse-Doppler radar system constructed at the University of Oklahoma. This

ground test is performed by placing several targets within the main beam of the

radar antennae and moving the radar on a cart perpendicular to the line-of-sight to

the targets, generating a synthetic aperture. Measurements of the platform motion

are taken by the NovAtel unit while the radar pulses, and the UPF and the interpo-

lated Kalman filter are used to estimate the radar position at each pulse. By using

the time interpolation inherent to each algorithm, the position can be estimated at a

rate equivalent to the radar PRF of 3 kHz. The position estimates may then be fused

with the range profiles produced by the radar using the backprojection algorithm to

produce a 2-D image of the scene.

Additional to the interpolated methods, the system is also leveraged to compare

the effects of the multi-IMU fusion technique and the traditional single IMU ap-

proach to SAR PNT. The utilization of multiple IMUs allow for a more accurate

positional solution than what can be obtained with a single IMU. The fusion of 3

low-grade IMUs is directly compared to the position solution obtained by a single

high-grade IMU. The effects of each PNT approach on the SAR images produced

by the described SAR system is evaluated.

6.1 Radar Hardware

The radar system used in the test is a custom-built system designed by the Uni-

versity of Oklahoma [37]. Operating at a carrier frequency of 16.6 GHz, it is de-

signed for use on a slow-moving aircraft and it pulses with a PRF of 3 kHz. The
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Figure 6.1: A block diagram of the radar system.

pulsed waveform is a linear frequency modulated (LFM) pulse with 300 MHz of

bandwidth, giving a radial range resolution of 0.5 m after the pulse compression

operation. To capture the radar data and provide pulse synchronization to the No-

vAtel unit, an ARENA413 software-defined radio (SDR) is used. A block diagram

of the radar system is shown in Fig. 6.1.

6.2 Measurement Test Setup

In order to ensure an unambiguous imaging scene, three reflective metal targets

were placed in a field 20 meters from the radar. A Google Earth view of this scene,

including the radar location, is shown in Fig. 6.2. With the radar antennas pointed

toward the targets, the radar and NovAtel were moved on a cart over a 10 m syn-

thetic aperture and 10 s worth of data (30,000 pulses) was collected. After the data

collection, the processed position data and the radar pulses are down-selected to

2000 pulses (∼ 1 m aperture) to give azimuthal resolution on the same order as the

range resolution. Images of the radar and the reflectors are shown in Fig. 6.2. The

raw radar data was pulse compressed, and pulse-by-pulse radar position estimates
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Figure 6.2: An image of the reflectors relative to the radar.This image was obtained
using Google Earth.

were produced using the UPF and interpolated Kalman filter. The resulting range

profiles were fused with the position estimates using the backprojection algorithm

to form focused images of the scatterers in the scene.

6.3 Results

An image of the radar scene using the UPF is shown in Fig. 6.5. The three

targets indicated in the scene in Fig. 6.2 are visible in this image and are in the

correct relative locations. While typically a Hamming or Blackman window would

be applied in range with the matched filter and azimuthally in the pulse dimension

to suppress sidelobes, this was not done here since observation of the sidelobes is

instructive on the quality of the image formed. Clearly, from Figure 6.5, it can be

seen from the shape of the point targets and their sidelobes that the radar pulses

combined with the position tracking provided by the UPF yield a near-ideal point

spread response for each of the targets. Another image of the radar scene, formed

using the interpolated Kalman filter, is shown in Fig. 6.6. While the targets are

still easily visible in the same configuration as in Figs. 6.2 and 6.5, the targets are

smeared compared to those in Fig. 6.5 and also undergo a translational shift, indi-

cating the presence of large errors in the platform positioning. From these results,
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Figure 6.3: A image of the test setup utilized to capture the data.

Figure 6.4: The three targets placed in the target scene for the tests.
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Backprojection Image
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Figure 6.5: A SAR image of the target scene using the UPF to form the position
estimates.

it is clear that while both algorithms may be used to produce quality SAR images,

the UPF exhibits better performance. An image of the radar scene created using the

UPF is shown in Fig. 6.5.

Comparing Figs. 6.5 and 6.6, it is apparent that the SAR image created using the

proposed UPF is much more focused than the image created using the upsampled

Kalman filter. This is unsurprising considering the results from Fig. 5.18, which

clearly show that the UPF produces position estimates that are in general much more

accurate than the upsampled Kalman filter. Therefore, it is expected that the phase

alignment process, as part of the backprojection algorithm, will be more accurate
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Figure 6.6: A SAR image of the target scene using the interpolated Kalman filter to
form the position estimates.

and thus result in a more focused image.

To further illustrate the effectiveness of the proposed upsampled fusion algo-

rithms, SAR images are also formed using the spline interpolation method to inter-

polate position estimates for each radar pulse using only GPS measurements (Fig.

6.7), GPS/IMU measurements fused with a Kalman filter (Fig. 6.8), and GPS/IMU

measurements fused with a particle filter (Fig. 6.9). The spline method does not

allow for an accurate enough position estimation in order to adequately compensate

for phase during the backprojection algorithm. Because the phase is not adequately

compensated for, the resulting backscatter images are unable to be focused. This
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Figure 6.7: A SAR image of the target scene using the spline interpolation of GPS
measurements to form the position estimates.

not only validates the need for accurate and sufficiently sampled INS data but also

indicates that the proposed upsampled fusion algorithms are better suited for SAR

imaging applications compared to traditional interpolation techniques.

To provide some more details, in Fig. 6.7, the raw measured GPS data are in-

terpolated using the spline method. This interpolation method does not correct for

the errors in the GPS position as the IMU measurements are not considered. As

a result, polynomial interpolation is used on the GPS measurements to provide a

position estimation for each pulse of the radar. While the position solution is pro-

vided for each pulse, the errors from this method prevent the formation of focused
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Figure 6.8: A SAR image of the target scene using the spline interpolation of
GPS/IMU measurements fused using the Kalman filter to form the position esti-
mates.

SAR images as the GPS errors, and the errors introduced by the spline interpola-

tion, introduce large errors in the SAR signal phase. In Fig. 6.8 and Fig. 6.9, the

spline interpolation technique interpolates between the position solutions provided

by the IMU fused with the GPS using the Kalman and particle filter, respectively.

In these results, the IMU measurements are incorporated and the position solution

is provided on the IMU sampling rate. The result is a position solution with the

GPS and IMU errors corrected by the fusion algorithms. The spline interpolation

method is then used on the fused position solutions to provide radar positions for
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Figure 6.9: A SAR image of the target scene using the spline interpolation of
GPS/IMU measurements fused using the particle filter to form the position esti-
mates.

each pulse transmitted by the radar. Even though the position solutions provided

at the IMU sampling rate incorporate the motion model and are corrected position

estimates from the sensors, the spline interpolation ignores the motion model and

external forces on the radar. Moreover, the IMU sampling rate of 200 Hz is still

drastically lower than the 3 kHz PRF of the radar. As a result, the spline interpola-

tion technique introduces additional phase errors. These errors are readily seen in

the SAR image as smeared (defocused) targets.

From these results, it is clear that while both the proposed interpolated Kalman

and UPF algorithms may be used to produce quality SAR images, the UPF exhibits

better performance. While the targets are still easily visible in the same configura-
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tion as in Figs. 6.2 and 6.5, the targets are defocused compared to those in Fig. 6.5

and also undergo a translational shift indicating the presence of large errors in the

platform positioning. In summary, the results of the interpolation technique indicate

that the use of lower sampling rate GPS/IMUs can be used with a high PRF SAR

system and generate focused SAR images without the need for autofocus techniques

and processing.

6.4 Airborne SAR

An airborne SAR test is used to further prove the interpolation algorithm’s capa-

bilities in producing position solution for each pulse of the radar with 3dimensional

motion. In order to accomplish this, the SAR system was instrumented on a sim-

ilar Piper Warrior to the one used during the flight test described in chapter 5.10.

The horn antennas during this experiment are mounted externally to the aircraft.

In addition, the SAR system is integrated into the same cargo bay as the NovAtel

IMU system. The aircraft flew paths north to south while the radar illuminated the

stadium and captured the echoes reflected from the stadium. An overlay of the fo-

cused SAR image on a google maps image of the target scene is shown in Fig. 6.4.

Additionally, the focused SAR image with no transparency is shown in Fig. 6.11.
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Figure 6.10: Airborne SAR image of University of Oklahoma stadium overlaid on

Google Earth image.
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Figure 6.11: The focused SAR image of the University of Oklahoma stadium.
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The focused image accurately represents the target scene and the general shape

of the stadium can be resolved. It can also be observed in the focused image that the

shapes and relative locations of the surrounding buildings can also be resolved using

the NovAtel system with the upsampled particle filter technique. These results show

confidence that the NovAtel system utilizing the UPF technique developed in this

dissertation can produce an accurate enough PNT solution in 3-dimensional motion.

In addition, the use of the interpolation algorithm paired with the NovAtel system

to focus SAR images is shown to be a success. As a result, the technique is verified

in simulation and instrumentation where a real target scene can be imaged utilizing

the technologies presented in the previous chapters.

6.5 Multi-IMU

The multi-IMU is implemented on the same SAR system used for the interpo-

lation tests. A similar target scene is also utilized however two trucks are used as

targets and are arranged in the field as opposed to the previous scene with three

corner reflectors as targets. The radar is instrumented on the cart with both the No-

vAtel and multi-imu navigation solutions utilizing the interpolation technique. The

image from the NovAtel system is shown in Fig 6.12 and the two targets can be

seen as well as the trees depicted in Fig6.4.
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NovAtel Backprojection Image (dB) 
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Figure 6.12: A SAR image of the target scene using the NovAtel IMU to form the

position estimates.

The NovAtel system can focus the SAR image and produce 2 distinct targets.

In addition, the system is also able to resolve the trees that were also in the scene.

Similar to the ground tests done for the interpolation method, the NovAtel IMU

produced images that is representative of the target scene. The multi-IMU solution

for the same experiment is captured in addition to the NovAtel system and a SAR

image is formed. The multi-IMU data used is the data collected in tandem with the

NovAtel system. Furthermore, the SAR image from the multi-IMU navigational

solution using the same radar pulses as the NovAtel system is shown in Fig. 6.13.
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Multi Backprojection Image (dB) 
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Figure 6.13: A SAR image of the target scene using the multi IMU to form the

position estimates.

Visual inspection shows that the multi-IMU system can better focus the image

as the targets are tighter and do not span as many pixels as the targets resolved using

the NovAtel system. The results obtained by both systems show that the multi-IMU

is capable of producing high accuracy position solutions on par with the high-end

NovAtel IMU. In addition, the system is capable of producing PNT for SAR appli-

cations when paired with the interpolation method. The results show that the fusion

of multiple lower grade IMUs can be used as a SAR PNT solution. Furthermore,

the interpolation method allows for lower grade IMUs with sampling rates much

lower than the SAR PRF can be used to produce synchronous PNT solutions for
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each pulse of the SAR system. Now that the interpolation technology introduced

in this dissertation has been proven to be functional, further improvements can be

implemented to optimize the abilities of the method.

6.6 Summary

In this chapter, the SAR system utilized to validate the data fusion techniques is

detailed. In general, the system is a miniaturized all commercial of the shelf system

that operates at a 16.6 GHz. The results from various ground base experiments are

presented with this system instrumented with the NovAtel INS and the multi-IMU

INS to form SAR images. The SAR data showed the interpolation technique is

able to produce positional accuracy high enough for the formation of SAR images.

Furthermore, the interpolation technique presented outperformed the popular spline

interpolation techniques when comparing the quality of the SAR images formed.

The system is then tested in a flight tests to validate the interpolation performance

on an airborne platform. Lastly, a comparison of the SAR images formed from

the NovAtel system and the multi-IMU system using the same radar data is shown.

As a result, the multi-IMU method showed capability in producing images that

were more focused than the images formed using the NovAtel system. Validating

that three lower-grade, lower C-SWAP sensors can be fused to provide a positional

accuracy that is akin to the a higher-grade, higher C-SWAP sensor.

The results presented in this chapter successfully verify that the novel contri-

butions of this dissertation successfully address the problems of INS systems pro-

viding positional solutions at the PRF of SAR and the multi-IMU technique to

minimize C-SWAP without sacrificing accuracy. The focused SAR images from

the ground test show that the multi-IMU method is capable of outperforming the

high-grade NovAtel INS system in SAR applications. The contributions of this
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work enables the miniaturization of SAR systems by allowing lower C-SWAP INS

integration with miniature SAR systems.
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7 Conclusions and Future Work

7.1 Summary

Current solutions to navigational problems provide challenges that are unique to

the application of SAR. This is largely due to tight accuracy requirement leveraged

by the signal processing techniques utilized to focus a SAR image. The challenge of

obtaining accurate positional estimates of the SAR platform is an issue that is cur-

rently being solved by increasing the accuracy of a single IMU. In addition, modern

pulse SAR systems require positional updates at much higher rates than what can be

produced by the currents solutions. As a result, two navigational challenges arise

when attempting to miniaturize SAR systems. The first challenge is producing

highly accurate positional solutions at the update rate required. The second chal-

lenge is to reduce the C-SWAP of the navigational system without compromising

the positional accuracy. These challenges are discussed in chapter 1.

The navigation of a moving platform first requires knowledge of the geoloca-

tion of the platform. Locations inherently are relative to a point of reference. These

points of reference are often origins of a coordinate system used to describe the lo-

cation. Furthermore, multiple coordinate systems exist and describe location given

different reference points. In order to establish a location for the platform, sensors

are used to observe the physical state of the platform. However, the sensors have

inherent noise that negatively affects the accuracy of the platform’s estimated loca-

tion. In general, the sensors popularly used are GPS and IMUs and each has distinct

limitations that contribute to the inaccuracies of the final position estimation. Addi-

tionally, the state observations made by the sensors are often expressed in a different

coordinate system than the location of the platform. As a result, the transformation

between these coordinate frames also contributes errors to the positional estima-
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tion of the platform. The functionality of the sensors and the coordinate frames is

presented in chapter 2.

Utilizing the information received by the sensors to produce a positional solu-

tion can be done in various ways. The most basic is to initialize the estimator with

an initial position and the new positions are calculated using the IMU state measure-

ments. Utilizing a motion model allows for the prediction of positional solutions

based on the accelerations values measured by the IMUs. This method is known

as dead reckoning and does not account for the errors in the IMU state measure-

ments. As a result, the position solution compounds the errors from the IMUs and

introduces an ever-increasing amount of error. In order to combat the compounding

errors, the idea of data fusion allows for the predicted positional solution to be cor-

rected based on additional measurements obtained about the platform state. These

techniques and topics are described in section 2.2.5.

The Kalman filter is a popular and effective data fusion method that is utilized

to estimate position solutions. The method utilizes statistical models of the errors

within the system and calculates a weighted average between the prediction via a

motion model and the observed position measurement. In addition, the Kalman fil-

ter also updates the statistical confidence of the predicted solution to be recursively

used in the next time epoch. This method uses GPS measurements to correct the

sensor drift caused by the IMUs. As a result, the positional accuracy of GPS or

better can be obtained while producing positional solutions at the increased update

rate IMU. The math and fusion process of the Kalman filter is detailed in section

3.1.

An alternative fusion technique is the particle filter which utilizes a sample rep-

resentation of the posterior distribution to estimate the position of the platform. The

sample representation utilizes the measurement of the state to re-sample the repre-
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sentation of the posterior distribution. As a result, the distribution converges to the

true distribution of the estimated state. The position of the platform is calculated

by taking the expected value of the posterior distribution thus, the accuracy of the

sample representation of the distribution is directly proportional to the accuracy of

the final state estimation. These concepts are explored in section 3.2.

In order to have the navigational system produce positional solutions at the PRF

of the SAR system, an interpolation method is required. The update rates of the

navigation systems are often slower than the PRF of most modern radars. Tradi-

tional spline interpolations techniques are not sufficient for producing sharply fo-

cused SAR images. An interpolation technique that utilizes the motion model and

the IMU measurements to predict the platform location more often. The interpo-

lation technique implementation for both the Kalman filter and the particle filter is

detailed in section 3.3.

The SAR technique utilizes a moving radar to synthetically create a larger aper-

ture to increase the amount of energy that is transmitted to ”illuminate” the target

scene. The energy is reflected from the targets of the illuminated scene and can be

used to form an image of the target scene. In order to create a sharp and focused

image, the position of the radar at each pulse is required to coherently combine the

energy reflected from each scatterer and align the phases of the waveform. As a

result, the SAR application requires the navigation system to produce solutions for

each pulse of the radar with high positional accuracy. The applications space of

navigation solutions in the SAR application is explained in chapter 4.

An attempt to minimize the C-SWAP of the navigational system, the concept

of data fusion is leveraged where the collection of multiple measurements is com-

bined to obtain a more accurate solution. In this way, the concept can be extended to

an instrumented approach where additional sensors are added to the system to ob-
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tain a more accurate solution. This concept as it pertains to decreasing C-SWAP is

counter-intuitive, however, the C-SWAP is decreased if the additional sensors used

have a combined lower c-SWAP compared to the single sensor approach. Addition-

ally, the accuracy benefits obtained by the fusion technique allow for lower-grade

sensors to be utilized to achieve similar results to the brute force approach of using

a single high-grade sensor. The fusion method utilized to achieve these concepts

is augmenting the navigation fusion with an additional SIR step. In doing so, the

posterior distribution is estimated utilizing multiple sensors observing the physical

state of the platform. The result is a posterior distribution that is more accurate

as it is based on more measurements. The process and augmentation SIR step is

discussed in chapter 5.

The augmentation of the SIR method performs well for the multi-IMU mea-

surement and does produce higher accuracy in the positional solutions than a single

IMU of the same quality. The method does have limitations that pertain to scal-

ing the method for a large number of sensors whereby the increase in positional

accuracy does not linearly increase with each additional sensor. As a result, there

is a point where the addition of another sensor does not provide enough benefit to

outweigh the computational requirements required of the additional sensor. In ad-

dition, the weights of the sensors used for SIR are currently calculated based on

GPS measurements. This causes the accuracy of the GPS measurement to heavily

impact the accuracy of the positional solution. These limitations are discussed in

section 5.2.

The SIR method for multi-IMU fusion is verified first in simulations where

flight paths and sensor measurements are simulated and fused using the multi-IMU

method. The simulations include a simple flight path generated in MATLAB and

different sensor variances are simulated. The second simulation utilized a 3rd party
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python library to produce the flight paths and sensor measurements. The fused

results indicated the solution is capable of both producing higher quality position

solutions than a single IMU of the same grade and producing position solutions

for every pulse of the SAR system. Details of these simulations and results are

presented in section 5.3.

With the confidence the method is feasible as proven in simulations, an instru-

mented system is then used to verify the algorithm on data collected on a moving

platform. The instrumentation first tested the interpolation techniques to verify the

interpolation techniques did not introduce additional errors when producing po-

sition solutions at a finer update rate. Once the interpolations were verified, the

interpolation technique is paired with the multi-IMU fusion technique and the re-

sults were compared to a highly accurate IMU. The results showed that the fusion

of 3 lower-grade IMUs are capable of producing solutions that were as accurate or

more accurate than the high-grade IMU. These results are explained in section 5.6.

Finally, the interpolation techniques are implemented on a SAR system and the

performance of the navigation solution is tested. The target application for the al-

gorithms is to address the issues of decreasing C-SWAP in a SAR system and to

produce positional solutions on a finer update rate. As a result, the SAR system

implemented is used to verify the designed algorithms are sufficiently solving the

issues within the target application. SAR images are focused on point targets on

ground-based tests to verify the images can be focused using the interpolation tech-

nique. The multi-IMU method is then deployed on the SAR system and the focused

images were compared to images focused using the higher grade IMU. These tests

and results are presented in chapter 6.
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7.2 Conclusion

The location of a navigational platform is not an easy solution to obtain accu-

rately. The current and most popular approach utilizes GPS signals to approximate

the location of the platform. The challenge with utilizing GPS signals is caused by

inaccuracies in the location approximation. These inaccuracies are caused by erro-

neous signal reflections and are reliant the on line of sight between the receiver and

the satellite. Additionally, the transmission range of GPS signals is significantly

large and limits the update rate of the position solutions. This is a major limitation

for SAR applications where position solutions for every pulse need to be extremely

accurate and on a fast time scale compared to the update rate of GPS. The intro-

duction of IMUs allows for an increase in update rates because positional estimates

can be made without relying on the long transmission times of GPS. However, the

IMUs have inherent errors that are compounded over time as the position estima-

tion is a recursive process. The compounding errors cause the position estimation to

drift or ”walk” over time. In order to remedy this, the concept of data fusion is used

to combine or ”fuse” the information from both sensors to provide more accurate

position solutions at a faster update rate. The addition of an IMU and data fusion is

still unable to produce position solutions fast enough for SAR application. An in-

terpolation method was designed and implemented to specifically provide position

solutions that are synchronous with the PRF of the SAR system. The interpolation

method allowed for accurate position solutions capable of producing more focused

SAR images than the traditional spline interpolation method.

The interpolation method provides a good solution to increasing the update rate

of positions that are synchronous with the SAR system. However, the limitation of

obtaining highly accurate position solutions still requires a highly accurate IMU.

Highly accurate IMUs are often bulky and heavy which increases the C-SWAP re-

145



quirements for a SAR platform. While often SAR platforms are capable of support-

ing the larger C-SWAP requirements, the reduction of C-SWAP is required minia-

turizing SAR platforms. The challenge here is to reduce C-SWAP while maintain-

ing the accuracy of the positional estimates. Utilizing the strength of data fusion,

a method of fusing multiple lower-grade sensors using the sequential importance

resampling to obtain a position solution with equivalent accuracy as a single high-

grade sensor was developed.

The fusion of the multiple smaller, lower-grade sensors paired with the interpo-

lation techniques to synchronize the position updates with the PRF of the SAR sys-

tem allows for a reduction in C-SWAP without trading image quality. The method

presented in this dissertation opens the door for small form factor SAR systems

that can be deployed on smaller unmanned drones. In addition, the fusion of mul-

tiple low-grade IMUs allows for an increase in positional accuracy without having

to replace the navigation system completely. Furthermore, the additional sensors

help minimize the drift in the positional accuracy and can increase the duration a

navigational platform can navigate without a GPS update.

The contributions of this dissertation allow for the reduction of C-SWAP of

PNT systems without sacrificing accuracy. In addition, the traditional trade-off of

increasing positional accuracy results in a proportional increase in C-SWAP is no

longer a limitation in the design of PNT solutions. As a result, PNT solutions can

now be developed to achieve an increase in accuracy by adding additional IMUs.

This allows for engineers to leverage lower C-SWAP IMUs and maintain the posi-

tional quality of the solution provided.

In conclusion, the interpolation method presented in this dissertation allows for

any IMU update rate to be synchronized with the PRF of a SAR system. As a re-

sult, the design constraint of utilizing IMUs with comparable update rates to the
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SAR PRF is removed. In addition, the interpolation method provides the funda-

mental synchronization technique required for the multiple sensor fusion technique

presented. The multi-IMU technique developed removes the design constraint of

trading positional accuracy for C-SWAP. Maintaining positional accuracy without

having to increase C-SWAP allows for the miniaturization of SAR systems to be

more easily achieved. Lastly, these methods have been instrumented and verified in

ground and airborne platforms. The results of the instrumented methods show that

it is possible to synchronize and fuse multiple sensors to achieve a more accurate

position estimate than a single sensor and the method can be used to reduce the

C-SWAP of at SAR PNT solution. The reduction in C-SWAP is also beneficial ap-

plications beyond SAR. Any application that requires a PNT solution can leverage

the contributions in this dissertation to miniaturize the PNT solution. Conversely,

PNT solutions can now achieve an increased positional accuracy than any single

IMU can provide. As a result, the contributions in this dissertation removes the

trade-off between C-SWAP and positional accuracy.

7.3 Future Work

As the multi-IMU algorithm has been proven to be successful in producing po-

sitional accuracy that is greater than a single IMU of the same kind, the next step

is to prove the theory out for IMUs with different characteristics. In this way, the

effects of different quality IMUs can be explored and their effects on accuracy can

be characterized. In addition, the permutations of different quality IMUs can poten-

tially allow for additional advantages in both accuracy and C-SWAP. An example

hypothesis is an addition of a slightly more accurate IMU with a minor increase

to C-SWAP relative to the other IMUs provides a significant boost in positional

accuracy that outweighs the increase in C-SWAP. Given the hypothesis holds true,
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system engineers will have an increased flexibility where the impacts to C-SWAP

can still be maintained while potentially increasing positional accuracy.

Another area of expansion is utilizing spatio-temporal dithering concept where

a small amount of perturbation is intentionally added into the system to increase

sample independence. In this application, one technique that can be utilized is to

instrument the system by perturbing the locations of the sensors spatially. The spa-

tial dithering can lead to each sensor to measure slightly different characteristics

in the system state which increases sample independence. For example, a 3 IMU

system can be instrumented with an IMU located on the center of gravity of the

platform with the other two on either side of the axis of travel. The configuration

allows for the rotation to be measured from different points on the platform where

the 2 IMUs of center from the center of gravity will experience opposing forces in

rotation. Furthermore, the configuration can also be changed by differing the ori-

entations of the IMUs to potentially addressing sensor biases in specific axis. The

idea is to orient the sensors in a way that the effects of sensor bias in each axis

are opposed so that the overall effects of sensor bias is minimized when processed.

Lastly, the sensor measurements can be dithered temporally where the sensors are

forced to be a synchronous to each other in hopes of producing more independent

samples that increase the positional accuracy of the system. The interpolation tech-

niques presented allows for different sampling speeds of the sensors to be utilized.

As a result, the advantages of utilizing different sampling rate IMUs to produce

measurements for the platform can provide another area of flexibility where a high-

grade, slow sampling IMU can be coupled with low-grade fast sampling IMUs to

maintain the level of accuracy desired.

Another area to expand this work into is in the area of distributed PNT where

the location of a platform can be determined with measurements from disparate
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sources. This area becomes extremely relevant with the developments in drone

technology that allow for the utilization of swarms in remote sensing. In addition,

the lower C-SWAP while maintaining PNT accuracy is a key enabler in realizing

the use of drones for remote sensing. In SAR applications, the requirement of PNT

data relative to each of the members in the swarm is needed to coherently process

the information collected. In the case of the swarm creating a larger aperture, the

phase center of the larger aperture needs to be accurately measured. As a result,

the phase center will have to be estimated using INS systems distributed across the

swarm.

The distribution drives changes to the fusion technique to account for the changes

to the phase center contributed by each member of the swarm. Distributed fusion

provides a unique challenges where the true location of each element relative to the

other elements needs to be estimated. Additionally, the distribution of the sensors

causes the probability distribution of the sensors to drastically change where now

the sensors measurements may not be independent, identically, distributed. One

area of benefit in the distributed fusion application is the possibility of the posi-

tion estimation across multiple elements to be independently computed. The bene-

fits could pave the way for reconfigurable apertures when utilizing a drone swarm

to create an aperture. In addition, the individualized position solutions allow for

graceful degradation or self healing apertures.
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