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1. Abstract

In this paper, we intend to explore consequences of Sarkaria’s Theorem in the
context of Graphic matroids. Sarkaria’s Theorem states that if χ is the chromatic
number of the Kneser graph of a simplicial complex ∆ and ∆ has m vertices, then ∆
cannot be embedded in Rd for d ≤ m−χ−2. This theorem provides a lower bound for
embedding simplicial complexes. For example, it can be used to prove that K5 is non-
planar. We start by covering important mathematical definitions related to the topic
at hand, including matroids, graphic matroids, and the Kneser graph of a matroid.
Then, we cover some examples to provide understanding of Sarkaria’s theorem and
motivations for pursuing this topic. We show how Sarkaria’s theorem is implemented
and how it can tell us a matroid is non-embeddable in dimensions higher than the
dimension of the matroid. After proving a special case with the embeddability of
the graphic matroid of K5, we generalize the proof to include all complete graphs.
This subsequently, can tell us information regarding the embeddability of any graphic
matroid.

2. Definitions

Definition 1. A graph is a pair of two sets (V,E). They are a vertex set V and an edge
set E, where the elements of E are unordered pairs of vertices from V representing
a connection between those two vertices. A complete graph is a graph such that if
x, y ∈ V then (x, y) ∈ E. In other words, all vertices share an edge between them.
We denote the complete graph as Kn, where n is the number of vertices of the graph.

Definition 2. The chromatic number of a graph is the least number of colors needed
to color the vertices a graph such that no two vertices that share an edge have the
same color.

Definition 3. An (abstract) simplicial complex ∆ on a vertex set X is a collection
of subsets of X such that if A ⊆ B ∈ ∆ then A ∈ ∆. The members of ∆ are called
simplices or faces. If an element of ∆ is not properly contained in any other element
of ∆ then it is called a facet.

The dimension of a simplicial complex is the maximum dimension of all of its
simplices, or, in other words, the dimension of the largest facets in the complex.
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Definition 4. A matroid M is a pair (E, I), where E is a finite set called the ground
set and I is a family of subsets of E with the following properties:

(1) ∅ ∈ I
(2) Every subset of an independent set is independent, i.e, if A ⊆ B ∈ I then

A ∈ I.
(3) If A,B ∈ I, and |A| > |B|, then there exists some x ∈ A \ B such that

B ∪ {x} ∈ I.

For example:

Let E = {1, 2, 3, 4, 5, 6} and set S ⊂ E is independent if |S| < 6

• ∅ ∈ I, since 0 < 6
• If B ∈ I, and A ⊆ B, then |A| ≤ |B| < 6, so A ∈ I
• Let A,B ∈ I and |A| > |B|. So there exists an x ∈ A\B such that |B∪{x}| ≤
|A| < 6.

Note that (1) and (2) are sufficient to fit the definition of a simplicial complex. We
call the simplicial complex of the matroid the matroid independence complex.

Definition 5. A graphic matroid is a matroid whose ground set is the edge set of a
graph G. A set of edges is independent if and only if it does not contain a cycle in
G. Any finite graph G can give rise to a graphic matroid M(G) by this definition.

Note that the facets of a graphic matroid are the spanning forests since adding any
edge not already in a spanning tree will complete a cycle.

For example, our previous matroid from Definition 4 is graphic:
E = {1,2,3,4,5,6} and set S ⊂ E is independent if |S| < 6
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Any subset of edges of size less than 6 is independent since only all 6 edges will make
a cycle.

Definition 6. A minimal non-face of a matroid M is a set X ∈ E such that X /∈ I
but X \ {a} ∈ I for all a ∈ X.



Definition 7. The Kneser graph of a simplicial complex S, denoted as KG(S), is
a graph whose vertices are the minimal non-faces of S. Two vertices are adjacent
whenever the corresponding two minimal non-faces are disjoint.

Note that the minimal non-faces of a graphic matroid are precisely all circuits of
the graph, since removing any edge of the circuit will result in a forest.

Definition 8. An Embedding of a simplicial complex ∆ in a space R is an injective
and structure-preserving map from ∆ to R. In other words, a representation of ∆ in
R where no there is no self intersection.
For example, a planar graph is an embedding of the graph as seen as a simplicial
complex.

3. Introduction to Sarkaria’s Theorem

To give a good idea of Sarkaria’s Theorem, we will use it to show that K5 is non-
planar. K5 can be seen as a simplicial complex where the vertex set is precisely the
vertex set of the graph and the edges as 1-dimensional simplices.

Figure 1. Graph of K5

Sarkaria’s Theorem states that if χ is the chromatic number of the Kneser graph of
a simplicial complex ∆ and ∆ has m vertices, then ∆ cannot be embedded in Rd for
d ≤ m− χ− 2. So, in this case, m = 5. Now, to find χ, we first need to know what
the minimal non-faces are for K5. If we have a subset of any three vertices, then it
is not face of K5. However, remove any one of those three vertices then we have an
edge of K5 which is a face. Thus, our minimal non-faces are any subset of 3 vertices
in K5. Since there are only 5 vertices, every minimal non-face must share at least
one vertex. Hence, in the Keneser graph, there are no adjacent vertices. Therefore,
χ = 1 and Sarkaria’s Theorem says that K5 is non-embeddable in R5−1−2 = R2.



4. Sarkaria’s Theorem and Graphic Matroids

Consider the following graph H (left). It only contains two cycles with disjoint
edges, (1; 2; 5) and (3; 4; 5). Thus its Kneser graph (right) has one edge.
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The graphic matroid of H, M(H), has 7 vertices since H has 7 edges. The chromatic
number of the Kneser graph of M(H) is 2. So, by Sarkaria’s Theorem, M(H) is not
embeddable in Rd where d = 7− 2− 2 = 3. Since the spanning tree of H needs only
4 edges, the largest facet of M(H) has 4 vertices. Thus M(H) is 3-dimensional. So
Sarkaria’s Theorem tell us this matroid is not embeddable in R3 even though it is
3-dimensional.

The Kneser graph may have no edges and still have the possibility for an interesting
result. Let us consider the graphic matroid of K4, M(K4). Any two cycles of K4

intersect. Thus, the Kneser graph of M(K4) has no edges. Hence, the Kneser graph
can be colored with 1 color, so χ = 1. Since the vertices of a graphic matroid are the
edges of the graph, m = 6. Thus, M(K4) is not embeddable in Rd for d ≤ 6−1−2 = 3.

Figure 2. K4 and its Kneser Graph
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Since a spanning tree of K4 has 3 edges, the graphic matroid is 2-dimensional. This
gives us an interesting result that our 2-dimensional matroid is non-embeddable in a
higher dimension, namely R3.

We can also see a similar example with the graphic matroid of K5. The Kneser
graph for M(K5) is much more complicated, having over 30 circuts. Thus, we need a



new approach to finding the chromatic number of the Kneser graph. As a warm-up
to our general result for coloring the Kneser graphs of graphic matroids, let us prove
the special case of M(K5).

Proposition 1. The chromatic number of KG(M(K5)) is 3.

Proof. Note that there are odd cycles in KG(M(K5)), thus the chromatic number is
strictly larger than 2. Let M(K5) be the graphic matroid of K5. Begin by labeling
each vertex of the Kneser graph of M(K5) by its lexicographically earliest edge not
including 1 or 2. For example, the cycle (1 3 4) has the label {3, 4}, and the cycle
(1 5 2 4 3) also has the label {3, 4}. Name T as the set of cycles labeled in this
way. The cycles that are not labeled are 3-cycles of the form (1 2 k), and 4-cycles
of the form (1 ` 2 k) where k, ` ∈ {3, 4, 5}. Name the sets of these cycles U and V
respectively. For these cycles, label the 4 cycles by the edge {min{k, `}, 5}. When
k 6= 5, label the 3-cycles {k, 5}, and when k = 5, label that 3-cycle {4, 5}.

Figure 3. The special 3-cycles and 4-cycles
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We want to show that the labels {3, 4}, {3, 5}, and {4, 5} are a valid coloring of
the graph KG(M(K5)). Since two cycles are connected only if they are disjoint, it is
sufficient to show that if two cycles have the same labeling, then there exists an edge
{i, j} contained in both cycles.

First, let’s start with the bulk of our graph, the cycles in T . If A,B ∈ T have the
same label {i, j}, then {i, j} ∈ A and {i, j} ∈ B.

Now, let us consider the cycles in V . If A,B ∈ V have the same label {i, 5} then
i = min{`, k}, and thus {i, 2} ∈ A and {i, 2} ∈ B. Let A ∈ T and B ∈ V have the
same label {i, 5}. Since A is a cycle, the vertex i has two points it is connected to,
n and some j. If j 6= 1 and j 6= 2, then {i, j} is lexicographically earlier than {i, 5}
contradicting that {i, 5} is its label. Thus, {i, 1} ∈ A or {i, 2} ∈ A. Since {i, 1} ∈ B
and {i, 2} ∈ B, in both cases, A ∩B 6= ∅.

Finally, let us consider the set of cycles U . Since the edge {1, 2} ∈ A if A ∈ U , for
all A,B ∈ U , A∩B 6= ∅. Let k 6= n. If A ∈ U and B ∈ V share the same label {i, 5},
then {1, i} ∈ A and {1, i} ∈ B. If A ∈ U and B ∈ T have the same label {i, 5}, then
similar to the argument for V and T , {i, 1} ∈ B or {i, 2} ∈ B.



If k = n, then we have the cycle C = (1 2 5) and we labeled it {4, 5}. If A ∈ T
shares this label, then {4, 5} ∈ A. If {1, 5} ∈ A or {2, 5} ∈ A, C ∩ A 6= ∅. So we
just need to consider if {3, 5} ∈ A. If this is the case, then it contradicts that {4, 5}
is A’s label since {3, 5} is lexicographically earlier. Thus, C ∩ A 6= ∅. If B ∈ V has
the label {4, 5}, then 4 = min(`, k). Therefore ` = 5 or k = 5. Hence, {1, 5} ∈ B, so
B ∩ C 6= ∅.

�

Since K5 has 10 edges and the chromatic number of KG(M(K5)) is 3, by Sarkaria’s
Theorem we have that M(K5) is not embeddable in Rd where d ≤ 10 − 3 − 2 = 5.
Since a spanning tree in K5 has 4 edges, M(K5) is 3 dimensional. Thus, once again we
have a matroid non-embeddable in a higher dimension, but with a gap of 2 dimensions
this time. This result raises the question if this is true for all graphical matroids of
complete graphs, and it the gap continues to grow.

5. Results

Denote chromatic number of KG(M(Kn) as χ. The number of edges in a complete
graph on n vertices is given by

(
n
2

)
, so our d from Sarkaria’s Theorem is

(
n
2

)
− χ− 2.

The dimension of M(Kn) is n−2 since it takes n−1 edges to form a spanning tree of
the graph. Therefore, if the gap were to continue increasing with n, it would follow
the inequality (

n

2

)
− χ− 2 ≥ (n− 2) + (n− 3)

With (n − 2) + (n − 3) representing the forbidden Sarkaria Embedding dimension
if the gap between the graphic matroid’s dimension and the forbidden embedding
dimension were to increase with at least slope 1.

Solving for χ we have

χ ≤
(
n

2

)
− (n− 2)− (n− 3)− 2

=
n2 − n

2
− 2n+ 3

=
n2 − n− 4n+ 6

2

=
(n− 3)(n− 2)

2

=

(
n− 2

2

)
Since the sign of χ is negative in Sarkaria’s Theorem, if this is an upper bound, it
gives us a lower bound for Sarkaria’s forbidden embedding dimension.



Proposition 2. The chromatic number χ of KG(M(Kn)) is bounded above by
(
n−2
2

)

Proof. Let M(Kn) be the graphic matroid of a complete graph on n vertices. We
will be using a similar technique as we did for Proposition 1 to color KG(M(Kn)).
By showing we can label each cycle by an edge within the cycle, not including 1
or 2, we will only use

(
n−2
2

)
labels. Thus showing that the chromatic number is at

most
(
n−2
2

)
. For simplicity, we will write cycles using cycle notation, but as opposed

to permutations, there is no direction to the cycle. All that matters are adjacent
vertices. For example, this means (1 2 3 4 5) = (5 4 3 2 1)

Let M denote the set of cycles of Kn for n ≥ 4. If A ∈ M such that there exists
some {a, b} ∈ A such that a > 2 and b > 2, then label A by the lexicographically
least (numerically least) edge of A, not including 1 or 2. Let T be the set of all cycles
labeled this way.

This labels most elements in M , but leaves out some cycles, namely, any 3-cycle
of the form (1 2 k) and 4 cycle of the form (1 ` 2 k) with `, k ∈ [3, n]. See Figure
3. Name the sets of these cycles U and V respectively. For these cycles, label the 4
cycles by the edge {min{k, l}, n}. When k 6= n, label the 3-cycles {k, n}, and when
k = n, label that 3-cycle {n− 1, n}.

We want to show that these labels are a valid coloring of the graph KG(Kn) for all
n ≥ 4. Since two cycles are connected only if they are disjoint, it is sufficient to show
that if two cycles have the same labeling, then there exists an edge {i, j} contained
in both cycles.

Note if A,B ∈ T have the same label {i, j}, then {i, j} ∈ A and {i, j} ∈ B.

Now, let us consider the cycles in V . If A,B ∈ V have the same label {i, n} then
i = min{`, k}, and thus {i, 2} ∈ A and {i, 2} ∈ B. Let A ∈ T and B ∈ V have the
same label {i, n}. Since A is a cycle, the vertex i has two points it is connected to,
n and some j. If j 6= 1 and j 6= 2, then {i, j} is lexicographically earlier than {i, n}
contradicting that {i, n} is its label. Thus, {i, 1} ∈ A or {i, 2} ∈ A. Since {i, 1} ∈ B
and {i, 2} ∈ B, in both cases, A ∩B 6= ∅.

Finally, let us consider the set of cycles U . Since the edge {1, 2} ∈ A if A ∈ U , for
all A,B ∈ U , A∩B 6= ∅. Let k 6= n. If A ∈ U and B ∈ V share the same label {i, n},
then {1, i} ∈ A and {1, i} ∈ B. If A ∈ U and B ∈ T have the same label {i, n}, then
similar to the argument for V and T , {i, 1} ∈ B or {i, 2} ∈ B.

If k = n, then we have the cycle C = (1 2 n) and we labeled it {n− 1, n}. If A ∈ T
shares this label, then {n − 1, n} ∈ T . Since A is a cycle, only two edges contain n,
{n− 1, n} and {n, j}. If j 6= 1 and j 6= 2, then {n, j} is lexicographically earlier than
{n − 1, n} contradicting that A has the label {n − 1, n}. Thus, j = 1 or j = 2. In
either case, since {1, n} ∈ C and {2, n} ∈ C, C ∩ B 6= ∅. If A ∈ V has the label
{n− 1, n}, then n− 1 = min(`, k). Therefore ` = n or k = n. Hence, {1, n} ∈ A, so
A ∩ C 6= ∅. �



We have shown that the graphic matroids of Kn for n ≥ 4 cannot be embedded in
dimension n− 2, and the gap between the embeddable dimension and the dimension
of M(Kn) widens with n with at least slope 1. Specifically, the graphic matroid of Kn

cannot be embedded in dimension 2n − 5. Consequently, Proposition 2 also implies
the following corollary.

Corollary 1. All graphic matroids M(G) can not be embedded in dimension m −(
n−2
2

)
− 2 where m is the number of edges in G and n the number of vertices.

Proof. Let M(G) be a graphic matorid on n vertices. Note that every circuit of G is
a circuit of Kn since every possible circuit is present in Kn. Therefore, KN(M(G)) ⊂
KN(M(Kn)). Hence, a coloring of KN(M(Kn)) will work for KN(M(G)). So, by
proposition 2, the chromatic number is at most

(
n−2
2

)
. By Sarkaria’s Theorem, we

have our result. �

While this result is far reaching, it doesn’t always tell us something interesting.
For example, let G be an acyclic graph on 5 verticies. Since there are no circuits, our
chromatic number of the Kneser graph of M(G) is 0. So, by our corollary, it is not
embeddable in Rd where d = 4−3−2 = −1. There is also a related result which says
that any embedding of a graphic matroid ∆ in R(m−χ−1) is chiral. See [1] for more
detail. So applying Proposition 2 we have

Corollary 2. An embedding of a graphic matroid ∆ in R(m−(n−2
2 )−1) is chiral.

There are some further questions to explore as well.

• Is this bound sharp? If we go one dimension higher than the forbidden Sarkaria
dimension, will M(Kn) be embeddable?
• Can we find a lower bound for when it is guaranteed that we can embed
M(Kn)
• Is χ =

(
n−2
2

)
?
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