
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

METHODS FOR CONTROL, CALIBRATION, AND PERFORMANCE
OPTIMIZATION OF PHASED ARRAY SYSTEMS

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

MATTHEW MARTIN HERNDON
Norman, Oklahoma

2022

METHODS FOR CONTROL, CALIBRATION, AND PERFORMANCE
OPTIMIZATION OF PHASED ARRAY SYSTEMS

A THESIS APPROVED FOR THE

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY THE COMMITTEE CONSISTING OF

Dr. Mark Yeary, Chair

Dr. Robert Palmer

Dr. Caleb Fulton

© Copyright by MATTHEW MARTIN HERNDON 2022
All Rights Reserved.

Acknowledgements

To my parents, brother, and sister, for supporting me throughout my academic
career. To my advisor, Mark Yeary, for his continuous guidance and patient
support throughout my time in this program. And to the staff engineers,

faculty, and leadership at the Advanced Radar Research Center for helping me
grow as an engineer, person, and professional.

iv

Contents

1 Introduction 1
1.1 Organization . 3

2 Distributed Multi-static Radar Control via RadarControlGUI
and RadarControllerAPI 5
2.1 Software Architecture . 6

2.1.1 RadarControllerAPI . 7
2.1.2 RadarControlGUI . 9

2.2 Closing Remarks . 11

3 Pattern Measurement of a Cylindrical Array via Non-coherent,
Bistatic Synchronization and Corresponding Channel Equaliza-
tion 12
3.1 Overview of CPPAR System and Methods 18

3.1.1 System Architecture . 18
3.1.2 Calibration Criteria . 19
3.1.3 Pattern Measurements . 22
3.1.4 High-Speed Analog Beamformer Controller 26
3.1.5 GPS Synchronization and Resulting Phase Drift 33
3.1.6 Phase Drift Estimation via Integration of Phase Velocity . 36
3.1.7 Critical Challenges . 39

3.2 Sampling Geometry . 40
3.2.1 Spatial Coherence . 42
3.2.2 Enforced Coherence via Pattern Matrix Re-Sampling . . . 45

3.3 Phase Drift Estimation . 50
3.3.1 Common Mode Estimation from Motion-Invariant Phase . 52
3.3.2 Estimation of Residual Error 53
3.3.3 Qualitative Verification of Drift Estimates 53

3.4 Final Pattern Matrix Correction and Estimation of Element Bias
Terms . 55

3.5 Closing Remarks . 58

v

4 Real-Time Digital Predistortion for Optimized Performance in
Phased Array Systems 61
4.1 Digital Predistortion Theory . 63
4.2 Real-Time Digital Predistortion in High Level Synthesis 68

4.2.1 Formulation of FPGA-based Real-Time Digital Predistortion 69
4.2.2 Implementation in IntelFPGA High Level Synthesis 76
4.2.3 Simulation and Results in-Hardware 81
4.2.4 Future Work . 84
4.2.5 Summary . 85

4.3 Digital Predistortion Model Training via Mutual Coupling: A Case
Study . 85
4.3.1 Experimental Procedure and Results 87
4.3.2 Summary . 93

4.4 Closing Remarks . 94

5 Conclusion 95

vi

List of Figures

2.1 Diagram of the relationship between software system components. 8
2.2 RadarControllerGUI example, showing a ScanMode that was de-

veloped to visualize the direction and frequency of interference
observed from a radar system. 9

3.1 CPPAR and its radome installation on the roof of the Radar In-
novations Laboratory. 12

3.2 CPPAR and the far-field measurement probe (horn shown in the
foreground of the picture) [26]. Reprinted from Herndon and Yeary
(2021) © 2021 IEEE . 16

3.3 Spatially aligned power patterns for each of the CPPAR’s 48 active
elements, as measured from the far-field calibration horn. 17

3.4 Element layout and azimuthal offset definitions for the CPPAR
platform [26]. Reprinted from Herndon and Yeary (2021) © 2021
IEEE . 22

3.5 Transmit pattern measurement of a single element using CPPAR
and the stationary far-field node [26]. Reprinted from Herndon
and Yeary (2021) © 2021 IEEE 23

3.6 One of six submodules from the CPPAR’s beamformer, containing
driver electronics for eight dual-pol elements. 27

3.7 CPPAR central electronics board, showing the beamformer con-
troller distribution board (center) and the analog divider / com-
biner networks (with pre-amplifiers on transmit) leading to each
submodule (left and right). 28

3.8 Block diagram visualizing CPPAR’s beamformer controller design
and connectivity. 29

3.9 Visualization of the beamformer controller’s memory layout. . . . 30
3.10 Unwrapped phase drift vs. time, estimated from baseband pulses

without rotating the array [26]. Reprinted from Herndon and
Yeary (2021) © 2021 IEEE . 33

vii

3.11 Visualization of the phase relationship between array elements in
the CPPAR and the farfield horn. The line-of-sight transmission
length is substantially different between elements, which creates a
time-dependent non-linear phase shift unique to each element as
the array rotates [26]. Reprinted from Herndon and Yeary (2021)
© 2021 IEEE . 36

3.12 Many overlaid stationary drift measurements of approximately the
same duration as our pattern measurements [26]. Reprinted from
Herndon and Yeary (2021) © 2021 IEEE 37

3.13 Spatially coherent commutative scan [26]. Reprinted from Hern-
don and Yeary (2021) © 2021 IEEE 43

3.14 Non-coherent commutative spatial sampling pattern [26]. Reprinted
from Herndon and Yeary (2021) © 2021 IEEE 45

3.15 A visualization of the transformation from as measured geometry
onto the slow-time spatially coherent basis [26]. Reprinted from
Herndon and Yeary (2021) © 2021 IEEE 47

3.16 A visualization of the transformation from as measured geometry
onto the fast-time spatially coherent basis, i.e. themotion invariant
basis [26]. Reprinted from Herndon and Yeary (2021) © 2021 IEEE 49

3.17 Wrapped phase patterns interpolated onto the motion invariant
coordinate basis [26]. Reprinted from Herndon and Yeary (2021)
© 2021 IEEE . 51

3.18 Motion-invariant phase matrix before and after drift correction
[26]. Reprinted from Herndon and Yeary (2021) © 2021 IEEE . . 54

3.19 Phase patterns for each of the CPPAR’s 48 (uncalibrated) elements
before and after drift correction [26]. Reprinted from Herndon and
Yeary (2021) © 2021 IEEE . 56

3.20 Distributions of each element’s phase calibration coefficients for
K = 10 trials [26]. Reprinted from Herndon and Yeary (2021) ©
2021 IEEE . 57

4.1 Spectral regrowth, seen as the broadened spectrum of a saturated
amplifier, as based on our lab’s measurements [25]. Reprinted from
Herndon, Yeary, and Palmer (2020) © 2020 IEEE 63

4.2 Block diagram showing the architecture of the memory polynomial
HLS component. 76

4.3 Dataflow and pipeline diagram for K = 4 and M = 4 [24]. Reprinted
from Herndon and Yeary (2022) © 2022 IEEE 77

4.4 Post-fit floorplan for the component (including supporting test-
bench logic) when compiled for the A10 [24]. Reprinted from
Herndon and Yeary (2022) © 2022 IEEE 82

viii

4.5 Comparison between the HLS component’s co-simulation test re-
sults and the Python model simulation [24]. Reprinted from Hern-
don and Yeary (2022) © 2022 IEEE 83

4.6 Diagram of the research platform, showing the relationship be-
tween the observation and coupled loopback channels [25]. Reprinted
from Herndon, Yeary, and Palmer (2020) © 2020 IEEE 87

4.7 Successful test of predistortion using a model trained from data
measured via the ground truth direct observation channel [25].
Reprinted from Herndon, Yeary, and Palmer (2020) © 2020 IEEE 91

4.8 Using data from experiment 1, power curves observed from the
direct loopback channel compared to those from the mutual cou-
pling feedback channel [25]. Reprinted from Herndon, Yeary, and
Palmer (2020) © 2020 IEEE . 92

4.9 Using data from experiment 2, a comparison between raw and
aligned Ppin → Pout, showing improved correlation and substan-
tially reduced cost between the observation and coupled channels
after alignment [25]. Reprinted from Herndon, Yeary, and Palmer
(2020) © 2020 IEEE . 93

ix

Abstract

Phased array radar systems have proven advantageous in a variety of

research applications, offering faster volume scans and unparalleled time-

resolution as compared to traditional parabolic dish antenna systems that

rely solely on mechanical systems for controlling the direction of radiation.

As such, research has accelerated the development of practical phased array

systems to realize their full vision. In particular, next generation phased

array systems aim to provide additional advantages in the form of re-

configurable beam patterns, adaptive digital beamforming, multiple-input

multiple-output (MIMO) radar modes, and other software-defined tech-

nologies. However, to fully realize a paradigm shift in phased array tech-

nology, especially as the ratio of array to sub-array size becomes greater,

this requires a corresponding increase in novel digital backend architectures

to fully achieve this vision. Therefore, new methods for control, calibra-

tion, and performance optimization are required to enable next-generation

phased array systems to reach their potential. In this thesis, a variety

of practical engineering challenges related to phased array system design

are discussed, with system-level implications and relevant theory included

where necessary. For instance, for the first time, as explained in this the-

sis, a GPS disciplined, time-interleaved measurement technique that lever-

aged real-time control of a beamformer was developed to enable accurate

post-processing correction of the phase drift that results from clocking

differences between noncoherent physically separated bistatic nodes. In

addition, laboratory efficacy of digital predistortion using the memory-

polynomial model has been confirmed for the purpose of maximizing an

element’s usable power while minimizing spectral spreading and achiev-

ing desirable output linearity during operation, and a novel method for

training predistortion models comprised of a combined software-defined

x

and physical mechanism for measuring transmitter front-end distortion for

elements within a digital-at-every element array has been proposed and

verified in the lab.

xi

Chapter 1

Introduction

With the development of high-speed mobile networking and cloud computing,

critical RF and digital logic components—namely digital transceivers and to a

somewhat lesser degree, FPGA systems-on-a-chip (SoC)—have rapidly become

infrastructure technologies essential to modern life. The race towards these

new paradigms has motivated research into these two critical backend technolo-

gies, helping to place downward pressure on chip costs and improving ease-of-

development as they achieve widespread industry adoption. Digital transceiver

SoCs collectively drive network access for billions of devices globally, with FP-

GAs often providing a stable, high-performance platform for implementing con-

trol logic and algorithms in these wireless systems. Likewise, compiler and

co-processing technologies such as high-level-synthesis (HLS) and OpenCL sim-

plify certain aspects of FPGA development, making it feasible to deploy FPGAs

in cloud compute farms for accelerating workflow computation. These innova-

tions have empowered parallel industries and research areas to adopt these chips

into their systems—all-the-while inheriting best practices via direct knowledge

transfer—improving their capabilities and motivating the development of new

control, calibration, and optimization methods which advance their unique state-

of-the-art.

1

In particular, phased array radar (PAR) systems—formerly confined to the

defense space owing to their high costs and technical complexity—are seeing their

critical components rapidly fall in cost, making it financially and logistically feasi-

ble from an engineering standpoint to develop radar research platforms leveraging

these technologies. PAR systems offer many benefits over more traditional, exclu-

sively mechanically steered systems, including electronic beam control enabling

faster volume scans, adaptable beam patterns, and other benefits [54, 62]. Sys-

tems may also be designed following a modular architecture with improved failure

tolerance, wherein high-power front-end components exposed to the most stress

(those most likely to fail) are distributed behind either each array element or be-

hind sets of elements (i.e. sub-arrays) in modules, which pieced together form the

larger array. When failures inevitably occur, they are quarantined within their de-

fective modules, allowing the larger system to continue functioning with reduced

but still viable performance until repairs are completed. Next-generation PARs

leveraging digital-at-every-element technology will also offer additional advan-

tages in the form of digital beamforming, multiple-input multiple-output (MIMO)

radar, broad reconfigurability by virtue of their FPGA-based digital back-ends,

and many other benefits—each made possible or practical by the unmatched

flexibility of such systems.

However, to fully realize this paradigm shift in technology requires a cor-

responding increase in technical complexity when implementing such systems,

requiring complex and novel architectures to achieve their vision. As such, new

methods for control, calibration, and performance optimization are required to

enable next-generation phased array systems to reach their potential.

2

1.1 Organization

In this thesis, the author’s contributions to several radar projects undertaken by

the Advanced Radar Research Center (ARRC) are described in context along

with relevant theory and background. These contributions range in complexity

and scope, but each ultimately emphasizes specific techniques used to control,

acquire meaningful measurements from, or calibrate and/or optimize the per-

formance of a radar system. In each case, these practical concerns are given

theoretical justification and contextualized by examining their system-level im-

plications, where relevant. As such, much of the efforts described therein aim to

serve as case studies in applied engineering, with much of the content focused on

the practical engineering challenges faced during the design process.

In Chapter 1, a software suite for controlling radar systems is described along

with its design philosophy and motivating principles. This software—originally

developed in support of a single project—was adapted and grown into a general-

ized platform for controlling experimental hardware, and was leveraged for much

of the work described in this thesis. Chapter 2 is concerned with phase synchro-

nization in a bistatic radar system subject to varying phase drift, and in particular

describes how an interleaved measurement technique leveraging real-time con-

trol of an analog beamformer was developed to enable accurate drift correction.

Additionally, this chapter includes discussion of how alignment calibration was

performed by deriving array calibration weights from drift-corrected element pat-

terns. Lastly, Chapter 3 discusses digital predistortion in the abstract along with

a system architecture for applying the algorithm to data streams in real-time.

This method seeks to improve system performance by linearizing a high-power

amplifier’s gain response both in compression and across a bandwidth, with the

aim of maximizing the amplifier’s power output without introducing distortion

3

typically associated with nonlinear amplifiers operating in saturation.

4

Chapter 2

Distributed Multi-static Radar Control via

RadarControlGUI and RadarControllerAPI

The development of radar systems requires sequenced control of many different—

often independent—subsystems, including components responsible for RF synthe-

sis, beamforming (in the case of phased arrays), synchronous triggering mecha-

nisms, and mechanical pedestals, among others. Without strict controls in place,

the interplay between devices in such systems can introduce software bugs which

limit the repeatability of experiments and correspondingly impact the research

process. Effective research and development in this space therefore requires re-

solving this complexity in some capacity.

For radar systems in particular, a variety of common software problems exist

which either must be solved in order to accomplish a particular set of research

goals or alternately serve to accelerate the pace of research by simplifying aspects

of the control process. During the initial design phase, several core features were

targeted as essential for enabling effective control, including methods for

• providing asynchronous, networked access to resources,

• capturing and saving data to nonvolatile memory,

• providing connected subsystems with a means of publishing status and log-

5

ging information,

• synchronizing controls and state management across systems of varying

topologies.

Likewise, intuitive user-facing software was an essential requirement for the

software system, as this would act as the user’s primary means of controlling the

system. For an effective user experience, critical features of the graphical user

interface include

• control and status widgets for interacting with the system,

• methods for visualizing data in real time,

• a means of sequencing system-level actions for running automated experi-

ments in a repeatable manner.

With these criteria in mind, a software suite was developed with the goals of

accelerating radar system development and simplifying scientific research for users

of the system. In this chapter, this software suite will be discussed in abstract,

with implications for later chapters which discuss systems which leveraged the

software to accomplish their particular research goals.

2.1 Software Architecture

To provide a generalized control and data visualization platform for radar projects,

software was developed to enable complex, repeatable control of systems via a

flexible, user-friendly interface. This software was designed with the primary

goal of enabling control of experimental weather radar systems in their capacity

as both research platforms for capturing weather measurements and as a base for

aiding in the calibration, development, and debugging of the systems—in short,

6

to provide sufficiently fine-grained control without being too tedious for opera-

tors. Two complementary and generalized software systems—RadarControlGUI

and its corresponding backend RadarControllerAPI—were developed in tandem

to enable control of multi-nodal network-distributed systems with the aim of ac-

celerating the development of experimental radar systems by defining a standard

architecture for creating graphical user interfaces (GUIs) with complex control

capabilities. For additional reference, Fig. 2.1 diagrams the architecture of the

software suite by visualizing the relationship between system components.

2.1.1 RadarControllerAPI

RadarControllerAPI defines basic support and control logic which standardizes

and implements the core functionality of the software. Software systems designed

following this framework are called platforms and consist of one or several node(s)

connected via a single parent system controller.

Node

• Nodes are asynchronous endpoints defining controls for self-contained de-

vices capable of exercising exclusive control over some set of subsystems.

• Control fields (i.e. variables with metadata) provide the primary means of

managing system controls and status.

• State tracking for so-called actions with sequencing. Actions serve as an

abstraction representing potentially long-duration events which exercise ex-

clusive control over some part of the system, e.g. pedestal movements or

transmit and receive operations. These form the basis of system control.

7

Platform Definition
"Platform"

RadarSystemController
- Single point-of-contact between GUI and the
larger platform
- Track system-level state
- Define system-level behaviors
- Communicate with child nodes, either locally
or over the network
- Process node events
- Synchronize parameters between nodes
- Control scan topology (when #nodes > 1)

RadarControllerNode
- Communicate with hardware
- Define and register fields
- Capture and broadcast data
- Define control callbacks
- State transitions

RadarControlGUI

ScanMode
- Trigger radar actions
- Visualize data
- High-level state machine
programming

invoke

broadcast

invoke

broadcast

Device 1

Device 2

Node-specific hardware
controls

Node Controllers
(local or networked)

System-level Controller
(local)

...

HardwareController
- Select platform
- Construct interface from
registered field packet
- Track and Synchronize field state
between various parts of the GUI
- Control platform lifecycle

invokeRadarController

catch_hardware_state_change

Start Scan

Abort Scan

ScanMode Control Fields

Field Controls

User Interaction

...Platform Selection

...
System-level Controller

(local)

Figure 2.1: Diagram of the relationship between software system components.

• Transactional invoke / broadcast access methods provide a non-blocking

means of triggering and obtaining responses from nodes. Additionally, the

broadcast interface provides a formal interface for nodes to broadcast status

updates, log messages, data, and control field updates to parent nodes to

be interpreted as desired. All data passed through these interfaces must

by serializable by necessity, a constraint which ensures that control may

be maintained either within a single program instance or across a network

connection. When networked, this scheme is easily expressed via a singly-

8

maintained bidirectional socket of the message-passing interface Nanomsg,

allowing messages to be simultaneously sent and received.

System Controller

• A special node which fills a mediary role, managing and synchronizing con-

trol between one or several child nodes while also providing an interface for

defining system-level behaviors (e.g. managing multistatic topologies).

2.1.2 RadarControlGUI

Figure 2.2: RadarControllerGUI example, showing a ScanMode that was devel-
oped to visualize the direction and frequency of interference observed from a
radar system.

Although in theory platforms developed within RadarControllerAPI are oper-

able in isolation, they were primarily designed to interface with a graphical user

interface of some kind. For this reason, an externally maintained software sys-

9

tem, RadarControllerGUI, was developed to provide a user interface for systems

developed using the API.

• Automatically generates a widget-based interface for controlling the se-

lected platform. The GUI is capable of multiplexing between one or several

platforms, connecting to each using its system controller as a single-point-

of-contact.

• ScanModes provide a standardized way to: organize and enable the selection

between different programs; receive, interpret and plot data; and trigger

and respond to actions. This abstraction includes a callback-based scheme

for interacting with asynchronous platform actions, allowing long-duration

events to be triggered and awaited (and by extension, chained together)

in order to construct complex experiments. In addition to several pre-

defined ScanModes compliant with platforms by default (e.g. DataViewer

and PowerByAzimuth, named to described their primary function), this ab-

straction was designed to sequester platform-specific code for visualizing,

controlling, and interpreting data into small, manageable code snippets.

Of particular note, ScanModes provide a simple way of programming the sys-

tem at a high level, and therefore offer a lot of utility during the research and

development process. As an example, a ScanMode was developed to visual-

ize interference observed by the system over some bandwidth. Fig. 2.2 shows

RadarControllerGUI while running the interference detection ScanMode. The

ScanMode defines an asynchronous procedure which changes the system’s cen-

ter frequency each time the pedestal’s azimuthal position wraps around 0.00°,

which indicated that it had completed one full rotation, and continues step-

ping through this bandwidth indefinitely. Incrementing this center frequency

10

for several iterations allowed an arbitrary bandwidth to be visualized automati-

cally without being limited by the transceivers’ static 30.00MHz of instantaneous

bandwidth. Likewise, performing all control actions using RadarControllerAPI’s

asynchronous invoke / broadcast scheme (described in Section 2.1.1) ensures that

the GUI can continuously update throughout the scan, updating the interference

map in real time.

2.2 Closing Remarks

This software suite was critical for accomplishing much of the research described

in this thesis, and therefore provides important context related to system-level

control of experimental radar systems. In the chapter that follows, the discussion

will migrate to practical system control and calibration, and will begin by de-

tailing calibration, control and measurement procedures for a cylindrical phased

array system using a bistatic pattern measurement scheme.

11

Chapter 3

Pattern Measurement of a Cylindrical Array via

Non-coherent, Bistatic Synchronization and

Corresponding Channel Equalization

Figure 3.1: CPPAR and its radome installation on the roof of the Radar Innova-
tions Laboratory.

For weather radar applications, PAR research has primarily focused on planar

array architectures, seen in projects such as the single-polarization Atmospheric

Imaging Radar (AIR) [31] at the University of Oklahoma (OU), the Skylar phased

12

array radar program at the University of Massachusetts developed in partnership

with Raytheon [22], the dual-polarized Horus program at OU [46, 63], the Ad-

vanced Technology Demonstrator (ATD) [23, 28] operated by the National Se-

vere Storms Laboratory in Oklahoma, and the Polarimetric Atmospheric Imaging

Radar (PAIR) at OU [50]. Though these systems were designed to offer many of

the advantages of PAR systems, they are limited in several key ways as a result of

their planar geometry. In planar arrays, off-broadside beam steering reduces the

effective aperture size of the array along steered dimension(s), widening formed

beams and reducing the array’s sensitivity in those positions. In dual-polarized

weather radars, this effect also leads to marked reductions in the polarimetric

purity of measurements taken from off-broadside beam positions, as a result of

the inconsistency between the projected aperture sizes of the two polarizations in

those positions. Additionally, for single-faced planar PARs to provide 360° of cov-

erage in azimuth, they must mechanically rotate (as with parabolic dish radars),

introducing azimuthal beam smearing and limiting their speed and flexibility

when scanning the sky. Alternatively, planar PARs may leverage multiple ar-

ray faces to provide full azimuthal coverage, but this inevitably creates cones

of silence (or, zones of lower sensitivity) at boundaries between faces, which ef-

fectively results in systems with a maximum range that varies with respect to

azimuth. These challenges faced by planar phased arrays have motivated research

into alternative geometries without such drawbacks.

In contrast to planar arrays which must steer off broadside when electron-

ically scanning, cylindrical arrays uniquely allow all azimuthal positions to be

observed using broadside beams [13, 18, 30, 33, 38, 59, 64]. In cylindrical ar-

rays, traditional beam steering is replaced by beam commutation as the primary

mechanism for electronically steering the array in azimuth space. Commutation

13

refers to the method by which the direction of the array’s observation beam is

changed by electronically selecting which array elements are excited. In this

scheme, each commutative position derives its directionality from its position

within the array, rather than from a phase gradient altering the direction of the

wavefront formed by the array (as with planar arrays). Each commutative posi-

tion forms a broadside beam pointing from the center of the array through the

center of the sector, which given the array’s cylindrical geometry corresponds to

a unique azimuthal pointing angle. The set of all possible commutative positions

(determined by the number of array elements and the range of azimuthal posi-

tions spanned by the elements) forms broadside beams subdividing azimuth space

which are then electronically selected between to steer in azimuth. The result-

ing all-broadside performance makes the cylindrical array geometry particularly

attractive for weather radar, as it theoretically ensures consistent polarimetric

purity across all electronic beam positions. In this way, cylindrical arrays offer

one possible avenue for next-generation phased-array weather radars by offering

an architecture which bypasses some weaknesses inherent to planar arrays [65].

Cylindrical arrays have also found use within 5G applications [20, 37].

Cylindrical arrays offer their own difficulties; namely, calibration is particu-

larly challenging [4, 21, 35], as is beam synthesis [29, 56]. A lack of clear an-

swers regarding the efficacy of dual-polarized phased array weather radars in

general, cylindrical array design and beam generation motivated the Cylindri-

cal Polarimetric Phased Array Radar (CPPAR) project, which acts as testbed

for researching solutions to these challenges [19]. Several recent papers such

as [39, 40] detail research conducted using the system. As seen in Fig. 3.1,

the CPPAR system is mounted on top of the Radar Innovations Laboratory at

the University of Oklahoma’s South Research Campus in Norman, Oklahoma.

14

The CPPAR demonstrator’s antenna array consists of 96 columns of 19 dual-

polarized, frequency-scanned, aperture coupled, and stacked patch antennas that

are designed to operate from approximately 2.70 to 3.00GHz [32]. The radar’s

aperture is 2.00m tall and 1.00m in radius. The array is operated at frequency

of 2.76GHz so that the frequency-steering antenna columns of the array radi-

ate at an offset of 3.30° in elevation. To enable flexible and rapidly-switchable

azimuthal beamforming, the system’s array is fed by four isolated analog beam-

forming networks controlled via FPGA logic developed at the ARRC. A single

two-channel digital transceiver (Analog Devices, part AD9361) provides separate

feeds for the transmitter and receiver of each polarization, with each of these

four connections connecting to one of the four beamformers. At the CPPAR’s

Tx frontends, each polarization on each column is driven by an 80.00W class C

GaN amplifier, connected to the antenna through high-power T/R switches and

low-loss RF coaxial cables.

The CPPAR system was developed specifically to enable in situ measurement

of the array’s far-field radiation patterns, both to facilitate calibration and to

provide a platform for testing beam weight optimization algorithms. In this ca-

pacity, a separate two-channel radar system was developed to act as a bistatic

calibration node. To enable time-aligned power and quasi-coherent phase mea-

surements between the two nodes, the two nodes’ S-band digital transceivers and

deterministic FPGA controllers were each supplied with GPS-disciplined refer-

ence clocks and synchronous pulse-per-second triggers. Two horn antennas were

mounted on the nearby National Weather Center (in the array’s farfield) and

oriented along its horizontal and vertical polarization planes. Circulators prior

to these horns’ feeding points allow the calibration node to operate as either a

transmitter or receiver. To allow arbitrary positioning in azimuth when mea-

15

Radar Innovations

Lab

Radar Innovations

Lab

National Weather

Center

National Weather

Center

Dual-Pol Horn

Antennas

Dual-Pol Horn

Antennas

CPPARCPPAR

d=226.96 md=226.96 m

Figure 3.2: CPPAR and the far-field measurement probe (horn shown in the
foreground of the picture) [26]. Reprinted from Herndon and Yeary (2021) ©
2021 IEEE

suring patterns, the CPPAR itself was mounted on a mechanical pedestal which

may be freely rotated around its central axis. Given the position of the horns

with respect to the array, rotating the CPPAR in azimuth sweeps the CPPAR’s

beam approximately at boresight through both horns’ beams, making it possible

to measure characteristic far-field patterns. A diagram of this arrangement is

shown in Fig. 3.2.

GPS has been used in the past to calibrate the phase of a radar [48, 49, 51].

Yet, this work differs since we have exquisite control over every column (enabling

16

-150

-120

-90

-60

-30

0

30

60

90

120

150

180

-50

-40

-30

-20

-10

0

P
o
w

e
r

(d
B

F
S

)

Element Patterns

Figure 3.3: Spatially aligned power patterns for each of the CPPAR’s 48 active
elements, as measured from the far-field calibration horn.

rapid electronic steering in azimuth) and since the array can be mechanically ro-

tated. Our method successfully combines both electronic and mechanical azimuth

control into a monolithic scheme for capturing element patterns from the array

in situ—a feat accomplished by rotating the pedestal while sampling patterns via

interleaved electronic excitations of the array elements [26]. Precise accounting of

this measurement’s sampling geometry and two reinterpretations of the data this

operation produced allowed for the effects of phase drift to be accurately mea-

sured and corrected for in post-processing. Ultimately, our technique reliably

produced precise power (see Fig. 3.3) and phase (further explanation required)

pattern measurements for all array elements from a single process lasting less

17

than one minute, leading to detailed array error measurements and ultimately

enabling array calibration.

3.1 Overview of CPPAR System and Methods

3.1.1 System Architecture

The CPPAR system was developed specifically to allow for the on-site capture

of the array’s far-field radiation patterns to facilitate calibration as well as to

provide a source of training data for iterative beam weight optimization algo-

rithms. To allow arbitrary positioning in azimuth, the CPPAR was mounted on

a mechanical pedestal which may be freely rotated around its central axis. To

provide a means for measuring array patterns, two horn antennas oriented along

the CPPAR’s horizontal and vertical polarization planes were mounted on the

nearby National Weather Center, directed towards the array, and supplied with

a functional transmitter / receiver system analogous to the CPPAR’s internal

hardware to provide either transmit-mode excitations or receive-mode baseband

sampling. A diagram of this arrangement is shown in Fig. 3.2. To enable time-

aligned power and quasi-coherent phase measurements, the bistatic system’s two

S-band digital transceivers and deterministic FPGA controllers were supplied

with GPS-disciplined reference clocks and synchronous pulse-per-second triggers.

Given the position of the horns with respect to the array, rotating the CPPAR

in azimuth sweeps the CPPAR’s beam approximately at boresight through both

horns’ beams, making it possible to measure characteristic far-field patterns.

Likewise, to enable repeatable programmatic control of the bistatic system,

its various hardware elements and their corresponding software controls were

18

connected together using RadarControllerAPI, the software suite described in

Chapter 2. Both bistatic nodes within the system include a processing computer

which centralizes aspects of their control behind a RadarControllerAPI ‘node’

running within a software daemon. These nodes are linked together over the net-

work as children of the RadarControllerAPI ‘platform’ running as the root node

within the RadarControllerGUI graphical user interface (GUI), which synchro-

nizes control of the system and processes and visualizes its data returns. This

software backend proved vital for ensuring stable and repeatable operation of the

system.

3.1.2 Calibration Criteria

To define an effective calibration criteria, potential sources of error within the

array must be identified and understood in order to form a sufficiently accurate

error model. In CPPAR, the array is driven by a series of digitally controllable

analog beamformer networks feeding to and from a single two-channel transceiver

chip. Given the coarse accuracy of CPPAR’s phase shifters and attenuators, suf-

ficiently small effects (e.g. biases residing within the feeding network itself) are

considered negligible when compared to the large variance resulting from differ-

ences in front-end electronics. This implies that the largest source of excitation

variance occurs at the element level, and may thus be treated as independent. Fol-

lowing this assumption, a model was defined which relates each element’s power

and phase patterns via linear offsets to their ‘spatially coherent’, point-to-point

mean.

The model is defined by Pn (θ) and ϕn (θ), which represent the power and

phase patterns, respectively, measured at some azimuthal position θ and offset

19

from the element’s boresight for a given element n. The corresponding equations

are

Pn (θ) = |A(θ)|+ P bias
n + ϵp (3.1)

and

ϕn (θ) = ∠A(θ) + ϕbias
n + ϵϕ . (3.2)

Here, A (θ) represents the baseline phased element pattern, P̂n and ϕ̂n are the

element’s true power and phase bias terms which, and each ϵ is a random variable

representing measurement noise. Estimating the offset terms P̂n and ϕ̂n makes

way for the derivation of a set of calibration terms, P̂caln and ϕ̂caln , which equalize

power and phase across the array by biasing each element ‘n’ such that variance

across the array is minimized.

For CPPAR, ideal calibration is defined as the state wherein the phases and

powers of all elements are equalized with respect to their boresights. When

this condition is met, inter-element power and phase variance is minimized with

respect to a cylindrical alignment surface centered on CPPAR. In more practical

terms and drawing directly from the error model defined by equations (3.1) and

(3.2), the array is considered calibrated when (separately for both power and

phase) the element pattern variance is minimized with respect to the average

pattern. When these criteria are met, the array generates a radially symmetric

excitation, which given the array’s geometry is analogous to a planar array’s

uniform taper response.

One advantage this calibration criteria uniquely offers to cylindrical arrays

is that it presents a straightforward path for the implementation of beam com-

mutation. Derived only from the array geometry, a single sector of beamform-

ing weights may be formed to generate a beam under ideal circumstances—as

20

the array is radially symmetric, these weights may then be commutated to any

other position in the array to form approximately identical beams. Calibration

weights are tied to specific elements, so theoretically they may be applied trans-

parently at each commutative beam position. Assuming sufficiently accurate

calibration weights and high-quality beam weights, this procedure yields many

identical beams pointing in many directions without requiring individual opti-

mization at for each set.

Understanding this, two disparate calibration goals were defined to inform the

system’s design:

• Element-level calibration, wherein element biases are corrected for to allow

some ideal set of weights to be shared by all commutative beam positions;

and

• Sector calibration, in which each beam position is optimized separately.

This method provides the greatest control over the quality of beamforming,

but requires substantially more effort.

In support of these objectives, the system’s beamformer control logic was de-

signed to allow phase and attenuation to be uniquely specified for each of the

CPPAR’s elements on a pulse-to-pulse basis. This allows complex scans ranging

from commutative weather scans with varying pulse dwells to the time-interleaved

capture of element patterns, a measurement necessary to characterize the system

for use during calibration and pattern optimization.

21

3.1.3 Pattern Measurements

Platform and Array Geometry

True North

88.125
°

73.125
°

58.125
°

43.125
°

28.125
°

13.125
°

-13.125
°

-28.125
°

-43.125
°

-58.125
°

-73.125
°

-88.125
°

artifical boresight (array zero)

column #1 column #48

Figure 3.4: Element layout and azimuthal offset definitions for the CPPAR plat-
form [26]. Reprinted from Herndon and Yeary (2021) © 2021 IEEE

22

For a given element, pattern

sampled at different times

from different azimuthal

positions

CPPAR rotates continuously

during measurement

time

Figure 3.5: Transmit pattern measurement of a single element using CPPAR and
the stationary far-field node [26]. Reprinted from Herndon and Yeary (2021) ©
2021 IEEE

Before patterns could be captured and understood, the array’s local coordinate

system and its relationship to the surrounding environment was necessarily con-

sidered. Relative to the platform itself, the array’s 96 antenna elements are

arranged radially (see Fig. 3.4) with a spacing of θELspacing = 360.00°
96

= 3.75° in

azimuth, however only half (Nelements = 48) of these elements are populated with

electronics. Although in principle, cylindrical arrays have no fixed boresight as

this reference point changes according to the actively selected commutative sec-

23

tor, it is useful to define an absolute reference point for the array analogous to

boresight for simplified position tracking. This virtual boresight reference posi-

tion was chosen arbitrarily as the center of the populated sector, located between

the array’s 23rd and 24th column, and is offset from the first populated column’s

center by θVBoffset = 88.13° in azimuth, as expressed by

θVBoffset =
180°
2
− 3.75°

2
= 88.13° . (3.3)

Next, azimuthal offset terms relating each element’s position to the virtual bore-

sight position were defined as

θELoffset = (n− 1) · θELspacing − θVBoffset

where n ∈ {1, 2, · · · , 48}

= {−88.13°,−84.38°, · · · , 88.13°} .

(3.4)

In general, commutative beams may be tagged with an azimuthal offset which

establishes its position with respect to the artificial boresight, allowing their ab-

solute position to be computed with ease.

The mechanical pedestal holding the CPPAR allows the entire array to rotate

continuously around its central axis with absolute position control. During oper-

ation, the pedestal’s current azimuthal position is tracked in real time and made

available in all data captured from the system. The system’s pointing direction

(θPD) is defined as the absolute azimuthal position of the aforementioned virtual

boresight at any given point in time (see Fig. 3.4). This field also acts as the pri-

mary means of tracking the array’s position, with each pulse group produced by

the radar containing an estimate of the pointing direction at the time of capture.

With these features in mind, the most straightforward method for capturing

24

patterns with the CPPAR was to rotate the pedestal at a constant rate while peri-

odically exciting the CPPAR’s two-node bistatic system in one of two topologies:

1. CPPAR[Tx]→ Farfield[Rx] for transmit patterns, or

2. CPPAR[Rx]← Farfield[Tx] for receive patterns.

To measure the CPPAR’s receive patterns, the far-field calibration horn was

configured to transmit a test signal which could then be observed by the CPPAR

node operating as the receiver. Alternately for measuring the CPPAR’s transmit

patterns, the CPPAR transmits some test signal to be observed by the farfield

node. In both topologies, these samples in combination with the array’s position

estimates provide a view of the array’s far-field patterns under either mode when

the array is excited with a given set of weights. Given the system’s pulse-to-pulse

beam selecting ability, many sets of weights may be interleaved together into

a single scan, allowing multiple patterns to be measured nearly simultaneously.

Leveraging this feature, a scan was devised to measure the array’s Nelements = 48

horizontal and vertical element patterns.

For each active element in the array, a beam (i.e. single set of full-array

weights) was defined which excites the focused element and deactivates all others.

Deactivated elements were configured with:

• a maximum attenuation of −32.00 dB applied,

• fully disabled transmit path, with excess energy routed into a 50.00Ω

matched load rather than into the element’s high-power amplifier, and lastly

• a disabled high-power amplifier trigger.

These conditions minimized the amount of energy radiated from the deactivated

elements and ensured element patterns could be accurately measured in isolation

from one another.

25

Likewise, to improve repeatability, a RadarControllerGUI ‘ScanMode’ (see

Chapter 2) was developed to conduct the element pattern measurement, which

performs the following actions in sequence:

1. Recenter the array at an azimuth of 0.00° with respect to true north,

2. Configure the analog beamformer controller with weights for generating

commutative element patterns, which steps through each element’s isolated

beam in sequence pulse-to-pulse,

3. Configure the system to generate a continuous pulse train (with a user

adjustable TPRT) until interrupted,

4. Start producing pulses using both radar nodes configured to operate with

a bistatic topology (user may select between transmit or receive mode),

5. Rotate the array by +540.00° in azimuth, ensuring that all elements have

contiguous samples measured for the region surrounding each’s boresite

position,

6. Once the movement is complete, stop generating pulses, interrupt the ScanMode

and thereby end the measurement.

Using this ScanMode to measure element patterns ensured that experiments were

always conducted following an identical procedure, which was beneficial to the

research process and demonstrates the utility of the software discussed in Chapter

2.

3.1.4 High-Speed Analog Beamformer Controller

The CPPAR’s four independently-controllable analog beamformers allowed beam

steering in azimuth, unique both between polarizations and between transmit and

26

Figure 3.6: One of six submodules from the CPPAR’s beamformer, containing
driver electronics for eight dual-pol elements.

receive. Each of these beamformers was subdivided into six shared sub-modules

(see Fig. 3.6), each containing high-power front end electronics, a power supply,

and four parallel phase-amplitude controller (PAC) boards. Each PAC board

connected eight elements with a single port, allowing operation as either a power

divider (on transmit) or combiner (on receive). In total, this architecture presents

48 antenna columns for beamforming (i.e. half of the full array’s 96 antenna

columns) yielding a semicircle-shaped array.

Within each PAC, the phase and attenuation acting on each element was

27

Figure 3.7: CPPAR central electronics board, showing the beamformer controller
distribution board (center) and the analog divider / combiner networks (with pre-
amplifiers on transmit) leading to each submodule (left and right).

individually controllable by way of digitally-controlled phase shifters and attenu-

ators which provided 360° of phase and 32dB of attenuation control, respectively,

with 6 bits of control creating 64 discrete control states (i.e. minimum control-

lable resolutions of 5.63° and 0.50 dB). In total (including extra control signals),

each element’s configuration was described by 16 bits of information, suggesting

a full-array configuration width of

4 beamformers× 48 elements× 16 bits = 3072 total bits . (3.5)

Loading weights onto the array required strategically serializing and shifting these

3072 bits onto the electronics as quickly as possible, as this time delay ultimately

determined the minimum TPRT possible when operating the array using flexible

pulse-to-pulse beamforming. To place as few barriers as possible on performance,

minimizing this latency was thus considered an essential goal during the design

28

Serial Clock Domain

Beamformer Controller

AXI Clock Domain

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
12345678

1 2 3 4 5 6 7 8
12345678

9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8
12345678

1 2 3 4 5 6 7 8
12345678

17 18 19 20 21 22 23 24

1 2 3 4 5 6 7 8
12345678

1 2 3 4 5 6 7 8
12345678

25 26 27 28 29 30 31 32

1 2 3 4 5 6 7 8
12345678

1 2 3 4 5 6 7 8
12345678

33 34 35 36 37 38 39 40

1 2 3 4 5 6 7 8
12345678

1 2 3 4 5 6 7 8
12345678

41 42 43 44 45 46 47 48

1 2 3 4 5 6 7 8
12345678

1 2 3 4 5 6 7 8
12345678

H
-T

X
H

-R
X

V-
TX

V-
R

X

External Signal Repeater

D0

D1

D2

D3

D4

D5

Serial Clock
(10MHz)

Serial
Output
FIFO

System Clock
(120MHz)

write data
6

read data
6

read clock

Scheduler

Configuration
Registers

read valid

write valid

CLR LE SCLK

0

next beamweight
address

9

AXI slave

AXI slave

2x
1

1

0

manual beamweight
address

9

manual trigger

next trigger

scheduler enabled

Loader

write word
6

write valid

beamweight data
3072

load trigger
3072

9

Beamweight
BRAM

read address

read data

AXI Slave (Write Only)

trigger

AXI Master

Pulse
Trigger

1x
3

 AXI Clock

Serial Clock
Divider

Figure 3.8: Block diagram visualizing CPPAR’s beamformer controller design
and connectivity.

process.

With these considerations in mind, a control topology was designed to enable

rapid beamformer configuration via a parallel loading mechanism, with each of

the beamformer’s six ‘submodules’ receiving a separate control line. The submod-

ule’s four PAC boards—each earmarked to act as either the HPOL TX, HPOL

RX, VPOL TX, or VPOL RX beamformer for the 8 dual-polarized channels

driven by the submodule—were then daisy-chained together to distribute control

within each submodule (see Fig. 3.8). Using this design, the latency of a full-

array beamformer update is only the time required to load weights onto a single

29

submodule with its four PAC boards, i.e.

4.00PACboards× 8.00 elements× 16.00 bits = 512.00 total bits, with

512.00 bits× 1

5.00MHz
= 51.20 µs,

(3.6)

which placed a tolerably low constraint on the system’s TPRT.

0 1 2 3 4 5 6 7
32b Word Index

0

1

2

3

0

1

2

3

0

1

M
od

e
In

de
x

Memory Pattern by Column Index

0

4

8

12

16

20

24

28

32

36

40

44

Co
lu

m
n

In
de

x

(a)

0 1 2 3 4 5 6 7
32b Word Index

0

1

2

Be
am

 In
de

x

Memory Pattern by Mode

HPOL
RX

HPOL
TX

VPOL
RX

VPOL
TX

M
od

e

(b)

0 1 2 3 4 5 6 7
32b Word Index

0

1

2

Be
am

 In
de

x

Memory Pattern by Submodule Index

0

1

2

3

4

5

Su
bm

od
ul

e
In

de
x

(c)

Figure 3.9: Visualization of the beamformer controller’s memory layout.

In the beamformer controller’s memory, beams were organized into groups of

up to 360, together known as configuration ‘sets’. Each of these beams could be

30

individually indexed and loaded into the array, either manually via control regis-

ters or automatically on a pulse-to-pulse basis following a configurable pattern.

To reduce the complexity of the FPGA’s internal read/write logic, a strategic

data format was created which maps from the FPGA’s 32-bit memory map to

the beamformer’s 24-bit word size, growing the block ram’s required address

space but greatly simplifying the FPGA-logic needed to achieve the six-way par-

allel loading scheme previously described, since 24 is divisible by 6 but 32 (and

indeed, any power of 2) is not. Fig. 3.9 visualizes how one of three distinct analog

beamformer features maps to the 24-bit block ram, with each byte colored based

on some feature and white regions highlighting 32-bit byte indices not present

in the 24-bit memory. Fig. 3.9a shows bytes colored by antenna column index,

Fig. 3.9b colored by operational mode, and Fig. 3.9c shows each byte colored

by its associated submodule. Additionally, Figs. 3.9b and 3.9c demonstrate the

format’s compact form-factor, ensuring multiple beams may be stacked together

and indexed between with no vacancies, maximizing the efficiency of the stor-

age block ram. In this plot, the y-axis includes dividing lines at the boundary

between beams.

Pulse Group 1 Pulse Group 2 · · ·
Pulse Number 1 2 · · · 48 49 50 · · · · · ·
Beam Index 1 2 · · · 48 1 2 · · · · · ·

Table 3.1: Beam selection pattern for interleaved scan.

As part of the control logic for the beamformer, programs may be defined

which automatically load beams from memory and sustain them for a config-

urable number of pulses. To enable element pattern measurements under this

architecture, a beamformer program was devised to step through the elements

in series (with single-pulse excitations) then repeat the pattern once all elements

had been traversed, see Table 3.1. The radar was configured to capture pulses

31

in groups of 48—matching the number of elements—which guaranteed that as

beams were automatically selected, each would always associate with the same

index, which allowed the elements’ separate patterns to be deinterleaved in post-

processing.

Leveraging this beamformer program, element patterns were measured by

commanding the CPPAR’s bistatic system to continuously transmit / receive

while rotating the pedestal at a constant rate. For repeatability during pattern

captures, the pedestal always re-positions to a constant azimuthal start position

prior to each measurement. Continuously while the pedestal rotates, each element

is sampled at an approximately uniform azimuthal interval dependent on both

the system’s pulse repetition time (TPRT) and the pedestal’s rotation speed (Vθ).

However, the CPPAR’s unique shape and the interleaved capture scheme result in

each element’s samples aligning to different coordinate systems offset from one an-

other. The uniform azimuthal spacing θELspacing = 3.75° between the Nelements = 48

elements applies a static offset to each, allowing the group to image a 180.00°

sector—this feature is noteworthy, and will prove vital in Sections 3.2 and 3.3.

Additionally, each element’s index within the interleaved pulse group results in a

constant time offset from each group’s start, which given the pedestal’s ongoing

rotation leads to a speed-dependent azimuthal skew linked with the pedestal’s

travel distance during preceding pulses. Together, these parameters control the

azimuthal sampling pattern of the data.

32

3.1.5 GPS Synchronization and Resulting Phase Drift

1 2 3 4 5 6 7 8 9 10

Time (min)

-1

0

1

2

3

4

5

P
h

a
s
e

 O
ff

s
e

t
fr

o
m

 S
ta

rt
 (

d
e

g
re

e
s
)

10
4 Phase Drift vs. Time

Figure 3.10: Unwrapped phase drift vs. time, estimated from baseband pulses
without rotating the array [26]. Reprinted from Herndon and Yeary (2021) ©
2021 IEEE

As both the CPPAR and the far-field node are each fully functional radars, the

combined system is capable of bistatic measurement in both directions, making it

possible to measure both the CPPAR’s transmit and receive patterns. If the two

nodes’ clocking networks were coherent with one another, the procedure outlined

in Section 3.1.3 would be sufficient to measure phase information between them

without ambiguity. However, in the real system the method used to synchro-

33

nize the two nodes was subject to instability over time, and resulted in phase

drift at baseband which must be managed in order to extract meaningful phase

information from the patterns.

Given that the nodes were geographically isolated from one another, direct

synchronization was impractical. Instead, the nodes were provided with GPS

timebases which generate a one pulse-per-second (PPS) trigger and a 10.00MHz

reference clock. Through experimentation and in line with the GPS’s docu-

mented capabilities, it was found that the timebase’s 1 PPS trigger was precise

enough to synchronize the two nodes’ pulse envelopes to within a single clock cy-

cle of the digital transceiver’s 30.00MHz baseband sampling rate. Likewise, the

10.00MHz oscillators act as phase references for each transceiver’s clocking net-

work, driving the deterministic logic controlling each radar’s operation by way

of their on-board field-programmable-gate-arrays (FPGA) while also providing

references for the phase-locked loops (PLL) embedded within their transceivers.

Although highly disciplined, small frequency differences are inevitable between

these two reference clocks which are critically prone to changes over time, as each

timebase is subjected to varying environmental conditions. When multiplied to

S-band within the PLLs, these effects are amplified and lead to significant fre-

quency differences between the two radar’s carriers. At baseband, this frequency

difference is observed as rolling phase effect with a constantly shifting velocity.

From a stationary reference point, this effect takes the form of additive phase

drift over time (see Fig. 3.10). Later in Section 3.4, Fig. 3.19 shows aligned

phase patterns for the array elements both before and after drift is corrected for

in the measured patterns, demonstrating the effect’s often dramatic impact on

measurement quality.

Several options were considered for managing or mitigating the effects of phase

34

drift:

1. a hardware solution, wherein a stable clock reference is shared between

both nodes by passing it over-air to the farfield and used to directly enforce

coherence between the two nodes;

2. a combined hardware / software solution, wherein one of the CPPAR’s

columns is sacrificed and used to provide a geometrically stationary phase

reference for estimating drift in post-processing from the baseband data;

and

3. a pure-software solution, wherein the system’s phase drift is estimated from

the baseband data and subtracted out of the patterns in post-processing.

Option (1) required substantial hardware changes, and was as such considered an

option of last resort. Both (2) and (3) would rely on similar post-processing meth-

ods to estimate drift from captured baseband data, which would allow progress

made on the pure-software solution to be leveraged if required by the combined

solution. For this reason and to avoid sacrificing one of the CPPAR’s channels,

we elected to follow option (3), leaving option (2) as a fallback in the event that

our initial efforts failed. Ultimately, a method was successfully developed which

carefully considers the array’s geometry and its relationship to the environment

in order to measure phase drift in post-processing without the need for hardware

changes.

35

3.1.6 Phase Drift Estimation via Integration of Phase Ve-

locity

Each element observes a

unique geometric phase bias

dependent on its location

The pedestal’s

rotation causes each

of these biases to

change over time

Figure 3.11: Visualization of the phase relationship between array elements in
the CPPAR and the farfield horn. The line-of-sight transmission length is sub-
stantially different between elements, which creates a time-dependent non-linear
phase shift unique to each element as the array rotates [26]. Reprinted from
Herndon and Yeary (2021) © 2021 IEEE

36

Figure 3.12: Many overlaid stationary drift measurements of approximately the
same duration as our pattern measurements [26]. Reprinted from Herndon and
Yeary (2021) © 2021 IEEE

Measuring baseband phase drift in the system requires establishing a stable phase

reference. In this capacity, a single moment from within the measured patterns

may be defined as the phase zero from which all other phases are referenced.

Deviations from this reference may then be measured over time to determine the

amount of phase drift observed by the system. When the CPPAR is stationary,

this method is sufficient to characterize the system’s drift (see Fig. 3.10). When

in motion, however, time-dependent phase biases caused by the bistatic system’s

constantly changing measurement geometry complicate phase measurements (see

Fig. 3.11).

By re-framing the problem, however, a more general method was developed

which defines relative phase in terms of phase velocity, an approach which ex-

tends drift measurement to cases where a spatially constant and continuously

observable phase reference cannot be assumed such as during rotation when time-

37

varying geometry-dependent phase effects complicate any attempt to measure

drift using simpler techniques. For some arbitrary discrete-time vector of phase

measurements ϕ of length k, instantaneous phase velocity may be expressed as

the difference relation

dϕ

dt
[n] = ϕ [n+ 1]− ϕ [n]

with n ∈ {0, 1, · · · , k− 1} .
(3.7)

This expression also implies its inverse, which derives the original measurement

from the instantaneous phase velocity function via cumulative summation

ϕ [n] =
n∑

m=0

dϕ

dt
[m] . (3.8)

To demonstrate this technique, bistatic phase was tracked for approximately

ten minutes from a single element while the pedestal remained stationary—Fig.

3.10 shows unwrapped phase vs. time estimated from this data. From a different

perspective, Fig. 3.12 shows the same data set with many one minute slices

plotted simultaneously, demonstrating the generally unpredictable and often non-

linear behavior of phase drift over such timescales. Of particular importance is

the random distribution of these slices and each’s markedly nonlinear shape,

suggesting a constantly shifting phase velocity. Evaluating these observations

further, linear models were fit to each slice and used to score the drift velocity’s

stability as the mean-squared error of its residuals. Fig. 3.12 shows a histogram

of the scores from these trials—note the large average deviation from linearity.

This experiment also proved that drift may be practically measured with no other

significant time-dependent phase effects present, an important proof-of-concept

which justified further efforts.

38

3.1.7 Critical Challenges

From Section 3.1.2, equations (3.1) and (3.2) establish that calibration terms may

be derived for each element in both power and phase, measured as the average bias

between each element’s pattern and the average of all pattern. Power patterns

may be captured trivially via the methods already described. In measured bistatic

phase patterns, however, the inter-element differences which our error model relies

on were obscured by the effects of two substantial distinct time-dependent effects.

To estimate the relative phase offset between elements, phase measurements

from spatially analogous positions (e.g. boresight) must be sampled from each

element. As patterns are measured from a single point (i.e. the far-field node),

the array must be rotated to observe these sampling points, causing the first time-

dependent phase effect observed in the pattern data. Each element’s observed

phase is thus biased by its unique line-of-sight distance with respect to the far-

field node, which constantly changes as the array rotates, as shown in Fig. 3.11.

Though this effect substantially alters the phase patterns, it is deterministic and

may thus be modeled, making way for post-processing spatial alignment.

Harder to account for, however, was the second time-dependent phase effect

observed in the patterns, which resulted from the nonlinear phase drift discussed

in Section 3.1.5. Given a 10.00 °/s rotation rate, the array requires 36.00 s to com-

plete one full rotation. During this time, phase drift resulting from mismatches

between the two nodes’ GPS-disciplined reference clocks applies a constantly

changing phase shift. This effect is applied non-uniformly across the array as

a result of the interleaved measurement scheme; spatially similar samples are

observed at different times for different elements with geometric different phase

offsets (see Fig. 3.5) Taken together, these effects complicate any naive attempts

to remove the effects of phase drift in post-processing.

39

3.2 Sampling Geometry

In Section 3.1.3, our method for capturing element patterns using the CPPAR

bistatic system was discussed. The technique leverages beam commutation to

measure all elements’ patterns in a single rotation of the pedestal by interleaving

Nelements element excitations into a single scan, repeated until the conclusion of

the rotation. The two-dimensional data set generated by this measurement may

be usefully represented using two distinct views—a slow time view, wherein me-

chanical rotation is the primary source of azimuthal separation between samples

from a single element, and a fast time view in which electronic beam commuta-

tion is the primary source of azimuthal separation between samples from a single

interleaved scan. In the literature, the notion of corner turning [12, 34, 58], etc.,

identifies an operation in which data stored as a two-dimensional matrix may

be transposed to provide a parallel sampling relationship embedded in the data

along its non-primary axis to further processing. For our purposes, this term use-

fully clarifies the relationship between the fast time and slow time data samples

and reinforces the notion that all samples must be collected and organized before

our post-processing algorithms may be performed.

When measured, data captured from CPPAR is organized temporally. For

some number of pulse groups Nsamples and some number of commutative beam

positions Nbeams, patterns are captured as a continuous pulse train of length

Nsamples · Nbeams with a uniform fast time spacing of TPRT, with pulse times

Ptf [np] = np · TPRT,

with np ∈ {0, 1, · · · ,Nsamples · Nbeams − 1} .
(3.9)

Given the system’s interleaved measurement scheme, pulses may be remapped

40

from their 1D index np into 2D data structure indices

nbeam = floor

(
np

Nbeams

)
· Nbeams

npulse = mod (np,Nbeams) .

(3.10)

The first dimension of this structure groups pulses by commutative beam position

and the second indexes pulses. Leveraging these indexing coordinates, the timing

matrix for a given commutative measurement is populated using

TNbeams×Nsamples
[nbeam, npulse] = nbeam · Nbeams · TPRT + npulse · TPRT . (3.11)

When this organizational scheme is applied to the pattern data itself, what results

is called the pattern matrix and is symbolically represented as XNbeams×Nsamples
.

Recall Fig. 3.4, which visualizes the relationship between each element’s radial

position in the array and the artificial boresight which determines the pedestal’s

current position. Leveraging the pedestal’s rotation speed (Vθ), the spatial sam-

pling matrix was defined to compute each pulse’s true azimuthal position from the

timing matrix. For an element pattern measurement with Nelements = 48 commu-

tative beam positions spanning a 180.00° field-of-view, the transformation from

temporal to spatial coordinates takes the following form:

θNbeams×Nsamples
[n,m] = n

π

48
−
(π
2
+

π

2 · 48
)
+ θPD [n,m] (3.12)

where

θPD [n,m] = TNbeams×Nsamples
[n,m] · Vθ (3.13)

specifies the array’s pointing direction in terms of the pedestal’s rotation velocity

Vθ and the timing matrix from equation (3.11) for some element n and at sample

41

point m. Given this theoretical foundation, the CPPAR’s geometric constants

(θELoffset and θELoffset as per equations (3.3) and (3.4)) were substituted to yield the

following formulation for CPPAR element patterns:

θNbeams×Nsamples
[n,m] = θPD [n,m]− θVBoffset + θELoffset [n]

with

beam index n ∈ {0, 1, · · · ,Nelements − 1}, and

sample index m ∈ {0, 1, · · · ,Nsamples − 1}.

(3.14)

This model computes the azimuthal broadside position for a given element at

some time within the scan using the radar’s pointing direction, rotation speed,

and pulse repetition time.

3.2.1 Spatial Coherence

For most combinations of sampling parameters, the formed azimuthal grid is

unique at each point, with no two elements observing (at broadside) identical

absolute spatial positions. If desired, sampling parameters may be strategically

selected to avoid this non-uniform spacing, resulting in patterns which as mea-

sured are aligned to a shared coordinate grid. For example, commutative scans

were designed with this alignment characteristic in research conducted by Li

et. al. [39, 40] to ensure that sets of commutative beams would consistently

illuminate meteorological targets while the CPPAR was rotated, making valid

statistical comparisons between each beam’s measurements possible. Hereafter,

patterns which share a common coordinate grid in this way shall be referred to as

spatially coherent. In terms of the physical array, this characteristic of measured

patterns is achieved when the distance the array rotates over the duration of each

commutative cycle matches the spatial distance between commutative beam po-

42

sitions, a condition which when present yields a spatial sampling matrix meeting

the following criterion:

∣∣θNbeams×Nsamples
[n,m]− θNbeams×Nsamples

[n,m+ 1]
∣∣ = θELspacing (3.15)

for all n ∈ {0, 1, · · · ,Nbeams − 1} over some contiguous span of samples indexed

by m, which implies that all commutative channels sample the same azimuthal

positions over this span.

0 2 4 6 8 10 12 14

Time (s)

140

150

160

170

180

190

200

210

220

A
z
im

u
th

 (
d
e
g
re

e
s
)

Coherent Commutative Sampling Pattern, with N
beams

= 12 beams

Coherent sampling interval

Spatial coherence condition met, pulse groups

share a common azimuthal sampling basis

1

2

3

4

5

6

7

8

9

10

11

12
Beam #

Beam Selection Raster

CPPAR Pointing Direction

Figure 3.13: Spatially coherent commutative scan [26]. Reprinted from Herndon
and Yeary (2021) © 2021 IEEE

As an example, consider a hypothetical commutative beam set with Nbeams = 12

beam positions spaced apart by θELspacing = 3.75° in azimuth with a target pulse

repetition time of TPRT = 100.00ms. The following equation defines the pedestal’s

azimuthal travel, Dθ, over the duration of each cycle of the commutative scan for

43

some pedestal rotation velocity Vθ:

Vθ · TPRT · (N − 1) = Dθ. (3.16)

When solved for Vθ while letting Dθ = θELspacing, an expression for the pedestal ro-

tation speed required to generate as measured spatially coherent patterns follows:

Vθ
′ =

θELspacing
(N − 1) · TPRT

= 3.41 °/s (3.17)

In this scenario, spatial coherence is achievable as both TPRT and the required

Vθ are valid parameters for the system. In Fig. 3.13, the azimuth vs. time

sampling pattern of this commutative beam scan is visualized, with samples from

all commutative beam positions falling onto the same set of points in azimuth.

When configured with these parameters, spatial coherence is achieved but time

resolution is limited by TPRT.

Measurements requiring precise time resolution must navigate the parameter-

space created by TPRT and the inversely-related Vθ, with decreases in TPRT requir-

ing a corresponding increase in Vθ to maintain the spatial coherence condition.

High time resolution is an essential requirement if phase patterns are desired,

as the effects of GPS phase drift must be measured and accounted for to yield

meaningful patterns. Through experimentation, it was found that sampling the

system’s phase state at around 1000.00Hz (corresponding to TPRT = 1000.00 µs

and a per-element sample rate of around 21.00Hz) provides sufficient informa-

tion to estimate drift effects during element pattern measurement. With the

system’s time resolution thus bounded, meeting the coherence as measured con-

dition would require rotating the array at a speed of 79.20 °/s, far faster than

the pedestal’s maximum rotation speed of 13.00 °/s, making this criteria impos-

44

sible to meet in this context. Knowing this, the coherent sampling condition

was relaxed for element pattern measurements, resulting in patterns which are

not spatially coherent. Instead, samples from the pattern matrix are aligned to

a skewed affine grid, resulting in both spatial and temporal ambiguity. In Fig.

3.14, a similar grid is shown representing the sampling pattern for a scan with

Nbeams = 12 commutative beam positions.

3 4 5 6 7 8 9 10 11 12

Time (s)

150

160

170

180

190

200

210

A
z
im

u
th

 (
d
e
g
re

e
s
)

Noncoherent Commutative Sampling Pattern, with N
beams

= 12 beams

Spatial coherence condition not met; pulse groups

do not share a common azimuthal sampling basis

1

2

3

4

5

6

7

8

9

10

11

12
Beam #

Beam Selection Raster

CPPAR Pointing Direction

Figure 3.14: Non-coherent commutative spatial sampling pattern [26]. Reprinted
from Herndon and Yeary (2021) © 2021 IEEE

3.2.2 Enforced Coherence via Pattern Matrix Re-Sampling

As discussed in Section 3.2.1, our method for measuring element patterns gener-

ates a sampling geometry ambiguous in both space and time, an artifact which

must be resolved before meaningful comparisons are possible between patterns.

As the array’s sampling geometry is known and well-defined (see Section 3.1.3),

the patterns may be made coherent along one of either data dimensions by inter-

45

polating samples from their known spatial / temporal position onto a new unified

coordinate basis which better represents spatial relationships known to exist in

the data, but which are not directly embedded in the sampling. Algorithm 1 de-

scribes our procedure for applying this transformation. When a pattern matrix

Algorithm 1: Procedure for spatially aligning a given pattern matrix
along its primary dimension.

Data: Pattern matrix XNbeams×Nsamples
aligned to sampling coordinates

θNbeams×Nsamples
as-measured, both of size Nbeams × Nsamples

Let: nw act as a window term, slicing columns with index p from
XNbeams×Nsamples

, with p ∈ [nw,Nsamples − nw]. This constrains the
alignment procedure such that only the portion of azimuth space
bounded by points sampled by all commutative beam positions is
considered, allowing well-formed interpolation,

Let: N̂samples = Nsamples − 2 · nw define the length of this spatially
coherent subset, and lastly

Let: θ̂1×N̂samples
represent some desired common coordinate basis.

Procedure:
for n ∈ {1, 2, · · · ,Nbeams} do

Estimate monotonic piece-wise cubic interpolator (pchip) function
f (x), for

Xn,i2 aligned to θNbeams×Nsamples
[n, i2] ,

with:

i2 ∈ {nw, nw + 1, · · · ,Nsamples − nw}
for i1 ∈ {1, 2, · · · , N̂samples} do

Compute Yn,i1 = f
(
θ̂i1

)
;

Result: Coherent pattern matrix YNbeams×N̂samples
aligned to common

coordinate vector θ̂1×N̂samples

is processed in this way, point-to-point comparisons are made valid along a single

data dimension with minimal information loss, allowing vector processing to act

as a convenient and statistically valid shortcut for measuring relative differences

between slices from the coherent dimension. Next, this idea as applied to both

pattern dimensions will be described, along with implications of and use cases

46

for these two unique interpretations of the data.

Element Boresight Alignment

5 10 15 20 25 30 35 40 45

-300

-250

-200

-150

-100

-50

0

50

100

A
z
im

u
th

 f
ro

m
 E

le
m

e
n
t
B

o
re

s
ig

h
t
(°

)
Slow-Time Power

0 5 10 15 20 25 30 35 40 45

Fast Time

0

5

10

15

20

25

30

35

40

45

S
lo

w
 T

im
e

Power Matrix As Measured

Figure 3.15: A visualization of the transformation from as measured geometry
onto the slow-time spatially coherent basis [26]. Reprinted from Herndon and
Yeary (2021) © 2021 IEEE

In physical terms, slices along the slow-time dimension of a given pattern

matrix represent samplings of a single commutative beam’s power and phase as it

was rotated through the farfield calibration horn’s beam. Applied to our pattern

47

model in combination with the known azimuthal path traced by the element’s

boresight position, these slices represent realizations of the array’s power and

phase element patterns Pn (θ) and ϕn (θ). Element patterns form the basis of our

power and phase error models for the array [equations (3.1) and (3.2)], which

form the theoretical basis for our array calibration method. Therefore, accurate

estimates of these patterns are critical to improving the precision of calibration

weights. Implicit in this model was the assumption that the variable term ‘θ’

represents boresight-relative azimuth for each element ‘n’, which given our new

terminology demands that the model’s realizations Pn (θ) and ϕn (θ) are spatially

coherent at all points of measurement.

In Section 3.2.1, it was shown that our method for measuring element pat-

terns necessarily yields non-coherent spatial sampling, and thus produces pat-

terns which must be aligned along the slow-time axis before calibration weights

can be estimated. Recall that equation (3.14) defines the sampling matrix, with

the primary dimension indexing between elements and the secondary dimension

indexing by pulse number. To derive element patterns from these pattern matri-

ces, Algorithm 1 was applied to cohere between slices from the element indexing

dimension. See Fig. 3.15 for a two-dimensional visualization of this operation.

The resultant pattern matrix demonstrates spatial coherence between slices from

the primary dimension, each representing samplings of each element’s power and

phase with respect to azimuth. Once coherent, these slices were made meaning-

fully applicable to our array error models and thus allowed for the estimation

of calibration weights through basic vector operations, discussed later in Section

3.4.

48

0 10 20 30 40

Fast Time

0

5

10

15

20

25

30

35

40

45
S

lo
w

 T
im

e

Power Matrix As Measured

-300 -250 -200 -150 -100 -50 0 50 100

Azimuth from Virtual Boresight (degrees)

Motion Invariant Power

Figure 3.16: A visualization of the transformation from as measured geometry
onto the fast-time spatially coherent basis, i.e. the motion invariant basis [26].
Reprinted from Herndon and Yeary (2021) © 2021 IEEE

Motion-Invariant Alignment

Accurately measuring phase drift within the bistatic system requires establishing

a geometrically stable phase reference. When the pedestal is stationary, the

measurement’s geometry is constant throughout the scan—as a result, the phase

zero point must be defined as a single arbitrarily chosen sample time within, with

all other samples in the pattern matrix defining phase as an offset from this zero

point. On the contrary, this stable geometry assumption is no longer valid when

the pedestal rotates and thus requires establishing a time-varying (or alternately,

geometry dependent) phase reference. Initially, this moving phase reference was

approximated by tracking the broadside phase of the virtual element pattern

created by the elements’ interaction with the farfield node. This method achieved

limited accuracy, however, and thus a more general approach was sought.

Although the spatially coherent element patterns described in Section 3.2.2 are

49

perhaps the most intuitive interpretation of the pattern matrix, the operation’s

analog on the corner-turned pattern matrix exposes a similarly useful though

fundamentally unique view of the data. This operation results in a pattern matrix

made coherent along the original measured pattern’s primary dimension, thereby

enforcing spatial coherence between fast-time slices. When each element’s spatial

offset from boresight is accounted for, the resulting matrix exposes the inverse

pattern which images the calibration horns’ antenna patterns. To demonstrate,

Fig. 3.16 shows this transformation as applied to measured power patterns.

The motion-invariant transformation fundamentally re-imagines the pattern

matrix by generating what will hereby be called a virtual element pattern at

each time step over the course of the scan. These virtual patterns obfuscate

the spatial sampling boundaries previously embedded in the patterns by the

measurement process, trading them instead for temporal coherence between fast-

time slices. In this new view, geometry-dependent phase effects are aligned along

the data’s secondary dimension, and as such may be ignored when operating

along that dimension. Likewise, time-dependent phase effects unrelated to the

pedestal’s motion are made temporally coherent between spatial slices from the

virtual pattern. Row-wise operations (slices in time) provide a simple method

for estimating system-level phase state. Following this general philosophy, a

two-stage algorithm was developed to estimate phase drift during commutative

pattern measurements.

3.3 Phase Drift Estimation

In the unprocessed pattern matrix, two primary effects obfuscate the common

mode phase velocity: the pedestal’s motion, which adds a position-dependent

nonlinear bias to each element’s observed phase; and the measurement strategy

50

0 10 20 30 40

Fast Time

15

20

25

30

35
S

lo
w

 T
im

e

Phase Matrix As Measured

-150 -100 -50 0 50 100 150

Azimuth from Virtual Boresight (degrees)

Motion Invariant Phase

Figure 3.17: Wrapped phase patterns interpolated onto the motion invariant
coordinate basis [26]. Reprinted from Herndon and Yeary (2021) © 2021 IEEE

itself, which interleaves excitations of the array’s many elements to capture their

patterns in a single rotation, resulting in each sampling the common mode phase

at offset times from one another. In our method, it was useful to consider how the

general concept of phase velocity as defined in equation (3.7) could be usefully

applied to the CPPAR system’s bistatic architecture. The common mode phase

velocity was defined as the true rate of change of GPS phase drift as observed

at any time by all elements in the array, as distinct from the rate of change

observed by a single element at a single sample time subject to geometry effects.

GPS phase drift was by far the most prominent effect contributing to the system’s

variable common mode phase velocity, thus measuring this feature was considered

sufficient for estimating phase drift.

51

3.3.1 Common Mode Estimation from Motion-Invariant

Phase

In Section 3.2.2, our method for enforcing spatial coherence between fast-time

slices in the pattern matrix is discussed. In the left panel of Fig. 3.17, the

unprocessed pattern matrix demonstrates the effects of the position-dependent

geometric phase bias while the array was constantly rotating—the virtual pattern

representing the image of the farfield pattern as observed by the array was en-

coded diagonally in the pattern matrix. The right panel in Fig. 3.17 demonstrates

the utility of the motion-invariant phase. In this view, the farfield pattern’s vir-

tual pattern was made coherent along the time dimension, making way for the

coherent estimation of phase drift velocity.

To measure this effect, an algorithm was developed following the method out-

lined in Section 3.1.6 which estimates the system’s instantaneous phase velocity

from the motion-invariant pattern matrix over the duration of the scan, then

computes the bias vector via integration of the phase velocity. Using the motion-

invariant power matrix as a reference, a threshold was applied to the phase matrix

to exclude samples below a configurable SNR. Next, the discrete-time difference

function was applied along the time dimension to estimate the phase velocity at

each virtual pattern slice. Since many virtual samples are contained within each

difference pair, many parallel estimates of the velocity are produced. These esti-

mates are quality controlled for statistical significance via an iterative algorithm

which will be excluded from this discussion for brevity, but ultimately results in

an estimation of the common mode velocity. Applying discrete integration to this

velocity vector yielded an estimate of the phase drift vector over time. Finally,

Savitzky-Golay filtering (a polynomial smoothing algorithm defined as a general-

ization of a moving average filter [3, 7, 11, 45, 52]) was employed to smooth the

52

resultant time series. The final drift estimate from this stage is then subtracted

from the phase pattern to produce a partial result, which is then further refined

in subsequent stages of drift correction.

3.3.2 Estimation of Residual Error

Following from our phase error model as defined in equation (3.2), it was as-

sumed that the array’s phase biases have a constant distribution with respect

to their shared mean. For a given non-coherent pattern matrix with no phase

drift, sampling phase from each element’s boresight and subtracting away their

shared mean will produce an estimate of this bias distribution. In the partially-

corrected element pattern matrix, this relationship will still be present but will

be obfuscated by the residual drift, which applies a unique bias to each element’s

phase as a result of their different measurement times. Likewise, if we assume

drift but no array errors, an estimate of the drift may be found by tracking how

the boresight phase changes over the course of the pattern measurement. Using

only a single spatial sampling point only produces as many samples as there are

elements, however, which limits the temporal resolution of the drift measurement.

To increase the accuracy of this measurement, additional spatial samples may be

taken then averaged together at each time step in ensemble. When these meth-

ods are combined and when drift in the pattern matrix is sufficiently small, the

resulting algorithm is able to effectively disambiguate the two effects and provide

a continuous picture of the phase state of the system across time.

3.3.3 Qualitative Verification of Drift Estimates

When the results from the algorithms outlined in Sections 3.3.2 and 3.3.2 are

combined, an accurate approximation of phase drift is produced and may thus be

53

-80 -60 -40 -20 0 20 40 60 80

15

20

25

30

35

Phase Before Correction

-80 -60 -40 -20 0 20 40 60 80

Phase After Correction

Azimuth from Virtual Boresight (degrees)

S
c
a

n
 T

im
e

 (
s
)

Figure 3.18: Motion-invariant phase matrix before and after drift correction [26].
Reprinted from Herndon and Yeary (2021) © 2021 IEEE

subtracted out of the pattern matrix. Once estimated, it was essential that its

accuracy be verifiable in some way. In addition to its utility in reducing rotation-

induced phase effects, the motion-invariant matrix provides a high-level visual

which proves useful for determining the effectiveness of drift correction. Since

our method does not directly observe phase drift, it was essential to develop

stable metrics for validating the patterns such that false or inaccurate estimates

could be identified more easily. For this purpose, several qualitative heuristics

were developed for analyzing the accuracy of drift correction:

• In an ideal pattern measured from a perfectly calibrated array (i.e. phase

biases are zero), the image of the farfield calibration horn’s pattern on the

array will have a constant shape for the duration of the scan.

• As the virtual pattern is formed as a reinterpretation of samples captured

from all elements skewed along a diagonal, each element’s phase error will

be encoded along the diagonal rather than remaining coherent with the

virtual boresight’s sampling geometry. See Fig. 3.18.

54

• Drift corrected patterns captured from a calibrated array will thus minimize

phase variance for any sufficiently high-SNR slices along the time dimension

(e.g. at virtual boresight). See also Fig. 3.18.

3.4 Final Pattern Matrix Correction and Estimation of

Element Bias Terms

With a theoretical framework and corresponding methods thus established, we

will now discuss how these ideas were combined to form a coherent calibration

strategy for the system.

Pattern Matrix Drift Correction

Before any processing can begin, the measured pattern matrix must be drift-

corrected. Once established that the estimated phase drift is valid, the resultant

time series is simply subtracted from the measured phase pattern matrix along

its corresponding time dimension to yield its drift-corrected form.

Boresight Alignment of Element Patterns

Leveraging our sampling model and our method for aligning the elements’ physi-

cal boresights, the drift-corrected pattern matrix was cohered along the slow-time

dimension. Once aligned, the resultant spatially coherent pattern matrix suitably

maps to our error model as defined in Section 3.1.2, and thus provides an am-

ple basis for estimating calibration weights. Fig. 3.19 visualizes wrapped phase

55

-100 -80 -60 -40 -20 0 20 40 60 80 100
0

100

200

300

As Measured

-100 -80 -60 -40 -20 0 20 40 60 80 100

Offset from Boresight (degrees)

0

100

200

300

Drift Corrected

W
ra

p
p

e
d

 P
h

a
s
e

 (
d

e
g

)

As Measured vs. Drift Corrected Phase Patterns

Figure 3.19: Phase patterns for each of the CPPAR’s 48 (uncalibrated) elements
before and after drift correction [26]. Reprinted from Herndon and Yeary (2021)
© 2021 IEEE

patterns captured from CPPAR (with no calibration weights applied) before and

after drift correction, demonstrating our method’s effectiveness as well as the

results of our boresight alignment process.

Bias Estimation from Boresight-Aligned Patterns

Following directly from the calibration model defined in Section 3.1.2, element

patterns were leveraged to compute phase and power bias terms. As an initial

quality control measure, a subset of the main pattern matrix is formed. Generally,

some neighborhood around boresight is selected as this region has the highest

SNR and thus provides the least noisy data for bias estimation. Next, for each

spatial sampling point in this region, the element-wise mean is computed for the

power and phase patterns separately, forming estimates of the ideal power and

56

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Element Number

-6

-4

-2

0

2

4

6
D

e
v
ia

ti
o
n
 f
ro

m
 M

e
a
n
 (

d
e
g
re

e
s
)

Relative Phase* After Drift Correction, for K = 10 Trials

*Referenced to Element #1's phase Correctable Phase Region

Figure 3.20: Distributions of each element’s phase calibration coefficients for
K = 10 trials [26]. Reprinted from Herndon and Yeary (2021) © 2021 IEEE

phase patterns |A(θ)| and ∠A(θ). These estimates are then subtracted from each

element’s power and phase patterns to compute residual vectors, which are then

averaged to form estimates of the power and phase error terms from equations

(3.1) and (3.2). This procedure is summarized in Algorithm 2.

When applied to measured element patterns, Algorithm 2 is capable of esti-

mating each element’s bias terms with sufficient accuracy to calibrate the array

to within the resolution of the array’s phase shifters and attenuators. To demon-

strate the method’s effectiveness, K = 10 separate element pattern measurements

were made for statistical comparison. Each trial’s pattern matrix was processed

to produce power and phase bias estimates from each trial, then analyzed for con-

sistency. In Fig. 3.20, the distributions of the estimated phase bias terms for each

of the CPPAR’s active transmit elements (in horizontal and vertical polarization)

are represented as a box plot. On average, our method accurately approximates

element bias values. The larger uncertainty at element #47, however, reveals

57

Algorithm 2: Procedure for estimating power or phase biases from the
spatially aligned pattern matrix.

Data: P̂Nbeams×N̂samples
, a subset taken from the Nsamples spatially coherent

samples yielded during alignment of length N̂samples, for each
Nbeams = 48 array elements.

Let: P̄1×N̂samples
, estimation of the ideal pattern derived for each point

n ∈ {1, 2, · · · , N̂samples}.
Procedure:
for i1 ∈ {1, 2, · · · , N̂samples} do

P̄ [1, i1] = E
[
P̂ [:, i1]

]
for i2 ∈ {1, 2, · · · ,Nbeams} do

r̄ [i2, 1] = E
[
P̂ [i2, :]− P̄

]
Result: Mean residual values for each element collected into the vector

r̄Nbeams×1, representing average bias referenced to the estimated
ideal pattern.

one weakness of our method: phase estimates for elements adjacent to the in-

active array sections are formed from fewer valid samples compared to elements

near the center of the active section. As a result, the phase drift estimate from

these points in time have a higher variance and in turn leads to less accurate

bias estimates at the effected elements. Regardless, our method on average was

sufficient to calibrate the array, making way for successful commutative weather

measurements.

3.5 Closing Remarks

In this chapter, a procedure for measuring element patterns for the Cylindrical

Polarimetric Phased Array Radar via an external GPS-synchronized calibration

horn in the array’s farfield was discussed. Although this architecture guaranteed

stable bistatic pulse envelope measurements, phase was complicated by a time-

58

varying frequency offset between the two transceivers’ local oscillators which in-

troduced an arbitrary phase drift observable in the baseband IQ data—concealing

the relative phase differences between elements in the measured patterns.

To manage this effect, a measurement scheme was designed which exploits

the array’s cylindrical geometry and rapid beam-switching ability to interleave

pattern measurements for all elements into a single scan, ensuring a subset of the

elements are always observable from the receiver and thus producing full-array

patterns with trackable phase from a single rotation of the CPPAR’s mechani-

cal pedestal. Quantifying this procedure’s sampling geometry enabled accurate

spatial alignment between element patterns in post-processing. Likewise, a rein-

terpretation of this data along its non-primary axis yielded the so-call motion-

invariant view of the inverse pattern (i.e. the measurement horn), which allowed

phase drift to be measured irrespective of the CPPAR’s geometry or motion.

Finally, the estimated drift was subtracted from the patterns which were then

spatially aligned to yield the final element patterns. With these drift-corrected

and spatially coherent patterns, each element’s phase and power error terms were

estimated and ultimately used to derive calibration weights for the array.

Within the wider context of this thesis, the methods described in this chapter

represent case studies in array calibration within a practical system. The simple

error model used to derive calibration weights serves as one method for calibrating

an array wherein phase and power output differences between elements are dis-

tributed relative to some average value, behavior which is present in the CPPAR’s

analog beamformer network. Likewise, the technique used to measure bistatic

phase drift represents one method for resolving phased relationships in baseband

data captured from a phased array system subject to time-varying phase, where

no stable phase reference is resolvable. Although the specific method discussed

59

is principally tied to the cylindrical geometry of the CPPAR, the crux of the

method—tracking phase drift over time from a moving platform via exhaustive

accounting of an array’s sampling geometry—holds implications for future efforts

with bistatic systems, and therefore warrants discussion.

In the following chapter, another form of system calibration is discussed, which

leverages digital techniques prior to RF synthesis to linearize signal gain through

high-power amplifiers, correcting for distortion incurred by nonlinearities therein.

When applied, this form of calibration—known as digital predistortion—holds

implications for a variety of system-level performance metrics, and is thus critical

to the success of next-generation phased array systems.

60

Chapter 4

Real-Time Digital Predistortion for Optimized

Performance in Phased Array Systems

Working towards the goal of all-digital phased arrays, next-generation all-digital

phased array weather radars in development at the University of Oklahoma’s

Advanced Radar Research Center (ARRC) will rely on many distinct HPAs—

one for each element—working together in an array environment [36, 46]. To

maximize the array’s power output while still allowing for the flexibility offered

by DEE arrays, it is essential that all elements contained within these arrays

be capable of operating in saturation without incurring the distortion typically

experienced therein. As one of a series of steps for calibrating these arrays,

digital predistortion using the memory-polynomial model has been targeted as a

candidate for maximizing each element’s usable power while minimizing spectral

spreading and achieving desirable output linearity during operation.

The literature explores methods for training these models on isolated ampli-

fiers [17], but focuses primarily on measurements captured directly from amplifiers

within a bench top environment. In practical phased array systems, the ques-

tion of how to capture training data from each of an array’s elements is vitally

important if in-field calibration is desired but where switched RF feedback after

the distortion source is not available. To aid in exploring one possible method

61

for capturing training data in the field, a research and development platform

was developed to enable the observation of signals heavily distorted by a high-

power amplifier [25]. This platform was configured to transmit both a direct,

post-distortion loopback signal (to act as a ground truth) in parallel with an ex-

perimental radiative measurement path split from the same source and observed

via mutual coupling. In a series of tests, this platform was used to capture base-

band IQ from these two measurement paths for both training memory polynomial

models and providing useful analytical datasets. Once adequate performance

was achieved in simulation, the platform was leveraged to verify predistortion’s

effectiveness by applying the memory polynomial operation to input waveforms

offline, then using these as arbitrary waveforms to drive the system. In addition

to providing a platform for validating early-stage predistortion, these experiment

provided a glimpse of the challenges which must be overcome when calibrating

systems in the field.

Once these basic methods were proved within the testbench system, a high-

performance FPGA implementation of the memory polynomial model was de-

veloped for applying predistortion to streams of IQ data [24]. Given the tar-

geted flexibility of the digital radar systems the component was developed for,

an ideal module would apply predistortion online, in real-time and with mini-

mal buffering, providing the greatest possible waveform diversity (i.e. supporting

pulse-to-pulse waveform changes) and avoiding impacts to the system’s maximum

pulse-repetition-frequency (PRF). To meet these requirements, a custom solution

was developed using IntelFPGA’s high-level synthesis tool which achieved opti-

mal throughput and in turn minimized system-level constraints for these next

generation systems. In the final section of this chapter, this implementation of

the memory polynomial predistortion model is described and demonstrated in

62

both simulation and hardware tests.

4.1 Digital Predistortion Theory

-15 -10 -5 0 5 10 15

Frequency (MHz)

-40

-35

-30

-25

-20

-15

-10

-5

0

5

P
o

w
e

r
(d

B
)

Spectral Regrowth in Saturated Amplifier

Reference Signal

Linear Region

Saturated

Figure 4.1: Spectral regrowth, seen as the broadened spectrum of a saturated
amplifier, as based on our lab’s measurements [25]. Reprinted from Herndon,
Yeary, and Palmer (2020) © 2020 IEEE

Phased arrays require highly-calibrated elements coordinating together to

function as intended. In DEE system specifically, each digital element is paired

with an analog front-end containing, among other things, a high-power amplifier.

These amplifiers distort signals when operating in saturation, resulting in non-

linear gain and spectral regrowth of the form seen in Figure 4.1, unintentionally

increasing the effective transmit bandwidth and resulting in lower efficiency as

power spreads to out-of-band regions.

Much of this distortion may be summarized as a combination of two effects:

amplitude-amplitude (AA) distortion, which takes the form of a non-linear rela-

63

tionship between input and output power; and frequency-amplitude (FA) distor-

tion, which appears as a frequency dependency in the system’s gain. It is well

understood that FA distortion may be aptly modeled as a ‘memory effect’, a re-

sult of an amplifier’s tendency to ‘remember’ (i.e. be affected by) previous states

of the amplifier as a result of its finite bandwidth [42]. If these distortion effects

are not corrected for, designers must either contend with degraded signal quality

when operating the radar at or near its peak power or they must ensure that a

given system operates its amplifiers close to or fully within their linear regions,

limiting the maximum output power achievable by the system and resulting in

reduced efficiency. To gain access to an amplifier’s full output capacity without

incurring unacceptable levels of distortion, amplifier distortion must either be cor-

rected for after-the-fact, or it must be preempted in some way. Predistortion—a

blanket term identifying methods of transforming signals prior to their entering

some distortion source in an effort to improve the post-distortion characteristics

of the signal—attempts to accomplish the latter.

In theory, predistortion requires finding some model of an amplifier’s inverse

behavior—that is, a mapping from the amplifier’s distorted output back its undis-

torted input. Passing an undistorted input signal through this model gener-

ates the predistorted signal, which, when passed through the physical distortion

source is transformed back to its original form—resulting in a nearly-linear out-

put which closely matches the form of the input signal in spite of the heavy

distortion introduced by the saturated amplifier. In general, predistortion offers

a software-defined solution for managing the effects of amplifier distortion, pro-

viding increased flexibility and raising the prospect of on-site, active calibration.

From a systems perspective, this increased flexibility allows for more lax am-

plifier requirements as larger amplifiers (which must operate at a reduced power

64

level in order to stay within their linear region) may be substituted for smaller

ones operating in saturation and aided by predistortion to linearize their output.

For digital systems in particular, the predistortion method’s potential to help

reduce amplifier energy consumption requirements is especially relevant. DEE

arrays must contend with energy distribution and thermal management at a

system-level where each element is populated with a complete RF chain (digital

transceivers, front-ends, high power amplifiers, etc.). Reducing the energy con-

sumed by each element’s amplifier helps to correspondingly reduce the weight of

these system-level thermal concerns.

Critical to the success of digital predistortion is the designer’s ability to accu-

rately model an amplifier’s distortion. Many methods exists for modeling ampli-

fier behavior, but one method in particular (and variations thereof) sees extensive

use for its relative simplicity and proven effectiveness. The Volterra series pro-

vides a generalized framework for modeling nonlinear systems with memory ef-

fects [9, 10, 17, 44, 53], and thus serves as an ample method for modeling amplifier

distortion. Taking the following form:

yv (n) =
K∑
k=1

vk (n)

where:

vk (n) =
M−1∑
m1

· · ·
M−1∑
mk

ĥk (m1, · · · ,mp)
k∏

l=1

x (n−ml)

(4.1)

Where K defines the polynomial order (i.e. the number of Volterra kernels in-

cluded in the model). Each Volterra kernel vk (n) then contains a unique set of

coefficients ĥk (m1, · · · ,mp) which weigh their effects on the model’s output.

The Volterra series is a class of functions defining linear mappings between

sequences of input samples and equally sized output sequences. Each output

65

sample depends on weighted combinations of input samples—representing many

unique states of the system as the input propagates through—enabling the model

to reproduce higher-order effects generally ignored by more trivial methods. In

general, increasing the polynomial order and/or the number of kernels for a given

Volterra series will improve its capacity to accurately model phenomena exhibit-

ing high-order effects, in turn widening its potential application space. However,

raising these parameters corresponds to an exponential increase in the compu-

tational complexity and memory requirements for the model—a detraction of

particular concern for applications calling for the model’s deployment within em-

bedded systems. Additionally, model training quickly becomes difficult as addi-

tional kernels necessitate the use of higher-dimensional optimization techniques.

Finding the most effective balance between model complexity and accuracy has

been a topic of significant interest as the benefits offered by digital predistortion

have become indispensable.

These considerations led to the development of the memory polynomial model,

a well-known simplification of the Volterra series consisting of a single kernel

which operates on a signal’s complex baseband samples in conjunction with their

exponentiated envelope (i.e. complex baseband magnitude) [42], which takes the

following form:

y (n) =
K−1∑
k=0

M−1∑
m=0

ĥkmx (n−m) |x (n−m)|k . (4.2)

The effectiveness of this method for modeling distortion caused by high-power

RF amplifiers—inverse modeling thus enabling digital predistortion—is well es-

tablished by the literature [17, 42]. Although Volterra models are known to be

useful for modeling systems with both nonlinearities and memory effects, the

memory polynomial model in particular has had previous success modeling phys-

66

ical amplifiers at complex baseband [15, 16, 43]. Additionally, the memory poly-

nomial’s relative simplicity lends itself to real-time application, as the memory

and computational requirements for applying the model to streams of samples

are sufficiently small.

Assuming well-formed training data, computing coefficients for the memory

polynomial model is straightforward. Following a construct known in the liter-

ature as the ‘delay matrix’ [17], the permutations of the inner loop of Equation

4.9 (excluding ĥkm) may be formed into a two-dimensional structure, essentially

providing a time-independent view of the memory polynomial’s state for all cy-

cles as a given input sequence passes through the model. This view makes way

for the application of standard regression techniques for computing coefficients,

as the problem is reduced to finding the best-fit linear mapping between the set

of rows of the delay matrix and their pairs in the distorted training data.

Leveraging the delay matrix structure, the coefficients of the forward amplifier

model are computed via a least squares relationship [8, 47, 61], where yt is the

distorted training vector and Xd is the delay matrix formed from the input vector

xt. Therefore, following [17, 42] we have:

ĥforward =
(
XH

d Xd

)−1
XH

d yt (4.3)

Assuming a well-formed solution, the resultant coefficient set ĥforward may be

used with the model to simulate the distortion produced by the amplifier.

To generate a suitable approximation of the amplifier’s behavior for a wide

variety of inputs (or across some bandwidth), it is essential that this training

waveform exhibits as many combinations of instantaneous power and frequency as

possible. Such waveforms provide a rich dataset wherein many possible amplifiers

states are exercised, generally improving the quality of models trained using such

67

data. It has been shown that Gaussian noise waveforms—filtered to an acceptable

bandwidth—reliably accomplish this task [17].

Once established that the forward model provides a sufficient approximation

of the amplifier’s behavior the inverse model is calculated. Here, the training

vector is formed into a delay matrix and used within the same least-squares

relationship as the forward model, where xt is the input waveform and Yd is the

delay matrix formed from the distorted training vector yt:

ĥinverse =
(
YH

trainingYtraining

)−1
YH

trainingxcal (4.4)

The two coefficient sets ĥforward and ĥinverse form models which act as inverse

pairs—therein lying the crux of predistortion. By transforming a given waveform

using the inverse model, the effect of the amplifier’s distortion on the predistorted

signal will only be to ‘undo’ the predistortion—resulting in the production of a

waveform with reduced distortion at the HPA’s output. Once adequate model

coefficients have been derived, what remains is to apply the algorithm to base-

band digital data prior to RF synthesis, yielding the predistorted signal which

theoretically achieves the desired performance post-amplifier. In the HORUS sys-

tem [46, 63], this operation will be performed in an FPGA in real-time (requiring

custom logic), which will be discussed in the following section.

4.2 Real-Time Digital Predistortion in High Level Syn-

thesis

For several of the next-generation phased array radar systems under active de-

velopment at the University of Oklahoma’s Advanced Radar Research Center

(ARRC), the memory polynomial (MP) model has been selected as a foundation

68

for applying open-loop digital predistortion for the purpose of broadly optimizing

array performance. In these systems, digital predistortion will be applied inde-

pendently at each element, and will be computed in real-time within the FPGAs

containing the systems’ real-time digital back-ends.

In this section, we present our architecture for FPGA-based memory polyno-

mial predistortion. Given the targeted systems’ waveform diversity requirements,

an ideal module would apply predistortion online, in real-time and with minimal

buffering and latency. Meeting these requirements would thus ensure that the

systems maintain a large degree of flexibility (e.g. supporting pulse-to-pulse wave-

form changes) while avoiding impacts to the system’s maximum pulse-repetition-

frequency (PRF) as well as other time-sensitive system-level constraints. To meet

these requirements, a custom solution was developed using IntelFPGA’s HLS

toolchain to directly compute an MP model’s effect on a given arbitrary length

baseband signal in real-time, ultimately achieving optimal throughput with rel-

atively low resource utilization and a high FMax (i.e. maximum clock speed). In

this section, details of this implementation will be described, and both simulation

accuracy and post-fit resource usage will be evaluated.

4.2.1 Formulation of FPGA-based Real-Time Digital Pre-

distortion

Field-programmable gate arrays (FPGAs) are a special class of computer chip

which allow run-time reconfiguration of the connectivity and function of a broad

set of interconnected programmable unit cells. These unit cells range in functional

complexity from LUTs—which map a discrete number of inputs to a discrete

number of outputs via a reconfigurable table, allowing for the implementation of

arbitrary logic—to larger and more feature-rich unit cells such as DSPs (digital

69

signal processing units, or dedicated hardware units for computing arithmetic

operations) and BRAMs—i.e. fixed-size dedicated block rams which can func-

tion as either FIFO (first in, first out) memory or as addressed random-access

memory (RAM). Ultimately, these chips help reduce system development time

and lend themselves to optimized design integrity (by enabling rapid simulation,

testing, and debugging—including on deployed systems). Traditionally, firmware

for FPGAs has been developed using hardware description languages (HDL) such

as Verilog HDL, VHDL, and SystemVerilog—relatively low-level languages which

compile into register-transfer level (RTL) logic ready for fitting, placement, and

routing onto actual FPGA hardware.

More recently, FPGA manufacturers have focused greater attention on the de-

velopment of high-level synthesis tools which see parallel logic described in terms

of a high level modeling language in which operations are intuitively arranged by

data-flow rather than in terms of logical compute structure (as typically required

when writing HDL). When compiled, such designs are converted into either an

intermediate hardware description language or directly into RTL. These tools

often offer several advantages—namely, the design iteration timeline is greatly

reduced as simulation and debugging may be accurately performed without re-

quiring complex and oftentimes fraught HDL programming. Likewise, hardware

optimizations such as pipelining, loop unrolling, etc. can either be inferred by

the compiler or explicitly declared as part of the source file itself—enabling more

optimized designs [2]. These tools do, however, suffer from platform-specific syn-

tax and include variations in language semantics between FPGA suppliers and

toolkit versions—all issues which can lead to poorly optimized and/or entirely

broken results. With careful effort, however, these tools offer a convenient path-

way to generating highly optimized FPGA components. One such environment

70

is IntelFPGA HLS, which leverages C++ as an HLS language. Since this work

was developed for use on IntelFPGA (formerly Altera) Arria 10 FPGAs, the In-

telFPGA HLS toolkit was targeted for adapting our predistortion algorithm to

hardware.

A variety of philosophies and designs exist for hardware-based memory-polynomial

predistortion [1]. In our application, the targeted systems’ digital transmit chains

generate two baseband samples in parallel at a 137.50MHz sampling rate (Fs),

supplying 275.00MHz of total instantaneous bandwidth for RF synthesis. Apply-

ing predistortion at this datapath’s internal sampling rate of 137.50MHz would

have thus required a polyphase architecture, which after investigation and con-

sidering our application’s preference for direct computation could have resulted

in a complex, resource-intensive, or unfavorably constrained design. However,

the systems’ relatively low Fs of 137.50MHz allowed an alternate approach to be

considered—that is, double-pumping, which doubles a component’s throughput

by clocking at twice the datapath’s sampling rate, where the two samples are

serialized and de-serialized prior to the component’s input and after its output

[27, 60].

Before this architecture could be realized, however, an FPGA system for ap-

plying predistortion must be developed capable of achieving an FMax which meets

or exceeds the required double-pumped frequency of 275.00MHz, a design con-

straint which could be challenging to meet in practice. In general, FMax refers

to the highest estimated clock rate achievable by synchronous logic within a

target FPGA, which is a function of the physical design placement and signal

routing generated during design compilation [2, 41]. Ultimately, our architecture

for memory-polynomial predistortion met the desired bandwidth with favorable

resource usage and an FMax which exceeds the required double-pumping clock

71

frequency. Likewise, our design achieved an application-favorable iteration inter-

val (II) of 1—in general, this metric specifies the average number of clock cycles

required to compute a single output sample given a single input sample [2, 57].

With an II of 1, the component incurs a constant latency due to its pipeline

length but will otherwise continuously produce output samples every clock cycle

without stalling.

Implementing this architecture in high-performance FPGA logic required sub-

stantial planning and optimization to achieve. Before this was possible, however,

the compute structure of the memory polynomial was closely studied in abstract

to identify potential areas for optimization. The model takes the following form,

which sees an output sequence y (n) computed in terms of the input sequence x

and some coefficient matrix Ĥ:

y (n) =
K−1∑
k=0

M−1∑
m=0

Ĥkmx (n−m) |x (n−m)|k . (4.5)

The model is controlled by two parameters: the polynomial order K, which de-

termines the maximum order of exponentiated envelope considered by the model

and intuitively relates to the level of non-linearity which the model may accu-

rately estimate; and the memory order M, which determines how many previous

input samples are considered by the model. Given the model’s structure, the

operation is inherently multi-dimensional as each output sample y (n) depends

on a full traversal of the memory polynomial’s two summation operators to com-

pute, suggesting complicated hardware implementation. However, breaking the

algorithm into smaller pieces helped identify several reorganizations which—once

applied—yielded an operation with a more straightforward mapping to hard-

ware. Specifically, these changes helped to facilitate parallel computation while

also making space for and encouraging pipelining.

72

To help build intuition regarding the model’s compute structure, it was useful

to consider the impulse response of the system, specifically tracking the model’s

internal state as sequences of samples pass through it. In this capacity, the model

was first considered in terms of its component pieces. The inner kernel—which

computes the input signal’s “exponentiated envelope” [42]—was considered in

isolation to simplify the apparent relationship between the model’s coefficients

and its internal state, that is

y (n) =
K−1∑
k=0

M−1∑
m=0

Ĥ[k,m] · Ŝn[k,m]

where

Ŝn [i, j] = x (n− j) |x (n− j)|i .

(4.6)

For a given sample number n, the ‘state matrix’ Ŝn represents the memory poly-

nomial’s current ‘state’ including past inputs and their envelope estimates.

State Matrix Ŝ

m=0 m=1 m=2

k=0 Ŝ0,0 Ŝ0,1 Ŝ0,2

k=1 Ŝ1,0 Ŝ1,1 Ŝ1,2

k=2 Ŝ2,0 Ŝ2,1 Ŝ2,2

←→

Coefficient Matrix Ĥ

m=0 m=1 m=2

Ĥ0,0 Ĥ0,1 Ĥ0,2

Ĥ1,0 Ĥ1,1 Ĥ1,2

Ĥ2,0 Ĥ2,1 Ĥ2,2

(4.7)

As the state matrix and coefficient matrix share a common size, items in the state

matrix directly pair with a single item in the coefficient matrix, see equation (4.7)

for a hypothetical model with K = M = 3—as such, summing the elementwise

multiplication of the coefficient matrix and a state matrix from a single time step

yields a single output sample. An alternate way of understanding this operation

is as a linear mapping between a point in K × M dimensional complex space

(constructed from the flattened state matrix) and a single complex number, i.e.

73

CK×M → C1. In other words, the relationship between the model’s two compo-

nent matrices and the model’s output is identical to the inner product between

those two matrices, that is:

y (n) =
K−1∑
k=0

M−1∑
m=0

ĤkmŜkm

becomes

y (n) = ⟨ Ĥ, Ŝn ⟩ ,

(4.8)

where ⟨x̂, ŷ⟩ denotes the inner product of identically sized matrices x̂ and ŷ.

Critically, this inner product resolves to a single multiply-accumulate (MAC)

operation, a structure which can be implemented efficiently in hardware as a

highly-pipelined and highly-parallel multiply-accumulate tree.

With an appropriate, efficient structure selected for the most critical opera-

tion of model computation, what remained was to identify optimization points

during state matrix assembly. To help clarify the assembly operation’s dataflow,

permutations of the state matrix were simulated (for some model with orders

K = 3 and M = 3) as a test signal passes through. Consider the model supplied

with this test signal—a scaled version of the causal unit impulse function:

x =
√
2 · δ[n] =

√
2, if n > 0

0, otherwise

(4.9)

The unit impulse was selected as a test sequence both for simplicity and to ensure

that adjacent input samples are decoupled from one another. Likewise, scaling

the impulse by
√
2 ensured that the exponentiated envelope term was unique for

all values of k. In equation (4.10), the state matrices for each model iteration

n ∈ {−1, 0, · · · , 3} are shown, where n = −1 represents the model’s initial state:

74

Ŝn :

n=-1
0 0 0

0 0 0

0 0 0

→ · · ·

· · ·

n=0
2 0 0

4 0 0

8 0 0

→
n=1

0 2 0

0 4 0

0 8 0

→
n=2

0 0 2

0 0 4

0 0 8

→
n=3

0 0 0

0 0 0

0 0 0

(4.10)

Consider only the top row of each state matrix in equation (4.10), representing

the k = 0 kernel of the memory polynomial over time. At model iteration n = 0,

the first sample of the scaled unit impulse is assigned to the state matrix as

Ŝn[0, 0] = x[0] =
√
2. Moving on to the k = 1 and k = 2 kernels, we find that the

same logic is present except that powers of the envelope term are supplied, that is

Ŝn[k, 0] = x[0]k =
√
2
k
. In subsequent iterations, the columns of the state matrix

shifted from lower index positions to higher index positions. In other words, each

row of the state matrix acts as a delay line.

When paired with the inner product, it is clear that each polynomial ker-

nel performs an operation identical to a M-length finite impulse response (FIR)

filter—that is, a delay line with coefficient multipliers for each delayed sample

which are accumulated to produce a single output sample. These FIR filters act

in parallel, operating on increasing powers of the signal envelope before being

combined via summation. This equivalency stands as striking evidence that—if

organized correctly—an efficient architecture for directly computing the memory

polynomial is possible.

75

FIFO

Coefficient
BRAM

Input IQ
Stream

data

sop

eop

Initialize
i=0

Push
Internal

Push
Coefficient

"i", i++

Stop

Start

i < N

Push
Magnitude

Await

Read
Sample

FIFO

FIFO

Final Multiply-
Accumulate

Iterate Delay Matrix

Push
Output

Pull
Samples

Normalize Input
Sample

Compute Magnitude

Pull
Coefficients

Done

Done

Done

FIFOOutput IQ
Stream

data

sop

eop

Coefficient
Loader

HLS Predistortion

Memory
Polynomial

Invocation
Buffer

Coefficient XFER
Buffer

Sample XFER
Buffer

EOP=1 EOP=0

EOP=1 EOP=0

Sample Input
Buffer

Sample Output
Buffer

Await

Figure 4.2: Block diagram showing the architecture of the memory polynomial
HLS component.

4.2.2 Implementation in IntelFPGA High Level Synthesis

Leveraging insights from Section 4.3, a version of the memory polynomial model

was implemented for an IntelFPGA Arria 10 (A10) FPGA target. For reduced

syntactical burden and faster simulations, IntelFPGA’s high-level synthesis tools—

which adapt C++ into a viable simulation and synthesis language—were used.

Our design can accommodate memory polynomial models with maximum pa-

rameters K = 4 and M = 4, which were found to be optimal (at the intersection

between resource usage and predistortion performance). Once the design’s nu-

merical accuracy was validated, two distinct optimization strategies were applied

to achieve ideal throughput and reduce resource usage—compute structure opti-

76

Stage a Stage b Stage c Stage d Stage e Stage f Stage g Stage h Stage i Stage j

x

Ŝ0,3

Ŝ1,3

Ŝ2,3

Ŝ3,3

Ŝ0,2

Ŝ1,2

Ŝ2,2

Ŝ3,2

Ŝ0,1

Ŝ1,1

Ŝ2,1

Ŝ3,1

Ŝ0,0

Ŝ1,0

Ŝ2,0

Ŝ3,0

x[n− 1]3

x[n− 1]2

x[n− 1]1

x[n− 1]0

x[n− 2]

x[n− 2]

x[n− 2]

x[n− 3]

x[n− 3]x[n− 4]

X

X

X

Ĥ0,3 · Ŝ0,3

Ĥ1,3 · Ŝ1,3

Ĥ2,3 · Ŝ2,3

Ĥ3,3 · Ŝ3,3

Ĥ0,2 · Ŝ0,2

Ĥ1,2 · Ŝ1,2

Ĥ2,2 · Ŝ2,2

Ĥ3,2 · Ŝ3,2

Ĥ0,1 · Ŝ0,1

Ĥ1,1 · Ŝ1,1

Ĥ2,1 · Ŝ2,1

Ĥ3,1 · Ŝ3,1

Ĥ0,0 · Ŝ0,0

Ĥ1,0 · Ŝ1,0

Ĥ2,0 · Ŝ2,0

Ĥ3,0 · Ŝ3,0

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ y (n)

Figure 4.3: Dataflow and pipeline diagram for K = 4 and M = 4 [24]. Reprinted
from Herndon and Yeary (2022) © 2022 IEEE

mization, which primarily aimed to parallelize and pipeline the critical compute

path, and architectural optimization which aimed to adjust the design in broad

strokes for favorable improvements.

Architectural Optimizations

Originally, the memory-mapped coefficient storage was implemented in block

RAM which then connected directly to the multipliers. This resulted in a large

and unsustainable fan-out when feeding the coefficients to the final MAC which

caused the design to fail timing. In this instance, forcing HLS to implement

memory-mapped coefficient storage in distributed registers did not resolve this

issue. Although the specific dynamic which caused this failure was not well

77

understood (as it appeared to be multifaceted), one theory was that the specific

HLS optimizations which were performed to generate the addressable memory

were incompatible with the large fan-out necessary to make the design work.

Regardless, to sidestep this issue, the memory mapped coefficient storage block

ram was divorced from the coefficient fan-out. Now, distributed registers drive

the MAC which are supplied with coefficients via an asynchronous pipe during an

initialization stage each time the component is invoked. This optimization relaxed

constraints on the coefficient storage block RAM (which can now accommodate

multi-cycle reads and writes) and ultimately resolved the component’s timing

problems. Likewise, it improved the design’s scalability, as the block RAM may

now be of arbitrary size without interfering with the compute operation’s internal

timing.

Compute Optimizations

The critical compute path (Memory Polynomial in Fig. 4.2) relies on fixed

point arithmetic with various application-specific precisions to implement equa-

tion (4.8). One important compute optimization thus centered on optimizing

numerical precision against resource usage. The design was parameterized such

that each distinct numerical role (state matrix, delay line, coefficient, etc.) relied

on an independent fixed point type declaration with potentially unique precisions

and—complexity which is simple to manage within IntelFPGA’S HLS toolchain.

The tradespace between these parameters and the model’s overall numerical ac-

curacy was optimized by recompiling with various parameter sets, comparing

their simulated outputs against a floating point ground truth model generated

in Python, and selecting the parameter set with the least precision which still

achieved favorable error metrics.

78

To encourage the high-level synthesis compiler to generate favorable logical

structures in the memory polynomial component’s critical compute path, the

operation was divided into partial products wherever possible. Applying this

reorganization scheme allowed each partial operation to be parallelized and op-

timized separately, then later chained together favorably to encourage pipelin-

ing. To further encourage optimal structures, several of the operation’s partial

products were implemented leveraging unconventional C++ loop structures and

IntelHLS-specific preprocessor directives. Fig. 4.3 diagrams an approximation of

the achieved compute-path pipeline1, demonstrating the relationship between its

partial products and visualizing motivating principles from Section 4.3. For the

remainder of this section, several of these optimal structures will be discussed

along their associated code snippet. Many of these structures rely on the HLS

preprocessor directive #pragma unroll which forces full loop unrolling, gener-

ating parallel logic for each loop iteration. For this operation to be successful,

there must not be any data dependencies between iterations.

Envelope Calculation

To sidestep the data dependency inherent in power-of-envelope term generation

and reduce resource consumption, higher order enveloped terms are computed

via a pipelined approach rather than direct parallel computation. In this stage

of the critical compute path, the first order magnitude term is computed and

shifted into delay matching logic for later use.

1Many computational details have been excluded for brevity.

79

1 // Delay match x with multi -clock latency magnitude samples

2 delay_readin [0] = x;

3

4 // abs(x) ^ 2

5 delay_mag [0] = x.real()*x.real() + x.imag()*x.imag();

Code 4.1: Envelope Calculation

Delay Lines, Matching, and Pipeline Assist Logic

Sample reorganization and delay matching for the compute path is managed by

the following two loops. In particular, the code below represents the first loop

(which includes the logic for generating the delay line bank in stage e) and in

part implements a one-dimensional delay line with boundaries every M samples

corresponding to a flattened version of the 2D shift shown in equation (4.10).

1 // Shift delay lines

2 int i;

3 #pragma unroll

4 for(int m=MP_MAX_M -1; m>=0; --m){

5 #pragma unroll

6 for(int k=MP_MAX_K -1; k>0; --k){

7 // Do not shift across region boundary.

8 i = m*MP_MAX_K + k;

9 delay_matrix[i] = delay_matrix[i-1];

10 // magnitude delay line

11 delay_kmag[i] = delay_kmag[i-1];

12 }

13 }

Code 4.2: Delay Lines

Likewise, delay-matching logic is generated by the following which corresponds

partially to stages a–d
1 // Magnitude assembly & delay matching

2 #pragma unroll

3 for(int i=MP_MAX_K -1; i>0; --i){

4 // delay complex samples

5 delay_readin[i] = delay_readin[i-1];

6

7 // delay raw magnitude samples

8 delay_mag[i] = delay_mag[i-1] * 1;

9

10 // assemble powers of each magnitude leveraging raw magnitude delay line

11 delay_kmag[i*MP_MAX_K] = delay_kmag [(i-1)*MP_MAX_K] * delay_mag[i];

12 }

Code 4.3: Delay Matching and Pipeline-Assist Logic

State Matrix Generation

As detailed in equation (4.10), each new sample shifted into the component corre-

sponds to a new column shifted into the state matrix, where each row represents a

distinct power-of-envelope term—the following HLS snippet generates this logic,

80

corresponding to stages d–e in Fig. 4.3. Note: although state matrix samples are

generated here, they are delayed elsewhere—specifically, by the logic detailed in

Section 4.2.2.
1 // Iterate state matrix

2 #pragma unroll

3 for(int i=0; i<MP_MAX_K; ++i){

4 // Multiply raw sample delayed by constant value "MP_MAX_K"

5 // by that sample ’s magnitude to the kth power , selected

6 // from the delay_kmag structure. Each "k" applies a one

7 // clock cycle delay , which is managed by forcing the

8 // constant delay "MP_MAX_K" and selecting values from

9 // delay_kmag such that all samples are time -aligned.

10 delay_matrix[i*MP_MAX_K] = delay_readin[MP_MAX_K -1] * delay_kmag[i*MP_MAX_K + MP_MAX_K -i-1];

11 }

Code 4.4: Stages d–e: compute new state matrix samples

Inner Product

Lastly, the final operation—which computes the inner product between the state

and coefficient matrices—was implemented as a multiply-accumulate (MAC) op-

eration. This maps efficiently to hardware as a multiply-accumulate tree, which

is inferred by the HLS compiler from the following structure representing stages

f–j of Fig. 4.3
1 // Apply coefficients to delay matrix , sum to form output sample

2 y_pd = 0;

3 #pragma unroll

4 for (int i=0; i<MP_MAX_K*MP_MAX_M; ++i){

5 y_pd += delay_matrix[i] * coeffs[i];

6 }

Code 4.5: Stages f–j: optimized MAC tree for computing inner product.

4.2.3 Simulation and Results in-Hardware

After optimization, our HLS implementation of the memory polynomial model

achieved favorable results in simulation (simulation error analysis shown in Fig.

4.5). With substantial pipelining, the component achieved an optimal II of 1.

Although Fig. 4.3 demonstrates the generic pipeline model targeted during the

design process, in actuality the synthesized logic includes many more pipeline

stages. In total, the internal pipeline has a total latency of 123 clock cycles, sug-

81

Figure 4.4: Post-fit floorplan for the component (including supporting testbench
logic) when compiled for the A10 [24]. Reprinted from Herndon and Yeary (2022)
© 2022 IEEE

gesting an equivalent number of pipeline stages when considering the achieved II.

Likewise, to meet the requirements of the module’s target parent chip (IntelF-

PGA Arria 10, model 10AX057N2F40E2SG), the component’s desired maximum

frequency of 275.00MHz was successfully achieved, allowing the component to be

double-pumped to meet polyphase baseband throughput requirements. Table 4.1

shows the post-compilation resource usage of our component, and Fig. 4.4 shows

the FPGA’s post-fit floorplan. In the Arria 10, the resources available within the

82

Figure 4.5: Comparison between the HLS component’s co-simulation test results
and the Python model simulation [24]. Reprinted from Herndon and Yeary (2022)
© 2022 IEEE

FPGA are divided between ALUTs, FFs, RAMs, DSPs, and MLABs, where:

• ALUTs are look-up table units,

• FFs are flip-flop units,

• RAMs are dedicated block ram units,

• DSPs are digital signal processing units, and

• MLABs are distributed memory units.

ALUTs FFs RAMs DSPs MLABs
Units 16480 23156 3 106 192
% Total 3.49% 2.38% 1.35% 0.11% 6.98%

Table 4.1: Post-Compilation Resource Usage

In total, the component’s relatively low resource consumption was sufficient for

83

our purposes, and enabled four parallel components to be instantiated corre-

sponding to the four independent baseband channels managed by the A10 unit.

4.2.4 Future Work

In its current state, the HLS component is acceptable in both form and function

for our target applications—however, reducing resource consumption and one

potential new feature have been targeted for future efforts (which will focused

primarily on optimization). Although the component’s resource usage is accept-

able in its current state (shown in Table 4.1), ALUT and FF usage could likely be

reduced. After limited examination, much of the excess in these two unit types

appears tied to the asynchronous coefficient loading process described in Section

4.2.2, a design choice which was required to meet timing. Although this timing

optimization resulted in a disproportionate increase in resource usage, this neg-

ative trade-off appears disconnected from the compute path and could likely be

corrected via close inspection of the component’s usage statistics and slight mod-

ifications to the coefficient bus architecture. On a more positive note, this timing

optimization created an opportunity for a novel feature should it ever be desir-

able. As the meta-function of coefficient loading is now divorced from the DPD

compute operation and since the component leverages the component invocation

interface (an asynchronous control scheme offered within IntelFPGA HLS [2]),

the component was developed to operate on each new pulse in complete isolation

with no persistent state. Each component invocation loads coefficients from a

multi-cycle latency memory-mapped RAM block which is (as of yet) sized to fit

a single model configuration. With limited design work, the component’s coeffi-

cient storage could be resized to accommodate more than one DPD model and an

index term could be added to the component’s invocation interface with minimal

84

impact to resource usage or logical complexity. This would allow for pulse-to-

pulse distortion model changes based on external variables (e.g. temperature),

a potentially valuable capability which could enable performance improvements

across an even wider range of environmental conditions.

4.2.5 Summary

This section details the architecture of an FPGA-based high-level synthesis com-

ponent for applying the memory polynomial model to data streams in real-time.

By analyzing the model’s compute structure and data flow, several critical opti-

mization points were found and exploited, ultimately resulting in a design which

achieved optimal throughput (II=1) while retaining numerical accuracy, favorable

model performance, and acceptable resource consumption.

In addition to novel compute systems for applying predistortion, next-generation

systems will correspondingly require new training methods for performing in-situ

calibration. In the following section, a series of experiments are detailed which

sought to explore the feasibility of training predistortion models using baseband

IQ data captured via mutually coupled receiver elements adjacent to a saturating

transmit element.

4.3 Digital Predistortion Model Training via Mutual Cou-

pling: A Case Study

For systems to support on-site recalibration of predistortion models, there must

be feedback paths in place for capturing model training data. Several archi-

tectures currently exist for enabling this behavior. One option uses high-power

switches after each amplifier’s output to create loopback paths during calibration.

85

Another option sees RF couplers at each amplifier’s output performing much the

same function as the switched option, though passively. Although effective, such

options increase the complexity of front-end modules and exclude additional dis-

tortion effects which may be generated after the feedback point from the model

training process. In this section, mutual coupling between active array elements

is discussed as another potential option for creating feedback paths for measuring

predistortion training data—one which potentially avoids the drawbacks inherent

to hardware solutions while offering its own advantages.

In an array environment, mutual coupling refers to the set of all inter-element

interactions wherein energy radiated from one element is collected and re-radiated

by adjacent elements and vice versa. Mutual coupling has been shown to be an

important phenomenon that allows for calibration, for instance [5, 6, 55] and oth-

ers. In this section, a new potential application for this phenomenon is discussed,

i.e. as a mechanism for providing feedback for measuring transmitter front-end

distortion for elements within a DEE array. By transmitting a saturated signal

from a single element and capturing couplings from several adjacent receiver el-

ements, it is thought that the distortion affecting the transmitting element may

be characterized using those data (as each receiver observes the same distorted

radiative source) in spite of differences between receiver elements and the imper-

fect nature of the measurement. This method opens the possibility of modeling

each element’s complete RF chain from DAC to antenna, theoretically allowing

the memory polynomial model to account for additional sources of distortion in

the system that would otherwise be missed.

86

50Ω 50Ω
Element
enabled?

Yes

50Ω 50Ω 50Ω 50Ω 50Ω 50Ω

Test Waveform

Direct RF Loopback

Coupled RF Loopback

No

Driver Amplifier
Saturated
Amplifier

Figure 4.6: Diagram of the research platform, showing the relationship between
the observation and coupled loopback channels [25]. Reprinted from Herndon,
Yeary, and Palmer (2020) © 2020 IEEE

4.3.1 Experimental Procedure and Results

As part of the process of working towards a practical implementation of digital

predistortion for use in the next-generation phased array radars in development

at the ARRC, a research platform has been developed for investigating possible

methods for training and testing memory polynomial predistortion. Rather than

demonstrating the effectiveness of these methods in reducing spectral regrowth

produced in an isolated high-power amplifier [17], this platform aims to emulate

87

a practical system with the understanding that future DEE systems will require

amplifier characterization from imperfect measurements.

The research platform is a simple phased array (diagram seen in Figure 4.6)

constructed from a collection of fundamental radar components (TR Module,

HPA, etc.) in order to emulate a functional system. Control software was de-

veloped using RadarControllerAPI to allow easy control via RadarControllerGUI

(see Chapter 2), which helped automate experiments performed with the system,

and included hooks for applying DPD models to transmit waveforms as well as

ScanModes for visualizing amplifier linearity in real time. The forth row within

an 8 × 8 array developed within the ARRC2 acts as an 8 × 1 linear array, with

all other array elements terminated with 50 Ω loads. This test array is mounted

facing straight up to minimize environmental reflections during radiative test-

ing. A single element from this set is selected as the transmitter element by

manually connecting it to the amplifier’s output. The seven remaining elements

were then attached to a digitally-controllable phase-amplitude controller (PAC)

board which multiplexes their collected energy to a single port—allowing their

couplings with the transmit element to be measured in isolation from the other

receiving elements. To emulate the digital backend of a single element within a

digital array, a TR module developed within the ARRC leveraging an Analog De-

vices AD9361 digital transceiver chip is used to synthesize and measure arbitrary

S-band RF. To generate a sufficiently distorted test signal, the transmitter port

of this device was connected to a series of two high-power amplifiers—the first

acting as a driver amplifier, followed by a second amplifier driven into saturation

by the first. Next, a power divider splits the amplifier’s output between an obser-

vation loopback channel and a single radiating element on the linear test array.

The selected transmit element was changed over the course of the experiment to

2For further discussion of a similar 8× 8 array, see [14]

88

capture measurements from different locations on the array operating subject to

differing array geometries. The loopback channel acts as the experiment’s ground

truth by providing a direct observation of the distorted amplifier’s output, use-

ful for judging the accuracy of predistortion models generated using the coupled

measurements. Later, two experiments performed using this platform will be

discussed—one where the array was tested outside, and the other where it was

tested within the ARRC’s farfield RF anechoic chamber. Both yielded interesting

insights into the nature of the problem.

As maximum transmit pulse width (τ) limitations exist in practical systems

(effectively limiting the maximum length of any one training waveform), there is

strong motivation to explore ways of combining sets of trials into a single, rich

dataset for use training the predistortion models. The TR module used in this

project specifically has a maximum transmit length of τ = 100 µs with a baseband

sampling frequency of Fs = 30 MHz, facts which together limit the maximum

training dataset length to 3000 samples. It was discovered early in the research

process that datasets of this size were insufficient to accurately characterize the

amplifier, and resulted in unusable predistortion models. Qualitatively, the point

density in the Ppin → Pout functional space from these short datasets is sparse

compared to results generated using longer training waveforms as in [17], a result

of the limited available random samples spreading out too broadly within the

output space. Using longer training waveforms in effect ‘fills in’ more of these

points, generating a more complete picture of the amplifier’s characteristic curve

and providing an improved target for model fitting. With the aim of reproducing

the results seen in the literature which drew from longer datasets [17], ten different

waveforms were generated using complex Gaussian noise then filtered to 10 MHz

of bandwidth. To emulate larger contiguous datasets, these trials were captured

89

separately then stitched together in post-processing. Using four different transmit

element positions, the couplings from the transmit element to each of the seven

receiver elements were captured using this method, generating a breadth of data

for use in model training.

Leveraging these data and following methodologies detailed in [17], predis-

tortion models were generated by directly implementing the formulas outlined

in Section 4.3 in a MATLAB script. One significant aspect of model training

not yet addressed, though, is the process for selecting the most effective param-

eters for the memory polynomial model (polynomial and memory orders K and

M for both the forward and reverse models). In lieu of a more deliberate ap-

proach, a brute-force algorithm was developed to permute through a predefined

coefficient space. For each combination of parameters, the input signal xt was

passed through the forward model ĥforward and scored against the training signal

yt by finding the mean-squared error between the two signals. Similarly, yt was

passed through the predistortion model ĥinverse and scored against xt to deter-

mine how effectively the trained predistortion model could undo distortion effects

observed in yt. From these trials, the most effective coefficients were those which

minimized a combination of the scores generated from the forward and inverse

models.

Early in development, this process for generating and verifying predistortion

models was tested using data captured from the direct observation loopback chan-

nel. The results of this trial (seen in Figure 4.7) show reduced spectral spreading

and improved Ppin → Pout linearity, and in doing so demonstrate the method’s

effectiveness. Following these initial efforts, two experiments were performed to

generate training data from mutual coupling measurements using the previously

described procedure.

90

Memory Polynomial (MP) predistortion Simulation
No predistortion

Hardware Test of Pre-distorted Waveforms

Pre-distorted via MP model

Improved spectral
response in
predistorted signal

Spectral regrowth
from HPA distortion

Figure 4.7: Successful test of predistortion using a model trained from data
measured via the ground truth direct observation channel [25]. Reprinted from
Herndon, Yeary, and Palmer (2020) © 2020 IEEE

Experiment 1

In the first experiment, the test platform was placed outside away from obstacles.

Figure 4.8 shows a series of ten trials captured from the test platform, where a

single element radiates and was observed from only one receive element. The

reference loopback channel has the expected shape of a characteristically dis-

torted, highly-saturated amplifier. The coupled loopback, promisingly, has the

same general shape as the observation channel but appears corrupted by addi-

tional distortion from an unknown source. In experiment 2, a second trial was

performed in an attempt to isolate these unknown distortion effects.

91

0 0.5 1 1.5 2 2.5

Pin

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
o

u
t

Observation Channel vs. Mutual Coupling Feedback

Observation Channel

Mutual Coupling Feedback

Figure 4.8: Using data from experiment 1, power curves observed from the direct
loopback channel compared to those from the mutual coupling feedback channel
[25]. Reprinted from Herndon, Yeary, and Palmer (2020) © 2020 IEEE

Experiment 2

In an effort to account for the significant difference in shape between the observa-

tion and coupled channels from Section 4.3.1, a second experiment was performed

with the research platform placed in the ARRC’s farfield chamber to help atten-

uate environmental effects, narrowing the field of causes which could explain the

discrepancy. Although marginally improved, the structure of the data captured

in this experiment (seen in Figure 4.9a) remains highly similar to the data cap-

tured during the first experiment, suggesting environmental effects were not the

most significant source of distortion. Further investigation of the data found that

the distortion observed in both experiments was primarily a result of time mis-

alignment between Ppin and Pout leading to the reference and training waveforms

de-correlating.

To find and correct for this unknown time offset, a cost function was defined as

92

0 0.5 1 1.5 2 2.5

Pin

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
o

u
t

Original Unaligned

Cost = 0.088054

Observation Channel

Mutual Coupling Feedback

(a) Before time alignment.

0 0.5 1 1.5 2 2.5

Pin

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
o

u
t

Aligned in Post-Processing

Cost = 0.012339

Observation Channel

Mutual Coupling Feedback

(b) After time alignment.

Figure 4.9: Using data from experiment 2, a comparison between raw and aligned
Ppin → Pout, showing improved correlation and substantially reduced cost between
the observation and coupled channels after alignment [25]. Reprinted from Hern-
don, Yeary, and Palmer (2020) © 2020 IEEE

the average Cartesian distance between 2D points in the observation and coupled

channels’ functional spaces. This metric was then minimized across a range of

artificially time-shifted versions of the coupled data to find the time offset which

best aligns the two datasets. Shown in Figure 4.9b with their corresponding costs,

the cost-minimized coupling data shows a marked improvement in its apparent

correlation with the observation loopback channel (e.g. point pairs match more

closely between the two datasets) as compared to the unaligned data, an observa-

tion reinforced by the calculated costs which saw close to an 85% decrease after

alignment.

4.3.2 Summary

This section specifically addressed efforts to explore methods of supporting array

calibration by combining aspects of mutual coupling and traditional non-linear

digital predistortion. Rather than relying on switchable RF paths to provide

training signals for predistortion algorithms as many radars do, mutual coupling

93

signals are captured from elements adjacent to the transmit element under test,

providing one or more feedback paths for capturing datasets for training predis-

tortion models for each element. Using the research platform described therein,

measurements of a highly saturated amplifier’s output were observed simulta-

neously from both mutual coupling between active array elements and from a

loopback channel, allowing for direct comparisons to be drawn between those

datasets. This platform and the methodologies described therein aim to provide

a foundation for future studies on this topic.

4.4 Closing Remarks

Next generation digital phased array radars will rely on a variety of optimization

methods to achieve performance targets. Digital predistortion is one such cali-

bration method, which in the case of DEE arrays will ensure that each element

is able to achieve near-linear behavior in saturation, optimizing the maximum

power-on-target the array is able to generate without exceeding waveform distor-

tion tolerances.

94

Chapter 5

Conclusion

The next generation of phased array radars will foster new paradigms of ar-

ray functionality, with digital-at-every-element arrays in particular offering many

advantages over more conventional array architectures. However, the promise

offered by these systems requires overcoming proportionally complex engineering

challenges before their vision can be realized.

In Chapter 2, an architecture for generalized high-level software for managing

a set of networked controller nodes was described. At its core, this software pack-

age provides a basis for controlling sets of software daemons distributed locally

or across a network, enabling cohesive and repeatable control of both single or

multi-nodal systems. Originally developed for the CPPAR project to allow con-

trol of a bistatic system (see Chapter 3), additional efforts were taken to divorce

platform specific logic from the original codebase, resulting in a capable software

package for conducting research with experimental weather radar systems which

has seen use in several other projects.

In Chapter 3, the calibration procedure for the Cylindrical Polarimetric Phased

Array Radar (CPPAR) system was discussed in detail. This system makes use of

a remote farfield calibration horn in combination with synchronous GPS trigger-

ing to capture bistatic measurements with precisely aligned pulse envelopes, but

95

decidedly non-coherent phase. Environmental differences between the two nodes’

reference clock generators resulted in a time-varying frequency offset between the

two transceivers’ local oscillators, which introduced an arbitrary phase drift ob-

servable in the baseband IQ data, thereby concealing relative phase differences

between elements in the measured patterns. To manage this effect, the system’s

mechanical pedestal, rapid beamformer weight switching, and precise element-

level controls were leveraged to design a unique interleaved measurement scheme

which exploits the array’s cylindrical geometry to generate patterns for all ele-

ments within a single scan. This method was designed to ensure that a subset of

elements were always observable from the farfield node, thus providing a phase-

tracking target which could be measured in post-processing. By quantifying the

precise sampling geometry for the CPPAR’s array for the duration of the mea-

surement rotation, we were able to achieve accurate post-processing spatial align-

ment of the measured patterns. Likewise, through two strategic reinterpretations

of the two-dimensional pattern matrices generated by this measurement, a so-call

motion-invariant view of the bistatic inverse pattern was formed, providing a ba-

sis for estimating bistatic phase drift while attenuating phase changes induced by

the array’s physical rotation. Finally, the bistatic phase drift estimate generated

by this process was subtracted from the spatially aligned element patterns to

yield sufficiently accurate power and phase element patterns for the array’s 48

horizontally and 48 vertically-polarized elements, enabling calibration.

Continuing the theme of calibration, Chapter 4 details theory and system-

level implications for digital predistortion (DPD) as applied to phased array

radar systems. In this chapter, the memory polynomial technique for model-

ing ‘nonlinear systems exhibiting memory effects’ is detailed. Later, we detail

our implementation of the memory polynomial within the IntelFPGA High-Level

96

Synthesis toolkit. By analyzing the model in abstract and observing aspects

of its dataflow, a practical pipelined architecture was defined capable of com-

puting the model’s output in real-time. Likewise, we discussed specifics of how

this component was integrated into our system and detailed our rational for a

variety of design decisions, including the use of double-pumping to achieve our

desired throughput given our application’s two-sample polyphase transmit dat-

apath. Lastly, we addressed our progress conducting a research project which

aimed to explore methods for combining aspects of mutual coupling and tra-

ditional non-linear digital predistortion. Rather than relying on RF switches or

RF couplers within a system’s RF front-end to observe nonlinear distortion intro-

duced post-amplifier, this section details an alternate design which sees the novel

application of mutual coupling measurements for the purpose of training predis-

tortion algorithms. Using the research platform described therein, measurements

of a highly saturated amplifier’s output were observed simultaneously from both

mutual coupling between active array elements and from a loopback channel, al-

lowing for direct comparisons to be drawn between those datasets. This platform

and the methodologies described therein aimed to provide a foundation for future

studies on this topic.

Taken together, this thesis details a variety of practical engineering chal-

lenges related to phased array system design, with particular emphasis placed on

methods for control, calibration, and performance optimization of these systems.

Therefore, the efficacy of phased array radar research gains momentum.

97

Bibliography

[1] Designing polyphase DPD solutions with 28-nm FPGAs. Technical report,
Altera Corporation, San Jose, CA, USA, 2012.

[2] Intel® high level synthesis compiler pro edition reference manual. Technical
report, Intel Corporation, Santa Clara, CA, USA, 2020.

[3] C. Andrich, A. Ihlow, W. Kotterman, N. Beuster, and G. Del Galdo. Us-
ing software defined radios for baseband phase measurement and frequency
standard calibration. In 2017 IEEE International Instrumentation and Mea-
surement Technology Conference (I2MTC), pages 1–5, May 2017.

[4] N. C. Athanasopoulos, N. K. Uzunoglu, and J. D. Kanellopoulos. Develop-
ment of a 10 GHz phased array cylindrical antenna system in corporating if
phase processing. Progress In Electromagnetics Research, 59:17–38, 2006.

[5] H. M. Aumann, A. J. Fenn, and F. G. Willwerth. Phased array antenna cal-
ibration and pattern prediction using mutual coupling measurements. vol-
ume 37, pages 844–850. IEEE, 1989.

[6] D. Bekers, R. van Dijk, and F. van Vliet. Mutual-coupling based phased-
array calibration: A robust and versatile approach. In 2013 IEEE Interna-
tional Symposium on Phased Array Systems and Technology, pages 630–637.
IEEE, 2013.

[7] J. K. Bekkeng. Calibration of a novel MEMS inertial reference unit. IEEE
Transactions on Instrumentation and Measurement, 58(6):1967–1974, June
2009.

[8] A. Ben-Israel and T. N. Greville. Generalized Inverses: Theory and Appli-
cations, volume 15. Springer Science & Business Media, 2003.

[9] S. Benedetto, E. Biglieri, and R. Daffara. Modeling and performance evalu-
ation of nonlinear satellite links-a Volterra series approach. Number 4, pages
494–507. IEEE, 1979.

[10] S. Boyd and L. Chua. Fading memory and the problem of approximating
nonlinear operators with Volterra series. volume 32, pages 1150–1161. IEEE,
1985.

98

[11] G. Bucci and C. Landi. Measurement techniques for the characterization of
wireless communication systems in time domain. In IMTC 2001. Proceed-
ings of the 18th IEEE Instrumentation and Measurement Technology Confer-
ence. Rediscovering Measurement in the Age of Informatics (Cat. No.01CH
37188), volume 2, pages 1265–1270 vol.2, May 2001.

[12] C. Chang, M. Jin, and J. Curlander. Squint mode SAR processing algo-
rithms. In Proc. IGARSS, volume 89, pages 1702–1706, 1989.

[13] M. I. Dessouky, H. A. Sharshar, and Y. A. Albagory. Efficient sidelobe
reduction technique for small-sized concentric circular arrays. Progress In
Electromagnetics Research, 65:187–200, 2006.

[14] J. D. Dı́az, J. L. Salazar, J. A. Ortiz, C. Fulton, N. Aboserwal, R. Kelley,
and R. Palmer. A dual-polarized cross-stacked patch antenna with wide-
angle and low cross-polarization for fully digital multifunction phased array
radars. In 2016 IEEE International Symposium on Phased Array Systems
and Technology (PAST), pages 1–4. IEEE, 2016.

[15] L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R.
Giardina. A robust digital baseband predistorter constructed using memory
polynomials. volume 52, pages 159–165. IEEE, 2004.

[16] Z. Dunn, M. Yeary, C. Fulton, and N. Goodman. Memory polynomial model
for digital predistortion of broadband solid-state radar amplifiers. In 2015
IEEE Radar Conference (RadarCon), pages 1482–1486. IEEE, 2015.

[17] Z. Dunn, M. Yeary, C. Fulton, and N. Goodman. Wideband digital predis-
tortion of solid-state radar amplifiers. volume 52, pages 2452–2466, October
2016.

[18] B. Friedlander. The MVDR beamformer for circular arrays. In Conference
Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and
Computers (Cat. No. 00CH37154), volume 1, pages 25–29. IEEE, 2000.

[19] C. Fulton, J. L. Salazar, Y. Zhang, G. Zhang, R. Kelly, J. Meier, M. McCord,
D. Schmidt, A. D. Byrd, L. M. Bhowmik, S. Karimkashi, D. S. Zrnic, R. J.
Doviak, A. Zahrai, M. Yeary, and R. D. Palmer. Cylindrical polarimetric
phased array radar: Beamforming and calibration for weather applications.
IEEE Transactions on Geoscience and Remote Sensing, 55(5):2827–2841,
May 2017.

[20] X. Gao, O. Edfors, F. Rusek, and F. Tufvesson. Massive MIMO performance
evaluation based on measured propagation data. IEEE Transactions on
Wireless Communications, 14(7):3899–3911, 2015.

99

[21] R. L. Haupt and H. Southall. Experimental adaptive cylindrical array. In
1999 IEEE Aerospace Conference. Proceedings (Cat. No. 99TH8403), vol-
ume 3, pages 291–296. IEEE, 1999.

[22] W. Heberling and S. J. Frasier. Evaluation of phased-array weather-radar
polarimetry at X-band. In 2018 IEEE Radar Conference (RadarConf18),
pages 0851–0855. IEEE, 2018.

[23] J. Herd, S. Duffy, D. Carlson, M. Weber, G. Brigham, C. Weigand, and
D. Cursio. Low cost multifunction phased array radar concept. In 2010
IEEE International Symposium on Phased Array Systems and Technology,
pages 457–460. IEEE, 2010.

[24] M. Herndon and M. Yeary. Real-time FPGA-based digital predistortion for
improved amplifier performance in next generation phased arrays. In 2022
IEEE International Radar Conference (RADAR), pages 798–803, 2022.

[25] M. Herndon, M. Yeary, and R. Palmer. Studies of front-end distortion char-
acterization via mutual coupling measurements in phased array systems. In
2020 IEEE International Radar Conference (RADAR), pages 798–803, 2020.

[26] M. M. Herndon and M. B. Yeary. Calibration of the cylindrical polarimetric
phased array radar via GPS-disciplined bistatic pattern measurement. IEEE
Transactions on Aerospace and Electronic Systems, 58(2):1299–1315, 2022.

[27] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and
P. Roussel. The microarchitecture of the Pentium® 4 processor. In Intel
technology journal. Citeseer, 2001.

[28] K. Hondl and M.Weber. NOAA’s meteorological phased array radar research
program. In 2019 IEEE International Symposium on Phased Array System
& Technology (PAST), pages 1–6. IEEE, 2019.

[29] L. Infante, S. Mosca, and G. Pellegrini. A beam synthesis procedure for
matrix-fed cylindrical antenna arrays. In 2016 IEEE International Sympo-
sium on Phased Array Systems and Technology (PAST), pages 1–5. IEEE,
2016.

[30] P. Ioannides and C. A. Balanis. Uniform circular arrays for smart antennas.
IEEE Antennas and Propagation Magazine, 47(4):192–206, 2005.

[31] B. Isom, R. Palmer, R. Kelley, J. Meier, D. Bodine, M. Yeary, B.-L. Cheong,
Y. Zhang, T.-Y. Yu, and M. I. Biggerstaff. The atmospheric imaging radar:
Simultaneous volumetric observations using a phased array weather radar.
Journal of Atmospheric and Oceanic Technology, 30(4):655–675, 2013.

100

[32] S. Karimkashi and G. Zhang. A dual-polarized series-fed microstrip antenna
array with very high polarization purity for weather measurements. IEEE
Transactions on Antennas and Propagation, 61(10):5315–5319, 2013.

[33] E. Kiuchi and I. Ueda. Tactical cylindrical active phased array radar. In
Proceedings of International Symposium on Phased Array Systems and Tech-
nology, pages 222–225. IEEE, 1996.

[34] A. Klilou, S. Belkouch, P. Elleaume, P. Le Gall, F. Bourzeix, and M. M.
Hassani. Real-time parallel implementation of pulse-Doppler radar signal
processing chain on a massively parallel machine based on multi-core DSP
and serial rapidio interconnect. EURASIP Journal on Advances in Signal
Processing, 2014(1):161, 2014.

[35] C. Koukourlis, G. Kyriacou, S. Mavrides, S. Diamantis, K. T. Spyridakis,
J. Sahalos, G. Stratakos, P. Tsenes, and N. Uzunoglou. Design and develop-
ment of an active printed cylindrical antenna array for radar applications.
Union Radio-Scientifique Internationale, (8), 2002.

[36] J. Lake, M. Yeary, and R. Palmer. Real-time digital equalization to en-
hance element-level digital beamforming. In 2019 IEEE Radar Conference
(RadarConf), pages 1–6. IEEE, 2019.

[37] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta. Massive MIMO
for next generation wireless systems. IEEE Communications Magazine,
52(2):186–195, 2014.

[38] G. G. Lema, G. T. Tesfamariam, and M. I. Mohammed. A novel elliptical-
cylindrical antenna array for radar applications. IEEE Transactions on An-
tennas and Propagation, 64(5):1681–1688, 2016.

[39] Z. Li and G. Zhang. Similarities and differences in clutter detection be-
tween electronic scans and mechanical scans with a polarimetric-phased ar-
ray radar. IEEE Transactions on Geoscience and Remote Sensing, pages
1–9, 2021.

[40] Z. Li, G. Zhang, M. H. Golbon-Haghighi, H. Saeidi-Manesh, M. Herndon,
and H. Pan. Initial observations with electronic and mechanical scans using
a cylindrical polarimetric phased array radar. IEEE Geoscience and Remote
Sensing Letters, 18(2):271–275, 2021.

[41] U. Meyer-Baese and U. Meyer-Baese. Digital Signal Processing with Field
Programmable Gate Arrays, volume 65. Springer, 2007.

101

[42] D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan. A generalized
memory polynomial model for digital predistortion of RF power amplifiers.
volume 54, pages 3852–3860, Oct 2006.

[43] D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan. A generalized
memory polynomial model for digital predistortion of RF power amplifiers.
volume 54, pages 3852–3860. IEEE, 2006.

[44] S. Narayanan. Transistor distortion analysis using Volterra series represen-
tation. volume 46, pages 991–1024. Wiley Online Library, 1967.

[45] P. O’Leary, M. Harker, and R. Neumayr. Savitzky-Golay smoothing for
multivariate cyclic measurement data. In 2010 IEEE Instrumentation Mea-
surement Technology Conference Proceedings, pages 1585–1590, May 2010.

[46] R. D. Palmer, C. J. Fulton, J. Salazar, H. Sigmarsson, and M. Yeary. The
“Horus” radar—an all-digital polarimetric phased array radar for multi-
mission surveillance. In 99th American Meteorological Society Annual Meet-
ing. AMS, 2019.

[47] R. Penrose. A generalized inverse for matrices. In Mathematical proceedings
of the Cambridge philosophical society, volume 51, pages 406–413. Cambridge
University Press, 1955.

[48] C. Pui, M. Trinkle, and B. Ng. Aircraft detection experimental results for
GPS bistatic radar using phased-array receiver. 2013.

[49] C. Y. Pui and M. Trinkle. GPS bistatic radar using phased-array technique
for aircraft detection. In 2013 International Conference on Radar, pages
274–279. IEEE, 2013.

[50] J. L. Salazar, T.-Y. Yu, M. McCord, J. Diaz, J. A. Ortiz, C. Fulton, M. Yeary,
R. Palmer, B.-L. Cheong, H. Bluestein, et al. An ultra-fast scan C-band
polarimetric atmospheric imaging radar (PAIR). In 2019 IEEE Interna-
tional Symposium on Phased Array System & Technology (PAST), pages
1–5. IEEE, 2019.

[51] J. Sandenbergh, M. Inggs, and W. Al-Ashwal. Evaluation of coherent netted
radar carrier stability while synchronised with GPS-disciplined oscillators.
In 2011 IEEE RadarCon (RADAR), pages 1100–1105. IEEE, 2011.

[52] A. Savitzky and M. J. E. Golay. Smoothing and differentiation of data by
simplified least squares procedures. Analytical Chemistry, 36(8):1627–1639,
1964.

102

[53] M. Schetzen. The Volterra and Wiener Theories of Nonlinear Systems. Wi-
ley, 1980.

[54] J. E. Stailey and K. D. Hondl. Multifunction phased array radar for aircraft
and weather surveillance. Proceedings of the IEEE, 104(3):649–659, 2016.

[55] H. Steyskal and J. S. Herd. Mutual coupling compensation in small array
antennas. volume 38, pages 1971–1975. IEEE, 1990.

[56] A. Stumme, W. M. Dorsey, J. Valenzi, and O. Kilic. Additively-
manufactured cylindrical array with snap-fit connector integration. In 2019
IEEE International Symposium on Antennas and Propagation and USNC-
URSI Radio Science Meeting, pages 85–86. IEEE, 2019.

[57] P. Tirumalai, M. Lee, and M. Schlansker. Parallelization of loops with exits
on pipelined architectures. 1990.

[58] G. Ungureanu, T. Sundström, A. Åhlander, I. Sander, and I. Söderquist.
Formal design, co-simulation and validation of a radar signal processing sys-
tem. In 2019 Forum for Specification and Design Languages (FDL), pages
1–8. IEEE, 2019.

[59] K. L. Virga and H. Zhang. Spatial beamformer weighting sets for circular
array STAP. In Proceedings 2000 IEEE International Conference on Phased
Array Systems and Technology (Cat. No. 00TH8510), pages 561–564. IEEE,
2000.

[60] X. Wang, T. Yu, H. Hsiao, and J. Anderson. Double-pumping the inter-
connect for area reduction in coarse-grained reconfigurable arrays. In 2021
IEEE 32nd International Conference on Application-specific Systems, Ar-
chitectures and Processors (ASAP), pages 242–249, 2021.

[61] D. S. Watkins. Fundamentals of Matrix Computations, volume 64. John
Wiley & Sons, 2004.

[62] M. Yeary, G. Crain, A. Zahrai, C. D. Curtis, J. Meier, R. Kelley, I. R.
Ivic, R. D. Palmer, R. J. Doviak, G. Zhang, and T.-Y. Yu. Multichannel
receiver design, instrumentation, and first results at the National Weather
Radar Testbed. IEEE Transactions on Instrumentation and Measurement,
61(7):2022–2033, 2012.

[63] M. Yeary, R. Palmer, C. Fulton, J. Salazar, and H. Sigmarsson. Recent
advances on an S-band all-digital mobile phased array radar. In 2019 IEEE
International Symposium on Phased Array System & Technology (PAST),
pages 1–5. IEEE, 2019.

103

[64] E. Yildirim and E. Ercil. Development of an L-band cylindrical phased
array. In 2013 IEEE International Symposium on Phased Array Systems
and Technology, pages 746–751. IEEE, 2013.

[65] G. Zhang, R. J. Doviak, D. S. Zrnić, R. Palmer, L. Lei, and Y. Al-Rashid.
Polarimetric phased-array radar for weather measurement: A planar or
cylindrical configuration? Journal of Atmospheric and Oceanic Technology,
28(1):63–73, 2011.

104

