

Argonia Cup 2022

Final Presentation

Hill Jordan, Patrick Williams, Ethan Riffell, Evan Nicholas, Isela Ortiz, Nick Hymel, Taylor Bostick, Trevor Marshall, Zach Montebon

May 6th, 2022

Advisors: Dr. Jamey Jacob, Andrew Walsh, Bryce Randall

School of Aerospace & Mechanical Engineering Oklahoma State University

Space Cowboys

Hill Jordan

Patrick Williams

Ethan Riffell

Evan Nicholas

Isela Ortiz

Nick Hymel

Taylor Bostick

Trevor Marshall

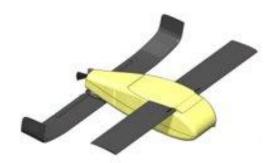
Zach Montebon

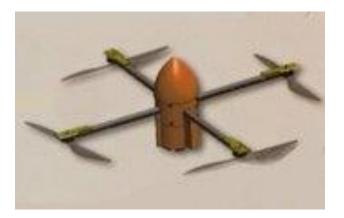
Mission Criteria and Requirements

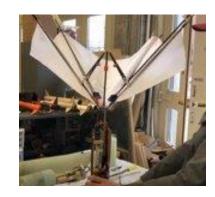
Design, Develop, and Launch

Competition April 9th-10th, 2021

A High-Powered Rocket capable of delivering a golf-ball to 8000' AGL

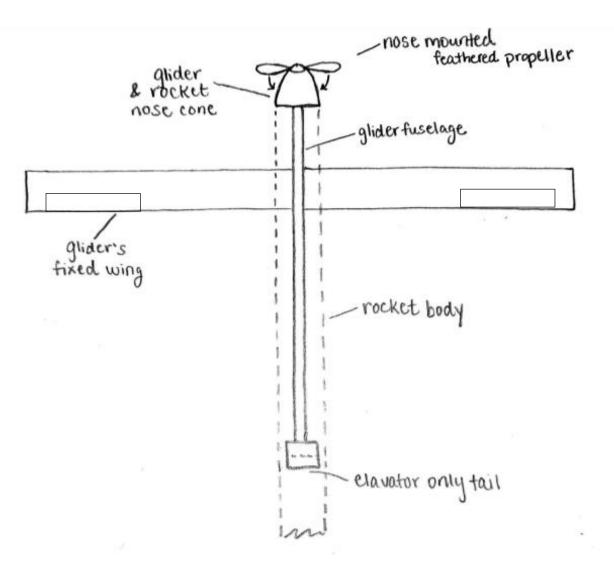

- Return golf-ball to designated target on the ground
- Budget ~\$2000
- Motor Impulse < 5120 Ns (L-class)
- 5:1 T-W Ratio at Liftoff
- Minimum Stability factor of 1 during flight
- Recovery Vehicle must fly below 30 fps below 300' AGL
- One Level 2 TRA member
- All components must be "Re-flyable"


• Glider



• Multi-Rotor Aircraft

• Parasail/Parachute

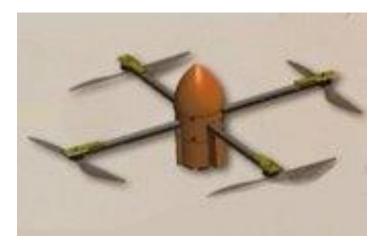


Initial Full System Design

Nose-Propelled Fixed-Wing

- Propeller Springs out at Apogee
 - 1 Propeller battery powered
 - Rest on, or nested in Nosecone for launch
 - Spin-up at deployment
- Cambered Carbon-Fiber Wings
 - Higher L/D than flat plate
 - w/ Alerions
- Tail
 - Elevator
 - No Rudder

• Microscale



Pros

- Easy Fit
- Deployment

Cons

- Battery Life
- Wind Resistance

• H-Frame

Pros

- Rocket Integration
- Previous Designs

Cons

- Manufacturability
- Avionics Layout

Pros

- Battery Life
- Wind Resistance Cons
- Rocket integration
- Arm Deployment

CONOPS

3) Apogee

Quadcopter deploys with the golf ball payload. The parachute deploys attached to the rocket components to guide them safely to the ground.

2) Climb

Rocket climbs to reach apogee of 8,000+ ft AGL at speeds of near Mach 1.

ANNO LADRA

1) Launch

The system is connected to ground control station as the rocket prepares for launch.

4) Descent

Quadcopter springs out its arms and begins guiding to its destination, using the motors to change the flight path. The quadcopter will have to maintain a velocity of 30 ft/s below 300 ft, which will be easily achievable.

Overall Mission

Launch the rocket to a minimum altitude of 8,000 ft and return the golf ball size payload as close to the predetermined location as close as possible.

5) Landing

The quadcopter lands as close to the landing site as possible and the rocket components return safely, winning the Argonia Cup.

[1/0/1/]

11

ίπ)^{*}

411/1

10

Rocket Design & Layout

#	Component	Description	Size (Diam, len.)		
1	Sustainer	Bottom Stage of the Rocket, contains motor	4", 36"		
2	Centering Rings	Centers Motor Mount in Sustainer	3.9-3.1", .08"		
3	Motor Mount/Retainer	Holds 75 mm Motor in rocket	3.1", 16"		
4	Aerotech L1940X	Propels the rocket forwards	75mm, varies		
5	Fins	Provides Aerodynamic Stability			
6	Drogue Parachute	Slows rocket during ascent	36", N/A		
7	Avionics & Slip band	Holds two halves together, controls separation	3.9", 13.5"		
8	Payload Section	Contains Drone & Main Parachute	40.5"		
9	Main Parachute	Slows Rocket for Drone & Ground Hit	48", N/A		
10	Drone Sled	Stores the drone for flight	3.8", 18"		
11	Nosecone	Provides Aerodynamic streamlining	4", 16.5"		

(_____)

8

-0-0-0-1

Total Length: 95.3" Pad Weight: 25.6 lb. CG: 63.96" CP: 71.21" Stability: 1.79 cal. Estimated CD ~ 0.72

Competition Motor **Aerotech L1940X** Total Impulse: 4330 N-s (973 lbf-s) Max Thrust: 2340 N (526 lbf) Burn time: 2.2 s

5

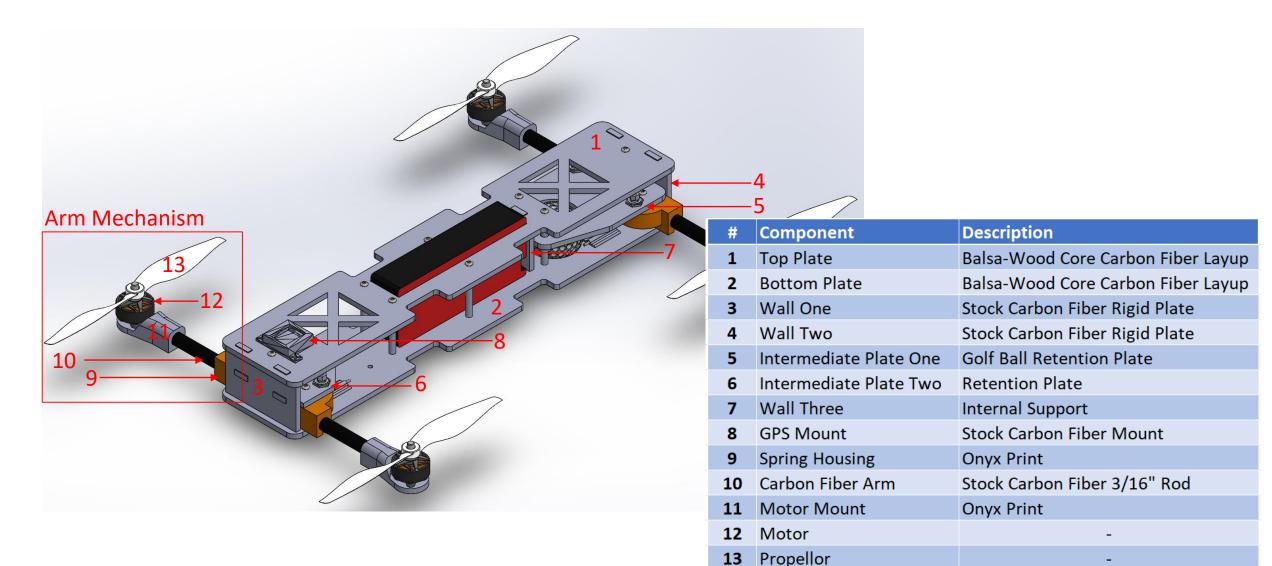
3

(AND -

9


Δ

 \bigcirc


- H-Style quadcopter with carbon fiber Plates, carbon fiber arms and steel bolts
 - Significantly heavier
 - Did not fit into the rocket
 - No functional arm folding system
 - Allowed for quadcopter flight testing
 - Gave insight as to what components needed to be optimized

Quadcopter Design

- Lowering Weight Overall
 - More efficient structure
 - Smaller battery
 - More efficient propellers

General	Model Weight: 950 g incl. Drive 33.5 oz	# of Rotors: 4 flat •	Frame Size: 400 mm 15.75 inch Cell Capacity: 4200 mAh 4200 mAh total		
Battery Cell	Type (Cont. / max. C) - charge state:	Configuration: 4 S 1 P			
Controller	Type: max 50A V	Current: 50 A cont. 50 A max	Resistance:		
Motor	Manufacturer - Type (Kv) - Cooling: T-Motor F60 PRO IV KV1950 (1950) good search	KV (w/o torque): 1950 rpm/V Prop-Kv-Wizard	no-load Current:		
Propeller	Type - yoke twist: APC Electric E - 0° -	Diameter: 7 inch 177.8 mm	Pitch: 4 inch 101.6 mm		
	1000	3	8		

CDR Sims ->

Final Sims ->

32

Load:

W 2000

electric Power:

est. Temperature:

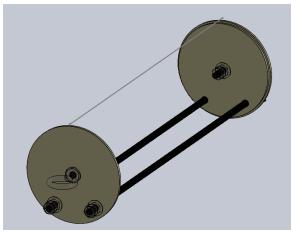
Thrust-Weight

specific Thrust:

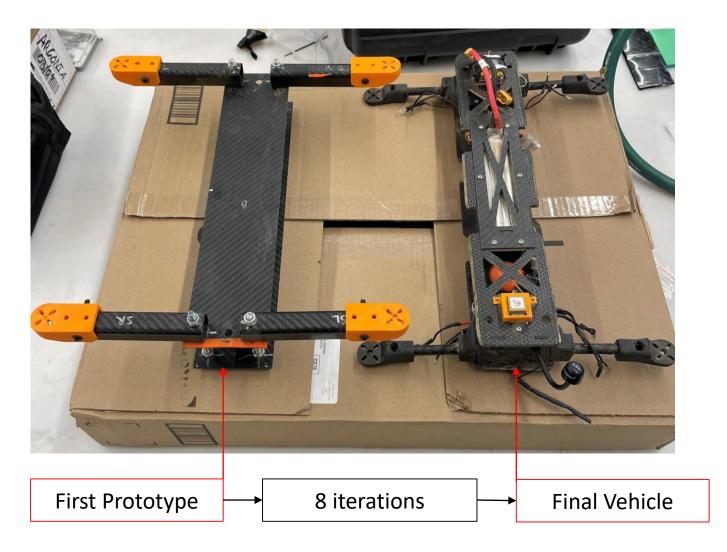
Rocket Build

- Was primarily Conducted over Spring Break
 - Fin slots cut w/ router
 - Fins & Bulkheads CNC'd
 - Body Tubes cut on chop saw
 - 2-56 Shear Pins for seperation
 - ¼" bolts used to keep the av-bay and payload bay connected
 - Y-loop harness epoxied to Motor mount tube

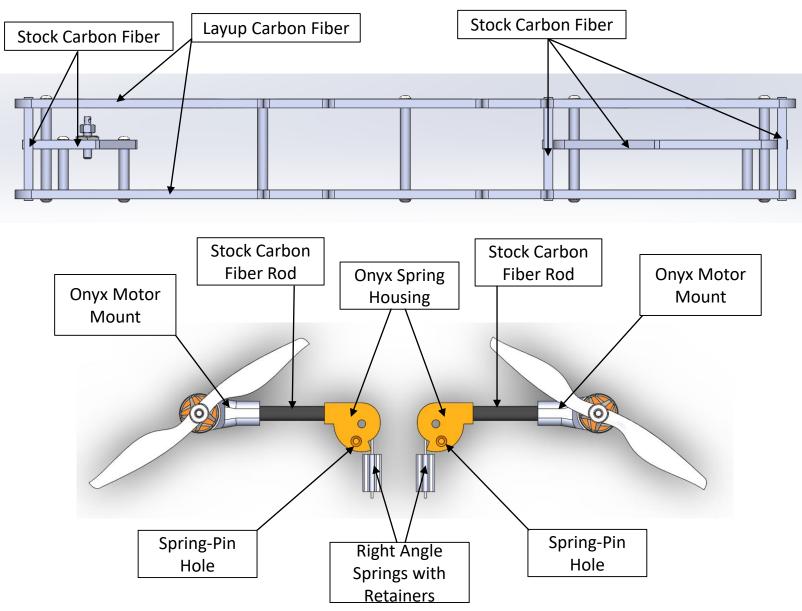
- Conducted 4-5 drop test from M600
- Multiple waypoint missions @ flight field
- Full scale w/rocket 2 times
 - Quad got tangled in shock cord after deployment on first launch
 - Second launch had successful deployment however had to be manually controlled back
- General flight tuning (PID)


Name	Proportional	Integral		Derivative		Control Derivative	
Basic/Acro		1 and 1		/		A State of the	
Roll		50	60		23		60
Pitch		54	75		25		60
Yaw		45	80		0		60
Barometer & Sonar/Altit	ude						
Position Z		50	0		0		
Velocity Z		100	50		10		
Magnometer/Heading							
Heading Hold		60					
Nav Heading		0	0		0		
GPS Navigation							
Position XY		50					
Velocity XY		50	25		50		40
Surface		0	0		0		

Ejection Testing


- Material & Time limits forced a simple quad sled redesign
- Found we needed to shorten the sleds shock chord to prevent quad from tangling
- Final Black Powder configuration
 - Telemega: Main 2.2 g, Apogee 2.4 g
 - Easymini: Main 2.4g, Apogee 2.6 g

Final Quadcopter Build



Final Quadcopter Build Components

- Main Body
 - Layup outer shell (balsa wood core)
 - Stock carbon fiber intermediate plates
 - Cutouts for weight mitigation and wire security
- Arms
 - 14-lb right angle springs
 - Onyx print motor mounts and spring housings
 - Stock carbon fiber rod arm structure
 - Spring pin arm mechanism
- Retention
 - 25-mm/40-mm aluminum standoffs, 2-mm bolts
- Rigidity
 - Pin/Epoxy components to absorb spring shock

Final Quadcopter Build

ents

Final Quadcopter Build Components

- Main Body
 - Layup outer shell (balsa wood core)
 - Stock carbon fiber intermediate plates
 - Cutouts for weight mitigation and wire security
- Arms
 - 14-lb right angle springs
 - Onyx print motor mounts and spring housings
 - Stock carbon fiber rod arm structure
 - Spring-Pin arm mechanism
- Retention
 - 25-mm/40-mm aluminum standoffs, 2-mm bolts
- Rigidity
 - Pin/Epoxy components to absorb spring shock

- 1st test flight March 26th
 - No quad avionics (had parachute controlled by Jolly Logic – FAILED)
 - Main rocket parachute got tangled in deployment
- 2nd test flight April 5th
 - With quad avionics but quad got tangled in shock cord around sled
- 3rd test flight April 6th
 - Full working system
 - Quad had avionics issues, but pilot got it to land close by
 - Rocket got stuck in tree
- All Launches conducted with Aerotech J570

NUM OF

April 9th – 10th – Argonia, Kansas

Overview:

- Launched 2 times out of our 3 allowed attempts
 - Once Saturday at 1pm
 - Once Sunday at 2pm

Saturday Launch:

- 10,917 feet apogee
- Mach 1.1
- 22.75 G
- Quad/golf ball distance: 2.8 miles from target

Sunday Launch:

- 8,108 feet apogee
- Mach 1.0
- 18.75 G
- Quad/golf ball distance: 3,062 feet from target

Overall, our team won 3rd place with our Sunday launch.

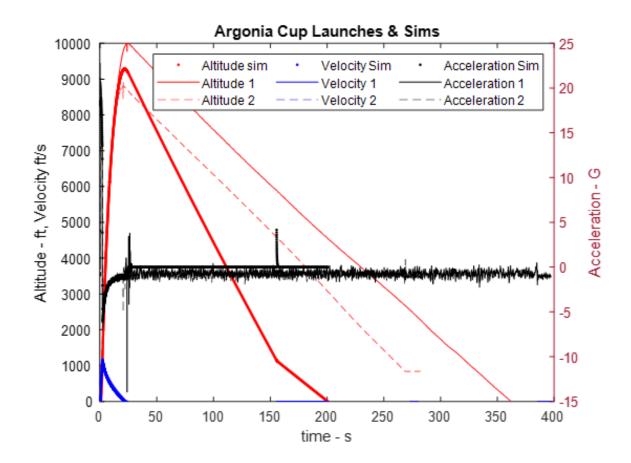
Argonia Cup Saturday Launch Video

Argonia Cup Sunday Launch Video



Argonia Cup Quad Performance

- Autonomous flight (iNav) incapable of fighting wind
- Clear 5.8 GHz video @800 mW
- Battery life was severely reduced due to windy conditions
 - 10-12 min flight time
- Made OSD adjustments
- Multiple broken parts leading to only 2 flights

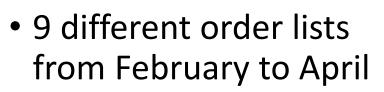


Argonia Cup Rocket Performance

Flight 1 Max Height: 10,926 ft Max Velocity: Mach 1.1 Max Accel: 22.25 G

Flight 2 Max Height: 8,108 ft Max Velocity: Mach 1.0 Max Accel: 18.25 G

Lost Ground Telemetry due to the antenna snapping off the TeleMega Board



- Difficulties from ordering parts
 - Shipping times longer than expected
 - Stock went quickly
 - Bottlenecked from parts required

Part	Part Number	Quantity	Estimated Co	ost Link Additional Notes
Quad Copter				
Motors	11863	4	\$ 108.0	0 https://www.getfpv.com/t-motor-f60-pro-iv-motor.html
Propellers (7040)	764613338355	2	\$ 6.0	0 https://www.getfpv.com/dalprop-cyclone-7040-7-2-blade-propeller. Best Prop option. Buying two sets of 4 to have backup
Propellers (6040)	652118489637	2	\$ 4.0	0 https://www.getfpv.com/lumenier-6x4-slow-flyer-propeller-set-of-4- Second set to test.
Propellers (7050)	686661070394	2	\$ 5.0	0 https://www.getfpv.com/apc-7x5ep-speed-propeller.html Third set to test. CW props
Propellers (7050)	686661070295	2	\$ 5.0	0 https://www.getfpv.com/apc-7x5e-speed-propeller.html Third set to test. CCW props
FC + ESC Stack	14010	1	\$ 129.0	0 https://www.getfpv.com/lumenier-lux-f7-ultimate-razor-led-55a-bun Flight Controller and ESC bundle
Rocket				
Motor Retainer		1	\$ 51.0	https://wildmanrocketry.com/collections/assembly/products/ra75p
Rail Guides		1	\$ 10.0	https://wildmanrocketry.com/collections/rail-guides/products/2052-lg-rail-guides
Shear Pins	2626	1	\$ 6.0	0 https://csrocketry.com/recovery-supplies/shear-pins/shear-pin-4/4 Shear Pin-4/40
Screw Switch		3	\$ 12.0	0 https://wildmanrocketry.com/products/screw-switch
Low Voltage Cable	9697T1	1	\$ 5.0	0 https://www.mcmaster.com/9697T1/ 25 Feet
XT30 Connectors	B08H1JP7NW	1	\$ 12.0	https://www.amazon.com/FLY-RC-Upgrade-Connectors-Battery/dp/B08H1JP7NW/ref=sr 1 2?crid=FQJKY919YH1G&keyword
Shock Cord		1	\$ 79.0	https://wildmanrocketry.com/collections/onebadhawk-harnesses/products/4-inch-harness
Quick Links	2123	4	\$ 9.0	0 https://csrocketry.com/recovery-supplies/hardware-and-shock-chor 1/8 Quick Link Stainless Steel
Misc				
Washers	90107A029	1	\$ 10.0	0 https://www.mcmaster.com/90107a029/
Nuts	95462A029	1	\$ 6.0	0 https://www.mcmaster.com/95462A029/
Nylock Nut	90630A110	1	\$ 5.0	https://www.mcmaster.com/90630A110/
Threaded Rods	98790A054	4	\$ 4.0	0 https://www.mcmaster.com/98790a054/
Wing Nuts	90866A029	1	\$ 19.0	https://www.mcmaster.com/nuts/thumb-nuts/steel-and-iron-wing-nuts-8/wing-nut-profile~standard/thread-size~1-4-20/
RocketPoxy		1	\$ 65.0	https://wildmanrocketry.com/products/rocketpoxy-2-guart-set? pos=2& sid=79c805b2c& ss=r
Screwtap	2522A665	1	\$ 7.0	https://www.mcmaster.com/2522A665/
Left-hand 4.5 lb spring	9271K585	1	\$ 6.0	https://www.mcmaster.com/torsion-springs/torsion-springs-5/deflection-angle~90-/
Right-Hand 4.5 lb spring	9271K651	1	\$ 6.0	https://www.mcmaster.com/torsion-springs/torsion-springs-5/deflection-angle~90-/
Left-hand 7.9 lb spring	9271K145	1	\$ 8.0	https://www.mcmaster.com/torsion-springs/torsion-springs-5/deflection-angle~90-/
Right-hand 7.9 lb spring	9271K151	1	\$ 8.0	0 https://www.mcmaster.com/torsion-springs/torsion-springs-5/deflection-angle=90-/
		Subtotal	\$ 585.0	0
		Est. Tax	\$ 46.8	0
		Total	\$ 631.8	

- Simplified Final Budget
 - Backfilling USRI materials included
- Specific Order Lists included in Argonia Archive zip folder

Order List	Amount			
11-Feb	\$	585.00		
16-Feb	\$	521.00		
28-Feb	\$	54.00		
4-Mar	\$	322.00		
5-Mar	\$	841.00		
9-Mar	\$	915.00		
28-Mar	\$	156.00		
Total	\$3	3,394.00		

Questions

THANK YOU

Capstone Retroactives

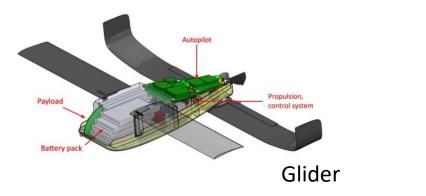
Rocket Retroactives:

- Do not thread inner couplers
- Have 2-3 altimeter Wands
- Fix bending in the sled (minor)
- Triple check Telemega antenna
- Use Wildman ignitors (Aerotech suck)
- Close forward closure on motor before aft
- Use Epoxy nuts for payload section

Quad Retroactives:

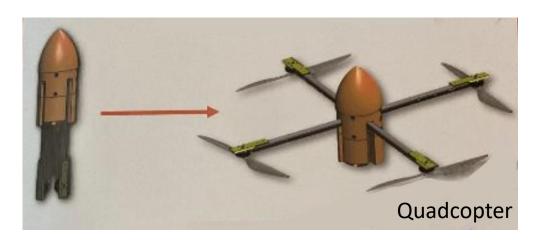
- Deploy quad around 2000' to limit lateral distance from target (quad can catch itself quickly which negates the main concern with a low altitude deployment)
- Have live telemetry using RFD's to ensure connection isn't lost as easily / have another redundancy
- Tune quad autopilot better to work in high winds, winds aloft much stronger than ground winds.
- Add another camera looking downward to ensure closest landing to the X as possible
- Bring 4 fully functional quads in case something breaks outside of a competition launch (like during testing at the competition)
- Plan on losing a full quad during each launch (worst case scenario)

Project Importance


- High Powered Rockets with the capability to launch complex payloads are an area of growing interest
- Optimize High Altitude Rocket
 - Reduce mass, increase aerodynamics to increase apogee
 - Increase control and navigation
- High-Altitude Payloads with the ability to autonomously navigate can
 - Be used to conduct atmospheric research
 - Quickly deploy payloads to high altitudes
 - Deliver payloads to hard-to-reach locations
 - Provide local surveillance

Summary of Trade Study Designs

VS.



Pros:

- Previous class experience
- Deploy at highest altitude if wanted
- Adjustable Design Characteristics
- Range/Endurance

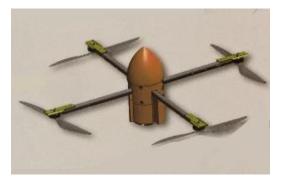
Cons:

- Less Landing Control
- Larger/Longer Design
- Compartmentalization/Deployment

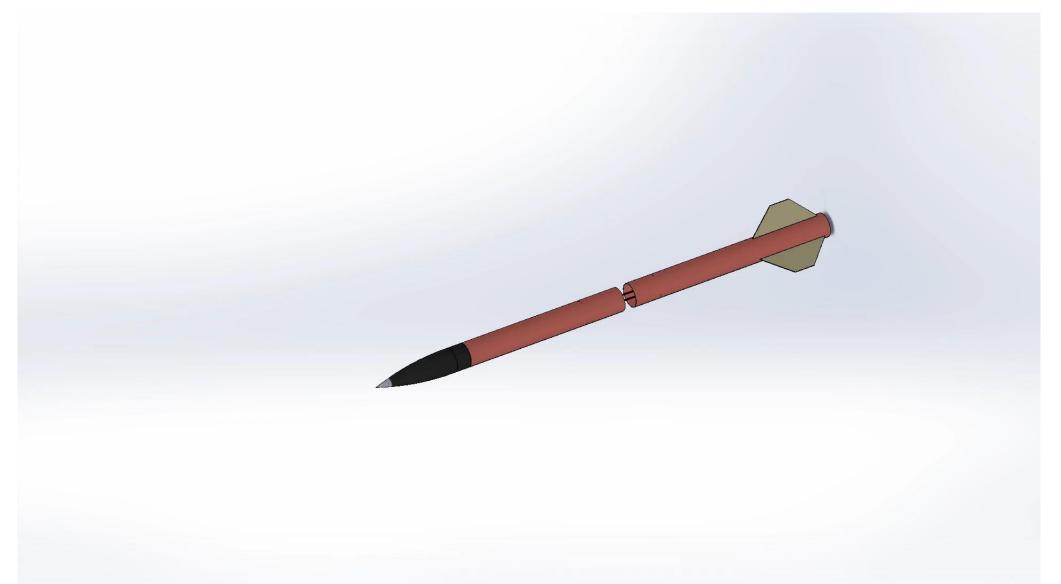
Pros:

- Maneuverability
- Higher end goal accuracy
- Low weight

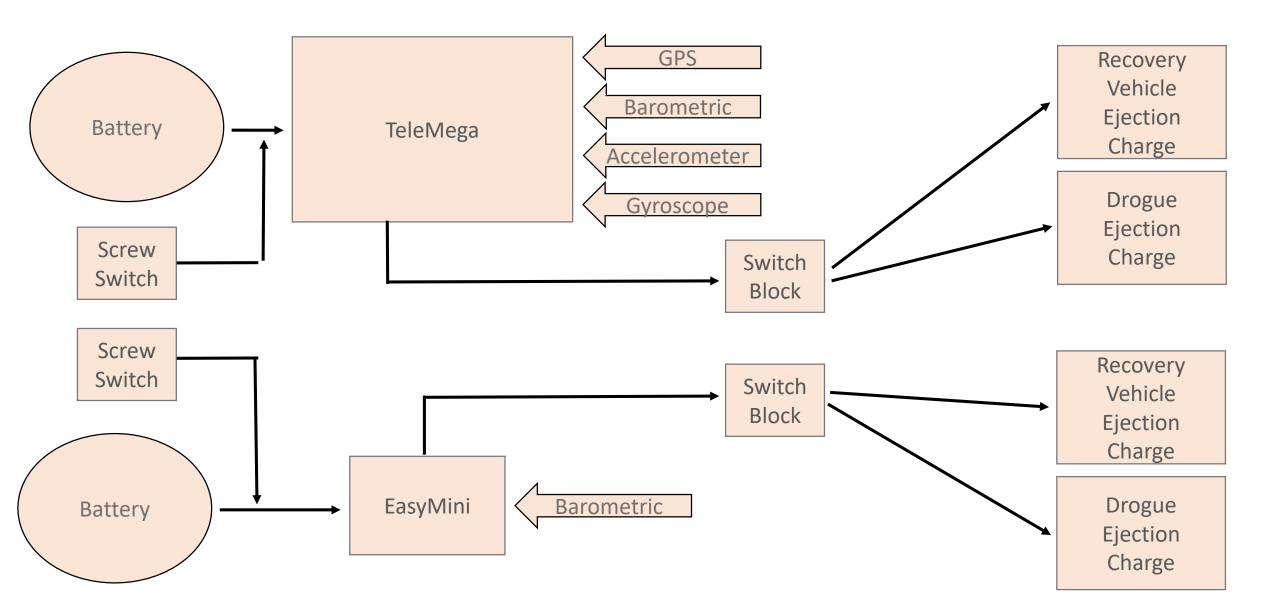
Cons:

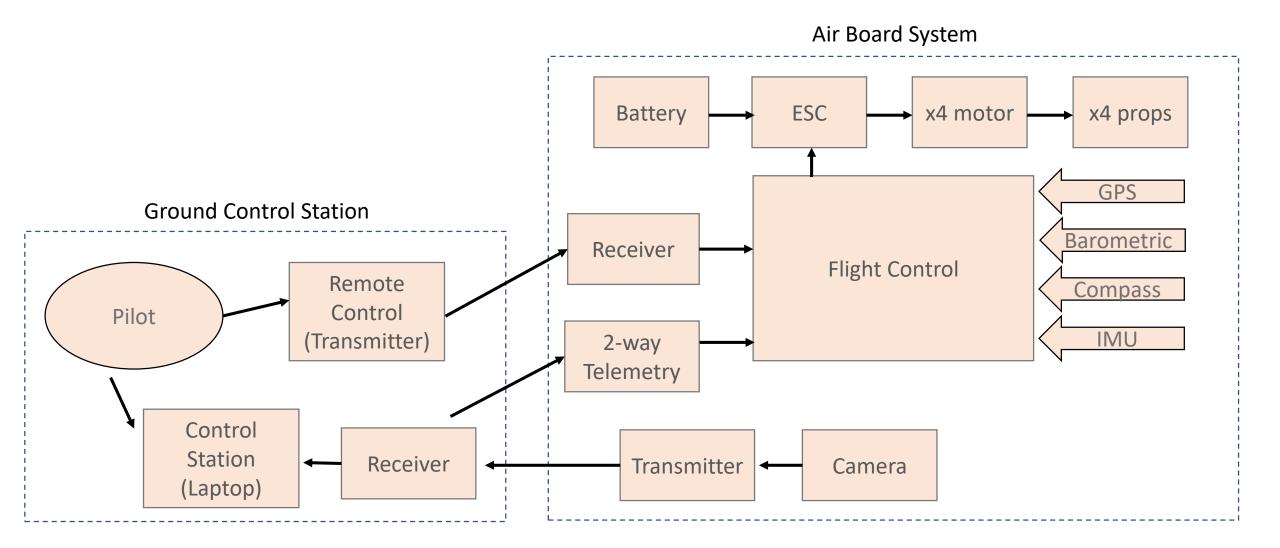

- Reliability with differing wind resistances
- Landing durability
- Max flight time/distance concerns

Quadcopter Trade Study



Microscale	Nose cone	H, racing		
 Pros Fits in body Lightweight Simple (no springs) 	 Pros Nice integration Aesthetically pleasing More space for payload/avionics 	 Pros Basic Manufacturability Fits in body 		
 <u>Cons</u> Battery life Limited room for avionics Low wind resistance 	 Cons Manufacturability Stability Has been done before (2018) 	 Cons Integration Deployment Takes up most room 		


Point of Departure Design


Block Diagram of System – Rocket + Quad

Design Details - Initial Rocket Layout

#	Component	Description	Size (Diam, len.)		
1	Sustainer	Bottom Stage of the Rocket, contains motor	4", 36"		
2	Centering Rings	Centers Motor Mount in Sustainer	3.9-3.1", .08"		
3	Motor Mount/Retainer	Holds 75 mm Motor in rocket	3.1", 16"		
4	Solid Rocket Motor	Propels the rocket forwards	75mm, varies		
5	Fins	Provides Aerodynamic Stability			
6	Drogue Parachute	Slows rocket during ascent	36", N/A		
7	Avionics & Slip band	Holds two halves together, controls separation	3.9", 13.5"		
8	Payload Section	Contains Drone & Main Parachute	40.5"		
9	Main Parachute	Slows Rocket for Drone & Ground Hit	60", N/A		
10	Drone Sled / Nosecone Coupler	Holds nosecone on rocket, holds drone	3.8", 16"		
11	Nosecone	Provides Aerodynamics	4", 16.5"		
	Total	Argonia Rocket	95.3", 253 oz., 3.5 cal		

8

Rocket Motor

default windspeed: 8mph					Motors								
default	launch angle: 0 deg		1365			1420		42	263-L13	50		L851	
	Mass	Apogee (ft	Max G	Max V (ft/s)	Apogee (ft)	Max G	Max V (ft/s)	Apogee (ft)	Max G	Max V (ft/s)	Apogee (ft)	Max G	Max V (ft/s)
-15	13.43	11206	14.3	1270	10917	15.5	1287	9980	15.7	1271	9273	9.4	1030
-10	14.22	11096	13.8	1235	10810	15	1249	9908	15.1	1233	9122	9.06	999
-5	15.01	10983	13.4	1201	10703	14.5	1214	9784	14.6	1197	8956	8.73	969
0	15.8	10867	12.9	1170	10593	14.1	1181	9651	14.1	1162	8777	8.42	940
+5	16.59	10744	12.5	1139	10472	13.7	1149	9559	13.6	1130	8598	8.13	912
+10	17.38	10604	12.1	1110	10339	13.3	1119	9390	13.2	1098	8403	7.87	885
+15	18.17	10445	11.8	1081	10188	12.9	1089	9250	12.7	1067	8211	7.61	. 859
+20	18.96	10280	11.4	1054	10024	12.5	1060	9081	12.3	1038	7998	7.37	834
+25	19.75	10110	11.1	1027	9858	12.1	1033	8900	12	1009	7778	7.14	810

The Rocket Motor was selected by:

- Limited to Aerotech & Cesaroni
- Varying the total Mass & CG: +- 25%
- Limited to L-class motors
- Preferred Apogee of 9000 ft or greater to account for simulation errors/losses
- Selected the Aerotech L1365 for Modeling Purposes

System Simulation - OpenRocket

• Simulation Data varying wind speed, launch angle, and vehicle deployment altitude

Wind Speed: 16mph	D	eployment	Altitude (f	it)
Launch angle: 6° upwind	3500	4000	4500	5000
Lateral Distance from target (ft)	1020	1265	1380	1525
Deployment Vehicle Velocity (fps)	59.7	<mark>59.</mark> 8	59.9	59.9

Wind Speed: 16mph	D	eployment	Altitude (f	t)
Launch angle: 6° downwind	3500	4000	4500	5000
Lateral Distance from target (ft)	3510	3350	3100	2970
Deployment Vehicle Velocity (fps)	59.9	60.3	60.7	61.1

Wind Speed: 16mph	D	eployment	Altitude (f	t)
Launch angle: 0° vertical	3500	4000	4500	5000
Lateral Distance from target (ft)	1100	1130	850	560
Deployment Vehicle Velocity (fps)	59.7	60.1	60.6	61.1

Wind Speed: 8mph	D	eployment	Altitude (f	it)
Launch angle: 6° upwind	3500	4000	4500	5000
Lateral Distance from target (ft)	1770	1820	1840	2000
Deployment Vehicle Velocity (fps)	59.7	60.2	60.7	61.1

Wind Speed: 8mph	D	eployment	Altitude (f	t)
Launch angle: 6° downwind	3500	4000	4500	5000
Lateral Distance from target (ft)	2760	2820	2660	2460
Deployment Vehicle Velocity (fps)	<mark>59.8</mark>	60.2	60.6	61.1

Wind Speed: 8mph	D	eployment	Altitude (f	t)
Launch angle: 0° vertical	3500	4000	4500	5000
Lateral Distance from target (ft)	550	480	230	200
Deployment Vehicle Velocity (fps)	58.6	59	59.2	59.5

Design Details - Rocket Deployment

The Rocket will utilize the Telemega, EasyMini, and black-powder for deployment

- At Apogee deploy sled & 36" Drogue
- At 5000 ft. deploy 60" main
- Deployment Altitude was chosen at apogee
 - Minimize distance to the target
 - Deploy the drone <= 40 ft/s
 - Ensure Ground Hit <= 32 ft/s

Design Details - Quadcopter Structure

- Structural Objective
 - Fitted payload integration
 - Deployment after launch
 - Avionics placement
 - Recovery capability
- Compartment Limitation
 - Golf ball payload allocation
 - Antenna apart from GPS
 - Extensive battery height
 - Bolt spacing efficiency

- Deployment Obstacle
 - Motor/Propeller security
 - Arm extension

Weight Estimation

Empty Weight	0.75 lbs
Avionics Weight	0.5 lbs
Drive Weight	2.5 lbs
Target Weight	3.75 lbs

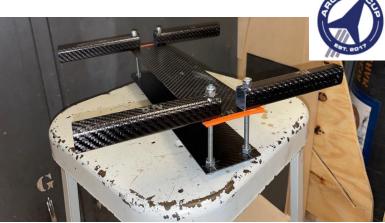
Initial Structural Design Iteration

Design Aspects

- Compact Avionics
- Topside Arms/Propellers
- Secured Payload

Potential Issues

- Arm Sizing Height
- Bottom Platform Width
- Potential Solutions
 - Redesign Arms
 - Flat Plate
 - Redesign Bottom
 - Taper Body
 - Shave/Round Edges



Quadcopter Prototype

Loaded

<u>Unloaded</u>

Prototype Mission Objective

- Flight capability assessment
- Determine vehicle sizing with drive and avionics

➢ Prototype Neglection

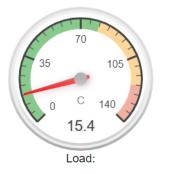
- Precise rocket integration sizing
- Propeller arm deployment

← Arm Fold/Extension Mechanism

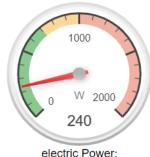
Innovative Design Iteration

Updated Characteristics

- 0.25"x0.25" Arms
- ~8 lb. 90 degree Torsion Springs
- Fixed Bracket Mount for Spring
- Rotating Bracket Mount for Spring and Arm
- Motor Bracket Mount
 on Arm


System Simulation - Ecalc

Quadcopter Simulation


- Estimates performance based off off-theshelf components (~15% accuracy)
- Includes a KV Wizard which gives an estimated motor size based off estimated vehicle size

Design Choices

- Main goal to maximize endurance and range while minimizing weight
- Best choices are a battery between 6000-8000 mAh and a motor between 1800-2400 Kv

General	Model Weight: 567 g w/o Drive v 20 oz	
Battery Cell	Type (Cont. / max. C) - charge state: LiPo 6000mAh - 80/120C)
Controller	Type: max 50A 🗸	
Motor	Manufacturer - Type (Kv) - Cooling: T-Motor - F40 PRO IV KV1950 (1950) good -	0) 🗸
Propeller	Type - yoke twist: DJI ✓ - 0° ✓	
40 80 0 °C 120		2

Thrust-Weight:

60

est. Temperature:

specific Thrust:

4.97

Design Details – Quadcopter Drive

- T60 IV PRO KV1750
- 6200 mAh 4 cell 25c LiPo battery
- 7-inch 2 blade propeller with a 4-inch pitch

First Iteration Design - Quadcopter Avionics

- Avionics List:
 - Flight Stack
 - Electronic Speed Control (T-Motor VELOX V50A 3-6S)
 - Flight Controller (Lumenier LUX F7 Ultimate)
 - Receiver (FrSky RX8R)
 - Radio/Controller (FrSky Taranis)
- Programs:
 - BetaFlight
 - iNav

Future Design Implementations – Quadcopter Avionics

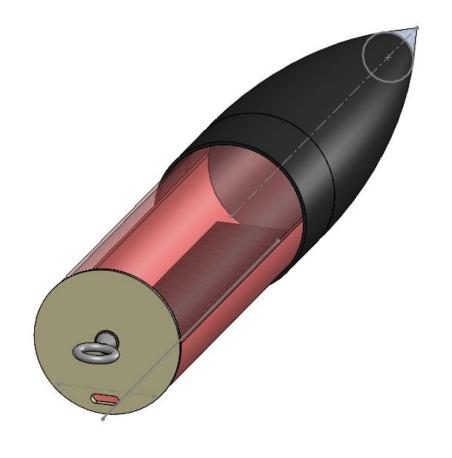
- Here2 GPS
- FPV System
 - RunCam Split
 - 1.2/2.4 Ghz System
- Dragon Link
 Advanced 915
 MHZ

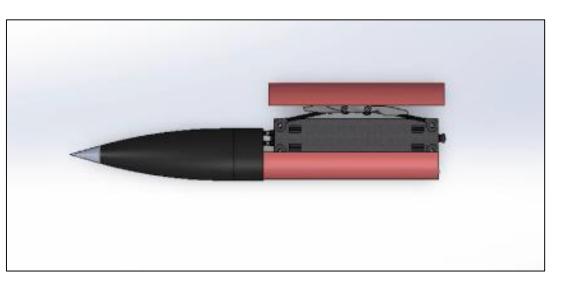
Design Details - Quadcopter Avionics

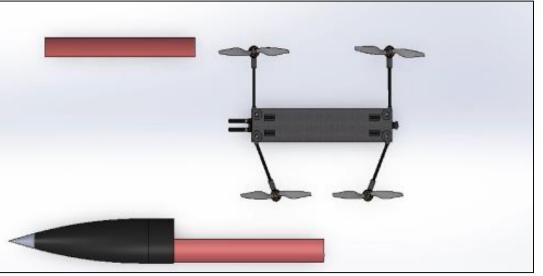
• Current avionics layout:



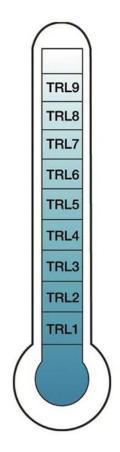
Quadcopter Deployment - Design Ideas


- Spring Loaded Arms
- Servos
- Sled to protect the vehicle
- Integrating the sled into the nose cone

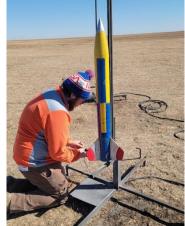




Quadcopter Deployment - Current Design



Technology Readiness Level


- Start of project
 TRL 1
- CDR
 - TRL approaching 5
- Argonia Cup
 - TRL 8

Trip to Argonia, KS (2/12)

The team went up to the Kloudbuster Rocket Pasture last Saturday

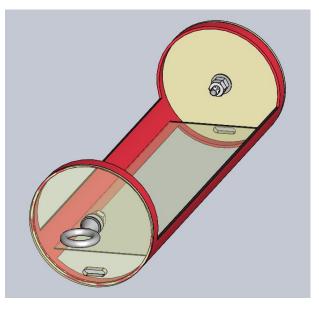
Patrick Attempted His L2

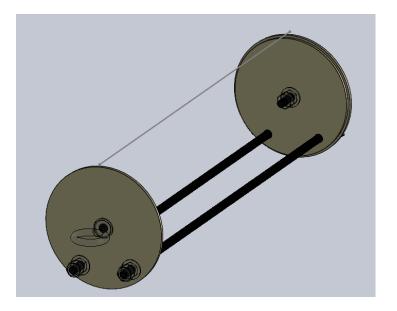
- Passed the Written Exam
- But the rocket shredded during deployment
- Will try again March 12th.

Budget

Product Name	Part	Quantity	Cos	st estimate
Quadcopter				
Lumenier 8000mAh 4s 25c Lipo Battery	Battery	2	\$	200.00
APC 8x4.5MR	Propellers	2	\$	6.00
APC 8x4.5MRP	Propellers	2	Ś	6.00
APC 7x5E	Propellers	2	ŝ	5.00
APC 7x5EP	Propellers	2	\$	5.00
DALProp Cyclone 7040	Propellers	2	ŝ	6.00
Holybro Micro OSD V2	OSD	1	ŝ	16.95
Pixhawk Power Supply	Power Supply	1	Ś	27.00
RunCam Swift 2 FPV Camera 130deg 2.5mm	FPV Camera	1	ŝ	32.00
TBS Unify Pro 5G8 HV	VTX	1	\$	56.00
TBS Circular 5.8 GHz Polarized Antenna	Antenna	1	ŝ	27.00
T-Motor F60 PRO IV V2.0 1950KV	Quad Motors	4	ŝ	108.00
	ESC/FC	4	ې د	170.00
Lumenier Flight Stack	ESC/FC	-	\$ \$	
Rocket		Subtotal	Ş	670.00
TBD	L-Class Motor	4	\$	750.00
TBD	K-Class Motor	2	ŝ	260.00
Scratch Rocket	Scratch Bocket	1	Ś	530.00
RA75P	Motor Retainer	1	ŝ	51.00
2052-LG RAIL GUIDES	Rail Buttons	1	ŝ	10.00
Shear Pin 4/40	Shear Pins	1	\$	5.50
Screw Switch	Screw Switch	3	ŝ	12.00
	25 ft Cable	1	ŝ	4.50
Low-Voltage Cable 24 Gauge 20 Pairs Amass XT30U Male Female Bullet Connectors Power Plugs	Male-Female Adapters	1	ې د	4.50
20 Pairs Amass X1500 Male Pemale Bullet Connectors Power Plugs	Male-Female Adapters	Subtotal	ې \$	1,640.00
Connections		Subtotal	Ş	1,640.00
4" Harness Set	Shock Cord	1	Ś	79.00
1/8 Quicklink Stainless Steel	Ouick Links	4	ŝ	9.00
316 Stainless Steel Washer for 1/4" Screw Size, 0.281" ID, 0.625" OD	Washers	1	\$	10.01
from rocket room or Medium-Strength Steel Hex NutGrade 5, Zinc-Plated, 1	Nuts	1	ŝ	5.56
High-Strength Steel Nylon-Insert Locknut	Nylock Nut	1	ŝ	4.49
Grade 8, 1/4"-20 Thread Size	Threaded Rods	4	\$	3.40
Zinc-Plated Steel Wing Nut, 1/4"-20 Thread Size, 31/64" Base Diameter	wing nuts	1	ŝ	18.29
Zinc-Plated Steel Wing Nut, 1/4 -20 Thread Size, 51/64 base blameter	wing nuts	Subtotal		130.00
Rocket Sled		Subtotal	>	150.00
G12CT-4.0	16" Couple/AV Bay	1	Ś	42.56
AV-Bay Lid 98mm	Lid for Sled	2	\$	40.00
		Subtotal	\$	90.00
Assembly				
RocketPoxy	Rocket Poxy 2 Quart	1	\$	65.00
Thermal Weld	•	1	\$	8.00
Screw Tap 4-40		1	\$	6.67
Carbon Fiber Sheet Stock	60TY84	4	\$	148.44
Carbon Fiber 1/4" Tubing	DragonPlate Carbon Square Tube	2	Ś	31.36
Left-hand 4.5 lb spring		1	\$	5.57
Right-Hand 4.5 lb spring		1	\$	5.57
Left-hand 7.9 lb spring		1	ŝ	7.70
Right-hand 7.9 lb spring		1	\$	7.70
menchana visio shime		Subtotal	ş S	290.00
			ې د	2,820.00
		Total	÷	2,020.00

- Budget total is estimated at \$2,820.
 - Reused parts left out
 - Reusing more parts to lower budget if possible
- Expensive line items
 - Rocket Motors
 - New Rocket Body
 - Wildman Components
 - Batteries and Avionics
 - Carbon Fiber Structure




Alternative Sled Designs

These Designs can be integrated into the Nosecone or the Payload tube, the goal is to protect the drone for black-powder ejections.

Possible solutions to release/deploy the sled from the rocket

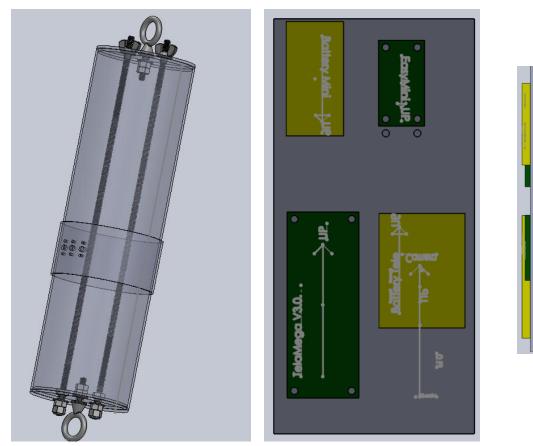
- Gravity & Spring Potential Energy
- Pin Servo
- Electromagnet
- Clamp
- Quick-release system
- Rubber band cut servo

Available Motors

These are the motors ordered for the 2020 team at Excelsior

- We would like to split them with the club team for testing if possible
- 75mm
 - L851 x1
- 54mm
 - K780-15A x1
 - K270W-PS x1
 - K480W-PS x2
- 38mm
 - K570W-14A x4
 - J94-P x1

Motor (Base Assumptions)	Apogee (ft)	Max Accel. (G)	Max Vel. (ft/s)
К780	5337	10.2	688
K270W	4817	3.68	470
K480W	5697	9	651
K570W	5174	9.2	627
J94-P	272	1.06	124

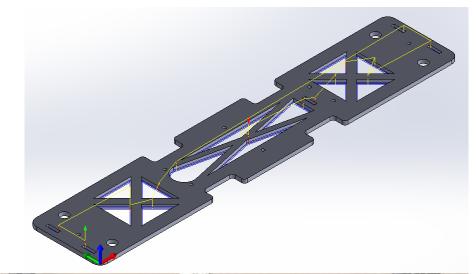

Rocket Avionics Layout

Possible Rocket Avionics Sled Showing

- Placement of batteries
- Placement of Flight Computers
- Orientation
- Holes for Threaded Rods

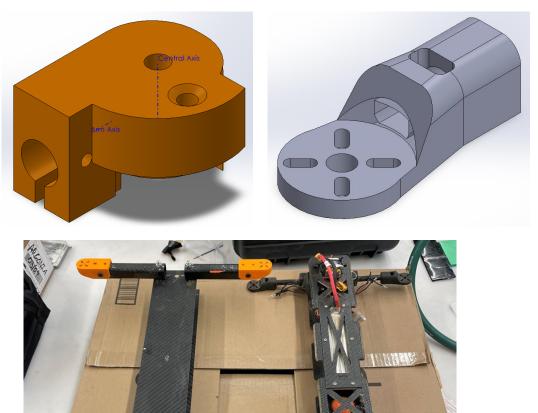
Total Components

- Two Batteries
- TeleMega
- Easy Mini
- 2 Threaded Rods
- 4 Securing Bolts



Part Manufacturing: Carbon Fiber

- The entirety of the quad's carbon fiber structure was optimized and cut on the CNC machine to achieve a perfect fit within the rocket
- Desired part modelled in Solidworks
- Machine pathing created in HSMworks
- Carbon fiber composites were first created (or scrapped), and prepared
- Parts imported and prepared to CNC with machine at Excelsion



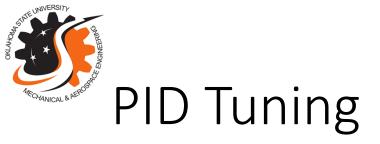
Part Manufacturing: 3D Prints

- Many of the brackets and intricate pieces of the structure was 3D printed to perfectly integrate into the quad
- Part first modelled in Solidworks
- Printed in Endeavor
- These prints allowed us to rapidly go through iterations and find the failure points in our design
- PLA used for rapid iterations
- Onyx used for final quad iteration

Timeline of Entire Project

				1	Jan 10, 2							Feb 7, 2022																Apr 21, 2022	
	1	Display Week:	1		10 11 12 1	18 19 15 16 1	Jan 17, 2022	22 28 24 25	14, 2022 26 27 28 29 1	Jan 31, 2		7 8 9 30 33	12 13 14 1	14, 2022 5 15 17 18 19	Feb 21	24 25 26 2	Feb 28, 20	456	Mar 7, 2022	Mar 34, 2022	19 20 21 22 2	a on os os os	Mar 28, 2022	Apr 4, 2022	Apr 7, 2022	5 26 27 28	Apr 14, 2022 x 19 20 21 22 28	24 25 26 27 28 29 80 1	Apr 28, 2022
34K	DECRPTION	PROCEEDING	1047	80	N T N	T P 4 4 1	■ ▼ ■ ▼ ■	к к м т		6 W T W	T F 4 4	w T w T P			4 W T W				W T W T F S			1 T P 4 4			< н т н т <i>и</i>				
Work Plan	develop team structure & marring times	300%	1/10/22	1/12/22																									
SDR	that Westernlay 19th	300%	1/13/22	1/19/22																									
Initial Design	initial design braining	300%	1/12/22	1/20/22																									
PDR Rough Draft	Jurgin setting PDB	100%	1/18/22	1/22/22																									
PDR	that Monday 24th	300%	1/18/22	1/24/22																									
Phase 2 - February																													
Work Plan	develop new milestanes for Feb	100%	1/25/22	1/28/22																									
Design	Realizing design	100%	1/25/22	2/7/22																									
CDR Rough Draft	begin writing CDB	100%	2/6/22	2/12/22																									
Argonia Trip	teaming is paid lawyers	100%	2/12/22	2/12/22																									
CDR	shar Wesley-sky Mile	100%	2/6/22	2/16/22																									
Get parts	ander parts for 1st hold	100%	2/6/22	2/12/22																									
Manufacturing	start hullding 1st prototype	100%	2/5/22	2/28/22																									
Phase 3 - March																													
Work Plan	dearlay new milestones for March	300%	2/28/22	3/2/22																									
Initial testing	pri qual of provid	300%	3/1/22	3/4/22																									
Testing Quad	testing period 1 more manufacture	300%	3/3/22	3/28/22																									
Video	salaminsian diar Mar 908	100%	3/3/22	3/9/22																									
Rocket Manufacture	when racket parts some in mail	100%	3/7/22	3/15/22																									
Texting Rocket	after societ's balls	100%	3/21/22	3/25/22																									
Ejection Test	a jaathaa tarii day	100%	1/25/22	3/25/22																									
Flight test	Eight test slay	300%	1/26/22	3/26/22																									
Phase 4 - April																													
Work Plan	deurlop new milesiumes for April	300%	3/28/22	4/1/22																									
Avionics Testing	mane testing an quari	100%	1/28/22	4/6/22																									
Ejection Text #2	many a justice trailing with sucherik quad	100%	1/11/22	3/31/22																									
Drop Test #1	daug geticning quad	100%	4/1/22	4/1/22																									
Flight Test #2	another fight test with I mature	100%	4/5/22	4/5/22																									
Flight Test #3	another fight test with I mature	100%	4/6/22	4/6/22																									
Backup Quad Manufacture	manufacturing more services	100%	3/28/22	4/6/22																									
Rocket Manufacture	manufasturing suclet harkup parts	100%	3/28/22	4/6/22																									
Packing for competition	last minute charges and packing	100%	4/4/22	4/8/22																									
Argonia Cup	competition from failurilay	100%	4/8/22	4/30/22																									
Design Expo Poster	prepare a paster and such for expa-	100%	4/14/22	4/21/22																									
Prepare for Speedlest	get quark and racket mody for dema	100%	4/18/22	4/22/22																									
Speedlest	public demojenpo	100%	4/23/22	4/24/22																									
Rocket Room/Excelsion Cleaning Days	time to clean	100%	4/25/22	5/1/22																									
Final Precentation	anothing an older.	300%	4/18/22	5/6/22																									

Rocket Stuck in Tree



• Trial and error process to smooth out the flight controls

Name	Proportional	Integral	Derivative	Control Derivative	
Basic/Acro		1	//		
Roll	50		60	23	60
Pitch	54		75	25	60
Yaw	45		80	0	60
Barometer & Sonar/Altit	ude				
Position Z	50		0	0	
Velocity Z	100		50	10	
Magnometer/Heading					
Heading Hold	60				
Nav Heading	0		0	0	
GPS Navigation					
Position XY	50				
Velocity XY	50		25	50	40
Surface	C)	0	0	